
www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 11:51:43:AM 06/06/2014 Page i

Real-Time Analytics

Byron Ellis

Techniques to Analyze and
Visualize Streaming Data

www.allitebooks.com

http://www.allitebooks.org

ffi rs.indd 11:51:43:AM 06/06/2014 Page ii

Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data

Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-83791-7

ISBN: 978-1-118-83793-1 (ebk)

ISBN: 978-1-118-83802-0 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or

by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted

under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis-

sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright

Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to

the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,

111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.
com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or war-

ranties with respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all

warranties, including without limitation warranties of fi tness for a particular purpose. No warranty may be

created or extended by sales or promotional materials. The advice and strategies contained herein may not

be suitable for every situation. This work is sold with the understanding that the publisher is not engaged in

rendering legal, accounting, or other professional services. If professional assistance is required, the services

of a competent professional person should be sought. Neither the publisher nor the author shall be liable for

damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation

and/or a potential source of further information does not mean that the author or the publisher endorses

the information the organization or website may provide or recommendations it may make. Further, readers

should be aware that Internet websites listed in this work may have changed or disappeared between when

this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department

within the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included

with standard print versions of this book may not be included in e-books or in print-on-demand. If this book

refers to media such as a CD or DVD that is not included in the version you purchased, you may download

this material at http://booksupport.wiley.com. For more information about Wiley products, visit

www.wiley.com.

Library of Congress Control Number: 2014935749

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc.

and/or its affi liates, in the United States and other countries, and may not be used without written permission.

All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated

with any product or vendor mentioned in this book.

www.allitebooks.com

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.allitebooks.org

ffi rs.indd 11:51:43:AM 06/06/2014 Page iii

As always, for Natasha.

www.allitebooks.com

http://www.allitebooks.org

iv

ffi rs.indd 11:51:43:AM 06/06/2014 Page iv

Credits

Executive Editor
Robert Elliott

Project Editor
Kelly Talbot

Technical Editors
Luke Hornof

Ben Peirce

Jose Quinteiro

Production Editors
Christine Mugnolo

Daniel Scribner

Copy Editor
Charlotte Kugen

Manager of Content Development
and Assembly
Mary Beth Wakefi eld

Director of Community Marketing
David Mayhew

Marketing Manager
Carrie Sherrill

Business Manager
Amy Knies

Vice President and Executive
Group Publisher
Richard Swadley

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Todd Klemme

Proofreader
Nancy Carrasco

Indexer
John Sleeva

Cover Designer
Wiley

www.allitebooks.com

http://www.allitebooks.org

v

ffi rs.indd 11:51:43:AM 06/06/2014 Page v

Byron Ellis is the CTO of Spongecell, an advertising technology fi rm based in

New York, with offi ces in San Francisco, Chicago, and London. He is responsible

for research and development as well as the maintenance of Spongecell’s com-

puting infrastructure. Prior to joining Spongecell, he was Chief Data Scientist

for Liveperson, a leading provider of online engagement technology. He also

held a variety of positions at adBrite, Inc, one of the world’s largest advertising

exchanges at the time. Additionally, he has a PhD in Statistics from Harvard

where he studied methods for learning the structure of networks from experi-

mental data obtained from high throughput biology experiments.

About the Technical Editors
With 20 years of technology experience, Jose Quinteiro has been an integral

part of the design and development of a signifi cant number of end-user, enter-

prise, and Web software systems and applications. He has extensive experience

with the full stack of Web technologies, including both front-end and back-end

design and implementation. Jose earned a B.S. in Chemistry from The College

of William & Mary.

Luke Hornof has a Ph.D. in Computer Science and has been part of several suc-

cessful high-tech startups. His research in programming languages has resulted

in more than a dozen peer-reviewed publications. He has also developed com-

mercial software for the microprocessor, advertising, and music industries. His

current interests include using analytics to improve web and mobile applications.

Ben Peirce manages research and infrastructure at Spongecell, an advertising

technology company. Prior to joining Spongecell, he worked in a variety of

roles in healthcare technology startups, he and co-founded SET Media, an ad

tech company focusing on video. He holds a PhD from Harvard University’s

School of Engineering and Applied Sciences, where he studied control systems

and robotics.

About the Author

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

vii

ffi rs.indd 11:51:43:AM 06/06/2014 Page vii

Before writing a book, whenever I would see “there are too many people to

thank” in the acknowledgements section it would seem cliché. It turns out that it

is not so much cliché as a simple statement of fact. There really are more people

to thank than could reasonably be put into print. If nothing else, including them

all would make the book really hard to hold.

However, there are a few people I would like to specifi cally thank for their

contributions, knowing and unknowing, to the book. The fi rst, of course, is

Robert Elliot at Wiley who seemed to think that a presentation that he had liked

could possibly be a book of nearly 400 pages. Without him, this book simply

wouldn’t exist. I would also like to thank Justin Langseth, who was not able to

join me in writing this book but was my co-presenter at the talk that started

the ball rolling. Hopefully, we will get a chance to reprise that experience. I

would also like to thank my editors Charlotte, Rick, Jose, Luke, and Ben, led

by Kelly Talbot, who helped fi nd and correct my many mistakes and kept the

project on the straight and narrow. Any mistakes that may be left, you can be

assured, are my fault.

For less obvious contributions, I would like to thank all of the DDG regulars.

At least half, probably more like 80%, of the software in this book is here as a

direct result of a conversation I had with someone over a beer. Not too shabby

for an informal, loose-knit gathering. Thanks to Mike for fi rst inviting me along

and to Matt and Zack for hosting so many events over the years.

Finally, I’d like to thank my colleagues over the years. You all deserve some

sort of medal for putting up with my various harebrained schemes and tinker-

ing. An especially big shout-out goes to the adBrite crew. We built a lot of cool

stuff that I know for a fact is still cutting edge. Caroline Moon gets a big thank

Acknowledgments

www.allitebooks.com

http://www.allitebooks.org

viii Acknowledgments

ffi rs.indd 11:51:43:AM 06/06/2014 Page viii

you for not being too concerned when her analytics folks wandered off and

started playing with this newfangled “Hadoop” thing and started collecting

more servers than she knew we had. I’d also especially like to thank Daniel

Issen and Vadim Geshel. We didn’t always see eye-to-eye (and probably still

don’t), but what you see in this book is here in large part to arguments I’ve had

with those two.

www.allitebooks.com

http://www.allitebooks.org

ix

ftoc.indd 05:30:33:PM 06/12/2014 Page ix

Introduction xv

Chapter 1 Introduction to Streaming Data 1

Sources of Streaming Data 2
Operational Monitoring 3

Web Analytics 3

Online Advertising 4

Social Media 5

Mobile Data and the Internet of Things 5

Why Streaming Data Is Different 7
Always On, Always Flowing 7

Loosely Structured 8

High-Cardinality Storage 9

Infrastructures and Algorithms 10
Conclusion 10

Part I Streaming Analytics Architecture 13

Chapter 2 Designing Real-Time Streaming Architectures 15

Real-Time Architecture Components 16
Collection 16

Data Flow 17

Processing 19

Storage 20

Delivery 22

Features of a Real-Time Architecture 24
High Availability 24

Low Latency 25

Horizontal Scalability 26

Contents

x Contents

ftoc.indd 05:30:33:PM 06/12/2014 Page x

Languages for Real-Time Programming 27
Java 27

Scala and Clojure 28

JavaScript 29

The Go Language 30

A Real-Time Architecture Checklist 30
Collection 31

Data Flow 31

Processing 32

Storage 32

Delivery 33

Conclusion 34

Chapter 3 Service Confi guration and Coordination 35

Motivation for Confi guration and Coordination Systems 36
Maintaining Distributed State 36

Unreliable Network Connections 36

Clock Synchronization 37

Consensus in an Unreliable World 38

Apache ZooKeeper 39
The znode 39

Watches and Notifi cations 41

Maintaining Consistency 41

Creating a ZooKeeper Cluster 42

ZooKeeper’s Native Java Client 47

The Curator Client 56

Curator Recipes 63

Conclusion 70

Chapter 4 Data-Flow Management in Streaming Analysis 71

Distributed Data Flows 72
At Least Once Delivery 72

The “n+1” Problem 73

Apache Kafka: High-Throughput Distributed Messaging 74
Design and Implementation 74

Confi guring a Kafka Environment 80

Interacting with Kafka Brokers 89

Apache Flume: Distributed Log Collection 92
The Flume Agent 92

Confi guring the Agent 94

The Flume Data Model 95

Channel Selectors 95

Flume Sources 98

Flume Sinks 107

Sink Processors 110

Flume Channels 110

 Contents xi

ftoc.indd 05:30:33:PM 06/12/2014 Page xi

Flume Interceptors 112

Integrating Custom Flume Components 114

Running Flume Agents 114

Conclusion 115

Chapter 5 Processing Streaming Data 117

Distributed Streaming Data Processing 118
Coordination 118

Partitions and Merges 119

Transactions 119

Processing Data with Storm 119
Components of a Storm Cluster 120

Confi guring a Storm Cluster 122

Distributed Clusters 123

Local Clusters 126

Storm Topologies 127

Implementing Bolts 130

Implementing and Using Spouts 136

Distributed Remote Procedure Calls 142

Trident: The Storm DSL 144

Processing Data with Samza 151
Apache YARN 151

Getting Started with YARN and Samza 153

Integrating Samza into the Data Flow 157

Samza Jobs 157

Conclusion 166

Chapter 6 Storing Streaming Data 167

Consistent Hashing 168
“NoSQL” Storage Systems 169

Redis 170

MongoDB 180

Cassandra 203

Other Storage Technologies 215
Relational Databases 215

Distributed In-Memory Data Grids 215

Choosing a Technology 215
Key-Value Stores 216

Document Stores 216

Distributed Hash Table Stores 216

In-Memory Grids 217

Relational Databases 217

Warehousing 217
Hadoop as ETL and Warehouse 218

Lambda Architectures 223

Conclusion 224

xii Contents

ftoc.indd 05:30:33:PM 06/12/2014 Page xii

Part II Analysis and Visualization 225

Chapter 7 Delivering Streaming Metrics 227

Streaming Web Applications 228
Working with Node 229

Managing a Node Project with NPM 231

Developing Node Web Applications 235

A Basic Streaming Dashboard 238

Adding Streaming to Web Applications 242

Visualizing Data 254
HTML5 Canvas and Inline SVG 254

Data-Driven Documents: D3.js 262

High-Level Tools 272

Mobile Streaming Applications 277
Conclusion 279

Chapter 8 Exact Aggregation and Delivery 281

Timed Counting and Summation 285
Counting in Bolts 286

Counting with Trident 288

Counting in Samza 289

Multi-Resolution Time-Series Aggregation 290
Quantization Framework 290

Stochastic Optimization 296
Delivering Time-Series Data 297

Strip Charts with D3.js 298

High-Speed Canvas Charts 299

Horizon Charts 301

Conclusion 303

Chapter 9 Statistical Approximation of Streaming Data 305

Numerical Libraries 306
Probabilities and Distributions 307

Expectation and Variance 309

Statistical Distributions 310

Discrete Distributions 310

Continuous Distributions 312

Joint Distributions 315

Working with Distributions 316
Inferring Parameters 316

The Delta Method 317

Distribution Inequalities 319

Random Number Generation 319
Generating Specifi c Distributions 321

 Contents xiii

ftoc.indd 05:30:33:PM 06/12/2014 Page xiii

Sampling Procedures 324
Sampling from a Fixed Population 325

Sampling from a Streaming Population 326

Biased Streaming Sampling 327

Conclusion 329

Chapter 10 Approximating Streaming Data with Sketching 331

Registers and Hash Functions 332
Registers 332

Hash Functions 332

Working with Sets 336
The Bloom Filter 338

The Algorithm 338

Choosing a Filter Size 340

Unions and Intersections 341

Cardinality Estimation 342

Interesting Variations 344

Distinct Value Sketches 347
The Min-Count Algorithm 348

The HyperLogLog Algorithm 351

The Count-Min Sketch 356
Point Queries 356

Count-Min Sketch Implementation 357

Top-K and “Heavy Hitters” 358

Range and Quantile Queries 360

Other Applications 364
Conclusion 364

Chapter 11 Beyond Aggregation 367

Models for Real-Time Data 368
Simple Time-Series Models 369

Linear Models 373

Logistic Regression 378

Neural Network Models 380

Forecasting with Models 389
Exponential Smoothing Methods 390

Regression Methods 393

Neural Network Methods 394

Monitoring 396
Outlier Detection 397

Change Detection 399

Real-Time Optimization 400
Conclusion 402

Index 403

fl ast.indd 05:34:14:PM 06/12/2014 Page xiv

xv

fl ast.indd 05:34:14:PM 06/12/2014 Page xv

Introduction

Overview and Organization of This Book

Dealing with streaming data involves a lot of moving parts and drawing from

many different aspects of software development and engineering. On the one

hand, streaming data requires a resilient infrastructure that can move data

quickly and easily. On the other, the need to have processing “keep up” with

data collection and scale to accommodate larger and larger data streams imposes

some restrictions that favor the use of certain types of exotic data structures.

Finally, once the data has been collected and processed, what do you do with

it? There are several immediate applications that most organizations have and

more are being considered all the time.This book tries to bring together all of

these aspects of streaming data in a way that can serve as an introduction to

a broad audience while still providing some use to more advanced readers.

The hope is that the reader of this book would feel confi dent taking a proof-of-

concept streaming data project in their organization from start to fi nish with

the intent to release it into a production environment. Since that requires the

implementation of both infrastructure and algorithms, this book is divided

into two distinct parts.

Part I, “Streaming Analytics Architecture,” is focused on the architecture

of the streaming data system itself and the operational aspects of the system.

If the data is streaming but is still processed in a batch mode, it is no longer

streaming data. It is batch data that happens to be collected continuously, which

is perfectly suffi cient for many use cases. However, the assumption of this book

is that some benefi t is realized by the fact that the data is available to the end

user shortly after it has been generated, and so the book covers the tools and

techniques needed to accomplish the task.

xvi Introduction

fl ast.indd 05:34:14:PM 06/12/2014 Page xvi

To begin, the concepts and features underlying a streaming framework are

introduced. This includes the various components of the system. Although not

all projects will use all components at fi rst, they are eventually present in all

mature streaming infrastructures. These components are then discussed in the

context of the key features of a streaming architecture: availability, scalability,

and latency.

The remainder of Part I focuses on the nuts and bolts of implementing or

confi guring each component. The widespread availability of frameworks for

each component has mostly removed the need to write code to implement each

component. Instead, it is a matter of installation, confi guration, and, possibly,

customization.

Chapters 3 and 4 introduce the tool needed to construct and coordinate a data

motion system. Depending on the environment, software might be developed to

integrate directly with this system or existing software adapted to the system.

Both are discussed with their relevant pros and cons.

Once the data is moving, the data must be processed and, eventually stored.

This is covered in Chapters 5 and Chapter 6. These two chapters introduce

popular streaming processing software and options for storing the data.

Part II of the book focuses on on the application of this infrastructure to various

problems. The dashboard and alerting system formed the original application of

streaming data collection and are the fi rst application covered in Part II.

Chapter 7 covers the delivery of data from the streaming environment to the

end user. This is the core mechanism used in the construction of dashboards

and other monitoring applications. Once delivered, the data must be presented

to the user, and this chapter also includes a section on building dashboard

visualizations in a web-based setting.

Of course, the data to be delivered must often be aggregated by the processing

system. Chapter 8 covers the aggregation of data for the streaming environment.

In particular, it covers the aggregation of multi-resolution time-series data for

the eventual delivery to the dashboards discussed in Chapter 7.

After aggregating the data, questions begin to arise about patterns in the

data. Is there a trend over time? Is this behavior truly different than previously

observed behavior? To answer these questions, you need some knowledge of

statistics and the behavior of random processes (which generally includes any-

thing with large scale data collection). Chapter 9 provides a brief introduction to

the basics of statistics and probability. Along with this introduction comes the

concept of statistical sampling, which can be used to compute more complicated

metrics than simple aggregates.

Though sampling is the traditional mechanism for approximating compli-

cated metrics, certain metrics can be better calculated through other mecha-

nisms. These probabilistic data structures, called sketches, are discussed in

 Introduction xvii

fl ast.indd 05:34:14:PM 06/12/2014 Page xvii

Chapter 10, making heavy use of the introduction to probability in Chapter 9.

These data structures also generally have fast updates and low memory foot-

prints, making them especially useful in streaming settings.

Finally, Chapter 11 discusses some further topics beyond aggregation that can

be applied to streaming data. A number of topics are covered in this chapter,

providing an introduction to topics that often fi ll entire books on their own. The

fi rst topic is models for streaming data taken from both the statistics and machine

learning community. These models provide the basis for a number of applications,

such as forecasting. In forecasting, the model is used to provide an estimate of

future values. Since the data is streaming, these predictions can be compared to

the reality and used to further refi ne the models. Forecasting has a number of

uses, such as anomaly detection, which are also discussed in Chapter 11.

Chapter 11 also briefl y touches on the topic of optimization and A/B testing.

If you can forecast the expected response of, for example, two different website

designs, it makes sense to use that information to show the design with the bet-

ter response. Of course, forecasts aren’t perfect and could provide bad estimates

for the performance of each design. The only way to improve a forecast for a

particular design is to gather more data. Then you need to determine how often

each design should be shown such that the forecast can be improved without

sacrifi cing performance due to showing a less popular design. Chapter 11 provides

a simple mechanism called the multi-armed bandit that is often used to solve

exactly these problems. This offers a jumping off point for further explorations

of the optimization problem.

Who Should Read This Book

As mentioned at the beginning of this “Introduction,” the intent of this book is

to appeal to a fairly broad audience within the software community. The book

is designed for an audience that is interested in getting started in streaming data

and its management. As such, the book is intended to be read linearly, with the

end goal being a comprehensive grasp of the basics of streaming data analysis.

That said, this book can also be of interest to experts in one part of the fi eld

but not the other. For example, a data analyst or data scientist likely has a

strong background in the statistical approaches discussed in Chapter 9 and

Chapter 11. They are also likely to have some experience with dashboard appli-

cations like those discussed in Chapter 7 and the aggregation techniques in

Chapter 8. However, they may not have much knowledge of the probabilistic

data structures in Chapter 10. The fi rst six chapters may also be of interest if not

to actually implement the infrastructure but to understand the design tradeoffs

that affect the delivery of the data they analyze.

xviii Introduction

fl ast.indd 05:34:14:PM 06/12/2014 Page xviii

Similarly, people more focused on the operational and infrastructural

pieces likely already know quite a bit about the topics discussed in Chapters 1

through 6. They may not have dealt with the specifi c software, but they have

certainly tackled many of the same problems. The second part of the book,

Chapters 7 through 11, is likely to be more interesting to them. Systems

monitoring was one of the fi rst applications of streaming data, and tools like

anamoly detection can, for example, be put to good use in developing robust

fault detection mechanisms.

Tools You Will Need

Like it or not, large swaths of the data infrastructure world are built on the

Java Virtual Machine. There are a variety of reasons for this, but ultimately it

is a required tool for this book. The software and examples used in this book

were developed against Java 7, though it should generally work against Java 6

or Java 8. Readers should ensure that an appropriate Java Development Kit is

installed on their systems.

Since Java is used, it is useful to have an editor installed. The software in this

book was written using Eclipse, and the projects are also structured using the

Maven build system. Installing both of these will help to build the examples

included in this book.

Other packages are also used throughout the book, and their installation is

covered in their appropriate chapters.

This book uses some basic mathematic terms and formulas. If your math skills

are rusty and you fi nd these concepts a little challenging, a helpful resource is

A First Course in Probability by Sheldon Ross.

What’s on the Website

The website includes code packages for all of the examples included in each

chapter. The code for each chapter is divided into separate modules.

Some code is used in multiple chapters. In this case, the code is copied to each

module so that they are self-contained.

The website also contains a copy of the Samza source code. Samza is a fairly

new project, and the codebase has been moving fast enough that the examples

in this book actually broke between the writing and editing of the relevant

chapters. To avoid this being a problem for readers, we have opted to include a

version of the project that is known to work with the code in this book. Please

go to www.wiley.com/go/realtimeanalyticsstreamingdata.

www.allitebooks.com

http://www.wiley.com/go/realtimeanalyticsstreamingdata
http://www.allitebooks.org

 Introduction xix

fl ast.indd 05:34:14:PM 06/12/2014 Page xix

Time to Dive In

It’s now time to dive into the actual building of a streaming data system. This

is not the only way of doing it, but it’s the one I have arrived at after several

different attempts over more years than I really care to think about it. I think

it works pretty well, but there are always new things on the horizon. It’s an

exciting time. I hope this book will help you avoid at least some of the mistakes

I have made along the way.

Go fi nd some d ata, and let’s start building something amazing.

fl ast.indd 05:34:14:PM 06/12/2014 Page xx

1

c01.indd 05:35:8:PM 06/12/2014 Page 1

It seems like the world moves at a faster pace every day. People and places

become more connected, and people and organizations try to react at an ever-

increasing pace. Reaching the limits of a human’s ability to respond, tools are

built to process the vast amounts of data available to decision makers, analyze

it, present it, and, in some cases, respond to events as they happen.

The collection and processing of this data has a number of application areas,

some of which are discussed in the next section. These applications, which

are discussed later in this chapter, require an infrastructure and method of

analysis specifi c to streaming data. Fortunately, like batch processing before it,

the state of the art of streaming infrastructure is focused on using commodity

hardware and software to build its systems rather than the specialized systems

required for real-time analysis prior to the Internet era. This, combined with

fl exible cloud-based environment, puts the implementation of a real-time system

within the reach of nearly any organization. These commodity systems allow

organizations to analyze their data in real time and scale that infrastructure to

meet future needs as the organization grows and changes over time.

The goal of this book is to allow a fairly broad range of potential users and

implementers in an organization to gain comfort with the complete stack of

applications. When real-time projects reach a certain point, they should be

agile and adaptable systems that can be easily modifi ed, which requires that

the users have a fair understanding of the stack as a whole in addition to their

C H A P T E R

1

Introduction to Streaming Data

2 Chapter 1 ■ Introduction to Streaming Data

c01.indd 05:35:8:PM 06/12/2014 Page 2

own areas of focus. “Real time” applies as much to the development of new

analyses as it does to the data itself. Any number of well-meaning projects have

failed because they took so long to implement that the people who requested

the project have either moved on to other things or simply forgotten why they

wanted the data in the fi rst place. By making the projects agile and incremental,

this can be avoided as much as possible.

This chapter is divided into sections that cover three topics. The fi rst section,

“Sources of Streaming Data,” is some of the common sources and applications

of streaming data. They are arranged more or less chronologically and provide

some background on the origin of streaming data infrastructures. Although this

is historically interesting, many of the tools and frameworks presented were

developed to solve problems in these spaces, and their design refl ects some of the

challenges unique to the space in which they were born. Kafka, a data motion

tool covered in Chapter 4, “Flow Management for Streaming Analysis,” for

example, was developed as a web applications tool, whereas Storm, a processing

framework covered in Chapter 5, “Processing Streaming Data,” was developed

primarily at Twitter for handling social media data.

The second section, “Why Streaming Data is Different,” covers three of the

important aspects of streaming data: continuous data delivery, loosely struc-

tured data, and high-cardinality datasets. The fi rst, of course, defi nes a system

to be a real-time streaming data environment in the fi rst place. The other two,

though not entirely unique, present a unique challenge to the designer of a

streaming data application. All three combine to form the essential streaming

data environment.

The third section, “Infrastructures and Algorithms,” briefl y touches on the

signifi cance of how infrastructures and algorithms are used with streaming data.

Sources of Streaming Data

There are a variety of sources of streaming data. This section introduces some

of the major categories of data. Although there are always more and more data

sources being made available, as well as many proprietary data sources, the

categories discussed in this section are some of the application areas that have

made streaming data interesting. The ordering of the application areas is pri-

marily chronological, and much of the software discussed in this book derives

from solving problems in each of these specifi c application areas.

The data motion systems presented in this book got their start handling data

for website analytics and online advertising at places like LinkedIn, Yahoo!,

and Facebook. The processing systems were designed to meet the challenges of

processing social media data from Twitter and social networks like LinkedIn.

Google, whose business is largely related to online advertising, makes

heavy use of the advanced algorithmic approaches similar to those presented

 Chapter 1 ■ Introduction to Streaming Data 3

c01.indd 05:35:8:PM 06/12/2014 Page 3

in Chapter 11. Google seems to be especially interested in a technique called

deep learning, which makes use of very large-scale neural networks to learn

complicated patterns.

These systems are even enabling entirely new areas of data collection and

analysis by making the Internet of Things and other highly distributed data

collection efforts economically feasible. It is hoped that outlining some of the

previous application areas provides some inspiration for as-of-yet-unforeseen

applications of these technologies.

Operational Monitoring

Operational monitoring of physical systems was the original application of

streaming data. Originally, this would have been implemented using special-

ized hardware and software (or even analog and mechanical systems in the

pre-computer era). The most common use case today of operational monitoring

is tracking the performance of the physical systems that power the Internet.

These datacenters house thousands—possibly even tens of thousands—of

discrete computer systems. All of these systems continuously record data about

their physical state from the temperature of the processor, to the speed of the

fan and the voltage draw of their power supplies. They also record information

about the state of their disk drives and fundamental metrics of their operation,

such as processor load, network activity, and storage access times.

To make the monitoring of all of these systems possible and to identify prob-

lems, this data is collected and aggregated in real time through a variety of

mechanisms. The fi rst systems tended to be specialized ad hoc mechanisms,

but when these sorts of techniques started applying to other areas, they started

using the same collection systems as other data collection mechanisms.

Web Analytics

The introduction of the commercial web, through e-commerce and online

advertising, led to the need to track activity on a website. Like the circulation

numbers of a newspaper, the number of unique visitors who see a website in a

day is important information. For e-commerce sites, the data is less about the

number of visitors as it is the various products they browse and the correlations

between them.

To analyze this data, a number of specialized log-processing tools were intro-

duced and marketed. With the rise of Big Data and tools like Hadoop, much

of the web analytics infrastructure shifted to these large batch-based systems.

They were used to implement recommendation systems and other analysis. It

also became clear that it was possible to conduct experiments on the structure

of websites to see how they affected various metrics of interest. This is called

A/B testing because—in the same way an optometrist tries to determine the

4 Chapter 1 ■ Introduction to Streaming Data

c01.indd 05:35:8:PM 06/12/2014 Page 4

best prescription—two choices are pitted against each other to determine which

is best. These tests were mostly conducted sequentially, but this has a number

of problems, not the least of which is the amount of time needed to conduct

the study.

As more and more organizations mined their website data, the need to reduce

the time in the feedback loop and to collect data on a more continual basis

became more important. Using the tools of the system-monitoring community,

it became possible to also collect this data in real time and perform things like

A/B tests in parallel rather than in sequence. As the number of dimensions being

 measured and the need for appropriate auditing (due to the metrics being used

for billing) increased, the analytics community developed much of the streaming

infrastructure found in this book to safely move data from their web servers

spread around the world to processing and billing systems.

This sort of data still accounts for a vast source of information from a variety

of sources, although it is usually contained within an organization rather than

made publicly available. Applications range from simple aggregation for billing

to the real-time optimization of product recommendations based on current

browsing history (or viewing history, in the case of a company like Netfl ix).

Online Advertising

A major user and generator of real-time data is online advertising. The original

forms of online advertising were similar to their print counterparts with “buys”

set up months in advance. With the rise of the advertising exchange and real-

time bidding infrastructure, the advertising market has become much more

fl uid for a large and growing portion of traffi c.

For these applications, the money being spent in different environments and

on different sites is being managed on a per-minute basis in much the same

way as the stock market. In addition, these buys are often being managed to

some sort of metric, such as the number of purchases (called a conversion) or

even the simpler metric of the number of clicks on an ad. When a visitor arrives

at a website via a modern advertising exchange, a call is made to a number of

bidding agencies (perhaps 30 or 40 at a time), who place bids on the page view

in real time. An auction is run, and the advertisement from the winning party

is displayed. This usually happens while the rest of the page is loading; the

elapsed time is less than about 100 milliseconds. If the page contains several

advertisements, as many of them do, an auction is often being run for all of

them, sometimes on several different exchanges.

All the parties in this process—the exchange, the bidding agent, the

advertiser, and the publisher—are collecting this data in real time for various

purposes. For the exchange, this data is a key part of the billing process as well

as important for real-time feedback mechanisms that are used for a variety of

purposes. Examples include monitoring the exchange for fraudulent traffi c and

 Chapter 1 ■ Introduction to Streaming Data 5

c01.indd 05:35:8:PM 06/12/2014 Page 5

other risk management activities, such as throttling the access to impressions

to various parties.

Advertisers, publishers, and bidding agents on both sides of the exchange are

also collecting the data in real time. Their goal is the management and optimi-

zation of the campaigns they are currently running. From selecting the bid (in

the case of the advertiser) or the “reserve” price (in the case of the publisher), to

deciding which exchange offers the best prices for a particular type of traffi c,

the data is all being managed on a moment-to-moment basis.

A good-sized advertising campaign or a large website could easily see page

views in the tens or hundreds of millions. Including other events such as clicks

and conversions could easily double that. A bidding agent is usually acting on

the part of many different advertisers or publishers at once and will often be

collecting on the order of hundreds of millions to billions of events per day.

Even a medium-sized exchange, sitting as a central party, can have billions of

events per day. All of this data is being collected, moved, analyzed, and stored

as it happens.

Social Media

Another newer source of massive collections of data are social media sources,

especially public ones such as Twitter. As of the middle of 2013, Twitter reported

that it collected around 500 million tweets per day with spikes up to around

150,000 tweets per second. That number has surely grown since then.

This data is collected and disseminated in real time, making it an important

source of information for news outlets and other consumers around the world.

In 2011, Twitter users in New York City received information about an earth-

quake outside of Washington, D.C. about 30 seconds before the tremors struck

New York itself.

Combined with other sources like Facebook, Foursquare, and upcoming

communications platforms, this data is extremely large and varied. The data

from applications like web analytics and online advertising, although highly

dimensional, are usually fairly well structured. The dimensions, such as money

spent or physical location, are fairly well understood quantitative values.

In social media, however, the data is usually highly unstructured, at least as

data analysts understand the term. It is usually some form of “natural language”

data that must be parsed, processed, and somehow understood by automated

systems. This makes social media data incredibly rich, but incredibly challeng-

ing for the real-time data sources to process.

Mobile Data and the Internet of Things

One of the most exciting new sources of data was introduced to the world in

2007 in the form of Apple’s iPhone. Cellular data-enabled computers had been

6 Chapter 1 ■ Introduction to Streaming Data

c01.indd 05:35:8:PM 06/12/2014 Page 6

available for at least a decade, and devices like Blackberries had put data in the

hands of business users, but these devices were still essentially specialist tools

and were managed as such.

The iPhone, Android phones, and other smartphones that followed made

cellular data a consumer technology with the accompanying economies of

scale that goes hand in hand with a massive increase in user base. It also put a

general-purpose computer in the pocket of a large population. Smartphones have

the ability not only to report back to an online service, but also to communicate

with other nearby objects using technologies like Bluetooth LE.

Technologies like so-called “wearables,” which make it possible to measure

the physical world the same way the virtual world has been measured for the

last two decades, have taken advantage of this new infrastructure. The applica-

tions range from the silly to the useful to the creepy. For example, a wristband

that measures sleep activity could trigger an automated coffee maker when the

user gets a poor night’s sleep and needs to be alert the next day. The smell of

coffee brewing could even be used as an alarm. The communication between

these systems no longer needs to be direct or specialized, as envisioned in the

various “smart home” demonstration projects during the past 50 years. These

tools are possible today using tools like If This Then That (IFTTT) and other

publicly available systems built on infrastructure similar to those in this book.

On a more serious note, important biometric data can be measured in real

time by remote facilities in a way that has previously been available only when

using highly specialized and expensive equipment, which has limited its appli-

cation to high-stress environments like space exploration. Now this data can be

 collected for an individual over a long period of time (this is known in statis-

tics as longitudinal data) and pooled with other users’ data to provide a more

complete picture of human biometric norms. Instead of taking a blood pressure

test once a year in a cold room wearing a paper dress, a person’s blood pressure

might be tracked over time with the goal of “heading off problems at the pass.”

Outside of health, there has long been the idea of “smart dust”—large collec-

tions of inexpensive sensors that can be distributed into an area of the world and

remotely queried to collect interesting data. The limitation of these devices has

largely been the expense required to manufacture relatively specialized pieces

of equipment. This has been solved by the commodifi cation of data collection

hardware and software (such as the smartphone) and is now known as the

Internet of Things. Not only will people continually monitor themselves, objects

will continually monitor themselves as well. This has a variety of potential

applications, such as traffi c management within cities to making agriculture

more effi cient through better monitoring of soil conditions.

The important piece is that this information can be streaming through com-

modity systems rather than hardware and software specialized for collection.

These commodity systems already exist, and the software required to analyze

 Chapter 1 ■ Introduction to Streaming Data 7

c01.indd 05:35:8:PM 06/12/2014 Page 7

the data is already available. All that remains to be developed are the novel

applications for collecting the data.

Why Streaming Data Is Diff erent

There are a number of aspects to streaming data that set it apart from other kinds

of data. The three most important, covered in this section, are the “always-on”

nature of the data, the loose and changing data structure, and the challenges

presented by high-cardinality dimensions. All three play a major role in decisions

made in the design and implementation of the various streaming frameworks

presented in this book. These features of streaming data particularly infl uence

the data processing frameworks presented in Chapter 5. They are also refl ected

in the design decisions of the data motion tools, which consciously choose not

to impose a data format on information passing through their system to allow

maximum fl exibility. The remainder of this section covers each of these in more

depth to provide some context before diving into Chapter 2, which covers the

components and requirements of a streaming architecture.

Always On, Always Flowing

This fi rst is somewhat obvious: streaming data streams. The data is always

available and new data is always being generated. This has a few effects on the

design of any collection and analysis system. First, the collection itself needs to

be very robust. Downtime for the primary collection system means that data is

permanently lost. This is an important thing to remember when designing an

edge collector, and it is discussed in more detail in Chapter 2.

Second, the fact that the data is always fl owing means that the system needs

to be able to keep up with the data. If 2 minutes are required to process 1 minute

of data, the system will not be real time for very long. Eventually, the problem

will be so bad that some data will have to be dropped to allow the system to

catch up. In practice it is not enough to have a system that can merely “keep up”

with data in real time. It needs to be able to process data far more quickly than

real time. For reasons that are either intentional, such as a planned downtime,

or due to catastrophic failures, such as network outages, the system either whole

or in part will go down.

Failing to plan for this inevitability and having a system that can only process

at the same speed as events happen means that the system is now delayed by the

amount of data stored at the collectors while the system was down. A system

that can process 1 hour of data in 1 minute, on the other hand, can catch up

fairly quickly with little need for intervention. A mature environment that has

good horizontal scalability—a concept also discussed in Chapter 2—can even

8 Chapter 1 ■ Introduction to Streaming Data

c01.indd 05:35:8:PM 06/12/2014 Page 8

implement auto-scaling. In this setting, as the delay increases, more process-

ing power is temporarily added to bring the delay back into acceptable limits.

On the algorithmic side, this always-fl owing feature of streaming data is

a bit of a double-edged sword. On the positive side, there is rarely a situation

where there is not enough data. If more data is required for an analysis, simply

wait for enough data to become available. It may require a long wait, but other

analyses can be conducted in the meantime that can provide early indicators

of how the later analysis might proceed.

On the downside, much of the statistical tooling that has been developed

over the last 80 or so years is focused on the discrete experiment. Many of the

standard approaches to analysis are not necessarily well suited to the data when

it is streaming. For example, the concept of “statistical signifi cance” becomes

an odd sort of concept when used in a streaming context. Many see it as some

sort of “stopping rule” for collecting data, but it does not actually work like that.

The p-value statistic used to make the signifi cance call is itself a random value

and may dip below the critical value (usually 0.05) even though, when the next

value is observed, it would result in a p-value above 0.05.

This does not mean that statistical techniques cannot and should not be

used—quite the opposite. They still represent the best tools available for the

analysis of noisy data. It is simply that care should be taken when performing

the analysis as the prevailing dogma is mostly focused on discrete experiments.

Loosely Structured

Streaming data is often loosely structured compared to many other datasets.

There are several reasons this happens, and although this loose structure is

not unique to streaming data, it seems to be more common in the streaming

settings than in other situations.

Part of the reason seems to be the type of data that is interesting in the stream-

ing setting. Streaming data comes from a variety of sources. Although some of

these sources are rigidly structured, many of them are carrying an arbitrary

data payload. Social media streams, in particular, will be carrying data about

everything from world events to the best slice of pizza to be found in Brooklyn

on a Sunday night. To make things more diffi cult, the data is encoded as human

language.

Another reason is that there is a “kitchen sink” mentality to streaming data

projects. Most of the projects are fairly young and exploring unknown terri-

tory, so it makes sense to toss as many different dimensions into the data as

possible. This is likely to change over time, so the decision is also made to use

a format that can be easily modifi ed, such as JavaScript Object Notation (JSON).

www.allitebooks.com

http://www.allitebooks.org

 Chapter 1 ■ Introduction to Streaming Data 9

c01.indd 05:35:8:PM 06/12/2014 Page 9

The general paradigm is to collect as much data as possible in the event that it

is actually interesting.

Finally, the real-time nature of the data collection also means that various

dimensions may or may not be available at any given time. For example, a ser-

vice that converts IP addresses to a geographical location may be temporarily

unavailable. For a batch system this does not present a problem; the analysis can

always be redone later when the service is once more available. The streaming

system, on the other hand, must be able to deal with changes in the available

dimensions and do the best it can.

High-Cardinality Storage

Cardinality refers to the number of unique values a piece of data can take on.

Formally, cardinality refers to the size of a set and can be applied to the various

dimensions of a dataset as well as the entire dataset itself. This high cardinality

often manifests itself in a “long tail” feature of the data. For a given dimension

(or combination of dimensions) there is a small set of different states that are

quite common, usually accounting for the majority of the observed data, and

then a “long tail” of other data states that comprise a fairly small fraction.

This feature is common to both streaming and batch systems, but it is much

harder to deal with high cardinality in the streaming setting. In the batch set-

ting it is usually possible to perform multiple passes over the dataset. A fi rst

pass over the data is often used to identify dimensions with high cardinality

and compute the states that make up most of the data. These common states

can be treated individually, and the remaining state is combined into a single

“other” state that can usually be ignored.

In the streaming setting, the data can usually be processed a single time.

If the common cases are known ahead of time, this can be included in the pro-

cessing step. The long tail can also be combined into the “other” state, and the

 analysis can proceed as it does in the batch case. If a batch study has already

been performed on an earlier dataset, it can be used to inform the streaming

analysis. However, it is often not known if the common states for the current

data will be the common states for future data. In fact, changes in the mix of

states might actually be the metric of interest. More commonly, there is no

previous data to perform an analysis upon. In this case, the streaming system

must attempt to deal with the data at its natural cardinality.

This is diffi cult both in terms of processing and in terms of storage. Doing

anything with a large set necessarily takes time to process anything that involves

a large number of different states. It also requires a linear amount of space to

store information about each different state and, unlike batch processing, storage

10 Chapter 1 ■ Introduction to Streaming Data

c01.indd 05:35:8:PM 06/12/2014 Page 10

space is much more restricted than in the batch setting because it must generally

use very fast main memory storage instead of the much slower tertiary storage

of hard drives. This has been relaxed somewhat with the introduction of high-

performance Solid State Drives (SSDs), but they are still orders of magnitude

slower than memory access.

As a result, a major topic of research in streaming data is how to deal with

high-cardinality data. This book discusses some of the approaches to dealing

with the problem. As an active area of research, more solutions are being devel-

oped and improved every day.

Infrastructures and Algorithms

The intent of this book is to provide the reader with the ability to implement

a streaming data project from start to fi nish. An algorithm without an infra-

structure is, perhaps, an interesting research paper, but not a fi nished system.

An infrastructure without an application is mostly just a waste of resources.

The approach of “build it and they will come” really isn’t going to work if

you focus solely on an algorithm or an infrastructure. Instead, a tangible system

must be built implementing both the algorithm and the infrastructure required

to support it. With an example in place, other people will be able to see how

the pieces fi t together and add their own areas of interest to the infrastructure.

One important thing to remember when building the infrastructure (and it

bears repeating) is that the goal is to make the infrastructure and algorithms

accessible to a variety of users in an organization (or the world). A successful

project is one that people use, enhance, and extend.

Conclusion

 Ultimately, the rise of web-scale data collection has been about connecting

“sensor platforms” for a real-time processing framework. Initially, these sensor

platforms were entirely virtual things such as system monitoring agents or the

connections between websites and a processing framework for the purposes

of advertising. With the rise of ubiquitous Internet connectivity, this has trans-

ferred to the physical world to allow collection of data across a wide range of

industries at massive scale.

Once data becomes available in real time, it is inevitable that processing

should be undertaken in real time as well. Otherwise, what would be the point

of real-time collection when bulk collection is probably still less expensive on a

 Chapter 1 ■ Introduction to Streaming Data 11

c01.indd 05:35:8:PM 06/12/2014 Page 11

per-observation basis? This brings with it a number of unique challenges. Using

the mix of infrastructural decisions and computational approaches covered in

this book, these challenges can be largely overcome to allow for the real-time

processing of today’s data as well as the ever-expanding data collection of

future systems.

c02.indd 05:35:28:PM 06/12/2014 Page 13

Par t

I
Streaming Analytics Architecture

In This Part

Chapter 2: Designing Real-Time Streaming Architectures

Chapter 3: Service Confi guration and Coordination

Chapter 4: Data Flow Management in Streaming Analysis

Chapter 5: Processing Streaming Data

Chapter 6: Storing Streaming Data

c02.indd 05:35:28:PM 06/12/2014 Page 14

15

c02.indd 05:35:28:PM 06/12/2014 Page 15

By their nature, real-time architectures are layer ed systems that rely on several

loosely coupled systems to achieve their goals. There are a variety of reasons

for this structure, from maintaining the high availability of the system in an

unreliable world to service requirements and managing the cost structure of

the architecture itself.

The remainder of the fi rst section of this book introduces software, frameworks

and methods for dealing with the various elements of these architectures. This

chapter serves as the blueprint and foundation for the architecture. First, the

various components of the architecture are introduced. These usually, but not

always, correspond to separate machine instances (physical or virtual). After

these components have been introduced, they can be discussed in the context

of the primary features of a real-time architecture: high availability, low latency,

and horizontal scalability.

This chapter also spends some time discussing the languages used to build

real-time architectures. It is assumed that the reader will have some familiarity

with the languages used for the examples in this book: Java and JavaScript. Many

of the software packages in this book are implemented using the Java Virtual

Machine, though not necessarily Java itself. JavaScript, of course, is the lingua

franca of the web and is used extensively in the later sections of this book to

implement the interfaces to the data.

C H A P T E R

2

Designing Real-Time Streaming

Architectures

16 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 16

Finally, this chapter offers some advice to someone planning a streaming

architecture pilot project. Many of the software packages in this book can be

considered interchangeable in the sense that they can all be made to function

in any environment, but they all have their strengths and weaknesses. Based

on real-world experience, this naturally means that some packages are easier

to use in some environments than others. The fi nal section of this chapter pro-

vides some insight into solutions that have worked in the past and can serve as

a starting point for the future.

Real-Time Architecture Components

This section describes the components often found in a modern real-time archi-

tecture. Not every system will have every component, especially at fi rst. The

goal should be to build a system appropriate to an initial application, with the

ability to expand to incorporate any missing components in the future.

After the fi rst application is established, other applications of the infrastruc-

ture will inevitably follow with their own requirements. In fact, it is quite likely

that some components will have multiple implementations. It happens most

often in the storage component, where there is a wide range of performance

characteristics among the different products available.

This section covers each of the components and some aspects of their devel-

opment and future path. In general, the specifi cs of each component will be

covered in more depth in their relevant chapters in the remainder of Part I.

Collection

The most common environment for real-time applications discussed in this

book is handled over TCP/IP-based networks. As a result, the collection of data

happens through connections over a TCP/IP network, probably using a common

protocol such as HTTP. The most obvious example of this form of collection is a

large latency-sensitive website that geo-distributes its servers (known as edge

servers) to improve end-user latency.

With websites being one of the original use cases for large-scale data collec-

tion, it is not surprising that the log formats used by web servers dominated the

formatting of log fi les. Unfortunately, most web servers adhered to the National

Center for Supercomputing Applications (NCSA) Common Log Format and the

later World Wide Web Consortium (W3C) Extended Log File Format, which was

never intended to support the rich data payloads (and does so poorly).

Newer systems now log in a variety of formats, with JavaScript Object Notation

(JSON) being one of the most popular. It has gained popularity by being able

to represent rich data structures in a way that enables it to be easily extended.

 Chapter 2 ■ Designing Real-Time Streaming Architectures 17

c02.indd 05:35:28:PM 06/12/2014 Page 17

It is also relatively easy to parse, and libraries for it are widely available. It is

used to transfer data between client-side web applications and the server side.

JSON’s fl exibility also leads to a signifi cant downside: processing-time vali-

dation. The lack of defi ned schemas and the tendency of different packages to

produce structurally different, but semantically identical structures means that

processing applications must often include large amounts of validation code

to ensure that their inputs are reasonable. The fact that JSON essentially sends

its schema along with every message also leads to data streams that require

relatively large bandwidth. Compression of the data stream helps, often achieving

compression rates well more than 80 percent, but this suggests that something

could be done to improve things further.

If the data is well structured and the problem fairly well understood, one of

the structured wire formats is a possibility. The two most popular are Thrift and

Protocol Buffers (usually called Protobuf). Both formats, the former developed

at Facebook and the latter at Google, are very similar in their design (not sur-

prising given that they also share developers). They use an Interface Defi nition

Language (IDL) to describe a data structure that is translated into code that is

usable in a variety of output languages. This code is used to encode and decode

messages coming over the wire. Both formats provide a mechanism to extend

the original message so that new information can be added.

Another, less popular option is the Apache Avro format. In concept it is quite

similar to Protocol Buffers or Thrift. Schemas are defi ned using an IDL, which

happens to be JSON, much like Thrift or Protobuf. Rather than using code

generation, Avro tends to use dynamic encoders and decoders, but the binary

format is quite similar to Thrift. The big difference is that, in addition to the

binary format, Avro can also read and write to a JSON representation of its

schema. This allows for a transition path between an existing JSON represen-

tation, whose informal schema can often be stated as an explicit Avro schema,

and the more compact and well-defi ned binary representation.

For the bulk of applications, the collection process is directly integrated into

the edge servers themselves. For new servers, this integrated collection mecha-

nism likely communicates directly with the data-fl ow mechanisms described

in the next section. Older servers may or may not integrate directly with the

data-fl ow mechanism, with options available for both. These servers are usually

application specifi c, so this book does not spend much time on this part of the

environment except to describe the mechanisms for writing directly to the

data-fl ow component.

Data Flow

Collection, analysis, and reporting systems, with few exceptions, scale and

grow at different rates within an organization. For example, if incoming traffi c

18 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 18

remains stable, but depth of analysis grows, then the analysis infrastructure

needs more resources despite the fact that the amount of data collected stays the

same. To allow for this, the infrastructure is separated into tiers of collection,

processing, and so on. Many times, the communication between these tiers is

conducted on an ad hoc basis, with each application in the environment using

its own communication method to integrate with its other tiers.

One of the aims of a real-time architecture is to unify the environment, at

least to some extent, to allow for the more modular construction of applications

and their analysis. A key part of this is the data-fl ow system (also called a data

motion system in this book).

These systems replace the ad hoc, application-specifi c, communication frame-

work with a single, unifi ed software system. The replacement software systems

are usually distributed systems, allowing them to expand and handle complicated

situations such as multi-datacenter deployment, but they expose a common

interface to both producers and consumers of the data.

The systems discussed in this book are primarily what might be considered

third-generation systems. The “zero-th generation” systems are the closely

coupled ad hoc communication systems used to separate applications into

application-specifi c tiers.

The fi rst generation systems break this coupling, usually using some sort of

log-fi le system to collect application-specifi c data into fi les. These fi les are then

generically collected to a central processing location. Custom processors then

consume these fi les to implement the other tiers. This has been, by far, the most

popular system because it can be made reliable by implementing “at least once”

delivery semantics and because it’s fast enough for batch processing applications.

The original Hadoop environments were essentially optimized for this use case.

The primary drawback of the log-based systems is that they are fairly slow.

Data must be collected in a batch form when a log fi le is “rolled” and processed

en masse. Second-generation data-fl ow systems recognized that reliable trans-

port was not always a priority and began to implement remote procedure call

(RPC) systems for moving data between systems. Although they may have

some buffering to improve reliability, the second-generation systems, such as

Scribe and Avro, generally accept that speed is acquired at the expense of reli-

ability. For many applications this tradeoff is wholly acceptable and has been

made for decades in systems-monitoring software such as Syslog, which uses

a similar model.

Third-generation systems combine the reliability of the fi rst-generation log

models with the speed of the second-generation RPC models. In these systems,

there is a real-time interface to the data layer for both producers and consumers

of the data that delivers data as discrete messages, rather than the bulk delivery

found in fi rst-generation log systems. In practice, this is usually accomplished

as a “mini batch” on the order of a thousand messages to improve performance.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ Designing Real-Time Streaming Architectures 19

c02.indd 05:35:28:PM 06/12/2014 Page 19

However, these environments also implement an intermediate storage layer

that allows them to make the same “at least once” delivery guarantees of log-

based delivery systems. To maintain the requisite performance, this storage layer

is horizontally scaled across several different physical systems with coordina-

tion handled by the client software on both the producer and consumer sides

of the system.

The fi rst of these systems were queuing systems designed to handle large

data loads; ActiveMQ is an example. By providing a queuing paradigm, the

queuing systems allow for the development of message “busses” that loosely

coupled different components of the architecture and free developers from the

communication task. The drawback of queuing systems has been the desire to

maintain queue semantics where the order of delivery to consumers is matched

to the order of submission. Generally, this behavior is unnecessary in distributed

systems and, if needed, usually better handled by the client software.

Recognition of the fact that queuing semantics are mostly unneeded has

led the latest entrants in the third-generation of data-fl ow systems, Kafka and

Flume, to largely abandon the ordering semantics while still maintaining the

distributed system and reliability guarantees. This has allowed them to boost

performance for nearly all applications. Kafka is also notable in that it was

explicitly designed to handle data fl ow in a large multi-datacenter installation.

Processing

Map-Reduce processing (Hadoop being the most popular open source version)

became popular not because it was a game-changing paradigm. After all, the

Hollerith tabulation machines used for the 1890 census used a tabulating mecha-

nism very similar to the map-reduce procedure implemented by Hadoop and

others.

N O T E Hollerith later founded the corporations that would eventually become IBM.

Map-reduce processing also did not introduce the idea of distributed com-

putation and the importance of the computation being local to the data for

performance. The high-performance and large-scale computing communities

have long known that it is often more effi cient to move software close to the

data, and there is no shortage of software available from that community for

distributed computing.

What the map-reduce paper did do was to use this paradigm to effi ciently

arrange the computation in a way that did not require work on the part of the

application developer, provided the developer could state the problem in this

peculiar way. Large amounts of data had long been tabulated, but it was up

to the specifi c application to decide how to divide that data among processing

20 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 20

units and move it around. The fi rst generation log collection systems made it

possible to collect large amounts of data in a generic way. Map-reduce, Hadoop

in particular, made it easy to distribute that processing so that it did not require

application-specifi c code or expensive hardware and software solutions.

The same thing happened in the real-time space with the introduction of

the second generation of data-fl ow frameworks. Data that had formerly been

locked in log fi les became available in a low-latency setting. Like the original

batch systems, the fi rst systems tended to have task-specifi c implementations.

For example, Twitter’s Rainbird project implements a hierarchical streaming

counting system using a database called Cassandra.

The current second-generation systems have moved beyond task-specifi c

implementations into providing a general service for arranging streaming

computation. These systems, such as Storm (also a Twitter project, but originally

developed by a company called BackType) typically provide a directed acyclic

graph (DAG) mechanism for arranging the computation and moving messages

between different parts of the computation.

These frameworks, which are relatively young as software projects, are still

often under heavy development. They also lack the guidance of well-understood

computational paradigms, which means that they have to learn what works well

and what does not as they go along. As their development progresses, there

will probably be an erosion in the difference between batch-based systems and

streaming systems. The map-reduce model is already gaining the ability to

implement more complicated computation to support the demand for interac-

tive querying as parts of projects like Cloudera’s Impala and the Stinger project

being led by Hortonworks.

Storage

Storage options for real-time processing and analysis are plentiful—almost to

the point of being overwhelming. Whereas traditional relational databases can

and are used in streaming systems, the preference is generally for so-called

“NoSQL” databases. This preference has a number of different drivers, but the

largest has generally been the need to prioritize performance over the ACID

(Atomicity, Consistency, Isolation, Durability) requirements met by the tradi-

tional relational database. Although these requirements are often met to some

degree, a common feature of these databases is that they rarely support all the

requirements.

The other thing that these databases usually lack when compared to a relational

database is a richness of schema and query language. The NoSQL moniker is a

reference to the fact that this class of database usually has a much more restricted

query language than that allowed by the SQL (Standard Query Language) stan-

dard. This simplifi ed and/or restricted query language is usually coupled with

a restricted schema, if any formal schema mechanism exists at all.

 Chapter 2 ■ Designing Real-Time Streaming Architectures 21

c02.indd 05:35:28:PM 06/12/2014 Page 21

The most common styles of NoSQL databases are the various forms of per-

sistent key-value stores. They range from single-machine master-slave data

stores, such as Redis, to fully distributed, eventually consistent, stores, such as

Cassandra. Their fundamental data structure is the key with an arbitrary byte

array value, but most have built some level of abstraction on the core entity.

Some, such as Cassandra, even extend the abstraction to offering a SQL-like

language that includes schemas and familiar-looking statements, although they

don’t support many features of the language.

The NoSQL database world also includes a variety of hybrid data stores,

such as MongoDB. Rather than being a key-value store, MongoDB is a form of

indexed document store. In many ways it is closer to a search engine like Google

than it is to a relational database. Like the key-value stores, it has a very limited

query language. It does not have a schema; instead it uses an optimized JSON

representation for documents that allow for rich structure. Unlike most of the

key-value stores, it also offers abstractions for reference between documents.

Along with the simplifi cation of the query languages and maintenance of

schemas comes a relaxation of the aforementioned ACID requirements. Atomicity

and consistency, in particular, are often sacrifi ced in these data stores. By relax-

ing the consistency constraint to one of “eventual consistency,” these stores gain

some performance through reduced bookkeeping and a much simpler model

for distributing themselves across a large number of machines that may be

quite distant physically. In practice, for streaming applications, it is generally

not necessary that each client have the same view of the data at the same time.

The principal problem is when two physically separate copies of the database

attempt to modify the same piece of state. Resolving this problem is tricky, but

it is possible and is discussed in detail in Chapter 3, “Service Confi guration

and Coordination.”

Relaxing the atomicity requirement also usually results in a performance gain

for the data store, and maximum performance is the ultimate goal of all of these

data stores. Most of them maintain atomicity in some lightweight way, usually

the special case of counter types. Maintaining atomic counters, as it happens, is

not too diffi cult and also happens to be a common use case, leading most data

stores to implement some form of counter.

Each of the stores discussed in this book have different strengths and weak-

nesses. There is even a place in real-time applications for traditional relational

databases. Different applications will perform better with one data store or another

depending on the goal of the implementation, and the notion that a single data

store is suffi cient for all purposes is unrealistic. The aim of this book is to allow

for an infrastructure that uses the real-time store as a good approximation of the

system of record, which is likely to be based on a batch system and a relational

database. Data stores are then chosen based on their performance characteristics

for their problems with the expectation that the infrastructure can ensure that

they all hold essentially the same data optimized for their use cases.

22 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 22

The acceptance that practical realities require that data be stored in different

stores extends to integration with batch processing. Streaming architectures

are well suited to tasks that can accept some error in their results. Depending

on the calculations required, this error might even be intentional as discussed

in Chapter 9, “Statistical Approximation of Streaming Data,” and Chapter 10,

“Approximating Streaming Data with Sketching.” However, it is often the case

that the data calculated must eventually be resolved and audited, which is a

task much better suited to batch computation. Ideally, the streaming architecture

makes the data available quickly and then is replaced by data from the batch

system as it becomes available. Nathan Marz, the primary creator of Storm, coined

the term for this: Lambda Architecture. In the Lambda Architecture system, the

user interface or another piece of middleware is responsible for retrieving the

appropriate data from the appropriate store. As the convergence of the batch

and real-time systems continues, through infrastructure improvements like the

Apache YARN project, this should become the common case.

Delivery

The delivery mechanism for most real-time applications is some sort of web-based

interface. They have a lot of advantages. They are relatively easy to implement

and are lightweight to deploy in situ. There are dozens of frameworks available

to aid the process.

Originally, these dashboards were websites with a refresh META tag that

would reload a static representation of the process every few minutes. Many of

the systems-monitoring tools, such as Graphite, still work that way. This works

well enough for applications whose data is usually fairly slow to change. It

also works well when a variety of environments need to be supported, as the

technology is nearly as old as the web itself.

Web Communication Methods

Modern applications have a number of other options for delivering data to a

web browser for display. A slightly faster version of the refreshing web page is

to use the XMLHttpRequest (XHR) feature of most web browsers to load the data

into the browser rather than an image of the data. This collection of technologies

is also known by the name AJAX, which stands for “Asynchronous JavaScript

and XML.” It offers some improvements over the old model by separating the

data layer and the presentational layer. This allows the application to tailor

rendering of the data to the environment as well as usually reducing the size

of the data transferred.

Transferring data via XMLHttpRequest, like the page refresh, is inherently

built around polling. Data can only update as quickly as the polling frequency,

 Chapter 2 ■ Designing Real-Time Streaming Architectures 23

c02.indd 05:35:28:PM 06/12/2014 Page 23

which limits how quickly new information can be delivered to the front end.

If events are relatively rare, such as with a notifi cation system, a large number

of calls are also wasted to ensure that “no news is good news.” As the need

for more real-time communication has grown, a number of “hacks” have been

developed to make interactions between the browser and the server seem more

immediate, by using techniques such as long polling. Collectively known as

Comet, these methods now include true streaming to the browser, allowing for

the implementation of truly real-time interfaces.

There are two standards currently in use: Server Sent Events (SSE) and Web

Sockets. SSE implements an HTTP-compatible protocol for unidirectional stream-

ing data from the server to the client. This is ideal for applications, such as a

dashboard, which mostly take in data. Communication in the other direction is

handled by normal AJAX calls. Web Sockets, on the other hand, implements a

more complex protocol designed by bidirectional interaction between the client

and the server. This protocol is not HTTP compatible, but it does have support

from the three major desktop browsers (Internet Explorer, Chrome, and Firefox)

as well as most of the mobile browsers. SSE are not available in Internet Explorer,

but its HTTP compatibility means that it can fall back to polling for browsers

that do not support the interface natively without extra server-side code.

Web-Rendering Methods

By sending the data to the client side, applications can also take advantage of

the rendering components built into modern web browsers: Scalable Vector

Graphics (SVG) and Canvas drawing. Other drawing technologies—such as

Microsoft’s Vector Markup Language (VML), which was only supported by

Internet Explorer, and the WebGL standard supported by Google’s Chrome

browser—have also been available over the years. These technologies attempt

to bring a standard for 3D rendering to the web browser.

Introduced in the late 1990s, but not well supported until the current gen-

eration of web browsers, the SVG format offers web pages the ability to render

resolution-independent graphics using a model very similar to the PostScript

and Portable Display Format (PDF) drawing models. Like HTML, graphical ele-

ments are specifi ed using a markup language that can display rectangles, circles,

and arbitrary paths. These can be styled using Cascading Style Sheets (CSS)

and animated using Document Object Model (DOM) manipulation. Originally

only supported through a clunky plug-in interface, native SVG was added to

Firefox 2.0 and early versions of the WebKit rendering engine used in both the

Safari and Chrome browsers. Today it is supported by the current version of all

major browsers and most mobile browser implementations. This broad support

and resolution independence makes it an ideal choice for graphical rendering

across varying platforms.

24 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 24

Originally introduced as part of Apple’s Safari browser and subsequently

included in the WHAT-WG proposal that serves as the basis for the HTML5

standard, the Canvas element also enjoys widespread support across browsers.

The Canvas element provides a drawing surface rather than a Document Object

Model for rendering an image. The drawing model itself is very similar to SVG

because it also draws its inspiration from PostScript and PDF. However, it only

maintains the actual pixels drawn rather than the objects used to render the

pixels. This allows the canvas element to act more like the traditional HTML

image element as well as conferring performance benefi ts relative to SVG in

certain situations. In graphics circles, Canvas would be known as an “immedi-

ate mode” implementation while SVG is a “retained mode” implementation.

Features of a Real-Time Architecture

All of the components of real-time systems discussed in the last section share

three key features that allow them to operate in a real-time streaming environ-

ment: high availability, low latency, and horizontal scalability. Without these

features, the real-time system encounters fundamental limitations that prevent it

from scaling properly. This section discusses what each of these features means

in the context of real-time applications.

High Availability

The high-availability requirement for the entire system is probably the key

difference between the real-time streaming application and the more common

batch-processing or business-intelligence application. If these systems become

unavailable for minutes or even hours, it is unlikely to affect operations. (Often,

users of the system do not even notice.) Real-time systems, on the other hand,

are sensitive to these sorts of outages and may even be sensitive to scheduled

maintenance windows.

This may not extend to all parts of the stack, such as the delivery mechanism,

but it is usually important for the collection, fl ow, and processing systems. To

ensure high availability, most of the systems in this stack resort to two things:

distribution and replication. Distribution means the use of multiple physical

servers to distribute the load to multiple end points. If one of the machines in,

say, the collection system, is lost, then the others can pick up the slack until it

can be restored or replaced.

Of course, high availability does not refer to only the availability of the service;

it also refers to the availability of the data being processed. The collection system

generally does not maintain much local state, so it can be replaced immediately

with no attempt to recover. Failures in the data-fl ow system, on the other hand,

 Chapter 2 ■ Designing Real-Time Streaming Architectures 25

c02.indd 05:35:28:PM 06/12/2014 Page 25

cause some subset of the data itself to become unavailable. To overcome this

problem, most systems employ some form of replication.

The basic idea behind replication is that, rather than writing a piece of data

to single-machine, a system writes to several machines in the hopes that at

least one of them survives. Relational databases, for example, often implement

replication that allows edits made to a master machine to be replicated to a

number of slave machines with various guarantees about how many slaves, if

any, must have the data before it is made available to clients reading from the

database. If the master machine becomes unavailable for some reason, some

databases can fail over to one of the slaves automatically, allowing it to become

the master. This failover is usually permanent, promoting the new master on

a permanent basis because the previous master will be missing interim edits

when and if it is restored.

This same approach is also used in some of the software stacks presented in

this book. The Kafka data motion system uses a master-slave style of replication

to ensure that data written to its queues remains available even in the event of

a failure. MongoDB, a data store, also uses a similar system for its replication

implementation. In both cases, automatic failover is offered, although a client

may need to disconnect and reconnect to successfully identify the new master.

It is also the client’s responsibility to handle any in-fl ight edits that had not yet

been acknowledged by the master.

The other approach, often found in NoSQL data stores, is to attempt a masterless

form high availability. Like the master-slave confi guration, any edits are writ-

ten to multiple servers in a distributed pool of machines. Typically, a machine

is chosen as the “primary” write machine according to some feature of the

data, such as the value of the primary key being written. The primary then

writes the same value to a number of other machines in a manner that can be

determined from the key value. In this way, the primary is always tried fi rst

and, if unavailable, the other machines are tried in order for both writing and

reading. This basic procedure is implemented by the Cassandra data store dis-

cussed in this book. It is also common to have the client software implement

this multiple writing mechanism, a technique commonly used in distributed

hash tables to ensure high availability. The drawback of this approach is that,

unlike the master-slave architecture, recovery of a server that has been out of

service can be complicated.

Low Latency

For most developers, “low latency” refers to the time it takes to service a given

connection. Low latency is generally desirable because there are only so many

seconds in a day (86,400 as it happens) and the less time it takes to handle a

single request, the more requests a single-machine can service.

26 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 26

For the real-time streaming application, low latency means something a bit

different. Rather than referring to the return time for a single request, it refers

to the amount of time between an event occurring somewhere at the “edge” of

the system and it being made available to the processing and delivery frame-

works. Although not explicitly stated, it also implies that the variation between

the latency of various events is fairly stable.

For example, in a batch system operating on the order of minutes the latency

of some events is very low, specifi cally, those events that entered the batch to

be processed right before the processing started. Events that entered the batch

just after the start of a processing cycle will have a very high latency because

they need to wait for the next batch to be processed. For practical reasons, many

streaming systems also work with what are effectively batches, but the batches

are so small that the time difference between the fi rst and last element of the

mini-batch is small, usually on the order of milliseconds, relative to the time

scale of the phenomena being monitored or processed.

The collection components of the system are usually most concerned with the

fi rst defi nition of low latency. The more connections that can be handled by a

single server, the fewer servers are required to handle the load. More than one

is usually required to meet the high-availability requirements of the previous

section, but being able to reduce the number of edge servers is usually a good

source of cost savings when it comes to real-time systems.

The data fl ow and processing components are more concerned with the

second defi nition of latency. Here the problem is minimizing the amount of

time between an event arriving at the process and it being made available to a

consumer. The key here is to avoid as much synchronization as possible, though

it is sometimes unavoidable to maintain high availability. For example, Kafka

added replication between version 0.7, the fi rst publicly available version, and

version 0.8, which is the version discussed in this book. It also added a response

to the Producer API that informs a client that a message has indeed reached

the host. Prior to this, it was simply assumed. Unsurprisingly, Kafka’s latency

increased somewhat between the two releases as data must now be considered

part of an “in sync replica” before it can be made available to consumers of the

data. In most practical situations, the addition of a second or two of latency

is not critical, but the tradeoff between speed and safety is one often made

in real-time streaming applications. If data can safely be lost, latency can be

made very small. If not, there is an unavoidable lower limit on latency, barring

advances in physics.

Horizontal Scalability

Horizontal scaling refers to the practice of adding more physically sepa-

rate servers to a cluster of servers handling a specifi c problem to improve

 Chapter 2 ■ Designing Real-Time Streaming Architectures 27

c02.indd 05:35:28:PM 06/12/2014 Page 27

performance. The opposite is vertical scaling, which is adding more resources to

a single server to improve performance. For many years, vertical scaling was the

only real option without requiring the developer to resort to exotic hardware

solutions, but the arrival of low-cost high-performance networks as well as

software advances have allowed processes to scale almost linearly. Performance

can then be doubled by essentially doubling the amount of hardware.

The key to successfully horizontally scaling a system is essentially an exer-

cise in limiting the amount of coordination required between systems. This

limited coordination applies to both systems communication between different

instances as well as those potentially on the same instances. One of the chief

mechanisms used to accomplish this feat is the use of partitioning techniques

to divide the work between machines. This ensures that a particular class of

work goes to a well-known set of machines without the need for anyone to ask

a machine what it is doing.

When coordination is required, the problem can become fairly complicated.

There have been a number of algorithms developed over the years that are

designed to allow loosely coupled machines to coordinate and handle events

such as network outages. In practice, they have proven devilishly diffi cult to

implement. Fortunately, these algorithms are now offered “as a service” through

coordination servers. The most popular is the ZooKeeper system developed by

Yahoo! and discussed in great detail in Chapter 3. Used by many of the other

frameworks and software packages in this book, ZooKeeper greatly simplifi es

the task of effi ciently coordinating a group of machines when required.

Languages for Real-Time Programming

There are a number of programming languages in use today, but only a few

of them are widely used when implementing real-time streaming applica-

tions. Part of this is due to the fact that the core packages are implemented in

a specifi c language, and the focus for the client libraries for that package is, of

course, on its native language. In other cases, the speed or ease of use of the

language makes it well suited for implementing real-time applications. This

section briefl y discusses some of the languages that are often encountered in

real-time applications.

Java

The Java language was made public in the mid-1990s with the promise of “Write

Once Run Anywhere” software. Initially, this was used to embed Java software

into web pages in the form of applets. The plan was to let the web server act as

the distribution mechanism for “fat” client-server applications. For a variety of

28 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 28

reasons, this never really caught on, and Java is now disabled by default in many

web browsers. What functionality it originally sought to provide was mostly

taken over by Adobe’s Flash product and, more recently, web pages themselves

as the JavaScript engine built into every web browser has become suffi ciently

powerful to implement rich applications.

Although it lost on the client side, Java did fi nd a niche on the server side of

web applications because it’s easier to deploy than its primary competitor, C++.

It was particularly easy to deploy when database connections were involved,

having introduced the Java Database Connectivity (JDBC) standard fairly early

in its life. Most web applications are, essentially, attractive connections to a

database, and Java became a common choice of server implementation language

as a result.

The development of a staggering number of software libraries and the slow

but steady improvements in performance made Java a natural choice when many

of the fi rst Big Data applications, especially Hadoop, were being developed.

(Google’s internal Map-Reduce application, however, was written in C++.) It

made sense to develop the rest of the stack in Java because it was on the front

end and on the back end in the form of Hadoop.

Because most of the packages in this book were written in Java, or at least

written to run on the Java Virtual Machine (JVM), Java is used as the example

language for most of this book. The reasons for this decision are largely the same

as those used to implement the packages in the fi rst place. The Java language

has a variety of software libraries that are fairly easy to obtain thanks to its

similarly wide array of build management systems.

In particular, this book uses a build system called Maven to handle the man-

agement of packages and their dependencies. Maven is nice because it provides

the ability for distributors of software packages to make them available either

through Maven’s own central repository or through repositories that library

authors maintain on their own. These repositories maintain the software itself

and also describe the dependencies of that software package. Maven can then

obtain all the appropriate software required to build the package automatically.

Scala and Clojure

In the last section it was mentioned that most of the software was built in Java

or to “run on the Java Virtual Machine.” This is because some of the software

was written in languages that compile to run on the JVM and can interact with

Java software packages but are not actually Java.

Although there are a number of non-Java JVM languages, the two most popular

ones used in real-time application development are Scala and Clojure. In this

book, Scala was used to implement the Kafka package used for data motion

www.allitebooks.com

http://www.allitebooks.org

 Chapter 2 ■ Designing Real-Time Streaming Architectures 29

c02.indd 05:35:28:PM 06/12/2014 Page 29

and the Samza framework used in conjunction with Kafka to process data.

Scala has spent most of its life as an academic language, and it is still largely

developed at universities, but it has a rich standard library that has made it

appealing to developers of high-performance server applications. Like Java,

Scala is a strongly typed object-oriented language, but it also includes many

features from functional programming languages that are not included in the

standard Java language. Interestingly, Java 8 seems to incorporate several of the

more useful features of Scala and other functional languages.

Whereas Scala does not have a direct analog in the world of programming

languages, Clojure is a JVM language based on the venerable Lisp language.

There have been a number of Lisp interpreters written for Java over the years,

but Clojure is compiled and can make direct use of Java libraries within the lan-

guage itself. Clojure was used to implement the Storm streaming data processing

framework discussed in this book. Lisp-style languages are ideally suited to the

implementation of domain-specifi c languages, which are small languages used

to implement specifi c tasks. This appears to have infl uenced the development

of Storm’s Trident Domain-Specifi c Language, which is used to defi ne the fl ow

of data through various steps of processing in Storm.

JavaScript

JavaScript, of course, is the lingua franca of the web. It is built into every web

browser and, thanks to an arms race between browser developers, is now even

fast enough to serve as a language for implementing web applications themselves.

The only relationship between JavaScript and Java, aside from the name—

which was essentially a marketing gimmick—is a superfi cial similarity in

their syntaxes. Both languages inherit much of their syntaxes from the C/C++

language, but JavaScript is much more closely related to Clojure and Scala.

Like Scala and Clojure, JavaScript is a functional language. In Java, an object is

an entity that contains some data and some functions, called methods. These two

entities are separate and treated quite differently by the Java compiler. When a

method is compiled by Java, it is converted to instructions called byte code and

then largely disappears from the Java environment, except when it is called by

other methods. In a functional language, functions are treated the same way as

data. They can be stored in objects the same way as integers or strings, returned

from functions, and passed to other functions. This feature is heavily used in

many different client-side JavaScript frameworks, including the D3 framework

used in this book. The D3 framework, which stands for Data Driven Documents,

uses functions to represent equations that it uses to manipulate web pages.

For example, a function can be passed to the method of an object that tells a

30 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 30

rectangle where to appear on the page. This allows the framework to respond

to data coming from outside sources without a lot of overhead.

JavaScript is also increasingly found in the implementation of the delivery

server itself, primarily in the form of the node.js project found at http://nodejs

.org. This project combines the JavaScript engine from the Chrome web browser,

known as V8, with an event loop library. This allows the inherently single-

threaded server to implement event-driven network services that can handle

large numbers of simultaneous connections. Although not nearly as effi cient

as the modern Java frameworks, it is generally suffi cient for the implementa-

tion of the server that handles delivery of data to the front end. It also has an

advantage over a non-JavaScript-based server in that the fallback support for

browsers that do not support modern features, such as SVG and Canvas, can

be implemented on the server side using the same codebase as the client side.

In particular, node.js has packages that allow for the creation of a DOM and a

rendering service that allows for the rendering of SVG visualizations on the

server side rather than the client side.

The Go Language

Although it’s not used in this book, the Go language is an interesting new entry

in the realm of high-performance application development, including real-time

applications. Developed at Google by a fairly small team, the Go language

combines the simplicity of the C language with a framework for developing

highly concurrent applications. It shares core team members with the original

UNIX team and the developers of the C language, which makes the similarity

to C unsurprising.

The Go language is still very much under development, and its compiler is

not as good as many C compilers (or even necessarily as good as Java’s compil-

ers at this point). That said, it has been shown to perform well on real-world

benchmarks for web server development and already has clients for several of

the packages discussed in this book, particularly Kafka and Cassandra. This

makes it a potential candidate for the development of edge collection servers

if not for the processing or delivery components of the real-time application.

A Real-Time Architecture Checklist

The remainder of the fi rst half of this book discusses the frameworks and

software packages used to build real-time streaming systems. Every piece of

software has been used in some real-world application or another and they

should not be considered to be in competition with one another. Each has its

purpose and, many times, attempting to compare them in some general way is

http://nodejs.org

 Chapter 2 ■ Designing Real-Time Streaming Architectures 31

c02.indd 05:35:28:PM 06/12/2014 Page 31

missing the point. Rather than comparing various software packages, this sec-

tion offers a simple opinion about which packages, frameworks, or languages

work best in a given setting.

Collection

In many cases, there will not be a choice. The edge server will be a pre-existing

system, and the goal will be to retrofi t or integrate that server with a real-time

framework.

In the happy event that the edge server is being custom built to collect data

from the outside world, a Java-based server is probably the best choice. Java

is in no way a “sexy” language. In fact, in many cases it can be an unpleasant

language to use. But it has been around for nearly 20 years, its shortcomings

are well understood, and people have been trying to squeeze performance out

of its frameworks for a long time. For the same amount of tuning effort in a

real-world application, Java will almost always be faster.

Other compiled JVM languages, such as Scala or Clojure, yield performance

similar to Java itself, particularly, if none of the advanced features of the language,

such as Scala’s collection library, are used. That said, the goals of a dedicated

edge server are to be as simple as possible and to deliver the data to the data-

fl ow framework quickly and safely. The same cannot be said of the various

complicated Java frameworks. These more complicated frameworks are designed

for building websites, not high-performance data collection systems. Instead,

you should use a lightweight framework rather than a heavyweight solution

designed from the implementation of relatively low volume interactive websites.

As mentioned earlier in the section on programming languages, the Go lan-

guage often performs well at this task. Although it does not yet have the outright

performance of the well-tuned Java web servers, it still manages to perform better

than nearly everything else in practical benchmarks. Additionally, it seems to

generally have a lighter memory footprint, and there are some indications that it

should perform better than a Java application when there are a truly enormous

number of connections being made to the server. Anecdotal evidence suggests

that being able to handle in excess of 50k concurrent connections is not outside

the realm of “normal” for Go. The downside is that almost nobody knows how

to program in Go, so it can be diffi cult to locate resources.

Data Flow

If there is a pre-existing system to be integrated, choose Flume. Its built-in suite

of interfaces to other environments makes it an ideal choice for adding a real-

time processing system to a legacy environment. It is fairly easy to confi gure

and maintain and will get the project up and running with minimal friction.

32 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 32

If retrofi tting a system or building something new from scratch, there is

no reason not to use Kafka. The only possible reason to not use it would be

because it is necessary to use a language that does not have an appropriate Kafka

client. In that case, the community would certainly welcome even a partial cli-

ent (probably the Producer portion) for that language. Even with the new safety

 features, its performance is still very good (to the point of being a counterexample

to the argument against Scala in the previous section), and it essentially does

exactly what is necessary.

Processing

Although Samza shows great promise, it is unfortunately still too immature

for most fi rst attempts at a real-time processing system. This is primarily due

to its reliance on the Apache YARN framework for its distributed processing.

The claim is that YARN can support many different types of computation, but

the reality of the situation is that nearly all the documentation only considers

the map-reduce case. This makes it diffi cult for an inexperienced user to get

much traction with getting set up.

A user already familiar with the maintenance of a YARN cluster will have

much more success with Samza and should consider it for implementing a real-

time application. In many ways it is a cleaner design than Storm, and its native

support of Kafka makes it easy to integrate into a Kafka-based environment.

For fi rst-time users, Storm is the more successful framework. Although it

too can be hosted in a YARN cluster, that is not the typical deployment. The

non-YARN deployment discussed in this book is much easier for new users to

understand, and it’s relatively easy to manage. The only disadvantage is that it

does not include native support for either Kafka or Flume. Chapter 5 addresses

the integration, but the development cycle of the plug-ins is quite different from

the mainline Storm code, which can cause incompatibilities around the time

of release.

Storage

For relatively small build-outs, such as a proof of concept or a fairly low-volume

application, Redis is the obvious choice for data storage. It has a rich set of

abstractions beyond the simple key-value store that allows for sophisticated

storage. It is easy to confi gure, install, and maintain, and it requires almost no

real maintenance (it is even available as a turnkey option from various cloud-

based providers). It also has a wide array of available clients.

The two drawbacks of Redis are that it has not really addressed the problem

of horizontal scalability for writes and it is limited to available random access

memory (RAM) of the master server. Like many of the tools in this book, it

 Chapter 2 ■ Designing Real-Time Streaming Architectures 33

c02.indd 05:35:28:PM 06/12/2014 Page 33

offers a master-slave style of replication with the ability to failover to one of

the replicas using Redis Sentinel. However, this still requires that all writes

go to a single server. There are several client-side projects, such as Twitter’s

Twemproxy, that attempt to work around this limitation, but there is no native

Redis solution as of yet. There is an ongoing clustering project, but there is no

timeline for its stable release.

If very large amounts of infrequently accessed data are going to be needed,

Cassandra is an excellent choice. Early versions of Cassandra suffered from a

“query language” that was essentially just an RPC layer on the internal data

structures of the Cassandra implementation. This issue combined with a some-

what unorthodox data model (for the time) makes it very hard to get started

with Cassandra. With the newest versions of Cassandra and version three of

the Cassandra Query Language (CQL), these problems have mostly been cor-

rected. Combined with other changes around the distribution of data in the

cluster, Cassandra has become a much more pleasant environment to use and

maintain. It is also quite fast, especially when coupled with Solid State Drive

(SSD)–equipped servers. It is not quite as fast as Redis because it may have to

retrieve data from disk, but it is not that much slower.

MongoDB is really a fi rst choice only when the data to be stored has a rich

structure—for example, when streaming geographical data. MongoDB offers

utilities and indexing to support geographical information system (GIS) data

more effi cient than either Redis or Cassandra. Other options in this space tend

to be based on traditional relational stores with added geographical indexing,

so MongoDB can provide a higher-performance alternative. Foursquare, which

deals almost exclusively in geographical data, is an early and well-known user

of MongoDB for this reason.

Delivery

Delivery of almost every application is going to be some sort of web application,

at least for its fi rst iteration. A native application, especially for mobile devices,

certainly delivers a much more rich and satisfying experience for the user. It

will also require a skillset that is not necessarily immediately available to most

organizations. If mobile developers are available, by all means, use them. A good

tablet or phone interface to a streaming application is much more compelling

than a web interface, thanks to the native experience.

That said, the native mobile experience is still going to need a server that can

deliver the data. The best way to do this is to implement application programming

interfaces (APIs) that support SSE that can be used by both the web applications

and native applications. The reason to choose SSE over Web Sockets, despite

the fact that Web Sockets has slightly better support across different browsers,

is its HTTP basis compared to Web Socket’s non-HTTP interface. SSE is simply

34 Part I ■ Streaming Analytics Architecture

c02.indd 05:35:28:PM 06/12/2014 Page 34

an HTTP connection, which allows for the use of “polyfi lls” that can simulate

the SSE on older browsers. This is much more diffi cult, and sometimes impos-

sible, with Web Sockets. By the same token, it is also easier to integrate SSE

into a native experience than it is to integrate Web Sockets’ more complicated

protocol. Because Web Sockets is intended for use within web browsers, it is

not necessarily available as a library in a native platform, whereas the standard

HTTP library can usually be easily modifi ed to support SSE by changing the

keep alive and timeout behavior.

Conclusion

T his chapter has provided a broad overview of the development of real-time

applications. The various components, also known as tiers, of a real-time sys-

tem have been described, and the names of some potential frameworks used in

each tier have been introduced. In addition, the low-level tools of the real-time

application—the programming languages—have also been briefl y introduced.

As mentioned at the beginning of this chapter, it is assumed that there is some

knowledge of the languages discussed in this chapter to get the most of out of

the rest of this book.

The rest of this book discusses each component described in this chapter in

more depth. Chapter 3 begins by discussing the coordination server ZooKeeper,

which was mentioned in the section on horizontal scalability. This is a criti-

cal piece of software used by several other packages in this book, making it

deserving of its own chapter. These coordination servers are used to manage the

data fl ow from the edge servers to the processing environment. Two packages

used to manage data fl ows, Kafka and Flume, are covered in Chapter 4, “Flow

Management for Streaming Analysis,” and should be used, as mentioned earlier,

according to need. Next, the data is processed using either Storm or Samza, both

of which are covered in Chapter 5, “Processing Streaming Data.” The results of

this processing need to be stored, and there are a variety of options available.

Some of the more popular options are laid out in Chapter 6, “Storing Streaming

Data,” so that they can be accessed by the delivery mechanisms discussed in

Chapter 7, “Delivering Streaming Metrics.”

Chapters 8 through 11 are more focused on building applications on top of

this foundation. They introduce aggregation methods used in the processing

section as well as statistical techniques applied to process data to accomplish

some goal. Chapter 11, “Beyond Aggregation,” in particular, is reserved for more

“advanced topics,” such as machine learning from streaming data.

35

c03.indd 05:35:46:PM 06/12/2014 Page 35

The early development of high-performance computing was primarily focused

on scale-up architectures. These systems had multiple processors with a shared

memory bus. In fact, modern multicore server hardware is architecturally quite

similar to the supercomputer hardware of the 1980s (although modern hardware

usually foregoes the Cray’s bench seating).

As system interlinks and network hardware improved, these systems began to

become more distributed, eventually evolving into the Network of Workstations

(NOW) computing environments used in most present-day computing environ-

ments. However, these interlinks usually do not have the bandwidth required

to simulate the shared resource environments of a scale-up architecture nor do

they have the reliability of interlinks used in a scale-up environment. Distributed

systems also introduce new failure modes that are not generally found in a

scale-up environment.

This chapter discusses systems and techniques used to overcome these prob-

lems in a distributed environment, in particular, the management of shared

state in distributed applications. Confi guration management and coordination

is fi rst discussed in general. The most popular system, used by most of the other

software in this book, is ZooKeeper. This system was developed by Yahoo! to

help manage its Hadoop infrastructure and is discussed extensively because it

is used by most of the other distributed software systems in this book.

C H A P T E R

3

Service Confi guration

and Coordination

36 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 36

Motivation for Confi guration and Coordination Systems

Most distributed systems need to share some system metadata as well as some

state concerning the distributed system itself. The metadata is typically some sort

of confi guration information. For example, it might need to store the location of

various database shards in a distributed server. System state is usually data used

to coordinate the application. For example, a master-slave system needs to keep

track of the server currently acting as the master. Furthermore, this happens in

a relatively unreliable environment, so a server must also somehow track the

correctness of the current confi guration or the validity of its coordination efforts.

Managing these requirements in a distributed environment is a notoriously

diffi cult-to-solve problem, often leading to incorrect server behavior. Alternatively,

if the problems are not addressed, they can lead to single points of failure in

the distributed system. For “offl ine” processing systems, this is only a minor

concern as the single point of failure can be re-established manually. In real-time

systems, this is more of a problem as recovery introduces potentially unaccept-

able delays in processing or, more commonly, missed processing entirely.

This leads directly to the motivation behind confi guration and coordination

systems: providing a system-wide service that correctly and reliably implements

distributed confi guration and coordination primitives.

These primitives, similar to the coordination primitives provided for mul-

tithreaded development, are then used to implement distributed versions of

high-level algorithms.

Maintaining Distributed State

Writing concurrent code that shares state within a single application is hard.

Even with operating systems and development environments providing support

for concurrency primitives, the interaction between threads and processes is

still a common source of errors. The problems are further compounded when

the concurrency spans multiple machines. Now, in addition to the usual prob-

lems of concurrency—deadlocks, race conditions, and so on—there are a host

of new problems to address.

Unreliable Network Connections

Even in the most well-controlled datacenter, networks are unreliable relative to

a single-machine. Latency can vary widely from moment to moment, bandwidth

can change over time, and connections can be lost. In a wide area network, a

 Chapter 3 ■ Service Configuration and Coordination 37

c03.indd 05:35:46:PM 06/12/2014 Page 37

“Backhoe Event” can sever connections between previously unifi ed networks.

For concurrent applications, this last event (which can happen within a single

datacenter) is the worst problem.

In concurrent programming, the loss of connectivity between two groups of

systems is known as the “Split Brain Problem.” When this happens, a distrib-

uted system must decide how to handle the fact that some amount of state is

suddenly inaccessible. There are a variety of strategies in practice, though the

most common is to enter a degraded state. For example, when connectivity

loss is detected, many systems disallow changes to the distributed state until

 connectivity has been restored.

Another strategy is to allow one of the partitions to remain fully functional

while degrading the capabilities of the other partition. This is usually accom-

plished using a quorum algorithm, which requires that a certain number of

servers are present in the partition. For example, requiring that a fully func-

tional partition contain an odd number of processes is a common strategy. If an

odd number of servers are split into two groups, one group always contains an

odd number of servers whereas the other contains an even number of servers.

The group with the odd number of servers remains functional, and the one

with an even number of servers becomes read-only or has otherwise degraded

functionality.

Clock Synchronization

It may seem like a simple thing, but distributed systems often require some

sort of time synchronization. Depending on the application, this synchroniza-

tion may need to be fairly precise. Unfortunately, the hardware clocks found in

servers are not perfect and tend to drift over time. If they drift far enough, one

server can experience an event that happened after the current time, resulting

in some interesting processing events. For example, an analysis system that

was interested in the difference between the timestamps of two types of events

might start to experience negative duration.

In most circumstances, servers are synchronized using the Network Time

Protocol (NTP). Although this still allows sometimes-signifi cant drift between

machines, it is usually “close enough.” Problems can arise, however, when it

is not possible to synchronize machines to the same set of NTP servers, which

sometimes happens in environments that have a secure internal domain that

communicates via a very limited gateway to an external-facing domain. In that

case, an internal NTP server can drift away from NTP servers used by external

users. In some situations, such as application programming interfaces (APIs)

that use time to manage authorization, the drift can cause profound failures

of the service.

38 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 38

Unfortunately, other than “don’t do that” there is no easy solution to that

particular problem.

Consensus in an Unreliable World

In addition to unreliable network connections and poorly synchronized clocks,

there is the possibility that the processes themselves might contain faults that

cause them to generate incorrect results at times. In some academic work on

the subject, these processes may even be actively malicious, though many real-

world systems do not consider this scenario.

In the face of all the things that can go wrong, the distributed state maintained

across machines should be consistent. The most famous (though not the fi rst)

algorithm for doing this, known as Paxos, was fi rst published in the late 1980s.

In the Paxos algorithm, a process that wants to mutate the shared state fi rst

submits a proposal to the cluster. This proposal is identifi ed by a monotonically

increasing integer, which must be larger than any identifi er previously used

by the Proposer.

The proposal is then transmitted to a quorum of other processes, called the

Acceptors. If a given Acceptor receives a message identifi er smaller than the

largest it has seen from the proposer, it simply discards the proposal as being

stale (alternatively, it can explicitly deny the request to the Proposer).

If the message seen by the Acceptor is the largest it has ever seen from the

Proposer, it updates the largest identifi er seen for the Proposer. At the same time,

it returns the previous identifi er and the associated value it had received from

that Proposer. This is called the promise phase because the Acceptor has now

promised not to deny all requests with an identifi er smaller than the new value.

After the Proposer has received enough positive responses from the promise

phase, it may consider its request to mutate the state to be accepted. The Proposer

then sends the actual change to the Acceptors, who then propagate the informa-

tion to other nodes in the cluster, which are called Learners. This process also

identifi es the Proposer whose proposal has been accepted as the Leader of the

cluster. In practice, this is often used to implement Leader Election for a cluster

of servers (for example, a clustered database application).

This basic form of Paxos is concerned with updating, essentially, the entire

state. It can be used to update individual elements of a distributed state repre-

sentation, but this tends to introduce a lot of overhead leading to the develop-

ment of Multi-Paxos.

The Multi-Paxos is often the algorithm that is actually implemented in the

real world. It depends on the fact that processes are relatively stable and that a

change in the Leader of a cluster is going to be rare. This allows the algorithm

to dispense with the Prepare-Promise phase of the communication protocol

after a process has been declared a Leader. When a new Leader is elected it

www.allitebooks.com

http://www.allitebooks.org

 Chapter 3 ■ Service Configuration and Coordination 39

c03.indd 05:35:46:PM 06/12/2014 Page 39

must repeat the Prepare-Promise cycle again, so the worst-case scenario is the

basic Paxos algorithm.

Although these algorithms appear to be relatively straightforward, they have

proven notoriously diffi cult to implement properly. Thus, it is recommended

to use systems like those described in this chapter rather than attempting an

implementation. This chapter introduces two of these systems: ZooKeeper and

etcd. The ZooKeeper project is a distributed confi guration and coordination tool

used to coordinate many of the other distributed systems found in this book.

Etcd is a new system that provides many of the same features of ZooKeeper

through an HTTP-based interface and using a new consensus algorithm called

Raft, which was designed explicitly to deal with the complexities of Paxos.

Apache ZooKeeper

The ZooKeeper project was developed at Yahoo! with the mission of providing

exactly the primitives described in the last section. Originally developed to tame

the menagerie of services being implemented in Yahoo!’s internal Hadoop envi-

ronments, it has been open-sourced and contributed to the Apache Foundation.

It has since proven itself to be a valuable infrastructural component for the

development of distributed systems. In fact, it is used to coordinate many of the

applications used later in this book. The Kafka data motion system uses it to

manage metadata for both its servers and clients. It is also a key component of

the Storm data processing framework’s server management features and plays

a similar role for the Samza data processing framework.

Rather than imposing a particular set of coordination or confi guration fea-

tures, ZooKeeper provides a low-level API for implementing coordination and

confi guration using a system loosely based on a hierarchical fi le system. These

features, often called recipes in ZooKeeper jargon, are left as an exercise for the

application author. This has the advantage of simplifying the ZooKeeper code-

base, but it does force the application developer to deal with some potentially

diffi cult implementations.

Fortunately, there are client libraries, such as the Curator library discussed

later in this chapter, that have carefully implemented the more complicated

recipes. This section covers the usage of the Curator library, but fi rst it covers

the basics of ZooKeeper itself.

The znode

The core of ZooKeeper’s data structures is the znode. These nodes can be arranged

hierarchically into tree structures as well as hold data. Because ZooKeeper is

not intended as a bulk storage facility, the amount of data a single znode can

40 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 40

hold is limited to about 1 MB of data. It also means that ZooKeeper does not

support partial reads, writes, or appends. When reading and writing data, the

entire byte array is transmitted in a single call.

The znode API supports six fundamental operations:

 ■ The create operation, which takes a path and optional data element. This,

naturally, creates a new znode at the specifi ed path with data if it does

not exist.

 ■ The delete operation, which removes a znode from the hierarchy.

 ■ The exists operation, which takes a path and allows applications to check

for the presence of a znode without reading its data.

 ■ The setData operation, which takes the same parameters as the create

operation. It overwrites data in an existing znode, but it doesn’t create a

new one if it does not already exist.

 ■ The getData operation retrieves the data block for a znode.

 ■ The getChildren operation retrieves a list of children of the znode at the

specifi ed path. This operation is a key part of many of the coordination

recipes developed for ZooKeeper.

All of these operations are subject to ZooKeeper’s access control policies.

These operate much like fi le system permissions and dictate which clients may

write to which part of a hierarchy. This allows for the implementation of multi-

tenant Zookeeper clusters.

Ephemeral Nodes

A znode may be either persistent or ephemeral. With a persistent znode, the

znode is only destroyed when the delete operation is used to explicitly remove

the znode from ZooKeeper.

Ephemeral nodes, on the other hand, are also destroyed when the client ses-

sion that created the node loses contact with the ZooKeeper cluster or otherwise

ends its session. In the former case, the time required for the loss of contact to

cause the destruction of an ephemeral node is controlled by a heartbeat timeout.

Because they may be destroyed at any time, ephemeral nodes may not contain

children. This may change in future releases of ZooKeeper, but as of the 3.4

series of releases, ephemeral nodes may be fi les, but they may not be directories.

Sequential Nodes

A znode may also be declared as sequential. When a sequential znode is cre-

ated, it is assigned a monotonically increasing integer that is appended to the

node’s path.

 Chapter 3 ■ Service Configuration and Coordination 41

c03.indd 05:35:46:PM 06/12/2014 Page 41

This serves two useful purposes in many algorithms. First, it provides a

mechanism for creating unique nodes. The counter ensures that a node name will

never be repeated. Secondly, it provides a sorting mechanism when requesting

the children of a parent node. This is used to implement, among other things,

leader elections.

Versions

All znodes, when they are created, are given a version number. This version

number is incremented whenever the data associated with a node changes. This

version number can be optionally passed to the delete and setData operations,

which allows clients to ensure that they do not accidentally overwrite changes

to a node.

Watches and Notifi cations

The primary use case for ZooKeeper involves waiting for events, which are

changes to data associated with a znode or with the children of the znodes.

Rather than using polling, ZooKeeper uses a notifi cation system to inform

clients of changes.

This notifi cation, called a watch, is established when the application registers

itself with ZooKeeper to be informed of changes on a particular znode path.

This is a one-time operation, so when the notifi cation is fi red, the client must

reregister the watch to receive future notifi cations about changes.

When attempting to continuously monitor a path, it is possible to lose a noti-

fi cation. This can occur when a change is made to a path in the time after the

client receives the notifi cation of a change but before setting a watch for the next

notifi cation. Fortunately, ZooKeeper’s designers anticipated this scenario, and

setting a watch also reads data from the znode. This effectively allows clients

to coalesce notifi cations.

Maintaining Consistency

ZooKeeper does not employ the Paxos’ consensus algorithm directly. Instead

it uses an alternative algorithm called Zab, which was intended to offer perfor-

mance improvements over the Paxos algorithm.

The Zab algorithm operates on the order of changes to state as opposed to

the Paxos algorithm that updates the entire state when changes are made. That

said, it shares many of the same features as Paxos: A Leader goes through a

Proposal process, accepting acknowledgment from a quorum of recipients before

committing the proposal. The algorithm also uses a counter system, called an

epoch number, similar to the one employed by Paxos.

42 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 42

Creating a ZooKeeper Cluster

ZooKeeper is envisioned as a shared service, acting as a common resource for

a number of different applications. It uses a quorum of machines to maintain

high availability. One of these machines will be declared the Leader using the

Zab algorithm described in the previous section and all changes will be repli-

cated to the other servers in the quorum. This section describes installing the

ZooKeeper server for use in either a standalone development environment or

in a multiserver cluster.

Installing the ZooKeeper Server

ZooKeeper can often be found in the installation packages of Hadoop distri-

butions. These distributions often have repositories compatible with various

server fl avors.

It is also possible to install ZooKeeper from the binary archives available

on the Apache ZooKeeper website (http://zookeeper.apache.org). The most

current version of the server at the time of writing is version 3.4.5. Generally

speaking, this latest version works with most applications, but it introduces

some differences relative to the 3.3 series of servers. For software that requires

the 3.3 series of ZooKeeper, 3.3.6 is the latest stable version.

After unpacking the ZooKeeper tarball, the directory structure should look

something like this:

$ cd zookeeper-3.4.5/
$ ls
CHANGES.txt docs
LICENSE.txt ivy.xml
NOTICE.txt ivysettings.xml
README.txt lib
README_packaging.txt recipes
Bin src
build.xml zookeeper-3.4.5.jar
conf zookeeper-3.4.5.jar.asc
contrib zookeeper-3.4.5.jar.md5
dist-maven zookeeper-3.4.5.jar.sha1

Before the server can be started, it must be confi gured. There is a sample

confi guration in the conf directory that provides a good starting point for

confi guring a ZooKeeper server. Start by copying that fi le to zoo.cfg, which

is what the server startup script expects the confi guration fi le to be called. The

fi rst few options in this fi le usually do not require modifi cation, as they have

to do with the time between heartbeat packets:

The number of milliseconds of each tick
tickTime=2000
The number of ticks that the initial

http://zookeeper.apache.org

 Chapter 3 ■ Service Configuration and Coordination 43

c03.indd 05:35:46:PM 06/12/2014 Page 43

synchronization phase can take
initLimit=10
The number of ticks that can pass between
sending a request and getting an acknowledgement
syncLimit=5

The next parameter is the location of the ZooKeeper data directory. It defaults

to /tmp/zookeeper, but you should change it immediately as most systems will

discard data in the /tmp directory after some time. In this example it has been

set to /data/zookeeper. In all cases, the directory and all of the fi les within it

should be owned and writable by the user that will be running the ZooKeeper

server itself.

the directory where the snapshot is stored.
do not use /tmp for storage, /tmp here is just
example sakes.
dataDir=/data/zookeeper

Despite the fact that ZooKeeper can only have a database as large as available

RAM, make sure that there is plenty of space available in the data directory.

ZooKeeper takes snapshots of the database along with logs of changes between

snapshots that are stored in this directory.

Finally, the port used by clients and other servers to communicate with the

server is specifi ed:

the port at which the clients will connect
clientPort=2181

There is no reason to change this port unless it happens to confl ict with

another pre-existing service.

When the confi guration is fi nished, create the data directory in the appro-

priate location (such as /data/zookeeper). In that directory, create a fi le called

myid that contains an integer that is unique to each ZooKeeper server. This fi le

serves to identify the server to the rest of the cluster and ZooKeeper will not

function without it. It should be assigned to a number between 1 and 255 on

each node in the quorum:

echo 1 > /data/zookeeper/myid

When all this is done, the ZooKeeper daemon can be started with using the

zkServer.sh script, found in ZooKeeper’s bin subdirectory. The zkServer.sh

script is set up like an init.d script and provides the usual stop, start, and restart

commands. It also has a start-foreground option that is useful for development.

This has the daemon log to the foreground rather than a log fi le:

$ bin/zkServer.sh start-foreground
JMX enabled by default
Using config: /Users/bellis/Projects/zookeeper-3.4.5/bin/../conf/zoo.cfg

44 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 44

[myid:] - INFO [main:QuorumPeerConfig@101] - Reading configuration
 from: /Users/bellis/Projects/zookeeper-3.4.5/bin/../conf/zoo.cfg
[myid:] - INFO [main:DatadirCleanupManager@78] -
 autopurge.snapRetainCount
[myid:] - INFO [main:DatadirCleanupManager@79] -
 set to 0
[myid:] - INFO [main:DatadirCleanupManager@101] - Purge task is not
 autopurge.purgeInterval scheduled.
[myid:] - WARN [main:QuorumPeerMain@113] - Either no config or no
 quorum defined in config, running in standalone mode
[myid:] - INFO [main:QuorumPeerConfig@101] - Reading configuration
 from: /Users/bellis/Projects/zookeeper-3.4.5/bin/../conf/zoo.cfg
[myid:] - INFO [main:ZooKeeperServerMain@95] - Starting server
[myid:] - INFO [main:Environment@100] - Server
 environment:zookeeper.version=3.4.5-1392090,
 built on 09/30/2012 17:52 GMT
[myid:] - INFO [main:Environment@100] - Server
 environment:host.name=byrons-air
[myid:] - INFO [main:Environment@100] - Server
 environment:java.version=1.7.0_45
[myid:] - INFO [main:Environment@100] - Server
 environment:java.vendor=Oracle Corporation
[myid:] - INFO [main:Environment@100] - Server
 environment:java.home=/Library/Java/JavaVirtualMachines/
 jdk1.7.0_45.jdk/Contents/Home/jre

Choosing a Quorum Size

During development, a single ZooKeeper server is usually suffi cient. However,

for production systems, using a single ZooKeeper server would introduce a

single point of failure. To overcome this, a cluster of servers, called a quorum,

is deployed to provide fault tolerance against the loss of a single-machine.

An important, often overlooked, aspect of ZooKeeper is that the size of the

cluster can have a large effect on performance. Due to the need to maintain

consensus, as the cluster increases so does the time required for ZooKeeper to

make changes to its state. As a result, there is an inverse relationship between

fault tolerance, in the form of more servers, and performance.

Generally speaking, there is no real reason to have a ZooKeeper cluster larger

than fi ve nodes and, because an even number of servers does not increase fault

tolerance, no reason to have fewer than three nodes. Choosing either fi ve or three

nodes for a cluster is mostly a matter of load on the cluster. If the cluster is only

being lightly utilized for applications such as leader elections, or it’s mostly used

for reading confi guration, then fi ve nodes provide more fault tolerance. If the

cluster will be heavily utilized, as can happen when it’s used for applications

like Kafka (which is discussed in Chapter 4, “Flow Management for Streaming

Analysis”), then the added performance of only having three nodes is more

appropriate.

 Chapter 3 ■ Service Configuration and Coordination 45

c03.indd 05:35:46:PM 06/12/2014 Page 45

Monitoring the Servers

ZooKeeper provides two mechanisms for monitoring server components of the

quorum. The fi rst is a simple set of monitoring keywords that can be accessed

over ZooKeeper’s assigned ports. The other mechanism is through the Java

Management Extensions (JMX) interface. Although these two mechanisms

overlap in some places, they have some complementary data that makes both

of them useful in a single environment.

The native ZooKeeper monitoring keywords—colloquially known as the “four-

letter words”—are a series of commands that return state information about the

ZooKeeper cluster. As the nickname suggests, all of these commands consist of

four letters: dump, envi, reqs, ruok, srst, and stat. The commands themselves

are transmitted in the clear to ZooKeeper on its client port, returning plaintext

output. For example, to send the ruok command from a shell command, simply

use echo and the netcat utility:

echo ruok | nc 127.0.0.1 2181

If the ZooKeeper server is operating normally, the server returns an imok

response. If the server is in a bad state it does not send a response at all. By

sending this command periodically, monitoring software can ensure that all

nodes are up and running.

The dump command returns data about currently connected sessions and

ephemeral nodes being held by those sessions. It must be run against the cur-

rent Leader of the ZooKeeper cluster. In this particular example, the distributed

queue producer example found later in this chapter is running and the command

returns the following information:

$ echo dump | nc 127.0.0.1 2181
SessionTracker dump:
Session Sets (2):
0 expire at Wed Jan 15 22:13:03 PST 2014:
1 expire at Wed Jan 15 22:13:06 PST 2014:

0x143999dfb5c0004
ephemeral nodes dump:
Sessions with Ephemerals (0):

In this case, there are no ephemeral nodes being used, and two sessions have

been opened.

The envi command dumps information from the server’s environment vari-

ables. For example, this ZooKeeper instance is included with Kafka 2.8.0 (covered

in Chapter 4) and is running under Oracle Java 7 on OS X:

$ echo envi | nc 127.0.0.1 2181
Environment:
zookeeper.version=3.3.3-1203054, built on 11/17/2011 05:47 GMT
host.name=byrons-air

46 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 46

java.version=1.7.0_45
java.vendor=Oracle Corporation
java.home=/Library/Java/JavaVirtualMachines/jdk1.7.0_45.jdk/Contents/
 Home/jre
java.class.path=:
 ../core/target/scala-2.8.0/*.jar:
 ../perf/target/scala-2.8.0/kafka*.jar:
 ../libs/jopt-simple-3.2.jar:
 ../libs/log4j-1.2.15.jar:
 ../libs/metrics-annotation-2.2.0.jar:
 ../libs/metrics-core-2.2.0.jar:
 ../libs/scala-compiler.jar:
 ../libs/scala-library.jar:
 ../libs/slf4j-api-1.7.2.jar:
 ../libs/slf4j-simple-1.6.4.jar:
 ../libs/snappy-java-1.0.4.1.jar:
 ../libs/zkclient-0.3.jar:
 ../libs/zookeeper-3.3.4.jar:
 ../kafka_2.8.0-0.8.0.jar
java.library.path=/usr/local/mysql/lib::
 /Users/bellis/Library/Java/Extensions:
 /Library/Java/Extensions:
 /Network/Library/Java/Extensions:
 /System/Library/Java/Extensions:/usr/lib/java:.
java.io.tmpdir=/var/folders/5x/0h_qw77n4q73ncv4l16697l80000gn/T/
java.compiler=<NA>
os.name=Mac OS X
os.arch=x86_64
os.version=10.9.1
user.name=bellis
user.home=/Users/bellis
user.dir=/Users/bellis/Projects/kafka_2.8.0-0.8.0

The stat command returns information about the performance of the

ZooKeeper server:

$ echo stat | nc 127.0.0.1 2181
Zookeeper version: 3.3.3-1203054, built on 11/17/2011 05:47 GMT
Clients:
 /127.0.0.1:58503[1](queued=0,recved=731,sent=731)
 /127.0.0.1:58583[0](queued=0,recved=1,sent=0)

Latency min/avg/max: 0/2/285
Received: 762
Sent: 761
Outstanding: 0
Zxid: 0x2f9
Mode: standalone
Node count: 752

 Chapter 3 ■ Service Configuration and Coordination 47

c03.indd 05:35:46:PM 06/12/2014 Page 47

As shown in the preceding code, the stat command returns information about

the ZooKeeper server’s response latency, the number of commands received, and

the number of responses sent. It also reports the mode of the server, in this case

a standalone server used along with Kafka for development purposes. Sending

the srst command resets the latency and command statistics. In this example,

the srst command was sent after the previous stat command while a queue

example was running. This resets the count statistics, but the queue had been

adding more elements to the queue, increasing the node count:

$ echo srst | nc 127.0.0.1 2181
Server stats reset.
$ echo stat | nc 127.0.0.1 2181
Zookeeper version: 3.3.3-1203054, built on 11/17/2011 05:47 GMT
Clients:
 /127.0.0.1:58725[0](queued=0,recved=1,sent=0)
 /127.0.0.1:58503[1](queued=0,recved=1933,sent=1933)

Latency min/avg/max: 2/2/3
Received: 15
Sent: 15
Outstanding: 0
Zxid: 0x7ab
Mode: standalone
Node count: 1954

Finally, the reqs command returns currently outstanding requests, useful

for determining whether or not clients are blocked.

ZooKeeper’s Native Java Client

The ZooKeeper library ships with a Java client that you can use in projects.

This section describes setting up a Maven project to use the ZooKeeper library.

It also covers the basic usage of the client.

Adding ZooKeeper to a Maven Project

The basic ZooKeeper client library, version 3.4.5 at the time of writing, is hosted

on Maven Central and can be included in a project by adding the following

dependencies to the project’s pom.xml:

<dependency>
 <groupId>org.apache.zookeeper</groupId>
 <artifactId>zookeeper</artifactId>
 <version>3.4.5</version>
 <exclusions>

48 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 48

 <exclusion>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 </exclusion>
 </exclusions>
</dependency>
<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.16</version>
</dependency>

Note that the log4j artifact has been excluded from the ZooKeeper artifact

and then manually included. This addresses a problem specifi c to the version

of Log4J included by ZooKeeper 1.2.15, which references libraries that are no

longer accessible. If a newer version of ZooKeeper has been released, this may

have been addressed, which eliminates the need for this workaround.

Connecting to ZooKeeper

A ZooKeeper session is established by creating a ZooKeeper object using its

standard constructors. The most complicated version of this constructor has

the following signature:

public ZooKeeper(
 String connectString,
 int sessionTimeout,
 Watcher watcher,
 long sessionId,
 byte[] sessionPasswd,
 boolean canBeReadOnly
) throws IOException

The shortest version of the constructor only needs the connectionString and

sessionTimeout arguments.

The connectionString is a comma-separated list of hostname and port pairs.

In version 3.4 and later, an optional path can be appended to the hostname. This

acts as a sort of chroot when connecting the server, instructing the client to

treat the path as the root of the server.

When the client connects to ZooKeeper, it fi rst shuffl es the hosts listed in the

connection string into a random order. It then tries the fi rst host in the shuffl ed

list. If connecting to that host fails, it tries the second host and so on through

the list.

www.allitebooks.com

http://www.allitebooks.org

 Chapter 3 ■ Service Configuration and Coordination 49

c03.indd 05:35:46:PM 06/12/2014 Page 49

For example, to connect to three servers named zookeeper1, zookeeper2,

and zookeeper3 but with subdirectory other, the ZooKeeper client would be

initialized as follows:

new ZooKeeper(
 "zookeeper1,zookeeper2,zookeeper3/other",
 3000,
 new Watcher() {
 public void process(WatchedEvent event) {
 }
 }
);

The Watcher interface implemented in the preceding code is an empty imple-

mentation for this example, but it is usually used to respond to all notifi cations

sent by ZooKeeper. Sometimes the type fi eld of the event object is empty, in

which case the notifi cation pertains to the connection state. At other times the

Watcher is used to receive watch events for requests that set a watch without

specifying a specifi c Watcher object.

The commands used by the ZooKeeper client are the same as the commands

described in the previous section: create, delete, exists, getData, setData, and

getChildren. Each of these commands returns results immediately. The com-

mands optionally set a watch on the specifi ed path, either returning the event to

the client-level watch specifi ed earlier or to another Watcher object that is passed

into the command. The easiest way to see this in action is through an example.

LEADER ELECTION USING ZOOKEEPER

One of the most common uses for ZooKeeper is to manage a quorum of servers in

much the same way it manages itself. In these quorums, one of the machines is consid-

ered to be the Leader, while other machines are operating as either replicas or as hot-

standby servers, depending on the application.

This example uses the simplest possible algorithm for implementing leader

election:

 ■ Create an ephemeral sequential node in the target path.

 ■ Check the list of children. The smallest node in the list of children is the

leader.

 ■ Otherwise, watch the list of children and try again when it changes.

In this case, the LeaderElection class implements a latching approach to leader

election. First, the class is initialized with a path and a ZooKeeper client:

public class LeaderElection implements Watcher, ChildrenCallback {

 String path;

 ZooKeeper client;

 String node;

Continues

50 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 50

 public Integer lock = new Integer(0);

 public boolean leader = false;

 public boolean connected = false;

 public LeaderElection(String connect,String path)

 throws IOException {

 this.path = path;

 client = new ZooKeeper(connect, 3000, this);

 }

The class registers itself as the Watcher for events on this client connection. When

the client connects to ZooKeeper, it should request a position in the leadership queue.

If the connection fails, it should relinquish leadership (if it had it) and inform the

server that the connection has been lost. This is handled by the process method:

public void process(WatchedEvent event) {

 if(event.getType() == Watcher.Event.EventType.None) {

 switch(event.getState()) {

 case SyncConnected:

 connected = true;

 try {

 requestLeadership();

 } catch(Exception e) {

 //Quit

 synchronized(lock) {

 leader = false;

 lock.notify();

 }

 }

 break;

 case Expired:

 case Disconnected:

 synchronized(lock) {

 connected = false;

 leader = false;

 lock.notify();

 }

 break;

 default:

 break;

 }

 } else {

 if(path.equals(event.getPath()))

 client.getChildren(path, true, this, null);

 }

}

continued

 Chapter 3 ■ Service Configuration and Coordination 51

c03.indd 05:35:46:PM 06/12/2014 Page 51

In the Watcher method, fi rst the event is checked to see if it is a ZooKeeper status

event (EventType.Node). If it is a connection event, then a leadership position is

requested. If it is not a connection event, the path is checked. If it is the same path

as the one registered when creating the object, a list of children is obtained. In this

case, the callback version of the event is used so there only needs to be a single loca-

tion where leadership status is checked. The watch is also reset when getChildren

is called.

When leadership is requested, fi rst the main path is created if it does not exist.

This call can produce errors because each client tries to create the path. If the path

already exists by the time the client calls the create method, the error can be safely

ignored. Next, an ephemeral and sequential node is created in this path. This node is

the server’s node and is stored for all future transactions. Before the node is created,

the object registers itself for changes to the main path so that the act of creating a

new node registers a notifi cation in the event that only one server is started. This is all

implemented in requestLeadership, shown here:

public void requestLeadership() throws Exception {

 Stat stat = client.exists(path, false);

 if(stat == null) {

 try {

 client.create(path, new byte[0],

 ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);

 } catch(KeeperException.NodeExistsException e) { }

 }

 client.getChildren(path, true, this, null);

 node = client.create(path+"/n_", new byte[0],

 ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);

 System.out.println("My node is: "+node);

}

When the getChildren calls return their results, they use a callback method,

processResult, defi ned in the ChildrenCallback interface. In this example, the

method calls isLeader with the array of child nodes to check to see if it is fi rst in the

list. If that is the case, it updates its leader status and notifi es any threads that might

be waiting for leadership to be obtained that the leader status might have changed:

public void processResult(int rc,

 String path, Object ctx,

 List<String> children) {

 synchronized(lock) {

 leader = isLeader(children);

 System.out.println(node+" leader? "+leader);

 lock.notify();

 }

}

Continues

52 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 52

When ZooKeeper returns a list of children, it does not guarantee any sort of order-

ing for the elements. To fi nd out if the node is the leader, which is defi ned as having

the smallest node sequence, the list fi rst has to be sorted. Then the fi rst element can

be checked against the node name:

protected boolean isLeader(List<String> children) {

 if(children.size() == 0) return false;

 Collections.sort(children);

 System.out.println(path+"/"+children.get(0)

 +" should become leader. I am "+node);

 return (node.equals(path+"/"+children.get(0)));

}

Notice that the getChildren response does not include the full path. That has

to be added during the comparison because the create method does return the full

path.

A server waiting to become leader calls the isLeader method without any argu-

ments in a loop. If the node is currently the leader, the method quickly returns true

and the server can continue processing. If it is not the leader, the calling thread waits

on the lock object until it has been notifi ed by processResult or because the server

has lost its connection to ZooKeeper:

public boolean isLeader() {

 if(leader && connected) {

 System.out.println(node+" is the leader.");

 return leader;

 }

 System.out.println("Waiting for a change in the lock.");

 synchronized(lock) {

 try {

 lock.wait();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 return leader && connected;

}

continued

 Chapter 3 ■ Service Configuration and Coordination 53

c03.indd 05:35:46:PM 06/12/2014 Page 53

To see the example in action, a server is needed. This server does not do anything

except announce that it is “processing” something in a loop while it has leadership.

However, it is slightly unreliable, and 30 percent of the time it crashes, relinquishing

its leadership position. If it loses leadership without crashing, it goes back to waiting

for leadership. If it has lost connection, it exits entirely:

public class UnreliableServer implements Runnable {

 String name;

 LeaderElection election;

 public UnreliableServer(String name,String connect,String path)

 throws IOException {

 this.name = name;

 election = new LeaderElection(connect,path);

 }

 public void run() {

 System.out.println("Starting "+name);

 Random rng = new Random();

 do {

 if(election.isLeader()) {

 System.out.println(name+": I am becoming the leader.");

 do {

 if(rng.nextDouble() < 0.30) {

 System.out.println(name+": I'm about to fail!");

 try {

 election.close();

 } catch (InterruptedException e) { }

 return;

 }

 System.out.println(name

 +": I'm leader and handling a work element");

 try {

 Thread.sleep(rng.nextInt(1000));

Continues

54 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 54

 } catch (InterruptedException e) { }

 } while(election.isLeader());

 //If we lose leadership but are still connected, try again.

 if(election.connected) {

 try {

 election.requestLeadership();

 } catch (Exception e) {

 return;

 }

 }

 }

 } while(election.connected);

}

}

To see it in action, build a little test harness with three diff erent servers that all take

leadership until they crash:

public class LeaderElectionTest {

 @Test

 public void test() throws Exception {

 Thread one = new Thread(new UnreliableServer("huey","localhost"

 ,"/ducks"));

 Thread two = new Thread(new UnreliableServer("dewey","localhost"

 ,"/ducks"));

 Thread three = new Thread(new UnreliableServer("louis","localhost"

 ,"/ducks"));

 one.start();

 two.start();

 three.start();

 //Wait for all the servers to finally die

 one.join();

 two.join();

 three.join();

 }

}

continued

 Chapter 3 ■ Service Configuration and Coordination 55

c03.indd 05:35:46:PM 06/12/2014 Page 55

This is an example output from this process. Each time the child list changes, the

servers all check to see if they are leader. The one that is leader starts processing until

it “crashes.” This continues until all three have crashed:

Starting huey

Starting dewey

Waiting for a change in the lock.

Waiting for a change in the lock.

Starting louis

Waiting for a change in the lock.

My node is: /ducks/n_0000000009

My node is: /ducks/n_0000000010

My node is: /ducks/n_0000000008

/ducks/n_0000000009 leader? false

/ducks/n_0000000010 leader? false

Waiting for a change in the lock.

Waiting for a change in the lock.

/ducks/n_0000000008 leader? false

Waiting for a change in the lock.

/ducks/n_0000000008 should become leader. I am /ducks/n_0000000008

/ducks/n_0000000008 leader? true

/ducks/n_0000000008 should become leader. I am /ducks/n_0000000009

louis: I am becoming the leader.

louis: I'm leader and handling a work element

/ducks/n_0000000008 should become leader. I am /ducks/n_0000000010

/ducks/n_0000000010 leader? false

/ducks/n_0000000009 leader? false

Waiting for a change in the lock.

Waiting for a change in the lock.

/ducks/n_0000000008 is the leader.

louis: I'm leader and handling a work element

/ducks/n_0000000008 is the leader.

louis: I'm leader and handling a work element

/ducks/n_0000000008 is the leader.

louis: I'm leader and handling a work element

/ducks/n_0000000008 is the leader.

louis: I'm about to fail!

Continues

56 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 56

/ducks/n_0000000009 should become leader. I am /ducks/n_0000000010

/ducks/n_0000000010 leader? false

/ducks/n_0000000009 should become leader. I am /ducks/n_0000000009

/ducks/n_0000000009 leader? true

Waiting for a change in the lock.

dewey: I am becoming the leader.

dewey: I'm leader and handling a work element

/ducks/n_0000000009 is the leader.

dewey: I'm leader and handling a work element

/ducks/n_0000000009 is the leader.

dewey: I'm about to fail!

/ducks/n_0000000010 should become leader. I am /ducks/n_0000000010

/ducks/n_0000000010 leader? true

huey: I am becoming the leader.

huey: I'm leader and handling a work element

/ducks/n_0000000010 is the leader.

huey: I'm leader and handling a work element

/ducks/n_0000000010 is the leader.

huey: I'm about to fail!

There are optimizations of this process that result in fewer messages being sent. In

particular, the server awaiting leadership only really needs to watch the next smallest

node in the last, not the entire set. When that node is deleted, the check to fi nd the

smallest node is repeated.

The Curator Client

The popular Curator client is a wrapper around the native ZooKeeper Java API.

It is commonly used in lieu of directly using the ZooKeeper API as it handles

some of the more complicated corner cases associated with ZooKeeper. In par-

ticular, it addresses the complicated issues around managing connections in

the ZooKeeper client.

The Curator client was originally developed by Netfl ix, but has since been

contributed to the Apache Foundation where it entered the incubation process

in March 2013 (http://curator.apache.org).

Adding Curator to a Maven Project

The Curator library has been broken into several different components, all of

which are available from Maven Central. Adding the curator-recipes artifact to

the project includes all of the relevant components:

<dependency>
 <groupId>org.apache.curator</groupId>

continued

http://curator.apache.org

 Chapter 3 ■ Service Configuration and Coordination 57

c03.indd 05:35:46:PM 06/12/2014 Page 57

 <artifactId>curator-recipes</artifactId>
 <version>2.3.0</version>
</dependency>

Most users will only ever need to use this artifact because it also includes

in-depth implementations of recipes provided in the last section. If the recipes

should not be included, the framework can be imported by itself via the curator-

framework artifact:

<dependency>
 <groupId>org.apache.curator</groupId>
 <artifactId>curator-framework</artifactId>
 <version>2.3.0</version>
</dependency>

Connecting to ZooKeeper

The Curator ZooKeeper client class is CuratorFramework, which is created by

calling the newClient static method of the CuratorFrameworkFactory class. For

example, connecting to a local ZooKeeper instance would look like this:

CuratorFramework client = CuratorFrameworkFactory.newClient(
 "localhost:2181",
 new ExponentialBackoffRetry(1000,3)
);

The fi rst argument is the usual ZooKeeper connection string. As usual, it can

contain a comma-separated list of available hosts, one of which is selected for

connection. The second argument is a retry policy, which is unique to Curator.

In this case the ExponentialBackoffRetry policy is used with a timeout of

1000 milliseconds and a maximum of three tries. This policy retries connection

attempts with increasingly longer waits between attempts.

Curator has several other retry policies available for use. The RetryNTimes policy

is like the ExponentialBackoff policy, except that it waits the same amount of

time between attempts instead of increasing the wait. The RetryUntilElapsed

waits a fi xed amount of time between retries, like the RetryNTimes policy.

The difference is that it continues trying until a certain amount of time has

elapsed instead of trying a fi xed number of times.

The CuratorFrameworkFactory class can also return a connection Builder

class instead of immediately creating the client. This is useful when using some

of Curator’s advanced features. The previously described connection looks like

this with the Builder method:

58 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 58

CuratorFrameworkFactory.Builder builder =

 CuratorFrameworkFactory.builder()
 .connectString("localhost:2181")
 .retryPolicy(new ExponentialBackoffRetry(1000,3));

In addition to the basic connection string and retry policy, the connection

can be allowed to enter a read-only state in the case of a network partition with

the canBeReadOnly method:

builder.canBeReadOnly(true);

A namespace, which is prepended to all paths, can be set using the namespace

method:

builder.namespace("subspace");

Finally, to create the CuratorFramework object, call the build method:

CuratorFramework client = builder.build();

After the CuratorFramework object has been created, the connection must be

started using the start method. Most of the CuratorFramework methods will

not work if the connection has not been started.

The start method is used to give applications the chance to bind Listener

methods, to the client before events are sent. This is particularly important when

listening for connection state events. For example, the following code snippet,

found in wiley.streaming.curator.ConnectTest, causes state changes to be

printed to the console:

CuratorFramework client =

 CuratorFrameworkFactory.builder()
 .connectString("localhost:2181")
 .retryPolicy(new ExponentialBackoffRetry(1000,3))
 .namespace("subspace")
 .build();
client.getConnectionStateListenable().addListener(
 new ConnectionStateListener() {
 public void stateChanged(
 CuratorFramework arg0,
 ConnectionState arg1
) {

 System.out.println("State Changed: "+arg1);
 }
});
client.start();
Thread.sleep(1000);

 Chapter 3 ■ Service Configuration and Coordination 59

c03.indd 05:35:46:PM 06/12/2014 Page 59

In this example, the client is fi rst built using the Builder interface with a

namespace associated with it. Then a Listener is implemented to print out

the changes in state as they happen. Finally, the client is started using start.

Running this code should output a connected command if a short Thread.sleep

command is added after the start to give the client some time to connect:

log4j:WARN No appenders could be found for logger
 (org.apache.curator.framework.imps.CuratorFrameworkImpl).
log4j:WARN Please initialize the log4j system properly.
State Changed: CONNECTED

Working with znodes

The Curator framework uses a “fl uent” style for most of its commands. In this

style of framework, most methods return an object that allows calls to be chained

together. The Builder object in the last section was an example of this interface,

and it is continued in all of Curator’s znode manipulation routines.

Using the fl uent style, Curator directly supports all of the basic znode opera-

tions as a series of chained method calls terminated by a call to forPath. The

forPath method takes a complete path and an optional byte array containing

any payload that should be associated with this znode. This example creates a

new path in a synchronous fashion, creating parent znodes as needed:

client.create()
 .creatingParentsIfNeeded()
 .forPath("/a/test/path");

These methods can also be executed asynchronously by adding the inBackground

call to the method chain:

client.create()
.creatingParentsIfNeeded()
.inBackground(new BackgroundCallback() {

public void processResult(CuratorFramework arg0, CuratorEvent arg1)
 throws Exception {

 System.out.println("Path Created: "+arg1);
 }

})
.forPath("/a/test/path");

Note that the inBackground method returns a PathAndBytesable<T> object

rather than the original builder. This object only supports the forPath method,

60 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 60

so it must be last in the chain of calls. When executed, as in the example pro-

vided by wiley.streaming.curator.PathTest, this command should have an

output something like this:

Path Created: CuratorEventImpl{
 type=CREATE,
 resultCode=0,
 path='/a/test/path',
 name='/a/test/path',
 children=null,
 context=null,
 stat=null,
 data=null,
 watchedEvent=null,
 aclList=null
}

To create paths with different modes, use the withMode method in the create

command. For example, a queuing system might want to create znodes that are

both persistent and sequential:

client.create()

 .withMode(CreateMode.PERSISTENT_SEQUENTIAL)
 .forPath("/queue/job")
;

Valid modes are PERSISTENT, EPHEMERAL, PERSISTENT_SEQUENTIAL, and

EPHEMERAL_SEQUENTIAL. The mode can also be determined using the CreateMode

.fromFlag method, which converts the fl ags used by the native ZooKeeper client

to the appropriate CreateMode option as demonstrated in the wiley.streaming

.curator.ModeTest example.

The checkExists command has two uses. First, whether or not the command

returns null allows for the existence check implied by its name. If the path given

exists, a Stat object is returned with a variety of useful information about the

path. This includes the number of children the path has, the version number,

and the creation and modifi cation times.

The data element or children of a znode are retrieved using the getData and

getChildren commands, respectively. Like the create command, they can be

executed in the background and always end with a forPath method. Unlike

create, they do not take an optional byte array in their path.

When used immediately, the getData command returns a byte array, which

can be deserialized into whatever format the application desires. For example,

if the data were a simple text string, it can be set and then retrieved as follows

(assuming the znode already exists):

client.setData()
 .forPath("test/string", "A Test String".getBytes());

System.out.println(

 Chapter 3 ■ Service Configuration and Coordination 61

c03.indd 05:35:46:PM 06/12/2014 Page 61

 new String(
 client.getData()
 .forPath("test/string")
)
);

Like the create command, getData can be executed in the background. In the

background case, the forPath method returns null and the data is returned in

the background callback. For example, the same code as the previous example

implemented as a background callback would look like this:

client.getData().inBackground(new BackgroundCallback() {

public void processResult(CuratorFramework arg0, CuratorEvent arg1)
 throws Exception {

 System.out.println(new String(arg1.getData()));
 }

}).forPath("test/string");

The previous two examples are implemented in wiley.streaming.curator

.DataTest.

The getChildren command works essentially the same way as the getData

command. Instead of returning a byte array, this command returns a list of

String objects giving the names of the child znodes of the parent object. This

example shows this command in action by fi rst adding several jobs to an imagi-

nary queue znode and then calling getChildren on the node to retrieve the list

of children, as demonstrated in wiley.streaming.curator.QueueTest:

if(client.checkExists().forPath("/queue") == null)
 client.create().forPath("/queue");

for(int i=0;i<10;i++) {
 client.create()

 .withMode(CreateMode.PERSISTENT_SEQUENTIAL)
 .forPath("/queue/job-");
}

for(String job : client.getChildren().forPath("/queue")) {

 System.out.println("Job: "+job);
}

When this is run, this piece of code returns output like this:

Job: job-0000000003
Job: job-0000000002
Job: job-0000000001
Job: job-0000000000
Job: job-0000000007

62 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 62

Job: job-0000000006
Job: job-0000000005
Job: job-0000000004
Job: job-0000000009
Job: job-0000000008

Note that Curator does not do anything special with the getChildren call,

so it has the same property of returning child nodes in an arbitrary order as

the native ZooKeeper client. To implement a FIFO (fi rst in, fi rst out) queue, the

List returned must be sorted before processing.

The Stat object can also be used in conjunction with other commands that

read data from ZooKeeper, such as the getData and getChildren command

using the storeStatIn method. This method takes a Stat object whose data

will be populated by the command when it runs. For example, when retrieving

the list of children from the /queue path as above:

Stat stat = new Stat();
List<String> jobs = client.getChildren()
 .storingStatIn(stat)
 .forPath("/queue");
 for(String job : jobs)

 System.out.println("Job: "+job);

System.out.println("Number of children: "
 +stat.getNumChildren());

To remove a path, use the delete command. Like the native ZooKeeper cli-

ent, this command can be set to act on a specifi c version with the withVersion

command. This example checks to see if the path exists and then deletes the

specifi c version if it does. It will also delete any children the znode may have:

Stat stat;
if((stat = client.checkExists().forPath("/a/test/path")) != null)
 client.delete()
 .deletingChildrenIfNeeded()
 .withVersion(stat.getVersion())
 .forPath("/a/test/path");

Using Watches with Curator

The checkExists, getData, and getChildren commands support having watches

set on them via the usingWatch method. This method takes, as an argument, an

object implementing either the native ZooKeeper Watcher interface or the Curator-

specifi c CuratorWatcher interface. The Watcher interface has been described

previously, and the CuratorWatcher is essentially identical. For example, the

 Chapter 3 ■ Service Configuration and Coordination 63

c03.indd 05:35:46:PM 06/12/2014 Page 63

following code uses a CuratorWatcher to observe changes to the existence of

a specifi c path:

client.checkExists().usingWatcher(new CuratorWatcher() {

 public void process(WatchedEvent arg0) throws Exception {

 if (arg0.getType() == Watcher.Event.EventType.None) {
 //State change
 } else {

 System.out.println(arg0.getType());

 System.out.println(arg0.getPath());
 }
 }

}).forPath("/a/test/path");

Curator Recipes

In addition to implementing a robust and easy-to-use ZooKeeper client, Curator

goes the extra mile by providing implementations of many of the recipes found

on the ZooKeeper site.

The recipes as given in this section are essentially skeletons, primarily pro-

vided to give clear examples of working with ZooKeeper in common situations.

The Curator recipes take these basic skeletons and make them robust, and often

more feature-rich, for use in production environments. They provide an excel-

lent starting point for implementing high-level logic based on these common

algorithmic structures.

This section covers using some of the various recipes, which includes every-

thing from the recipes section of the ZooKeeper website except the Multi-Version

Concurrency Control implementation. In some cases, such as the Distributed

Queue implementation, extensions to the basic algorithm not found on the

ZooKeeper site are added.

Distributed Queues

The Curator website has a document called “Technical Note 4” that states that

ZooKeeper is a terrible system for implementing queues. The reasons given

include ZooKeeper’s relatively small node payload, the need to keep the entire

dataset in memory, and performance issues when a znode has a very large

number of children.

In one sense, this is entirely correct. ZooKeeper would be a very poor choice

for handling queues in an environment with a high message volume. A dedicated

64 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 64

queue management system such as ActiveMQ or RabbitMQ would be more

appropriate in that situation. In a very high-volume environment, a data motion

system like those discussed in the next chapter is even more appropriate. However,

for something like a job queue where relatively few items are parceled out to

worker nodes, ZooKeeper can be a good and fairly lightweight solution.

In this latter situation, Curator provides several different distributed queue

options, accessible via the QueueBuilder object. As an example, consider a simple

distributed queue that needs to handle WorkUnit objects. This simple class serves

an example of an object that contains the information needed to perform some

task. In this case, it only contains an identifi er and a payload string:

public class WorkUnit implements Serializable {

 private static final long serialVersionUID = -2481441654256813101L;
 long workId;
 String payload;

 public WorkUnit() { }
 public WorkUnit(long workId,String payload) {
 this.workId = workId;
 this.payload = payload;
 }

 public String toString() {
 return "WorkUnit<"+workId+","+payload+">";
 }

}

To defi ne a producer of WorkUnit objects, begin by defi ning a DistributedQueue

object and creating the Curator client. In this case, the client is defi ned using

a connection string and a single shot retry policy. The client is then started to

begin processing ZooKeeper messages:

public class DistributedQueueProducer implements Runnable {

 DistributedQueue<WorkUnit> queue;

 public DistributedQueueProducer(String connectString)
 throws Exception {

 CuratorFramework client = CuratorFrameworkFactory.newClient(
 connectString,
 new RetryOneTime(10)
);
 client.start();

Next, the queue itself is created. The QueueBuilder’s builder method

always takes four arguments: the Curator client, a QueueConsumer<T> object,

 Chapter 3 ■ Service Configuration and Coordination 65

c03.indd 05:35:46:PM 06/12/2014 Page 65

a QueueSerializer<T> object, and a path. In this case, the thread acts only

as a Producer, so the QueueConsumer object can be left as null. Then, a

DistributedQueue object is built and started. Like the client itself, the queue

must be started before it can be used:

queue = QueueBuilder.builder(client,
 null,
 new SimpleSerializer<WorkUnit>(),
 "/queues/work-unit")
.buildQueue();
queue.start();

Curator does not ship with any built-in QueueSerializer implementations.

It is left entirely to the application to implement an appropriate serializer for

each queue. In this case, the WorkUnit implements the Serializable interface

to simple Java. Serialization is used to convert the WorkUnit object to and from

a byte array. The SimpleSerializer implements a serializer that can be used

for any class that implements Serializable:

public class SimpleSerializer<T extends Serializable> implements
 QueueSerializer<T> {

public byte[] serialize(T item) {
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 byte[] value = null;
 try {
 ObjectOutput out = new ObjectOutputStream(bos);
 out.writeObject(item);
 value = bos.toByteArray();
 out.close();
 } catch(IOException e) { }
 try {
 bos.close();
 } catch(IOException e) { }
 return value;
 }

 @SuppressWarnings("unchecked")
 public T deserialize(byte[] bytes) {
 ByteArrayInputStream bin = new ByteArrayInputStream(bytes);
 Object object = null;
 try {
 ObjectInput in = new ObjectInputStream(bin);
 object = in.readObject();
 in.close();
 } catch(IOException e) {
 } catch (ClassNotFoundException e) { }
 try {
 bin.close();

66 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 66

 } catch(IOException e2) { }
 return (T)object;
 }
}

Now, all that remains is to start adding items to the queue. This simple example

implements Runnable and a simple run loop that adds items to the queue after

a random wait of up to 2 seconds:

Random rng = new Random();
public void run() {

 System.out.println("Starting Producer");
 boolean cont = true;
 long id = 0;
 while(cont) {
 try {
 queue.put(new WorkUnit(id++,"Next Work Unit "+id));

 System.out.println("Added item");
 } catch (Exception e1) {
 e1.printStackTrace();
 }
 try {

 Thread.sleep(rng.nextInt(1000));
 } catch (InterruptedException e) {
 cont = false;
 }
 }
}

Next is the QueueConsumer implementation. In this case, to maintain some

symmetry with the producer, the QueueConsumer implementation also handles

the creation of the DistributedQueue implementation. It starts very much like

the producer implementation:

public class DistributedQueueConsumer
 implements QueueConsumer<WorkUnit> {
 DistributedQueue<WorkUnit> queue;
 String name;

 public DistributedQueueConsumer(
 String connectString,
 String name) throws Exception {

 this.name = name;

 CuratorFramework client = CuratorFrameworkFactory.newClient(
 connectString,
 new RetryOneTime(10)
);
 client.start();

 Chapter 3 ■ Service Configuration and Coordination 67

c03.indd 05:35:46:PM 06/12/2014 Page 67

 queue = QueueBuilder.builder(
 client,
 this,
 new SimpleSerializer<WorkUnit>(),
 "/queues/work-unit"
)
 .buildQueue();
 queue.start();
 }

The only difference is that, rather than passing null as the QueueConsumer, the

consumer passes itself. It also implements the QueueConsumer interface, which

requires the implementation of two methods. In this case, the “processing” of

a queue element simply emits the information found in the WorkUnit object:

public void stateChanged(CuratorFramework arg0, ConnectionState arg1) {

 System.out.println(arg1);
}

public void consumeMessage(WorkUnit message) throws Exception {

 System.out.println(name
 +" consumed "+message.workId+"/"+message.payload);
}

Finally, here is a simple process that can be created that starts two queue

consumers to handle queue items and a queue producer to create new items:

DistributedQueueConsumer q1 = new DistributedQueueConsumer(
 "localhost","queue 1"
);
DistributedQueueConsumer q2 = new DistributedQueueConsumer(
 "localhost","queue 2"
);
new Thread(new DistributedQueueProducer("localhost")).run();

When this process starts running, it fi rst consumes any items left over in the

queue from previous executions. It then starts producing and consuming items.

Note that the items are assigned to arbitrary queue consumers depending on

the watch that happens to get triggered by the ZooKeeper server:

Starting Producer
Added item
queue 2 consumed 0/Next Work Unit 1
Added item
queue 2 consumed 1/Next Work Unit 2
Added item
queue 2 consumed 2/Next Work Unit 3
Added item
queue 1 consumed 3/Next Work Unit 4

68 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 68

Added item
queue 2 consumed 4/Next Work Unit 5
Added item
queue 2 consumed 5/Next Work Unit 6
Added item
queue 1 consumed 6/Next Work Unit 7
Added item
queue 1 consumed 7/Next Work Unit 8
Added item
queue 2 consumed 8/Next Work Unit 9
Added item
queue 2 consumed 9/Next Work Unit 10
Added item
queue 2 consumed 10/Next Work Unit 11
Added item
queue 1 consumed 11/Next Work Unit 12

Leader Elections

Curator provides two recipes for implementing Leader Elections: a LeaderSelector

class and a LeaderLatch class. The LeaderSelector class uses a callback mecha-

nism to implement its functionality, whereas the LeaderLatch class uses a

process similar to the earlier Leader Election example using the native Java API.

To use the LeaderSelector, the server trying to obtain leadership of the

process must implement the LeaderSelectorListener interface. This interface

specifi es the takeLeadership method, which serves as the main method for the

server. Returning from this method relinquishes the leadership position. For

example, a dummy unreliable server might look like this:

public class UnreliableLeader implements LeaderSelectorListener {

 String name = "";
 boolean leader = false;
 String connect;

 public UnreliableLeader(String connect,String name) {
 this.connect = connect;
 this.name = name;
 }

 public void stateChanged(CuratorFramework arg0,

 Chapter 3 ■ Service Configuration and Coordination 69

c03.indd 05:35:46:PM 06/12/2014 Page 69

 ConnectionState arg1) {

 if(arg1 != ConnectionState.CONNECTED) leader = false;
 }

 public void takeLeadership(CuratorFramework client) throws Exception {
 leader = true;
 Random rng = new Random();
 while(leader) {
 if(rng.nextDouble() < 0.30) {

 System.out.println(name+": crashing");
 return;
 }

 System.out.println(name+": processing event");

 Thread.sleep(rng.nextInt(1000));
 }
 }

}

The LeaderLatch client takes a different approach, offering a hasLeadership

method to check to see if the server still has leadership and an await method to

wait for leadership. Using the LeaderLatch looks something like this:

LeaderLatch latch = new LeaderLatch(client,"/leader_queue");
latch.start();
latch.await();
while(latch.hasLeadership()) {
 //Do work here
}

The wiley.streaming.curator.LeaderSelectionTest uses the

UnreliableLeader class to start three different leaders that then take over pro-

cessing events from each other when one crashes:

Thread[] thread = new Thread[3];
for(int i=0;i<thread.length;i++) {
 UnreliableLeader l = new UnreliableLeader(
 "localhost","server"+i);
 thread[i] = new Thread(l);
 thread[i].run();
}
for(int i=0;i<thread.length;i++) {
 thread[i].join();
}

70 Part I ■ Streaming Analytics Architecture

c03.indd 05:35:46:PM 06/12/2014 Page 70

The output from this example looks something like this:

server0 is about to start waiting for leadership
server0: processing event
server0: processing event
server0: processing event
server0: processing event
server0: crashing
server1 is about to start waiting for leadership
server1: crashing
server2 is about to start waiting for leadership
server2: processing event
server2: processing event
server2: processing event
server2: crashing

Conclusion

 This chapter has introduced the concepts behind maintaining shared state and

coordinating between distributed processes. These tasks have been handled in

an ad hoc manner by many distributed systems over the years, most typically by

using a relational database. The relational database option generally works, but

it introduces the potential for error when trying to implement a do-it-yourself

distributed lock manager or other system.

To combat that problem, Yahoo! and other companies began to develop coor-

dination tools that act as a service rather than as a component of a piece of

software. This resulted in the development of ZooKeeper and its eventual con-

tribution to the Apache project. The success of this approach is evident: Most

of the distributed software used in this book uses ZooKeeper for confi guration

and coordination. Other systems, such as etcd, are now being developed, but

ZooKeeper remains the most popular by far.

The next few chapters of this book put ZooKeeper to work by discussing dis-

tributed systems. The heaviest user is the Kafka project, a data motion system

discussed in Chapter 4. It is also heavily used to coordinate stream-processing

applications such as Storm and Samza, both of which use the project.

ZooKeeper is also useful in end-user applications. It can help to manage a

distributed state such as data schemas. Additionally, it can provide controlled

access to limited shared resources as needed. Its versatility and usefulness is

why it was presented here in such detail.

71

c04.indd 05:36:4:PM 06/12/2014 Page 71

Chapter 3, “Service Confi guration and Coordination,” introduces the concept

and diffi culties of maintaining a distributed state. One of the most common

reasons to require this distributed state is the collection and processing of data

in a scalable way.

Distributed data fl ows, which include processing and collection, have been

around a long time. Generally, the systems designed to handle this task have

been bespoke applications developed either in-house or through consulting

agreements. More recently, the technologies used to implement these data fl ow

systems has reached the point of common infrastructure. Data fl ow systems

can be split into a separate service in much the same way that coordination

and confi guration can. They are now general enough in their interfaces and

their assumptions that they can be used outside of their originally intended

applications.

The earliest of these systems were arguably the queuing systems, such as

ActiveMQ, which started to come onto the scene in the early 2000s. However, they

were not really designed for high-throughput volumes (although many of them

can now achieve fairly good performance) and tended to be very Java centric.

The next systems on the scene were those open-sourced by the large Internet

companies such as Facebook. One of the most well-known systems of this gen-

eration was a tool called Scribe, which was released in 2008. It used an RPC-like

mechanism to concentrate data from edge servers into a processing framework

 C H A P T E R

4

Data-Flow Management in

Streaming Analysis

72 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 72

like Hadoop. Scribe has many of the same features of the current generation,

including the ability to spool data to disk, but it can only account for intermit-

tent connectivity failures.

Flume, developed by Cloudera, and Kafka are the current generation of

distributed data collection systems, and they represent two entirely separate

philosophies. This chapter discusses the care and feeding of both of these

data motion systems. In addition, there is some discussion of their underlying

philosophies to help make the decision about which system to use in which

situation. However, these two data motion systems should not be considered

to be mutually exclusive. There is no reason that the two cannot both be used

in a single environment according to need.

Distributed Data Flows

A distributed data fl ow system has two fundamental properties that should

be addressed. The fi rst is an “at least once” delivery semantic. The second is

solving the “n+1” delivery problem. Without these, a distributed data fl ow will

have diffi culty successfully scaling. This section covers these two components

and why they are so important to a distributed data fl ow.

At Least Once Delivery

There are three options for data delivery and processing in any sort of data

collection framework:

 ■ At most once delivery

 ■ At least once delivery

 ■ Exactly once delivery

Many processing frameworks, particularly those used for system monitor-

ing, provide “at most once” delivery and processing semantics. Largely, this is

because the situations they were designed to handle do not require all the data

be transmitted, but they do require maximum performance to alert adminis-

trators to problems. In fact, many of these systems down-sample the data to

further improve performance. As long as the rate of data loss is approximately

known, the monitoring software can recover a usable value during processing.

In other systems—for instance fi nancials systems or advertising systems

where logs are used to determine fees—every lost data record means lost

revenue. Furthermore, audit requirements often mean that this data loss cannot

be estimated through techniques used in the monitoring space. In this case,

most implementations turn to “exactly once” delivery through queuing systems.

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 73

c04.indd 05:36:4:PM 06/12/2014 Page 73

Popular examples include the Apache project’s ActiveMQ queuing system, as

well as RabbitMQ, along with innumerable commercial solutions. These servers

usually implement their queue semantics on the server side, primarily because

they are usually designed to support a variety of producers and consumers in

an Enterprise setting.

The “exactly once” delivery mechanism, of course, sacrifi ces the raw perfor-

mance of the “at most once” delivery mechanism in an effort to provide this

safety whether or not it is required. The “at least once” delivery system tries to

balance these two extremes by providing reliable message delivery by pushing

the handling semantics to the consumer. By doing this, the consumer can use

the delivered data stream to construct the semantics required by the application

without affecting other consumers of the data stream. For example, a consumer

requiring “exactly once” processing for something such as fi nancial transactions

between two accounts can implement a de-duplication procedure to ensure that

messages are not reprocessed. Another consumer who cares only about tracking

something like the number of unique account transaction pairs does not need

“exactly once” delivery because it uses idempotent set operations, which means

it does not need to pay the management penalty. The general theory is that

appropriate message handling, beyond ensuring that they are delivered at least

once, is dependent on the application logic and should be handled at that level.

The “n+1” Problem

In “traditional” log processing systems, the architecture is essentially a funnel.

The data from a potentially large number of edge systems is collected to a small

number of central locations (usually one, but legal or physical restrictions some-

time necessitate more than one processing location). These processing locations

then manipulate the data and perhaps move it along to another location, such

as a data warehouse, for further analysis.

After this fi rst funnel is in place, the inevitable happens: A second data con-

sumer needs to be added, resulting in the construction of another funnel. After

that, perhaps another front-end service is introduced that has its own data collec-

tion mechanism. Eventually, every time a new service or processing mechanism

is added it must integrate with each of the other systems and, even worse, they

must integrate with it. It may seem like an exaggeration, but this is actually a

fairly common antipattern in the industry.

In the Enterprise space, this problem manifested itself in the form of the

service-oriented architecture (SOA) and saw the development of the idea of

the enterprise service bus (ESB). The idea was that the bus would handle the

interaction with various services, which were implemented independently with

no particular common protocol, and standardize the communication between

them. In practice, they are most commonly used to move data between different

74 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 74

“silos” within an organization, for example, between the sales organization’s

Salesforce implementation and the analytics team’s in-house databases.

For the data fl ow tools discussed in this chapter, the opposite happens. In

this case, the communication between the bus layer and each application is

standardized, and the messaging system is primarily responsible for manag-

ing the physical fl ow between systems. This allows any number of producers

and consumers to communicate through the common mechanism of the data

fl ow protocol without having to worry about other producers and consumers.

Apache Kafka: High-Throughput Distributed Messaging

The Apache Kafka project was developed by LinkedIn to connect its website

services and its internal data warehouse infrastructure. It was open-sourced in

2011 as a 0.6 release and accepted as an Apache Incubator project later that year.

The current release of Kafka is 0.8, which added many new features, including

a new producer message application programming interface (API) and internal

replication. This section discusses the 0.8 series of releases, though the simpler

0.7.2 release is often still used by organizations because third-party clients are

more plentiful for this version.

Design and Implementation

Kafka was purpose-built to solve specifi c problems for a specifi c company—in

this case LinkedIn. These problems were a high message volume and a large

number of disparate services that needed to communicate. As of late 2013, and

excluding messaging between datacenters that are mirroring data, LinkedIn

reportedly processed approximately 60 billion messages per day. It also had a

relatively large number of services that needed to be integrated, quite possibly

hundreds of different producers and consumers. LinkedIn also had essentially

complete control over their environment and software, allowing for the con-

struction of a very opinionated data motion environment.

As it happens, this sort of environment is not unique to LinkedIn. Many

companies that deal primarily with “Internet data” fi nd themselves in the same

situation. Additionally, many of them are engineering focused, meaning that most

of their software is developed in-house rather than licensed from a third party.

This allows the companies to use the Kafka model, and it is useful enough that

a similar system, called Kinesis, was recently announced by Amazon.com. This

product aims to make up a core part of the integration between various Amazon

.com services, such as its key-value store Dynamo, its block storage engine S3,

its Hadoop infrastructure Elastic MapReduce, and its high-performance data

warehouse Redshift.

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 75

c04.indd 05:36:4:PM 06/12/2014 Page 75

This section covers the design of Kafka’s internals and how they integrate to

solve the problems mentioned here.

Topics, Partitions, and Brokers

The organizing element of Kafka is the “topic.” In the Kafka system, this is a

physical partitioning of the data such that all data contained within the topic

should be somehow related. Most commonly, the messages in this topic are related

in that they can be parsed by the same common mechanism and not much else.

A topic is further subdivided into a number of partitions. These partitions

are, effectively, the limit on the rate that an I/O-bound consumer can retrieve

data from Kafka. This is because clients often use a single consumer thread

(or process) per partition. For example, with Camus, a tool for moving data

from Kafka into the Hadoop Distributed File System (HDFS) using Hadoop, a

Mapper can pull from multiple partitions, but multiple Mappers will not pull

from the same partition.

Partitions are also used to logically organize a topic. Producer implementa-

tions usually provide a mechanism to choose the Kafka partition for a given

message based on the key of that message.

Partitions themselves are distributed among brokers, which are the physical

processes that make up a Kafka cluster. Typically, each broker in the cluster

corresponds to a separate physical server and manages all of the writes to that

server’s disk. The partitions are then uniformly distributed across the different

brokers and, in Kafka 0.8 and later, replicas are distributed across other brokers

in the cluster.

If the number of brokers changes, partitions and their replicas can be reas-

signed to other brokers in the cluster. When consuming from a topic, the con-

sumer application, or consumer group if it is a distributed application, will

assign a single thread or process to each partition. These independent threads

then process each partition at their own pace, much like the Map phase of a

Map-Reduce application. Kafka’s high-level consumer implementation tracks

the consumption of the various threads, allowing processing to be restarted if

an individual process or thread is interrupted. While this model can be circum-

vented to improve consumption using Kafka’s low-level interfaces, the preferred

mechanism is to increase the number of partitions in a topic as necessary. To

accomplish this task, Kafka provides tools to add partitions to existing topics

in a live environment.

Log-Structured Storage

Kafka is structured around an append-only log mechanism similar to the write-

ahead-log protocol found in database applications. The write-ahead-log—which

76 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 76

was apparently fi rst developed by Ron Obermark in 1974 while he was working

on IBM’s System R—essentially says that before an object can be mutated, the

log of its mutation must fi rst have been committed to a recovery log. This forms

an “undo” log of message mutations that can be applied or removed from the

database to reconstruct the state of the database at any particular moment in time.

To accomplish this, the recovery log is structured such that with every change

it assigned a unique and increasing number (what mathematicians would call

a strictly monotonically increasing sequence) and appended to the end of a

theoretically infi nite fi le. Often, this increasing number is the position of the

record within the fi le because it is usually easy to obtain this information when

appending to a fi le. Of course, in a practical system, no fi le can be infi nitely large,

so after a fi le reaches its maximum size, a new fi le is created and the offsets

are reset. If the fi les are also named using a strictly monotonically increasing

sequence, the semantics of the write-ahead-log is completely maintained.

This approach is not only simple, but it also maximizes the performance of

the storage media most often used to maintain these logs. Back when they were

fi rst being developed, write-ahead-logs would have been written to tape storage

media (each tape holding approximately 50MB of data). Tape, of course, works

best with sequential writes. Even modern spinning media—hard drives—usu-

ally exhibit far superior sequential read/write performance relative to random

reads and writes.

Kafka uses essentially the same system as the write-ahead-log, maintaining

separate logs for each partition of each topic in the system. Of course, Kafka

is not a database. Rather than mutating a record in a database, Kafka does not

make a message available to consumers until after it has been committed to the

log, as shown in Figure 4-1. In this way, no consumer can consume a message

that could potentially be lost in the event of a broker failure.

Available to Consumers

Being Written

…

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

M
es

sa
ge

Figure 4-1

In a post to LinkedIn’s developer blog, Jay Kreps, one of Kafka’s develop-

ers, made an offhand comment that describes that Kafka implements “logs

as a service.” This could be taken quite literally, and Kafka could be used to,

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 77

c04.indd 05:36:4:PM 06/12/2014 Page 77

essentially, implement a traditional relational database management system

(RDBMS) replication system. To do this, changes to the table in the database

would be written to Kafka using the normal producer protocol. The database

itself would be a consumer of the Kafka data (in 0.8 this can be accomplished

using producer callbacks with the producer response set to “all” replicas) and

applies changes made to the tables by reading from Kafka. To improve recov-

ery times, it would occasionally snapshot its tables to disk along with the last

offset to be applied from each partition. It would appear that Kafka’s develop-

ers are also contemplating this style of application. The log compaction pro-

posal presented at https://cwiki.apache.org/confluence/display/KAFKA/

Log+Compaction indicates an environment where the topic would be long-lived

and allows consumers to recover the most recent value for a given key. In a

database application, this would cover recovery and replication use cases. The

key in a database application would represent the primary keys of tables with

the consumer application responsible for mutating a local copy into a format

more suited to querying (such as B-Tree).

Space Management

Although disk space is inexpensive, it is neither free nor infi nite. This means

that logs must eventually be removed from the system. Kafka, unlike many

systems, uses a time-based retention mechanism for its logs. This means that

logs, usually grouped into 1GB fi les unless otherwise specifi ed, are removed

after a certain number of hours of retention.

This means that Kafka happily uses its entire disk and does have a failure

mode in the 0.7.x series; it continues to accept messages despite being unable to

successfully persist them to non-volatile storage. At fi rst glance, this seems like

a recipe for disaster. However, it is generally much easier to manage available

storage than it is to manage potential slow clients or requests for older data.

Space management is generally a built-in component of core system monitoring

and is easily remedied via the introduction of more disk per broker or adding

brokers and partitions.

Not a Queuing System

Kafka is very explicitly not a queuing system like ActiveMQ or RabbitMQ,

which go through a lot of trouble to ensure that messages are processed in the

order that they were received. Kafka’s partitioning system does not maintain

this structure. There is no defi ned order of writes and reads to partitions of a

particular topic, so there is no guarantee that a client won’t read from partitions

in a different order than they were written. Additionally, it is not uncommon to

implement producers asynchronously, so a message sent to one partition may

https://cwiki.apache.org/confluence/display/KAFKA/Log+Compaction

78 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 78

be written after a message sent to another partition despite happening fi rst due

to differences in latency or other nondeterministic events.

This is generally fi ne because, in many Internet applications, maintaining

explicit ordering is overkill. The order of events is essentially arbitrary to begin

with, so there is no real benefi t to preserving one particular arbitrary order over

another arbitrary order. Furthermore, the events where ordering is important

usually occur far enough apart that they still appear to be ordered by any

processing system.

Kafka also differs from many queuing systems in how it deals with message

consumers. In many queuing systems, messages are removed from the system

when they have been consumed. Kafka has no such mechanism for removing

messages, instead relying on consumers to keep track of the offset of the last

message consumed. Although the high-level consumer shipped with Kafka

simplifi es this somewhat by using ZooKeeper to manage the offset, the brokers

themselves have no notion of consumers or their state.

Replication

With version 0.8, Kafka introduced true replication for a broker cluster. Previously,

any notion of replication had to be handled via the cluster-to-cluster mirroring

features discussed in the next section. However, this is merely a backup strategy

rather than a replication strategy.

Kafka’s replication is handled at the topic level. Each partition of a topic has a

leader partition that is replicated by zero or more follower partitions (in Kafka

0.8, unreplicated topics are simply leaders without followers). These follower

partitions are distributed among the different physical brokers with the intent

to place each follower on a different broker. Implementations should ensure

that they have suffi cient broker capacity to support the number of partitions

and replicas that will be used for a topic.

When a partition is created, all of these followers are considered to be “in-

sync” and form the in-sync replica set (ISR). When a message arrives at the leader

partition to be written, it is fi rst appended to the leader’s log. The message is then

forwarded to each of the follower partitions currently in the ISR. After each of

the partitions in the ISR acknowledges the message, the message is considered to

be committed and can now be read by consumers. The leader also occasionally

records a high watermark containing the offset of the most recently committed

message and propagates it to the follower partitions in the ISR.

If the broker containing a particular replica fails, it is removed from the ISR

and the leader does not wait for its response. This is handled through Kafka’s

use of ZooKeepers to maintain a set of “live” brokers. The leader then contin-

ues to process messages using the smaller pool of replicas in the ISR. When

the replica recovers, it examines its last-known high watermark and truncates

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 79

c04.indd 05:36:4:PM 06/12/2014 Page 79

its log to that partition. The replica then copies data from this position to the

current committed offset of the leader. After the replica has caught up, it may

be added back to the ISR and everything proceeds as before.

The addition of replication to Kafka also introduced some changes to the Kafka

Producer API. In versions of Kafka prior to 0.8 there was no acknowledgement

in the Producer API. Applications wrote to the Kafka socket and hoped for the

best. In Kafka 0.8, there are now three different levels of acknowledgements

available: none, leader, and all.

The fi rst option, none, is the same as in Kafka 0.7 and earlier and no response

is returned to producer. This is the least-durable situation and allows data to

be lost, but it affords maximum performance that can be easily measured into

the tens of thousands of messages per second.

The second option, leader, sends an acknowledgement after the leader has

received the message but before it has received acknowledgements from the

ISR. This reduces performance somewhat and can still lead to data loss, but this

option offers a reasonable level of durability for most applications.

The fi nal option, all, sends the acknowledgement only after the leader has

committed the message. In this situation, the data is not lost so long as at least

one partition remains in the ISR. However, the performance reduction relative

to the none case is signifi cant, though much of this can be recovered with a

large number of partitions and a highly concurrent Producer implementation.

Multiple Datacenter Deployments

Many web applications are latency sensitive, requiring them to be geo-

distributed around the globe. The connections between these far-fl ung datacenters

are, unsurprisingly, less reliable than connections within a datacenter. Kafka

helps to deal with potential (and depressingly common) increased latency and

complete connection loss between datacenters by providing built-in mirroring

tools. Using these tools, a Kafka cluster is established in each datacenter with a

retention time designed to balance the need to cover an extended outage, and

the available space in the remote datacenter. If enough space is available, a longer

retention time can be used as a guard against disaster.

These remote clusters are then copied into the main processing cluster using

a tool called MirrorMaker. This tool, which is shipped with Kafka, can read

from multiple remote clusters and writes the messages there into a single output

cluster. Writes to the same topic in each cluster are merged into a single topic

on the output cluster.

In addition to remote datacenter mirroring, the mirror facilities are also useful

for development. A remote cluster can simply be mirrored into the development

cluster to allow development using production data without risking production

environments.

80 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 80

Confi guring a Kafka Environment

This section describes how to start a Kafka environment. On development

systems, a single broker is usually suffi cient for testing whereas a larger sys-

tem should probably have a minimum of three to fi ve brokers depending on

replication requirements. On the top end, quite large installations are possible.

Chapter 5, “Processing Streaming Data,” covers a tool called Samza, which uses

Kafka for data processing in the same way that Hadoop Map-Reduce uses its

distributed fi lesystem. In this instance, there could be dozens of brokers in the

cluster that are all running Kafka.

This section covers everything needed to get Kafka up and running. There is

also a small section on developing multi-broker applications on a single machine

by using separate confi gurations.

Installing Kafka

Installing Kafka is simply a matter of unpacking the current version of Kafka,

0.8.0 at the time of writing, and confi guring it. Kafka itself is largely written

in a language called Scala, which has several versions. To avoid confusion

between versions, the Kafka developers choose to include the build version

of Scala in the archive name. This is mostly important for developers who are

trying to use the libraries included in the archive for development. Currently,

Kafka’s binary distribution is built using Scala 2.8.0, so the archive is named

kafka_2.8.0-0.0.tar.gz. You can download it from http://kafka.apache

.org and then unpack it:

$ tar xvfz ~/Downloads/kafka_2.8.0-0.8.0.tar.gz
x kafka_2.8.0-0.8.0/
x kafka_2.8.0-0.8.0/libs/
x kafka_2.8.0-0.8.0/libs/slf4j-api-1.7.2.jar
x kafka_2.8.0-0.8.0/libs/zkclient-0.3.jar
x kafka_2.8.0-0.8.0/libs/scala-compiler.jar
x kafka_2.8.0-0.8.0/libs/snappy-java-1.0.4.1.jar
x kafka_2.8.0-0.8.0/libs/metrics-core-2.2.0.jar
x kafka_2.8.0-0.8.0/libs/metrics-annotation-2.2.0.jar
x kafka_2.8.0-0.8.0/libs/log4j-1.2.15.jar
x kafka_2.8.0-0.8.0/libs/jopt-simple-3.2.jar
x kafka_2.8.0-0.8.0/libs/slf4j-simple-1.6.4.jar
x kafka_2.8.0-0.8.0/libs/scala-library.jar
x kafka_2.8.0-0.8.0/libs/zookeeper-3.3.4.jar
x kafka_2.8.0-0.8.0/bin/
[More Output Omitted]
$

http://kafka.apache.org

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 81

c04.indd 05:36:4:PM 06/12/2014 Page 81

Most operating system confi gurations limit the number of open fi les allowed

by a process to a relatively small number, such as 1024. Due to a number of fac-

tors, such as the number of topics, partitions, and retention time, it is possible

that Kafka will need to consume many more fi le handles than this under normal

operation. Increasing this limit depends on the operating system, but on Linux

it involves editing the /etc/security/limits.conf fi le. For example, adding

the following nofile (it stands for “number of fi les” rather than “no fi les”) line

increases the allowable open fi les for the kafka user to 50,000:

kafka - nofile 50000

Kafka Prerequisites

Kafka’s only external dependency is a ZooKeeper installation. In a production

environment, refer to the installation guide in the previous chapter to get a

ZooKeeper cluster running. For local development environments, Kafka ships

with a preconfi gured ZooKeeper server that can be used to host several brokers

on a single machine.

To start this development version, Kafka includes a script bin/zookeeper-server-

start.sh and a confi guration fi le config/zookeeper.properties. You can use

these as they are to start the server in a terminal window:

$ cd kafka_2.8.0-0.8.0/
$./bin/zookeeper-server-start.sh config/zookeeper.properties
INFO Reading configuration from:
 config/zookeeper.properties
 (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
WARN Either no config or no quorum defined
 in config, running in standalone mode
 (org.apache.zookeeper.server.quorum.QuorumPeerMain)
INFO Reading configuration from:
 config/zookeeper.properties
 (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
INFO Starting server
 (org.apache.zookeeper.server.ZooKeeperServerMain)
[Other Output Omitted]

After ZooKeeper has been started, all that remains is to confi gure and start

the Kafka brokers.

Confi guring the Broker

The Broker is the name of the Kafka server. Like ZooKeeper, it is confi gured

with a simple properties fi le that defi nes the broker itself. Information about

82 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 82

the topics and offset data is kept either with the data itself or in the ZooKeeper

cluster. This section walks through this properties fi le and explains each of the

settings and their effect on the cluster.

After some boilerplate containing the appropriate Apache licensing infor-

mation, the fi rst setting is the broker identifi er. Unlike ZooKeeper, where the

id is limited to 0-255, Kafka represents the broker as a unique unsigned 32-bit

integer (internally, this is an encoded as a Java long value, but the value must

be positive, which limits the effective range to 32 bits):

The id of the broker. This must be set to a unique integer
for each broker.
broker.id=0

If you’re using IPv4 addressing, an option for assigning unique broker ids

is to use the IPv4 address converted to an unsigned 32-bit number. Many pro-

gramming languages have a function called inet_aton that is used to convert

a “dotted quad” IP address to an unsigned 32-bit integer, but this can also be

calculated from the Linux Bash shell using the following one-liner, assuming

that the bc utility is installed:

$ IP=$(ip=`hostname -I` && ip=(${ip//\./ }) \
> && echo "(${ip[0]} * (2^24)) + (${ip[1]}*(2^16)) \
> + (${ip[2]}*(2^8)) + ${ip[3]}" | bc) \
> && echo "broker.id: $IP"

This command uses the Linux hostname command to obtain the “default”

IP address using the -I option. This is broken up into its component parts

by ip=(${ip//\./ }). Note that the trailing space after the “/” character is

important and cannot be omitted. These component parts are then bit-shifted

by multiplying them appropriately using the bc command.

The broker.id value should only be set during initial confi guration and the

IP address is used only to ensure unique IDs during cluster setup. If the server

receives a new IP address due to being restarted, it should retain its current

broker.id. Of course, problems can arise when new servers are added and

receive an IP address that had been assigned during initial cluster confi guration.

The next parameter is the port the broker uses for communication. The

default is 9092 and there is little reason to change it unless multiple broker

instances are to be run on the same machine (see the A Multi-Broker Cluster

on a Single Machine section):

The port the socket server listens on
port=9092

The host.name option is used to set the host name reported by the

broker. In most circumstances, this can be left commented out because

getCanonicalHostName() does the correct thing. If the compute environment

is somewhat exotic and a server has multiple hostnames, it may be necessary

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 83

c04.indd 05:36:4:PM 06/12/2014 Page 83

to set this explicitly. One example of this is Amazon’s EC2 environment. Each

server in EC2 has at least two fully qualifi ed domain names—an internal and an

external domain—and may have other names assigned using Amazon’s Route

53 DNS service. Depending on which services need to communicate with the

cluster, the default name may not be appropriate to report. If this problem can-

not be overcome at the operating system level, it is possible to explicitly defi ne

the name here so that metadata calls return the correct hostname.

Hostname the broker will bind to and
advertise to producers and consumers.
If not set, the server will bind to all
interfaces and advertise the value returned from
from java.net.InetAddress.getCanonicalHostName().
#host.name=localhost

These next two options control the number of threads that Kafka uses for

processing network requests and managing the log fi les. In older versions of

Kafka, there was only a single option to set the number of threads kafka.num

.threads. The new setting allows for greater fl exibility in tuning the Kafka

cluster. The default value for num.network.threads is 3 and for num.io.threads

it is 8. The recommendation for num.network.threads of 3 threads is probably

suffi cient for most use cases. For num.io.threads, the recommendation is that

the number of threads equal the number of disks used for log storage.

The number of threads handling network requests
num.network.threads=3

The number of threads doing disk I/O
num.io.threads=8

The number of requests that can be queued for I/O before network
threads stop reading
#queued.max.requests=

The next settings control the size of the socket buffers and requests. For multi-

datacenter transfers, the LinkedIn reference confi guration increases these values

to 2MB from the following 1MB confi guration. If these settings are commented

out, the default is a relatively small 100KB buffer size, which may be too small

for a high-volume production environment. It is usually not necessary to modify

the maximum request size, which is set to 100MB in this case:

The send buffer (SO_SNDBUF) used by the socket server
socket.send.buffer.bytes=1048576

The receive buffer (SO_RCVBUF) used by the socket server
socket.receive.buffer.bytes=1048576

The maximum size of a request that the socket server

84 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 84

will accept (protection against OOM)
socket.request.max.bytes=104857600

The log.dirs property controls Kafka’s log output location. These loca-

tions contain a number of partition directories of the form <topic name>-

<partition number> and a fi le called replication-offset-checkpoint:

$ ls
analytics-0 audit-1 replication-offset-checkpoint

This text fi le contains the “high watermark” data described in the earlier

replication section and should not be deleted. If multiple comma-separated

directories are given to Kafka, it distributes partitions evenly across each of

the directories. This is a tempting option for servers where JBOD (Just a Bunch

of Disks) confi gurations are the default, such as Amazon’s EC2. Unfortunately,

Kafka simply distributes partitions randomly to the various disks rather than

trying to, say, distribute partitions of the same topic across multiple disks. It is

often the case that topics have very different data sizes, and by luck it can hap-

pen that different disks have very different usage characteristics. If possible, it

is usually better to use RAID0 to combine the disks into a single large disk and

use a single log directory.

A comma seperated list of directories under which to store log files
log.dirs=/tmp/kafka-logs

These next settings control the creation and management of topics.

Disable auto creation of topics
#auto.create.topics.enable=false

The number of logical partitions per topic per server.
More partitions allow greater parallelism
for consumption, but also mean more files.
num.partitions=2

The default replication factor in a Kafka cluster is 1, meaning that only the

leader has the data. You can manually set the replication factor on a per-topic

basis by explicitly creating the topic, but this replication factor will be used for

all auto-created topics (if auto-creation is enabled).

Set the default replication factor for a topic
#default.replication.factor=3

If a replica is being used, the next few parameters control the maintenance

of ISR sets. In general, there is no real reason to change most of these defaults.

(You should use care if you do change them.) In particular, setting the lag time

or messages to be too small can make it impossible for replicas to remain in

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 85

c04.indd 05:36:4:PM 06/12/2014 Page 85

the ISR. The one setting that can sometimes improve performance is increasing

num.replica.fetchers to improve replication throughput.

The maximum time a leader will wait for a fetch request before
evicting a follower from the ISR
#replica.lag.time.max.ms=10000

The maximum number of messages a replica can lag the leader before it
is evicted from the ISR
#replica.lab.max.messages=4000

The socket timeout for replica requests to the leader
#replica.socket.timeout.ms=30000

The replica socket receive buffer bytes
#replica.socket.receive.buffer.bytes=65536

The maximum number of bytes to receive in each replica fetch request
#replica.fetch.max.bytes=1048576

The maximum amount of time to wait for a response from the leader
for a fetch request
#replica.fetch.wait.max.ms=500

The minimum number of bytes to fetch from the leader during a request
#replica.fetch.min.bytes=1

The number of threads used to process replica requests
#num.replica.fetchers=1

The frequency with with the high watermark is flushed to disk
#replica.high.watermark.checkpoint.interval.ms=5000

The next group of settings controls the behavior of Kafka’s disk input/output

(I/O). These settings are used to balance the durability of the data when it’s not

using replication with Kafka’s throughput for producers and consumers.

The two parameters, log.flush.interval.messages and log.flush

.interval.ms control the minimum and maximum times between fl ush events.

The log.flush.interval.ms setting is the longest Kafka waits until fl ush-

ing to disk, thereby defi ning an upper bound for fl ush events. The log.flush

.interval.messages parameter causes Kafka to fl ush messages to disk after a

number of messages have been received. If the partition collects messages faster

than the interval time, this defi nes the lower bound on the fl ush rate.

Without replication, the time between fl ush events is the amount of data that

can be lost in the event of a broker failure. The default is 10,000 messages or 1,000

milliseconds (1 second), which is typically suffi cient for most use cases. Before

86 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 86

setting these values to be larger or smaller, there are two things to consider:

throughput and latency. The process of fl ushing to disk is the most expensive

operation performed by Kafka, and increasing this rate reduces the throughput

of the system as a whole. Conversely, if the fl ush is very large, it takes a relatively

long time. Increasing the time between fl ushes can lead to latency spikes in

responses to producers and consumers as a large bolus of data is fl ushed to disk.

You can control both these parameters on a per-topic basis using the log

.flush.intervals.messages.per.topic and log.flush.intervals.ms.per

.topic parameters respectively. These parameters take a comma-separated list

of <topic>:<value> tuples.

The number of messages to accept before forcing
a flush of data to disk
log.flush.interval.messages=10000

The maximum amount of time a message can sit in a
log before we force a flush
log.flush.interval.ms=1000

Per-topic overrides for log.flush.interval.ms
#log.flush.intervals.ms.per.topic=topic1:1000, topic2:3000

The next set of parameters control the retention time for topics as well as the

size of log segments. Logs are always removed on deleting an entire segment,

so the size of the segment fi le combined with the retention time defi nes how

quickly expired data will be removed.

The basic parameter that controls the retention is the log.retention.hours

setting. When a log segment exceeds this age it is deleted. This happens on

a per-partition basis. There is also a log.retention.bytes setting, but it has

little utility in practice. First, as discussed earlier, deleting log segments on

space constraints is somewhat more diffi cult to manage than time. Second, log

.retention.bytes uses a 32-bit integer rather than Java’s 64-bit long. This limits

topics to at most 2GB per-partition per-topic. Outside of development and test-

ing, this is rarely suffi ciently large in a production environment.

The minimum age of a log file to be eligible for deletion
log.retention.hours=168

A size-based retention policy for logs. Segments are pruned from the
log as long as the remaining segments don't drop
below log.retention.bytes.
#log.retention.bytes=1073741824

The size of each segment is controlled by the log.segment.bytes and the log

.index.size.max.bytes settings. The fi rst parameter controls the size of the log

segment, which is the fi le that contains the actual messages as they were sent

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 87

c04.indd 05:36:4:PM 06/12/2014 Page 87

to Kafka. The on-disk format is identical to the wire format so that the messages

can be quickly fl ushed to this disk. The default size of this fi le is 1GB, and in the

following example it has been set to 512MB for development purposes.

The log.index.size.max.bytes parameter controls the size of the index fi le

that accompanies each log segment. This fi le is used to store index information

about the offsets for each message stored in the fi le. It is allocated 10MB of space

using a sparse fi le method by default, but if it fi lls up before the segment fi le

itself is fi lled, it causes a new log segment to roll over.

The maximum size of a log segment file. When this size is
reached a new log segment will be created.
log.segment.bytes=536870912

The rate at which segments are checked for expiration is controlled by log

.cleanup.interval.mins. This defaults to checking every minute and this is

usually suffi cient.

The interval at which log segments are checked to see if they can
be deleted according to the retention policies
log.cleanup.interval.mins=1

As mentioned in the “Kafka Prerequisites” section, Kafka uses ZooKeeper to

manage the status of the brokers in a given cluster and the metadata associated

with them. The zookeeper.connect parameter defi nes the ZooKeeper cluster

that the broker uses to expose its metadata. This takes a standard ZooKeeper

connection string, allowing for comma-separated hosts. It also allows the bro-

kers to take advantage of ZooKeeper’s chroot-like behavior by specifying a

default path in the connection string. This can be useful when hosting multiple

independent Kafka clusters in a single ZooKeeper cluster.

Zookeeper connection string (see zookeeper docs for details).
This is a comma separated host:port pairs, each corresponding to a zk
server. e.g. "127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002".
You can also append an optional chroot string to the urls to specify
the root directory for all kafka znodes.
zookeeper.connect=localhost:2181

Like other ZooKeeper clients, Kafka allows for the control of the

connection and session timeout values. These are controlled by the zookeeper

.connection.timeout.ms and zookeeper.session.timeout.ms settings, respec-

tively, and both are set to 6,000 milliseconds (6 seconds) by default.

Timeout in ms for connecting to zookeeper
zookeeper.connection.timeout.ms=1000000

Timeout in ms for the zookeeper session heartbeat.
#zookeeper.session.timeout.ms=6000

88 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 88

With the introduction of replication, Kafka 0.8 also introduces a controlled

shutdown behavior for the broker. The setting controlled.shutdown.enabled,

which is active by default, controls this behavior. When active, when a leader

receives a shutdown command it attempts to reassign control of each of the

topic partitions it leads to another broker in the ISR. It attempts to do this

controlled.shutdown.max.retries times, backing off by controlled

.shutdown.retry.backoff.ms milliseconds between each attempt. After the

last retry it shuts down, possibly uncleanly.

This feature allows for maintenance to be more easily performed on the cluster.

Assuming that consumers and producers are aware of changes to the metadata,

moving the leadership position to another broker can allow the entire cluster to

be upgraded without any perceptible downtime. Unfortunately, most clients do

not have good recovery facilities, so this is presently not possible.

#controlled.shutdown.enabled=true
#controlled.shutdown.max.retries=3
#controlled.shutdown.retry.backoff.ms=5000

You can fi nd most of the settings shown in this section in the config/server

.properties fi le of the Kafka installation. This properties fi le is mostly intended

for development purposes. In production, most of the defaults can be used,

except for perhaps the socket buffering options. The broker.id, log.dirs and

zookeeper.connect properties must be set in all cases.

Starting a Kafka Broker Cluster

After a proper Kafka confi guration fi le has been created, you can start it using

the kafka-server-start.sh script. This script takes the properties fi le contain-

ing the confi guration:

$./bin/kafka-server-start.sh config/server.properties

The server normally starts in the foreground because it doesn’t have a built-in

daemon mode. A common pattern for starting the Kafka server in the back-

ground, such as in an init.d script, is to write the output to a log fi le and

background the server:

$./bin/kafka-server-start.sh \
> config/server.propertiers > kafka.log 2>&1 &

A Multi-Broker Cluster on a Single Machine

Sometimes during the course of development it is desirable to have more than

one Kafka broker available to ensure that applications can appropriately deal

with partitions on multiple servers and the management of reading from the ISR

and so on. For example, developing a client for a new language should always

be done against a multi-broker cluster.

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 89

c04.indd 05:36:4:PM 06/12/2014 Page 89

Starting multiple brokers on a single machine is a fairly straightforward task.

Each broker must be assigned a separate broker id, port and log directory. For

example, the following three fi les could be used:

config/server-1.properties:
broker.id=1
port=6001
log.dirs=/tmp/kafka-logs-1
zookeeper.connect=localhost:2181

config/server-2.properties:
broker.id=2
port=6002
log.dirs=/tmp/kafka-logs-2
zookeeper.connect=localhost:2181

config/server-3.properties:
broker.id=3
port=6003
log.dirs=/tmp/kafka-logs-3
zookeeper.connect=localhost:2181

Starting each of the brokers is very similar to starting a single broker on a

server. The only difference is that different Java Management Extension (JMX)

ports need to be specifi ed. Otherwise, the second and third Kafka brokers will

fail to start due to the fact that the fi rst broker has bound the JMX port.

Interacting with Kafka Brokers

Kafka is designed to be accessible from a variety of platforms, but it ships with

Java libraries because it natively runs on the Java Virtual Machine (JVM). In its

native clients, it provides one option for applications that write to Kafka and

two options for applications that read from Kafka.

To use Kafka from Java, the Kafka library and the Scala run time must be

included in the project. Unfortunately, due to the way Scala is developed, librar-

ies are generally tied to the Scala library they are built against. For pure Java

projects, this does not matter, but it can be annoying for Scala projects.

These examples use only Java. The version of Kafka built against Scala

2.8.0 is used:

<dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka_2.8.1</artifactId>
 <version>0.8.1-SNAPSHOT</version>
</dependency>

<dependency>
 <groupId>org.scala-lang</groupId>

90 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 90

 <artifactId>scala-library</artifactId>
 <version>2.8.1</version>
</dependency>

Producers

To use the Kafka Producer, a Properties object is either constructed or loaded

from a .properties fi le. In production systems, the properties are usually loaded

from a fi le to allow them to be changed without having to recompile the project.

In this simple example, the Properties object is constructed. These Properties

are then passed to the constructor of the ProducerConfig object:

public static void main(String[] args) throws Exception {

 Properties props = new Properties();
 props.put("metadata.broker.list",
 "localhost:6001,localhost:6002,localhost:6003");
 props.put("serializer.class", "kafka.serializer.StringEncoder");
 props.put("request.required.acks", "1");
 ProducerConfig config = new ProducerConfig(props);

This confi guration object is then passed on to the Producer object, which

takes a type for both its Key and its Message type. Although the Key is generally

optional, it is important that the serializer.class defi ned in the confi guration

properties can successfully encode the objects used for the Key and the Message.

In this case, Strings are being used for both Key and Message:

String topic = args[0];
Producer<String,String> producer = new Producer<String,String>(config);

This simple example reads lines from the console and sends them to Kafka.

The Producer itself takes KeyedMessage objects either singly or as part of a List

collection. These messages are constructed with a topic, a key, and a message.

If the key is not required, only the topic and the message can be used as in this

example:

BufferedReader reader = new BufferedReader(
 new InputStreamReader(System.in));
while(reader.ready()) {
 String toSend = reader.readLine();
 producer.send(new KeyedMessage<String,String>(topic, toSend));
}

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 91

c04.indd 05:36:4:PM 06/12/2014 Page 91

Consumers

Applications have two options for Kafka Consumer implementations. The fi rst

is a high-level implementation that uses ZooKeeper to manage and coordinate

a consumer group. The other is a low-level implementation for applications

that need to manage their own offset information or need access to features

not found in the Simple Consumer, such as the ability to reset their offsets to

the beginning of the stream.

This example uses the Simple Consumer API to print messages produced by

the Producer on the console. Like the Producer example, the example begins

with the construction of the ConsumerConfig object from a Properties object:

public static void main(String[] args) {
 Properties props = new Properties();
 props.put("zookeeper.connect", "localhost:2181");
 props.put("group.id", "console");
 props.put("zookeeper.session.timeout.ms", "500");
 props.put("zookeeper.sync.timeout.ms", "500");
 props.put("auto.commit.interval.ms", "500");
 ConsumerConfig config = new ConsumerConfig(props);

Most Consumer applications are multithreaded, and many read from multiple

topics. To account for this, the high-level Consumer implementation takes a map

of topics with the number of message streams that should be created for each

topic. These streams are usually distributed to a thread pool for processing, but

in this simple example only a single message stream will be created for the topic:

String topic = args[0];
HashMap<String,Integer> topicMap = new HashMap<String,Integer>();
topicMap.put(topic,1);

ConsumerConnector consumer=Consumer.createJavaConsumerConnector(config);
Map<String,List<KafkaStream<byte[],byte[]>>> consumerMap =
 consumer.createMessageStreams(topicMap);
KafkaStream<byte[],byte[]> stream = consumerMap.get(topic).get(0);

The KafkaStream object defi nes an iterator with a class of ConsumerIterator,

which is used to retrieve data from the stream. Calling the next method on the

Iterator returns a Message object that can be used to extract the Key and the

Message:

ConsumerIterator<byte[],byte[]> iter = stream.iterator();
while(iter.hasNext()) {

92 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 92

 String message = new String(iter.next().message());
 System.out.println(message);
}

Apache Flume: Distributed Log Collection

Kafka was designed and built within a specifi c production environment. In this

case, its designers essentially had complete control over the available software

stack. In addition, they were replacing an existing component with similar

producer/consumer semantics (though different delivery semantics), making

Kafka relatively easy to integrate from an engineering perspective.

In many production environments, developers are not so lucky. There often

are a number of pre-existing legacy systems and data collection or logging paths.

In addition, for a variety of reasons, it is not possible to modify these systems’

logging behavior. For example, the software could be produced by an outside

vendor with their own goals and development roadmap.

To integrate into these environments, there is the Apache Flume project. Rather

than providing a single opinionated mechanism for log collection, like Kafka,

Flume is a framework for integrating the data ingress and egress of a variety of

data services. Originally, this was primarily the collection of logs from things

like web servers with transport to HDFS in a Hadoop environment, but Flume

has since expanded to cover a much larger set of use-cases, sometimes blurring

the line between the data motion discussed in this chapter and the processing

systems discussed in Chapter 5.

This section introduces the Flume framework. The framework itself ships

with a number of out-of-the-box components that can be used to construct

immediately useful infrastructure. These basic components and their usage are

covered in fair detail. It is also possible to develop custom components, which

is usually mostly done to handle business-specifi c data formats or processing

needs. Flume, like Kafka, is developed on top of the JVM, so extending the

framework is fairly straightforward.

The Flume Agent

Flume uses a network-fl ow model as its primary organizing feature, which is

encapsulated into a single machine known as an agent. These Agent machines

are roughly analogous to Kafka’s broker and minimally consist of three compo-

nents: a source, a channel, and a sink. An agent can have any number of these

basic fl ows, organized as shown in Figure 4-2.

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 93

c04.indd 05:36:4:PM 06/12/2014 Page 93

Source Channel Sink

Source Channel

Agent

Sink

Figure 4-2

As shown in Figure 4-2, the source is the start of any fl ow on an agent. Sources

are components that either retrieve or receive data from an outside source. In

most cases, this is data from an application. For example, a web server may

produce fi lesystem logs. To retrieve them, a source that can tail log fi les is used

as part of an agent installed on the machine running the web server.

After the source has received data, it transfers this data to one or more

channels. Channels defi ne the persistence and transaction semantics. Depending

on the channel used, the agent can store its data to disk or a database, or it can

keep it in memory. This allows different performance and reliability character-

istics to be selected for each agent.

A source may also choose to write its data to multiple channels, as shown in

Figure 4-3. This is typically used to multiplex data for better load balancing and

processing parallelism. It can also be used to replicate data or provide multiple

data paths for the entire stream. To defi ne how this happens, the source defi ni-

tion uses a selector. The default selector is a replication selector that writes the

same data to all channels. The other built-in option is the multiplexing selector.

This selector uses information from the data element to determine the destina-

tion channel of each piece of data arriving at the source.

Channel Sink

Source

Channel

Agent

Sink

Channel Sink

Figure 4-3

Sinks remove data from the channels and relay them to either a fi nal output,

such as HDFS, or on to another agent. Unlike sources, sinks are each attached

94 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 94

to a single channel. Sending the output from multiple sinks to a single agent is

used to perform de-multiplexing.

Sinks can also be coordinated to some extent using sink processors. There are

three built-in sink processors: the default processor, a load-balancing processor,

and a failover processor. These are described in more detail later in this chapter.

Confi guring the Agent

Agents are confi gured, much like Kafka, using a properties fi le. It defi nes

both the arrangement of sources, channels, and sinks as well as the confi gura-

tion of the individual elements. The arrangement is the same for all combina-

tions, whereas the individual confi gurations depend on the type of each of the

elements. The confi guration begins with the defi nition of sources and sinks for

each agent running on the machine, with the following basic form:

<agent name>.sources= <source1> ... <sourceN>
<agent name>.channels= <channel1> ... <channelN>
<agent name>.sinks= <sink1> ... <sinkN>

The <agent name> and <source1> entries are replaced with unique names that

are used to identify these elements elsewhere in the properties fi le. For example,

defi ning a properties fi le with two agents might look something like this:

agent_1.sources= source-1
agent_1.channels= channel-1 channel-2
agent_1.sinks= sink-1 sink-2

agent_2.sources= source-1
agent_2.channels= channel-1
agent_2.sinks= sink-1

In this example, the two agents are confi gured to each have a single source.

The fi rst agent, agent_1, uses two channels and two sinks to either replicate or

multiplex its input. The second agent, agent_2, is more simply defi ned with a

single channel and sink.

Note that the source, channel, and sink names do not need to be unique across

different agents. The confi guration is always with respect to an agent defi nition.

The next section binds the sources and the sinks for each agent to their

appropriate channels. The source is bound with properties of the form

<agent name>.sources.<source>.channels, and the sink is bound to each channel

with <agent name>.sinks.<sink>.channel. In this example, the source is bound

to all channel(s) and the sink(s) are bound to the channel with the same name:

agent_1.sources.source-1.channels= channel-1 channel-2
agent_1.sinks.sink-1.channel= channel-1
agent_1.sinks.sink-2.channel= channel-2

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 95

c04.indd 05:36:4:PM 06/12/2014 Page 95

agent_2.sources.source-1.channels= channel-1
agent_2.sinks.sink-1.channel= channel-1

The Flume Data Model

Before continuing with the confi guration of a Flume agent, some discussion of the

Flume internal data model is required. This data model is defi ned by the Event

data structure. The interface to this structure is defi ned by Flume as follows:

package org.apache.flume;

import java.util.Map;

/**
 * Basic representation of a data object in Flume.
 * Provides access to data as it flows through the system.
 */
public interface Event {

 public Map<String, String> getHeaders();

 public void setHeaders(Map<String, String> headers);

 public byte[] getBody();

 public void setBody(byte[] body);

}

Like the Kafka Message, the Event payload is an opaque byte array called

the Body. The Event also allows for the introduction of headers, much like an

HTTP call. These headers provide a place for the introduction of metadata that

is not part of the message itself.

Headers are usually introduced by the Source to add some metadata asso-

ciated with the opaque event. Examples might include the host name of the

machine that generated the event or a digest signature of the event data. Many

Interceptors modify the header metadata as well. The metadata components

are used by Flume to help direct events to their appropriate destination. For

example, the multiplexing selector uses the header structure to determine the

destination channel for an event. How each component modifi es or uses the

metadata details is discussed in detail in the sections devoted to each selector.

Channel Selectors

If multiple channels are to be used by a source, as is the case with the agent_1

source in the previous example, some policy must be used to distribute data

96 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 96

across the different channels. Flume’s default policy is to use a replicating selec-

tor to control the distribution, but it also has a built-in multiplexing selector that

is used to load balance or partition inputs to multiple sinks. It is also possible

to implement custom channel selection behavior.

Replicating Selector

The replicating selector simply takes all inputs and sends them to all channels

for further processing. Because it is the default, no confi guration is necessary,

but it may be explicitly defi ned for a source by setting the selector.type prop-

erty to replicating:

agent_1.source.source-1.selector.type= replicating

The only additional option for the replicating selector is the ability to ignore

failures to write to specifi c channels. To do this, the selector.optional prop-

erty is set with a space-separated list of channels to ignore. For example, this

setting makes agent_1’s second channel optional:

agent_1.source.source-1.selector.optional= channel-2

Multiplexing Selector

The other built-in channel selector is the multiplexing selector. This selector

is used to distribute data across different channels depending on the Event’s

header metadata. It is activated by changing the source’s selector.type to be

multiplexing:

agent_1.source.source-1.selector.type= multiplexing

By default, the channel is determined from the flume.selector.header header

in the metadata, but it can be changed with the selector.header property. For

example, this changes the selector to use the shorter timezone header:

agent_1.source.source-1.selector.header= timezone

The multiplexing selector also needs to know how to distribute the values

from this header to the various channels assigned to the source. The target

channel(s) is specifi ed with the selector.mapping property. The values must

be explicitly mapped for each possible value with a default channel specifi ed

with the selector.default property. For example, to map Pacifi c Daylight Time

(PDT) and Eastern Daylight Time (EDT) to channel-2 and all other events to

channel-1, the confi guration would look like this:

agent_1.source.source-1.selector.mapping.PDT= channel-2
agent_1.source.source-1.selector.mapping.EDT= channel-2
agent_1.source.source-1.selector.default= channel-1

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 97

c04.indd 05:36:4:PM 06/12/2014 Page 97

It is arguable that the need to explicitly specify the mapping of a header to a

channel signifi cantly reduces the utility of the multiplexing selector. In fact, this

makes it mostly useful as a routing tool rather than a mechanism for improving

processing parallelism. In that case, a better choice would be a load-balancing

sink processor, which is described later in this chapter.

Implementing Custom Selectors

Flume also supports the implementation of custom selectors. To use this in a

confi guration, simply specify the fully qualifi ed class name (sometimes abbrevi-

ated as FQCN) as the selector.type. For example, this tells Flume to use the

RandomSelector for agent_1’s Source:

agent_1.source.source-1.selector.type=
 wiley.streaming.flume.RandomSelector

Depending on the selector implementation, other confi guration parameters

might be needed to operate properly. The selector itself is implemented by

extending the AbstractChannelSelector class:

import org.apache.flume.Channel;
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.channel.AbstractChannelSelector;

public class RandomChannelSelector extends AbstractChannelSelector {

 List<List<Channel>> outputs = new ArrayList<List<Channel>>();
 List<Channel> empty = new ArrayList<Channel>();
 Random rng = new Random();

This class requires the implementation of three different methods. The fi rst

is the confi guration method, configure, that should extract information about

the channels assigned to this source as well as any other properties that might

have been set in the confi guration:

public void configure(Context context) {

Interacting with the context object is quite simple. There are a number of

“getters” defi ned on the context class that can be used to extract confi guration

parameters. These properties have already been specialized to the appropriate

selector. For example, if the class needed to access the "optional" property, like

the replicating selector, then the following code would get the string associated

with the property:

String optionalList = context.getString("optional");

However, RandomSelector only needs the list of channels associated

with this source. This method, getAllChannels, is actually part of the

98 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 98

AbstractChannelSelector class, so it is called directly. Because the RandomSelector

sends each event to one channel, list elements are constructed for later use:

for(Channel c : getAllChannels()) {
 List<Channel> x = new ArrayList<Channel>();
 x.add(c);
 outputs.add(x);
}

The other two methods that must be implemented by a custom channel selec-

tor are getRequiredChannels and getOptionalChannels. Each method gets a

single argument in the form of an Event, whose metadata can be checked. The

RandomSelector does not check metadata; it simply returns a random array

containing a single channel as constructed in the confi guration method:

public List<Channel> getRequiredChannels(Event event) {
 return outputs.get(rng.nextInt(outputs.size()));
}

public List<Channel> getOptionalChannels(Event event) {
 return empty;
}

Flume Sources

One of the chief draws for Flume is its ability to integrate with a variety of

systems. To support this, Flume ships with a number of built-in source com-

ponents. It also supports the ability to implement custom sources in much the

same manner as the channel selector discussed in the previous section.

Avro Source

Avro is a structured data format developed by Yahoo!. Philosophically similar

to other data formats such as protocol buffers from Google and Thrift from

Facebook, it is the native data interchange format for Flume. All three of these

systems use an Interface Defi nition Language (IDL) to defi ne structures that are

similar to C structs or simple Java classes. The formats can use this description

to encode structures in their native language to a high-performance binary wire

protocol that is easily decoded by another service with access to the schema

defi ned by the IDL. In the case of Avro, this IDL is JSON, making it easy to defi ne

data structures that can be implemented by a variety of languages.

Like Thrift, Avro also defi nes a remote procedure call (RPC) interface. This

allows “methods” defi ned by Avro to be executed via a command sent over

a TCP/IP connection. It is this RPC interface that Flume implements to pass

events into the agent.

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 99

c04.indd 05:36:4:PM 06/12/2014 Page 99

The Avro source in Flume is assigned to a source defi nition by specifying the

type as avro. It also takes a bind and port property that defi nes the network

interface and port the agent should listen on for Avro RPC calls. For example,

the following options bind the Avro listener to all network interfaces defi ned

by the system on port 4141:

agent_1.source.source-1.type=avro
agent_1.source.source-1.bind=0.0.0.0
agent_1.source.source-1.port=4141

The special IP address 0.0.0.0 should be used with care. If the agent is run-

ning on a server that has an external IP address, it binds to that IP address. In

most cases, this is harmless because the server almost certainly sits behind

a fi rewall that protects it from most mischief. However, it may also open the

port to internal services that should not have access. For example, a production

server could give inadvertent access to a staging server. If that staging server

were to be accidentally misconfi gured, it could potentially inject inappropriate

data into the system.

Although the type, bind, and port properties are required, the Avro source

also allows for some optional properties. The optional properties allow for com-

pression of the Avro data stream by setting the compression.type to deflate.

The stream may also be encrypted via SSL (Secure Socket Layer) by setting the

ssl property to true and pointing the keystore property to the appropriate

Java KeyStore fi le. The keystore-password property specifi es the password for

the KeyStore fi le itself. Finally, the type of KeyStore is specifi ed by keystore-

type, defaulting to JKS.

Thrift Source

Prior to the release of Flume and Kafka, Thrift and Scribe were (and still are)

popular choices for collecting logs in new infrastructures. The Thrift source

allows Flume to integrate with existing Thrift/Scribe pipelines. After you set

the type to thrift, you must set the address binding and the port as well. Like

the Avro source, take care when setting the address binding to 0.0.0.0:

agent_1.source.source-1.type=thrift
agent_1.source.source-1.bind=0.0.0.0
agent_1.source.source-1.port=4141

Netcat Source

Even simpler than the Avro and Thrift sources is the Netcat Source. For those

unfamiliar with netcat, it is a utility found in most UNIX-like operating systems

that can write or read to a raw TCP socket in much the same way that the cat

command reads and writes to fi le descriptors.

100 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 100

The Netcat source, like the Thrift and Avro sources, binds to a specifi c address

and port after you have set the type to netcat:

agent_1.source.source-1.type=netcat
agent_1.source.source-1.bind=0.0.0.0
agent_1.source.source-1.port=4141

The Netcat source reads in newline-delimited text lines with, by default, a

maximum length of 512 bytes (not characters, which are of variable length). To

increase this limit, modify the max-line-length property:

agent_1.source.source-1.max-line-length=1024

To provide backpressure support, the Netcat source also positively acknowl-

edges that every event is received with an OK response. If needed, you can

disable this acknowledgement by setting the ack-every-event property to false:

agent_1.source.source-1.ack-every-event=false

Syslog Source

Syslog is a standard for systems logging that was originally developed as part

of the Sendmail package in the 1980s. It has since grown into a standard that

is governed—originally by RFC 3164 “The BSD Syslog Protocol” and now by

RFC 5424 “The Syslog Protocol.”

Flume supports RFC 3164 and much of RFC 5424 through three fl avors of

Syslog source. The fi rst is a single port TCP source called syslogtcp. Like other

TCP-based sources, it takes the usual bind address and port:

agent_1.source.source-1.type=syslogtcp
agent_1.source.source-1.bind=0.0.0.0
agent_1.source.source-1.port=5140

The maximum size of the events is controlled with the eventSize property,

which defaults to 2,500 bytes:

agent_1.source.source-1.eventSize=2500

Flume also supports a more modern multiport implementation of the TCP

Syslog source. To use it, change the type to multiport_syslogtcp and use the

ports property instead of the port property when confi guring the source:

agent_1.source.source-1.type=multiport_syslogtcp
agent_1.source.source-1.bind=0.0.0.0
agent_1.source.source-1.port=10001 10002 10003

The Syslog source then monitors all of the ports for syslog events in an effi -

cient way. In addition to the eventSize property supported by the single-port

version, the multiport implementation adds the ability to control the character

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 101

c04.indd 05:36:4:PM 06/12/2014 Page 101

set used to interpret the events on a per-port basis. The default character set,

which is normally UTF-8, is controlled by the charset.default property and

the others set by charset.port.<port>. This example sets the default to UTF-16

and port 10003 to use UTF-8:

agent_1.source.source-1.charset.default=UTF-16
agent_1.source.source-1.charset.port.10003=UTF-8

The Syslog source is implemented using Apache Mina and exposes some of

the tuning parameters available in that library. Generally speaking, these set-

tings do not need to be changed, but in some virtual environments changing

them might be necessary. The fi rst parameters are the batch size and the read

buffer, set to 100 events and 1,024 bytes, respectively, by default:

agent_1.source.source-1.batchSize=100
agent_1.source.source-1.readBufferSize=1024

The number of processors can also be controlled by confi guration. The Syslog

Source spawns two reader threads for every processor and attempts to auto-

detect the number of available processors. In virtual environments, this is the

most likely to cause problems, as the apparent number of processors is not

necessarily indicative of actual processors available. To override auto-detection,

set the number of processors using the numProcessors property:

agent_1.source.source-1.numProcessors=4

Finally, the Syslog source also has an UDP-based source. For this source,

only the address binding and port are required with the type set to syslogudp:

agent_1.source.source-1.type=syslogudp
agent_1.source.source-1.bind=0.0.0.0
agent_1.source.source-1.port=5140

No other options are available for this source, which, because it uses UDP, is

usually only suitable for situations that do not require reliable event delivery.

HTTP Source

The HTTP source allows Flume to accept events from services that can make

HTTP requests. For many potential event sources, this offers the ability to also

add rich metadata headers to the event without having to implement a custom

source. This event, like all other TCP-based sources, needs a binding and a port,

and it sets the type property to http:

agent_1.source.source-1.type=http
agent_1.source.source-1.bind=0.0.0.0
agent_1.source.source-1.port=8000

102 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 102

Events are transmitted to the HTTP source using the POST command and

return either a 200 or a 503 response code. The 503 response code is used when a

channel is full or otherwise disabled. An application, upon receiving this event,

should retry sending the event through some other mechanism.

After the event arrives at the HTTP source it must be converted into Flume

events. This is done using a pluggable Handler class, with a JSONHandler and a

BlobHandler class provided by Flume. The handler, which is set to the JSONHandler

by default, is controlled by the handler property. This property takes a fully

qualifi ed class name of a class that implements the HTTPSourceHandler interface:

agent_1.source.source-1.handler=org.apache.flume.source.http.JSONHandler

The JSONHandler expects an array of JSON objects. Each of these objects

contains a headers object as well as a body object, which are used to populate

the Flume event’s header metadata and body byte array, respectively. Even a

single event must be wrapped in an array for processing, as in this example:

[{
 "headers":{
 "timestamp": "34746432",
 "source": "somehost.com"
 },
 "body":"the body goes here."
}]

Note that the values for each of the header elements must be a string, even

if the real value is a number. The Flume event object only supports strings in

the header metadata.

The BlobHandler is much simpler, being designed to take in relatively large

binary objects. No attempt is made by the handler to interpret the events.

W A R N I N G Events are buff ered in memory, so very large elements could fi ll the

Java heap allocated to the Flume process. This causes Flume to crash and, depending

on the channel, could cause a loss of data. Therefore, it is important to restrict the size

of objects sent to a BlobHandler.

Java Message Service (JMS) Source

The Java Message Service (JMS) source allows Flume to integrate with Java-

based queuing systems. These systems are popular mechanisms for moving

data around when the entire stack is Java-based. The JMS source has primarily

been tested with ActiveMQ, but it should be able to attach to any JMS provider.

Connecting to a JMS provider requires some familiarity with JMS. It minimally

requires providing an initial context factory name, a connection factory, and a

provider URL. It also requires a destination name and a destination type that

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 103

c04.indd 05:36:4:PM 06/12/2014 Page 103

may be either a queue or a topic. For example, to connect to a local ActiveMQ

server with a queue named DATA, you could use the following confi guration:

agent_1.source.source-1.type=jms
agent_1.source.source-1.initialContextFactory=
 org.apache.activemq.jndi.ActiveMQInitialContextFactory
agent_1.source.source-1.connectionFactory= GenericConnectionFactory
agent_1.source.source-1.providerURL= tcp://localhost:61616
agent_1.source.source-1.destinationName= DATA
agent_1.source.source-1.destinationType= QUEUE

JMS sources support the notion of converters, which are able to convert inputs

from the JMS queue to Flume events. Although it is possible to implement a

custom converter, the default converter is able to convert messages consisting

of objects, byte, or text messages to native Flume events. The properties on the

JMS message are converted to headers in the Flume events.

Exec Source

The Exec source allows any command to be used as input to stream. It is often

used to emulate the Tail Source that was part of Flume prior to version 1.0. Setting

the type to exec and providing a command property is all that is required under

normal circumstances. For example, this command tails a log fi le for agent_1:

agent_1.source.source-1.type= exec
agent_1.source.source-1.command= tail –F /var/log/logfile.log

The –F switch, which tells tail to account for log rotation, should be used

in place of the more common –f switch. There are also a number of optional

parameters that can be set as part of this Source. For commands that need it, a

shell can be specifi ed with the shell property. This allows for the use of shell

features such as wildcards and pipes:

agent_1.source.source-1.shell= /bin/sh -c

When the command exits, it can be restarted. This is disabled by default;

enable it by setting the restart property to true:

agent_1.source.source-1.restart= true

When restarting a command, the restartThrottle property controls how

quickly the command is restarted (in milliseconds):

agent_1.source.source-1.restartThrottle= 1000

Normally, the Exec source only reads from the standard input. It can also

read events from the standard error stream by setting the logStdErr property:

agent_1.source.source-1.logStdErr= true

tcp://localhost:61616

104 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 104

To improve performance, the Exec source reads a batch of lines before send-

ing them on to their assigned channel(s). The number of lines, which defaults

to 20, is controlled with the batchSize property:

agent_1.source.source-1.batchSize= 20

UNIDIRECTIONAL SOURCES DO NOT SUPPORT “BACKPRESSURE”

If at all possible, avoid sources like the Exec source in production environments.

Although sources like the Exec source are very tempting, they render any reliability

guarantees made by the Flume framework meaningless. The framework has no mech-

anism for communicating with the event generator. It cannot report channels that

have fi lled or otherwise become unavailable. The end result being that the generator

will continue to blindly write to the source, and data is potentially lost. Fortunately,

the most common use case is to emulate the Tail source (which was removed for a rea-

son), which can usually be better implemented using the Spool Directory source.

Spool Directory Source

The most common method for data recording for services that do not make use

of a data motion system is logging to the fi le system. Early versions of Flume

tried to take advantage of this by implementing a Tail source that allowed

Flume to watch the logs as they were being written and move them into Flume.

Unfortunately, there are a number of problems with this approach if the goal is

to provide a reliable data motion pipeline. The Spool Directory source attempts

to overcome the limitations of the Tail source by providing support for the most

common form of logging—logs with rotation.

To use the Spool Directory source, the application must set up its log rotation

such that when a log fi le is rolled it is moved to a spool directory. This is usually

fairly easy to do with most logging systems. The Spool Directory source monitors

this directory for new fi les and writes them to Flume. This minimally requires

the defi nition of the spoolDir property along with setting the type to spooldir:

agent_1.source.source-1.type=spooldir
agent_1.source.source-1.spoolDir=/var/logs/

A common pattern for applications is to write to a fi le ending in .log and

then to roll it to another log fi le ending in a timestamp. Normally the active log

fi le causes errors for the Spool Directory source, but it can be ignored by setting

the ignorePattern property to ignore fi les ending in .log:

agent_1.source.source-1.ignorePattern=^.*\.log$

When the Spool Directory Source fi nishes processing a fi le, it marks the fi le by

appending .COMPLETED to the fi lename, which is controlled by the fileSuffix

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 105

c04.indd 05:36:4:PM 06/12/2014 Page 105

property. This allows log cleanup tools to identify fi les that can be safely deleted

from the fi le system. The source can also delete the fi les when it is done process-

ing them by setting the deletePolicy property to immediate:

agent_1.source.source-1.fileSuffix=.DONE
agent_1.source.source-1.deletePolicy=immediate

By default, the source assumes that the records in the fi les are text separated by

newlines. This is the behavior of the LINE deserializer, which ships with Flume.

The base Flume installation also ships with AVRO and BLOB deserializers. The

AVRO deserializer reads Avro-encoded data from the fi les according to a schema

specifi ed by the deserializer.schemaType property. The BLOB deserializer reads

a large binary object from each fi le, usually with just a single object per fi le.

Like the HTTP BlobHandler, this can be dangerous because the entire Blob is

read into memory. The choice of deserializer is via the deserializer property:

agent_1.source.source-1.deserializer=LINE

If needed, custom deserializers can be supplied. Any class that implements

the EventDeserializer.Builder interface can be used in place of the built-in

deserializers.

Implementing a Custom Source

It is rarely necessary, given the array of sources built in to Flume, but it is possible

to implement a custom source object. In Flume, there are two types of sources:

a Pollable source and an Event-Driven source. Pollable sources are executed by

Flume in their own thread and queried repeatedly to move data onto its associ-

ated channels. An Event-Driven source is responsible for maintaining its own

thread and placing events on its channels asynchronously.

In this section, an Event-Driven source connecting Flume to Redis is imple-

mented to demonstrate the process. Redis is a key-value store discussed in-depth

in Chapter 6, “Storing Streaming Data.” In addition to providing storage, it also

provides an ephemeral publish/subscribe interface that is used to implement

the source.

A custom source always extends the AbstractSource class and then imple-

ments either the Pollable or the EventDriveSource interface. Most sources

also implement the Configurable interface to process confi guration param-

eters. In this case, the Redis source implements both the Configurable and the

EventDrivenSource interfaces:

package wiley.streaming.flume;

import java.nio.charset.Charset;

import org.apache.flume.Context;

106 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 106

import org.apache.flume.EventDrivenSource;
import org.apache.flume.channel.ChannelProcessor;
import org.apache.flume.conf.Configurable;
import org.apache.flume.event.EventBuilder;
import org.apache.flume.source.AbstractSource;

import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
import redis.clients.jedis.JedisPubSub;

public class RedisSource extends AbstractSource
 implements Configurable, EventDrivenSource {

The Confi gurable interface has a single confi gure method, which is used to

obtain the Redis hostname, port, and subscription channel. In this case, all of

the confi guration parameters have defaults:

String redisHost;
int redisPort;
String redisChannel;
Jedis jedis;

public void configure(Context context) {
 redisHost = context.getString("redis-host", "localhost");
 redisPort = context.getInteger("redis-port", 6379);
 redisChannel = context.getString("redis-channel", "flume");
}

The EventDrivenSource does not actually require any methods be imple-

mented; it is only used to determine the type of source. Any threads or even

handlers are set up and broken down and are handled in the start and stop

methods. In this case, most of the work is done in the start method:

@Override
public synchronized void start() {
 super.start();
 processor = getChannelProcessor();

First, the ChannelProcessor is obtained for future use. Recall that the

ChannelProcessor decides which Channel will be used based on the Event.

The ChannelProcessor is used by the subscription thread that is established next:

 JedisPool pool = new JedisPool(
 new JedisPoolConfig(),redisHost,redisPort);
 jedis = pool.getResource();
 new Thread(new Runnable() {
 public void run() {

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 107

c04.indd 05:36:4:PM 06/12/2014 Page 107

 jedis.subscribe(pubSub, redisChannel);
 }
 }).start();
}

The Jedis client for Redis blocks its thread when the subscribe command

is called, and all subsequent communication is sent to a JedisPubSub object.

To avoid blocking the main Flume thread, the blocking operation is done in a

separate thread in the start method. The JedisPubSub object has several dif-

ferent methods defi ned, but only one is necessary here:

ChannelProcessor processor;
JedisPubSub pubSub = new JedisPubSub() {

 @Override
 public void onMessage(String arg0, String arg1) {
 processor.processEvent(
 EventBuilder.withBody(arg1, Charset.defaultCharset()));
 }

This method uses the EventBuilder class to construct an event that is then

forwarded to the ChannelProcessor to be placed on a channel. The stop method

unsubscribes from the channel, which unblocks the Jedis thread and lets the

process complete:

@Override
public synchronized void stop() {
 pubSub.unsubscribe();
 super.stop();
}

Using this source is very similar to using any other source. The type property

is set to the source’s fully qualifi ed class name, and any confi guration param-

eters are set:

agent_1.source.source-1.type=wiley.streaming.flume.RedisSource
agent_1.source.source-1.redis-channel=events

Flume Sinks

Flume sinks sit on the other side of a Flume channel, acting as a destination

for events. Flume ships with a large number of built-in sinks, most of which

are focused on writing events to some sort of persistent store. Some examples

of sinks include an HDFS sink that writes data to Hadoop; a File Roll sink that

persists events to disk; and an Elasticsearch sink which writes events to the

Elasticsearch data store.

108 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 108

All of these sinks are important parts of a full-fl edged data pipeline, but they

are not particularly applicable to processing streaming data. As such, they will

be mostly left aside in this section in favor of the sinks that are more useful for

streaming processing.

Avro Sink

The Avro sink’s primary use case is to implement multi-level topologies in

Flume environments. It is also a good way of forwarding events onto a stream-

ing processing service for consumption. The Avro sink has a type property of

avro and minimally requires a destination host and port:

agent_1.sinks.sink-1.type= avro
agent_1.sinks.sink-1.hostname= localhost
agent_1.sinks.sink-1.port= 4141

There are also a number of optional parameters that are used to control the

behavior of the sink. The connection and reconnect timeouts can be controlled

using the appropriate properties, with the ability to specify a reconnection

interval. This can be useful when the destination is a load-balanced connection,

as load can often only be balanced at connection time. By occasionally recon-

necting, the load can be more evenly distributed:

agent_1.sinks.sink-1.connect-timeout= 20000
agent_1.sinks.sink-1.request-timeout= 10000
agent_1.sinks.sink-1.reset-connection-interval= 600000

Connections can also be compressed by setting the compression-type prop-

erty to deflate, the only supported option:

agent_1.sinks.sink-1.compression-type= deflate
agent_1.sinks.sink-1.compression-level= 5

Thrift Sink

The Thrift sink is largely identical to the Avro sink. It also requires a hostname

and a port and can be controlled with the same timeout behavior. However, it

does not support Avro’s compression or security features:

agent_1.sinks.sink-1.type= thrift
agent_1.sinks.sink-1.hostname= localhost
agent_1.sinks.sink-1.port= 4141

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 109

c04.indd 05:36:4:PM 06/12/2014 Page 109

Implementing Custom Sinks

When communicating with stream processing software, it may be necessary

to implement a custom sink. The process for implementing a custom sink is

similar to that for implementing a custom source. The custom sink class extends

the AbstractSink class and optionally implements the Configurable interface.

The following example implements a Redis sink to match the Redis source

from earlier in the chapter. Rather than subscribing to a publish-subscribe chan-

nel, the Redis sink publishes events to the channel. Thus, the implementation

begins with the same confi guration as the Redis source:

public class RedisSink extends AbstractSink implements Configurable {
 String redisHost;
 int redisPort;
 String redisChannel;
 Jedis jedis;

public void configure(Context context) {
 redisHost = context.getString("redis-host", "localhost");
 redisPort = context.getInteger("redis-port", 6379);
 redisChannel = context.getString("redis-channel", "flume");
}

The start and stop methods are simpler in the implementation of the sink

because the process does not need to be asynchronous to the primary thread:

@Override
public synchronized void start() {
 super.start();
 pool = new JedisPool(new JedisPoolConfig(),redisHost,redisPort);
 jedis = pool.getResource();
}

@Override
public synchronized void stop() {
 pool.returnResource(jedis);
 pool.destroy();
 super.stop();
}

The process method retrieves events from the channel and sends them to

Redis. For simplicity, only the body is transmitted in this example, but a more

sophisticated sink might convert the output to another form so that it could

preserve the header metadata:

public Status process() throws EventDeliveryException {
 Channel channel = getChannel();

110 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 110

 Transaction txn = channel.getTransaction();
 Status status = Status.READY;
 try {
 txn.begin();
 Event event = channel.take();
 if(jedis.publish(redisChannel,
 new String(event.getBody(),Charset.defaultCharset())) > 0) {
 txn.commit();
 }
 } catch(Exception e) {
 txn.rollback();
 status = status.BACKOFF;
 } finally {
 txn.close();
 }
 return status;
}

Sink Processors

Sink processors are a mechanism for controlling the parallelism of a channel.

Essentially, Sink processors are used to defi ne groups of sinks that are then

used for load balancing or, possibly, for failover. For streaming applications, the

failover application is not as useful as the load-balancing application.

To activate load-balancing sink processing on a channel, set the processor

.type property of the sink to be load_balance and use the processor.sinks

property to defi ne the sinks that should be used for the group:

agent_1.sinkgroups= group-1
agent_1.sinkgroups.group-1.sinks= sink-1 sink-2
agent_1.sinkgroups.group-1.processor.type= load_balance
agent_1.sinkgroups.group-1.processor.selector= random

After this defi nition, the channel is assigned to the group rather than the

sink, and events will be randomly sent to sink-1 or sink-2. The load-balancing

processor can also use a round-robin selection method by changing the selector

to round_robin instead of random.

Flume Channels

Flume channels are the temporary storage mechanism between a source and

a sink. There are three different types of channel used in production Flume

environments: memory channels, fi le channels and JDBC channels. These

channels are listed in terms of increasing safety and decreasing performance.

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 111

c04.indd 05:36:4:PM 06/12/2014 Page 111

Memory Channel

The Memory channel is the fastest of the available Flume channels. It is also the

least safe because it stores its events in memory until a sink retrieves them. If

the process goes down for any reason, any events left in the Memory channel

are lost.

This channel is set by assigning it a type of memory. In addition, there are

several optional parameters that can be set. The most useful of these are the

capacity and transactionCapacity settings, which defi ne the number of events

that will be consumed before the channel is considered to be fi lled. Appropriate

values depend greatly on the size of the events and the specifi c hardware used,

so some experimentation is often required to determine optimal values for a

given environment:

agent_1.channels.channel-1.type= memory
agent_1.channels.channel-1.capacity= 1000
agent_1.channels.channel-1.transactionCapacity= 100

File Channel

The File channel, which persists events to disk, is the most commonly used Flume

channel. To increase the durability of the data placed in the channel, it persists

it to disk for a time. Using a checkpoint and data log system, it is similar to the

system used by Kafka. The exception is that it enforces size constraints rather

than time constraints in the same way as the Memory channel.

Most File channel defi nitions can set the channel.type property and perhaps

the checkpoint and data fi le locations as in this example:

agent_1.channels.channel-1.type= file
agent_1.channels.channel-1.checkpointDir= /home/flume/checkpoint
agent_1.channels.channel-1.dataDirs= /home/flume/data

Like Kafka, the File channel can specify multiple data directories to take

advantage of JBOD confi gurations. Also, like Kafka, using a RAID0 confi gu-

ration will probably yield better performance in practice due to the ability to

parallelize writes at the block level.

Java Database Connection (JDBC) Channel

Despite the name, the JDBC channel does not actually allow connections to arbi-

trary databases from Flume. A better name for it would be the Derby channel as

112 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 112

it only allows connections to an embedded Derby database. This channel is the

slowest of the three, but it has the most robust recoverability. To use it, simply

set the channel.type to be jdbc. To defi ne the path of the database fi les, also

set the sysprop.user.home property:

agent_1.channels.channel-1.type= jdbc
agent_1.channels.channel-1.sysprop.user.home= /home/flume/db

There are other properties that can be set, but they do not generally need to

be changed.

Flume Interceptors

Interceptors are where Flume begins to blur the line between data motion and

data processing. The interceptor model allows Flume not only to modify the

metadata headers of an event, but also allows the Event to be fi ltered according

to those headers.

Interceptors are attached to a source and are defi ned and bound in much the

same way as channels using the interceptors property:

agent_1.sources.source-1.interceptors= i-1 i-2

The order in which interceptors are defi ned in the confi guration is the order

in which they are applied to the event. Because interceptors have the ability to

drop an event entirely, awareness of this ordering can be important if the fi lter-

ing interceptor depends on a header set by an earlier interceptor.

Flume provides a number of useful interceptors that can be used to decorate

events or provide useful auditing information during stream processing. Some

of the interceptors most commonly used are outlined in this section.

Timestamp Interceptor

The Timestamp interceptor adds the current timestamp as a metadata header

on the event with the key timestamp. There is an optional preserveExisting

property that controls whether or not the timestamp is overwritten if it already

exists on the event:

agent_1.sources.source-1.interceptors.i-1.type=timestamp
agent_1.sources.source-1.interceptors.i-1.preserveExisting=true

Host Interceptor

The Host interceptor attaches either the hostname of the Flume agent or

the IP address to the header metadata. The default header is called host,

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 113

c04.indd 05:36:4:PM 06/12/2014 Page 113

but it can be changed using the hostHeader property. It also supports the

preserveExisting property:

agent_1.sources.source-1.interceptors.i-1.type=host
agent_1.sources.source-1.interceptors.i-1.hostHeader=agent
agent_1.sources.source-1.interceptors.i-1.useIP=false
agent_1.sources.source-1.interceptors.i-1.preserveExisting=true

This interceptor is useful for maintaining audit trails during processing.

Static Interceptor

The Static interceptor is used to add a static header to all events. It takes two

properties, key and value, which are used to set the header:

agent_1.sources.source-1.interceptors.i-1.type=static
agent_1.sources.source-1.interceptors.i-1.key=agent
agent_1.sources.source-1.interceptors.i-1.value=ninetynine

The primary use case for this interceptor is to identify events that have taken

different processing paths. By having agents add the path information to the

headers, the event can be later tracked through the system.

UUID Interceptor

This interceptor adds a globally unique identifi er to each event it processes. By

default it sets the id header, but this can of course be changed:

agent_1.sources.source-1.interceptors.i-1.type=uuid
agent_1.sources.source-1.interceptors.i-1.headerName=id
agent_1.sources.source-1.interceptors.i-1.preserveExisting=true

As discussed at the beginning of the chapter, most of these systems imple-

ment, at least once, delivery semantics that can occasionally lead to duplicates.

Depending on the application, it might be necessary to detect and remove these

duplicates. By placing this at the beginning of the Flume topology, Events can

be uniquely identifi ed.

Regular Expression Filter Interceptor

The Regular Expression Filter interceptor applies a regular expression to the

body of the Event, assuming that it is a string. If the regular expression matches,

the event is either preserved or dropped depending on the excludeEvents

property. If the property is set to true, events matching the regular expression

114 Part I ■ Streaming Analytics Architecture

c04.indd 05:36:4:PM 06/12/2014 Page 114

are dropped. Otherwise, only events matching the regular expression are pre-

served. The regular expression itself is defi ned by the regex property:

agent_1.sources.source-1.interceptors.i-1.type=regex_filter
agent_1.sources.source-1.interceptors.i-1.regex=.*
agent_1.sources.source-1.interceptors.i-1.excludeEvents=false

This interceptor can be used to set up different paths for different types of

events. After they are on different paths, they can be easily processed without

having to introduce an if-else ladder in the processing code.

Integrating Custom Flume Components

As described in the previous sections, many of the components in Flume can be

replaced with custom implementations. These are usually developed outside of

the Flume source code, and two integration methods are supplied.

Plug-in Integration

The preferred method of integration is through Flume’s plug-in facility. To

use this method, create a directory called plugin.d in the Flume home direc-

tory. Each plug-in that should be included is placed in a subdirectory inside of

plugin.d. For example, to include the examples from this book, the plugin.d

structure would look like this:

plugin.d/
plugin.d/wiley-plugin/
plugin.d/wiley-plugin/lib/wiley-chapter-4.jar

If further dependencies are required, they can be placed in the libext sub-

directory of the plug-in or built into the included jar directly. Native libraries

are placed in the native subdirectory. When the Flume agent starts, it scans

the plug-in directory and adds whatever jar fi les it fi nds there to the classpath.

Classpath Integration

If plug-in integration is not possible for some reason, Flume can also use a

more standard classpath-based approach. To use this approach, use the FLUME_

CLASSPATH environment variable when starting the Flume Agent to add libraries

to the Flume agent for later use.

Running Flume Agents

Starting the Flume agent is done using the flume-ng script found in the Flume

binary directory. The startup script requires a name, a confi guration directory

 Chapter 4 ■ Data-Flow Management in Streaming Analysis 115

c04.indd 05:36:4:PM 06/12/2014 Page 115

and a confi guration properties fi le (some confi guration options may reference

other fi les in the confi guration directory):

$./bin/flume-ng agent --conf conf \
> -f conf/agent.properties --name agent-1

The agent command tells Flume that it is starting an agent. The --conf

specifi es a confi guration directory, and the -f switch specifi es the properties

fi le containing the agent defi nitions. The –name switch tells Flume to start the

agent named agent-1. After the agent is started, it begins processing events

according to its confi guration.

Conclusion

 This chapter has discussed two systems for handling data fl ow in a distrib-

uted environment. Both Kafka and Flume are high-performance systems with

suffi cient scalability to support real-time streaming. Kafka is directed toward

users who are building applications from scratch, giving them the freedom to

directly integrate a robust data motion system. Flume can also be used by new

applications, but its design makes it well suited to environments that have exist-

ing applications that need to be federated into a single processing environment.

The temptation at this point is to consider these two systems to be somehow

mutually exclusive: Kafka for new things and Flume for “legacy” things. This is

simply not the case. The two systems are complementary to each other, solving

different usage patterns. In a complicated environment, Kafka might be used for

the bulk data motion within the system, handling the bulk logging and collect-

ing data from outlying data sources. It might also be used to directly feed the

stream processing systems introduced in Chapter 5. However, Flume would be

better suited to streaming that data into persistent data stores like Elasticsearch.

With Flume, those components already exist and can be used directly, whereas

with Kafka they would have to be written.

Now that data is fl owing through the system, it is time for it to be processed

and stored. At one point, this would have been a fairly complicated process.

Fortunately, the systems introduced in Chapter 5 have greatly simplifi ed these

mechanisms.

117

c05.indd 05:36:24:PM 06/12/2014 Page 117

Now that data is fl owing through a data collection system, it must be processed.

The original use case for both Kafka and Flume specifi ed Hadoop as the pro-

cessing system. Hadoop is, of course, a batch system. Although it is very good

at what it does, it is hard to achieve processing rates with latencies shorter than

about 5 minutes.

The primary source of this limit on the rate of batch processing is startup and

shutdown cost. When a Hadoop job starts, a set of input splits is fi rst obtained

from the input source (usually the Hadoop Distributed File System, known as

HDFS, but potentially other locations). Input splits are parceled into separate

mapper tasks by the Job Tracker, which may involve starting new virtual machine

instances on the worker nodes. Then there is the shuffl e, sort, and reduce phase.

Although each of these steps is fairly small, they add up. A typical job start

time requires somewhere between 10 and 30 seconds of “wall time,” depend-

ing on the nature of the cluster. Hadoop 2 actually adds more time to the total

because it needs to spin up an Application Manager to manage the job. For a

batch job that is going to run for 30 minutes or an hour, this startup time is

negligible and can be completely ignored for performance tuning. For a job that

is running every 5 minutes, 30 seconds of start time represents a 10 percent loss

of performance.

Real-time processing frameworks, the subject of this chapter, get around this

setup and breakdown latency by using long-lived processes and very small batches

(potentially as small as a single record, but usually larger than that). An individual

C H A P T E R

5

Processing Streaming Data

118 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 118

job may run for hours, days, or weeks before being restarted, which amortizes the

startup costs to zero. The downside of this approach is that there is some added

management overhead to ensure the job runs properly for a very long period of

time and to handle the communication between components of the job so that

multiple machines can be used to parallelize processing.

The chapter begins with a discussion of the issues affecting the development

of streaming data frameworks. The problem of analyzing streaming data is an

old one, predating the rise of the current “Big Data” paradigms.

Two frameworks for implementing streaming systems are discussed: Storm

and Samza. Both are complete processing frameworks and are covered in depth

in this chapter. In both cases, you can construct a server infrastructure that

allows for distributed processing as well as well-structured application pro-

graming interfaces (APIs) that describe how computations are moved around

these servers.

Distributed Streaming Data Processing

Before delving into the specifi cs of implementing streaming processing applica-

tions within a particular framework, it helps to spend some time understanding

how distributed stream processing works. Stream processing is ideal for certain

problems, but certain requirements can affect performance to the point that it

would actually be faster to use a batch system. This is particularly true of pro-

cesses requiring coordination among units.

This section provides an introduction to the properties of stream processing

systems. At its heart, stream processing is a specialized form of parallel computing,

designed to handle the case where data may be processed only one time. However,

unlike the days of monolithic supercomputers, most of these parallel-computing

environments are implemented on an unreliable networking layer that introduces

a much higher error rate.

Coordination

The core of any streaming framework is some sort of coordination server. This

coordination server stores information about the topology of the process—which

components should get what data and what physical address they occupy.

The coordination server also maintains a distributed lock server for handling

some of the partitioning tasks. In particular, a lock server is needed for the

initial load of data into the distributed processing framework. Data can often

be read far faster than it can be processed, so even the internal partitioning of

the data motion system might need to use more than one process to pull from

a given partition. This requires that the clients coordinate among themselves.

 Chapter 5 ■ Processing Streaming Data 119

c05.indd 05:36:24:PM 06/12/2014 Page 119

Both of the frameworks discussed in this chapter use ZooKeeper to handle

their coordination tasks. Depending on load, it is possible to reuse the ZooKeeper

cluster being used to manage the data motion framework without much risk.

Partitions and Merges

The core element of a stream processing system is some sort of scatter-gather

implementation.

An incoming stream is split among a number of identical processing pipelines.

Depending on the performance characteristics of each step in the pipeline, the

results of computation may be further subdivided to maintain performance.

For example, if step two of the computation requires twice as much time as step

one, it would be necessary to at least double the number of work units assigned

to the second step in the pipeline compared to the fi rst. In all likelihood, more

than double the amount of units would be required because communications

between work units introduces some overhead into the process.

The data exchange between various components of the processing application

is usually a peer-to-peer affair. A component knows it must produce data to be

consumed, and most systems will establish a mechanism for transferring data

between processing units and controlling the amount of parallelism at each

stage of the computation.

Transactions

Transactional processing is a problem with real-time systems. Being required to

maintain a transaction puts signifi cant overhead on the system. If it is possible

to operate without transactions, do so. If this is not possible, some frameworks

can provide a level of transactional support when coupled with an appropriate

data motion system.

The basic mechanism for transaction handling in real-time frameworks

is the rollback and retry. The framework begins by generating a checkpoint

of the input stream. This is easier to do in queuing or data motion systems

where each element has a unique identifi er that increases monotonically over

the relevant time range. In Kafka, this is achieved by recording the offset for

each of the partitions in the topic(s) being used as input to the real-time pro-

cessing system.

Processing Data with Storm

Storm is a stream-processing framework developed by a company called BackType,

which was a marketing analytics company that was analyzing Twitter data.

120 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 120

Twitter acquired BackType in 2011, and Storm, a core piece of the BackType

technology, was adopted and eventually open-sourced by Twitter. Storm 0.9.0

is the current version and is the focus of this section because there are some

new features that simplify Storm’s use cases.

Storm’s focus is the development and deploying of fault-tolerant distributed

stream computations. To do this, it provides a framework for hosting applica-

tions. It also provides two models for building applications.

The fi rst is “classic” Storm, which frames the application as a directed acy-

clic graph (DAG) called a topology. The top of this graph takes inputs from the

outside world, such as Kafka. These data sources are called spouts. These spouts

then pass the data onto units of computation called bolts.
The second model for building applications, called Trident, is a higher-level

abstraction on top of the topology. This model is more focused on common

operations like aggregation and persistence. It provides primitives focused

on this type of computation, which is arranged according to their processing.

Trident then computes a topology by combining and splitting operations into

appropriate collections of bolts.

This chapter covers both models of computation. The second model, using the

Trident domain-specifi c language, is generally preferred because it standard-

izes a number of common stream processing tasks. However, it is sometimes

advantageous to break with this common model and use the underlying topol-

ogy framework.

Components of a Storm Cluster

When the time comes to deploy a Storm topology in production, you must con-

struct a cluster. This cluster consists of three server daemons, all of which must

be present to function properly: ZooKeeper, the nimbus, and the supervisors. In

this section, a Storm cluster capable of supporting production workloads will

be constructed using these three components as shown in Figure 5-1.

ZooKeeper ZooKeeper

ZooKeeper

Supervisor

Supervisor SupervisorNimbus

Figure 5-1

 Chapter 5 ■ Processing Streaming Data 121

c05.indd 05:36:24:PM 06/12/2014 Page 121

ZooKeeper

A distributed Storm cluster relies on ZooKeeper for coordinating the cluster.

Communication between nodes is peer-to-peer, so the load on the ZooKeeper

cluster is not very high as it is only used to manage metadata for each of the nodes.

If using a data motion system that also relies on ZooKeeper, such as Kafka, it is

fi ne to use that same cluster for hosting Storm provided it has enough capacity.

ZooKeeper keeps track of all running topologies as well as the status of all

supervisors.

The Nimbus

The nimbus is the ringleader of the Storm circus. It is responsible for the dis-

tribution of individual tasks for either spouts or bolts across the workers in

the cluster. It is also responsible for rebalancing a Storm cluster in the event a

supervisor has crashed.

At fi rst glance, the nimbus would appear to be a single point of the failure,

like the JobTracker or NameNode in a traditional Hadoop cluster. For Storm, this is

not strictly the case. When the nimbus goes down, existing topologies continue

to function unimpeded. The Nimbus is not involved in the moment-to-moment

processing—just the distribution of processing tasks to the supervisor nodes.

When the nimbus crashes, the cluster is no longer able to manage topologies.

This includes starting new topologies and rebalancing existing topologies in

the event of failure. It is recommended that nimbuses be restarted as quickly

as possible, but it will not immediately bring down a cluster.

The Supervisors

Supervisors in Storm are similar to TaskTrackers in Hadoop. They are servers

that run on each of the worker nodes and manage the execution of local tasks.

Each of the local tasks is either a spout or a bolt, and there can be many local

tasks running under the control of each supervisor.

During normal operation, if the supervisor goes down then all of the tasks

running under its control are also lost. Because Storm is designed to be dis-

tributed and fault tolerant, when this happens the Nimbus restarts these tasks

under the control of a supervisor.

When a supervisor returns to a cluster (or more supervisors are added),

running topologies are not automatically rebalanced. To rebalance the cluster

after adding more nodes, the rebalance command should be run from the Storm

command-line interface.

122 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 122

Confi guring a Storm Cluster

This section demonstrates how to confi gure a Storm cluster for distributed mode

processing. On distributed hardware, this would be the mode for production

processing. It is also possible to run all services on a single machine, although

it is often easier to use the local cluster mode described in the next section for

development and debugging.

Prerequisites

To begin, obtain a Storm binary archive from http://storm-project.net website.

The most recent version at the time of writing is 0.9.0.1, and this is the version

recommended for installation.

If, for some reason, it is necessary to use an older version of Storm, you need

to install ZeroMQ (also written 0MQ). This restriction is removed in 0.9.0 thanks

to the Netty transport, but earlier versions of Storm require this package for

nodes to be able to communicate with each other.

On Linux systems, ZeroMQ is often available from the package management

system, but you should take care to install version 2.1.7. This is the only version

that is known to work with Storm. Mac OS X users can obtain 0MQ from pack-

age libraries such as Homebrew or MacPorts, but Windows users have many

more problems. It is easier to simply upgrade to Storm 0.9.0 than it is to make

an older version of Storm work on Windows.

Confi guring Storm

Storm keeps its base confi guration in the conf/storm.yaml fi le. This does not

contain information about topologies, but it does keep track of a few important

features: the location of the ZooKeeper servers, the location of the nimbus server,

and the transport mechanism.

It is assumed that a ZooKeeper cluster similar to the one confi gured in

Chapter 3 is currently running. Like all ZooKeeper clients, Storm needs to know

the name of at least one ZooKeeper server. More servers provide failover in case

that server is temporarily unavailable. The servers are provided as a YAML list

for the confi guration parameter storm.zookeeper.servers:

storm.zookeeper.servers:
 - "zookeeper-node1.mydomain.net"
 - "zookeeper-node2.mydomain.net"

If you’re running a distributed server on a single machine, just use localhost

here:

storm.zookeeper.servers:
 - "localhost"

http://storm-project.net

 Chapter 5 ■ Processing Streaming Data 123

c05.indd 05:36:24:PM 06/12/2014 Page 123

To be able to submit topologies, Storm also needs to know the location of the

nimbus server:

nimbus.host: "storm-nimbus.mydomain.net"

If you’re running everything locally, this should also be set to localhost:

nimbus.host: "localhost"

If you’re using Storm 0.9.0, use the Netty transport instead of the ZeroMQ

transport. Contributed by Yahoo!, the Netty transport offers better performance

and easier setup and should be the default on all clusters. However, it is not the

default for Storm clusters, so you need to confi gure it by adding the following

statements to the confi guration fi le:

storm.messaging.transport: "backtype.storm.messaging.netty.Context"
storm.messaging.netty.server_worker_threads: 1
storm.messaging.netty.client_worker_threads: 1
storm.messaging.netty.buffer_size: 5242880
storm.messaging.netty.max_retries: 100
storm.messaging.netty.max_wait_ms: 1000
storm.messaging.netty.min_wait_ms: 100

This change was actually much larger than simply adding Netty support. Storm

now technically supports the ability to add other sorts of transport mechanisms.

Distributed Clusters

The default mode for Storm is to run as a distributed cluster of servers. One

machine serves as the host for the nimbus and, usually, the Storm user interface

(UI). Other machines run the supervisors and are added as capacity is needed.

This section describes the steps needed to start this type of cluster, even if all

the “machines” are actually running on the same development box.

Starting the Servers

If this is a development machine, Storm contains a development ZooKeeper

install that can be run. You should start this before starting any of the servers:

storm-0.9.0.1$./bin/storm dev-zookeeper

It is useful to keep this running in its own console as it logs out connections

and disconnections.

Now each of the servers can be started. On the machine acting as the Nimbus,

start the Nimbus server using the bin/storm nimbus command. Additionally,

start the web interface. It helps to manage the topologies:

storm-0.9.0.1$./bin/storm nimbus &
storm-0.9.0.1$./bin/storm ui &

124 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 124

Of course, in a production environment these should be placed into a startup

script of some kind.

Similarly, the Storm supervisor should be started on all of the worker machines:

storm-0.9.0.1$./bin/storm supervisor &

If all has gone well, the Storm UI should refl ect the correct number of super-

visors. For example, a cluster running on a development machine should look

something like Figure 5-2.

Figure 5-2

Controlling Topologies

Submitting a topology to a Storm cluster is similar to submitting a Hadoop job.

The commands are even similar: storm jar instead of hadoop jar.

Topologies themselves are actually submitted in their main class using the

StormSubmitter class:

Config conf = new Config();
StormSubmitter.submitTopology("my-topology", conf, topology);

The Config object can be used as is or overridden to set topology-specifi c

confi guration parameters. A main class implementing this call can be executed

in the proper confi guration context using storm jar:

$./bin/storm jar \
> streaming-chapter-5-1-shaded.jar \
> wiley.streaming.storm.ExampleTopology
246 [main] INFO backtype.storm.StormSubmitter
 - Jar not uploaded to master yet. Submitting jar...

 Chapter 5 ■ Processing Streaming Data 125

c05.indd 05:36:24:PM 06/12/2014 Page 125

346 [main] INFO backtype.storm.StormSubmitter - Uploading topology
 jar streaming-chapter-5-1-shaded.jar to
 assigned location: storm-local/nimbus/inbox/stormjar-18e1fded
 -074d-4e51-a2b1-5c98b2e133a6.jar
1337 [main] INFO backtype.storm.StormSubmitter - Successfully uploaded
 topology jar to assigned location:
 storm-local/nimbus/inbox/stormjar-18e1fded-074d
 -4e51-a2b1-5c98b2e133a6.jar
1338 [main] INFO backtype.storm.StormSubmitter - Submitting topology
 my-topology in distributed mode with conf {}

After a Topology has been submitted, it can be stopped using the Storm

command-line client. The kill command along with the topology identifi er

stops the topology entirely. It can be paused and restarted without fully stop-

ping using deactivate and activate, respectively. You can also pause and restart

the topology from the Storm web interface by selecting the topology in the UI.

Starting a Topology Project

The easiest way to get started developing a topology project is to use Maven to

include all of the requisite dependencies. The following is a minimal pom.xml

fi le needed to start a Java-based Storm topology. It includes the minimal depen-

dencies, including the link to the clojars.org repository where Storm’s maven

packages are hosted. It also includes the shade plug-in, which is used to build

so-called “fat jars” that add other dependencies not included with Storm itself:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>group</groupId>
 <artifactId>storm-project</artifactId>
 <version>1</version>
 <repositories>
 <repository>
 <id>clojars.org</id>
 <url>http://clojars.org/repo</url>
 </repository>
 </repositories>

 <dependencies>
 <dependency>
 <groupId>storm</groupId>
 <artifactId>storm</artifactId>
 <version>0.9.0.1</version>
 <scope>test</scope>
 </dependency>

http://maven.apache.org/POM/4.0.0
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/POM/4.0.0maven.apache.org/xsd/maven-4.0.0.xsd
http://clojars.org/repo</url

126 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 126

</dependencies>
 <build>
 <plugins>
 <plugin> <!-- Shade Plugin for building Fat Jars -->
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.0</version>
 <configuration>
 <shadedArtifactAttached>true</shadedArtifactAttached>
 </configuration>
 <executions>
 <execution>
 <phase>package</phase>
 <goals><goal>shade</goal></goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>

</project>

This is all that is required to start developing Storm topologies in Java.

Local Clusters

When developing and testing Storm topologies, it is not necessary to have

a complete cluster available, although that can be useful for tracking down

packaging problems.

For testing purposes, Storm makes a special type of cluster called the

LocalCluster available for use. This allows the entire topology to run in a single

Java Virtual Machine (JVM) instance. The cluster is a “full” cluster in the sense

that it executes inside a supervisor, and there is an embedded ZooKeeper instance

running as opposed to a unit test environment where the server components

are “mocked out.”

To use a local cluster in a test framework is quite simple, simply confi gure a

LocalCluster and then submit the topology to it as usual:

Config conf = new Config();
conf.setDebug(true);
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("example", conf, builder.createTopology());
Thread.sleep(60000);

The sleep command is needed because the cluster topology actually executes

on background threads. Without it, the main method would fi nish and the pro-

cess would shut down immediately without actually executing the topology.

Putting a delay into the main class lets the topology execute for a little while.

 Chapter 5 ■ Processing Streaming Data 127

c05.indd 05:36:24:PM 06/12/2014 Page 127

Storm Topologies

The topology is Storm’s mechanism for computational organization. The topol-

ogy is represented by something called a directed acyclic graph (DAG).

A graph, of course, is a structure that contains vertices (nodes) connected

together with edges. In this case, the edges are directed, which means that data

only fl ows in a single direction along the edge.

These graphs are also acyclic, which means that the arrangement of edges

may not form a loop. Otherwise, the data would fl ow infi nitely around the

topology. A simple topology is shown in Figure 5-3, with an input spout and

two layers of bolts. The Storm framework can increase the bolt parallelism as

needed to maintain performance.

Spout Spout Spout

Bolt Bolt Bolt Bolt Bolt

BoltBolt

Figure 5-3

Topologies are built in Storm using the TopologyBuilder class and created by

a call to createTopology:

public static void main(String[] args) {
 TopologyBuilder builder = new TopologyBuilder();
 defineTopology(builder,args);
 StormTopology topology = builder.createTopology();

The defineTopology method is where the graph itself is constructed. Each

vertex in the topology consists of a unique name and the defi nition of either a

spout or a bolt. A spout is Storm’s data input mechanism and is added using

the setSpout method:

public static void defineTopology(TopologyBuilder builder
 ,String[] args) {
 builder.setSpout("input", new BasicSpout());

This creates a spout named “input” and returns a SpoutDeclarer that is used

to further confi gure the Spout. Most topologies only contain a single IRichSpout

type, but Storm often creates more than one Spout task to improve the parallelism

128 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 128

and durability of the input process. The maximum number of tasks and other

related variables are all set using the returned SpoutDeclarer.

Bolts are Storm’s basic unit of computation. Like spouts, they must have a

unique name, and they are added via the setBolt method. For example, this

adds a new bolt named “processing” to the topology:

builder.setBolt("processing", new BasicBolt())
 .shuffleGrouping("input");

The setBolt method returns a BoltDeclarer object that is used to connect the

bolt to the rest of the topology. Bolts are attached to the topology by using one

of the grouping methods to defi ne an input vertex. In this case the “input” spout

vertex defi ned earlier is used.

Storm creates several tasks for each defi ned Bolt to improve parallelism and

durability. Because this may affect computations like aggregation, the grouping

methods defi ne how data is sent to each of the individual tasks. This is similar

to how partition functions are used in map-reduce implementations, but with

a bit more fl exibility. Storm offers a number of grouping methods to organize

the fl ow of data in the topology.

Shuffl e Groupings

In the earlier example, the shuffleGrouping method is used to distribute data

among the Bolt tasks. This method randomly shuffl es each data element, called

a Tuple, among the Bolt tasks such that each task gets roughly the same amount

of data.

Field Groupings

Another common grouping is the fieldsGrouping method. This grouping uses

one or more of the named elements of a tuple, which are defi ned by the input

vertex, to determine the task that will receive a particular data element. This is

essentially equivalent to a SQL GROUP BY clause and is often used when imple-

menting aggregation bolts. To group data from “input” by key1 and key2, add

the bolt as follows:

builder.setBolt("processing", new BasicBolt())
 .fieldsGrouping("input", new Fields("key1","key2"));

All and Global Groupings

The allGrouping and globalGrouping methods are exact opposites of each

other. The allGrouping method ensures that all tuples in an event stream are

transmitted to all running tasks for a particular bolt. This is occasionally

 Chapter 5 ■ Processing Streaming Data 129

c05.indd 05:36:24:PM 06/12/2014 Page 129

useful, but it multiplies the number of events by the number of running tasks,

so use it with care.

The globlaGrouping method does the opposite. It ensures that all tuples from a

stream go to the bolt with the lowest numbered identifi er. All bolt tasks receive

an identifi er number, but this ensures only one of them will be used. This should

also be used with care because it effectively disables Storm’s parallelism.

Direct Groupings

The directGrouping method is a special form of grouping that allows the output

Bolt or Spout to decide which Bolt task receives a particular Tuple. This requires

that the stream be declared to be direct when the bolt is created. The producer

bolt must also use the emitDirect method instead of the emit method.

The emitDirect method takes an extra parameter that identifi es the destina-

tion Bolt. The list of valid identifi ers can be obtained from the TopologyContext

when implementing a Bolt. This is shown in greater detail in the section that

details implementing Bolts.

Custom Groupings

When all else fails, it is also possible to implement a custom grouping method.

To do this, create a class that implements the CustomStreamGrouping interface.

This interface contains two methods. The fi rst method, prepare, is called

when the topology is instantiated and lets the grouping method assemble any

metadata it may need to perform its tasks. In particular, this method receives

the targetTasks variable, which is the list of Bolts that subscribe to the stream

being grouped.

The second method is the chooseTasks method, which is the workhorse of the

class. This method is called for each Tuple and the method returns a list of bolt

tasks that should receive the Tuple.

A ROUND ROBIN CUSTOM STREAM GROUPING

This example implements a round-robin mechanism for distributing data among

bolt tasks. It is no more effi cient than a shuffleGrouping, but it demonstrates the

technique.

First, the class is defi ned with a serialization version number. Storm makes heavy

use of Java serialization when confi guring a topology, so it is important to pay atten-

tion to what will be serialized and what will not. The three class fi elds are all set during

the prepare statement so they should be defi ned as transient so they will not be

included in the serialization:

Continues

130 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 130

public class RoundRobinGrouping implements CustomStreamGrouping {

 /**

 *

 */

 private static final long serialVersionUID = 1L;

 transient List<Integer> targetTasks;

 transient int nextTask;

 transient int numTasks;

Next, the prepare statement initializes each of the transient variables. A more com-

plicated grouping might inspect the topology itself to assign weightings to tasks and

other options, but this simple round-robin method just needs to hold onto the list:

public void prepare(WorkerTopologyContext context,

 GlobalStreamId stream,

 List<Integer> targetTasks) {

 this.targetTasks = targetTasks;

 this.numTasks = targetTasks.size();

 this.nextTask = 0;

 }

Finally, the chooseTasks method is implemented to rotate between the various

tasks:

public List<Integer> chooseTasks(int taskId, List<Object> values) {

 LinkedList<Integer> out = new LinkedList<Integer>();

 out.add(targetTasks.get(nextTask));

 nextTask = (nextTask + 1) % numTasks;

 return out;

 }

Implementing Bolts

Now that data can be passed to bolts appropriately, it is time to understand how

bolts themselves work. As shown in the previous section, bolts receive data from

other bolts or spouts within the topology. They are event driven so they cannot

be used to retrieve data; that is the role of the spout.

Although it is possible to implement bolts by implementing either the IBasicBolt or

IRichBolt interfaces, the recommended method is to extend the BaseBasicBolt

or BaseRichBolt classes. These base classes provide simple implementations for

most of Storm’s boilerplate methods.

continued

 Chapter 5 ■ Processing Streaming Data 131

c05.indd 05:36:24:PM 06/12/2014 Page 131

Rich Bolts

To implement a RichBolt, start by extending this RichBaseBolt abstract class and

implementing the three required methods. Like the custom grouping class from

the previous section, the fi rst is a prepare method that passes in information

about the topology. For bolts, an extra parameter is added: the collector object.

This object manages the interaction between the bolt and the topology, especially

transmitting and acknowledging tuples.

In a rich bolt, the collector is usually placed into an instance variable for use

in the execute method. The prepare method is also a good place to create an

object that cannot be serialized because they do not implement the Serialization

interface. It is a good habit to declare all variables that are initialized by the

prepare method as transient. While not all variables require the transient key-

word, they can often be initialized and serialized unintentionally, leading to

bugs that are diffi cult to track down. The following code implements a bolt that

captures the output collector:

public class RichEmptyBolt extends BaseRichBolt {

 private static final long serialVersionUID = 0L;
 private transient OutputCollector collector;
 public void prepare(Map stormConf, TopologyContext context,
 OutputCollector collector) {
 this.collector = collector;
 }

Most bolts produce one or more streams of output. A stream is a collection of

Tuple objects that Storm serializes and passes to other bolt implementations as

defi ned within the topology. These Tuple objects do not have a formal schema;

all elements of the tuple are considered to be generic Objects, but the elements

are named. These names are used both in the bolt’s execute method and by

certain grouping classes, such as fieldGrouping. The order of these named fi elds

is defi ned in the bolt’s declareOutputFields method. By default, the bolt has a

single stream that is defi ned by calling declare on the OutputFieldsDeclarer that

is passed into the method:

public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("first","second","third"));
}

In addition to the default stream, a bolt can defi ne other named streams for

output. Using the declareStream method, give the stream a name and defi ne

the fi elds of the tuple. For example, to take the default stream and split it into

two parts, declare two output streams:

declarer.declareStream("car", new Fields("first"));
declarer.declareStream("cdr", new Fields("second","third"));

132 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 132

When defi ning the topology, these additional streams are added to the group-

ing calls after the source name. For example, attaching a bolt to the cdr stream

using a fi eld grouping looks like this:

builder.setBolt("empty", new RichEmptyBolt());
builder.setBolt("process", new BasicBolt())
 .fieldsGrouping("empty", "cdr", new Fields("second"));

Processing incoming tuples is handled by the execute method inside the bolt.

In RichBolt implementations, it has a single Tuple argument. This class imple-

ments the Java List<Object> collection interface, but also provides higher-level

access to the fi elds as declared by the source bolt.

A bolt can do whatever it likes with the input tuple. For example, to produce

the output streams declared in the earlier example, assuming the input tuple

has elements of the same name, the execute method would look like this:

public void execute(Tuple input) {

 List<Object> objs = input.select(new Fields("first","second","third"));

 collector.emit(objs);

 collector.emit("car", new Values(objs.get(0)));

 collector.emit("cdr", new Values(objs.get(1),objs.get(2)));

 collector.ack(input);

}

The fi rst line of this example is using a feature of the Tuple wrapper to extract

a subset of the Tuple object into a known ordering. This ordering is the same as

the declared output stream, so it can simply be emitted as is. The emit method

assumes that the output is an object that implements List<Object>, which is

converted into a Tuple after it arrives at the next bolt.

Next, the other two streams, car and cdr, are emitted. Because they only take

a subset of the default stream, new output arrays need to be constructed. The

default Java constructors for List objects are generally verbose, so Storm pro-

vides a class called Values. This class implements the List<Object> interface and

provides convenience constructors to make it easy to produce new Tuple objects.

Finally, the tuple is acknowledged via ack(input). This tells Storm that the

tuple has been handled, which is important when the bolt is being used in a

transactional fashion. If the processing of the tuple fails for some reason, the

bolt may use fail(input) instead of ack(input) to report this fact.

The collector object also has a reportError method, which can be used to

report on non-fatal exceptions in the fl ow. This method takes a Throwable object,

and the message from the exception is refl ected in the Storm UI. For example,

a bolt that handles URLs can report on parsing errors:

public void execute(Tuple input) {
 try {
 URL url = new URL(input.getString(0));
 collector.emit(new Values(url.getAuthority(),
 url.getHost(),

 Chapter 5 ■ Processing Streaming Data 133

c05.indd 05:36:24:PM 06/12/2014 Page 133

 url.getPath()));
 } catch (MalformedURLException e) {
 collector.reportError(e);
 collector.fail(input);
 }
}

A FILTER AND SPLIT BOLT

This example shows a bolt that takes an input stream and splits it into several diff erent

streams according to a regular expression on a fi eld. It also shows how to introspect

the incoming tuples to defi ne the output streams programmatically.

The fi lters are defi ned during the confi guration of the topology. The bolt defi nes

a simple internal class called FilterDefinition, which holds the output stream, the

name of the fi eld to check, as well as the regular expression that will be evaluated

against the fi eld’s value. This class implements Serializable so it will be properly

serialized when the bolts are distributed across the cluster.

The filter function itself is implemented in a “chainable” style to make it easy to

use in topology defi nitions:

public class FilterBolt extends BaseRichBolt {

 private static final long serialVersionUID = -7739856267277627178L;

 public class FilterDefinition implements Serializable {

 public String stream;

 public String fieldName;

 public Pattern regexp;

 public Fields fields;

 private static final long serialVersionUID = 1L;

 }

 ArrayList<FilterDefinition> filters

 = new ArrayList<FilterDefinition>();

 public FilterBolt filter(String stream,String field,String regexp,

 String... fields) {

 FilterDefinition def = new FilterDefinition();

 def.stream = stream;

 def.fieldName = field;

 def.regexp = Pattern.compile(regexp);

 def.fields = new Fields(fields);

 filters.add(def);

 return this;

 }

Continues

134 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 134

This bolt’s prepare method captures the collector output as well as preparing the

fi lters for further use. In this case, the unique input streams are inspected to deter-

mine the fi elds present in their output tuples. If they match a particular fi lter, that fi lter

is bound to that particular stream. As a performance improvement, the index of the

fi lter element is retrieved as well:

 public class FilterBinding {

 public FilterDefinition filter;

 public int fieldNdx;

 }

 transient OutputCollector collector;

 transient Map<GlobalStreamId,List<FilterBinding>> bindings;

public void prepare(Map stormConf, TopologyContext context,

 OutputCollector collector) {

 this.collector = collector;

 bindings = new HashMap<GlobalStreamId,List<FilterBinding>>();

 for(GlobalStreamId id : context.getThisSources().keySet()) {

 Fields fromId = context.getComponentOutputFields(id);

 ArrayList<FilterBinding> bounds =

 new ArrayList<FilterBinding>();

 for(FilterDefinition def : filters) {

 if(fromId.contains(def.fieldName)) {

 FilterBinding bind = new FilterBinding();

 bind.filter = def;

 bind.fieldNdx = fromId.fieldIndex(def.fieldName);

 bounds.add(bind);

 }

 }

 if(bounds.size() > 0) bindings.put(id, bounds);

 }

 }

Ideally, the analysis done during the prepare phase to determine the input fi elds

could be used to programmatically determine the output fi elds. Unfortunately, the

declareOutputFields method is called during topology construction and not during

topology initialization. As a result, the tuple’s elements to include from each fi lter are

specifi ed when the fi lter is defi ned and simply returned by declareOutputFields:

public void declareOutputFields(OutputFieldsDeclarer declarer) {

 for(FilterDefinition def : filters)

 declarer.declareStream(def.stream, def.fields);

}

continued

 Chapter 5 ■ Processing Streaming Data 135

c05.indd 05:36:24:PM 06/12/2014 Page 135

The implementation of the fi lter itself makes use of the fi lter bindings created

in the prepare method. Each Tuple passed to a Bolt travels with metadata about

the origin of the Tuple, including the GlobalStreamId. This is obtained using

getSourceGlobalStreamId and is used to look up the bound fi lters for this particular

Tuple. If there are application fi lters, the tuple is then applied to each fi lter in the list

and emitted to the appropriate stream if it matches, using the select method on the

tuple to extract a tuple that matches the confi gured Fields element:

public void execute(Tuple input) {

 List<FilterBinding> bound

 = bindings.get(input.getSourceGlobalStreamid());

 if(bound != null && bound.size() > 0) {

 for(FilterBinding b : bound) {

 if(b.filter.regexp.matcher(

 input.getString(b.fieldNdx)

).matches()) {

 collector.emit(b.filter.stream,

 input.select(b.filter.fields));

 }

 }

 }

 collector.ack(input);

 }

Basic Bolts

If a bolt meets certain criteria it may also be implemented as a BasicBolt, which

removes some of the boilerplate involved in implementing a RichBolt. The BasicBolt

implementation does not have a prepare step. It is assumed that the only non-

serialized confi guration required is to capture the collector object.

A BasicBolt also assumes that all tuples will be acknowledged using ack.

This is implemented fairly deep in the Storm code, rather than being part of

the BasicOutputCollector implementation.

A LOGGING BOLT

The logging bolt is a very simple Bolt implementation that is useful when testing

topologies. All it does is print the results of an input tuple to the console. This can be

very useful when testing topologies, and it is easy to implement with a BasicBolt.

This bolt doesn’t produce any data, and just uses the fact that Tuple implements a

reasonable toString method:

public class LoggerBolt extends BaseBasicBolt {

 private static final Logger LOG

Continues

136 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 136

 = Logger.getLogger(LoggerBolt.class);

 private static final long serialVersionUID = 1L;

 public void execute(Tuple input, BasicOutputCollector collector) {

 LOG.info(input.toString());

 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 }

}

Implementing and Using Spouts

The Spout is a special form of Storm topology element that is responsible for

retrieving data from the outside world. Unlike Bolts, there is only an IRichSpout

interface to implement and no base class to derive from.

When a Spout is created, the open method is called fi rst. This allows the Spout to

confi gure any connections to the outside world, such as connections to queue or

data motion servers. Like a Bolt, the Spout should capture its SpoutOutputCollector

from the open method for later use:

public class EmptySpout implements IRichSpout {

 transient SpoutOutputCollector collector;
 public void open(Map conf, TopologyContext context,
 SpoutOutputCollector collector) {
 this.collector = collector;
 }

Like a bolt, a spout also defi nes output streams. There is the usual default

stream, defi ned by calling declare. Additionally, named streams can be defi ned

by calling declareStream, the same as bolts:

public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("first","second","third"));
 declarer.declareStream("errors",new Fields("error"));
}

Spouts are, by defi nition, pull-based polling interfaces. The Storm infra-

structure repeatedly calls the nextTuple method, which is similar to the execute

method in a Bolt:

continued

 Chapter 5 ■ Processing Streaming Data 137

c05.indd 05:36:24:PM 06/12/2014 Page 137

public void nextTuple() {
 Utils.sleep(100);
 collector.emit(new Values("one","two","three"));
}

Because Storm does use a polling interface, it is recommended that a small

sleep command be added when there is no data to emit. This helps reduce the

system load when the topology is idle. In the simple example here, a small delay

serves much the same purpose.

In addition to being started, topologies can also be stopped, as well as paused

and resumed. This mostly affects the processing of the spout, which has methods

that can be used to start and stop the polling process. Additionally, there is a

close method when the topology shuts down to allow for the clean shutdown

of consumer interfaces:

public void close() {
}

public void activate() {
}

public void deactivate() {
}

Finally, topologies can implement transactional semantics with an appropri-

ate spout implementation. When a bolt executes an ack or fail command on a

Tuple object, this event is passed up to the spout to allow the tuple’s processing

to either be committed or reprocessed:

public void ack(Object msgId) {
}

public void fail(Object msgId) {
}

In practice, these events are a holdover from older versions of Storm. For new

transactional topologies, the recommendation is to use the Trident interface

available from Storm 0.8.0 onward. This alternative interface, discussed later

in this chapter, provides a cleaner mechanism for implementing transactional

semantics in a topology.

The only other method to implement is the getComponentConfiguration method.

This is used for additional confi guration of spouts and will normally be unused

and can simply return null:

public Map<String, Object> getComponentConfiguration() {
 return null;
}

138 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 138

A “LOREM IPSUM” SPOUT

Storm includes several mechanisms for testing topologies, which are covered a bit

later on, but it is often useful to have a spout that can generate random data.

“Lorem Ipsum” is famous nonsense text that is often used by designers to simulate

blocks of text for layout. The text itself is a mangled Latin text roughly a paragraph

long, but modern implementations can generate arbitrarily long pieces of text.

There is a Java class, LoremIpsum, available via the Maven Central repository that

can generate strings of arbitrary length from this original paragraph.

<dependency>

 <groupId>de.sven-jacobs</groupId>

 <artifactId>loremipsum</artifactId>

 <version>1.0</version>

</dependency>

To begin, the spout is defi ned with fi eld names for the tuple that will be generated:

public class LoremIpsumSpout implements IRichSpout {

 private static final long serialVersionUID = 1L;

 String[] fields;

 public LoremIpsumSpout tuple(String...fields) {

 this.fields = fields;

 return this;

 }

 int maxWords = 25;

 public LoremIpsumSpout maxWords(int maxWords) {

 this.maxWords = maxWords;

 return this;

 }

When the spout’s open method is called, the transient LoremIpsum class is instanti-

ated because it does not implement Serializable and therefore cannot be confi gured

prior to starting the topology. As usual, the collector element is also captured for

later use:

transient LoremIpsum ipsum;

transient Random rng;

transient SpoutOutputCollector collector;

public void open(Map conf, TopologyContext context,

 SpoutOutputCollector collector) {

 this.collector = collector;

 ipsum = new LoremIpsum();

 rng = new Random();

}

 Chapter 5 ■ Processing Streaming Data 139

c05.indd 05:36:24:PM 06/12/2014 Page 139

Because this Spout is completely self-contained, the transactional methods ack

and fail, as well as the lifecycle management methods—activate, deactivate, and

close—can be left as stub implementations.

The nextTuple implementation sleeps for a moment, to reduce load during test

cases, and then emits a tuple of the appropriate length containing “lorem ipsum” text

of varying length:

public void nextTuple() {

 Utils.sleep(100);

 ArrayList<Object> out = new ArrayList<Object>();

 for(String s : fields)

 out.add(ipsum.getWords(rng.nextInt(maxWords)));

 collector.emit(out);

}

To test this Spout, use a simple LocalCluster implementation to see it in action.

First construct a topology with two LoremIpsum spouts:

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("spout1", new LoremIpsumSpout()

 .tuple("first","second","third"));

builder.setSpout("spout2", new LoremIpsumSpout()

 .tuple("second","third","forth"));

Then, just to give the topology something to do, attach a FilterBolt from the last

section. Have it fi lter on two well-known parts of the “lorem ipsum” text. Note that the

fi lter takes in both spouts:

builder.setBolt("filter", new FilterBolt()

 .filter("ipsum", "first", ".*ipsum.*","first")

 .filter("amet","second",".*amet.*","second")

).shuffleGrouping("spout1")

 .shuffleGrouping("spout2")

 ;

To see the fi ltering functionality, use a LoggerBolt to print the output. It also iden-

tifi es the source stream to show that the fi lter actually works:

 builder.setBolt("print", new LoggerBolt())

 .shuffleGrouping("filter","amet")

 .shuffleGrouping("filter","ipsum");

This is all then submitted to a LocalCluster for execution:

 Config conf = new Config();

 LocalCluster cluster = new LocalCluster();

 cluster.submitTopology("example", conf, builder.createTopology());

Continues

140 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 140

Finally, have the main class sleep for a bit. Because LocalCluster is running an

embedded topology, most of the work is being done in background threads:

 //Sleep for a minute

 Thread.sleep(60000);

After running the topology, the output should look something like this:

6206 [Thread-22-print] INFO wiley.streaming.storm.LoggerBolt

 - source: filter:2,

 stream: ipsum, id: {},

 [Lorem ipsum dolor sit amet, consetetur sadipscing elitr,

 sed diam nonumy eirmod tempor invidunt ut]

6306 [Thread-22-print] INFO wiley.streaming.storm.LoggerBolt

 - source: filter:2,

 stream: amet, id: {}, [Lorem ipsum dolor sit amet,

 consetetur sadipscing elitr, sed diam nonumy eirmod tempor]

6314 [Thread-22-print] INFO wiley.streaming.storm.LoggerBolt

 - source: filter:2,

 stream: amet, id: {}, [Lorem ipsum dolor sit amet, consetetur

 sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut

 labore et dolore magna aliquyam]

6407 [Thread-22-print] INFO wiley.streaming.storm.LoggerBolt

 - source: filter:2,

 stream: ipsum, id: {}, [Lorem ipsum dolor sit amet,

 consetetur sadipscing elitr, sed diam nonumy eirmod tempor

 invidunt ut labore et dolore magna]

6407 [Thread-22-print] INFO wiley.streaming.storm.LoggerBolt

 - source: filter:2,

 stream: amet, id: {}, [Lorem ipsum dolor sit amet,

 consetetur sadipscing elitr, sed diam nonumy eirmod tempor

 invidunt ut labore et dolore magna aliquyam]

Connecting Storm to Kafka

With the introduction of Kafka 0.8, the integration between Kafka and Storm

in 0.9 is in a state of fl ux. The storm-kafka spout implementation available in

the storm-contrib library is currently targeted to version 0.7.2 of Kafka. A ver-

sion of the Kafka spout designed for use with Kafka 0.8 is available through

another project called storm-kafka-0.8-plus (https://github.com/wurstmeister/

storm-kafka-0.8-plus). The project is also available via clojars.org, the same

as Storm itself for inclusion in a Maven pom.xml fi le. It is included in a project

using the following artifact:

<dependency>
 <groupId>net.wurstmeister.storm</groupId>

continued

https://github.com/wurstmeister/storm-kafka-0.8-plus
https://github.com/wurstmeister/storm-kafka-0.8-plus

 Chapter 5 ■ Processing Streaming Data 141

c05.indd 05:36:24:PM 06/12/2014 Page 141

 <artifactId>storm-kafka-0.8-plus</artifactId>
 <version>0.2.0</version>
</dependency>

To use the Spout, a KafkaConfig object is fi rst confi gured to point to the appropri-

ate set of brokers and the desired topic. For example, the following code obtains

the list of brokers from ZooKeeper. It then attaches itself to the wikipedia-raw

topic using the storm Consumer Group:

BrokerHosts hosts = new ZkHosts("localhost");
SpoutConfig config = new SpoutConfig(hosts,
 "wikipedia-raw", "", "storm");
config.scheme = new SchemeAsMultiScheme(new StringScheme());

The config.scheme entry tells the spout to interpret incoming messages as

strings rather than some more exotic entry. Other encodings would require a

different scheme implementation specifi c to that format.

To use this in a topology, a KafkaSpout is created and then used like any other

spout. This simple test topology reports on the events being produced on the

Wikipedia-raw topic:

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("kafka", new KafkaSpout(config), 10);
builder.setBolt("print", new LoggerBolt())
 .shuffleGrouping("kafka");

Config conf = new Config();
LocalCluster cluster = new LocalCluster();
cluster.submitTopology("example", conf, builder.createTopology());
//Sleep for a minute
Thread.sleep(60000);

Connecting Storm to Flume

There is a fundamental “impedance mismatch” between Storm and Flume. Storm

is a polling consumer, assuming a pull model. Flume’s fundamental sink model

is push based. Although some attempts have been made, there is no accepted

mechanism for directly connecting Flume and Storm.

There are solutions to this problem, but all of them involve adding another queu-

ing system or data motion system into the mix. There are two basic approaches

that are used “in the wild.” The fi rst is to use queuing systems that are compatible

with the Advanced Message Queuing Protocol (AMQP). For Flume applications,

the RabbitMQ queuing system is popular because there exists a Flume sink

developed by Kenshoo (http://github.com/kenshoo/flume-rabbitmq-sink). Storm’s

AMQPSpout is then used to read from RabbitMQ.

The other option is to use a Kafka sink for Flume and then integrate Storm

with Kafka as described in the previous section. At this point the only real

reason to use Flume is to integrate with an existing infrastructure. You can

fi nd the Flume/Kafka sink at https://github.com/baniuyao/flume-ng-kafka-sink.

http://github.com/kenshoo/flume-rabbitmq-sink
https://github.com/baniuyao/flume-ng-kafka-sink

142 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 142

Distributed Remote Procedure Calls

In addition to the development of standard processing topologies that con-

sume data from a stream, Storm also includes facilities for implementing

Distributed Remote Procedure Calls (DRPC), which are used to easily imple-

ment distributed processing services, such as performing a large number of

expensive calculations. Using a special spout and bolt combination, these

topologies implement a complicated procedure that can be distributed across

multiple machines.

This is not strictly something that is typically done in a real-time streaming

analysis scenario, but it can certainly be used to scale parts of a real-time analysis

pipeline. It can also be used to build component-based services that make an

environment easier to manage.

The DRPC Server

DRPC requests are managed by a separate Storm server that manages the com-

munication between the DRPC client and the Storm topology servicing those

requests. In a distributed environment, this server is started with the Storm

command-line utility:

$./bin/storm drpc

In testing environments, a Local DRPC server can be started. This is similar

to the LocalCluster option used for testing:

TopologyBuilder builder = new TopologyBuilder();
LocalDRPC drpc = new LocalDRPC();

Writing DRPC Topologies

A DRPC topology is just like any other Storm topology, relying on a special

Spout and Bolt combination to enact the DRPC functionality. The topology takes

in a single String value via the Spout and returns a single String value via the

ReturnResults bolt. For example, the following topology implements a “power”

function that exponentiates a comma-separated list of doubles corresponding

to the base value and the exponent. It returns a string representing the power

output:

//Omit the drpc argument when submitting to the cluster
builder.setSpout("drpc", new DRPCSpout("power", drpc));
builder.setBolt("split", new SplitBolt()).shuffleGrouping("drpc");
builder.setBolt("power", new PowerBolt()).shuffleGrouping("split");
builder.setBolt("return", new ReturnResults()).shuffleGrouping("power");

 Chapter 5 ■ Processing Streaming Data 143

c05.indd 05:36:24:PM 06/12/2014 Page 143

The SplitBolt implementation splits the input comma-separated list into two

Double values. It also passes along the return-info element of the tuple, which is

used by ReturnResults to submit the result back to the DRPC server:

public class SplitBolt extends BaseBasicBolt {

 private static final long serialVersionUID = -3681655596236684743L;
 public void execute(Tuple input, BasicOutputCollector collector) {
 String[] p = input.getString(0).split(",");
 collector.emit(
 new Values(
 Double.parseDouble(p[0]),
 Double.parseDouble(p[1]),
 input.getValue(1)
)
);
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("x","y","return-info"));
 }
}

The PowerBolt implementation takes the x and y values and computes the

power function. It returns this value as a String as required by the DRPC power

and also makes sure to transfer the return-info object:

public class PowerBolt extends BaseBasicBolt {

 private static final long serialVersionUID = 1L;

 public void execute(Tuple input, BasicOutputCollector collector) {
 collector.emit(
 new Values(
 ""+Math.pow(input.getDouble(0),
 input.getDouble(1)),
 input.getValue(2)
)
);
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("result","return-info"));
 }
}

Most of the time, topologies like this are not built by hand. In older versions of

Storm the LinearDRPCTopologyBuilder class is used to construct these topologies.

144 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 144

It automatically adds the appropriate DRPCSpout spout and ReturnResults bolt to

the topology and ensures that the topology itself is linear. In newer versions of

Storm, this has been deprecated in favor of the Trident version, which is cre-

ated using the newDRPCStream method instead of the usual newStream method.

The Trident domain-specifi c language is discussed in much more detail in the

next section.

Trident: The Storm DSL

With version 0.8.0, Storm introduced a new domain-specifi c language that is

intended to be the preferred method for developing Storm topologies. This

domain-specifi c language is called Trident. In Storm 0.9.0 it has undergone

extensive development.

The goal of the Trident interface is to provide a higher-level abstraction similar

to what is found in Hadoop frameworks, such as Cascading. Rather than pro-

viding the very primitive spout and bolt interface, Trident operates on streams.

These streams can be manipulated with high-level concepts, such as joins, groups,

aggregates, and fi lters. It also adds some primitives for state management and

persistence, particularly in the case of aggregation.

Underneath the hood, Trident is still using the same bolt and spout interface.

The difference is that each operation defi ned in a Trident topology does not nec-

essarily result in a new bolt being created. This allows the topology to achieve

higher performance by combining several operations into a single physical bolt

and avoiding the communication overhead between bolts.

This section covers using this high-level construct to build topologies in Storm.

Trident Streams and Spouts

Trident topologies usually operate on a Stream object. The stream in Trident

is conceptually very similar to the stream defi ned by a spout or a bolt in a

normal Storm topology. The difference here is that the stream’s structure is

defi ned and modifi ed in the topology defi nition rather than being an intrinsic

part of a bolt.

Defi ning the stream structure along with the topology has a couple of advan-

tages when writing topologies. First, by separating the tuple structure from the

business logic, it is easier to write reusable components. Second, the topology

becomes much easier to read. Because the data fl ow and data defi nition is in the

same place, it is much easier to see the manipulations. In “traditional” topolo-

gies, determining how each stream is defi ned involves inspecting each Bolt

individually. The disadvantage is that it can be harder to express computations

using Trident’s language than it would be to explicitly defi ne the topology. Often

this is simply a matter of preference.

 Chapter 5 ■ Processing Streaming Data 145

c05.indd 05:36:24:PM 06/12/2014 Page 145

Streams in Trident topologies are built around a Spout. These spouts can be

the same IRichSpout implementations from standard topologies, or they can

be one of the more specialized Trident spouts. Using a basic spout, such as

the LoremIpsumSpout, is as simple as defi ning a stream using newStream in the

TridentTopology class:

TridentTopology topology = new TridentTopology();
topology.newStream("lorem", new LoremIpsumSpout());

Local Operations: Filters and Functions

When constructing topologies, Trident considers certain operations to be

“partition local” operations. What this means is that a chain of such operations

can be executed locally within a single bolt. This enables Trident to make use

of more effi cient data structures and reduce the amount of communication

required.

The most basic local operation is the Filter, which is implemented by extend-

ing the BaseFilter class. A single method, isKeep, is implemented to decide

whether or not a Tuple’s processing should continue. For example, this fi lter

implementation randomly chooses to keep half of its results:

public class RandomFilter extends BaseFilter {
 private static final long serialVersionUID = 1L;
 Random rng = new Random();
 public boolean isKeep(TridentTuple tuple) {
 return rng.nextFloat() > 0.5;
 }
}

The next simplest operation is the Function, which is implemented by extending

the BaseFunction class (some Trident tutorials incorrectly have fi lters extend

BaseFunction as well, but this is not the case in 0.9.0).

In functionality, Function objects are closest to the BasicBolt in the “traditional”

Storm topology. They take in a single Tuple and can produce zero or more tuples,

which are appended to the original tuple. If no tuples are produced, the original

tuple is fi ltered from the stream. For example, this Function implementation

adds a random number to each incoming Tuple:

public class RandomFunction extends BaseFunction {
 private static final long serialVersionUID = 1L;
 Random rng = new Random();
 public void execute(TridentTuple tuple, TridentCollector collector) {
 collector.emit(new Values(rng.nextDouble()));
 }
}

146 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 146

Both Filter and Function classes use the each method to attach themselves to

a stream. For fi lters, the each method takes the form of each(inputFields,filter):

TridentTopology topology = new TridentTopology();
topology.newStream("lorem", new LoremIpsumSpout()
 .tuple("first","second","third"))
 .each(new Fields(), new RandomFilter())
;

Note the empty Fields constructor. This is because the RandomFilter does not

depend on any fi elds to evaluate the fi lter. It does not actually modify the Tuple

passed through, which still contains the "first", "second", and "third" elements.

Similarly, a function’s each argument takes one of two forms. The fi rst is

each(function,outputFields), the form used by the RandomFunction implementation:

TridentTopology topology = new TridentTopology();
topology.newStream("lorem", new LoremIpsumSpout()
 .tuple("first","second","third"))
 .each(new RandomFunction(),new Fields("x"))
;

The second form allows the function to take input fi elds, the same as a fi lter

operation. For example, a SquareFunction implementation would take a single

parameter:

public class SquareFunction extends BaseFunction {
 private static final long serialVersionUID = 1L;
 public void execute(TridentTuple tuple, TridentCollector collector) {
 collector.emit(new Values(tuple.getDouble(0)*tuple.getDouble(0)));
 }
}

When assembled into a topology with the RandomFunction, it would take the

x fi eld as its input and produce a y fi eld as output that would be appended

to the tuple:

TridentTopology topology = new TridentTopology();
topology.newStream("lorem", new LoremIpsumSpout()
 .tuple("first","second","third"))
.each(new RandomFunction(),new Fields("x"))
.each(new Fields("x"), new SquareFunction(),new Fields("y"))
.each(new Fields("x","y"),new PrintFunction(), new Fields())
;

Running this topology for a bit would produce output that looks like this

(only the x and y fi elds are pulled into the PrintFunction for brevity):

[0.8185738974522312, 0.6700632255901359]
[0.04147059259035091, 0.0017198100497948677]
[0.5122091469924017, 0.2623582102626838]
[0.032330581404519276, 0.0010452664939542477]
[0.49881777491999457, 0.24881917257613437]

 Chapter 5 ■ Processing Streaming Data 147

c05.indd 05:36:24:PM 06/12/2014 Page 147

[0.9140296292506043, 0.8354501631479971]
[0.807521215873791, 0.6520905140862857]
[0.03596640476063595, 0.0012935822714058964]
[0.7539011202358764, 0.5683668990929094]

Repartitioning Operations

In Trident, groupings are called repartitioning operations, but remain essentially

unchanged from their equivalent operations in standard topologies. These

operations imply a network transfer of tuples just like they do in a traditional

topology:

 ■ The shuffle partitioning evenly distributes tuples across target partitions.

 ■ The broadcast partitioning sends all tuples to all target partitions.

 ■ The partitionBy partitioning is equivalent to the fieldsGrouping. It takes a

list of fi elds found in each tuple and uses a hash of their values to deter-

mine a target partition.

 ■ The global partition sends all tuples to the same partition. Trident also

adds a batchGlobal variant that sends all tuples from the same batch to

a single partition. Different batches may be sent to a different partition.

 ■ There is also a partition function that takes an implementation of

CustomStreamGrouping to implement custom partition methods.

In addition to these partition methods, Trident also implements a special type

of partition operation called groupBy. This partition operation acts very much

like the reducer phase in a Map-Reduce job and is probably the most commonly

used partition in Trident.

The groupBy operation fi rst applies a partitionBy partition according to the fi elds

specifi ed in the groupBy operation. Within each partition, values with identical

hash values are then grouped together for further processing in a GroupedStream.

Aggregators can then be applied directly to these groups.

Aggregation

Trident has two methods of aggregation on streams, aggregate and

persistent-Aggregate. The aggregate method applied to a stream with a function

that implements ReducerAggregator or Aggregator effectively performs a global

partition on the data, causing all tuples to be sent to the same partition for aggrega-

tion on a per-batch basis. An aggregate method that is given a CombinerAggregator

fi rst computes an intermediate aggregate for each partition and then performs

a global partition on the output of these intermediate aggregates.

The built-in aggregators Count and Sum are both CombinerAggregators. Other

custom aggregation methods can be implemented by extending the BaseAggregator

148 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 148

class. An example of this is shown in the next section when a partition local

aggregator is implemented.

The other aggregation method, persistentAggregate, works like an aggregate

except that it records its output into a State object. These State objects often

work with the Spout in a Trident topology to ensure features like transactional

semantics.

The persistentAggregate method returns a TridentState object rather than

a Stream object. This object has a method newValuesStream that emits a tuple

every time a key’s state changes. This is useful for retrieving the results of

an aggregation that is using local memory as its backing store, such as the

MemoryMapState class.

At the moment, the MemoryMapState class is the only State implementation built

into Trident. It is primarily intended for testing purposes with other State objects

implemented to persist to more durable stores, such as memcached.

Partition Local Aggregation

Although the normal aggregation operations imply a global partitioning event,

the partitionAggregate method allows for partitioning:

public class KeyDoubleAggregator
 extends BaseAggregator<Map<Object, Double>> {

 private static final long serialVersionUID = 1L;
 public Map<Object, Double> init(Object batchId,
 TridentCollector collector) {
 return new HashMap<Object,Double>();
 }

 public void aggregate(Map<Object, Double> val, TridentTuple tuple,
 TridentCollector collector) {
 Object key = tuple.get(0);
 if(val.containsKey(key))
 val.put(key, val.get(key) + tuple.getDouble(1));
 else
 val.put(key, tuple.getDouble(1));
 }

 public void complete(Map<Object, Double> val,
 TridentCollector collector) {
 for(Entry<Object,Double> e : val.entrySet()) {
 collector.emit(new Values(e.getKey(),e.getValue()));
 }
 }
}

 Chapter 5 ■ Processing Streaming Data 149

c05.indd 05:36:24:PM 06/12/2014 Page 149

THE CLASSIC “WORD COUNT” EXAMPLE

The Word Count example is the “Hello World” of Big Data processing, and no discus-

sion of real-time streaming processing would be complete without it.

This example uses a stream of Wikipedia edits coming from Kafka into

Trident to implement a word counting example. This data source is actu-

ally provided by the Samza package discussed in the next part of this chapter,

and it provides a handy source of data for testing. This is confi gured using the

TransactionalTridentKafkaSpout class:

TridentTopology topology = new TridentTopology();

TridentKafkaConfig config = new TridentKafkaConfig(

 new ZkHosts("localhost"),

 "wikipedia-raw",

 "storm"

);

config.scheme = new SchemeAsMultiScheme(new StringScheme());

topology.newStream("kafka",

 new TransactionalTridentKafkaSpout(config)).shuffle()

This spout emits a string of JSON that must be parsed and split into words for fur-

ther processing. For simplicity, this function implementation only looks at the title

element of the raw output:

.each(new Fields("str"),new Function() {

 private static final long serialVersionUID = 1L;

 transient JSONParser parser;

 public void prepare(Map conf, TridentOperationContext context) {

 parser = new JSONParser();

 }

 public void cleanup() { }

 public void execute(TridentTuple tuple,

 TridentCollector collector) {

 if(tuple.size() == 0) return;

 try {

 Object obj = parser.parse(tuple.getString(0));

 if(obj instanceof JSONObject) {

 JSONObject json = (JSONObject)obj;

 String raw = (String)json.get("raw");

 raw = raw.substring(2,raw.indexOf("]]"));

Continues

150 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 150

 for(String word : raw.split("\\s+")) {

 collector.emit(new Values(word));

 }

 }

 } catch (ParseException e) {

 collector.reportError(e);

 }

 }

}, new Fields("word")).groupBy(new Fields("word"))

The output of this function is a tuple for each word. By grouping on word and then

applying a persistentAggregate, the count of each word over time can be obtained.

Every time a word appears in the output, its aggregate will be incremented by the

number of times it appears in the title and then aggregated:

.persistentAggregate(

 new MemoryMapState.Factory(),

 new Count(),

 new Fields("count")

)

.newValuesStream()

Finally, these values are read into the Debug function, which works very much like

the LoggerBolt implemented earlier in this chapter:

.each(new Fields("word","count"), new Debug("written"));

After running the topology for a bit, there should be an output on the console that

looks something like this:

DEBUG(written): [Category:Water, 1]

DEBUG(written): [Fleurimont, 1]

DEBUG(written): [for, 1]

DEBUG(written): [creation/Orin, 1]

DEBUG(written): [Wikipedia, 1]

DEBUG(written): [talk:Articles, 1]

DEBUG(written): [of, 5]

DEBUG(written): [players, 2]

DEBUG(written): [F.C., 1]

DEBUG(written): [List, 4]

DEBUG(written): [Arsenal, 1]

DEBUG(written): [Colby, 1]

DEBUG(written): [Jamie, 1]

DEBUG(written): [Special:Log/abusefilter, 1]

DEBUG(written): [Special:Log/abusefilter, 2]

continued

 Chapter 5 ■ Processing Streaming Data 151

c05.indd 05:36:24:PM 06/12/2014 Page 151

Processing Data with Samza

A recent newcomer to the real-time processing space is another project from

LinkedIn called Samza. Recently open-sourced and added to the Apache Incubator

family of projects, Samza is a real-time data processing framework built on

top of the Apache YARN infrastructure. The project itself is still very young,

especially compared to Storm, which has been around for a few years, but it is

already possible to do useful things with it.

This section describes the Samza architecture and how to get started using it.

The section fi rst gives an overview of Apache YARN, which is used as Samza’s

server infrastructure and takes the place of the Storm nimbus/supervisor serv-

ers (in fact Storm can also be run on Apache YARN using Yahoo!’s Storm-YARN

project from https://github.com/yahoo/storm-yarn). Next is a tour of the Samza

application itself. Like Storm’s Trident system, Samza provides some primitives

for building common types of streaming applications and maintaining state

within a processing application.

Apache YARN

Rather than implement its own server management framework, Samza off-loads

much of its systems infrastructure onto Apache YARN. YARN, which stands

for Yet Another Resource Negotiator, is used to manage the deployment, fault

tolerance, and security of a Samza processing pipeline.

Background

The YARN project was originally born out of the limitations of the Hadoop

project. The Hadoop project was built around a JobTracker server that managed

the distribution of tasks, mappers, and reducers, to other servers running the

TaskTracker server. A client that wanted to submit a job would connect to

the JobTracker and specify the input set, usually a distributed set of data blocks

hosted on Hadoop’s distributed fi le system, as well as any supporting code or

data that needed to be distributed to each node. The JobTracker would then

break this request into small tasks and schedule each of them on the tracker,

as shown in Figure 5-4.

This works well on modestly sized clusters, but there’s a practical limit in

clusters with about 5,000 multicore servers. It also places practical limitations

on the total number of tasks (either in a single job or spread across many jobs)

because information about each of the tasks needs to be kept in memory on

the JobTracker itself.

As physical hardware continues to scale and modern datacenters make it

possible to host very large clusters, these scaling limitations began to take their

https://github.com/yahoo/storm-yarn

152 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 152

toll on Hadoop’s scalability. Additionally, new processing workloads, such as

database-like applications and long-lived stream processing applications, were

somewhat diffi cult to match to Hadoop’s processing model, which assumes a

long-lived but small set of reducer tasks coupled with a large number of short-

lived mapper tasks.

Task 1.1 Task 2.2

TaskTracker

JobTracker
Job 1

Job 2

Task 1.2 Task 2.1

TaskTracker

Figure 5-4

To address the needs of both growing clusters and changing workloads,

YARN was developed as Hadoop 2.

Architecture

In the abstract, the YARN architecture is not so different from the original Hadoop

infrastructure. Rather than a JobTracker and a TaskTracker, the top-level servers

are now the ResourceManager and the NodeManager, respectively. The important

difference is that these servers now manage applications, not individual tasks.

An application in YARN consists of an ApplicationMaster and a number of

containers that are hosted on each node. The ApplicationMaster, as might be

guessed from the name, is in charge of coordinating a job and managing its

assigned containers, which host the individual tasks. The relationship between

these components is shown in Figure 5-5.

In Hadoop 2’s Map-Reduce implementation, the ApplicationMaster serves as

the JobTracker. The exception is that each ApplicationMaster only manages the

task for a single job instead of managing a large number of jobs. This allows

each ApplicationMaster to operate independently in Map-Reduce settings. It

also allows for more sophisticated resource management and security models

because jobs are now essentially completely independent.

 Chapter 5 ■ Processing Streaming Data 153

c05.indd 05:36:24:PM 06/12/2014 Page 153

Resource Manager

Node Manager Node Manager Node Manager

Application
Master

1

Application
Master

2

Container
2.1

Container
1.1

Container
2.2

Container
1.2

Figure 5-5

Relationship to Samza

Samza is implemented as an application on top of YARN. The Samza application

has the required ApplicationManager that is used to manage Samza TaskRunners

hosted within YARN Containers. The TaskRunners execute StreamTasks, which

are the Samza equivalent of a Storm Bolt.

All of Samza’s communication is hosted through Kafka brokers. Like HDFS

DataNodes in a Hadoop Map-Reduce application, these brokers are usually

co-located on the same machines hosting the Samza Containers. Samza then

uses Kafka’s topics and natural partitioning to implement many of the grouping

features found in stream processing applications.

Getting Started with YARN and Samza

Although Hadoop 2 has been available for some time, it is still not particularly

common in production environments, though that is changing rapidly. Most

importantly for many users, Hadoop 2 is now supported by Amazon’s Elastic

MapReduce product as a general release, making it easy to spin up a cluster.

Apache YARN is also now supported by at least two of the major Hadoop

distributions, with more being added. Using their respective cluster manage-

ment tools to set up a YARN cluster is fairly painless. The only downside is that

packaged distributions tend to have a somewhat arbitrary set of patches and

versions that may lag the most recently released version of the Apache project.

Additionally, it is possible to spin up a cluster using the Apache packages

either on a single node for experimentation or in a distributed fashion.

Single Node Samza

The easiest way to get started with Samza on a single node is to use the single-

node YARN installation packaged with the Hello Samza project. This project

includes Samza, ZooKeeper, Kafka, and YARN in a convenient package for

development.

154 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 154

To get started, fi rst check out the hello-samza Git repository from Github.

This repository includes a script that will build and install a complete Samza

installation:

$ git clone https://github.com/apache/incubator-samza-hello-samza.git
$ cd incubator-samza-hello-samza/
$./bin/grid bootstrap

JAVA _HOME NOT SET

On some systems, such as Mac OS X, when grid is run, it returns a

JAVA_HOME not set error:

$./bin/grid bootstrap

JAVA_HOME not set. Exiting.

On OS X, the following sets the JAVA_HOME environment variable to the appropriate

value:

$ export JAVA_HOME=$(/usr/libexec/java_home)

The fi rst time it is run, the grid script builds and installs Samza into the

local Maven repository. This eliminates the need to check out and build the git

repository separately as indicated in the tutorial on the Samza website. It also

downloads appropriate versions of ZooKeeper and Kafka for use with Samza

and starts them. The build process takes 3 to 5 minutes, and installing ZooKeeper

and Kafka takes a few more minutes depending on network speeds. The grid

application also downloads and installs a single node version of YARN. This

download is around 100MB in size, so it is usually best to have a decent con-

nection when fi rst installing the Hello Samza project.

If all has gone well, pointing a web browser at http://localhost:8088 should

show something like Figure 5-6.

Figure 5-6

https://github.com/apache/incubator-samza-hello-samza.git
http://localhost:8088

 Chapter 5 ■ Processing Streaming Data 155

c05.indd 05:36:24:PM 06/12/2014 Page 155

To shut it down, the grid script provides a command to stop all processes in

the correct order:

$./bin/grid stop all

To start the grid again, simply use the start command:

$./bin/grid start all

Any processes that are already running as part of a different server pool, such

as ZooKeeper, can be omitted. In that case, rather than using the all command

simply specify the names of the individual servers to start.

The Hello Samza project also includes some example code that can be run.

This chapter uses the fi rst part of the example code for some of its examples. This

Samza job reads the Wikipedia edit stream from the Wikipedia IRC servers and

posts them as JSON to the wikipedia-raw topic on the local Kafka cluster. To start

this job on the grid, execute the following code:

$./deploy/samza/bin/run-job.sh \
> --config-factory=\
> org.apache.samza.config.factories.PropertiesConfigFactory
> --config-path=\
> file://$PWD/deploy/samza/config/wikipedia-feed.properties

After this job has been started, check that the edits are being posted to Kafka

using the console consumer that ships with Kafka:

$./deploy/kafka/bin/kafka-console-consumer.sh \
> --zookeeper localhost:2181 --topic wikipedia-raw

Multinode Samza

Getting Samza going in a multinode environment is very much like setting

up a Hadoop 2 environment, except that HDFS is not required unless other

applications will be using it.

To begin, make sure a ZooKeeper cluster is available, referring to Chapter 3 if

necessary for installation and confi guration instructions. ZooKeeper is required

for both Samza and the Kafka brokers.

Next, install and confi gure Kafka brokers on the machines destined for the

YARN grid except for the machine to be used as the ResourceManager. Samza

makes heavy use of Kafka for communication, so its brokers are usually co-

located with the NodeManagers that make up the Samza YARN grid. For help

with installing and confi guring Kafka, refer to Chapter 4.

Now that ZooKeeper and Kafka have been installed, set up the YARN cluster.

In this section it is assumed that you are constructing this YARN cluster from

the Apache build rather than one of the commercial distributions. It is also

assumed that the appropriate package manager for the operating system being

156 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 156

used does not have appropriate packages available for Hadoop 2.2.0 (many still

have older Hadoop 1.0.3 packages).

First, download and unpack the Apache binary distribution, which is at

version 2.2.0 at the time of writing, onto each of the machines:

$ wget http://mirrors.sonic.net/
 apache/hadoop/common/hadoop-2.2.0/hadoop-2.2.0.tar.gz
$ cd /usr/local
$ sudo tar xvfz ~/hadoop-2.2.0.tar.gz
$ sudo ln -s hadoop-2.2.0/ hadoop

Apache YARN relies on a number of environment variables to tell it where

to fi nd its various packages. There are a number of places this can be set, but

to have it active for all users it should be set in either /etc/profile or /etc/

profile.d/hadoop.sh. On most systems, /etc/profile automatically includes all

scripts in /etc/profile.d. If YARN was unpacked into the /usr/local directory,

the /etc/profile.d/hadoop.sh fi le would look like this:

export YARN_HOME=/usr/local/hadoop
export HADOOP_MAPRED_HOME=$YARN_HOME
export HADOOP_COMMON_HOME=$YARN_HOME
export HADOOP_HDFS_HOME=$YARN_HOME
export PATH=${PATH}:${YARN_HOME}/bin:${YARN_HOME}/sbin

To see these changes refl ected in the environment, log out and log back in

again or open a new terminal. After doing that, checking the YARN_HOME envi-

ronment variable should give /usr/local/hadoop, and a check of the Hadoop

version should return 2.2.0:

$ echo $YARN_HOME
/usr/local/hadoop
$ hadoop version
Hadoop 2.2.0
Subversion https://svn.apache.org/repos/asf/hadoop/common -r 1529768
Compiled by hortonmu on 2013-10-07T06:28Z
Compiled with protoc 2.5.0
From source with checksum 79e53ce7994d1628b240f09af91e1af4
This command was run using
/usr/local/hadoop-2.2.0/share/hadoop/common/hadoop-common-2.2.0.jar

Because this grid is being used for Samza, it is not necessary to confi gure

HDFS. If the grid is also going to be used for Map-Reduce workloads, refer to

the appropriate YARN documentation for the confi guration of the NameNode

and DataNode servers. The only thing that needs to be confi gured for Samza

is the yarn-site.xml fi le found in /usr/local/hadoop/etc/hadoop (replacing

resource-manager.mydomain.net with an appropriate hostname):

<?xml version="1.0"?>
<configuration>
<property>

http://mirrors.sonic.net
https://svn.apache.org/repos/asf/hadoop/common

 Chapter 5 ■ Processing Streaming Data 157

c05.indd 05:36:24:PM 06/12/2014 Page 157

<name>yarn.resourcemanager.hostname</name>
<value>resource-manager.mydomain.net</value>
</property>
</configuration>

It should now be possible to start the ResouceManager and NodeManager on

the Kafka grid. To start the ResourceManager, log in to the machine and use

yarn-daemon.sh to start the server:

$ yarn-daemon.sh –config $YARN_HOME/etc/hadoop start resourcemanager

Then, on each of the nodes in the Samza grid, start the NodeManager in the

same way:

$ yarn-daemon.sh –config $YARN_HOME/etc/hadoop start nodemanager

The ResourceManager starts a web server on port 8088 by default; it can be

checked to ensure each of the nodes has reported to the resource manager. The

most common problem at this point is an incorrect fi rewall setting.

Integrating Samza into the Data Flow

Integrating Samza into an existing Kafka environment is straightforward, as

Samza uses Kafka for all communication. If there is an existing set of brokers

already handling production load, simply use MirrorMaker as described in

Chapter 4 to mirror the desired topics into the Samza Kafka grid. From there,

Samza has easy access to the incoming topics.

Alternatively, install the Samza grid on the same machines as the Kafka

brokers used to collect data. This has some slight operational disadvantages,

as it is always possible a processing job could lock up a machine and bring it

down. However, it is likely more operationally effi cient because Kafka brokers

usually have spare processing cycles.

Samza Jobs

With a confi gured cluster and data being imported to the Kafka portion of the

grid, it is time to implement a Samza Job. A Job in Samza parlance is roughly

equivalent to a Bolt in Storm. However, rather than being assembled into a

Topology, Jobs in Samza are all independent entities, and any composition is

simply a matter of reading or writing to a particular Kafka topic.

On the one hand, this potentially allows for signifi cantly more effi cient uses of

resources and easier management of highly interconnected fl ows. For example,

a single Samza Job can be responsible for taking an input stream and produc-

ing a “valid” input stream that can be used by any number of downstream Job

implementations. New processes can also be easily added to take advantage of

these streams, whereas before they might have had to reprocess the entire raw

stream of data again with only a small change.

158 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 158

The downside of this approach is that the structure of the topology of jobs is

now purely abstract. In the Storm model, a topology is a distinct thing, and all

of the processing steps are controlled and monitored from a central location.

In the Samza model, the topology is implied in the arrangement of topics, but

never explicitly stated. This can lead to problems with managing changes in

upstream Job implementations or the inadvertent introduction of cycles into

the topology’s structure.

Preparing a Job Application

A Samza Job is made up of two pieces. The fi rst is the actual code, which is an

implementation of the StreamTask interface. The second piece is the confi guration

of the Task, including the name of the input streams and the confi guration of

logging, monitoring, and other ancillary facilities. Any number of Job imple-

mentations can be hosted and packaged together for ease of deployment.

If not using the grid implementation previously described, it will be neces-

sary to install the Samza Maven packages. These packages are not yet available

on Maven Central or another Maven repository so they need to be built and

installed locally. Check out the Git repository for Samza and then run the Gradle

script using the provided gradlew driver:

$ git clone http://git-wip-us.apache.org/repos/asf/incubator-samza.git
$ cd incubator-samza
$./gradlew -PscalaVersion=2.8.1 clean publishToMavenLocal

When this is complete, the project containing the Job implementation should

be updated to include the samza-api dependency in its pom.xml fi le:

<dependency>
<groupId>org.apache.samza</groupId>
<artifactId>samza-api</artifactId>
<version>0.7.0</version>
</dependency>

Confi guring a Job

Samza’s Job confi gurations are accomplished through the use of a Properties fi le

that is passed to the Samza framework when submitting the Job to the YARN

framework. The Properties fi le starts with a Job factory class specifi cation and

a Job name, along with a distribution package:

job.factory.class=org.apache.samza.job.yarn.YarnJobFactory
job.name=wordcount-split
yarn.package.path=
 file://${basedir}/target/
 ${project.artifactId}-${pom.version}-dist.tar.gz

http://git-wip-us.apache.org/repos/asf/incubator-samza.git

 Chapter 5 ■ Processing Streaming Data 159

c05.indd 05:36:24:PM 06/12/2014 Page 159

The factory class will generally always be YarnJobFactory, and the name is

currently set to wordcount-split, which is implemented in the next section. The

yarn.package.path is fi lled in by the build process and specifi es the name of an

archive that YARN transfers to each of the nodes. This contains any support

JAR fi les that might be needed along with the code that implements the Job.

Next, the task is defi ned. This consists, minimally, of the task.class and task

.inputs properties:

task.class=wiley.streaming.samza.WordSplitTask
task.inputs=kafka.wikipedia-raw

It can also include properties for a task’s checkpoint feature, which uses Kafka

to record the task’s state and allows Samza to recover in the event of a failure:

task.checkpoint.factory=
org.apache.samza.checkpoint.kafka.KafkaCheckpointManagerFactory
task.checkpoint.system=kafka
task.checkpoint.replication.factor=1

Next up is Samza’s comprehensive metric reporting system. It is entirely

optional and, at the moment, has both a snapshot and jmx fl avor available. This

example uses both fl avors at the same time:

metrics.reporters=snapshot,jmx
metrics.reporter.snapshot.class=
org.apache.samza.metrics.reporter.MetricsSnapshotReporterFactory
metrics.reporter.snapshot.stream=kafka.metrics
metrics.reporter.jmx.class=
org.apache.samza.metrics.reporter.JmxReporterFactory

The Serialization section of the Job confi guration allows for the defi nition

of the various Serializers and Deserializers (these are often combined into

“SerDe” in processing jargon) used in the Job. This example uses the built-in

JSON SerDe as well as the Metrics SerDe used by Samza for its metric snapshots:

serializers.registry.json.class=
org.apache.samza.serializers.JsonSerdeFactory
serializers.registry.metrics.class=
org.apache.samza.serializers.MetricsSnapshotSerdeFactory

Finally, the Input and Output systems are defi ned. These implement streams

in the Samza environment and are pluggable systems, though only the Kafka

stream is shipped with Samza at the moment. This confi guration defi nes the Kafka

system used by task.inputs as well as the output defi ned within the task itself.

It also defi nes the metrics stream system used by the earlier metrics defi nition:

systems.kafka.samza.factory=
org.apache.samza.system.kafka.KafkaSystemFactory
systems.kafka.samza.msg.serde=json
systems.kafka.consumer.zookeeper.connect=localhost:2181/

160 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 160

systems.kafka.consumer.auto.offset.reset=largest
systems.kafka.producer.metadata.broker.list=localhost:9092
systems.kafka.producer.producer.type=sync
Normally, we'd set this much higher, but we want things to
look snappy in the demo.
systems.kafka.producer.batch.num.messages=1
systems.kafka.streams.metrics.samza.msg.serde=metrics

The systems.kafka.consumer.zookeeper.connect and kafka.producer.metadata

.broker.list values should be updated to refl ect the deployment environment.

If using the Hello Samza grid, these values are appropriate.

Task Communication

The systems and serializers Job properties in the previous section defi ne the

input and, to some extent, output mechanisms of the task to be implemented.

These are made available in Samza via the SystemConsumer and SystemProducer

interfaces, which defi ne a task’s input and output, respectively.

The SystemConsumer is defi ned by the task.inputs property in the Job con-

fi guration and is responsible for polling the input partitions. It produces

IncomingMessageEnvelope objects that are then passed to the task. This object

consists of three parts:

 ■ The key, accessible via the getKey method. This is the key used to parti-

tion the data within the Kafka stream and corresponds directly to the key

portion of a Kafka message.

 ■ The message, accessible via the getMessage method. This typically contains

the payload of the stream.

 ■ The StreamSystemPartition object, accessible via the getSystemStreamPartition

method. This contains metadata about the message, such as its originat-

ing partition and offset information. Most tasks do not need to access this

information directly.

The SystemProducer is usually accessed through a SystemStream defi ned as a

static fi nal member of the task’s class. For example, to defi ne a Kafka output

stream on the topic “output” add the following line to the class defi nition:

private static final SystemStream OUTPUT =
 new SystemStream("kafka","output");

This SystemStream object is used to initialize an OutgoingMessageEnvelope along

with the message payload and an optional key payload. This object is then sent

to the MessageCollector, which manages placing the outgoing message on the

specifi ed stream.

 Chapter 5 ■ Processing Streaming Data 161

c05.indd 05:36:24:PM 06/12/2014 Page 161

Implementing a Stream Task

The task itself is defi ned by the StreamTask interface, which is implemented

by all task classes. This interface has a single process method, which takes

IncomingMessageEnvelope, MessageCollector, and TaskCoordinator as arguments. The

IncomingMessageEnvelope is a message from the task.inputs streams as described

in the previous section, whereas the MessageCollector is used to emit events to

output streams, which are defi ned within the class.

For example, this task handles the task of splitting the input of the wikipedia-raw

topic into words, the same way that words were split up in the Trident example

earlier in this chapter. In this case the JSON SerDe is being used to parse the

incoming data (which is in JSON) and sent to the wikipedia-words topic.

public class WordSplitTask implements StreamTask {
 private static final SystemStream OUTPUT_STREAM
 = new SystemStream("kafka","wikipedia-words");

 public void process(IncomingMessageEnvelope envelope,
 MessageCollector collector,
 TaskCoordinator coordinator) throws Exception {
 try {
 @SuppressWarnings("unchecked")
 Map<String,Object> json =
 (Map<String,Object>)envelope.getMessage();
 String raw = (String)json.get("raw");
 raw = raw.substring(2,raw.indexOf("]]"));
 for(String word : raw.split("\\s+")) {
 HashMap<String,Object> val = new HashMap<String,Object>();
 val.put("word", word);
 collector.send(new OutgoingMessageEnvelope(OUTPUT_STREAM,val));
 }
 } catch(Exception e) {
 System.err.println(e);
 }
 }
}

Initializing Tasks, Windows

In addition to the StreamTask interface, a task may implement the InitableTask

interface. This adds an init method that is called when the task object is cre-

ated. This is used to establish connections to resources at run time that cannot

be statically initialized.

Tasks that should periodically emit values, such as counting operations, can

implement the WindowableTask interface. This interface adds a window method

that is periodically called by the Samza framework.

162 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 162

For example, a task that consumes the output of wikipedia-words from the

previous section and maintains counts of the individual words might use all

three interfaces. In this case, the init interface is not strictly necessary, but it is

included for completeness:

public class WordCountTask implements StreamTask,
 InitableTask, WindowableTask {

 private static final SystemStream OUTPUT_STREAM =
 new SystemStream("kafka","wikipedia-counts");

 HashMap<String,Integer> counts = new HashMap<String,Integer>();
 HashSet<String> changed = new HashSet<String>();

 public void window(MessageCollector arg0, TaskCoordinator arg1)
 throws Exception {

 for(String word : changed) {
 HashMap<String,Object> val = new HashMap<String,Object>();
 val.put("word", word);
 val.put("count", counts.get(word));
 arg0.send(new OutgoingMessageEnvelope(OUTPUT_STREAM,val));
 }
 changed.clear();
 }

 public void init(Config arg0, TaskContext arg1) throws Exception {
 counts.clear();
 changed.clear();
 }

 public void process(IncomingMessageEnvelope arg0,
 MessageCollector arg1,
 TaskCoordinator arg2) throws Exception {
 @SuppressWarnings("unchecked")
 Map<String,Object> json = (Map<String,Object>)arg0.getMessage();
 String word = (String) json.get("word");
 counts.put(word,
 (counts.containsKey(word) ? counts.get(word) : 0) + 1);
 changed.add(word);
 }
}

The properties fi le that goes along with this Task specifi es a 10-second

windowing cycle:

Job
job.factory.class=org.apache.samza.job.yarn.YarnJobFactory
job.name=word-count

YARN
yarn.package.path=

 Chapter 5 ■ Processing Streaming Data 163

c05.indd 05:36:24:PM 06/12/2014 Page 163

 file://${basedir}/target/
 ${project.artifactId}-${pom.version}-dist.tar.gz

Task
task.class=wiley.streaming.samza.WordCountTask
task.inputs=kafka.wikipedia-words
task.window.ms=10000

Serializers
serializers.registry.json.class=
org.apache.samza.serializers.JsonSerdeFactory

Systems
systems.kafka.samza.factory=
org.apache.samza.system.kafka.KafkaSystemFactory
systems.kafka.samza.msg.serde=json
systems.kafka.consumer.zookeeper.connect=localhost:2181/
systems.kafka.consumer.auto.offset.reset=largest
systems.kafka.producer.metadata.broker.list=localhost:9092
systems.kafka.producer.producer.type=sync
systems.kafka.producer.batch.num.messages=1

Packaging a Job for YARN

To package Jobs for YARN, you must create a distribution archive. This archive

contains not only the JAR fi le for the Job implementation, but all of the confi gu-

ration fi les and dependencies for the project. It also includes shell scripts for

starting Jobs using YARN. This archive will be distributed by YARN to each of

the nodes that will run the Job.

The easiest way to construct this archive is to use the Maven assembly plug-

in. This plug-in is added to the plugins section of the pom.xml fi le:

<plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.3</version>
 <configuration>
 <descriptors>
 <descriptor>src/main/assembly/src.xml</descriptor>
 </descriptors>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

164 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 164

This plug-in references an assembly XML fi le that is usually located in src/

main/assembly.src. It defi nes the fi les that should be included as well as the

dependencies to include. It begins by defi ning the type of assembly to build—in

this case a tar.gz fi le:

<assembly
xmlns=
"http://maven.apache.org/plugins/maven-assembly-plugin/assembly
 /1.1.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2
http://maven.apache.org/xsd/assembly-1.1.2.xsd"
>
 <id>dist</id>
 <formats>
 <format>tar.gz</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>

Next, include various nondependency fi les. This includes, most importantly,

the confi guration fi les for the Jobs included in the artifact:

 <fileSets>
 <fileSet>
 <directory>${basedir}/..</directory>
 <includes>
 <include>README*</include>
 <include>LICENSE*</include>
 <include>NOTICE*</include>
 </includes>
 </fileSet>
 </fileSets>
 <files>
 <file>
 <source>${basedir}/src/main/config/word-split.properties</source>
 <outputDirectory>config</outputDirectory>
 <filtered>true</filtered>
 </file>
 <file>
 <source>${basedir}/src/main/config/word-count.properties</source>
 <outputDirectory>config</outputDirectory>
 <filtered>true</filtered>
 </file>

 </files>

This section includes the shell scripts from the samza-shell artifact as well as

specifi es the dependencies that should be included in the distribution tar.gz fi le:

 <dependencySets>
 <dependencySet>

http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2
http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema-instance
http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2maven.apache.org/xsd/assembly-1.1.2.xsd

 Chapter 5 ■ Processing Streaming Data 165

c05.indd 05:36:24:PM 06/12/2014 Page 165

 <outputDirectory>bin</outputDirectory>
 <includes>
 <include>org.apache.samza:samza-shell:tgz:dist:*</include>
 </includes>
 <fileMode>0744</fileMode>
 <unpack>true</unpack>
 </dependencySet>
 <dependencySet>
 <outputDirectory>lib</outputDirectory>
 <includes>
 <include>org.apache.samza:samza-core_2.8.1</include>
 <include>org.apache.samza:samza-kafka_2.8.1</include>
 <include>org.apache.samza:samza-serializers_2.8.1</include>
 <include>org.apache.samza:samza-yarn_2.8.1</include>
 <include>org.slf4j:slf4j-log4j12</include>
<!-- <include>wiley:streaming-chapter-5</include> -->
 <include>org.apache.kafka:kafka_2.8.1</include>
 </includes>
 <useTransitiveFiltering>true</useTransitiveFiltering>
 </dependencySet>
 </dependencySets>
</assembly>

Executing Samza Jobs

After building the distribution archive, copy it to an appropriate location. For

a multinode installation, this would be a machine with the appropriate YARN

client installed.

Unpack the archive into an appropriate directory, such as deploy:

$ mkdir deploy
$ cd deploy
$ tar xvfz ../target/streaming-chapter-5-1-dist.tar.gz
$ cd ..

Then, use the included run-job.sh script to submit the Jobs to YARN. For

example, to submit the WordSplitTask and the WordCountTask examples for this

chapter, execute the following commands:

$./deploy/bin/run-job.sh \
> --config-factory=\
> org.apache.samza.config.factories.PropertiesConfigFactory
> --config-path=\
> file://$PWD/deploy/config/word-split.properties
$./deploy/bin/run-job.sh \
> --config-factory=\
> org.apache.samza.config.factories.PropertiesConfigFactory
> --config-path=\
> file://$PWD/deploy/config/word-count.properties

166 Part I ■ Streaming Analytics Architecture

c05.indd 05:36:24:PM 06/12/2014 Page 166

Then check the wikipedia-counts topic for data to ensure the jobs are running

properly:

$./deploy/kafka/bin/kafka-console-consumer.sh \
> --zookeeper localhost:2181 --topic wikipedia-counts

Conclusion

This chapter introduced two frameworks for stream processing: the more mature

Storm framework and the newer Samza framework. Both frameworks are fairly

new and have a long way to go before they would be considered to be complete

frameworks. However, both can and are used to build useful streaming applica-

tions today. Both can be adapted to fi ll nearly any need and will become more

complicated as they mature.

After the processing is done, it usually needs to be saved somewhere to be useful.

The next chapter covers storage options for these streaming frameworks so that

the data can be used by front-end applications for visualization or other tasks.

167

c06.indd 05:36:44:PM 06/12/2014 Page 167

One of the primary reasons for building a streaming data system is to allow

decoupled communication and access between different aspects of the system.

A key system is the storage and backup mechanism for both raw data as well

as data that has been processed by one or more of the processing environments

covered in the previous chapter.

Processing the data is one thing, but for it to be delivered to the end user it

needs to be stored somewhere. That storage location could be the processing

system, using something like Storm’s Distributed Remote Procedure Calls (DRPC)

and in-bolt memory storage. However, in a production environment this simply

isn’t practical. First, the data usually need to persist for a time, which means the

memory requirements become prohibitive. Second, it means that maintenance

for the processing system necessitates an outage of any external interfaces, despite

the fact that the two have nothing to do with each other. Finally, it is usually

desirable to persist results to tertiary storage (disks or “cloud” storage devices)

so that the data may be more easily analyzed for long-term trends.

This chapter considers how to store data after it has been processed. There

are a number of storage options available for processing systems that need to

deliver their data to some sort of front-end interface, typically either an applica-

tion programming interface (API) or a user interface (UI). Although there are

dozens of potential options, this chapter surveys some of the more common

C H A P T E R

6

Storing Streaming Data

168 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 168

choices. Systems with different philosophies and constraints are intentionally

chosen to highlight these differences. This allows for more informed decision-

making when considering storage of specifi c applications.

For longer term storage and analysis, a batch system often makes more sense

than a streaming data system. Largely, this is because a streaming system

chooses to trade off relatively expensive storage options, such as main memory,

for lower random access latency. A batch system takes the opposite side of this

trade off, choosing high capacity storage with high random access latency,

such as traditional spinning platters. Fortunately, whereas a batch system’s

random access performance is usually not suffi cient for streaming systems, its

linear read performance is often very good making them an excellent choice for

offl ine analysis.

Hadoop has now become the gold standard for these batch environments.

This chapter describes setting up and integrating Hadoop into the streaming

environment.

This chapter also discusses the basics of using Hadoop as a gateway to exist-

ing business intelligence infrastructures. The reason for this is that, although

this book is focused on real-time streaming data analysis, no modern analyt-

ics system exists in a vacuum. A system must integrate with other pieces of an

organization’s environment if it hopes to gain widespread adoption.

Consistent Hashing

Several of the data stores described in the remainder of this chapter support

the distribution of data across several servers. This allows them to scale more

easily as the size of the data grows. It also generally improves performance for

both updates and queries. A popular technique to implement the distribution

of data is known as consistent hashing.

Most data stores have some notion of a “key” element. In a relational database

it is called a primary key and in key-value stores it is simply called the keys. The

most important element of the key is that there can only be a single entry for it

in the data store (relational databases that do not have a specifi ed primary key

generally create an arbitrary primary key that is hidden from the user).

Each of these primary keys corresponds to a numerical value that is then

assigned to a specifi c server. The mechanism used to perform this assignment

varies, but the effect is that a specifi c primary key is always assigned to the

same server for storage and querying.

This helps to distribute the load across a variety of servers, but does so at

the expense of reliability. If any of the servers crashes, then the data stored on

that server becomes unavailable and, as the number of servers increases, the

probability that a server will have crashed at a given time increases.

 Chapter 6 ■ Storing Streaming Data 169

c06.indd 05:36:44:PM 06/12/2014 Page 169

To improve the reliability of the system, the data is instead consistently hashed.

In consistent hashing the servers are fi rst placed into a specifi c stable ordering,

called a ring. When a primary key is modifi ed the initial server selection pro-

ceeds as before, but the data is also modifi ed on the next k servers in the ring

(the reason for the ring is so that the servers to modify “wraps around” to the

beginning of the list if the primary server is within k servers of the end of the list).

If one of the servers becomes unavailable, clients can simply update and query

the remaining server. If the server is returned to the pool, it can then copy its

data from one of the other servers before considering itself up-to-date.

The data store undergoes a similar process when adding a new server or

permanently removing a server from the ring. When adding a server, the new

server will copy data appropriate to its location in the ring. When removing

a server, a pre-existing server will now need to hold the data from that ring,

which should be copied from the existing servers. Both of these operations can

happen in the background; since there are other servers in the ring that can

serve up queries for data, the server being updated is missing. Updates from a

client can simply be made to the new server without checking.

“NoSQL” Storage Systems

So-called “NoSQL” storage systems have grown in popularity over the last

few years, largely in step with the rise of Big Data applications. This section

covers a broad range of different approaches that are largely characterized by

high-performance reads and writes, usually at the expense of the usual requirements

of a transactional database, the complexity of the queries, or (most often) both.

For many Big Data and, in particular, real-time streaming applications, these

are considered to be acceptable tradeoffs. Especially when using the Lambda

Architecture discussed later in this chapter, the requirements of a data store

for real-time analysis can be quite relaxed.

Although there are dozens of different storage options available for streaming

applications, this section discusses just three. They have been chosen to demon-

strate the range of possible choices and, in a production system, it is likely that

more than one of these systems will be in use as they have different strengths

and weaknesses. These systems are also generally a complement rather than a

replacement for the relational database.

The fi rst of these stores is the simplest: a key-value store. There are many

different key-value stores, but Redis is one of the more popular options. It has

performance similar to that of Memcached, but provides native support for higher

order data structures that are very useful for many streaming analysis applica-

tions. Although not natively distributed, it focuses on very high-performance

single-machine applications.

170 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 170

The next store is MongoDB, which is a document store. It is schema-less and

has proven popular for applications that maintain rich profi les or data that can

be naturally ordered into documents. It supports master-slave replication as

well as sharding (partitioning). It can support very high write performance,

also near Memcached levels, at the expense of safety. In modern versions of the

database, this tradeoff can be tuned at the client level.

Finally, Cassandra is a decentralized database system that takes features from

both key-value stores and tabular databases using elements from both Amazon’s

DynamoDB as well as Google’s BigTable. Early versions suffered from a diffi cult-

to-use query language, which essentially exposed internal data structures.

However, more recent versions have introduced a much more usable query

language that strongly resembles SQL, making it a much more viable option.

The rest of this section discusses the usage of each option in turn. The ques-

tion of which one is best is left largely unanswered. This is because there is no

“best” technology for all applications. Does this mean that multiple database

technologies might be used in a single environment? Absolutely. This is why

the last few chapters have been concerned with building a fl exible data-fl ow

system: Data needs to fl ow and be transformed between systems.

Redis

Redis is a simultaneously simple and complicated key-value store. It is simple

in that it makes little attempt to solve two problems often solved by key-value

stores: working sets larger than main memory and distributed storage. A Redis

server can only serve data that fi ts in its main memory. Although it has some

replication facilities, it does not support features such as eventual consistency,

and even though Redis has been in the works for some time, even sharding and

consistent hashing are provided by outside services, if they’re provided at all. In

many ways, Redis is more closely related to caching systems like Memcached

than it is a database.

Unlike caching systems, Redis provides server-side support for high-level data

structures with atomic update capability. The basic structures are lists, sets, hash

tables, and sorted sets in addition to the basic key-value functionality. It also

includes the capability to expire keys and a publish-subscription mechanism

that can be used as a messaging bus between, for instance, the real-time stream-

ing processing system and a front end. Later chapters provide more detail, but

when keys are updated a front-end server can be notifi ed of the event so that

the user interface may be updated.

Getting Set Up

On most systems, Redis is available through the standard package manager.

However, if Redis is out-of-date or otherwise unavailable through a package

 Chapter 6 ■ Storing Streaming Data 171

c06.indd 05:36:44:PM 06/12/2014 Page 171

manager, it is easy to build it on Unix-like systems. After downloading the

appropriate archive, the usual make && make install will build a suitable ver-

sion of Redis. By default, this build is 64 bit, but it is possible to build a 32-bit

version. Building a 32-bit version will save some memory, but limits Redis’ total

footprint to 4GB.

N O T E For users of Amazon’s EC2 service, Redis is now included as part of the

Elasticache. The version usually lags the most recent release, but it makes it really easy

to get started using Redis in either a development or a production environment. Just

select redis from the drop-down (it shows memcache by default).

Redis ships with a fairly good set of default confi guration parameters, but

there are some options that should be considered when using Redis. The con-

fi guration entries are usually held in the redis.conf fi le passed to the server

when it starts.

$redis-server
 .
 _.-``__ ''-._
 .-`` `. `. ''-._ Redis 2.6.16 64 bit
 .-`` .-```. ```\/ _.,_ ''-._
 (' , .-` | `,) Running in stand alone mode
 |`-._`-...-` __...-.``-._|'` _.-'| Port: 6379
 | `-._ `._ / _.-' | PID: 23908
 `-._ `-._ `-./ _.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' | http://redis.io
 `-._ `-._`-.__.-'_.-' _.-'
 |`-._`-._ `-.__.-' _.-'_.-'|
 | `-._`-._ _.-'_.-' |
 `-._ `-._`-.__.-'_.-' _.-'
 `-._ `-.__.-' _.-'
 `-._ _.-'
 `-.__.-'

[23908] 09 Nov 14:16:16.249 # Server started, Redis version 2.6.16
[23908] 09 Nov 14:16:16.250 * The server is now ready to accept
 connections on port 6379

Working with Redis

The easiest way to start exploring Redis is using the redis-cli tool to connect

to a redis server. Having started a local copy of the redis server, starting the

redis client should look something like this:

$ redis-cli
redis 127.0.0.1:6379> info
Server
redis_version:2.6.16

http://redis.io

172 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 172

redis_git_sha1:00000000

[...]

Memory
used_memory:1082448
used_memory_human:1.03M
used_memory_rss:319488
used_memory_peak:1133520
used_memory_peak_human:1.08M
used_memory_lua:31744
mem_fragmentation_ratio:0.30
mem_allocator:libc

[...]

Replication
role:master
connected_slaves:0

CPU
used_cpu_sys:69.16
used_cpu_user:35.95
used_cpu_sys_children:0.00
used_cpu_user_children:0.00

Keyspace
> db0:keys=1,expires=0,avg_ttl=0

The preceding output shows the results of the info command. Some of the

output has been omitted to save space, but there are some items of interest that

become useful when administering and monitoring a Redis instance.

Because Redis is a key-value store, the most basic commands are for set-

ting keys. Keys in the Redis world are generally considered to be string val-

ues, even when they are being used to represent integer or fl oating-point

values. To set or get a key, use the SET <key> <value> and GET <key> com-

mands, respectively. If there are several keys to be set or retrieved in a single

call, then you can use the MSET <key1> <value1> <key2> <value2> and

MGET <key1> <key2> commands instead of issuing multiple calls. In all cases,

if a key does not exist the GET command and its variants return a NULL value.

If only an existence check is required, the EXISTS command is also available.

The existence command is usually used in concert with Redis’ scripting func-

tionality, which is discussed later.

The next-most-complicated data structure in Redis is the hash table. This

form of key allows for the storage of subkeys similar to the Map collection in

 Chapter 6 ■ Storing Streaming Data 173

c06.indd 05:36:44:PM 06/12/2014 Page 173

Java or a Dictionary type in other languages such as JavaScript. Instead of the

simple GET and SET commands, you use HSET <key> <subkey> <value> and

HGET <key> <subkey> to access elements of the hash table with HMSET and

HMGET allowing for updates or retrieval of multiple subkeys from a hash table.

To retrieve all subkeys and their values, use HGETALL with HKEYS and HVALUES

retrieving all subkey names or subkey values respectively.

Both normal keys and hash tables support atomic counters. For normal

keys, the INCR and INCRBY commands increment the value of the key by 1 for

the former or the value specifi ed by the command. In both cases, the string

value contained within the key is interpreted as a 64-bit signed integer for the

purposes of arithmetic. Decrementing a counter is handled by the DECR and

DECRBY commands. The INCRBYFLOAT command works like INCRBY, except that

the string contained in the value is interpreted as a double-precision fl oating-

point value.

Atomic counters for hash tables operate on subkeys. Rather than implement

the full suite of counter commands, hash tables only implement a variant of

INCRBY and INCRBYFLOAT, called HINCRBY and HINCRBYFLOAT, respectively.

T I P At fi rst glance, a Hash with its subkeys is unnecessary because there is already a

key-value store. However, there are many cases where using a hash makes more sense

than simply using keys. First, if there are a few diff erent metrics to be stored, the Hash

storage mechanism can actually be more effi cient than using separate keys. This is

because Redis’ hash table implementation uses ziplists for small hashes to improve

storage performance. Second, if these metrics are all related then the HGETALL com-

mand can be used to retrieve all of the metrics in a single command. The nature of the

hash structure still lets all of the keys be updated independently so there is no real

disadvantage. Finally, it is common to expire data in the Redis database after some

time. Largely, this is done to control the memory footprint of the database. Using a

hash table means only having to expire a single key, which helps to maintain consis-

tency in reporting.

The list data structure in Redis is often used to implement various queue-like

structures. This is refl ected in the command set for the list data type, which

is focused on pushing and popping elements from the list. The basic com-

mands are LPUSH (RPUSH) and LPOP (RPOP). Redis lists are bidirectional, so the

performance is the same for both left and right inserts. Using the same “side”

of command (for example, LPUSH and LPOP) results in stack, or Last-In-First-Out

(LIFO), semantics. Using opposite-sided commands (for example, LPUSH and

RPOP) results in queue, or First-In-First-Out (FIFO), semantics.

174 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 174

IMPLEMENTING A RELIABLE QUEUE

Redis provides a fairly simple mechanism for implementing a reliable queue using the

RPOPLPUSH (or its blocking equivalent) and the LREM commands. As the name sug-

gests, the RPOPLPUSH command pops an element off the tail of a list, like the RPOP

command, and then pushes it onto the head of a second list, like the LPUSH command,

in a single atomic action. Unlike separate RPOP and LPUSH commands, this ensures

that the data cannot be lost in transit between the clients. Instead, the item to be pro-

cessed remains on an “in-fl ight” list of elements currently being processed.

The command returns the element moved between the two lists for processing.

When processing is complete, the LREM is executed against the processing list to

remove the element from the processing list. This simple example shows the basic

process for implementing the queue:

redis 127.0.0.1:6379> LPUSH queue item1 item2 item3 item4 item5

(integer) 5

redis 127.0.0.1:6379> RPOPLPUSH queue processing

"item1"

redis 127.0.0.1:6379> LRANGE queue 0 100

1) "item5"

2) "item4"

3) "item3"

4) "item2"

redis 127.0.0.1:6379> LRANGE processing 0 100

1) "item1"

redis 127.0.0.1:6379> LREM processing 0 item1

(integer) 1

redis 127.0.0.1:6379> LRANGE processing 0 100

(empty list or set)

redis 127.0.0.1:6379>

The “Implementing a Reliable Queue” example demonstrates pushing several

items onto the queue list. Next an element is moved from the queue list to the

processing list. Finally, the element is removed from the processing list.

When implementing this using a client, it is usually more common to use the

BRPOPLPUSH command. This is a blocking version of the normal command that will

wait until an element is pushed onto the list. This avoids the need to poll on the client

side. The command supports a timeout feature in case the client needs to perform

some other function.

Another client is usually implemented to handle elements that have been placed

on the processing list but never removed. The cleanup client can periodically scan the

list, and if it sees an element twice, push it back onto the queue list for reprocessing.

There is no need to remove the original item from the processing queue, a successful

LREM will remove all copies of the element and the processing queue should generally

remain small, so size is not a concern.

 Chapter 6 ■ Storing Streaming Data 175

c06.indd 05:36:44:PM 06/12/2014 Page 175

The other two data types implemented by Redis are Sets and Sorted Sets.

Like the Java Set collection, these data structures maintain lists of distinct

values. Most of the Set and Sorted Set operations have O(n) processing time in

the size of the set.

Basic sets are fairly simple constructs and useful for keeping track of unique

events or objects in a real-time stream. This can become infeasible when the

size of the set gets very large, mostly due to the space requirements, which are

linear in the number of unique elements in the set. Adding elements to the set

is accomplished through the SADD command, which takes a KEY and any number

of elements to add. It returns the number of elements newly added to the set.

Elements are deleted from the set using the SREM command. It has the same

arguments as the SADD command. The SPOP command works similarly to SREM,

but returns and removes a random element from the set. The SMOVE command

combines the SADD and SREM commands into a single atomic operation to move

elements between two different sets.

Set membership queries are done using the SISMEMBER command. This com-

mand, unfortunately, only takes a single element as its argument. To implement

“any” or “all” variants of membership queries, multiple SISMEMBER commands

must be issued, which is accomplished using Redis’ scripting capabilities,

discussed later in this section.

Redis also supports set operations between different set objects in the data-

base. The SUNION, SINTER, and SDIFF commands return a bulk reply containing,

respectively, the union, intersection, or difference of two sets. It is also possible

to store the result into another set by adding the STORE modifi er to each of the

commands. For example, to store the union of two sets into a third set, you use

the SUNIONSTORE command. You can obtain the size of any set using the SCARD

command.

Sorted Sets add a score to each element of the set, which defi nes the sort order

for the elements within the set. This is useful for maintaining leaderboards

and other similar structures. Generally, the commands for updating a sorted

set are the same as those used for a normal set, but prefi xed by a Z instead of

an S and taking an extra “score” argument. In the case of the ZADD command,

the score comes before each element to be added. If the element already exists,

the existing score is updated with the new score.

The union and intersection operations are supported by sorted sets as the

ZUNIONSTORE and ZINTERSTORE commands. These operations work a bit differ-

ently than their unsorted counterparts because they have to handle the pos-

sibility of a shared element having two different scores. Both operations take

an optional WEIGHTS parameter, which defi nes a multiplicative factor to apply

to the score of each set. For example, WEIGHTS 2 3 would multiply the fi rst set’s

scores by 2 and the second set’s scores by 3. By default, these two scores would

176 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 176

be added together for each element present in both sets. This can be modifi ed

by the optional AGGREGATE parameter. This parameter takes a value of SUM (the

default), MIN, or MAX. When SUM is selected the scores of elements contained in

two or more sets will be added together after their weight has been applied.

When MIN is used, the smallest weighted value is used. For MAX, the largest

weighted value is used.

Sorted sets introduce a few new commands related to using the scores asso-

ciated with each element. The ZINCRBY command increments the score of an

element in the set. If the element is not present, it is assumed to have a score of

0.0 and is inserted into the sorted set at that time.

The ZCARD command works the same way as SCARD, returning the cardinal-

ity of the entire set. In addition, the ZCOUNT command returns the number of

elements between two scores. For example,

ZCOUNT myzset 1 3

returns the number of elements between 1 and 3 inclusive (that is, 1 ≤ x ≤3). To

return an exclusive count (that is, 1 < x < 3), a (is prepended to the scores like so:

ZCOUNT myzset (1 (3.

To retrieve the elements within a range rather than the count, the ZRANGEBYSCORE

and ZREVRANGEBYSCORE commands are used. Their arguments are the same as

ZCOUNT, but it is important to remember that ZREVRANGEBYSCORE expects its fi rst

argument to be larger than its second argument. For example,

ZREVRANGEBYSCORE myzset 1 3

does not return any elements, whereas

ZREVRANGEBYSCORE myzset 3 1

returns the expected results. Both commands take an optional WITHSCORES

parameter that will return the element and its associated score. They also both

support a LIMIT parameter that takes an offset and a count for implementing

paged interfaces. The offset requires that the sorted set be traversed so it can

be slow for very large offsets.

For applications like leaderboards, the ZRANGE and ZREVRANGE return the ele-

ments between positions start and stop. These positions are 0-indexed so as

to retrieve the top 10 values by score. For example,

ZREVRANGE myzset 9 0

returns the appropriate values. Like many programming languages, the same

effect can be achieved with ZRANGE and negative positions. The −1 position is

the last element of the set and so on.

 Chapter 6 ■ Storing Streaming Data 177

c06.indd 05:36:44:PM 06/12/2014 Page 177

Scripting

Redis 2.6 introduced a built-in Lua scripting engine to eventually take the place

of its existing transaction facility. This functionality is accessed through the

EVAL command, which has the following form:

EVAL <script> <num keys> <key 1> ... <key n> <arg 1> ... <arg n>

Scripts can sometimes be quite long, so Redis also provides an EVALSHA com-

mand, which uses the fi xed-size SHA1 hash in place of the actual script. If the

redis server does not know about a particular script it returns a special error that

instructs the EVALSHA to fall back to the normal EVAL command. Most clients do

this implicitly when executing an EVAL command, so it is usually not necessary

to take this into account.

All scripts, no matter the client connection, execute in a single Lua interpreter

and can be considered to be essentially atomic operations when compared

against other scripts.

MOST RECENT EVENT TRACKING

The inclusion of a scripting language directly in the Redis engine makes it easy to do a

few things that are otherwise diffi cult to get right. One of those things is “Most Recent

Event Tracking.” This is often used for things like attribution modeling where some

target event is correlated against the most recent previous event.

Doing this in most key-value stores usually involves simply assuming that events

are being processed in time “ordered enough” such that it is unlikely that any two

events for a given user will get “out of order.” In that case, a simple SET operation

suffi ces.

However, in many cases, the ordering assumption does not hold or more compli-

cated arrangements are needed. For example, it may be that some event types are

more important than others, so even if an event occurs later, it should not become the

“most recent” if it is a lesser event. In a normal key-value system, this requires multiple

round-trips to the server. First, the current value is obtained so the update logic can

be applied. If the update succeeds, a second round-trip updates the event.

Using Lua scripting, this update process can be done entirely on the server side.

Assuming that the events are JSON objects with a ts fi eld representing the timestamp

of the event, an update script would look something like this:

if redis.call("EXISTS",KEYS[1]) == 1 then
 local current = tonumber(
 cjson.decode(
 redis.call("GET",KEYS[1])
)["ts"]
)
 local new = tonumber(cjson.decode(ARGV[1])["ts"])
 if(new >= current) then
 redis.call("SET",KEYS[1],ARGV[1])

Continues

178 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 178

 return 1
 else
 return 0
 end
else
 redis.call("SET",KEYS[1],ARGV[1])
 return 1
end

To try it out, save this script as timestamps.lua or use the one included in the

book’s source code. After starting the Redis server, try setting a few diff erent events

with timestamps:

$ redis-cli EVAL "$(cat timestamps.lua)" 1 user '{"ts":0}'

(integer) 1

$ redis-cli EVAL "$(cat timestamps.lua)" 1 user '{"ts":2}'

(integer) 1

$ redis-cli EVAL "$(cat timestamps.lua)" 1 user '{"ts":10}'

(integer) 1

$ redis-cli EVAL "$(cat timestamps.lua)" 1 user '{"ts":5}'

(integer) 0

$ redis-cli GET user

"{\"ts\":10}"

Even though timestamps are presented out of order, the most recent timestamp

is still preserved. More complicated tests of the JSON objects could be included after

line 4 of the preceding code as well. This also has the advantage of being an atomic

operation because updates to the user are only done through the script, which will

always execute in the same Lua interpreter.

Publish/Subscribe Support

In addition to being a key-value store, Redis can serve as a simple message bus.

This is particularly useful in streaming applications as it allows a processing

system like Storm to notify a front end of important events. An example of this

is given in Chapter 7, “Delivering Streaming Metrics,” which uses this facility

to implement a basic real-time dashboard.

Events in Redis are simple text values that are published to a channel using

the PUBLISH command:

PUBLISH achannel "some message"

These PUBLISH commands are delivered to clients who have subscribed to

one or more channels using the SUBSCRIBE command. Conveniently, these

commands are replicated just like any other command in Redis so they will be

continued

 Chapter 6 ■ Storing Streaming Data 179

c06.indd 05:36:44:PM 06/12/2014 Page 179

delivered to clients who have subscribed to a slave of the master. However, all

publish commands must be issued on the master.

Replication

Redis supports basic master-slave replication. It generally works fairly well,

but as of the 2.6 series, a loss of synchronization between the master and slaves

requires a full replication. For large installs, this can take a long time, and if it

fails, must begin again. This is usually a larger problem when attempting to

replicate Redis databases across datacenters.

The current beta version of Redis, which will be the 2.8 series when released,

supports partial resynchronization. This alleviates many of the diffi culties

that arise with unreliable network links and Redis where the cluster becomes

unavailable because the slave is unable to complete an initial synchronization

in a reasonable time.

Setting up a Redis master-slave replication environment is very simple. The

master usually does not require any changes, and slaves simply add a slaveof

directive to their confi guration fi le:

slaveof <master ip address> <port>

This can even be applied from the Redis command-line client without restart-

ing the server application using the CONFIG SET command. However, you

should take care to ensure that the directive has been added to the server’s

confi guration, otherwise the change will be lost if the server restarts for any

reason. Because a Redis master requires no special confi guration, it is actually

possible to slave a Redis server to another slave. The applications for this are

very limited, and you should not use it in a production environment, but it can

sometimes be useful for maintaining a local development Redis server with

access to production data.

Clustering/Sharding Databases

At the moment, Redis does not have a native sharding solution like many other

databases in the “NoSQL” world. There has been a sharded version of Redis

called Redis Cluster in the works for some time, but it has never been released

in a production form.

The only real option for sharding a Redis database right now is Twitter’s

twemproxy tool (also known as nutcracker). This is a proxy server for both Redis

and Memcached that implements sharding features for both of these key-value

stores. Using twemproxy, servers are combined into pools and writes are distrib-

uted across members of the pool using consistent hashing. This allows for both

redundancy and partitioning of the data across multiple servers. The drawback

is that not all Redis operations are supported, so if complicated scripting or

180 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 180

the publish/subscribe mechanism are used then it may not be possible to use

twemproxy without additional architectural considerations, such as keeping a

sharded and unsharded server pool.

MongoDB

Unlike Redis, MongoDB is a schema-less document store. It has been devel-

oped by 10gen, a company that provides enterprise-level sales and support for

MongoDB installations with either a Software-as-a-Service or an On-Premise

model depending on the needs of the organization. It also provides a Community

edition, which does not provide many of the security features available to the

Enterprise edition. It is the version discussed in this section.

The MongoDB Model

The documents in a MongoDB are schema-less data structures represented as

JSON objects, which would be analogous to records in a traditional database

system or a value in a key-value store.

Although each of these documents has a unique identifi er that can be used to

address it directly, the intention is that documents will be manipulated en masse

by grouping them into collections. These collections are roughly analogous to a

table in a relational database system, and it is expected that document objects

contained within a collection will largely share the same structure.

These collections can be queried through a JSON-based query language.

To improve performance, elements of each document can be indexed using a

secondary-index system. MongoDB provides a variety of interesting indexing

options that make it a popular choice for certain applications, particularly those

that deal with physical spaces, because it has out-of-the-box support for index-

ing and querying geographic information.

Getting Set Up

To get set up with MongoDB, the 10gen MongoDB website has packages available

for a number of platforms at http://mongodb.org/downloads. Unlike Redis and

many other NoSQL options, MongoDB even supports Windows as a fi rst-class

citizen. For deployment on Linux systems, Ubuntu and Debian packages are

available, making deployment to platforms like EC2 fairly easy as well.

The MongoDB server executable is called mongod and starting it without

arguments causes it to look for a /data/db directory. You can override this by

passing the --dbpath argument on the command line:

$ mkdir db
$./mongod --dbpath ./db

http://mongodb.org/downloads

 Chapter 6 ■ Storing Streaming Data 181

c06.indd 05:36:44:PM 06/12/2014 Page 181

[initandlisten] MongoDB starting : pid=6722 port=27017 dbpath=./db
[initandlisten]
[initandlisten] ** WARNING: soft rlimits too low. Number of files is
 256, should be at least 1000
[initandlisten] db version v2.4.8
[initandlisten] git version: a350fc38922fbda2cec8d5dd842237b904eafc14
[initandlisten] build info: Darwin bs-osx-106-x86-64-2.10gen.cc 10.8.0
 Darwin Kernel Version 10.8.0: Tue Jun 7 16:32:41 PDT 2011;
 root:xnu-1504.15.3~1/RELEASE_X86_64 x86_64 BOOST_LIB_VERSION=1_49
[initandlisten] allocator: system
[initandlisten] options: { dbpath: "./db" }
[initandlisten] journal dir=./db/journal
[initandlisten] recover : no journal files present, no recovery needed
[FileAllocator] allocating new datafile ./db/local.ns, filling with
 zeroes...
[FileAllocator] creating directory ./db/_tmp
[FileAllocator] done allocating datafile ./db/local.ns, size: 16MB, took
[FileAllocator] allocating new datafile ./db/local.0, filling with
[FileAllocator] done allocating datafile ./db/local.0, size: 64MB, took
 0.327 secs
[initandlisten] command local.$cmd command: { create: "startup_log",
 size: 10485760, capped: true }
 ntoreturn:1 keyUpdates:0 reslen:37 470ms
[websvr] admin web console waiting for connections on port 28017
[initandlisten] waiting for connections on port 27017

Most of the startup information for the server is informational, but there are

some items of note. First, the warning about soft rlimits is important. Most

operating systems (Linux included) have defaults that assume something much

closer to a “consumer” system than a “server” system, especially a database

server. As a result, many of the limits on memory and open fi les are set unus-

ably low for production environments. Even distributions that bill themselves as

“server” distributions suffer from this problem. For development it is probably

not necessary to raise this limit, but a production server should set this limit

fairly high because a large database could have thousands of resources in use

at any given moment.

The other item to note is that MongoDB pre-allocates some fi les when it starts

for the fi rst time. These fi les are simply fi lled with zeros because they will be

memory mapped by MongoDB and fi lled with data. If the size of the data on disk

is roughly known, then these empty fi les can be created before starting MongoDB

for faster initial performance. Otherwise, MongoDB pauses each time it needs

to create a new fi le, which can be quite often if the server is joining an existing

cluster of servers and replicating all existing data. On UNIX-like systems, this is

easily accomplished using the dd command to create empty fi les. For example,

this MongoDB install contains only the initial system database called local:

$ ls -lh
total 163840

182 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 182

drwxr-xr-x 2 bellis staff 68B Dec 6 21:29 journal
-rw------- 1 bellis staff 64M Dec 2 20:07 local.0
-rw------- 1 bellis staff 16M Dec 2 20:07 local.ns

To add a new database called big, fi les of 2GB each are created using the dd

command. The database is expected to require approximately 4GB of space, so

2 fi les are created:

$ dd if=/dev/zero of=./big.0 bs=1048576 count=2048
2048+0 records in
2048+0 records out
2147483648 bytes transferred in 8.599453 secs (249723278 bytes/sec)
$ dd if=/dev/zero of=./big.1 bs=1048576 count=2048
2048+0 records in
2048+0 records out
2147483648 bytes transferred in 13.700213 secs (156748195 bytes/sec)
$ ls -lh
total 8552448
-rw-r--r-- 1 bellis staff 2.0G Mar 7 11:42 big.0
-rw-r--r-- 1 bellis staff 2.0G Mar 7 11:42 big.1
drwxr-xr-x 2 bellis staff 68B Dec 6 21:29 journal
-rw------- 1 bellis staff 64M Dec 2 20:07 local.0
-rw------- 1 bellis staff 16M Dec 2 20:07 local.ns

Using MongoDB Databases and Collections

A MongoDB database is a namespace in which a group of collections is kept.

By default, MongoDB has a single database called local that contains system-

level collections. Although collections can be created in this database, doing so

is probably a bad idea because this collection is not included in replication or

sharding. In fact, the local database contains the specialized collections used

to manage replication and sharding.

MongoDB’s on-disk representation uses the name of the database as the name

of the fi le along with a segment number. These are created lazily so a database

will not “exist” until its fi rst collection is created. To see this, try using the mongo

client to switch to a database called mine from a fresh install:

> use mine;
switched to db mine
> show databases;
local 0.078125GB
test (empty)

Notice that the local database is listed, but not the mine database. However,

after executing a createCollection command, the database does exist:

> db.createCollection("first");
{ "ok" : 1 }
> show dbs;

 Chapter 6 ■ Storing Streaming Data 183

c06.indd 05:36:44:PM 06/12/2014 Page 183

local 0.078125GB
mine 0.203125GB
test (empty)

Checking the directory given at startup by dbpath also shows that the fi rst

segment fi les now exist on disk:

$ ls
_tmp journal local.0 local.ns mine.0 mine.1 mine.ns
mongod.lock

Collections, created with the db.createCollection command are a fairly

loose concept in MongoDB. They are roughly analogous to tables, but because

MongoDB is schema-less there is no requirement that any document inside of a

collection resemble any other. Each document inside of a collection is represented

as a JSON object, and all documents have a primary key fi eld _id that is usually

an automatically generated ObjectId object. However, the _id fi eld can be any

type of object, except an Array, so long as it is unique within a collection. For

the purposes of streaming analysis, it is often useful to use this fi eld as a form

of compound primary key to make it possible to update a specifi c document

without having to fi rst query the collection to fi nd the appropriate _id value

(or use a more complicated update query).

Documents may not contain fi elds that start with $. This character is reserved

for special objects in a MongoDB document, most commonly a DBRef object

that allows MongoDB documents to be linked together. These objects are JSON

objects containing $ref, $id, and, optionally, $db fi elds. The $id fi eld identifi es

the value of the _id fi eld of the target document; the $ref fi eld identifi es the

target collection; and the $db fi eld identifi es the target database if it is different

than the current database. For example, a reference to a document in the fi rst

collection might look like this:

{$ref:"first",$id:ObjectId("5126bc054aed4daf9e2ab772"),$db:"mine"}

Although documents in collections can be highly nested, a document can be at

most 16MB in size. This limitation is largely arbitrary on the part of MongoDB’s

developers, but they are correct in their assertion that very large documents

should be a warning sign during data modeling.

Capped Collections

MongoDB supports creating new collections as a “capped collection.” These

are fi xed-size collections designed to support high-throughput operations. For

example, MongoDB uses capped collections to implement the operation log for

its own replication strategy.

Capped collections implement a FIFO queue with a few restrictions. First,

capped collections may not be sharded. Among other things, it would make

184 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 184

it diffi cult to maintain the FIFO queue. Second, while documents written to a

capped collection may be changed, they may not grow in size. For example,

changing a string fi eld from “foo” to “bar” is fi ne, but changing from “foo” to

“foobar” is not allowed. Finally, documents cannot be deleted from a capped

collection. They are removed as they “age out,” but there is no way to delete a

specifi c document.

CONVERTING A COLLECTION TO A CAPPED COLLECTION

It is possible to convert a normal collection to a capped collection. The command is

not part of the standard set of operations, but you can access it via the runCommand

method. For example, to convert the first collection to a capped collection holding

1MB of data use:

> db.runCommand({"convertToCapped": "first", size: 1024*1024});

Take care when running this command as it takes a global write lock. All write

operations on the database will block until the conversion has been completed. Never

attempt it on a server in rotation.

Capped collections can be queried in the usual way, but more often a “tailable

cursor” is used to read data in the order it was inserted. This is more or less

equivalent to using the Unix tail -f command.

The most common use case cited for capped collections is as a data transport

mechanism. In the architectures used in this book, it would replace either Kafka

or Flume in the data transport layer. However, capped collections suffer from

a major fl aw as a data transport tool because the collection is capped to a size,

not to a time. As discussed in Chapter 5, “Processing Streaming Data,” this

has failure modes that are very diffi cult to monitor. As such, using MongoDB’s

capped collections for this application is not recommended.

Basic Indexing

The primary role of a collection is to maintain a set of indexes common to a

group of documents. The assumption is that the indexes represent important

points of commonality for the document in the MongoDB collection.

Indexes in MongoDB are defi ned using the db.collection.createIndex

function and a JSON object that defi nes the direction of sorting for each fi eld

contained within the index:

> db.first.ensureIndex({foo:1,bar:-1});
> db.first.stats()
{
 "ns" : "mine.first",
 "count" : 0,

 Chapter 6 ■ Storing Streaming Data 185

c06.indd 05:36:44:PM 06/12/2014 Page 185

 "size" : 0,
 "storageSize" : 8192,
 "numExtents" : 1,
 "nindexes" : 2,
 "lastExtentSize" : 8192,
 "paddingFactor" : 1,
 "systemFlags" : 1,
 "userFlags" : 0,
 "totalIndexSize" : 16352,
 "indexSizes" : {
 "_id_" : 8176,
 "foo_1_bar_-1" : 8176
 },
 "ok" : 1
}

This command creates an index on the first collection created earlier on

two fi elds: foo and bar. The foo fi eld is sorted in an ascending natural ordering

for its contents (numerical for numerical values and lexical for string values),

whereas bar is sorted in descending order. Using dot-notation, it is possible to

index on nested fi elds in a document. For example, the following defi nes an

index on the zip subfi eld of the addr object in a document:

> db.first.ensureIndex({"addr.zip":1});
> db.first.getIndexes();
[
 {
 "v" : 1,
 "key" : {
 "addr.zip" : 1
 },
 "ns" : "mine.first",
 "name" : "addr.zip_1"
 }
]

When the fi eld being indexed contains an Array object rather than a scalar

object, MongoDB automatically creates a multikey index. Each element of the

array is added to the index individually, so an array containing four elements

would be added to the index four times. This even works with arrays that contain

objects. In the previous example, if the addr fi eld contained an Array of address

objects, each of the address objects’ zip fi elds would be added to the index.

Geospatial Indexing

Aside from the basic scalar fi eld indexes, MongoDB supports several special-

ized types of index that make it popular for certain applications. The fi rst is the

geospatial index, which operates either on coordinate pairs or GeoJSON objects.

Coordinate pairs are an older format specifi c to MongoDB, represented either

186 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 186

as an array of two elements or as an object containing lng and lat fi elds. These

two representations are equivalent:

{lng: 10, lat: 20}
[10,20]

GeoJSON objects are a newer open source format used to describe geospatial

features. To represent a coordinate pair using GeoJSON, the format looks like this:

{type:"Point",coordinates:[10,20]}

In addition to Point types, MongoDB also supports Line and Polygon types

when indexing.

MongoDB can index these coordinates by specifying 2dsphere, 2d, or

haystack instead of a number when adding a fi eld to an index. For most applica-

tions, 2dsphere is probably the most appropriate choice for indexing. However,

if the area to be indexed is geospatially small, haystack indexing can improve

query performance.

Full Text Indexing

When an index is created with a fi eld’s index type set to text rather than a

number, MongoDB’s full text indexing is enabled. This is currently a beta fea-

ture, so this capability must be enabled when starting the server by adding

--setParameter textSearchEnabled=true to the command line.

In many ways, this type of index is similar to the multikey index used when

the fi eld is an array. The primary difference is that the fi eld is expected to be

a string, which is tokenized and stemmed to form the words entered into the

index. MongoDB also maintains a list of language-specifi c stop words that are

dropped from the indexing process.

Queries for a set of search terms are computed using a scoring system. MongoDB

maintains scores for different words for each language it supports, but this may

be overridden when creating the index. The optional parameter is given in a

later section.

This form of indexing requires a fair bit of processing power, so it should be

used with caution. Inserting documents into a full text indexed collection will

also incur a processing cost associated with the tokenization and stemming

process, so it is not recommended for high-throughput collections.

Other Indexing Options

When the index is created it is automatically given a name. This name can be

at most 125 characters when combined with the collection name, which can be

exceeded when building complicated indexes. To avoid this, or for aesthetic rea-

sons, indexes can be named using the options object when creating the index.

The options object also allows for a variety of other optional parameters, given

in Table 6-1.

 Chapter 6 ■ Storing Streaming Data 187

c06.indd 05:36:44:PM 06/12/2014 Page 187

Table 6-1: Optional Parameters for MongoDB Index Creation

NAME TYPE DESCRIPTION

background true/

false
Causes the index to be built in the back-

ground. If this is false, the database will

be unresponsive while the index is built. If

the collection is large, this can mean min-

utes of downtime.

unique true/

false
Requires that all the values in this index

are unique. This is set on the index auto-

matically created for the _id fi eld.

name string Overrides the auto-generated name of

the index

dropDups true/

false
Creates a unique index by deleting docu-

ments with the same index value after the

fi rst has been found. Use with caution.

sparse true/

false
Only include documents that contain the

fi elds specifi ed by the index. Can result

in smaller indexes if many documents do

not contain a particular fi eld.

expireAfterSeconds integer The time-to-live for documents accord-

ing to the timestamp used for this fi eld.

Setting this option causes the index to

become a TTL index. It cannot be used on

compound indexes, and the fi eld must be

a date type.

v version Diff erent versions of MongoDB use diff er-

ent indexing formats and schemes. The

scheme can be chosen with this parame-

ter. This parameter should never be used.

weights JSON For full-text indexes, this allows diff erent

weights to be assigned to diff erent words.

This is used in calculating the search score

during queries.

default_language string Defi nes the language used by the full-text

indexing engine. It defi nes the stoplist

and stemming procedure as well as the

default scores for words.

language_override string Defi nes a fi eld that can be used to over-

ride the language used by the full-text

indexer at the document level. It defaults

to the fi eld language.

Source: http://docs.mongodb.org/manual/reference/method/
db.collection.ensureIndex/#db.collection.ensureIndex

http://docs.mongodb.org/manual/reference/method

188 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 188

Inserts and Updates

MongoDB supports the usual insert and update operations for its collections.

The insert command can insert both single elements and, if passed an Array,

multiple documents in a single command:

> db.first.insert({metric:"test",n:1});
> db.first.insert([{metric:"test2",n:1},{metric:"test3",n:1}]);
> db.first.find();
{ "_id" : ObjectId("529c1bb69c88a09b200d9cac"), "metric" : "test",
 "n" : 1 }
{ "_id" : ObjectId("529c1bca9c88a09b200d9cad"), "metric" : "test2",
 "n" : 1 }
{ "_id" : ObjectId("529c1bca9c88a09b200d9cae"), "metric" : "test3",
 "n" : 1 }

The insert command automatically creates the _id key if it is not specifi ed.

Most streaming applications will want to explicitly specify the _id to make

updates easier:

> db.first.insert({_id:"test:201312010000"
 ,ts:new Date(2013,11,01,00,00),metric:"test",n:1});
> db.first.find();
{ "_id" : "test:201312010000",
 "ts" : ISODate("2013-12-01T08:00:00Z"), "metric" : "test", "n" : 1 }

Attempting to insert a document with a duplicate key fails with an error:

> db.first.insert({_id:"test:201312010000",
 ts:new Date(2013,11,01,00,00),metric:"test",n:1});
 E11000 duplicate key error index: mine.first.$_id_
 dup key: { : "test:201312010000" }

Updating documents is accomplished via the update command. This com-

mand takes a query, which will often simply be a match on the _id fi eld, and

a replacement document. By default, this completely replaces the matching

document(s), requiring that the entire document be replicated. For example,

this is probably not the desired result for this update:

> db.first.update({_id:"test:201312010000"},{n:2});
> db.first.find()
{ "_id" : "test:201312010000", "n" : 2 }

Notice that the entire document has been replaced, when the desired result

was probably to simply update the n fi eld. To do that the special $set fi eld is

used to defi ne the fi elds to update:

bb.first.drop();
> db.first.insert({_id:"test:201312010000",
 ts:new Date(2013,11,01,00,00),metric:"test",n:1});
> db.first.update({_id:"test:201312010000"},{"$set":{n:2}});
> db.first.find()

 Chapter 6 ■ Storing Streaming Data 189

c06.indd 05:36:44:PM 06/12/2014 Page 189

{ "_id" : "test:201312010000",
 "ts" : ISODate("2013-12-01T08:00:00Z"), "metric" : "test", "n" : 2 }

In addition to $set, updating can also increment a numerical fi eld using $inc:

> db.first.update({_id:"test:201312010000"},{"$inc":{n:2}});
> db.first.find()
{ "_id" : "test:201312010000",
 "ts" : ISODate("2013-12-01T08:00:00Z"),
 "metric" : "test", "n" : 4 }

A MONGODB METRIC COLLECTION

Creating a simple metric collection in MongoDB is easy using the upsert feature of

the update command. To begin, create a metric collection and defi ne an index with a

time-to-live to allow the data to expire after seven days:

> db.createCollection("metrics");

{ "ok" : 1 }

> db.metrics.ensureIndex({ts:1},{expireAfterSeconds:86400*7});

> db.metrics.getIndexes();

[

 {

 "v" : 1,

 "key" : {

 "_id" : 1

 },

 "ns" : "mine.metrics",

 "name" : "_id_"

 },

 {

 "v" : 1,

 "key" : {

 "ts" : 1

 },

 "ns" : "mine.metrics",

 "name" : "ts_1",

 "expireAfterSeconds" : 604800

 }

]

The ideal situation would be to use the _id fi eld as a date; each one will be unique,

but this unfortunately does not work. Instead the timestamp to be aggregated must

be kept in two keys. In the long run, this is probably desirable because metrics may be

broken down to something more granular. In this example, a customer_id will be

added to the _id to allow for aggregation of metrics for each customer.

Continues

190 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 190

The aggregation itself is accomplished through update commands:

> db.metrics.update({_id:"1:201312010000"},

 {$set:{customer_id:1,

 ts:new Date(2013,12-1,01,00,00)},

 $inc:{"metrics.visitors":1}},{upsert:true});

> db.metrics.update({_id:"1:201312010000"},

 {$set:{customer_id:1,

 ts:new Date(2013,12-1,01,00,00)},

 $inc:{"metrics.clicks":1}},{upsert:true});

> db.metrics.update({_id:"1:201312010000"},

 {$set:{customer_id:1,

 ts:new Date(2013,12-1,01,00,00)},

 $inc:{"metrics.views":1}},{upsert:true});

> db.metrics.update({_id:"1:201312010000"},

 {$set:{customer_id:1,

 ts:new Date(2013,12-1,01,00,00)},

 $inc:{"metrics.visitors":1}},{upsert:true});

> db.metrics.find();

{ "_id" : "1:201312010000", "customer_id" : 1,

 "metrics" : {

 "clicks" : 1,

 "views" : 1,

 "visitors" : 2

 },

 "ts" : ISODate("2013-12-01T08:00:00Z")

}

Notice that the upsert option is set to true. This causes the document to be cre-

ated if one that matches it does not exist. This is why the customer_id and ts fi elds

are set on each call, to ensure they are set to the appropriate value if the document

must be created.

Queries and Aggregation

The update command has used simple queries to identify the document to

change. MongoDB, in general, has a fairly rich query language, although it can

often be cumbersome as it is expressed as JSON, just like any other document.

Queries are conducted using the find command, and they rely heavily on the

indexing of collections to achieve performance. If an index is not available, then

all of the documents in a collection will be scanned.

The queries used in the previous section are simple matching queries, equiva-

lent to using an = in the WHERE clause of a SQL query. If the fi eld being queried

continued

 Chapter 6 ■ Storing Streaming Data 191

c06.indd 05:36:44:PM 06/12/2014 Page 191

is an array, this equality query returns the document if any of the elements of

the array matches the query value.

To use inequalities to specify range queries, the $lt and $gt fi elds can be used

(along with $lte and $gte for inclusive inequalities). For example, to fi nd all

entries with a timestamp after midnight on December 1st, the following query

could be used:

> db.metrics.find({customer_id:1,ts:{$gte:new Date(2013,11,01)}});

To match any of several options, the $in fi eld can be used in the query along

with an array:

> db.metrics.find({customer_id:{$in:[1,2,3,]}});

METRIC COLLECTION QUERY PERFORMANCE

MongoDB has a method called explain, which can be called on a query to show the

query plan that will be executed by a particular query. This is particularly useful for

debugging performance bottlenecks in MongoDB environments.

For example, the query plan to search for the metrics from a particular customer

reveals that a scan would be required under the current indexing scheme:

> db.metrics.find({customer_id:1}).explain()

{

 "cursor" : "BasicCursor",

 "isMultiKey" : false,

 "n" : 1,

 "nscannedObjects" : 1,

 "nscanned" : 1,

 "nscannedObjectsAllPlans" : 1,

 "nscannedAllPlans" : 1,

 "scanAndOrder" : false,

 "indexOnly" : false,

 "nYields" : 0,

 "nChunkSkips" : 0,

 "millis" : 0,

 "indexBounds" : {

 }

}

However, if the timestamp is used, the index used to implement the time-to-live

feature is used to improve performance:

> db.metrics.find({customer_id:1,ts:{$gt:new Date(2013,11,01)}})

 .explain()

{

Continues

192 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 192

 "cursor" : "BtreeCursor ts_1",

 "isMultiKey" : false,

 "n" : 0,

 "nscannedObjects" : 0,

 "nscanned" : 0,

 "nscannedObjectsAllPlans" : 0,

 "nscannedAllPlans" : 1,

 "scanAndOrder" : false,

 "indexOnly" : false,

 "nYields" : 0,

 "nChunkSkips" : 0,

 "millis" : 2,

 "indexBounds" : {

 "ts" : [

 [

 ISODate("2013-12-01T08:00:00Z"),

 ISODate("0NaN-NaN-NaNTNaN:NaN:NaNZ")

]

]

 }

}

Of course, a scan of all the customers would still be required. If the number of cus-

tomers is small, this may not be a problem, but the hope is that there would be a very

large number of customers. In that case, it might seem like a good idea to add a

customer index:

> db.metrics.ensureIndex({customer_id:1});

> db.metrics.find({customer_id:1,ts:{$gt:new Date(2013,11,01)}})

 .explain()

{

 "cursor" : "BtreeCursor ts_1",

 "isMultiKey" : false,

 "n" : 0,

 "nscannedObjects" : 0,

 "nscanned" : 0,

 "nscannedObjectsAllPlans" : 0,

 "nscannedAllPlans" : 2,

 "scanAndOrder" : false,

 "indexOnly" : false,

 "nYields" : 0,

 "nChunkSkips" : 0,

 "millis" : 0,

 "indexBounds" : {

continued

 Chapter 6 ■ Storing Streaming Data 193

c06.indd 05:36:44:PM 06/12/2014 Page 193

 "ts" : [

 [

 ISODate("2013-12-01T08:00:00Z"),

 ISODate("0NaN-NaN-NaNTNaN:NaN:NaNZ")

]

]

 }

}

Unfortunately, MongoDB can really only use a single index in a given query, so add-

ing the customer_id index cannot help with this query. To improve performance, a

compound index would have to be added:

> db.metrics.ensureIndex({customer_id:1,ts:1});

> db.metrics.find({customer_id:1,ts:{$gt:new Date(2013,11,01)}})

 .explain()

{

 "cursor" : "BtreeCursor customer_id_1_ts_1",

 "isMultiKey" : false,

 "n" : 0,

 "nscannedObjects" : 0,

 "nscanned" : 0,

 "nscannedObjectsAllPlans" : 0,

 "nscannedAllPlans" : 0,

 "scanAndOrder" : false,

 "indexOnly" : false,

 "nYields" : 0,

 "nChunkSkips" : 0,

 "millis" : 2,

 "indexBounds" : {

 "customer_id" : [

 [

 1,

 1

]

],

 "ts" : [

 [

 ISODate("2013-12-01T08:00:00Z"),

 ISODate("0NaN-NaN-NaNTNaN:NaN:NaNZ")

]

]

 }

}

Continues

194 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 194

Of course, the old customer_id index is still used by the original customer query:

> db.metrics.find({customer_id:1}).explain()

{

 "cursor" : "BtreeCursor customer_id_1",

 "isMultiKey" : false,

 "n" : 1,

 "nscannedObjects" : 1,

 "nscanned" : 1,

 "nscannedObjectsAllPlans" : 1,

 "nscannedAllPlans" : 1,

 "scanAndOrder" : false,

 "indexOnly" : false,

 "nYields" : 0,

 "nChunkSkips" : 0,

 "millis" : 3,

 "indexBounds" : {

 "customer_id" : [

 [

 1,

 1

]

]

 }

}

However, the same query can use the compound query as well, so the single

customer_id index is now redundant and can be dropped:

> db.metrics.dropIndex("customer_id_1");

{ "nIndexesWas" : 4, "ok" : 1 }

> db.metrics.find({customer_id:1}).explain()

{

 "cursor" : "BtreeCursor customer_id_1_ts_1",

 "isMultiKey" : false,

 "n" : 1,

 "nscannedObjects" : 1,

 "nscanned" : 1,

 "nscannedObjectsAllPlans" : 1,

 "nscannedAllPlans" : 1,

 "scanAndOrder" : false,

 "indexOnly" : false,

 "nYields" : 0,

 "nChunkSkips" : 0,

continued

 Chapter 6 ■ Storing Streaming Data 195

c06.indd 05:36:44:PM 06/12/2014 Page 195

 "millis" : 0,

 "indexBounds" : {

 "customer_id" : [

 [

 1,

 1

]

],

 "ts" : [

 [

 {

 "$minElement" : 1

 },

 {

 "$maxElement" : 1

 }

]

]

 }

}

Like SQL databases, MongoDB also offers facilities for grouping and aggregat-

ing data in queries. The original facility for aggregation was either the group()

or mapReduce() commands, but versions of MongoDB after 2.2 also support an

optimized aggregate() command.

Unlike SQL, the pipeline command uses a pipeline approach for computing

its results, taking an array of fi ltering and grouping commands used to reach

a fi nal result. This is easiest to understand in action, so fi rst build a collection

with some example data:

> abc = ['A','B','C','D','E','F','G','H','I','J','K','L',
 'M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z'];
> db.createCollection("aggtest");
> for(var i=0;i<1000;i++) {
... db.aggtest.insert({
... first:abc[Math.floor(Math.random()*abc.length)],
... second:abc[Math.floor(Math.random()*abc.length)],
... count:Math.floor(1000*Math.random())
... });
... }
> db.aggtest.find({})
{ "_id" : ObjectId("53213bc8ae5fcad63d0563e9"),
 "first" : "S", "second" : "W", "count" : 762 }
{ "_id" : ObjectId("53213bc8ae5fcad63d0563ea"),
 "first" : "E", "second" : "V", "count" : 381 }

continued

196 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 196

{ "_id" : ObjectId("53213bc8ae5fcad63d0563eb"),
 "first" : "Q", "second" : "O", "count" : 143 }
{ "_id" : ObjectId("53213bc8ae5fcad63d0563ec"),
 "first" : "C", "second" : "I", "count" : 601 }
{ "_id" : ObjectId("53213bc8ae5fcad63d0563ed"),
 "first" : "B", "second" : "C", "count" : 413 }
{ "_id" : ObjectId("53213bc8ae5fcad63d0563ee"),
 "first" : "M", "second" : "D", "count" : 790 }
{ "_id" : ObjectId("53213bc8ae5fcad63d0563ef"),
 "first" : "S", "second" : "Q", "count" : 699 }
{ "_id" : ObjectId("53213bc8ae5fcad63d0563f0"),
 "first" : "A", "second" : "M", "count" : 615 }
... other output omitted
Type "it" for more

The fi rst stage of an aggregation pipeline is usually a fi ltering step that acts

like the WHERE clause of a SQL statement. It is identifi ed by a $match statement,

as in this example, which selects all of the elements with the “A” as their value

for the “fi rst” element:

> db.aggtest.aggregate([{$match:{first:"A"}}]);
{
 "result" : [
 {
 "_id" : ObjectId("53213bc8ae5fcad63d0563f0"),
 "first" : "A",
 "second" : "M",
 "count" : 615
 },
 {
 "_id" : ObjectId("53213bc8ae5fcad63d0563f4"),
 "first" : "A",
 "second" : "F",
 "count" : 806
 },
 {
 "_id" : ObjectId("53213bc8ae5fcad63d056402"),
 "first" : "A",
 "second" : "Q",
 "count" : 377
 },
...more content omitted...
 {
 "_id" : ObjectId("53213bc9ae5fcad63d0567c5"),
 "first" : "A",
 "second" : "G",
 "count" : 769
 }
],
 "ok" : 1
}

 Chapter 6 ■ Storing Streaming Data 197

c06.indd 05:36:44:PM 06/12/2014 Page 197

Other fi ltering options are $limit and $skip. Mostly used for testing as

an initial fi lter, the $limit fi lter restricts the number of elements entering the

aggregation, as in this example:

> db.aggtest.aggregate([{$limit:1}]);
{
 "result" : [
 {
 "_id" : ObjectId("53213bc8ae5fcad63d0563e9"),
 "first" : "S",
 "second" : "W",
 "count" : 762
 }
],
 "ok" : 1
}

The $limit command is more typically used after a grouping and sorting

operation to limit the output to the user. Similarly, the $skip command will

ignore some number of documents entering the fi lter. Combined with $limit,

it is often used after grouping, as well as to implement pagination:

> db.aggtest.aggregate([{$skip:10},{$limit:1}]);
{
 "result" : [
 {
 "_id" : ObjectId("53213bc8ae5fcad63d0563f3"),
 "first" : "M",
 "second" : "E",
 "count" : 437
 }
],
 "ok" : 1
}

After fi ltering commands are applied in the pipeline, group management

commands are applied. The most commonly used command is the $group

operator, which specifi es an identifi er fi eld and some number of accumulators.

For example, to sum the “count” fi eld for each of the values of the “fi rst” fi eld,

the pipeline would be declared as follows:

> db.aggtest.aggregate([{$group:{_id:"$first",
 total:{$sum:"$count"}}}]);
{
 "result" : [
 {
 "_id" : "V",
 "total" : 18224
 },
 {
 "_id" : "Y",

198 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 198

 "total" : 15299
 },
 {
 "_id" : "D",
 "total" : 20929
 },
 {
 "_id" : "I",
 "total" : 13257
 },
 {
 "_id" : "N",
 "total" : 16601
 },
...other output omitted...
 {
 "_id" : "E",
 "total" : 21444
 }
],
 "ok" : 1
}

The previous example used the $sum accumulator, but there are a number

of other accumulators that can be used including $avg to compute the average,

$min to compute the minimum and $max to compute the maximum. The _id

fi eld can contain multiple values allowing for grouping on multiple fi elds, but

the output of the grouping is always unsorted. To sort the output, a $sort opera-

tion can be applied to the output:

> db.aggtest.aggregate([{$group:{_id:"$first",
 total:{$sum:"$count"}}},{$sort:{total:-1}}]);
{
 "result" : [
 {
 "_id" : "H",
 "total" : 27990
 },
 {
 "_id" : "M",
 "total" : 27188
 },
 {
 "_id" : "L",
 "total" : 25070
 },
 {
 "_id" : "A",
 "total" : 24148
 },
 {

 Chapter 6 ■ Storing Streaming Data 199

c06.indd 05:36:44:PM 06/12/2014 Page 199

 "_id" : "O",
 "total" : 21865
 },
...other output omitted...
 {
 "_id" : "Q",
 "total" : 12831
 }
],
 "ok" : 1
}

This can, as mentioned, be combined with $skip and $limit commands. For

example, to fi nd the top three elements:

> db.aggtest.aggregate([{$group:{_id:"$first",
 total:{$sum:"$count"}}},{$sort:{total:-1}},{$limit:3}]);
{
 "result" : [
 {
 "_id" : "H",
 "total" : 27990
 },
 {
 "_id" : "M",
 "total" : 27188
 },
 {
 "_id" : "L",
 "total" : 25070
 }
],
 "ok" : 1
}

Replication

Replication is an important subject for MongoDB. In early versions of the database,

the claim was that single-machine durability could not be trusted, and a lot of

emphasis was placed on the need to use replicas to ensure data durability. Version

2.0 and later support journaling writes that improve single-machine durability, but

multi-machine replication is still the preferred strategy for MongoDB durability.

To handle replication, MongoDB uses a system called a Replica Set. Like Kafka’s

in-sync replicas, this approach is still essentially a master-slave architecture,

but the master is elected by a quorum of set members rather than explicitly

assigned. The current master is called the Primary, and it keeps track of all of

the other members—called Secondaries—via a heartbeat mechanism. All writes

are conducted against the Primary, but reads can be conducted against any of

the servers in the Replica Set.

200 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 200

N O T E Replication in MongoDB is asynchronous. Reads from the Primary always

return the most recent data, but a read from a Secondary may not have received the

most recent data yet. To further complicate the situation, MongoDB’s developers

allow a replication delay to be explicitly set as well. This creates replicas that are inten-

tionally lagging the Primary by a specifi ed amount. This can be useful for certain types

of disaster recovery scenarios. To prevent clients from inadvertently reading from

these lagging replicas, MongoDB also includes the ability to hide replicas in the set,

making them unavailable to clients.

In addition to maintaining heartbeat connections with the Primary, Secondaries

maintain a heartbeat with each other. If contact with the Primary is lost for more

than 10 seconds, the Secondaries elect a new Primary from among themselves,

allowing for mostly automatic failover. This may result in a rollback of data

that was written to the Primary before it lost contact with the rest of the cluster.

Sharding

In addition to replication, MongoDB also supports auto-balancing sharding for

data being stored in collections (except capped collections). The implementation

is quite similar to the approach used by twemproxy to cluster Redis, except that

data may move between shards over time.

MongoDB’s sharding implementation is designed to transition smoothly from

an unsharded environment to a sharded one. The usual recommendation, when

starting to use MongoDB, is to begin with an unsharded dataset in a normal

Replica Set and then add shards as the dataset grows to the point that the work-

ing set starts to get close to available RAM on a single server.

The reason this works is because MongoDB shards are simply Replica Sets. To

implement the sharding itself, MongoDB introduces an auxiliary server called

mongos. In combination with a confi guration server, which is simply another

MongoDB Replica Set, the mongos server acts as an intermediary between appli-

cations and the database shards. It is responsible for distributing queries and

collating results for return to a client. In this sense, mongos is very similar to the

twemproxy server used to shard Redis and Memcached instances. A sharded

MongoDB cluster may have any number of mongos servers running at any given

time. A common strategy is to run a mongos process on each application server

to simplify application confi guration.

The mongos server differs from twemproxy in that it is also responsible for cluster

rebalancing. Unlike many sharding approaches, which rely on a predetermined

shard key, MongoDB attempts to automatically balance data and load across the

cluster. This is handled by a balancer process, initiated by one of the mongos

servers attached to the cluster. Normally this process is automatic and started

when mongos detects suffi cient imbalance in cluster resources. However, because

rebalancing the cluster places a load on the system, it is possible to confi gure

 Chapter 6 ■ Storing Streaming Data 201

c06.indd 05:36:44:PM 06/12/2014 Page 201

the balancer to only run during specifi c time windows when load is expected

to be low (for example, early morning hours for most Internet applications).

To start using sharding in MongoDB, fi rst a set of confi guration servers must

be established. These confi guration servers play the same role as ZooKeeper

plays for Kafka, providing confi guration metadata. Most importantly, it will

contain information about how keys are distributed among shards. Rather than

use a separate application like ZooKeeper, MongoDB uses specially confi gured

MongoDB databases to act as confi guration managers. This is activated by add-

ing --configsvr to mongod’s command-line arguments:

$ mkdir configdb
$./mongod --configsvr --dbpath ./configdb
...
[initandlisten] command local.$cmd command: {
 create: "startup_log",
 size: 10485760,
 capped: true
} ntoreturn:1 keyUpdates:0 reslen:37 168ms
[initandlisten] ******
[initandlisten] creating replication oplog of size: 5MB...
[initandlisten] ******
[websvr] admin web console waiting for connections on port 28019
[initandlisten] waiting for connections on port 27019

Notice that the confi guration server starts itself on a different port than the

normal MongoDB server. This makes it possible to run a normal shard server

and a confi guration server on the same machine if desired. These servers are

lightly loaded, so having them share resources with another server is usually

not a problem.

If attempting to run a sharded server on a development machine, now is the

time to stop any running mongod processes. The mongos server runs on the same

port as mongod and, because clients will be attaching to mongos, it is usually

easier to change the mongod port(s). To test mongos on a single-machine, after

starting the confi guration server, start the mongod server on a different port:

$./mongod --dbpath ./db/ --port 27018
 [initandlisten] MongoDB starting : pid=9653 port=27018 dbpath=./db/
 64-bit
 [initandlisten]
 [initandlisten] ** WARNING: soft rlimits too low.
 Number of files is 256, should be at least 1000
 [initandlisten] db version v2.4.8
 [initandlisten] git version: a350fc38922fbda2cec8d5dd842237b904eafc14
 [initandlisten] build info: Darwin bs-osx-106-x86-64-2.10gen.cc 10.8.0
 Darwin Kernel Version 10.8.0: Tue Jun 7 16:32:41 PDT 2011;
 root:xnu-1504.15.3~1/RELEASE_X86_64 x86_64
 BOOST_LIB_VERSION=1_49
 [initandlisten] allocator: system

202 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 202

 [initandlisten] options: { dbpath: "./db/", port: 27018 }
 [initandlisten] journal dir=./db/journal
 [initandlisten] recover : no journal files present, no recovery needed
 [websvr] admin web console waiting for connections on port 28018
 [initandlisten] waiting for connections on port 27018

The mongos server can then be started on the normal port, pointing to the

confi guration server running on the same machine:

$./mongos --configdb localhost
 [mongosMain] MongoS version 2.4.8 starting: pid=9657 port=27017 64-bit
 (--help for usage)
 [mongosMain] git version: a350fc38922fbda2cec8d5dd842237b904eafc14
 [mongosMain] build info: Darwin bs-osx-106-x86-64-2.10gen.cc 10.8.0
 Darwin Kernel Version 10.8.0: Tue Jun 7 16:32:41 PDT 2011;
 root:xnu-1504.15.3~1/RELEASE_X86_64 x86_64 BOOST_LIB_VERSION=1_49
 [mongosMain] options: { configdb: "localhost" }
 [mongosMain] starting upgrade of config server from v0 to v4
 [mongosMain] starting next upgrade step from v0 to v4
 [mongosMain] writing initial config version at v4
 Mon Dec 2 20:07:18.120
 [mongosMain] upgrade of config server to v4 successful
 [Balancer] about to contact config servers and shards
 [websvr] admin web console waiting for connections on port 28017
 [Balancer] config servers and shards contacted successfully
 [mongosMain] waiting for connections on port 27017

On production systems, there should be at least three confi guration servers.

The mongos server is then provided with a comma-separated list of at least some

of those servers (more than one to provide failover). A single confi guration server

should only be used for testing purposes.

Once the mongos server is running, the mongo client can be used to confi gure

the cluster itself. The sh.addShard function is used to add shards to a cluster

(this command is only available when attached to a mongos server). If the server

is a standalone server, only the hostname is needed:

mongos> sh.addShard("localhost:27018")
{ "shardAdded" : "shard0000", "ok" : 1 }

To add a replica set, simply add one of the servers belonging to the replica

set (older versions of MongoDB might require that all servers be added as a

comma separated list):

mongos> sh.addShard("replset1/localhost:27018")
{ "shardAdded" : "shard0000", "ok" : 1 }

Finally, sharding is activated for a particular database:

mongos> sh.enableSharding("mine");
{ "ok" : 1 }

 Chapter 6 ■ Storing Streaming Data 203

c06.indd 05:36:44:PM 06/12/2014 Page 203

There are more fi ne-grained options for controlling the sharding of specifi c

collections within a database, but this is the basic use case. With sharding

enabled, MongoDB can now support databases with a working set much larger

than possible on a single-machine.

Cassandra

Cassandra is a database system that implements features similar to Amazon’s

DynamoDB (one of Cassandra’s original authors worked on the DynamoDB

project) and Google’s BigTable.

Unfortunately, with an implementation similar to BigTable came a “query

language” also similar to BigTable. Based on the internal Thrift data structures, it

was cumbersome to use and unfamiliar to most developers. This led to a reputa-

tion of Cassandra being diffi cult to use and hard to maintain and a “dead end.”

This reputation was furthered when Facebook, the original developers of

Cassandra, “abandoned” it in favor of HBase when implementing the Facebook

instant messaging feature. Of course, this had more to do with a consistency

model than anything else—an instant messaging application needs to be strongly

consistent. The user should not “lose” messages if their application happens to

use a server in the cluster that is in a state inconsistent with the last server they

used on the last call. Cassandra’s data model is eventual consistency, making

it a poor choice for this application. HBase is strongly consistent, which has its

own issues, but makes it much more appropriate for that sort of application.

Most real-time analytics applications can tolerate eventual consistency because

the data is a fl ow, and the changing set of consistent servers acts more like an

application delay than anything else.

The introduction of the Cassandra Query Language (CQL) has done a lot to

ease the pain of working with Cassandra. With CQL 3.0, essentially all of the

original BigTable-like structure has been abstracted into an SQL-like language

that should be familiar to most developers. There are some limitations to the CQL

language, limited aggregation functions among other things, but the Cassandra

design is such that it favors extensive denormalization of tables. This increases

the storage overhead and introduces a write-time aggregation cost, but this is

not as much of a concern in a scale-out architecture like Cassandra.

This section introduces Cassandra’s architecture and data model. Cassandra

is similar to other DynamoDB- and BigTable-inspired databases like HBase and

Voldemort, and many of the concepts introduced in this section are applicable

to those other technologies. The internal data model used by Cassandra is also

covered, primarily for historical reasons, because CQL abstracts much of these

internals with its own somewhat incompatible data model.

204 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 204

Server Architecture

The Cassandra server architecture is a “master-less” cluster of nodes, the goal

being to eliminate single points of failure and allow linear scaling. To achieve

this, Cassandra uses a distributed hash table approach to data management. In

this model, each row of data is assigned a partition key. This key defi nes which

server stores a particular piece of information. To improve data durability,

Cassandra can also replicate this data to other nodes through consistent hashing.

Early versions (prior to 1.2) used a server-based consistent hashing technique

that required a fair bit of maintenance to calculate and assign tokens to each

node to tell it which parts of the hash range each node would store. Newer ver-

sions of Cassandra introduced the concept of the virtual node, called a “vnode,”

which breaks the hash range into much smaller pieces that are then randomly

distributed among the nodes.

Each of these virtual nodes maintains its own indexes for the data contained

within that partition as well as a specialized data structure called a Bloom

Filter (discussed in detail in Chapter 10, “Approximating Streaming Data with

Sketching”) that helps to quickly determine if a query needs any data from a

particular virtual node.

A node in a cluster maintains a map of other servers through a peer-to-peer

communication protocol. Called the “gossip” protocol, each server exchanges

state information with up to three other servers in the cluster roughly once

every second. This information also contains state information for other serv-

ers, so a given node will quickly learn the entire cluster topology as its gossips

with its peers.

In addition to the gossip protocol, the “snitch” protocol determines the local

network topology. This helps Cassandra optimize its request routing and discover

nodes that are in an active, but degraded, state. In practice, “sick” nodes arise for

a variety of reasons and are fairly common as a result. There are different kinds

of snitches optimized to various deployments. For example, clusters running

in Amazon’s EC2 have two snitches: EC2Snitch and EC2MultiRegionSnitch.

The former is designed to operate well in a situation where the cluster is spread

across multiple availability zones in a single region (the most common case),

whereas the latter is designed to optimize across regions.

Because each node has, through gossip and snitch, a complete under-

standing of the cluster topology, any node can act as a query server. When

a client connects to the cluster it can chose any node it likes, which then

becomes the coordinator for that client until the connection is closed. This

would be roughly equivalent to every MongoDB server hosting mongod in

addition to mongos.

 Chapter 6 ■ Storing Streaming Data 205

c06.indd 05:36:44:PM 06/12/2014 Page 205

Setting Up a Cluster

Setting up a Cassandra cluster is relatively easy from a software perspective

because each server is essentially identical. For good performance, the recom-

mendation is to use multi-core machines with 8GB to 16GB of RAM. Very large

heaps in Cassandra actually result in reduced performance due to the need to

perform garbage collection. The usual recommendation is somewhere around

an 8GB heap (depending on available RAM). In Amazon EC2, this corresponds

to Large or Extra Large instances.

A Cassandra server should have as fast a disk as possible. If available, Solid

State Drives (SSDs) are a good match to Cassandra’s access pattern. If SSDs

are not available, a group of disks merged via RAID0 is also a good choice.

Cassandra, like Kafka and HDFS, has the ability to use several disks in a JBOD

(Just a Bunch of Disks) confi guration, but RAID0 can achieve higher perfor-

mance. Using a RAID0 confi guration also eliminates imbalances in the data

distribution between drives.

Network attached storage (NAS) is not recommended for Cassandra instal-

lations, except as a backup medium. Network storage systems such as NFS

or Elastic Block Storage (EBS) contend for network I/O resources, resulting in

degraded performance.

Setting up the server itself is straightforward. Installation instructions for

Debian are available at the Apache Cassandra website (http://cassandra

.apache.org). Datastax, a commercial provider of Cassandra and active com-

mitter to the code, also provides distributions for a number of platforms includ-

ing Windows and OS X. For users wanting to “roll their own” distribution, a

binary tarball is also available from the Apache website. Most modern Unix-like

operating systems should be able to use this tarball directly, assuming Java has

been properly installed.

For Cassandra, an appropriate version of Java means Java 7 or higher. Trying

to start Cassandra with an older Java 6 installation, which is still very common,

results in errors like this:

$ java -version
java version "1.6.0_65"
Java(TM) SE Runtime Environment (build 1.6.0_65-b14-462-11M4609)

$./bin/cassandra -f
xss = -ea -javaagent:./bin/../lib/jamm-0.2.5.jar
 -XX:+UseThreadPriorities
 -XX:ThreadPriorityPolicy=42
 -Xms1024M -Xmx1024M
 -Xmn256M -XX:+HeapDumpOnOutOfMemoryError -Xss256k
Exception in thread "main"

http://cassandra.apache.org
http://cassandra.apache.org

206 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 206

 java.lang.UnsupportedClassVersionError
 org/apache/cassandra/service/CassandraDaemon :
 Unsupported major.minor version 51.0

A major version of 51 refers to Java 7 (Java 6 is 50; Java 8 is 52). After Java

7 or higher is installed, Cassandra can be started with either cassandra or

cassandra –f, which runs the server in the foreground.

Confi guration Options

Most confi guration options for Cassandra 2.0 are reasonable “out of the box,”

but there are a few that are often changed to conform to a particular installation.

These options can be found in conf/ directory. The cassandra.yaml specifi es

the cluster name, which defaults to “Test Cluster”:

The name of the cluster. This is mainly used to prevent machines in
one logical cluster from joining another.
cluster_name: 'Test Cluster'

By default, it will write to /var/lib/cassandra, so that directory must be

created with appropriate permissions. To change this, there are three sections

of the cassandra.yaml fi le that specify the data output directories:

Directories where Cassandra should store data on disk. Cassandra
will spread data evenly across them, subject to the granularity of
the configured compaction strategy.
data_file_directories:
 - /var/lib/cassandra/data

commit log
commitlog_directory: /var/lib/cassandra/commitlog

saved caches
saved_caches_directory: /var/lib/cassandra/saved_caches

For multi-node clusters, listen_address and rpc_address should be set. The

fi rst parameter, listen_address, is the network interface the node will use for

gossip while the latter is used for client connections. Leaving both blank usually

works, but sometimes it is necessary to specify a specifi c network address to use.

By default, listen_address is set to “localhost,” which usually doesn’t work:

Address to bind to and tell other Cassandra nodes to connect to. You
must change this if you want multiple nodes to be able to
communicate!

Leaving it blank leaves it up to InetAddress.getLocalHost(). This
will always do the Right Thing _if_ the node is properly configured
(hostname, name resolution, etc), and the Right Thing is to use the
address associated with the hostname (it might not be).

 Chapter 6 ■ Storing Streaming Data 207

c06.indd 05:36:44:PM 06/12/2014 Page 207

#
Setting this to 0.0.0.0 is always wrong.
listen_address:
The address to bind the Thrift RPC service and native transport
server -- clients connect here.
#
Leaving this blank has the same effect it does for ListenAddress,
(i.e. it will be based on the configured hostname of the node).
#
Note that unlike ListenAddress above, it is allowed to specify 0.0.0.0
here if you want to listen on all interfaces, but that will break
clients that rely on node auto-discovery.
rpc_address:

Finally, a multi-node cluster server needs a list of seed servers it can use to

bootstrap itself into the cluster. This list does not need to include every server

in the cluster, but enough to ensure that at least one server is available when

the server starts. Simply modify seeds to be a comma-delimited list of servers:

any class that implements the SeedProvider interface and has a
constructor that takes a Map<String, String> of parameters will do.
seed_provider:
 # Addresses of hosts that are deemed contact points.
 # Cassandra nodes use this list of hosts to find each other and
 # learn the topology of the ring. You must change this if you are
 # running
 # multiple nodes!
 - class_name: org.apache.cassandra.locator.SimpleSeedProvider
 parameters:
 # seeds is actually a comma-delimited list of addresses.
 # Ex: "<ip1>,<ip2>,<ip3>"
 - seeds: "127.0.0.1"

CQL: The Cassandra Query Language

CQL is the recommended mechanism for development of all new Cassandra

applications. It implements a subset of the Structured Query Language (SQL),

making it familiar to many developers. However, it does not implement many

of SQL’s features and the structure of Cassandra tables may be a surprise to

many developers.

CQL commands can be executed through three different mechanisms. The fi rst

is the CQL shell, cqlsh, which is a Python application shipped with Cassandra.

This is different than cassandra-cli, which uses the Thrift API. It can be found

in the same directory as the Cassandra server binary. The second is through a

“native” CQL driver. Newer versions of Cassandra implement a protocol that

works only with CQL statements, similar to protocols used by relational data-

bases. Finally, CQL commands can be executed using older clients that employ

208 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 208

Cassandra’s Thrift protocol using the execute_cql3_query remote procedure

call (RPC) command.

Keyspaces and Column Families

All Cassandra data is held in a keyspace. This is a form of namespace, roughly

equivalent to a database in MongoDB or a schema in a relational database.

When keyspaces are created, they defi ne a replication strategy as well as a

replication factor. The replication factor is simply the number of copies of any

given piece of data kept in the cluster. The strategy defi nes how these replicas

are distributed. To get started, create a metrics keyspace with a replication

factor of 1 using cqlsh:

cqlsh> CREATE KEYSPACE metrics WITH REPLICATION =
 {'class':'SimpleStrategy','replication_factor':1};

These settings can be changed later using the ALTER KEYSPACE command. In par-

ticular, if the cluster is to be used in a production environment with multiple nodes,

the replication strategy defi ned by class should be the NetworkTopologyStrategy.

This allows for the use of multiple datacenters while the SimpleStrategy used

in this example is confi ned to a single datacenter. Even if a single physical

datacenter is used, it is common practice to defi ne “datacenters” of clusters that

maintain different workloads. For example, one “datacenter” can be dedicated

to accepting real-time random access reads and writes, whereas another “data-

center” is dedicated to scan-heavy map-reduce style processing. This is often

done with Hadoop because Cassandra can act as a replacement for Hadoop’s

native HDFS storage layer.

To create a table, switch to the metrics keyspace via the USE command and

then execute CREATE TABLE to store some time-series metrics:

cqlsh> USE metrics;
cqlsh:metrics> CREATE TABLE counts (
 customer_id INT,
 metric TEXT,
 ts TIMESTAMP,
 value COUNTER,
 PRIMARY KEY (customer_id,metric,ts)
);

It is not necessary to select the keyspace; dot-notation can be used to access

the table directory. The table from the last example would be accessed as

metrics.counts.

This table contains a customer identifi er, a metric name and a timestamp. All

three of them form the primary key because there can only be a single count

for the combination of customer, metric, and time. In Cassandra, columns are

serialized and deserialized to and from byte arrays corresponding to their types.

 Chapter 6 ■ Storing Streaming Data 209

c06.indd 05:36:44:PM 06/12/2014 Page 209

These types, which are similar to those found in a relational database, are sum-

marized in Table 6-2.

Table 6-2: CQL Data Types

NAME DESCRIPTION

ASCII A string encoded as US-ASCII (characters 0–127)

BIGINT A 64-bit signed long value (equivalent to a Java long)

BLOB An arbitrary byte array

BOOLEAN A true or false Boolean value

COUNTER A 64-bit distributed counter value. This gets special handling in

Cassandra

DECIMAL A variable precision decimal value

DOUBLE 64-bit IEEE-754 compliant fl oating-point values

FLOAT 32-bit IEEE-754 compliant fl oating-point values

INET A structure representing IPv4 or IPv6 addresses

INT A 32-bit signed integer (equivalent to a Java int)

LIST<?> A list of values where the ? is a valid CQL type. For example,

LIST<TEXT> would be a list of UTF-8 strings. Collections may not con-

tain other collections so LIST<LIST<TEXT>> is not allowed

MAP<?,?> An associative array of CQL types. Like the LIST type, MAP takes two

valid scalar CQL types

SET<?> The SET collection type is similar to the LIST type, except that it only

stores unique values

TEXT A string encoded as UTF-8

TIMESTAMP A timestamp encoded as a 64-bit integer (BIGINT) in milliseconds since

the UNIX epoch

UUID A universally unique identifi er value. For Windows users, this is the same

as a GUID

TIMEUUID A Type 1 UUID with a timestamp component. This type allows multiple

clients to perform inserts with the timestamp but without collisions.

Time range queries can be performed on columns of this type. When

performing inserts the NOW() function is used to generate a TIMEUUID

VARCHAR A UTF-8 encoded string

VARINT An arbitrary precision integer value

Source: http://www.datastax.com/documentation/cql/3.1/webhelp/index
.html#cql/cql_reference/cql_data_types_c.html#concept_ds_
wbk_zdt_xj

http://www.datastax.com/documentation/cql/3.1/webhelp/index

210 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 210

COUNTER COLUMNS

In Cassandra, atomic counter columns cannot be combined with other nonkey

columns in the column factory. A counter column may be combined with other counter

columns. Defi ning the original table without metric in the primary key results in

an error:

cqlsh:metrics> CREATE TABLE counts (

 customer_id INT PRIMARY KEY,

 metric TEXT,ts TIMESTAMP,

 value COUNTER

);

Bad Request: Cannot add a counter column (value) in

 a non counter column family

Defi ning a second counter on the original table is allowed:

cqlsh:metrics> CREATE TABLE counts_2 (

 customer_id INT,

 metric TEXT,

 ts TIMESTAMP,

 value COUNTER,

 value_2 COUNTER,

 PRIMARY KEY (customer_id,metric,ts));

If for some reason counter columns and noncounter columns are needed, it is prob-

ably easiest to simply defi ne two tables and update both simultaneously using a batch

update statement.

Internally, Cassandra represents this table as a data structure known as a

column family. Despite appearing to contain a large number of rows, the column

family actually only contains a row for each customer_id and a large number

of columns for each metric and ts combination. This is really only important

to note because there is a limit on the number of columns a given row can have:

2 billion columns or 2 gigabytes of storage.

These limitations can be reached quite easily in some time-series implemen-

tations. To overcome them, Cassandra allows multiple keys to be used as the

row identifi er. The disadvantage to doing this is that the row key is also used

to partition the data across the Cassandra cluster. This means that all queries,

inserts, or updates must contain all of the elements of the row key.

If the query will always include the customer_id and the metric, merging

the customer_id and metric fi elds would create rows identifi ed by customer_

id:metric combinations with a column for each timestamp:

cqlsh:metrics> CREATE TABLE counts_composite (
 customer_id INT,
 metric TEXT,
 ts TIMESTAMP,

 Chapter 6 ■ Storing Streaming Data 211

c06.indd 05:36:44:PM 06/12/2014 Page 211

 value COUNTER,
 value_2 COUNTER,
 PRIMARY KEY ((customer_id,metric) ,ts)
) WITH CLUSTERING ORDER BY (ts DESC);

Adding the CLUSTERING ORDER command tells Cassandra to sort each of

the columns in descending order instead of the natural order for a timestamp

column, which would be ascending.

Like most relational databases, you can alter tables after they’ve been cre-

ated using the ALTER TABLE command. The most common use case is to add

a column to an existing table or to remove an existing column. Adding a new

column does not cause any validation of existing rows.

Dropping a column will also eventually cause the deletion of the data associ-

ated with that column, but this does not happen until a major compaction occurs.

In some cases, the type of a column can be changed, but this does not modify

the bytes used to store the data for existing columns. If the data cannot be

deserialized by the new column type then errors result when querying the

data. For instance, converting a TEXT column to an INT column will probably

not have the desired effect.

Inserting and Updating Data

Inserting and updating data in Cassandra is accomplished through the familiar

INSERT and UPDATE CQL statements. These two statements generally work like

their SQL counterparts, but there are some differences.

INSERT statements are composed in the same way as they are in SQL with the

caveat that all columns to be updated must be included in the statement (this

is good practice in any case). For example, inserting gauge-style values into a

time-series table:

cqlsh:metrics> CREATE TABLE stats(
 customer_id INT,
 metric TEXT,
 ts TIMEUUID,
 value INT,
 PRIMARY KEY((customer_id,metric), ts)
) WITH CLUSTERING ORDER BY (ts DESC);
cqlsh:metrics> INSERT INTO
 stats(customer_id,metric,ts,value)
VALUES
 (1,'hits',NOW(),10);
cqlsh:metrics> INSERT INTO
 stats(customer_id,metric,ts,value)
VALUES (
 1,'hits',NOW(),15);
cqlsh:metrics> INSERT INTO
 stats(customer_id,metric,ts,value)

212 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 212

VALUES
 (1,'hits',NOW(),30);
cqlsh:metrics> SELECT * FROM stats;

customer_id | metric | ts | value
------------+--------+--------------------------------------+------
 1 | hits | 1ae93880-5fb8-11e3-9b3a-a1e3c690259e | 30
 1 | hits | 19925b10-5fb8-11e3-9b3a-a1e3c690259e | 15
 1 | hits | 175897b0-5fb8-11e3-9b3a-a1e3c690259e | 10

By default, INSERT statements overwrite data with the same primary key.

This is not the usual behavior for SQL databases, so it may come as a surprise

to some. This can cause problems in some situations, and, starting with CQL3,

Cassandra now supports a feature called Lightweight Transactions that recover

the SQL-like behavior by adding an IF NOT EXISTS statement to the end of the

INSERT statement. For example, a users table with a created_on fi eld set to NOW()

will be changed after every insert unless the IF NOT EXISTS statement is used:

cqlsh:metrics> CREATE TABLE users(email TEXT PRIMARY KEY,created_on
 TIMEUUID);
cqlsh:metrics> INSERT INTO users(email,created_on)
 ... VALUES ('byron@domain',NOW());
cqlsh:metrics> SELECT email,dateOf(created_on) AS created_on
 ... FROM users;

 email | created_on
--------------+--------------------------
 byron@domain | 2013-12-07 19:40:24-0800

(1 rows)

cqlsh:metrics> INSERT INTO users(email,created_on)
 ... VALUES ('byron@domain',NOW());
cqlsh:metrics> SELECT email,dateOf(created_on) AS created_on
 ... FROM users;

 email | created_on
--------------+--------------------------
 byron@domain | 2013-12-07 19:41:09-0800

(1 rows)

cqlsh:metrics> INSERT INTO users(email,created_on)
 ... VALUES ('byron@domain',NOW())
 ... IF NOT EXISTS;

 Chapter 6 ■ Storing Streaming Data 213

c06.indd 05:36:44:PM 06/12/2014 Page 213

 [applied] | email | created_on
-----------+--------------+--------------------------------------
 False | byron@domain | 9351e360-5fba-11e3-9b3a-a1e3c690259e

cqlsh:metrics> SELECT email,dateOf(created_on) AS created_on
 ... FROM users;

 email | created_on
--------------+--------------------------
 byron@domain | 2013-12-07 19:41:09-0800

(1 rows)

Updates also work mostly like their SQL counterparts, except that they

perform an upsert by default. Much like INSERT overwrites data instead of

failing, UPDATE performs an implicit insert if the primary key does not exist in

the dataset. This is actually quite useful for COUNTER columns, which cannot be

created using INSERT statements:

cqlsh:metrics> DROP TABLE counts;
cqlsh:metrics> CREATE TABLE counts(
 customer_id INT,
 metric TEXT,
 value COUNTER,
 PRIMARY KEY (customer_id, metric)
);
cqlsh:metrics> UPDATE counts SET
 value = value + 1
WHERE customer_id = 1 AND metric = 'test';
cqlsh:metrics> SELECT * FROM counts;

 customer_id | metric | value
-------------+--------+-------
 1 | test | 1

(1 rows)

Update statements also support a check-and-set operation by appending an

IF statement with the same form as a WHERE clause to the end of the statement.

The update only succeeds if the IF statement evaluates to true.

Both INSERT and UPDATE statements also support expiring data using a

time-to-live statement. Simply append USING TTL <seconds> to the end of

an INSERT statement. For UPDATE statements, you need to put it after the table

name: UPDATE <table> USING TTL <seconds>.

To improve performance, insert and update statements can be wrapped in a

BATCH statement. This vastly improves performance when writing to a number

214 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 214

of different tables or processing a large number of requests. To use a BATCH

statement, simply start a command with BEGIN BATCH. Write statements as you

normally would, and when you’re ready to submit, add an APPLY BATCH to the

end of the statement.

METRICS WITH CASSANDRA

As shown in the examples in this section, Cassandra is highly amenable to capturing

metric data using atomic counters. The one thing it lacks is the ability to perform any

form of server-side aggregation. In this case, the recommended strategy is to produce

all aggregates at write time using batch updates.

To produce aggregates at both the customer level and at the system level, use two

tables for aggregation:

cqlsh:metrics> CREATE TABLE customer_counts (

 customer_id INT,

 metric TEXT,

 ts TIMESTAMP,

 value COUNTER,

 PRIMARY KEY ((customer_id,metric) , ts))

WITH CLUSTERING ORDER BY (ts DESC);

cqlsh:metrics> CREATE TABLE system_counts (

 metric TEXT,

 ts TIMESTAMP,

 value COUNTER, PRIMARY KEY (metric , ts))

WITH CLUSTERING ORDER BY (ts DESC);

To update each table, a BATCH command is used. This is not a transaction, but it

does allow Cassandra to perform an effi cient update:

cqlsh:metrics> BEGIN COUNTER BATCH

 ... UPDATE customer_counts

 SET value = value + 1

 WHERE customer_id = 1

 AND metric = 'impressions'

 AND ts = '2013-12-01T00:00:00';

 ... UPDATE system_counts

 SET value = value + 1

 WHERE metric = 'impressions'

 AND ts = '2013-12-01T00:00:00';

 ... APPLY BATCH;

Reading from Cassandra

Like inserting data, reading data from Cassandra uses SQL-like SELECT state-

ments. Cassandra does not have many query options, so SELECT statements

tend to be fairly simple.

 Chapter 6 ■ Storing Streaming Data 215

c06.indd 05:36:44:PM 06/12/2014 Page 215

Other Storage Technologies

This chapter has focused on a few different persistent stores popular for real-time

applications. They were chosen to show some of the range of available stores

beyond the relational database. This section briefl y mentions some of the other

technologies available, but not discussed in this book.

Relational Databases

Many relational database implementations are backed by a high-performance

data store. The performance hit introduced by transactions are maintained at

the application level rather than being intrinsic to the database itself. Some

relational databases even allow access to these high-performance stores. For

example, PostgreSQL exposes a key-value store through its hstore module,

which allows access through the SQL interface. It also allows for some indexing

of the key-value store.

Other databases, especially commercial column stores, are designed to ingest

large amounts of raw data that can then be effi ciently queried. In cases where

the access patterns are not well defi ned, it might be best to stream data into a

column store for access. The downside is usually related to the cost required to

achieve acceptable ingest performance, but this is often the case when balancing

query fl exibility and performance.

Distributed In-Memory Data Grids

Data grids have been available in various forms for a number of years. They

are mostly marketed as commercial products from well-known vendors such as

VMware and Oracle. To increase adoption, many of them, now have a Community

Edition that can be used without charge for evaluation purposes. One such

product is Hazelcast.

They are primarily designed to provide a distributed view of data that behaves

as if it was simply being held in the application’s main memory. This tends to be

programming language specifi c, with Java being a favorite, and implements dis-

tributed versions of the native collections such as List and Map interfaces for Java.

Choosing a Technology

When persistence technologies are discussed there are inevitably arguments

over which technology is best. Like arguments about which text editor or inte-

grated development environment is “best,” these arguments are entertaining

but ultimately meaningless. There are really only technologies that work well

in a given environment for a given application.

216 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 216

Developers experienced with a specifi c environment may be able to success-

fully generalize that experience to other applications, which may make it the best

choice simply because it offers the shortest time to market even though another

technology’s characteristics would have been an objectively better match for the

application. Drawn from experiences good and bad, this section provides some

rules of thumb when considering a particular technology.

Key-Value Stores

Key-value persistence approaches, like Redis, work best when the aggregation

structure is well known in advance. They also generally require that the que-

ries are fairly simple because this is managed entirely by the client side. This

makes them most appropriate for applications with limited interaction, such as

dashboard applications. Building a simple dashboard with Redis is discussed

in Chapter 7.

Document Stores

By design, document stores excel when there are a large variety of metrics to store

with a natural grouping. For example, a customer might have a large number

of customizable metrics that are specifi c to his business needs.

They also work well when the query pattern is such that pulling the docu-

ment into the working set essentially “warms” it up, providing faster access for

subsequent queries.

Distributed Hash Table Stores

Stores like Cassandra, Voldemort, BigTable, and DynamoDB are a bit of a mix

between a relational database and a key-value store. Like key-value stores, they

work best when the patterns of aggregation are well known so that they can

be denormalized by the processing infrastructure. The batch update feature of

Cassandra exists essentially to encourage this sort of multitable update.

Unlike key-value stores, they usually provide effi cient range or set querying.

They also usually support secondary indexing to improve query performance.

This can be arranged in key-value stores like Redis using features like sorted

sets, but it becomes inconvenient when the queries get complicated.

Unlike relational databases, these types of stores usually do not support

ad hoc aggregation very well. They do not typically support GROUP BY and SUM

operations, requiring client-side aggregation. This makes them a poor choice for

more exploratory data environments unless their integration with map-reduce

environments will be used to perform the aggregation.

 Chapter 6 ■ Storing Streaming Data 217

c06.indd 05:36:44:PM 06/12/2014 Page 217

In-Memory Grids

These tend to work well in instances where distributed hash table or key-value

stores work well. Due to the fact that all data is held in-memory, accessing

and updating the data is usually very fast. However, it also makes them more

expensive than disk-based distributed hash tables (DHTs). Most provide some

querying and indexing capabilities, making them similar to DHT approaches.

They also work well when the storage is tightly coupled to the application. For

example, a legacy application that assumes a scale-up architecture being adapted

to a scale-out architecture that can be fed from a real-time streaming system.

Relational Databases

While NoSQL stores have been in vogue, it has been claimed that relational

databases are somehow threatened. This is simply untrue; relational databases

are alive and well and very good at what they do. They excel at ad hoc aggrega-

tion and querying. This is especially true of column-oriented databases, which

have specialized indexing and storage mechanisms to optimize many typical

aggregation queries.

One thing they usually don’t do well is very high-speed ingest. “Real-time”

in the relational world usually refers to a minutes or hours delay in processing a

data stream rather than milliseconds. (There are exceptions; several companies

offer databases that specialize in high-performance ingest.) It usually works best

to manage them through a slower ETL process, which will be discussed shortly.

Warehousing

Many businesses already have an existing business intelligence infrastructure.

This usually consists of a relational database environment loaded by some sort

of extract-transform-load (ETL) tool.

At large organizations this is typically managed by a database team using a

set of formal processing tools. At smaller organizations this may be more ad hoc

with a small MySQL database loaded by some scripts that nobody remembers

writing. In both cases, there is a bit of a problem. The velocity of streaming data

overwhelms the ETL infrastructure or the database due to the constant updates

from the real-time processing system. Furthermore, when (not if) bugs are intro-

duced, the ability to recover from the error and reprocess data helps improve

operational effi ciency and uptime. With the introduction of modern tools for

handling this processing, the warehousing process can be more consistently

implemented and scale more readily even at smaller organizations that cannot

invest in a complicated ETL infrastructure.

218 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 218

Hadoop as ETL and Warehouse

Since its public introduction in 2007, Hadoop has become an almost de facto

standard for the development of large-scale processing and ETL tasks. It has

accomplished this feat in spite of a fairly limited processing model due to the

fact that it essentially solved the fundamental management problem of large

scale batch environments: binding computation to the data.

In large-scale ETL pipelines, the individual operations to be performed on

the data are usually fairly trivial. In database terms, they can usually be boiled

down to a sequence of GROUP BY statements in the WHERE clause with SUM and

perhaps DISTINCT statements in the SELECT clause. The larger issue is man-

aging the fl ow of data around a cluster of machines in a way that allows for

effi cient processing.

Ingesting Data from Kafka

Kafka comes with a very simple ingestion mechanism for Hadoop. Unfortunately,

it’s a bit too simple to use in a production environment with any confi dence. A

better choice is the Camus tool, which LinkedIn uses for its own Kafka-to-Hadoop

ingestion. Although it’s currently used in production, Camus’s open source lifecycle

is still fairly new, so there is no prepackage library available at the time of writing.

By default, Camus assumes that the data to be processed looks a lot like

LinkedIn’s own internal data format, which is Avro based. Most people do not

work at LinkedIn, so this typically requires building a custom importer that

understands what to do with the data.

To get started building a custom importer, fi rst check out the Camus reposi-

tory from Github so the required dependencies can be installed into a local

Maven repository. This book uses Kafka 0.8, which has not yet been merged to

the master branch:

$ git clone https://github.com/linkedin/camus
Cloning into 'camus'...
remote: Counting objects: 2539, done.
remote: Compressing objects: 100% (991/991), done.
remote: Total 2539 (delta 774), reused 2393 (delta 661)
Receiving objects: 100% (2539/2539), 37.99 MiB | 950.00 KiB/s, done.
Resolving deltas: 100% (774/774), done.
Checking connectivity... done
$ cd camus/
$ git checkout camus-kafka-0.8
Branch camus-kafka-0.8 set up to track remote branch camus-kafka-0.8
from origin.
Switched to a new branch 'camus-kafka-0.8'
$ mvn install

https://github.com/linkedin/camus

 Chapter 6 ■ Storing Streaming Data 219

c06.indd 05:36:44:PM 06/12/2014 Page 219

After the Maven packages have been locally installed, they can be used in a

custom loader project’s Maven fi le:

<dependencies>
 <dependency>
 <groupId>com.linkedin.camus</groupId>
 <artifactId>camus-api</artifactId>
 <version>0.1.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>com.linkedin.camus</groupId>
 <artifactId>camus-etl-kafka</artifactId>
 <version>0.1.0-SNAPSHOT</version>
 </dependency>
 <dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-core</artifactId>
 <version>1.0.3</version>
 </dependency>
 </dependencies>

A fi le called camus.properties that is located in the jar fi le for the cus-

tom loader controls the Camus loading process. Either copy this fi le from

the camus-example project or use the version included in this book’s project

source code. If the fi le from camus-example is used, some entries need to be

modifi ed to use the custom loader.

In this case, the data is assumed to be JSON formatted. A timestamp for the

event is assumed to be in the ts fi eld as a number of milliseconds since the Unix

epoch. This is extracted and the parsed JSON returned along with the time-

stamp in a CamusWrapper, which is the class Camus uses to move data around:

public class JSONMessageDecoder
 extends MessageDecoder<byte[], ObjectNode> {

 private final ObjectMapper mapper = new ObjectMapper();

 @Override
 public CamusWrapper<ObjectNode> decode(byte[] arg0) {
 ObjectNode json;
 try {
 json = mapper.readValue(new String(arg0), ObjectNode.class);
 } catch (IOException e) {
 throw new MessageDecoderException("Unable to parse event");
 }
 return new CamusWrapper<ObjectNode>(json,
 json.get("ts").getValueAsLong());
 }
}

220 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 220

To use this class, ensure that the camus.message.decoder.class property

is set properly:

Concrete implementation of the Decoder class to use
camus.message.decoder.class=wiley.streaming.camus.JSONMessageDecoder

Now that the data has been safely decoded it must be written out to fi les. In

this case, a SequenceFile will be used. Because these fi les offer space for both

a key and a value, the key will contain information about the event’s position

in Kafka: the topic, partition, and offset. The value will be the JSON value

re-encoded to text for further processing:

public class JSONRecordWriter implements RecordWriterProvider {

 @Override
 public RecordWriter<IEtlKey, CamusWrapper> getDataRecordWriter(
 TaskAttemptContext context, String filename, CamusWrapper arg2,
 FileOutputCommitter comitter) throws IOException,
 InterruptedException {
 Configuration conf = context.getConfiguration();
 Path file = new Path(comitter.getWorkPath(),
 EtlMultiOutputFormat.getUniqueFile(context, filename,
 getFilenameExtension()));
 CompressionCodec codec = null;
 SequenceFile.CompressionType type =
 SequenceFile.CompressionType.NONE;
 if(FileOutputFormat.getCompressOutput(context)) {
 type = SequenceFileOutputFormat.getOutputCompressionType(
 context
);
 Class<?> klass =
 SequenceFileOutputFormat.getOutputCompressorClass(context,
 DefaultCodec.class);
 codec = (CompressionCodec) ReflectionUtils.newInstance(klass,
 conf);
 }
 final SequenceFile.Writer writer = SequenceFile.createWriter(
 file.getFileSystem(conf),
 conf,
 file,
 Text.class, Text.class,
 type,
 codec);
 return new RecordWriter<IEtlKey,CamusWrapper>() {
 Text key = new Text();
 Text value = new Text();

 @Override
 public void close(TaskAttemptContext arg0) throws IOException,
 InterruptedException {

 Chapter 6 ■ Storing Streaming Data 221

c06.indd 05:36:44:PM 06/12/2014 Page 221

 writer.close();
 }

 @Override
 public void write(IEtlKey arg0, CamusWrapper arg1)
 throws IOException, InterruptedException {
 key.set(arg0.getTopic()+"\t"+arg0.getPartition()+
 "\t"+arg0.getOffset());
 if(arg1.getRecord() instanceof ObjectNode) {
 ObjectNode node = (ObjectNode)arg1.getRecord();
 value.set(node.toString());
 }
 }

 };
 }

 @Override
 public String getFilenameExtension() {
 return ".json";
 }

}

It is activated by updating camus.properties to use the appropriate class:

etl.record.writer.provider.class=wiley.streaming.camus.
 JSONRecordWriterProvider

Ingesting Data from Flume

Flume natively supports the Hadoop Distributed File System (HDFS) data inges-

tion as one of its sinks. For example, writing data in the same directory format

as the earlier Camus example using an agent named agent99 is implemented

as follows:

agent99.channels = channel1
agent99.sinks = kitchen
agent99.sinks.kitchen.type = hdfs
agent99.sinks.channel = channel1
agent99.kitchen.hdfs.path = /events/%y%m%d%H%M
agent99.kitchen.hdfs.round = true
agent99.kitchen.hdfs.roundValue = 5
agent99.kitchen.hdfs.roundUnit = minute
agent99.kitchen.hdfs.useLocalTimeStamp = false

In this example, the Hadoop Distributed File System (HDFS) sink is instructed

to create paths using the local timestamp rounded down to the nearest 5-minute

interval. The timestamp is obtained from the event itself by looking for a time-

stamp header.

222 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 222

Event versus Processing Time

It is tempting to use the event timestamp during this sort of ingest process to

neatly place events into directories that make later analysis easier.

Unfortunately, doing this makes continuous process pipelines vastly more

diffi cult to implement. In a processing environment, data may be arriving out

of order. This means that one has to track where all the data ended up after an

ingestion sequence. Keeping the data organized by the import time makes it

very clear when the data was imported.

The reason it is important to keep track of the import time is that this is what

has to be fi xed when a bug is introduced. If the processing pipeline breaks,

this import time identifi es the data that has to be fi xed, not the time when the

data was generated. The time of the event does not matter for most recovery

and maintenance situations, despite being slightly easier to process for users

looking at historical data.

To use the local timestamp in Flume, simply change the useLocalTimeStamp

parameter in the confi guration to true.

Doing the same for Camus is a bit more complicated. The easiest way to do it is

to choose an output directory before the job based on the current time. This can

be passed in a confi guration parameter and read by a custom Partitioner class:

public class BatchPartitioner implements Partitioner {

 String batch = null;

 @Override
 public String encodePartition(JobContext context,
 IEtlKey etlKey) {
 if(batch == null)
 batch = context.getConfiguration().get("batch","none");
 return batch;
 }

 @Override
 public String generatePartitionedPath(JobContext context,
 String topic,int brokerId, int partitionId,
 String encodedPartition) {
 return topic+"/"+encodedPartition;
 }

}

This Partitioner is the set in the camus.properties fi le to override the

default behavior:

elt.partitioner.class=wiley.streaming.camus.BatchPartitioner

 Chapter 6 ■ Storing Streaming Data 223

c06.indd 05:36:44:PM 06/12/2014 Page 223

Using Hadoop for ETL processes

After data is being routinely ingested into Hadoop for storage, it can also be

integrated into ETL processes. This book is primarily concerned with real-time

analysis so this will be discussed only briefl y.

There are a number of options for ETL pipelines in Hadoop. Some of the

more popular options are Pig and Hive. The former is a scripting language for

Hadoop that was developed by Yahoo! for ETL processing. The latter is a SQL-

like interface to Hadoop’s Map-Reduce framework, which makes it a popular

choice for database developers.

These tools, among others, are typically used in a multistep pipeline to pro-

duce a number of aggregated outputs. These are then made available for other

pipelines or processing tools. Again, Hive is a popular choice here because it

can be integrated with outside query tools. There are other specialized tools

built to work directly with Hadoop available from commercial vendors.

The data can also be loaded from Hadoop into another database environment.

Many database vendors provide connectors from Hadoop to their database to

simplify this process. Another, more generic, option is Sqoop. This is an Apache

project that is used for bulk transfers between Hadoop and other data stores.

The package consists of a server that manages Hadoop jobs used for the bulk

ingress or egress. It is controlled by a separate client process.

Lambda Architectures

One of the key features all of the storage systems discussed in this chapter

possess is the ability to tune their update mechanism. Practically, this means

abandoning transactions in favor of write speed. Combined with the at-least-

once nature of the data-fl ow mechanisms, this can lead to both under-counting

and over-counting of aggregates and other related problems.

To overcome this problem, Nathan Marz introduced the concept of the Lambda

Architecture. In this architecture, the real-time system updates its data stores

as before, without regard to transaction. It is accepted that these values are only

an approximation of the true values.

The fi nal values are computed using the data warehousing system. In most

examples, these fi nal values are computed by large Hadoop batch jobs. The front-

end interface then manages the selection between the two systems. The other

approach is to use the same database to store both and overwrite the real-time

values with the values from the batch system as they become available. This

requires fewer resources and is easier to manage on the front end, but it can be

harder to implement. It is also often desirable to use different storage technolo-

gies for the short-term storage of the real-time system and the long-term storage

of the “fi nal” results coming from the batch system.

224 Part I ■ Streaming Analytics Architecture

c06.indd 05:36:44:PM 06/12/2014 Page 224

Conclusion

This chapter has covered the basics of some of the more popular data storage

options available. Essentially all storage options work in a given situation given

enough effort, but some make more sense for certain applications than others.

This is often not an easy decision, so it is often best to try a few things out and

experiment. The fi rst attempt at scaling to available data will usually eliminate

at least a few options.

Now that data is streaming into a processing system and that processing

system has someplace to put its output, it is time to build some applications.

The next chapter puts a face on the data by building a simple dashboard envi-

ronment. This is the starting point of many streaming data projects because it

gives people the ability to “feel” the data and interact with it.

c07.indd 05:34:52:PM 06/12/2014 Page 225

Par t

II
Analysis and Visualization

In This Part

Chapter 7: Delivering Streaming Metrics

Chapter 8: Exact Aggregation and Delivery

Chapter 9: Statistical Approximation of Streaming Data

Chapter 10: Approximating Streaming Data with Sketching

Chapter 11: Beyond Aggregation

c07.indd 05:34:52:PM 06/12/2014 Page 226

227

c07.indd 05:34:52:PM 06/12/2014 Page 227

After streaming data has been collected, processed, and stored, it is time to

deliver this data to end users. Historically, streaming data applications have

employed customized “thick” clients of various kinds. With the introduction of

web-based interfaces, the applications evolved to either applet-based approaches

using Java or often to plug-in-based approaches. For example, Adobe has pro-

vided streaming interfaces via Flash using its LiveCycle server line for years.

Neither the applet nor the plug-in-based approach is particularly appealing

in a modern delivery environment. First and foremost, with the rise of truly

mobile computing, these options are simply not available for web-based delivery.

Citing security and power usage concerns, modern browsers also severely limit

these options, which makes using them more and more diffi cult in a desktop

environment.

Fortunately, web browser standards have progressed to the point where rich

data applications are possible, even those with streaming data connections. The

standards most important for streaming applications are the Server-Side Events

and Web Socket frameworks. Both of these options have wide browser adoption

and allow for a web page to receive streaming updates.

Although it’s not a complete guide to web application development, this chapter

provides an introduction to the topic with a focus on real-time applications.

It introduces the basics of web application back-end structures and adapts them

to the particular problems of a real-time application, which are somewhat dif-

ferent than those of a traditional web application.

C H A P T E R

7

Delivering Streaming Metrics

228 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 228

After data is delivered to the front end, presentation is the primary concern.

Modern web browsers offer some advanced presentation techniques that sup-

plant the Flash-based approaches of even a few years ago. These approaches are

ideal as they work across a range of browsers—even mobile browsers—with

a high rendering fi delity. One of the most popular tools is the D3 JavaScript

library, which is widely used to render high-quality visualizations. This chapter

covers the D3 toolkit, as well as several of the higher-level abstractions for D3,

as it is a fairly low-level library.

Streaming Web Applications

The traditional web server relied on the operating system’s multithreading

or multiprocess support to handle connections. In the early days of Java web

servers or Common Gateway Interface applications, when a new connection

was established from a web browser, then a new OS-level thread or process

(depending on the OS and specifi c server) would be spawned.

An operating system process has a fair amount of kernel overhead, and—

although lighter than a process—a kernel thread also introduces some over-

head and context-switching penalties as well. The advantage of this model is

that it does not require anything exotic from the programmer other than an

awareness of shared resources. The downside is that if the number of concur-

rent connections becomes large then the number of kernel resources required

becomes nontrivial. In fact, it is possible to render a system inaccessible simply

by causing it to spawn too many threads.

To get around this problem, web servers began to use “non-blocking” I/O

rather than the traditional threading model. In this model, a server spins up a

relatively small number of workers (usually one per system core) and then uses

these non-blocking I/O mechanisms to handle incoming connections. Initially,

this non-blocking I/O was only used for the actual web connection, but it has since

expanded to be the standard mechanism for interaction in some environments.

One of these environments is node.js (often simply called Node), which is a

server-side JavaScript application. It is based entirely around non-blocking I/O

libraries (the specifi c library depends on what is available from the operating

system) using a single execution thread. It has become a popular framework for

developing web applications, and its ability to comfortably handle a relatively

large number of persistent connections makes it a good choice for building

streaming applications. Although it is based on a very fast JavaScript engine,

the V8 engine found in Google’s Chrome web browser, it is not as effi cient as a

Java-based server. However, the use of JavaScript on the back end, as well as the

front end, allows for some interesting capabilities that outweigh the performance

discrepancy for many applications.

 Chapter 7 ■ Delivering Streaming Metrics 229

c07.indd 05:34:52:PM 06/12/2014 Page 229

The remainder of this chapter builds its streaming applications using node.js

and its related libraries. This chapter assumes a basic familiarity with JavaScript

development, but not with node.js specifi cally.

Working with Node

Despite being JavaScript, programmers coming from the browser side of web

application development are often stymied by Node’s processing model. The

same is true of engineers coming from other web application frameworks, such

as Ruby on Rails. The reason for the diffi culty is Node’s event-driven callback

style. This style of programming is very different than what most programmers

are used to, so it helps to begin with an overview of the style to understand

how Node works.

N O T E Node is a rapidly evolving project with regular releases. Some of these

releases introduce or remove functionality, which makes compatibility between

releases diffi cult. This book assumes a version of Node similar to the 0.10 application

programming interfaces (APIs).

Callback-Driven Programming

In most languages, such as Java or Python, operations are assumed to be block-

ing. So, when code asks for a line from a fi le, it sits and waits until that line is

completely available and then returns the line to the program. For instance,

the following code for reading a fi le from an InputStream named stream in Java

might look like this:

InputStreamReader reader = new InputStreamReader(stream);
BufferedReader lines = new BufferedReader(reader);

while(lines.ready()) {
 var line = lines.readLine();
 //Do something with the line here
}

In Node, this style of programming is generally unavailable because I/O is

assumed to be non-blocking. (There are exceptions, but they are rare.) Instead,

Node interfaces either take an object or respond to events. For example, in the

following code a fi le is opened, but there is no function to read the next line as

there would be in, say, a Java program. Instead, a function is bound to the line

event that handles the processing of the line of data. Other events, not shown in

this example, may also be bound to functions to allow the program to respond

to the end of the fi le or an error generated by the reading process:

var readline = require('readline');
var lines = readline.createInterface({

230 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 230

 input: stream
});
lines.on('line',function(line) {
 //Do something with line here
});

Escaping the “Callback Pyramid of Doom”

The callback style of programming is easy to follow when there is only one set

of events to process that does not require further calls. Of course, this is never

the case for nontrivial software, and the callback model begins to break down.

For example, sequential operations quickly become hard to follow:

first(input,function(error,data) {
 second(data,function(error,moreData) {
 third(data,moreData,function(error,evenMoreData) {
 //Do something with the data...
 console.log("data: "+data+", moreData:"
 +moreData+" evenMoreData:"+evenMoreData);
 });
 })
});

This is colloquially known as the “callback pyramid (of doom),” and it troubles

JavaScript programmers both on the front end and the back end. There are sty-

listic approaches that can reorganize the pyramid by rewriting the operations

as separate named functions:

function doThird(data,moreData) {
 third(data,moreData,function(error,evenMoreData) {
 });
});

function doSecond(data) {
 second(data,function(error,moreData) {
 doThird(data,moreData);
 });
}

first(a,function(error,data) {
 doSecond(data);
});

But this style is actually fairly cumbersome to maintain in practice. Another

approach is to use an events library, part of the Node core libraries, to use an

EventEmitter to coordinate sequential events:

var coord = new require('events').EventEmitter();

coord.on('first',function(a) {

 Chapter 7 ■ Delivering Streaming Metrics 231

c07.indd 05:34:52:PM 06/12/2014 Page 231

 first(input,function(error,data) { emit('second',data); }
});

coord.on('second',function(data) {
 second(data,function(error,moreData) {
 coord.emit('third',data,moreData);
 }
});

coord.on('third',function(data,moreData) {
 third(data,moreData,function(error,evenMoreData) {
 });
});

This example is very similar to the previous example, but the similarity

between calls points to being able to create a library that can easily chain calls

together. In fact, this has already been done in a number of different libraries

that implement various techniques for arranging calls. One of these libraries,

which is used extensively in this book, is called async and allows the previous

example to be implemented as a waterfall:

var async = require('async');
var input = ...;

async.waterfall([
 function(cb) {
 first(input,function(error,data) {
 cb(data);
 });
 },

 function(data,cb) {
 second(data,function(error,moreData) {
 cb(data,moreData);
 });
 },

 function(data,moreData,cb) {
 third(data,moreData,function(error,evenMoreData) {
 //Do something here
 cb(); //All done
 });
 }
]);

Managing a Node Project with NPM

To manage a node project’s code, including managing dependencies such

as the async package used in the previous section, Node provides npm the

232 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 232

“node package manager” in the node installation for most operating systems.

This utility provides services very similar to Maven in the Java world or gem in

the Ruby world.

Setting Up a Node Project

Starting a node project is as simple as creating a new directory and running

npm init:

$ mkdir myproject
$ cd project
$ npm init

The NPM utility asks a series of questions about the project to get things

started. The end result of this process is the creation of a package.json fi le in

the directory where npm was run:

This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sane defaults.

See `npm help json` for definitive documentation on these fields
and exactly what they do.

Use `npm install <pkg> --save` afterwards to install a package and
save it as a dependency in the package.json file.

Press ^C at any time to quit.
name: (myproject)
version: (0.0.0) 1.0.0
description: My first node.js project
entry point: (index.js)
test command: mocha
git repository:
keywords:
author: Byron Ellis
license: (BSD)
About to write to /Users/bellis/Projects/wiley/chapter7/myproject
/package.json:

{
 "name": "myproject",
 "version": "1.0.0",
 "description": "My first node.js project",
 "main": "index.js",
 "scripts": {
 "test": "mocha"
 },
 "repository": "",

 Chapter 7 ■ Delivering Streaming Metrics 233

c07.indd 05:34:52:PM 06/12/2014 Page 233

 "author": "Byron Ellis",
 "license": "BSD"
}

Is this ok? (yes) yes

It is also customary to include a README.md fi le in NPM-managed projects. If

this fi le does not exist, NPM complains regularly until it is added. After the

package.json fi le has been created, dependencies such as async can be added by

adding a dependencies section:

{
 "name": "myproject",
 "version": "1.0.0",
 "description": "My first node.js project",
 "main": "index.js",
 "scripts": {
 "test": "mocha"
 },
 "repository": "",
 "author": "Byron Ellis",
 "license": "BSD",
 "dependencies":{
 "async":"*"
 }
}

To install the dependencies, simply execute npm install to get the latest version

(because "*" was specifi ed in the preceding code instead of a specifi c version

number):

$ npm install
npm WARN package.json myproject@1.0.0 No README.md file found!
npm http GET https://registry.npmjs.org/async
npm http 304 https://registry.npmjs.org/async
async@0.2.9 node_modules/async

Another way of doing this is to install the async package with npm and use

the save option:

$npm install async --save

This automatically updates the dependencies section of package.json with an

appropriate entry for the module of interest.

After development has started, it is usually best practice to fi x the version of

any dependency to avoid bugs introduced by changes to those packages. NPM

provides a facility called shrinkwrap that works similarly to the Gemfile.lock fi le

in Ruby gems to specify specifi c versions of the packages.

Now, everything is ready to begin developing a node.js web application.

mailto:myproject@1.0.0
https://registry.npmjs.org/async
https://registry.npmjs.org/async
mailto:async@0.2.9

234 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 234

Adding Modules to a Project

Any nontrivial project should break down code into manageable modules to

improve maintainability. In Node, this is done via modules that are imple-

mented as simple JavaScript fi les and imported using the require statement.

Unlike some languages, such as Java, there is no requirement that modules be

located in any particular directory, though it is usually best to place them in a

subdirectory to differentiate them from the main fi les used to run servers and

other applications.

Modules can work two ways, exporting specifi c functions or exporting the

entire module as a function. Some modules, such as the connect module used

later in this chapter, use both methods. To export a function from a module, add

that function to the exports block implicitly available inside a module:

function notExported() {
 console.log("This function can only be used internally");
}

exports.exported = function() {
 console.log("This can be called externally");
}

exports.callInternal = function() {
 notExported();
}

If these functions are in a fi le called lib/module.js, they can be imported and

used via the require function:

var mod = require('./lib/module.js');

mod.exported();
// Prints "This can be called externally"

mod.callInternal();
// Prints "This function can only be used internally"

mod.notExported();
// Throws an exception "Object #<Object> has no method 'notExported'"

Returning a module-level function requires overriding the exports object

itself by assigning a function to module.exports:

exports = module.exports = function() {
 //Do something here
};

Because functions are objects, other exports can continue to be added as above.

 Chapter 7 ■ Delivering Streaming Metrics 235

c07.indd 05:34:52:PM 06/12/2014 Page 235

Developing Node Web Applications

Out of the box, node has APIs for creating and using web applications. There

is a low-level http (or https) library that can be used to write a very simple web

server. There are even built-in APIs for common web server functions like pars-

ing query strings, encoding and decoding data and so on.

Implementing a basic server only takes a few lines of code:

var http = require('http')
, url = require('url')
, querystring = require('querystring')
;

http.createServer(function(request,response) {
 var query = querystring.parse(url.parse(request.url).query || "");
 response.writeHead(200,{'content-type':"text/plain"});
 response.end("Hello "+(query.name || "Anonymous")+"\n");
}).listen(3000);

Of course, this is a very low-level way to work and does not have any of the

conveniences of a modern web framework. There are a variety of options to

provide these higher-level interfaces. One of the most popular is the connect

framework with express middleware. These two packages form the basis of the

web applications developed in this chapter.

HTTP Middleware with Connect

The connect framework is often compared to Ruby’s rack project. It builds on the

basic HTTP server library to provide chainable pieces of code called middleware.
These pieces of code—the core library contains nearly two dozen—are used

to provide various components of a web server, such as query string parsing,

authentication, or fi le serving.

Implementing a basic server capable of delivering static fi les only requires a

few lines of code:

var connect = require('connect')
;

var app = connect()
.use(connect.static('public'))
.use(function(request,response) {
 response.writeHead(404,{'content-type':'text/plain'});
 response.end("File Not Found");
})
.listen(3000);

236 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 236

This server fi rst creates a connect application by calling connect() and then

begins chaining together middleware with the use() function. Each piece of

middleware is executed in the order it was added for each request.

Writing custom middleware is also easy because it is simply comprised of func-

tions. All middleware functions take the form function(request,response,next)

where the function may modify the request and response values before optionally

calling the next function to proceed to the next piece of middleware.

Confi guration of the middleware usually takes place by implementing a

function that returns the middleware itself. This allows the middleware to be

confi gured by taking advantage of the lexical scoping of JavaScript. For example,

to implement a simple version of the static middleware might look something

like this:

var url = require('url')
, path = require('path')
, fs = require('fs')
;

function static(srcDir) {
 return function(request,response,next) {
 if(request.method != "GET") return next();
 var p = path.join(process.cwd(),
 srcDir,url.parse(request.url).pathname);
 fs.exists(p,function(yes) {
 if(!yes) return next();
 fs.createReadStream(p).pipe(response);
 });

 }
}

In this example, the static function returns another function confi gured

with the source directory held in srcDir. This allows it to be used in connect by

calling use(static("public")). Functions contained within another function are

called “inner functions” and have access to variables in the “outer” function

through a feature of JavaScript called lexical scoping. When a request comes

down the chain, fi rst the inner function checks for a GET method request. If

it is not the appropriate method, then the next function is called to continue

the processing chain. Next, a path to the requested fi le is constructed and, if

found, the fi le is piped to the HTTP response using the pipe method on Node’s

ReadStream class. Notice that the next function is not called. This is because the

request chain should terminate at this point, as a response has been returned

to the client.

 Chapter 7 ■ Delivering Streaming Metrics 237

c07.indd 05:34:52:PM 06/12/2014 Page 237

The express.js Web Framework

Building on connect middleware the same way that Sinatra or Rails build on

Rack in Ruby, express.js is a framework for building full-fl edged web applica-

tions. It is designed to support the Model-View-Controller (MVC) style of web

application, which works well with streaming data applications. Getting started

with express.js looks a lot like starting a connect application:

var express = require('express')
, path = require('path')
, app = express()
;
app
.set("port",argv.port)
.set("views",path.join(__dirname,"views"))
.set("view engine","jade")
.use(express.favicon())
.use(express.logger('dev'))
.use(express.json())
.use(express.urlencoded())
.use(express.methodOverride())
.use(app.router) //MVC routing
.use(require('less-middleware')({
 src: path.join(__dirname, 'public')
}))
.use(express.static(path.join(__dirname, 'public')));

app
.listen(argv.port);

Like the earlier connect example, the application is fi rst initialized and then

the base middleware attached. The express middleware mostly supersedes

the connect middleware, but third-party connect middleware can still be used

with express. In this case, the default middleware handles parsing of the vari-

ous parts of the URL as well as the body. It also establishes static fi le delivery

from the public directory and rendering of cascading style sheets (CSS) using

the less package. This package is used by Twitter’s Bootstrap, among others,

to simplify styling the application. The “jade” view engine provides a template

language used to create dynamic web pages within the application. It is used

in the next section to describe the layout of the dashboard so that data can be

streamed to it.

238 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 238

A Basic Streaming Dashboard

Using the express framework, this section builds a framework for a streaming

dashboard. This is probably the fi rst and most common application of streaming

data. This section provides the framework and rendering of the dashboard, and

the next section hooks the streaming back end to the front end.

Bootstrap Layouts

This dashboard uses layouts based on Twitter’s Bootstrap 3 framework. This

is a lightweight framework that integrates well with jQuery and provides easy

integration of mobile features. Because Bootstrap will be used in all of the sec-

tions of the dashboard, it makes the most sense to add it directly to the layout

of the entire web application. The default express layout is called layout.jade,

which is in the views directory. To incorporate Bootstrap, add the appropriate

style sheet and script links, highlighted in bold below:

doctype 5
html
 head
 title= title
 meta(name='viewport',content='width=device-width,
 initial-scale=1.0')
 link(rel='stylesheet',href='/stylesheets/bootstrap.min.css')
 link(rel='styleshhet',
 href='/stylesheets/bootstrap-theme.min.css')
 block styles
 body
 block content
 script(src='/javascripts/jquery.min.js')
 script(src='/javascripts/bootstrap.min.js')
 block scripts

In addition to the usual content block, this layout also incorporates specialized

blocks for customizing styles and adding specialized scripts to a particular view.

A Dashboard View

This dashboard application has a single index view that renders all of the metrics

to be displayed in the dashboard. A typical dashboard consists of a variety of

small panels that contain metrics or visualizations. Visualizations of the data

are covered in the “Visualizing Data” section of this chapter. The fi rst task is

to build metric panels. Bootstrap already has styling and markup for building

simple panels. The following HTML fragment serves as a good starting point

for building new panels:

<div id="first-metric" class="panel panel-default">
 <div class="panel-heading">

 Chapter 7 ■ Delivering Streaming Metrics 239

c07.indd 05:34:52:PM 06/12/2014 Page 239

 <h3 class="panel-title">Header</h3>
 </div>
 <div class="panel-body">
 <!-- Body Goes Here -->
 </div>
 <div class="panel-footer">My First Metric</div>
</div>

This markup serves as a template for a mixin to the Jade template language.

Using the mixin feature makes it easy to quickly create a layout for a number

of metrics. The mixin defi nes all of the basic data fi elds for a metric, making it

easy to bind data to them on the back end. The template language also allows

for conditional statements, so the title and footer can be optional elements of

the panel:

mixin metric(id,title,footer)
 div(class="panel panel-default",id="#{id}-metric")
 if title
 div.panel-heading: h3.panel-title= title
 div(class="panel-body metric")
 h1(data-counter="#{id}")= "--"
 h3
 span.glyphicon(data-direction="#{id}")
 span(data-change="#{id}")= ""
 if footer
 div.panel-footer= footer

This mixin is then added to the usual Bootstrap layout to build a simple

dashboard with a number of different metrics in the index.jade view, located

in the views director:

block styles
 link(rel='stylesheet',href='/stylesheets/dashboard.css')

block content
 div(class="container")
 div.page-header: h1 An Important Dashboard
 div(class="row")
 div(class="col-lg-3")
 +metric("first","Metric 1","My First Metric")
 div(class="col-lg-3")
 +metric("second","Metric 2","Another Metric")
 div(class="col-lg-6")
 +metric("third","Metric 3","A Bigger One")
 div(class="row")
 div(class="col-lg-2")
 +metric("m4")
 div(class="col-lg-2")
 +metric("m5")
 div(class="col-lg-2")
 +metric("m6")
 div(class="col-lg-2")

240 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 240

 +metric("m7")
 div(class="col-lg-2")
 +metric("m8")
 div(class="col-lg-2")
 +metric("m9")

This code snippet builds a two-row dashboard with a simple header. There

are three panels of varying widths on the top row and six equally sized panels

on the bottom row. When rendered in a browser, the dashboard should look

something like Figure 7-1.

Figure 7-1

Updating the Dashboard

At the moment, all of the metrics being rendered are simple counters. More

complicated graphical metrics will come later in this chapter, with the next

chapter devoted to aggregated metrics like time-series displays.

To update the counters on the dashboard, they must fi rst be registered with

the application so they can begin to receive data. This is accomplished through

the use of so-called data attributes. Custom data attributes are an HTML5 inno-

vation that allows arbitrary user attributes to be bound to various elements of

the Document Object Model (DOM).

jQuery and other frameworks provide selectors to query for the presence of a

specifi c data element. To fi nd all of the data-counter elements in the dashboard,

the query looks something like this:

$('*[data-counter]').each(function(i,elt) {
 //elt is the document element
 });

 Chapter 7 ■ Delivering Streaming Metrics 241

c07.indd 05:34:52:PM 06/12/2014 Page 241

Because the mixin from the last section specifi es the metric in the data-counter

fi eld, this query can be used to bind the counter to a custom event such that

it will update the counter every time the event fi res. First, select each of the

counters to bind:

function bindCounters() {
 $('*[data-counter]').each(function(i,elt) {
 bindCounter($(elt).attr("data-counter"),$(elt))
 });
}

Next, fi nd the directional indicator, change the amount fi elds included in

the counter metric, and bind the whole thing to a custom event of the form

data:<counter name>. Found in public/javascripts/dashboard.js, the implemen-

tation is as follows:

function bindCounter(counterName,$elt) {

 $elt.text("--");

 var $dir = $('span[data-direction='+counterName+']');
 var $chg = $('span[data-change='+counterName+']');

 var last = NaN;

 $(document).on('data:'+counterName,function(event,data) {
 $elt.text(data);
 if(isFinite(last)) {

 var diff = data - last;
 if(diff > 0) {
 $dir.removeClass("glyphicon-arrow-down");
 $dir.addClass("glyphicon-arrow-up");
 } else {
 $dir.removeClass("glyphicon-arrow-up");
 $dir.addClass("glyphicon-arrow-down");
 }
 diff = Math.abs(diff);

 if($chg.hasClass("percentage")) {
 diff = Math.round(1000*diff/last)/10;
 $chg.text(diff+"%");
 } else {
 $chg.text(diff);

242 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 242

 }

 }
 last = data;
 });

 $chg.on('click',function() { $chg.toggleClass("percentage"); });
}

This code wraps up all the information needed to update the counter as well

as the directional indicator. The code also binds a click event to the directional

indicator to allow for toggling between an absolute display and a percentage

display.

To see these metrics in action, the following is a small driver that triggers

each of the counter events with a random value. The triggers themselves are

set to randomly fi re between 1 and 5 seconds and can be found in public/

javascripts/counter.js:

$(document).ready(function() {
 $('*[data-counter]').each(function(i,elt) {
 var name = $(elt).attr("data-counter");
 setInterval(function() {
 $(document).trigger("data:"+name,
 Math.round(10000*Math.random()));
 },1000+Math.round(4000*Math.random()));
 });
});

The counters, shown in Figure 7-2, are now ready to accept data streamed in

from the server itself.

Figure 7-2

Adding Streaming to Web Applications

With the dashboard counters ready for streaming data, there are two viable web

options for web-based delivery of data: SSEs and WebSockets. Both technologies

 Chapter 7 ■ Delivering Streaming Metrics 243

c07.indd 05:34:52:PM 06/12/2014 Page 243

enjoy fairly broad support across modern browsers, including mobile browsers.

Both have their pros and cons making the choice of a particular technology

more a matter of preference than requirements.

This section covers how to use both technologies to communicate with the

back-end server. The two technologies do not interfere with each other, so it is

perfectly reasonable to provide back-end support for both styles.

Server-Side Counter Management

Before introducing the communication technologies, the counters to be used

in the dashboard must be maintained on the server side. Otherwise, there will

be nothing to send to the client after it is wired to the server! In this example

application, counters are maintained in a singleton object derived from Node’s

built-in EventEmitter class with the implementation found in dashboard/lib/

counters/index.js:

var events = require('events')
, util = require('util')
;

function Counter() {
 //Returns the singleton instance if it exists
 if(arguments.callee.__instance) {
 return arguments.callee.__instance;
 }
 arguments.callee.__instance = this;

 this._state = { };

 events.EventEmitter.call(this);
}
util.inherits(Counter,events.EventEmitter);
module.exports = new Counter();

The singleton instance is stored in the arguments.callee.__instance variable.

This allows the counter object to be imported with a require statement.

The state for the counter object is, for the moment, stored in the object itself.

A more complicated dashboard would persist this data somewhere to survive

restarts. This issue is tackled later in this section.

Updating counter state is handled through methods on the counter object.

The basic operations to support are the get, set, and increment methods:

Counter.prototype.state = function(cb) {
 return cb(null,this._state);
};

Counter.prototype.get = function(counter,cb) {
 return cb(null,this._state[counter] || 0);

244 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 244

};

Counter.prototype.set = function(counter,value,cb) {
 this._state[counter] = (value || 0);
 this.emit("updated",counter,this._state[counter]);
 return cb(null,this._state[counter]);
};

Counter.prototype.increment = function(counter,amount,cb) {
 var self = this;
 this.get(counter,function(err,count) {
 self.set(counter,count + 1*(amount||1),cb);
 })
};

Note that the set method in the preceding code emits an updated event whenever

a counter is changed. This is the primary interaction any streaming connection

has with the counters. It simply listens to this event when the connection is

opened and removes itself from the set of listeners when the connection closes.

Now that the counter state can be maintained on the server side, a simple API

is needed to allow updates to the state. This will then be attached to the client-

side interface via both SSEs and WebSockets in the next two sections. Express

makes it easy to implement simple REST-style APIs to the counter singleton, as

seen in this code found in dashboard/index.js:

var counters = require('./lib/counters');
app.set("counters",counters);

app.get('/api/v1/incr/:counter', function(req,res) {
 counters.increment(req.params.counter,req.query.amount,
 function() {
 res.end("OK\n");
 });
});
app.get('/api/v1/counter/:counter',function(req,res) {
 counters.get(req.params.counter,function(err,data) {
 res.end(data+"\n");
 });
});
app.get('/api/v1/state',function(req,res) {
 counters.state(function(err,data) {
 for(var counter in data) {
 res.write(counter+": "+data[counter]+"\n");
 }
 res.end();
 });
});

 Chapter 7 ■ Delivering Streaming Metrics 245

c07.indd 05:34:52:PM 06/12/2014 Page 245

Server Sent Events

Server Sent Events (SSEs) were added to the HTML5 specifi cation by the Web

Hypertext Application Technology Working Group (WHATWG). Originally

introduced in 2006, the SSE protocol uses HTTP as its transport mechanism

with the text/event-stream Content Type. The basic response is a line prefi xed

with data: and ending with \n\n (two newline characters). A multiline response

is allowed by only using a single newline, but it still starts with the data: prefi x.

The web server may set an optional retry timeout, event, and an ID fi eld using

the retry:, event:, and id: prefi xes, respectively. A complete response looks

something like this:

HTTP/1.1 200 OK
X-Powered-By: Express
Content-Type: text/event-stream
Cache-Control: no-cache
Connection: keepalive
Transfer-Encoding: chunked

event:alpha
id:1234
retry:10000
data:{"hello":"world"}

id:12345
data:{"again":"and again"}

This response returns a simple one-line message with an id of 1234 and sets

the retry time from 30 seconds to 10 seconds. To read this message, supporting

browsers use the EventSource class. This class fi res an event corresponding to

the event name given in the response. If no event is specifi ed, the object fi res

a message event.

To modify the example dashboard application to respond, the server fi res

counter events to transmit a JSON object containing updates to each counter.

First, the application must establish a connection to the server. This is mostly

handled by the EventSource object, which takes a URL to the SSE connection.

In this case, the connection lives at /api/v1/dashboard and is implemented in

dashboard/public/javascripts/sse.js:

$(document).ready(function() {

 var events = new EventSource('/api/v1/dashboard');

The EventSource object emits a number of events besides the messaging events

described earlier. Handling those events is optional, but it often provides use-

ful debugging information. The most important events are the open and error

events, which are called when the event stream is successfully established and

when the event stream is closed, or another error event occurs (such as a 500).

246 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 246

In this simple example, these events simply report being called to the console

for debugging purposes:

 events.addEventListener('open',function(e) {
 if(window.console) console.log("opened SSE connection");
 });

 events.addEventListener('error',function(e) {
 if(e.readyState != EventSource.CLOSED) {
 if(window.console) console.log("SSE error");
 } else
 if(window.console) console.log("closed SSE connection");
 });

Finally, the counters event is handled to distribute the counter state to the

already established listeners:

 events.addEventListener('counters',function(e) {
 var data = JSON.parse(e.data);
 for(counter in data)
 $(document).trigger('data:'+counter,data[counter]);
 });

});

To respond to this event, the Express application defi nes a route corresponding

to the endpoint used to create the EventSource object, using the SSE middleware

function to provide the SSE protocol added dashboard/index.js:

app.get('/api/v1/dashboard', sse(), routes.dashboard);

The Server Sent Events middleware is a fairly simple piece of code, imple-

mented in dashboard/lib/sse/index.js. This particular implementation maintains

unique message IDs for events on a per-event type basis as well as allowing for

a default event name:

module.exports = function(options) {
 options = options || {};

 return function sse(req,res,next) {

 res._counts = {};
 res._nextId = function(type) {
 type = type || "message";
 count = (this._counts[type] || 0) + 1;
 this._counts[type] = count;
 return count;
 }

 Chapter 7 ■ Delivering Streaming Metrics 247

c07.indd 05:34:52:PM 06/12/2014 Page 247

When a connection begins, it must check that the call is coming from a source

that supports SSE. If this is the case, it sends the appropriate content type and

other settings to start the connection:

if(req.accepts("text/event-stream")) {
 req.setTimeout(Infinity);
 res.writeHead(200,{
 'Content-Type': 'text/event-stream',
 'Cache-Control': 'no-cache',
 'Connection': 'keepalive'
 });
 } else {
 res.writeHead(200,{
 'Content-Type': 'application/json',
 'Cache-Control': 'no-cache',
 'Connection': 'keepalive'
 })
 }

Before continuing along the chain, the middleware adds functions to the

response object to transmit SSE events in the appropriate format:

 res.event = function(event,type,opt) {
 opt = opt || {};
 type = type || options.event;

 if(type)
 this.write("event:"+type+"\n");
 this.write("id:"+this._nextId(type)+"\n");
 if(opt.retry)
 this.write("retry:"+opt.retry+"\n");
 this.write("data:"+event+"\n\n");
 }

 res.json = function(json,type,opt) {
 this.event(JSON.stringify(json),type,opt);
 }

 next();

 }

};

Finally, the endpoint itself retrieves the current counter state when the con-

nection starts and sends the counter data immediately. Then, the handler for

this connection attaches itself to the Counter object to obtain future counter

updates from the server, which the handler then passes along to the client. The

implementation of the handler below can be found in dashboard/routes/index.js:

exports.dashboard = function(req,res) {

 var counters = req.app.get('counters');

 counters.state(function(err,data) {

248 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 248

 console.log(data);
 res.json(data,"counters");
 });

 function update(counter,value) {
 var msg = {};msg[counter] = value;
 res.json(msg,"counters");
 }

 counters.on("updated",update);

 res.on("close",function() {
 counters.removeListener("updated",update);
 });

};

With everything in place, the dashboard should now respond to state updates

from the command line. Try starting the dashboard and then executing the

following commands from another window:

$ curl http://localhost:3000/api/v1/incr/first?amount=25
OK
$ curl http://localhost:3000/api/v1/incr/second?amount=25
OK
$ curl http://localhost:3000/api/v1/incr/third?amount=50
OK

After the commands have been executed, the dashboard display should look

like Figure 7-3.

Figure 7-3

SSEs enjoy support on all WebKit browsers such as Safari and Chrome. This

includes their Mobile counterparts on iOS and Android. It is also supported by

http://localhost:3000/api/v1/incr/first?amount=25
http://localhost:3000/api/v1/incr/second?amount=25
http://localhost:3000/api/v1/incr/third?amount=50

 Chapter 7 ■ Delivering Streaming Metrics 249

c07.indd 05:34:52:PM 06/12/2014 Page 249

Firefox and Opera, but not by Internet Explorer or the default Android browser

(which is not Chrome for some reason). However, because the specifi cation relies

only on basic HTTP, it is possible to use “polyfi ll” libraries to provide support. At

the time of writing, there are three well-known polyfi ll libraries for SSEs, with

Remy Sharp’s polyfi ll library (https://github.com/remy/polyfills/) providing an

interface most closely matching that provided by native implementations and

allowing support in Internet Explorer 7 and later versions.

WebSockets

The WebSocket protocol, also known as RFC 6455, is a bidirectional communica-

tions layer designed for so-called “rich” clients. It maintains communications

over port 80, but unlike SSEs, it “upgrades” the connection to support commu-

nication through a handshake process.

There have been several different versions of the standard since 2010, and

there is fairly good browser support for the modern secure version of the

standard. Support for it started in Internet Explorer 10, Chrome 14, Safari 6,

Firefox 6, and modern versions of Opera. WebSockets are also supported by

the mobile versions of these browsers. Chrome also supports an experimental

SPDY version of the protocol, but at the time this book is being written it has

to be enabled with a startup switch, so there is effectively no support for this

“in the wild.”

Because the protocol is more complicated than Server Sent Events, the

dashboard application relies on a library for WebSocket support, rather than

just implementing the server and client directly. There are several WebSocket

libraries available for Node, but one of the more popular libraries is socket.io,

which provides both a server-side library as well as a client-side library with

identical interfaces. It also standardizes browser API differences to provide

a common interface on all platforms. The easiest way to use socket.io is to

attach its server interface directly to the Express application and treat it as,

essentially, a separate interface to the application. To do this requires creating

an http.Server object that replaces the listen() method on the application.

In the dashboard example, this involves creating the server object when the

application is initialized in dashboard/index.js:

var express = require('express')
, routes = require("./routes")
, path = require('path')
, app = express()
, server = require('http').createServer(app)
, sse = require('./lib/sse')
;

https://github.com/remy/polyfills

250 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 250

Then, app.listen(argv.port) is replaced with server.listen(argv.port) and the

socket.io code is attached to the server after the application has been initialized:

server.listen(argv.port);
var ws = require('socket.io').listen(server);
ws.sockets.on('connection',function(socket) {
 function update(counter,value) {
 var msg = {};msg[counter] = value;
 socket.emit('counters',msg);
 }
 socket.emit('counters',counters.state);
 counters.on('updated',update);
 socket.on('disconnect',function() {
 counters.removeListener('counters',update);
 });
});

The implementation itself is very similar to the dashboard endpoint of the

Server Sent Events version. When a change to the counters is made, it is relayed

out to the dashboard to allow it to update the interface.

Implementing the client side is also quite similar to the Server Sent Events

version. First, the socket.io library must be included. Because the library itself

provides both server-side and client-side versions, it automatically creates an

endpoint to serve up the appropriate client-side library at /socket.io/socket

.io.js when the server is attached to the Express server, as it was earlier. The

dashboard HTML then only needs to be modifi ed slightly to support WebSockets,

including the extra script tag:

block scripts
 script(src='/socket.io/socket.io.js')
 script(src='/javascripts/dashboard.js')
 script(src='/javascripts/ws.js')

All that remains, as with the SSE version, is to redistribute the counter update

events when they come in over the WebSockets connection. In this case, even

less code is required because the events have already been converted back to

their JSON form by the socket.io library:

$(document).ready(function() {
 var socket = io.connect("/");
 socket.on('counters',function(data) {
 for(counter in data)
 $(document).trigger('data:'+counter,data[counter]);
 });
});

T I P Because WebSockets and SSE use diff erent endpoints and diff erent protocols, a

server can easily support both of them as transport mechanisms for streaming events.

This is especially useful when you’re trying to support a large number of devices or

even native implementations (in the case of mobile devices).

 Chapter 7 ■ Delivering Streaming Metrics 251

c07.indd 05:34:52:PM 06/12/2014 Page 251

N O T E A third technology for streaming communication between the server and the

browser is the WebRTC standard. Originally developed for peer-to-peer audio/visual

communication, this standard also has the ability to transmit arbitrary data across the

wire. Support at the moment is limited only to newer desktop versions of Firefox and

Chrome. The hope is that this will change in the not too distant future, providing a rich

new streaming data interface.

A Redis-Based Dashboard

While the in-memory counter state with a REST-style interface is useful for

development, the previous chapters have covered the data pipeline for a real

streaming web application. In this case, stream processing is handled by either

Storm or Samza, and updates are sent to some sort of persistent store.

Aggregation and maintenance of counters is covered in more detail in Chapter

8, “Exact Aggregation and Delivery,” but you can easily adapt the simple coun-

ter dashboard from before to a persistent store. This can then be driven from a

stream-processing environment.

This example uses Redis because it is a relatively simple key-value store that

also has a pubsub facility that is used to drive the updates. A persistent store

without this would require an additional messaging facility to drive the dash-

board servers (or use polling on the server side to drive updates).

In the example dashboard, the server keeps track of a single Redis hash that

can be updated by external interfaces as well as by the dashboard interface.

First, Redis confi guration parameters are added to the arguments for the server

in dashboard/index.js:

var argv = require('optimist')
.usage("Usage: $0")
.options("port",{alias:"P",default:3000})
.options("redis",{alias:"r"})
.options("counters",{alias:"c",default:"counters"})
.argv
;

These are used to drive the selection of the appropriate counter library:

var counters = argv.redis ?
 require('./lib/counters-redis')(
 argv.redis,
 {counters:argv.counters})
: require('./lib/counters');

The interface code has already been written in a callback style, so no changes

are required to that portion of the interface. Likewise, both the SSE and WebSocket

interfaces have been implemented to respond to events emitted by the Counter

class. The only thing that needs to be implemented is the new Counter class itself.

252 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 252

Rather than simply creating a singleton object, the new Counter class needs to

take in parameters that identify the location of the Redis server. This is used to

construct two Redis connections. The fi rst, called client, is used for all normal

Redis operations. The second, called pubsub, is used to handle the event delivery

for Redis operations. The reason two client connections are used is because

Node’s Redis client is placed into a special mode when the subscribe command

is used; that mode prevents the client from executing normal Redis operations,

found in dashboard/lib/counters-redis/index.js:

function Counter(host,options) {
 //Returns the singleton instance if it exists
 if(arguments.callee.__instance) {
 return arguments.callee.__instance;
 }
 arguments.callee.__instance = this;
 events.EventEmitter.call(this);

 this.options = options || {};
 this.client = redis.createClient(this.options.port || 6379
 ,host);
 this.counterName = this.options.counters || "counters";

 this.pubsub = redis.createClient(this.options.port || 6379,host);
 var self = this;
 this.pubsub.on('ready',function() {
 self.pubsub.subscribe(self.counterName);
 });

 this.pubsub.on('message',function(channel,message) {
 if(channel == self.counterName) {
 self._sendUpdate(message);
 }
 });

}
util.inherits(Counter,events.EventEmitter);
module.exports = function(host,options) {
 new Counter(host,options);
}

When a new counter event arrives on the pubsub connection that corresponds

to the hash being monitored by the server, the _sendUpdate method is used to

inform all subscribed clients:

Counter.prototype._sendUpdate = function(counter) {
 var self = this;
 this.get(counter,function(err,data) {
 if(err) return;
 self.emit("updated",counter,data);
 });
};

 Chapter 7 ■ Delivering Streaming Metrics 253

c07.indd 05:34:52:PM 06/12/2014 Page 253

This allows outside processing systems to push updates to the client by sending

a publish event through Redis for the appropriate channel. It is also allows the set

and increment events to be further decoupled from the Counter implementation:

Counter.prototype.set = function(counter,value,cb) {
 var self = this;
 this.client.hset(this.counterName,counter,value,
 function(err,data) {
 if(err) return cb(err,data);
 self.client.publish(self.counterName,counter);
 });
};

Counter.prototype.increment = function(counter,amount,cb) {
 var self = this;
 this.client.hincrby(this.counterName,
 counter,amount,function(err,data) {
 if(err) return cb(err,data);
 self.client.publish(self.counterName,counter);
 cb(err,data);
 });
};

Note that the increment method no longer relies on the get and set methods

as Redis provides its own primitives for atomically incrementing values. The

get and state methods now simply have to query the Redis store, revealing

why the callback structure was used in the original implementation despite

not being strictly necessary:

Counter.prototype.state = function(cb) {
 this.client.hgetall(this.counterName,cb);
};

Counter.prototype.get = function(counter,cb) {
 this.client.hget(this.counterName,counter,cb);
};

After starting the dashboard again, running the commands that resulted

in Figure 7-3 should return the desired results. To see events being updated

from outside of the dashboard it is now possible to push events from the Redis

command-line client:

$redis-cli
redis 127.0.0.1:6379> hset counters m4 4
(integer) 1
redis 127.0.0.1:6379> hset counters m5 5
(integer) 1
redis 127.0.0.1:6379> hset counters m6 6
(integer) 1
redis 127.0.0.1:6379> publish counters m4
(integer) 1

254 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 254

redis 127.0.0.1:6379> publish counters m5
(integer) 1
redis 127.0.0.1:6379> publish counters m6
(integer) 1

This results in a dashboard that looks like Figure 7-4.

Figure 7-4

Visualizing Data

For years, visualizing data in a web browser was limited to two options: server-

generated static images and plug-in-based visualizers, usually implemented

using Flash.

Although static images offer fl exibility, rendering a streaming display was

not technically feasible. At best, updates every 30 seconds to a minute were

feasible. These interfaces are in any number of server-monitoring solutions,

such as Graphite, which render static images on the server side and transmit

them to the client every so often.

This approach is not real time, nor does it offer any interactivity. It is also a

heavy approach because it requires retransmitting an entire image to accommo-

date potential small changes in the data. To overcome this, Flash- or Java-based

plug-ins were often used to allow incremental data updates.

Both of these options are still used when it is necessary to support older (or

simply inferior) browsers. Modern browsers can make use of HTML Canvas

and Inline SVG to support rich, plug-in-free visualization techniques directly

in the browser.

HTML5 Canvas and Inline SVG

The HTML5 Canvas element and Inline SVG provide rich rendering interfaces

within an HTML document without the use of plug-ins. As the names suggest,

 Chapter 7 ■ Delivering Streaming Metrics 255

c07.indd 05:34:52:PM 06/12/2014 Page 255

the Canvas element offers a pixel-based interface similar to rendering surfaces

used in native desktop or mobile applications. Inline SVG, on the other hand,

uses the DOM to construct a graphical representation that is then rendered

along with the rest of the document.

There are tradeoffs to both approaches. The Canvas interface is typically faster

to render, but it has far less native support for complicated rendering. Inline

SVG has built-in support for layering and grouping as well as supporting CSS

styling in many browsers, but it can be much slower to render large scenes due

to the need to maintain the scene graph. Rendering performance typically dic-

tates the choice of technique; so using Inline SVG until performance becomes

an issue is the most common approach.

Using the HTML5 Canvas

The HTML5 Canvas element is a resolution-dependent rendering surface sup-

ported in every modern browser, including Internet Explorer. (Versions 7 and

8 require an external library. Versions 9 and newer support the canvas element

natively.)

To use a Canvas, an element needs to be added to the page. Modifying the

metric mixin slightly puts a canvas element behind each metric on the page,

appropriately marked with a data element for later updating. This mixin is

implemented in the various. .jade view fi les found in dashboard/views such as

dashboard/views/canvas_ex1.jade:

mixin metric(id,title,footer)
 div(class="panel panel-default",id="#{id}-metric")
 if title
 div.panel-heading: h3.panel-title= title
 div(class="panel-body metric")
 div(class="canvas-wrap")
 canvas(data-canvas-gauge="#{id}")
 div(class="value-wrap")
 h1(data-counter="#{id}")= "--"
 h4
 span.glyphicon(data-direction="#{id}")
 span(data-change="#{id}")= ""
 if footer
 div.panel-footer= footer

Without styling, the elements would be arranged one after another, so the

next step is to stack the elements on top of each other and set the appropriate

z-index, which makes the elements render in the correct order. This is added

to dashboard/public/stylesheets/dashboard.css:

.metric div.canvas-wrap {
 position: absolute;
 width: 100%;

256 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 256

 height: 100%;
 z-index: 1;
}

.metric div.canvas-wrap canvas {
 width: 100%;
 height: 100%;
}

.metric div.value-wrap {
 position: relative;
 width: 100%;
 z-index: 2;
}

To draw the gauge over each counter, fi rst the canvas context needs to be

obtained:

 $('*[data-canvas-gauge]').each(function(i,elt) {
 fixup(elt)
 var name = $(elt).attr("data-canvas-gauge");
 var ctx = elt.getContext("2d");

The fixup function, implemented in dashboard/public/javascripts/canvas

.js, makes some slight alterations to the position of the canvas wrapper. This

positions the canvas properly in the center of the rear panel as well as sets the

resolution of the canvas surface to match that of the element:

 function fixup(elt) {
 var $elt = $(elt);
 var $wrap = $elt.parent();
 var $parent = $wrap.parent();

 var pos = $parent.position();

 $wrap.width($parent.width());
 $wrap.height($parent.height());

 elt.width = $parent.width();
 elt.height= $parent.height();

 }

A canvas element actually has two sizes: the size of the element itself, set by

the style attribution, and the size of the canvas surface, set by the width and

height attributes. This is often confusing for fi rst-time canvas users, and the

preceding code takes the opportunity to make the canvas resolution the same

as the element size for ease of use.

 Chapter 7 ■ Delivering Streaming Metrics 257

c07.indd 05:34:52:PM 06/12/2014 Page 257

Now that a surface context has been obtained and the canvas is moved into

the proper location, drawing can begin. Elements are created using various

“pen movement” commands, such as moveTo and lineTo, and curve commands,

such as arcTo. These are then either outlined using the stroke command or fi lled

using the fill command. The surface, like most similar implementations, also

has convenience functions for rectangles. In this case the gauge is drawn with

a drawGauge function, implemented in dashboard/public/javascripts/canvas.js,

that draws a circular gauge like the one shown in Figure 7-5:

function drawGauge(ctx,value,max) {
 //Clear the gauage
 ctx.fillStyle = "#fff";
 ctx.clearRect(0,0,ctx.canvas.width,ctx.canvas.height);

 //Draw the gauge background
 var centerX = (ctx.canvas.width) / 2;
 var centerY = (ctx.canvas.height) /2;
 var radius = Math.min(centerX,centerY) - 12.25;

 ctx.beginPath();
 ctx.arc(centerX,centerY,radius,0.6*Math.PI,2.4*Math.PI)
 ctx.strokeStyle = "#ddd";
 ctx.lineWidth = 25;
 ctx.stroke();

 var newEnd = (2.4-0.6)*(value/max) + 0.6;

 ctx.beginPath();
 ctx.arc(centerX,centerY,radius,0.6*Math.PI,newEnd*Math.PI)
 ctx.strokeStyle = "#aaa";
 ctx.lineWidth = 25;
 ctx.stroke();

 }

The function fi rst needs to clear the drawing surface, which is done with the

clearRect function. Note that the canvas knows its own internal size, so the

size of the rectangle does not need to be hardcoded. Next, a background arc is

drawn to provide context for the gauge itself. This uses the arc function to draw

a partial circle. Rather than attempting to draw the outer and inner arcs and

fi lling the result, the lineWidth is set to a relatively high value and then the path

is stroke’d rather than fi lled to produce the background. The radius is adjusted

slightly so that the outer edge of the path does not fall outside of the canvas.

The entire process is repeated again using a slightly darker color to indicate

the gauge value. For this second path, a new ending position is calculated based

258 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 258

on the current value and the maximum observed value for this particular metric.

If the gauge was known to have a fi nite range, this maximum value could be

set to the top of the range instead.

This is then attached to the data events to update the gauge background each

time the metric itself is adjusted:

 var max = 100;
 $(document).on('data:'+name,function(event,data) {
 if(data > max) max = data;
 drawGauge(ctx,data,max,dims);
 });

The end result of adding this to the original example dashboard is shown

in Figure 7-5. Each element now has a gauge rendering behind it that updates

each time the metric changes.

Figure 7-5

Another example of using the Canvas would be to draw a more traditional

chart in the background of the metric. To mix these two types of visualizations

in the same dashboard can be accomplished with a second mixin designed to

handle charts, such as the one found in dashboard/views/canvas_ex2.jade:

mixin metricChart(id,title,footer)
 div(class="panel panel-default",id="#{id}-metric")
 if title
 div.panel-heading: h3.panel-title= title
 div(class="panel-body metric")
 div(class="canvas-wrap")
 canvas(data-canvas-chart="#{id}")
 div(class="value-wrap")
 h1(data-counter="#{id}")= "--"
 h4
 span.glyphicon(data-direction="#{id}")
 span(data-change="#{id}")= ""

 Chapter 7 ■ Delivering Streaming Metrics 259

c07.indd 05:34:52:PM 06/12/2014 Page 259

 if footer
 div.panel-footer= footer

Using this new mixin, the fi rst row of metrics can be converted to the “chart”

mode instead of the “gauge” mode, as in the dashboard/views/canvas_ex2.jade

example:

block content
 div(class="container")
 div.page-header: h1 Canvas Example 2
 div(class="row")
 div(class="col-lg-3")
 +metricChart("first","Metric 1","My First Metric")
 div(class="col-lg-3")
 +metricChart("second","Metric 2","Another Metric")
 div(class="col-lg-6")
 +metricChart("third","Metric 3","A Bigger One")

Attaching a different data element to the chart canvases allows them to be

selected and associated with a different drawing method. In this case, the ren-

dering creates a simple area chart by creating an array of the last maxValues data

elements to be emitted for each counter, as implemented in dashboard/public/

javascripts/canvas.js:

 var maxValues = 20;
 function drawChart(ctx,values,max) {

 //Clear the gauage
 ctx.clearRect(0,0,ctx.canvas.width,ctx.canvas.height);

 var valHeight = ctx.canvas.height/max;
 var valWidth = ctx.canvas.width/(maxValues-1);

 if(values.length < 2) return;
 ctx.beginPath();
 ctx.moveTo(0,ctx.canvas.height);
 for(var i=0;i<values.length;i++) {
 ctx.lineTo(i*valWidth,ctx.canvas.height - values[i]*valHeight);
 }
 ctx.lineTo(valWidth*(values.length-1),ctx.canvas.height);
 ctx.fillStyle = "#ccc";
 ctx.fill();
 }

Finally, this draw method is executed after pushing each element onto the

data array, producing Figure 7-6:

 $('*[data-canvas-chart]').each(function(i,elt) {
 fixup(elt);
 var name = $(elt).attr("data-canvas-chart");

260 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 260

 var ctx = elt.getContext("2d");

 var chart = [];
 var max = 100;
 $(document).on('data:'+name,function(event,data) {
 if(data > max) max = data;

 chart.push(data);
 if(chart.length > maxValues) chart.shift();

 drawChart(ctx,chart,max);
 });

 });

Figure 7-6

Although this example is low level, it shows how easy it is to render simple

charts using the canvas elements. This has just been a taste of the canvas element;

there are many more drawing tools that can be used to make visualizations

generated with the element more attractive.

Using Inline SVG

Unlike the canvas element, Scalable Vector Graphics (SVG) uses a DOM very

similar to HTML to defi ne the image to be rendered. As a standard, SVG is rela-

tively ancient, having been around since 1999. Nearly every browser supports it;

Internet Explorer’s support lags (Microsoft had submitted a competing standard

called Vector Markup Language (VML) to the W3C), but it has provided at least

some level of support since version 9.

Unlike canvas, which is resolution dependent, SVG is a resolution-independent

standard that provides crisp rendering at every resolution. This is particularly

useful on mobile devices where it is common for users to zoom in and out of

sections of an interface to provide larger touch targets.

 Chapter 7 ■ Delivering Streaming Metrics 261

c07.indd 05:34:52:PM 06/12/2014 Page 261

Because it is included as part of the DOM, inline SVG is also usually more

convenient than canvas images because it can be styled using cascading style

sheets (CSS) in the same way as other elements. This makes it easier to achieve

a consistent style in the interface or to collaborate with designers.

The document model itself is refl ective of its origins, which were heavily

infl uenced by the PostScript drawing model and to some extent the VML intro-

duced by Microsoft as an alternative. There is a small set of primitive objects:

<circle>, <rect>, <polygon>, and <path> elements that are combined organizational

elements such as grouping (<g>) elements to construct an image. SVG also has

its own set of <text> elements, though they do not typically have the level of

control in layout as those offered by HTML.

Using these elements, the gauge visualization from the previous section can

be constructed statically in the mixin found in the jade fi les in dashboard/views:

mixin metric(id,title,footer)
 div(class="panel panel-default",id="#{id}-metric")
 if title
 div.panel-heading: h3.panel-title= title
 div(class="panel-body metric")
 div(class="canvas-wrap")
 svg(data-counter-gauge="#{id}")
 path(class="back")
 path(class="front")
 div(class="value-wrap")
 h1(data-counter="#{id}")= "--"
 h4
 span.glyphicon(data-direction="#{id}")
 span(data-change="#{id}")= ""
 if footer
 div.panel-footer= footer

The path elements inside of the <svg> element are then styled in CSS to

produce the desired effect:

path.back {
 fill: none;
 stroke: #ccc;
 stroke-width: 25px;
}
path.front {
 fill: none;
 stroke: #ccc;
 stroke-width: 25px;
}

When the time comes to draw the arc, the d attribute of each path element is

modifi ed appropriately. The back element, unlike the canvas case, only needs to

262 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 262

be drawn once with maximum length. The front element is modifi ed each time

the value is updated by this function in public/javascripts/svg.js:

 $('*[data-counter-gauge]').each(function(i,elt) {
 var dim = fixup(elt)
 var name = $(elt).attr("data-counter-gauge");

 drawArc($(elt).children(".back"),dim,1);
 var front = $(elt).children(".front");
 var max = 0;
 $(document).on('data:'+name,function(event,data) {
 if(data > max) max = data;
 drawArc(front,dim,data/max);
 });
 });

The primary work is in the computation of the arc in the path element itself.

This is implemented in public/javascripts/svg.js using a bit of trigonometry

via the drawArc function:

 var mid = (2.4-0.6)*0.56 + 0.6;
 function drawArc(elt,dim,pct) {
 var cx = dim.width/2;
 var cy = dim.height/2;
 var r = Math.min(cx,cy) - 12.5;

 var angle = ((2.4-0.6)*pct + 0.6)*Math.PI;

 var sx = cx + r*Math.cos(0.6*Math.PI);
 var sy = cy + r*Math.sin(0.6*Math.PI);

 var ex = cx + r*Math.cos(angle);
 var ey = cy + r*Math.sin(angle);
 elt.attr("d",["M",sx,sy,"A",r,r,0,
 angle <= mid*Math.PI ? 0 : 1,1,
 ex,ey].join(" "));
 }

Like many scene description languages, SVG is not particularly designed

for ease of use. This leads to functions like the one presented in this section,

which is the result of the fact that the arc-drawing commands in SVG are more

powerful than most users will ever need. This makes using SVG directly in

documents inconvenient, though it can be made simpler through the use of

JavaScript libraries such as the one described in the next section.

Data-Driven Documents: D3.js

Hand-coding visualizations rapidly becomes tedious, especially when the

rendering gets complex. As seen in the last section, even apparently simple

 Chapter 7 ■ Delivering Streaming Metrics 263

c07.indd 05:34:52:PM 06/12/2014 Page 263

constructions can result in having to perform a variety of calculations and

diffi cult-to-remember decisions.

The Data-Driven Documents JavaScript library (known as D3.js, or sometimes

just D3) seeks to simplify much of this computation by providing a rich set of

primitives for manipulating visualizations. In addition, it provides a mechanism

for conveniently binding data to these visualizations to allow for easy construc-

tion of examples like those developed in the previous sections.

This section introduces the basics of the D3.js library and its usage. This

includes basic manipulation and rendering, layouts, and some of the higher-level

constructs available in D3.js, such as axes and maps. The toolkit also includes

facilities for interacting with visualizations, but that is beyond the scope of this

book.

Selecting, Inserting and Removing Elements

Like jQuery and other JavaScript toolkits, the core feature of D3 is the

selection. In fact, the selector language used by D3 is very similar to that used

by jQuery. For example, to select all of the <div> elements in a document, you

use d3.selectAll("div"). To select a single element such as the <body> ele-

ment, d3.select("body") is used. Also, like jQuery, d3.selectAll("div.blue")

would select all <div> elements with a class attribute containing blue whereas

d3.select("div#blue") would select a <div> element with an id attribute of blue.

These operations can be chained together so that a selectAll called after a select

would fi nd all of the elements that are children of the original select.

After selecting an element, the most common operation is to add another object

as a child of it. For example, this function found in dashboard/public/javascripts/

d3.js initializes the dashboard; after fi xing the position of the wrapper class, D3

can be used to create an <svg> element that can be used for further rendering:

 $('*[data-counter-gauge]').each(function(i,elt) {
 var dim = fixup(elt)
 var name = $(elt).attr("data-counter-gauge");
 var svg = d3.select(elt).append("svg");

Elements can also be inserted using the insert method, which takes a before

statement in addition to the element to be inserted. For example, to insert an

element at the beginning of the child list rather than appending to the end, use

insert("<div>",":first-child").

Finally, elements that have been selected can be removed from the document

using the remove() method.

Attributes and Styling

After an element has been selected, it can be modifi ed using the attr and style

methods of the selection. In the simple case, these methods work similarly to

264 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 264

their jQuery counterparts and modify the appropriate aspects of the element.

In the gauge example, they are used to establish the appropriate class for the

front and back gauge objects:

var g = svg.append("g")
 .attr("transform",
 "translate("+(dim.width/2)+","+(dim.height/2)+")");
var back = g.append("path").attr("class","d3back");
var front = g.append("path").attr("class","d3front");

In this case, the path elements are added to a <g> element rather than directly

to the <svg> element. This grouping element allows transformations, such as

a translation, to be easily applied to all groups. The translation is used in this

case to center the paths so that a shape generator can be applied to each path.

Shape Generators

In D3, path elements like those in the previous section are usually combined

with a shape generator rather than described by hand. These generators are

used to set the d attribute easily. There are a variety of built-in path generators:

 ■ d3.svg.path.line generates simple line paths.

 ■ d3.svg.path.area generates areas instead of lines like the chart example

in the “Using the HTML5 Canvas” section.

 ■ d3.svg.line.radial generates a line path with radial coordinates.

 ■ d3.svg.arc generates arc paths. These are often used for pie and donut

charts.

 ■ d3.svg.symbol is used to generate symbols at specifi c locations, such as

those found in a scatterplot.

 ■ d3.svg.chord is used to generate closed shapes connecting two arcs with

a quadratic Bézier curve.

All of the shape generators return a function that can be customized with

generator-specifi c parameters. These parameters can be set to either a constant

value or a function that knows how to produce output based on the input.

For example, to create the gauge from the previous section, the d3.svg.arc

generator can be used to simplify the process. This generator has four differ-

ent parameters that can be potentially set from the data: the inner and outer

radii, the starting angle, and the ending angle. In this case, the fi rst three are

all constant values:

var r = 0.5*Math.min(dim.width,dim.height) - 12.5
var arc = d3.svg.arc()
 .innerRadius(r-12.5).outerRadius(r+12.5)
 .startAngle(1.1*Math.PI);

 Chapter 7 ■ Delivering Streaming Metrics 265

c07.indd 05:34:52:PM 06/12/2014 Page 265

The fi nal parameter, the ending angle, depends on the data being passed in,

so it is assigned a function rather than a constant value:

var max = 1;
arc.endAngle(function(d,i) {
 if(max < d) max = d;
 return 1.1*Math.PI + 1.8*Math.PI*(d/max);
});

With the maximum value set to 1, the background element can be drawn a

single time, and then the foreground element can be redrawn each time a new

value is made available:

back.attr("d",arc(1));
$(document).on('data:'+name,function(event,data) {
 front.attr("d",arc(data));
});

In addition to being easier to implement, the paths produced by the arc genera-

tor (and other generators where appropriate) are regions rather than lines. This

means that they can have separate fi ll and stroke styling whereas the previous

examples used the stroke width to simplify the rendering.

Joining Selections and Data

When the data is simple, using D3 directly is an easy way to develop quick-and-

dirty visualizations. When things get more complicated, D3 really comes into

its own as the power of its join operations can be combined with its selection

operators.

To join an array of data to a selection, the data method of the selection is used.

The resulting join is comprised of three subselections:

 ■ The update selection: This is the set that contains elements in the docu-

ment that already correspond to elements of the data array.

 ■ The enter selection: This is the set of data array elements that do not (yet)

correspond to document elements.

 ■ The exit selection: This is the set of document elements that have no cor-

responding element in the data array.

The update selection is the default selection returned by the data method.

The other two selections are accessed with the enter() and exit() methods,

respectively.

The usual order is to fi rst work with the enter selection. This selection is

special in two ways. First, it only affects the document manipulation methods

such as append. Secondly, when the append() or insert() methods are used, the

resulting elements are immediately added to the update selection. This reduces

code duplication by allowing all of the attributes and styles to be modifi ed on

266 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 266

the update selection. If, for some reason, the styling should be different for

newly created elements (perhaps to highlight them), simply modify the update

selection before using the enter selection.

The exit selection is usually the least interesting of the selections because

the only operation is typically to remove elements from the document. This is

sometimes combined with an animation of some kind—which is discussed later

in the "Animation" section—to make the effect less jarring.

Implementing a bar chart is a good way to see these selections in action. In

this case, the mixin is adjusted slightly to apply the data-counter-bar attribute.

Because this has been done several times in this chapter, the code is omitted

for this example. Like the gauge element, each bar chart element has an <svg>

element appended and, in this case, is given a class to make it easier to style

for the bar chart:

 $('*[data-counter-bar]').each(function(i,elt) {
 var dim = fixup(elt)
 var name = $(elt).attr("data-counter-bar");
 var svg = d3.select(elt).append("svg")
 .attr({
 class:"barchart",
 width:dim.width,
 height:dim.height
 });

Like the line chart example, an array of elements is maintained when new

data is entered. This is what will be bound to a selection and rendered into a

bar chart:

 var dataLen= 30, max = 0;
 var values = [];
 $(document).on('data:'+name,function(event,data) {
 if(data > max) max = data;
 values.push(data);
 if(values.length >= dataLen) values.shift();

This data array is then joined with a selection containing all of the rectangles.

A new rectangle is added to the selection (if needed), then all of the rectangles

are updated to their appropriate location and height. The width is set when the

rectangle is added because it does not change during the course of visualization.

This results in a dashboard, implemented in dashboard/public/javascripts/d3.js

and dashboard/views/d3_ex1.jade like the one shown in Figure 7-7:

 var update = svg.selectAll("rect").data(values);

 //Add a new rectangle for each piece of data

 update.enter().append("rect").attr("width",dim.width/(dataLen-1))

 update

 .attr("x", function(d,i) { return i*dim.width/(dataLen-1); })

 .attr("y", function(d) { return dim.height - dim.height*(d/max); })

 .attr("height", function(d) { return dim.height*(d/max); })

 });

 Chapter 7 ■ Delivering Streaming Metrics 267

c07.indd 05:34:52:PM 06/12/2014 Page 267

Figure 7-7

To re-create something like the line chart from the original canvas examples,

a different approach is required. In this case, a single element (the path) should

be bound to the entire data array. The only time there would be multiple path

elements would be if there were multiple series to be rendered. In this case, the

datum method can be used to bind the entire array as a single element.

Scales and Axes

The previous examples have devoted a great deal of their code to the appropri-

ate transformation from the input domain to the output range. To simplify this

process, D3 has a number of built-in scale functions:

 ■ d3.scale.linear performs a linear transformation from the input domain

to an output range. This is the most commonly used scale.

 ■ d3.scale.sqrt, d3.scale.pow, and d3.scale.log perform power transforma-

tions of the input domain to the output range.

 ■ d3.scale.quantize converts a continuous input domain to a discrete

output range.

 ■ d3.scale.identity is a simple linear identity scale.

 ■ d3.scale.ordinal converts a discrete input domain to a continuous output

range.

 ■ d3.scale.category10, d3.scale.category20, d3.scale.category.20b, and

d3.scale.category.20c construct an ordinal scale that converts to 10 or 20

color categories.

Mostly, these scales are used to simplify range calculations. For example,

the bar chart example from the previous section can be further simplifi ed by

using linear scales for the x and y coordinates. The x scale is static, having an

268 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 268

input domain between 0 and the number of possible elements in the array (in

this case 30). The y scale can change as data is added, so there is a check that

potentially updates the domain on each step:

var y = d3.scale.linear().domain([0,1])
 .range([0,dim.height]);
var x = d3.scale.linear().domain([0,dataLen-1])
 .range([0,dim.width]);

$(document).on('data:'+name,function(event,data) {
 if(data > y.domain()[1]) y.domain([0,data]);

The calculations in the update step can then be updated with calls to the x

and y scales:

update

 .attr("x", function(d,i) { return x(i); })
 .attr("y", function(d) { return dim.height - y(d); })
 .attr("height", function(d) { return y(d); });

Another use for scales is to simplify adding axes to D3.js visualizations. Like

most other D3 elements, axes are managed using a generator that operates on

either the <svg> element or a <g> element. The axis function adds a variety of

new elements to the document, including lines to represent the tick marks and

the tick values themselves. The easiest way to use axes is with the grouping

element because it makes it easier to move them around within the graphic. To

get started, the scales need to be adjusted slightly to make space for the axes

to be rendered:

var y = d3.scale.linear()
 .domain([0,1])
 .range([dim.height-20,0]);
var x = d3.scale.linear()
 .domain([0,dataLen-1])
 .range([60,dim.width-10]);

Notice that the y-axis scale has had its output range reversed. This is due to

the fact that the (0,0) coordinate is actually in the lower-left corner rather than

the upper-left corner. This also means that the “height” and “y” attributes

must be reversed when drawing the bars. Because the x-axis is static, it can be

rendered immediately into a grouping element that is translated to the bottom

of the visualization:

svg.append("g")
.attr("class","x axis")
.attr("transform","translate(0,"+(dim.height-20)+")")
.call(d3.svg.axis()
 .orient("bottom")
 .scale(x)
);

 Chapter 7 ■ Delivering Streaming Metrics 269

c07.indd 05:34:52:PM 06/12/2014 Page 269

The y-axis is similarly defi ned, but it needs to be updated whenever the domain

changes so it is not immediately applied to its grouping element:

var yg = svg.append("g")
.attr("class","y axis")
.attr("transform","translate(60,0)");
var yaxis = d3.svg.axis()
 .ticks(5).orient("left")
 .scale(y);

Whenever the domain is updated, the y-axis is redrawn to refl ect these changes:

if(data > y.domain()[1]) {
 y.domain([0,data]);
 yg.call(yaxis);
}

After applying a little bit of CSS styling, the bar chart should look like the

one in Figure 7-8, implemented in dashboard/views/d3_ex2.jade:

.axis text { font: 10px sans-serif; }

.axis path, .axis line {
 fill: none;
 stroke: #000;
 shape-rendering: crispEdges;
}

Figure 7-8

Layouts

Many times, when data is to be visualized, it requires some level of manipula-

tion to make it suitable for rendering. Even something as simple as a pie chart

requires that the starting and ending angles of each category be calculated.

To help with these more complicated visualizations, D3 offers a number of

layout generators. Rather than generating document elements directly, like the

270 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 270

path and axis generators, these are usually applied to the data and then used

to construct the visualization.

There are numerous plug-ins for D3 that implement various layouts, but there

are also several built-in layouts. Many of them are concerned with the layout

of hierarchical or graph structures. These are useful when data is static, but

they are not used very often for real-time data visualization, so they will not

be discussed in this section.

The layouts most often relevant to real-time data visualization are the pie and

stack layouts. These two layouts help build pie or donut charts and stacked area

charts, respectively. For example, to build something that looks like Figure 7-9,

start out by constructing some sample data:

var values = d3.range(10).map(function() {
 return bumpLayer(100);
});

The bumpLayer function is used in various locations in the D3 documentation to

generate test data. It is used here to quickly provide data for this example. Next,

the data is stacked using the stack layout, and the maximum value calculated

so that the scales may be obtained:

var stack = d3.layout.stack()
 .offset("wiggle");

values = stack(values);

var max = 0;
for(i in values) {
 var m = d3.max(values[i],function(d) { return d.y + d.y0; });
 if(m > max) max = m;
}

Next, the scales for the x-axis, the y-axis and the color range are constructed.

An area path generator is used to render the output of the stack layout:

var x = d3.scale.linear().domain([0,99]).range([0,width]);
var y = d3.scale.linear().domain([0,max]).range([height,0]);
var color = d3.scale.linear().range(["#000","#ccc"]);

var area = d3.svg.area()
.x(function(d) { return x(d.x); })
.y0(function(d) { return y(d.y0); })
.y1(function(d) { return y(d.y0 + d.y); });

Finally, the shape generator and the layout data are applied to a path selec-

tion to produce the fi nal output implemented in dashboard/views/d3_ex3.jade:

svg.selectAll("path").data(values)
 .enter().append("path")
 .attr("d",area)
 .style("fill",function(d) { return color(Math.random()); });

 Chapter 7 ■ Delivering Streaming Metrics 271

c07.indd 05:34:52:PM 06/12/2014 Page 271

Figure 7-9

Animation

The fi nal piece of the D3 puzzle is its animation facilities. The ability to easily

add animation often adds that little bit of context that separates a good interface

from a great one.

In general, animation should be used sparingly to either acquire or remove

attention depending on the situation. For example, an animation on the changing

digits of the metrics in the dashboard draws attention to the change because their

rapid change is relatively unnoticeable to the eye. However, if the gauge itself is

allowed to “jump,” it tends to be distracting. To combat this distraction and allow

the focus to be on the new value, a simple “tweening” animation is used. This

smooths the motion of the gauge over time, which tends to be less distracting.

For simple animations, nearly no work is required. For example, animating

the bar chart from the earlier examples only requires the addition of a

transition function to provide a smooth interpolation between elements:

update
 .transition()
 .attr("x", function(d,i) { return x(i); })
 .attr("y", function(d) { return y(d); })
 .attr("height", function(d) { return (dim.height-20) - y(d); });

There are a variety of features of the transition, such as the easing method

or the duration that can be specialized, but this is all that is required for many

visualizations.

In rare cases, a more complicated transition is required. As it happens, the

gauge example is one of those cases. If a transition were applied directly to the

gauge, the interpolation process would occur in the Cartesian coordinate system

of the page, rather than the polar coordinate system of the gauge. To modify

the gauge display to allow for animation, fi rst the paths must be modifi ed to

use a data element:

 var back = g.append("path").datum({endAngle:1})
 .attr("class","d3back")

272 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 272

 .attr("d",arc);
 var front = g.append("path").datum({endAngle:0})
 .attr("class","d3front")
 .attr("d",arc);

This is done because the interpolation process needs to be able to modify the

endAngle variable. The interpolation itself is handled by repeatedly applying an

interpolation using attrTween. This is implemented in the arcTween function,

found in dashboard/ public/javascripts/d3.js:

 function arcTween(transition,newAngle) {
 transition.attrTween("d",function(d) {
 var interpolate = d3.interpolate(d.endAngle,newAngle);
 return function(t) {
 d.endAngle = interpolate(t);
 return arc(d);
 }
 });
 }

This function repeatedly computes the interpolated angle and then calls the

arc generator on that interpolated angle to produce a new function. Without

the datum call, the d variable would be undefi ned and there would be no place

to store the outcome for the next interpolation. The update step then only needs

to call the arcTween function with the new angle when it arrives:

 $(document).on('data:'+name,function(event,data) {
 if(data > max) max = data;
 front.transition().call(arcTween,data);
 });

High-Level Tools

Although D3 is extremely powerful, it is also extremely granular. Even with

some of the abstractions available, it can be time consuming to construct basic

visualizations. Others have also run into this problem and built high-level pack-

ages that build on D3 to allow for the rapid development of simple visualiza-

tions. This section covers two of the more interesting packages. Although none

of them cover every situation, they can help you get a jump start on building

dashboard visualizations. Most people will fi nd the fi rst package, NVD3, more

accessible out of the gate, but the second package, Vega, represents an interesting

approach to separating rendering, business logic, and data.

NVD3

NVD3 has been around for a long time and is still under active development,

with version 1.1.10 in beta at the time of writing. It is the back-end library of the

 Chapter 7 ■ Delivering Streaming Metrics 273

c07.indd 05:34:52:PM 06/12/2014 Page 273

“dashing” dashboard library, which is a simple streaming dashboard framework

from Shopify written in Ruby using the Sinatra framework (rather than Node).

Figure 7-10 shows the bar chart example from the previous section using NVD3

instead of D3 directly. It also shows a similar visualization using a line chart

instead of a bar chart. To build the bar chart, the NVD3 chart is fi rst defi ned and

then attached to the SVG element, found in dashboard/public/javascripts/nv.js:

$('*[data-counter-bar4]').each(function(i,elt) {
 var dim = fixup(elt)
 var name = $(elt).attr("data-counter-bar4");

 var chart = nv.models.historicalBarChart()
 .margin({left:50,bottom:20,right:20,top:20})
 .x(function(d,i) { return i; })
 .y(function(d,i) { return d; })
 .transitionDuration(250);

 chart.showXAxis(true);
 chart.yAxis
 .axisLabel("Value");

 var values = [];
 var dataLen = 30;
 d3.select(elt)
 .append("svg")
 .datum([{values:values,key:"Data",color:"#ccc"}])
 .transition().duration(0)
 .call(chart);

The datum command is used because NVD3 works with series rather than

data, much like shape generators. Using series also allows for the defi nition

of a series title and a specifi c series color as shown in the preceding code. The

values are initially blank, but because JavaScript is a reference-based language

the array can be updated later without having to reset the data element. After

the chart is defi ned, updating it when the data array is modifi ed is as simple as

calling the update command:

$(document).on('data:'+name,function(event,data) {
 values.push(data);
 if(values.length >= dataLen) values.shift();
 chart.update();
});

NVD3’s interfaces are fairly standard, which makes switching chart types a

breeze. To add the line chart visualization instead of a bar chart visualization

to Figure 7-10, a single line of implementation was changed:

 var chart = nv.models.lineChart()

274 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 274

The data series for the line chart has an optional area parameter that can be

used to make the line chart an area chart. This standardization of parameters

makes it extremely simple to experiment with different forms of visualization.

It is also trivial to render multiple series in the same chart by simply modifying

the datum statement.

Figure 7-10

Although NVD3 can clearly handle streaming data, it is mostly designed

for static interactive visualizations. As such, it includes a number of additional

interactive features, such as tooltips and zooming/focusing features that are

commonly found in interactive visualization environments. Most real-time envi-

ronments are not interactive, so these features are not discussed in this chapter.

Vega.js

The Vega package builds on the idea of having a description of a visualization

that easily can be changed. Rather than using code to describe the visualiza-

tion the way NVD3 does, this package opts to use a JSON description of the

visualization. The Vega developers call this format a “declarative visualization

grammar.”

Vega visualizations begin with a specifi cation that provides the abstract visu-

alization of the chart. Specifi cations are made up of several different pieces. The

fi rst piece is usually some information about rendering the chart. Because the

chart is often reused the information is usually fairly minimal, if it exists at all.

In this case, some margin information is common to all the charts:

 var spec = {
 padding: {top: 10, left: 30, bottom: 20, right: 10},

Next comes the data defi nition section of the specifi cation. This section defi nes

the various data series that will be used in the visualization. Because this data

 Chapter 7 ■ Delivering Streaming Metrics 275

c07.indd 05:34:52:PM 06/12/2014 Page 275

comes from a real-time system and will be added later, the data for the series

is simply left empty:

 data:[
 {name:"values"}
],

Finally, the visualization is described. Much like the low-level D3 charts, the

specifi cation defi nes scales as axes using parameters very much like the D3

generators they use internally:

 scales:[
 {name:"x",range:"width",
 domain:[0,29] },
 {name:"y",range:"height",nice:true,
 domain:{data:"values",field:"data"}},
],

 axes:[
 {type:"x",scale:"x"},
 {type:"y",scale:"y"}
],

The primary element of note in this last section is the linking of the data

series to the scale in the domain element. This structure is called a DataRef, and

it usually consists of a data series, identifi ed by the data element, and a fi eld

accessor that is defi ned by the field element. When data is added to Vega an

array that looks like this:

[0,1]

It is translated into a “Vega compatible” format that looks like this:

[{index:0,data:0},{index:1,data:1}]

The fi eld accessors operate on this transformed data and expect the inclusion

of the index and data fi elds to operate correctly. More complicated data structures

can be accessed using the usual JavaScript dot notation.

Defi ning “marks” in the specifi cation specifi es the type of chart drawn for a

given series. Like NVD3, defi ning multiple marks draws multiple elements within

a single chart. In this case, only a rect mark is rendered to draw the bar chart:

 marks:[{
 type:"rect",
 from:{data:"values"},
 properties:{
 enter:{
 fill:{value:"#ccc"},
 stroke:{value:"#aaa"}
 },
 update:{

276 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 276

 x:{scale:"x",field:"index"},
 y:{scale:"y",field:"data"},
 y2:{scale:"y",value:0},
 width:{scale:"x",value:1}
 }
 }
 }]
 };

Again, notice the DataRef used to bind parameters to the data. Also notice that

the scale element is used to associate scales with parameters. Otherwise, mark

defi nitions should look familiar, as they are essentially a JSON representation

of the D3 commands used earlier.

To use the specifi cation, it must fi rst be parsed into a chart object. This object

is returned in a callback because it is possible to pass a URL to the parser rather

than passing a JSON object directly. This allows specifi cations to be stored

separately from the code. After the chart object is available, it may be executed

to produce a view object that is used to render the scene. Vega has two default

renderers, a canvas-based renderer and an SVG-based renderer. In this case the

SVG rendered is used, but the default is the canvas renderer:

 vg.parse.spec(spec,function(chart) {

 $('*[data-counter-bar4]').each(function(i,elt) {
 var dim = fixup(elt)
 var name = $(elt).attr("data-counter-bar4");

 var view = chart({el:elt})
 .renderer("svg")
 .width(dim.width-60)
 .height(dim.height-30)
 ;
 var values = [];
 var dataLen = 30;
 var x = 0;
 $(document).on('data:'+name,function(event,data) {
 values.push(data);
 if(values.length >= dataLen) values.shift();
 view.data({values:values}).update();
 });
 });

 });

In this code, the dynamic data feature of Vega is also used. This method of

the view object takes an object with keys that correspond to tables defi ned in

the specifi cation. The value of those keys overrides the corresponding values

 Chapter 7 ■ Delivering Streaming Metrics 277

c07.indd 05:34:52:PM 06/12/2014 Page 277

key in the table defi nition of the view object. The end results are charts like the

examples in Figure 7-11 and implemented in dashboard/public/javascripts/vega.js.

Figure 7-11

Mobile Streaming Applications

More and more of the world’s application are becoming mobile in one sense

or another. Streaming data applications are no exception to this trend, though

they tend to be more useful on the larger tablet formats than the smaller phone

formats.

The infrastructure developed in this chapter has actually been developed

with mobile environments. For data transfer, the biggest killer of battery life is

applications that heavily use Wi-Fi or cellular radio activity. Polling approaches

seem to exercise the radios pretty heavily. SSEs and WebSockets, empirically,

appear to have relatively little effect on battery life. In addition, both protocols

automatically reconnect, making them good choices for the relatively unsure

environment that is mobile communication.

On the rendering front, the Bootstrap 3 framework used to develop the dash-

boards is a “mobile fi rst” framework and has built-in “responsive” features. This

means that on phones and tablets the dashboards reorganize themselves into a

format that maximizes available space in the mobile format. Figure 7-12 shows

this responsive rearrangement for the example dashboard.

For visualization rendering, Canvas and Inline SVG are supported on all

major mobile browsers. Even Mobile Internet Explorer and the BlackBerry

browser support SVG. The vector-based rendering also makes SVG an excellent

choice for dealing with the high resolutions encountered in modern tablets and

phones (as well as having good zoom behavior). The only catch is that SVG,

unlike Bootstrap, is not naturally “responsive.” Figure 7-13 demonstrates what

happens when the SVG is not adjusted after resizing.

278 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 278

Figure 7-12

The image is still being drawn into the original viewport, which now does

not match the dimensions of the panel. To alleviate this problem, the resize

event must be captured and used to update elements that depend on the size

of the element. For example, to update the gauge element on a resize requires

several changes to each element:

$(window).resize(function() {
 dim = fixup(elt);
 g.attr("transform",
 "translate("+(dim.width/2)+","+(dim.height/2)+")");
 r = 0.5*Math.min(dim.width,dim.height) - 12.5;
 arc.innerRadius(r-12.5).outerRadius(r+12.5);
 back.transition().duration(0).call(arcTween,max);
 });

In this case, the canvas itself is resized and the new dimensions obtained from

the fixup function. Next, the arcs are translated to their new position. Because

the element may have changed its smallest dimension, the inner and outer radius

must be recalculated. Finally, the backing arc is redrawn in its new position.

The front arc could also be redrawn, but it is updated often by the streaming

data so it is left alone in this case.

 Chapter 7 ■ Delivering Streaming Metrics 279

c07.indd 05:34:52:PM 06/12/2014 Page 279

Figure 7-13

This is actually a bit easier for Canvas devices. Because a canvas rendering

needs to be redrawn completely on each pass, the resize event can simply set a

fl ag that tells the canvas to update its size on the next redraw.

Conclusion

This chapter has covered the basics of setting up a web-based application for

delivering real-time data. The next chapter builds on these concepts to add the

element of time to both the data and the visualizations.

Beyond that, the remainder of this book does not really touch on the mechanics

of delivery and visualization. That is not to say that there is no more to say on

280 Part II ■ Analysis and Visualization

c07.indd 05:34:52:PM 06/12/2014 Page 280

the subject. For the visualization component in particular, this chapter barely

scratches the surface of what is possible with these frameworks. The only limit

is the imagination, as they saying goes, and there is plenty of inspiration out

there. The fi rst place to look would be Mike Bostock’s website (http://bost

.ocks.org/mike/), which has no shortage of in-depth D3 tutorials. His website

is particularly useful when you’re learning how to visualize geographical data

because he clearly has a special love for cartography and D3’s geographic sup-

port is impressive. The Flowing Data website (http://flowingdata.com) is also a

great source of visualizations. Not all of them will be appropriate for real-time

streaming data, but the techniques are certainly applicable.

http://bost.ocks.org/mike
http://bost.ocks.org/mike
http://flowingdata.com

281

c08.indd 05:32:54:PM 06/12/2014 Page 281

Now that the infrastructure is in place to collect, process, store, and deliver

streaming data, the time has come to put it all together. The core of most appli-

cations is the aggregation of data coming through the stream, which is the

subject of this chapter.

The place to begin is basic aggregation—counting and summation of various

elements. This basic task has varying levels of native support in the popular

stream processing frameworks. Probably the most advanced is the support pro-

vided by the Trident language portion of Storm, but that assumes a willingness

to work within Trident’s assumptions. Samza has some support for internal

aggregation using its KeyValueStore interfaces, but it leaves external aggrega-

tion and delivery to the user to implement. Basic Storm topologies, of course,

have no primitives to speak of and require the user to implement all aspects of

the topology. This chapter covers aggregation in all three frameworks using a

common example.

Most real-time analysis is somehow related to time-series analysis. This chapter

also introduces a method for performing multi-resolution aggregation of time

series for later delivery. Additionally, because the data are being transported via

mechanisms that can potentially reorder events, this multi-resolution approach

relies on record-level timestamps rather than simply generating results on a

fi xed interval.

Finally, after data has been collected and aggregated into a time series, it

must be delivered to the client. Using the techniques introduced in the last

C H A P T E R

8

Exact Aggregation and Delivery

282 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 282

chapter, time-series data can be delivered to the client for rendering. There

are a variety of rendering options for time-series data, but the most popular

is the simple strip chart because it’s easy to understand. An alternative to the

strip chart is the horizon chart, which allows for many correlated time series

to be displayed simultaneously. The standard rendering techniques used can

sometimes be too slow when the data delivery rate is high. At the expense of

fl exibility, high-performance techniques can be used to provide charts with

very high update rates.

THE WIKIPEDIA EDIT STREAM

Wikipedia makes its edit stream available through an Internet Relay Chat (IRC) channel

for the entire world to consume as it sees fi t. There are always a fairly high volume of

edits being performed on Wikipedia at any given moment, making it a good source of

“test” data when learning to use real-time streaming applications. This data stream is

used as a working example throughout this chapter.

To get the data, an application is needed to watch the IRC data stream. Fortunately,

the Samza project from Chapter 5, “Processing Streaming Data,” includes a Wikipedia

IRC reader that it then streams into a Kafka queue. It is included as part of the Hello

Samza project. To get this running, fi rst check out the introductory code from Github

and start the included Samza grid:

$ git clone https://github.com/apache/incubator-samza-hello-samza.git

$ cd incubator-samza-hello-samza/

$./bin/grid bootstrap

.. Output Removed ...

EXECUTING: start zookeeper

JMX enabled by default

Using config: /Users/bellis/Projects/incubator-samza-hello-

 samza/deploy/zookeeper/bin/../conf/zoo.cfg

Starting zookeeper ... STARTED

EXECUTING: start yarn

EXECUTING: start kafka

Samza is a fairly young project and the code base is moving quickly. As such, it is

possible that the public repository has changed in such a way that the examples in this

book no longer work. If this is the case, the code included with this book also includes

a copy of both the incubator-samza and hello-samza projects at the time of

writing. To use them, simply unpack the archive and copy incubator-samza proj-

ect into the samza download directory. On most Unix-like systems, this will be the

~/.samza/download directory. If all has gone well, the ./bin/grid bootstrap

command will work as described in this section.

https://github.com/apache/incubator-samza-hello-samza.git

 Chapter 8 ■ Exact Aggregation and Delivery 283

c08.indd 05:32:54:PM 06/12/2014 Page 283

This will bring up the YARN console in a local form, suitable for developing and test-

ing the applications in this chapter. Next, build and deploy the fi rst part of the Hello

Samza project to start aggregating Wikipedia edits:

$ mvn clean package
... Omitted Output ...
 [INFO] Reactor Summary:
[INFO]
[INFO] Samza Parent SUCCESS [2.707s]
[INFO] Samza Wikipedia Example SUCCESS [17.387s]
[INFO] Samza Job Package SUCCESS [1:24.473s]
[INFO] ---
[INFO] BUILD SUCCESS

$ mkdir –p deploy/samza

$ cd deploy/samza

$ tar xvfz \

> ../../samza-job-package/target/samza-job-package-0.7.0-dist.tar.gz

$./bin/run-job.sh \

> --config-factory=\

> org.apache.samza.config.factories.PropertiesConfigFactory \

> --config-path=\

> file://`pwd`/config/wikipedia-feed.properties

If everything works properly there should be an application in the YARN console

with a status of RUNNING (by default this is available at http://localhost:8080).

It should now also be possible to watch the raw edit streaming using the Kafka con-

sole consumer to watch the wikipedia-raw topic:

$../kafka/bin/kafka-console-consumer.sh \

> --zookeeper localhost --topic wikipedia-raw

After a few moments, the raw edit stream should start being output from the Kafka

stream:

{"raw":"[[Special:Log/newusers]] byemail * Callanecc * created new

 account User:DeaconAnthony: Requested account at [[WP:ACC]],

 request #109207","time":1382229037137,

 "source":"rc-pmtpa","channel":"#en.wikipedia"}

{"raw":"[[User talk:24.131.72.110]] !N

 http://en.wikipedia.org/w/index.php?oldid=577910710&rcid=610363937

 * Plantsurfer * (+913) General note: Introducing factual errors on

 [[Prokaryote]]. ([[WP:TW|TW]])","time":1382229037656,

 "source":"rc-pmtpa","channel":"#en.wikipedia"}

Continues

http://localhost:8080
http://en.wikipedia.org/w/index.php?oldid=577910710&rcid=610363937

284 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 284

By default, Hello Samza only reads from English language Wikipedia topics. This is

a bit boring, so go ahead and stop the application and edit the wikipedia-feed
.properties fi le to aggregate from the edits of several diff erent languages. (This

should all be on one line in the properties fi le. It is shown broken into multiple lines

to account for formatting of the book.)

task.inputs=wikipedia.#en.wikipedia,

 wikipedia.#de.wikipedia,

 wikipedia.#fr.wikipedia,

 wikipedia.#pl.wikipedia,

 wikipedia.#ja.wikipedia,

 wikipedia.#it.wikipedia,

 wikipedia.#nl.wikipedia,

 wikipedia.#pt.wikipedia,

 wikipedia.#es.wikipedia,

 wikipedia.#ru.wikipedia,

 wikipedia.#sv.wikipedia,

 wikipedia.#zh.wikipedia,

 wikipedia.#fi.wikipedia

This results in much more interesting traffi c to analyze later.

The Hello Samza application also includes a parser job that converts the raw JSON

into a more useful form. Because Samza uses Kafka for its communication, this is avail-

able as another Kafka topic called wikipedia-edits. It is started the same way as

the fi rst Samza job, just with a diff erent properties fi le:

$./bin/run-job.sh \

> --config-factory=\

> org.apache.samza.config.factories.PropertiesConfigFactory \

> --config-path=file://`pwd`/config/wikipedia-parser.properties

The output from this stream should look something like this:

{"summary":"/* Episodes */ fix",

 "time":1382240999886,

 "title":"Cheers (season 5)",

 "flags":{

 "is-bot-edit":false,

 "is-talk":false,

 "is-unpatrolled":false,

 "is-new":false,

 "is-special":false,

 "is-minor":false

 },

"source":"rc-pmtpa",

continued

 Chapter 8 ■ Exact Aggregation and Delivery 285

c08.indd 05:32:54:PM 06/12/2014 Page 285

"diff-url":"http://en.wikipedia.org/w/index.php?diff=577930400&oldid=

 577930256",

"diff-bytes":11,

"channel":"#en.wikipedia",

"unparsed-flags":"",

"user":"George Ho"

}

{"summary":"General Fixes using [[Project:AWB|AWB]]",

 "time":1382241001441,

 "title":"Degrassi: The Next Generation (season 5)",

 "flags":{

 "is-bot-edit":false,

 "is-talk":false,

 "is-unpatrolled":false,

 "is-new":false,"is-special":false,

 "is-minor":true

 },

"source":"rc-pmtpa",

"diff-url":"http://en.wikipedia.org/w/index.php?diff=577930401&oldid=

 577775744",

"diff-bytes":-4,

"channel":"#en.wikipedia",

"unparsed-flags":"M",

"user":"ChrisGualtieri"

}

Because Kafka is used for streaming data between Samza jobs, this simple intro-

ductory project is also useful for developing with other systems, such as Storm.

Timed Counting and Summation

The simplest form of counting and summation is the timed counter. In this case,

any timestamp information associated with the event is ignored, and events are

simply processed in the order that they arrive. This works best with collection

mechanisms that do not make an attempt to reliably deliver data, meaning it is

mostly applicable to monitoring applications.

These sorts of counters are also well suited to Lambda Architectures. In this

architecture, there is a second process that will correct for any data loss or over-

counting in the stream-processing environment. Under normal circumstances,

the events coming out of something like Kafka may be disordered, but it’s

http://en.wikipedia.org/w/index.php?diff=577930400&oldid=c08.indd05:32:54:PM06/12/2014Page285577930256
http://en.wikipedia.org/w/index.php?diff=577930400&oldid=c08.indd05:32:54:PM06/12/2014Page285577930256
http://en.wikipedia.org/w/index.php?diff=577930400&oldid=c08.indd05:32:54:PM06/12/2014Page285577930256
http://en.wikipedia.org/w/index.php?diff=577930401&oldid=577775744
http://en.wikipedia.org/w/index.php?diff=577930401&oldid=577775744

286 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 286

usually not enough to make a big difference. It is also relatively rare for events

to be duplicated by the need to reread data.

In both cases, the basic counting systems described in the following sections

can be used. They are easy to implement and require little overhead. However,

they are not suitable for systems that need to be highly accurate or require

idempotent operation.

Counting in Bolts

When Storm was fi rst released, it did not contain any primitive operations.

Any sort of counting operation was implemented by writing an IRichBolt

that performed the counting task. To produce output over time, a background

thread was typically used to emit counts on a fi xed basis and then reset the

local memory map. In newer versions of Storm (all versions beyond 0.8.0) the

background thread is no longer needed as Storm can produce ticker events.

Implementing a basic aggregation bolt begins like any other bolt implementa-

tion. In this case, the bolt only takes a single parameter, which is the number of

seconds to wait before emitting counts to the next bolt:

public class EventCounterBolt implements IRichBolt {

 int updates= 10;

 public EventCounterBolt updateSeconds(int updates) {
this.updates = updates;return this;
}
 public int updateSeconds() { return updates; }

The bolt maintains a transient map of elements and their count, which serves

as the local store. Like all bolts, the collector is also captured in a transient

variable. Both are initialized in the preparation method. This bolt outputs its

counts every few seconds as confi gured in the preceding code, so an output

stream must be declared. Finally, the tick events for this bolt are confi gured in

getComponentConfiguration:

transient HashMap<String,Integer> counts;
transient OutputCollector collector;

public void prepare(Map stormConf, TopologyContext context,
 OutputCollector collector) {
 this.counts = new HashMap<String,Integer>();
 this.collector = collector;
}

 Chapter 8 ■ Exact Aggregation and Delivery 287

c08.indd 05:32:54:PM 06/12/2014 Page 287

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("timestamp","key","count"));
}

public Map<String, Object> getComponentConfiguration() {
Config conf = new Config();
 conf.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, updates);
 return conf;
}

Note that this is not a persistent key-value store, so if the bolt task dies for

some reason, any interim data is lost.

The execute method gets two types of tuples. The fi rst type of tuple is a tick

event that is sent by Storm itself according to the earlier confi guration. To detect

this type of event the source component and the stream identifi er of each tuple

must be checked:

public static boolean isTick(Tuple tuple) {
 return Constants.SYSTEM_COMPONENT_ID.equals(
 tuple.getSourceComponent()
)
 && Constants.SYSTEM_TICK_STREAM_ID.equals(
 tuple.getSourceStreamId()
);
}

This is used to implement the execute method. If the isTick method returns

true then the bolt should emit all of the values currently stored in the counts

variable. Otherwise, it should increment or insert the value into the counts map.

Finally, it acknowledges the tuple:

public void execute(Tuple input) {
 if(isTick(input)) {
 for(Entry<String, Integer> e : counts.entrySet()) {
 collector.emit(new Values(
 System.currentTimeMillis(),
 e.getKey(),
 e.getValue()
));
 }
 counts.clear();
 } else {
 String key = input.getString(0);
 Integer value = counts.get(key);
 counts.put(key, 1 + (value == null ? 0 : value));
 }
 collector.ack(input);
 }

288 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 288

This bolt can now be used in any topology that outputs the item to count as

the fi rst element of its stream. To record the events somewhere like Redis, attach

another bolt to the output of this bolt.

Counting with Trident

Counting events in Trident is simultaneously easier and harder than counting

events using simple topologies. It is simpler in the sense that it is no longer

necessary to implement bolts to perform simple counting and summation opera-

tions. Instead, implementations of the Aggregator interface handle the task of

counting events.

Aggregators come about in Trident because it is a fundamentally batch-oriented

system. An aggregator takes a batch as input and produces an output according

to the aggregation function. Although it is possible to write custom aggrega-

tors most of the time, the built-in Count and Sum aggregations are suffi cient to

accomplish most tasks. The following code implements a trivial event counter

in Trident using the topology submitter interface developed in Chapter 5:

public StormTopology topology(String[] args) {
 TridentTopology topology = new TridentTopology();
topology.newStream("input", SimpleKafkaSpout.spout().configure(args))
 .aggregate(new Count(), new Fields("count"))
 .each(new Fields("count"), new PostFilter());
 ;
 return topology.build();
 }

The PostFilter class is a simple class designed to interface with the node.js

delivery mechanisms developed in Chapter 7, “Delivering Streaming Metrics.” It

implements the same functionality as the IRichBolt counter in the previous sec-

tion, pushing its results to a node.js application listening on port 3000 by default.

WIKIPEDIA EDIT EVENTS BY LANGUAGE

A less trivial example is to use the groupBy feature of the Trident language to count

the edits to language-specifi c Wikipedia sites. Unlike what was described in the last

section, Trident does not expose tick events. Instead it emits an event after processing

each batch. By default, each batch contains 1,000 events. This makes the previously

described trivial topology somewhat uninteresting because it will always produce

[1000] as its output.

To implement this topology, the JSONToTuple function from Chapter 5 is fi rst

used to extract the “channel” elements from the JSON input stream provided by

Samza. The groupBy operator is then used to split the stream into substreams

according to their channels. Finally, the aggregator is used to compute the count for

each language’s edit.

 Chapter 8 ■ Exact Aggregation and Delivery 289

c08.indd 05:32:54:PM 06/12/2014 Page 289

It takes a few moments to accumulate roughly 1,000 events, but after some time

something similar to the following events should be sent to the node.js application:

['#en.wikipedia', 598]

['#de.wikipedia', 43]

['#sv.wikipedia', 16]

['#fr.wikipedia', 61]

['#pt.wikipedia', 41]

['#es.wikipedia', 100]

['#zh.wikipedia', 27]

['#pl.wikipedia', 2]

['#nl.wikipedia', 9]

['#it.wikipedia', 28]

['#ru.wikipedia', 35]

['#fi.wikipedia', 1]

['#ja.wikipedia', 42]

Counting in Samza

Samza uses a mechanism very much like the tick events used by Storm to

implement counting jobs. However, the implementation is somewhat cleaner

than the approach used by Storm. In Samza, jobs that perform a periodic task

are called WindowedTasks and implement an interface of the same name. Unlike

the Storm version, which requires a check of each tuple, Samza only calls the

windowing event when appropriate. As a result, the complete code for a count-

ing job is very easy to read:

public class SimpleCountingJob
 implements WindowableTask, StreamTask, InitableTask {

 String field = "field";
 SystemStream output;
 HashMap<String,Integer> counts = new HashMap<String,Integer>();

 public void process(IncomingMessageEnvelope msg,
 MessageCollector collector, TaskCoordinator coordinator)
 throws Exception {

 @SuppressWarnings("unchecked")
 Map<String,Object> obj = (Map<String,Object>)msg.getMessage();

 String key = obj.get(field).toString();
 Integer current = counts.get(key);

290 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 290

 counts.put(key, 1 + (current == null ? 0 : current));

 }

 public void window(MessageCollector collector,
 TaskCoordinator coordinator)
 throws Exception {
 collector.send(new OutgoingMessageEnvelope(output,counts));
 counts = new HashMap<String,Integer>();
 }

 public void init(Config config, TaskContext context) throws Exception
 {
 field = config.get("count.field", "field");
 output = new SystemStream("kafka",config.get("count.output",
 "stats"));
 }

}

Multi-Resolution Time-Series Aggregation

Systems-monitoring applications have long relied on so-called round-robin

databases for storage of time-series data. These simple databases implement

a circular buffer that stores some metric: CPU load every second, a count of a

number of events, and so on.

Round-robin databases, being essentially circular buffers, can only hold a

fi xed number of data points. As a result, monitoring tools typically maintain

several such databases for each metric with larger and larger time intervals.

Using this method, very high-resolution data (say one-second intervals) is avail-

able for a short time period, such as 24 hours. For a single metric, that would

be a circular buffer of 86,400 entries. The next largest buffer would aggregate

information at the minute level. Using the same sized buffer would allow for

the storage of 60 days’ worth of data at the minute level. Moving up to hourly

aggregation would allow for the storage of more than nine years’ worth of data.

Quantization Framework

Rather than implement a round-robin database with a fi xed amount of storage,

you can use a NoSQL storage back end with key expiration serving the same

function as the round-robin database. While not as compact, this approach is

easy to integrate into front-end services and maintains bounded memory usage

provided the number of possible metrics remains in a fairly steady state.

A multi-resolution counting framework relies on two pieces. The fi rst is a

generic piece of code that defi nes the aggregation time frame and retention time.

 Chapter 8 ■ Exact Aggregation and Delivery 291

c08.indd 05:32:54:PM 06/12/2014 Page 291

The second part defi nes aggregation operations for a specifi c database imple-

mentation. Although it is possible to make this piece generic, doing so requires

the interface to either only implement the lowest common set of features or

require massive amounts of work for back-end databases that did not implement

some specifi c feature.

This section describes the implementation of the fi rst feature as a generic

class that can be used in a variety of situations. It then implements the second

piece for the Redis key-value store discussed in Chapter 6, “Storing Streaming

Data.” Redis was chosen because it implements a variety of operations as well

as supporting expiration in a single back end.

Defi ning Aggregates

The core of the Aggregator class is the Aggregate class. This class defi nes the

resolution of the aggregate as well as its retention time. The class itself is fairly

simple, consisting mostly of convenience functions that are in the complete

source. The part presented here is the functional part of the class. The fi rst part

of the class defi nes formatters for the various aggregation resolutions. These

formats are chosen over simple millisecond times because they are a bit more

readable without sacrifi cing the numerical and lexicographical ordering:

public class Aggregate {

 private static final SimpleDateFormat millisecondFormatter
 = new SimpleDateFormat("yyyyMMddHHmmssSSS");
 private static final SimpleDateFormat secondFormatter
 = new SimpleDateFormat("yyyyMMddHHmmss");
 private static final SimpleDateFormat minuteFormatter
 = new SimpleDateFormat("yyyyMMddHHmm");
 private static final SimpleDateFormat hourFormatter
 = new SimpleDateFormat("yyyyMMddHH");
 private static final SimpleDateFormat dayFormatter
 = new SimpleDateFormat("yyyyMMdd");

 private static SimpleDateFormat formatForMillis(long millis) {
 if(millis < 1000) return millisecondFormatter;
 if(millis < 60*1000) return secondFormatter;
 if(millis < 3600*1000) return minuteFormatter;
 if(millis < 86400*1000) return hourFormatter;
 return dayFormatter;
 }

Next the expiration time and the retention time are defi ned. The TimeUnit class

is an often overlooked Java core class that is part of the java.util.concurrent

package. It provides convenient conversions to and from different time units.

In this case, the base time format is:

 long expirationMillis = -1;
 public Aggregate expire(long time,TimeUnit unit) {

292 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 292

 expirationMillis = TimeUnit.MILLISECONDS.convert(time, unit);
 return this;
 }
 public long expire(long time) {
 return expirationMillis == -1 ?
 -1 : expirationMillis*(time/expirationMillis);
 }

 long resolutionMillis = 1000;
 TimeUnit unit = TimeUnit.SECONDS;
 public Aggregate resolution(long time,TimeUnit unit) {
 resolutionMillis = TimeUnit.MILLISECONDS.convert(time, unit);
 this.unit = unit;
 return this;
 }

The quantization functions can take in a millisecond timestamp and return

an appropriately quantized version. Using the formatting strings from the pre-

ceding code, it can also return a time key that is suitable for use in key-value

storage systems:

 public TimeUnit quantizeUnit() { return unit; }

 public long quantize(long time) {
 return resolutionMillis*(resolutionMillis/time);
 }

 public long quantize(long time,TimeUnit unit) {
 return quantize(
TimeUnit.MILLISECONDS.convert(time, unit));
 }

 public String quantizeString(long time) {
 SimpleDateFormat sdf = formatForMillis(resolutionMillis);
 return sdf.format(new Date(time));
 }

Aggregation Driver

After aggregates have been defi ned, a driver is needed to apply them to specifi c

functions. This is done inside of the Aggregator class by implementing an each

method that computes each of the quantized values and then executes a command:

public class Aggregator {

 ArrayList<Aggregate> aggregates = new ArrayList<Aggregate>();
 public Aggregator aggregate(Aggregate e) {
 aggregates.add(e);
 return this;
 }

 Chapter 8 ■ Exact Aggregation and Delivery 293

c08.indd 05:32:54:PM 06/12/2014 Page 293

 Expirer expirer = null;
 public Aggregator expirer(Expirer expirer) {
 this.expirer = expirer;
 return this;
 }

 public <E> void each(long timestamp,String key,
 E value,Command<E> cmd) {

 for(Aggregate a : aggregates) {
 long quantized = a.quantize(timestamp);
 String quantizedString = a.quantizeString(timestamp);
 String expireKey = cmd.execute(timestamp,
 quantized,quantizedString,key, value);
 if(expireKey != null && expirer != null) {
 expirer.expire(expireKey, a.expire(timestamp));
 }
 }
 }

 public <E> void each(String key,E value,Command<E> cmd) {
 each(System.currentTimeMillis(),key,value,cmd);
 }

}

The Command<E> interface, covered in the next section, contains a single func-

tion that is used to implement operations in a client. The Expirer interface is

similar and used by clients that can implement an optional expiration feature.

N O T E The aggregation driver assumes that messages are delivered with a time-

stamp. This allows for messages to be delivered out-of-order or even with signifi cant

delay, but still be delivered to the correct “time bucket” of the back-end store. It also

implements a simpler version of each that simply uses the current time.

Implementing Clients

Implementing a client that uses the aggregation driver usually means implement-

ing a series of Command<E> interfaces as anonymous classes. These are wrapped

inside a method to implement a multi-resolution version of the method. The

following example prints the multi-resolution key and value to the console:

public void doSomething(long timestamp,String key,String value) {
 aggregator.each(timestamp, key, value, new Command<String>() {

 public String execute(long timestamp, long quantized,
 String quantizedString, String key, String value) {
 String k = key+":"+quantizedString;
 System.out.println(k+"="+value);

294 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 294

 return k;
 }

 });
 }

The Command<E> interfaces only passes a key and a value. If more param-

eters are needed, they can be passed into the anonymous class by making the

parameters fi nal. This is demonstrated in the doSomethingMore method, which

takes a second value parameter:

public void doSomethingMore(long timestamp,String key,String value,
 final String another) {
 aggregator.each(timestamp, key, value, new Command<String>() {

 public String execute(long timestamp, long quantized,
 String quantizedString, String key, String value) {
 String k = key+":"+quantizedString;
 System.out.println(k+"="+value+","+another);
 return k;
 }

 });
 }

A MULTIRESOLUTION REDIS CLIENT

Redis works particularly well with multi-resolution aggregation. Its high performance

and large variety of data types make it easy to implement complicated data environ-

ments in relatively short order. A multi-resolution aggregation Redis client begins

with an aggregator and a standard Redis connection. This example uses the Redis cli-

ent, but any Java Redis client should work:

public class RedisClient implements Expirer {

 Jedis jedis;

 public RedisClient jedis(Jedis jedis) {

 this.jedis = jedis;

 return this;

 }

 Aggregator aggregator;

 public RedisClient aggregator(Aggregator aggregator) {

 this.aggregator = aggregator;

 aggregator.expirer(this);

 return this;

 }

 Chapter 8 ■ Exact Aggregation and Delivery 295

c08.indd 05:32:54:PM 06/12/2014 Page 295

Redis supports expiration, so this client implements the Expirer interface to allow

aggregates to age out (for example, fi ve-minute aggregates after two days, hourly

aggregates after a week, and so on). This interface has a single method that is called

on every top-level key:

public void expire(String key, long retainMillis) {

 jedis.expire(key, (int)(retainMillis/1000));

 }

It doesn’t make sense to implement the multi-resolution getter methods, but the

primary setter methods—incrby, hincrby, zincrby, and sadd—are all good

candidates for multi-resolution updates. Methods like incrby are implemented with

a simple Command<E> implementation:

public void incrBy(long timestamp,String key,long value) {

 aggregator.each(timestamp, key, value,new Command<Long>() {

 public String execute(long timestamp, long quantized,

 String quantizedString, String key, Long value) {

 String k = key+":"+quantizedString;

 jedis.incrBy(k, value);

 return k;

 }

 });

 }

More complicated methods, such as hincrby, require more parameters. These are

passed as final arguments to the anonymous command function:

public void hincrBy(long timestamp,String key,String field,

 final long by) {

 aggregator.each(timestamp, key, field, new Command<String>() {

 public String execute(long timestamp, long quantized,

 String quantizedString, String key, String value) {

 String k = key+":"+quantizedString;

 jedis.hincrBy(key, value, by);

 return k;

 }

 });

 }

The remaining methods, found in the code included with this chapter, are imple-

mented in a similar manner.

296 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 296

Stochastic Optimization

Although not precisely a form of aggregation, Stochastic optimization bears

mentioning. Whereas aggregation and counting can be used to compute simple

values like averages and standard deviations, which are discussed in much

more detail in the next chapter, there is a family of techniques jointly known

as stochastic optimization methods.
The most famous of these methods is stochastic gradient descent, which is a

widely used technique in machine learning when one is dealing with very large

datasets. The basic idea is that there is some function F(B) that can be written

down as the sum of a function fi(B) applied to each data point. The name of

the game is to fi nd the value of B that minimizes this function. This can be

accomplished in a streaming (or “online”) setting by computing the gradient

of fi(B) and subtracting it from the current estimate of B after multiplying it

by a value r, known as the “learning rate.” This is essentially a special case of

summation and can be used to compute a variety of interesting values.

A similar technique called stochastic averaging is often used in this way to

compute the median of a data stream. The median is defi ned as the value of a

dataset such that, when sorted, 50 percent of the data is smaller than the value,

and 50 percent of the data is larger than the value. Ordinarily this is diffi cult to

calculate on a stream because it requires the collection and sorting of all the data.

To approximate this value using stochastic optimization, the value of inter-

est is the current estimate of the median M. If the next observed value in the

stream is larger than M, increase it by r. If it is smaller, decrease the estimate

by r. When M is close to the median, it increases as often as it decreases, and

therefore it stabilizes:

public class MedianEstimator {

 double rate = 1.0;
 double current = Double.POSITIVE_INFINITY;

 public MedianEstimator(double rate) {
 this.rate = rate;
 }

 public double update(double value) {
 if(current == Double.POSITIVE_INFINITY)
 current = value;
 if(current == value) return current;
 current = current + (current < value ? rate : -rate);
 return current;
 }

}

 Chapter 8 ■ Exact Aggregation and Delivery 297

c08.indd 05:32:54:PM 06/12/2014 Page 297

This technique is used in later chapters to learn more interesting quantities,

such as the parameters for predictive classifi ers.

Delivering Time-Series Data

Chapter 7 discusses, in depth, moving data from a back-end system to a web-

based client for rendering. Moving time-series data is no different, especially

if the back end supports some sort of publish-subscribe mechanism. When the

time-series aggregator emits values, it can either emit them directly to a chan-

nel or, more commonly, update the back-end store and send a notifi cation to

the back-end channel.

NOTIFICATIONS FOR THE REDIS CLIENT

Adding pubsub notifi cations to the Redis client from the last section is easy. First, the

Aggregator class needs a way of calling the notifi cation event. This is done through

the Notifier interface:

public interface Notifier {

 public void notify(String key,String resolution,

 long timestamp,long quantized,String quantizedString);

}

This is called after every update in the each method. The following code optionally

notifi es a channel when available:

if(notifier != null) {

 notifier.notify(key,a.resolutionString(),timestamp,

 quantized,quantizedString);

}

The Redis client then publishes the update to the appropriate channel so data

consumers can be updated. In this case, the resolution of the update is included in the

channel so consumers can subscribe to the appropriate level of detail:

public void notify(String key,String resolution, long timestamp,

 long quantized, String quantizedString) {

jedis.publish(key+":"+resolution, quantizedString);

}

If a real-time data source is not available in the development environment,

another option is to simulate the fl ow of real-time data using a simple JavaScript

driver to send “real-time” events. This driver emits messages every second

298 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 298

with a sine wave for testing visualization methods described in the remainder

of this section:

(function($) {
 var incr = 1/(2*Math.PI);
 var x = 0;
 var t = 0;
 var i = setInterval(function() {
 var y = 100*Math.sin(x);
 var $d = $(document);
 $d.trigger('data:signed',y);
 $d.trigger('data:unsigned',100+y);
 x += incr;
 },100);

})(jQuery);

Strip Charts with D3.js

A strip chart is a graph that represents time on the x-axis and some metric on

the y-axis. For example, a simple strip chart of the sine wave data might look

like Figure 8-1.

Figure 8-1

Omitting the D3 setup steps from the last chapter, the strip chart fi rst needs

x and y scales and axes for display:

var y = d3.scale.linear().domain([0,200]).range([height,0]);
var x = d3.scale.linear().domain([0,size]).range([0,width]);
x.axis = d3.svg.axis().scale(x).orient("bottom");

var axis = g.append("g")
.attr("class","x axis")
.attr("transform","translate(0,"+height+")")
.call(x.axis);

g.append("g")
 .attr("class", "y axis")
 .call(d3.svg.axis().scale(y).ticks(5).orient("left"));

 Chapter 8 ■ Exact Aggregation and Delivery 299

c08.indd 05:32:54:PM 06/12/2014 Page 299

Next, a curved path is drawn to represent the time series held in the data

variable:

var line = d3.svg.line().interpolate("basis")
 .x(function(d,i) { return x(i); })
 .y(function(d,i) { return y(d.y); });

var path =
 g.append("g").append("path").data([data]).attr("class","line");

Every time an event arrives, the data variable is fi rst updated. Then the line

is redrawn, and, fi nally, the fi rst element of data is removed. The reason the

line is redrawn fi rst is because changing the fi rst element modifi es the control

point of the line. By hiding this fi rst element behind the y-axis, the change is

not noticeable to the user:

 function update() {
 g.select(".line").attr("d",line);
 }

 var i = 0;
 $(document).on('data:unsigned',function(event,y) {
 data.push({x:i,y:y});
 update();
 if(data.length > size+2) data.shift();
 i++;

 });

High-Speed Canvas Charts

The approach used thus far works well when the real-time updates of the time

series are quick, but not that quick. The usual time frame for updates coming

across the wire for a specifi c metric are usually 10 seconds to a minute. Updating

at the rate of once a second or less becomes problematic in large systems due to

limitations in Scalable Vector Graphics (SVG) rendering performance.

One alternative would be to render into a Canvas element instead of trying

to use SVG. Canvas elements generally render somewhat faster than their SVG

counterparts, but the styling is not fl exible. Instead, standard SVG elements can

still be used to render and style static elements, such as the axes, and then the

SVG elements are positioned over the Canvas elements.

Even this method has limitations that prevent truly rapid updates because

the entire canvas has to be rendered on each frame. For very simple charts, a

high-speed update mechanism works by simply updating the leftmost section

300 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 300

of the canvas. To do this, fi rst initialize the canvas element for draw. In this case,

the canvas is called canvas1 in the HTML document:

 var size = 80,width = 960,height = 120;
 var canvas = document.getElementById('canvas1');
 var ctx = canvas.getContext('2d');

 var w = width/size;
 var y = d3.scale.linear().domain([0,200]).range([2,height-4]);

Because the segments are relatively short, the easiest way to draw the strip

chart is to use linear interpolation from the previous point to the current point.

This allows the update step to be exceedingly simple. The context simply draws

a straight line from the (width-w,lastY) point to the (width,newY) point to

produce a line segment:

var lastY;

$(document).on('data:unsigned',function(event,newY) {

if(lastY != undefined) {
 shiftCanvasLeft();
 ctx.beginPath();
 ctx.moveTo(width-w,y(lastY));
 ctx.lineTo(width,y(newY));
 ctx.stroke();
 }
 lastY = newY;
 });

Note that before the line segment is drawn, the shiftCanvasLeft function is

called. This function takes a snapshot of the current canvas and then redraws

it w pixels to the left:

function shiftCanvasLeft() {
 var img = ctx.getImageData(0,0,width,height);
 ctx.clearRect(0,0,width,height);
 ctx.putImageData(img,-w,0);
 }

Nothing more is necessary to draw high-performance strip charts. The other

nice feature of this method is that it does not require the data to be stored; only

the last value is stored. If a bar chart were used instead of a strip chart then not

even that value would need to be stored.

Hummingbird

The fi rst real-time application to employ this approach was Hummingbird,

developed by Gilt Group engineers. This application is self-contained, using

 Chapter 8 ■ Exact Aggregation and Delivery 301

c08.indd 05:32:54:PM 06/12/2014 Page 301

a 1x1 pixel on a website to record a “hit.” These hits are stored in MongoDB

and then delivered using a node.js app over WebSocket using the socket.io

library from Chapter 7.

Horizon Charts

A relative of the strip chart is the horizon chart, introduced by Jeffrey Heer,

Nicholas Kong, and Maneesh Agrawala. The idea behind the horizon chart is

to be able to visualize a large number of correlated time-series variables. Doing

this with a few correlated series is easy with strip charts. As the number of

variables grows, the compressed vertical space makes it more and more diffi cult

to detect changes in each of the strip charts.

To overcome this problem, the horizon chart uses an area rather than a line

and wraps the values around the y-axis. To avoid having the higher values

get lost, density is used to represent the areas of overlap. The typical wrap-

ping factor of three, as shown in Figure 8-2, allows plots to take one-third

or less of the original area without losing the ability to see the fi ne structure

in the plots.

Figure 8-2

The code to create the plot in Figure 8-2 is actually quite similar to rendering

the strip plot. However, rather than render a single line, three overlaid areas are

rendered instead. This function defi nes each area with the appropriate domain

set, taking advantage of D3’s clamp option to restrict the output range regard-

less of the input values:

 function region(min,max) {
 var y = d3.scale.linear()
 .domain([min,max])
 .range([height,0])
 .clamp(true);
 var area = d3.svg.area()
 .x(function(d,i) { return x(i); })
 .y0(height)
 .y1(function(d,i) { return y(d.y); });
 var path = g.append("g")
 .append("path")
 .data([data])
 .attr("class","horizon");
 return function() {

302 Part II ■ Analysis and Visualization

c08.indd 05:32:54:PM 06/12/2014 Page 302

 path.attr("d",area);
 }
 }

Note that each region actually maintains a pointer to the overall data so there

is no extra data maintenance. This next function simply divides the domain into

a number of regions. It is called with three regions over the appropriate domain

to produce the horizon chart:

 function make(min,max,split) {
 var regions = [];
 var last = min;
 var incr = (max-min)/split;

 for(var i=0;i<split;i++) {
 var to = last+incr;
 regions.push(region(last,to));
 last = to;
 }

 return regions;
 }
 var regions = make;

The region function returns an update function itself so the update function

simply calls each region’s update function in turn to produce the chart shown

in Figure 8-2:

 function update() {
 regions.forEach(function(r) { r(); });
 }

Cubism.js

As demonstrated, it is not diffi cult to produce a simple horizon chart using

D3.js. Another option is to look into the cubism.js project. This is a D3.js plug-in

written by Mike Bostock, one of the original D3 authors and active maintainer

of the project. He wrote it while at Square to visualize time series for internal

projects, and it has since been open sourced.

In addition to implementing rendering of horizon charts, it also has built-in

data connectors. Support for Graphite and Cube is available “out of the box,”

and the library has been designed to allow other sources to plug in as well.

 Chapter 8 ■ Exact Aggregation and Delivery 303

c08.indd 05:32:54:PM 06/12/2014 Page 303

Conclusion

This chapter took the infrastructure of the last few chapters and put lightweight

frameworks on top of them. It focused on frameworks for time-series data

because that is generally the application area of real-time streaming.

Of course, the visualization options for time-series data are not limited to

strip charts and its relatives. With the availability of high-performance web

browsers, any number of different visualizations can be created using color

and animation. Note, however, that for streaming data the “glanceability”

of the chart is a factor. Visualizations that do not directly incorporate a time

component can be hard to decipher at a glance. If the goal is to attract a user

into watching the display for a while, signifi cant animation elements in the

visualization can be desirable.

Most of the time, the goal is to provide as much information as quickly as

possible. In those situations, “boring” visualizations like strip charts and horizon

charts deliver information in an easily digested form.

c08.indd 05:32:54:PM 06/12/2014 Page 304

305

c09.indd 05:33:12:PM 06/12/2014 Page 305

Many elementary properties of data streams can be obtained through basic

counting methods. Totals, averages, minimums, maximums, and, to some extent,

other order statistics can be computed with O(1) updates and O(1) storage space.

Most systems stop at these elementary values because the low-latency require-

ments and potentially unbounded storage make computing more complicated

values prohibitively expensive.

Chapters 9 and 10 tackle this problem from a statistical perspective. Statistics

is a fi eld that was, essentially, developed to deal with problems that occur when

it is too costly or time consuming to perform a census of the entire population.

Instead, the fi eld of Statistics has developed a toolkit that allows a sample to be

used to make inferences of the population using the toolkit provided by the

mathematics of probability. This chapter provides a brief introduction to statis-

tical methods and concepts, including a useful foundation in probability and

statistics used to answer questions about the data rather than simply present

tabulated results.

The techniques in this chapter are not specifi cally related to the analysis of

streaming data. They are just as applicable to fi nite datasets regardless of size.

Of course, they can also be applied to data streams with some modifi cations.

Later in this chapter is a discussion of methods of effi ciently sampling from

streams of data. Statistical analysis can be applied to these samples to conduct

in-depth analyses, perform forecasts, and so on.

C H A P T E R

9

Statistical Approximation of

Streaming Data

306 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 306

The framework of probability is also useful for the development of specialized

data structures for maintaining summaries of stream data. These specialized

structures are discussed in-depth in Chapter 10 and rely on an understanding

of the behavior of random values, which is discussed in the remainder of this

chapter.

Numerical Libraries

These next few chapters make heavy use of numerical functions not found in

the standard mathematics library of most languages. The examples in this chap-

ter are largely written in Java and use the open source Colt numerical library,

developed by the European Organization for Nuclear Research (CERN, which

is also where the web was invented). The library is licensed using the GNU

Lesser General Public License (LGPL), with an explicit addendum prohibiting

use in military applications. The Maven dependency for the library is as follows:

<dependency>
 <groupId>colt</groupId>
 <artifactId>colt</artifactId>
 <version>1.2.0</version>
</dependency>

The Apache Commons libraries also provide Java libraries for numerical

computing.

Other languages also have good numerical libraries, often providing inter-

faces to high-performance and well-tested Fortran libraries. For commercial

applications, the NAG Library and International Mathematics and Statistics

Library (IMSL) have long been popular as they have libraries available for a

variety of languages.

Users of the C language can use open source alternatives such as the GNU

Scientifi c Library (http://www.gnu.org/software/gsl/) as an alternative to the

Colt libraries used in this book. Another alternative is the embedded version

of the R Statistical Language (http://r-project.org), which makes available

many of its core numerical routines. For C++, the Boost library (http://boost

.org) is a popular choice, powering a number of applications.

For high-level languages, the options are more sparse. Python probably has the

most developed numerical libraries in the form of NumPy (http://numpy.org)

and SciPy (http://scipy.org). Other languages, such as Ruby and JavaScript,

have special-purpose libraries available, but nothing that has really been col-

lected into a comprehensive numerical computing library.

http://www.gnu.org/software/gsl
http://r-project.org
http://boost.org
http://boost.org
http://numpy.org
http://scipy.org

 Chapter 9 ■ Statistical Approximation of Streaming Data 307

c09.indd 05:33:12:PM 06/12/2014 Page 307

Probabilities and Distributions

Probability theory underpins the entire fi eld of statistics. Originally developed

to understand games and gambling, the classical application is the study of

one or more urns full of colored balls: “What is the probability that the next

ball drawn from the urn will be red?” Of course, the answer to this question is

determined by dividing the number of red balls in the urn by the total number

of balls in the urn, written as,

P(ball=red) = # red balls/# balls

Probabilities always sum to 1, so it is also possible to answer “What is the

probability that the next ball won’t be red?” in terms of the probability of the

opposite event. For example,

P(ball≠red) = 1 – P(ball=red)

Similarly, combinations of events can also be written the same way. The prob-

ability of removing a red ball or a white ball is written,

P(ball=red or ball=white) = (# red balls + # white balls)/# balls

This is the same as writing P(ball=red) + P(ball=white). In fact, so long as the

events are mutually exclusive, they can always be added in this way.

Things get a little bit more complicated when dealing with “and” events,

such as, “What is the probability that a red ball is removed from the urn and

then a white ball is removed from the urn?” In general, the probability of these

events will multiply rather than add. So, to answer the question, you need both

the probability of a red ball being drawn and the probability of the white ball

being drawn. The probability that the red ball has been removed stays the same.

However, the probability that a white ball is drawn next depends on what hap-

pened with the red ball.

A conditional probability, written P(A|B), describes the relationship between

the fi rst event and the second event. It is read as, “The probability that A hap-

pens, given that B has already happened.” This allows the previously mentioned

“and” event to be decomposed into something more tractable:

P(A and B) = P(A|B)P(B) = P(B|A)P(A)

So, if the red ball is returned to the urn after it is drawn, the calculation above

becomes the following:

P(ball 1=red and ball 2=white) = P(ball=red)P(ball=white|ball=red) =
P(ball=red)P(ball=white) = (#red/#balls)×(#white/#balls)

308 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 308

If the red ball is not replaced into the urn then there is now one less ball in

the urn, and the probability becomes this:

P(ball 1=red and ball 2=white) = (#red/#balls)×(#white/#balls-1)

This can be extended to deal with more complicated discrete events, such as

the probability that X of the balls drawn will be red if Y total balls are drawn.

For example, if X is 2 and Y is 5 then the brute force approach would be to

enumerate the different ways that two red balls could be drawn. If R is used to

denote red balls and N represents non-red balls (it doesn’t matter what color

they are), there are 10 possible ways 2 red balls can be drawn out of 5 draws,

as shown in this list:

 ■ RRNNN

 ■ RNRNN

 ■ RNNRN

 ■ RNNNR

 ■ NRRNN

 ■ NRNRN

 ■ NRNNR

 ■ NNRRN

 ■ NNRNR

 ■ NNNRR

If the balls are replaced after each draw, the probability of drawing a red ball

is #red/#balls, and the probability of drawing another ball is 1-(#red/#balls).

Multiplying gives (#red/balls)2(1-#red/balls)3, generally (#red/#balls)i(1-

#red/#balls)n-i.

The only thing that remains is to take into account the 10 different orderings.

This comes from fi rst considering each of the balls to be individual numberings

and then looking at the number of ways to order 5 numbered balls. There are

5×4×3×2×1 = 120 ways to do that. This is usually represented as 5!, which is called

a factorial function. But, the red and non-red balls are indistinguishable from each

other, so this method results in overcounting. By the same argument, there are

2! ways of ordering the 2 red balls and 3! ways of ordering the 3 non-red balls.

Each of the fi nal 10 orderings is really being overcounted by 2!×3! orderings,

so dividing gives 5!/(2!×3!) = 10 orderings. In other words, there are “5 choose

2” possible combinations. This generally is stated as “n choose k,” which is the

 Chapter 9 ■ Statistical Approximation of Streaming Data 309

c09.indd 05:33:12:PM 06/12/2014 Page 309

number of different ways that k objects can be chosen from a group of n objects.

This number of possible combinations is given by the formula n!/(k!×(n-k)!).

Expectation and Variance

What about the average number of red balls drawn if the experiment where 5

balls are drawn is repeated an infi nite number of times? A statistician asks the

question, “What are the expected number of red balls?” and calls the answer

the expectation. In statistics literature, this is usually written as E[X] (with square

brackets), and X is known as a random variable.
The defi nition of an expectation is quite simple. For examples like the earlier

one, where there are discrete events such as drawing 2 balls, the expectation

is simply the sum of each possible value of X multiplied by the probability of

that value of X, as follows:

0×P(X=0) + 1×P(X=1) + … + n×P(X=n)

More generally, the expectation is actually defi ned for any function of X,

written as E[f(x)] and having the same form for computation:

f(0)×P(X=0) + f(1)×P(X=1) + … + f(n)×P(X=n)

Mean and Variance

Most people know the expectation, E[X], as the mean or the average of X. Using the

example from the previous section, the expected (or average) number of red balls

out of 5 can be easily computed. Drawing 0 red balls can be skipped because 0

times anything is still 0. The remaining 4 possibilities are then added together:

1×5×p×(1-p)4+2×10×p2×(1-p)3+3×10×p3×(1-p)2+4×5×p4×(1-p)+5×1×p5

Multiplying out all the terms and engaging in a lot of tedious canceling of

terms eventually yields 5p as the expected number of red balls when 5 balls

are drawn.

Of course, the actual number of red balls drawn in a particular group of 5 varies

and, depending on p is probably not even an integer, which makes it impossible

to draw the “expected” number of red balls. The dispersion of the observed

number of red balls around the expected number of balls is measured by the

variance, written Var(X). Most people have encountered the square root of the

variance, which is called the standard deviation.

310 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 310

As it happens, the variance is actually just another expectation. The variance

is defi ned as Var(X) = E[(X-E[X])2]. This expands to E[X2] – (E[X])2. The calcula-

tion is the same as for any other expectation and, omitting the intermediate

calculation, Var(X), for the earlier example is 5×p×(1-p).

Other Moments

In addition to the mean and variance being special names for the expectation

of the fi rst two powers of X (or of X-E[X] in the case of the variance and other

higher powers), some of the other powers of X have special names. In general,

these powers of the expectation of X are called moments or, if they are powers

of X-E[X], central moments of X.

These moments come up in later sections of this chapter to help calculate

interesting parameters from observed data. For example, in the example used

in the last few sections, p is a recurring parameter. In the problem presented, p

is the number of red balls in the urn divided by the total number of balls. When

p is known, the calculation is easy to do. However, most of the time the various

draws of X will be observed, and the name of the game will be to fi gure out p.

Statistical Distributions

Determining a range of likely values for p given some observations of X, called

data, makes use of a mathematical model called a distribution. As the name

implies, a distribution describes the way probability is distributed among the

possible values of X.

There are some exceptions, such as non-parametric methods, but nearly every

familiar calculation is based on either an implicit or explicit statement of the

particular mathematical model that underlies the data. Some of these underly-

ing models are so well known that they have been given names and standard

interpretations. The next two sections introduce some of these famous models.

They come in two fl avors: discrete and continuous.

Discrete Distributions

Discrete distributions are described by a probability mass function, which is the

probability that a random variable X will take on a particular value k. This is

usually written as a p(k). The result of adding p(k) for all possible values of k

will always be equal to one. There are a number of discrete distributions with

well-studied interpretations, but the fi ve described in the next three sections

are particularly useful to know in this setting.

 Chapter 9 ■ Statistical Approximation of Streaming Data 311

c09.indd 05:33:12:PM 06/12/2014 Page 311

Binomial and Hypergeometric Distributions

In general, the probability distribution from the last section is known as the

binomial distribution. Its probability mass function (PMF) is implemented as follows:

public static double dbinom(long k,double n,double p) {
 return Arithmetic.binomial(n, k)
*Math.pow(p, k)
*Math.pow(1-p, n-k);
}

Where the Arithmetic.binomial function from the Colt numerical library

implements the combination function “n choose k” from the previous section.

This is commonly known as the binomial coeffi cient.
In addition to describing the probability of drawing i balls of a particular

color in n draws when the balls are replaced, it is also used to model other

processes where the probability doesn’t change from trial to trial. This includes

the number of heads in n fl ips of a coin, or the sum of the faces of a number of

dice after each roll. In general, it is the probability of i successes out of n tries

when the probability of success is p.

If the balls are not returned after each draw, it is called a hypergeometric
distribution. If K is the total number of red balls and N is the total number of

balls, its mass function is implemented as the following:

public static double dhypergeom(long k,long n,long N,long K) {
 return (Arithmetic.binomial(K, k)
*Arithmetic.binomial(N-K, n-k))
 /Arithmetic.binomial(N, n);
}

Geometric and Negative Binomial Distributions

The distribution of the number of non-red balls drawn with replacement before

the fi rst red ball is called the geometric distribution (sometimes also called the

fi rst success distribution):

public static double dgeometric(long i,double p) {
 return Math.pow(1-p, i-1)*p;
 }

Extending this to the distribution of the number of draws with replacement before

the rth red ball is drawn is called the negative binomial distribution. The geometric

312 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 312

distribution is actually a special case of the negative binomial (the case where r=1),

so it is no surprise that they have very similar implementations:

public static double dnegbinom(long i,long r,double p) {
 return Arithmetic.binomial(i-1, i-r)*Math.pow(1-p, r)*Math.pow(p, i-r);

 }

These distributions have a variety of applications. From the descriptions,

you can probably guess that they are useful in quality control and monitoring

applications.

Poisson Distribution

The fi nal distribution covered in this section is the Poisson distribution. It models

the distribution of the number of events that occur in a fi nite period of time—for

example, the number of phone calls received per hour or the number of cars

that arrive at a light while it is red:

public static double dpois(int i,double p) {
 return Math.pow(p, i)*Math.exp(-p)
/Arithmetic.factorial(i);
 }

The Poisson distribution is also used as an approximation of the binomial

distribution when p stays constant but n gets very large. When this happens, it

is often more convenient to work with the Poisson distribution than the bino-

mial distribution in these settings, and when n ≥ 100 and n×p ≤ 10 the Poisson

is considered to be a very good approximation.

Continuous Distributions

When the distribution is concerned with something truly continuous, such

as the distribution of heights in a population, things are a little bit different.

Unlike the discrete case, it is diffi cult to talk about P(X = i). When someone says

they are six feet tall, they are not exactly six feet tall. They are perhaps six feet

tall plus some quantization factor (say, half an inch).

To get around this problem for continuous distributions, rather than working

with P(X=i), the distribution is defi ned in terms of P(X≤x), which is called the

cumulative distribution function (CDF). To get back to something more like

the continuous case, take P(X≤x+h) – P(X≤x) and then let h become infi nitesimally

small. If this sounds like taking a derivative in calculus, that’s because it is.

 Chapter 9 ■ Statistical Approximation of Streaming Data 313

c09.indd 05:33:12:PM 06/12/2014 Page 313

This function, usually written p(x), is called the probability density function, the

derivative of the CDF. (The discrete version is called the probability mass function.)

The Normal and Chi-Square Distributions

The normal distribution, also called a Gaussian distribution, is probably the most

famous of all the statistical distributions. One reason is that its functional form

leads to nice results for many different procedures. For example, clustering

algorithms often implicitly assume that the underlying distribution of the

cluster is normal.

The other, more important, reason it is so famous is because the distribution

of the mean of observations of a random variable converges toward a normal

distribution as the number of observations goes to infi nity. Amazingly, this hap-

pens regardless of the underlying distribution, assuming that certain conditions

are met (they usually are). In other words, if you have enough data, then you can

approximate nearly anything by this distribution (even discrete distributions!).

The normal distribution has two parameters: a mean parameter (mu) and

a standard deviation parameter (sigma), and a simple implementation for any

real value of x:

public static double dnorm(double x,double mu,double sig) {
 return Math.exp(
 Math.pow(x-mu, 2)
 /Math.sqrt(2*sig*sig)
)/Math.sqrt(2*Math.PI*sig*sig);
 }

If X1,…,Xk are normally distributed, then the sum of their squares take on what

is known as a chi-square distribution with k degrees of freedom. So, the square

of a single, normally distributed random variable will have a chi-square distri-

bution with 1 degree of freedom. The chi-square is used to model the variance

of a normal distribution as well as for analyzing “contingency tables,” which

are used to determine if the rate of occurrence of an event is different between

two groups. The density function for this distribution is fairly complicated:

public static double dchisq(double x,double k) {
 return (Math.pow(x,k/2.0 - 1.0)
*Math.exp(-x/2.0))
/(Math.pow(2,k/2.0)*Gamma.gamma(k/2.0));
}

314 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 314

The Gamma.gamma() function in the previous density function is essentially a

continuous version of the factorial distribution. In fact, Arithmetic.factorial(n)

is equal to Gamma.gamma(n-1).

Exponential, Gamma, and Beta Distributions

If the Poisson distribution is the number of events that occur within a given

time frame, the exponential distribution models the waiting time between these

events. It is often used along with the Poisson distribution in modeling queues.

The distribution has a fairly simple density function with a single parameter:

public static double dexp(double x,double p) {
 return p*Math.exp(-x*p);
 }

The distribution of the waiting time from the fi rst event until the kth event,

when the waiting time between each event is exponentially distributed, is the

gamma distribution. This distribution takes two parameters, the p parameter

(called the rate) from the exponential distribution, and a second parameter k

(called the shape), which represents the number of events. The density function

clearly shows the relationship between the two distributions:

public static double dgamma(double x,double k,double p) {
 return Math.pow(p,k)*Math.pow(x,k-1)*Math.exp(-p*x)/Gamma.gamma(k);
 }

The relationship is similar to the one between the geometric distribution and

the negative binomial. Essentially, the exponential distribution is a special case

of the gamma distribution. The chi-square distribution is also a special case of

the gamma distribution where the shape parameter k is one-half of the degrees

of freedom, and the rate parameter p is one-half.

N O T E In addition to being the sum of k exponential random variables, a gamma

random variable X ~ Gamma(a,b) = Y/b, where Y ~ Gamma(a,1). This property is often

used when dealing with Gamma random variables to simplify the density function.

If two variables X and Y both take on a gamma distribution with the same

parameter for k and different parameters for a “p“ then X/(X+Y) takes on a beta
distribution. The beta distribution draws random variables between 0 and 1, and

so it is often used to model frequencies.

The uniform distribution on [0,1] is a special case of the beta distribution,

when both a = 1 and k = 1.

 Chapter 9 ■ Statistical Approximation of Streaming Data 315

c09.indd 05:33:12:PM 06/12/2014 Page 315

Joint Distributions

So far, all of the discussion has focused on a single distribution. This is useful

for investigating a single variable, but most problems are interested in under-

standing the relationship between two or more random variables. In statistics,

this relationship between variables is defi ned by a joint distribution.

A joint distribution consists of two or more random variables and has a prob-

ability density function and a cumulative density function just like any other

distribution. There is no restriction that the variables are of the same “type,”

and it is common to have distributions that are composed of both discrete and

continuous components.

If two variables are independent, their joint distribution is trivial. The den-

sity functions are simply multiplied. If one or more variables are conditionally

dependent on another variable, the same mechanism used when defi ning con-

ditional probability is used to construct the probability density function of the

joint distribution.

For example, consider a population where a random chosen person is female

with probability p and each subpopulation of male and female having distinct

normal distributions with mean hf for females and hm for males with the same

standard deviation s. A joint density function for f(height,gender) could be

implemented as follows:

public static double dnormGender(double h,double gender,
double hm,double hf,double sig,double p) {
 return Math.pow(p,gender==1 ? 1 : 0)
*Math.pow(1-p,gender==1 ? 0 : 1)
*dnorm(h,hm + (gender == 1 ? hf-hm : 0),sig);
}

Covariance and Correlation

The covariance of two random variables is a measure of how closely two (or

more) random variables “track” each other. So long as the second moment

(variance) of both random variables is defi ned, the covariance is simple E[(X-

E[X])×(Y-E[Y])]. This simplifi es somewhat to the form usually seen in textbooks:

E[XY] – E[X]E[Y]. From this, it can be seen that the variance is a measure of

how well a variable tracks itself; substituting X for Y yields the usual variance

formula from earlier in the chapter.

The correlation between two random variables is a normalized version of

the covariance:

ρ(x,y) = Cov(X,Y)/Var(X)×Var(Y)

316 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 316

This ensures that the correlation will be between -1 and 1. Note that although

independent random variables will have a covariance of 0, two variables with

a covariance of 0 are not necessarily independent.

Working with Distributions

Having made an assumption about the distribution that underlies some

observed data, it is possible to make an inference about the likely value of one

or more unknown parameters. It is also possible to make statements about the

range of likely values and, given estimates from two different sets of observed

data (perhaps from two different groups) whether or not those estimates are

likely to be truly different.

The remainder of this section focuses on the general methods for inferring

parameters of known distributions. For well-known distributions, closed-form

expressions for estimating parameters given data have been developed.

Inferring Parameters

If x1,…,xn are observations of random variables drawn from an underlying dis-

tribution F(x), the parameters of F(x) can be inferred using a method known as

“maximum likelihood estimation,” or simply “maximum likelihood.” As the

name implies, this procedure fi nds the values of the parameters of the distribu-

tion that maximize the likelihood function of the distribution.

The likelihood function is simply the product of the probability density func-

tion for each of the observed values:

l(x1,x2,…,xn) = f(x1)×f(x2)×...×f(xn)

Finding the value of the parameter that maximizes the likelihood function is

usually accomplished by minimizing the negative of the logarithm of the likeli-

hood function. Taking the derivative of the negative log likelihood, setting the

resulting derivative to 0, and then solving for the parameter will minimize this

function. If the distribution has more than one parameter, the partial derivative

is used. For example, the binomial example from earlier, where the number of

red balls for every 5 draws was observed, can be used to estimate the number

of red balls in the urn. The derivative of the negative log likelihood simplifi es

to the following expression:

-(x1+…+xk)/p - (k×5-(x1+…+xk))/(1-p) = 0

The binomial constant does not play a part in the derivative because it does

not depend on p and so drops out of the equation when the derivative is taken

 Chapter 9 ■ Statistical Approximation of Streaming Data 317

c09.indd 05:33:12:PM 06/12/2014 Page 317

with respect to p. Solving for p yields (x1+…+xk)/5×k where xi is the number of

red balls observed in each draw of 5.

Computing maximum likelihood estimates for parameters of well-known

distributions is usually not required. The maximum likelihood solutions, if they

exist in closed form, are usually well known and published in various locations.

Another, more crude technique for estimating parameters of a distribution is

called the method of moments. This method takes the moments of the distribution

E[Xk] as functions of the unknown parameters to form a system of equations.

So, if the distribution has two unknown parameters, the method of moments

uses the fi rst two moments of the distribution to form a system of two equa-

tions. The observed values of the sample moments, which are easily calculated,

are then substituted into the equations and the system of equations is solved.

For example, the gamma distribution has its shape and scale parameters. To

use the method of moments to estimate these parameters requires the fi rst two

moments: m1 = k×p and m2 = p2×k×(k+1). Given a sample, assumed to be drawn

from a gamma distribution, the fi rst two moments are simply the mean of the

data and the mean of the square of the data. Those are substituted into m1 and

m2 and then you solve for p and k.

But, where do moment functions come from? The hard way, as explained in

the defi nition of expectation and variance, is to manually perform the integral

for the appropriate moment. However, most well-known distributions have a

so-called moment generating function. The moment generating function is defi ned

as E[esX], and produces a moment function when it is differentiated a number

of times. If the second moment is required, the function is differentiated twice;

for the fi fth moment, fi ve times, and so on. The function is then evaluated at

s=0 to produce the moment function. This is where the functions used in the

earlier gamma distribution came from. In general, these generating functions,

along with other forms of generating functions useful for calculating things like

random sums of random variables, are available in tables and other sources,

such as Wikipedia and Wolfram Alpha.

The Delta Method

The method of moments, essentially, provides a tool for computing the expectation

of the power of a random variable X. These powers of X are then used to fi nd

estimates of parameters of the distribution, though better methods may also

be available. The delta method is a tool used to approximate the expectation of

almost arbitrary functions of a random variable X.

By the Delta Method, the approximate expectation and variance of a random

variable X is given as follows:

E[f(X)] = f(E[X])

Var(f(x)) = f’(E[X])2× Var(X)

318 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 318

Where f”(a) is the second derivative of the function f(x). This approximation

derives from the use of the Taylor Expansion, which is often used in applied

mathematics to approximate complicated non-linear functions. The Taylor

Expansion provides an expression for expanding a function into several parts

when evaluated with respect to a point “a.” For example, this is the Taylor

Expansion for f(x) containing the linear and quadratic parts of the expansion,

known as the second order expansion:

f(x) = f(a) + (x-a)f’(a) + (x-a)2f”(a)/2 + e

The remaining parts of the Taylor Expansion are captured by the error term

“e,” which contains the cubic and higher order expansions. This can be used to

compute the error of the approximation, but for the purposes of this book that

error will be considered to be “small enough.”

To derive the Delta Method results, the function of the random variable X,

f(X), is expanded around its own expectation E[X], giving the formula:

f(X) = f(E[X]) + (X-E[X])f’(E[X]) + (X-E[X])2f”(E[X])/2 + e

Taking the expectation of this expansion and solving yields the second order

approximation of E[f(X)]:

E[f(X)] = E[f(E[X]) + (X-E[X])f’(E[X]) + (X-E[X])2f”(E[X])/2 + e]

= E[f(E[X])] + E[(X-E[X])f’(E[X])] + E[(X-E[X])2f”(E[X])/2]

In this case, E[X] is a constant value, so f(E[X]) is also a constant. The expec-

tation of a constant is the constant, E[b] = b, and the expectation of b× X is the

expectation of X multiplied by the constant, E[b× X] = b× E[X]. Applying this

to the formula above yields:

E[f(X)] = f(E[X]) + (E[X] - E[X])× f’(E[X]) + Var(X)f”(E[X])/2 + e

= f(E[X]) + Var(X)f”(E[X])/2 + e

Looking at only the fi rst term of the fi nal formula gives the fi rst order approxi-

mation of the Delta Method for the expectation given above. It also gives the

second order approximation, which also includes the variance of the random

variable X and the second derivative of the function. It also shows that the error

of the fi rst order approximation will depend on the variance of the random

variable X.

The same process can be followed to compute the approximation of the vari-

ance of the function of X. The important identity for this calculation is that

Var(a+b× X) = b2× Var(X) when “a” and “b” are constants. Taking the variance

of the fi rst order expansion of f(X) about E[X] gives:

Var(f(X)) = Var(E[f(X)] + (X-E[X])× f’(E[X]))

= f’(E[X])2× Var(-E[X] + X) = f’(E[X])2×Var(X)

This fi nal formula is the same as the equation for the approximation of the

variance given above. These two approximations, while not the most accurate,

 Chapter 9 ■ Statistical Approximation of Streaming Data 319

c09.indd 05:33:12:PM 06/12/2014 Page 319

are often useful for quickly calculating the mean and variance of complicated

functions of random variables. For example, approximations for the mean and

variance when the function is log(X) yields:

E[log(X)] = log(E[X])

Var[log(X)] = Var(X)/(E[X]2)

This method will also be applied in Chapter 10 to compute useful approxima-

tions for the space requirements of some of the algorithms.

Distribution Inequalities

When working with random numbers and distributions there are several useful

inequalities to consider. These distributions are useful for providing bounds

on estimates, as shown in several parts of Chapter 10.

The fi rst two inequalities place an upper bound on the probability that a ran-

dom variable will take on a value larger than a. The fi rst, known as the Markov

inequality states that P(X ≥ a) ≤ E[X]/a.

Using (X-E[X])2 as the random variable in Markov’s inequality leads to

the Chebyshev inequality: P(|X-E[X]| ≥ a) ≤ Var(X)/a2. This is also written as

P(|X-E[X]| ≥k×s) ≤ 1/k2, where s is the standard deviation of the random variable.

Although sharper bounds can usually be obtained if the actual distribu-

tion of the random variable is known, both of the inequalities do not require

the assumption of a particular distribution. They only require that the fi rst or

second moment be fi nite.

If X is taken to be the sum of n independent random variables then Chernoff

Bounds can be obtained for the random variable. Chernoff Bounds provide

upper and lower bounds for a random variable as follows:

P(x≥a) ≤ e-taM(t), t > 0

P(x≤a) ≤ e-taM(t), t < 0

Where M(t) is the moment generating function introduced in the previous

section. For a given distribution, t is selected for each side of the bound to

minimize the probability.

Finally, Jensen’s inequality deals with functions of random variables. It states

that the expectation of a function of X will always be at least as large as a func-

tion of the expectation of X: E[f(X)] ≥f(E[X]).

Random Number Generation

Before continuing on to the sampling approaches and aspects of sampling, a

discussion of random number generators is required. The default random num-

ber generator for many languages is the Linear Congruential Generator random

number generator (LCRNG). This generator has a very simple implementation, as

320 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 320

seen in the following code snippet, where m, a, and c are constants that depend

on the programming language:

public class LCRNG {

 long x = System.currentTimeMillis();
 long a,c,m;
 public LCRNG(long a,long c,long m) {
 this.a = a;this.c = c;this.m = m;
 }

 public long next() {
 x = (a*x + c) % m;
 return x;
 }
}

This generator is clearly very easy to implement. Because it consists of only

three operations, it is also quite fast. It is also not very good for statistical applica-

tions. Properly called pseudo-random number generators (if the starting value

is known the entire sequence of random numbers can be regenerated—this is

actually useful when testing random algorithms), all algorithmic generators

display a periodic behavior of varying length. For the LCRNG, the period is quite

short, and possibly very short, for the low order bits of the random number. For

example, if m is a power of two, the LCRNG produces alternating odd and even

numbers, which is useful for winning bar bets but not much else.

To overcome this, most implementations use only the high order bits of the

LCRNG. Java, for example, uses 48 bits of state in its default random number

generator, but only returns 32 of those 48 bits. This allows it to drop some of

the very short period low order bits. Unless the application is very memory

constrained, such as an embedded system, a better solution is to use a better

random number generator. One of the most popular generators available is the

Mersenne Twister algorithm. This algorithm is the default for the R statistical

programming language as well as MATLAB. It is not suitable for cryptographic

applications, since observing a suffi ciently large number of values from the

generator allows for the prediction of future values, like the LCRNG. However,

the number of values required is suffi ciently large that it is good enough for

most statistical applications.

Implementations of the Mersenne Twister algorithm exist for many languages

and are included in many libraries, including the Colt library used in this chapter.

The Mersenne Twister object is initialized in the usual way and can provide

random draws (also called random variates) in a variety of forms, especially the

integer and double forms that are used extensively throughout the remainder

of this chapter.

 Chapter 9 ■ Statistical Approximation of Streaming Data 321

c09.indd 05:33:12:PM 06/12/2014 Page 321

Generating Specifi c Distributions

A basic random number generator is designed to draw from a uniform distribution.

If draws (also called variates) are needed, the uniform variate, or a combination of

uniform variates, is transformed into the appropriate distribution. This section

introduces some of the simpler methods of drawing from these distributions

in case appropriate libraries are not available. If libraries are available, they are

usually preferred because they often implement more complicated, but faster,

methods of drawing random variates. In particular, they often implement the

ziggurat algorithm, one of the fastest methods for drawing random variables.

In any case, the simple methods are all based on a good uniform random num-

ber generator, such as the Mersenne Twister discussed in the previous section:

import cern.jet.random.engine.MersenneTwister;

public class Distribution {
 MersenneTwister rng = new MersenneTwister();

Exponential and Poisson Random Numbers

When the CDF of the distribution has an invertible closed form, drawing a

random number from the distribution is very easy. Because a CDF is always

between 0 and 1, inclusive, a uniform random number in [0,1] is drawn and then

plugged into the inverse of CDF to fi nd the value of x.

This is the case when drawing values from the exponential distribution.

Recalling the probability density function from earlier in the chapter, the cumu-

lative density function for the exponential is simply u=1-e-px.

Some simple manipulation to solve for x given u, yields x = -log(1-u)/p. Because

u is a uniform random number, 1-u can simply be replaced with u to yield a

simple implementation for drawing from the exponential distribution:

public double nextExponential(double p) {
 return -Math.log(rng.nextDouble())/p;
 }

A very similar approach can be taken when generating Poisson random vari-

ables. In the case of the Poisson distribution, the CDF contains a summation

step so it is necessary to iterate through values of k until the appropriate value

is found, as in the following implementation:

public int nextPoisson(double p) {
 int k = 0;
 double c = 0, u = rng.nextDouble()/Math.exp(-p);
 while(true) {

322 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 322

 double x = c + Math.pow(p, k)
/Arithmetic.factorial(k);
 if(x > u) return k;
 c += x;
 k++;
 }
 }

Normal Random Numbers

If the cumulative density function does not have an easy-to-use closed form, it

is sometimes possible to take advantage of other transforms of a uniform draw

to produce random draws from a distribution. A classic example of this is the

Box-Muller method for drawing from a normal distribution.

This transform works by drawing a uniformly distributed angle on a unit

circle by drawing a uniform variate in [0,2pi] and drawing a radius from the

chi-square distribution with 2 degrees of freedom. This is actually a special

case of the exponential distribution where p = ~HF. This position in polar space

is then converted to Cartesian coordinates, yielding two independent normal

random variables (the second can be used on the next draw):

double z2;
boolean ready = false;
double nextZNormal() {
 if(ready) { ready = false;return z2; }
 double theta = nextUniform(0,2*Math.PI);
 double r = Math.sqrt(nextExponential(0.5));
 z2 = r*Math.sin(theta);ready = true;
 return r*Math.cos(theta);
}

This produces draws from the “Standard Normal,” which has a mean of 0

and a standard deviation of 1. These can be translated and scaled to produce a

draw from any normal distribution:

public double nextNormal(double mu,double sig) {
 return mu + sig*nextZNormal();
}

Gamma, Chi-Square, and Beta Random Numbers

Despite being closely related to the exponential distribution, drawing gamma

random numbers is comparatively diffi cult. If the shape parameter k is an integer

 Chapter 9 ■ Statistical Approximation of Streaming Data 323

c09.indd 05:33:12:PM 06/12/2014 Page 323

then it would be possible to simply draw k exponentials with the appropriate

scale parameter and add them to get a draw from a gamma distribution.

Of course, this has a number of drawbacks, the inability to deal with non-

integer values of k being chief among them. The approach used more often is

a technique called rejection sampling.

In rejection sampling, another distribution, f(x)—which envelops the target

distribution, g(x), but is easy to sample from—is selected. The envelope distri-

bution for the gamma distribution has the following density implementation:

 protected double gamma_f(double x,double a) {
 double L = Math.sqrt(2*a - 1);
 double y = Math.log(4) - a + (L+a)*Math.log(a)
 + (L-1)*Math.log(x) - Gamma.logGamma(a)
 - 2*Math.log(Math.pow(a, L) + Math.pow(x, L));
 return Math.exp(y);
 }

A draw can be generated from this distribution using the inverse CDF method

used to draw from the exponential distribution:

 protected double nextGammaF(double a) {
 double L = Math.sqrt(2*a - 1);
 double u = rng.nextDouble();
 return a*Math.pow(u/(1-u), 1/L);
 }

The draw from the enveloping distribution is then used as the draw from

the target distribution with a probability of g(x)/f(x). Otherwise another draw

is attempted until this condition is met:

protected double nextGamma(double k,double p) {
 while(true) {

 double x = nextGammaF(k);

 if(rng.nextDouble() <= gamma_f(x,k)/Distributions.dgamma(x, k, 1)) {
 return x/p;

 }

 }

 }

Note that the closer the ratio g(x)/f(x) is to 1, the better the performance of

the algorithm. Figure 9-1 shows the density for the gamma distribution with

different shape parameters. The dotted line shows the density of the envelope

distribution for the rejection sampling method for the same shape parameter.

The choice of f(x) in this case is fairly good, as shown in Figure 9-1, but it will be

ineffi cient to sample from the tails of the gamma distribution. Other methods

have been developed to deal with this ineffi ciency.

324 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 324

k = 1

k = 3 k = 8.75

k = 1.5

0.
00

0.
05

0.
10

0.
15

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
0

0.
5

1.
0

1.
5

x

x x

x

De
ns

ity

De
ns

ity

De
ns

ity

De
ns

ity

0 1 2 3 4 5 6 7

0 2 4 6 8 10 0 5 10 15 20

0 2 4 6 8

Figure 9-1

Given a method for sampling from the gamma distribution, sampling from the

chi-square and beta distributions is straightforward. The chi-square, of course,

is simply a special case of the gamma distribution so it can be drawn directly:

public double nextChiSq(double k) { return nextGamma(k/2,0.5); }

A beta random variable is also drawn by taking advantage of its relationship

with the gamma distribution—in this case, by taking the ratio of one gamma

distribution over the sum of two gamma distributions:

public double nextBeta(double a,double b) {
 double x = nextGamma(a,1);
 double y = nextGamma(b,1);
 return x/(x+y);
 }

Sampling Procedures

So far, this chapter has introduced the concept of the random variable and shown

how one can generate “draws” from these distributions. When there is a large

 Chapter 9 ■ Statistical Approximation of Streaming Data 325

c09.indd 05:33:12:PM 06/12/2014 Page 325

population, draws can also be generated by sampling from the population. Over the

decades a number of sampling procedures and a massive body of literature

have been developed. Many of these procedures are focused on the problem of

surveys and polls in the situation that taking a census of the entire population

is too costly, time consuming, or both. Because this book is focused primarily

on streaming data, most of these procedures are beyond the scope of this book.

This section covers the basics of sampling from a fi xed population insofar

as it allows for understanding how to sample from a streaming dataset. From

there, some modifi cations of the basic streaming procedure are introduced to

cover some of the more interesting streaming analysis scenarios.

Sampling from a Fixed Population

The simplest form of sampling from a population is, unsurprisingly, known

as simple random sampling. The goal of this procedure is the sample n elements

from a population of N total elements such that any given element has an equal

chance of being sampled. If all the elements can be held in RAM and a given

element is allowed to be in the sample more than once, the sampling imple-

mentation is trivial:

public class SimpleRandomSample {
 static MersenneTwister rng = new MersenneTwister();
 public static <E> E[] withReplacement(E[] in,int n) {
 Object[] sample = new Object[n];
 for(int i=0;i<n;i++)
 sample[i] = in[(int)Math.floor(n*rng.nextInt())];
 return (E[])sample;
 }
}

If the entire dataset fi ts in RAM, but an element should be sampled without
replacement, a somewhat different algorithm is used. The base for the algorithm

is the Fisher-Yates Shuffl e, which was developed as a pen-and-paper method in

the late 1930s. It is very simple to implement as an in-place shuffl ing method:

public static <E> void permute(E[] array) {
 for(int i=0;i<array.length;i++) {
 int j = i + (int)Math.floor((array.length - i)*rng.nextDouble());
 E temp = array[i];array[i] = array[j];array[j] = temp;
 }
 }

This method will produce all n! possible permutations of the array with equal

probability. In the preceding algorithm, a value will only be swapped no more

than once, so a sampler without replacement can be implemented by running

326 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 326

the shuffl e algorithm over the fi rst n elements and returning the fi rst n elements

to use as the sample:

public static <E> E[] withoutReplacement(E[] array,int n) {
 for(int i=0;i<n;i++) {
 int j = i
+ (int)Math.floor((array.length - i)*rng.nextDouble());
 E temp = array[i];array[i] = array[j];array[j] = temp;
 }
 return Arrays.copyOf(array, n);
}

Sampling from a Streaming Population

The Fisher-Yates shuffl e works well when the total size of the population is known

and fi ts into an array held in RAM. When the array cannot be held in RAM,

other techniques were developed to allow for sampling from the data in a single

pass. These methods form the basis of sampling from a streaming population

where the complete dataset is somewhere between “very large” and “infi nite.”

The Reservoir Algorithm

Reservoir algorithms are a class of algorithms developed to sample from stream-

ing populations. They are closely related in concept to the Fisher-Yates shuffl e

from the last section. This is most easily seen in an early version of the Fisher-

Yates shuffl e:

public static <E> void durstenfeldPermute(E[] array) {
 for(int i=array.length-1;i>0;i--) {
 int j = (int)Math.floor(i*rng.nextDouble());
 E temp = array[i];array[i] = array[j];array[j] = temp;
 }
}

In this version of the algorithm, the index is shuffl ed from back to front. This

means that elements from farther out in the array are swapped into earlier sec-

tions. It is this notion that leads to the basic reservoir algorithm.

In the reservoir algorithm, an array of elements that form the reservoir is fi rst

allocated. This takes the role of the fi rst n elements of the array when sampling

without replacement:

public class Reservoir<E> implements List<E> {

 MersenneTwister rng = new MersenneTwister();
 Object[] reservoir;

 Chapter 9 ■ Statistical Approximation of Streaming Data 327

c09.indd 05:33:12:PM 06/12/2014 Page 327

 int N;

 public Reservoir(int n) {
 super();
 reservoir = new Object[n];
 N = 0;
 }

The fi rst reservoir.length elements can simply be added to the array. After

that, a random position is drawn between N and 0. If that position falls into the

array, it replaces the element currently there; otherwise, it is ignored:

public boolean add(E arg0) {
 if(N < reservoir.length) {
 reservoir[N] = (Object)arg0;
 } else {
 long k = (long)Math.floor(N*rng.nextDouble());
 if(k < (long)reservoir.length) reservoir[(int)k] = (Object)arg0;
 }
 N++;
 return true;
 }

This is effectively the same thing that the Durstenfeld version of the Fisher-Yates

algorithm did when it moved backward throughout the array. The proof is not

given here, but this ensures that each element in the stream has an equal prob-

ability of being in the sample at every point in the analysis.

Biased Streaming Sampling

The basic reservoir algorithm, also known as Algorithm R (the name given in

Knuth’s “The Art of Computer Programming”), ensures a uniform sample from

the beginning of time until the time the stream stops. This is largely due to its

original application, which was to sample from a “stream” in the sense of only

being allowed a single pass over an otherwise fi nite dataset. This makes the

algorithm well suited to providing samples in a batch setting where Map-Reduce

is being used to process a fi nite dataset.

It is less interesting in the streaming sense used by this book, which is more

interested in the dynamics of the sample over time. In fact, as the sample ages,

it is less and less likely that a recent data point will actually be included in the

sample (the probability that a random number between [0,N] is smaller than

n gets smaller as N increases). Instead, it would be preferable if the algorithm

could be biased toward including newer events in preference to older events.

328 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 328

Sliding Window Reservoir Sampling

A simple method for introducing time dynamics into reservoir sampling is to

maintain a sliding window of samples. In this implementation, a number of

reservoir “buckets” are maintained in a linked list:

public class SlidingWindow<E> {
 int n,k,max;
 int last = Integer.MAX_VALUE;

 public SlidingWindow(int n,int k,int max) {
 this.n = n;this.k = k;this.max = max;
 }

This implementation takes three parameters: n is the size of each reservoir

sample; k is the interval between the start of each bucket; and max is the number

of elements that are considered for each of the buckets before it expired. If all of

these parameters are set to the same value then this is not so much a sampler

as it is a method for bucketing the data.

On each insert, several different things may happen. If more than k elements

have been added, a new bucket is created. Then, expired buckets are removed

from the active list and placed on a completed queue for further processing

by another thread. Finally, the element is added to each of the active buckets:

public void add(E object) {
 if(last >= this.k) {
 last = 0;
 live.add(new Reservoir<E>(n));
 }
 while(live.peek() != null && live.peek().total() >= max)
 completed.add(live.poll());
 for(Reservoir<E> e : live) e.add(object);
 last++;
}

With this method, each individual sample only contains a sample from a spe-

cifi c time range. These samples can then be individually processed to produce

estimates that change over time.

Exponentially Biased Sampling

Although sliding windows are easy to implement, they can also use quite a bit

of memory. This is particularly true if the size of the samples and the windows

have a lot of overlap. It also introduces an operation that is linear in the number

of live windows.

 Chapter 9 ■ Statistical Approximation of Streaming Data 329

c09.indd 05:33:12:PM 06/12/2014 Page 329

Another approach is to maintain a single sample that will tend to contain

newer elements by replacing elements in the sample with newer ones accord-

ing to the relative age of the two elements. This section describes one method

that was presented by Charu Aggarwal (“On Biased Reservoir Sampling in the

Presence of Stream Evolution,” VLDB Conference, 2006).

This method begins with the defi nition of a bias rate p, which has the same

functional form as the exponential distribution. The algorithm defi nes a reser-

voir by the inverse of the bias rate:

public class BiasedReservoir<E> {
 MersenneTwister rng = new MersenneTwister();
 ArrayList<E> reservoir = new ArrayList<E>();
 double rate;
 double size,N;

 public BiasedReservoir(double rate) {
 this.rate = rate;
 size = Math.ceil(1.0/rate);
 }

Note that the reservoir is not actually an array as it was in the original for-

mulation. This is because the number of elements in the array will be allowed

to vary somewhat over time. To implement the add() method, fi rst an element

is removed with the probability proportional to how many elements are in the

reservoir versus the size. If the number of elements is equal to the size, then an

element is always removed. The element to be inserted is then added to the array:

public void add(E obj) {
 if(rng.nextDouble() < ((double)reservoir.size())/size) {
 reservoir.remove(rng.nextInt() % reservoir.size());
 }
 reservoir.add(obj);
}

Aggarwal is able to show that this simple algorithm produces exponentially

biased samples with a rate equal to the “size” of the reservoir. The primary

drawback of this technique is that it can take some time to fi ll the reservoir

completely. In most streaming applications, the calculations are very long lived,

so it is not as likely that the initializa tion of the stream is a problem.

Conclusion

This chapter has provided a broad survey of the fi eld of statistics and probability.

Although it is not particularly specifi c to streaming data analysis, it is the key to

analyzing samples from a population. In some ways, any data stream is a sample

330 Part II ■ Analysis and Visualization

c09.indd 05:33:12:PM 06/12/2014 Page 330

from the population of all possible data streams, but even if the data stream is

considered to be the population it can be too large to manipulate directly.

Because the stream may be too big to use directly, this chapter also introduces

a few simple ways of obtaining samples. These samples can either be over a very

large, but fi nite population or from a truly infi nite stream of data. The next chapter

takes a different tack, focusing on methods for summarizing the data stream in a

“lossy” fashion. In statistics, this is known as dimension reduction. After that, the

fi nal chapter applies the techniques from this chapter and Chapter 10 to actually

anal yze the data rather than simply tabulate it.

331

c10.indd 05:33:31:PM 06/12/2014 Page 331

Questions about a set of distinct elements often arise in analytics, streaming or

otherwise. Common questions are things like “Have I seen this before?” (set

membership), “How many different things have I seen?” (cardinality estima-

tion), or “How often do I see this thing?” (frequency).

When the number of different elements is small (low cardinality), this can

be computed directly even in a streaming system. Some of the storage mecha-

nisms introduced in earlier chapters, such as Redis, even have specialized data

structures to allow for maintaining sets and histograms with real-time updates.

However, when the cardinality of the set becomes large (that is, there are

many distinct items) direct maintenance of these sets becomes problematic.

These data structures require O(log n) update time and O(n) storage, which can

be infeasible in a streaming setting and expensive (at the very least) in terms

of hardware costs.

To combat these problems, a number of algorithms, collectively known as

sketch algorithms, have been developed to approximate the answers to these

questions. Sketch algorithms have three features that make them desirable.

The fi rst feature is constant time updates of the data, which allows them to be

easily maintained in a streaming setting. Secondly, the storage space needed is

usually independent of the amount of data. Finally, querying the data structure

can be completed in at worst linear time. The downside is that to achieve these

properties, errors are introduced into the reported results. In this sense, they are

C H A P T E R

10

Approximating Streaming Data

with Sketching

c10.indd 05:33:31:PM 06/12/2014 Page 332

332 Part II ■ Analysis and Visualization

like the sampling approaches discussed in Chapter 9, “Statistical Approximation

of Streaming Data.”

This chapter discusses four sketch algorithms, each with a different focus or

performance characteristics. The Bloom Filter is a general set representation that

can be used to answer questions about set membership and cardinality. It is also

the oldest of the algorithms, and its variations are used in many areas. The two

Distinct Value Sketches—Min-Count and HyperLogLog algorithms—use dif-

ferent approaches to approximate the size of a set, also known as the cardinality.

Finally, the Count-Min sketch approximates a multi-set of the frequencies of the

elements in the set. When the elements of the multi-set are ordered, the multi-

set approximates a histogram.

This chapter starts with a review of the background concepts common to all

the sketch algorithms. In particular, these algorithms make extensive use of hash

functions. These functions are important in many facets of computer science,

but it is their statistical properties that are useful in sketch applications. This

chapter also reviews some aspects of mathematical sets. Most of the algorithms

in this chapter deal with set operations, and there are some important proper-

ties of sets that are exploited to improve the performance of the algorithms.

Registers and Hash Functions

All sketches use the same building blocks to implement their particular approach:

registers and hash functions. This section discusses the properties of these two

building blocks, concentrating on hashes.

Registers

Registers are a straightforward concept. They are simply an array of counters

that store the data for the sketch. Registers in most sketch applications are small

relative to the arrays used in the direct representation. They require only constant

space that does not depend on the number of input elements, typically with

smaller ranges than the original input. This smaller range allows for represent-

ing registers with fewer bits than the original. For example, the basic versions of

the Bloom Filter only sets registers to 1 or 0, so you can use a bit array instead

of a byte array and cut space requirements by eight times.

Hash Functions

Hash functions are functions that take an input and return a value in some fi nite

space of m output values, regardless of the length of the input. For example, a

hash function can take a string, which could theoretically be infi nitely long,

and return, say, a 32-bit integer, giving you 232 possible outputs.

 Chapter 10 ■ Approximating Streaming Data with Sketching 333

c10.indd 05:33:31:PM 06/12/2014 Page 333

Hash functions are widely used in computing, and for decades people have

researched and developed a variety of hash functions. All hash functions are

deterministic: The same input will always result in the same output. They also

try to be uniformly distributed such that random inputs produce a uniform

distribution among the outputs.

For sketch applications, speed is the primary requirement for any hash func-

tion, particularly when used in a streaming setting. This mostly eliminates

cryptographic hash functions such as MD5 and SHA1 from contention. Although

these hashes are very random, they are intentionally designed to be slow to

compute. Despite this fact, cryptographic hashes are often used in real-world

implementations because they are built in to many programming languages’

common libraries.

Rather than use cryptographic hashes, most sketch implementations use a

variety of fast hash functions that better suit their performance needs. These

include the FNV hash, the Jenkins hash, and the MurmurHash. The Fowler,

Noll, and Vo (FNV) hash function was developed in 1991 with variants sup-

porting output spaces of between 32 and 1,024 bits. It has one of the simplest

implementations of any hash functions, relying on two constant values chosen

from a table for the number of bits to be generated. For example, the 64-bit Java

hash is implemented as follows:

static long fnv64(byte[] input) {
 long output = 0xcbf29ce484222325L;
 for(var i=0;i<input.length;i++) {
 output ^= (long)input[i];
 output *= 0x100000001b3L;
 }
 return output;
}

The FNV hash works quite well on fairly small inputs and is quite fast on

Intel hardware, but the other two hash functions—Jenkins and Murmur—are

often reported to have better real-world performance. The MurmurHash seems

to perform well in real-world applications and has 32-, 64-, and 128-bit vari-

ants available. Code for the Murmur hash is not provided here—it involves

large constant arrays that would be meaningless to reproduce—but the code

provided with this book makes use of the Java implementation provided by

the Colt library. The Murmur code is also widely available for other languages

under a variety of licenses.

Independent Hash Functions

Many algorithms call for several independent, or pairwise independent, hash

functions. Creating hash functions with these properties is a well-studied part

c10.indd 05:33:31:PM 06/12/2014 Page 334

334 Part II ■ Analysis and Visualization

of computer science, and it turns out to be a diffi cult thing to do. Instead, most

actual implementations rely on the much more easily generated universal hash
functions. These are hash functions that are simply selected from the same

 family at random.

This happens in one of two ways. The fi rst, and most obvious method, is

when the hash function takes an initial seed value, much like a random number

generator (the hash functions used in this chapter are similar in implementation

to many random number generators). To generate k hash functions, k seeds are

selected uniformly from the possible space of initial values (usually an integer

the same size as produced by the hash function).

The other way these hash functions are generated requires only a single

seed value to initialize the hash function. This is used to generate the fi rst hash

value, which is then used as the initial value to generate the next hash function,

until k hash values are produced. For example, the previously mentioned FNV

implementation can be modifi ed to produce any number of output hash values

for the same input as follows:

public class FNV {
 public static final long INIT = 0xcbf29ce484222325L;
 public static final long PRIME = 0x100000001b3L;

 long hash;
 byte[] input;
 public void set(byte[] input) {
 hash = INIT;
 this.input = input;
 }

 public long next() {
 for(int i=0;i<input.length;i++) {
 hash ^= input[i];
 hash *= PRIME;
 }
 return hash;
 }
}

Double-Hashing

To speed things further, Kirsch and Mitzenmacher showed in 2007 that you

can use a trick called double hashing to generate as many hash functions as

you like using only two rounds of the base hash function. They also showed

that the difference in performance using this method instead of k independent

hash functions was small, making it appropriate for use in real-world settings.

 Chapter 10 ■ Approximating Streaming Data with Sketching 335

c10.indd 05:33:31:PM 06/12/2014 Page 335

Double hashing is normally used to resolve collisions in hash tables and

defi nes a hash function g(x,i) = h1(x) + i*h2(x) + i^2. In this case, h1 and h2 are

two rounds of the earlier original hash function, and i is an integer that ranges

from 0 to k-1. In this case k is the desired number of hash functions. After

computing the fi rst two hash values, it is now very inexpensive to compute any

further required hash values with only two multiplications rather than further

rounds of expensive hash function calculation.

HASH COLLISIONS AND THE BIRTHDAY PARADOX

One of the more famous probability parlor tricks is the so-called Birthday Paradox.

It states that when you get a group of more than 23 people together there will be a

50 percent chance that at least two people share a birthday. By the time you have 60

people, there is a better than 99 percent chance that at least two of them will share a

birthday.

When you think of birthdays as a simple hash function that maps each person into

a number between 1 and 365, then sharing a birthday is basically a hash collision.

Knowing the mathematics behind the paradox is useful for understanding many of

the calculations in the next sections. Also, it’s a nifty trick to use at parties.

To start, assume that birthdays are evenly distributed through the year, just like

hash functions uniformly distribute their values. In reality, birthdays are not quite

evenly distributed throughout the year, and leap years are a problem, but that is a dis-

cussion for a diff erent book.

The easiest way to compute the probability that at least two people share a birth-

day is to compute the probability that nobody in the room shares a birthday. In this

case the fi rst person can choose whatever day she wants so she can have any possible

birthday A. The second person cannot choose the birthday the fi rst person chose, so

he chooses a birthday B from one of the 364 remaining birthdays. The third person

chooses birthday C, and so on up to n people. Writing down the probability is:

P(nobody shares) = (365/365)*(364/365)*…*((365-n-1)/365)

rewritten as,

P(nobody shares) = 365!/365n(365-n)!

Where ! represents the factorial function, the product of all integer values from 1 to

n. So, 5! Is 5×4×3×2×1.

Finally, the probability that at least two people share a birthday is simply

1-P(nobody shares):

1-365!/365n(365-n)!

The fi nal equation contains factorial functions that are expensive to compute.

To make the calculation easier, an approximation is often used. The equation

(365-n-1)/365 can be rewritten as (1 – (n-1)/365) and the fact that ex is approximately 1+x

Continues

c10.indd 05:33:31:PM 06/12/2014 Page 336

336 Part II ■ Analysis and Visualization

when x is much smaller than 1 (via the fi rst order Taylor expansion of ex). Combining

the two you see that e−(n−1/365) is approximately equal to (1-(n-1)/365). You can then

rewrite the probability as:

e-(1+2+…+(n−1)/365)

Knowing that the sum of integers between 1 and n-1 is n×(n-1)/2 further simplifi es

the formula to:

e-n*(n−1)/2*365

If n is large enough, n*(n-1) can be replaced with the further approximation n2

because the relative diff erence between n and n-1 will be very small. Setting this

equation to be 0.5 and solving for n yields the famous result of 23 people needed to

have a better than 50 percent chance of sharing a birthday.

Working with Sets

Sketch algorithms fundamentally deal with sets, particularly approximating

the size of a set, which is called cardinality estimation. This section reviews

some aspects of “naïve set theory” that is useful when using or analyzing the

algorithms discussed in the next several sections.

A set is simply a collection of distinct elements. A set can be empty, which is

called the empty or null set. Uppercase letters such as A or B are usually used

to denote sets. The null symbol (∅) is used to denote the empty set.

N O T E This book uses some basic mathematic terms and formulas. If your math

skills are rusty and you fi nd these concepts a little challenging, a helpful resource is A

First Course in Probability by Sheldon Ross.

Sets can be combined in three basic ways. The union of a set, written A∪B, is

the set that contains all of the elements in A and all of the elements in B. The

intersection of a set, written A∩B, is the set the contains all of the elements in A

that are also elements of B. Finally, the complement of the set, written “A \ B”, is

the set that contains elements of set A that are not in set B.

In Java, the basic union, intersection and complement methods are addAll(),

retainAll(), and removeAll(), respectively. These primitive methods can be

used to implement union and intersection for an arbitrary number of sets as

follows:

public static Set<E> union(Set<E>...sets) {
 Set<E> union = new Set<E>();
 for(Set<E> s : sets) union.addAll(s);

continued

 Chapter 10 ■ Approximating Streaming Data with Sketching 337

c10.indd 05:33:31:PM 06/12/2014 Page 337

 return union;
}

public static Set<E> intersection(Set<E>...sets) {
 Set<E> intersection = new Set<E>();
 intersection.addAll(sets[0]);
 for(int i=1;i<sets.length;i++)
 intersection.retainAll(sets[i]);
 return intersection;
}

The number of elements in a set is called the cardinality of the set. It is denoted

by enclosing the set in | symbols. For example, the cardinality of the set A is

written as |A|. In Java, the size() method returns the basic set cardinality.

Computing the cardinality of the set union or intersection is somewhat more

interesting. In most of the algorithms given later in this chapter, computing the

union of two or more sets is trivial, whereas computing the intersection of two

or more sets is diffi cult (if it is possible at all). The intuition for this behavior is

that all of the following algorithms support adding new elements to a set. This

is equivalent to computing the union of the original set and the set containing

only the new element to be added. However, most of the algorithms do not sup-

port removing the elements from the set, which would be required to compute

the intersection. Additionally, many of the algorithms support computing the

cardinality of the union without having to explicitly compute a representation

of the union, making the calculation fairly inexpensive.

To compute the cardinality of an intersection of sets requires taking advantage

of the inclusion-exclusion principle. The simplest form of this principle relates

the cardinality of the union of two sets with the cardinality of the intersection:

|A∪B| = |A| + |B| - |A∩B|

Essentially, this relationship says that if the cardinality of A and the cardinal-

ity of B are added, the elements in the intersection have been double counted.

To correct for this, subtract the cardinality of the intersection. Rearranging this

equation gives a formula for the size of an intersection:

|A∩B| = |A| + |B| - |A∪B|

The same can be done for the intersection of three sets using the same principle:

|A∩B∩C| = |A∪B∪C| - |A| - |B| - |C| +

|A∩B| + |A∩C| + |B∩C|

Substituting from the fi rst equation to eliminate the other intersections yields

a fi nal equation:

|A∩B∩C| = |A∪B∪C| + |A| + |B| + |C| -

|A∪B| - |A∪C| - |B∪C|

c10.indd 05:33:31:PM 06/12/2014 Page 338

338 Part II ■ Analysis and Visualization

This can be further generalized to provide an expression for the cardinality

of the union of any number of sets: Add the cardinality of all the sets. Subtract

the cardinality of the intersection of each pair of sets. Add the cardinality of the

intersection to each combination of three sets. Subtract the cardinality of the

intersections of each combination of four sets, and so on.

Although this allows for the approximation of arbitrarily large intersections

of sets, it has two drawbacks:

 ■ The total number of operations required grows large very quickly.

 ■ The Bloom Filter and Distinct Value sketch algorithms presented in this

chapter each have errors associated with them, and the errors accumulate

with each addition or subtraction. Even the intersection of two sets will

have an estimation error three times larger than the error in the estimated

size of any one set or any union of sets.

The Bloom Filter

Bloom fi lters are a data structure used by a variety of applications to store set

membership information. This data structure is compact and does not depend

on the number of items to be stored in the set. The tradeoff is that the Bloom

Filter may incorrectly report that an item is in the set when it is not—a false

positive. It will never report a false negative. It is this false positive rate that is

controlled by the size of the data structure.

The Algorithm

The Bloom Filter approximately represents a set using an array of m 1-bit reg-

isters and k independent hash functions. In Java, a BitSet and k MurmurHash

functions, each seeded with independent random values, can be used to imple-

ment the java.util.Set<E> interface:

public class BloomSet<E extends Serializable> implements Set<E> {

 BitSet bits;
 int m;
 SerializableHasher[] hashes;
 ObjectOutputStream[] outputs;

 protected void initialize(int m,int[] seeds) throws IOException {
 this.m = m;
 bits = new BitSet(m);
 hashes = new SerializableHasher[seeds.length];
 outputs= new ObjectOutputStream[seeds.length];
 for(int i=0;i<seeds.length;i++) {
 hashes[i] = (new SerializableHasher()).seed(seeds[i]);

 Chapter 10 ■ Approximating Streaming Data with Sketching 339

c10.indd 05:33:31:PM 06/12/2014 Page 339

 outputs[i] = new ObjectOutputStream(hashes[i]);
 }
 bits.clear();
 }

 public BloomSet(int m,int[] seeds) throws IOException {
 initialize(m,seeds);
 }

The SerializableHasher and ObjectOutputStream arrays implement the

32-bit MurmurHash using Java’s serialization mechanism to make it possible

to use this class for any object that implements Serializable.

In practice, it is common to also implement specialized sets for storing things

like String or Long values. These data types are very common in streaming

analysis, so having a specialized class can result in a large performance improve-

ment. In fact, the MurmurHash implementation used in the sample code provided

with this book has specialized versions of the hash optimized for these use cases.

Adding a new element to the set is easy. First, each hash function is used to

generate k different hash values. These hash values are mapped into the array

of m registers using the modulus operator. The bit at that position in the register

array is then set to 1. A Java implementation is as follows:

public boolean add(E arg0) {
 if(!contains(arg0)) {
 for(int i=0;i<outputs.length;i++) {
 hashes[i].reset();
 try {
 outputs[i].writeObject(arg0);
 outputs[i].flush();
 bits.set(hashes[i].hash() % m);
 } catch(IOException e) { }
 }
 return true;
 }
 return false;
}

Part of the preceding implementation includes a check for the element using

contains so that the method correctly returns whether this is considered to

be a new element. An element can only be considered to be in the set if all the

registers indicated by the k hash functions are set to 1. You can easily check this

with the following implementation:

public boolean contains(Object arg0) {
 for(int i=0;i<outputs.length;i++) {
 try {
 hashes[i].reset();
 outputs[i].writeObject(arg0);

c10.indd 05:33:31:PM 06/12/2014 Page 340

340 Part II ■ Analysis and Visualization

 outputs[i].flush();
 if(!bits.get(hashes[i].hash() % m)) return false;
 } catch(IOException e) { }
 }
 return true;
}

It is easy to see how this implementation can lead to false positives. As more

and more elements are added to the set, it is more and more likely that at least

one of the elements will map to each of the registers of this new item to enter

into the set. When that happens, the implementation of contains()returns true

for the item even when it hasn’t been entered.

FILTERING DUPLICATE EVENTS IN ONLINE ADVERTISING

In online advertising, it is a fairly common practice to assign a unique identifi er to

each viewing of an ad. This unique identifi er is used to identify situations where an ad

view or click may register more than once in the system. The reasons that this happens

range from the mundane case where a user habitually double-clicks links to malicious

“bots” that attempt to generate revenue by placing ads on fraudulent sites.

The advertising industry is generally conservative when it comes to validated page

views (also known as impressions) and clicks, so it is generally preferable to err on the

side of caution and throw away a small percentage of valid events if it means cleaning

out more of the invalid events. The industry has also taken a general turn toward so-

called “programmatic buying,” where ads are traded across the Internet in exchanges

similar to a real-world commodity exchange. This happens via a bidding mechanism

that typically completes in less than 100 milliseconds.

With a large number of unique identifi ers and the need to maintain near real-time

counts of impressions and clicks to allow for optimal bidding, fi ltering these duplicate

events is a perfect application of data structures like the Bloom Filter.

An initial approach might be to maintain a Bloom Filter for views and another fi lter

for clicks. However, views happen 100 percent of the time, whereas clicks occur per-

haps 1 percent to 5 percent of the time. For the purposes of accounting, it is still desir-

able to fi lter impressions, but this can likely be done offl ine. Clicks, on the other hand,

are used to determine bids, so you can maintain a single Bloom Filter to fi lter out

duplicate clicks that would artifi cially infl ate the apparent quality of an ad placement.

Choosing a Filter Size

The likelihood that the scenario mentioned at the end of the last section occurs

is clearly a function of three parameters: the number of elements inserted into

the set (n), the size of the bit set itself (m), and the number of hash functions

used to set bits (k). The algorithm’s user selects the latter two parameters, and

the former can typically be estimated. This section discusses the selection of

these two parameters and their effect on the false positive rate.

 Chapter 10 ■ Approximating Streaming Data with Sketching 341

c10.indd 05:33:31:PM 06/12/2014 Page 341

From before, to correctly identify an element as not being in the set, at least

one of the bits identifi ed by the k hash functions must be zero. If the hash func-

tions are independent and uniformly distributed, the probability p that a bit

will still be zero after n elements have been inserted into the fi lter is p=(1-1/m)kn.

This equation is approximated by p=e-kn/m. The probability of a false positive

is approximately (1-p)k, the chance that all k registers being checked will be set.

This yields a fi nal equation of (1-e-kn/m)k.

The goal is to make p as small as possible, which happens when

k = (m/n)× ln 2. The number of hashes to use then depends on the size of the

fi lter and an idea of how many items will be entered into the Bloom Filter.

Substituting this into the equation above yields:

P = (1-e-ln 2/n)(m/n)*ln 2

Solving for m yields the equation:

m = -n×(ln p)/(ln 2)2

Setting n to 1, the number of bits required to store a single value is given as

approximately 2.08*ln(1/p) or 1.44*log2(1/p). From this approximation, a false

positive rate of 5 percent requires 6.22 bits of storage per element to be entered

into the set. Halving that rate only increases the storage per element to 7.7 bits

and a false positive rate of 1 percent only requires 9.6 bits per storage.

Of course, register arrays must be allocated in a round number of bits. So,

rather than specify the error rate, it is also common to specify a number of bits-

per-element c, and then compute the size of the bit array as well as the number

of hash functions from that. The total size of the array given a target number

of elements is m = cn. The number of hash functions to use is k = c × ln 2. The

expected false positive rate can be quickly approximated as p = 0.6185c. For

example, 8 bits per element yields k = 6 and an approximate false positive rate

of 2.14 percent.

This may not seem like much improvement, but in real-world applications

it can be enormous. For example, domain names can be at most 63 characters

long with 3 characters as the practical minimum length. Anecdotal evidence

suggests that domain names have a median length of about 10 characters. An

application that needs to track a million domain names would need somewhere

around 10MB of storage. A Bloom Filter to track those same million domains

with an error smaller than 2.5 percent would require less than 1MB.

Unions and Intersections

Bloom Filters have the nice property that, if they have been constructed using

the same hash functions, it is possible to construct unions and intersections of

the two fi lters using bitwise OR and bitwise AND operators respectively.

c10.indd 05:33:31:PM 06/12/2014 Page 342

342 Part II ■ Analysis and Visualization

In the case of the union, this operation is exactly equivalent to constructing

the set directly with the same false positive rates as if the fi lter had been con-

structed directly from the union of the original sets. This is not surprising since

the jth operation is essentially the union of a Bloom Filter containing a single

element with the existing Bloom Filter containing the previous j-1 inserts. This

is convenient as it allows fi lters to be constructed in a distributed fashion and

later combined through the exchange of the much smaller fi lters.

The intersection of two Bloom Filters presents a more complicated scenario.

In this case, the intersection of the two fi lters will have a false positive rate that

is at most the largest of the false positive probabilities of the original Bloom

Filters, which may be larger than the false positive probability of the intersec-

tion had it been constructed directly from the intersection of the original sets.

Cardinality Estimation

Although there are more effi cient methods of maintaining an estimate of a set’s

cardinality, the Bloom Filter can also approximate cardinality.

The basic trick is to go back to the probability that a particular bit is set to 1.

When choosing an optimal fi lter size and number of hash functions, the prob-

ability that a bit was set was p = 1-e-kn/m.

Assuming that the probability of each bit being set to 1 is independent, the

register array can be considered m independent, identically distributed Bernoulli

trials. This is the same as fl ipping a coin m times and counting how many coins

come up heads.

After inserting n elements, the probability of a 1 can be estimated by the

number of 1 bits x divided by the total number of bits m. Plugging x/m into the

equation and solving for n yields:

N = -m×log(1-x/m)/k

A slightly better estimate can be obtained by not using the approximation from

the earlier analysis. This yields a somewhat more complicated expression for n:

N = log(1-x/m)/(k× log(1-1/m))

However, practically speaking, the difference between -m/k and

1/k× log(1-1/m) is going to be quite small.

The naïve implementation of the size() method of the Bloom Filter Set simply

uses BitSet’s native cardinality() method:

public int size() {
 int X = bits.cardinality();
 return (int) (Math.log(1 - (double)X/
 (double)bits.length())/
 (Math.log(1.0 - 1.0/
 (double)bits.length())*(double)hashes.length));
}

 Chapter 10 ■ Approximating Streaming Data with Sketching 343

c10.indd 05:33:31:PM 06/12/2014 Page 343

The implementation of cardinality() typically uses parallel counting tricks

to improve performance, but it will still operate in O(m) time. If this method is

going to be called many times, better performance is achieved by integrating

the computation of X into the add() method as follows:

public boolean add(E arg0) {
 if(!contains(arg0)) {
 for(int i=0;i<outputs.length;i++) {
 hashes[i].reset();
 try {
 outputs[i].writeObject(arg0);
 outputs[i].flush();
 int h = hashes[i].hash() % m;
 X += bits.get(h) ? 0 : 1;
 bits.set(h);
 } catch(IOException e) { }
 }
 return true;
 }
 return false;
}

The reset() method is also modifi ed to set X back to zero when the fi lter is

reset.

REALTIME IDENTIFICATION OF FRAUDULENT WEBSITES

One way a fraudulent website generates traffi c is by employing a so-called “bot net-

work” to generate large amounts of essentially fake traffi c for their website. This type

of traffi c can actually be quite diffi cult to detect because most of the devices in the

network are legitimate computers on the Internet that have the misfortune of being

infected with malware. In fact, under normal circumstances the legitimate user of the

device is simply using the device in a normal and nonfraudulent way, and it is only

when the network is activated that the traffi c can be identifi ed as fraudulent.

To combat this problem, you want to blacklist certain websites in real-time when

they exhibit behavior consistent with the application of a botnet to their website to

generate revenue.

To do this you fi rst generate a base profi le of botnet traffi c by taking the patterns

of IP addresses of visiting sites that you have previously identifi ed as being fraudu-

lent through manual investigation or through one of the industry sources devoted to

maintaining this data.

Next you need a distance metric that allows you to compare two IP address profi les.

One such metric could be the Jaccard Index, which is defi ned as the size of the inter-

section of the two sets being compared divided by the size of the union of the two

sets being compared.

Continues

c10.indd 05:33:31:PM 06/12/2014 Page 344

344 Part II ■ Analysis and Visualization

If you maintain your website profi les as Bloom Filters along with a Bloom Filter rep-

resenting your botnet profi le then you can estimate the cardinality of the union of the

two fi lters quite easily using the equation just derived for cardinality applied to the

union of the two sets. In fact, since you only need the count of bits set to 1, you do not

actually need to compute the Bloom Filter of the union—simply count the bits that are

set in one or the other.

To compute the cardinality of the intersection, you can take advantage of a prop-

erty of set cardinality: |A∪B| + |A∩B| = |A| + |B|. With a little rearrangement, the car-

dinality of the intersection is simply |A|+|B|-|A∩B|. Now we can estimate the Jaccard

Similarity of any website’s traffi c pattern to the botnet profi le. You can immediately

blacklist or fl ag for investigation those websites that are too similar.

Interesting Variations

The Bloom Filter has been around a long time and this has led to a number of

variants of the original algorithm. This section covers two of the more interest-

ing variations. In particular, these two variations address issues that tend to

arise in streaming situations. In these cases, the basic Bloom Filter is likely to

become saturated over time, making it somewhat useless.

Counting Bloom Filters

One of the more useful variants is the Counting Bloom Filter. This variant was

introduced to overcome the fact that elements cannot be removed from the basic

Bloom Filter implementation.

In this variant, the hashing part of the algorithm is identical to the original

algorithm. It also has the same criteria for selecting the number of registers and

the number of hash functions.

However, the registers in this variant are no longer single bits but counters.

The number of bits assigned to each counter is quite small; 4 bits have been

shown to be adequate for most applications.

To add an element, the counter is simply incremented rather than setting the

bit to 1. To remove an element, the counter for each of the k hash functions is

decremented unless the counter has reached its maximum value. In this case,

the counter is considered to have overfl owed and left permanently at its maxi-

mum value.

Allocating a generous 8 bits to each counter, the add(E arg0) method only

needs a simple change to increment the counter when it has not yet overfl owed:

public boolean add(E arg0) {
 boolean added = false;

continued

 Chapter 10 ■ Approximating Streaming Data with Sketching 345

c10.indd 05:33:31:PM 06/12/2014 Page 345

 for(int i=0;i<outputs.length;i++) {
 hashes[i].reset();
 try {
 outputs[i].writeObject(arg0);
 outputs[i].flush();
 int j = hashes[i].hash() % m;
 if(counters[j] < Byte.MAX_VALUE)
 counters[j]++;
 if(counters[j] == 1) added = true;

 } catch(IOException e) { }
 }
 return added;
}

The remove(E arg0) method is also easily implemented, taking into account

the fact that the counter has overfl owed:

public boolean remove(E arg0) {
 boolean removed = false;
 for(int i=0;i<outputs.length;i++) {
 hashes[i].reset();
 try {
 outputs[i].writeObject(arg0);
 outputs[i].flush();
 int j = hashes[i].hash() % m;
 if(counters[j] > 0 && counters[j] < Byte.MAX_VALUE)
 counters[j]--;
 if(counters[j] == 0) removed = true;
 } catch(IOException e) { }
 }
 return removed;
}

Implementing the test for set membership is then as simple as making sure all

the counters are positive—the same as the original Bloom Filter implementation:

public boolean contains(Object arg0) {
 for(int i=0;i<outputs.length;i++) {
 try {
 hashes[i].reset();
 outputs[i].writeObject(arg0);
 outputs[i].flush();
 if(counters[hashes[i].hash() % m] == 0) return false;
 } catch(IOException e) { }
 }

c10.indd 05:33:31:PM 06/12/2014 Page 346

346 Part II ■ Analysis and Visualization

 return true;
}

Finally, the cardinality calculation merely checks to see whether the counter

is positive:

public int size() {
 double X = 0.0;
 for(int x : counters) if(x > 0) X += 1.0;
 return (int) (Math.log(1 - (double)X
 /(double)counters.length)
 /(Math.log(1.0 - 1.0
 /(double)counters.length)*(double)hashes.length));
}

Stable Bloom Filters

The Stable Bloom Filter addresses the deletion of elements from the Bloom Filter

in the context of a time series. As mentioned briefl y, if a Bloom Filter is allowed

to simply acquire elements from a stream of data, it is possible that the Bloom

Filter will simply saturate and report true for all set membership queries as

well as report a maximum set cardinality.

The Stable Bloom Filter overcomes this by introducing the notion of aging

into the fi lter itself. The basic structure of the fi lter uses counters as with the

Counting Bloom Filter. To simplify things, the implementation of the Stable Bloom

Filter extends the Counting Bloom Filter with two extra parameters d and C.

These two parameters defi ne the number of counters to decrement before each

addition and the maximum value of each counter, respectively. This is used to

“age” the fi lter by ensuring that values that are not incremented will eventually

return to zero, as in the code example below:

public class StableBloomSet<E extends Serializable>
 extends CountingBloomSet<E> {

 int d = 0;
 byte C = Byte.MAX_VALUE;

 public StableBloomSet(int d,byte C,int m, int[] seeds)
 throws IOException {
 super(m,seeds);
 this.d = d;
 this.C = C;
 }

In the theoretical analysis of the algorithm, the d counters are chosen at ran-

dom to be decremented. However, this is quite slow and the only requirement

 Chapter 10 ■ Approximating Streaming Data with Sketching 347

c10.indd 05:33:31:PM 06/12/2014 Page 347

from the analysis is that each counter has a d/m chance of being decremented

at each round. Therefore, the authors choose a single point k at random and

then decrement the subsequent d-1 counters, as shown in the following code:

private final MersenneTwister random = new MersenneTwister();
public void decrement() {
 int k = random.nextInt();
 for(int i=0;i<d;i++)
 if(counters[(k+i) % m] > 0) counters[(k+i) % m]--;
}

The update step fi rst calls this decrement function to “age” the fi lter. It then

updates the fi lter with the new element by setting the appropriate counts to

their maximum values rather than simply incrementing them:

 public boolean add(E arg0) {
 decrement();
 for(int i=0;i<outputs.length;i++) {
 hashes[i].reset();
 try {
 outputs[i].writeObject(arg0);
 outputs[i].flush();
 int j = hashes[i].hash() % m;
 counters[j] = C;
 } catch(IOException e) {
 }
 }
 return true;
 }

The calculation of set membership and estimates of the size of the fi lter remain

the same.

The downside of this approach is that it introduces the ability to produce

false negatives. To minimize the probability of a false negative in practice, the

authors of the original paper conducted a number of empirical experiments

using different values of d and C. The general rule of thumb is to keep C as small

as possible, because the larger C gets the larger d needs to be. This introduces

more steps in each update and slows the overall algorithm. After a size for the

counters has been established, the number of elements to decrement is set via

empirical testing of the sketch.

Distinct Value Sketches

The Bloom Filter is a fairly fl exible algorithm for approximating set membership

and cardinality. To only approximate the cardinality of the set it is possible to

improve the Bloom Filter’s error while decreasing memory requirements using

c10.indd 05:33:31:PM 06/12/2014 Page 348

348 Part II ■ Analysis and Visualization

a specifi c Distinct Value (DV) Sketch. A variety of DV sketch algorithms have

been developed over the years. The various approaches usually take on one of

two different fl avors, and this section discusses one of each type.

The Min-Count Algorithm

The fi rst type category, represented by the Min-Count algorithm (Frédéric Giroire,

“Order Statistics and Estimating Cardinalities of massive Data Sets,” Discrete

Applied Mathematics, 2009, Vol 157 Issue 2 (January), 406-427), relies on the

distribution of order statistics. To understand how this works, recall the earlier

discussion of hash functions. A good hash function takes an input value and

maps it into a space of 2p values such that the distribution of values is uniform

in [0,2p-1].

This uniform distribution gives the probability that an input will hash to a

value smaller than x as x/2p. Assuming n unique hash values S1,..,Sn have been

observed, take X to be the smallest of these values. The probability that X is at

least as small as some value x is 1 minus the probability that all the values of S

are larger than x:

P(X <= x) = 1 – ((1-P(S1 < x)) *(1-P(S2 < x))*…*(1-P(Sn < x))

Because the distributions of all the S values are the same, this simplifi es to:

P(X<=x) = 1-(1-P(S¬I<x))n

Using this to compute the expected value of X in terms of n yields:

E[X] = 2p/(n+1)

If M is then the observed minimum after inserting n elements, the Delta

Method from Chapter 9 allows for the calculation of E[1/X] as approximately

equal to 1/E[X]. Solving for n in terms of M yields:

n = 2p/M – 1 ~ 2p/M

This approximation is easy to calculate, but has an obvious problem that M

can be 0 where the Delta Method calculation is not defi ned. Additionally, the

variance of such approximations is often higher than desired. To get around

these problems, Min-Count introduces two techniques to improve the error of

the approximation as well as deal with the fact that the approximation blows

up when M gets very small.

Taking the second problem fi rst, the algorithm deals with the problem in

a very simple way. Instead of simply recording the minimum, the algorithm

keeps track of the k smallest values and then performs its computations on the

kth smallest value, which does have a defi ned expectation. This requires k more

storage than the minimum, but k is usually a relatively small number. In fact,

the simple version of the algorithm works best when k = 3.

To improve the error, one approach would be to use the same approach

employed by the Bloom Filter, introducing m different hash functions to produce

 Chapter 10 ■ Approximating Streaming Data with Sketching 349

c10.indd 05:33:31:PM 06/12/2014 Page 349

m independent streams of data. Taking the arithmetic mean of these m indepen-

dent streams yields the same expectation as a single stream, but with a standard

deviation proportional to 1 m/ thereby improving the standard error. Using m

independent hash functions is computationally expensive, so Min-Count uses

a technique called stochastic averaging, which was introduced by Flajolet in 1985

to simulate independent streams.

To simulate independent random streams, the fi rst b bits of the hash value are

used to defi ne 2b registers where b is typically smaller than half the number of

bits used in the hash function. If each register that stores the three smallest is

normalized to be a number in [0,1] the cardinality estimate becomes:

N = 2*(1/M1)+(1/M2)+…+(1/Mm)

with a standard error of 1 m/ . To use a concrete example, a 32-bit hash func-

tion with 65,536 registers would require 384k of storage. By contrast, a sampling

approach using the same 32-bit hash to reduce the storage requirements would

be able to store about 98,000 values in the same amount of space, which may

not be suffi cient if some of the distinct values are quite rare and the data stream

very large.

Implementing Min-Count

Like the Bloom Filter implementation, the Min-Count implementation uses the

standard Java Set interface and works on serializable elements. This implemen-

tation also uses the third smallest value to avoid the issues mentioned in the

previous section. Using a parameter b to defi ne the number of bits to use and

defi ning 2b registers, the class is initialized as follows:

public class MinCount<E extends Serializable> implements Set<E> {

 int b;
int[] M;
SerializableHasher hash = new SerializableHasher();
ObjectOutputStream out;

public MinCount(int b) throws IOException {
this.b = b;
int m = (int) Math.pow(2, b);
this.M = new int[3*m];
out = new ObjectOutputStream(hash);
reset();
 }

Implementing the add() method is straightforward. Simply hash the input

value and then update the three smallest values:

public boolean add(E arg0) {
 try {

c10.indd 05:33:31:PM 06/12/2014 Page 350

350 Part II ■ Analysis and Visualization

hash.reset();
out.writeObject(arg0);
out.flush();
int h = hash.hash();

int m = (h >>> (32-b));
int v = (h << b) >>> b;

if(M[m] > v) {
M[m+2] = M[m+1];
M[m] = v;
} else if(M[m+1] > v) {
M[m+2] = M[m+1];
M[m+1] = v;
} else if(M[m+2] > v) {
M[m+2] = v;
}
return true;
} catch(IOException e) {
return false;
}
}

The only thing that remains is to implement the size() method to produce

a cardinality estimate:

public int size() {
 double range = Math.pow(2,32-b);
 double estimate = 0.0;
 for(int i=0;i<M.length/3;i+=3)
 estimate += range/(double)M[i+2];
 return (int)(2.0*estimate);
}

Computing Set Similarity

Min-Count sketches can also be used to compute the approximate similarity

between two sets using a technique called Min-wise Hashing. The basic idea is to

fi nd an approximation to the Jaccard Similarity metric used in the “Real-Time

Identifi cation of Fraudulent Websites” sidebar earlier in the chapter.

The key observation is that the probability that the minimum of the hash of

one set is equal to the minimum of the hash of another set is the ratio of the size

of the intersection of the set over the size of the union of the set. This is exactly

the Jaccard Similarity metric from the “Real-Time Identifi cation of Fraudulent

Websites” sidebar.

Like most sketches, the approximation using only a single hash function is a

very rough approximation. The original variant of the algorithm used multiple

 Chapter 10 ■ Approximating Streaming Data with Sketching 351

c10.indd 05:33:31:PM 06/12/2014 Page 351

hash functions to overcome this limitation, much like the Bloom Filter. Of

course, this is a very expensive operation, requiring at least 400 hash functions

to achieve an error of 5 percent. Later variations use a single hash function

and then subsample the hashes into various streams, just like the Min-Count

sketch. In either case, the Jaccard Similarity is then the proportion of matching

registers between two sets that have been hashed using the same mechanism:

public double distance(MinCount other) {
 double x = 0.0;
 for(int i=0;i<M.length;i++) {
 if(other.M[i] == M[i]) x += 1.0;
 }
 return x/(double)M.length;
}

The HyperLogLog Algorithm

The HyperLogLog, introduced by Flajolet (of stochastic averaging fame in the “The

Min-Count Algorithm” section) in 2007 is the latest in a long line of algorithms

including LogLog and SuperLogLog. These algorithms all use the expected

distribution of bit patterns to estimate cardinality rather than the order statistics

of Min-Count and related algorithms. In the case of HyperLogLog, the largest

run of leading zeros in the hashed value is recorded in the register rather than

the smallest or largest value.

To understand how this works, recall that the hash function is supposedly

uniformly distributed. This should mean that each bit of a k bit hash value is

the same as the fl ip of a fair coin. From this, the probability that the fi rst bit is

a 1 is 50 percent. In other words, if two distinct hash values are observed, it

is expected that one of them will start with a 1. The same logic can be applied to

other patterns of leading zeros. A hash value starting with 01 has a probability

of 25 percent, so it is expected to be observed once in four distinct hash values.

In general, a hash pattern with r leading zeros has a probability p = 21-r2-1 = 2-r

and an expected rate of observing once in 1/p = 2r distinct values.

Like the Min-Count algorithm, HyperLogLog makes use of stochastic averaging

to improve the performance. The stream is once again divided into 2b streams,

where b is between 4 and 16. Each register then holds the highest position of

the fi rst 1 and provides a rate of 2M[i] for each stream. Because these are rates,

the algorithm computes a normalized harmonic mean, which is useful when

computing an average rate:

N = a(b)×m2/(2-M[1]+2-M[2]+…+2-M[m])

The function a(b) in this case is an adjustment factor that Flajolet uses to

correct for the bias in the estimate. This function is an integral, but there are

c10.indd 05:33:31:PM 06/12/2014 Page 352

352 Part II ■ Analysis and Visualization

simple formulas given for the valid range of b. When b is 4,5,6, the function

a(b) is considered to be constant with values 0.673, 0.697, and 0.709, respectively.

When b is between 7 and 16, a(b) = 0.7213/(1+1.079/2b).

Although this estimator works well when the cardinality is in an “intermediate”

range, there are further corrections to be performed when the cardinality is

very small or large.

When the raw estimate is smaller than 5×m/2 there are likely to be registers

that have not been used. Using V as the count of unused registers, if V is greater

than 0 then N is better estimated by:

N* = m×log(m/V)

This is actually very similar to the result obtained by a different algorithm

called Linear Counting.

Similarly, when the cardinality gets very high, the introduction of hash col-

lisions will begin to undercount the number of distinct items. A correction

for this is introduced when the raw estimate exceeds 232/30 (cardinalities of

roughly 143 million):

N* = -232×log(1-N/232)

Using these corrections, the relative error of the cardinality estimates is

approximately 1.04√(m).

Implementing HyperLogLog

The immediately obvious benefi t of using HyperLogLog compared to Min-Count

is that the storage space required for the registers is much smaller. Rather than

having to store the smallest hash value, the algorithm only needs to store the

largest number of leading zeros. For a 32-bit hash function, that number can

only be as large as 32 and only requires 5 bits to store rather than Min-Count’s

32 bits for the same size hash function. That works out to 85 percent storage right

off the bat. Of course, it is usually easier to just allocate 8 bits to each register,

which only uses 75 percent less storage.

The algorithm is well defi ned when between 24 and 216 registers are used, so

this is enforced when creating the object:

int m;

public HyperLogLog(int b) throws IOException {
 output = new ObjectOutputStream(hash);
 this.b = b;
 if(b < 4) b = 4; else if(b > 16) b = 16;
 m = 1 << b;
 M = new byte[m];
 for(int i=0;i<m;i++) M[i] = 0;

 Chapter 10 ■ Approximating Streaming Data with Sketching 353

c10.indd 05:33:31:PM 06/12/2014 Page 353

 V = M.length;

 switch(b) {
 case 4: alpha = 0.673*m*m;break;
 case 5: alpha = 0.697*m*m;break;
 case 6: alpha = 0.709*m*m;break;
 default: alpha = (0.7212/(1+1.079/m))*m*m;
 }
}

Note that some of the constants used in the cardinality computation are

precomputed here to save later processing.

Next comes the add(E arg0) method. Because it is expected that the size of

the set will be requested frequently, this implementation maintains the sum

of registers directly. This removes the O(m) computation from the cardinality

estimate. For the same reason it also maintains the count of empty registers for

use with the small cardinality correction. This gives a slightly more complicated

implementation and Min-Count:

public boolean add(E e) {
 try {
 hash.reset();
 output.writeObject(e);
 int x = hash.hash();
 int j = x >>> (Integer.MAX_VALUE - b);
 x = (x << b)|(1 << (b-1)) + 1;
 int r = Integer.numberOfLeadingZeros(x)+1;

 if(M[j] == 0) {
 V--;
 M[j] = (byte)r;
 return true;
 } else if(r > M[j]) {
 Z -= Math.pow(2, -M[j]);
 Z += Math.pow(2, -r);
 M[j] = (byte)r;
 return true;
 }
 return false;
 } catch(IOException ex) {
 return false;
 }
}

Finally, the implementation of the size() method uses the baseline value Z

(what Flajolet calls the indicator function) to produce a corrected estimate of

the cardinality:

public int size() {
 double N = alpha/Z;
 if(N <= 5.0*m/2.0 && V > 0) {

c10.indd 05:33:31:PM 06/12/2014 Page 354

354 Part II ■ Analysis and Visualization

 return (int) (m*Math.log((double)m/(double)V));
 } else if(N > Math.pow(2, 32)/30.0){
 return (int) (-Math.pow(2, 32)
 *Math.log(1.0 - N/Math.pow(2, 32)));
 } else
return (int)N;
}

Improvements to the HyperLogLog Algorithm

The HyperLogLog algorithm was originally designed for scenarios where the

expected cardinality of the set to be measured is on the order of a billion. With

this approximate cardinality in mind, HyperLogLog’s creators introduced a

correction to the raw estimate, N, in the implementation of the size calculation

that is used as the raw estimate gets large. This correction comes into play to

account for the increasing probability of hash collisions and fi xes estimates for

cardinalities in excess of 140 million or so.

For most users, this range of cardinality is more than suffi cient. Applications

operating on the scale of a single website will see cardinalities on the order of

millions. Applications that deal with multiple websites, such as online adver-

tising, can see cardinalities on the order of 100 million and perhaps 1 billion

at the extremes.

Google, on the other hand, routinely deals with cardinalities well in excess

of 1 billion. To deal with this, Google has introduced a number of modifi cations

to HyperLogLog it calls HyperLogLog++ and presented in a paper in early 2013

(the paper also mentions that Google had previously been a heavy user of the

Min-Count algorithm).

To use HyperLogLog with very large cardinalities, Google swaps the 32-bit

hash function for a 64-bit hash function. It uses a proprietary hash function

known only to Google, but there are 64-bit variants of the MurmurHash func-

tion used in this implementation.

This change has two effects. First, more space is required to minimally store

the registers since 6 bits will be required instead of the original 5. The imple-

mentation presented in the previous section is sub-optimal and uses 8 bits to

represent the counter so the changes have no effect.

Second, the probability of hash collisions is much smaller than the original

32-bit hash function so the large range correction is no longer needed for practical

cardinalities. If the cardinalities were to approach these levels, the authors sug-

gest that better results are likely to be had by simply making the hash function

larger. Doubling the size of the hash function only increases the storage space

by 1 bit. The implementation given could use 256-bit hash functions without

requiring any extra storage.

This still leaves the small cardinality corrections, which actually use an entirely

different algorithm! To improve the bias when the cardinality is small, Google

 Chapter 10 ■ Approximating Streaming Data with Sketching 355

c10.indd 05:33:31:PM 06/12/2014 Page 355

conducted an extensive empirical investigation for known cardinalities. This

resulted in a set of interpolation points that can be used when cardinalities are

small. The size() method then becomes:

public int size () {
 double N = alpha/Z;
if(N < 5.0*m) N -= estimateBias(N);
double H = (V > 0) ?
-Math.pow(2, 32)*Math.log(1.0 - N/Math.pow(2, 32)) : N;
 return (int)(H < threshold(b) ? H : N);
}

The two functions threshold() and estimateBias() are empirically deter-

mined by Google and available at http://goo.gl/iU8Ig.

REALTIME UNIQUE VISITOR PIVOT TABLES

In Chapter 6, “Storing Streaming Data,” a compressed bitmap was used to effi ciently

store the data to create pivot tables for the population of page views, clicks, and so

on for a website. This is somewhat interesting, but it is often more interesting to talk

about the audience of a website rather than its page views.

With compressed bitmaps, tracking unique users wasn’t possible because adding

new things is an append-only operation. Because of this, a monotonically increasing

counter is required. In the original example, the order of arrival was chosen as this

counter. In contrast, the unique visitors over some time period do not appear in any

particular order and will likely even appear multiple times over that time period.

Instead, HyperLogLog sketches can be used in place of the compressed bitmap and

the inclusion-exclusion principle used to estimate the intersections required by the

pivot table. To begin, recall the input data for a page view on the website:

timestamp,user id,feature1:value,feature2:value,...,featureN:value

Each input record contains a user ID, which will be used as the element to enter into

the HyperLogLog sketch. It also includes some number of feature elements that defi ne

demographic information about the user or other information about the page they

are visiting (for example, the site section or the product page).

Essentially, HyperLogLog sketches for each of the feature:value combinations

need to be maintained, containing the approximate number of unique user IDs

associated with each. To build a pivot table for any two features A and B, simply

retrieve the sketch for all the possible values of A: featureA:value1,

featureA:value2, ..., featureA:valueN and all of the sketches for the possible

values of feature B: featureB:value1, featureB:value2,…,featureB:valueN. Then

compute the intersection of each featureA:valueX, featureB:valueY combination

using the inclusion-exclusion principle: |featureA:valueX| + |featureB:valueY| -

|featureA:valueX union featureB:valueY|.

So long as the number of diff erent values each feature can take on is small, this can

be done interactively. If the possible values each feature can take on is very large, the

best approach is to use the Count-Min sketch to identify the most common feature

values to control the number presented in the pivot table user interface.

http://goo.gl/iU8Ig

c10.indd 05:33:31:PM 06/12/2014 Page 356

356 Part II ■ Analysis and Visualization

The Count-Min Sketch

The fi nal sketch algorithm to discuss is the popular Count-Min sketch. This

algorithm essentially approximates a map (also called a multi-set) where the

distinct values act as the keys and the number of times an element has been

seen is the value. The simplest implementations of the Count-Min sketch sup-

port approximate lookups in this map, called point queries. When the distinct

values have some sort of intrinsic ordering, the sketch can be considered an

approximation of a histogram (also known as a frequency table).

With a bit more work, the Count-Min sketch can also support range queries

that approximate the frequency of elements in the range [a,b]. After range que-

ries are supported, it is also possible to estimate order statistics using a binary

search on the ranges. This is discussed in detail later in this chapter.

N O T E Most of the sketches considered in this chapter only work when items are

added to the sketch; they do not support removing items from the sketch. The authors

of the original Count-Min paper call this a Cash Register model and it assumes that

all frequencies are non-negative. The Count-Min sketch supports this model, but also

supports what the authors call the Turnstile model, in which items can be subtracted

from the set so values could potentially be negative. This chapter is primarily con-

cerned with Cash Register models because they are more common in streaming data,

but the Turnstile model is also of interest for the Count-Min sketch.

The implementation of the Count-Min sketch is quite similar to that of the

Counting Bloom Filter. In fact, an extension of the Counting Bloom Filter called

the Spectral Bloom Filter has been shown to be equivalent to the Count-Min

sketch. Like the Counting Bloom Filter, the Count-Min sketch makes use of an

array of counters for its registers. The primary difference is that each of the k

hash functions receives its own set of m registers. This defi nes a two-dimensional

matrix of register values where a hash function only updates a particular row.

The value of k is commonly considered to be the “depth” of the sketch whereas

the choice of m is considered to be the “width” of the sketch.

Adding an element to the sketch is very similar to the Counting Bloom Filter

as well. The element is hashed by each hash function hi(x), which is then mapped

into m using the usual modulus to identify register j. For each of the hash func-

tions, the algorithm increments the register at mij.

Point Queries

Finding the approximate frequency of an element is also very straightforward.

After applying each of the hash functions, the algorithm computes min(m1j,…,mkj)

and considers this to be the approximate number of times this element has been

 Chapter 10 ■ Approximating Streaming Data with Sketching 357

c10.indd 05:33:31:PM 06/12/2014 Page 357

added into the set. Although it’s somewhat surprising that this works well enough

to use in practice, it acts much like other sketches in that it relies on the fact that

although the probability of a collision of one hash function might be too high,

the probability that several hashes will collide is small enough to be useful.

Clearly, this approach tends to overestimate the approximate frequency of a

value under the Cash Register model. Another element could (and will, when

enough elements are entered) increment the same counter, much like the Bloom

Filter. So, how badly does the Count-Min sketch overestimate this count?

In the original Count-Min paper, the authors show that the probability that

the estimate of an element is between its true value x and an upper bound

x + em, where m is the number of elements entered into a map, is larger than

1-d under two conditions. The fi rst condition is that the width of the sketch is

2/e. The second condition is that the depth of the sketch is (log 1/d)/log 2. So, a

Count-Min sketch where the estimate is within 5 percent of the sum with a 99

percent probability would have a width of 40 and a depth of 7. A depth of 8 with

a width of 128 would have a relative error of approximately 1.5 percent with a

probability of approximately 99.6 percent. Using 32-bit counters, the Count-Min

sketch requires the same amount of space as a HyperLogLog sketch with b=12.

Count-Min Sketch Implementation

Rather than implementing a Set<E>, the Count-Min sketch implements the Java

class Map<E,Long> albeit with some restrictions.

public class CountMinSketch<E extends Serializable>
 implements Map<E,Long> {

 int width = 0;
 int depth = 0;
 byte[] m;

 SerializableHasher[] hashes;
 ObjectOutputStream[] outputs;

 protected void initialize(int m,int[] seeds) throws IOException {
 hashes = new SerializableHasher[seeds.length];
 outputs= new ObjectOutputStream[seeds.length];
 for(int i=0;i<seeds.length;i++) {
 hashes[i] = (new SerializableHasher()).seed(seeds[i]);
 outputs[i] = new ObjectOutputStream(hashes[i]);
 }
 }

 public CountMinSketch(int width,int[] seeds) throws IOException {
 this.width = width;

c10.indd 05:33:31:PM 06/12/2014 Page 358

358 Part II ■ Analysis and Visualization

 this.depth = seeds.length;
 m = new byte[width*depth];
 initialize(m.length,seeds);
 }

The update step simply needs to increment the appropriate register locations

and report the smallest to provide an estimate of the frequency. The following

code implements this update with a specifi c increment amount, which is use-

ful for merging two sketches. It also simplifi es the lookup process as shown in

the following code:

public Long increment(Object arg0,long amount) {
 int min = Integer.MAX_VALUE;
 for(int i=0;i<outputs.length;i++) {
 hashes[i].reset();
 try {
 outputs[i].writeObject(arg0);
 outputs[i].flush();
 int h = hashes[i].hash() % width;
 m[i*width + h] += amount;
 if(m[i*width + h] < min) min = m[i*width + h];
 } catch(IOException e) {
 }
 }
 return (long) min;
}

public Long increment(Object arg0) { return increment(arg0,1); }

public Long get(Object arg0) {
 return increment(arg0,0);
}

Top-K and “Heavy Hitters”

A common Count-Min application is maintaining lists of frequent items. The

two basic forms of this list are the top-K list and the so-called Heavy Hitters

list. The former is simply a list of the k most common items in the data stream,

whereas the latter are the items with frequencies higher than some predeter-

mined value f.

The basic implementation of either sort uses a Count-Min sketch to store

the frequencies and a heap structure to hold the top values. In Java, a suitable

heap can be implemented using a PriorityQueue with a suitable Comparator

implementation, as in this example:

 Chapter 10 ■ Approximating Streaming Data with Sketching 359

c10.indd 05:33:31:PM 06/12/2014 Page 359

public class SketchComparator<T extends Serializable>
 implements Comparator<T> {

 CountMinSketch<T> sketch;

 public SketchComparator(CountMinSketch<T> sketch) {
 this.sketch = sketch;
 }

 public int compare(T o1, T o2) {
 return (int)(sketch.get(o1) - sketch.get(o2));
 }

}

To implement a top-K list, all you need is to increment an incoming element

and then add it to the priority queue. If the queue is larger than k (it can be at

most k+1 elements), remove the smallest element to return it to size k:

public class TopList<E extends Serializable> {
 CountMinSketch<E> sketch;
 PriorityQueue<E> heap;
 int k = Integer.MAX_VALUE;

 public TopList(int k,CountMinSketch<E> sketch) {
 this.sketch = sketch;
 this.k = k;
 this.heap = new PriorityQueue<E>(k+1,new
SketchComparator<E>(sketch));
 }

 public void add(E element) {
 sketch.increment(element);
 heap.add(element);
 while(heap.size() > k) heap.remove();
 }

}

The Heavy Hitter implementation is nearly identical, except that elements

are removed from the queue if they do not meet the frequency requirements.

This also requires the maintenance of a counter of all elements seen thus far.

public class HeavyHitters<E extends Serializable> {

 CountMinSketch<E> sketch;
 PriorityQueue<E> heap;
 double f = 1.0;
 int N = 0;

c10.indd 05:33:31:PM 06/12/2014 Page 360

360 Part II ■ Analysis and Visualization

 public HeavyHitters(double f,CountMinSketch<E> sketch) {
 this.sketch = sketch;
 this.heap = new PriorityQueue<E>(11,
 new SketchComparator<E>(sketch));
 this.f = f;
 }

 public void add(E element) {
 N++;
 sketch.increment(element);
 heap.add(element);
 while(heap.size() > 0 &&
 f <= (double)sketch.get(heap.peek())/(double)N)
 heap.remove();
 }

}

An alternative implementation would not trim the queue on each insert. Instead,

that implementation could wait until the queue was queried for some reason.

MOST POPULAR WEBSITE ITEMS

A commerce website, such as Amazon.com or Etsy.com, usually has a most popular

items sidebar. These websites often have thousands of products available in each

department. To maintain a top-K list in real time, the sites would have to maintain

the current number of purchases for each of those items in some accessible way. For

Amazon.com, which has so much hardware that it started a successful side business

renting it out, this may not be an issue, but it is very expensive to maintain for a rela-

tively small feature.

Using the top-K list approach in the last section, it is possible to cheaply implement

an approximate top-10 most popular item list using only a few kilobytes of RAM. To

improve the accuracy, top-K lists could be maintained for every department on the

website so that each page has a unique top-K list.

Range and Quantile Queries

Many times, the data being stored has some sort of natural ordering. When this

happens it is natural to think of the data as having an empirical distribution (or

histogram depending on the discipline), for example, the prices paid (in cents)

for a particular advertising unit on a website or the number of seconds a user

spent on a given page before taking an action.

In these cases, the questions of interest are usually concerned one way or

another with a range query of some kind: What fraction of users spent less than

10 seconds on this page? What is the median sale price of this advertising unit?

The naïve answer to the fi rst question is to simply sum the point estimates from

0 to 10 seconds and report the total frequency. To answer the question of the

median time, you would begin calculating the frequency of a range starting

 Chapter 10 ■ Approximating Streaming Data with Sketching 361

c10.indd 05:33:31:PM 06/12/2014 Page 361

from $0.01 until the sum of the point estimates was approximately 50 percent

of the total number of elements seen so far.

This naïve approach has two problems. The fi rst is obvious in the second

question: The number of operations required could be very large. If the median

price is $15 then 1,500 point estimates are required, all using k hash calcula-

tions and so on. Less obvious is the second problem: These individual point

estimates all have some error. Adding them together, as discussed in Chapter 9,

means that their errors increase with each addition. In the best case, you’d

expect the error of that median calculation to be 1,500 times larger than any

single point estimate.

A less naïve solution is to fi nd some way to reduce the total number of point

queries required to compute the frequency of the range. One approach is to

use multiple Count-Min sketches that store all the data at different resolutions.

The fi rst sketch is the basic sketch that stores the point queries. The second

sketch halves the resolution by combining the fi rst and second elements into

one counter, and so on. The third sketch combines the fi rst two elements of

the second sketch so its fi rst element is the count of the fi rst, second, third, and

fourth elements in the original sketch. The resolution is halved until the last

sketch contains only two elements.

Doing this allows any range query to be divided into at most 2×lg(N) inter-

vals, where N is the total size of the domain. For example, if the domain is the

space of 32-bit integers, then at most 64 subintervals are needed to compute any

range query. Compared to the O(n) compute time of the naïve implementation,

this is quite an improvement.

Dyadic Intervals

The intervals described in the last section are known as dyadic intervals. Dyadic

intervals are defi ned by two parameters: a level parameter and a start parameter:

public class DyadicInterval {
 public int level = 0;
 public int start = 0;

 public DyadicInterval() { }
 public DyadicInterval(int level,int start) {
 this.level = level;
 this.start = start;
 }

These two parameters defi ne the start and end points of the interval as

[2level×start, 2level×(start+1) – 1]:

public int min() { return (1 << level)*start; }
public int max() { return (1 << level)*(start+1) - 1; }

c10.indd 05:33:31:PM 06/12/2014 Page 362

362 Part II ■ Analysis and Visualization

The subintervals can then be computed recursively by fi nding the largest

dyadic interval that fi ts within the current interval. This interval is added to

the fi nal output and potentially generates two further intervals, the interval

to the left of the range and the interval to the right at the range. These ranges

are recursively divided in the same way until all points have been included in

one range:

public static List<DyadicInterval> createIntervals(int a,int b) {
 ArrayList<DyadicInterval> output = new ArrayList<DyadicInterval>();

 Stack<Integer> left = new Stack<Integer>();
 Stack<Integer> right = new Stack<Integer>();
 left.push(Math.min(a, b));
 right.push(Math.max(a, b)+1);

 while(left.size() > 0) {
 int l = left.pop();
 int r = right.pop();

 for(int k = 32;k>=0;k--) {
 long J = (1L << k);
 long L = (int)(J*Math.ceil((double)l/(double)J));
 long R = L + J - 1;
 if(R < r) {
 //Segment fits in the range
 output.add(new DyadicInterval((int)k,(int)(L/J)));
 if(L > l) {
 left.push(l);right.push((int)L);
 }
 if(R+1 < r) {
 left.push((int)(R+1));right.push(r);
 }
 break;
 }
 }
 }

Implementing Count-Min Ranges

The implementation of a Count-Min sketch that can cover the space of 32-bit

integers uses 32 different levels from 0 to 31, each with the same width and depth:

public class CountMinRange {
 ArrayList<CountMinSketch<Integer>> sketches =
 new ArrayList<CountMinSketch<Integer>>();
 long N = 0;
 int min = Integer.MAX_VALUE;

 Chapter 10 ■ Approximating Streaming Data with Sketching 363

c10.indd 05:33:31:PM 06/12/2014 Page 363

 int max = Integer.MIN_VALUE;

 public CountMinRange(int width,int[] seeds)
 throws IOException {
 for(int i=0;i<32;i++)
 sketches.add(
 new CountMinSketch<Integer>(width,seeds));
 }

The update step adds the count to the appropriate start parameter of each of

the different levels:

public void increment(int value,long n) {
 if(value < min) min = value;
 if(value > max) max = value;
 for(int i=0;i<32;i++) {
 sketches.get(i).increment(value/(1 << i),n);
 }
 N += n;
}

Range calculations are a little bit more complicated. First, the appropriate set

of dyadic intervals is computed and then the appropriate element from each of

the levels is added to the total. Each level contributes at most two elements to

each range query:

public long range(int a,int b) {
 long count = 0;
 for(DyadicInterval d : DyadicInterval.createIntervals(a, b)) {
 count += sketches.get(d.level).get(d.start);
 }
 return count;
}

The computation of quantiles, such as the median, is accomplished via a

binary search of the space. It is unlikely that the exact probability is in the set,

but the algorithm returns the closest value to the appropriate quantile.

public int quantile(double q){
 if(q == 0.0) return min;
 if(q == 1.0) return max;

 int lo = min;
 int hi = max;
 while(lo <= hi) {
 int mid = lo + (hi - lo)/2;
 double val = frequency(min,mid);
 if(val < q) hi = mid - 1;
 else if(val > q) lo = mid + 1;

c10.indd 05:33:31:PM 06/12/2014 Page 364

364 Part II ■ Analysis and Visualization

 else return mid;
 }
 return lo; //Return the nearest value
}

Other Applications

This chapter provides an introduction to a class of dimension reduction tools

with similar properties. Those properties are, essentially, storage and updates

that do not directly depend on the number of elements to be considered. This

allows for streaming applications to maintain control over processing time,

which is the key to high-performance, low-latency applications.

Although the focus in this book is on streaming applications, these algorithms

are also generally applicable. In particular, these data structures are often useful

in Map-Reduce applications where the data coming into the map and reduce

phases behaves very much like streaming data.

For example, the Bloom Filter is often used in fi ltering applications to do a

rough fi ltering of data at the Map step before doing the fi nal trimming in the

Reduce step. One such application is the so-called “attribution” process. In this

setting, users identifi ed by a unique identifi er engage in a number of events

before possibly engaging in an event of interest, called a “conversion” in this

context. The attribution process is interested in the events that happened in

some window before the fi nal conversion event. Because most users will not

convert (low single-digit percentages of conversion are normal), a Bloom Filter

containing the IDs of the users who did convert can be used in the Map step of

an attribution Map-Reduce job. Even with a high error of 10 percent, it still tends

to reduce the amount of data going to the reduce step by 80 percent to 90 percent.

Co nclusion

One of the main challenges of processing streaming data is keeping up with the

number of events to be processed. Even with the advent of the high-performance

solid-state disk (SSD), this data must generally be stored in main memory (RAM)

to achieve acceptable performance. If the data to be stored is simple, such as

sums or averages, this does not present a problem.

When the data to be stored becomes more complicated, like the number of

unique values in the stream, this can present a problem. Attempting to store

the data directly can result in storage requirements that are proportional to the

size of the data stream and can quickly overrun the available RAM.

 Chapter 10 ■ Approximating Streaming Data with Sketching 365

c10.indd 05:33:31:PM 06/12/2014 Page 365

This chapter has presented a number of methods for storing certain values

such as sets and their size in such a way that the memory usage is controlled

by the application rather than the data, ensuring that RAM requirements can

be met. The downside of these techniques is that they introduce estimation

error into computed values. In some cases, this error may not be tolerable, but

the error is also a function of storage so it may be controlled by the application

into acceptable levels.

367

c11.indd 05:33:47:PM 06/12/2014 Page 367

For many organizations, aggregation and visualization are the end of the road.

Dashboards are created, aggregates are graphed, and reports are generated.

To what end? The answer is usually so that “decision-makers” can take the

“pulse” of whatever system is being monitored. Interpreting this statement a

bit, it would seem to imply that the role of these systems is to surface informa-

tion to a human decision-maker so that they can take some action that affects

the system in a desirable way or react to an undesirable change in that system.

But, these systems are all operating in real time and humans are not real-time

creatures. We eat, sleep, and generally do things other than stare at the continu-

ously updating dashboard. How do we keep up? For mission-critical things, the

solution has usually been to have a large number of humans working in shifts

to keep an eye on the systems.

This works fairly well for relatively small systems, but even reasonably sized

systems like power plants quickly reach the limits of feasibility for the “herd

of humans” approach. This leads to the introduction of automated elements of

the real-time system, such as alarms and automatic shutdown.

These automated systems are the focus of this chapter—helping the human

decision-maker do their job by allowing them to focus on anomalous behaviors

or automating the moment-to-moment decision-making process altogether. This

turns out to be easier said than done, but a number of approaches have proven

successful over time in at least limited capacities.

C H A P T E R

11

Beyond Aggregation

368 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 368

Automating either the decision process or the process of alerting an opera-

tor to anomalous data requires that the system have some sort of model that

enables it to predict the behavior of the system. The fi rst two sections of this

chapter, “Models for Real-Time Data” and “Forecasting with Models”, discuss

the process of building models, using the concepts introduced in Chapter 9,

“Approximating Streaming Data with Sampling.” This processing of building

a model is called “fi tting” and is the essential task of statistical and machine

learning applications. It introduces some of the methods behind classical mod-

eling, which is usually done “offl ine” and then applied to the real-time data,

as well as some approaches to fi tting the model in an “online” fashion to the

streaming data itself.

When it is possible to build models, those models need applications. The

two most popular types of applications for real-time data are monitoring and

optimization applications. It is no coincidence that they correspond to the idea

of identifying anomalous behaviors in the data and making moment-to-moment

decisions, respectively.

Monitoring involves the classical subject of real-time data. Collection of the

data to be monitored and visualization of those results has been covered at length

in previous chapters. What remains is the identifi cation of anomalous events.

The “Monitoring” section of this chapter discusses two types of anomaly detec-

tion. The fi rst type is outlier detection, when the system enters an anomalous

but ultimately transient state. The second type is change detection where the

system enters a fundamentally different state of operation.

The last section of this chapter covers a hot topic in the Internet world, opti-

mization, where it is fairly easy to make changes and monitor outcomes. Website

optimization, in particular, is a popular subject with any number of methods

available for so-called A/B testing. In fact, most website traffi c monitoring

software seems to have some sort of A/B testing framework built-in. In this

chapter, a specifi c technique called the multi-armed bandit is used along with

the modeling approaches from the fi rst section to implement optimization in

a real-time environment.

Models for Real-Time Data

Anything that hopes to predict the behavior of a system must have an underly-

ing model that describes it. Ideally, this description is compact relative to the

data it describes. For example, in Newtonian physics, a simple set of equations

describing the actions of forces on a collection of objects is suffi cient to predict

their motion over long periods of time.

With this concept in mind, a model can be broken into two parts. The fi rst is

the behavior of the underlying system, which describes how various compo-

nents of the world interact to result in the observed behavior. Unfortunately,

 Chapter 11 ■ Beyond Aggregation 369

c11.indd 05:33:47:PM 06/12/2014 Page 369

it is very rare that all the variables that make up this model can be observed,

so it is usually not possible to completely determine this model. It is, however,

possible to construct a model that considers the variables that can be observed.

The second part of the model is the noise introduced by the variables that can-

not be observed.

This applies to both the underlying process and to the mechanisms of mea-

sure. Any tool used to measure data can also be modeled in the same way as the

underlying process, and it can have large effects on the outcome. For example, if

the same data is being collected by several different systems, knowing the bias

and variance of each collection system allows them to be normalized.

Toward this end, this section introduces some of the methods used to identify

the underlying model in the presence of noise. As this book is focused on real-

time data, the fi rst part of this section focuses on some of the simpler methods

for modeling time-series models. (Real-time data is inherently time-series data

due to the nature of data collection.) These methods are widely used in forecast-

ing procedures in all different fi elds.

The second part of this section discusses linear models, also known as regres-

sion models. These models are a classic technique in statistics and are probably

the most-used modeling technique in the world. They describe linear relation-

ships between variables being measured and some outcome, which is also being

measured. One variant, logistic regression, is a popular method for producing

models for the odds that an event will occur.

When the data is highly nonlinear or its structure is poorly understood, the

Artifi cial Neural Network has become a popular option for modeling time-

series data. The fi nal discussion in this section is about the basic neural network

model. Neural network models are easily adapted to real-time problems as the

training and prediction cycles are identical.

Simple Time-Series Models

Any real-time data system is essentially made up of a series of sequential values. As

discussed in Chapter 8, these values are computed for a particular time “bucket”

or quantization, and then they are analyzed. Most of these measurements are

inherently noisy, so time-series models attempt to get at the underlying shape

of the time series by smoothing over the noise, usually through some sort of

averaging technique, several of which are presented in this section.

Moving Average

The simplest averaging approach for a time series is the moving average. As the

name implies, this is the average of the values over a “sliding window” of val-

ues. It is usually expressed in terms of the number of time buckets being used

370 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 370

in the average and is often written as MA(k). For instance, moving averages for

stock market data are often expressed in terms of days.

The moving average is easy to implement as it only requires the storage of

k different values. For effi ciency, it is usually best to keep track of the running

sum, adding and removing values as appropriate. Otherwise, every update of

the moving average would require k operations instead of, at most, two. This is

shown in the following implementation:

public class MovingAverage {

 LinkedList<Double> values = new LinkedList<Double>();
 double sum;
 int k;

 public MovingAverage(int k) {
 this.k = k;
 }

 public double observe(double value) {
 sum += value;
 values.add(value);
 if(values.size() > k) {
 sum -= values.removeFirst();
 return sum/(double)k;
 }
 return Double.NaN;
 }
}

Notice that the moving average returns NaN if it has not received enough

observations. To produce a usable observation, the moving average loses the

fi rst k-1 values of the time series. Selecting the appropriate window size for a

moving average is a bit of an art. Moving averages act as a low-pass fi lter on

the actual data, and choosing too small a range does not smooth out enough

of the noise. Conversely, too large a range smoothes out important signals in

the data. Figure 11-1 shows the effect of making different choices about mov-

ing average windows on some simulated sine waves with a small amount of

added noise. In the case of Figure 11-1, a window of 30, perhaps 35 would best

recover the underlying signal.

Weighted Moving Average

The weighted moving average is a generalization of the standard moving aver-

age that uses different weights for each of the elements in the window. This

collection of weights is known as the kernel; various kernels are standard in

different industries. The normal moving average is simply a weighted moving

 Chapter 11 ■ Beyond Aggregation 371

c11.indd 05:33:47:PM 06/12/2014 Page 371

average with a kernel that assigns 1/k to all values. Implementing a weighted

moving average is a little more complex:

Va
lu

e

0 200 400 600

Time

Time

Time

800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

−1
5

−1
0

−5
0

5
10

15

Va
lu

e
−1

5
−1

0
−5

0
5

10
15

Va
lu

e
−1

5
−1

0
−5

0
5

10
15

MA (10)

MA (20)

MA (30)

Figure 11-1

public class WeightedMovingAverage {
 double[] kernel;
 double[] values;
 double kernelSum = 0.0;
 int k = 0;
 long N = 0;

 public WeightedMovingAverage(double[] kernel) {
 this.kernel = kernel;
 for(double j : kernel) kernelSum += j;
 values = new double[kernel.length];
 }

 public double observe(double x) {
 values[k++] = x;
 if(k == values.length) k = 0;
 N++;

372 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 372

 if(N < kernel.length) return Double.NaN;
 double y = 0;
 for(int i=0;i<kernel.length;i++)
 y += kernel[i]*values[(k+i) % values.length];
 return y/kernelSum;
 }
}

The important thing to notice with the weighted moving average is that the

computation is much slower than the normal moving average, requiring k opera-

tions for every observed value. For most offl ine analyses, this is not a concern,

but it can be a problem with a real-time environment’s online processing.

Exponential Moving Average

Many times, the kernel in a weighted moving average is used to place more

weight on recent observations than on older observations. The exponential

moving average also does this by taking the weighted average of the current

moving average value and the new observation:

EMA = a*X + (1-a)*EMA

The exponential moving average is not quite the same as the weighted moving

average, and it has several advantages. The fi rst is that it only requires a single

operation to obtain a new value for the exponential moving average instead

of k operations. The second is that it only requires the storage of a single value

instead of the k values needed by both the moving average and the weighted

moving average. As expected, the implementation is very simple:

public class ExponentialMovingAverage {
 double value = 0.0;
 double alpha;
 public ExponentialMovingAverage(double alpha) {
 this.alpha = Math.min(alpha, 1.0);
 }

 public double observe(double x) {
 value = alpha*x + (1-alpha)*value;
 return value;
 }
}

Like the normal moving average, selecting a value for alpha is more of an art

than a science. The most common rule of thumb is to set alpha to be 2/(k+1)

where k is the number of values used in the moving average. The result is roughly

86.5 percent of the weight to be derived from the most recent k values and, as

shown in Figure 11-2, will very closely match the standard moving average.

Figure 11-2 also shows the same dataset smoothed by two other exponential

moving averages with k values of 20 and 30, respectively. The original moving

 Chapter 11 ■ Beyond Aggregation 373

c11.indd 05:33:47:PM 06/12/2014 Page 373

average is also shown as the dotted line for comparison. Notice how close the

two forms of moving average track each other. Because the values are close, the

exponential moving average is the algorithm most commonly used in practice.
Va

lu
e

0 200 400 600

Time

Time

Time

800 1000

0 200 400 600 800 1000

0 200 400 600 800 1000

−1
5

−1
0

−5
0

5
10

15

Va
lu

e
−1

5
−1

0
−5

0
5

10
15

Va
lu

e
−1

5
−1

0
−5

0
5

10
15

EMA (10)

EMA (20)

EMA (30)

Figure 11-2

Linear Models

Linear models are the most popular form of statistical modeling in many fi elds,

from economics to biology and beyond. (One of its fi rst applications was in the

study of genetics.) This type of model is also known as a regression model,

the term used in this book, as well as a least squares model, which refers to the

technique used to fi nd the coeffi cients of the model.

The essential idea is that an outcome variable, denoted as ŷ , has a linear

relationship with an array of explanatory variables, denoted as x[0], x[1] and

so on, after the different elements of the array are multiplied by a coeffi cient

array, denoted as B[0], B[1], and so on:

public class LinearModel {
 double[] B;

 public LinearModel(double[] B) {

374 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 374

 this.B = B;
 }

 public double y(double[] x) {
 double y = 0;
 for(int i=0;i<B.length;i++) y += B[i]*x[i];
 return y;
 }

}

“Fitting” these models means fi nding appropriate values of B given that

the values of x are observed along with y, which can be interpreted as a noisy

version of ŷ . In the original formulation this noise is normally distributed

(normal distributions are discussed in Chapter 9) with a mean of zero and a

variance of s. This is done by minimizing the square of the difference between

the observed values of y and the values of ŷ given x returned by the y method

of the LinearModel class.

In other words, the goal is to fi nd an array for B that returns the least sum of

squares or “least squares error,” given in the following function:

public double error(double[] y,double[][] x) {
 double error = 0.0;
 for(int i=0;i<y.length;i++) {
 double diff = y[i] - y(x[i]);
 error += diff*diff;
 }
 return error;
}

This error is also known as the residual sum of squares (RSS) and is often

used to determine how well a model fi ts the data. Inspecting the individual ele-

ments of the error (usually without the square) is used to determine whether or

not the model is well specifi ed. Trends or a periodic signal in the data is often

a sign that the model is missing a term.

Simple Linear Regression

In the case that the x array is only ever two values, with the fi rst value being

the constant 1 (known as the intercept term), there is a simple closed form solu-

tion for the two values of the B array. When this happens, the fi rst value of B is

usually called a, and the second value called b and the equation for ŷ reduced

to the following simple form:

public class SimpleLinearModel {

 public double a,b;

 public SimpleLinearModel(double a,double b) {

 Chapter 11 ■ Beyond Aggregation 375

c11.indd 05:33:47:PM 06/12/2014 Page 375

 this.a = a;
 this.b = b;
 }

 public double y(double x) {
 return a + b*x;
 }

}

The error to minimize is similarly simplifi ed:

public double error(double[] y,double [] x) {
 double error = 0.0;
 for(int i=0;i<y.length;i++) error += (y[i]-a-b*x[i])*(y[i]-a-b*x[i]);
 return error;
}

After a little bit of calculus, it is found that this function is minimized when b

is equal to the covariance of x and y divided by the variance of x. The value of a

best minimizes the error when it is equal to the mean of y minus the estimated

value of b multiplied by the mean of x. If all the data are present in an array, the

following function will fi nd the appropriate values of a and b:

public void fit(double[] y,double[] x) {
 double sumX = 0.0, sumY = 0.0;
 double sumXY = 0.0, sumX2 = 0.0;
 for(int i=0;i<y.length;i++) {
 sumX += x[i];
 sumY += y[i];
 sumXY += x[i]*y[i];
 sumX2 += x[i]*x[i];
 }
 double n = (double)y.length;
 b = (sumXY - (sumX*sumY)/n)/(sumX2 - (sumX*sumX)/n);
 a = sumY/n - (b*sumX)/n;
}

Notice that the preceding function only requires a single pass over the data.

This means that it is also amenable to a simple streaming formulation, useful

for real-time analysis:

public class StreamingSimpleLinearModel {

 double sumX = 0.0, sumY = 0.0;
 double sumXY = 0.0, sumX2 = 0.0;

376 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 376

 double n = 0.0;

 boolean dirty = true;
 double a = 0.0,b = 0.0;

 private void update() {
 if(!dirty) return;
 b = (sumXY - (sumX*sumY)/n)/(sumX2 - (sumX*sumX)/n);
 a = sumY/n - b*sumX/n;
 dirty = false;
 }

 public void observe(double y,double x) {
 sumX += x;sumY += y;
 sumXY += x*y;sumX2 += x*x;
 n += 1.0;
 dirty = true;
 }

 public double b() { update();return b; }
 public double a() { update();return a; }
}

Multivariate Linear Regression

Computing the best estimates for B when there is more than one x variable,

excluding the intercept term, is a bit more complicated, but it’s still straightfor-

ward. Using a technique called ordinary least squares, which is sometimes used

as a synonym for multivariate linear regression, the values of B have a closed

form so long as certain requirements are met.

The primary requirements are that there is no correlation between the differ-

ent x variables and that the standard deviation of the y term does not depend

on the value of x (only the mean of y varies with x). The fi rst requirement is

usually fairly easy to achieve by checking the correlations between the vari-

ous x variables under consideration and dropping one of the two correlated

variables from the equation. Another approach is to transform the matrix of

x values using an orthogonal transformation, such as principal components

analysis. This produces x values that are, by defi nition, uncorrelated. The second

requirement is usually assumed more than it is ensured, but it is easy to check

by inspecting the difference between the observed y values and their predicted

values after fi tting the model.

Assuming these conditions are met and the values of x are placed into a matrix

X with k columns and n rows, where k is the number of different variables and

n is the number of observations, the following expression fi nds a B vector that

minimizes the mean square error:

B = (XTX)-1XTy

 Chapter 11 ■ Beyond Aggregation 377

c11.indd 05:33:47:PM 06/12/2014 Page 377

This form is the solution to a linear system of equations called the normal

equations. It is possible to solve these directly using linear algebra libraries

such as the Apache Commons Math library. However, the direct computation

can have problems with numerical stability, so most implementations use other

techniques. There are a variety of options, but one of the most common is the

use of the QR factorization. What QR factorization says is that any matrix A

can be represented by the production of two matrices Q and R where Q is an

orthonormal matrix (like those discussed earlier), and R is an upper triangular

matrix (meaning roughly half of its values are zeroes). An orthonormal matrix

is special because QTQ = I, where I is known as the identity matrix. The identity

matrix is a matrix of all zeroes, except its diagonal, which is fi lled with ones. By

replacing X with its QR factorization, the equation for B is then:

B = R-1QTy

This form is much more numerically stable, although it does require the

computation of the QR factorization. Rather than attempting to implement this,

there are many different libraries that can be used. For example, in Java there

is the Apache Common Math library, available through Maven:

<dependency>
 <groupId>org.apache.commons</groupId>
 <artifactId>commons-math3</artifactId>
 <version>3.2</version>
</dependency>

Using the Apache Commons Math library’s QR factorization classes, it is easy

to simply write down the fi nal equation in LinearModel’s fi t implementation:

public void fit(double[] y,double[][] x) {
 RealMatrix X = new Array2DRowRealMatrix(x);
 RealVector Y = new ArrayRealVector(y);
 B = (new QRDecomposition(X)).getSolver().solve(Y).toArray();
}

Of course, the Apache Commons Math library also includes a class that

implements ordinary least squares, so it is possible to simply use that instead:

public void fitOLS(double[] y,double[][] x) {
 OLSMultipleLinearRegression ols = new OLSMultipleLinearRegression();
 ols.newSampleData(y, x);
 B = ols.estimateRegressionParameters();
}

For use in streaming data environments, Apache Commons also includes an

“online” version of the ordinary least squares solver. Called the Miller Updating

Regression after its inventor, it relies on the fact that the QR factorization can be

updated with new data. This allows observations to be streamed into the model

378 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 378

with the ability to produce regression coeffi cients B after a suffi cient number of

observations (at least twice the number of coeffi cients in the model) have been made.

To use it, simply initialize the model with the number of coeffi cients in the model:

int k = 14;
MillerUpdatingRegression rm = new MillerUpdatingRegression(k,true);

When new data arrives, the addObservation method takes an array x of size k

and an observed output y:

rm.addObservation(x, y);

To retrieve the current fi tted model, the regress method is used. This returns

a RegressionResults class like the OLDMultipleLinearRegression class that can be

used to retrieve parameters estimates and other values of interest:

double B[] = rm.regress().getParameterEstimates();

Logistic Regression

It is also possible to fi t linear models that do not assume normally distributed

observations using a generalized linear model (GLM). In these models, the

observed values y are assumed to come from a distribution in the exponential

family of distributions. This includes many of the named distributions men-

tioned in Chapter 9. For example, Poisson regression is used to model count data.

One of the most popular GLMs is the logistic regression model, which is

used to model the Bernoulli distribution. It is used to model the probability of

an event occurring or of an observation being the member of a class. There are

also extensions to the model for multiclass modeling in which the outcome is

a multinomial distribution rather than the Bernoulli distribution. Like other

linear models, the probability ŷ is calculated by taking a weighted linear com-

bination of the input x values. However, rather than using this directly, that

linear combination is transformed to produce a value between 0 and 1, as in

the following modifi cation to the LinearModel class:

public double y(double[] x) {
 double y = 0;
 for(int i=0;i<B.length;i++) y += B[i]*x[i];
 return logit(y);

}

where the logit method has the following implementation:

public static double logit(double y) {
 return 1.0/(1.0 + Math.exp(-y));
}

This is easy enough to implement when the values of B are known, but fi nd-

ing appropriate values of B given observations of the input and output is much

 Chapter 11 ■ Beyond Aggregation 379

c11.indd 05:33:47:PM 06/12/2014 Page 379

more diffi cult than the multivariate linear regression model. The most common

approaches rely on so-called quasi-Newton techniques that are best left to oth-

ers to implement. Although a number of high-quality numerical packages for

C/C++ and FORTRAN exist for solving logistic regression, Java implementations

are much more rare.

Fitting Regression with Logistic Regression

If using an interface to one of the high-quality native approaches is not an option,

it is also possible to use a gradient descent approach to fi nd the appropriate values

of B. This approach iterates over the data multiple times, adjusting the values of

each B by an amount proportional to the sum of the errors between the predicted ŷ

values and the actual y values for each observation. This amount is controlled by

a parameter alpha, which is known as the “learning rate.” This parameter controls

how quickly the algorithm converges on a fi nal answer and is usually set to some-

thing like 0.1 as a starting point. It must always be smaller than 1 and larger than 0.

public LogisticRegression fit(double[][] x,double[] y) {
 //Initialize the weights
 B = new double[x[0].length];
 double lastError = Double.POSITIVE_INFINITY;
 for(int iter=0;iter<MAX_ITER;iter++) {
 double err2 = 0;
 for(int i=0;i<x.length;i++) {
 double t = y[i] – y(x[i]);
 for(int j=0;j<x[i].length;i++)
 B[j] += alpha*t*x[i][j];
 err2 += t*t;
 }
 err2 = Math.sqrt(err2);
 if(err2 - lastError < 1e-6) break;
 lastError = err2;
 }
 return this;
}

The iteration continues until either a maximum number of iterations are

reached or the change in error becomes so small it is not worth continuing. A

more general application of this approach is used to fi t the parameters of the

artifi cial neural network models introduced in the next section.

T I P The gradient descent approach works for all types of regression, not just logistic

regression. Although there are other options for multivariate regression, this allows

for streaming implementations of the more complicated forms of regression. When

working with streaming data it is assumed that data in the future will be equivalent to

data in the past, which eliminates the need to iterate over the data multiple times.

380 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 380

Neural Network Models

Neural network models, also known as the artifi cial neural network (ANN),

are a collection of nonlinear models used to predict some outcome given some

set of input variables. The fi rst examples of neural networks date to the early

1940s where they were used to solve classifi cation problems. It is generally

accepted that neural networks represent a type of nonlinear regression and can

be applicable to the same problem domains.

Inspired by the activity of physical neurons in the brain, the artificial

neuron, called a unit in neural network jargon, computes a function of

the weighted sum of its inputs. This function is called the activation function

and is usually chosen from the family of sigmoid functions, which range from

functions like the logistic function described earlier to the Heaviside step func-

tion. Figure 11-3 shows three popular choices of activation function in neural

networks: the logistic function, the hyperbolic tangent, and the Heaviside step

function.

−6

−1
.0

−0
.5

0.
0

0.
5

1.
0

−4 −2 0

Ou
tp

ut

−1
.0

−0
.5

0.
0

0.
5

1.
0

Ou
tp

ut

−1
.0

−0
.5

0.
0

0.
5

1.
0

Ou
tp

ut

2 4

Input Input Input

6

1/(1 + e−ϕ)

−6 −4 −2 0 2

tanh(ϕ) Heaviside Step

4 6 −6 −4 −2 0 2 4 6

Figure 11-3

The units are then arranged into layers. There is an input layer, an output

layer, and some number of hidden layers. The input layer is used to drive the

activation function of units in the hidden layer (if any). The fi rst hidden layer’s

units then drive the activation function of the next layer and so on, until the last

hidden layer drives the activation function of the output layer. There is often

a bias unit—which plays the same role as the intercept in linear models—that

provides a constant input to each neuron.

A typical neural network arrangement is shown in Figure 11-4. In this case,

the input layer and the hidden layer are the same size with the output layer

only containing two units. In general, there is no restriction on the number of

units in a layer relative to any other layer. Because each unit is connected to

all the units of the previous layer, all of the units will in theory learn different

aspects of the input signal.

 Chapter 11 ■ Beyond Aggregation 381

c11.indd 05:33:47:PM 06/12/2014 Page 381

Output

Bias B

x[0] x[1]

h[1]

y[1]

h[0]

y[0]

x[2]

h[2] Hidden

Input

Figure 11-4

Multi-Layer Feed-Forward Network Implementation

The type of neural network described earlier is known as a feed-forward net-

work. This is because inputs arrive at the input layer and then information is

fed forward through the network to the output layer.

To implement this model, fi rst defi ne a Layer class. This class holds the cur-

rent values for the layer as well as the weight matrix that is used to produce the

weighted sum of values. The size of the weight matrix is defi ned by the number

of units and the number of inputs to the layer. There is also an array of bias

weights included in the layer implementation:

public class Layer {

 double[] v;
 double[][] w;
 double[] bW = null;
 Activation fn;

 public Layer(int units,int inputs,Activation fn,boolean bias) {
 this.fn = fn;
 v = new double[units];
 w = new double[units][];
 for(int i=0;i<v.length;i++) w[i] = new double[inputs];
 if(bias)
 bW = new double[units];
 }

For simplicity, this implementation uses the same activation function for all

units. It is not required that all units in a layer use the same function, but it is

often the case. However, any function used must have a derivative to be used

in the backpropagation training algorithm discussed in the next section. The

abstract Activation class defi nes methods for both the function and its derivative:

382 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 382

public abstract class Activation {
 public abstract double f(double x);
 public abstract double df(double fx);
}

Two commonly used activation functions are the logistic function (also called

the sigmoid function) and the hyperbolic tangent. The logistic function is imple-

mented with a constant k that is used to control the rate of change from positive

to negative. A suffi ciently large value for k of, say, 100, is usually suffi cient to

approximate the Heaviside step function, which is not ordinarily usable in the

backpropagation algorithm:

public static Activation logit(final double k) {
 return new Activation() {
 @Override
 public double f(double x) {
 return 1.0/(1.0 + Math.exp(-k*x));
 }

 @Override
 public double df(double fx) {
 return k*fx*(1.0-fx);
 }
 };
}
public static Activation sigmoid(double k) {
 return logit(k);
}
public static Activation logit() {
 return logit(1.0);
}
public static Activation sigmoid() {
 return logit();
}

The hyperbolic tangent activation function is another popular choice for acti-

vation function. It is also included as a standard option in this implementation:

public static Activation tanh() {
 return new Activation() {
 @Override
 public double f(double x) {
 return Math.tanh(x);
 }

 @Override
 public double df(double fx) {
 return 1 - fx*fx;
 }
 };
}

 Chapter 11 ■ Beyond Aggregation 383

c11.indd 05:33:47:PM 06/12/2014 Page 383

N O T E The derivatives used in the Activation class implementations in the code

are not quite the derivatives of f(x). In this case, the derivatives of f(x) can be

expressed in terms f(x), in this case as 1-f(x)×f(x). To make the calculation of

the derivative more effi cient, the value of f(x) is assigned to fx and then used in

the “derivative” function in place of x itself. This representation of the derivatives of

activation functions is widely used in the neural network literature. Unfortunately,

the fact that the derivative is stated in terms of the original function is not widely dis-

cussed in the literature. As a result, there are often errors in examples of backpropa-

gation found online. This version of the derivative is used because the feed-forward

portion of the neural network has already computed f(x) for each unit in the net-

work. Because the value must be stored to compute the error at each layer, it is conve-

nient to use the derivative stated in terms of f(x). Otherwise, the original value of x

would also need to be stored.

When data is fed to the layer, it must compute all of the weighted sums

and apply the activation function. The implementation here is used for clarity

rather than performance; consequently, it is fairly ineffi cient, requiring O(n×m)

operations:

public double[] feed(double[] x) {
 for(int i=0;i<v.length;i++) {
 double[] W = w[i];
 v[i] = bW != null ? bW[i] : 0.0;
 for(int j=0;j<W.length;j++) v[i] += W[j]*x[j];
 v[i] = fn.f(v[i]);
 }
 return v;
}

Because the bias input is always 1, the output value for each unit can be ini-

tialized to its bias weight. Otherwise, it is simply set to zero. After the values

have been updated, the function returns the new state so that it may be passed

to the next level (or used as the output).

These layers are then assembled into a neural network with the NeuralNetwork

class. This class maintains an array of layers, which includes, at the minimum,

an output layer. Most networks also contain a hidden layer, and some contain

several hidden layers. It is not necessary to defi ne a discrete input layer, just the

number of units in the layer, because its activation function is the identity function:

N O T E “Deep learning” refers to neural networks with more than one hidden layer.

It may also refer to the practice of stacking neural networks together.

public class NeuralNetwork {

 int inputUnits = 0;

384 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 384

 ArrayList<Layer> layers = new ArrayList<Layer>();

 public NeuralNetwork inputs(int inputUnits) {
 this.inputUnits = inputUnits;
 return this;
 }

To defi ne each subsequent layer, the NeuralNetwork class inspects the previ-

ous layer (or the number of inputs) to determine the size of the weight matrix

to be used:

public NeuralNetwork layer(int units,Activation fn,boolean bias) {
 int inputs = (layers.size() == 0) ?
 this.inputUnits : layers.get(layers.size()-1).units();
 layers.add(new Layer(units,inputs,fn,bias));
 return this;
}

public NeuralNetwork layer(int units,Activation fn) {
 return layer(units,fn,true);
}

public NeuralNetwork layer(int units) {
 return layer(units,Activation.tanh());
}

To make a prediction, the feed method iteratively applies each layer to the

output of the previous layer or the input itself:

public double[] feed(double[] x) {
 for(Layer l : layers)
 x = l.feed(x);
 return x;
}

Training with Backpropagation

Of course, a newly constructed feed-forward network is useless because it has

not been “trained” on any data. In fact, as currently implemented, the output

vector is always zeroes because none of the connections in the network have

any weight.

The most popular method for training a multilayer feed-forward neural

network is the backpropagation algorithm. This algorithm is a relative of the gen-

eralized least squares algorithm used to fi t the regression models earlier in the

chapter. It works by minimizing the sum-of-squares error between the target

output values and the output values observed after feeding the input values

through the network. This is recorded in an error array that is added to the

 Chapter 11 ■ Beyond Aggregation 385

c11.indd 05:33:47:PM 06/12/2014 Page 385

Layer implementation. For effi ciency, the Layer implementation also maintains

the total error for this layer:

double[] err;
double E;
public double[] errors() { return err; }

This array is initialized in the constructor to have the same size as the value

array:

public Layer(int units,int inputs,Activation fn,boolean bias) {
 this.fn = fn;
 v = new double[units];
 w = new double[units][];
 for(int i=0;i<v.length;i++) w[i] = new double[inputs];
 if(bias)
 bW = new double[units];
 err = new double[units];
}

This error array is updated during the training phase by propagat-

ing the error from the output layer backward to the input layer. This back-

ward propagation gives the algorithm its name. It fi rst computes the error

for each unit in the layer as the difference between the expected output and

the activation of each unit multiplied by the derivative of the activation func-

tion. For the output layer, the difference, which is passed in the s array, is

the difference between the training value and the output of the feed method in the

backprop method of the Layer class:

public double[] backprop(double[] s) {
 double[] out = new double[w[0].length];
 E = 0;
 for(int i=0;i<v.length;i++) {
 err[i] = fn.df(v[i])*s[i];
 E += err[i]*err[i];

To produce a difference array to propagate to the next Layer, the current Layer

computes a weighted sum of its own error values. As shown in the following

implementation, this essentially reverses the process of the feed-forward network.

This array is then returned so that it may be used as the input to the backprop

method of the next Layer:

 double[] W = w[i];
 for(int j=0;j<W.length;j++) out[j] += W[j]*err[i];
 }
 return out;
}

386 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 386

When the errors have been propagated to each of the layers, the weights

themselves are updated. Each weight is updated according to the delta rule,

which states that the change in the weight between two units is proportional

to the production of the current unit error, the derivative of the unit’s activation

function, and the activation value of the input unit. The error array already

stores the production of the unit error and its derivative, so it only needs to be

multiplied by the previous layer’s activation value, which is passed into the

following implementation as the array o:

public double[] update(double[] o,double r) {
 for(int i=0;i<v.length;i++) {
 if(bW != null)
 bW[i] += r*err[i];
 double[] W = w[i];
 for(int j=0;j<W.length;j++)
 W[j] += r*err[i]*o[j];
 }
 return v;
}

The other value passed to the update method, r, is a “learning rate” simi-

lar to the one used in the LogisticRegression example. This keeps the weight

adjustment from moving too quickly, which helps the stability of the gradient

descent method. Typical values for most networks are between 0.2 and 0.8, and

it usually requires some trial and error to fi nd the best rate.

Finally, before learning can begin there should be some initialization of

weights. By default, all of the weights in a network start with a value of zero,

but this can lead to the network being trapped in a local minimum and unable

to get to the “best” network that fi ts the data. Usually, it is best to randomize

the weights before training as shown in the following code, which is added to

the Layer implementation:

public void initialize(Random rng) {
 for(int i=0;i<v.length;i++) {
 for(int j=0;j<w[i].length;j++)
 w[i][j] = 2*rng.nextDouble() - 1;
 bW[i] = 2*rng.nextDouble() - 1;
 }
}

public void initialize() {
 initialize(new Random());
}

The pieces of the backpropagation algorithm are fi nally assembled in the

train method of the NeuralNetwork class in this example. The training example—

consisting of an input array, x, and an output array, y—is then fed through the

network to produce an output:

 Chapter 11 ■ Beyond Aggregation 387

c11.indd 05:33:47:PM 06/12/2014 Page 387

public NeuralNetwork train(double[] x,double[] y) {
 double[] out = feed(x);

The difference between the output and the input is then calculated and propa-

gated backward through the network:

double[] s = new double[out.length];
for(int i=0;i<y.length;i++) s[i] = y[i] - out[i];
for(int i=layers.size()-1;i>=0;i--) s = layers.get(i).backprop(s);

Finally, each layer’s weights are updated by walking forward through each

layer:

 for(Layer l : layers) x = l.update(x, learningRate);
 return this;
}

LEARNING AN EXCLUSIVE OR PATTERN

One of the interesting examples of neural network learning used to motivate the

need for hidden layers is the ability to learn the exclusive-or (XOR) pattern. In these

examples, the training set has two inputs and a single output. If any of the two inputs

is active, the output is also active. If neither or both of the inputs are active, the output

is inactive.

As it happens, many learning algorithms, including a neural network without hid-

den layers, cannot learn this pattern. The reason is that many classifi cation techniques

require that the classes be linearly separable to solve the problem, and the XOR pat-

tern is not linearly separable.

Adding a hidden layer to the neural network allows it, essentially, to further subdi-

vide the input space and learn a network that can reproduce the exclusive-or pattern

from inputs.

This example uses two neural networks—one with a hidden layer and one with-

out—that are both trying to learn an XOR pattern. The networks, nn and bad respec-

tively, are easy to defi ne in the framework:

NeuralNetwork nn = NeuralNetwork.build().inputs(2).layer(3).layer(1);

NeuralNetwork bad= NeuralNetwork.build().inputs(2).layer(1);

nn.initialize();

bad.initialize();

Both networks are then trained for 1,000 iterations on all possible XOR inputs and

outputs and the error recorded:

Continues

388 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 388

for(int i=0;i<1000;i++) {

 double err = 0.0;

 double errBad = 0.0;

 for(Obs x : xorData) {

 nn.train(x.x,x.y);

 bad.train(x.x,x.y);

 err += nn.error();

 errBad += bad.error();

 }

 System.out.println(err+"\t"+errBad);

}

After this iteration it is clear that the neural network with a hidden layer has

achieved a much better overall error than the network without the hidden layer, which

has become trapped at a relatively high error, as shown in Figure 11-5. The solid line

shows the error of a three-layer neural network learning an XOR pattern. The dotted

line shows the two-layer neural network failing to learn the same pattern.

Figure 11-5

Momentum Backpropagation

This version of the algorithm uses the simplest method for computing the change

in weight at each step. A common performance improvement is to introduce the

notion of “momentum” into the computation of the change in weight.

Rather than using the basic implementation for the computation of the change

in weight, the Layer implementation stores the weight delta values using a

separate matrix:

continued

 Chapter 11 ■ Beyond Aggregation 389

c11.indd 05:33:47:PM 06/12/2014 Page 389

double dW[][];
double dbW[];
double m = 0.1;

public MomentumLayer(int units, int inputs,
 Activation fn, boolean bias) {
 super(units, inputs, fn, bias);
 dW = new double[units][];
 for(int i=0;i<v.length;i++) dW[i] = new double[inputs];
 if(bias)
 dbW = new double[units];
}

The update step then uses a weighted average of the new delta for the weight

and the previous delta for the weight with the weight being chosen by a con-

stant value m:

@Override
public double[] update(double[] o, double r) {
 for(int i=0;i<v.length;i++) {
 if(bW != null) {
 dbW[i] = (1-m)*r*err[i] + m*dbW[i];
 bW[i] += dbW[i];
 }

 double[] W = w[i];
 for(int j=0;j<W.length;j++) {
 dW[i][j] = (1-m)*r*err[i]*o[j] + m*dW[i][j];
 W[j] += dW[i][j];
 }
 }
 return v;
}

This allows weight changes in the same direction to proceed more rapidly,

while sudden changes in the direction of the weight have less of an effect.

In the small examples used in this chapter, using the momentum modifi ca-

tion has relatively little effect. However, if the network being trained is slow

to converge without momentum, adding the momentum term can improve

performance.

Forecasting with Models

Forecasting is widely used in real-time data analysis both on its own to predict

future values (for example to allow for automated capacity planning) and to

form the basis of comparison with the observed data used by the monitoring

and optimization application areas discussed later in this chapter. The most

390 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 390

naïve methods of forecasting are essentially trivial, simply using the historical

average or perhaps the moving average as the forecast for future values. For

very simple systems, this is suffi cient, but most of the time these naïve methods

will not capture suffi cient information about the underlying system to produce

good forecasts.

The topic of forecasting is large, and many books have been written about it

over the years. This chapter covers a few techniques that have gained widespread

popularity due to their simplicity, their effectiveness, or both.

Exponential Smoothing Methods

Exponential smoothing methods of forecasting are fairly widespread thanks

to their relative ease of implementation, ability to handle the seasonality pres-

ent in many time series, and general good performance when the signal is not

too noisy. The simplest form of these forecasts, when the data has no trend or

seasonal components, is to simply use the exponential moving average of the

current time period as the forecast for the next time period.

Of course, most time series have either a trend or seasonality and often have

both. When this is the case, it is possible to build a variety of different models

with different types of trend and seasonality components. Of all these possibili-

ties, the most well-known models are the Holt-Winters models. Dating back to

the late 1950s, these models assume an additive trend with either additive or

multiplicative seasonal components.

Holt’s method is used to compute the portion of the model ascribed to the

additive trend portion of the model. (The seasonal component is discussed later

in this section.) To compute the trend components of the model, the forecast

equation is decomposed into two parts: a level and a trend. In forecasts, where

the x value is considered to be the number of time steps into the future, the level

takes on the role of an intercept parameter, and the trend takes the role of a slope

parameter in the simple linear regression. The basic forecast is then fairly simple:

public class HoltForecast {
 double level = 0;
 double trend = 0;

 public HoltForecast(double level,double trend) {
 this.level = level;
 this.trend = trend;
 }

 public double forecast(double x) {
 return level + trend*x;
 }

}

 Chapter 11 ■ Beyond Aggregation 391

c11.indd 05:33:47:PM 06/12/2014 Page 391

To update the forecast when new data arrives, the level and trend are maintained

as separate exponentially smoothed variables. The smoothing parameter a is used

for both the trend and the level component, and the smoothing parameter b is

used only for the trend component. Each component is adjusted by the error in

the forecast and the observed value, much like the gradient descent algorithms

used by neural networks. This is equivalent to exponential smoothing and is

known as the error correcting form; it’s shown here:

double a = 0.0;
double b = 0.0;

public HoltForecast(double level,double trend,double a,double b) {
 this.level = level;
 this.trend = trend;
 this.a = a;
 this.b = b;
}
public HoltForecast(double level,double trend) {
 this(level,trend,0.2,0.8);
}
public double error(double y) { return y - forecast(1.0); }
public double update(double y) {
 double e = error(y);
 level = level + trend + a*e;
 trend = trend + a*b*e;
 return e;
}

The seasonal component of this model was later added in what has become

known as the Holt-Winters forecast. There are two types of seasonal models used

in Holt-Winters: additive and multiplicative. Both require two extra parameters:

a seasonal period s and a smoothing parameter g. In this example, the length

of the period is passed in with the initial estimates of the seasonal contribution

to the forecast:

public class SeasonalForecast extends HoltForecast {

 double[] s;
 double g = 0.0;
 long t = 0;
 public SeasonalForecast(double level, double trend,
 double a, double b,double[] s,double g) {
 super(level, trend, a, b);
 this.s = s;
 this.g = g;
 this.t = 0;
 }
}

392 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 392

The period of the seasonality in this method must be selected ahead of time,

although it is usually fairly intuitive. For many of the classical applications of

this method, the period is either 4 or 12 depending on whether the data are

quarterly or monthly outputs. For real-time applications, the period is often

something like hourly or daily, leading to periods of 24 or 7, respectively.

For the additive seasonal forecast, the seasonal estimate for each time period

in the future is added to the output of the Holt forecast:

public class AdditiveForecast extends SeasonalForecast {

 public AdditiveForecast(double level, double trend,
 double a, double b,double[] s, double g) {
 super(level, trend, a, b, s, g);
 }

 @Override
 public double forecast(double x) {
 int h = (t + (int)Math.floor(x-1.0)) % s.length;
 return super.forecast(x) + s[h];
 }

When initializing the seasonal component, the sum of all the components

should be approximately equal to zero.

For the update step, the error remains the same difference between the observed

value and the forecasted value. The update of the seasonal value only depends

on the error and the values of a and g, so it can be updated independently of

the level and trend values:

 @Override
 public double update(double y) {
 double e = super.update(y);
 s[t] = s[t] + g*(1-a)*e;
 t = (t + 1) % s.length;
 return e;
 }

The multiplicative forecast is somewhat more complicated. The forecast step

multiplies the seasonal value by the output of the Holt forecast:

 @Override
 public double forecast(double x) {
 int h = (t + (int)Math.floor(x-1.0)) % s.length;
 return super.forecast(x)*s[h];
 }

Using this forecast, using the normal error between the forecasted value and

the observed value would require that the error term for the level and trend

updates be divided by the seasonal value used for the forecast. To allow the use

 Chapter 11 ■ Beyond Aggregation 393

c11.indd 05:33:47:PM 06/12/2014 Page 393

of the original Holt forecast update, the error term is stated with this division

already in place:

@Override
public double error(double y) {
 return super.error(y)/s[t];
}

This is then corrected in the computation of the seasonal update. The seasonal

update is divided by the sum of the level and trend terms in the same way as

the level and trend updates were divided by the seasonal update:

 @Override
 public double update(double y) {
 double z = level() + trend();
 double e = super.update(y)*s[t];
 s[t] = s[t] + (1-a)*g*e/z;
 t = (t + 1) % s.length;
 return e;
 }

Although the initial seasonal components of the additive forecast should

roughly cancel each other out, the seasonal components of the multiplicative

forecast should sum to roughly the length of the period. Both the models tend

to work fairly well, but it is often the case that the multiplicative model fi ts real-

world data a bit better than its additive counterpart.

Regression Methods

The same ideas as the exponential smoothing approach can also be used with

a regression model. Although the choice of variables for regression is virtually

infi nite, assuming enough data has been collected to support the chosen vari-

ables, one place to start is simply the k most recent observations.

public void streamingRegressionTest() {
 int k = 14;

 double[] x = new double[k];
 double y;
 double t = 0.0;
 MersenneTwisterFast twist = new MersenneTwisterFast();
 MillerUpdatingRegression rm = new MillerUpdatingRegression(k,true);
 for(int i=0;i<1000;i++) {
 double base = Math.sin(t);
 y = base + 0.5*twist.nextGaussian();
 //Update the input time series
 if(i >= x.length) {
 rm.addObservation(x, y);

394 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 394

 if(rm.getN() > 2*x.length) {
 double B[] = rm.regress().getParameterEstimates();
 double y2 = B[0];
 for(int j=0;j<x.length;j++)
 if(!Double.isNaN(B[j+1])) y2 += B[j+1]*x[j];
 for(int j=0;i<x.length-1;j++) x[i] = x[i+1];
 x[x.length-1]=y;
 }
 } else {
 x[i] = y;
 }
 t += 2.0*Math.PI/60.0;
 }
}

This example uses the Miller method, which is a technique for updating the

QR factorization. It would also be possible to use the gradient descent technique

discussed earlier, especially if you’re using logistic regression instead of linear

regression. However, this version works passably well, as shown in Figure 11-6.

That said, neural networks often perform better at this task, as shown in the next

section. In Figure 11-6 the original signal is identifi ed by a dotted line; the observed

data is represented by the gray dots; and the predicted values are identifi ed by

the solid line.

Figure 11-6

Neural Network Methods

Like the regression method, the neural network can be used to forecast time-

series data. As with the regression method, the inputs are lagged observed

values, and the output is a prediction of the next n values. For example, the

 Chapter 11 ■ Beyond Aggregation 395

c11.indd 05:33:47:PM 06/12/2014 Page 395

following test code uses a simple neural network that uses the previous k

observed values as its input. The output is a prediction for the next point in

the time series.

The neural network itself is initialized with k input units, a hidden layer

containing an arbitrarily chosen fi ve units and a single output layer:

int k = 14;

double[] x = new double[k];
double[] y = new double[1];
double t = 0.0;
MersenneTwisterFast twist = new MersenneTwisterFast();
NeuralNetwork nn = NeuralNetwork.build()
 .inputs(k)
 .layer(5)
 .layer(1)
.initialize();

In this example, simulated data is generated from a sine wave and then noise

is added to the signal:

for(int i=0;i<1000;i++) {
 double base = Math.sin(t);
 y[0] = base + 0.5*twist.nextGaussian();
 //Update the input time series
 if(i >= x.length) {
 nn.train(x, y);
 System.out.println(nn.output()[0]+"\t"+y[0]+"\t"+base);
 //Move the time series over
 for(int j=0;i<x.length-1;j++) x[i] = x[i+1];
 x[x.length-1]=y[0];
 } else {
 x[i] = y[0];
 }
 t += 2.0*Math.PI/60.0;
}

The fi rst k steps of the process are used to fi ll the input vector. After the input

vector has been fi lled, the update algorithm is run every time a new input arrives.

In this particular implementation of a feed-forward neural network, training

the model on an observation also generates a prediction for the outputs prior

to the update of the model.

The neural network in this example is being updated in an online fashion. A

particular data point is only used once in the model, and all data is eventually

used to improve the model. This example produces the predicted value, base value

without noise, and the noisy value used as the input to the model. Figure 11-7

shows these three values against each other, where the neural network manages

to recover the original signal fairly well. The original signal is represented by a

396 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 396

dotted line; the gray dots indicate the actual observed values; and the solid line

indicates the prediction for each observed value made by the neural network.

Figure 11-7

Monitoring

Systems monitoring is the classic application for real-time data collection and

analysis. This usually involves collecting the number of events over a period

of time quantized to a particular frequency.

For example, a website might collect the number of each type of HTTP responses

per minute. Changes in the frequency of error (5xx) responses usually warrant

some type of response, although they also occur due to transitory events such

as extreme load spikes. A change in the frequency of correct (2xx) responses

might also warrant a response. For a news site, a breaking story that “goes viral”

could have any number of possible responses.

There are also the classic system-monitoring applications that track aspects

of the machines running the website. In this case, different gauges are tracked:

CPU load, fan speed, disk and network I/O. Changes in these values are often

indicative of external changes or failing hardware. Other more fanciful appli-

cations might include large-scale medical monitoring for hospitals or traffi c

monitoring for freeways.

In any case, irrespective of the application area, the goal of monitoring sys-

tems is simple: Identify changes to the system, notify operators of the change,

and minimize the occurrences of false alarms. This is more generally known

as anomaly detection.

 Chapter 11 ■ Beyond Aggregation 397

c11.indd 05:33:47:PM 06/12/2014 Page 397

Outlier Detection

The simplest form of anomaly detection is outlier detection. Outliers are obser-

vations that fall far away from their expected values, but in such a way that the

process producing the data remains unchanged. In a fi xed dataset, it is usually

fairly easy to identify the outliers with methods ranging from visual inspec-

tion to goodness-of-fi t methods. These methods usually do not translate well

to the online setting, where the most common approach is to use a threshold

mechanism to identify outliers.

The online versions of these techniques rely on the deviation of the value

from its predicted value. The primary difference between them is the metric

they use to decide that a value is truly an outlier. Regardless, they rely on the

implementation of a forecaster, which could be simply defi ned by this interface:

public interface Forecaster {
 public double forecast(double y);
}

Any forecasting mechanism discussed in this chapter can be used to support

outlier detection. Building on the previous section, this forecaster is implemented

using the neural network time-series forecaster with a hidden layer:

public class NeuralNetworkForecaster implements Forecaster {

 NeuralNetwork nn;
 int n;
 double[] x;
 double[] Y = new double[1];
 public NeuralNetworkForecaster(NeuralNetwork nn) {
 this.nn = nn;
 }

 public NeuralNetworkForecaster(int n) {
 this(NeuralNetwork.build().inputs(n).layer(n).layer(1));
 this.n = n;
 this.x = new double[n];
 }

 public NeuralNetworkForecaster() {
 this(20);
 }

 public double forecast(double y) {
 if(n > 0) {
 x[x.length - n] = y;
 y = n < x.length ? x[(x.length - n) - 1] : y;
 n--;

398 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 398

 return y;
 } else {
 Y[0]=y;
 y=nn.train(x, Y).output()[0];
 for(int i=0;i<x.length-1;i++)
 x[i]=x[i+1];
 x[x.length-1] = Y[0];
 return y;
 }
 }

}

This is then used as the basis for an outlier detector. The simplest form of

detector simply tracks values that are more than some number of standard

deviations—usually 3—from the forecasted value based on the errors of the

last n observations, which are stored in the outlier detector:

public class ThresholdDetector {
 Forecaster f;

 int n;
 double sigma;
 LinkedList<Double> values = new LinkedList<Double>();
 double s2;

 public ThresholdDetector(Forecaster f,int n,double sigma) {
 this.f = f;
 this.n = n;
 this.sigma = sigma;
 }

 public ThresholdDetector(Forecaster f,int n) {
 this(f,n,3);
 }

 public ThresholdDetector(Forecaster f) {
 this(f,30);
 }

When a new observation arrives, it is run through the forecaster to determine

the error. If the error exceeds the number of standard deviations specifi ed by

sigma, it is considered an outlier. In this case, it is not used to update the stan-

dard deviation of the errors to avoid skewing the data. Otherwise, the standard

deviation calculation is updated to refl ect a non-outlier value:

 public boolean observe(double y) {
 double err = y - f.forecast(y);
 double sig = Math.sqrt(s2/((double)n-1.0));

 Chapter 11 ■ Beyond Aggregation 399

c11.indd 05:33:47:PM 06/12/2014 Page 399

 //If this is an outlier don't include it in s2
 if(Math.abs(err)/sig > sigma)
 return true;
 //Otherwise update our standard deviation
 s2 += err*err;
 if(values.size() == n)
 s2 -= values.removeFirst();
 values.add(err*err);

 return false;
 }

There are other approaches, but they mostly employ this basic framework

for their updates. For example, rather than using the standard deviation, many

outlier detectors declare an outlier as being outside 1.5 or 3 times the interquartile

range. This was originally used to identify outliers in boxplot visualizations and

has since been repurposed for outlier detection. This is further generalized by

scan statistic approaches, which use the percentiles of the error to determine

whether the process is in an outlier state.

Change Detection

Outlier detection as discussed in the previous section assumes that the observed

outlier is a true anomaly and does not represent a fundamental change in the

process generating the time series. These changes are much longer lived and are

usually fi t in a retrospective manner using fairly sophisticated approaches, such

as clustering or Hidden Markov Models. There are fewer online approaches to

change detection, and those that exist generally depend on the maintenance of

at least two forecasts over the data. These various forecasts’ errors are compared

to determine if the underlying process has undergone a shift.

An example of this approach can be found in the fi nance community in

the form of the Moving Average Convergence Divergence (MACD) indicator.

Introduced in the 1970s, this indicator uses three different exponential moving

averages to indicate changes in trends. Originally this approach was applied

to detecting changes in the trend of a stock’s price, but the approach is very

similar to more modern approaches to change detection.

In the standard formulation, the closing prices for a stock are used to compute

an exponential moving average (EMA) with a period of 12 days, a period of 26

days, and a period of 9 days. The difference between the 12-day EMA and the

26-day EMA is known as the MACD. The 9-day EMA is known as the signal

line. When the MACD crosses from below the signal line to above the signal line,

the stock is interpreted to have shifted to a positive trend. When the opposite

happens, the stock is interpreted to have shifted from a positive trend to a nega-

tive trend. Similarly, the MACD line moving from negative to positive and from

400 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 400

positive to negative has the same interpretation, but it is generally considered

to be weaker evidence than the crossing of the signal line.

There are many variations on this approach that use shorter and longer EMAs

depending on the application, but it allows for an easily implemented method

of detecting changes in trend. The primary problem is that it is prone to false

signaling of changes in the trend. An extension would do the same thing, but

it would track trends in the error between a forecaster and the actual value.

This can be useful when there is known seasonality in the data that should

be removed before tracking the trend. Using the Holt-Winters forecaster, one

approach would track changes in the trend component of the model.

Real-Time Optimization

If a metric is being monitored for changes, presumably there is some action

that can be taken to mitigate undesirable changes in the metric or emphasize

positive changes in the metric. Otherwise, outside of its entertainment value,

there is little use in tracking the metric.

The more interesting situations that arise are when the metric is an outcome

that can be affected by a process that can be automatically controlled. For example,

an e-commerce website might have two different designs that are hypothesized

to have different returns (either the number of sales or the dollars per session

for each design). Testing which design performs best is known as A/B testing

and is often performed sequentially by launching a new site and tracking the

average session value compared to the old site. A more sophisticated approach,

often used by large consumer websites, is to perform the experiment by exposing

some fraction of users to the new design and tracking the same value.

However, if the size of the exposed populations for each design can be con-

trolled, then it is possible to automatically choose the best design over time

without explicit control. One way of doing this is using the so-called multi-armed

bandit optimization strategy.

The premise of this strategy is that a player has entered a casino full of slot

machines (also known as one-armed bandits). Each machine has a different rate

of payout, but the only way to determine these rates is to spend money and play

the machine. The challenge for the player is then to maximize their return on

the investment (or if it is a real casino, minimize its loss). Intuitively, the player

would begin by assuming that all machines are equal and playing all of them

equally. If some machines have higher payouts than the rest, the player would

then begin to focus more of their attention on that subset of machines, eventu-

ally abandoning all other machines.

In the context of website optimization, the two different designs are the

one-armed bandits, and “playing” the game assigns a visitor to one of the two

 Chapter 11 ■ Beyond Aggregation 401

c11.indd 05:33:47:PM 06/12/2014 Page 401

designs when they arrive at the site. The only problem is to decide which design

a visitor should see.

For the purposes of demonstration, assume that a visitor either buys a product

or not, and all of the products have the same price. In this case, it is only neces-

sary to model the probability of a purchase rather than modeling the values

directly. As each user arrives, the exposed design is tracked, as is the fact that

the users have purchased something using the following class. The exposure

is incremented using the expose method, and the purchase is tracked using the

success method as shown here:

public class BernoulliThompson {
 double[] n;
 double[] x;

 public BernoulliThompson(int classes) {
 n = new double[classes];
 x = new double[classes];
 }

 public void expose(int k) {
 if(k < n.length)
 n[k] += 1.0;
 }

 public void success(int k) {
 if(k < x.length) x[k] += 1.0;
 }

Recall the discussion of the beta distribution in Chapter 9 as a model for the

probability of a Bernoulli trial. When the experiment begins, it is unknown

what the conversion rates will be, so perhaps it is best to assign the rates for the

different classes a uniform distribution, which can be modeled with a Beta(1,1)

distribution. After some visits have been observed, the Beta distribution for each

class can be updated to be a Beta(1+x,1+n-x) distribution. This is known as a

posterior distribution and is used to select the design for a new visitor. Next

a conversion rate is drawn from the posterior distribution of each design. The

design with the largest conversion rate is then assigned to this visitor as follows:

Distribution d = new Distribution();
public int choose() {
 int max = -1;
 double mu = Double.NEGATIVE_INFINITY;
 for(int i=0;i<x.length;i++) {
 double alpha = 1.0 + x[i];
 double beta = 1.0 + (n[i] - x[i]);
 double x = d.nextBeta(alpha,beta);
 if(x > mu) {

402 Part II ■ Analysis and Visualization

c11.indd 05:33:47:PM 06/12/2014 Page 402

 max = i;
 mu = x;
 }
 }
 return max;
}

This technique is known as Thompson Sampling, and it can be extended to

any distribution. For example, using the average value rather than the conversion

rate might be modeled by using an exponential distribution instead of the beta

distribution. The sampling procedure is still the same; it simply uses the largest

payout sampled from the distribution rather than the largest conversion value.

For the most part, these values are easily updated and allow the optimization

of the website design to be conducted in real time.

After using a basic estimate, the next logical step is to use a model rather

than simply using the empirical value for each design. It might be the case that

different populations of users respond differently to each design. In that case,

being able to predict an average value or a conversion rate using one of the

models discussed earlier in this chapter enables the optimizer to choose the

best design for each user to maximize the return for the site.

Conclusion

The techniques in this chapter are by no means the only approaches to solv-

ing problems such as forecasting, anomaly detection, and optimization. Entire

books could and have been written on both the general topics and the specifi c

techniques covered in this chapter. Additionally, the techniques presented

here remain active areas of academic and industrial research; new refi nements

and approaches are being developed all the time. The goal for this chapter was

to provide a brief introduction into the approaches to give practitioners some

grounding in their use and a basis of comparison for other techniques.

With that, it is also important to remember that even the simplest techniques

can yield good results. It is often better to use the simplest method that could

possibly work across a number of different problems before returning to the

original problem to further optimize the approach. In many cases, going from

50 percent of optimal to 80 percent of optimal is achievable by relatively simple

approaches, whereas it takes a very sophisticated approach to get from 80 per-

cent of optimal to 90 percent of optimal. For example, the famous Netfl ix prize

offered $1 million to the team that could produce a 10 percent improvement in

its recommendation engine. Although a team accomplished this feat, the full

algorithm was never implemented because the cost of implementation outweighed

the gains from further improvement of the algorithm.

403

bindex.indd 06:22:59:PM 06/06/2014 Page 403

Index

NUMBERS
0MQ, 122
10gen, 180

A
A/B testing, 3–4, 368, 400
AbstractChannelSelector class, Flume, 97–98
AbstractSource class, Flume, 105–106
Acceptor, Paxos, 38
ACID (Atomicity, Consistency, Isolation,

Durability), 20, 21
activation function, 380–389
ActiveMQ, 19, 64, 71, 77, 102–103
Advanced Message Queuing Protocol (AMQP),

141
agent command, Flume, 115
agents, Flume, 92–95, 114–115
Aggarwal, Charu, 329
aggregation. See also stochastic optimization

Cassandra, 214
and distributed hash table stores, 216
MongoDB, 190–199
multi-resolution time-series, 290–295
and relational databases, 217
timed counting, 285–290
Trident, 147–150

Agrawala, Maneesh, 301
AJAX (Asynchronous JavaScript and XML),

22–23
Algorithm R, 327
Amazon

DynamoDB, 203, 216
EC2, 83, 84, 204, 205
Kinesis, 74
Route 53 DNS service, 83

AMQP (Advanced Message Queuing Protocol),
141

animation, D3, 271–272
ANN (artifi cial neural network), 380
anomaly detection, 396

change detection, 399–400
outlier detection, 397–399

Apache Commons Math Library, 377
Apache Flume. See Flume
Apache Kafka. See Kafka
Apache ZooKeeper. See ZooKeeper
approximation

sketches, 331–332
Bloom fi lters, 338–347
Count-Min, 356–364
Distinct Value, 347–355
hash functions, 332–336
registers, 332
working with sets, 336–338

statistical analysis, 305–306
numerical libraries, 306
random number generation, 319–324
sampling procedures, 324–329

architectures
Apache YARN, 152–153
Cassandra, 204
checklist, 30–34
components, 16–24
features, 24–27
Lambda Architecture, 223
languages, 27–30

arcTo command, HTML5 Canvas, 257
artifi cial neural network (ANN), 380
ASCII data type, CQL, 209
Asynchronous JavaScript and XML (AJAX), 22–23
Atomicity, Consistency, Isolation, Durability

(ACID), 20, 21
attribution process, 364
Avro sink, Flume, 108
Avro source, Flume, 98–99

404 Index ■ B–C

bindex.indd 06:22:59:PM 06/06/2014 Page 404

B
Backhoe Event, 37
backpressure, 104
backpropagation, 384–389
BackType, 20, 119–120
basic reservoir algorithm, 326, 327–329
bc command, Kafka, 82
Bernoulli distribution, 378
beta distributions, 314, 322
biased streaming sampling, 327–329
BIGINT data type, CQL, 209
BigTable, 170, 203, 216
binomial coeffi cient, 311
binomial distributions, 311
Birthday Paradox, 335–336
BLOB data type, CQL, 209
Bloom fi lters, 338–347

algorithm, 338–340
cardinality estimation, 342–343
intersections, 341–342
size, 340–341
unions, 341–342
variations, 344–347

bolts, 120
basic, 135
counting in, 286–288
implementing, 130–136
logging, 135–136
rich, 131–133

BOOLEAN data type, CQL, 209
Boost Library, 306
Bootstrap, 237, 238, 277
Bostock, Mike, 280, 302
bot networks, 343
Box-Muller method, 322
brokers, Kafka

confi guring, 81–88
interacting with, 89–92
multi-broker clusters, 88–89
replication, 78–79
space management and, 77
starting clusters, 88

BRPOPLPUSH command, Redis, 174
byte code, 29

C
callback pyramid of doom, 230–231
callback-driven programming, 229–230
Camus, 75, 218–221, 222–223
CamusWrapper class, 219–221
capped collections, MongoDB, 183–184
cardinality, 9–10
Cash Register models, 356, 357
Cassandra, 203–214

cluster setup, 205–206
confi guration options, 206–207
CQL (Cassandra Query Language), 207–208
insert and update operations, 211–214
keyspaces, 208–211

reading data from, 214
server architecture, 204

central moments, 310
change detection, 399–400
channel selectors, Flume, 95–98
channels, Flume, 110–112
checkExists command, ZooKeeper, 60, 62–63
chi-square distribution, 313–314, 322–324
classic Storm, 120
Clojure, 28–29
clusters

Cassandra, 205–207
horizontal scaling, 26–27
Kafka, 75, 79, 88–89
Redis, 179–180
Storm, 120–126
ZooKeeper, 42–47

collection, 31
collections, MongoDB, 182–184
Colt numerical library, 306, 311, 320
Comet, 23
Command<E> interface, 293–295
complement of a set, 336
conditional probability, 307–309, 315
confi guration and coordination, 35

maintaining distributed state, 36–39
motivation for, 36
ZooKeeper. See ZooKeeper

consistency, 20–21
Cassandra, 203
Redis, 170
ZooKeeper, 41

consistent hashing, 168–169
Consumer implementation, Kafka, 91–92
continuous data delivery, 7–8
continuous distributions, 312–314
correlation, 315
Count-Min sketch algorithm, 356–363

Heavy Hitters list, 358–360
implementation, 356, 357–358
point queries, 356–357
top-K lists, 358–360

COUNTER data type, CQL, 209
counting

timed, 285–290
Word Count example, 149–150

Counting Bloom Filters, 344–346
covariance, 315
CQL (Cassandra Query Language), 203, 207–208.

See also Cassandra
cqlsh command, CQL, 207–214
cubism.js project, 302
Curator client, 56–63

adding to Maven project, 56–57
connecting to ZooKeeper, 57–59
using watches with, 62–63
working with znodes, 59–62

Curator recipes, 63–70
distributed queues, 63–68
leader elections, 68–70

bindex.indd 06:22:59:PM 06/06/2014 Page 405

 Index ■ C–E 405

CuratorFramework class, ZooKeeper, 57–59
CuratorFrameworkFactory class, ZooKeeper,

57–59
custom sinks, Flume, 109–110
custom sources, Flume, 105–107

D
D3.js, 29–30, 262–272

animation, 271–272
attributes and styling, 263–264
inserting elements, 263
joining selections and data, 265–267
layouts, 269–271
removing elements, 263
scales and axes, 267–269
selecting elements, 263
shape generators, 264–265
strip charts, 298–299

dashboard example, 238–243, 251–254
data collection, 16–17, 31
Data Driven Documents. See D3.js
data fl ow, 17–19, 31–32

distributed systems, 72–74
Flume. See Flume
Kafka. See Kafka
Samza integration, 157

data grids, 215, 217
data models, 368–369

Flume, 95
forecasting with, 389–396
linear, 373–378
logistic regression, 378–379
neural network, 380–389
time-series, 369–373

data processing
coordination, 118–119
merges, 119
overview, 118–119
partitions, 119
with Samza. See Samza
with Storm. See Storm
transactional, 119

data sets, high-cardinality, 9–10
data storage, 20–22

Cassandra, 203–214
consistent hashing, 168–169
data grids, 215, 217
MongoDB, 180–203
Redis, 170–180
relational databases, 215, 217
technology selection considerations, 215–217
warehousing, 217–223

data types
CQL (Cassandra Query Language), 209
Redis, 173, 175

data visualization
D3 framework, 262–272
HTML5 Canvas, 254–260
Inline SVG, 260–262

NVD3, 272–274
Vega.js, 274–277

databases
Cassandra. See Cassandra
MongoDB, 182–183, 182–184
NoSQL. See NoSQL storage systems
round-robin, 290
sharding. See sharding

datum command, NVD3, 273
DECIMAL data type, CQL, 209
DECR command, Redis, 173
DECRBY command, Redis, 173
deep learning, 3, 383
delete command, ZooKeeper, 40, 62
delta method, 317–319
DHTs (distributed hash tables), 217
dimension reduction, 330, 364
discrete distributions, 310–312
Distinct Value (DV) sketches, 347–348

HyperLogLog algorithm, 351–355
Min-Count algorithm, 348–351

distributed hash tables (DHTs), 217
distributed queues, 63–68
Distributed Remote Procedure Calls (DRPC),

142–144
distributions

continuous, 312–314
defi nition of, 24
Delta Method, 317–319
discrete, 310–312
generating specifi c, 321–324
inequalities, 319
inferring parameters, 316–317
joint, 315–316
statistical, 310

document stores
MongoDB, 180–203
selection considerations, 216

DOUBLE data type, CQL, 209
double hashing, 334–335
DRPC (Distributed Remote Procedure Calls),

142–144
dump command, ZooKeeper, 45
DV (Distinct Value) sketches, 347–348

HyperLogLog algorithm, 351–355
Min-Count algorithm, 348–351

dyadic intervals, 361–362
DynamoDB, 203, 216

E
EC2, Amazon, 83, 84, 204, 205
edge servers, 16, 17, 31
Elasticache, 171
Elasticsearch, 107, 115
empty sets, 336
envi command, ZooKeeper, 45–46
ephemeral znodes, 40
epoch number (Zab), 41
error correcting form, 391

bindex.indd 06:22:59:PM 06/06/2014 Page 406

406 Index ■ E–H

Etcd, 39, 70
ETL (extract-tranform-load) tools, 217

Hadoop as, 218–223
EVAL command, Redis, 177
EVALSHA command, Redis, 177
Event-Driven sources, Flume, 105–107
EventEmitter class, Node, 230–231, 243
EventSource class, Node, 245
eventual consistency, 21

Cassandra, 203
Redis, 170

exclusive-or (XOR) pattern, 387–388
Exec source, Flume, 103–104
EXISTS command, Redis, 172
expectation, 309–310

Delta Method, 317–319
method of moments, 317

exponential distributions, 314, 321–322
exponential moving average, 372–373
exponential smoothing methods, 390–393
exponentially biased reservoir sampling,

328–329
express.js framework, 237

F
factorial functions, 308, 335–336
fat jars, 125–126
feed-forward networks

backpropagation algorithm, 384–389
multi-layer implementations, 381–384

File channel, Flume, 111
fill command, HTML5 Canvas, 257
FilterDefinition class, Storm, 133–135
fi rst success distribution, 311
Fisher-Yates Shuffl e, 325–327
Flajolet

HyperLogLog algorithm, 351–355
stochatic averaging, 349

FLOAT data type, CQL, 209
fl ow management, 71–72

distributed data fl ows, 72–74
Kafka. See Kafka
Flume. See Flume

Flume
agents, 92–95, 114–115
channels, 110–112
crosspath integration, 114
custom component integration, 114
data model, 95
interceptors, 112–114
plug-in integration, 114
sink processors, 110
sinks, 107–110
sources, 98

Avro, 98–99
custom, 105–107
Exec, 103–104
HTTP, 101–102
Java Message System (JMS), 102–103
Netcat, 99–100

Spool Directory, 104–105
Syslog, 100–101
Thrift, 99

Storm connections, 141
FNV (Fowler, Noll, and Vo) hash, 333–334
forecasting, 389–396

exponential smoothing methods, 390–393
neural network methods, 394–396
regression methods, 393–394

four-letter words, ZooKeeper, 45
Fowler, Noll, and Vo (FNV) hash, 333–334
frequency tables, 356
functions

activation, 380–389
factorial functions, 308, 335–336
hash functions, 332–336
inner functions, 236
moment generating, 317, 319
outer functions, 236
sigmoid functions, 380, 382

G
gamma distributions, 314, 322–324
generalized linear models (GLMs), 378
geometric distributions, 311–312
GET command, Redis, 172
getChildren command, ZooKeeper, 40, 60,

61–62
getData command, ZooKeeper, 40,

60–61, 62
Giroire, Frédéric, 348
GLMs (generalized linear models), 378
GNU Lesser General Public License (LGPL), 306
GNU Scientifi c Library, 306
Go language, 30
Google

BitTable, 170, 203, 216
Go language, 30
HyperLogLog++, 354–355
Protocol Buffers, 17
V8 engine, 20, 228

gossip protocol, Cassandra, 204–206
gradient descent, 379, 394

H
Hadoop, 218–223

for ETL processes, 223
event vs. processing time, 222
ingesting data from Flume, 221
ingesting data from Kafka, 218–221
map-reduce processing, 19–20

hash functions, 332–336
and the Birthday Paradox, 335–336
double hashing, 334–335
independent, 333–334

hash tables
distributed stores, 216
double hashing, 334–335
Redis, 172–173

bindex.indd 06:22:59:PM 06/06/2014 Page 407

 Index ■ H–K 407

Hazelcast, 215
Heaviside step function, 380, 382
Heavy Hitters list, 358–360
Heer, Jeffrey, 301
HGET command, Redis, 173
HGETALL command, Redis, 173
Hidden Markov Models, 399
high availability, 24–25
high-cardinality data sets, 9–10
high-speed canvas charts, 299–301
HINCRBY command, Redis, 173
HINCRBYFLOAT command, Redis, 173
Hive, 223
HMGET command, Redis, 173
HMSET command, Redis, 173
Holt-Winters models, 390–393
horizon charts, 282, 301–302
horizontal scaling, 26–27
Host interceptor, Flume, 112–113
HSET command, Redis, 173
HTML5 Canvas, 254–260
HTTP source, Flume, 101–102
Hummingbird, 300–301
hyperbolic tangent, 380, 382–384
hypergeometric distributions, 311
HyperLogLog algorithm, 351–356

implementing, 352–354
improvements to, 354–355
real-time unique visitor pivot tables, 355

HyperLogLog++, 354–355

I
identity matrix, 377
IDL (interface defi nition language), 17, 98
immediate mode implementations, 24
impressions, 340
in-memory data grids, 215, 217
in-sync replicas, 26, 78, 199
inclusion-exclusion principle, 337–338, 355
INCR command, Redis, 173
INCRBY command, Redis, 173
INCRBYFLOAT command, Redis, 173
independent hash functions, 333–334
indexing, MongoDB

basic, 184–185
full text, 186
geospatial, 185–186
optional parameters, 186–187

INET data type, CQL, 209
info command, Redis, 172
Inline SVG, 260–262
inner functions, 236
insert and update operations

Cassandra, 211–214
MongoDB, 188–189

installing
Kafka, 80–81
ZooKeeper server, 42–44

INT data type, CQL, 209
intercept term, 374

interceptors, Flume, 112–114
interface defi nition language (IDL), 17, 98
Internet of Things, 5–7
intersection of a set, 336

J
Jaccard Index, 343
Jaccard Similarity, 344, 350–351
Java, 27–28
Java client, ZooKeeper

adding ZooKeeper to Maven project,
47–48

connecting, 48–56
Java Database Connection (JDBC) channel,

Flume, 111–112
Java Management Extensions (JMX), 45, 89
Java Message System (JMS) source, Flume,

102–103
Java Virtual Machine (JVM), 28, 29, 31, 89
JavaScript, 29–30

lexical scoping, 236
JBOD (Just a Bunch of Disks), 84, 111, 205
JDBC (Java Database Connection) channel,

Flume, 111–112
Jenkins hash, 333
Jensen’s inequality, 319
JMX (Java Management Extensions), 45, 89
jobs, Samza, 157–166

confi guring, 158–160
executing, 165–166
implementing stream tasks, 16
initializing tasks, 161–163
packaging for YARN, 163–165
preparing job application, 158
task communication, 160

joint distributions, 314–316, 315–316
Just a Bunch of Disks (JBOD), 84, 111, 205
JVM (Java Virtual Machine), 28, 29, 31, 89

K
Kafka, 74

brokers, 75, 89–92
confi guring environment, 80–89
design and implementation, 74–79
installing, 80–91
prerequisites, 81
replication, 78–79, 84–88
Samza integration, 157
Storm integration, 140–141

Kenshoo, 141
kernels

exponential moving average, 372–373
weighted moving average, 370–372

key-value stores, 21, 169–170
Cassandra, 203–214
Redis, 170–180

keyspaces, Cassandra, 208–211
kill command, Storm, 125
Kinesis, 74

bindex.indd 06:22:59:PM 06/06/2014 Page 408

408 Index ■ K–N

Kirsch and Mitzenmacher, 334
Kong, Nicholas, 301
Kreps, Jay, 76

L
Lambda architecture, 22, 223
LCRNG (Linear Congruential Generator

random number generator), 319–320
leader elections

using Curator, 68–70
using ZooKeeper, 49–56

LeaderElection class, ZooKeeper, 49–56
LeaderLatch class, ZooKeeper, 68, 69
LeaderSelector class, ZooKeeper, 68–69
learning rate, 296, 379, 386
least squares model, 373
Lesser General Public License (LGPL), 306
lexical scoping, 236
LGPL (Lesser General Public License), 306
Lightweight Transactions, Cassandra, 212
Linear Congruential Generator random number

generator (LCRNG), 319–320
Linear Counting, 352
linear models, 369, 373–378

multivariate linear regression, 376–378
simple linear regression, 374–376

lineTo command, HTML5 Canvas, 257
LinkedIn

Apache Kafka project, 74
Camus and, 218
Samza project, 151

LIST data type, CQL, 209
lists

Redis, 173–174
top-K, 358–360

lock servers, 118
log collection. See Flume
logistic function, 380, 382
logistic regression, 378–379
long tail, 9
longitudinal data, 6
loosely structured data, 8–9
Lorem Ipsum spout, Storm, 138–140
low latency, 25–26
LPOP command, Redis, 173
LPOPLPUSH command, Redis, 174
LPUSH command, Redis, 173, 174
LREM command, Redis, 174
Lua, 177–178

M
MACD (Moving Average Convergence

Divergence), 399–400
MAP data type, CQL, 209
Markov inequality, 319
Marz, Nathan, 22, 223
Maven, 28

Apache Commons Math library, 377
assembly plug-in, 163–165

Curator, adding, 56–57
Samza packages, 158
topology projects, starting, 125–126
ZooKeeper, adding, 47–48

maximum likelihood estimation, 316–317
mean, 309
Memory channel, Flume, 111
MemoryMapState class, Trident, 148
merges, 119
method of moments, 317
methods

JavaScript, 29
stochastic optimization, 296–297
web communication, 22–23
web rendering, 23–24

metro collections, MongoDB, 189–190, 191–195
MGET command, Redis, 172
Microsoft VML (Vector Markup Language), 23,

260, 261
Min-Count sketch algorithm, 348–351

computing set similarity, 350–351
implementing, 349–350

Min-wise Hashing, 350–351
MirrorMaker, 79, 157
mobile streaming applications, 277–279
moment generating function, 317, 319
momentum backpropagation, 388–389
mongod, 180–181, 201–202
MongoDB, 180–203

basic indexing, 184–185
capped collections, 183–184
collections, 182–184
full text indexing, 186
geospatial indexing, 185–186
insert and update operations, 188–189
metro collections, 189–190, 191–195
model, 180
replication, 199–200
setup, 180–182
sharding, 200–203

mongos, 200–203
Most Recent Event Tracking, 177–178
moveTo command, HTML5 Canvas, 257
moving average, 369–370
Moving Average Convergence Divergence

(MACD), 399–400
MSET command, Redis, 172
multi-armed bandit optimization strategy, 368,

400–402
Multi-Paxos, 38–39
multi-resolution time-series aggregation,

290–295
multiplexing selectors, Flume, 96–97
multivariate linear regression, 376–378
MurmurHash, 333, 338–340

N
naïve set theory, 336
negative binomial distributions, 311–312
Netcat source, Flume, 99–100

bindex.indd 06:22:59:PM 06/06/2014 Page 409

 Index ■ N–R 409

Netty transport, 123
Network of Workstations (NOW) environments,

35
Network Time Protocol (NTP), 37
networks

bot networks, 343–344
Kafka threads for processing requests, 83
local topology, 204
NAS and Cassandra, 205–206
neural network models, 380–389, 394–396
NTP (Network Time Protocol), 37
unreliable connections, 36–37

neural network models, 380–389, 394–396
backpropagation, 384–389
multi-layer, 381–384

Node, 228, 229
callback pyramid of doom, 230–231
callback-driven programming, 229–230
developing web apps, 235–238
managing projects with NPM, 231–235

node package manager (NPM), 231–235
non-blocking I/O mechanisms, 228, 229
normal distribution, 313–314, 322
normal equations, 377
NoSQL storage systems, 20–22, 169–170

Cassandra, 203–214
MongoDB, 180–203
Redis, 170–180

notifi cations, ZooKeeper, 41
NOW (Network of Workstations) environments,

35
NPM (node package manager), 231–235
NTP (Network Time Protocol), 37
null sets, 336
numerical libraries, 306
NumPy, 306
nutcracker, 179
NVD3, 273–274

O
Obermark, Ron, 76
online advertising, 4–5, 340
operational monitoring, 3
ordinary least squares, 376–378
outer functions, 236
outlier detection, 397–399

P
partitions, 119

Kafka, 75
partition local, Trident, 145
repartitioning operations, Trident, 147

Paxos algorithm, 38–39, 41
pen movement commands, HTML5 Canvas, 257
persistence, Trident, 147–150
persistent znodes, 40, 60–62
Pig, 223
PMF (probability mass function), 310, 311, 313
point queries, 356–357, 361

Poisson distribution, 312, 321–322
Pollable sources, Flume, 105–107
posterior distributions, 401–402
PostFilter class, Trident, 288
Prepare-Promise cycle, 38–39
probability mass function (PMF),

310, 311, 313
probability theory, 307–309

continuous distributions, 312–314
discrete distributions, 310–312
expectation, 309–310
joint distributions, 315–316
statistical distributions, 310
variance, 309–310
working with distributions, 316–319

Producer, Kafka, 90
programmatic buying, 340
Proposer, Paxos, 38
ProtoBuf, 17
Protocol Buffers, 17
PUBLISH command, Redis, 178–179
publish/subscribe support, Redis, 178–179

Q
quantile queries, 360–364
quasi-Newton techniques, 379
QueueBuilder class, ZooKeeper, 64–65

R
R Statistical Library, 306
RabbitMQ, 64, 73, 77, 141
Raft, 39
random number generation, 319–325
random variates, 320, 321
range queries, 360–364
real-time architectures

checklist, 30–34
components, 16–24
features, 24–27
languages, 27–30

rebalance command, Storm, 121
Redis, 170–180

client notifi cations, 297
dashboard example, 251–254
drawbacks, 32–33
publish/subscribe support, 178–179
replication, 179–
scripting, 176–178
setup, 170–171
sharding, 179–180
working with, 171–176

Redis Cluster, 179
redis-cli tool, 171–172
registers, 332
regression methods, 393–394
regression models, 369, 378–379
Regular Expression Filter interceptor, Flume,

113–114
rejection sampling, 323–324

bindex.indd 06:22:59:PM 06/06/2014 Page 410

410 Index ■ R–S

relational databases, 20–22, 25, 215, 217
consistent hashing, 168–169

repartitioning operations, Trident, 147
Replica Set, MondoDB, 199–200, 202
replicating selectors, Flume, 96
replication, 25

Cassandra, 208
in-sync replicas, 26, 78, 199
Kafka, 78–79, 84–88
MongoDB, 199–200
Redis, 179

reqs command, ZooKeeper, 47
reservoir algorithms, 326–327
residual sum of squares (RSS), 374
retained mode implementations, 24
RFC 6455 (WebSocket), 249–251
RichBaseBolt class, Storm, 131
round-robin

custom stream grouping, 129–130
databases, 290

RPOP command, Redis, 173
RPOPLPUSH command, Redis, 174
RPUSH command, Redis, 173, 174
RSS (residual sum of squares), 374
ruok command, ZooKeeper, 45

S
SADD command, Redis, 175
sampling, 324–329

biased streaming, 327–329
from fi xed population, 325–326
from streaming population, 326–327

Samza, 151
Apache YARN and, 151–153
counting jobs, 289–290
integrating into data fl ow, 157
jobs, 157–166
multinode, 155–157
single node, 153–155

Scala, 28–29
scatter-gather implementations, 119
SciPy, 306
Scribe, 18, 71–72, 99
scripting, Redis, 177–178
SDIFF command, Redis, 175
second order expansion, 318–319
sensor platforms, 10
sequential znodes, 40–41
Server Sent Events (SSEs), 23, 33–34, 245–249
servers

coordination servers, 118–119
horizontal scalability, 26–27
vertical scaling, 27

SET command, Redis, 172
SET data type, CQL, 209
Set<E> interface, 338–340
setData command, ZooKeeper, 40, 41
sets, 336–338

Bloom fi lters, 338–347
algorithm, 338–340

cardinality estimation, 342–343
intersections, 341–342
size, 340–341
unions, 341–342
variations, 344–347

Distinct Value sketches, 347–348
HyperLogLog algorithm, 351–355
Min-Count algorithm, 348–351

shape generators, D3, 264–265
sharding

MongoDB collections, 200–203
Redis databases, 179–180

sigmoid functions, 380, 382
simple linear regression, 374–376
simple random sampling, 325–326
sink processors, Flume, 110
sinks, Flume, 107–110
SINTER command, Redis, 175
SISMEMBER command, Redis, 175
sketch algorithms, 331–332

Bloom Filter, 338–347
Count-Min, 356–363
hash functions, 332–336
HyperLogLog, 351–356
Min-Count, 348–351
registers, 332
sets, 336–338

sleep command, Storm, 126
sliding window reservoir sampling, 328
smoothing methods, 390–393
SMOVE command, Redis, 175
sorted sets, Redis, 175–176
sources of streaming data, 2–7
sources, Flume, 98

Avro, 98–99
custom, 105–107
Exec, 103–104
HTTP, 101–102
Java Message System (JMS), 102–103
Netcat, 99–100
Spool Directory, 104–105
Syslog, 100–101
Thrift, 99

Spectral Bloom Filter, 356
Split Brain Problem, 37
Spool Directory source, Flume, 104–105
SPOP command, Redis, 175
spouts, 120

implementing, 136–141
Lorem Ipsum, 138–140

SREM command, Redis, 175
srst command, ZooKeeper, 47
SSEs (Server Sent Events), 23, 33–34, 245–249
Stable Bloom Filters, 346–347
stat command, ZooKeeper, 46–47, 62
Static interceptor, Flume, 113
statistical analysis, 305–306. See also probability

theory
numerical libraries, 306
random number generation, 319–324
sampling procedures, 324–329

bindex.indd 06:22:59:PM 06/06/2014 Page 411

 Index ■ S–T 411

stochastic averaging, 296, 349
stochastic gradient descent, 296
stochastic optimization, 296–297. See also

aggregation
storage, 20–22

Cassandra, 203–214
consistent hashing, 168–169
data grids, 215, 217
high-cardinality storage, 9–10
MongoDB, 180–203
Redis, 170–180
relational databases, 215, 217
technology selection considerations, 215–217
warehousing, 217–223

Storm, 119–120
bolt implementation, 130–136
classic Storm, 120
cluster components, 120–121
cluster confi guration, 122–123
distributed clusters, 123–126
DRPC (Distributed Remote Procedure Calls),

142–144
Flume connections, 141
Kafka connections, 140–141
local clusters, 126
spout implementation, 136–141
topologies, 127–130
Trident. See Trident

StormSubmitter class, 124–125
streaming data

applications of, 2–7
Internet of Things, 5–7
mobile data, 5–7
online advertising, 4–5
operational monitoring, 3
social media, 5
web analytics, 3–4

continuous data delivery, 7–8
fl ow management, 71–72

distributed data fl ows, 72–74
Kafka. See Kafka
Flume. See Flume

high-cardinality data sets, 9–10
infrastructure and algorithm integration, 10
loosely structured, 8–9
processing

coordination, 118–119
merges, 119
overview, 118–119
partitions, 119
with Samza. See Samza
with Storm. See Storm
transactional, 119

storage, 20–22
Cassandra, 203–214
consistent hashing, 168–169
data grids, 215, 217
high-cardinality storage, 9–10
MongoDB, 180–203
Redis, 170–180
relational databases, 215, 217

technology selection considerations,
215–217

warehousing, 217–223
versus other data, 7–10

streaming web applications
backend server communication, 242–254
dashboard example, 238–242
Node, 229–238

strip charts, D3, 298–299
stroke command, HTML5 Canvas, 257
SUBSCRIBE command, Redis,

178–179
summation, 285–290
SUNION command, Redis, 175
supervisors, Storm, 121
Syslog source, Flume, 100–101
systems monitoring, 396–400

at least once delivery, 72–73
change detection, 399–400
outlier detection, 397–399
as source of streaming data, 3
space management, 77

T
TCP/IP-based networks, 16
TEXT data type, CQL, 209
Thompson Sampling, 402
Thrift, 17

sink, 108
source, 99

tiers, 18, 34
time-series aggregation, 290–295
time-series models, 369

exponential moving average, 372–373
moving average, 369–370
weighted moving average, 370–372

timed counting, 285–290
in bolts, 286–288
in Samza, 289–290
in Trident, 288–289

TIMESTAMP data type, CQL, 209
Timestamp interceptor, Flume, 112
TIMEUUID data type, CQL, 209
top-K lists, 358–360
topics, Kafka, 75

creating and management, 84–85
replication and, 78

topologies, Storm, 120, 124–126,
127–129

TopologyBuilder class, Storm,
127–129

transactional processing, 119
TransactionalTridentKafkaSpout class,

149–150
Trident, 120, 144

aggregation, 147–148
counting events, 288–289
local operations, 145–147
partition local aggregation, 148
repartitioning operations, 147

bindex.indd 06:22:59:PM 06/06/2014 Page 412

412 Index ■ T–Z

streams, 144–145
Word Count example, 149–150

TridentTopology class, 145
Turnstile model, 356
Twemproxy, 179–180, 200
Twitter, 5

Bootstrap, 237, 238, 277
Rainbird, 20
Storm. See Storm
Twemproxy, 179–180, 200

U
union of a set, 336
universal hash functions, 334
update command, NVD3, 273
UUID data type, CQL, 209
UUID interceptor, Flume, 113

V
V8 engine, 30, 228
Values class, Storm, 132
VARCHAR data type, CQL, 209
variance, 309–310
VARINT data type, CQL, 209
Vector Markup Language (VML),

23, 260, 261
Vega.js, 274–277
vertical scaling, 27
visualizing data, 254

D3 framework, 262–272
HTML5 Canvas, 254–260
Inline SVG, 260–262
NVD3, 272–274
Vega.js, 274–277

VML (Vector Markup Language), 23, 260, 261
Voldemort, 216

W
warehousing

Hadoop, 218–223
Lambda Architecture, 223

watches, ZooKeeper, 41
wearables, 6
web applications, 228–229

streaming
backend server communication,

242–254
dashboard example, 238–242
Node, 229–238

weighted moving average, 370–372
Wikipedia edit stream, 282–285
Word Count example, 149–150

X
XMLHttpRequest (XHR), 22–23
XOR (exclusive-or) pattern, 387–388

Y
Yahoo!

Netty transport, 123
Storm-YARN project, 151
ZooKeeper. See ZooKeeper

YARN, 151
architecture, 152–153
background, 151–152
multinode Samza, 155–157
relationship to Samza, 153
single node Samza, 153–155

Z
Zab algorithm, 41–42
zero-th generation systems, 18
ziggurat algorithm, 321
ZINCRBY command, Redis, 176
ZINTERSTORE command, Redis, 175–176
znodes, 39–41

Curator framework, 59–62
ephemeral, 40
operations, 40
persistent, 40
sequential, 40–41
version number, 41

ZooKeeper, 39
clusters, creating, 42–47
consistency, 41
Curator client, 56–63

adding ZooKeeper to Maven projects, 56–57
connecting, 57–59
using watches with, 62–63
working with znodes, 59–62

Curator recipes, 63–70
distributed queues, 63–68
leader elections, 68–70

installing, 42–44
Java client, 47–56

adding ZooKeeper to Maven projects, 47–48
connecting, 48–56

notifi cations, 41
quorum

choosing size, 44
monitoring, 45–47

watches, 41, 62–63
znodes. See znodes

ZRANGEBYSCORE command, Redis, 176
ZREVRANGEBYSCORE command, Redis, 176
ZUNIONSTORE command, Redis, 175–176

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

EULA_Tzviya-S_2014-3-21@1530.indd 1 3/21/14 3:30 PM

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents���������������
	Chapter 1 Introduction to Streaming Data���
	Sources of Streaming Data��������������������������������
	Operational Monitoring�����������������������������
	Web Analytics��������������������
	Online Advertising�������������������������
	Social Media�������������������
	Mobile Data and the Internet of Things���

	Why Streaming Data Is Different��������������������������������������
	Always On, Always Flowing��������������������������������
	Loosely Structured�������������������������
	High-Cardinality Storage�������������������������������

	Infrastructures and Algorithms�������������������������������������
	Conclusion�����������������

	Part I Streaming Analytics Architecture��
	Chapter 2 Designing Real-Time Streaming Architectures��
	Real-Time Architecture Components��
	Collection�����������������
	Data Flow����������������
	Processing�����������������
	Storage��������������
	Delivery���������������

	Features of a Real-Time Architecture���
	High Availability������������������������
	Low Latency������������������
	Horizontal Scalability�����������������������������

	Languages for Real-Time Programming��
	Java�����������
	Scala and Clojure������������������������
	JavaScript�����������������
	The Go Language����������������������

	A Real-Time Architecture Checklist���
	Collection�����������������
	Data Flow����������������
	Processing�����������������
	Storage��������������
	Delivery���������������

	Conclusion�����������������

	Chapter 3 Service Configuration and Coordination���
	Motivation for Configuration and Coordination Systems��
	Maintaining Distributed State������������������������������������
	Unreliable Network Connections�������������������������������������
	Clock Synchronization����������������������������
	Consensus in an Unreliable World���������������������������������������

	Apache ZooKeeper�����������������������
	The znode����������������
	Watches and Notifications��������������������������������
	Maintaining Consistency������������������������������
	Creating a ZooKeeper Cluster�����������������������������������
	ZooKeeper’s Native Java Client�������������������������������������
	The Curator Client�������������������������
	Curator Recipes����������������������

	Conclusion�����������������

	Chapter 4 Data-Flow Management in Streaming Analysis���
	Distributed Data Flows�����������������������������
	At Least Once Delivery�����������������������������
	The “n+1” Problem������������������������

	Apache Kafka: High-Throughput Distributed Messaging��
	Design and Implementation��������������������������������
	Configuring a Kafka Environment��������������������������������������
	Interacting with Kafka Brokers�������������������������������������

	Apache Flume: Distributed Log Collection���
	The Flume Agent����������������������
	Configuring the Agent����������������������������
	The Flume Data Model���������������������������
	Channel Selectors������������������������
	Flume Sources��������������������
	Flume Sinks������������������
	Sink Processors����������������������
	Flume Channels���������������������
	Flume Interceptors�������������������������
	Integrating Custom Flume Components��
	Running Flume Agents���������������������������

	Conclusion�����������������

	Chapter 5 Processing Streaming Data��
	Distributed Streaming Data Processing��
	Coordination�������������������
	Partitions and Merges����������������������������
	Transactions�������������������

	Processing Data with Storm���������������������������������
	Components of a Storm Cluster������������������������������������
	Configuring a Storm Cluster����������������������������������
	Distributed Clusters���������������������������
	Local Clusters���������������������
	Storm Topologies�����������������������
	Implementing Bolts�������������������������
	Implementing and Using Spouts������������������������������������
	Distributed Remote Procedure Calls���
	Trident: The Storm DSL�����������������������������

	Processing Data with Samza���������������������������������
	Apache YARN������������������
	Getting Started with YARN and Samza��
	Integrating Samza into the Data Flow���
	Samza Jobs�����������������

	Conclusion�����������������

	Chapter 6 Storing Streaming Data���������������������������������������
	Consistent Hashing�������������������������
	“NoSQL” Storage Systems������������������������������
	Redis������������
	MongoDB��������������
	Cassandra����������������

	Other Storage Technologies���������������������������������
	Relational Databases���������������������������
	Distributed In-Memory Data Grids���������������������������������������

	Choosing a Technology����������������������������
	Key-Value Stores�����������������������
	Document Stores����������������������
	Distributed Hash Table Stores������������������������������������
	In-Memory Grids����������������������
	Relational Databases���������������������������

	Warehousing������������������
	Hadoop as ETL and Warehouse����������������������������������
	Lambda Architectures���������������������������

	Conclusion�����������������

	Part II Analysis and Visualization���
	Chapter 7 Delivering Streaming Metrics���
	Streaming Web Applications���������������������������������
	Working with Node������������������������
	Managing a Node Project with NPM���������������������������������������
	Developing Node Web Applications���������������������������������������
	A Basic Streaming Dashboard����������������������������������
	Adding Streaming to Web Applications���

	Visualizing Data�����������������������
	HTML5 Canvas and Inline SVG����������������������������������
	Data-Driven Documents: D3.js�����������������������������������
	High-Level Tools�����������������������

	Mobile Streaming Applications������������������������������������
	Conclusion�����������������

	Chapter 8 Exact Aggregation and Delivery���
	Timed Counting and Summation�����������������������������������
	Counting in Bolts������������������������
	Counting with Trident����������������������������
	Counting in Samza������������������������

	Multi-Resolution Time-Series Aggregation���
	Quantization Framework�����������������������������

	Stochastic Optimization������������������������������
	Delivering Time-Series Data����������������������������������
	Strip Charts with D3.js������������������������������
	High-Speed Canvas Charts�������������������������������
	Horizon Charts���������������������

	Conclusion�����������������

	Chapter 9 Statistical Approximation of Streaming Data��
	Numerical Libraries��������������������������
	Probabilities and Distributions��������������������������������������
	Expectation and Variance�������������������������������
	Statistical Distributions��������������������������������
	Discrete Distributions�����������������������������
	Continuous Distributions�������������������������������
	Joint Distributions��������������������������

	Working with Distributions���������������������������������
	Inferring Parameters���������������������������
	The Delta Method�����������������������
	Distribution Inequalities��������������������������������

	Random Number Generation�������������������������������
	Generating Specific Distributions��

	Sampling Procedures��������������������������
	Sampling from a Fixed Population���������������������������������������
	Sampling from a Streaming Population���
	Biased Streaming Sampling��������������������������������

	Conclusion�����������������

	Chapter 10 Approximating Streaming Data with Sketching���
	Registers and Hash Functions�����������������������������������
	Registers����������������
	Hash Functions���������������������

	Working with Sets������������������������
	The Bloom Filter�����������������������
	The Algorithm��������������������
	Choosing a Filter Size�����������������������������
	Unions and Intersections�������������������������������
	Cardinality Estimation�����������������������������
	Interesting Variations�����������������������������

	Distinct Value Sketches������������������������������
	The Min-Count Algorithm������������������������������
	The HyperLogLog Algorithm��������������������������������

	The Count-Min Sketch���������������������������
	Point Queries��������������������
	Count-Min Sketch Implementation��������������������������������������
	Top-K and "Heavy Hitters"��������������������������������
	Range and Quantile Queries���������������������������������

	Other Applications�������������������������
	Conclusion�����������������

	Chapter 11 Beyond Aggregation������������������������������������
	Models for Real-Time Data��������������������������������
	Simple Time-Series Models��������������������������������
	Linear Models��������������������
	Logistic Regression��������������������������
	Neural Network Models����������������������������

	Forecasting with Models������������������������������
	Exponential Smoothing Methods������������������������������������
	Regression Methods�������������������������
	Neural Network Methods�����������������������������

	Monitoring�����������������
	Outlier Detection������������������������
	Change Detection�����������������������

	Real-Time Optimization�����������������������������
	Conclusion�����������������

	Index
	EULA

REALTIME
ANALYTICS

