
No

Foreword by Ethan Marcotte

Brief books for people who make websites

13

Scott Jehl

RESPONSIBLE
RESPONSIVE DESIGN

www.allitebooks.com

http://www.allitebooks.org

RESPONSIBLE
RESPONSIVE DESIGN

Scott Jehl

www.allitebooks.com

http://www.allitebooks.org

MORE FROM THE A BOOK APART LIBRARY

HTML5 for Web Designers
Jeremy Keith

CSS3 for Web Designers
Dan Cederholm

The Elements of Content Strategy
Erin Kissane

Responsive Web Design
Ethan Marcotte

Designing for Emotion
Aarron Walter

Mobile First
Luke Wroblewski

Design Is a Job
Mike Monteiro

Content Strategy for Mobile
Karen McGrane

Just Enough Research
Erika Hall

Sass for Web Designers
Dan Cederholm

On Web Typography
Jason Santa Maria

You’re My Favorite Client
Mike Monteiro

www.allitebooks.com

http://www.allitebooks.org

Copyright © 2014 Scott Jehl
All rights reserved

Publisher: Jeffrey Zeldman
Designer: Jason Santa Maria
Managing Director: Katel LeDû
Editor: Tina Lee
Technical Editor: Ethan Marcotte
Copyeditors: Caren Litherland, Rachel Kaufman
Proofreader: Caren Litherland
Compositor: Rob Weychert
Ebook Production: India Amos

ISBN: 978-1-9375571-6-4

A Book Apart
New York, New York
http://abookapart.com

10 9 8 7 6 5 4 3 2 1

www.allitebooks.com

http://abookapart.com/
http://www.allitebooks.org

TABLE OF CONTENTS

	 1 	 Introduction

chapter 1	 1 5 	 Responsible Design
chapter 2	 4 7 	 Sustainable Detection
chapter 3	 8 9 	 Planning for Performance
chapter 4	 1 0 9 	 Delivering Responsibly

	 1 7 5 	 Conclusion

	 1 7 6 	 Acknowledgements

	 1 7 8 	 Resources

	 1 81 	 References

	 1 86 	 Index

www.allitebooks.com

http://www.allitebooks.org

FOREWORD

THE WEB IS A SUCKER for a good metaphor. In its early days,
it was our printing press; as it got older, it was our playground,
then our marketplace; now, it’s our photo albums, our diaries,
our travelogues, our shared moments and videos and GIFs and…
and, and, and. What’s more, thanks to the explosive popular-
ity of handheld, web-ready devices, the web is accessed more
broadly today than at any point in its short lifespan. I think it’s
fair to say the web is more than the sum of its underpinnings,
evolving from a tangle of wires flinging packets over HTTP to
a place where we publish, we sell, we connect, we work, and
we play.

But here’s the thing: the web is far more fragile than we might
like to admit. It’s fraught with uncertainty—a connection could
be dropped, or a network’s latency could be too high—which
means entire elements of our designs might never reach our us-
ers. Of course, it’s tempting to see this as a temporary problem,
one that’ll gradually resolve itself as devices get better, or as
networks get stronger. But between the aging infrastructure of
developed economies and the popularity of cheaper, low-pow-
ered mobile devices in younger, emerging markets, it feels like
we’re watching a new normal emerge for the web—a medium
that’s accessed across the planet, but is also much, much slower
than we previously thought.

This might sound scary. But that’s not how this story ends.
When “mobile” first happened, we were given an opportu-

nity: instead of defaulting to device-specific sites, we realized we
could use flexible layouts and media queries to make responsive
designs, layouts that could adapt to a nearly infinite array of dif-
ferently sized screens.

So now, too, we have another opportunity: to ensure our
layouts aren’t just responsive, but sustainable—fit to deliver
compelling content and rich interfaces not only to the latest
devices or the widest networks, but to every glowing screen,
everywhere.

Thankfully, Scott Jehl is here to show us the way.
I’ve had the pleasure of working with Scott on a number of

responsive redesigns, and I’ve never encountered a designer

www.allitebooks.com

http://www.allitebooks.org

who possesses such a keen awareness of—and respect for—the
web’s fragility. And in this little book, Scott will share that ex-
pertise with you, dear reader, teaching you how to build nimble,
lightweight interfaces that are ready for the web’s volatility.

In the past few years of designing responsively, we’ve been
learning to let go of our need to control the width and height
of our layouts. Now, Scott Jehl shows us the next step: to build
responsive designs in a responsible way, to ensure they’re ready
not just for differently sized screens, but for the changing shape
of a universal, device-agnostic web.

Let’s go.

—Ethan Marcotte

www.allitebooks.com

http://www.allitebooks.org

 IntroductIon 1

INTRODUCTION

IN EARLY 2012, my wife and I rented an apartment in Siem
Reap, Cambodia. She was volunteering at a children’s hospital;
I was clocking in remotely to build websites with my Filament
Group colleagues back in the United States. I worked this way
for months as we traveled the region, passing through some of
the most resource-strapped places in the developing world—
Laos, Indonesia, Sri Lanka, and Nepal. Each stop offered an
opportunity to use the web under the same, often constrained
conditions that people who live there do. It tested my assump-
tions as a designer and my patience as a user.

You’ve likely read that mobile services are the primary means
of internet access for many in developing parts of the world, and
my casual observations confirmed that. Glass cases displaying
mobile devices I’d never seen before filled street market stalls
(and helped stock my backpack with test devices). But while
seemingly everyone had an internet-capable phone, I was sur-
prised at how frequently people used cell networks to connect
other devices to the web. A prepaid SIM card and a USB dongle
was the usual means to get a laptop online. So it was for me too.

Using the web this way was an exercise in patience. I wasted
hours toggling between partially loaded browser tabs and hitting
refresh to watch another web app’s loading message spin atop a
blank white page, eating away at the limited data I was allotted
within my prepaid SIM card. As an advocate of best practices
like progressive enhancement and responsive design, I would
sometimes indulge in the thought that if only these sites had
been built the “right way,” these problems wouldn’t exist. But if
I was honest, I’d concede that many such best practices weren’t
working as well as they could. Sadly, it appeared that the basic
promise of access on the web is one we have yet to fulfill.

I’m not the first to notice. A 2014 Wired article described sev-
eral Facebook executives’ experience using their own service
during a visit to Nigeria, where over 30% of internet users are
on Facebook (http://bkaprt.com/rrd/0-01/):

www.allitebooks.com

http://bkaprt.com/rrd/0-01/
http://www.allitebooks.org

 2 rESPonSIBLE rESPonSIVE dESIGn

We fired it up, and we wait… and we wait… It took a really long
time. Even simple things like uploading a photo—things most
Facebook users do—just weren’t working. That was a pretty
harsh experience for us. We’d been building an app for users like
us. But we were the exception, not the rule.

We web developers tend to be an exceptional bunch. Our
work demands fast, reliable networks to stream enormous
amounts of data, and we have access to the latest, most capable
devices. But while many of us work in relatively ideal condi-
tions, we can’t just build for users like us; we can’t forget that
for most of the world, the web doesn’t function like this.

You may think, “But that’s not my audience.” And you may be
right, but consider that more of the world’s web traffic this year
will come from cheaper, under-featured devices in emerging
markets (http://bkaprt.com/rrd/0-02/). Even in some of the most
developed regions, mobile connections are often slow, intermit-
tent, and unreliable, as data plans become more expensive and
limited. A quick Twitter search confirms that London’s notori-
ously bad cell service persists, and heck, I rarely get better than
an ancient EDGE connection where I live in Florida—EDGE!

Accessing the web reliably and efficiently isn’t a given for
many of our neighbors, our users, our customers. As web de-
signers, we’re well poised to improve this situation. I mention
customers to emphasize that pushing for better access is not only
an appeal for empathy, but also an opportunity to expand the
reach of our services, making them more resilient for everyone.

This book is about accessibility: broadening access to the
services we make without compromising features that push the
web ahead. Diversity is a defining feature of the web, not a bug.
We should strive to make our content and services accessible to
all capable devices. If that sounds hard, well, sometimes it is. I
intend to convince you that it’s possible, and that it’s worth it.

Let’s debrief on what our users are up to, shall we?

Our diversifying web

The proof is in the numbers. In 2011, Apple sold more iOS
devices than all of the computers it sold in twenty-eight years

www.allitebooks.com

http://bkaprt.com/rrd/0-02/
http://www.allitebooks.org

 IntroductIon 3

(http://bkaprt.com/rrd/0-03/). In 2013, global mobile data usage
grew by 81% (http://bkaprt.com/rrd/0-04/). As of January 2014,
58% of Americans owned a smartphone and 42% owned a tablet,
four years after the iPad’s release (http://bkaprt.com/rrd/0-05/).
The speed of such growth is astonishing, but it’s not just mobile.

Our devices represent a broadening spectrum of form factors,
feature support, environmental constraints, and uses (FIG 0.1).
The variance in screen size alone is staggering—consider this
graphic overlaying the screen dimensions of the twenty most-
used devices in early 2013 (FIG 0.2).

Screen dimensions say nothing about a display’s resolution,
which may be higher than standard definition; nor do they
predict a browser’s viewport size, which often differs from the
screen’s. As designer Cennydd Bowles says, when you consider
the near-infinite variability of browser viewports, the sizes we
need to care about are even broader in range than screen dimen-
sion rankings might suggest (FIG 0.3).

 Now that’s fragmentation! Luckily, the problem of delivering
a design that adapts fluidly across various viewport sizes has
been more or less solved.

Responsive design: a responsible starting point

“This is our way forward. Rather than tailoring disconnected
designs to each of an ever-increasing number of web devices, we
can treat them as facets of the same experience.”
—ethan Marcotte, “responsive Web design,” A List Apart

FIG 0.1: A sampling of the variety of screen sizes we now need to support.

www.allitebooks.com

http://bkaprt.com/rrd/0-03/
http://bkaprt.com/rrd/0-04/
http://bkaprt.com/rrd/0-05/
http://www.allitebooks.org

 4 rESPonSIBLE rESPonSIVE dESIGn

0
0 384 768 1152 1536 1900

256

512

768

1024

1280

FIG 0.2: Wildly varying screen sizes of the top twenty most popular devices
(http://bkaprt.com/rrd/0-06/).

0
0 384 768 1152 1536 ?

256

512

768

1024

?

FIG 0.3: Viewport size fragmentation on the web, redrawn from a tweet by
cennydd Bowles (http://bkaprt.com/rrd/0-07/).

http://bkaprt.com/rrd/0-06/
http://bkaprt.com/rrd/0-07/

 IntroductIon 5

In 2010, Ethan Marcotte coined the term responsive web design
to describe an approach to web layout that combines fluid grids,
fluid images, and CSS3 media queries to deliver layouts that
respond (downright magically) to their environment (FIG 0.4).

If this book’s title led you to believe that responsive web de-
sign is not responsible, now is a good time to clarify. Responsive
web design is responsible web design. The end. Thank you for
reading!

Okay, seriously, I’ll explain.
Marcotte’s clever combination of web standards technologies

gives us a sustainable way to deliver cross-device visual layouts.
But Marcotte would be the first to emphasize that responsive
layout is one of many variables we must consider when build-
ing multi-device sites and applications. Layouts are the start.
We need to expand beyond the viewport and consider how we
support myriad device capabilities, how we retain accessibility
in complex interfaces, and how we deliver assets over the wire.

FIG 0.4: Ethan Marcotte’s example of a responsive layout from his A List Apart article
(http://bkaprt.com/rrd/0-08/).

http://bkaprt.com/rrd/0-08/

 6 rESPonSIBLE rESPonSIVE dESIGn

As Trent Walton says in his essay “Device Agnostic”: “Like cars
designed to perform in extreme heat or on icy roads, websites
should be built to face the reality of the web’s inherent variabil-
ity” (http://bkaprt.com/rrd/0-09/). Thankfully, being responsive
from a layout perspective does not preclude us from being
responsive from a performance, interactivity, or accessibility
perspective.

Responsive and responsible

To deliver on the promise of a broadly accessible, delightful, and
sustainable web, we need to combine responsive design with ad-
ditional responsible practices. A responsible responsive design
equally considers the following throughout a project:

• Usability: The way a website’s user interface is presented to
the user, and how that UI responds to browsing conditions
and user interactions.

• Access: The ability for users of all devices, browsers, and as-
sistive technologies to access and understand a site’s features
and content.

• Sustainability: The ability for the technology driving a site
or application to work for devices that exist today and to
continue to be usable and accessible to users, devices, and
browsers in the future.

• Performance: The speed at which a site’s features and content
are perceived to be delivered to the user and the efficiency
with which they operate within the user interface.

That’s comprehensive, no? While I ponder renaming this
book Welcome to the Internet by Scott, let’s take a deeper look at
some challenges we face in delivering responsibly.

Designing for usability: sensors, input mechanisms,
and interactivity
Gone are the days of building websites that only need to work
with a mouse (if those days ever existed). We need to care about
things like touch, keyboard, stylus, and more—which we may

http://bkaprt.com/rrd/0-09/

 IntroductIon 7

encounter in a mix of mobile devices, tablets, or laptops. Many
of the most popular devices we use now support touch interac-
tivity. For instance, the Windows 8 operating system supports
touch interaction on both laptops and tablets (FIG 0.5). Microsoft
Kinect tracks hand and arm gestures in midair (FIG 0.6). In re-
sponse to these new input mechanisms, we can’t rely solely on
traditional mouse cursor interactions like hover; instead, our in-
terfaces must be ready to respond to various input mechanisms
within our multi-device universe.

A disparity often exists between powerful native applications
and the limited APIs we see on the web and, in truth, that can be
a barrier to building web-based applications. Fortunately, many
browsers are quickly gaining access to native operating system
features like GPS location, contacts, calendar, notifications, file
systems, and the camera. These standardized interfaces allow us
to communicate with local device features without using plugins
like Flash or Java, which rarely work across devices anyhow.
In addition to local data APIs, browsers are increasingly able

FIG 0.5: the Windows 8 oS runs on devices that support several input modes, from touch
to mouse to keyboard. Photograph by Kārlis dambrāns (http://bkaprt.com/rrd/0-10/).

http://bkaprt.com/rrd/0-10/

 8 rESPonSIBLE rESPonSIVE dESIGn

to access information from device sensors like proximity, GPS,
accelerometer, battery levels, and even ambient light. With each
new feature, the web platform gains a foothold.

Building for access: considering assistive technology
and cross-device continuity
Because assistive technologies increasingly come preinstalled
on devices, we often need to take steps to ensure that our sites
retain their meaning when browsed in non-visual contexts. Now
standard on all Apple computers and iOS devices, screen-reading
software VoiceOver sits atop the browser and provides gesture-
based navigation as it reads a page aloud. Its multitouch rotor-
gesture system offers ways to navigate the web via things like
headings and links, which gives us more reasons to be vigilant
about the markup we use to communicate our content (FIG 0.7).

FIG 0.6: the Microsoft Kinect tracks full-body movement, which may hint at future
interactive models for the web. Photograph by Scott and Elaine van der chijs
(http://bkaprt.com/rrd/0-11/).

http://bkaprt.com/rrd/0-11/

 IntroductIon 9

Assistive technology isn’t only for those with permanent dis-
abilities; voice and audio may be the preferred and safest interac-
tion modes for any user in certain circumstances. Perhaps the
most widely used screen reader is Apple’s Siri, which is handy
for people who are temporarily unable to look at their screen
(while driving, for example) or prefer the convenience of voice
interaction over touch typing. As web applications continue to
make inroads on our native operating systems, we can expect
that software like this will only become more prevalent.

Beyond delivering a usable experience in isolated contexts,
we should keep in mind that people increasingly hop from one
device to another and expect consistently accessible content.
The 2012 Google study The New Multi-Screen World revealed that
people use multiple devices throughout a single day, in many
cases to complete a single task (FIG 0.8). The study found that
65% of shoppers who add an item to their cart on a handheld
device later complete their transaction on a laptop computer.
Perhaps the shoppers were interrupted by a call or preferred to
go through the checkout process on a device with a keyboard.
Whatever the reason, we must meet our users wherever they
happen to be.

FIG 0.7: Voiceover rotor on the iPhone (http://bkaprt.com/rrd/0-12/).

http://bkaprt.com/rrd/0-12/

 10 rESPonSIBLE rESPonSIVE dESIGn

Browsers: what’s old is new again

While modern browsers like Google Chrome, Firefox, and, yes,
even Internet Explorer press ahead with new features, many
devices in the wild and in stores are locked into browsers that
are no longer in development. For example, version 2 of the
Android operating system continues to be incredibly popular
worldwide, despite being more than two major releases behind
the latest and including a built-in browser that hasn’t seen up-
dates since 2011 (http://bkaprt.com/rrd/0-14/)! Seasoned (read:
old) developers like me may recall a similar situation with IE6’s
drawn-out reign. Unfortunately, long-term support of browser
versions is inevitably cut in favor of the next new platform or a
company’s shifted priorities, leaving existing users in the lurch.

Browser lock-in presents challenges, then—but also opportu-
nities. Users often seek out other browsers for their platforms,
some of which offer unusual features and selling points. For
example, millions of people who prefer web pages that load
faster and consume less of their data plans (crazy, right?) choose
a browser like Opera Mini, which requests web content through
remote proxy servers that optimize each page’s download size
(FIG 0.9). Proxy-based browsers support little or no JavaScript

FIG 0.8: Google’s 2012 study The New Multi-Screen World (http://bkaprt.com/rrd/0-13/).

http://bkaprt.com/rrd/0-14/
http://bkaprt.com/rrd/0-13/

 IntroductIon 11

interactivity on the device itself; ironically, practices that benefit
older browsers, such as delivering functional HTML, also help
the millions running these new proxy browsers!

Prioritizing performance: networks, weight, and
performance impact
Mobile network constraints grow more nuanced and challeng-
ing, even as they slowly improve as a whole. In the meantime,
network connections are intermittent and lagging even in devel-
oped countries. To ensure high performance, we must reassess
the ways we deliver our assets, reduce the weight and number
of those assets, and remove potential points of failure that block
access to our content.

Any unused code we deliver wastes our users’ time and
money, and we have plenty of room for improvement. In his
April 2013 post “What are Responsive Websites Made Of?,” Guy
Podjarny evaluated file transfer sizes of 500 responsive websites
and found that 86% sent roughly equivalent assets to all viewport
sizes (http://bkaprt.com/rrd/0-16/). Rather than serving opti-
mized images, for example, sites were delivering large-screen
images (thus relying on browsers to scale them down for smaller
screens), along with plenty of CSS, JavaScript, and other assets
that were only necessary in some contexts.

FIG 0.9: An opera infographic demonstrating how the opera Mini browser accesses the
web (http://bkaprt.com/rrd/0-15/).

http://bkaprt.com/rrd/0-16/
http://bkaprt.com/rrd/0-15/

 12 rESPonSIBLE rESPonSIVE dESIGn

Of course, the web’s burgeoning weight problem isn’t exclu-
sive to responsive design. It has festered in the fixed-desktop
web for some time; as of April 2014, the average website weighed
a whopping 1.7 megabytes (FIG 0.10).

Unoptimized, heavy websites can mean long load times for
users. A 2012 StrangeLoop survey of the Alexa Top 2000 sites
showed that the average load time was six to ten seconds in
Internet Explorer 7 with a Wi-Fi connection (never mind how
slow it may be on a mobile connection) (FIG 0.11)! The cost of
poor performance translates directly to users and, as a result,
to businesses. In 2012, Walmart found that for every second
shaved off load time, it gained 2% in conversions; incremental
revenue went up 1% with each 100 millisecond decrease (http://
bkaprt.com/rrd/0-18/).

In addition, as cell network speeds and reliability continue
to constrain mobile use, the cost of data itself has become more
prohibitive. If you purchased an iPhone from the Apple store

FIG 0.10: Average website weight, April 2014 (http://bkaprt.com/rrd/0-17/).

http://bkaprt.com/rrd/0-18/
http://bkaprt.com/rrd/0-18/
http://bkaprt.com/rrd/0-17/

 IntroductIon 13

in the United States in 2014, the cheapest Verizon plan at $60/
month netted you only 250 megabytes of data. In light of that
1.7-megabyte average page weight, it’s easy to see how quickly
your monthly quota is spent.

Because responsible network use is so vital to performance,
this book dedicates entire chapters to minimizing our delivery
weights and optimizing the ways we deliver code so that sites
are usable as fast as possible.

Embracing unpredictability

The web has always been a hostile design medium. As multi-
device use rises, scenarios like low bandwidth, small screens,
unpredictable screen orientation, or non-visual browsing aren’t
exceptions anymore; they’re everyday contexts. Designing for
an inflexible set of conditions leads to problems for our users:
the interfaces we design and develop are increasingly interacted
with in ways we can neither predict nor control.

FIG 0.11: A site’s transfer size affects how quickly (or slowly) it loads
(http://bkaprt.com/rrd/0-19/).

www.allitebooks.com

http://bkaprt.com/rrd/0-19/
http://www.allitebooks.org

 14 rESPonSIBLE rESPonSIVE dESIGn

To deliver on today’s web successfully, we must think re-
sponsively down to the smallest detail and prepare our code to
counter the unexpected. And to do that, we need to consider
both past and possible usage patterns. The need for responsive
sites that prioritize performance, access, usability, and sustain-
ability is clear, but executing on those goals is no easy task.
Throughout this book, we’ll explore the challenges we face
as we implement responsive design. By following responsible
practices and patterns, we can eliminate many accessibility and
performance issues before they occur to deliver appropriate,
optimized experiences, regardless of a browser’s features and
constraints.

Our goal is to create delightful, inclusive experiences—a tall
order—so let’s forge ahead and get acquainted with some ap-
proaches to the challenges we face.

 rESPonSIBLE dESIGn 15

RESPONSIBLE
DESIGN1

My love for responsive centers around the idea that my website will
meet you wherever you are—from mobile to full-blown desktop and
anywhere in between.”
—trent Walton, “Fit to Scale” (http://bkaprt.com/rrd/1-01/)

RESpoNSIvE dESIgN’S core tenets (fluid grids, fluid images,
and media queries) go a long way toward providing a holistic
package for cross-device interface design. But responsive design
itself relies on features that may not work as expected—or at all.
Our sites need to react to unexpected user behaviors, network
conditions, and unique support scenarios.

In this chapter, we’ll dig into two responsible tenets: usability
and accessibility. We’ll cover higher-level considerations before
getting into nitty-gritty code you can implement now and expect
to last. To start, let’s talk design.

“

http://bkaprt.com/rrd/1-01/

 16 rESPonSIBLE rESPonSIVE dESIGn

DESIGNING FOR USABILITY
When we consider usability in responsive design, we think
about how to present a design’s content and features across a
range of screen sizes and devices. Do the interface components
yield to the content when screen real estate is tight? Do the
components function intuitively in response to various input
modes? Are the content and hierarchy easy to parse? Do the
line lengths foster readability across screen sizes?

Get into the browser quickly

“Let’s change the phrase ‘designing in the browser’ to ‘deciding in
the browser.’”
—Dan Mall, the Pastry Box Project (http://bkaprt.com/rrd/1-02/)

At Filament Group, we start most of our projects in Adobe
Illustrator, where we iterate on high-level visual design con-
cepts. We then try to move to code as soon as possible. At this
stage, we aim to design the fewest number of interface varia-
tions that communicate a plan for layout and interactivity across
 viewports—mere suggestions for how the site will look and
feel on any given device. Decisions about how features react to
different input mechanisms and browser capabilities, as well
as the particular viewport sizes that should receive each layout
variation, remain to be determined. The goal is to move into
the browser as quickly as we can to make design and interac-
tion decisions in context, which translates to more informed
recommendations for our clients.

Find your breakpoints

The viewport sizes at which we change from one fluid layout
to another using media queries are called breakpoints. Here are
two examples:

http://bkaprt.com/rrd/1-02/

 rESPonSIBLE dESIGn 17

/* first breakpoint */
@media (min-width: 520px){
 ...styles for 520px widths and up go here!
}
/* second breakpoint */
@media (min-width: 735px){
 ...styles for 735px widths and up go here!
}

While it’s tempting to choose breakpoints early in the design
process, perhaps based on the dimensions of popular devices
we know we need to support, the truth is that we shouldn’t
choose breakpoints at all. Instead, we should find them, using
our content as a guide.

“Start with the small screen first, then expand until it looks like shit.
TIME FOR A BREAKPOINT!”
—Stephen hay, http://bkaprt.com/rrd/1-03/

A layout’s design and content should shape and inform a
layout’s breakpoints. As Hay notes, the easiest way to find break-
points is simply to resize the browser viewport until the content
becomes awkward (that’s the technical term) to use or read—and
presto, a breakpoint.

In addition to a gut check, you might opt for a slightly more
objective guideline. Per Richard Rutter’s homage to Robert
Bringhurst, The Elements of Typographic Style Applied to the Web
(http://bkaprt.com/rrd/1-05/), an optimal measure—the number of
characters per line in a column of text—for immersive reading
is widely thought to fall between 45 and 75 characters, includ-
ing spaces (FIG 1.1). If you’re resizing a layout outward, watch
for when a column of text approaches that range: it’s probably
a good place to adjust your layout.

As you work with complex responsive designs, you’ll find
that breakpoints often occur at different times for different por-
tions of a layout, and that some are more significant than others.

http://bkaprt.com/rrd/1-03/
http://bkaprt.com/rrd/1-05/

 18 rESPonSIBLE rESPonSIVE dESIGn

Major breakpoints mark big shifts, usually to add columns or
dramatically change the presentation of more than one com-
ponent; minor breakpoints involve smaller design tweaks (such
as changing a component’s font-size to prevent text wrap-
ping) that take full advantage of the spaces between the major
breakpoints. In general, I find that major layout breakpoints are
decided early in development, while minor ones act as finishing
touches. The fewer breakpoints we use, the easier a responsive
design will be to maintain.

Let’s look at an example. On the Boston Globe website, we have
two or three major layout breakpoints, but the more complicated
components break more often. The site’s masthead component
has four major breakpoints, as well as some minor ones for slight
adjustments to prevent text wrapping (FIG 1.2).

Design modularly

As in the masthead example, I find it helpful to compile the
multiple configurations of each modular component in isolation;
that way, I can test its usability and document its variations in
one place. Developer Dave Rupert of Paravel explored this con-
cept in his post “Responsive Deliverables” (http://bkaprt.com/
rrd/1-06/). “Responsive deliverables should look a lot like fully

FIG 1.1: Here, a seventy-character line length makes for comfortable reading
(http://bkaprt.com/rrd/1-04/).

http://bkaprt.com/rrd/1-06/
http://bkaprt.com/rrd/1-06/
http://bkaprt.com/rrd/1-04/

 rESPonSIBLE dESIGn 19

functioning Twitter Bootstrap-style (http://bkaprt.com/rrd/1-07/)
systems custom tailored for your clients’ needs,” Rupert writes.
In other words, we should build and document our compo-
nents from the inside out, as standalone pieces that play nicely
with others.

FIG 1.2: Major and minor breakpoints of the Boston Globe’s masthead.

First breakpoint: navigation and search options toggle on tap.

Second breakpoint: logo moves left to split the width with the navigation.

third breakpoint: logo moves back to center, search box visible at all times.

Fourth breakpoint: search box moves left of logo, navigation expands.

Final breakpoint: search box widens, classified links visible at all times on top left.

http://bkaprt.com/rrd/1-07/

 20 RESPONSIBLE RESPONSIVE DESIGN

Same content, reduced noise

You’ve figured out how to find horizontal breakpoints across a
range of viewport sizes. How do you fit all that content on small
screens without making things noisy? Responsive design has
(undeservedly) received a bad rap because of sites that attempt
to avoid messy situations by hiding parts of the content from
users—denying access to content that was ostensibly important
enough to include in the first place. Remember, if it’s useful to
some people, it’s likely useful to everyone. As Luke Wroblewski’s
book Mobile First instructs, rather than hide content that’s in-
convenient to display, it’s best to reorganize the design to retain
usability on smaller viewports.

Fortunately, we have many design patterns that work
around small-screen constraints in interesting, intuitive, and
responsible ways.

Progressive disclosure

One such pattern is progressive disclosure, a fancy term for show-
ing content on demand. To be clear, not all hiding is bad; it’s
only bad if the user has no way to access the hidden content.
The idea behind progressive disclosure is simple: hide portions
of content, but provide interface cues so that users can view it
when they wish (FIG 1.3).

Progressive disclosure is most often a simple show-and-hide
like the example in FIGure 1.3, but we have plenty of ways
to visually toggle content. For instance, this property listing
component does a 3D flip upon tap or click to reveal additional
information about a property, such as its address and location
on a map (FIG 1.4). For browsers without 3D CSS animation sup-
port, users can toggle to the map without an animated transition,
while basic browsers display the map at all times, just beneath
the property information.

Off-canvas layout, a term coined by Luke Wroblewski in his
article “Off-Canvas Multi-Device Layouts,” describes another
notable approach to minimizing complexity on small screens

 rESPonSIBLE dESIGn 21

(http://bkaprt.com/rrd/1-08/). Wroblewski documents several
patterns for positioning lower-priority interface components
offscreen until users cue them by tapping a menu icon or
similar item; the formerly offscreen content then enters the
viewport, overlapping or pushing aside the primary content
(FIG 1.5). This on-demand approach is becoming common in
small-screen layouts.

Responsive tables

Tabular data is one of the toughest content types to present on
a small screen. It’s often essential that the user see column and

FIG 1.3: Boston Globe’s navigation uses progressive disclosure on small viewports.

http://bkaprt.com/rrd/1-08/

 22 rESPonSIBLE rESPonSIVE dESIGn

FIG 1.4: Progressively disclosed content flips in 3d to display more information.

 rESPonSIBLE dESIGn 23

row headers associated with a table cell, and yet we can only fit
so many rows and columns on screen (FIG 1.6).

At Filament, we experimented a lot and found a couple of
patterns that worked well enough to include in the jQuery
Mobile framework. The first pattern, Reflow (http://bkaprt.com/
rrd/1-09/), reformats the table from a multi-column view to a list
view; each cell becomes its own row, with a row header to its
left. (FIG 1.7).

To pull this off, Reflow uses CSS to set each cell in the table
to display: block, creating a new row, and JavaScript to grab
each of the table’s column headers and insert them in each cell
to serve as the labels (while hiding the additional labels from
screen readers). Reflow suits simple tables that act like formatted
lists, but its small-screen presentation falls short when you need
to compare data points across rows.

FIG 1.5: tapping the menu icon reveals Facebook’s off-canvas navigation from
the screen’s left edge.

www.allitebooks.com

http://bkaprt.com/rrd/1-09/
http://bkaprt.com/rrd/1-09/
http://www.allitebooks.org

 24 rESPonSIBLE rESPonSIVE dESIGn

FIG 1.6: Large tables can cause usability
trouble on small screens.

FIG 1.7: An example of the jQuery Mobile reflow table pattern, with the same table shown
at narrow and wide widths.

 rESPonSIBLE dESIGn 25

The Column Toggle (http://bkaprt.com/rrd/1-10/) pattern picks
up that slack. It works by selectively showing columns in a table
as horizontal space allows. If there isn’t room, CSS hides the
column data, but a menu offers users the chance to override the
CSS and display the column anyway, eventually causing the table
to expand wide enough to warrant horizontal scrolling (FIG 1.8).

These are only two of the numerous potential patterns for re-
sponsibly presenting tabular content. For more examples, check
out Brad Frost’s project Responsive Patterns (http://bkaprt.com/
rrd/1-11/). You’ll find everything from horizontal navigation
components that collapse into menus when space is tight to
CSS-Flexbox-driven grids for complex page layouts.

DESIGNING FOR TOUCH
(AND EVERYTHING ELSE)

A responsive layout is but one step. Even if your site flows
beautifully from one screen size to the next, you’re not doing
your job if someone can’t use it. Touch isn’t only the domain of

FIG 1.8: An example of the jQuery mobile column toggle table pattern, with the same table
shown at narrow and wide widths.

http://bkaprt.com/rrd/1-10/
http://bkaprt.com/rrd/1-11
http://bkaprt.com/rrd/1-11

 26 rESPonSIBLE rESPonSIVE dESIGn

small screens; many devices offer touch alongside other input
mechanisms. But as the number of people on touch devices
surges, we must add touch to our arsenal of common interac-
tions like mouse, focus, and keyboard. While the intricacies of
touch can be daunting, we don’t need to completely overhaul
our designs to be touch-friendly. Far from it: one of the joys of
responsible design is how it builds on our everyday tool set.
Two basic measures pack a wallop on the usability of an existing,
mouse-based interface:

• Make sure any content that offers mouse-centric interactiv-
ity (like hover) is also accessible in browsers where a mouse
pointer may not exist.

• Don’t assume touch will be used, but design as if it will be.
Let’s see how these play out with the following considerations.

Save hover for shortcuts

The absence of mouseover (or hover) interactions is one of the
biggest changes when learning to support touch. In fact, the
lack of mouseover support on many touch devices is a primary
reason that many sites designed for the desktop web falter in
touch contexts, resulting in usability problems that prevent us-
ers from accessing certain features. You can’t rely on mouseover
for vital design interactions, but you can use it as a nice-to-have
alternate way to reach otherwise accessible content.

One example is the navigation for the Global News Canada
website, designed by Upstatement and developed by the
Filament Group team (FIG 1.9). The global navigation links users
to National, Locals, and Watch section homepages when clicked
or tapped. These links also feature split-button drop menus that
toggle between sections on hover. On a touch screen, one tap
directly sends users to that section’s homepage, so we came up
with an alternative mechanism to toggle between menus and
account for all breakpoints. The split buttons with arrows next
to each navigation link do just that, offering tap or click access
to the drop menus.

 rESPonSIBLE dESIGn 27

Keep in touch

One rule of thumb(s): the devices accessing your site may or
may not have touch screens, but always design as if they will.
Fingers aren’t precise, so we need to enlarge button and link
target areas to make them easier to tap. How much bigger is
an open discussion, though Apple’s guidelines suggest 44 × 44
pixels as the minimum size for usable buttons. Based on find-
ings from MIT’s Touch Lab (http://bkaprt.com/rrd/1-12/), the
Smashing Magazine article “Finger-Friendly Design: Ideal Mobile
Touchscreen Target Sizes” by author Anthony T suggests slightly
larger targets at 45–57 pixels, and 72 pixels for buttons for thumb
use, like the ones located near the bottom of a handheld device’s
screen (FIG 1.10).

Don’t forget your white space! Equally important as the size
of touchable elements is the space around those elements. A
smaller button surrounded by dead space can be as easy to use
as a larger element, so the size of the button within its tappable
footprint becomes a question of visual emphasis.

FIG 1.9: the split-button menus on Globalnews.ca work for touch and mouseover.

http://bkaprt.com/rrd/1-12/

 28 rESPonSIBLE rESPonSIVE dESIGn

The usual gestures

Touch screens offer the potential for richer interactions than
tap alone—many touch gestures have become commonplace,
particularly in native apps. This diagram by Craig Villamor,
Dan Willis, and Luke Wroblewski demonstrates some popular
gestures in touch interaction (FIG 1.11).

You’re probably familiar with most of these gestures, which
are used by operating systems on several devices (including iOS).
Within browsers, these gestures are often paired with conve-
nient default behavior that varies from device to device; some
gestures share the same behavior. For example, a double tap or
pinch or spread in iOS Safari causes the browser to zoom in or
out on a particular region. Dragging or flicking in any direction
causes the page to scroll; and a press, or touch-hold, often ex-
poses a context menu akin to what you’d see when right-clicking
with a mouse.

Native gestures like these have all sorts of implications for
how we can responsibly develop for touch. Users form expecta-
tions about their devices’ native features, so we don’t want to
disable or repurpose a feature like touch-hold if we can avoid
it. While browsers do let us use touch events like touchstart,
touchmove, and touchend (or the new standard pointer events
pointerdown, pointermove, pointerup, etc.) to specify gestures
with JavaScript, how can we do so without conflicting with na-
tive touch behavior?

FIG 1.10: Illustrations from Smashing Magazine’s article (http://bkaprt.com/rrd/1-13/).

http://bkaprt.com/rrd/1-13/

 rESPonSIBLE dESIGn 29

Web-safe gestures: do they exist?

Let’s compile a list of web-safe gestures we can use in our sites
(spoiler: it’s short). Based on the native gestures in today’s popu-
lar devices, we have tap, two-finger tap, horizontal drag, and
horizontal flick. Yet within this small list, we still have poten-
tial for conflict. For instance, Chrome on iOS and Android al-
lows users to horizontally swipe to switch between open tabs,
while iOS Safari uses the same gesture to go back or forward
in browser history, which means our use of those gestures can
lead to unexpected behavior. Horizontal drag gestures can also
introduce issues even in touch browsers that don’t use them
for native navigation. For example, if a page’s content stretches
wider than the browser’s viewport, which often happens after
zooming in, a horizontal touch-drag is typically used to scroll
the page right or left, so we have to be careful that our custom
touch gestures don’t interfere.

FIG 1.11: touch Gesture diagram (http://bkaprt.com/rrd/1-14/).

http://bkaprt.com/rrd/1-14/

 30 rESPonSIBLE rESPonSIVE dESIGn

Keep in mind that I’ve deemed these gestures safe only be-
cause I’m unaware of any touch-based browsers that use them—
yet. The moment iOS implements two-finger tap, anything
we’ve built may conflict with native behavior, and that’s not
future-friendly at all. This doesn’t mean we should avoid build-
ing custom gestures, but it highlights the importance of develop-
ing for many input modes. If one fails for any reason, we’ll have
alternate ways to access our content.

In practice, this means ensuring there’s always a click-and-
keyboard-based interface for interaction. For example, the car-
ousel of magazine covers on the Boston Globe site has several
interactive options (FIG 1.12). You can click the arrows beneath
the carousel, click the covers to the right or left of the featured
image, use the right and left arrow keys on your keyboard,
or touch-drag the carousel on a touch device. Think of touch
gestures as a nice-to-have enhancement on top of broadly sup-
ported input modes.

Perhaps a bigger problem with touch gestures is discovery,
as touch gestures often lack any visual interface to hint at their
presence. We ran into this dilemma when building the Boston
Globe’s saved articles feature, which allows you to save articles to
your account so you can read them later. On small screens, the
Save buttons hide by default but can be toggled into view with a

FIG 1.12: the multiple-input-mode
carousels on the Boston Globe site.

 rESPonSIBLE dESIGn 31

two-finger tap (FIG 1.13). Of course, there is no easy way to know
that unless you visit the help section and read the instructions!

Scripting touch interactivity

Touch-screen browsers are typically capable of using compo-
nents designed for mouse input, so outside of accommodating
touch from a design perspective, you may not need to do any-
thing special with JavaScript to ensure touch support. However,
touch-specific events do exist, and the advantage of scripting
with them is often a matter of richness and enhancement. When

FIG 1.13: Boston Globe’s Save buttons become visible via two-finger tap.

 32 rESPonSIBLE rESPonSIVE dESIGn

developing components, for example, it’s particularly nice to
write code that listens for touch events because they respond
immediately to touch interaction. By comparison, in many touch
browsers, mouse events like click and mouseup typically fire
300 milliseconds or more after a user taps the screen (the device
waits to make sure that a double tap isn’t happening before it
handles the click), so any site that’s coded to respond to mouse
events alone will suffer minor but noticeable delays. That said,
scripting touch gestures can be tricky because most browsers
that support touch emit both mouse and touch events whenever
a touch occurs. Further complicating things, browsers some-
times use different touch-event names (such as the widely used
touchstart rather than the emerging standard, pointerdown).

Whatever touch-screen optimizations we make, it’s crucial
not to hinder people’s ability to interact with content using
non-touch input mechanisms like the mouse and keyboard. A
common, responsible approach to ensure that touch interac-
tions work as fast as possible is to set up event listeners for
both mouse and touch events. During a particular interaction,
the logic would handle whichever event type happens first
and ignore the other to prevent the possibility of running any
scripting twice. Sounds straightforward, but it’s not. That’s why
I recommend using a well-tested, open-source JavaScript library
to do the hard work for you. I use Tappy.js (http://bkaprt.com/
rrd/1-15/), a script I created to allow you to listen for a custom tap
event when writing jQuery code. Here’s Tappy in play:

$(".myBtn").bind("tap", function(){
 alert("tap!");
});

Behind the scenes, that tap event is listening for touch, key-
board, or mouse clicks to perform a specific behavior. (In this
case, it throws an alert that says, “tap!” I’m sure you can find
better uses for it, of course.)

For a library that offers a more advanced set of touch features,
check out FastClick (http://bkaprt.com/rrd/1-16/), created and
maintained by the talented team at Financial Times.

http://bkaprt.com/rrd/1-15/
http://bkaprt.com/rrd/1-15/
http://bkaprt.com/rrd/1-16/

 rESPonSIBLE dESIGn 33

DESIGNING FOR ACCESS
We’ve covered some major aspects of usability, such as design-
ing for screen variation, finding breakpoints, and handling in-
put modes inclusively. But for components to be usable across
devices, we must make sure that they’re accessible in browsers
that don’t support our ideal presentation or behavior, and for
users who browse the web with assistive technology. For these
reasons and more, you can’t do a better service to your users
than to start with plain old HTML. A major strength of HTML
is its innate backward compatibility, which means pages built
with even the latest iterations can still be accessed from almost
any HTML-capable device.

While HTML documents are born quite accessible, they don’t
always stay that way: careless application of CSS and JavaScript
can render formerly accessible content completely unusable,
leaving users worse off than they were with the initial, bare-
bones experience. For example, consider a drop menu whose
content is hidden with display: none;. With exceptions,
screen readers will relay only the content that is presented on
screen, so if precautions aren’t in place, that menu’s content will
not only be hidden visually, it will also be hidden audibly from
screen reader users. We must provide meaningful cues to alert
all users—not just those browsing the web visually—that the
menu content exists and can be shown (or heard) when desired.

As we continue to push HTML toward new interactivity, it’s
critical that we think of access as something we constantly risk
losing, as something we must retain throughout our develop-
ment process.

Ensure access with progressive enhancement

The idea that the web is born accessible pairs neatly with the
concept of progressive enhancement, which advocates starting
with functional, meaningful HTML and then unobtrusively
layering presentation (CSS) and behavior (JS) on top for a richer,
more dynamic user experience.

With power comes responsibility. Any time you venture
beyond standard browser rendering of HTML into building

www.allitebooks.com

http://www.allitebooks.org

 34 rESPonSIBLE rESPonSIVE dESIGn

your own presentation and interactivity, you’re responsible for
accessibility. This requires some planning. As developers, we
must “see through” our visual interface designs to discover their
underlying meaning in HTML.

In Filament Group’s book Designing with Progressive
Enhancement, we describe this process as the x-ray perspective
(FIG 1.14):

The x-ray perspective is a methodology we’ve developed to
evaluate a complex site design, break it down to its most basic
modular parts, and build it back up in such a way that a single
coded page will work for modern browsers with full functional
capabilities as well as other browsers and devices that may
understand only basic HTML.

The process of x-raying a design’s parts may require a certain
amount of creative thinking; it depends on how closely a custom
control resembles a native equivalent. Some are fairly transpar-
ent: say, a button that acts as a checkbox input. In this case, a
bit of CSS alone could render some label and input markup

FIG 1.14: A view (left) of the underlying native controls behind an enhanced
user interface (right).

 rESPonSIBLE dESIGn 35

from a standard text and box presentation into the button-like
component shown below (FIG 1.15):

<label class="check">
 <input type="checkbox">Bold
</label>

A CSS-alone approach has triple benefits. It’s simple, light-
weight, and, most important, using native HTML form ele-
ments almost guarantees that the control will be accessible to
users with disabilities. In other words, assistive technology like
Apple’s built-in VoiceOver screen reader will read the native
control aloud as if the visual enhancements aren’t even there:
“bold, unchecked checkbox” by default and “bold, checked
checkbox” when checked.

Easy, right? However, it can be difficult to maintain this level
of accessibility with more complex custom components.

Responsibly enhance a complex control

Let’s focus those x-ray specs on something more abstract, such
as a slider (FIG 1.16):

A great feature in the HTML5 specification is the new set of
form input types like number, color, and search. You can safely
use these types today to deliver more specialized interactivity in
supporting browsers; browsers that don’t understand them will
simply render the input as a standard text type.

Here’s some markup for a color input:

<label for="color">Choose a color:</label>
<input type="color" id="color">

FIGure 1.17 shows how it renders in Google Chrome, a sup-
porting browser.

FIG 1.15: A standard input and label
styled as a button.

 36 rESPonSIBLE rESPonSIVE dESIGn

FIGure 1.18 shows it in iOS 7, a non-supporting browser.
Another new form input is range, which displays a slider con-

trol in most browsers. But the generated native slider leaves a lot
to be desired from a design and usability perspective. For one,
its appearance is vexing—sometimes impossible—to custom-
ize. Depending on the browser, the native slider lacks any text
label to display the slider’s value, making it useless for choosing
precise values. For example, FIGure 1.19 shows how a native
range input with possible values of 0-10 renders in iOS 7 Safari.

<label for="value">Choose a value:</label>
<input type="range" id="value" min="0" max="10">

FIG 1.16: A custom slider control with a numerical input.

FIG 1.17: A color input with a color
picker in Google chrome.

 rESPonSIBLE dESIGn 37

Unless we’re designing a music-volume control, this slider
isn’t helpful. If we want to create a usable, touch-friendly slider,
we’ll need to build it ourselves. Let’s do so in a way that works
for everyone.

FIG 1.18: A color input falls back to a
plain text input in ioS 7.

FIG 1.19: A range input rendered
in ioS 7 Safari, which gives no
feedback about minimum, maximum,
or current value.

 38 rESPonSIBLE rESPonSIVE dESIGn

The first and most important step is to start with our pal,
HTML. Deep down, a slider is a visualization of a numeric scale,
so let’s begin with an input element and give it a type of number,
which is another HTML5 input that degrades to a text input
in non-supporting browsers. Using number has the benefit of
allowing us to use several standard, complementary attributes
that shape the control’s constraints: min and max. We’ll use these
attributes as our HTML starting point (FIG 1.20):

<label for="results">Results Shown:</label>
<input type="number" id="results" name="results" »
 value="60" min="0" max="100" />

Now that we have our foundation, we can use JavaScript to
create a slider component that will manipulate the input’s value
when the user drags its handle.

The actual scripting to pull that off lies beyond this book’s
scope, but I will cover the resulting generated markup and how
to make sure the slider doesn’t hinder accessibility. First, the
newly generated markup in bold:

<label for="results">Results Shown:</label>
<input type="number" id="results" name="results" »
 value="60" min="0" max="100" />
<div class="slider">

</div>

Let’s walk through the changes. To create our slider handle
and track, we need to use an element that is natively focusable
via keyboard, in this case an a element, to which I assigned the

FIG 1.20: our foundational HtML
markup as rendered in a browser.

 rESPonSIBLE dESIGn 39

class handle for reference. We also need a div container element
for the .handle to be visually styled as a slider track. As a user
drags the handle or taps their arrow keys, we use JavaScript to
manipulate the handle’s CSS left positioning with a percentage
that reflects the distance the user has dragged, and update the
value of our input control as well. I’ve included our new slider
markup in bold (FIG 1.21):

<label for="results">Results Shown:</label>
<input type="number" id="results" name="results" »
 value="61" min="0" max="100" />
<div class="slider">

</div>

CSS styling aside, that’s the bulk of the behavior a basic slider
control needs to perform. But our work isn’t done. Our page
started out accessible, but with JavaScript we’ve introduced
markup that’s playing an unnatural role—that anchor element
with a class of .handle. When a screen reader encounters this
element, it will read it aloud as “number link” because it appears
to be an ordinary link with an href value of #.

To prevent this markup from leading to a confusing experi-
ence, we have two options: we can either hide the slider from
screen readers (since the text input already exists) or do ad-
ditional work to make the slider itself meaningful to screen
readers. I prefer the simplicity of hiding the new control; all we
need to do is add an aria-hidden attribute to the div, which
tells a screen reader to ignore the contents of that element when
reading the page aloud:

FIG 1.21: our slider div, with the input
element shown to the left.

 40 rESPonSIBLE rESPonSIVE dESIGn

<label for="results">Results Shown:</label>
<input type="range" id="results" name="results" »
 value="61" min="0" max="100" />
<div class="slider" aria-hidden>

</div>

Just like that, we’ve progressively enhanced our input into
a better visual presentation without undermining accessibility.
“But… ARIA what?” you may ask. Briefly, the W3C’s Accessible
Rich Internet Applications (ARIA) specification is a set of HTML
attributes that embed semantic meaning in HTML elements that
play a non-native role—whether that’s an a acting as a menu but-
ton instead of a link (which would use ARIA’s role="button"
attribute) or a ul acting as a navigable tree component (the
role="tree" attribute), as you’d see when browsing a list of
files in an operating system window. There’s even an ARIA
role to describe a slider, if we wanted to go that route with our
component above: role="slider". In addition to those role-
based attributes, ARIA provides state attributes that describe the
state a control is in, such as aria-expanded, aria-collapsed,
and aria-hidden (used above), and even attributes to describe
the current and possible values of a custom slider control. Find
out more about ARIA over at the W3C’s site (http://bkaprt.com/
rrd/1-17/).

Make data visualizations accessible

Data visualizations, like charts and graphs, are often delivered
in ways that aren’t terribly meaningful for those using assistive
technology. For example, take a complex line chart in a New York
Times article, delivered via an img element (FIG 1.22).

To a screen reader, all of the information in this chart is in-
visible. Now, a responsible developer might (at the very least!)
go as far as adding an alt attribute to describe the chart’s data,
but such data can be impossible for a single string of text to
describe meaningfully:

http://bkaprt.com/rrd/1-17/
http://bkaprt.com/rrd/1-17/

 rESPonSIBLE dESIGn 41

<img src="chart.png" alt="Economic winners and losers, »
 Change since...">

How can we communicate this better? Ready those x-ray
specs. As we did with the slider, perhaps we could choose a
more meaningful starting point from which to create this graph.
Consider the pie chart in FIGure 1.23, for example. How might
we build it in a way that provides more meaning to screen read-
ers than an img tag can?

We can start with HTML that’s meaningful to all users and
present the chart as an enhancement. By peering through the
chart to its underlying meaning, we might discover that a chart’s
bones could be described with an HTML table element. We
could then parse the HTML markup below with JavaScript to
dynamically draw the chart with a technology like HTML5’s
canvas or SVG. Once the chart is generated, we might even
choose to accessibly hide the table by positioning it off screen,
deeming the chart a visual improvement over the table it re-
places (FIG 1.24).

<table>
 <summary>Employee Sales Percentages</summary>
 <tr>
 <th>Employee</th>
 <th>Sales</th>
 </tr>
 <tr>
 <td>Mary</td>
 <td>32.28%</td>
 </tr>
 <tr>

FIG 1.22: this complex line chart was delivered via an img element
(http://bkaprt.com/rrd/1-18/).

http://bkaprt.com/rrd/1-18/

 42 rESPonSIBLE rESPonSIVE dESIGn

FIG 1.23: How can we meaningfully deliver complex graphics to screen readers?

FIG 1.24: A canvas-generated chart visualization of the table on the left.

 rESPonSIBLE dESIGn 43

 <td>Tom</td>
 <td>10.69%</td>
 </tr>
 <tr>
 <td>Brad</td>
 <td>20.58%</td>
 </tr>
 <tr>
 <td>Kate</td>
 <td>36.46%</td>
 </tr>
</table>

We’ve only scratched the surface of everything we should
consider when building accessible, complex interfaces. But
it’s hard to go wrong when starting with markup that is valid,
accessible, and functional on almost any device, and layer en-
hancements from there. It’s a fine line between an enhancement
and a hindrance, one that we as responsible developers must
carefully walk.

Building this way is a clear win for access, but planning for
such variation makes for an interesting challenge when it comes
to communicating these expectations to our clients and QA
testers. Perhaps a tweak to how we define support is in order…

An enhanced support strategy

In the article “Grade Components, Not Browsers,” I expanded
on a great idea by my colleague Maggie Wachs about defining
support granularly for each site component (rather than as-
signing a grade to a browser as a whole, as is common with ap-
proaches like Yahoo’s Graded Browser Support) (http://bkaprt.
com/rrd/1-19/). The documentation we share with our clients
assigns graded levels for each component based on its major
tiers of enhancement.

As an example, the following image shows enhancement lev-
els for a property detail component on a real estate website (FIG
1.25). The enhancement level that a browser receives depends

www.allitebooks.com

http://bkaprt.com/rrd/1-19/
http://bkaprt.com/rrd/1-19/
http://www.allitebooks.org

 44 rESPonSIBLE rESPonSIVE dESIGn

on several conditions, such as support of features like Ajax and
3D CSS Transform.

 This documentation accomplishes a few things. For one,
it helps us to itemize for our clients the particular conditions
that enable portions of their site to work at an enhanced level,
so everyone (designers, clients, and quality assurance testers)
knows what to expect. It also acts as a reminder that some com-
ponents may receive a higher grade than others, depending on
the browser. In other words, feature support varies across even
modern browsers, so a browser may receive a bells-and-whistles
A-grade experience for one component and a less-enhanced
B-grade experience for another.

When we document support this way, we shift the focus
from the browser to its features and constraints. We start to
think of support as less a binary switch—or even a scale—than
a scatter plot. In this system, every browser that understands
HTML is supported and is guaranteed access to the site’s primary
features and content. As Jeremy Keith points out: “It’s our job to
explain how the web works…and how the unevenly-distributed
nature of browser capabilities is not a bug, it’s a feature” (http://
bkaprt.com/rrd/1-20/).

Speaking of features, we need reliable, device-agnostic, and
sustainable ways to detect them. Let’s move on to look at the
why and the how of doing so.

http://bkaprt.com/rrd/1-20/
http://bkaprt.com/rrd/1-20/

 rESPonSIBLE dESIGn 45

FIG 1.25: A graded documentation of a feature whose presentation varies across browsers.

 SuStAInABLE dEtEctIon 47

gIvEN THE dIvERSE NATURE of browsers today, the ability to
detect browser features and constraints is vital to delivering an
appropriate user experience. We have many ways to approach
this detection, some more responsible than others.

DEVICE DETECTION: THE EVOLUTION
OF A STOPGAP

Among topics of great debate in web development, perhaps the
most contentious is the practice of device detection. Its mere
mention in a gathering of peers gets my stomach tingling in
anticipation of the fiery opinions that await. In truth, a little de-
vice detection is sometimes necessary in a complex cross-device
codebase, but with each site I build, I find fewer reasons to use it.

This is a good thing, as any approach that includes device-
specific logic risks threatening the sustainability of our codebase
in the long term. Let’s explore some reasons why that is.

SUSTAINABLE
DETECTION2

 48 rESPonSIBLE rESPonSIVE dESIGn

Detecting all the things

When a user first requests a page, we know precious little about
their browsing environment. We don’t know the size of their
device’s screen, or if their device even has a screen. We don’t
know their browser’s capabilities. Fortunately, we can detect
these qualities after delivering code to the browser, but in some
cases that’s later than we’d prefer.

One thing we can universally detect upon first arrival is a
browser’s user agent information, included in every request
that a browser—or user agent—makes. This string of text packs
a variety of information, including the browser’s make and ver-
sion, like Firefox 14 or Chrome 25, and its operating system,
like Apple iOS. Crafty developers realized early on that if they
gathered data about various browsers and their capabilities
and stored them on their server (in what’s known as a device
database), they could query that information when a user visits
their site to get a good idea of the sort of browser they’re dealing
with. This process is called user agent sniffing or, more broadly,
device detection.

Sniffing up the wrong tree

Perhaps the most common criticism of user agent sniffing is
that the information a browser provides isn’t always reliable.
Browsers, networks, and even users sometimes modify user
agent information for myriad reasons, which makes it difficult to
know if you’re dealing with the browser you think you are. Let’s
start with a few popular mobile browsers’ preference panels:
Android’s default browser, Opera Mini, the BlackBerry browser,
and others provide an easy means of changing the name the
browser reports itself as. You’ll sometimes see this disguised
as “Request desktop site” or with more granular settings like
those in the Android browser, but the ability to change user
agent information exists to give users the tools to fight against
sites that deliver limited content and functionality to particular
browsers (FIG 2.1).

Similarly, a browser’s default user agent string is crowded
with mentions of other browsers in hopes that they will prevent

 SuStAInABLE dEtEctIon 49

its users from being locked out of the best versions of certain
sites. For example, in addition to several appropriate bits of
information, the UA string of my current browser (Chrome
34) mentions Mozilla, Webkit, KHTML, Gecko, and Safari—all
terms describing non-Chrome browsers:

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_5)
AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/34.0.1847.131 Safari/537.36

Some browsers go even further and deliberately obscure
information in their user agent string to trick sites into sending
them the experience other browsers get! The user agent string
for the vastly improved Internet Explorer 11 never mentions
Internet Explorer; instead, it tries to trick device-detection li-
braries into thinking the browser is Firefox or Webkit, which
developers came to recognize as the only browsers that sup-
port advanced features necessary to deliver a better experi-
ence. (In recent versions of IE, this is thankfully no longer
true.) In her A List Apart article “Testing Websites in Game
Console Browsers,” Anna Debenham notes a similar situation
with the Sony PlayStation Vita’s browser: “The Vita’s browser is
a WebKit-based version of NetFront. Strangely, it identifies itself
as Silk in its user agent string, which is the browser for Amazon’s
Kindle Fire” (http://bkaprt.com/rrd/2-01/) (FIG 2.2).

Browser developers have an interest in ensuring the sur-
vival of their software. Ironically, the more web developers
deliver their content and features unevenly based on user agent

FIG 2.1: Android, opera, and Firefox user agent settings.

http://bkaprt.com/rrd/2-01/

 50 rESPonSIBLE rESPonSIVE dESIGn

information, the less meaningful user agent information will
continue to be.

“Set it and forget it?” Forget it!

But reliability is a minor problem compared to sustainability.
We can only write detection logic against browsers and devices
that exist now, which makes device detection utterly useless for
gracefully accepting new browsers.

Most critically, relying too heavily on device detection can
lead us to make dangerous assumptions based on information
that’s not always up to date. Device detection provides, at best,
stock information about a device or browser, meaning any opti-
mizations we make based on that static data may not reflect the
live, dynamic nature of a user’s actual browsing environment.

These are some examples of variables that a device database
can never accurately convey (FIG. 2.3):

FIG 2.2: Messy device detection results across mobile devices (http://bkaprt.com/rrd/2-02/).

http://bkaprt.com/rrd/2-02/

 SuStAInABLE dEtEctIon 51

• Viewport size. While a device database may return some-
what reliable information about a device’s screen, screen size
often differs from a browser’s viewport size. For responsive
layouts, it’s the viewport size we care about. We should also
avoid assuming anything about a user’s connection speed
based on screen size—smartphones are commonly used over
fast Wi-Fi connections, while laptops and tablets can be teth-
ered to a slow cell network—or worse: bus Wi-Fi.

• Device orientation. Those viewport considerations are twice
as difficult when you consider display differences between
portrait and landscape (FIG 2.4). Even if we know the dimen-
sions of a screen, we have no way of knowing (on the server
side) the device’s orientation. We need to ship CSS that ac-
commodates viewport variability.

• Font size. The common practice of using em-based units for
media queries means that users’ preferred default font size
determines the layout they get, so a browser on a laptop with
a large font size may need a smartphone-ish layout. (As we’ll
discuss in a bit, CSS media queries handle this naturally.)

FIG 2.3: Assumptions to avoid based on a device’s user agent string.

 52 rESPonSIBLE rESPonSIVE dESIGn

FIG 2.4: the Boston Globe website shown in two screen orientations on the same device.

FIG 2.5: An Android 2.3 device with multiple input mechanisms.

 SuStAInABLE dEtEctIon 53

• Custom preferences. People commonly override their
browser defaults and turn off features on their phones. A
browser may support a feature, but a server has no way of
knowing whether that feature has been disabled by the user.

• Input modes. Device databases can often tell us if a device
has a touch screen. But as you may recall, just because a de-
vice has a touch screen doesn’t mean that it supports touch
events, or that touch is the only input mechanism the device
offers (FIG 2.5). And of course, touch support is now built
into devices that have large screens as well, such as Google’s
Chromebook laptop, so it’s unsafe to infer any sort of rela-
tionship between touch support and screen size.

So when we build cross-device experiences, we want to be
mindful of these factors and be wary of assumptions based on
stock device conditions. Device detection is a risky bet, and it’s
only going to get riskier.

GOOD NEWS: WE’RE IN CONTROL
The move away from browser-specific code has been long and
slow, but support and tools for making sustainable, feature- and
condition-based decisions have dramatically improved in recent
years, and they get better every day. Client-side technology
like HTML, CSS, and JavaScript allows us to see what’s actually
happening in that dynamic browser environment and to make
decisions that are more contextual and appropriate. In a word:
responsible.

Features and constraints, not devices

“An over-emphasis on context can focus design solutions too much
on assumed mobile situations instead of on the true richness of
mobile web use happening today.”
—luke WrobleWSki, http://bkaprt.com/rrd/2-03/

One crutch we’d do well to abandon is the assumption that
device form-factors are exclusively tied to specific browser

http://bkaprt.com/rrd/2-03/

 54 rESPonSIBLE rESPonSIVE dESIGn

features or network conditions. In reality, these features rou-
tinely overlap across common device categories.

“Touch and viewport size aren’t connected. The most popular touch
devices may currently be phones and tablets, but you can also find
touch screen offerings for 27″ monitors and beyond.”
—trent Walton, “type & touch” (http://bkaprt.com/rrd/2-04/)

Once-convenient mobile and desktop categories have lost any
meaning for our work. We sometimes hear “mobile” to describe
a device’s roving physical context, yet vast amounts of smart-
phone and tablet use happen while people are at home on their
couch. We may think of mobile as a connection-speed limitation,
yet devices of all kinds are as likely to be tethered to high-speed
Wi-Fi as they are to a high-latency cell tower (FIG 2.6). And we
may take mobile to mean devices with features like a smaller
screen size and an ability to react to touch, or constraints like
poor rendering capabilities, but each day devices are released
that break free from the neat categorizations we try to impose.

Attempting to classify devices and browsers by form factor
alone distracts us from the parameters that are actually impor-
tant when we design for the web: features (like CSS properties
and JavaScript APIs) and constraints (like viewport size, unpre-
dictable connectivity, or off-line use). Designing for features and
constraints allows us to see how patterns that may otherwise
seem distinct are shared across devices, and to build in a modu-
lar manner to create unique experiences that feel appropriate
to each device.

Querying media responsibly

Perhaps the most memorable tenet from Ethan Marcotte’s origi-
nal responsive design workflow is CSS3 media queries, the con-
ditional CSS statements we use to deliver styles to some contexts
and not others. Marcotte’s initial article used media queries in
a desktop-first manner, which means that we build the largest
layout first and use media queries to override that layout all the
way down to a small screen.

www.allitebooks.com

http://bkaprt.com/rrd/2-04/
http://www.allitebooks.org

 SuStAInABLE dEtEctIon 55

Shifting the responsive direction

Toward the end of his book Responsive Web Design, Marcotte
remarked that shifting our media queries to follow a mobile-
first, or small-screen-first, philosophy would give our users a
more responsible, sustainable experience. To paraphrase Luke
Wroblewski, a mobile-first workflow helps us to prioritize con-
tent, since there’s not enough room on a small screen for non-
critical content. Thinking mobile-first also pairs nicely with the
mindset of progressive enhancement, aka starting small and
layering in more complex layout as space permits.

“The absence of support for @media queries is in fact the first
@media query.”
—bryan rieger, http://bkaprt.com/rrd/2-06/

A mobile-first responsive stylesheet begins with styles that
are shared across all experiences, forming the foundation of the
smallest screen layout. These styles are followed by a series of
mostly min-width media queries to scale that layout up to greater
viewport sizes and pixel depths. At a high level, the CSS looks
something like this:

FIG 2.6: Wi-Fi not guaranteed: an ad for a uSB dongle that enables web access over a SIM
card on mobile networks. Photograph by Frankie roberto (http://bkaprt.com/rrd/2-05/).

http://bkaprt.com/rrd/2-06/
http://bkaprt.com/rrd/2-05/

 56 rESPonSIBLE rESPonSIVE dESIGn

/* styles for small viewports here */
.logo {
 width: 50%;
 float: left;
}
.nav {
 width: 50%;
 float: right;
}

@media (min-width: 50em) {
 /* styles for viewport widths 50em and up here */
}

@media (min-width: 65em) {
 /* styles for viewports 65em and up here */
}

What about max?

When building mobile first, max-width queries are still quite
helpful. For example, if a design variation only occurs within a
certain width range, that’s a great candidate for max-width. You
can combine min and max to isolate styles from CSS inheritance
at bigger breakpoints, making for smaller, simpler CSS:

@media (min-width: 50em) {
 .header {
 position: static;
 }
}

@media (min-width: 54em) and (max-width: 65em) {
 .header {
 position: relative;
 }
}

 SuStAInABLE dEtEctIon 57

@media (min-width: 65em) {
 /* .header is static positioned here */
}

What’s with those ems, anyway?

You may have noticed that in addition to shifting the respon-
sive direction, the breakpoint widths above use em units rather
than pixels. Ems are flexible units that are sized relative to an
element’s container in a layout. By using ems, we can design
responsive breakpoints proportionally to our fluid, scalable
content, which also tends to be designed with scalable units
like em and %.

Converting pixel breakpoints to ems is easy: divide the pixel-
based value by 16, the default equivalent size of 1em in most web
browsers:

@media (min-width: 800px){
...
}
@media (min-width: 50em){ /* 800px / 16px */
...
}

If em breakpoints aren’t your bag, pixels can work fine—I
just prefer to use proportional units across a layout. The more
important thing is to avoid basing breakpoints on device widths
and instead focus on breakpoints that are appropriate to your
site’s content. For more information on em media queries, check
out Lyza Gardner’s article “The EMs have it: Proportional Media
Queries FTW!” (http://bkaprt.com/rrd/2-07/).

Broadly qualifying CSS application

Not every mobile browser supports the CSS we rely on, like
floats, positioning, or animation. If your styles for a small-
screen experience are significantly complex, you might consider

http://bkaprt.com/rrd/2-07/

 58 rESPonSIBLE rESPonSIVE dESIGn

broadly qualifying their application to newer, media-query-sup-
porting browsers. Wrapping the mobile-first styles in a media
query such as only all is one reliable way to do this. Though
a bit confusing to look at, the only all query applies in any
browser that supports CSS3 media queries. While all is a CSS
media type that refers to any browser that supports CSS 1.0, the
only prefix requires media query support to understand—which
means that its defined styles are recognized by modern brows-
ers. Here’s how our mobile-first stylesheet looks when qualified
for media-query-supporting browsers:

@media only all {
 /* styles for qualified small viewports here */
}

@media (min-width: 50em) {
 /* styles for viewport widths 50em and up here */
}

@media (min-width: 65em) {
 /* styles for viewports 65em and up here */
}

Retaining some style in basic browsers

To maintain some level of branded experience in browsers that
don’t support media queries, I find it useful to tease out a small
amount of the safer styles from your first CSS breakpoint and
place them before the only all media query so they apply
everywhere.

Safe styles—like font-weight, margin, padding, border,
line-height, text-align, and more—can be sent to any brows-
er without introducing problems (FIG 2.7).

/* styles for small viewports here */
body {
 font-family: sans-serif;
 margin: 0;
}

 SuStAInABLE dEtEctIon 59

a {
 font-color: #a00;
}
section {
 margin: 1em;
 border-bottom: 1px solid #aaa;
}

@media only all {
 /* styles for qualified small viewports here */
}
/* more... */

A quick (responsible) reminder: if you choose to deliver styles
to basic browsers, be sure to test them!

FIG 2.7: the basic experience of the
Boston Globe website on an older
BlackBerry.

 60 rESPonSIBLE rESPonSIVE dESIGn

Bullet-proofing the viewport

Traditionally (if such a term can be used for this stuff) in respon-
sive layouts, we’ve used a meta element to specify the width that
browsers should use to render a page when it first loads, such
as the popular width=device-width declaration:

<meta name="viewport" content="width=device-width; »
 initial-scale=1">

This approach has worked fine for us so far, but it’s not par-
ticularly sustainable: for starters, the W3C never standardized it;
what’s more, meta elements are a strange place to define a visual
style. Thankfully, the W3C has standardized an approach to
specifying viewport style information such as width and scale,
and it’s handled via CSS instead of HTML. To ensure that our
viewport settings continue to work in future browser versions,
we want to include these rules in our CSS:

@-webkit-viewport{width:device-width}
@-moz-viewport{width:device-width}
@-ms-viewport{width:device-width}
@-o-viewport{width:device-width}
@viewport{width:device-width}

For browsers that don’t support @viewport, we should con-
tinue to include the meta viewport element. Trent Walton wrote
a handy post about this, and includes tips for getting our respon-
sive sites to work well with IE10’s “snap mode” on Windows
8 (http://bkaprt.com/rrd/2-08/). (Unsurprising spoiler: getting
things up to speed in IE10 requires more than the code above.)

Querying other media

Querying the width and height of a viewport with min-width
and max-width goes a long way toward producing a usable

http://bkaprt.com/rrd/2-08/

 SuStAInABLE dEtEctIon 61

layout, but there are many more conditions we can test to layer
enhancements contextually. For instance, to deliver higher-dpi
images to HD screens of 1.5× resolution and up, we can use a
min-resolution media query of 144dpi (twice that of standard
72dpi). To cover some existing browsers currently transitioning
to the standard syntax, we can also include a WebKit-prefixed
fallback property (-webkit-min-device-pixel-ratio) in our
query:

@media (-webkit-min-device-pixel-ratio: 1.5),
 (min-resolution: 144dpi) {
 /* Styles for HD screens here */
}

In the near future, media queries will support several
more interesting features, such as detecting whether touch-
or hover-based input mechanisms are supported via @media
(pointer:fine) {...} and @media (hover) {...}, detecting
JavaScript support via @media (script){ ... }, and even
detecting ambient light with luminosity. To track their imple-
mentation status, keep an eye on Can I use… (http://bkaprt.com/
rrd/2-09/), and for some great articles describing the “good and
bad” of Level 4 media queries, see Stu Cox’s article of that name
(http://bkaprt.com/rrd/2-10/).

DETECTING FEATURES WITH JAVASCRIPT
As new features arrive in browsers, we often need to qualify
their use at a more granular level. JavaScript feature detection
has long been a part of web development, thanks to proprietary
feature differences in early browsers. Back then and (to a lesser
degree) to this day, to get code to work in more than one browser
it was necessary to check whether even the most common func-
tions were defined before using them. For example, if we wanted
to listen for an event like click, we would first need to check
which event API the browser supported:

http://bkaprt.com/rrd/2-09/
http://bkaprt.com/rrd/2-09/
http://bkaprt.com/rrd/2-10/

 62 rESPonSIBLE rESPonSIVE dESIGn

// if standard event listeners are supported
if(document.addEventListener){
 document.addEventListener("click", myCallback, »
 false);
}
// if not, try the Internet Explorer attachEvent method
else if(document.attachEvent){
 document.attachEvent("onclick", myCallback);
}

Detecting JavaScript features

Thankfully, in recent years the web standards movement has
nudged browsers into supporting common APIs for features like
event handling, which greatly reduces the number of browser-
specific forks we must apply in our code and makes it more
sustainable in the long term.

Now it’s more common to use JavaScript feature detection
to determine whether a feature is supported, before using that
feature to create enhancements on top of an already functional
HTML experience. For example, the following JavaScript func-
tion detects whether the standard HTML canvas element (a sort
of artboard element that offers an API for drawing graphics with
JavaScript) is supported:

function canvasSupported() {
 var elem = document.createElement('canvas');
 return !!(elem.getContext && elem.getContext('2d'));
}

This could be used before loading and running a pile of
canvas-dependent code:

if(canvasSupported()){
 // use canvas API safely here!
}

 SuStAInABLE dEtEctIon 63

Detecting CSS features

While detecting features in JavaScript isn’t new, using JavaScript
to detect CSS feature support began relatively recently. I first
used CSS feature detection this way in the examples for my
2008 A List Apart article “Test-Driven Progressive Enhancement,”
which advocated the idea of running a series of diagnostic tests
on a browser before applying CSS and JavaScript enhancements
to a page (FIG 2.8).

FIG 2.8: My 2008 A List Apart article “test-driven Progressive Enhancement”
(http://bkaprt.com/rrd/2-11/).

http://bkaprt.com/rrd/2-11/

 64 rESPonSIBLE rESPonSIVE dESIGn

At the time, new browsers included great new CSS capa-
bilities like float and position, even though browsers with
poor support for these features were widely used. This made
it difficult to apply modern CSS to a site without breaking the
experience for users running older browsers.

One example from the article was the following test to see if
a browser properly supports the standard CSS box model, which
incorporates padding, width, and border into the measured
dimensions of an element. At the time, two different box model
variations were actively supported across popular browsers, and
writing CSS against one model would cause layouts to break
in browsers (read: old versions of Internet Explorer) that sup-
ported the other.

function boxmodel(){
 var newDiv = document.createElement('div');
 document.body.appendChild(newDiv);
 newDiv.style.width = '20px';
 newDiv.style.padding = '10px';
 var divWidth = newDiv.offsetWidth;
 document.body.removeChild(newDiv);
 return divWidth === 40;
}

Let’s look at this more closely. The JavaScript function creates
a new div element, appends it to the body element in the docu-
ment, and gives the div some width and padding. The function
then returns a statement that the div’s rendered width should
equal 40. Those familiar with the standard CSS box model will
recall that the width and padding of an element contribute to
its calculated width on the screen, so this function tells you
whether the browser calculates that width as expected.

In the article, I bundled this test and others for properties
like float or position into a suite called enhance.js, which
could be run as a broad diagnostic during page load. If the test
passed, the script would add a class of enhanced to the HTML
element that could be used to qualify the application of advanced
CSS properties.

www.allitebooks.com

http://www.allitebooks.org

 SuStAInABLE dEtEctIon 65

.enhanced .main {
 float: left;
}

Qualifying CSS in this way felt like a sustainable step for-
ward, but enhance.js was admittedly rough around the edges,
since it couldn’t detect and apply features at a granular level.
Fortunately, developers much smarter than myself picked up
the slack and took off running.

Feature detection frameworks

Almost any modern JavaScript framework uses feature tests
within its internal codebase, but one framework stands alone
in its mission to provide a standard approach to running tests
in our sites: Modernizr (http://bkaprt.com/rrd/2-12/), created in
2009 by Paul Irish, Faruk Ateş, Alex Sexton, Ryan Seddon, and
Alexander Farkas (FIG 2.9). Modernizr’s simple workflow of add-
ing specific classes to the html element to signify that a feature
like CSS multi-columns is supported (<html class="...css-
columns...">) makes the approach accessible to developers not

FIG 2.9: the Modernizr feature-testing framework.

http://bkaprt.com/rrd/2-12/

 66 rESPonSIBLE rESPonSIVE dESIGn

versed in JavaScript detection intricacies, and has become a pseu-
do-standard approach to qualified application of enhancements.

Using Modernizr

Using Modernizr out of the box is quite straightforward. Include
the modernizr.js script in the head of an HTML document, and
the script runs feature tests automatically.

<script src="js/modernizr.js"></script>

When Modernizr tests run, the framework retains a JavaScript
property, stored on the globally available Modernizr object, of
that test’s name that equals true if it passes or false if it doesn’t.

if(Modernizr.canvas){
 // Canvas is supported!
}

When a test passes, Modernizr also adds a class of that test’s
name to the html element, which you can then use within your
CSS selectors to qualify the use of certain features. Quite a lot
easier than hand-coding those tests above, right?

While you can safely use many modern CSS features without
qualification—like box-shadow, border-radius, or transi-
tion—relying too heavily on these features can introduce us-
ability issues in browsers that don’t support them. For instance,
say you want to overlay text on an image. You want a text color
that matches the image and a text shadow to pull the characters
forward (FIG 2.10).

.img-title {
 color: #abb8c7;
 text-shadow: .1em .1em .3em rgba(0, 0, 0, .6);
}

In browsers without text-shadow support, the text is nearly
invisible (FIG 2.11)!

 SuStAInABLE dEtEctIon 67

To keep this from happening, you may choose to default
to a different presentation, perhaps using a color with higher
contrast first and then feature detection to enhance to the ideal
presentation.

.img-title {
 color: #203e5b;
}
.textshadow .img-title {
 color: #abb8c7;
 text-shadow: .1em .1em .3em rgba(0, 0, 0, .6);
}

And voilà! You have yourself an accessible experience in
browsers new and old (FIG 2.12–2.13).

FIG 2.10: our intended design.

FIG 2.11: our design as viewed in a
non-text-shadow-supporting browser.

 68 rESPonSIBLE rESPonSIVE dESIGn

Detecting CSS support without JavaScript

As useful as JavaScript-driven feature detection is, it comes
with the downside of loading and running code for no purpose
other than to qualify features we want to use. Ideally, we should
standardize the ways we detect features as we do the features
themselves; thanks to advocacy from developer Paul Irish, na-
tive support for a CSS feature-detection approach has been
standardized by the W3C and is gradually becoming available
in browsers.

The @supports feature (http://bkaprt.com/rrd/2-13/) follows
a similar syntax to that of media queries. By passing any CSS
property and value pair (say, display: flex) to the @supports
rule, you can define entire style blocks to apply only in browsers
that implement that CSS feature (or features). Here’s an example:

FIG 2.12: default experience.

FIG 2.13: Enhanced experience.

http://bkaprt.com/rrd/2-13/

 SuStAInABLE dEtEctIon 69

@supports (display: flex) {
 #content {
 display: flex;
 }
 ...more flexbox styles here
}

@supports is pretty handy: it offloads feature detection work
to the browser, removing the need for us to write custom—and
often slow, unreliable—tests to produce similar results. Less
work for developers, and better performance for users! In addi-
tion to the @supports syntax in CSS, you can pair a JavaScript
API called CSS.supports. Here’s an example of it in action,
qualifying the use of transition:

if(CSS.supports("(transition: none)")){
 // CSS transitions are supported!
 // Perhaps you'd add some transition event listeners
 here...
}

Support for support

As is the nature of many CSS features, the @supports approach
to feature queries will gracefully degrade by itself, meaning you
can safely include it in a stylesheet. Browsers that don’t under-
stand @supports will ignore it and the styles it qualifies.

We can’t say the same of the JavaScript method that pairs
with @supports: funnily enough, before using the CSS.sup-
ports JavaScript API, you need to check if the browser sup-
ports CSS.supports! If you’ve been developing websites for
a while, you’re probably used to this sort of thing. Somewhat
amazingly, though, two versions of CSS.supports already exist
in the wild because some versions of the Opera browser have a
non-standard implementation (window.supportsCSS). So here’s
a snippet that tries to assign a variable cssSupports to one or the
other, if available:

 70 rESPonSIBLE rESPonSIVE dESIGn

var cssSupports = window.CSS && window.CSS.supports || »
 window.supportsCSS;

With this normalization in place, you can qualify your CSS.
supports use as follows:

if(cssSupports && cssSupports("(transition: none)" »
)){
 // CSS transitions are supported!
}

Now to play devil’s advocate for a moment: one potential is-
sue with native feature detection like @supports is that it places
trust in browsers to report honest results about their own imple-
mentation’s standards compliance. For example, the Android 2
browser supports history.pushState—used for changing the
browser’s URL location to reflect updates made in the page since
last load—but it doesn’t update the actual page address until you
refresh the page, making the implementation completely use-
less. From a web developer’s perspective, any variation from a
W3C spec in a browser’s implementation could deem a feature
unusable, so where do we draw the line for whether a feature is
supported or not? The spec suggests that support is defined by
a browser implementing a particular property and value “with
a usable level of support,” which, of course, is subjective (http://
bkaprt.com/rrd/2-14/). Given that in the past, browser vendors
have routinely adjusted their user agent strings to improve their
relevance among competitors, there’s also the potential for delib-
erately dishonest reporting. As for how accurately this detection
feature will continue to work, the future remains to be seen.

That leads us well into our next section.

UA detection: the best when all else fails

Sometimes, the question of whether a feature is supported is
more complicated than a simple yes or no.

Uneven browser support is particularly problematic when
it comes to talking about “the undetectables”: features that are
hard to detect across browsers through feature detection alone

http://bkaprt.com/rrd/2-14/
http://bkaprt.com/rrd/2-14/

 SuStAInABLE dEtEctIon 71

(http://bkaprt.com/rrd/2-15/). Scarily, a significant subset of these
undetectables can wreak havoc on the usability or accessibility
of content when they’re unsupported or, often worse, partially
supported. For example, Windows Phone 7 (running Internet
Explorer 9) supports @font-face for delivering custom fonts,
but only with fonts that are installed on the device—defeating
the purpose of the feature.

Many features are partially or improperly supported in brows-
ers. That presents a tedious challenge to responsible design: we
have no way of knowing whether those features are working
properly without testing the browser in question ourselves.

In situations where support for a technology you need is
uneven and undetectable, and the lack of (or partial) support can
create an undesirable effect, it may be a wise choice to employ
some browser-based (rather than feature-based) detection as a
fallback. It’s worth noting, yelling even, that user agent detec-
tion has serious drawbacks and tends to be very unsustainable.
Avoid it if you can. That said, it’s sometimes necessary. The
responsible approach is to do what we can to exhaust all poten-
tial means of browser-agnostic detection before resorting to the
user agent string. Here are a couple of examples incorporating
that last resort.

Desperately qualifying overflow

The CSS overflow property allows us to control what happens
when content overflows the boundaries of an element. Possible
values include visible (which visually displays the overflowed
content), hidden (which hides it), and scroll or auto (which
allows the user to scroll through the element’s content). For
example, the following CSS when applied to an element with a
class of .my-scrolling-region:

.my-scrolling-region {
 border: 1px solid #000;
 height: 200px;
 width: 300px;
 overflow: auto;
}

http://bkaprt.com/rrd/2-15/

 72 rESPonSIBLE rESPonSIVE dESIGn

…produces FIG 2.14 in the browser, if the content happens to
exceed the height of the element.

Unfortunately, simple as it may sound, partial support for
overflow is prevalent on the web. For example, many mobile
browsers treat overflow: auto the same as overflow: hidden,
which crops content without offering users any means of access-
ing it. What’s more, older versions of iOS require two fingers
to scroll an overflow region (which presumably few iOS users
even know to try).

These support shortcomings make overflow risky to use
without qualification, but to make matters worse, overflow
support is nearly impossible to detect! A test for whether the
overflow property is supported will pass even if it’s not sup-
ported properly, and trying to test for overflow: auto support
specifically requires user interaction to verify (i.e., we don’t
know for sure if scrolling works until the user tries it). Because
of this predicament, overflow is a good candidate for a little user
agent detection (as a fallback). Overthrow (http://bkaprt.com/
rrd/2-16/) is a script that helps us use overflow safely; when the
script runs, it takes the following steps:

It first runs a feature test to try to detect whether overflow is
supported. This test will fail reliably in browsers that don’t sup-
port overflow, and pass in most modern browsers that correctly
support it. Unfortunately, though, the test also fails in several
browsers that are known to support overflow properly, requir-
ing a fallback approach to get those browsers on board. That
approach checks the browser’s user agent string to detect eight
or so browsers that are known to render overflow properly yet

FIG 2.14: An example of the cSS
overflow property.

http://bkaprt.com/rrd/2-16/
http://bkaprt.com/rrd/2-16/

 SuStAInABLE dEtEctIon 73

fail the feature test. The script assumes those specific browsers
will continue to support the feature in future versions as well (a
slightly risky assumption). In passing browsers, Overthrow adds
a class of overthrow-enabled to the HTML element, which can
be used to qualify overflow within a stylesheet.

I want to reemphasize that we’ve attempted to use a
 browser-agnostic means of detecting the feature before resort-
ing to device-specific logic. That part is critical, as we want to
make our code as future-ready and sustainable as we can. With
that class in place, we can qualify the element from above to
safely use overflow:

.overthrow-enabled .my-scrolling-region {
 overflow: auto;
 -webkit-overflow-scrolling: touch;
 -ms-overflow-style: auto;
 height: 200px;
}

The CSS shown here ensures that browsers that support
 overflow get a scrolling pane with a specific height, while oth-
ers see the content in full without a set height that would re-
quire scrolling. Best of all, if the test malfunctions or fails to
pass an overflow-supporting browser, the content will still be
accessible. In addition to the overflow and height, I’ve added
vendor- specific properties to apply momentum-based scrolling in
WebKit and IE10 touch-based environments. FIG 2.15 and FIG 2.16
demonstrate supported versus unsupported environments—both
perfectly usable.

Position: fixed? More like position: broken!

Another example of a dangerous undetectable is the CSS prop-
erty position:fixed. Many recently popular mobile browsers
(Android 2, Opera Mobile, older iOS versions) leave fixed-posi-
tioned content wherever it is at page load, meaning that content
continues to sit on top of the content beneath it, obscuring ac-
cess to the page (FIG 2.17).

 74 rESPonSIBLE rESPonSIVE dESIGn

FIG 2.15: the overthrow site in a browser that supports overflow.

FIG 2.16: the overthrow site in a browser that doesn’t support overflow.

 SuStAInABLE dEtEctIon 75

To combat this, check out Fixed-Fixed (http://bkaprt.com/
rrd/2-17/). Similarly to Overthrow, Fixed-Fixed employs a sim-
ple CSS class qualifier you can use in your selectors; it also,
like Overthrow, attempts to run a feature test before resorting
to user-agent-based fallback detection if necessary. Here’s an
example:

.fixed-supported #header {
 position: fixed;
}

FIG 2.17: Intended behavior (left) vs. buggy behavior (right) in a browser with poor
fixed-position support.

http://bkaprt.com/rrd/2-17/
http://bkaprt.com/rrd/2-17/

 76 rESPonSIBLE rESPonSIVE dESIGn

That’s about it! In qualified browsers, the #header element
is fixed to the top of the viewport; in others, it scrolls with the
page.

Supporting the unsupported

If a browser doesn’t support a particular feature, does that mean
we have no way to use it in that browser? Not necessarily. In
the past several years, the practice of emulating features in
unsupported browsers, known as shimming or polyfilling, has
become quite common. In fact, there’s a workaround listed on
the Modernizr site for almost every feature the library detects.

Shims tend to be quick hacks to enable a certain approach,
while polyfills are more involved. Let’s look at shims first.

Shims

Probably the most famous shim is the HTML5 shim, also called
the HTML5 shiv, perhaps due to web developers’ common dis-
dain for older versions of Internet Explorer (more here: http://
bkaprt.com/rrd/2-18/). IE versions older than 9 can’t apply CSS
styles to HTML elements that didn’t exist at the time of the
browser’s release date, meaning HTML5 elements like section
and header are unstyleable in one of the most widely used
browsers on the web. Fortunately, a JavaScript workaround
discovered by developer Sjoerd Visscher tricks IE into “learning”
about any element that’s generated with the method document.
createElement, enabling IE to style those elements like any
other. The workaround couldn’t be easier: create an element of
a given name using document.createElement, and all instances
of that element IE subsequently encounters will be recognized
as if natively supported, like magic.

Remy Sharp later created an open-source script (http://bkaprt.
com/rrd/2-19/), now maintained by Alexander Farkas and oth-
ers, that applies this workaround to the new HTML5 elements.

http://bkaprt.com/rrd/2-18/
http://bkaprt.com/rrd/2-18/
http://bkaprt.com/rrd/2-19/
http://bkaprt.com/rrd/2-19/

 SuStAInABLE dEtEctIon 77

FIGure 2.18 shows an example of HTML5 styling in IE8 without
the shim.

<!DOCTYPE HTML>
<html>
<head>
 <style>
 header {
 font-size: 22px;
 color: green;
 }
 </style>
</head>
<body>
 <header>Website!</header>
</body>
</html>

FIG 2.18: unstyled, unrecognized HtML5 header element.

 78 rESPonSIBLE rESPonSIVE dESIGn

FIGure 2.19 shows how it renders with the shim.

<!DOCTYPE HTML>
<html>
<head>
 <!--[if lt IE 9]>
 <script src="html5shiv.js"></script>
 <![endif]-->
 <style>
 header {
 font-size: 22px;
 color: green;
 }
 </style>
</head>
<body>
 <header>Website!</header>
</body>
</html>

FIG 2.19: Styled, shimmed HtML5 header element.

 SuStAInABLE dEtEctIon 79

With regard to responsible development, there is a minor
but considerable downside to shimming HTML5 support: if the
JavaScript fails to load in older IE browsers, HTML5 elements
will not receive any CSS styles. This may not be a major problem
if the only style we’re applying is some color, as in the example
above, but if a columnar page layout depends upon HTML5 ele-
ment styling, the page elements will crash together in IE, which
may hinder usability. To avoid this issue, it has become common
to wrap HTML5 elements in a div with a class of that element
name (<div class="article"><article></article></div>),
and style that div element instead. This bloats the markup a
little, but it does allow modern browsers to reap the semantic
benefits of HTML5 elements without needing a JavaScript work-
around to style the page.

Responsive design polyfills

The term polyfill was coined by Remy Sharp to describe an ap-
proach that Paul Irish sums up nicely as “a shim that mimics a
future API providing fallback functionality to older browsers”
(http://bkaprt.com/rrd/2-20/). A polyfill goes to some length to
reproduce a standardized API with JavaScript, and is typically
more than a quick-and-dirty workaround.

A responsible shim or polyfill should always try to discern
if a feature is supported natively before reproducing its API.
For performance reasons, a native implementation is always
preferred, so it’s also wise to consider whether the feature is
truly necessary to polyfill in the first place. Nine times out of
ten, it’s more responsible to serve unsupported browsers a less-
enhanced experience than to force ad hoc upgrades for features
they don’t support. The decision to use a polyfill should be based
on three main points: how much the feature improves your
audience’s user experience, the cost to performance of includ-
ing the polyfill in a page, and its ability to one day be removed
seamlessly from your codebase.

For responsive design, I commonly find a few polyfills helpful.

http://bkaprt.com/rrd/2-20/

 80 rESPonSIBLE rESPonSIVE dESIGn

MatchMedia: media queries in JavaScript

While media queries are mostly used for applying CSS, some-
times it’s useful to know whether a media query applies to
JavaScript logic as well. One example may be when requesting
additional, appropriately sized images for a gallery. MatchMedia
enables us to evaluate media queries in JavaScript.

To use it, simply pass any media type or query to the window.
matchMedia function, and it will return an object with a matches
property that is either true or false depending on whether the
media applies at that time:

if(window.matchMedia("(min-width: 45em)").matches){
 // The viewport is at least 45em wide!
}

Okay, I didn’t mention a slight wrinkle: matchMedia is not
supported in every browser that supports CSS3 media queries.
So, before using it we either need to check to see if it’s sup-
ported at all or use a polyfill to make it work where it otherwise
wouldn’t. For those interested in the latter option, I wrote a
polyfill for matchMedia a few years back, and Paul Irish was kind
enough to set up a GitHub repository where we’ve continued
to maintain the script (FIG 2.20).

To use the polyfill, simply reference the matchMedia.js file
in your page to use window.matchMedia in any browser, even
one that doesn’t support CSS media queries! Not so fast, though:
you still need to be in a media-query-supporting browser for any
media query value to match (though media types like screen
work in just about any device with a screen).

With the polyfill in place, you can now use matchMedia to
test whether CSS3 media queries are natively supported, which
could be useful if you want to qualify the addition of advanced
scripting that should only apply in modern browsers. Just like
in CSS itself, the only all media query can give us just that
information.

 SuStAInABLE dEtEctIon 81

if(window.matchMedia("only all").matches){
 // Media queries are natively supported!
}

Another potentially useful feature of the matchMedia API is
its ability to accept listeners, allowing us to keep an ear out for
changes to a particular matchMedia query’s state after we check
it the first time. To ensure it’ll work broadly, the matchMedia.js
polyfill has a listener extension to support this part of the API as
well. Adding a matchMedia listener is pretty straightforward: call
a matchMedia function as seen above and assign an addListener
method to the end of it, like this:

window.matchMedia("(min-width: 45em)").addListener(»
 callback);

FIG 2.20: the matchMedia.js Project by Scott Jehl, Paul Irish, and nicholas Zakas
(http://bkaprt.com/rrd/2-21/).

http://bkaprt.com/rrd/2-21/

 82 rESPonSIBLE rESPonSIVE dESIGn

In this case, callback is a function you can define that ex-
ecutes every time the media query changes its state between
true and false. The first argument passed to the callback
function contains a reference to the matchMedia object, allowing
easy access to its matches property whenever the listener fires.
Here’s an example of how that function can plug in:

window.matchMedia("(min-width: 45em)")
 .addListener(function(mm){
 if(mm.matches){
 // The viewport is at least 45em in width!
 }
 else {
 // The viewport is less than 45em in width!
 }
});

Media queries to IE: please respond, IE.

As you’ll likely remember from earlier in this chapter, Internet
Explorer versions 8 and older don’t support CSS media queries.
This means that a mobile-first responsive layout will render in a
layout intended for small screens on a desktop computer—still
usable, but not formatted in an ideal way for large-screen use
(FIG 2.21).

This drawback might put a damper on the whole responsive
design thing if it weren’t for some reliable workarounds.

First, we have a small polyfill script, respond.js (http://
bkaprt.com/rrd/2-22/), that I developed during the Boston Globe
project to make old IE versions render responsive layouts as
if they understood CSS3 media queries. respond.js works by
reading every stylesheet referenced in a document to find all the
media queries contained therein. The script parses the values of
these media queries to look for either a minimum or maximum
width that can be compared against the viewport window’s
dimensions. When it finds a query that matches, it injects the
styles contained in that query into a style block in the page, al-
lowing the styles to apply in browsers that do not understand
media queries, and the script reruns this logic whenever the

http://bkaprt.com/rrd/2-22/
http://bkaprt.com/rrd/2-22/

 SuStAInABLE dEtEctIon 83

browser is resized (and when a device’s orientation changes).
respond.js is intentionally limited in scope to keep it small and
fast, so it only supports min-width and max-width media que-
ries, which should be enough to pull off a reasonably responsive
layout for users of old IE.

To use respond.js, reference the script in your page any-
where after your CSS references. I recommend using an IE
conditional comment (a special comment syntax that old IE
browsers are designed to ignore) around the script tag as well, so
that the file is only requested in the versions of Internet Explorer
that need it. This particular conditional comment says: “If the
browser is IE less than version 9, parse the content of this com-
ment like all other HTML on the page.”

<!--[if lt IE 9]><script src="respond.js"> »
 </script><![endif]-->

FIG 2.21: An example of the Boston Globe homepage in IE8.

 84 rESPonSIBLE rESPonSIVE dESIGn

By including this script, the Boston Globe homepage is more
usable in old IE (FIG 2.22).

Avoiding the polyfill with static CSS

Another responsible approach to addressing old IE’s lack of
media query support is to serve IE additional CSS rules that
essentially force it into rendering the styles from a responsive
design’s wider breakpoints. You can do this manually or with
the help of CSS preprocessors such as Sass. For more on this
approach, check out Jeremy Keith’s 2013 article “Dealing with
IE” (http://bkaprt.com/rrd/2-23/).

This approach is only able to serve users running old IE a
fluid, but not responsive, layout, which may be fine depending
on how broadly your fluid layout scales. However, depending

FIG 2.22: The Boston Globe website, viewed in IE8 with respond.js used for
media query support.

http://bkaprt.com/rrd/2-23/

 SuStAInABLE dEtEctIon 85

on your user’s screen size and your particular layout, it may or
may not make for an ideal experience.

Avoiding doing anything at all

As a third option, you might simply do nothing at all and serve
the responsive site to old IE as is. This leaves the layout in its
default non-media-query state. Depending on the layout, this can
be perfectly fine, especially if you set a reasonable max-width
on the layout to keep the line lengths in check.

TESTING RESPONSIBLY
To ensure that a site works across a variety of screen sizes, input
types, and browsers, you can’t beat testing on real devices. To get
a decent idea of the devices that it would make sense to amass
for a personal testing lab, see Brad Frost’s excellent post “Test
on Real Mobile Devices without Breaking the Bank” (http://
bkaprt.com/rrd/2-24/).

Devices are expensive to collect, so to test on an array of
relevant devices, the average developer may need to search for
a nearby community device lab, which is thankfully becoming
more common (FIG 2.23). For information about device labs in
your area, visit Open Device Lab (http://bkaprt.com/rrd/2-25/).

Testing on real devices is ideal, but we can’t possibly expect
to have access to even a fraction of the devices we need to care
about. When you don’t have access to a device, a device emula-
tor is a brilliant solution. Emulated devices do come with draw-
backs, such as misleading performance (because the browser is
running on different hardware than it would normally run on),
slow screen refresh rates that make animation difficult to test,
connection speeds that are often faster than the device would
typically have, and a lack of physical feedback that allows us to
get a true sense for how a site feels on a particular device. But
despite the downsides, emulators are a very reliable means of
diagnosing issues with CSS layout and JavaScript.

These days I do most of my own emulated browser testing
on BrowserStack (http://bkaprt.com/rrd/2-27/), which offers
real-time browser testing on platforms like iOS, Android, and

http://bkaprt.com/rrd/2-24/
http://bkaprt.com/rrd/2-24/
http://bkaprt.com/rrd/2-25/
http://bkaprt.com/rrd/2-27/

 86 rESPonSIBLE rESPonSIVE dESIGn

Opera Mobile, as well as various Windows and Mac desktop
browsers (FIG 2.24). BrowserStack even offers a way to easily
test local sites on your machine, so you don’t need to upload
anything to test a page.

Also, I spend the vast majority of my development time in
a browser with strong developer tools, like Google Chrome or
Firefox, as their code inspectors give incredibly helpful insights
into how a site’s various components are working in unison, and
even allow me to test features that aren’t enabled in the browser
by default, like touch events. I only branch out to other physical
and emulated devices once a feature works to verify usability
and performance, a process I repeat over and over throughout
the development cycle.

As the number of web-accessing devices has grown, browser
testing has become a nuanced activity, requiring developers to
make subjective decisions about minor variations in the experi-
ence that individual devices receive. When pulling up a site on a

FIG 2.23: Friends gathered around a collection of test devices and laptops. Photograph by
Luke Wroblewski (http://bkaprt.com/rrd/2-26/).

http://bkaprt.com/rrd/2-26/

 SuStAInABLE dEtEctIon 87

particular device, I like to ask myself a series of questions about
the site’s design and functionality:

• Does the site load and present itself in a reasonable amount
of time?

• Is the core content and functionality usable and accessible?
• Does the level of enhancement in the layout feel appropriate

to the device?
• Is the text easy to scan? Do the line lengths promote

readability?
• Is the site controllable and browsable via common input

mechanisms on the device (touch, mouse, keyboard, etc.)?
• Are the actionable areas of the page easy to tap without tap-

ping on adjacent items?
• Does the layout hold up to changes in orientation, viewport

resizing, and font size?

FIG 2.24: the Browserstack testing service.

 88 rESPonSIBLE rESPonSIVE dESIGn

• If the device has assistive technology installed (such as
VoiceOver), does the content read back in meaningful ways?

• Does the page scroll efficiently? Do animations run smoothly?

The more devices we can test, the better our chances of
reaching our users wherever they are.

NEXT UP
In this chapter, we covered many of the complexities of writing
sustainable, cross-browser code. With that, we can proceed to
our fourth tenet of responsible responsive design: performance.
Because performance is a heavy topic—perhaps the one most
in need of our attention when building responsive websites
today—I’ve dedicated two chapters to its discussion.

Let’s move ahead—with speed.

 PLAnnInG For PErForMAncE 89

I want you to ask yourself when you make things, when you
prototype interactions, am I thinking about my own clock, or
the user’s?”
—paul ForD, “10 timeframes,” http://bkaprt.com/rrd/3-01/

WE’RE NOT DOING A GOOD JOB
Page-load times in the ten-second range are still common on
modern mobile networks, and that’s a fraction of how long it
takes in countries with older, more limited networks. Why so
slow? It’s mostly our fault: our sites are too heavy, and they’re of-
ten assembled and delivered in ways that don’t take advantage of
how browsers work. According to HTTP Archive (http://bkaprt.
com/rrd/3-02/), the average website weighs 1.7 megabytes. (It’s
probably heftier now, so you may want to look it up.) To make
matters worse, most of the sites surveyed on HTTP Archive
aren’t even responsive, but focus on one specific use case: the
classic desktop computer with a large screen.

3 PLANNING FOR
PERFORMANCE

“

http://bkaprt.com/rrd/3-01/
http://bkaprt.com/rrd/3-02/
http://bkaprt.com/rrd/3-02/

 90 rESPonSIBLE rESPonSIVE dESIGn

That’s awful news for responsive (and, ahem, responsible)
designers who aim to support many types of devices with a
single codebase, rather than focusing on one type. Truth be
told, much of the flak responsive design has taken relates to the
ballooning file sizes of responsive sites in the wild, like Oakley’s
admittedly gorgeous Airbrake MX site (http://bkaprt.com/rrd/
3-03/), which originally launched with a whopping 80-megabyte
file size (though it was later heavily optimized to be much more
responsible), or the media-rich Disney homepage, which serves
a 5-megabyte responsive site to any device.

Why are some responsive sites so big? Attempting to support
every browser and device with a single codebase certainly can
have an additive effect on file size—if we don’t take measures to
prevent it. Responsive design’s very nature involves delivering
code that’s ready to respond to conditions that may or may not
occur, and delivering code only when and where it’s needed
poses some tricky obstacles given our current tool set.

Fear not!

Responsible responsive designs are achievable even for the most
complex and content-heavy sites, but they don’t happen on their
own. Delivering fast responsive sites requires a deliberate focus
on our delivery systems, because how we serve and apply our
assets has an enormous impact on perceived and actual page-
loading performance. In fact, how we deliver code matters more
than how much our code weighs.

Delivering responsibly is hard, so this chapter will take a
deep, practical dive into optimizing responsive assets for even-
tual delivery over the network. First, though, we’ll tour the
anatomy of the loading and enhancement process to see how
client-side code is requested, loaded, and rendered, and where
performance and usability bottlenecks tend to happen.

Ready? Let’s take a quick look at the page-loading process.

A WALK DOWN THE CRITICAL PATH
Understanding how browsers request and load page assets goes
a long way in helping us to make responsible decisions about

http://bkaprt.com/rrd/3-03/
http://bkaprt.com/rrd/3-03/

 PLAnnInG For PErForMAncE 91

how we deliver code and speed up load times for our users. If
you were to record the events that take place from the moment
a page is requested to the moment that page is usable, you would
have what’s known in the web performance community as the
critical path. It’s our job as web developers to shorten that path
as much as we can.

A simplified anatomy of a request

To kick off our tour de HTTP, let’s start with the foundation
of everything that happens on the web: the exchange of data
between a browser and a web server. Between the time when
our user hits go and their site begins to load, an initial request
pings back and forth from their browser to a local Domain Name
Service (which translates the URL into an IP address used to find
the host), or DNS, to the host server (FIG 3.1).

That’s the basic rundown for devices accessing the web over
Wi-Fi (or an old-fashioned Ethernet cable). A device connected
to a mobile network takes an extra step: the browser first sends
the request to a local cell tower, which forwards the request to
the DNS to start the browser-server loop. Even on a popular
connection speed like 3G, that radio connection takes ages in
computer terms. As a result, establishing a mobile connection

FIG 3.1: the foundation of a web connection.

 92 rESPonSIBLE rESPonSIVE dESIGn

to a remote server can lag behind Wi-Fi by two whole seconds
or more (FIG 3.2).

Two seconds may not seem like a long time, but consider that
users can spot—and are bothered by—performance delays as
short as 300 milliseconds. That crucial two-second delay means
the mobile web is inherently slower than its Wi-Fi counterpart.

Thankfully, modern LTE and 4G connections alleviate this
pain dramatically, and they’re slowly growing in popularity
throughout the world. We can’t rely on a connection to be fast,
though, so it’s best to assume it won’t be. In either case, once a
connection to the server is established, the requests for files can
flow without tower connection delays.

REQUESTS, REQUESTS, REQUESTS!
Say our browser requests an HTML file. As the browser receives
chunks of that HTML file’s text from the server, it parses them
procedurally, looking for references to external assets that must
also be requested, and converts the HTML into a tree struc-
ture of HTML elements known as a Document Object Model, or
DOM. Once that DOM structure is built, JavaScript methods

FIG 3.2: Mobile? First to the cell tower! Which takes two seconds on average over 3G
(http://bkaprt.com/rrd/3-04/).

http://bkaprt.com/rrd/3-04/

 PLAnnInG For PErForMAncE 93

can traverse and manipulate the elements in the document pro-
grammatically and CSS can visually style the elements however
we like.

The complexities of HTML parsing (and its variations across
browsers) could fill a book. Lest it be ours, I will be brief: the
important thing is getting a grasp on the fundamental order of
operations when a browser parses and renders HTML.

• CSS, for example, works best when all styles relevant to the
initial page layout are loaded and parsed before an HTML
document is rendered visually on a screen.

• In contrast, JavaScript behavior is often able to be applied to
page elements after they’re loaded and rendered.

But both JavaScript and CSS present bumps on the critical
path, blocking our page from showing while they load and ex-
ecute. Let’s dig into this order of operations a bit.

Rendering and blocking

The quickest-to-load HTML document is one without extra ex-
ternal files, but it’s also not one you'll commonly find. A typical
HTML document references a slew of outside assets like CSS,
JavaScript, fonts, and images.

You can often spot CSS and JavaScript in the HTML docu-
ment’s head as link and script elements, respectively. By de-
fault, browsers wait to render a page’s content until these assets
finish loading and parsing, a behavior known as blocking (FIG
3.3). By contrast, images are a non-blocking asset, as the browser
won’t wait for an image to load before rendering a page.

Despite its name, blocking rendering for CSS does help the
user interface load consistently. If you load a page before its CSS
is available, you’ll see an unstyled default page; when the CSS
finishes loading and the browser applies it, the page content
will reflow into the newly styled layout. This two-step process
is called a flash of unstyled content, or FOUC, and it can be ex-
tremely jarring to users. So blocking page rendering until the
CSS is ready is certainly desirable as long as the CSS loads in a
short period of time—which isn’t always an easy goal to meet.

 94 rESPonSIBLE rESPonSIVE dESIGn

Blocking’s value with regard to JavaScript almost always
undermines the user experience and is more a response to a lin-
gering JavaScript method called document.write, used to inject
HTML directly into the page at whatever location the browser
happens to be parsing. It’s usually considered bad practice to
use document.write now that better, more decoupled methods
are available in JS, but document.write is still in use, particu-
larly by scripts that embed advertisements. The biggest prob-
lem with document.write is that if it runs after a page finishes
loading, it overwrites the entire document with the content it
outputs. More like document.wrong, am I right? (I’m so sorry.)
Unfortunately, a browser has no way of knowing whether a
script it’s requesting contains a call to document.write, so the
browser tends to play it safe and assume that it does. While
blocking prevents a potential screen wipe, it also forces users
to wait for scripts before they can access the page, even if the
scripts wouldn’t have caused problems. Avoiding use of docu-
ment.write is one important step we can take to address this
issue in JavaScript. In the next chapter, we’ll cover ways to load

FIG 3.3: Blocking cSS and JavaScript requests during page load.

 PLAnnInG For PErForMAncE 95

scripts that avoid this default blocking behavior and improve
perceived performance as a result.

GET COMFY WITH YOUR DEVELOPER TOOLS
Our browsers come with incredible built-in tools to help us
inspect, test, and analyze our pages to see exactly what’s hap-
pening under the hood. It’s worthwhile to familiarize yourself
with these tools in several browsers, but I’ll cover my per-
sonal favorite, the developer tools panel from Chrome. When
it comes to page-load performance, two panes are especially
useful: Network and Timeline.

The Network pane is your window into the details of all the
assets the browser requests to render the page (FIG 3.4). It has
columns for file type, cache status, size, and request time, among
others, and at the bottom of the panel you’ll find a tally of the
totals. My friend Mat Marquis likes to call this the “judgement
pane,” and I agree: it’s the best way to evaluate the details of a
website’s delivery.

FIG 3.4: the network pane in chrome.

 96 rESPonSIBLE rESPonSIVE dESIGn

The Timeline pane gives us a deep look into the order in
which assets load and render, and presents these events in a
handy waterfall-style chart that you can scan from top to bottom,
left to right, along a time axis (FIG 3.5). With the Timeline panel,
we can record the page-loading process or a user-interaction
sequence, and investigate how long it took to render parts of a
page, which HTTP requests blocked that rendering from hap-
pening sooner, and if any of our enhancements caused the
browser to reflow (adjust the position of elements on the page)
or repaint (re-render an element in place) content. Using this
tool, I often discover tweaks I can make to how my files are
concatenated and loaded, and then I can record again to test
whether my changes improved performance.

Browsers act differently when loading and parsing assets, so
I recommend getting comfortable working in more than one
browser’s developer tools. IE, Firefox, Opera, Safari, and mo-
bile browsers like Chrome for Android and iOS Safari all have
debugging capabilities that are easy to use and incredibly helpful
when scouting out bugs. For help using the developer tools in

FIG 3.5: the chrome developer tools’ timeline pane.

 PLAnnInG For PErForMAncE 97

your browser of choice, visit Secrets of the Browser Developer
Tools (http://bkaprt.com/rrd/3-05/).

Perceived performance: your most critical metric

It’s important to think of performance in terms of both quan-
titative measured time and weight and how a page load is per-
ceived. After all, a page is often usable long before every asset
has finished downloading; that perceived load time is often
more important to us than the total page-load time (it may take
ten seconds for a page to fully load over 3G, but the user can
interact with the page after only a few seconds or less). While we
have ways to improve perceived performance without actually
improving page load time (like displaying a loading icon while
other content finishes loading), there are widely agreed-upon
goals for what constitutes a page-load time that is “fast enough.”
Among the performance community, the one-second page load
has emerged as a de facto standard goal, and great resources exist
to explain the optimizations that help you get there.

One such resource is Google’s PageSpeed Insights (http://
bkaprt.com/rrd/3-06/). PageSpeed Insights offers a web applica-
tion and browser extensions for analyzing your sites and recom-
mending improvements. Here’s a screencap of how Filament
Group’s highly optimized site fares in PageSpeed’s tests (FIG
3.6). For the record, it’s entirely acceptable to brag about how
fast your site loads!

To test how your site is doing in terms of perceived perfor-
mance, I highly recommend the tools at WebPagetest (http://
bkaprt.com/rrd/3-07/), a project developed by Patrick Meenan at
Google (FIG 3.7). To use WebPagetest, enter a URL and fill out
the various form fields for the results you want to see—you can
even choose to test from different locations around the world,
which can be eye-opening. Once the test runs, you’ll get detailed
results about page performance data.

Out of all of WebPagetest’s metrics, Speed Index is perhaps
the most relevant for keeping tabs on perceived performance.
The Speed Index formula considers factors like viewport size
and the time at which the page starts rendering (which translates
into a score that represents the time a page takes to first become

http://bkaprt.com/rrd/3-05/
http://bkaprt.com/rrd/3-06/
http://bkaprt.com/rrd/3-06/
http://bkaprt.com/rrd/3-07/
http://bkaprt.com/rrd/3-07/

 98 rESPonSIBLE rESPonSIVE dESIGn

usable); the lower the score, the better. Per Google, the average
Speed Index for an Alexa top-300,000 site is 4493, while a top-
ten percentile score is 1388. How fast is fast enough? Google
developer Paul Irish says that 1000 is a great score to shoot for
(http://bkaprt.com/rrd/3-08/).

FIG 3.6: PageSpeed Insights test results for the Filament Group site.

FIG 3.7: WebPagetest is a fantastic resource for evaluating perceived performance.

http://bkaprt.com/rrd/3-08/

 PLAnnInG For PErForMAncE 99

Getting a low Speed Index isn’t easy, and even once we have
things in a good place, all it takes is a scope change—say, the
addition of third-party advertising or an off-the-shelf slideshow
component—to ruin the perceived performance of a well-op-
timized site. To combat these situations, I find that it helps to
suggest establishing a performance budget as early as possible.

INTRODUCING A PERFORMANCE BUDGET
The idea of a performance budget is fairly new, and it seems that
the web community is still tinkering with how to define such a
budget, let alone enforce it. That said, the basic idea is sound: a
performance budget is a number, or set of numbers, used as a
guideline for whether you can afford a particular code addition
to a codebase, or whether an existing site’s performance needs
to improve. These numbers can represent page transfer weight
(“page should weigh no more than X kilobytes and make no
more than Y requests”), or perceived load time (“page should
be usable in X seconds or less”), though I prefer to keep an
eye on both. I also find that getting your client excited about
these numbers is helpful in maintaining them throughout the
development process; the numbers aren’t just for the technical
team—everyone should be kept up-to-date.

On that note, I should point out that performance is not
merely a technical concern, but also often a cultural one within
organizations. Good performance is good design, and perfor-
mance should be a priority from the start rather than an after-
thought saved for developers to handle. Decisions made in a
project’s early stages have an enormous effect on the constraints
we face when we move to code, and developers should assert
themselves early in the site-planning process to keep team mem-
bers aware of how their content and design strategies affect a
site’s performance. As Tim Kadlec points out in his post “Holistic
Performance”: “Performance is not just a developmental con-
cern, it’s a fundamental component of the user experience”
(http://bkaprt.com/rrd/3-09/).

Figuring out what the numbers in a performance budget
should be is difficult, and it varies across projects. If you’re start-
ing fresh, an analysis of the performance of your competitors’

http://bkaprt.com/rrd/3-09/

 100 rESPonSIBLE rESPonSIVE dESIGn

sites can give you a good idea of the budget you want to work
against and what times you want to beat. Focus on the enhance-
ments you’re adding to your site and try to limit how much extra
stuff you deliver to keep that timing in check.

Lately, I’ve enjoyed using Tim Kadlec’s Grunt-PerfBudget
tool (http://bkaprt.com/rrd/3-10/) for keeping tabs on our perfor-
mance budget as we continue to develop a codebase. Kadlec’s
tool is a command-line utility that you can automate to run
whenever you make changes to your site. By default, the tool
tests your pages on remote WebPagetest servers and reports
back whether you are passing or failing the budget you’ve set. I
tend to keep our budget at 1000 (one second) for Speed Index for
Initial Render. Here’s how the tool reports back when I run it:

$ grunt perfbudget
Running "perfbudget:dev" (perfbudget) task
Running test...
Test ID ADKLKJCLKD.... obtained....
Test Pending...
Test Started...
>> ---
>> Test for http://client-website.com/ FAILED
>> ---
>> render: 594 [PASS]. Budget is 1000
>> SpeedIndex: 1049 [FAIL]. Budget is 1000
>> Summary: http://www.webpagetest.org/result/140712_
EJ_....

REQUESTING LESS
If I could give only one piece of advice about requests, it would
be to reduce the number of blocking requests you make in your
document. Every blocking HTTP request is a barrier between
our users and the content they seek. If a blocking request fails
to load, a user is locked out of your site until that request ex-
pires, which can last up to thirty seconds in today’s most-used
browsers. That’s a lot of time for your users to stare at a charm-
ing white timed-out screen—assuming they haven’t already left.

http://bkaprt.com/rrd/3-10/

 PLAnnInG For PErForMAncE 101

After we cut down our blocking requests, we can do much
more to optimize the files we’re delivering to make them load
faster.

PREPARING FILES FOR WEB DELIVERY
When preparing front-end files for delivery, it’s important to
both reduce the total number of files you send over the network
and make those files as small as possible.

Optimize image files

To make sure the images we deliver are as light as they can be,
it’s critical to optimize their compression. Compressing an image
can be as simple as tweaking the export settings in Photoshop’s
Save for Web panel, but we have other tools designed purely
for image optimization. My go-to for ease of use is ImageOptim
(http://bkaprt.com/rrd/3-11/), which has a simple drag-and-drop
interface for batch-processing images (FIG 3.8). Drop images over
the window, and they’ll be overwritten with optimized versions.

If you want to automate such optimization, try some of the
powerful command-line image-compression tools available.
OptiPNG (http://bkaprt.com/rrd/3-12/) and jpegtran (http://
bkaprt.com/rrd/3-13/) are designed to optimize PNG and JPEG
images, respectively, and are easy to hook into an automated
build workflow via tools like grunt-contrib-imagemin (http://
bkaprt.com/rrd/3-14/).

FIG 3.8: the drag-and-drop Imageoptim interface.

http://bkaprt.com/rrd/3-11/
http://bkaprt.com/rrd/3-12/
http://bkaprt.com/rrd/3-13/
http://bkaprt.com/rrd/3-13/
http://bkaprt.com/rrd/3-14/
http://bkaprt.com/rrd/3-14/

 102 rESPonSIBLE rESPonSIVE dESIGn

When it comes to optimizing images, simpler graphics tend
to compress better than those with many colors and gradients.
Some designers have even gone so far as to let file size con-
straints lead them to creative visual solutions they might not
have explored otherwise. For example, the dConstruct 2012 site
built by the amazing team at Clearleft featured duotone imagery
designed to cut image weight while looking unique and com-
pelling (FIG 3.9). Despite its rich visuals, the entire homepage
weighs only 230 kilobytes!

Concatenate text files

Reducing the number of loaded files doesn’t necessarily mean
deleting them; the practice of automatically combining files, or
concatenation, is common with CSS and JavaScript. After all, the
fewer blocking requests, the better. You can concatenate files
by hand or automate the process, though for any sufficiently
complex site I recommend letting tools do the work.

FIG 3.9: the responsibly built dconstruct conference site (http://bkaprt.com/rrd/3-15/).

http://bkaprt.com/rrd/3-15/

 PLAnnInG For PErForMAncE 103

One quick example of this is the $ cat command run within a
Terminal window, which accepts any number of space-separated
file paths followed by a > character to specify a new file com-
prised of the combined contents of the listed files:

$ cat foo.js bar.js > foobar.js

Minify text files

Once we’ve reduced the number of files that will load for any
given device, we want to make those concatenated files as small
as possible. We have a couple ways to do so. The first is called
minification, which is the practice of automatically removing any
portions of the file that aren’t needed when a browser parses the
file. In HTML files, those portions mostly refer to white space
and line breaks between HTML elements. In CSS and JavaScript
files, the portions typically include white space, comments, and
line breaks, but JavaScript minification often goes further, us-
ing techniques like renaming variables to use fewer characters
(since the variable names themselves don’t need to make sense
to a computer) (FIG 3.10).

Often, the source of a minified file ends up as a single line of
text without any line breaks.

On a site like jQuery’s download page, minified files are often
called production versions due to their lack of human readability
and line numbers that help during debugging. (A lack of line
breaks means a lack of line numbers!)

FIG 3.10: A minified copy of jQuery viewed in Sublime text 2.

 104 rESPonSIBLE rESPonSIVE dESIGn

Compress text files

Once our text files are concatenated and minified, we want to
ascertain that they’re compressed before we send them across
the web. A common compression protocol, Gzip, makes text
files smaller for transfer between server and browser. For more
on how Gzip and its Deflate algorithm work, check out Antaeus
Feldspar’s explanation (http://bkaprt.com/rrd/3-16/).

With each request, all modern browsers are configured to
notify a server that they’re able to decompress Gzip-compressed
files, and Gzip is easy to configure on most any web server.
For example, to enable Gzip for all HTML, CSS, and JavaScript
files on an Apache server, add a file called .htaccess to your
website’s public root folder and make sure it contains these
instructions:

<IfModule mod_deflate.c>
AddOutputFilterByType DEFLATE text/html text/css text/
javascript
</IfModule>

To check whether Gzip is functioning, load your site and
open your browser’s developer tools’ Network panel. If you see
two file sizes listed for a given file, you’re set. For example, in
Chrome’s panel, you can check the Size column to see a small
and a large size (3.7 kb and 7.6 kb, as shown in FIG 3.11). Those
represent a file’s transfer size (with Gzip) and actual size (after
decompression in the browser), respectively.

Cache rules everything around us

A discussion on preparing assets for delivery would be incom-
plete without mentioning a browser’s caching behaviors—the
process of storing a static, local copy of a file. Caching is a com-
plex topic, but a basic understanding of how it works and the
various caches we access in modern browsers helps a great deal
in speeding up our sites.

http://bkaprt.com/rrd/3-16/

 PLAnnInG For PErForMAncE 105

Optimize for typical caching

The first cache to consider is the browser’s default cache. The
default cache’s job is to automatically store any files it requests
so that the next time those files are requested, it can avoid a net-
work request and instead use the local copy. On a given website,
most of the assets we serve can afford to be cached for a short
time in the browser, and many can be cached for a very long
duration. An exception to this rule is highly dynamic content,
like the text in a live-text chat feed.

When you serve files on the web, you’re able to configure the
ways in which any given file should be cached. This is done by
setting response headers, which are simply metadata that the
server includes with each response. Response headers are simple
to configure with any web server, such as Apache. For example,
setting the Expires header to a far-future date like a month or
a year from the time it’s served instructs the browser to keep
it until then. Be careful, though, as you only want longer-term
caching for files that aren’t apt to change anytime soon (like CSS,
JavaScript, images, and font files—but probably not the HTML
for a list of recent articles). For great information on configuring
your files for optimal caching, see HTML5 Boilerplate’s recom-
mendations (http://bkaprt.com/rrd/3-17/) and also Google’s Make
the Web Faster suite of tools (http://bkaprt.com/rrd/3-18/).

Consider HTML5 offline caches

In addition to ordinary caching, most modern browsers offer
caches that are accessible even if a device isn’t online. These
caches are great because it’s common for users even in devel-
oped areas to experience temporary loss of connectivity (say,

FIG 3.11: An example of a Gzip-compressed JavaScript request in chrome’s developer tools.

http://bkaprt.com/rrd/3-17/
http://bkaprt.com/rrd/3-18/

 106 rESPonSIBLE rESPonSIVE dESIGn

going underground on the subway, or out of signal range on a
mobile network). HTML5’s application cache is one incredibly
easy way to prepare a site for offline use. To use application
cache, add a file to your website with a name like example.
appcache, and reference it from your HTML file(s) like so:

<html manifest="example.appcache">

The contents of that example.appcache file tell the browser
which assets it should cache for offline use and which assets it
should always request over the network. For instance, to cache
files for offline use, you might include the following in your
example.appcache file:

CACHE MANIFEST
index.html
styles.css
logo.jpg
scripts.js

This instructs the browser to make index.html, styles.
css, logo.jpg, and scripts.js available if you try to load
them when offline. Of course, you can use application cache
to support more complicated and nuanced scenarios as well.
Application cache and other related browser features like local
storage and the upcoming Service Worker API (http://bkaprt.
com/rrd/3-19/) make it possible to specify how and which fea-
tures of a site should work offline and which ones require a web
connection (like making a credit card payment).

Offline access can be helpful to our users in the most critical
moments, so enabling it is something we should always con-
sider, especially for basic sites where the effort to do so can be
low. For more on application cache, visit HTML5 Rocks (http://
bkaprt.com/rrd/3-20/).

Automating all the things

While you could manage the above techniques manually, I don’t
recommend it. Recently, tools for automating these tasks have

http://bkaprt.com/rrd/3-19/
http://bkaprt.com/rrd/3-19/
http://bkaprt.com/rrd/3-20/
http://bkaprt.com/rrd/3-20/

 PLAnnInG For PErForMAncE 107

improved dramatically; if you’re not using them, you’re really
missing out. Here are a couple that are worth your time.

CodeKit

CodeKit is a Mac desktop application that provides a number of
common build-related tasks that you can run, like optimizing
images, concatenating and minifying files, running preproces-
sors like Sass, and much more (FIG 3.12).

Grunt

For those who aren’t afraid to dig into the command line a bit,
Grunt is a JavaScript-driven task runner that you can configure
to run as many build process tasks as you’d like, such as concat-
enating and minifying CSS and JavaScript files, copying and ma-
nipulating the file system, and even generating icons (FIG 3.13).

FIG 3.12: codeKit with a number of tasks configured (http://bkaprt.com/rrd/3-21/).

http://bkaprt.com/rrd/3-21/

 108 rESPonSIBLE rESPonSIVE dESIGn

FIG 3.13: Find all of the officially supported tasks on the Grunt website and on GitHub
(http://bkaprt.com/rrd/3-22/).

http://bkaprt.com/rrd/3-22/

 dELIVErInG rESPonSIBLy 109

DELIVERING
RESPONSIBLY4

NoW THAT WE’vE prepared our files for production, let’s ex-
amine how to responsibly deliver them: HTML, CSS, images,
fonts, and JavaScript.

DELIVERING HTML
Earlier, we learned that the average website today weighs around
1.7 megabytes. Of that weight HTML contributes a relatively
small share, about 55 kilobytes, but its size doesn’t tell the entire
story of its impact on perceived and total load time. As with
most client-side technologies, every line of HTML carries the
possibility of references to external assets that must be requested
over a network (like images and video), each with its own size
and timing implications.

Mobile-first content

In Luke Wroblewski’s 2009 post “Mobile First” (which preceded
his A Book Apart book of the same name), he points out that

 110 rESPonSIBLE rESPonSIVE dESIGn

designing for devices that have tight screen-size constraints
forces you to focus on the most important data and actions:
“There simply isn’t room in a 320 by 480 pixel screen for extra-
neous, unnecessary elements. You have to prioritize” (http://
bkaprt.com/rrd/4-01/).

Ideally, we want to deliver only the content and functionality
that our users desire, regardless of their devices. In practice, this
can mean applying some content triage to our pages or screens.
Scan your pages for content that isn’t essential to each page’s
primary purpose, like teasers from external articles, social media
tie-ins, comments, and ads. Such auxiliary content may not be
necessary when pages are first delivered; delivering it up front
can add to the time it takes for pages to become usable, especially
on a slow connection.

It’s helpful to identify what portions of the content are ab-
solutely necessary and load the rest later on, after the essentials
have been served. This practice is known as deferred or lazy
loading.

Deferred content loading for better perceived
performance
If a piece of supplementary content is already accessible in its
own dedicated place elsewhere on the site, that piece may be
a good candidate for deferred loading. In other words, as long
as you can get to content through a click or two, consider its
presence on other pages a user convenience—a nice bonus that
isn’t crucial (contrary to what the marketing department may
tell you).

Configuring our pages to serve critical content first can lead to
a faster initial page load. To load auxiliary content, we can then
use JavaScript after the page is presented to the user.

Implementing conditional loading

Two of the best articles proposing the idea of lazy-loading HTML
in responsive designs are “Conditional Loading for Responsive

http://bkaprt.com/rrd/4-01/
http://bkaprt.com/rrd/4-01/

 dELIVErInG rESPonSIBLy 111

Designs” (http://bkaprt.com/rrd/4-02/) and “Clean Conditional
Loading” (http://bkaprt.com/rrd/4-03/), both by web standards
genius Jeremy Keith. These articles offer JavaScript patterns for
loading a fragment of HTML into an existing page based on the
size of the browser’s viewport.

Around the same time Keith wrote these articles, we released
our own approach called Ajax-Include (http://bkaprt.com/rrd/
4-04/). The Ajax-Include pattern can be used to lazy-load content
in qualified environments, allowing you to deliver a stream-
lined version of the content—a link to a section of the site, for
example—and replace that link with a fragment of HTML from
that section after the page has loaded.

Hypothetically, we could choose to apply the Ajax-Include
pattern to the feature wells on the Boston Globe homepage shown
in FIG 4.1. Each well consists of a link to a major section (Sports,
Metro, Columnists) and teaser content from that section’s front
page: links to stories, images, and videos, etc. The basic markup
for the links that start each well would look something like this:

Sports

If we want to dynamically include the content following
each feature-well link, we can amend this markup to ready it
for the Ajax-Include pattern. To do so, we need to incorporate
one or two HTML5 data attributes, which are new customiz-
able attributes we can use on any HTML element to store data.
Although they do nothing on their own, data attributes pro-
vide a convenient means of defining configuration information
for our scripts (and thereby simplify ongoing maintenance).
Syntactically speaking, data attributes are open-ended attribute
names that start with data- and end with anything we like (e.g.,
data-foo).

We designed the Ajax-Include script to look for specific
HTML5 data attributes used for fetching and appending content:
data-append, data-replace, data-after, and data-before.
These attribute names instruct the script to append content in
one of several potential locations once it has been fetched:

http://bkaprt.com/rrd/4-02/
http://bkaprt.com/rrd/4-03/
http://bkaprt.com/rrd/4-04/
http://bkaprt.com/rrd/4-04/

 112 rESPonSIBLE rESPonSIVE dESIGn

• data-append appends the content at the end of the referenc-
ing element.

• data-replace replaces the referencing element with the
injected content.

• data-before and data-after inject the content before or
after the referencing element.

FIG 4.1: Section wells on the Boston Globe homepage.

 dELIVErInG rESPonSIBLy 113

By adding one of these custom HTML5 data-after attributes
to our sports link, we can reference a URL that contains the con-
tent of that feature well, and instruct our JavaScript to request
that content and insert it into the page.

<a href="/sports" data-after="/sports/ »
 homepage-well/">Sports

Then we need to include the JavaScript. If you visit Filament
Group’s article on Ajax-Include, you’ll find a link to download
the script’s source file hosted on GitHub (http://bkaprt.com/
rrd/4-05/). Ajax-Include is dependent on jQuery (or a framework
with similar syntax) as well, so you must reference both jQuery
and Ajax-Include for it to work.

<!-- references to jQuery and Ajax-Include -->
<script src="jquery.js"></script>
<script src="ajaxinclude.js"></script>

After referencing these necessary JavaScript files, we write
a line of JavaScript (in jQuery syntax) to instruct Ajax-Include
to perform its logic on the elements we need. For example, this
line of jQuery tells the browser to find any elements on the
page that have a data-after attribute, and call the ajaxInclude
plugin on them.

$("[data-after]").ajaxInclude();

To configure all of the Ajax-Include uses you might need on
a site with one command, I typically add the other available
selectors to the command, too:

$("[data-after],[data-before],[data-replace], »
 [data-append]").ajaxInclude();

http://bkaprt.com/rrd/4-05/
http://bkaprt.com/rrd/4-05/

 114 rESPonSIBLE rESPonSIVE dESIGn

Going back to our section wells example, the command above
results in a before-and-after effect on the page (FIG 4.2).

The benefits of this approach are persuasive. While it does in-
deed introduce additional HTTP requests, the requests are made
after the initial page is rendered and usable, so people interact
with parts of the page a little sooner. The pattern can also be
optimized to include several pieces of content in a single request
if needed, or perhaps even fetch the content as structured data
if your API allows such niceties. Perhaps most interestingly, the
content can be included—or not—based on a variety of condi-
tions, since it’s already a click away for all users.

Loading for some breakpoints but not others

Ajax-Include isn’t necessarily intended to serve different content
to different devices. That said, you can also specify that it fetch
content only when a particular media query applies. To do so,
specify a data-media attribute with any media query value, and
the content will only be fetched if the media condition ever
becomes valid (either at load time or later). For example, here’s
an Ajax-Include that applies when the viewport is wider than

FIG 4.2: Initial content and content after running Ajax-Include.

 dELIVErInG rESPonSIBLy 115

35em. Smaller viewports receive a link to the Sports page, where
they’ll find this content anyway.

<a href="/sports" data-after="/sports/homepage-well/" »
 data-media="(min-width: 35em)">Sports

Responsive source order

Another HTML challenge that sometimes arises when building
complex responsive sites is that it’s often difficult to achieve a
specific layout due to the order of the elements within the HTML
file, aka the source order. CSS layout using traditional tools like
float and clear has been constrained by HTML source order
from the beginning; only recently have features such as CSS
Flexbox emerged to give us more control. Still, with upcoming
approaches working only in the latest browsers, it’s good to
have a plan B—ideally, a plan that does not involve using de-
vice detection to serve different markup to different devices, or
repeating markup in different parts of a page in order to show
or hide content.

When layout is bound, AppendAround

If we have the markup we need but it’s not in the right part of our
document to achieve a particular layout, we can use JavaScript
to move it from one location in the HTML to another. One ap-
proach to this is AppendAround (http://bkaprt.com/rrd/4-06/),
which we built and used for the Boston Globe site. Let’s look at
an example: the following wireframe shows an ad that needs to
be in different locations in the layout at different breakpoints
(FIG 4.3).

Due to source-order constraints, placing the content in these
two locations with traditional CSS alone is sometimes not fea-
sible: the small-screen layout needs the ad high in the linear
source order so that users see it as soon as they scroll down the
page, while the wider layout needs the ad positioned midway
down in the far-right column, much later in the source order
following a block of text that may vary in height.

http://bkaprt.com/rrd/4-06/

 116 rESPonSIBLE rESPonSIVE dESIGn

With the AppendAround technique, we can automatically

FIG 4.3: An example of AppendAround moving an ad unit in the doM.

FIG 4.4: Example of a relatively unstyled roving content block using AppendAround
(http://bkaprt.com/rrd/4-07/).

http://bkaprt.com/rrd/4-07/

 dELIVErInG rESPonSIBLy 117

move the ad from one place to another in the DOM based on
whichever CSS breakpoint happens to be in play. FIG 4.4 dem-
onstrates how that works with a basic piece of content.

The HTML for AppendAround is pretty simple. Wherever
you want a particular roving piece of content to appear in
the document, create an empty container element with a
data-set attribute whose value matches that of all other poten-
tial parents of that content piece, and apply that same attribute
and value to the initial parent of the roving content as well. In
the case below, the potential parent elements have the attribute
data-set="rover-parent".

<!-- initial container for appendAround -->
<div class="rover-parent-a" data-set="rover-parent">
 <p class="rover">Sample appendAround Content</p>
</div>

 Lorem ipsum dolor sit amet.
 Vestibulum auctor dapibus neque.

<!-- potential container for appendAround -->
<div class="rover-parent-b" data-set="rover-parent">
</div>

Next we need to add the JavaScript that drives AppendAround,
and then find our element on the page and call the appendA-
round() method on it.

<script src="jquery.js"></script>
<script src="appendAround.js"></script>
<script>
 /* Call appendAround */
 $(".rover").appendAround();
</script>

 118 rESPonSIBLE rESPonSIVE dESIGn

Here’s where things get interesting. In CSS, all we have to do
is make one of the potential containers visible at a given break-
point and the .rover element will be appended to that element.
When the page loads, and whenever the viewport is resized, the
script will check to see if an AppendAround element is hidden. If
so, it will try to find a potential parent that is visible and append
it there. Here’s the CSS:

.rover-parent-a {
 display: block;
}
.rover-parent-b {
 display: none;
}

@media (min-width: 30em){
 .rover-parent-a { display: none; }
 .rover-parent-b { display: block; }
}

That’s it! With this technique, we’re able to use CSS alone to
direct where a piece of content is located in the DOM. One ca-
veat, though: try to avoid using AppendAround for large, critical
pieces of content, as it can sometimes cause the page to reflow
around the newly appended element (which is something we
want to minimize). Ideally, we should exhaust all options with
CSS alone before resorting to workarounds like this. Still, it’s
nice to have them when we get stuck.

Now that we’ve discussed some approaches to cutting our
HTML delivery costs, let’s move on to talk about referenced
assets. First up: CSS.

DELIVERING CSS
Among front-end assets, CSS requests have the highest correla-
tion to the time it takes for a page to render (http://bkaprt.com/
rrd/4-08/). Unfortunately, our CSS only stands to increase in size

http://bkaprt.com/rrd/4-08/
http://bkaprt.com/rrd/4-08/

 dELIVErInG rESPonSIBLy 119

as the number of screen sizes and conditions we’re addressing
continues to grow.

While CSS offers plenty of ways to qualify the application of
particular styles (media queries, conditional classes, @supports
rules), it currently lacks mechanisms for qualifying its delivery to
specific environments. Regardless, we can take steps to mitigate
CSS overhead as best we can and prepare our CSS delivery so
that it prioritizes perceived performance.

It’s all in your head

As we learned in the last chapter, all styles required for the initial
page layout should be referenced from a page’s head; otherwise,
we risk a FOUC during page load. From the head, we have a few
typical ways to reference external styles.

Approach A: one big stylesheet containing inline
media queries

Perhaps the most common approach to delivering responsive
CSS is to concatenate all CSS into a single file, qualifying styles
via media queries that apply under various conditions. The
markup looks something like this:

<head>
...
<link href="all.css" rel="stylesheet">
...
</head>

The CSS within that stylesheet looks as you may expect:

/* first, some broad styles for all contexts */
body {
 background: #eee;
 font-family: sans-serif;
}
/* then, styles qualified to particular media */
@media (min-width: 35em){

 120 rESPonSIBLE rESPonSIVE dESIGn

 ...styles for viewport widths 35em (~560px) and up
}
@media (min-width: 55em){
 ...styles for viewport widths 55em (~880px) and up
}
First, the upsides. Combining all CSS into one file means it

only requires one blocking HTTP request to fetch, and reduc-
ing the number of blocking requests is one of the best ways to
speed up page delivery and reduce potential points of failure.
Also, having all potentially applicable styles available allows the
browser to apply styles immediately when conditions change,
as with a device-orientation shift or browser resize.

On the downside, this approach can unnecessarily increase
page-load time and chip away at data plans by requiring users to
download styles that might never apply in their browser or de-
vice. Whether the overhead incurred by this approach is costly
enough to consider alternatives depends on its overall weight
and impact on perceived performance.

All things considered, the redundant syntax of CSS allows it
to compress extremely well with Gzip, which helps mitigate the
overhead of inapplicable styles.

Approach B: separate, media-specific files

A second method for loading responsive CSS is to separate
styles for particular media into their own files and request those
files independently. To specify the conditions in which each
stylesheet should apply, we add media attributes to the link
elements with media query values. Those media attributes work
just like a media query inline in the CSS, so if you wanted to,
you could remove the inline media queries inside the CSS files
and the styles would still apply as expected.

<head>
...
<link href="shared.css" rel="stylesheet">
<link href="medium.css" media="(min-width: 35em)" »

 dELIVErInG rESPonSIBLy 121

 rel="stylesheet">
<link href="large.css" media="(min-width: 55em)" »
 rel="stylesheet">
</head>

The pros and cons of this approach depend on the browser.
I’ll start with the downside: if you’ve gotten your hopes up
thinking that browsers will ignore stylesheets targeted with
media queries that don’t match their media conditions, allow me
to disappoint. All common browsers today will request every
single stylesheet referenced in an HTML document, regardless
of whether their media attributes match or not (http://bkaprt.
com/rrd/4-09/).

So much for using this approach to shave off some bytes.
We’ve got another problem: we’ve added two blocking HTTP
requests to load the same set of styles we were loading before.
On top of that, separate files must be compressed separately for
transfer, meaning the accumulated size of the CSS will likely
be larger.

There is an upside, however. Several modern browsers like
Safari (Mac and iOS), Opera, and Chrome will evaluate a link
element’s media attribute to check if its conditions apply to the
current browsing environment, and then use that information
to raise or lower the priority of that stylesheet’s request. Low-
priority requests won’t block page rendering, which means
that while all of the stylesheets will indeed be requested, these
browsers will allow the page to render as soon as all applicable
stylesheets have finished loading, letting the other stylesheets
arrive at their convenience. FIG 4.5 and FIG 4.6 demonstrate the
effects of traditional versus more modern approaches to loading
inapplicable CSS media.

Whether this up-and-coming browser behavior is worth us-
ing depends on a few factors. If large portions of your CSS are
targeted at particular environments or breakpoints, rather than
being shared across many, this approach may allow your site to
load faster in some browsers than a single stylesheet containing
all files. However, given that many popular browsers don’t yet

http://bkaprt.com/rrd/4-09/
http://bkaprt.com/rrd/4-09/

 122 rESPonSIBLE rESPonSIVE dESIGn

FIG 4.5: Simplified request timeline for a browser that does not treat inapplicable cSS
as a low priority.

FIG 4.6: Simplified request timeline for a browser that treats inapplicable cSS
as a low priority.

 dELIVErInG rESPonSIBLy 123

handle the requests of inapplicable stylesheets as lower priori-
ties, it may be best to stick to approach A. The only way to know
is to test some real browsers and compare results.

Approach C: everything inline

A third approach inlines the CSS into the HTML document itself:

<head>
 ...
 <style>
 /* first, some broad styles for all contexts */
 body {
 background: #eee;
 font-family: sans-serif;
 }
 /* then, styles qualified to particular media */
 ...
 </style>
</head>

The pros and cons of this are pretty straightforward. Just
like approach A, including all the CSS in one place allows it to
compress well for transfer. Additionally, approach C enables us
to load all of our CSS without making a separate HTTP request
to get it, which likely makes this approach load faster upon an
initial visit. On the downside, inlining styles into the HTML
removes a browser’s ability to cache those styles as its own as-
set for future page loads, so that same set of styles needs to load
anew with each page visited.

As a standalone strategy, I recommend only doing this when
you’re building a single-page website, or if the CSS for each page
is different (which would be unusual), or if the entire CSS for
your site is minimal (say, less than 8 kilobytes).

 124 rESPonSIBLE rESPonSIVE dESIGn

What’s best?

It’s complicated.
For responsive sites that share a majority of their CSS rules

across browsers and devices, approach A is likely the most
responsible way to deliver CSS. However, as we continue to
add CSS for vastly different types of devices in the future and
browsers continue to improve, we’ll likely find that approach B
is a better option. Unfortunately, both A and B require blocking
external requests, which approach C successfully avoids—but
only at the cost of reduced caching.

There has to be a better way! Perhaps a hybrid approach of C
and B would be best of all…

A hybrid winner emerges

An increasingly popular tactic to consider with regard to per-
ceived performance is the idea of optimizing for the very first
network round-trip to the server, which carries about 14 kilo-
bytes of data back to the browser. If you can manage to fit the
HTML, CSS, and JavaScript necessary to render the above-the-
fold (an imprecise metric for the top portion of the page) con-
tent in that first round-trip, you’re nearly guaranteed to hit the
one-second perceived page-load time we all aspire to. To reach
that goal, Google’s PageSpeed Insights tool (http://bkaprt.com/
rrd/4-10/) recommends that we try to inline only the CSS criti-
cal for rendering content in the initial view, and load the rest in
a non-blocking way. Of course, the fold varies from screen to
screen, and it’s difficult to know for sure which parts of our CSS
will be critical and which parts won’t. One plausible approach
may be to organize our stylesheets in order—top to bottom,
outside-in—according to where components sit in the page. We
could start by inlining much of the layout for the top portion of
the page, and make a judgement call about the point at which
we should request the rest externally in a non-blocking manner.

http://bkaprt.com/rrd/4-10/
http://bkaprt.com/rrd/4-10/

 dELIVErInG rESPonSIBLy 125

Let’s say we have a layout where the top of the page across
all breakpoints consists of a masthead, navigation, and featured
content, with other components like secondary content features
and a footer below. In that case, we might set up the inline CSS
in our page’s head like this:

<head>
 ...
 <style>
 /* critical CSS styles for this template go
 here... */
 </style>
 ...
</head>

With this in place, we’ll have no blocking CSS requests in
the head of the page, and we may be able to get much of the top
of the page into that first 14-kilobyte round-trip to the server.

Manually managing CSS files this way can be tricky, though,
so I recommend using a tool to get the job done right. In his
article “Detecting Critical Above-the-fold CSS,” Paul Kinlan of-
fers a bookmarklet you can run on any page to extract its criti-
cal styles (http://bkaprt.com/rrd/4-11/). Kinlan’s logic is simple:
critical CSS is the subset of CSS rules required to render the top
portion of a page at a given viewport size. For responsive sites,
I like to run this bookmarklet at a large viewport size, say 1200
by 900 pixels, so that I can capture the styles needed to render
a responsive layout’s many breakpoints.

Bookmarklets are nice, but for a large-scale codebase you’ll
want something more automated. To that end, my colleague
Jeff Lembeck and I built a tool called Grunt-CriticalCSS (http://
bkaprt.com/rrd/4-12/) that automatically extracts critical CSS for
every template and writes it to a file that can be included inline.
When properly configured, Grunt-CriticalCSS runs invisibly in
the background every time you change a CSS file, keeping your
critical CSS files up to date at all times.

http://bkaprt.com/rrd/4-11/
http://bkaprt.com/rrd/4-12/
http://bkaprt.com/rrd/4-12/

 126 rESPonSIBLE rESPonSIVE dESIGn

No matter which tool you use to generate your critical CSS,
once it’s generated you’ll want to include it directly in the page’s
head element. As for the site’s full CSS, you’ll want to load that
in a non-blocking manner as quickly as possible.

To do this, you can use a JavaScript function called loadCSS
(http://bkaprt.com/rrd/4-13/), which loads CSS files asynchro-
nously so that they don’t block page rendering. In keeping
with our goal of eliminating blocking requests, loadCSS is small
enough to include inline in the head. Also, I recommend placing
the script that will contain loadCSS after your style element,
as that order allows the JavaScript to insert the site’s full CSS
after the inline CSS, avoiding potential specificity conflicts. The
overall approach looks something like this:

<style>
 /* critical CSS styles for this template go here... */
</style>
<script>
 // first, include the loadCSS function inline
 function loadCSS(href){ ... }
 //then pass it a reference to a stylesheet to load
 loadCSS("full.css");
</script>

To be safe, I recommend following that last style element
with a link to the site’s full CSS that can still be requested when
JavaScript is unavailable. Here’s how that looks:

<noscript><link href="full.css" rel="stylesheet">
</noscript>

This is an admittedly intricate but overall worthwhile way
to optimize how you load CSS. We’ll revisit this approach at
the end of the chapter when we combine it with others to fully
enhance a page.

Regardless of the CSS delivery approach you take, aim to
write CSS that is as concise as possible, taking advantage of
the cascade to reduce repetition. Always minify (remove white
space and comments with a tool like Grunt-CSS) the CSS in

http://bkaprt.com/rrd/4-13/

 dELIVErInG rESPonSIBLy 127

each file, and transfer all external CSS files with Gzip compres-
sion enabled.

DELIVERING IMAGES
When it comes to file size, images are the worst offenders. Out
of that 1.7-megabyte average website, images take up 61%. The
problem only continues to worsen as device sizes and resolu-
tions become more diverse.

Thankfully, unlike CSS and JavaScript, all browsers request
images asynchronously, or without blocking page rendering, by
default. But while pending image requests don’t block the page
from rendering, they still cause serious performance issues.
Many of those problems stem from the images’ sheer weight,
which causes them to load slowly and eat away at even the most
generous data plan.

To begin our exploration of how we can load responsive
imagery responsibly, let’s talk about the difference between
background images and foreground images.

Background images

Even when they’re included in the background via CSS, images
create HTTP requests. For example, the following rule causes
a browser to request the image foo.jpg and render it in the
background of all elements with a class of foo:

.foo {
 background: url(foo.jpg);
}

Straightforward enough. Things get slightly more interesting
when we want to load different background images for different
media conditions. Considering the grim options outlined in the

 128 rESPonSIBLE rESPonSIVE dESIGn

CSS section, you may be surprised to find that it’s actually quite
simple to responsibly load background images with CSS and
media queries. Research by Tim Kadlec demonstrated that most
browsers in active use, when presented with two background-
image rules applied to the same element, will fetch the last ref-
erenced image (http://bkaprt.com/rrd/4-14/). This works within
media queries as well.

In the following example, browsers with a viewport of 30em
or wider will request and render foo-large.jpg, while smaller
browsers get foo.jpg.

.foo {
 background: url(foo.jpg);
}

@media (min-width: 30em){
 .foo {
 background: url(foo-large.jpg);
 }
}

Upgrading background images for HD screens

You can use this approach for any conditions that media queries
support, which means you can easily use it to “upgrade” imagery
for HD screens. The min-resolution media query lets us target
devices with screens at or above a particular dpi (vendor-specific
fallbacks such as -webkit-min-device-pixel-ratio help round
out support here too). I’ve used 144dpi in this example because
it’s twice the standard screen definition of 72 dots per inch, and
a good baseline for HD screens (which now often go even higher
than 144 dots per inch).

.foo {
 background: url(foo.jpg);
}

@media (min-resolution: 144dpi){
 .foo {

http://bkaprt.com/rrd/4-14/

 dELIVErInG rESPonSIBLy 129

 background: url(foo-large.jpg);
 background-size: 50px 50px;
 }
}
Note that background-size is included alongside the larger

image to specify that the image should actually render at a size
that may differ from its inherent dimensions. In this case, we’d
like a larger image to fit within the same physical space as the
standard definition image, which will pack more pixels into
that space for a richer display. You may find with some imagery
that the double-sized version of a particular image is already
pretty light and responsible, and no negotiation is needed (this
is sometimes true of artwork with few colors and gradients, for
example). In that case, sending all devices the larger size with
background-size specified may be a fine approach.

Inline data URIs

Another option is the data URI, which embeds an image’s (or
any file’s) data directly into a string of gibberish that you can use
in place of an external reference to that file, removing the need
to make a request to the server for that asset. Here’s an example
of an arrow image encoded as a data URI:


YAAADd/14OAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEwAACxMBAJ
qcGAAAAUFJREFUKJGV0C9MAnEUB/Dve3eMIptszuL43XE/1GgjOCduZp
3RrDSjVYPFzWR0jtnMMKPB2ZwUk8WheIdAcWM08QbvZzhRQAi+9rbP3p
+vlclk4tOJRHEmmWy22u0AE4pNGJ4TaLNrzI1W6fxkyHwrIiGDbJApaO
We5pCzRyEBgFZqGQYlMM8CgDFy3SPaDoKgPQQBwHVdx+rJFZiXAAAiT0
bsjWqjWgEA7kPf94N4Z2oFglJ0FC+SLWVPqfWhiYN3a8c5Aujgd63ZGw
ehlErGiFv93gBNHkXenDcfA+77vQAPVq+bHYLacdbIljKIF75VMdH5WK
3U642fvLRK5wVyxoAdRYTj6pt/GA2NnrG8lHtCjP0oFQktsnafa6+Xg9
tIp9wLMHYAQIy8M7D1Uqvd/YmC2BRE5BMwj0KUHYf+VV8xa3TEn/anuA
AAAABJRU5ErkJggg==

If that looks puzzling, it’s okay—it’s not meant for humans to
read. But wait! The neat part is, if you paste that into a browser’s
URL bar, you’ll see something similar to FIG 4.7.

 130 rESPonSIBLE rESPonSIVE dESIGn

The syntax for a data URI can be described more simply than
it looks in code: it always starts with data:, which cues the
browser that the URL itself includes file data, then 2–3 semico-
lon-separated pieces of information about the type of file it is (an
image/png file type with base64 encoding, for example), then a
comma, and the raw data of that file:

data:[<MIME-type>][;charset=<encoding>][;base64],<data>

Of course, these get particularly useful when brought into
our codebase in place of external images. For example, here’s
how you reference that data URI as a CSS background image
(truncated for your sanity):

.menu {
 background: url("...");
}

You can also embed the raw source of text files in a data URI.
Here’s an SVG file:

.header {
 background: url("data:image/svg+xml, »
 <svg viewBox='0 0 40 40' height='25' width='25' »
 xmlns='http://www.w3.org/2000/svg'> »
 <path fill='rgb(91, 183, 91)' d='M2.379,14.729L5 »
 .208,11.899L12.958,19.648L25.877,6.733L28.707, »
 9.561L12.958,25.308Z'/></svg>");
}

FIG 4.7: See that arrow? that image is
made from a data urI.

 dELIVErInG rESPonSIBLy 131

While we have many ways to retrieve a file’s data URI,
the simplest I’ve come across is a web-based drag-and-drop
tool made by Boaz Sender of Boucoup, a web consultancy in
Boston (FIG 4.8).

Compared to ordinary asset references, data URIs speed up
performance because you don’t need to request assets over the
network. But including file data inline forfeits the possibility
of downloading the file only when it’s needed (for example,
an external background image that applies to a specific media
query). Further, overusing data URIs can cause trouble in some
mobile devices (http://bkaprt.com/rrd/4-16/). For these reasons,
reserve data URIs for universal assets that apply across devices
and breakpoints.

One last note: data URIs aren’t limited to background images;
you can use them for foreground images too.

Responsive, responsible foreground images

Foreground images include any images referenced from the
HTML that are intended to be part of the content: images that
contribute meaning to a web page, like a photograph that pairs
with a news article, as opposed to images used for visual decora-
tion, like icons or background tiles.

As you likely recall from the tenets of responsive design, add-
ing the following CSS rule will ensure that all img elements in a
layout fill 100% of the width of their container element without
scaling beyond the image’s own dimensions:

FIG 4.8: Boaz Sender’s drag-and-drop
data urI tool (http://bkaprt.com/
rrd/4-15/).

http://bkaprt.com/rrd/4-16/
http://bkaprt.com/rrd/4-15/
http://bkaprt.com/rrd/4-15/

 132 rESPonSIBLE rESPonSIVE dESIGn

img { max-width: 100%; }

Since images can’t scale far beyond their dimensions without
looking awful, web authors often include images at their largest
intended display and let the browser scale them down in smaller
viewports. Unfortunately, this practice of serving large images
to everyone isn’t very responsible—people end up loading far
more data than their device needs.

Problems with responsibly serving foreground images across
disparate devices largely derive from HTML’s inability (until
recently) to serve different versions of an image depending on
the size a device needs. Fortunately, we now have the tools to
handle this well.

Compressive images

If you don’t need anything except a single, scalable image, you
might consider an interesting technique developed by Daan
Jobsis that I’ve dubbed compressive images (http://bkaprt.com/
rrd/4-17/) (FIG 4.9). This approach saves JPEG images at twice

FIG 4.9: the same image in compressive quality (left), and as it appears after the browser
scales its dimensions (right).

http://bkaprt.com/rrd/4-17/
http://bkaprt.com/rrd/4-17/

 dELIVErInG rESPonSIBLy 133

their intended viewing dimensions at terrible quality settings,
and then lets the browser scale the images down to clear up
any artifacts. Amazingly, this cuts the size of a file in half while
improving its sharpness on HD screens. You sort of need to see
it to believe it, so be sure to follow the link.

Compressive images have drawbacks too: scaling down large
images uses a fair amount of processing power and memory, so
the approach may not, uh, scale well when used heavily across
a page. It’s also fairly limited in that the file size of the image
will need to grow to accommodate higher screen resolutions,
at the expense of lower-resolution screens that won’t need the
extra data. Compressive images best suit simple cases. Now, let’s
look at an option for a fuller-featured responsive image solution.

Responsive images with HTML

In 2012, a W3C Responsive Images Community Group (RICG),
chaired by Mat Marquis, came together to define the use
cases addressed by an ideal responsive image solution and to

FIG 4.10: the W3c responsive Images community Group website
(http://bkaprt.com/rrd/4-18/).

http://bkaprt.com/rrd/4-18/

 134 rESPonSIBLE rESPonSIVE dESIGn

recommend new HTML features for implementing these images
in browsers (FIG 4.10).

The group proposed the picture element and its related at-
tributes such as srcset, sizes, media, and type, which, happily,
have become full-fledged W3C standards and are supported by
modern browsers as I write this book. These new features pres-
ent huge benefits, so let’s go over how we can use them today.

The picture element

Per the specification, “the picture element is an image container
whose source content is determined by one or more CSS media
queries” (http://bkaprt.com/rrd/4-19/). picture is a new HTML
element, or series of elements, complete with its own attributes.
The picture element’s use of media queries makes it easy to
serve variations of images that pair with visual breakpoints in
a CSS layout. This is useful when you have foreground images
that need to scale in unison with other elements in a layout.

A picture element contains a series of source elements fol-
lowed by an img element. If that sounds familiar, that’s because
picture follows similar syntax to the existing HTML video and
audio elements, which feature a container element and several
source elements that reference possible sources for the parent
element to use. In the case of picture, however, the source
elements act as controllers for the URL that will be displayed
by their sibling img element. Here’s an example of a picture
element with a few potential source images:

<picture>
 <source media="(min-width: 45em)" srcset="large.jpg">
 <source media="(min-width: 18em)" srcset="med.jpg">

</picture>

The source elements are listed in order of largest first, with
media attributes specifying the maximum viewport size at which
they should be applied. While this order of source element

http://bkaprt.com/rrd/4-19/

 dELIVErInG rESPonSIBLy 135

parsing may seem counterintuitive to those accustomed to writ-
ing small-screen-first media queries in CSS, it’s designed to
match the order in the video and audio HTML elements’ source
selection. A browser will iterate over the source elements in
order of appearance and stop when it encounters a source with
a matching media attribute, then set the img element’s source
to a URL specified in the source element’s srcset attribute. If
no source elements end up matching, the img element’s own
attributes (such as srcset) will be used to determine its source.

What’s a srcset anyway?

You may be thinking: “srcset sounds and looks an awful lot like
src to me; what’s the difference?” As the name implies, srcset is
a new attribute designed to contain one or more potential source
URLs for an image—but it does more than that. srcset has a
huge advantage: it asks the browser to decide the most appropri-
ate asset based on any criteria the browser deems relevant, such
as viewport size, screen resolution, and even network speed or
other environmental conditions like the amount of data remain-
ing on a user’s mobile subscription. In other words, while we
can declare several potential images with srcset, the browser is
allowed to treat these as suggestions. This characteristic unique
to srcset is extremely convenient, because when you factor in all
of the various viewport sizes and screen resolutions your images
should support, it would be quite verbose to describe them with
something more prescriptive, like media queries.

srcset attributes can be used either on source elements
within a picture element, or on img elements themselves—even
img elements that don’t have a picture element wrapper. Unless
you’re trying to pair the sources of an image with media query
breakpoints in a layout, you probably won’t need a picture
element at all. srcset’s values are comma-delimited; you can
pair each value with a description of the image’s dimensions
(using w and h units representing pixel measurements of the im-
age asset itself) to help the browser determine which image is
most appropriate to display based on viewport size and screen

 136 rESPonSIBLE rESPonSIVE dESIGn

resolution. For example, here’s a srcset attribute with two
potential image sources:

<img srcset="imgs/small.png 400w, »
 imgs/medium.png 800w" alt="...">

This img offers two source URLs, small.png (400px wide),
and medium.png (800px wide). Of course, srcset can be used
with a single image URL and no additional information, as I
showed on the source and img elements in my initial picture
element example. But using srcset to list multiple potential
sources for each source element within picture has a great
benefit: we can offer images that pair well with design break-
points while letting the browser determine the resolution of an
image that best fits the device’s screen quality. It's art direction
with HD support. Take this markup, for example, in which the
first URL listed for each source would display on a standard-
definition screen, while the second URL (highlighted in bold)
would apply to high-resolution screens:

<picture>
 <source media="(min-width: 45em)" srcset="large.jpg
 45em, large-2x.jpg 90em"> »
 <source media="(min-width: 18em)" srcset="med.jpg »
 18em, med-2x.jpg 36em"> »
 <img srcset="small.jpg 8em, small-2x.jpg 16em" »
 alt="...">
</picture>

Perhaps this is a good time to mention fallbacks. srcset is not
yet natively supported in many browsers. One solution would
be to allow the img to fall back to the text provided in the alt
attribute, but then most browsers today would not get an image.
If we want the image to work more broadly than that, we need
to either use some JavaScript to polyfill the srcset attribute or
add an old src attribute to our img. Despite its ease and great
support, however, adding the src attribute comes at a cost: most
browsers will fetch the image listed in that src even if they don’t
end up using it, racking up wasteful overhead no one wants.

 dELIVErInG rESPonSIBLy 137

For now, that leaves us with the polyfill option, which I’ll cover
in a moment.

Introducing the sizes attribute

If your reaction to these examples is, “These look great, but I
wish they were more complicated,” you’re in luck! To further
assist the browser in its decision-making process with picture
and img sources, the new sizes attribute lets us suggest the size
at which an image will be rendered in the layout at a given media
query breakpoint. Like srcset, the sizes attribute syntax is also
comma-delimited, this time with each value offering an optional
media query and a width at which the image should be rendered
by CSS when that media query is active. Here’s that img example
from earlier with sizes added:

<img
srcset="imgs/small.png 400w, imgs/medium.png 800w"
sizes="(max-width: 30em) 100%, 50%"
"alt="...">

Have I lost you? If so, don’t worry—sizes took me a little
while to grasp too. In plain English, the above sizes example
declares the following:

• (max-width: 30em) 100%. When the viewport is 30em or nar-
rower, the image’s width will be 100% of the viewport’s width.

• 50%. Otherwise, if the viewport is wider than 30em, the im-
age’s width will be 50% of the viewport’s width.

Now, it’s important to note that these widths won’t actually
apply to the image; they’re merely cues to allow the browser to
render the image as close to its intended dimensions as possible,
which helps prevent reflows as the page layout is drawn.

 138 rESPonSIBLE rESPonSIVE dESIGn

Using picture with different types of images
I should cover one more attribute with picture, and that’s
type. On each source element within picture, you can use an
optional type attribute to specify a file format. If the browser
supports that file format, then the source will be used. The type
value should be specified in the syntaxes that HTTP defines for
a particular file; thus an SVG file’s type would be specified as
"image/svg+xml", while a WebP (a new, highly optimized image
format that’s slowly gaining browser support) image format’s
type would be "image/webp". Here’s a picture example with a
source offered in both WebP and JPEG formats:

<picture>
 <source media="(min-width: 18em)" srcset="med.webp" »
 type="image/webp">
 <source media="(min-width: 18em)" srcset="med.jpg">

</picture>

In browsers that support WebP, this markup means big sav-
ings in transfer size due to the format’s incredible compression.

Using HTML responsive images today

At time of writing, a handful of browsers—Chrome, Opera,
and Firefox, with others hot on their heels—plan to support
picture imminently. That’s great, but it’s a paltry subset of the
browsers we need to care about in serving images to our users.
To use picture’s features today, we may need a adopt a transi-
tional approach.

Picturefill is a lightweight JavaScript polyfill maintained by
Filament Group and endorsed by the RICG to make the new
picture element (and img attributes) work in browsers that
don’t yet support them (FIG 4.11). FIGure 4.12 shows the effect
in use on the Microsoft website.

To include Picturefill on your site, you can use the fol-
lowing snippet, which includes a quick HTML5 shiv for the
picture element before loading picturefill.js in a non-
blocking manner:

 dELIVErInG rESPonSIBLy 139

<script>
 // Picture element HTML5 shiv
 document.createElement("picture");
</script>
<script src="picturefill.js" async></script>
You can find documentation, examples, and support informa-

tion on the Picturefill project site (http://bkaprt.com/rrd/4-20/).
The site also contains information about how the two versions
of Picturefill deliver fallback imagery when JavaScript is unable
to run, so be sure to compare the pros and cons of each version
with your audience in mind.

ABANDONING THE PIXEL
The previous examples explore various ways to responsibly

swap and negotiate bitmap imagery, as bitmaps are limited
in their ability to scale across resolutions and dimensions. Of
course, bitmaps aren’t the only type of imagery available, and in
many cases, they aren’t the best tool for the task at hand. Because
of the differences in viewport sizes and screen resolutions, it’s
ideal to have images that can scale without any decrease in qual-
ity. Luckily, most browsers today support a variety of scalable
graphic formats. Let’s look at a couple of ways to implement
vector-based art on the web (FIG 4.13).

Icon fonts

One approach dates back to the early days of desktop comput-
ing: dingbat fonts, now often known as icon fonts (FIG 4.14). As a
solution for presenting scalable images (especially smaller page

FIG 4.11: the Picturefill project.

FIG 4.12: Microsoft’s site uses Picturefill to deliver different crops to different
viewport sizes.

http://bkaprt.com/rrd/4-20/

 140 rESPonSIBLE rESPonSIVE dESIGn

elements), icon fonts have surged in popularity. And for good
reason: they’re widely available in free and paid packages online,
and embedding them in a codebase is as simple as referencing
any custom font. From a performance perspective, icon fonts
are a great choice because the icons are delivered in a single font
file via a single HTTP request, or no requests at all if the fonts
are compacted into a data URI.

The trick with icon fonts is that we have to use them carefully,
since they tend to gracelessly fail in browsers that don’t support
them. Let’s look at an example of how to safely use them in a
page. Here’s the HTML:

 »
 Favorite

Now here’s the CSS, in which we’re using the @font-face
feature to load a font file and assign it the font-family name
"Icons". Later, we’ll reference that font-family again when
styling an element in the HTML:

@font-face {
 font-family: "Icons";
 src: url("icons.woff");
 font-weight: normal;
 font-style: normal;
}
.icon-star:before {
 font-family: "Icons";
 content: "★ ";

FIG 4.13: Vector-based image editing.

 dELIVErInG rESPonSIBLy 141

}

The clean, scalable result is shown in FIGure 4.15.
Two things to note here. First, we’ve used a separate HTML

element for the icon itself. This is deliberate: we want to be able
to add an aria-hidden attribute to prevent the icon from being
read aloud to users with assistive technology. (Yes, Unicode
characters are read aloud, and the star above would read as
“Black Star” on a screen reader such as VoiceOver.)

Second, we’ve used the :before pseudo-element to place
the icon content in the page because it allows us to set its text
content from CSS (via the content property), which isn’t pos-
sible on ordinary elements. This is nice because it lets us keep
visual style information, like the ★ character, out of our HTML
and in our CSS where it belongs.

Bulletproofing the approach

As is the case with most technologies, icon fonts have some
drawbacks. Browser support for CSS @font-face is pretty good,
but it fails in unexpected ways in unsupported environments.
For instance:

• Browsers like Android 2.3’s native browser end up showing
black squares where icons should be, which can cause us-
ability problems when text isn’t also available.

• Most icon fonts render blank in the popular proxy browser
Opera Mini.

For these reasons, we need to include a feature test to bul-
letproof our approach. Zach Leatherman wrote a great article
on the various things you should consider when using icon
fonts; alongside the article he released a script to help us target

FIG 4.14: Screenshot of chris coyier’s Icon Fonts preview page
(http://bkaprt.com/rrd/4-21/).

http://bkaprt.com/rrd/4-21/

 142 rESPonSIBLE rESPonSIVE dESIGn

icon fonts safely (http://bkaprt.com/rrd/4-22/). It’s called A Font
Garde (http://bkaprt.com/rrd/4-23/)—get it? Zach does a great
job of explaining how to use the feature test, and I suggest you
read the whole thing. But to summarize, the test adds a class of
supports-fontface to the html element, which allows you to
qualify your selectors like so:

.supports-fontface .icon-star:before {
 font-family: "Icons";
 content: "★ ";
}

And that’s that!
In addition to being infinitely scalable and rendering sharply

at any resolution, icon fonts can also be styled with CSS using
the same styles that work for text. This means that icon fonts can
be colored simply by assigning a CSS color property, or given
a drop shadow treatment by using text-shadow.

From a design perspective, the major limitation of icon fonts
is their current lack of support for multiple colors. It’s a cinch to
style the color of an entire icon with CSS, but there’s no way to
style portions of a font-generated icon differently. Workarounds
do exist, such as stacking many characters to create lay-
ered multicolor icons (http://bkaprt.com/rrd/4-24/) or using
text-shadows to replicate a two-color icon, but the limitation
is difficult to avoid.

Fortunately, if you’d like to use multiple colors or vector
graphic elements other than icons, we have another scalable
technology at our disposal.

FavoriteFIG 4.15: A star glyph from an icon font
displayed alongside text.

http://bkaprt.com/rrd/4-22/
http://bkaprt.com/rrd/4-23/
http://bkaprt.com/rrd/4-24/

 dELIVErInG rESPonSIBLy 143

Working with SVG

Scalable Vector Graphics, or SVG, is a complex and versatile mark-
up language similar to HTML, but designed for drawing shapes.
SVG has actually had great browser support for years, but a lack
of native SVG support in Internet Explorer 8 and older held it
back from mainstream use. With improved support, however,
SVG has seen a huge surge in interest. Given its depth of fea-
tures, it’s easy to understand why. SVG not only scales beauti-
fully across screen densities, but its elements are styleable via
CSS, and as a text format it compresses very well with Gzip, so
we can responsibly send it over the wire.

Let’s look at a basic SVG example. The following code snippet
produces a black star:

<svg>
 <polygon fill="black" points="6.504,0 8.509,4.068 »
 13,4.722 9.755,7.887 10.512,12.357 6.504,10.246 »
 2.484,12.357 3.251,7.887 0,4.722 4.492,4.068 ">
</svg>

Rendered in a browser, it appears as a clean graphic (FIG 4.16).
Similar to HTML, the SVG document begins with an out-

ermost wrapper element (svg in this case), which contains
any number of standard child elements (line, circle, path,
polygon, etc.), each with attributes describing the element’s vi-
sual properties. In our example, the polygon element is used to
create the star. Its fill attribute describes its fill color of black,
and the points attribute contains a series of comma-delimited
coordinates representing the points that connect the lines of
the polygon.

Beyond such examples, SVG can get dramatically complex,
with features for gradients, linking, blending modes and filters,
and even animation. Graphics editors like Adobe Illustrator can
open, manipulate, and save SVG, allowing designers to work
directly with the files that are delivered over the web (FIG 4.17).

If you’re a designer, you may be interested in optimal ways to
build SVG graphics effectively using common design tools like
Adobe Illustrator or Sketch. If so, I highly recommend checking

 144 rESPonSIBLE rESPonSIVE dESIGn

out Todd Parker’s slide deck “Leaving Pixels Behind,” from a talk
he gave at Artifact Conference in 2014 (FIG 4.18).

There are several ways to serve SVG files on the web, both as
foreground and background images. Here are a few.

SVG as an img

Serving SVG via the img element is a convenient approach for
inserting vector-based foreground images such as logos. You can
reference an SVG file directly from an img’s src attribute (<img
src="star.svg" alt="...">). But make sure you account for
browsers that don’t support SVG. To do this, include a picture
element with its type attribute feature, along with Picturefill—so
browsers will receive either the SVG or a fallback PNG:

<picture>
 <source type="image/svg+xml" srcset="star.svg">

</picture>

FIG 4.16: the SVG example code
renders as a star graphic.

 dELIVErInG rESPonSIBLy 145

SVG in your HTML

Embedding SVG markup directly in an HTML document of-
fers loads of interesting opportunities, such as reusing artwork
throughout a page, styling portions of the SVG in any number
of ways with CSS, and even animating the paths and shapes
within the SVG. To embed SVG in a document, just paste that
SVG markup anywhere in the body of your page and it’ll render
in any supporting browser:

<body>
...
 <svg>
 <polygon fill="black" points="6.504,0 8.509,4.068 »
 13,4.722 9.755,7.887 10.512,12.357 6.504,10.246 »
 2.484,12.357 3.251,7.887 0,4.722 4.492,4.068">
 </svg>
...

Once in the page, you can style the SVG’s elements with
CSS, like so:

FIG 4.17: the Paint drop’s graphics are delivered as SVG, allowing them to render sharply
with a small transfer size on any Sd and Hd screens.

 146 rESPonSIBLE rESPonSIVE dESIGn

svg polygon {
 fill: red;
}

And that’s just the start! Two articles in particular demon-
strate the power of embedded SVG markup. The first is Jake
Archibald’s “Animated Line Drawing in SVG,” which describes
how you can animate the paths in an SVG line drawing with a
little JavaScript and some CSS transitions (http://bkaprt.com/
rrd/4-26/) (FIG 4.19).

The second article is “Icon System with SVG Sprites,” in
which Chris Coyier demonstrates the def and use features of
SVG that allow variable-like reuse of artwork throughout a page
(http://bkaprt.com/rrd/4-27/) (FIG 4.20).

Embedding SVG directly in HTML does have a couple draw-
backs. One is a lack of ability to cache the SVG graphic as a
standalone asset; the other is the overhead of sending SVG
markup to browsers that might not be able to render it. If it’s a
small graphic, however, you might consider using a feature test
like the one provided by Modernizr to hide the SVG elements
and show a fallback image instead.

SVG as an object

Serving SVG via the object element retains the advantages of
embedding SVG in HTML while improving the ability to cache
the SVG file for use across a site:

FIG 4.18: cover slide from todd
Parker’s slide deck (http://bkaprt.com/
rrd/4-25/).

http://bkaprt.com/rrd/4-26/
http://bkaprt.com/rrd/4-26/
http://bkaprt.com/rrd/4-27/
http://bkaprt.com/rrd/4-25/
http://bkaprt.com/rrd/4-25/

 dELIVErInG rESPonSIBLy 147

<object data="star.svg" type="image/svg+xml">
...Fallback content goes here.
</object>

SVG as a background image

Last, you can also reference SVG files from CSS as background
images:

.star {
 background: url(star.svg);
}

SVG URLs can alternatively be expressed as pure data as well,
which we explored in the data URIs section earlier. Here’s the
star SVG embedded as a background image:

.star {
 background: url("data:image/svg+xml, »
 <svg><polygon fill=\"black\" points=\"6.504,0 »
 8.509,4.068 13,4.722 9.755,7.887 10.512,12.357 »
 6.504,10.246 2.484,12.357 3.251,7.887 0,4.722 »
 4.492,4.068 \"/></svg>");
}

Another HTTP request saved! But be careful not to place too
many of these data URIs in a layout-blocking CSS file: their file
size will contribute to a slower page-load time. (The key there
is avoiding the layout-blocking part, which we’ll cover next.)

Given that we can embed SVG background images this way,
it’s feasible to create an entire stylesheet containing nothing but
SVG backgrounds, similar in benefits to the age-old CSS sprites
technique that combined many bitmaps into one, but with
vector graphics. This concept inspired us to create Grunticon
(http://bkaprt.com/rrd/4-28/), a workflow tool for generating
SVG sprite sheets from a folder of SVG source files.

http://bkaprt.com/rrd/4-28/

 148 rESPonSIBLE rESPonSIVE dESIGn

Automating SVGs with Grunticon
Running on top of the Grunt task-runner utility, Grunticon
makes it easy to manage and deliver sharp and scalable icons
and background images across devices. It takes a folder of SVG
files and outputs them to CSS files that define class names for
each icon image. The CSS is exported in three files that contain
the icon imagery in one of three formats: SVG data URIs, PNG
data URIs, and externally referenced PNG images, which are
also automatically created and placed in a folder. In addition,
Grunticon generates a small bit of JavaScript and CSS that you
can drop into your site to asynchronously load the appropri-
ate icon CSS depending on a browser's capabilities, as well as
a preview HTML file with that loader script in place (FIG 4.21).

Grunticon is one of many ways you can easily work with
SVG in your web production workflow, and it’s continually
being improved.

FIG 4.19: Jake Archibald’s article “Animated Line drawing in SVG.”

 dELIVErInG rESPonSIBLy 149

Getting Grumpy

While Grunticon’s command-line interface offers great oppor-
tunities for automation in a team’s workflow, its setup and
configuration can be a challenge for those unfamiliar with the
terminal. With that in mind, we created a web app companion
to Grunticon called Grumpicon (http://bkaprt.com/rrd/4-29/)—
which, allow me to point out, features an ASCII unicorn can-
tering across the screen, and also happens to convert SVG files
into browser-ready Grunticon assets just like the command-line
tool (FIG 4.22). To use it, visit the site, drag and drop your SVG
files onto the page, and download your production-ready code.

DELIVERING FONTS
Support for web fonts has exploded in the past few years, and
yet responsible font delivery still faces some thorny challenges.
For starters, default font-loading behavior varies across brows-
ers. If we reference font styles directly via a link element, not
only do we introduce a potential point of failure as with any
other blocking CSS request, but we also have to contend with
issues like the potentially jarring flash of unstyled text (FOUT).

FIG 4.20: chris coyier’s article “Icon System with SVG Sprites.”

http://bkaprt.com/rrd/4-29/

 150 rESPonSIBLE rESPonSIVE dESIGn

Yet another FOU
Since we’ve already covered asynchronous loading and the
dreaded flash of unstyled content (FOUC), we’d be remiss to
forget their most recent counterpart. FOUT happens whenever
an HTML page is displayed before its custom web fonts have
finished loading. Because it happens natively in some brows-
ers but not others, FOUT is a tricky beast—spurring debate on
whether it’s a feature or a bug (I’m in the feature camp).

The behavior works like this: in several browsers, including
Firefox and Opera, the browser won’t wait (at least not very
long) for web fonts to load before rendering the page without
them, deploying fallback fonts for text that otherwise would
be styled with custom fonts. If and when the preferred fonts
arrive, they will be applied as instructed by the CSS, instantly
appearing throughout the page in place of the fallback fonts. This
substitution often occurs seconds after the page is first displayed.
The downsides are a potentially disorienting glitch for users, as
well as repaints and reflows for the browser, which undermine

FIG 4.21: A diagram of the Grunticon workflow.

 dELIVErInG rESPonSIBLy 151

performance. That said, the ability to declare appropriate fall-
back fonts in CSS allows us to lessen the pain FOUT can cause. A
very subtle change in layout before and after custom fonts have
loaded characterizes the FOUT at STET (FIG 4.23).

Making the FOUT this subtle involves careful typographic
decisions that certainly aren’t common across the web, however.
In an effort to avoid FOUT entirely, browsers like Chrome,
Safari, and Internet Explorer will display the page with invisible
text until custom fonts have finished loading (FIG 4.24). I like to
refer to this as a Flash of Invisible Type (FOIT). Advocates of FOIT
describe it as a lesser evil, arguing that it is less jarring for users
to see no type at all than to see temporarily unstyled type. There
are some downsides to FOIT as well, though, and they might
even outweigh the disadvantages of the problem they attempt
to fix. Most problematic is the time a FOIT browser will wait
for a font to load before displaying fallback text, which can be
upward of thirty seconds. Thirty seconds is a geological era in
internet time, so as long as this behavior is common in browsers,
it may be best to take steps to avoid it.

For what it’s worth, at the time of writing it appears that
Google is considering changing its behavior in favor of a much
shorter timeout, like Firefox has. Until all the WebKit deriva-
tives update, however (Android 2, anyone?), we’ll be seeing
FOIT on the web.

FIG 4.22: the Grumpicon interface.

 152 rESPonSIBLE rESPonSIVE dESIGn

Avoiding FOIT, embracing FOUT

While FOIT behavior does come standard in many browsers,
it typically occurs when custom fonts are loaded from CSS
referenced in the head of a page’s HTML. This is because the
browser will only hide the text in a page if it expects an as-yet-
to-be-loaded font in the near future. In light of this, we can avoid
FOIT entirely and introduce a FOUT instead by loading font-
referencing CSS files asynchronously via JavaScript. Loading
fonts this way may present an acceptable compromise: the first
time users visit a page, they may see a brief FOUT in all brows-
ers, but any pages loaded after that will likely display no such
issues: the browser’s caching will usually ensure that the fonts
are available immediately without making an external request.
To pull this off, I recommend converting each of your custom
fonts into data URIs and packing them into a single CSS file along
with their font-face definitions. (If you’re serving your fonts
in several formats, you’ll want to package fonts of each format
in their own files and load files depending on the browser’s sup-
port.) The advantage of delivering fonts as data inside a single
CSS file is that doing so eliminates the time between when a
font-face is defined and when it’s loaded, thus minimizing the
likelihood of FOIT. Once you have your fonts combined in a file,
you can use the same loadCSS function I referenced in the CSS
loading section earlier:

FIG 4.23: Screenshot of Firefox and opera browsers’ font-loading behavior as seen on STET
(http://bkaprt.com/rrd/4-30/). the Fout is scarcely noticeable; fallback fonts appear (left)
until custom fonts load (right).

http://bkaprt.com/rrd/4-30/

 dELIVErInG rESPonSIBLy 153

<head>
 ...
 // Load fonts.css in a non-blocking manner!
 loadCSS("fonts.css");
 ...
</head>

Of course, you might want to use some logic to decide which
of many files to include based on the type of fonts a browser
supports—WOFF, TrueType, SVG, etc. For a robust font-loading
plan, you might also check out the new font-loading APIs land-
ing in browsers today (http://bkaprt.com/rrd/4-31/).

Beyond delivering a usable page as early as possible, there are
plenty of other things to consider when it comes to web font
usage, but they are of course beyond the scope of this book. For
a deeper dive into web type, I humbly refer you to Jason Santa
Maria’s On Web Typography.

DELIVERING JAVASCRIPT
Looking back at our 1.7-megabyte website, JavaScript is the sec-
ond largest slice of pie, sliding in after images at 282 kilobytes.
The entire operating system that drove the Apollo 11 mission to
the moon weighed 64 kilobytes. What are we doing with this
logic?! Sweet fly-out menus is what.

FIG 4.24: Screenshot of WebKit-derived browsers’ font-loading behavior: no text at all
until the font finishes loading.

http://bkaprt.com/rrd/4-31/

 154 rESPonSIBLE rESPonSIVE dESIGn

Beyond its size, JavaScript packs a serious anti-performance
punch. As discussed earlier, JavaScript blocks page rendering—
by default at least—while it’s requested and parsed, which means
the more scripts we have, the longer our users need to wait for
a usable site. This blocking behavior produces problems similar
to those we experience when loading CSS. JavaScript, though,
has a number of capabilities that enable it to be responsibly
loaded more easily.

“ ‘We don’t have any non-JavaScript users.’ No, all your users are
non-JS while they’re downloading your JS.”
—Jake archibalD, http://bkaprt.com/rrd/4-32/

We can take several steps to achieve great perceived and
actual performance with our JavaScript, in how we both write
and deliver it. First, let’s explore the problems we face with
JavaScript size and delivery.

Our conveniences are showing

JavaScript has a reputation as a hefty asset, but it doesn’t end up
that way on its own. The language is dynamic and flexible, and
it does a lot with a bit of code. The problem is that JavaScript
has historically ping-ponged between different, non-standard
implementations, causing us to write the same code in multiple
ways and compounding complexity and file size to depressing
effect. The suggestions below will help you fight bloat as you
make your page as fast as it can be.

Consider JS a tertiary enhancement

Whenever possible, it’s best to piggyback on native HTML and
CSS to do our heavy lifting and consider JavaScript a last resort.
That’s because JavaScript tends to be our least reliable layer of
enhancement: one syntax error makes it fail completely, while
HTML and CSS handle hiccups more gracefully. Always try to
determine whether behavior or presentation can be achieved
with HTML and CSS alone.

http://bkaprt.com/rrd/4-32/

 dELIVErInG rESPonSIBLy 155

Question whether a library is necessary at all
DOM libraries like jQuery offer ways to query, traverse, and
manipulate HTML elements via CSS selectors (among many
other things). Due to their write-once-run-everywhere methods,
these libraries became popular in an era when it was difficult to
do anything across browsers. In the past few years, however,
JavaScript browser support has improved so dramatically that
large portions of libraries are sometimes no longer needed.
Perhaps the greatest boost that JavaScript has received in mod-
ern browsers is support for the querySelectorAll method,
which allows us to query the DOM for elements using CSS
selectors, just as we do with jQuery!

var h3Subs = document.querySelectorAll("h3.sub-hed");

Also arriving in browsers are new APIs for easily adding and
removing class names, iterating over loops, extending objects,
and more. With broader support for these features, our need to
include large normalization libraries is slowly disappearing, so
always consider whether the cost of sending enhancements to
legacy browsers is necessary. If you decide to go ahead with-
out a library, take steps to prevent your script from loading or
executing in older browsers that won’t understand it. (We’ll get
to that shortly.)

Consider a simple DOM framework

If you’re building a complex site, it often pays to use some sort
of JavaScript framework; such frameworks offer common con-
venience functions to keep your code maintainable. That said,
there are many small DOM frameworks that offer the same
conveniences without the heft. One that has worked well for
our projects (we’ve used it on sites for LEGO, among others)
is called Shoestring (http://bkaprt.com/rrd/4-33/), which was
built at Filament Group and is now largely maintained by my
coworker John Bender, who may or may not be a robot (the guy
is quite sharp). Essentially, Shoestring is a DOM framework on a
budget—it’s built for speed (FIG 4.25).

http://bkaprt.com/rrd/4-33/

 156 rESPonSIBLE rESPonSIVE dESIGn

Shoestring mimics jQuery’s code syntax, but that’s where the
similarities end. Designed to be extremely minimal, Shoestring
contains only a fraction of the methods in jQuery, nearly all of
them written so they can be excluded from a build if you don’t
need them. Because it weighs only a few kilobytes, it’s great
for performance, but there are occasions when Shoestring’s
feature set falls short of your needs. Fortunately, any JavaScript
you write based on Shoestring will work in jQuery, so you can
always swap in jQuery in a pinch (say, at 5 p.m. on a Friday).

Making a custom jQuery build

Definitely still need jQuery? Fair enough. You can at least try to
make jQuery smaller. jQuery now allows you to create custom
builds that exclude many modules from its codebase. Depending
on how much jQuery you need, the core can be as small as 12
kilobytes, after minification and Gzip. For information on how
to make a custom build, check out this guide (http://bkaprt.com/
rrd/4-34/).

Ready to go!

After optimizing our JavaScript dependencies, we can focus
on loading our JavaScript responsibly. Let’s look at how best
to do so.

Options for loading JavaScript

Remember, any script element referencing an external file
will block subsequent content from rendering until that file
has finished loading and executing. This undesirable blocking
behavior can be mitigated or prevented depending on how we
choose to load scripts.

Taking it from the top

Likely the simplest and most common approach to loading
JavaScript is via a script element within the head of a document.

http://bkaprt.com/rrd/4-34/
http://bkaprt.com/rrd/4-34/

 dELIVErInG rESPonSIBLy 157

<head>
 ...
 <script src= "myscript.js" ></script>
 ...
</head>

The behavior is straightforward: any JavaScript-supporting
browser will fetch myscript.js and run it upon arrival. Requests
to JavaScript files referenced this way are often made concur-
rently, but the order in which the scripts are executed is pre-
served based on the order that they appear in the DOM. This
makes for a convenient approach to loading several scripts that
may or may not depend on one another:

<head>
 ...
 <script src="myjslibrary.js"></script>
 <script src="myscript.js"></script>
 ...
</head>

FIG 4.25: the Shoestring project on GitHub.

 158 rESPonSIBLE rESPonSIVE dESIGn

Another benefit to this approach is that assets referenced in
the page source at the start are exposed to the browser’s parser
early in the page-load process, and are therefore fetched as soon
as possible.

Of course, the drawbacks are plentiful. This approach of-
fers no means of qualifying the conditions on which a script
should be requested and executed (any JavaScript-supporting
browsers will do both, in this case), and scripts referenced this
way delay page rendering until they have finished loading and
executing. In rare cases, blocking rendering until a particular
script has finished running is desirable or even necessary. For
example, when executing shims, polyfills, feature tests, or other
scripts that dramatically modify the ways in which the page is
rendered, referencing them from the head makes pages load
more smoothly.

In these cases, we do want a portion of our JavaScript to ap-
pear in the head of a page, but we still don’t want to delay page
load while that JavaScript is requested over the network. So let’s
look at another option for including JavaScript in the head that
avoids making any requests at all.

Inlining in the head

One solution to the network latency problem is to inline
JavaScript in the head of the page. Inlining JavaScript this way
allows it to execute as soon as the HTML is parsed, which is a
nice alternative to waiting for it to be fetched externally. Here’s
an inlined script:

<head>
 ...
 <script>
 /* JavaScript source code goes here... */
 </script>
 ...
</head>

 dELIVErInG rESPonSIBLy 159

Inline JavaScript should be used sparingly, if at all, as it has
some downsides of its own: any script embedded directly in the
page can’t be cached as an individual file, so it will re-download
with every new page that includes it. Further, inline scripts in
the head of the page are downloaded in all browsers (and are
executed in all JavaScript-capable browsers), which chips away
at those precious first 14 kilobytes that make up our initial page
rendering budget—jQuery alone typically weighs more than
twice that, after all.

So what is inlining good for? It’s good for the small, criti-
cal portion of your JavaScript codebase mentioned above (the
shims, polyfills, etc.), but it should only be used for JavaScript
that needs to be in the head.

But what if none of your JavaScript meets that criteria?

Loading from the bottom

A third approach to loading JavaScript is to place script ele-
ments at the end of an HTML document, allowing content to
load and render as soon as possible, and forcing scripts to load
and execute after the content itself has been parsed and ren-
dered. A clear advantage to this method is that users can interact
sooner with the page.

Alas, it too suffers from some notable limitations. First, this
approach shares the same problem as head-referenced scripts in
that there’s no way to qualify a script’s request or execution—it’s
fetched in all JavaScript-enabled browsers. Also, scripts refer-
enced at the end of a document are requested much later, and take
more time to load and execute than a script referenced higher in
the page. This may be okay depending on whether or not your
JavaScript affects the page presentation, but any visual enhance-
ments JavaScript makes to the page can potentially cause a flash
of un-enhanced content, so this is something to watch out for.

Back to the top with defer and async attributes

In modern browsers like IE10 (and pretty much every other
browser for years now), the async and defer attributes can
be added to script elements to instruct the browser to load

 160 rESPonSIBLE rESPonSIVE dESIGn

a referenced JavaScript file in parallel while the HTML is still
loading (async), and/or to execute the script after the HTML has
finished loading (defer). These attributes can be used indepen-
dently or together on a single script element.

<script src="myScript.js" async defer></script>

If there’s no rush to execute a given script, the defer attribute
can be great for page-loading performance, because it frees the
browser to work on other essential tasks with a higher priority.
Examples of scripting you might choose to defer include those
that apply behavior to components that will be lazy-loaded
themselves or that control content toward the end of a page,
like blog comments.

That said, it’s often preferable for JavaScript files to execute as
soon as possible, so defer may not be ideal. For scripts that can
safely execute as soon as they’re ready, regardless of how much
of the HTML document has loaded, the async attribute is best.

What’s great about the async attribute is that it can be ap-
plied to script elements in the head (assuming they reference
an external file), telling the browser to request a referenced file
immediately, but to go ahead and begin rendering the page while
that file loads in parallel—the best of both worlds.

<head>
 ...
 <script src="myScript.js" async></script>
 ...
</head>

And now the inevitable downsides. First, though support is
fairly broad for these attributes, they won’t stop scripts from
blocking rendering in non-supporting browsers, like Android
2. IE9 and older lack async support but do support defer (in
IE versions 5 and up), so you can combine the two with defer
as a fallback.

Second, async doesn’t guarantee that multiple scripts will
execute in the order they’re specified in the page source. While
defer should guarantee execution order, it still fails to do so

 dELIVErInG rESPonSIBLy 161

in IE9 and older. If you don’t need to load multiple scripts that
depend on one another, this won’t be an issue.

Last, like all of the approaches above, the async and defer
attributes offer no means of qualifying whether a script is re-
quested or executed in the first place. To do so, we often need to
rely on tools beyond those native to the browser in developing
a responsible cross-device site.

A happy medium: loading scripts dynamically using
a small inline script

Our final option for loading JavaScript is the one I recommend
most. Dynamic loading allows us to decide based on any num-
ber of conditions whether or not to load additional files and, if
so, request those files in a non-blocking manner. In a codebase
designed to address a wide variety of network conditions, de-
vice features, and user preferences, dynamic loading is the most
responsible approach we can take because it allows us to load
only what’s necessary and nothing more.

Loading JavaScript dynamically is straightforward: place a
bit of JavaScript inline in the page and use that script to append
additional script elements, which will download and execute
in parallel. While there are several ways to dynamically append
elements to a page with JavaScript, the insertBefore method
is the safest and most reliable. Here’s an example of how we can
use insertBefore to load a script ("myScript.js") from the head
of an HTML document:

<head>
 ...
 <script>
 var myJS = document.createElement("script");
 myScript.src = "myScript.js";
 var ref = document.getElementsByTagName(»
 "script")[0];
 ref.parentNode.insertBefore(myJS, ref);
 </script>
</head>

 162 rESPonSIBLE rESPonSIVE dESIGn

Let’s break down what’s happening in this snippet:

• In the first two lines, we create a script element referenced
by the variable myJS, and set its src to "myScript.js".

• In the next line, we create a variable ref to store a reference
to the first script element found in the page (which could
very well be the one that contains the script example above).

• Finally, we call the insertBefore method on the parent of
ref (the head element in this case), specifying that myJS—
which refers to the script element we’re inserting—should
be inserted just before ref.

After it runs, if you were to inspect the DOM you’d see this
result (newly appended and loaded script in bold):

<head>
 ...
 <script src="myScript.js"></script>
 <script>
 var myJS = document.createElement("script");
 myScript.src = "myScript.js";
 var ref = document.getElementsByTagName(»
 "script")[0];
 ref.parentNode.insertBefore(myJS, ref);
 </script>
</head>

This pattern forms the foundation of many of the more fully
featured asset-loading scripts in use today; indeed, I use it on
almost every site I build. The big limitation to keep in mind is
that if you need to load multiple script files that depend on one
another, this approach can lead to trouble: it does nothing to
ensure that scripts will execute in the order they are requested.
That said, if you’re combining all of your enhancement scripts
into one file (I recommend doing that if you can keep its size
reasonably small), this script alone may suit your needs just
fine. I’ve packaged the script from this example into a reusable

 dELIVErInG rESPonSIBLy 163

function called loadJS (http://bkaprt.com/rrd/4-35/). Here it is
in action, with the text in bold telling loadJS to load the same
script as in the examples above:

<script>
 /* Include the loadJS function */
 function loadJS(src){ ... }
 loadJS("myScript.js");
</script>

With this handy tool at our disposal, we can have very little
code in the head of our page and enhance the experience with-
out blocking the page from loading quickly.

Enhancing responsibly

Imagine you need to develop a site that calls for fancy additions
to the interface. These enhancements need more JavaScript and
CSS than you can fit in the initial batch of code sent to all brows-
ers. But you don’t want to burden every browser with the addi-
tional code and requests—only the browsers that can use them.

Cutting the mustard

Just as we can qualify CSS rules with @media only all, we can
broadly qualify the application of JavaScript enhancements as
well. Sometimes, these broad qualifications align with features
that are necessary for a website’s enhanced experience, but
they can also be used as a more general diagnostic for modern
feature support.

In his article “Cutting the Mustard,” BBC developer Tom
Maslen describes approaching enhancements as a “two-tiered
responsive solution” (http://bkaprt.com/rrd/4-36/). Depending
on their capabilities, browsers receive either a functional, simple
HTML-only experience or the enhanced version. To test wheth-
er a browser is up to snuff, the BBC came up with a diagnostic to

http://bkaprt.com/rrd/4-35/
http://bkaprt.com/rrd/4-36/

 164 rESPonSIBLE rESPonSIVE dESIGn

see if a browser supports certain features—if it cuts the mustard,
so to speak. If the browser passes, it gets the enhanced experi-
ence. In his article, Maslen mentions the following diagnostic
as an example:

if("querySelector" in document
 && "localStorage" in window
 && "addEventListener" in window){
 // This browser cuts the mustard!
}

In this case, they’ve checked for the presence of three
JavaScript methods that must be defined to proceed: query-
Selector, localStorage, and addEventListener, which will
pass in a browser like IE9 but not in others like IE8. Now, the
mustard in question may differ depending on the needs of each
site. For example, the Boston Globe site uses media-query sup-
port as its gauge:

if(window.matchMedia && window.matchMedia(»
 "only all")){
 // This browser cuts the mustard!
}

Testing qualifiers helps to ensure that we only apply en-
hanced scripting and styles in places that can understand them.
(In addition, we can always introduce more specific feature
tests to qualify the use of features that require more careful fall-
backs.) Qualifying our enhancements makes QA testing easier
too: when you know that a particular browser doesn’t “cut the
mustard,” you can take comfort in the fact that people won’t
encounter usability issues, since you’re leaving the experience
as functional as it was in the first place.

Once my mustard is cut, I like to start the enhancement pro-
cess by applying a class to the html element called enhanced:

document.documentElement.className += " enhanced";

 dELIVErInG rESPonSIBLy 165

I sometimes use .enhanced within CSS selectors applying
styles that should only occur in qualified environments, as in
this snippet that hides checkboxes inside labels in enhanced
environments (assuming they’d be replaced by something like
a custom check icon):

.enhanced label input[type=checkbox] {
 opacity: 0;
}

Now, qualifying the application of code is important, but
qualifying whether or not additional code gets requested is
important as well, since it’s always best to avoid making super-
fluous HTTP requests. Let’s move on to loading some assets in
a qualified manner.

Qualified asset loading

If our aim is to load only one script file dynamically, the load-
JS() pattern shown earlier is all we need, and we can qualify it
with any conditions we’d like so that the file is only requested
in browsers that are up to the task. For example, here’s a snip-
pet that will load our script in any querySelector-supporting
browser (such as IE8 and newer):

// Check if browser supports querySelector
if("querySelector" in document){
 // This browser cuts the mustard!

 // first, let's add a class to the HTML element
 document.documentElement.className += " enhanced";

 // next, let's load our enhancement scripts
 loadJS("myScript.js");
}

Now we’re getting somewhere! Let’s tie this into our CSS-
loading approach to get an idea of the bigger picture.

 166 rESPonSIBLE rESPonSIVE dESIGn

BRINGING IT ALL TOGETHER
We’ve covered loading our many assets in isolation, but loading
them all efficiently in the same codebase requires organization
and care. To finish this section off, let’s walk through how our
HTML, CSS, and JavaScript can be assembled to deliver quickly
and responsibly.

The head of the page is the point from which we control
the page enhancement process, so let’s focus on that. Within
the head, we will use techniques referenced throughout this
section, like inlining both our critical CSS and the JavaScript
that will help us load additional scripts, styles, and fonts in a
qualified manner.

To help with this process, I’ve updated the Enhance project
(which you may recall from earlier in the book) to host an
example of the JavaScript workflow that we use for enhancing
a page (FIG 4.26). A project file, enhance.js, contains the code
from the loadCSS() and loadJS() functions mentioned earlier,
as well as some helper functions for getting and setting cookies,
fetching values from meta elements, and a sample cut the mustard
to boot. Unlike a JavaScript framework, enhance.js is meant to
be an editable boilerplate, so when you use it, delete whatever
you don’t need and add whatever makes sense for your project.
The following examples use enhance.js for the inline JavaScript
portion of our workflow.

That is so meta

First, we know we have a few files we may want to load with
JavaScript; I like to start by defining those files’ URLs in an easy-
to-find place. Meta elements are great for that, so I’ll place a few
of those at the top of the head: one for our site’s full CSS file, one
for our custom fonts, and one for our JavaScript enhancements.

<head>
 ...
 <meta name="fullcss" content="/path/to/full.css">

 dELIVErInG rESPonSIBLy 167

 <meta name="fonts" content="/path/to/fonts.css">
 <meta name="fulljs" content="/path/to/ »
 enhancements.js">
 ...
</head>

Adding our critical JavaScript

With the meta tags in place, we can add our inline scripting.
Again, this inline scripting should consist of only the JavaScript
required to potentially enhance the experience. I typically in-
clude a modified version of enhance.js containing any func-
tions and site-specific logic I may need. In this case, we want to
be able to dynamically load our site’s full CSS file without any
qualification (since it contains styles that apply to all environ-
ments) and check to see if the browser passes the mustard test.
If it does, we’ll want to be able to load our custom fonts and
enhanced JavaScript as well. (Note: you may choose to load
custom fonts for everyone, but we typically reserve them for
modern browsers, where they’ll be most appreciated.)

Here’s our updated head section with the inline script in place
(additions in bold).

<head>
 ...
 <meta name="fullcss" content="/path/to/full.css">
 <meta name="fonts" content="/path/to/fonts.css">
 <meta name="fulljs" content="/path/to/ »
 enhancements.js">
 <script>
 {% include path/to/enhance.js %}
 </script>
 ...
</head>

 168 rESPonSIBLE rESPonSIVE dESIGn

Within that enhance.js file, alongside functions like loadC-
SS() and loadJS(), is another function called getMeta(), which
attempts to find a meta element by its name attribute. As a first
step, we can find the meta element referencing our site’s full CSS
file with the following call:

getMeta("fullcss");

Once we have a reference to that meta element, we can get
its content property to find the URL we need, and load the CSS
file using loadCSS():

var cssMeta = getMeta("fullcss");
if(cssMeta){
 // Load the site's full CSS file from the meta
 // element's content attribute
 loadCSS(cssMeta.content);
}

And that’s all we need to do to load our site’s full CSS file
asynchronously.

FIG 4.26: the Enhance project on Github (http://bkaprt.com/rrd/4-37/).

http://bkaprt.com/rrd/4-37/

 dELIVErInG rESPonSIBLy 169

Next within that inline script, we’ll want to see if the browser
passes our test before further enhancing the page by adding
a class and loading our enhanced JavaScript and fonts. Here’s
how to do it:

...
// Check if browser supports querySelector
if("querySelector" in document){
 // This browser cuts the mustard!

 // First, let's add a class to the HTML element
 document.documentElement.className += " enhanced";

 // Next, let's load our enhancement scripting
 var jsMeta = getMeta("fulljs");
 if(jsMeta){
 loadJS(jsMeta.content);
 }

// Finally, let's load our custom fonts
var fontsMeta = getMeta("fonts");
if(fontsMeta){
 loadCSS(fontsMeta.content);
 }
}

That’s it for the JavaScript.
Next in the head of the page, let’s add the critical CSS neces-

sary to render the top portion of the page. As a reminder, this
critical CSS will vary from template to template, and should be
generated by a tool like Grunt-CriticalCSS, which I mentioned
in the CSS section earlier. We put that subset of CSS directly in
the head, like so (additions in bold):

<head>
 ...
 <meta name="fullcss" content="/path/to/full.css">
 <meta name="fonts" content="/path/to/fonts.css">
 <meta name="fulljs" content=“/path/to/ »

 170 rESPonSIBLE rESPonSIVE dESIGn

 enhancements.js">
 <style>
 /* Critical CSS styles for this template go
 here... */
 </style>
 <script>
 {% include path/to/enhance.js %}
 </script>
 ...
</head>

Again, since the script and style elements reference no
external code, their order in the page source won’t affect render-
ing performance. That said, placing the critical CSS before the
script ensures that the JavaScript will insert the full CSS file
after the inline styles, so none of those will override the styles
in the full CSS.

Next, I like to include a static reference to a site’s full CSS file
for browsers that don’t have JavaScript enabled. That way we
can make sure that all of the CSS will load regardless of whether
or not we are able to load it dynamically using JavaScript. Here’s
that last addition in bold:

<head>
 ...
 <meta name="fullcss" content="/path/to/full.css">
 <meta name="fonts" content="/path/to/fonts.css">
 <meta name="fulljs" content="/path/to/ »
 enhancements.js">
 <script>
 {% include path/to/enhance.js %}
 </script>
 <style>
 /* Critical CSS styles for this template go
 here... */
 </style>
 <noscript>
 <link rel="stylesheet" href="/path/to/full.css">

 dELIVErInG rESPonSIBLy 171

 </noscript>
 ...
</head>

Whew! And that’s it. After that in the page source, the body
element should follow containing all the functional HTML con-
tent required for that page to be useful to everyone.

Optimizing for subsequent loads using cookies

But there’s a little more you can do. While the above workflow
is fantastically optimized for the first time a user visits a site, we
can take advantage of caching to make things load even faster
on subsequent visits.

The main thing we can optimize is the inline CSS, which
only needs to be present on the first visit before the site’s full
CSS has been requested and cached by the browser. After the
initial visit, the browser will have already requested the full CSS
and stored it in a local cache, so it’s safe to reference that CSS
from the head of the page in place of any inline CSS a template
would otherwise include. Pulling this off requires adding a
little server-side logic to your template, so your page will need
to be running on a web server that has at least basic server-side
scripting, like the ability to detect cookies. If you have access to
that sort of environment, the setup for this optimization can be
fairly straightforward.

First, you want to configure the head of your document to
include its inline CSS or not based on the existence of a cookie,
which we’ll call fullcss for the sake of this example. Here’s
how the head will look with that check in place:

<head>
 ...
 <meta name="fullcss" content="/path/to/full.css">
 <meta name="fulljs" content="/path/to/ »
 enhancements.js">
 <script>

 172 rESPonSIBLE rESPonSIVE dESIGn

 {% include /path/to/enhance.js %}
 </script>
{% if cookie "fullcss=true" %}
 <link rel="stylesheet" href="/path/to/full.css">
{% else %}
 <style>
 /* Critical CSS styles for this template go
 here... */
 </style>
 <noscript>
 <link rel="stylesheet" href="/path/to/full.css">
 </noscript>
{% endif %}
 ...
</head>

Next, within the inline JavaScript just after loading the site’s
full CSS file, you want to set a cookie to declare that the CSS
file has been requested and cached. This cookie is stored in
the browser and travels along with every subsequent request
it makes to the server, which means it can be detected when
serving subsequent pages and allow the logic above to detect it.
Also, for subsequent page loads, the JavaScript should make sure
that the cookie hasn’t already been set before it loads the site’s
full CSS (since that CSS may already be included in the page).

Here’s how that looks using enhance.js’s cookie function
(new code in bold):

var cssMeta = getMeta("fullcss");
if(cssMeta){
 // Load the site's full CSS file from the meta
 // element's content attribute
 loadCSS(cssMeta.content);
 // set a cookie called "fullcss" to true
 cookie("fullcss", "true");
}

And that’s really it!

 dELIVErInG rESPonSIBLy 173

If you’d like to see this example in action, check out the
EnhanceJS site (http://bkaprt.com/rrd/4-37/), which has func-
tional demo files matching the workflow shown here.

Go forth and load responsibly

By using the simple loading workflow above, we can carefully
deliver assets only where they need to go and, best of all, serve
pages that render incredibly fast for our users. The benefits
of qualifying requests for large code enhancements cannot be
overstated, as each request can add seconds to a user’s page-load
time (particularly on a mobile connection).

YOU GOT SERVED
We’ve covered a lot in this chapter, from optimizing our assets
to discovering how to responsibly load them (or not!) in our
pages for speedy rendering. Sites are more than just collections
of pages; they’re complex systems that can easily get weighed
down if we aren’t vigilant. Though this is still a period of transi-
tion, we appear to be on our way to lighter, brighter experiences.
Let’s contemplate what the future has in store.

http://bkaprt.com/rrd/4-37/

 concLuSIon 175

CONCLUSION
Throughout this book, I’ve shared ways to build responsive sites
that prioritize usability, access, sustainability, and performance.
All of these factors matter for today’s web, but they also ready
our sites for the browsers of tomorrow.

Our audience is diversifying both geographically and tech-
nologically. As people in developing regions gain greater access
to the web, the opportunity to broaden our reach grows as
well, and the need for more fault tolerance and tiered, qualified
delivery becomes ever more critical. At the same time, building
responsibly benefits audiences in developed areas too, with
faster, more accessible sites that are forgiving when browsing
conditions are less than ideal. The contexts in which our users
experience the web vary wildly, yet the demand for experiences
that consider each person’s browsing conditions, constraints,
and expectations seems universal.

A responsible, responsive future

We can’t predict what the future of the web holds, but we can
prepare ourselves to embrace the unknowns ahead. To deliver
on the promise of a widely accessible, delightful, and sustainable
web experience, successful responsive designs must be inte-
grated with other best practices. Embracing device and network
diversity, and focusing on features and constraints rather than
on browsers and devices, are our way forward.

The web was founded on the premise of broad access and
inclusivity, and its unique, tiered application of technologies
provides the scaffolding that lets us build upward without leav-
ing anyone out. To meet that goal, we need to think creatively,
build responsibly, and always keep our users at the forefront of
our priorities.

May your reach be extended, your failures graceful, and your
aims empathetic. Thanks so much for reading along.

 176 rESPonSIBLE rESPonSIVE dESIGn

ACKNOWLEDGEMENTS
I regret that in such a small space it’s impossible for me to list
all of the people whose talent and generosity made this book a
reality. The best I can do is offer some highlights.

From early on, my family has been selflessly supportive
of me: Mom, Dad, Kristen, Adam, my grandparents (thanks,
Gram!). Thanks to my parents for sending me to learn design at
Flagler College, where I met Randy Taylor, a talented designer
and mentor who remains a good friend to this day. Randy, along
with Seth Ferreira, encouraged me to integrate web design into
my curriculum and introduced me to early clients like Dorothy
Hesson at the Florida School for the Deaf & the Blind. Dorothy’s
passion and knowledge inspired my drive to build for access.

Thanks to Jon Reil, who took a chance and hired me fresh
out of college. To Jeffrey Zeldman, Eric Meyer, and Jeremy
Keith, each of whom I once considered distant heroes and am
grateful to now consider friends. To Paul Irish, Steve Souders,
Ilya Grigorik, and Andy Hume, who have shaped my under-
standing of web performance. To John Resig for welcoming me
to the jQuery team early on. To the brilliant web community
that I learn from every day: Jake Archibald, Tim Kadlec, Trent
Walton, Dave Rupert, Chris Coyier, Mat Marquis, Bryan and
Stephanie Rieger, Stephen Hay, Nicole Sullivan, Dan Cederholm,
Brad Frost, Jason Grigsby, Josh Clark, Luke Wroblewski, Anna
Debenham, James Craig, Karl Swedberg, and Lyza Gardner…
the list goes on.

The highest of fives to my team at Filament Group: Patty
Toland, Todd Parker, Maggie Wachs, Zach Leatherman, Jeff
Lembeck, and John Bender. Each day I’m fortunate to work
with some of the smartest, most caring people in this field.
Nearly every line in this book is based on research that all of us
produced or reviewed on company time. Patty and Todd run a
special company that somehow manages to contribute an enor-
mous amount of open-source projects, produce interesting and
important work, and prioritize a generous life/work balance. I’m
so grateful for them and what they’ve made for all of us.

 177

I owe an enormous debt to A Book Apart and this editorial
team. Tina Lee provided numerous rounds of restructuring,
questions, and smart cuts, organizing my messy thoughts into a
much clearer narrative. Mandy Brown, my first contact at ABA,
provided critical directional editing. Katel LeDu, the managing
director, was massively proficient in keeping our team on task
and collaborating effectively. Rob Weychert’s and Jason Santa
Maria’s talents transformed a column of text into the beautifully
designed form you’re now reading.

A special thanks to Ethan Marcotte. In addition to conceiving
the practice on which this book is based, Ethan has long been
a role model, not only for his well-known contributions to our
field but also for the courteous manner in which he carries
himself. Ethan was the tech editor and provided many rounds of
code review, but he also offered important directional feedback
and wasn’t afraid to tell me when passages weren’t hitting the
mark. I’m deeply honored that Ethan wrote the foreword, and
I’m very proud to call him my friend.

Last, but most important, thanks to my brilliant and talented
wife Stephanie. This book was written on nights and weekends,
during time that Steph and I would have otherwise spent to-
gether. Steph not only sacrificed sleep and leisure time (during a
pregnancy, no less!) but also offered sage advice for many parts
of this text. When the book was halfway written, our daughter,
Emory, was born, and she will be a year old when it goes to
print. Since books are Emory’s favorite “toy,” I like to think that
one day she’ll appreciate that her dad made one of those toys too.
Steph and Emory deserve my greatest gratitude. I love you both.

 178 rESPonSIBLE rESPonSIVE dESIGn

RESOURCES

Devices, browsers, and testing

• BrowserStack: If you’re building cross-device sites, you’re
going to need access to many devices. BrowserStack offers
live testing in an expanding number of operating systems and
browsers. Highly recommended (http://bkaprt.com/rrd/5-01/).

• Can I use…: A great resource for discovering how well fea-
tures are covered across browsers today (http://bkaprt.com/
rrd/5-02/).

• Akamai’s State of the Internet: This report details connection
speed and coverage trends for global internet access (http://
bkaprt.com/rrd/5-03/).

• StatCounter: While certainly not comprehensive of all web
traffic, StatCounter is recommended as a trusted source in
browser and operating-system statistics worldwide (http://
bkaprt.com/rrd/5-04/).

• “Grade Components, Not Browsers”: This post argues for an
evolved method of documenting differences in user experi-
ence across browsers (http://bkaprt.com/rrd/5-05/).

Performance optimization and analysis

• WebPagetest: A terrific service that analyzes how your site
loads from various parts of the world in different browsers
and devices (http://bkaprt.com/rrd/5-06/).

• PageSpeed Insights: A fast, browser-based service that helps
you track areas to optimize site performance (http://bkaprt.
com/rrd/5-07/).

• Grunt-PerfBudget: A command-line task from Tim Kadlec
to automate performance testing with WebPagetest (http://
bkaprt.com/rrd/5-08/).

• “Setting a Performance Budget”: Tim Kadlec’s post outlines
the primary considerations that go into establishing site bud-
gets (http://bkaprt.com/rrd/5-09/).

http://bkaprt.com/rrd/5-01/
http://bkaprt.com/rrd/5-02/
http://bkaprt.com/rrd/5-02/
http://bkaprt.com/rrd/5-03/
http://bkaprt.com/rrd/5-03/
http://bkaprt.com/rrd/5-04/
http://bkaprt.com/rrd/5-04/
http://bkaprt.com/rrd/5-05/
http://bkaprt.com/rrd/5-06/
http://bkaprt.com/rrd/5-07/
http://bkaprt.com/rrd/5-07/
http://bkaprt.com/rrd/5-08/
http://bkaprt.com/rrd/5-08/
http://bkaprt.com/rrd/5-09/

 rESourcES 179

• “Test on Real Mobile Devices without Breaking the Bank”:
Brad Frost offers some excellent advice on building a well-
balanced lab (http://bkaprt.com/rrd/5-10/).

• Steve Souders: Souders is the web performance guru. Keep
up with his posts (http://bkaprt.com/rrd/5-11/)!

• Building a Performance Culture: This great talk by Lara
Swanson and Paul Lewis covers the challenges and benefits
of prioritizing performance within a company (http://bkaprt.
com/rrd/5-12/).

• Open Device Lab: Find a device-testing lab in your area
(http://bkaprt.com/rrd/5-13/).

Future-friendly coding practices and tools

• Server-side feature detection: The HTTP Client-Hints pro-
posal from Ilya Grigorik of Google will enable browsers to
send standardized information about their features and con-
ditions to the server with each request they make. Keep an
eye on the proposal’s progress (http://bkaprt.com/rrd/5-14/).

• CSS loading: A number of potential solutions for loading
inapplicable or low-priority CSS are being discussed in the
www-style mailing list at the W3C (http://bkaprt.com/rrd/
5-15/). So far, ideas like an onmatch attribute for link elements
have been proposed (http://bkaprt.com/rrd/5-16/).

• Feature testing: Many features shouldn’t be used without
first checking that they’re properly supported. Modernizr is
the best feature-detection library currently available (http://
bkaprt.com/rrd/5-17/).

• Responsive images: Opera’s article “Responsive Images: Use
Cases and Documented Code Snippets to Get You Started” is
a must-read for those interested in using responsive images
now (http://bkaprt.com/rrd/5-18/). Be sure to keep up with
the RICG (http://bkaprt.com/rrd/5-19/) and Picturefill (http://
bkaprt.com/rrd/5-20/) as well.

• Filament’s open-source projects: Filament hosts a growing
number of well-tested responsive components and tools you
can use for free (http://bkaprt.com/rrd/5-21/).

http://bkaprt.com/rrd/5-10/
http://bkaprt.com/rrd/5-11/
http://bkaprt.com/rrd/5-12/
http://bkaprt.com/rrd/5-12/
http://bkaprt.com/rrd/5-13/
http://bkaprt.com/rrd/5-14/
http://bkaprt.com/rrd/5-15/
http://bkaprt.com/rrd/5-15/
http://bkaprt.com/rrd/5-16/
http://bkaprt.com/rrd/5-17/
http://bkaprt.com/rrd/5-17/
http://bkaprt.com/rrd/5-18/
http://bkaprt.com/rrd/5-19/
http://bkaprt.com/rrd/5-20/
http://bkaprt.com/rrd/5-20/
http://bkaprt.com/rrd/5-21/

 180 rESPonSIBLE rESPonSIVE dESIGn

• Filament’s SouthStreet: This page hosts information and
links to projects related to Filament’s progressive enhance-
ment workflow (http://bkaprt.com/rrd/5-22/).

http://bkaprt.com/rrd/5-22/

 rEFErEncES 181

REFERENCES
Shortened URLs are numbered sequentially; the related long
URLs are listed below for reference.

Introduction

0-01 http://www.wired.com/2014/01/internet-org-hackathon-low-end-rules/

0-02 http://www.moneyweb.co.za/moneyweb-south-africa-asia-mobile-
internets-tomorrow

0-03 http://appleinsider.com/articles/12/02/17/apple_sold_more_ios_devices_
in_2011_than_total_macs_in_28_years

0-04 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-
networking-index-vni/white_paper_c11-520862.html

0-05 http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/

0-06 http://opensignal.com/reports/fragmentation-2013/

0-07 https://twitter.com/cennydd/status/362269441645481984

0-08 http://alistapart.com/article/responsive-web-design

0-09 http://trentwalton.com/2014/03/10/device-agnostic/

0-10 https://www.flickr.com/photos/janitors/12907608763

0-11 https://www.flickr.com/photos/scottvanderchijs/5453911636

0-12 https://www.apple.com/accessibility/osx/voiceover/

0-13 http://www.google.com/think/research-studies/the-new-multi-screen-
world-study.html

0-14 http://developer.android.com/about/dashboards/index.html

0-15 http://dev.opera.com

0-16 http://www.guypo.com/mobile/what-are-responsive-websites-made-of/

0-17 http://httparchive.org/interesting.php?a=All&l=Apr%2015%202014

0-18 http://minus.com/msM8y8nyh#1e

0-19 http://www.webperformancetoday.com/2013/03/19/new-findings-typical-
leading-european-commerce-site-takes-7-04-seconds-to-load/

Chapter 1

1-01 http://trentwalton.com/2011/05/10/fit-to-scale/

1-02 http://the-pastry-box-project.net/dan-mall/2012-september-12/

1-03 https://twitter.com/brad_frost/status/191977076000161793

1-04 http://webtypography.net/2.1.2

1-05 http://webtypography.net

http://www.wired.com/2014/01/internet-org-hackathon-low-end-rules/
http://www.moneyweb.co.za/moneyweb-south-africa/asia-mobile-internets-tomorrow
http://www.moneyweb.co.za/moneyweb-south-africa/asia-mobile-internets-tomorrow
http://appleinsider.com/articles/12/02/17/apple_sold_more_ios_devices_in_2011_than_total_macs_in_28_years
http://appleinsider.com/articles/12/02/17/apple_sold_more_ios_devices_in_2011_than_total_macs_in_28_years
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.pewinternet.org/fact-sheets/mobile-technology-fact-sheet/
http://opensignal.com/reports/fragmentation-2013/
https://twitter.com/Cennydd/status/362269441645481984
http://alistapart.com/article/responsive-web-design
http://trentwalton.com/2014/03/10/device-agnostic/
https://www.flickr.com/photos/janitors/12907608763
https://www.flickr.com/photos/scottvanderchijs/5453911636
https://www.apple.com/accessibility/osx/voiceover/
http://www.google.com/think/research-studies/the-new-multi-screen-world-study.html
http://www.google.com/think/research-studies/the-new-multi-screen-world-study.html
http://developer.android.com/about/dashboards/index.html
http://dev.opera.com
http://www.guypo.com/mobile/what-are-responsive-websites-made-of/
http://httparchive.org/interesting.php?a=All&l=Apr%2015%202014
http://minus.com/msM8y8nyh#1e
http://www.webperformancetoday.com/2013/03/19/new-findings-typical-leading-european-commerce-site-takes-7-04-seconds-to-load/
http://www.webperformancetoday.com/2013/03/19/new-findings-typical-leading-european-commerce-site-takes-7-04-seconds-to-load/
http://trentwalton.com/2011/05/10/fit-to-scale/
http://the-pastry-box-project.net/dan-mall/2012-september-12/
https://twitter.com/brad_frost/status/191977076000161793
http://webtypography.net/2.1.2
http://webtypography.net

 182 rESPonSIBLE rESPonSIVE dESIGn

 1-06 http://daverupert.com/2013/04/responsive-deliverables/

 1-07 http://getbootstrap.com/

 1-08 http://www.lukew.com/ff/entry.asp?1569

1-09 http://demos.jquerymobile.com/1.4.2/table-reflow/

1-10 http://demos.jquerymobile.com/1.4.2/table-column-toggle/

1-11 http://bradfrost.github.io/this-is-responsive/patterns.html

1-12 http://touchlab.mit.edu/publications/2003_009.pdf

1-13 http://www.smashingmagazine.com/2012/02/21/finger-friendly-design-
ideal-mobile-touchscreen-target-sizes/

1-14 http://static.lukew.com/touchGesturecards.pdf

1-15 https://github.com/filamentgroup/tappy

1-16 https://github.com/ftlabs/fastclick/

1-17 http://www.w3.org/WAI/intro/aria

1-18 http://www.nytimes.com/2013/12/30/opinion/america-in-2013-as-told-in-
charts.html

1-19 http://filamentgroup.com/lab/grade_components/

1-20 http://adactio.com/journal/6692/

Chapter 2

2-01 http://alistapart.com/article/testing-websites-in-game-console-browsers

2-02 https://twitter.com/anna_debenham/status/246613439814971393

2-03 http://www.lukew.com/ff/entry.asp?1333

2-04 http://trentwalton.com/2013/03/19/type-touch/

2-05 https://www.flickr.com/photos/frankieroberto/2317229560/

2-06 http://www.slideshare.net/bryanrieger/rethinking-the-mobile-web-
by-yiibu

2-07 http://blog.cloudfour.com/the-ems-have-it-proportional-media-
queries-ftw/

2-08 http://trentwalton.com/2013/01/16/windows-phone-8-viewport-fix

2-09 http://caniuse.com

2-10 http://www.stucox.com/blog/the-good-and-bad-of-level-4-media-queries

2-11 http://alistapart.com/article/testdriven

2-12 http://modernizr.com/

2-13 http://dev.w3.org/csswg/css-conditional/#at-supports

2-14 http://dev.w3.org/csswg/css-conditional/#support-definition

2-15 https://github.com/Modernizr/Modernizr/wiki/undetectables

2-16 http://filamentgroup.com/lab/overthrow

2-17 https://github.com/filamentgroup/fixed-fixed

http://daverupert.com/2013/04/responsive-deliverables/
http://getbootstrap.com/
http://www.lukew.com/ff/entry.asp?1569
http://demos.jquerymobile.com/1.4.2/table-reflow/
http://demos.jquerymobile.com/1.4.2/table-column-toggle/
http://bradfrost.github.io/this-is-responsive/patterns.html
http://touchlab.mit.edu/publications/2003_009.pdf
http://www.smashingmagazine.com/2012/02/21/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
http://www.smashingmagazine.com/2012/02/21/finger-friendly-design-ideal-mobile-touchscreen-target-sizes/
http://static.lukew.com/TouchGestureCards.pdf
https://github.com/filamentgroup/tappy
https://github.com/ftlabs/fastclick/
http://www.w3.org/WAI/intro/aria
http://www.nytimes.com/2013/12/30/opinion/america-in-2013-as-told-in-charts.html
http://www.nytimes.com/2013/12/30/opinion/america-in-2013-as-told-in-charts.html
http://filamentgroup.com/lab/grade_components/
http://adactio.com/journal/6692/
http://alistapart.com/article/testing-websites-in-game-console-browsers
https://twitter.com/anna_debenham/status/246613439814971393
http://www.lukew.com/ff/entry.asp?1333
http://trentwalton.com/2013/03/19/type-touch/
https://www.flickr.com/photos/frankieroberto/2317229560/
http://www.slideshare.net/bryanrieger/rethinking-the-mobile-web-by-yiibu
http://www.slideshare.net/bryanrieger/rethinking-the-mobile-web-by-yiibu
http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
http://blog.cloudfour.com/the-ems-have-it-proportional-media-queries-ftw/
http://trentwalton.com/2013/01/16/windows-phone-8-viewport-fix
http://caniuse.com
http://www.stucox.com/blog/the-good-and-bad-of-level-4-media-queries
http://alistapart.com/article/testdriven
http://modernizr.com/
http://dev.w3.org/csswg/css-conditional/#at-supports
http://dev.w3.org/csswg/css-conditional/#support-definition
https://github.com/Modernizr/Modernizr/wiki/Undetectables
http://filamentgroup.com/lab/overthrow
https://github.com/filamentgroup/fixed-fixed

 rEFErEncES 183

2-18 https://github.com/aFarkas/html5shiv/#why-is-it-called-a-shiv

2-19 https://github.com/aFarkas/html5shiv

2-20 http://remysharp.com/2010/10/08/what-is-a-polyfill/

2-21 https://github.com/paulirish/matchMedia.js

2-22 https://github.com/scottjehl/respond

2-23 http://adactio.com/journal/5964/

2-24 http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-
breaking-the-bank/

2-25 http://opendevicelab.com

2-26 https://www.flickr.com/photos/lukew/6171909286/

2-27 http://www.browserstack.com

Chapter 3

3-01 http://contentsmagazine.com/articles/10-timeframes/

3-02 http://httparchive.org

3-03 http://moto.oakley.com

3-04 http://www.stevesouders.com/blog/2011/09/21/making-a-mobile-
connection/

3-05 http://devtoolsecrets.com

3-06 https://developers.google.com/speed/pagespeed/insights

3-07 http://webpagetest.org/

3-08 http://timkadlec.com/2014/01/fast-enough/#comment-1200946500

3-09 http://calendar.perfplanet.com/2013/holistic-performance

3-10 http://timkadlec.com/2014/05/performance-budgeting-with-grunt

3-11 http://imageoptim.com

3-12 http://optipng.sourceforge.net

3-13 http://jpegclub.org/jpegtran

3-14 https://github.com/gruntjs/grunt-contrib-imagemin

3-15 http://2012.dconstruct.org

3-16 http://www.gzip.org/deflate.html

3-17 http://html5boilerplate.com

3-18 https://developers.google.com/speed/docs/best-practices/caching

3-19 https://developer.mozilla.org/en-uS/docs/Mozilla/Projects/Social_API/
Service_worker_API_reference

3-20 http://www.html5rocks.com/en/tutorials/appcache/beginner

3-21 https://incident57.com/codekit/

3-22 http://gruntjs.com

https://github.com/aFarkas/html5shiv/#why-is-it-called-a-shiv
https://github.com/aFarkas/html5shiv
http://remysharp.com/2010/10/08/what-is-a-polyfill/
https://github.com/paulirish/matchMedia.js
https://github.com/scottjehl/Respond
http://adactio.com/journal/5964/
http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-breaking-the-bank/
http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-breaking-the-bank/
http://opendevicelab.com
https://www.flickr.com/photos/lukew/6171909286/
http://www.browserstack.com
http://contentsmagazine.com/articles/10-timeframes/
http://httparchive.org
http://moto.oakley.com
http://www.stevesouders.com/blog/2011/09/21/making-a-mobile-connection/
http://www.stevesouders.com/blog/2011/09/21/making-a-mobile-connection/
http://devtoolsecrets.com
https://developers.google.com/speed/pagespeed/insights
http://webpagetest.org/
http://timkadlec.com/2014/01/fast-enough/#comment-1200946500
http://calendar.perfplanet.com/2013/holistic-performance
http://timkadlec.com/2014/05/performance-budgeting-with-grunt
http://imageoptim.com
http://optipng.sourceforge.net
http://jpegclub.org/jpegtran
https://github.com/gruntjs/grunt-contrib-imagemin
http://2012.dconstruct.org
http://www.gzip.org/deflate.html
http://html5boilerplate.com
https://developers.google.com/speed/docs/best-practices/caching
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Social_API/Service_worker_API_reference
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Social_API/Service_worker_API_reference
http://www.html5rocks.com/en/tutorials/appcache/beginner
https://incident57.com/codekit/
http://gruntjs.com

 184 rESPonSIBLE rESPonSIVE dESIGn

Chapter 4

4-01 http://www.lukew.com/ff/entry.asp?933

4-02 http://24ways.org/2011/conditional-loading-for-responsive-designs

4-03 http://adactio.com/journal/5042/

4-04 https://github.com/filamentgroup/Ajax-Include-Pattern

4-05 http://filamentgroup.com/lab/ajax_includes_modular_content

4-06 https://github.com/filamentgroup/AppendAround

4-07 http://filamentgroup.github.io/AppendAround/

4-08 http://httparchive.org/interesting.php#renderStart

4-09 https://github.com/scottjehl/css-inapplicable-load

4-10 https://developers.google.com/speed/pagespeed/insights/

4-11 http://paul.kinlan.me/detecting-critical-above-the-fold-css/

4-12 https://github.com/filamentgroup/grunt-criticalcss/

4-13 https://github.com/filamentgroup/loadcSS

4-14 http://timkadlec.com/2012/04/media-query-asset-downloading-results/

4-15 http://boazsender.github.io/datauri

4-16 http://www.mobify.com/blog/data-uris-are-slow-on-mobile

4-17 http://filamentgroup.com/lab/rwd_img_compression

4-18 http://responsiveimages.org/

4-19 http://www.w3.org/tr/html-picture-element/

4-20 http://scottjehl.github.io/picturefill/

4-21 http://css-tricks.com/examples/IconFont/

4-22 http://filamentgroup.com/lab/bulletproof_icon_fonts

4-23 https://github.com/filamentgroup/a-font-garde

4-24 http://css-tricks.com/stackicons-icon-fonts

4-25 https://docs.google.com/presentation/d/1cnQLbqc0krocy_fZrM5fZ-
ymQ2JgEAdrh3qr6rbooGk/edit?pli=1#slide=id.p

4-26 http://jakearchibald.com/2013/animated-line-drawing-svg/

4-27 http://css-tricks.com/svg-sprites-use-better-icon-fonts/

4-28 https://github.com/filamentgroup/grunticon

4-29 http://grumpicon.com

4-30 http://stet.editorially.com

4-31 http://dev.w3.org/csswg/css-font-loading

4-32 https://twitter.com/jaffathecake/status/207096228339658752

4-33 https://github.com/filamentgroup/shoestring

4-34 https://github.com/jquery/jquery#how-to-build-your-own-jquery

http://www.lukew.com/ff/entry.asp?933
http://24ways.org/2011/conditional-loading-for-responsive-designs
http://adactio.com/journal/5042/
https://github.com/filamentgroup/Ajax-Include-Pattern
http://filamentgroup.com/lab/ajax_includes_modular_content
https://github.com/filamentgroup/AppendAround
http://filamentgroup.github.io/AppendAround/
http://httparchive.org/interesting.php#renderStart
https://github.com/scottjehl/css-inapplicable-load
https://developers.google.com/speed/pagespeed/insights/
http://paul.kinlan.me/detecting-critical-above-the-fold-css/
https://github.com/filamentgroup/grunt-criticalcss/
https://github.com/filamentgroup/loadCSS
http://timkadlec.com/2012/04/media-query-asset-downloading-results/
http://boazsender.github.io/datauri
http://www.mobify.com/blog/data-uris-are-slow-on-mobile
http://filamentgroup.com/lab/rwd_img_compression
http://responsiveimages.org/
http://www.w3.org/TR/html-picture-element/
http://scottjehl.github.io/picturefill/
http://css-tricks.com/examples/IconFont/
http://filamentgroup.com/lab/bulletproof_icon_fonts
https://github.com/filamentgroup/a-font-garde
http://css-tricks.com/stackicons-icon-fonts
https://docs.google.com/presentation/d/1CNQLbqC0krocy_fZrM5fZ-YmQ2JgEADRh3qR6RbOOGk/edit?pli=1#slide=id.p
https://docs.google.com/presentation/d/1CNQLbqC0krocy_fZrM5fZ-YmQ2JgEADRh3qR6RbOOGk/edit?pli=1#slide=id.p
http://jakearchibald.com/2013/animated-line-drawing-svg/
http://css-tricks.com/svg-sprites-use-better-icon-fonts/
https://github.com/filamentgroup/grunticon
http://grumpicon.com
http://stet.editorially.com
http://dev.w3.org/csswg/css-font-loading
https://twitter.com/jaffathecake/status/207096228339658752
https://github.com/filamentgroup/shoestring
https://github.com/jquery/jquery#how-to-build-your-own-jquery

 rEFErEncES 185

4-35 https://github.com/filamentgroup/loadJS

4-36 http://responsivenews.co.uk/post/18948466399/cutting-the-mustard

4-37 https://github.com/filamentgroup/enhance/

Resources

5-01 http://wwbrowserstack.com/

5-02 http://caniuse.com

5-03 http://www.akamai.com/stateoftheinternet

5-04 http://gs.statcounter.com/#all-browser_version_partially_combined-ww-
monthly-201307-201407

5-05 http://filamentgroup.com/lab/grade-the-components.html

5-06 http://www.webpagetest.org

5-07 https://developers.google.com/speed/pagespeed/insights

5-08 http://timkadlec.com/2014/05/performance-budgeting-with-grunt

5-09 http://timkadlec.com/2013/01/setting-a-performance-budget

5-10 http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-
breaking-the-bank

5-11 http://stevesouders.com/

5-12 http://www1.practicalperformanceanalyst.com/2014/06/28/building-a-
performance-culture-google-io-2014

5-13 http://opendevicelab.com

5-14 https://github.com/igrigorik/http-client-hints

5-15 http://lists.w3.org/Archives/Public/www-style

5-16 http://lists.w3.org/Archives/Public/www-style/2013Feb/0131.html

5-17 http://modernizr.com

5-18 http://dev.opera.com/articles/responsive-images

5-19 http://ricg.org

5-20 http://scottjehl.github.io/picturefill

5-21 http://filamentgroup.com/code

5-22 https://github.com/filamentgroup/Southstreet/

https://github.com/filamentgroup/loadJS
http://responsivenews.co.uk/post/18948466399/cutting-the-mustard
https://github.com/filamentgroup/enhance/
http://www.browserstack.com/
http://caniuse.com
http://www.akamai.com/stateoftheinternet
http://gs.statcounter.com/#all-browser_version_partially_combined-ww-monthly-201307-201407
http://gs.statcounter.com/#all-browser_version_partially_combined-ww-monthly-201307-201407
http://filamentgroup.com/lab/grade-the-components.html
http://www.webpagetest.org
https://developers.google.com/speed/pagespeed/insights
http://timkadlec.com/2014/05/performance-budgeting-with-grunt
http://timkadlec.com/2013/01/setting-a-performance-budget
http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-breaking-the-bank
http://bradfrostweb.com/blog/mobile/test-on-real-mobile-devices-without-breaking-the-bank
http://stevesouders.com/
http://www1.practicalperformanceanalyst.com/2014/06/28/building-a-performance-culture-google-io-2014
http://www1.practicalperformanceanalyst.com/2014/06/28/building-a-performance-culture-google-io-2014
http://opendevicelab.com
https://github.com/igrigorik/http-client-hints
http://lists.w3.org/Archives/Public/www-style
http://lists.w3.org/Archives/Public/www-style/2013Feb/0131.html
http://modernizr.com
http://dev.opera.com/articles/responsive-images
http://ricg.org
http://scottjehl.github.io/picturefill
http://filamentgroup.com/code
https://github.com/filamentgroup/Southstreet/

 186 RESPONSIBLE RESPONSIVE DESIGN

@font-face 141–142
@supports 68

A
Ajax-Include 111–114
AppendAround 115–118
application cache 105–106
Archibald, Jake 147, 155
assistive technology 8–9
Ateş, Faruk 65
average website weight 89

B
background images 127–131
Bender, John 156
blocking requests 93–95, 100–101
Boston Globe 18–19, 21, 30, 59, 84,

112, 165
Bowles, Cennydd 3
breakpoints 16–18
browser lock-in 10–11
BrowserStack 85
button sizing 27

C
caching 104–106
CodeKit 107
Column Toggle 25
compressive images 132–133
concatenating files 102–103
conditional loading 110–111
Cox, Stu 61
Coyier, Chris 147
CSS, delivering 118–126
CSS feature detection 68

D
Debenham, Anna 49
deferred loading 110
developer tools 95–97
device orientation detection 51
device testing 85–88

E
em media queries 57
enhance.js 64
Enhance project 167, 168

F
Facebook 1
Farkas, Alexander 65, 76
FastClick 32
Feldspar, Antaeus 104
Filament Group 16, 26, 34, 113, 138, 156
file compression 104
Financial Times 32
Fixed-Fixed 75
FOIT (Flash of Invisible Type) 152–154
font delivery 151–154
font size defaults 51
Ford, Paul 89
FOUC (Flash of unstyled content) 93
FOUT (Flash of unstyled text) 151–154
Frost, Brad 25, 85

G
Gardner, Lyza 57
gestures 28–30
Global News Canada 26
Google 9, 97
Grunt 107
Grunt-CriticalCSS 125, 170
Grunticon 149–151
Grunt-PerfBudget 100
Gzip 104

H
Hay, Stephen 17
HTTP Archive 89

I
icon fonts 140–143
image files, optimizing 101–102
ImageOptim 101
image serving 131–140
Irish, Paul 65, 68, 98

INDEX

 INDEx 187

J
JavaScript

... delivery 154–164

... feature detection 61–62

... loading dynamically 162–164
Jobsis, Daan 132

K
Kadlec, Tim 99, 100, 127
Keith, Jeremy 44, 84, 111
Kinlan, Paul 125

L
Leatherman, Zach 143
Lembeck, Jeff 125
load times 12

M
Mall, Dan 16
Marcotte, Ethan 3, 5, 54–55
Marquis, Mat 95, 133
Maslen, Tom 164
matchMedia 80–82
measure (typographic) 17
media queries 54–61
Meenan, Patrick 97
meta element 60
minification 103
MIT Touch Lab 27
mobile data usage 3
mobile device sales 2–3
mobile-first workflows 55
Modernizr 65

N
Network pane (developer tool) 95

O
off-canvas layout 20
offline caching 105–106
Open Device Lab 85

overflow (CSS property) 71–73
Overthrow 72

P
page requests 90–92
PageSpeed Insights 97
Parker, Todd 145
performance budgets 99–100
picture element 134–135, 137–138
Picturefill 138
Podjarny, Guy 11
polyfills 79
progressive disclosure 20–21
progressive enhancement 33–35

R
Reflow 23
responsive practices, overview 6
Rieger, Bryan 55
Rupert, Dave 18
Rutter, Richard 17

S
Santa Maria, Jason 154
Seddon, Ryan 65
Sender, Boaz 130
Sexton, Alex 65
Sharp, Remy 76, 79
shims 76–79
Shoestring 156
sizes attribute 137
slider design 35–40
Speed Index 97
srcset attribute 135–136
SVG (Scalable Vector Graphics) 144–151

T
tabular data 21–25
Tappy.js 32
Timeline pane (developer tool) 96
touch interactivity 7, 25–32

... scripting for 31–32
typography 17

 188 RESPONSIBLE RESPONSIVE DESIGN

U
Upstatement 26
user agent detection 70–71
user agent strings 48–49

V
vector-based art 140
viewport size detection 51
viewport style settings 60
Villamor, Craig 28

W
W3C 40, 60, 133
Wachs, Maggie 44
Walmart 12
Walton, Trent 6, 15, 54, 60
web fonts 151–154
WebPagetest 97
Willis, Dan 28
Wroblewski, Luke 20, 28, 53, 109

X
x-ray perspective 34

ABOUT THE AUTHOR

Scott Jehl is a web designer
and developer. He works
alongside the bright folks
at Filament Group, with
clients such as the Boston
Globe, LEGO Systems,
Inc., Global News Canada,
eBay, and more. In 2010,
he cowrote Designing with
Progressive Enhancement.
Scott has also spoken
at conferences like An
Event Apart, Breaking

Development, and Mobilism. He is an active participant in the
open-source community, releasing projects on GitHub that focus
on accessible, sustainable, and performance-oriented practices
for cross-device development. Scott lives in Seagrove Beach,
Florida.

ABOUT A BOOK APART
We cover the emerging and essential topics in web design and
development with style, clarity, and above all, brevity—because
working designer-developers can’t afford to waste time.

COLOPHON
The text is set in FF Yoga and its companion, FF Yoga Sans, both
by Xavier Dupré. Headlines and cover are set in Titling Gothic
by David Berlow.

This book was printed in the United States
using FSC certified Finch papers.

	Cover
	Title Page
	More from the A Book Apart Library
	Copyright
	Table of Contents
	Foreword
	Introduction
	1. Responsible Design
	2. Sustainable Detection
	3. Planning for Performance
	4. Delivering Responsibly
	Conclusion
	Acknowledgements
	Resources
	References
	Index
	About the Author
	About A Book Apart
	Colophon

