
www.allitebooks.com

http://www.allitebooks.org

SAP ABAP Advanced
Cookbook

Over 80 advanced recipes with excellent programming
techniques that focus on the Netweaver 7.0 EHP2 and above

Rehan Zaidi

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

SAP ABAP Advanced Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1191212

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-488-0

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Rehan Zaidi

Reviewers
Steffen Macke

Alvaro Tejada Galindo

Alexey Tveritinov

Eric Wildenstein

Acquisition Editor
Rukhsana Khambatta

Lead Technical Editor
Susmita Panda

Technical Editors
Kaustubh S. Mayekar

Kirti Pujari

Copy Editor
Laxmi Subramanian

Project Coordinator
Arshad Sopariwala

Proofreaders
Clyde Jenkins

Lydia May Morris

Kevin McGowen

Stephen Swaney

Indexer
Rekha Nair

Graphics
Aditi Gajjar

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Rehan Zaidi has more than 13 years of SAP experience and has been writing about SAP
topics since 2001. He co-authored an ABAP programming training manual for a course taught
in North America and has written a number of SAP books and articles about ABAP, workflow,
HR functional and technical users, and SAP user experiences. Rehan has carried out support
and implementation projects involving various areas of ABAP and workflow, and has worked in
technical and functional areas of SAP ERP HCM. He holds bachelor and master’s degrees in
computer science. You may reach Rehan via e-mail at erpdomain@gmail.com.

I am very thankful to my parents, especially my mother, whose prayers are
with me all the time. I am grateful to the many friends and well-wishers
who have supported and encouraged me both through the duration of this
project and throughout my life as a whole.

In the preparation of the book, I would like to thank Rukhsana Khambatta
for turning a book idea (that began in my mind) into reality. In addition, I am
indebted to the entire team at Packt Publishing, including Susmita Panda,
Sai Gamare, Arshad, and others. Last but not least, my thanks to those
who reviewed this book and provided me with feedback, especially Steffen
Macke for his invaluable suggestions.

I apologize to anyone whom I have failed to mention. There are many people
who have helped me in this process and who have encouraged the creation
of this book. To all of you, I extend my most heartfelt thanks.

www.allitebooks.com

mailto:erpdomain@gmail.com
http://www.allitebooks.org

About the Reviewers

Steffen Macke is a Civil Engineer and Software Developer. After several years of work
on water supply projects in the Middle East, he’s now back in Germany and has joined the
software industry.

Maps and Geographic Information Systems (GIS) played a key role in his hydraulic analysis
and customer database activities. They served him as an entry point to the world of
programming, relational databases, version management systems, and web technology. The
complexity of the projects he encountered made him embrace diversity, active communities,
and practical approaches. That’s why he doesn’t have a favorite programming language,
operating system, or database management system.

Steffen is actively involved in a number of open source projects, among which the general
purpose drawing software Dia is the most popular (http://dia-installer.de). His
passion for open source does not mean that he’s ignorant to the advantages of commercial
software development models, he believes that they’re great to make a living. If you’re
interested in Steffen’s views and projects, make sure that you visit his website
http://sdteffen.de.

www.allitebooks.com

http://sdteffen.de/
http://www.allitebooks.org

Alvaro Tejada Galindo worked as a Senior ABAP Consultant for 11 years, then he
moved to SAP Labs in Montreal where he works as a Development Expert. Besides his SAP
background, Alvaro is very proficient in scripting languages like PHP, Python, Ruby, and R
and considers himself to be a regular expressions hero.

Alvaro has worked in Peru and Canada for some of the best consultant companies, namely
Stefanini IT Solutions, ActualiSap, and Beyond Technologies. Presently, he is working for SAP.

Alvaro has published several programming books on
http://www.lulu.com/spotlight/blag.

I would like to thank my wife Milly and my daughter Kiara for all their support
while I was doing this book’s review.

Alexey Tveritinov graduated from Moscow State University of Informatics and
Craftsmanship in 2008. After that he was hired by NVIDIA in a GPU and driver testing team
as Junior Software Engineer, where he undertook development of various tools for tests
automation and performance measurement. After spending one year at NVIDIA he left
the company as his work on the software had finished, and he wasn’t involved in other
developments.

After that he was hired by a medical company named Trackpore Technology where he
developed embedded software for plasmapheresis medical units using Linux and C++.

In 2011, he was hired by SAP CIS as Developer Associate and started to work on
implementing the framework for XML reports according to specifications of legal
units of Russia, Ukraine, and other CIS countries, without the limitations of DMEE.

I would like to thank Vasily Kovalsky, a teacher at the SAP training center, for
his patience and knowledge. In addition, I would like to thank my managers
Vadim and Juri for the trust in me and my skills. Also I would like to thank all
developers in the GS unit of SAP, who were open to share their knowledge
and experience. Also, I would like to thank my girlfriend Olga Tupikina for her
patience and understanding while I was working on several projects and had
little time to share with her.

www.allitebooks.com

http://www.allitebooks.org

Eric Wildenstein is a SAP independent Consultant, who has been working on ERP
implementations for blue chip companies in Western Europe and North Africa regions since
1997. He mainly specializes in ABAP Object programming, NetWeaver XI/PI and SAP Business
Workflow, providing technical expertise across the core business modules of SAP. Prior to
being self-employed in 2000, he worked as an in-house Programmer Analyst on behalf of
PricewaterhouseCoopers, U.K. and Andersen Consulting, France, on both SAP R/3 and
C/S architectures.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library. Here,
you can access, read and search across Packt’s entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or
the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: ABAP Objects 5

Introduction 5
Creating a shared memory object 6
Creating a persistent object 12
Creating classes based on factory methods 19
Creating classes based on singleton design pattern 22
Creating classes based on adapter pattern 24

Chapter 2: Dynamic Programming 29
Introduction 29
Using field symbols and data references to print database table contents 30
Applying dynamic Open SQL 35
Dynamic program generation 39

Chapter 3: ALV Tricks 45
Introduction 45
Setting ALV columns as key columns and making zero amount
appear as blank 47
Removing columns from display and layout 49
Enable Adding Layout toolbar buttons 51
Adding Hotspot to columns 52
Adding your own buttons to ALV toolbar 55
Adding checkboxes to columns 62

Chapter 4: Regular Expressions 67
Introduction 67
Using regex as an IF statement 70
Removal of characters from a string 72
Converting date into internal date type 73
Validation of format (telephone number) 74

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Removing repeated words from text string 75
Inserting commas in an amount string 76
Removing comments from program code 78
Interpreting HTML stream 80

Chapter 5: Optimizing Programs 83
Introduction 83
Using transaction SAT to find problem areas 84
Creation of secondary indexes in database tables 88
Adding hints in SELECT clause 91
Secondary indexes for internal tables 93
Hashed table for single read access 94
Replacing for all entries construct with Ranges 96

Chapter 6: Doing More with Selection Screens 101
Introduction 101
Adding tabstrips and listboxes to report selection screens 102
Adding toolbar buttons on selection screen 104
Changing screen fields on radio button selection 106
Taking desktop folder and filename as input 108
Coding search help exits for creating better F4 helps 111

Chapter 7: Smart Forms – Tips and Tricks 115
Introduction 115
Toggle on/off the Microsoft Word text editor 116
Using background pictures and print preview 117
Using folder options for page protection 120
Printing several forms in one spool request 122
Converting Smart Forms to PDF output 124
Applying sorting and subtotaling to table fields 126

Chapter 8: Working with SQL Trace 131
Introduction 131
Carrying out SQL trace 132
Generating and interpreting the trace result 133
Carrying out restricted trace 138
Filtering unwanted trace result entries 140
Summarizing a SQL list and viewing table-related information 141
Quickly finding the data source of a screen field 144
Finding the data source of a field's hit list 145

iii

Table of Contents

Chapter 9: Code Inspector 149
Introduction 149
Carrying out quick code inspection 150
Carrying out a full-fledged inspection 153
Carrying out database-specific performance checks 157
Suppressing messages using pseudo comments 159
Searching for ABAP statement patterns and tokens within code 161
Creating your own Code Inspector checks 163

Chapter 10: Simple Transformations 167
Introduction 167
Creating simple transformations 169
Creating transformations for structures and calling them in programs 172
Creating transformations for internal tables 175
Generating transformations for dictionary table types 177
Downloading into Excel made easy using simple transformations 181

Chapter 11: Sending E-mail Using BCS Classes 187
Introduction 187
Creating a simple e-mail message 188
Sending e-mail to Internet e-mail addresses 192
Adding attachments to your message 194
Creating HTML e-mail 197
Running a program and sending its output as an e-mail 199

Chapter 12: Creating and Consuming Web Services 203
Introduction 203
Creating a Web service from a function module 205
Configuring the created Web service 211
Consuming a Web service 214
Creating a consumer proxy's logical port 218
Calling a Web service from an ABAP program 220

Chapter 13: SAP Interactive Forms by Adobe 223
Introduction 223
Creating nested tables 224
Enabling duplex printing in forms 229
Using form elements and scripting to create interactive forms 230
Working with Adobe offline infrastructure 233

iv

Table of Contents

Parallel printing of form 238
Adding error messages for interactive forms 239
PDF object API 240

Chapter 14: Web Dynpro for ABAP 243
Introduction 243
Creating trees 245
Creating navigation lists 248
Creating tabstrips 254
Displaying error messages 256
Calling dialog boxes of same component 259
Displaying Adobe forms in Web Dynpros 262

Chapter 15: Floorplan Manager 267
Introduction 267
Creating applications based on OIF Floorplan design 268
Changing header and ticket area at runtime 274
Adding list GUIBBs to Floorplan applications 277
Viewing structure of FPM applications 283
Creating GAF applications 286
Creating FPM applications using Application Creation Tool 290

Index 293

Preface
Advanced Business Application Programming (ABAP) is SAP’s proprietary 4th Generation
Language (4GL). SAP core is written almost entirely in ABAP. ABAP is a high level programming
language used in SAP for development and other customization processes. This book
covers advanced SAP programming applications with ABAP. It teaches you to enhance
SAP applications by developing custom reports and interfaces with ABAP programming.
This cookbook has quick and advanced real world recipes for programming ABAP.

It begins with the applications of ABAP objects and ALV tips and tricks. It then covers
design patterns and dynamic programming in detail. You will also learn the usage of quality
improvement tools such as transaction SAT, SQL Trace, and the code inspector. Simple
transformations and its application in Excel downloading will also be discussed, as well as the
newest topics surrounding Adobe Interactive Forms and the consumption and creation of Web
services. The book comes to an end by covering advanced usage of Web Dynpro for ABAP and
the latest advancement in Floorplan Manager.

What this book covers
Chapter 1, ABAP Objects, introduces useful recipes related to the object-oriented
programming. This will include useful design patterns, the shared memory, and the
persistent object concept.

Chapter 2, Dynamic Programming, covers facets of dynamic programming as applied in ABAP,
such as Dynamic Open SQL and usage of field symbols and references.

Chapter 3, ALV Tricks, shows how you can get the most out of ALV programs. Starting with a
simple ALV program, we will add code in recipes to fulfill a variety of user requirements.

Chapter 4, Regular Expressions, guides you on how you can embed regex programming
in your ABAP programs and solve complicated problems in the least possible time and with
minimal code.

Preface

2

Chapter 5, Optimizing Programs, shows the newer feature of secondary indexes and the
transaction SAT (runtime analyzer) along with valuable program optimization tips.

Chapter 6, Doing More with Selection Screens, discusses recipes based on less frequently
applied functionality within ABAP programs’ selection screens, such as the addition of
tabstrips and placement of buttons on toolbar. In addition, we will see how to take folder
and file names as input, followed by a recipe for writing code in search help exits.

Chapter 7, Smart Forms – Tips and Tricks, introduces various recipes based on Smart forms
and fulfilling user’s form printing requirements in the least possible time.

Chapter 8, Working with SQL Trace, provides lesser-known tricks related to the SQL Trace tool.
This will include the performance optimization usage of the SQL trace tool as well as the use
of finding data source of screen fields.

Chapter 9, Code Inspector, shows how to check the quality of custom programs using
standard checks, along with the procedure for creating your own checks.

Chapter 10, Simple Transformations, discusses in detail the Simple Transformation language
and the representation of data variables in it, the application for Excel download format will
also be shown.

Chapter 11, Sending E-mail Using BCS Classes, covers the classes of the Business
Communication Service (BCS) for e-mail generation. This chapter will cover everything from
simple e-mails for SAP users to Internet e-mail addresses, and also the procedure for adding
attachments of various formats.

Chapter 12, Creating and Consuming Web Services, covers the step-by-step procedure for the
creation of Web services based on an ABAP function module using the Inside-Out approach.
The steps required to create a consumer of the Web service will also be shown.

Chapter 13, SAP Interactive Forms by Adobe, shows how to create both print and interactive
forms using the SAP Interactive forms technology. A number of scenarios such as Offline form
processing will also be covered.

Chapter 14, Web Dynpro for ABAP, shows how to create simple and advanced Web Dynpro for
ABAP (WD4A) applications. The advanced topics related to the Web Dynpro components will
also be covered.

Chapter 15, Floorplan Manager, covers newer features of the Floorplan Manager design used
for creating Web Dynpro applications quickly. Both the configuration and coding for useful
Floorplans will also be covered.

What you need for this book
ECC 6 system with Netweaver 7.02 or higher. A trial version of ABAP Netweaver 7.02 or higher
will also suffice.

Preface

3

Who this book is for
SAP Developers and Consultants who have at least a basic knowledge of ABAP.

Conventions
New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “clicking the Next button
moves you to the next screen”.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

4

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details
of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata section
of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

1
ABAP Objects

In this chapter, we start with recipes for ABAP objects. This chapter is designed to provide
useful recipes related to the storage of ABAP objects in shared memory and the database
(persistent objects), as well as some useful design patterns. In this chapter, we will look at
ways of:

 f Creating a shared memory object

 f Creating a persistent object

 f Creating classes based on factory methods

 f Creating classes based on singleton design pattern

 f Creating classes based on adapter pattern

Introduction
This chapter explores recipes related to ABAP objects. Two useful features of the
object-oriented ABAP are storage options in the shared memory as shared objects, and
in the database as objects of persistent classes. The details about both the prerequisites
as well as the necessary steps needed to created shared memory-enabled objects and
persistent objects will be discussed later in this chapter.

Moreover, design patterns are very important in object-oriented programming. In this
chapter, we will see how to implement three of them using ABAP objects, namely the adapter,
singleton, and the factory design. We will create a class with a factory method design.
Later, we will show how this class may be modified in order to behave like a singleton class.
Finally, we will see how an object of one class may be converted to that of another using an
adapter class. The examples are kept simple in order to emphasize on the design
pattern concept.

For this chapter, we assume that the reader has basic knowledge of the ABAP objects, and is
familiar with the class-builder transaction.

ABAP Objects

6

Creating a shared memory object
This recipe shows how to store the instances of your classes in the shared memory of the
application server. A number of programs may access these objects that reside on the
application server shared memory.

Two classes are necessary for shared memory, namely the area class and the area root
class. The root class is necessary for storing (encapsulating) the data that are to be stored
in the shared memory. An area class may comprise of various instances that may consist of
a number of versions.

An important concept shown in this recipe is the CREATE OBJECT statement with the
addition AREA HANDLE. This will create the object in the application server that is shared
memory pointed to by the area handle myarea.

Getting ready
Prior to writing the code for storing objects in shared memory, an area root class must be
created and a shared memory area be defined using transaction SHMA.

The steps required for creating a root class are:

1. Call transaction SE24; enter a suitable name to your root class, as shown in
the following screenshot. On the Properties tab, we need to make sure that the
Shared-Memory checkbox is switched on.

Chapter 1

7

Downloading the example code

You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you

2. We have named it ZCL_MY_ROOT. We will then define two Instance Attributes,
NUMBER and NAME, having private visibility, as shown in the following screenshot:

3. Two suitable methods, SET_DATA and GET_DATA, are also added to the class. The
SET_DATA method contains code that imports number and name and assigns to
the attributes NUMBER and NAME of the class. The GET_DATA method does just
the opposite, that is, it exports the NUMBER and NAME attribute for a given shared
memory object.

4. Next, the shared memory area should be created. This is done via transaction SHMA.

www.allitebooks.com

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

ABAP Objects

8

5. Enter a suitable name and click on the Create button. We have typed the name
ZCL_MY_EMP_AREA. On the screen that appears, enter the description of the area.
Also, enter the name of the root class created earlier in the Root Class field. You
may leave the Client-Specific Area checkbox unchecked as it is not required for our
recipe. Now, save your entries. Refer to the following screenshot:

6. This will also generate an area class by entering the same name
ZCL_MY_EMP_AREA.

Chapter 1

9

7. This area class will contain the necessary methods used for reading, changing,
and creating the area, such as ATTACH_FOR_UPDATE, ATTACH_FOR_READ, and
ATTACH_FOR_WRITE.

How to do it...
For creating the set of code that writes object's contents to the shared memory, follow
these steps:

1. Two object references my_handle and my_root are defined, one for area class and
the other for root class.

2. The static method attach_for_write of the area class zcl_my_emp_area
is called.

3. The CREATE OBJECT with the area handle, my_handle must then be called.

4. The root and the created area instance must be linked using the set_root method
of the handle.

5. The set_data method is called with the relevant number and name.

ABAP Objects

10

6. The detach_commit method of the area class is then called.

How it works...
In the shared memory-writing program, the statements collectively make the writing of object
in the shared memory. Let us see how the program code works.

An area instance version needs to be created before any data may be written in the shared
memory on the application server. The attach_for_write static method is used for this
purpose and returns a handle to the area instance created in the application server memory.
This imposes write lock on the version.

The CREATE OBJECT statement is then called with the name of the created handle. This
creates a root object in the area instance of the shared memory. The link between the area
instance and the root class is created using the set_root method. The set_data method
is then called for the root reference my_root and supplied with the name and number of the
employee, which are then stored in the shared area. Finally, the detach_commit method is
called and the write lock is released.

Chapter 1

11

Once the program has run successfully, you may see the created object in the shared memory
using the shared memory transaction SHMM. This will appear as your area class name
ZCL_MY_EMP_AREA. Refer to the following screenshot:

Double-click on the name of area to view the details, as shown in the following screenshot:

There's more...
The read program is somewhat similar. However, instead of the attach_for_write method
used earlier, we will use attach_for_read. The same instance name is passed and the
handle is received. The method imposes a read lock on the area instance. Then, the
get_data method of the root object is called using the area handle, my_handle. This
returns the employee name and number stored earlier into the variables name and
number respectively.

ABAP Objects

12

Finally, the detach method is called and the read lock is released.

While creating the shared memory area, if we select the Transactional Area checkbox, the
area becomes transactional. In this case, the modifications to the area instance versions are
not active immediately after the call of detach_commit method. Rather, they become active
when the next database commit is executed.

See also
 f http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd0

88ce10000000a421937/frameset.htm

Creating a persistent object
ABAP objects provide a persistent object service that allows the developer to store objects in
the database. The values of the attributes of the object are stored in appropriate fields of the
database table specified. This recipe shows how to define persistent classes and then how
to call them in your application programs.

http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd088ce10000000a421937/frameset.htm

Chapter 1

13

Getting ready
Prior to storing objects in the database, a suitable database table with the name
ZEMP_TABLE is created to store the values of the objects' attributes. Two fields are defined,
NUMBER1 and NAME (the field name NUMBER was not allowed, so NUMBER1 has been
used as the field name). Refer to the following screenshot:

How to do it...
Once the database table is defined, a persistence class must be defined. In order to define
persistent classes, follow these steps:

1. Call transaction SE24. Enter a suitable name of the persistent class to be created.
We will create a class by entering the name ZCL_MY_PERSIST. Enter the name in
the Class field and click on the Create button.

ABAP Objects

14

2. Enter a suitable description in the field provided. Make sure that the Persistent Class
indicator is selected, and click on Save.

3. The programmer may only modify the methods HANDLE_EXCEPTION and INIT.

4. Click on the Persistence button. Then, enter the name of the table that was created
for storage of data(in our case, we will enter the name ZEMP_TABLE). Refer to the
following screenshot:

5. This will take you to the mapping editor. The lower part of the screen will show Table/
Fields. Double-click each of the field that is to be included and stored as attributes of
the persistent class. The selected field appears in the area earlier (for example,
the NUMBER1 field as shown in the following screenshot). Click on the Set attribute
values button to include the field.

Chapter 1

15

6. This will transfer the selected field in the topmost area of the editor.

7. Similarly, the NAME field must be included.

8. All the mapped fields will appear at the top area of the mapper. The Number1 field
will appear as a business key, as show in the following screenshot:

9. Upon activation of the persistence class, the system asks for activation of the
actor class as well. Click on Yes, as shown in the following screenshot:

ABAP Objects

16

10. The class ZCL_MY_PERSIST is created and necessary methods needed for the
persistence service are included. An actor class is also created with the class.
The agent class has been generated by the name ZCA_MY_PERSIST. There is one
base agent class generated as a result. In total, three classes are generated, the
persistent class, the agent class, and the base class of the agent.

11. The class ZCL_MY_PERSIST contains methods for setting and getting the values of
the attributes NAME and NUMBER1. Note that no SET method is generated for the
key field, in our case NUMBER1.

12. The agent class provides number of useful methods related to the
persistent property. Important methods, such as create_persistent,
delete_persistant, and get_persistent are provided. The methods
are implemented in the superclass zcb_my_persist of the
agent class zca_my_persist.

Chapter 1

17

How it works...
During the generation of the persistent class zcl_my_persist, two additional classes
are generated. These are the actor (agent) and the base agent classes having the names
zca_my_persist and zcb_my_persist respectively. The base agent class is generated
as abstract (that is, no instance can be constructed from it), and cannot be modified. It is
created in a separate pool class from zcl_my_persist. The agent class zca_my_persist
may be extended, as well as the loading and saving methods may be modified.

The instantiation mode of the persistence class may be set as abstract or protected. In our
recipe, we have chosen the instantiation mode as protected (which means that only instances
may be created from within the class or its subclasses). However, making the instantiation
mode of a persistent class as protected makes the generated base agent class a friend
of the persistent class (in the world of ABAP objects, a friend or its subclasses may create
instances of the class in question).

www.allitebooks.com

http://www.allitebooks.org

ABAP Objects

18

The coding for this recipe declares two references, emp and agent, to the persistent class
zcl_my_persist and the agent class zca_my_persist, respectively. Next, the static
factory method agent is called for the class zca_my_persist (agent class). The
reference returned is stored in the variable agent.

The agent class contains the method create_persistent required for storing the data
into the database (this is analogous to the concept of insertion in database table).

The most important part is the calling of the create_persistent method that is passed
the number and name that is to be stored. The employee with the number 00000017 and
name John Reed is created and reference is returned in emp. Finally, the COMMIT WORK
method stores the data of the emp object into the table created earlier in this recipe.
One row with the number and a name is added to the table ZEMP_TABLE.

For reading the stored value related to the employee number 00000017, a number
variable is declared and assigned the value 00000017. The static method agent of
the zca_my_persist class is called in order to get a reference to the agent.
The get_persistent method is then called and the number (in our case, 00000017)
is passed. This method returns the entire object emp pertaining to the employee number.
You may then call the get_name method of the zcl_my_persist class for the emp
object in order to retrieve the employee name.

Chapter 1

19

See also
 f http://help.sap.com/saphelp_nw73ehp1/helpdata/en/06/

f23c40638d11d4966d00a0c94260a5/content.htm

 f http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/
e560e26149088fe10000000a421937/content.htm?frameset=/en/49/
e8807d7cf0088ce10000000a421937/frameset.htm

Creating classes based on factory methods
One important design pattern that is used in object-oriented ABAP is the factory design. This
allows you to create objects of a particular class either via a factory class or via factory
method defined within the class. The emphasis of this recipe is to design a class that supports
the creation of its objects via a factory method, rather than direct instantiation outside the
class via CREATE OBJECT statement.

A factory method is a static method that creates and then returns (as a parameter) a
reference to the object of the class it belongs to. The code for the creation of the object
is contained within the factory method. This recipe shows the factory design. You may
further modify to enhance the structure in order to suit your needs

We have referred to the coding of the standard cl_salv_table class factory method for
creating the class shown in this recipe. The class created in this recipe will be used in the
subsequent recipes of singleton and adapter design pattern.

Getting ready
For the sake of this recipe and the ones that follow, we will focus on an employee and name
example. The class will encapsulate an eight-character number (in numeric form) for the
employee number 00000014 and a 30-character field for the employee name. For example,
there can be an employee John Reed with number. This will be stored in the private
attributes of the class as Name and Number.

http://help.sap.com/saphelp_nw73ehp1/helpdata/en/06/f23c40638d11d4966d00a0c94260a5/content.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/06/f23c40638d11d4966d00a0c94260a5/content.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/06/f23c40638d11d4966d00a0c94260a5/content.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/e560e26149088fe10000000a421937/content.htm?frameset=/en/49/e8807d7cf0088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/e560e26149088fe10000000a421937/content.htm?frameset=/en/49/e8807d7cf0088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/e560e26149088fe10000000a421937/content.htm?frameset=/en/49/e8807d7cf0088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/e560e26149088fe10000000a421937/content.htm?frameset=/en/49/e8807d7cf0088ce10000000a421937/frameset.htm

ABAP Objects

20

How to do it...
For creating a class as a factory method design, follow these steps:

1. Create a class definition for fac_meth_class in the program. The factory
method is a static method for the class and is defined via CLASS-METHODS.
The class definition contains the addition create private in order to stop
 the instantiation of the class from outside via CREATE OBJECT. A constructor
is defined that allows setting the value of the number and the employee name.

2. The private attributes employee number and name are defined, as it is based on the
dictionary data elements persno and smnam respectively.

3. The static method factory imports the name and number of the employee to
be created and returns the employee object employee_obj of the object
reference fac_meth_class. The constructor takes as input the number and
the employee name.

4. The implementation of the fac_meth_class object reference is then created. The
code for the factory and the constructor is written here. The factory method
receives the number and the name of the employee to be created. It includes the
CREATE OBJECT statement for creation of the employee object.

Chapter 1

21

5. The constructor assigns the number and employee name to the corresponding
private attributes of the newly constructed object. A WRITE statement is also
included that outputs the name and number of the successful created employee.

6. Finally, the call for the factory method is included. The static method of the
fac_meth_class=>factory object is included and passed with the number and
name of the employee to be created. A code shows two such method calls for object
references emp1 and emp2, that is, employee 00000012 and 0000014.

How it works...
When the program calls the static factory method, the code within the factory method
is called for each of the two objects emp1 and emp2. The factory method triggers CREATE
OBJECT statement, which creates a new object and calls the constructor.

The constructor is called twice, once for each of the two instantiated objects emp1 and emp2.
This prints the message successful creation for emp1 and emp2.

ABAP Objects

22

Creating classes based on singleton
design pattern

A singleton class is a class that can have only one instance at a time. Any attempt to create
a second or more instances should not be allowed. This recipe shows how to create a class
based on the singleton design.

Getting ready
We will use the same class created in the last recipe of factory method. We will make few
changes to the class so that we can prevent the creation of multiple instances of the class.
We will make a copy of the class (program) shown in the previous recipe and modify it. The
name of the copy is singleton_class.

How to do it...
For creating a singleton class, follow these steps:

1. Make sure the CREATE PRIVATE addition is included in the singleton
class definition.

2. Within the definition, a static attribute number_of_instances having type
integer is added to the private section.

3. The implementation of the class is then written. The factory method has to be
slightly modified in order to force the singleton characteristic.

Chapter 1

23

4. In the implementation of the singleton class, the factory method now
contains an IF statement that first checks the number of instances already
there when the factory call is made. If the first instance is being created
(that is, number_of_instances equals 0), the employee object is created
and number_of_instances is set as 1. An ELSE condition is included to
output a message if one instance already exists.

ABAP Objects

24

How it works...
Similar to the previous recipe, we try to instantiate two objects emp1 and emp2, having
number 0000012 and 00000014 respectively. However, in our singleton class, we have
added an attribute number_of_instances, which keeps track of the number of class
instances that already exist. Upon creation of the first object, the factory method increments
this static attribute to 1. On the second object creation attempt, the IF statement does not
allow the CREATE OBJECT statement to be called a second time. The result is that the
second object is not created. No further attempts of object creation will be allowed. Rather, a
message saying that only one object instantiation is allowed is outputted for the second object
creation attempt.

See also
 f http://www.abaptutorial.com/abap-singleton-design-pattern/

Creating classes based on adapter pattern
Another important design pattern is the adapter design. As the name suggests, the adapter
design is used for conversion of one object into another object belonging to a different class.
An adapter class will have a method that takes as input the object reference that is to be
converted and outputs it into the other object reference format.

We have referred to the cl_salv_tree_adapter standard class while making of
this recipe.

Getting ready
In order to demonstrate the adapter, we need two classes (input class and output class).
The input class will be the fac_meth_class created earlier. For the output, we will create
another class fac_meth_class2. This will serve as the class, into the format of which the
input object will be converted.

Chapter 1

25

It is without a factory method for sake of simplicity. It contains employee number and
employee name but the format of these two is different from the classes shown in the
previous recipes. The employee name of this class is based on data element emnam,
whereas the number is a character without zeros having length as eight. The name is of
the form (firstname lastname), meaning John Reed will be stored as John Reed and
not Reed John as in the previous recipes. The constructor outputs the message, Converted
employee created.

We will use the same class used previously as the input object for the adapter method.

How to do it...
For creating a singleton class, follow these steps:

1. Create a deferred definition of the adapter class adapter_meth_class that we
are going to create in the next step.

2. Specify the adapter_meth_class as a friend of our fact_meth_class class in
the definition via the FRIENDS addition.

ABAP Objects

26

3. The adapter class is then defined. It contains a static adapter method
adapter that imports an object based on fac_meth_class and returns one
in the fac_meth_class2 format.

4. The implementation of the adapter class is then created. It contains the code of
the adapter method. The adapter method will convert the incoming number of the
employee from numeric to character format. In addition, the name of the employee
is converted to the firstname lastname format. The new object based on the
second class fac_meth_class2 is then created and returned as an exporting
parameter of the method.

5. While calling the adapter method, you first create an object based on the
fac_meth_class class that is a factory method (for illustrative purpose), similar
to the previous recipe for the object reference EMP. This is then passed on to the
static adapter method of the adapter_meth_class. The adapter class
returns the converted object in the second format.

Chapter 1

27

How it works...
When the program calls the static method adapter of the class adapter_meth_class , the
code in the adapter method is executed. The adapter method calls the necessary code
for converting the number into the character format and any zeros are removed from the
number. In addition, the SPLIT statement is called for converting name of the employee in
the (first name last name) format such as converting Reed John into John Reed. Finally the
CREATE OBJECT is called in order to create the object in the converted class format . This
triggers the constructor for the converted class fac_meth_class2 that outputs the message
"Converted: Employee Created having number 1234" and name John Reed. Since we called
the factory method of the original fac_meth_class before the adapter method call, the original
constructor was also called and message printed also.

See also
 f Design Patterns in Object-Oriented ABAP published by SAP-Press

www.allitebooks.com

http://www.allitebooks.org

2
Dynamic Programming

In this chapter, we will cover recipes related to dynamic programming. This chapter is
designed to provide useful recipes related to field symbols and data references, as well
as dynamic SQL and ABAP code generation. In this chapter, we will look at the ways of:

 f Using field symbols and data references to print database table contents

 f Applying dynamic Open SQL

 f Dynamic program generation

Introduction
This chapter explores recipes related to dynamic programming. Dynamic programming is a
very vast topic. It may be simply defined as a technique whose behavior/effect is only evident
at execution time. There are many facets of dynamic programming with ABAP. These include
generic programming such as dynamic source code generation. Also specifying parts of
the Open SQL statements (clauses) dynamically using string variables, and the creation of
data objects based on a type known only at runtime are within the dynamic programming
landscape. When using dynamic programming, we may also sometimes need to determine
the data type of data objects at runtime. This is called Runtime Type Identification (RTTI).

The ABAP language provides a number of features/options for making programs dynamic or
to avoid hardcoding of values. We will start with application of field symbols and references.
As an example, we will create a program that will take as input the name of a table and print
its contents.

Also we will look at some of the ways in which dynamic SQL may be applied to fulfill simple
requirements. We will also cover the option of generating ABAP programs at runtime using
the INSERT REPORT statement.

Dynamic Programming

30

The examples are kept simple in order to emphasize on the dynamic programming concept.
We assume that the reader is familiar with basics of SELECT statement, the CREATE DATA
statement and the concept of field symbols, and the ASSIGN statement. Also, the knowledge
of the cl_abap_datadescr classes is assumed. Moreover, the knowledge of downcasting
(widening cast) is also important.

See also
 f http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_

guidl.htm

Using field symbols and data references to
print database table contents

Field symbols and references are an important combination for dynamic programming. Data
references are addresses of data objects stored in reference variables. Field symbols are
placeholders, or symbolic representations of these data objects.

This recipe shows how to print all the contents of a particular database table (the name
of which is only known at runtime). For simplicity sake, we will only focus on the main logic
pertaining to dynamic programming. In addition to data references and field symbols,
we will also see some dynamic SQL statement application.

Getting ready
The code will let you create a small data browser program that will take as input the database
table name whose contents are to be read, and the number of rows and columns (fields) to be
displayed. The output displays the table's field names as column headers along with the data
stored in the table.

The knowledge of the describe_by_data method of the cl_abap_structdescr class
and widening (downcasting) will also be used.

How to do it...
For creating a program that prints the contents of an entered SAP table name, follow
these steps:

1. Declare parameters for inputting the name of the table whose data is to be
accessed. Also we take as input the number of rows and columns (fields) that
are to be displayed.

http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm
http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm
http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm

Chapter 2

31

2. Declare field symbols for the internal table, the table row, and the table fields.
In addition, data reference variables for internal table and the structure are defined.

3. We place a small check statement to make sure the program runs only when the
columns value entered by the user is equal to one or more.

4. Next, we create the data objects using the create data statement. We then
dereference and assign them to placeholders (field symbols) respectively. If the table
name entered by the user is wrong, a cx_sy_create_data_error exception is
generated, and therefore need to catch it in our coding using the catch statement.

5. Then, the SELECT statement is written in order to fetch the data. The name from the
parameter is used as the table name and read into the internal table pointed by field
symbol my_itab. The number of rows are also specified based on user input.

Dynamic Programming

32

6. The description of the created row structure (pointed by my_struc) of the
internal table is then read using the describe_by_data statement. An object
reference descr to the class cl_abap_structdescr is declared. Then, the
static method describe_by_data of the cl_abap_typedescr class is called
and returned to the descr variable. The operator (?=) is used for downcasting.
(As the cl_abap_typedescr class is an abstract class and returns a reference
to the description object cl_abap_typedescr).

7. As each column (field) of the database table is represented as a row in the component
components of the descr object, a loop is run on it. Only the number of columns
entered by the user is read using the from 1 to columns.

8. A positions internal table position is also created that will hold the position
(starting position) of each column displayed on the screen. The length of each field is
used for finding the next field position. Also included is the code for printing the table
column header.

9. Then, the main part for reading the contents of the table is written. The loop is then
run at the data internal table pointed to by field symbol my_itab. A do loop is also
run for each row which used the assign statement for each field value. The table
positions value is read for getting the correct position of the corresponding
field column.

Chapter 2

33

How it works...
In the data browser program, the statements read any table name entered by the user and
the number of rows and columns entered, and then display the relevant data from the table.
Let us see how the program code works.

The parameters statement displays the selection screen to the user, and takes as input the
table name and the table rows and columns.

The static method describe_by_data of the cl_abap_typedescr class provides the
description object pertaining to the structure passed.

The widening cast method is used to store the returned object in the descr variable of
cl_abap_structdescr type (as the cl_abap_typedescr class is the super class of
cl_abap_structdescr and cl_abap_typedescr is an abstract class).

Dynamic Programming

34

The descr object contains a component internal table components. A loop is then carried
out on the components table in order to print the name of the table fields as columns
headers. The length of the field is also taken into consideration. For example, if the table T511
is entered, the length and names of the various table fields exists in DESCR->COMPONENTS.
The position table is also filled within this loop in order to store the appropriate positions of
the each. This will be later used so that the correct data is printed under the corresponding
column header (field name).

Finally, the main loop is run. The loop is carried out on the internal table, which contains all
the rows of the database table in question. For each row of the table, the do loop is run. within
the do loop, the components (fields) of the table row are processed and assigned to the field
symbol <my_field>. The do loop is run the number of times equal to the number of table
fields asked by the user. The value of the field is then outputted. Once all required fields have
been processed, the do loop is exited. Within the do loop, the positions table filled earlier
is read in order to get the correct position where a particular cell is to be positioned.

The positions table along with the uline statements lets you give the box shape to
the output.

http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3860358411d1829f0000e829fbfe/content.htm

Chapter 2

35

See also
 f http://help.sap.com/saphelp_nw04/helpdata/en/fc/

eb3860358411d1829f0000e829fbfe/content.htm

 f http://help.sap.com/saphelp_nw2004s/helpdata/en/fc/
eb3145358411d1829f0000e829fbfe/frameset.htm

Applying dynamic Open SQL
The Open SQL statement components may be specified statically or dynamically. This applies
to database read statement SELECT, as well as data manipulation statements such as
INSERT and UPDATE. The primary emphasis of this recipe will be on dynamic specifications
of the various components of the SELECT statement. The previous recipe saw some usage
of the dynamic SQL in the SELECT statement, where the table name, the target area internal
table (pointed to by a field symbol), and the number rows to read using UP TO addition
were specified dynamically. In addition to these, the GROUP BY, the ORDER BY, and
WHERE conditions may be specified dynamically.

In this recipe, we will create a program that will take input from the user and create dynamic
specifications for the where condition and the order by clause. (For simplicity's sake
we emphasize on the dynamic where and order by clauses and keep the table name
as spfli).

Getting ready
We will create a program that will contain a selection screen, which will allow you to take input
from the user. We will create two blocks on the selection screen, namely Where and Order by.

The table to be considered for this example is spfli. The Where Clause block has one
checkbox (WHERE1) used for specifying the component of the WHERE condition. Also for
the Order By Clause, we have two radio buttons—orderby1 and orderby2.

http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3860358411d1829f0000e829fbfe/content.htm
http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3860358411d1829f0000e829fbfe/content.htm
http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3860358411d1829f0000e829fbfe/content.htm

Dynamic Programming

36

How to do it...
For creating a program based on dynamic SQL, follow these steps:

1. Declare two string variables where_cond and order_by for specification of the
dynamic where condition and order by criteria, respectively.

2. Next, the if statements are added for checking the options selected by the user.
In this part, we will make sure that the correct criteria/condition is filled in the
defined string variables.

3. For the ORDER BY criteria, if the user selects the first option (orderby1—no sorting),
no code is added/executed. If the user has entered the sort criteria on the screen
(field ordby_f) using the second radio button (orderby2), the entered name is
assigned to the order_by string.

4. Similarly, for the Where Clause formulation, the checkbox selection is checked. If the
checkbox is selected, the entered field name (field1) is concatenated with EQ and
the value entered (value1).

5. Finally, the most important portion is added. The select statement is written using
the string variables, where_cond and order_by. We make sure that select is not
executed if where_cond is empty (using a check statement).

Chapter 2

37

6. The data is read and stored in the t_spfli internal table, and outputted to the user
using the loop and write statements.

7. It is also necessary to catch the cx_sy_dynamic_osql_error exception in case
the select statement's where conditions and order by sort criteria are incorrect.
Any exception occurring is caught, and the relevant message text is written using the
exception class cx_sy_dynamic_osql_error.

How it works...
In the dynamic Open SQL program, there is one select statement executed that prints and
fetches the data that is to be read from the database. The program checks the input entered
by the user. If the where condition variable is empty, the program does not display any
records from the table.

www.allitebooks.com

http://www.allitebooks.org

Dynamic Programming

38

Suppose the user enters values for field1 and the value1.

Then, after the execution of the if statements related to the where condition,
the where_cond variable will contain the corresponding criteria to be passed to
the select statement.

The value1 variable is passed on to the where condition and the system, at runtime,
evaluates their values in order to get the correct data from the database.

Similarly for the order by criteria, when the user specifies none as the sorting by, an empty
string is passed to the select statement. This has no effect on the sorting, and the data is
displayed as residing in the database table.

There's more...
We may use field symbols and references as shown in the previous recipe in conjunction with
the code of this recipe in order to make the program work for any database table.

See also
 f http://virtualforge.com/tl_files/Theme/Presentations/HITB2011.

pdf

 f http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944e
b8a1462cf6362cc8b8/content.htm

http://virtualforge.com/tl_files/Theme/Presentations/HITB2011.pdf
http://virtualforge.com/tl_files/Theme/Presentations/HITB2011.pdf
http://virtualforge.com/tl_files/Theme/Presentations/HITB2011.pdf
http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944eb8a1462cf6362cc8b8/content.htm
http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944eb8a1462cf6362cc8b8/content.htm
http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944eb8a1462cf6362cc8b8/content.htm
http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944eb8a1462cf6362cc8b8/content.htm

Chapter 2

39

Dynamic program generation
The ABAP language also allows the creation of ABAP programs at runtime. An INSERT
REPORT statement may be used for creating a new program specified by the a name
in the statement. Dynamic program generation should only be used when there is no
alternate option.

Also, you may generate a subroutine pool using a GENERATE subroutine pool statement.
A subroutine pool is generated, and is of a temporary nature. The subroutines in the pool
may be called from within the generation program.

On the other hand, the programs created via the INSERT REPORT statement are permanent
and overwrite any prior existing programs with the same name. Within the generation
program, the new program may be called via a SUBMIT statement.

Getting ready
We will use the concepts of dynamic program generation in order to show how a simple
requirement may be solved. We will take as input two program names. The code of the first
program will be read and then any comments or unwanted blank lines will be removed and
a new program will be created by the name specified on the input screen.

How to do it...
1. Two parameters, origprog and newprog, are declared for taking the input names

of the existing and converted program respectively.

2. Internal tables, itab and itab2, are also declared for storing the source code
of the original program and converted program respectively. These are based on
string type. A work area of string type is also declared along with a temporary
variable tempwa.

Dynamic Programming

40

3. The read report is then used with the original program name and the internal
table, itab. We will check the value of sy-subrc in order to proceed further.

4. The LOOP statement is then added for reading itab into wa. The APPEND statement
is used in conjunction with the IF and SPLIT statements in order to process all
non-blank lines without having asterisk at the beginning. The SPLIT statement splits
the source code line under consideration at the occurrence of a quotation mark (").
The work area, wa, contents are then appended to the internal table, itab2.

5. The SELECT SINGLE statement is then written in order to check newprog in
trdir table.

6. If the return code value is not equal to zero (0), the insert report statement
is added and on success a message Program Converted by Name message is
displayed. If the insert fails, a message Program Conversion failed message
is displayed.

If the return code value after the SELECT statement is equal to 0, the message
saying that a program having the desired destination program name already
exists, is displayed.

Chapter 2

41

How it works...
The program statements collectively allow the conversion of a program. The new converted
program is free from all types of comments and blank lines.

Let us see how the program works.

The selection screen displays two fields for taking input for Original Program that is to be
converted and New Program that is to be generated.

For example, we can enter the Original Program value as YTEST_TO_BE_GENERATED
whereas the new converted program is YTEST_TO_BE_GENERATED3.

Dynamic Programming

42

The code of the YTEST_TO_BE_EXECUTED program is read into the itab internal table using
the READ REPORT statement.

The loop is then run, and any blank lines are removed. Also the lines with asterisk (*) are
removed, and anything written after the quotation mark (") is ignored. The new lines are
appended to the itab2 internal table.

The last step is to check the trdir table's program directory. The SELECT statement checks
the table to see if a program already exists with the new program name entered by the user.
If a program already exists, a message is displayed saying "Program not converted since
destination program already exists". This is necessary to avoid overwriting of the existing
program. If the name is unique, the INSERT REPORT statement is called and the new
program is generated.

Chapter 2

43

There's more...
While using the insert statement, the CX_SY_WRITE_SRC_LINE_TOO_LONG exception may
occur if the program line to be inserted is too long. We may catch the exception using the try
and catch statements as shown in the following screenshot:

See also
 f http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_

guidl.htm

 f http://help.sap.com/abapdocu_70/en/ABAPSYNTAX-CHECK_FOR_ITAB.htm

 f ABAP Keyword Documentation available at http://help.sap.com/
abapdocu_702/en/abenabap.htm

 f SAP Advanced ABAP Course BC402

 f Determining the Attributes of Data Objects available at http://help.sap.com/
saphelp_470/helpdata/en/fc/eb3145358411d1829f0000e829fbfe/
content.htm

http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm
http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm
http://help.sap.com/abapdocu_70/en/ABAPSYNTAX-CHECK_FOR_ITAB.htm
http://help.sap.com/abapdocu_70/en/ABAPSYNTAX-CHECK_FOR_ITAB.htm
http://help.sap.com/abapdocu_70/en/ABAPSYNTAX-CHECK_FOR_ITAB.htm

3
ALV Tricks

In this chapter, we will see recipes related to the ABAP List Viewer (ALV). Also, we will look at
ways of:

 f Setting ALV columns as key columns and making zero amount appear as blank

 f Removing columns from display and layout

 f Enable Adding Layout toolbar buttons

 f Adding Hotspot to columns

 f Adding your own buttons to ALV toolbar

 f Adding checkboxes to columns

Introduction
This chapter explores recipes related to the ALV displays. We will start with a simple
requirement with basic ALV displays. We will then enhance the basic ALV program by hiding
few columns from display as well as from the initial layout. We will then see a recipe showing
how to save user-specific layouts. Adding buttons to standard ALV toolbars will be shown,
along with checkboxes and hotspots displayed within ALV columns.

For this chapter, I assume that the reader has basic knowledge of the ABAP objects, the ALV
object model, and is familiar with basic ALV creation using CL_SALV_TABLE. Also, the reader
should have knowledge of creating and changing of GUI status, and should have knowledge of
Ranges and Select-Options.

ALV Tricks

46

For the sake of this chapter, we will make a simple example that will display data into an ALV
format. This will be used in all the recipes mentioned in this chapter.

In this example, we declared a data structure type containing simple important fields of table
PA0008. We then declared an internal table and a work area based on this type.

We selected 15 rows from the table PA0008 and stored them in the internal table.

The factory method is then called of the class CL_SALV_TABLE for instantiating the ALV
object. The GET_COLUMNS method is called in order to get the columns object of the ALV.
The SET_OPTIMIZE method of the columns object is used to optimize the column width.

Likewise, the GET_FUNCTIONS method provides access to the ALV's functions' objects.
We then set all the functions using SET_ALL method. Finally, ALV is displayed using the
DISPLAY method.

Chapter 3

47

Note that until this point, the ALV toolbar does not have a layout save button. No fields are
defined as keys (no blue colour). The Amount column displays 0.00 and not blank in case
the value is initial. No hotspots or checkboxes are enabled in the columns. In the next set of
recipes, we will see systematically how each of these options may be added.

See also
 f http://wiki.sdn.sap.com/wiki/display/ABAP/ALV+Grid+Report+-+wit

h+Object+Oriented+SALV+Classes

Setting ALV columns as key columns and
making zero amount appear as blank

This recipe is comprised of two subrecipes:

We will see how the personnel number (PERNR) column may be set as key with blue colour.
In addition, how a particular column Amount, where a zero amount is shown as 0.00, may
be made to appear blank.

www.allitebooks.com

http://www.allitebooks.org

ALV Tricks

48

How to do it...
For making the above adjustments, proceed as follows:

1. Declare a column variable with reference to the class cl_salv_column_table.

2. Next, use the get_column method of the mycolumns object pointing to the columns
of the ALV in order to get the reference to the column PERNR. We will then use the
set_key method to set the PERNR column as the key column.

3. Similarly, the get_column method is called for the Amount column BET01.
The set_zero method is called to convert the zeros to blanks while outputting
the BET01 column. It is necessary that the value space (' ') is passed to the
set_zero method.

4. The code fragment was added before the ALV display method but after the
assignment to mycolumns statement followed by the factory method call.

How it works...
We already had the reference to the entire set of ALV columns within the variable mycolumns.
For each of the two columns, PERNR and BET01, the single column object reference was
required. This was done through usage of the get_column method. Methods set_key and
set_zero were then called and appropriate values passed for parameters (if necessary) for
setting the key column and removal of zeros respectively.

Any exception raised due to wrong name supplied to the get_column method is caught
using the TRY .. ENDTRY and CATCH statements. The exception that was addressed
was CX_SALV_NOT_FOUND. We can add a suitable MESSAGE statement after the catch
statement to output a message in case an error arises, which is not been shown in the
previous screenshot:

Chapter 3

49

Note the change in the PersNo. and the Amount column.

See also
 f http://scn.sap.com/thread/752043

Removing columns from display and layout
By default, all columns that are defined in the internal table IT_PA0008 are displayed in the
ALV output. This recipe will now show how we will remove columns from ALV output.

There are two ways of doing this. We can remove columns from the initial layout. In this case,
we can still bring them back to display by choosing the Change Layout option. On the other
hand, you may remove columns totally, so that they are not even available in the layout.

In this recipe, we will see how the SUBTYPE (SUBTY) column is made invisible, and
the Changed on (AEDTM) column to be removed from initial output but still available
in the layout.

How to do it...
For making the SUBTY and AEDTM columns disappear, follow these steps:

1. We will use the same mycolumn variable used earlier referring to the class
CL_SALV_COLUMN_TABLE. For each column, we will use the get_column
method to get a reference to the respective column.

2. For the SUBTY column, we will use the set_technical method for removing it from
the display (and also from the layout).

http://scn.sap.com/thread/752043
http://scn.sap.com/thread/752043

ALV Tricks

50

3. For the AEDTM column, we will use the set_visible method of the class
CL_SALV_COLUMN_TABLE. We will pass the value FALSE to the method.

How it works...
The set_technical method is used for making the column as technical. This means that
the column is set as a technical column and not displayed in the output, and is not available
for display through the Change layout options.

On the other hand, we have made the AEDTM column (Changed On) invisible from the initial
display using the set_visible method of the CL_SALV_COLUMN_TABLE class.

Both the columns are not displayed in the new output.

When the user selects Change Layout, only the Changed on column is available for inclusion
in the output. The SUBTY column is totally unavailable for display.

Chapter 3

51

Enable Adding Layout toolbar buttons
Up to this point, the output of the ALV does not allow the user to save changes made to layout.
In this recipe, we will add coding that will allow saving user-specific layouts, load layouts, as
well as specify a default layout.

How to do it...
For enabling layout saving, follow these steps:

1. We declare two variables and also, an object reference to the class cl_salv_layout.
In addition, a key is defined based on the type salv_s_layout_key.

2. The get_layout method is then used to get the layout object for the ALV.

3. The set_key method is called for the layout object mylayout. The mykey structure
having the report name sy-repid is passed to this method.

4. Next, the set_save_restriction method is called. It is passed the static attribute
RESTRICT_USER_DEPENDANT of the interface if_salv_c_layout.

5. Finally, the set_default layout method is called with the value 'X', as shown in
the next screenshot.

6. The code is added before the ALV display method call shown in the first screenshot
of this chapter.

How it works...
In this recipe, we declared a layout variable based on the cl_salv_layout class. An
essential step is to set the key of the layout object and passing the name of the program.
This is done using the set_key method.

ALV Tricks

52

Next, for enabling the Save layout button, the set_save_restriction method is used.
Based on the value passed on to the method, the system determines whether the user is
allowed to save layout as user-specific, user-unspecific, or without any restrictions. Three
possible constant values may be passed.

Since our requirement was to enable user to store layout as User-Specific, we used
RESTRICT_USER_DEPENDANT constant attribute of the interface if_salv_c_layout.

Finally, we wanted the Default setting checkbox to be enabled so that the user may save a
particular layout as his or her default. For this reason, the set_default method was called
with the value 'X'.

The next time the user executes the report, his or her default layout is loaded and data
displayed in that layout format.

See also
 f http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-

through-selection-screen/

 f http://forums.sdn.sap.com/thread.jspa?threadID=1001363

Adding Hotspot to columns
It may also be required to display hotspots (similar to hyperlinks) for an entire column in the
ALV display. Clicking a particular hotspot cell will take the user to another detail screen. In this
recipe, we will add hotspot functionality to the PERNR column.

http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-through-selection-screen/
http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-through-selection-screen/
http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-through-selection-screen/
http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-through-selection-screen/

Chapter 3

53

How to do it...
We will see how a particular column may be made to appear as a hotspot. We will also add
the necessary code that is needed to carry out the steps needed for the hotspot selection.
Proceed as follows:

1. We get access to the PERNR column and call the set_cell_type method for it.
Then, we pass the hotspot static constant attribute of the if_salv_c_cell_type
interface to it.

2. Next, we define the class myhotspot. Within the class definition, we create a static
public method on_click_hotspot that will be called when a hotspot cell is clicked.
This imports the row and column pertaining to the selection.

3. Within the implementation of this class, we read the row from the table IT_PA0008
that the user has selected. The necessary details are read from table PA0008 using a
SELECT statement. The function module HR_INFOTYPE_OPERATION is then called
in order to display the details of the employee Infotype 0008 record in display
mode of transaction PA20.

ALV Tricks

54

4. Finally, the SET HANDLER statement is called in order to link the static method
on_click_hotspot of the class myhotspot to the ALV. Before that, we get the
handle to the events object of the ALV using the get_event method.

The previous code will make sure that the on_click_hotspot method is called
when the user clicks a particular cell of PERNR.

How it works...
The Pers.No column is displayed as underlined and selectable through a hotspot, as shown in
the following screenshot:

When the user clicks a particular row displayed as a hotspot within the PERNR column,
the method on_click_hotspot is triggered. Within the method, the importing parameters
row and column contain the number of the selected row and the column name
(PERNR) respectively.

The code written within the on_click_hotspot method is then executed. The corresponding
record is read from the table IT_PA0008 using the READ statement. The SELECT statement
is used for reading additional information related to the employee selected. This information
is then passed on to the function module HR_INFOTYPE_OPERATION with other Displays
parameters in order to display the record in transaction PA20 (Display Master Data) transaction.

Chapter 3

55

See also
 f http://help-abap.zevolving.com/2008/09/salv-table-8-add-handle-

hotspot/

 f http://www.sapfans.com/forums/viewtopic.php?f=13&t=158570

 f Standard SAP demo programs SALV_DEMO_TABLE_EVENTS and SALV_DEMO_
TABLE_SIMPLE

Adding your own buttons to ALV toolbar
The standard ALV toolbar provides a number of useful functions. However, depending on the
requirement, you may be asked to add new buttons to the ALV toolbar. This recipe will show
how to add your own buttons to the ALV toolbar and then writing appropriate coding to be
executed when the user presses the button.

We will add a new button saying View Summary to the toolbar. Upon clicking, the total number
of displayed records will be shown (for purpose of illustration).

Getting ready
For creating your own toolbar buttons, we need to make a copy of the GUI status displayed in
the original ALV program. We will then make changes to the copied status. Proceed as follows:

1. For finding out the program whose GUI status is currently being called, generate
the output of the ALV program and then select the menu option System | Status..
On the dialog that appears, we will use the values shown in the Program (GUI) and
GUI status fields. The GUI status being used is ALV_TABLE_STANDARD residing
in the program having name SAPLSALV_METADATA_STATUS.

ALV Tricks

56

2. We will copy this GUI status from the respective standard SAP program into our
program. This may be done by using transaction SE80.

In the next section, we will see how new buttons are added.

How to do it...
We will see how to add new buttons and adding appropriate coding. Proceed as follows.

1. Use transaction SE80 to see the various components of your program. The newly
copied status SALV_TABLE_STANDARD is shown under the GUI Status node.

2. Double-click the GUI status name to display its contents in the right-hand pane.
From the section of toolbar buttons, we will remove the INFO button item, as it
is not needed, and add our own function SUMM having the display text View
Summary, as shown in the following screenshot:

Chapter 3

57

3. Next, we will call the method set_screen_status of the class cl_salv_table
and pass it the name of our program SY-REPID and the newly created status
SALV_TABLE_STANDARD.

4. We will then create a class by the name summbutton (we can also use the existing
class for hotspot created in a previous Adding hotspots to columns recipe). In
the definition, a static method on_button_press is defined that responds to
the triggering of the ALV event added_function. The method has an importing
parameter e_salv_function that provides the function code of the selected
customer function.

www.allitebooks.com

http://www.allitebooks.org

ALV Tricks

58

5. Next, the implementation of the method is created. Within the on_button_press
method, we check to see if the SUMM function button has been pressed. If found true,
we then calculate the number of lines in the table IT_PA0008, then concatenate the
line numbers with appropriate text and display in an information message.

6. Finally we use the SET HANDLER statement to link the static method
on_button_press of the class newbutton with the events object myevents.
This will make sure the clicking on the New button triggers the execution of the
on_button_press method.

How it works...
Calling the set_screen_status method results in the display of our newly created GUI
status having the button View Summary. The method is called in order to make sure that
instead of the standard GUI status, our newly created GUI Status is shown.

The CL_SALV_EVENTS_TABLE class contains an ADDED_FUNCTION event that is raised when
our added button is pressed.

Chapter 3

59

We registered this event with the static method on_button_press of our class newbutton
using SET HANDLER statement.

Upon clicking the View Summary button, the code of the on_button_press method is
called. We make sure in the method that the code is run only when the function code supplied
by importing variable e_salv_function contains SUMM. If that is the case, the number of
lines determined in the internal table are displayed using a MESSAGE statement.

For adding icons in the toolbar button, refer to the SAP documentation at http://help.
sap.com/saphelp_nw04/helpdata/en/d1/801d43454211d189710000e8322d00/
frameset.htm.

There's more...
The work so far done looks fine, but has a small problem. Clicking on the View Summary
button will give the entire set of rows in the internal table IT_PA0008, irrespective of taking
into account any filter applied.

We will now refine the recipe in order to read the filters, the column names included on which
the filters have been applied, and the selection options specifying the filter values. At the end,
we will delete the rows from IT_PA0008 that do not adhere to the filter criteria (so that the
row count is correct). The example may then be refined later for deletion of filters, and so on.

ALV Tricks

60

The code that will be added will be within the IF statement (checking the function code)
just before the DESCRIBE statement. The code is divided into three parts:

1. First, we declare necessary variable pertaining to ALV filters. We then use the
get_filters method in order to read the filter objects.

2. The get method of the cl_salv_filters class is then called in order to fetch
the internal table myfilters_tab specifying the column names on which filter has
been specified. The R_FILTER component of this table row is a reference to the class
CL_SALV_FILTER, which contains the values, entered at the filter screen.

3. Next, a loop is run at this internal table and the details of the r_filter object
are fetched.

Chapter 3

61

4. We run a loop at the myfilters_tab method and get the filter conditions object
for each column. The get_sign, get_option, get_low, and get_high methods
of the class cl_SALV_SELOPT is used for getting the sign, option, low, and high
values of the filter condition respectively. These are added to the range table of the
final_range_struc. Finally, the final_range_struc contents are inserted into
the internal table final_range_table. The purpose of this step is to form a final
range table named final_range_table, which will provide us with the name of
each column specified in the filter definition, along with the filter values in the form
of range table.

5. As you can see the user had specified two fields ENDDA and UNAME in the
filter criteria. For the UNAME field, two filter values are specified, that is,
UNAME = HOLDERM and UNAME = STUDENT060.

6. We will keep the third step simple, and will run a loop at the final range table which
will delete from the main IT_PA0008 internal table those records that violate any of
the filter criteria.

ALV Tricks

62

Once this additional code is added, the internal table IT_PA0008 will take into account any
applied filter. Thus, the correct values will be shown by the View Summary button.

The code shown may be written more efficiently and elegantly using field symbols. Since the
table contains fewer entries and for the sake of simplicity, field symbols were not used.

See also
 f http://wiki.sdn.sap.com/wiki/display/Snippets/Get+set+of+filter

ed+values+from+CL_SALV_TABLE

Adding checkboxes to columns
In this recipe, we will see how we can display checkboxes in a column in the ALV output.
The user may select a checkbox and switch it on or off. Then, based on his or her selection,
a button may be pressed and function executed. The primary emphasis of this recipe will be
the display of checkboxes within a column and the coding to set it as on or off.

Getting ready
For this recipe, we will make a copy of the simple ALV program that was created in the
beginning of the chapter. We will then add the checkbox-related coding to this copy.

How to do it...
For adding a checkbox column to your ALV program, follow these steps:

1. Add a new field CHECKBOX to the type TY_PA0008 defined in your program.
The position of the field will determine the position of this column in the ALV
display. We will place it at the end.

Chapter 3

63

2. Then, use the get_column method to get access to the CHECKBOX column. We
will set the long , medium, and short texts of this column as Checkbox. The most
important step is to set the cell type of this column to a checkbox using the method
set_cell_type. The constant static attribute checkbox_hotspot of the interface
if_salv_c_cell_type is passed.

3. A new class mycheckbox is defined, the definition of which contains a static method
on_click_checkbox defined for the link_click event for the ALV events. This
method imports the row and column of the user selection.

4. Next, the implementation of the mycheckbox method is created. As already
mentioned, this method is triggered when the user clicks on a particular checkbox
for any row of the displayed ALV table. The read statement is used to determine
which particular row's checkbox has been clicked. The IF statement checks whether
the checkbox field of the row in consideration is already on or off (meaning equal
to 'X' or space). Depending on the current value, the value of the checkbox field
is changed. A MODIFY statement is used to change the internal table IT_PA0008.
Finally, the refresh method of the ALV object is called.

ALV Tricks

64

5. The SET HANDLER statement is used to register the static method
on_click_checkbox method of the mycheckbox class for the ALV events.

How it works...
When the program is run, the set_cell_type method results in the CHECKBOX column to
be displayed with editable checkboxes. The set_short_text, set_medium_text, and
set_long_text methods display the heading of this column as Checkbox.

When the user clicks a particular checkbox, the on_click_checkbox method is executed.
The READ statement gets the selected row using the parameter row. If the value of the
CHECKBOX field of the selected row is found to be initial (meaning, checkbox off), it is
assigned 'X' (that is, switched on). Otherwise, if it is already on, the CHECKBOX field is
cleared (that is, switched off).

The table IT_PA0008 that is linked to ALV display is modified in order to reflect the user's
selection. Finally, the refresh method is called to display the new state of the checkboxes
on the user screen.

Chapter 3

65

There's more...
Apart from the CHECKBOX display, there are other possibilities of a particular column. For the
set_cell_type method, the various possible values supplied for the value parameter and
the relevant output is shown as follows:

Value Paramter of set_cell_type Output
0 TEXT

1 CHECKBOX

2 Button

3 DROPDOWN

4 Link

5 Hotspot

See also
 f http://sites.google.com/site/ruslimchang/handle-checkbox-in-

alv-object-model

4
Regular Expressions

In this chapter, we will see recipes related to regular expressions as used in ABAP. We will
look at:

 f Using regex as an IF statement

 f Removal of characters from a string

 f Converting date into internal date type

 f Validation of format (telephone number)

 f Removing repeated words from text string

 f Inserting commas in an amount string

 f Removing comments from program code

 f Interpreting HTML stream

Introduction
As of release 7.0, ABAP supports regular expressions based on POSIX standard 1003.2.
Regular expressions may be specified after the addition REGEX within the FIND and
REPLACE statements.

An entire description of the topic constitutes a book by itself. However, the most important
and commonly used regular expressions requirements will be discussed.

In the introduction, we will cover important operators used in regular expression processing
within ABAP. These will be used in the various recipes mentioned in this chapter. We will then
see recipes for writing programs that uses regular expressions for pattern matching, validation
as well as conversion and extraction of data from a given text stream. Throughout the chapter,
the terms "Regular Expression" and "Regex" will be used interchangeably.

Regular Expressions

68

In addition to FIND and REPLACE statements, SAP provides classes CL_ABAP_REGEX and
CL_ABAP_MATCHER for regex processing. However, the coding in the recipes will comprise
regular expressions used within FIND and REPLACE statements.

For this chapter, I assume that the reader has basic knowledge of the regular expressions,
and is familiar with basic FIND and REPLACE statements. We will use the DEMO_REGEX
standard program screenshots for illustration, where required.

For more information on regex, see the following link:

http://help.sap.com/abapdocu_70/en/ABENREGULAR_EXPRESSIONS.htm

Regular expressions
A regular expression comprises literals and operators. The operators are special characters
used for a particular purpose and have special meanings when we need to search for any
pattern within a text stream. Before the recipes, we will have a look at some useful operators
available in ABAP for regular expressions.

Operator Purpose
. Dot matches a single character.
? Denotes either no or a single occurrence of a character or set of characters.
* Denotes any number of occurrences (0, 1, or more) of a character or a set

of characters.
+ Matches one or more occurrence of a character or set of characters.
\< Matches start of a word.
\> Matches end of a word.
^ Used for denoting negation when used with box brackets, as well as the start of

line marker.
?= Used as a preview condition.
?! Used as a negated preview condition.
\1, \2 Used for placeholders for subgroup registers (also called the back-referencing

operator). For replacement, $1 and $2 represent the subgroup registers in the
replacement string (this will be discussed in a recipe ahead).

$ Denotes end of a line.
\d Denotes a digit (0-9).
\w Denotes an alphanumeric character.
\u Matches a single alphabet.

http://help.sap.com/abapdocu_70/en/ABENREGULAR_EXPRESSIONS.htm
http://help.sap.com/abapdocu_70/en/ABENREGULAR_EXPRESSIONS.htm

Chapter 4

69

All the three operators (*, +, and ?) must be used after a character or a character sequence
specification. The box brackets denote the possible characters that may occur in a string. On
the other hand, the round brackets denote a specific set of characters in a given sequence
to be matched. For example, the regex [01]? will match 0 or 1. The expression [01]*
will match 01, 11 0101, and so on. On the other hand, (01)* will match 01, 0101,
or blank. (Also, \w+ denotes one or more alphanumeric characters.)

The special characters that are used in regex may also need to be searched in a given text.
For searching them, we must precede them with a backslash (Escape Character for special
characters). Some of the examples are shown in the following table:

Searching for special characters
\.

\+

\"

\?

\$

\^

\(

\)

\[

\]

These are then treated as literals rather than operators.

The ?= is a preview condition. For example, if we write regex in the form a(?=s), the
expression behaves like an IF statement condition. The pattern a will be matched only
if the following substring matches the condition specified by s.

There is a difference between ^ when used within box brackets [] and round brackets ().
When the ^ operator is used in box brackets, it represents the characters not included in
the text to be matched. For example, [^ab] will match all strings that do not include a and
b, such as cd, ch, hh, and so on. Whereas, ^ when used with round brackets (or without it)
specifies the beginning of a string. For example, ^(ab) or ^ab will match all strings starting
with ab, such as abc, abd, abbbbb, and so on.

Regular Expressions

70

For simplicity's sake, our examples will contain the regex specified within the FIND or
REPLACE statements. In this case, any error in the regex is identified by the syntax checker,
as shown in the following screenshot along with the exact position on which the error has
occurred (so in this chapter, no error handling will be shown).

For error handling, however, the CX_SY_REGEX class within the TRY and CATCH statements
may be used, if required.

For replace statement, when the replace has been done successfully, the return
code SY-SUBRC value is equal to 0. This may be used for checking the success of
the replace statement.

Using regex as an IF statement
In this recipe, we will write a simple program that will function as an if statement. A simple
find regex statement will be used.

Getting ready
We will first write an if statement that will check if the value of a parameter variable field1
has the value equal to ABC, DEF, or CDE. In case the value is equal to any of the three, the
message Field Value is Valid is displayed. We will then see the equivalent regex.

Chapter 4

71

How to do it...
For replacing the if statement with find regex statement, proceed as follows:

1. Instead of the if statement, we will write a find regex statement along with
the regex '[ABC|CDE|DEF]'.

2. After the statement, the sy-subrc is checked, and the appropriate messages
are written.

How it works...
We have used an OR (|) operator within the find statement. A match is found if the value
of the three-character field1 is equal to any of the three values specified. In this case,
sy-subrc is equal to zero, and the success message is then displayed.

There's more...
Suppose we need to ignore the case. Say the input is to be compared such that there is no
difference between ABC, abc, and ABc. In such a case, we may simply add ignoring case
to the statement, as shown in the following screenshot:

Regular Expressions

72

Removal of characters from a string
In this recipe, we will see how special characters and blanks may be removed from a text
string comprising of a telephone number. We will create a program that will take as input
the number containing blank spaces and special characters such as +, (, and).

The replace statement along with suitable regular expressions will be used. Various regular
expressions may work in this case. We will see two such expressions in this recipe.

How to do it...
For meeting the mentioned requirement, proceed as follows:

1. Declare a parameter by the name number, consisting of 20 characters.

2. The replace all occurrences is added having the regular expression [^\d].

How it works...
The solution is based on searching all non-digit characters in the string and replacing them
with blank. The negated operator (^) is used within the box brackets and the \d denotes the
digits. We have used all occurrences, as this will replace all non-digits.

Suppose the user enters the number having + and parentheses and blank spaces.

This will remove all special characters, as well as spaces, and will only display numbers.

Chapter 4

73

There's more...
Alternately, you may also use [0-9] in place of \d. The regex will be then be written as
'[^0-9]'. In addition, it is important to include regex in the replace statement.
Otherwise, instead of searching the pattern within the text, the system searches for
[^\d] or [^0-9] in the text, and the desired results will not be achieved.

Converting date into internal date type
As already mentioned, regular expressions are useful for converting data into the required
format. One good example is the conversion of a date stored in internal format into display
format, and vice versa. For example, a date may be available as 20120101 and we need
to format it in the form 01/01/2012, and so on. In this recipe, we will see how a single
statement of replace may be used to carry out this task. For this recipe, we assum
that input date is in the correct internal format.

How to do it...
For carrying out the previously mentioned conversion, proceed as follows:

1. First, declare a variable mydate having a length of 10 characters. A date having the
internal format date is then assigned to this variable. The same variable will be used
for storing the converted date.

2. The replace statement having the regex '(\d{4})(\d{2})(\d{2})' is used,
along with the replacement '$3/$2/$1'.

3. The converted date is then outputted on the screen.

How it works...
We have used three subgroups in the formation of the regular expression. The \d refers
to digits and the number given in curly brackets specifies the length of the various date
components (4 for year, 2 for month and the date). The three subgroups are specified
using parentheses.

Regular Expressions

74

Within the replace statement, the subgroup placeholders are used. It specifies the format in
which the date is to be outputted (the year followed by a forward slash, then the month, then
another forward slash, and finally the date). For the input date, 20120101, following are the
values in each of the subgroup registers:

 f Subgroup register 1 denoted by $1: 2012

 f Subgroup register 2 denoted by $2: 01

 f Subgroup register 3 denoted by $3: 01

In this case, the date after the replace statement and the write statement is shown in the
following screenshot:

Validation of format (telephone number)
In this recipe, we will see how to use the back-referencing operator in order to validate
telephone numbers. Suppose telephone numbers in a certain city follow the rule: a
number must be of exactly eight digits, and the first and second digit must be the same.

For example, the valid numbers of the city may be 44005600, 88008700, and so on. If the
number entered starts with a zero or has length less than eight, an error should be displayed.
We will see how a short validation program may be written.

How to do it...
For creating the program that checks the validity of a telephone number according to the
given criteria, proceed as follows:

1. Declare a parameter having the name tel_no with eight characters.

2. We then use the find regex statement to search for the pattern ([1-9])\1[0-
9]{6} in the telephone number entered by the user.

3. The if statement is then used for checking the return code. For sy-subrc,
having the value 0, the message Number is Valid is displayed.

Chapter 4

75

How it works...
There are two parts of the regular expression that we created, that is, the regex for the first
two digits and then for the remaining six digits. Let us look at this in detail.

The requirement is that the first and second number cannot be a zero. So, we have specified
the range [1-9] and not [0-9] for the first number. We want the first number to be part
of the first subgroup and hence the parenthesis is used. The first digit of the phone number
that matches the [1-9] part of the regex is stored in the first subgroup register. This value
may be addressed using the back-referencing operator \1. (Since, in this case, we have one
subgroup, the corresponding placeholder for the value stored in the first register is \1). Since
the first and the second number must match, we use \1 in place of the second digit.

The next part is comparatively simple. For the remaining six digits of the telephone may
include zeros as well, we use the [0-9] range along with the length of 6 specified in
curly brackets.

The find regex statement tries to find the given regex in the eight-character telephone
number. In case, a match is found, the return code sy-subrc equals 0, so we input the
message Number is Valid.

Removing repeated words from text string
In this recipe, we will use the start and end of word operators along with the subgroup register
placeholders in order to write a program that will remove adjacent duplicate words from a text
string. For example, from the text 'this this is is a repeated text text 11 11',
the duplication of words will be removed and the new text 'this is a repeated text
11' is given as the output.

How to do it...
In order to create a repeated word removal program, proceed as follows:

1. Declare the textstream string. Then assign some text to it that has repeated words
in it.

Regular Expressions

76

2. A replace all occurrences statement is then written with the regular
expression (\<\w+\>) \1. The replacement key is '$1'.

3. The if statement is then used for checking the return code. For sy-subrc
having the value 0, the message Number is Valid is displayed.

How it works...
The regex used in this recipe is different from that used in the previous one. Since we
require searching of duplicate words rather than single characters, we will use the start and
end word operators. We used \w+ so that all words comprising of alphanumeric characters
will be found searched and then replaced. In order to find out repeated adjacent words (set of
characters surrounded by blank space) we used parenthesis for the first subgroup and then
the back-referencing operator \1 to find out repetition. It is also necessary to include a space
between the subgroup in brackets and the \1 (since we are dealing with words).

The replace statement uses the placeholder $1, referring to the first subgroup register. In
other words, via the replace statement, we are actually telling the system to first find the
occurrence of two adjacent words, and then replace this found duplicate with a single word
that is the one stored in the first subgroup register (thus removing duplicates).

For the example shown in the code, the string outputted after removal of adjacent duplicates
is shown in the following screenshot:

Inserting commas in an amount string
In this recipe, we will see how a small program may be written to take as input an amount
string, and insert commas in it after every thousand (that is, every three digits from right).
This is interesting because the normal search of a pattern within a text is from the left.

Chapter 4

77

We will use the preview condition and the negated preview condition, along with subgroups in
order to find a solution. Please note that one such example appears on the help.sap.com
site under business warehouse routines that has been slightly modified for this recipe.

How to do it...
For creating a program for comma insertion within an amount string, follow the following steps:

1. Declare a parameter amount of type character and length 10. We can increase the
length for a larger amount, keeping provision for the commas.

2. The REPLACE statement with the addition ALL OCCURENCES and REGEX '(\d)
(?=(\d{3})+(?!\d))' and replace substring '$1,'.

3. A write statement is then used to output the convert amount.

How it works...
We have used subgroups in conjunction with the preview condition. The first subgroup
denoted by (\d) is matched for digits within the number which subsequent numbers meet
the condition specified by (\d{3})+(?!\d). (We may also write [0-9] in place of \d).

The preview condition finds all numbers that are followed by one or more sequence of
three digits after it starting from the left. (For this reason, the (\d{3})+ has been used.)
For example, we look for digits that are followed by three, six, or nine digits. (The negated
preview condition ensures that only those numbers are matched, which have multiples of
exactly three digit numbers after them.)

Regular Expressions

78

In case any such digit is matched, it is replaced using the register subgroup placeholder $1
followed by a comma. Suppose we choose 10000 as the input number, the first zero is the
matched digit (and in this case) the only match. This is replaced by the zero itself followed
by a comma. The match is shown in red in the following screenshot (output taken from
DEMO_REGEX_TOY program):

The output of the program is shown in the following screenshot:

If 100 is entered, the condition does not meet, so no matches are found. That is why no
commas are inserted in the amount 100 at any position. Since a big amount may require
more than one comma, we use the REPLACE ALL OCCURRENCES addition.

Removing comments from program code
In this recipe, we will see how we can use the replace statement in conjunction with a
suitable regex in order to remove comments from a program. For the sake of this recipe,
we assume that the program whose comments are to be removed is syntactically correct.
Similar to program created for the Dynamic program generation recipe in Chapter 2, Dynamic
Programming, the program for this recipe will remove all statements beginning with a asterisk
(*) or all parts following a line after an inverted comma (").

Getting ready
For this recipe, we will make a copy of the program created in Chapter 2, Dynamic
Programming, that reads the source code of a program specified by user input. In the
previous program, we used two internal tables and used a loop at the first table itab to
delete comments. For this recipe, we will replace the loop with one replace statement and
use only one table that is the first internal table itab. The code of the original program is
read in the table from which comments are removed.

Chapter 4

79

How to do it...
For adjusting the program, proceed as follows:

1. The main part of the new portion is a replace statement. This replace statement
contains (^*.*)|([^\"]*)(\"*.*) as the regular expression. The replace
statement is with the addition in table and with the substring $2.

2. A delete statement is then used for deleting all blank rows from the internal table.

How it works...
There are three subgroups used in this recipe. An OR condition is used for separating the first
subgroup from the other two. Let us consider the two subgroups.

 f (^*.*): This part tries to match lines having the first character an asterisk (*)
that is, an entire line commented. The match found is stored in subgroup register 1.

 f ([^\"]*)(\"*.*): This pattern tries to divide a given program line into two parts,
the first with set of characters without a double quote (") followed by the part that
begins with a inverted comma ("). The first part before the inverted comma is stored
in subgroup register 2 and is denoted by $2.

Since we do not require lines beginning with an asterisk and the part followed by the inverted
comma, the placeholders $1 and $3 are not used in the replace statement. Only the second
subgroup register has been used in the replace statement. This trims the comments from
the code.

If a line starting with an asterisk (*) is reached, the second register is empty, so the entire
code line is replaced by blank space. If a line having some code and then comments starting
with inverted comma is reached, we only pick up the code part.

We finally call the delete statement in order to remove any blank lines from the program's
internal table.

(For simplicity's sake, we have specified three subgroups with parenthesis, the third
parentheses subgroup may be omitted also, without affecting the functioning of the code).

Regular Expressions

80

Interpreting HTML stream
In this recipe, we will see how an HTML code may be read and interpreted using regular
expressions. We will create a program that will read an HTML stream in a string and will
display the tag names along with the content of the tags. The FIND and replace statements
are used together with a do loop. (This recipe will focus on reading tags beginning with <tag>
and ending with <\tag>).

How to do it...
For creating a program for interpreting HTML code, follow the steps shown in the
following steps:

1. Declare three strings by the name htmlstream, tagcontents, and tagname.

2. We then assign a suitable HTML code to the htmlstream variable.

3. Within a do loop, a FIND REGEX statement is added that finds tag names and their
contents. The regex used in this case for matching an HTML tag is '<(\u\w*)
[^>]*>(.*)</\1>'.

4. Once a tag is processed, a replace all occurrences statement is used for
replacing the tag with '$$$'.

5. The tag name and tag contents are printed.

6. Once all the tags are processed, the exit statement is executed.

Chapter 4

81

How it works...
We have used ignoring case since the tag names may start with upper or lowercase such as
H1 or h1. The regular expression searches for tags starting with a <, then followed by a single
alphabet (denoted in regex by \u), followed by zero or more alphanumeric characters. After
this, an optional substring (comprising of all characters except for a > may be found, followed
by a > character. This will match HTML tag names such as H1, H2, HTML, or html. The tag
name without the special characters < and > is assigned to a subgroup that is then available
in the submatch variable tagname. The start and end of the tag is checked using the back-
referencing operator \1. Note that in this case, the forward slash / is part of the HTML code
denoting the end of the tag. The content of a particular tag is read into the submatch variable
tagcontents.

The find statement finds all the tags. Once a tag is processed, we replace the tag name as
$$$ in order to avoid it to be found by the find statement another time. On the next do loop
pass, the next tag is matched and contents are read.

Using a WRITE statement, all the tag names and tag contents are printed on screen.
The output is shown in the following screenshot:

Once all the tags are processed, the sy-subrc condition of being not equal to zero is met
and the loop is exited.

See also
 f http://help.sap.com/saphelp_erp2005/helpdata/en/42/9d6ceabb211d

73e10000000a1553f6/frameset.htm

 f http://help.sap.com/abapdocu_702/en/abenregex_search.htm

 f http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/03a52be5-0901-0010-9da4-e9d5f8c5ce1c?QuickLink=index&overr
idelayout=true

 f http://help.sap.com/abapdocu_702/en/abenregex_syntax_operators.
htm

 f http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/866072ca-0b01-0010-54b1-9c02a45ba8aa?QuickLink=index&overr
idelayout=true

5
Optimizing Programs

In this chapter, we will see recipes related to program optimization. We will look at:

 f Using transaction SAT to find problem areas

 f Creation of secondary indexes in database tables

 f Adding hints in SELECT clause

 f Secondary indexes for internal tables

 f Hashed table for single read access

 f Replacing for all entries construct with Ranges

Introduction
An entire description of the topic constitutes a book by itself. However, we will see
some useful and important techniques, as well as some new tools and concepts
that are important for developers for program optimization. There are two main
techniques—optimizing database statements, particularly SELECT statements and the
optimizing ABAP code particularly internal table's access. We will see useful recipes related
to both the optimization of database statements as well as internal tables.

We will start with some general rules necessary for optimization. We will start with a recipe
showing the usage of transaction SAT for measuring performance of report programs.
Then, we will see in detail the steps required in creating secondary indexes for database
tables in order to boost performance of queries used in the concerned program. We will then
see how hints may be used in programs within SELECT statements, so that a particular index
may be used by the system. Finally, we will see how the FOR ALL ENTRIES construct may be
replaced with ranges table. The usage of hashed internal tables as well as the new concept
of secondary indexes for internal tables will be discussed in separate recipes.

Optimizing Programs

84

For this chapter, I assume that the reader has basic knowledge of SELECT statements
and database concepts and internal tables, as well as basic optimization techniques. For
the better understanding of the information in this chapter, the reader should know which
database would be used in his or her project and know some tricks specific to the database.

Before starting with the recipes, let us see some rules for program optimization:

 f Do not use asterisk (*) in SELECT statements. It means not to select unnecessary
columns from database.

 f Do not use nested SELECT statements. Rather use subqueries or inner joins.

 f Create views when multiple tables' data is required.

 f Appropriate and complete WHERE clause conditions should be written.

 f Using FOR ALL ENTRIES within SELECT statements when multiple tables are
involved. Also check that the FOR ALL ENTRIES tables are not empty. Otherwise,
all records in the underlying table will be accessed that will drastically affect the
performance.

 f Using Aggregate functions within SELECT clause such as AVG, MIN, MAX,
COUNT(DISTINCT col), and COUNT(*) rather than calculating them yourselves
in programs.

 f Avoiding SELECT or SELECT SINGLE within a loop.

 f Usage of hashed tables where a single record within the table is to be searched.

 f Usage of secondary index for internal tables.

For more examples of the previously discussed items, see the Tips and Tricks screen of
transaction SAT. For doing so, you need to call transaction SAT. Then press the
button on the toolbar.

Using transaction SAT to find problem areas
In this recipe, we will see the steps required to analyze the execution of any report,
transaction, or function module using the transaction SAT.

Getting ready
For this recipe, we will analyze the runtime of a standard program RIBELF00 (Display
Document Flow Program). The program selection screen contains a number of fields.
We will execute the program on the order number (aufnr) and see the behavior.

Chapter 5

85

How to do it...
For carrying out runtime analysis using transaction SAT, proceed as follows:

1. Call transaction SAT. The screen appears as shown:

2. Enter a suitable name for the variant (in our case, YPERF_VARIANT) and click the
Create button below it. This will take you to the Variant creation screen.

3. On the Duration and Type tab, switch on Aggregation by choosing the Per Call
Position radio-button.

Optimizing Programs

86

4. Then, click on the Statements tab. On the Statements tab, make sure Internal
Tables, the Read Operations checkbox and the Change Operations checkbox,
and the Open SQL checkbox under Database Access are checked.

5. Save your variant. Come back to the main screen of SAT.

6. Make sure that within Data Formatting on the initial screen of SAT, the checkbox for
Determine Names of Internal Tables is selected.

7. Next, enter the name of the program that is to be traced in the field provided (in our
case, it is RIBELF00). Then click the button.

8. The screen of the program appears as shown. We will enter an order number range
and execute the program.

9. Once the program output is generated, click on the Back key to come back to
program selection screen.

10. Click on the Back key once again to generate the evaluation results.

How it works...
We carried out the execution of the program through the transaction SAT and the evaluation
results were generated. On the left are the Trace Results (in tree form) listing the statements/
events with the most runtime. These are like a summary report of the entire measurement
of the program. They are listed in descending order of the Net time in microseconds and the
percentage of the total time. For example, in our case, the OPEN CURSOR event takes 68
percent of the total runtime of the program.

Chapter 5

87

Selecting the Hit List tab will show the top time consumer components of the program. In this
example, the access of database tables AFRU and VBAK takes most of the time.

Optimizing Programs

88

Double-clicking any item in the Trace Results window on the left-hand side will display (in the
Hit List area on the right-hand pane) details of contained items along with execution time
of each item. From the Hit List window, double-clicking a particular item will take us to the
relevant line in the program code. For example, when we double-click the Open Cursor VBAK
line, it will take us to the corresponding program code.

We have carried out analysis with Aggregation switched on. The switching on of Aggregation
shows one single entry for a multiple calls of a particular line of code. Because of this, the
results are less detailed and easier to read, since the hit list and the call hierarchy in the
results are much more simplified.

Also within the results, by default, the names of the internal table used are not shown.
In order for the internal table names to appear in the evaluation result, the Determine
Names checkbox of Internal tables indicator is checked.

As a general recommendation, the runtime analysis should be carried out several times for
best results. The reason being that the DB-measurement time could be dependent on a
variety of factors, such as system load, network performance, and so on.

Creation of secondary indexes in
database tables

Very often, the cause of a long running report is full-scan of a database table specified
within the code, mainly because no suitable index exists. In this recipe, we will see the steps
required in creating a new secondary index in database table for performance improvement.
Creating indexes lets you optimize standard reports as well as your own reports. In this recipe,
we will create a secondary index on a test table ZST9_VBAK (that is simply a copy of VBAK).

Chapter 5

89

How to do it...
For creating a secondary index, proceed as follows:

1. Call transaction SE11. Enter the name of the table in the field provided, in our
case, ZST9_VBAK. Then click the Display button. This will take you to the Display
Table screen.

2. Next, choose the menu path Goto | Indexes. This will display all indexes that
currently exist for the table.

3. Click the Create button and then choose the option Create Extension Index.

4. The dialog box appears. Enter a three-digit name for the index. Then, press Enter.

5. This will take you to the extension index maintenance screen. On the top part, enter
the short description in the Short Description field provided.

6. We will create a non-unique index so the Non-unique index radio button is selected
(on the middle part of the screen).

Optimizing Programs

90

7. On the lower part of the screen, specify the field names to be used in the index. In our
case, we use MANDT and AUFNR.

8. Then, activate your index using keys Ctrl + F3. The index will be created in the
database with appropriate message of creation shown below Status.

How it works...
This will create the index on the database. Since we created an extension index, the index will
not be overwritten by SAP during an upgrade. Now any report that accesses ZST9_VBAK table
specifying MANDT and AUFNR in the WHERE clause, will take advantage of index scan using our
new secondary index.

There's more...
It is recommended by SAP that the index be first created in development system and then
transport to quality, and to the production system. Secondary indexes are not automatically
generated on target systems after being transported. We should check the status on the
Activation Log in the target systems, and use the Database Utility to manually activate the
index in question.

A secondary index, preferably, must have fields that are not common (or as much as
uncommon as possible) with other indexes. Too many redundant secondary indexes
(that is, too many common fields across several indexes) on a table has a negative
impact on performance. For instance, a table with 10 secondary indexes is sharing more
than three fields. In addition, tables that are rarely modified (and very often read) are the
ideal candidates for secondary indexes.

See also
 f http://help.sap.com/saphelp_erp2005/helpdata/EN/85/685a41cdbf80

47e10000000a1550b0/content.htm

http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm

Chapter 5

91

 f http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d1
89700000e8322d00/frameset.htmhttp://docs.oracle.com/cd/ SELECT
clause E17076_02/html/programmer_reference/am_second.html

 f http://forums.sdn.sap.com/thread.jspa?threadID=1469347

Adding hints in SELECT clause
If there are many indexes that contain common fields (or for any other reason), the database
optimizer cannot decide the right index to be used for a particular query, and then use a
wrong index that may not be of optimal performance. From SAP Release 4.5, hints can be
provided using the %_HINTS parameter. In this recipe, we will see the syntax for specifying
HINTS within your SELECT clause in order for a particular index to be used by the database
optimizer. We will see how the hints may be specified when the underlying database is
MS SQL Server.

Getting ready
In this recipe, we will have a small program that runs a SELECT statement on the table
ZST9_VBAK. We will use the index (Z12) that we created in the previous Creating Secondary
Indexes in Database Tables recipe.

How to do it...
For creating the program containing the SELECT clause with the HINT parameter, proceed
as follows:

1. A parameter P_AUFNR is declared for taking as input an order number.

2. Next, a data variable myvbeln is defined.

3. A SELECT statement is then written. The addition %_HINTS followed by the database
name, the table, and table index name is made to the SELECT clause.

http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm
http://docs.oracle.com/cd/E17076_02/html/programmer_reference/am_second.html
http://docs.oracle.com/cd/E17076_02/html/programmer_reference/am_second.html

Optimizing Programs

92

How it works...
It is a very simple addition. There is a special syntax used for specifying the name of the
database index to be used for the particular SELECT statement. The name of the index we
used can be taken from the index name as defined in the ABAP Dictionary. The table name
and the index name are specified within TABLE <tablename> ABINDEX(<suffix>). The syntax
should be proper because other than the database name check, the syntax checker does not
check the index name. Therefore, if a wrong index is used, the corresponding query will not
give a syntax error but the desired results will not be achieved.

There's more...
In our case, we use MSSQLNT as the database name. However, you may use other database
names such as ADABAS, AS400, DB2, DB6, INFORMIX, MSSQLNT, and ORACLE (depending on
what is applicable to your underlying database). The code pertaining to the HINT parameter of
one database may differ from that of another.

For example, if we have an ORACLE database, the same Z12 index may be specified in the
SELECT statement in the following manner:

Note the database name added along with the changed format for index specification.

See also
 f http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-

to-integrate-sql-server-specific-hints-in-abap.aspx

http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-to-integrate-sql-server-specific-hints-in-abap.aspx
http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-to-integrate-sql-server-specific-hints-in-abap.aspx
http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-to-integrate-sql-server-specific-hints-in-abap.aspx
http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-to-integrate-sql-server-specific-hints-in-abap.aspx

Chapter 5

93

Secondary indexes for internal tables
In this recipe, we will see the new concept of secondary keys/index within internal tables.
This lets you optimize your programs when accessing data residing within an internal table.

Getting ready
In this recipe, we will create a program that will store all data of table VBAK into an internal
table. Then we will use the secondary key in order to fetch a record pertaining to a given
order number, aufnr. The primary emphasis of this recipe is on the definition and usage
of a secondary key for internal tables.

How to do it...
For creating a program using secondary index in internal tables, follow the steps below:

1. We first declare a type ty_vbak based on the database table vbak. We create two
keys for this table type. The first is a non-unique primary key having vbeln as the
key field. We also create a non-unique sorted secondary key sec_key having one
field aufnr. An internal table it_vbak is defined based on the type ty_vbak. In
addition, a work area wa_vbak is declared for the table it_vbak. It is always better
in terms of performance to use field symbols rather than work areas. In this example,
for simplicity's sake and since the performance gain is minimal, work areas have
been used.

2. Next, all records from table vbak are read into table it_vbak.

3. Then, the read table statement is used to read the row of internal table
it_vbak pertaining to aufnr 503002 using the secondary key sec_key.

Optimizing Programs

94

How it works...
In the table type definition, we specified a non-unique sorted secondary key (based on aufnr)
along with the primary key. For the read statement, we also specify that the secondary key
sec_key is to be used when searching in internal table it_vbak the row corresponding
to aufnr 503002. Since the secondary key is used, the aufnr field is first searched in the
secondary index sec_key. A faster binary search is used since it is a sorted index. The row
number of the actual internal table it_vbak containing the aufnr 503002 field is then
determined. Once this number is known, the relevant row is read and values assigned to the
structure wa_vbak. The vbeln field is then printed. Had no secondary index been specified, a
sequential search through the internal table it_vbak would have been used, which was very
time consuming.

Hashed table for single read access
In this recipe, we will create a program that will use a hashed table and a standard table for
accessing and displaying employee data from two tables PA0003 and PA0006. There may be
many solutions to this requirement. We will use SELECT clause and hashed tables.

Getting ready
In this recipe, we create a program that will take as input personnel number and then print
the last payroll run date of the employee (from PA0003) and the permanent residence
address (subtype 1) stored in the STRAS field of the table PA0006. For simplicity's sake,
only one data field of each table has been shown.

How to do it...
For creating the program, proceed as follows:

1. We define select-options for taking input of personnel number.

Chapter 5

95

2. Next, we define a type ty_payroll based on payroll infotype fields pernr and
abrdt. A structure and a hashed table based on this type are also defined. The
hashed table has a unique key pernr.

3. Similarly, an address type ty_address is defined, along with a structure and
internal table.

4. We then write two select statements. The first reads PA0003 for all personnel
numbers specified and the date of last payroll run (abrdt). The second select
statement is used to read all the stras addresses corresponding to permanent
address type (subty = 1) valid at the system date.

Optimizing Programs

96

5. Finally, a loop is run on the addresses internal table it_address. Within the loop,
the read table statement is used for reading the payroll table it_payroll
(the hashed table) for each of the personnel number processed. Within the loop,
the personnel number, abrdt date, and the address field stras are displayed.
We have used field symbols instead of work areas, in conjunction with loop and
read statements for better performance.

How it works...
Two internal tables it_address and it_payroll are defined. it_payroll is a hashed
table. We read data from both the database tables PA0003 and PA0006 into the internal
tables it_payroll and it_address respectively. We need to print each employee number
and the corresponding data from each of the two tables.

Therefore, a loop is carried out on the internal table it_adrress and within the loop, a read
table is used to read the hashed table, the row corresponding to the employee number in
question. Since it is a single entry access from the internal table it_payroll which is a
hashed table with the value corresponding to the hash key (pernr) being passed, the read
statement is very quick. All the values that we need are there within the loop after the read
statement. These values are then outputted using a write statement.

See also
 f http://help.sap.com/saphelp_nw70/helpdata/en/fc/

eb35de358411d1829f0000e829fbfe/content.htm

Replacing for all entries construct
 with Ranges

In this recipe, we will see how we can replace for all entries within a select
statement with ranges in the where clause. The ranges maybe used to improve performance.
This two-table example is just for illustrative purpose and comparison. You may apply
the concepts to other tables and fields. You may or may not further refine this based
on your requirement.

Chapter 5

97

Getting ready...
We will create a simple program that uses the for all entries addition in the select
statement for the two tables cobk and coep. We declare two internal tables t_header and
t_line_items. The t_header table contains one field for the belnr document number,
whereas the items table t_line_items has three fields belnr, period (period), and
amount wtgbtr (amount).

We first select up to 35,000 numbers from table cobk into the internal table t_header
based on the code kokrs equal to 1000. Next, the table coep is read for kokrs 1000 and for
all document numbers contained in table t_header using the for all entries addition.
The data is read and stored in table t_line_items. We also make sure that the for all
entries table is not empty.

How to do it...
In this recipe, we will see how we can improve the performance of the code by replacing the
for all entries construct with a range of document numbers. For this, we need to add
some additional code before the second select statement.

Optimizing Programs

98

For forming ranges of document numbers, we will use the function module
WLF_CREATE_RANGE_FOR_WBELN. You may copy or write your own code as well
but since we have both the number used having same length and type (character 10),
the function module WLF_CREATE_RANGE_FOR_WBELN may be used. The steps for
writing the additional code for forming ranges are shown as follows:

1. We declare one range table r_header based on the type WBELN_RAN_ITAB.
The structure of WBELN_RAN_ITAB is shown as follows:

2. In addition, a temp_header variable is declared based on the type WBRK_KEY_ITAB
(our function module will accept this type).

3. We then sort the table t_header and assign the t_header table to our
temp_header internal table.

4. The function module WLF_CREATE_RANGE_FOR_WBELN is then called. We pass the
temp_header variable to the function module for exporting parameter it_wbeln.
The function module creates the ranges from the values in the temp_header table
and returns the range in the table r_header.

5. Finally, the select statement is written with the for all entries part replaced
with the ranges r_header.

How it works...
Let us now see how the additional code works. The document numbers are passed to the
function module. The various numbers (in our case 35000) are used for creating ranges
and returned in the table r_header.

Chapter 5

99

The r_header table is then used in the select statement for reading data from table coep.
This technique works best when the document numbers passed to the function modules are
close together, so that less rows exists in the ranges table.

The efficiency of the Ranges code may be easily demonstrated. We use the GET RUNTIME
statement to find out the relative runtime of other various program segments (such as original
select statement part, the function module call, and the select statement using the
Ranges table). The following are the runtimes (in microseconds) displayed on the screen:

The t_header table contains 35,000 rows. It can be clearly seen that the time taken by the
select statement with for all entries in clause is 1.3 seconds. The function module
consumes 0.23 seconds, whereas the select statement having the Range table takes 0.3
seconds. Hence, the combined time for our replacement code is 0.53 seconds (0.23 + 0.30
) seconds. This is faster than the 1.3 seconds taken by the original select statement using
the for all entries clause.

See also
 f http://help.sap.com/saphelp_nw04/helpdata/en/9f/

db994235c111d1829f0000e829fbfe/content.htm

 f http://www.sdn.sap.com/irj/scn/index?rid=/library/uuid/
d0c750c1-7d04-2e10-8492-a11b9219371d

 f http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d18
9700000e8322d00/frameset.htm

http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm

6
Doing More with

Selection Screens

In this chapter, we will see recipes related to enhancing report selection screens. We will
look at:

 f Adding tabstrips and listboxes to the report selection screens

 f Adding toolbar buttons on the selection screen

 f Changing screen fields on radio button selection

 f Taking desktop folder and filename as input

 f Coding search help exits for creating better F4 helps

Introduction
There are three types of screens within the SAP R/3 system, namely dialog screens, list,
and the selection screen. Selection screens are used for taking input from the user. They
are formed by using ABAP statements without the screen painter. A selection screen may
comprise of input fields, checkboxes, radio buttons, tabstrips, and list boxes.

This chapter explores useful recipes that will help you in building better selection screens
for your programs as well as allow the addition of certain features for improving the user
experience. We will start with the first recipe that will show how to add toolbar buttons to your
program's selection screen. Then, we will see how tabstrips and list boxes may be added on
screens. Next, a recipe that will show how radio button inputs may be used to hide or unhide
other screen fields.

We will also see how standard function modules may be used to provide a browsing facility to
the user and take as input names of folder and files residing on his or her desktop. Finally,
we will have a recipe detailing the steps required to create search help exits.

Doing More with Selection Screens

102

We assume that the reader has knowledge of basic selection screen concepts and the usage
of selection screen blocks. Also, the familiarity with the screen table is recommended.

See also
 f http://help.sap.com/saphelp_nw04/helpdata/en/e4/2adbec449911d19

49c0000e8353423/frameset.htm

 f For more information about the screen table, refer to the link http://help.sap.
com/abapdocu_70/en/ABAPLOOP_AT_SCREEN.htm

Adding tabstrips and listboxes to report
selection screens

Within selection screens, tabstrips and listboxes may be displayed without the need of
knowing or using the screen painter. This may be done using a few ABAP statements. In this
recipe, we will see how tabstrips and listboxes may be added to selection screens. We will
create a program that will contain a tabstrip containing two tabs, each containing a listbox
representing country names. By default, we will have USA displayed on the first tab and
Canada on the second.

How to do it...
For creating tabstrips and listboxes, follow the following steps:

1. We create two Text Symbols, 001 and 002, that are to be used in the
subsequent steps.

2. First, we define a selection screen 100 as the subscreen. Within the subscreen we
define a block that contains a listbox. On the subscreen, we will create a listbox for
country that will, by default, show US (USA) as the country. The subscreen will be
shown in the first tab of the tabstrip that we will be defined in a later step.

http://help.sap.com/abapdocu_70/en/ABAPLOOP_AT_SCREEN.htm
http://help.sap.com/abapdocu_70/en/ABAPLOOP_AT_SCREEN.htm

Chapter 6

103

3. Similarly, we define another subscreen 101, within which we create another
parameter input displayed as a listbox having length 20. The default value we have
for this listbox is CA, that is Canada. The user command code, COU2, is defined for
this listbox.

4. Finally, the tabstrip (tabbed block containing two tabs) is defined. The two tabs are
assigned to the subscreens 100 and 101 defined earlier.

5. For the two tabs, the system creates character fields with the same names, that is,
tab1 and tab2. Within the initialization event, the tab1 and tab2 fields are
assigned the texts, Tab1 and Tab2, using the text-001 and text-002 text symbols
defined earlier.

Doing More with Selection Screens

104

How it works...
The coding creates a tabstrip having two tabs with the text Tab1 and Tab2 respectively.
Each tab page is assigned a subscreen that contains a listbox having country as the input
field. When the user clicks on a particular tab title, the elements in that subscreen become
active and are displayed. The COUNTRY field is defined using the GBLND field of the PA0002
table. We specified US as the default value for the listbox on the first tab. The text for US, that
is United States, is displayed in the first tab.

For the second tab, the country Canada is displayed by default. The user may choose the
country of his choice.

See also
 f http://wiki.sdn.sap.com/wiki/display/ABAP/ABAP-

Creating+Tabs+in+Report+program

 f http://help.sap.com/saphelp_nw04/helpdata/en/00/
deb23789e95378e10000009b38f8cf/content.htm

Adding toolbar buttons on selection screen
In this recipe, we will see how toolbar buttons (and their relevant click code) may be added to
selection screens. In this recipe, we will create a program that will display a selection screen
having three toolbar buttons, each of which when clicked, takes us to a different transaction.

How to do it...
For adding buttons on your selection screen toolbar, proceed as follows:

1. First, declare the dictionary structure, sscrfields.

2. Here we define buttons with function keys 1, 2, and 3 using the
selection-screen statement.

Chapter 6

105

3. Also, an integer abc is defined.

4. Within the initialization event, the respective texts for the buttons are
assigned to the functxt_01, functxt_02, and functxt_03 fields of the
structure sscrfields.

5. Next, within the at selection-screen event, we check the value of the
field sscrfields-ucomm. The FC01, FC02, and FC03 values represent the
button-click event of the first, second, and third buttons respectively. We call
the respective transactions, SE38, SE80, and SBWP, for each button-click.

How it works...
We will now see how the coding works in displaying the toolbar buttons along with the necessary
button text, and how the respective transactions are called after button-click events.

Doing More with Selection Screens

106

The selection-screen statements' coding and the initialization creates the three toolbar
buttons and the relevant texts, ABAP Editor, Object Navigator, and Business Workplace.
The function code FC01, FC02, and FC03 are assigned to the three buttons. When any of
the buttons are pressed, the at selection-screen event is called. The value of the
field sscrfields-ucomm is checked. Depending on which button, the UCOMM field is
automatically populated with FC01, FC02, or FC03. After checking the value, the relevant
transaction code is called via the call transaction statement and the user is taken
to the appropriate transaction.

See also
 f http://www.saptraininghouse.com/2011/adding-buttons-on-

application-toolbar-of-selection-screen/

Changing screen fields on radio button
selection

In this recipe, we will see how input fields may be hidden and shown, based on the input of
the radio buttons. We will create a program having a selection screen containing a group of
two radio buttons and an integer field. We will then add the code that will hide or display the
integer field based on which a radio button is selected.

How to do it...
For creating the program, proceed as follows:

1. First, three radio buttons show, no_show, and no_input, are defined. These are
assigned to the radio button group g1. The user command, INT1, is assigned.

2. Next, an integer is defined with the addition, modif id INT.

Chapter 6

107

3. The AT SELECTION-SCREEN output event is then defined. A loop is run at the
screen table. Within the loop, the group1 of each screen element is checked
for INT. In addition, if show is equal to X, the active field is set as 1 (active). If
no_show is equal to X, the active field is set as 0 (inactive). In case no_input
equals to X, the input field is set as 0 (non-editable). Finally, the modify screen
statement is used to set the values in the screen table. (Though screen is an
internal table, we can't use loop at screen with the WHERE <XXX> variant).

How it works...
The code that we wrote displays three radio buttons and an integer field on the screen.

Doing More with Selection Screens

108

By default, the Show Integer Field radio button is selected. When the Hide Integer Field
radio button is selected, the integer field disappears. The Hide Integer Field radio button or
Make Integer Field Uneditable radio button selection triggers the at selection screen
output event. A loop is then run on each screen element, but we are only interested in the
one that has the group1 field assigned the value INT (as we assigned INT for the integer
field using the modify id addition). We will also check which radio button (Show Integer
Field, Hide Integer Field, or Make Integer Field Uneditable) is set. If the Hide Integer
Field radio button is on, the integer field is set as inactive (and thus made invisible).

If the Make Integer Field Uneditable radio button is set, the input field is set as 0, that is,
the input is not allowed, thus making the field uneditable for the user.

When the user selects the Show Integer Field radio button, the integer field is set as active
and displayed again to the user.

Taking desktop folder and filename as input
In this recipe, we will create a small program that will take as input a folder name and
filename(s) from the user. Both standard function modules, as well as classes, may be
used for this purpose.

In the main part of this recipe, we will use the function modules, TMP_GUI_BROWSE_FOR_
FOLDER and TMP_GUI_FILE_OPEN_DIALOG. In addition to the browsing capability, the user
may also create a new folder while entering a folder. The file's function module lets you select
multiple files from your local directory.

The There's more... section of this recipe will show an equivalent based on the object oriented
approach. The methods, directory_browse and file_open_dialog, of the class
cl_gui_frontend_services will be used.

How to do it...
For taking input of folder and files, proceed as follows:

1. First, two parameter input fields are declared for the folder and filename, having
a length of 80 and 50 characters respectively.

Chapter 6

109

2. Then, we will write the code within the at selection-screen on value-
request event for the folder. We call the function module TMP_GUI_BROWSE_FOR_
FOLDER. The window title parameter is passed to the relevant text, Choose the
folder of your choice.

3. Similarly, we will call the function module TMP_GUI_FILE_OPEN_DIALOG for at
selection-screen on value-request for the filename field. We will pass a
suitable window title to the function module. The importing parameter, rc, returns
the number of files selected by the user. The parameter multiselection is used
for controlling whether multiple files may be specified by the user. We will keep this
as ('') meaning only one file may be specified. The filename and the complete path
is returned in the table parameter file_table of the function module. As the user
will provide one filename, we use a read table statement in order to read the first
record, that is the filename and path specified by the user.

Doing More with Selection Screens

110

How it works...
When the program is run, two input value fields for folder and filename are displayed.
When the folder input help is selected, the folder dialog box is displayed. The user specified a
folder name from his or her desktop. Alternatively, a new folder may be created and specified.
The folder complete path is returned in the variable folder, which may be later used in
the program.

Likewise, when the filename input help is called, the relevant function module is called
and the dialog box is displayed. The user selects the file of his or her choice. Only one file
may be selected. After the function module call, the first row of file_names_tab is called
and the filename input field is filled with the filename and path stored in the first row of
file_names_tab.

There's more...
The function module's call for the files may be slightly altered in order to take input multiple
filenames from the desktop of the user. Then the multiselection parameter of the
function may be passed the value X in order to allow multiple files to be selected. In this case,
additional coding is required to loop through the file_names_tab in order to read all the
filenames specified.

As already mentioned, for the same requirement, the methods directory_browse and
file_open_dialog of the class cl_gui_frontend_services may also be used.

The relevant coding is shown in the following screenshot:

Chapter 6

111

For the directory_browse method, a temporary variable having string type
is declared. The call of the cl_gui_cfw=>flush method is necessary after the
directory_browse method.

For the file_open_dialog method, necessary data objects are defined prior to the
method call.

Coding search help exits for creating better
F4 helps

In this recipe, we will see how search help (and help exits) will help you meet the user
requirements when providing the input values of a particular selection screen's input
field. We will create a search help in this recipe and will assign it to an input field.

The requirement is to provide a personnel number field with input help that shows all the
employees whose birthdays fall in the current month. This means, if the program is run in
March, all the employees whose birthdays are in March will be shown in the input help.

Getting ready
We will create a search help for personnel number. The name of the search help is
ZST9_SEARCH_HELP and it uses the database table, pa0002. The fields PERNR,
NACHN, VORNA, and GBDAT are selected and displayed in the hit list.

Doing More with Selection Screens

112

Next, we will create a program in which we will declare a parameter pernr, based on PERNR
of the table PA0002. We use the matchcode object addition to assign the search help
ZST9_SEARCH_HELP to it.

How to do it...
For defining search help exit function module, proceed as follows:

1. Copy F4IF_SHLP_EXIT_EXAMPLE. We will give it the name ZST9_SEARCH_HELP_
EXIT.

2. Within the function module, we will add the following code under the step DISP.
This is the part where the filtering of employee data for birthdays falling in the
current month takes place. The function module is then activated.

3. We will now assign the newly created function module in the Search help exit field of
the search help. The search help is then activated.

Chapter 6

113

How it works...
The logic we used in this example is that we first fetched all records of the employees from
PA0002, irrespective of their dates of birth, using the search help. Then, within the Search
help exit, we removed all the employees whose dates of birth does not fall in the month the
program is run.

When the user takes the F4 help, the search help is called. The search help fetches the data
from the table PA0002 and the relevant fields—PersNo, First name, Last name, and Birth
date. Next, the search help exit is called.

The table RECORD_TAB within the function module contains the content of the hit list. The
RECORD_TAB table contains a large string field that is comprised of all the fields PERNR,
NACHN, VORNA, and the GBDAT combined. (Prior to writing the code, we used the debugger
to find out the exact positions of the date of birth GBDAT field).

The step DISP is called just before the hit list is about to be displayed. We will use this to
remove any records we do not want. The delete statement removes all the records where
the month does not match the month of the system date (sy-datum). The ones that remain
are the ones having birthdays in the current month. For example, when the report is run in
March, the input help is shown as in the following screenshot:

Doing More with Selection Screens

114

See also
 f ABAP Keyword Documentation for AT SELECTION SCREEN OUTPUT statement
 f http://www.sapdev.co.uk/dictionary/shelp/shelp_exit.htm

http://www.sapdev.co.uk/dictionary/shelp/shelp_exit.htm
http://www.sapdev.co.uk/dictionary/shelp/shelp_exit.htm

7
Smart Forms – Tips

and Tricks

In this chapter, we will see recipes related to Smart Forms such as:

 f Toggle on/off the Microsoft Word text editor

 f Using background pictures and print preview

 f Using folder options for page protection

 f Printing several forms in one spool request

 f Converting Smart Form to PDF output

 f Applying sorting and subtotaling to table fields

Introduction
This chapter explores useful recipes related to Smart Forms. We will start with a simple recipe
that will allow you to change the text editor of the Smart Form to Microsoft Word. Then we will
see how page protection for a number of text lines may be applied using folders in order to
ensure that certain lines are printed together on one page.

We will also see how to set an image as background of a form page for only preview and also
for print. The procedure for generating multiple form outputs in a single spool request will be
discussed in an upcoming recipe. We will also see how the preview and the print dialog may
be suppressed, and the output directly converted to PDF. Finally we will see the recipe for
calculating subtotals using sorting criterion at the Smart Form level.

We assume that the reader has basic Smart Forms knowledge. In addition, the familiarity with
the structure of the form-calling program is needed.

Smart Forms – Tips and Tricks

116

Toggle on/off the Microsoft Word text editor
In this recipe, we will see how we can change the Smart Forms text editor to Microsoft Word.

How to do it...
Follow these steps:

1. Call transaction SE38 and enter RSCPSETEDITOR in the program field. Then execute
the program. The selection screen of the program is shown as follows:

2. Make sure the Smart Forms checkbox is checked. Then, click the Activate button.

3. For switching off the Microsoft Word editor for Smart Forms, uncheck the Smart
Forms indicator and then click the Activate button on the toolbar.

How it works...
Depending on the settings saved for Smart Form, the editor changes. If the Smart Form
checkbox was on, the text editor appears as Microsoft Word. Otherwise, the normal Smart
Form text editor appears.

See also
 f http://wiki.sdn.sap.com/wiki/pages/viewpage.

action?pageId=77987849

 f http://forums.sdn.sap.com/thread.jspa?threadID=1679160

Chapter 7

117

Using background pictures
and print preview

In this recipe, we will see how a picture may be set as the background image of forms.
We will see how we can set the graphic to appear both on the print preview and/or hard
copy of the Smart Form.

Getting ready
We will first create a background image and upload the image on the SAP Document Server
using the transaction SE78. The name of the image we upload is ZST9_BACKGROUND and is
in color (the supported formats are .tiff and .bmp).

How to do it...
We will now set the graphic as the form background. Follow these steps:

1. Call the transaction SMARTFORMS. Double-click the relevant node in the left-hand
pane of the page for which the background image is to be set.

2. In the right-hand pane, three tabs will appear for the page. The third is Background
Picture. On this tab, enter the name of the uploaded graphic. Select the Color
Bitmap Image (BCOL) radio button. Within the Output Mode list, select Print
Preview from the listbox.

Smart Forms – Tips and Tricks

118

3. The main window is placed on top of the background graphic.

4. Next, we define a text within the MAIN Main Window on the page.

5. A suitable line TEST TEXT FOR BACKGROUND is created within the created text,
as shown in the following screenshot:

Chapter 7

119

How it works...
When the Smart Form is called (using a calling program), the background graphic is displayed
along with the line of text in the Print Preview mode. However, when the form is printed, no
background image appears (only the line of text created appears). This setting is very useful
when a pre-printed paper having the appropriate background graphic is used for printing, and
should not be printed in the form output (since the paper already has the graphic in it). The user,
however, needs to see the background graphic when the form preview is taken on the screen.

There's more...
If the background graphic appears blurred or the pixel artefacts are visible, we may need to
use a high-resolution graphic. One option may be that we use a high quality (high-resolution
graphic). Also, we may try to control this using the resolution setting through the Resolution
field in the Output Attributes screen. Instead of keeping it blank, we may enter a value of
200. The higher the resolution, the clearer will be the graphic (however, the size of the
graphic may decrease as the resolution increases).

We may also slightly change the image's output mode in order to make the image work as a
watermark when printed on paper. Instead of the Print preview and no print option for the
Output Mode, we can choose the Print preview and print option.

This will print the image on both the Print option (and the Print Preview option) and when
printed on paper, it will make the image appear as a watermark on top of which text and data
will appear.

Smart Forms – Tips and Tricks

120

See also
 f http://wiki.sdn.sap.com/wiki/display/ABAP/Background+pictures+i

n+Smart+Forms

Using folder options for page protection
In this recipe, we will see how we can create a folder comprising a number of lines
 (block of text) so that they are all printed on the same page. If the space within a page is
not enough for printing all the lines, the entire text block is printed on the subsequent page,
that is, page protected.

How to do it...
For defining a folder with page protection, follow these steps:

1. Right-click on the MAIN window. Then, from the context menu that appears, choose
the option Create and then select Folder, as shown in the following screenshot:

2. Next, enter a suitable folder name. In the right-hand pane, on the Output Options tab
of the created folder, check the Page Protection indicator.

Chapter 7

121

3. Then add a text under the given folder.

4. Add three lines to the text.

5. Save and activate your Smart Form.

How it works...
When the form output is generated, irrespective of the number of lines printed above our
three-line text, a page protection is applied. If the space on the page is not enough so that all
three lines may be printed, a page break is automatically triggered and the lines are printed
on a fresh new page. Otherwise, the same page is utilized. In no case will the three lines be
broken into two pages.

Smart Forms – Tips and Tricks

122

Printing several forms in one spool request
In this recipe, we will see how printed multiple forms may be included in a single spool
request. We will create a number of form pages comprising employees data. Each page
will contain one employee's salary information. The recipe will focus on the important
parts of the program related to Smart Form processing. We assume that an internal table
EMPLOYEE_LIST exists that contain the employee numbers of all personnel to be processed.

How to do it...
Follow these steps:

1. First, we call the function module SSF_FUNCTION_MODULE_NAME in order to get the
name of the Smart Form function module. The form name is passed to the function
module. The myfunction variable is based on the type RS38l_FNAM (not shown in
the following screenshot):

2. Then appropriate variables are defined for the Smart Form control structure and
output options based on dictionary structures.

3. The function module SSF_OPEN is then called.

4. A loop is run on the internal table employee_list for all employees. For each
employee, the form get_employee_data is called, which fetches the necessary
information of the employee in question and fills the internal table employee_data.
The no_open and no_close fields of the control parameters structure are assigned
the value 'X'. In addition, the tdnewid field of the output options structure is
assigned 'X'.

Chapter 7

123

5. The function module of the Smart Form is then called and necessary data of the
employee provided along with control parameters and output option structures.

6. Finally, the SSF_CLOSE function module is called.

How it works...
After executing the program, multiple pages of the forms are generated. For each employee,
a separate page appears along with the necessary information.

Smart Forms – Tips and Tricks

124

The call of the function module SSF_OPEN opens the spool job for form printing.
The tdnewid assigned to 'X' creates a new spool request. Within the loop, the no_open
and no_close fields are set to 'X', which ensures the spool request is not opened or closed
within the loop. The function module of the Smart Form is called in the loop and generates
the necessary output of each employee. When all employees are processed, the SSF_CLOSE
function module is called and the spool request is closed.

There's more...
We can also avoid the usage of the SSF_OPEN and SSF_CLOSE function modules. In this
case, when we program that on the first employee, the spool job is opened and when we
program that on the last employee, the spool job is closed.

See also
 f http://help.sap.com/saphelp_nw70/helpdata/en/64/

bf2f12ed1711d4b655006094192fe3/frameset.htm

Converting Smart Forms to PDF output
In this recipe, we will see how the form output may be suppressed and returned as internal
table to our calling program and then how a PDF is generated within the program. We will
set values to some fields in the control structure of the Smart Form and use it with the
CONVERT_OTF_2_PDF function module.

How to do it...
For generating PDF output without showing the Smart Form on the screen, follow these steps:

1. First, we define two structures cont_parameters and myoutput based on the
dictionary structures ssfctrlop and ssfcrescl respectively.

2. Then, we assign 'X' to the setotf and no_dialog fields of the control structure.

Chapter 7

125

3. The dynamic call of the Smart Form function module is then carried out.

4. Appropriate variables are then defined. The most important is the internal
table pdf_content used for storing the converted PDF output of the form.
The filesize and doc_archive tables are necessary for calling the function
module CONVERT_OTF_2_PDF.

5. The function module CONVERT_OTF_2_PDF is then called. The OTF parameter
passes the value of the field otfdata of the myoutput structure.

Smart Forms – Tips and Tricks

126

How it works...
The control structure fields no_dialog and the getotf are assigned the value 'X'. This
ensures that the form output is suppressed but the form generated is returned to the program in
otf format. The call to the Smart Form function module (stored in the variable myfunction)
returns to the program the otf format in the otfdata field of the myoutput structure.

We then pass this otfdata to the function module CONVERT_OTF_2_PDF.
The function module converts the smart form otf to a PDF and stores it in the internal table
pdf_content passed to the function module for table lines. The PDF file may then be
saved on the desktop using the method CL_GUI_FRONTEND_SERVICES=>GUI_DOWNLOAD,
or e-mailed to another user.

See also
 f http://help.sap.com/saphelp_nw70/helpdata/EN/27/67443cc0063415e

10000000a11405a/frameset.htm

Applying sorting and subtotaling to table
fields

In this recipe, we will see how we can sort a given table within the Smart Form and calculate
totals based on a particular field as the sort criterion. In this recipe, we will use an example of
employees and their allowances and amounts.

Getting ready
For this recipe, we define a structure in the database ZST9_EMPLOYEES comprising three
fields PERNR, ALLOWANCE, and AMOUNT. We define a table type also based on this
structure, as shown in the following screenshot:

Chapter 7

127

A table EMPLOYEE_TABLE (based on the defined dictionary table type) is included in the
TABLES tab of the Smart Form interface, and a corresponding work area WA_EMPLOYEE
in the global definition.

A table is then created on the Smart Form layout. The loop of the table is shown as follows:

Appropriate texts are created within the cells in order to print the employee number,
allowance, and amount values passed. A program is then created and the Smart Form is
called. A tabular output is generated.

In this recipe, we will see how sorting along with totaling may be so that the total of each
employee's allowance is printed at the end of each employee's details.

How to do it...
For subtotaling and sorting, proceed as follows:

1. Double-click the defined table node in the left-hand pane. In the right-hand pane, on
the Data tab, within Sort Criteria, select the Event on Sort End checkbox. Also, enter
PERNR as the field name.

Smart Forms – Tips and Tricks

128

2. This will add a PERNR Event on Sort End node.

3. We define a subtotal variable in the global definition. This is a temporary storage
variable for totals of each employee's allowances.

4. On the Calculations tab of the table, we enter the values shown in the
following screenshot:

5. Right-click the PERNR Event on Sort End node to create a table line. Use the same
line type used for the rows of the table (containing three cells).

6. For the second and third cell, we define texts outputting SUBTOTAL and VARIABLE
and SUBTOTAL respectively.

Chapter 7

129

7. Also, a line of code is added after the text that clears the SUBTOTAL variable.

8. The final state will look like the one shown in following screenshot:

Smart Forms – Tips and Tricks

130

How it works...
The settings we did in the Smart Form will output the subtotal of the allowances of each
employee as shown. At the end of each employee, the total allowances are calculated
and printed.

The entries made on the Calculation tab of the table totals all the amounts of a particular
PERNR field (the SORT criterion) and stores in the SUBTOTAL variable. The output will then be
generated at the EVENT on SORT end. After that, we clear the old value of SUBTOTAL so that
the value of the next employee may be calculated.

See also
 f http://help.sap.com/saphelp_nw2004s/helpdata/en/8a/60da59394b11

d5b69b006094192fe3/frameset.htm

8
Working with SQL Trace

In this chapter, we will see recipes related to SQL trace such as:

 f Carrying out SQL trace

 f Generating and interpreting the trace result

 f Carrying out restricted trace

 f Filtering unwanted trace result entries

 f Summarizing an SQL list and viewing table-related information

 f Quickly finding the data source of a screen field

 f Finding the data source of a field's hit list

Introduction
In Chapter 5, Optimizing Programs, we discussed the performance optimization and the tool
Runtime Analyzer transaction SAT. This chapter explores useful recipes related to SQL trace.
We will see in this chapter how the SQL trace may be used in order to optimize a program
by pinpointing the exact "problem areas" in database-related code. Also, we will use the SQL
trace to find out the underlying data source (table name and field name) of a particular screen
field. We assume that the reader has basic selects and optimization knowledge.

We will start with a brief explanation of the steps required in carrying out an SQL trace. In the
subsequent recipe, we will see how the performance trace results may be interpreted. Also,
we will see how we can access the various menu and toolbar functions of the list display. Our
other recipes will be tips and tricks for finding out quickly the data source of screen fields and
their F4 helps.

Working with SQL Trace

132

Carrying out SQL trace
In this recipe, we will see how we can carry out an SQL trace. We will run the trace on the
program RIBELF00 (Display Document Flow).

How to do it...
We will now carry out the following steps:

1. In one SAP session, open the transaction that is to be traced. In our case, we have
to trace the program RIBELF00. We enter on transaction SE38 the program name
in the field provided, and execute the program in order to display the selection
screen. We will not execute the program, yet we will enter the input values on
the selection screen.

2. Then, open another session and call transaction ST05. The screen appears,
as shown in the following screenshot:

3. Make sure the SQL trace checkbox is on. Click the Activate Trace button on the
toolbar. Make sure that before doing this, the message in the lower part of the
screen reads, All Traces are Switched Off….

4. Now return to the first SAP session and execute the report with the relevant input
values, as shown in the following screenshot:

Chapter 8

133

5. Once the output is displayed, go back to the SQL trace session and click on the
Deactivate Trace button.

6. Then, click on the Display Trace button to generate the results.

How it works...
The Activate Trace button switches on the database trace. Then, any database-related activity
related to SELECT and UPDATE statements are recorded. This may be displayed using the
Display Trace button.

For carrying out a trace, you may even stop a program in the debugger in one session and
then switch on the trace in another session. In addition, you may enter data on a SAP entry
screen and just before pressing the Save button, switch on the SQL trace, and then switch off
the trace after Save is pressed and the success message appears. In this case, all database
statements are executed between the time the Save button is pressed and the message
display are recorded.

It is recommended that you run only the concerned program transaction and stop any other
activity. Otherwise, many irrelevant entries will also be included in the trace result, making it
very large and difficult to read.

The next recipe will cover how the trace results may be displayed.

Generating and interpreting the trace result
In this recipe, we will generate the results of the trace carried in the previous recipe, Carrying
out SQL trace. The mentioned recipe should be completed in order to proceed with this one.
We will then interpret the results in order to get a better idea of the various tables and their
access times involved.

Working with SQL Trace

134

How to do it...
We will now carry out the following steps:

1. From the main screen of the transaction ST05, click on the Display Trace button.
This will take you to the screen, as shown in the following screenshot:

2. The User name field and the Date and Time fields appear by default. You may change
the Date and Time fields, and also enter data in the other fields if desired.

3. Then press F8. This will display the Performance Trace.

Chapter 8

135

How it works...
When the Display Trace option is chosen, the performance trace is displayed. All the
database activities (database access and database update statements) that were recorded
during the time between the trace on and off duration are displayed, as shown in the
following screenshot:

In this example, since we had a report that only reads data from the database, no database
update statements are involved.

Each statement that is contained in the ABAP program is subdivided into various operations
such as PREPARE, OPEN, and FETCH. There are various useful columns in the displayed
performance trace. The trace results contain the table name (Object name) that refers to
the table from which data is read. The duration of the statement/operation is also shown
in milliseconds, along with the name of the program that contained the ABAP statement in
question. Most importantly, the number of records fetched from the database as a result of
the FETCH operation is also shown.

Working with SQL Trace

136

The various operations are as follows:

 f PREPARE: After the PREPARE operation, the Open SQL statement is translated into
native SQL of the underlying database. The statement is not assigned the parameter
values for which the data is to be read (that is, the WHERE clause specification).
Double-clicking the particular PREPARE operation line will show this detail. The data
access method (execution plan) is determined at this point.

 f OPEN: The OPEN operation opens a cursor declared earlier using the DECLARE
operation, and assigns the relevant comparison values to the WHERE clause fields.
The records fulfilling the selection criteria are read from the database table using the
relevant execution plan (involving either a sequential or an index search). Until here,
the records are at the database level.

Chapter 8

137

Note the difference between the SQL statement pertaining to the OPEN and the
PREPARE statement.

 f FETCH: Finally, the FETCH operation transfers the record(s) matching the criteria
specified to the application server. The various records read are shown in the
Records column.

There's more...
If a FOR ALL ENTRIES construct is involved, the data records are not read by a single set of
operations. Rather, multiple sets of PREPARE-OPEN-FETCH operations are involved. You may
see them in the following screenshot:

If database update statements are involved, the EXEC operation appears in the Trace List.
In addition, in this case, the Records column will show the number of records updated in the
database table rather than the records read.

At the end of the list is the total of the number of fetched records and the total execution time.

Working with SQL Trace

138

Also, we can go to the ABAP code and display the execution plan from the performance Trace
List. For finding out the exact location, in the ABAP program, of the corresponding statement
shown in the Trace List, keep the cursor on a line showing an OPEN operation, and then click
the () icon from the toolbar. This will take you to the exact line in the program that generated
the entry in the trace list.

In addition, for viewing the execution plan of a particular statement, select the FETCH
operation line and click the toolbar button Explain. The details about the index used (or
whether the search within the table was sequential) are shown. After clicking the Explain
button, the screen looks like the one shown in the following screenshot (for a MS SQL server
database). Click on the EXPLAIN TREE tab to view whether an index has been used for the
statement in question.

See also
 f http://blogs.msdn.com/b/saponsqlserver/archive/2009/05/10/sql-

execution-plans-part-3-how-to-get-the-plan.aspx?Redirected=true

Carrying out restricted trace
Until now, we have seen how we are able carry out the trace on our user, as well as without
any restrictions. In this recipe, we will see how a trace may be carried out on other users along
with additional imposed restrictions.

Problem areas may be difficult to find at first. One approach is to run an unrestricted trace
in order to find out the problematic program/transaction or a user. We may then run a
"restricted" trace focusing only on the particular program or user.

Chapter 8

139

In addition, one more use of a restricted trace is when we run multiple programs/transactions
in various sessions. We may run a time-consuming report of Finance (FI) module in one
session, and at the same time, want to trace an HR transaction code, say PA30, in another
session. We can then specify the transaction code of HR in the restriction criteria of a
restricted trace. In this way, the trace records of the FI report that is running or any other
activity in any session will not be included in our trace results.

How to do it...
1. For carrying out a trace that is restricted, call transaction ST05.

2. On the main screen, click the Activate Trace with Filter button. The Set Restrictions
for Writing Trace dialog appears.

3. Enter the User Name in the field provided. We enter the value JON_2. In the
Transaction Name field, we enter the transaction code PA30. In the Include Table
Names area, we enter HRP* and PA00*. In addition, if we know the Process Number
of the process, we can simply enter the three digit Process Number in the field
provided. This will only trace the process number in question.

4. Press Enter when all entries are done. The trace is on. When we like to switch off the
trace, the same Deactivate Trace button is used.

Working with SQL Trace

140

How it works...
In this recipe, we have switched on the trace for the user JON_2 and focused only on the
transaction PA30 and also the tables whose names start with either HRP or PA. The trace
file will therefore look like the following screenshot:

There's more...
It is recommended that for performance optimization, we first run a trace without restrictions.
We can then filter the results according to the various criteria of the selection fields or the
Display Trace screen. We will see how this is done in the next recipe.

Filtering unwanted trace result entries
SQL performance trace files may be very huge and searching for tables may be a
time-consuming task. In this recipe, we will see how we can filter irrelevant values from
the SQL trace list. We assume that an unrestricted trace like the one shown in the first
recipe, Carrying out SQL Trace has already been done.

How to do it...
1. After a trace has been carried out from the transaction ST05 screen, press the

Display Trace button. The portion of the screen that appears is shown in the
following screenshot:

Chapter 8

141

2. The User name appears as default. You may enter a particular table name in the
Object Name field, or a set of letters followed by asterisk (*), such as VB* or PA*
may be entered.

3. You may enter one or more operations in the Executed Operation field.
4. Also, we can enter a value for execution time with a greater-than (GT) operator.

How it works...
Instead of the huge trace list, only the values that pertain to the values entered on the Display
Trace screen are shown. For example, if we enter VB*, all tables with names beginning with
VB such as VBAK, VBRP, and so on will be shown. Also, if we enter the EXEC operation, only
this operation's entries will be displayed. Similarly, the Execution Time is taken into account.
For finding the slowest statements, the Execution Time field is very important. We can enter a
value greater than the particular time duration. This will list all costly statements that we need
to optimize.

Summarizing a SQL list and viewing
table-related information

For each SQL statement in the program, the trace list shows a number of lines corresponding
to the various operations, thus making the list very huge in size. We can see a summarized
(view), and also apply table-related functions on the list values. In this recipe, we will see how
to apply these functions.

How to do it...
For displaying summarized information, carry out the following steps:

1. From the SQL list, choose the menu option Trace List | Summarize Trace by SQL
Statement. Alternately, you may use the keys Shift + F8.

Working with SQL Trace

142

2. In order to see a list of all identical selects within the trace, choose the menu option
Display Identical Selects.

3. For generating a combined view for various table accesses and without the details
of the SQL statement, use the menu option Trace List | Combined Table Accesses
or use keys Ctrl + F8. You may also see an Aggregate table view from the Combined
Table Accesses list, by using the menu path Table List | Aggregate.

How it works...
The summarized table view generates a shorter list, as shown in the following screenshot.
The details of the operations such as OPEN, FETCH, and so on are omitted, and only one line
exists for each SELECT or UPDATE statement used in the program. In addition, no detail of
the SQL statement or parameters passed from the program for the WHERE clause is shown. If
there are multiple accesses to a particular table, each access is shown in the list along (in the
following screenshot) with the time at which the access was made:

Chapter 8

143

If we further want to refine and want an Aggregate Table Accesses list showing the total time
taken for accessing a particular table along with the number of records read and the number
of times the respective table was accessed throughout the trace period, we will go for the
Aggregate Table Accesses view. For each table accesses, there is a single line shown in
this list, as shown in the following screenshot:

We also have a percentage column that will show the table whose access takes the most
percentage of the runtime.

If the appropriate path is chosen, a list of identical selects may also be generated.

Working with SQL Trace

144

Here, the number of times the SELECT statement was executed is shown, along with the
number of records read and the duration of the execution. Reducing/eliminating the number
of identical selects (particularly the more expensive ones in terms of execution time) will
greatly help in performance optimization. They are just repeated SELECT statements that
only consume runtime and resources.

Quickly finding the data source of a screen
field

In this recipe, we will see a quick method that will enable us to find the database table and
field in which the data of a particular SAP screen field is stored. We will use the SQL trace and
the EXEC operation for this purpose.

Getting ready
We will use PA30 and its Infotype 0002 in this example transaction. We assume that we are
not sure which table name and field stores the first name of an employee.

How to do it...
Proceed as follows:

1. Call transaction PA30. Enter an employee number in the field provided. Also enter
0002 (personal data)in the Infotype field, and then click on the Change button.

2. Once you are in the Change Screen, change the First Name of the employee in the
relevant field. Do not press the Save button.

Chapter 8

145

3. In another session, switch on the SQL trace.

4. Go back to the transaction PA30 and save the data.

5. Once the save message appears, go back to the SQL trace transaction and click the
Display Trace button.

6. On the Display Trace selection screen, enter EXEC* in the Operation field and take
the Trace List.

How it works...
We used a small trick to find out the data source of a screen field. In order to avoid searching
through a lot of table names by using display of data, we only focused on the relevant field
and used a change operation. Since we changed a record, the corresponding field must be
updated in the database. Also the operation name must begin with EXEC. So, we generated
a list and searched for only EXEC operations. From this, we found out the name of the table
PA0002 shown in the list. When we look at this closely, we see that the value we entered in
the first name field was passed for update in the field VORNA.

Finding the data source of a field's hit list
In this recipe, we will use the SQL trace in order to find out the data source of the F4 help of
a screen field. The aim of this recipe is to devise a strategy that will make the procedure for
finding the data source quicker and easier.

Getting ready
We will use the transaction SE24 as an example. We assume that we are not sure of the
various tables in which the class names and descriptions reside. We may take the Class Field
input help for names starting with any letter. For our example, we view a list of all classes with
names starting from y.

Working with SQL Trace

146

How to do it...
Proceed as follows:

1. In one session, call transaction SE24. Enter y* in the Object type field.

2. In another session, call transaction ST05 and switch on the trace using the Activate
Trace button.

3. Now go back to the transaction SE24 and press F4 while keeping the cursor on the
Object type field. The list of values will appear.

4. Now go back to the ST05 screen, switch off the trace, and take the display of
the trace.

How it works...
When we pressed F4, the classes whose names start with Y appear as shown in the
following screenshot:

Chapter 8

147

The number of entries fetched (number of the entries in the hit list) is also shown. In our
system, we get 39 hits. This figure is very important and will be used later.

Then, we take the Combined Table Accesses to see which table access shows 39 records
fetched. We find two tables SEOCLASS and TADIR from which 39 records are read. After
looking at the two tables, we find that SEOCLASS contains the class names. For description
we can go the class text table SEOCLASSTX.

Another method for arriving at the text table can be used. For the list shown in our system for
classes beginning with Y, we have only four descriptions shown with the rest being blanks.
If we further look at the trace list, we find that the table SEOCLASSTX is accessed and four
records are shown as accessed (for blank texts, no corresponding records are fetched).

9
Code Inspector

In this chapter, we will see recipes related to the Code Inspector tool. We will look at:

 f Carrying out quick code inspection

 f Carrying out a full-fledged inspection

 f Carrying out database-specific performance checks

 f Suppressing messages using pseudo comments

 f Searching for ABAP statement patterns and tokens within code

 f Creating your own Code Inspector checks

Introduction
The Code Inspector allows you to check your program for consistency, performance, and
quality. It also allows you to search for patterns of ABAP statements or tokens within a
program. The variable-naming convention adherence may also be verified. Unlike SQL trace
and SAT tool, the Code Inspector does not execute the program. It only checks the syntax,
and some times, depending on the checks selected, refers to the dictionary attributes of the
table(s) involved.

Some of the categories of checks are shown as follows:

 f Performance

 f Security

 f General

 f Syntax

 f Robust Programming

 f Search Function

Code Inspector

150

For programs, the simplest way of running the Code Inspector is to use the Menu option and
go to Program | Check | Code Inspector. However, you do not have control over the checks
carried out through this Menu option. The default variant DEFAULT is executed and the set
of checks contained within it are run. Moreover, only one program at a time may be inspected
through the Menu option.

This chapter explores useful recipes related to the Code Inspector. We will start with the
simplest method for running inspections on one program or a small number of programs.
Then, a full-fledged inspection with further options such as inspection saving and background
execution will be discussed. Next, we will focus on the performance checks and the various
cases they generate messages in the inspection results. Search functions and the procedure
for suppressing messages in exceptional cases will also be discussed. Finally, we will see how
we can create our own checks and add it in the list of standard checks.

For simplicity sake, I will use the term programs throughout the chapter when inspection
is involved. However, other repository objects may be included in the inspection for
checking purpose.

Carrying out quick code inspection
In this recipe, we will see how we can do a quick code inspection on a single program or an
object set. This is also termed as an Ad Hoc Inspection, since the inspection results are not
saved and are not available for future.

How to do it...
We will now carry out these steps:

1. Call the SAP transaction SCII. Alternatively, you may go to transaction SCI and on
the main screen, leave the Inspection field blank and press the Create button below
the Inspection Input field. The screen appears as follows:

Chapter 9

151

2. Select the Single radio-button option. From the list box, select the Program option
and then enter the name of the program in the field provided. We enter the name
of a previously created program ZST9_TEST_FOR_ALL_ENTRIES_2.

Code Inspector

152

3. From the area in the lower part of the screen, we will select the option Temporary
Definition. Then we select from the available checks that we want to be carried out.
Selecting or deselecting a particular category will include or exclude all checks within
the category in the inspection. For resetting to default values at any time, select the
menu path by going to Utilities | Set Initial. Alternatively, use the toolbar button
or press F7.

4. Finally, press F8 to carry out the inspection.

How it works...
The code of the program mentioned is scanned and checked based on the selected checks.
The results are then displayed. The results comprise of tree structure (hierarchy) within nodes
corresponding to the checkbox selected. There are three columns shown for messages within
the different categories and then the checkboxes pertaining to the category in question.
These are Errors, Warnings, and Information messages. You may open the various
categories to see the detail of the messages found in each category. For example,
we have two information messages found under Use of Indexes in SELECT statement.

Chapter 9

153

You may double-click on a particular message to reach the actual line of the code in the
program that generated the message in question.

There's more...
While selecting the checks to be run from a particular category, a check may have further
attributes. This is denoted by the icon before it. You may click on the icon to view a list of
the attributes and choose the ones relevant for your requirement. If you find an icon, it means
that there is at least one value that must be set for the attributes contained within the check.
Otherwise, selecting the check will produce an error and the inspection will not run.

For running another inspection from the results screen, use the toolbar button .

For viewing the results in a compact display format, use the toolbar button .

You have also the option of checking objects using object sets or the object contained within a
request. However, the transaction has a limitation that you may not check over 50 objects and
that the inspection may not be saved for reuse. In this case, the inspection is not stored and
does not have a name (that is, it is anonymous). The next recipe will cover the ones that will
overcome these limitations.

Carrying out a full-fledged inspection
For checking over 50 programs, you may use a reusable inspection. In this recipe, we will see
how we can carry out such an inspection. Existing standard and custom variants may be used
for this recipe. However, we will create variant and object sets from scratch. We will create a
global inspection that will check all programs that begins with ZST9_*, and as well as create
global variant and global object set.

As the name indicates, an object set is a collection of objects that may be comprising of ABAP
programs, class, function groups, and classes. All repository objects may be assigned to an
object set. An object set may also have a number of versions such as 001, 002, and so on.

Code Inspector

154

How to do it...
Follow these steps:

1. Call the SAP transaction SCI. The screen appears as follows:

2. We will first create an object set (that is, the set of programs on which we need to run
the inspection) of type global. For doing so, we will toggle the local icon so that the
global icon appears. Then, enter a name (in our case, ZST9_OBJ_SET) in the field
and then click the Create button.

3. The screen having the block appears as follows:

Chapter 9

155

4. Enter ZST9* in the Program field within the Object Selection block. Then save your
object set and come back to the initial screen of the transaction SCI (you will see
001 entered automatically in the Version field).

5. Next, we will define the variant. Enter a suitable name in the variant field. Then click
the Create button below the variant input field.

6. On the screen that appears, check the various checks that you need to include.
You may include from various categories as discussed in the previous recipe.

7. We then create an inspection. Enter a suitable name in the Name field.

8. Finally, we run the inspection by pressing the Execute button.

How it works...
Once the inspection is run, it takes some time for executing. The time taken depends on the
number of programs included in the object set and the number of checks selected on the
variant. Initially the inspection has the status Not Yet Executed .

Code Inspector

156

This will carry out the inspection on programs having names that begin with ZST9_ based on
the checks of the two categories that we selected, Performance and Robust Programming.

Once execution is completed, you may then click on the Results icon to view the results.
The new status will then be denoted by a green Executed icon.

After making corrections in the program(s) involved, rerun the inspection by generating a new
version of the inspection. This may be done by the Create New Version icon.

There's more...
You can also execute to schedule the inspection using as a background job. For this, click on
the Toolbar button in the inspection screen. The dialog box appears as follows:

Enter a suitable name of the screen group and select the In Background (Periodically also)
option. Then, you may then click (Maintain Server group) and enter further details.

You may schedule the inspection to be scheduled every week, or month, and so on.

Chapter 9

157

See also
 f http://help.sap.com/saphelp_nw70ehp2/helpdata/en/82/

e6e8abfd59490e9e811940cc1027ef/frameset.htm

Carrying out database-specific performance
checks

In this recipe, we will see a few examples of problems of the SELECT statements that the
code inspector may highlight. This may help in improving performance of the program at the
development stage. The performance checks are available in both the transactions SCI and
SCII. We will emphasize on the selection of the database-specific performance checks during
variant creation, and some of the typical statements/constructs that may be caught using
code inspector.

How to do it...
1. Within the checks, expand the Performance Checks category.

2. From the list of checks that appear, select the checks shown in the
following screenshot:

How it works...
The inspection checks the various program and highlights as warning statements that are
performance statements. During this, the code inspector checks the syntax of the program
and refers to the attributes and technical settings of the tables involved.

 f CHECK or EXIT statements used within a SELECT statement instead of highlighting
a WHERE clause.

Code Inspector

158

 f SELECT statements included in a loop such as a DO loop or within a loop at ITAB.

 f Any SELECT statements that use the BYPASSING BUFFER addition.

 f SELECT statements that are without a WHERE clause will be included in the warning.
The following is one such example:
SELECT * FROM ZMYTAB INTO IT_TAB

 f In addition to this, any table that is buffered but is included in a subquery will also
result in a warning. This is because the buffering may not be used in this case, since
the result of the subquery will be used at the database level in order to determine the
selection set of the main SELECT statement.
 SELECT FIELD1 INTO TABLE IT_FIELDS
 FROM ZTAB1
 WHERE FIELD2 EQ 'ABC' AND
 FIELD3 IN (SELECT FIELD1 FROM ZTAB2
 WHERE FIELD2 EQ 'Z1' AND FIELD3 EQ'A'.)

 f If the ZTAB2 table is buffered, a warning message will appear in the result.

 f Also, if the coding includes a SELECT statement on any table that is single-record
buffered and a SELECT * ENDSELECT statement is used in the program, the
corresponding statement will be highlighted in the results.

 f Any query that may cause problems as far as the index selection is concerned will
result in a message. In case, the WHERE clause of the query does not correspond
to any index in the database for the table in question, a message appears in the
inspection results. This hints that there is a possibility that a full sequential scan
will be run for the query that could be very time-consuming.

 f Also for indexes, if a particular field is not included in the WHERE clause—for example,
if the index in the database comprise of fields A1, B1, and C1, and the WHERE clause
of the query includes B1 and C1 but not A1, a warning is generated.

There's more...
Though the Code Inspector aid in writing better code, they have certain limitations. It is
possible that a program generates no messages during the inspection, but may be slow
when actually executed in QAS or production system.

The code is only analyzed and scanned along with the information pertaining to attributes of
the dictionary tables used. The code is not executed (with actual data). The true performance
test and analysis must be based on the actual execution tools such as transaction SAT and
SQL trace. The checks of code inspector do not replace these tools.

Chapter 9

159

See also
 f http://blogs.msdn.com/b/saponsqlserver/archive/2008/01/03/

using-sap-code-inspector-to-improve-quality-and-performance.
aspx

Suppressing messages using pseudo
comments

In this recipe, we will see how we can suppress messages (generated from checks) of a
particular category so that they do not appear in the results tree. It is not possible to hide all
messages. However, there are some that may be hidden. These are known as exception.

In this recipe, we will see the different ways of finding out whether a particular message may
be hidden and the code for hiding such messages using pseudo-comments.

How to do it...
Carry out these steps:

1. From the message results, navigate to the specific message that you like to suppress.

2. Expand the message to display its details.

3. Then, check if the icon is displayed before the message as shown in the
following screenshot:

Code Inspector

160

4. Click the icon. This will display the dialog box, as shown in the following screenshot:

5. Note the comment. This may be included in the coding with the statement that
generated the message as shown as follows:

SELECT * FROM ZTAB. "EC# CI_NOWHERE

How it works...
We used the results to find out whether the message may be suppressed or not. The presence
o f the icon confirmed the possibility of hiding the NO_WHERE message. We then wrote the
pseudo comment along with the SELECT statement. When we rerun the inspection, the
SELECT statement with the pseudo comment will not be shown in the messages.

Suppose we need to suppress message for multiple SELECT statements, we need to write the
corresponding pseudo comment correctly with each statement.

There's more...
We can also find out the pseudo comment of a check (if applicable) directly from the
categories and checks display. For this, expand the relevant category folder in order to display
the relevant check. Click the icon next to the check title. This will display the documentation
of the check in a separate window. The pseudo comment will then be displayed at the end of
the window as shown in the following screenshot:

Chapter 9

161

Searching for ABAP statement patterns and
tokens within code

In addition to the quality, performance checks, you may use the Search Function node
provided to formulate your own criteria in order to search for tokens and ABAP statement
patterns within the program(s) in question. In this recipe, we will see how this may be done.

How to do it...
Follow these steps:

1. In the variant specification, expand the Search Function node. This checks appear as
shown in the following screenshot:

2. Click the icon to enter values for the Search of ABAP Tokens function.

Code Inspector

162

3. Then, enter the search string in the Search String dialog box that appears.

4. Enter one token in the field. For search of multiple tokens within the code, select the
 icon.

5. For searching for ABAP statement patterns, click the icon for the check.

6. Then enter the single value in the field provided as shown in the following screenshot:

7. Finally run the inspection.

How it works...
The search for token function will search all the programs for the token FROM and T512T
and will highlight when found in the results. Suppose the word FROM occurs twice and T512T
appears once in the display, then total three messages will be displayed, that is, one for each
found token.

For the pattern search, the programs are scanned for all SELECT statements that read data
from tables having names beginning from PA00 followed by two characters such as PA0023,
PA0008, and so on, followed by CLIENT SPECIFIED. The asterisk (*) after SELECT does not
mean the code for fetching all fields of the database table but is a search function operator
that means any set of tokens after the token SELECT such as *, PERNR INTO WA_PERNR,
and so on.

Chapter 9

163

Creating your own Code Inspector checks
In this recipe, we will see how we can create our own company specific checks and categories
and display them with the standard check categories. For simplicity's sake, we will create a
check by the name My Check under a new category My Check category. When this check
will run, it will search for the token T512T in the program and will display the number of
occurrences and the corresponding line numbers.

How to do it...
Follow these steps:

1. Call the SAP transaction SE24. Enter the class name CL_CI_CATEGORY_TEMPLATE
in the class field and click the Copy button. The screenshot appears as follows:

2. Open the new class in the Change mode and the CONSTRUCTOR method in the Edit
mode. Add the code given in the following screenshot:

Code Inspector

164

3. Next, we will create a copy of the CL_CI_TEST_SCAN_TEMPLATE class having the
name ZST9_CL_CI_CHECK. In the CONSTRUCTOR method, add the code given in
the following screenshot:

4. Add the code in the run method of the Check class, which is given in the
following screenshot:

5. Add the code for the GET_MESSAGE_TEXT method of the class given in the
following screenshot:

Chapter 9

165

6. Activate the two classes. Make sure all components are also active.

7. Next we will do the necessary setting for displaying the newly created check and
category along with standard checks in transactions SCI and SCII. Follow the menu
path from the transaction SCI.

8. The two newly created classes will appear in the list that is displayed.

9. First, select the category class and click Save. A confirmation dialog box
appears. Click Yes.

10. Repeat the last step for the check class.

How it works...
First we create the category class. We assign the necessary text (My Check Category)
to be displayed in the CONSTRUCTOR method. The folder of the category will have this text
displayed. Next the check class is defined and the text My Check. The linkage between
the check class and the category class is done in the CONSTRUCTOR method of the
check class.

Code Inspector

166

The run method is executed when the check is executed. The REF_SCAN object supplied with
the TOKENS table within the method is used for checking all the tokens of the program code
that is to be included in the inspection. A loop is run on the TOKENS table and if the token
t512T is found, the method INFORM is called with the necessary information supplied. We
want the information message to be displayed along with the row and column of the token.
The P_CODE value 0001 is also supplied, for which an appropriate text message is added in
the GET_MESSAGE_TEXT method.

Then, both classes were activated.

Finally, the activation setting will display the new check and the category along with standard
categories and checks for transactions SCI and SCII, as shown in the following screenshot:

We ran the inspection for a program having two occurrences of the token T512T. The output
of the results is shown in the following screenshot:

See also
 f http://sapignite.com/enhancement-of-code-inspector/

 f http://wiki.sdn.sap.com/wiki/display/Snippets/
Code+Inspector+Check

10
Simple Transformations

In this chapter, we will see the following recipes for simple transformations:

 f Creating simple transformations

 f Creating transformations for structures and calling them in programs

 f Creating transformations for internal tables

 f Generating transformations for dictionary table types

 f Downloading into Excel made easy using simple transformations

Introduction
This chapter explores useful recipes related to simple transformations. We will start with a
brief overview of simple transformations and their structure. We will also discuss the process
of the conversion of ABAP data into an XML stream (serialization) and the reverse process
(deserialization).

We will start with a simple recipe in which we create a simple transformation that contains
no root element but only XML literal elements and text. We will then see how to create
transformations to interpret ABAP structures and internal tables. Next, we will see how we
can quickly generate a transformation for a dictionary-defined table type using the transaction
XSLT_TOOL.

There are two types of transformations possible via the transformation editor transaction
XSLT_TOOL. They are the XSLT transformation the and simple transformation. XSLT
transformations are defined using the XSLT programming language (and additional SAP-
related statements). In addition to XSLT elements, ABAP calls are also allowed in XSLT
transformations. They may be used, for example, to read data from the database. On the
other hand, simple transformations are created using the simple transformation language.

Simple Transformations

168

Simple transformations allow XML-to-ABAP and ABAP-to-XML conversion, whereas for XSLT
transformation, XML-to-XML and ABAP-to-ABAP transformations are also possible.

A recipe for calling transformations from ABAP programs will also be discussed. Finally, we will
see a recipe that uses transformations to generate Excel output for internal table contents
from within an ABAP program.

An entire discussion of Simple transformation commands is not possible in one chapter.
However, we will see the most important and commonly used features. The primary emphasis
will be on simple transformations for structure (simple and nested) as well internal tables.

Simple transformation is a meta language that allows the conversion of ABAP data into XML
form and vice versa. The conversion of data into XML is known as Serialization. On the other
hand, the processing of an XML stream in order to populate ABAP data objects is termed
Deserialization. Simple transformations may be called from ABAP programs using the
CALL TRANSFORMATION statement. Simple transformation programs are created using
the transaction XSLT_TOOL.

A "simple" simple transformation is as follows:

The first line signifies the type of the transformation. It is automatically inserted by the system
while creating a new transformation.

All objects contained within < and > are termed XML elements. The XML elements may be
divided into two categories, ST commands or literal elements.

Chapter 10

169

ST commands serve a special purpose and have been defined in the namespace
http://www.sap.com/transformation-templates. tt:transform, tt:root,
and tt:template are XML elements that are ST commands (the prefix tt is used in the
namespace for ST commands).

The literal XML elements are not contained in the namespace. X0, X1, and X2 are the
XML literal attributes. These are neither literal XML elements nor ST commands. my
transformation first line in the figure is literal text. Within the literal XML element
X2, there is the literal text second line defined with the identification using <tt:text>.
The literal text between <tt:text> and </tt:text> is included in the serialization even if it
comprises of only blank spaces. If the text is without identification (that is, if <tt:text> and
</tt:text> are not used) the elements comprising of only blank spaces are ignored at the
time of serialization.

Data roots are those that serve as the interfaces between the XML and the ABAP.
Transformations that do not have a data root do not use any ABAP data during serialization
and deserialization. At the minimum, one root element must be present for ABAP data to be
used by the transformation.

The command tt:value is used for serialization of elementary data objects and fields of
structures, whereas the command tt:loop is used for the serialization of internal tables.
tt:template defines the block used to create the XML document from ABAP data during
serialization (or the block used to extract ABAP data objects from an XML document when
deserialization is carried out).

See also
 f http://help.sap.com/abapdocu_70/en/ABAPCALL_TRANSFORMATION.htm

 f http://help.sap.com/saphelp_nw70ehp2/Helpdata/EN/7f/
b7463c32a3fe13e10000000a114084/frameset.htmA

Creating simple transformations
In this recipe, we will see how we can create a simple transformation comprising of literal texts
and no data root. We will use the transaction XSLT_TOOL.

Simple Transformations

170

How to do it...
We will carry out the following steps:

1. Call the transaction XSLT_TOOL. Enter a suitable transformation name in the field
provided (we give the name zst6_first). Then, press the Create button.

2. This will display a dialog box asking you for the description and the type
of the transformation. Enter a short description in the field provided. From
the Transformation Type list box, make sure to choose the option Simple
Transformation. Then, press Enter.

3. From the screen that appears, choose the SourceCde tab. You will find the source
code editor filled with the basic code.

Chapter 10

171

4. We will now write the code for our "simple" simple transformation. We will delete
the root element. Within the template, we will add literal elements along with the
necessary literal texts with and without identification. We create a literal element X0
that contains the literal elements X1 and X2. After the addition of the lines, the code
appears as shown in following screenshot:

How it works...
We created a simple transformation. It contains no root element, meaning that it can be
passed any ABAP data object when called from an ABAP program.

When the transformation is serialized, the resulting XML code looks like the following code:

<X0>
 <X1> my transformation first line </X1>
 <X2> second line </X2>
</X0>

The literal element X1 contains literal text without identification, whereas X2 contains text with
identification defined within <tt:text> and </tt:text>.

Simple Transformations

172

There's more...
To better understand the literal text with the identification feature, consider the
following example:

We create an element X2 without identification and an element X3 with identification. Both
contain blank spaces. The resulting XML string (as seen in the debugger) will be as follows:

For element X3, the white spaces are preserved, whereas for X2 they are not.

Creating transformations for structures and
calling them in programs

In this recipe, we will see how we can create transformations that correspond to a nested
structure defined within an ABAP program. We will create a transformation, then call the
transformation from a program using the CALL TRANSFORMATION statement and pass it to
a populated ABAP structure corresponding to the root element of the transformation. We will
then see how serialization will generate the XML stream.

Chapter 10

173

How to do it...
We will now see the steps needed to create a transformation corresponding to a structure:

1. Call the transaction XSLT_TOOL. Then, enter a suitable name for your
transformation. We gave it the name ZST6_FOR_STRUCTURE.

2. Click on the Create button. Then, on the Create Transformation dialog box that
appears, choose the option Simple Transformation and proceed further.

3. Enter the following code within the transformation editor:

4. When done, click on the Activate () button.

5. Next, we will create the program that will call the transformation and pass it to an
ABAP structure.

6. In the program, we will first define the nested structure, as shown in the following
screenshot. The name of the structure is struc. It has a field field1 and contains
another structure nest1, comprising of the fields field1 and field2.

Simple Transformations

174

7. Then, populate the structure fields with suitable values.

8. Finally, in the ABAP program we will define a string named xml_string and call the
transformation using the CALL TRANSFORMATION statement. The result of the CALL
TRANSFORMATION statement corresponding to the passed structure is returned in
xml_string.

How it works...
The transformation created is comprised of a structure that will be passed during serialization
via the root variable struc. Within the XML literal elements X1, X3, and X4, the current node
is set using the reference of the data root struc. For X1, we include the field field1 of
struc. For X3, we address the field1 field of the nest1 structure contained within struc.

The ABAP program calls the transformation using the CALL TRANSFORMATION statement.
Since it is serialization, we passed a populated ABAP structure struc as the SOURCE
structure. The result is read into xml_string. The contents of the string xml_string
may be viewed in the ABAP debugger, as shown in the following screenshot:

Chapter 10

175

Creating transformations for internal tables
In this recipe, we will see how we can create transformations for internal tables. We will use
the transformation editor to define the transformation for the internal table, ITAB, comprising
of two fields, FIELD1 and FIELD2.

How to do it...
We will now see the steps for creating a transformation corresponding to internal tables:

1. Create a simple transformation using the steps shown in the previous recipe.
We will give it the name zst6_internal_table.

2. Enter the following code in the transformation editor:

3. Next, we will write the code of the ABAP program that calls the transformation and
supplies it with an ABAP internal table.

Simple Transformations

176

4. We create an internal table with the name itab with fields field1 and field2 and
fill it with the necessary data.

5. Finally, the CALL TRANSFORMATION statement is called, the internal table is
passed, and the result is stored in xml_string.

How it works...
The transformation contains a root element representing the internal table by the name of
ITAB. Within the template, the XML literal element, itab, is defined to show the contents
of the internal table. The tt:loop command is included. This command addresses each
line of the table itab (since ref=".ITAB" is used as the current node). For each record of
the table, the content of the XML element line is included in the XML file. Within the XML
elements FIELD1 and FIELD2, the contents of the FIELD1 and FIELD2 fields of the relevant
line of the table itab is written. Since the current node is the row of the internal table in
question, including FIELD1 and FIELD2 it will print the right contents.

Chapter 10

177

We create the program and pass the necessary data for itab. After the serialization, the
resulting XML file appears as shown in the following screenshot:

Generating transformations for dictionary
table types

In this recipe, we will see how we can create transformations for dictionary table types. We will
first create a table type using SE11 and then generate its transformation using the graphical
tool editor of the transaction XSLT_TOOL.

We will create a table type, ZST6_TT_PER, that will comprise of employee number, PERNR,
employee name, NAME, and grade field, GRADE.

How to do it...
We will now carry out the following steps:

1. Call transaction SE11. We will first create a line type by the name of ZST6_ST_PER.
Enter the name in the Data Type field. Then, click on the Create button and choose
the Structure option in the dialog box that appears.

Simple Transformations

178

2. Next, we specify the fields of the line type. These are: PERNR, GRADE, and
NAME. These are based upon the component types, PERSNO, TRFGR, and
EMNAM, respectively.

3. We then create a table type using the transaction SE11. We give it the name
ZST_TT_PER. We make sure that the line type defined earlier is used as the
line type for the table type.

4. Then, call the transaction XSLT_TOOL. Create a simple transformation.

5. From the transformation change screen, click the Edit Transformation
Graphically () button from the toolbar. This will take you to the screen
shown as Transformation Editor.

6. On the left-hand side, select the ROOT node and choose the context menu option
Insert new root.

Chapter 10

179

7. In the dialog box that appears, enter MYTAB and ZST_TT_PER in the Root-Name
and Type-Name fields respectively. (Alternatively, we may enter the line type created
earlier, that is, ZST6_ST_PER, in the Type-Name field and check the Line Type?
indicator). Then, press Enter.

8. This will add the MYTAB table node to the Data roots section. Drag-and-drop the
MYTAB node to the right-hand side (the Simple Transformation pane). This will
create MYTAB and its components within the Simple transformation pane.

9. We need to make adjustments in the nodes. We will delete the ROOT node on the
left-hand side so that only one ROOT element (that is, MYTAB) remains.

Simple Transformations

180

How it works...
We first declared a line type and then created a table type. We then created a new simple
transformation. We then inserted a root element named MYTAB based on the dictionary type
ZST6_TT_PER defined earlier. Drag-and-drop added the table MYTAB to Transformation
and also included all the components, PERNR, NAME, and GRADE. The generated code of the
transformation is shown in the following screenshot:

In the template, a loop is run on each line of the table MYTAB. The contents of the fields
PERNR, NAME, and GRADE are written within the XML text element ZT6_ST_PER (based on
the name of the line type). The completed graphical form of the transformation is shown in the
following screenshot:

Chapter 10

181

The transformation may then be called in programs using the statement
CALL TRANSFORMATION.

Downloading into Excel made easy using
simple transformations

In this recipe, we will see how we can use simple transformations in order to download the
contents of an internal table into Excel format. The advantage of this method is that the Excel
file will contain the desired font size and colors without any programming effort required.

We will first create a sample Excel file in XML format. Then, we will upload it via the
transformation editor XSLT_TOOL and generate a transformation accordingly. (The Excel
XML and the transformation language may be mixed, thus the Excel XML is converted into
a transformation.) The generated transformation will serve as a template representing our
Excel file format. We will make slight changes in it and call it in our ABAP program in order to
generate the Excel file.

The primary emphasis of this recipe is to generate an XML string containing the content of the
Excel data in XML format. The download part of the XML will not be shown.

How to do it...
We will now see in detail the required steps:

1. We first create an Excel file with the appropriate required column headings and some
sample data. We will consider an example of employee number, name, and grade.

Simple Transformations

182

2. Next, we will save the Excel file in the XML Spreadsheet 2003 format.

3. Next, we will create a new simple transformation using transaction XSLT_TOOL.

4. Then, from the Source Code tab, click on the Import () button. On the File
dialog box that appears, select the ExcelXML file created earlier. This will
create a transformation program within the editor.

5. Next, we need to make some minor changes within the transformation. First, we
will remove ss:ExpandedRowCount="6" from the Table element. The data
rows pertaining to the sample data uploaded must be removed as well. These are
contained within Row and Cell elements. (Our uploaded Excel XML file generated
a transformation for our sample data. We need to delete the hard-coded lines
pertaining to the sample data within the Row and Cell elements. We then make the
necessary changes so that the transformation may be used for dynamic data passed
in an internal table from our program.)

Chapter 10

183

6. We will now add a root element table at the beginning of the transformation, before
the tt:template command.

7. tt:loop is then added in place of the removed employee data. The loop addresses
each line of the internal table "table". We print the contents of the fields PERNR,
NAME, and GRADE as texts within the element Cell for every Row.

Simple Transformations

184

8. We will save and activate the transformation.

9. We will then make a simple program to populate an internal table based on the
root element table. We define an internal table, itab, and work area, wa, based on
the table type zst6_tt_per and line type zst6_st_per, respectively. We then
populate the table with suitable values.

10. Then, the CALL TRANSFORMATION statement is called and the internal table itab
is passed. The resulting xml_string string contains the Excel data in XML format.

Chapter 10

185

How it works...
We uploaded the transformation using the XSLT_TOOL transaction's Import button. This
transformation is based on the file that we uploaded. If we call the same transformation, the
result will be the same file that was uploaded. Since we want the Excel output to be based
on the content of the internal table of the ABAP program, we made the necessary changes to
the transformation in order to incorporate a loop on a root element table. During serialization,
the internal table itab was passed in place of the root element table defined within the
transformation. The loop was run and the content of the table was included in the XML string.
The xml_string may then be written as saved on the desktop or emailed to another user.
When opened in Excel, it will show the user the data in Excel format along with the column
heading colors and the fonts of the original sample file.

See also
 f help.sap.com

 f http://sapblog.rmtiwari.com/2009/04/generate-simple-
transformation-for-xml.html

11
Sending E-mail Using

BCS Classes

In this chapter, we will see recipes of e-mail programming using the Business communication
services (BCS). We will look at:

 f Creating a simple e-mail message

 f Sending e-mail to Internet e-mail addresses

 f Adding attachments to your message

 f Creating HTML e-mail

 f Running a program and sending its output as an e-mail

Introduction
This chapter explores useful recipes related to the programming of e-mail sending. We will
start with a brief overview of BCS and the various classes available. Then we will see a simple
recipe that will generate an e-mail to an SAP user in his or her inbox. Then, we will show how
the same program may be changed in order to send the e-mail to Internet e-mail addresses.

We will then add attachments such as an Excel (XML file) to the e-mail. Creating HTML
documents will also be discussed. Finally, we will create a program that will execute another
ABAP program, convert its output into PDF, and attach the PDF to an e-mail message.

We will see the most important and commonly used classes (and their methods) used
for e-mail creation. In addition to e-mail programming classes such as CL_BCS and
CL_BCS_DOCUMENT, we will also see classes such as CL_CONVERT_BCS that are used
for converting files into appropriate formats suitable for attaching to e-mail documents.

Sending E-mail Using BCS Classes

188

Throughout the chapter, the terms e-mail and SAP Office Document will be used
interchangeably.

The BCS classes provide a newer object-oriented means of generating e-mails
programmatically. The function modules should no longer be used for sending
e-mails. The BCS classes are much simpler to program, particularly when we have
attachments involved.

The classes relevant to e-mail programming are discussed as follows:

Class name Use
CL_BCS This class is for creating sent requests. The document (e-mail

body and attachments) is assigned to it and recipients are
specified. Finally, the request is sent.

CL_DOCUMENT_BCS This is the document class for specifying the content of the
e-mail and attachments (if any).

CL_CAM_ADDRESS_BCS This class provides a number of useful methods. The notable
one uses an Internet e-mail address such as abc@yahoo.
com and returns a recipient user object.

CL_SAPUSER_BCS This class creates a recipient object based on an SAP user ID
to be used.

CL_BCS_CONVERT This class converts data from one format to another, such as
conversion of text string to binary table or from a hexadecimal
string to a binary table, and so on.

Creating a simple e-mail message
In this recipe, we will see how we can create a simple program that will send an e-mail (SAP
Office Mail) to an SAP user AJON1. There are no attachments involved in this recipe. However,
we will want the SAP user AJON1 to see a pop-up express message when the e-mail document
is received in his or her inbox.

How to do it...
We will now perform the steps shown as follows:

1. Declare two reference variables sendrequest and myrecpient to the classes
cl_bcs and cl_sapuser_bcs.

Chapter 11

189

2. We will then declare a variable for specifying the content of the e-mail email_text.
This is based on the type bcsy_text. We also declare an object reference to the
class cl_document_bcs with the name document.

3. We call the static factory method create_persistent of the class cl_bcs.

4. The returned reference is stored in the sendrequest reference variable
declared earlier.

5. An SAP user object is then created using the CREATE method. This will be used later
for specifying the e-mail recipient. The returned object is stored in myrecipient
variable. The corresponding object for the user AJON1 is created.

6. Next, we call the add_recipient method of the cl_bcs class for the object
reference sendrequest. We supply the recipient through the myrecipient
object and we pass the value 'X' for the i_express parameter.

7. Next, we create the e-mail text. A simple one-line text My first email content
is added to the internal table email_text. In addition, the factory method
create_document is called for class cl_document_bcs. The type RAW
is specified through the parameter i_type.

Sending E-mail Using BCS Classes

190

8. We then call the SET_DOCUMENT method and pass the document object as
the parameter. The send method of the class cl_bcs for the object reference
sendrequest is also called.

9. Finally, we call the COMMIT WORK statement.

10. The entire code block is placed within a TRY .. ENDTRY statement and the cx_bcs
exception class will be used for catching exceptions.

How it works...
We created object references for the send request and the e-mail document as well for the
recipient user object. The static factory method create_persistent of the cl_bcs class
is called in order to create a send request.

Then, we define appropriate text for the content of the e-mail body and add it to the created
send request along with the subject of the e-mail.

A recipient object (based upon the class cl_sapuser_bcs) is created for the SAP user
AJON1. This recipient is then added to the send request using the method add_recipient
of the cl_bcs class. For the i_express parameter of the add_recipient method,
the value 'X' is passed so that the user receives an express message when the e-mail is
received in his or her inbox. A new document is created using the static create_document
method of the cl_document_bcs class. The document is having type RAW and relevant
subject and content. The add_document method is then called in order to add the document
to the send request. Finally, the COMMIT WORK statement is called and the e-mail is sent.

An express message is generated as shown in the following screenshot:

Chapter 11

191

The message appears in the document (Unread Documents) of the SAP Business
Workplace (transaction SBWP). The message header for the corresponding message
appears as shown in the following screenshot:

It contains the red icon that denotes an express message has been generated. The title
(Title), author name (Author), and the date received (Date received) are shown as well.
The preview of the document body is shown in the following screenshot:

The My first email content text is the e-mail text, whereas as the my email subject text is the
subject as coded in the program.

There's more...
In case the e-mail is to be sent immediately, the SET_SEND_IMMEDIATELY method of the
cl_bcs class must be called before the SEND method (and the COMMIT WORK statement),
as shown as follows:

 SENDREQUEST->SET_SEND_IMMEDIATELY('X').

Sending E-mail Using BCS Classes

192

Sending e-mail to Internet e-mail addresses
In this recipe, we will see how we can modify the existing program so that, instead of
the SAP user, we can send the same e-mail to an Internet address. We will make a copy
of the same program and add additional code. The class that is to be used, in this case,
is cl_bcs_cam_address (instead of the cl_sapuser_bcs class). The method
create_internet_address will be used for creating Internet user addresses.

How to do it...
We will now see the changes we need to make to the given program:

1. Instead of the myrecipient object reference being based upon the class
cl_sapuser_bcs, we will use the class cl_cam_address_bcs.

2. Next, we will call the method create_internet_address of the
cl_cam_addess_bcs class for creating an e-mail address.

3. We may remove the i_express parameter assignment from the add_recipient
method call of the cl_bcs class (since the e-mail is going to an e-mail address
outside the SAP system, pop-up express messages are irrelevant).

4. Next we define a reference to the interface if_sender_bcs for our e-mail address
(that is, sender e-mail address).

Chapter 11

193

5. An Internet address is created for our e-mail address using the same
create_internet_address method of the cl_cam_address_bcs class.
The created object is stored in the variable myemailaddress defined earlier.

6. Finally, the e-mail address is added as the sender of the send request using the
set_sender method of the cl_bcs class.

7. The rest of the coding remains the same as in the previous recipe.

How it works...
We made a copy of the program in the previous recipe. The class cl_cam_bcs_address
is used for defining the recipient user. Since we have the e-mail address of the recipient, we
used the static method create_internet_address of the cl_cam_address_BCS class.
The necessary recipient is returned because of the method call. This is later added to the
send request, thus specifying the Internet address.

Once the COMMIT WORK statement is executed, the e-mail is sent to the Internet user
address. In the receiver's inbox, we will see our e-mail address as the sender (since the
set_sender method has been used).

E-mail transfers are complicated. It may be possible that the programming done is correct
but the e-mails are not sent. From experience, many times the problems arising when testing
programmatic e-mail sending are e-mail server configuration/routing problems.

Sending E-mail Using BCS Classes

194

Adding attachments to your message
In this recipe, we will see how we can add attachments to our e-mail message (we will use
the program created in the previous recipe). We will also use the code fragment from the
XML String (for Excel data) generated in the Downloading into Excel made easy using simple
transformations recipe of Chapter 10, Simple Transformations chapter.

We will copy the program of the last recipe and add the transformation code for the
conversion into binary file of the XML string. We will then write the code for attaching the
XML file to the e-mail message. The recipe shows the additional code required to attach
a file to the e-mail.

The necessary steps for defining the send request and the subsequent steps are the
same. This recipe code will be inserted after the create_document method call of the
cl_document_bcs class and before the set_document method call of the cl_bcs class.

How to do it...
We will now perform the steps shown as follows:

1. After the CALL TRANSFORMATION statement, we will declare internal table
attached_xml based on the table type solix_tab. We then call the static method
string_to_solix of the cl_bcs_convert class for creating binary content out of
the XML string. The solix_tab type is an internal table in binary format. The code
page for Unicode UTF-16LE is passed 4103. The result is then stored in converted
form in the attached_xml file.

Chapter 11

195

2. Next, we call the method add_attachment of the class cl_bcs_document. For
the parameter attachment type I_ATTACHMENT_TYPE, we pass the value BIN. For
the name of the file (i_attachment_subject), we specify the name XML Excel
Data.XLS. The parameter i_att_content_hex is for passing the internal table
containing the file to be attached.

How it works...
After the CALL TRANSFORMATION statement, we have the file content in the form of a
large XML string. This string needs to be converted to an Excel format. We convert this into a
binary format (an internal table based on dictionary structure SOLIX) using the static method
string_to_solix of the class cl_bcs_convert. The structure of SOLIX is as follows:

For converting the XML string into binary data, we use the code page 4103. Excel files expect
the data to be in the UTF-16 LE format, that is, 4103.

The code is then added to insert the attachment to the created document using the
add_attachment method of the cl_bcs_document class.

Sending E-mail Using BCS Classes

196

The attachment subject is the name of the file (in our case XML Excel Data.XLS) as it
should appear in the receiver's inbox, the type is BIN meaning binary. For the content of the
file, the i_att_content_hex parameter is supplied with the converted Excel file data. The
attachment appears as shown in the following screenshot:

The file when opened in Excel looks like following screenshot:

There's more...
Similarly, other types of attachments such as PDF or HTML may be added to your documents.

If we need to know the code page of the underlying application server, we go to transaction
SNL1. For our server, the code page 4103 is used for the UTF-16 LE encoding.

Chapter 11

197

See also
 f http://scn.sap.com/thread/1842532

 f http://ceronio.net/2012/02/unicode-in-abap/

Creating HTML e-mail
In this recipe, we will see how we can display the body of our e-mail in HTML to our messages
body. We will see how text may be displayed in bold, in various colors, for example, red and
how to set the background color of the e-mail body. We will copy the program shown in the
first recipe and make few changes in it. The detail of HTML coding is beyond the scope of this
book. The focus of the recipe will be on how basic HTML code is shown in the e-mail body.

How to do it...
We will now carry out the steps shown as follows;

1. For the email_text internal table, we will append a number of rows. Each
row appended will correspond to the lines of the HTML code. We will specify a
background color for the e-mail body. Then on the first line, we will write a text Dear
Sir in font size = 2. On the next line, we will write text in red color. Finally, on
the last line we write text in bold format, as shown in the following screenshot:

http://scn.sap.com/thread/1842532
http://scn.sap.com/thread/1842532
http://scn.sap.com/thread/1842532

Sending E-mail Using BCS Classes

198

2. The e-mail text will then be used to create the document that will later be attached
to the send request. While calling the create_document method, the type of
document specified will be HTML, rather than RAW in the previous recipes.

How it works...
We made a few changes in the program. First, we entered the entire HTML code in the form of
an internal table. It should be made sure that the entire code is enclosed within <HTML> and
</HTML> tags.

In the next step, the appropriate type (HTML) of the document that is to be created is specified
for the method create_document and the internal table containing the HTML coding is
passed. The rest of the coding remains the same. The e-mail generated from the program
appears as shown in the following screenshot:

We have used only one font size. However, within the HTML body we may have different
font sizes.

Chapter 11

199

Running a program and sending its output
as an e-mail

In this recipe, we will see how we can create a small program that will run another ABAP
program and will send the second program's output as an e-mail attachment in PDF form.
The basic steps for creating the send request and defining the recipient will remain the same
as mentioned in the previous recipes. This recipe will emphasize on the additional portion
required in order to run the program, capture its output, and convert the output into PDF
form. The second program (program to be called) is created first and we have named it
ZST_6_CALLED_PROGRAM.

How to do it...
We will now list the steps needed:

1. We will call the SUBMIT statement that will call another program zst_6_called_
program (which simply prints Hello World). The EXPORTING LIST TO MEMORY
AND RETURN addition is used along with the SUBMIT statement.

2. Next, we define an internal table based on the dictionary type abaplist. We then
call the LIST_FROM_MEMORY function module and use the prog_output object for
storing the list fetched from the memory.

Sending E-mail Using BCS Classes

200

3. We then define an internal table binary_tab of dictionary type solix. The function
module TABLE_COMPRESS is then called that converts the program output into a
table of binary format solix.

4. We then call the function module SX_OBJECT_CONVERT_ALI_PDF. Before the
call of the function module, we define necessary variables and internal tables
necessary for the function module call. The various parameters should be provided
with appropriate values. The format_src parameter should be assigned value
ALI(meaning ABAP list), the format_dst parameter is assigned PDF, whereas the
funcpara parameter is assigned the value DELETE. The address type addr_type
is passed PRT, whereas devtype is passed PDF1.

Chapter 11

201

5. We then call the add attachment method of the class cl_bcs_document for the
document object. The type is specified as PDF and the binary_tab value is passed
as the content of the file to be attached.

How it works...
We have used the SUBMIT statement in order to run the other program. The output of the
program is generated and sent to the memory using the SUBMIT statement. The function
module list_from_memory then fetches the program's output from the memory and stores
it in the internal table prog_output. We then use the function module table_compress
in order to convert the ABAP list into an internal table of binary data format based on the
dictionary structure solix.

The function module sx_object_convert_ali_pdf is then called. We supply it with the
necessary parameters and the necessary variables and internal table. The ALI corresponds
to the ABAP list format (for the source format) whereas the target format is specified as PDF.
The function module converts the ABAP list stored in the binary format into PDF. After the
function module execution is complete, the PDF generated is stored in the internal table
named binary_tab. For the parameters of the function module addr_type and device type
devtype, the values PRT (meaning printer name) and PDF1 are passed, respectively. The
funcpara parameter is supplied with DELETE. This is to delete the spool request created by
this function module created during the PDF conversion process.

This PDF content stored in the internal table binary_tab is then attached to the e-mail
document using the add attachment method. We specify the type as PDF and pass the
binary_tab for the method's importing parameter i_att_content_hex.

The PDF output generated will be attached to the e-mail document.

Sending E-mail Using BCS Classes

202

There's more...
This is one of the ways of capturing the output of a program. We may also use the SEND
TO SAP-SPOOL addition for the SUBMIT statement. This allows the generated list to be
sent to the SAP spool, which can then be turned into a PDF.

Also, we covered a scenario where a simple program is called. The called program may
contain a number of selection screen input fields. You may supply appropriate values for these
selection screen parameters while calling the program using the SUBMIT statement. This may
be done, for example, using the WITH SEL1 EQ VAL1 addition of the SUBMIT statement.

See also
 f http://help.sap.com/abapdocu_70/en/ABAPSUBMIT_SHORTREF.htm

 f http://help.sap.com/erp2005_ehp_04/helpdata/en/2d/1c5d3aebba4c3
8e10000000a114084/frameset.htm

http://help.sap.com/abapdocu_70/en/ABAPSUBMIT_SHORTREF.htm
http://help.sap.com/abapdocu_70/en/ABAPSUBMIT_SHORTREF.htm
http://help.sap.com/abapdocu_70/en/ABAPSUBMIT_SHORTREF.htm
http://help.sap.com/erp2005_ehp_04/helpdata/en/2d/1c5d3aebba4c38e10000000a114084/frameset.htm
http://help.sap.com/erp2005_ehp_04/helpdata/en/2d/1c5d3aebba4c38e10000000a114084/frameset.htm

12
Creating and Consuming

Web Services

In this chapter, we will look at the following recipes related to Web services:

 f Creating a Web service from a function module
 f Configuring the created Web service
 f Consuming a Web service
 f Creating a consumer proxy's logical port
 f Calling a Web service from an ABAP program

Introduction
The Service-Oriented Architecture (SOA) is the current paradigm in which one type of
software communicates with another software written in a different language and exchanges
information. In a service-oriented design, we have a service provider that provides a particular
service. Web service technology is not specific to SAP.

For a Web service, a Web Service Definition Language (WSDL) file exists that contains the
necessary information required in calling the Web service in question, such as the input and
the output parameters (that is, the interface). The information about the necessary input and
output parameters for Web service call is specified using the WSDL. The WSDL and the SOAP
and HTTP are universal concepts and therefore allow SAP integration with the outside world.

There is a registry called UDDI (acronym for Universal Description, Discovery, and Integration)
where the service provider may be registered and the necessary information about the service
is stored. The caller or potential consumer may refer to the registry for information about the
service. We may also have a direct binding between the service provider and the service caller
using SOAP and HTTP. The necessary input is sent to the provider, which then returns the
relevant results after the Web service execution back to the consumer.

Creating and Consuming Web Services

204

In a service-oriented architecture (SOA) world, the service consumer and the service provider
may use different technologies, and both of them do not need to worry about the technology
used by the other. They communicate using SOAP over HTTP. A SAP system can call a Web
service provided by a non-SAP system and vice versa. A Web service encapsulates a particular
process and accepts input as well as provides output to the caller. The consumer may call the
service to send input data into the specified format and receive the results. The technology
used inside the service is not to be of concern to the consumer.

SAP allows you to both create, as well as consume Web services from the outside world. This
chapter will take an approach from the SAP side—the creation and consumption of services.
The wizard that quickly and easily creates Web service providers and consumers will also be
discussed. We will start with the creation of a Web service using the Web service creation
wizard and then cover the configuration of the Web service in question using the SOAMANAGER
transaction. While defining a Web service, an endpoint is specified, which is the ABAP object
used as the basis for the creation of the Web service. This could be a function module, a BAPI,
an entire function group, or an XI message interface. We will use the existing objects (in our
case, a function module) to generate or create a Web service. This approach is known as an
Inside-Out approach in the chapter. The primary emphasis of this chapter will be on the
Inside-Out approach.

In order to create a consumer program for calling a Web service, a consumer proxy has to be
generated. It creates a link to the Web service that is to be consumed. During the generation
of the proxy, a class is generated that encapsulates the process of communicating with the
Web service provider and the formation of SOAP messages that are to be sent to the provider.
Once you have generated a proxy (and then a logical port is created), the ABAP code may
be written for calling the Web service and getting the desired results. We will cover recipes
related to consumer proxy generation, creation of a logical port, and the coding related to
service call.

For the sake of illustration, in this chapter we will create a Web service in our system and will
generate a proxy for calling the same service from within the system (though practically the
service consumer and provider will not be in the same system). All the recipes in this chapter
are based on this service provider and consumer scenario.

Chapter 12

205

A diagram showing the client service relationship of Web service consumer and provider
is as follows:

See also
 f http://www.adfahrer.com/workplace/Sem/2006-11-28-ADSIG-SBN-

WalldorfABAP/SRothaug-ProvidingWebServinABAPNordicABAP.pdf

 f http://www.w3schools.com/webservices/ws_intro.asp

 f http://www.xmethods.net/ve2/index.po

Creating a Web service from a function
module

In this recipe, we will see how we can create a Web service using a Web service creation
wizard from a remote-enabled function module. The function module simply takes as input
an amount (in figures, for example, 1000) and currency such as USD, and then outputs the
corresponding amount in words such as One Thousand US Dollars (similar to the function
module SPELL_AMOUNT).

Creating and Consuming Web Services

206

Getting ready
Since the SPELL_AMOUNT function module is not remote-enabled, it cannot be used
for generating a Web service. One such attempt will result in the following error during
creation of the service.

So, we will copy the function module SPELL_AMOUNT and rename it as
ZST8_MY_SPELL_AMOUNT and make the copy remote-enabled after making
necessary changes in the interface. In this recipe, we will use our remote-enabled
function module as the basis for creation of a Web service. The function group
containing this function module was created by the name ZST8_SPELL.

How to do it...
We will now follow the steps as shown:

1. Call transaction SE80. From the list of the local objects of your user ID, we select
the root node and right-click to access the context menu. We then navigate to
Create | Enterprise Service.

Chapter 12

207

2. This will start the wizard for Web service creation. On the first screen of the wizard,
a number of radio buttons are presented.

3. Since we are creating a Web service, (we will choose the option Service Provider).
The same wizard may be used for creating proxies for a number of object types such
as a Service Consumer, or a Service Group. Then click on the Continue button.

Creating and Consuming Web Services

208

4. Next, a number of options are again presented. You may either create a Service
Provider using the ESR Service Interface, a Service Variant, or an Existing ABAP
Object (Inside Out) option. We will choose the third option Existing ABAP Object
(Inside Out) approach. (A Service Variant uses certain parameters of a service that
are relevant to a particular business scenario. The ESR object option allows us to
create a proxy based on the Outside-In approach. In this case, the service interface
exists in the enterprise service repository.) Then, click on the Continue button.

5. On the next screen (step of the wizard), we need to enter the Service Definition
name, its description, and the Endpoint type (meaning whether a BAPI, function
group, or a function module) is used as the basis for creating the service. Appropriate
entries are made and the function module option is selected as the Endpoint type.
Then, click on the Continue button.

Chapter 12

209

6. This will take you to the next screen where you are able to enter the name of the
function module, based on which the Web service is to be created. Enter the function
module name in the field provided.

Creating and Consuming Web Services

210

7. On the next screen, enter the profile PRF_DT_IF_SEC_NO in the Profile field. Then
click on the Next button.

8. On the screen that appears now, you will be asked to enter data in the Request
number and the Package fields. We will choose the checkbox Local Object.
Then click on the Next button.

9. Finally, you will be asked to complete your action. Click on the Complete button.

How it works...
We first created a remote-enabled function module that was used for creation of the Web
service. The essential steps that we need to carry out for creation of a Web service are done
using the wizard. The approach we follow is the Inside-Out approach. We used a function
module as the basis of our Web service—the endpoint. The wizard guides us through the
various steps and essentials for creating a service provider. The Web service is created by
the name ZST8_MYSERVICE, as specified. We did not keep any authentication for the
Web service.

This web service has been created but cannot be called yet. Now we need to make
this configuration of the Web service created. The runtime configuration needs to be
undertaken via transaction SOAMANAGER. We will do this in the next recipe.

There's more...
Instead of the path shown in the recipe, we may use transaction SE37, which directly creates
creating a Web service. From inside the Function Builder, navigate to Utilities | More
Utilities | Create Web Service.

Chapter 12

211

An alternate path is to go to transaction SE80 and then navigate to Edit | Other Object. Then
choose the tab Enterprise Services. Now, enter a name in the Service Definition field and
click on the Create button.

On the Security Settings profile screen, we choose PRF_DT_IF_SEC_NO (meaning without
authentication and no transport guarantee). There are three other possibilities:

 f PRF_DT_IF_SEC_LOW: Authentication with user ID and password but no
transport guarantee

 f PRF_DT_IF_SEC_MEDIUM: Authentication with user ID and password
as well as transport guarantee

 f PRF_DT_IF_SEC_HIGH: Authentication with certificates as well as
transport guarantee

Configuring the created Web service
In this recipe, we will see how we can create the runtime configuration of our Web service.

How to do it...
We will now follow the steps as shown:

1. Call transaction SOAMANAGER. This opens a new browser session. Choose the Single
Service Configuration link on the Service Administration tab.

Creating and Consuming Web Services

212

2. We now need to locate our newly created service. Make sure the Search by listbox
has the value Service selected. Enter zst8* in the Search Pattern field, and click
on the Go button.

3. This will bring up your service in the results area. Select the service name and click
on the Apply Selection button.

4. The lower part of the screen will show additional settings related to the service in
question. On the Configurations tab, you click on the button Create Endpoint.
The dialog box will appear as shown in the following screenshot:

5. Enter a suitable name for the binding. Then click on the Apply Settings button.

Chapter 12

213

6. This will add a new row to the table in the Configurations tab.

7. Click on the Save button.

How it works...
We created the runtime configuration of the Web service. The service may now be called by
a consumer. You may open the WSDL generated for the given service by clicking on the Open
WSDL document for selected binding or service.

In this recipe, we have a created the configuration for our newly created service. Now any
consumer can call the given service using the binding.

Creating and Consuming Web Services

214

If you go to transaction SICF, you can see your service running, as shown in the
following screenshot:

Consuming a Web service
In this recipe, we will see how we can create a client proxy based on a given Web service
(using its WSDL document). As an example, we will use the Web service that we created
earlier in this chapter. We will use the Web service wizard from the transaction SE80. This
will generate the class and other necessary objects that are needed to call the Web service.

How to do it...
We will now follow the steps as shown:

1. Go to transaction SE80, and select the menu option Edit Other Object.

2. On the dialog box that appears, choose the Enterprise Services tab and in the
Client Proxy field enter a suitable name. Then click on the Create button.

Chapter 12

215

3. The wizard will then start. The first step will ask for the Source of the Web service.
Choose the option URL/HTTP Destination and click on Continue.

4. For the next step of the wizard, enter the WSDL URL of our Web service binding.
This is the same URL as shown in the Service Definition Overview tab in the
SOAMANAGER transaction.

Creating and Consuming Web Services

216

5. Enter the URL in the URL field and then click on Continue.

6. You will then be asked to specify the Package and Request number. Choose the
Local Object checkbox and enter a suitable Prefix of the class to be generated.
We will use the prefix ZST8_. Then click on Continue.

7. Finally, the screen appears where it is specified that clicking the complete button will
generate the proxy class. Press the Confirm button to complete the action.

How it works...
This will create the service consumer proxy as shown in the following screenshot. The proxy
by the name ZST8_CO_ZST8_MYSERVICE is created. The relevant class corresponding to the
proxy is also generated and activated along with the necessary methods.

Chapter 12

217

The method contains the necessary logic for converting the amount based on the function
module used while defining. The input structure corresponds to the importing parameters,
whereas the output structure corresponds to the exporting parameters of the function module
used for generating the Web service. All the necessary objects are generated. In addition,
the relevant structures needed for the Web service call (consumer proxy method call) are
also generated.

In the next recipe, we will see how to create a logical port for the Web service consumer.
After this, the service may be called from a program using the proxy class methods.

There's more...
Apart from WSDL URL, you may use other options as the source of your web service. You may
use a local file that contains the WSDL document pertaining to the service or the enterprise
service repository of a PI instance. In addition, a UDDI registry (maintained on the SAP server
that provides access to information about published Web services) may also be specified.

Alternatively, a more sophisticated Service Registry may be used as the source. The service
registry is a UDDI v3 complaint registry within an SOA landscape. It may have services
published from activated service interfaces from ESR, or from sender agreements from
Integration Directory. Also, it may be used on ABAP or Java services definitions from AS,
ABAP, or Java, respectively. They provide important information about services along with the
reference to WSDL data. After entering the name of the UDDI registry or service registry the
name of the relevant service may then be specified on the next screen.

Creating and Consuming Web Services

218

See also
 f http://help.sap.com/saphelp_nwpi711/helpdata/en/fa/82f552b49249

5d8961df56c0fa2dde/content.htm

 f http://help.sap.com/saphelp_nw70ehp2/helpdata/en/69/8a1e9553dc4
baba6026a3db510cadb/frameset.htm

 f http://help.sap.com/saphelp_nwpi71/helpdata/en/47/0ae6a14ddb0e8
ae10000000a155369/frameset.htm

 f http://www.netweavercentral.com/index.php/2011/consume-a-web-
service-in-abap/old link

 f http://sapignite.com/consuming-a-web-service-in-abap/

 f http://help.sap.com/saphelp_nw04/helpdata/en/81/845f3c31727d59e
10000000a114084/frameset.htm

 f http://help.sap.com/saphelp_nwpi71/helpdata/en/e6/6d0f3fb35c48f
a9fdf5f4e70d9f37d/frameset.htm

Creating a consumer proxy's logical port
In this recipe, we will see how we can create a logical port for the consumer proxy created in
the last recipe.

How to do it...
We will now perform the following steps:

1. Call transaction SOAMANAGER. Follow the the same single service administration
link we used for creation of the Web service in the previous recipe. On the
Search tab, make sure that, instead of Service, the Search by listbox contains
Consumer Proxy. In the Search Pattern, we will enter the prefix of our service,
zst8*, and click on the Go button. This will search and show the consumer proxy
ZST8_CO_ZST8_MYSERVICE that we created for our service ZST8_MYSERVICE.
Select this and click on the Apply Selection button.

Chapter 12

219

2. Select the Consumer Proxy and click on the Apply Selection button. Note that the
Internal Name will be the same as the proxy generated in the previous recipe.

3. The lower part of the screen will open the details of the proxy definition. On the
Configuration tab, click on the button Create Logical Port. A dialog box will appear.
Enter the relevant details pertaining to your service. Use the same WSDL URL for the
binding shown in the SOAMANAGER transaction for your Web service definition. Enter
any user ID and password that you need to set. You may set the logical port as default
if you like. Then press Enter.

4. This will add a new logical port to your proxy definition.

Creating and Consuming Web Services

220

How it works...
In this recipe, we created the logical port for our consumer proxy. We created one logical port.
However, a given proxy can have multiple logical ports, only one of which may be the default
port. In the next recipe, we will see how we can call the Web service using the logical port we
have created.

Calling a Web service from an ABAP
program

In this recipe, we will see how we can programmatically call a web service using the proxy
class generated in the previous recipes. We will see the main steps required in coding
the program.

Getting ready
For quickly creating the template code within a program, first create a new program in the
ABAP editor using SE80 and open the code of the program in the right-hand side pane.
Then, in the left-hand side pane navigate to the customer proxy generated under the Service
Consumer node. Select the name of our consumer proxy and simply drag-and-drop from the
left-hand side to the right-hand side pane (within the ABAP editor). The template code
will be generated and added to your program. You may modify the code according to
your requirements.

Chapter 12

221

How to do it...
We will now dive into the details of the program:

1. We first declare an object reference to the ZST8_CO_ZST8_MYSERVICE proxy class
that is generated. We will name the reference MYPROXY. We then instantiate the
object using the CREATE OBJECT statement. We also specify the logical port name,
ZST8_LOGICAL_PORT, created in the previous recipe. This is written within a TRY
and ENDTRY statement.

2. Then we declare our input and output structures based on the structures
generated during the proxy class generation. The INPUT structure contains
three fields (amount, currency, and language) corresponding to the importing
parameters of our function module. Appropriate values are assigned to them.

3. Finally, we call the method ZST8_MY_SPELL_AMOUNT and pass the input
values via the INPUT structure. The result of the execution is the Web service
execution and is in the OUTPUT structure. For printing the words, we can print
the OUTPUT-IN_WORDS-WORD.

Creating and Consuming Web Services

222

How it works...
We first declare an object based on our proxy class. Before calling the method for converting
the amount into words we fill the INPUT structure with appropriate values. The two structures
INPUT and OUTPUT correspond to the importing and exporting parameters of the function
module, respectively. The ZST8MY_SPELL_AMOUNT method corresponds to the function
module we initially used for creating the Web service. We call the method and pass the INPUT
structure containing the relevant input values. The Web service is called and returns the result
(amount in words) in the OUTPUT structure.

13
SAP Interactive Forms

by Adobe

In this chapter, we will see recipes involving Adobe forms. We will look at:

 f Creating nested tables
 f Enabling duplex printing in forms
 f Using form elements and scripting to create interactive forms
 f Working with Adobe offline infrastructure
 f Parallel printing of form
 f Adding error messages for interactive forms
 f PDF object API

Introduction
This chapter explores useful recipes related to SAP interactive forms by Adobe. For an
introduction to forms, see http://wiki.sdn.sap.com/wiki/display/ABAP/
Adobe+Forms+from+Scratch.

They involve two scenarios, print scenario and interactive scenario. In print scenarios, the user
is not allowed to enter data on the form (PDF output) and this type of form has no buttons or
interactive elements. This is not true, however, for the interactive scenarios. The interactive
scenarios are of two types, namely, online and offline. The online scenario requires a
connection with the SAP system while the user makes entries in the form. On the other hand,
the offline scenarios, where user may download the blank form to his or her PC or the form
may be sent through e-mail. The user may then fill the form and send through e-mail and then
the data is extracted and updated in SAP system. There are some special settings needed for
interactive forms while creating them in the Adobe LiveCycle Designer. Validation messages
(or errors) are an important part of the interactive scenarios.

SAP Interactive Forms by Adobe

224

Scripting may also be used in Adobe forms. These are used for validation and generation of
messages, or adding colors to elements on the form, as well as hiding form elements. They
may be written in FormCalc or Javascript.

A typical program that calls the form in question (and generate its output) for one or
multiple objects in question uses a number of function modules such as FP_JOB_OPEN, FP_
FUNCTION_MODULE_NAME, the actual function module generating form output (determined
at runtime and stored in a variable) and the function module FP_JOB_CLOSE.

The rendering of forms is done in the Adobe Document Services (ADS) that runs on the Java
Stack. You may make the rendering and printing of the forms sequential or in parallel by the
ADS. The form function module does the communication with the ADS in order to generate the
PDF output. However, PDF Object APIs are also available that allows communication with the
ADS. For example, if we have a form received that contains data entered by the user, we can
use the PDF Object APIs to create PDF object instance for the given form and then extract the
entered data from it.

Some new features are only available if you are using the NetWeaver Release 7.02. These will
be covered in this chapter. Throughout the chapter, the terms Adobe forms and forms will be
used interchangeably.

Creating nested tables
In this recipe, we will see how we can create a nested table. A nested table involves two
internal tables, an inner and an outer table.

Before we dive into the details of creating our nested table, we will create two tables types in
the ABAP dictionary. The first type ZST8_T_PERNR_ADDRESS is based on the line type shown
as follows:

Chapter 13

225

The table type ZST8_T_PERNR_GRADES is based on the on the line type shown as follows:

There has to be a connecting field or fields between the two. We keep the PERNR employee
number as the connecting field between the two tables. We then create the interface based
on ABAP dictionary type using transaction SFP.

We define two variables in the data definition, the interface EMPLOYEE_GRADES and
EMPLOYEE_ADDRESS, as shown in the following screenshot:

SAP Interactive Forms by Adobe

226

How to do it...
We will now carry out the following steps:

1. We create a new form using the transaction SFP. The name of the form is
ZST8_NESTED_TABLES_EXAMPLE based on the interface defined earlier.

2. Within the context definition of the form, we include the EMPLOYEE_ADDRESS
interface from the interface to the context through drag-and-drop. We then
drag-and-drop the EMPLOYEE_GRADES node from the interface to the
EMPLOYEE_ADDRESS node. This will include the EMPLOYEE_GRADES
node under the EMPLOYEE_ADDRESS node.

3. We will now link the two tables through the PERNR fields. For this, we need to click the
WHERE Conditions tab after selecting the EMPLOYEE_GRADES node. Then we will
enter the PERNR field as Operand 1 and the EMPLOYEE_ADDRESS-PERNR node.

4. Now click on the Layout tab within the Adobe LiveCycle designer. Drag-and-drop the
EMPLOYEE_ADDRESS table shown under the Data View panel to the Form Layout
panel. Initially the nested table is created as shown in following screenshot:

Chapter 13

227

5. We adjust the header of the table. We will delete the header line of the inner table
EMPLOYEE_GRADES and adjust the text.

How it works...
We created two table types. Then we used them in the interface that is later used in our
form. Within the context definition of the form, we included the EMPLOYEE_ADDRESS
table from the interface to the context through drag-and-drop. Then we included the
EMPLOYEE_GRADES table within the EMPLOYEE_ADDRESS table. After creating the
EMPLOYEE_ADDRESS table on the form layout and making necessary changes, testing
the form on sample data gave the output as shown in the following screenshot:

SAP Interactive Forms by Adobe

228

There's more...
We can modify the header of the table in order to include a one-cell heading. For this we
select the top header row and right-click in order to choose the context menu as shown in
following screenshot:

We then choose the option Row Above. This will include a new row. Then select the newly
created row and right-click. From the context menu that appears, choose the option Merge
Cells. This will combine the four cells and make a single cell. We then right-click and choose
option Edit Text and then write the title of the form as EMPLOYEE DETAILS REPORT. The
output of the report is shown as follows:

If the table is to run on multiple pages, you may set the Page Break Within Content property
for the table to make the table go on multiple pages.

Also, for performance reasons, while definition of the interface, we may also uncheck the
checkbox Pass Value for the tables EMPLOYEE_GRADES and EMPLOYEE_ADDRESS.

Chapter 13

229

See also
 f http://blogs.adobe.com/blink/2007/10/best_practices_with_adobe_

inte.html

Enabling duplex printing in forms
In this recipe, we will see how we carry out the settings for enabling duplex (double-sided)
form printing for your Adobe form. This will work on printers that have the capability of printing
duplex forms.

We assume that we have two master pages, page 1 and page 2, and we need them to be
printed in duplex form.

How to do it...
Follow these steps:

1. From the Adobe LiveCycle Designer's left-hand pane, select the Master Page root
node. Also, select the root node Page Set under hierarchy tree.

2. Then on the Object palette, go to the Page Set tab.

3. Then, choose the Print on Both Sides option from the list box for the printing field.

4. Click the Yes button to continue. The dialog box appears as shown in
following screenshot:

SAP Interactive Forms by Adobe

230

How it works...
The necessary settings have been made in order to enable duplex printing. However, as
mentioned earlier, we need a duplex printer for the correct printing to take place. When the
form is printed on such a printer, based on the settings, the printing will be done on two-sided
format (that is, duplex).

Using form elements and scripting to create
interactive forms

In this recipe, we will see how we can create a simple interactive form with form elements and
some script written in FormCalc language. We will create an example where we create three
fields on the screen and a button that will calculate the total of the value of the first two fields
and display within the third field.

Getting ready
From the Adobe LiveCycle Designer, choose the menu option Edit and then select Form
Properties. On the Defaults tab, within the Preview block, select Interactive Form within
the Preview Type drop-down list and Acrobat 8 (Dynamic) XML Form for the XDP Preview
Format drop-down list.

Chapter 13

231

How to do it...
Follow these steps:

1. We create a new interface. We add three amount fields in the global definition of
the interface.

2. We create a new form using the interface and include the three variables defined
in the interface. On the layout editor, add three fields for each of the three variables
created earlier in the context. This will create three decimal fields on the layout.

3. Then add a button and give it the caption Total.

4. For the Amount 1 and Amount 2 fields, we set the Display Pattern drop-down list as
$9,999.99 using the Field tab on the Object palette.

SAP Interactive Forms by Adobe

232

5. For the two fields, we will set the Type drop-down list as User Entered – Required on
the Value tab.

6. While being in the Design View window, click on the button that was created in the
previous steps. Make sure the Scripting palette is visible. Then, from the list box of
Scripts, choose the Click event. The script editor appears as shown in the following
screenshot. Write the following code in the script editor and then activate.

How it works...
We can see the PDF Preview window by clicking on the Preview PDF tab in the layout editor.
We can only enter a maximum of two decimal places. Any amount entered in the first two
fields is shown in the format specified. For example, if we enter 1200.78, it will be changed
to $1,200.78. When the Total button is pressed, the two values are totaled and shown in the
Total field. Upon clicking the Total button, the script for the button-click event of the button is
executed. The totaling is done and then displayed.

Chapter 13

233

There's more...
We may also test the form through the Test button of transaction SFP. In this case, the
SFP transaction will take us to the function module test screen. For testing the interactive
scenario, the FILLABLE field for the /1BCDWB/DOCPARAMS structure must be passed
the value 'X'. This will open the PDF form in the interactive mode, as shown in the
following screenshot:

See also
 f http://www.adobepress.com/articles/article.

asp?p=1021020&seqNum=4

Working with Adobe offline infrastructure
In this recipe, we will see the usage of the Adobe offline infrastructure. The Adobe offline
infrastructure allows you to process user-filled PDF forms (received by e-mail), and then
extract data from it and update in the SAP database. It allows you to implement offline
interactive scenario when you have the user to fill the PDF form offline and then send
back to you at a given e-mail address.

The inbound processing of the form sent via e-mail requires a configuration setting in
transaction SO50 (Exit Rules for Inbound Processing). In our context, it lets us specify how the
received PDF form attachment at a given e-mail address is to be handled. The generic main
inbound handler class CL_FP_INBOUND_HANDLER should be entered in the Exit Name field
for the receiving e-mail address.

Once an e-mail is received, the PDF attachment is forwarded for processing to the generic
inbound handler, which retrieves the entered data and then calls the application inbound
handler relevant to the form in question.

In addition, an (application) inbound class handler based on the interface IF_FP_OFFLINE
must be created and necessary code written in its methods. This class is used for processing
the received form data in XML format (received from the generic handler) and extract the data
entered by the user in it by converting them to ABAP variables.

http://www.adobepress.com/articles/article.asp?p=1021020&seqNum=4
http://www.adobepress.com/articles/article.asp?p=1021020&seqNum=4

SAP Interactive Forms by Adobe

234

The advantages are that with minimal configuration and coding, the desired requirement may
be achieved. This recipe will cover the configuration of transaction SO50 and the inbound
handler class (and its method coding).

The standard SAP examples were referred to while creating this recipe. This includes
the inbound handler class CL_FP_OFFLINE_FP_TEST_IA_01 and the Adobe form
FP_TEST_IA_01.

Getting ready
As a prerequisite, the basis consultant must do the settings for the activation of the SMTP
plug-in in the SAP system. This ensures that e-mail communication takes place and is
received without problems.

An ABAP program must be created that will send the PDF form to the respective user.
This will then be filled by the user and then sent to the specified e-mail address in SO50
(and our inbound processing will take on from there). The program will use the Business
Communication Service. An important thing to make sure is that when the function module
for the Adobe form is called, the FILLABLE field of parameter structure /1BCDWB/DOCPARAMS
must be assigned the value F (and not X).

In addition to the earlier, the value F means Activates Special handling for Offline
Interactive Scenarios.

For the sake of this recipe, we assume that we have created two fields FIELD1 and FIELD2
in the interface and the context respectively. The user has entered the values of the FIELD1
and FIELD2 fields in the form and these values are to be extracted.

How to do it...
We will now carry out the following steps:

1. The appropriate setting must be done in the transaction SO50. Call the transaction
SO50. The screen appear as shown in the following screenshot:

Chapter 13

235

2. Click the button. A new row appears as shown. Enter the class name
CL_FP_INBOUND_HANDLER in the Exit Name field. Select the Communication
Type as Internet Mail. Enter the recipient address at which the user will send the
filled form. For example, example@packtpub.com.

3. Next, we will create the inbound handler class.

4. Call transaction SE24 and enter the name of the inbound class that you like to create
(in our case ZST8_OFF_HANDLER).

5. We will include the interface IF_FP_OFFLINE. This will include two methods in our
class (namely, GET_INSTANCE and HANDLE_PDF).

SAP Interactive Forms by Adobe

236

6. A simple one line code needs to be added to the GET_INSTANCE method as
shown below:

7. The method HANDLE_PDF code is then written. Within the HANDLE_PDF method,
we first call the function module FP_FUNCTION_MODULE_NAME. The form name
parameter of the function module is supplied with the form name stored in the
method parameter IV_FORM_NAME. The inbound function module name is then
imported in the variable INBOUND_FM. The code is shown in the following screenshot:

8. We then declare variables corresponding to the two data fields defined in the context.
The inbound function module is then called that transforms the XML data of the form
into the variables MYFIELD1 and MYFIELD2 of our class.

Chapter 13

237

9. The values of the two fields may then be saved into the database (for testing purpose,
we save it in a cluster in a table ZST_TAB under cluster ID ZA under key with value
in MYFIELD1).

10. Next, we need to connect the inbound class created with the form in question.
For this we will go to transaction SFP and enter the name of the class created in
the previous steps in the Properties tab of the form under consideration.

How it works...
Within the mail-sending program, the assignment of F for the FILLABLE field adds necessary
information to the attached PDF relevant to the offline scenario. Once the form is filled and
sent back by the user to the e-mail address specified in transaction SO50, it is handled by the
Adobe Infrastructure offline, that passes it and the XML data contained in it to the inbound
handler class.

The main method HANDLE_PDF is used for transforming the XML data entered in the form
into data variables. The form name and the data in XML form are passed to the method
through the parameters IV_FORM and IV_XML respectively. We first get the function module
corresponding to our form that allows the transformations of the XML data into ABAP variables
corresponding to context data. The FP_FUNCTION_MODULE function is passed the name
of the form name contained in importing parameter IV_FORM and then the function
module corresponding to EV_FUNCNAME_INBOUND parameter is imported and stored
in INBOUND_FM. The function module whose name is stored in variable INBOUND_FM is
then called and supplied with the XML Data (contained in IV_XML). The function module
transforms the XML and the returned ABAP data is stored in FIELD1 and FIELD2 variables.

SAP Interactive Forms by Adobe

238

See also
 f http://help.sap.com/saphelp_nw73/helpdata/en/4a/

a193d2acd5007fe10000000a42189c/frameset.htm

 f http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/f091d8bb-7bce-2b10-c192-9d91090c6be9?QuickLink=index&overr
idelayout=true&37804302173927

Parallel printing of form
In normal circumstances, we will have a sequential rendering and printing of PDF forms by
the Adobe Document Services. In this recipe, we will see how we can enable parallel printing
through a small change in the code.

In the newer release, a special parameter has been added to the function module parameter
FP_OPEN. It is recommended to set the PARALLEL parameter value to 'X' when there are
more than thousand forms to be printed.

For having print request to be processed in parallel, the Adobe Document Services must be
running on a Java Stack 7.2 or higher.

How to do it...
Follow these steps:

1. First, we define a structure that is based on the dictionary structure
SFPOUTPUTPARAMS.

2. The PARALLEL field of the structure must be assigned the value of 'X'.

3. Finally, the function module FP_JOB_OPEN is called. For simplicity sake, we have only
shown the PARALLEL field assignment. For the changing parameter of the function
module FP_JOB_OPEN, the structure MYOUTPUTPARAMS is passed.

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f091d8bb-7bce-2b10-c192-9d91090c6be9?QuickLink=index&overridelayout=true&37804302173927
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f091d8bb-7bce-2b10-c192-9d91090c6be9?QuickLink=index&overridelayout=true&37804302173927
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f091d8bb-7bce-2b10-c192-9d91090c6be9?QuickLink=index&overridelayout=true&37804302173927

Chapter 13

239

How it works...
When values 'X' is passed for the field PARALLEL, the ADS performs parallel printing of
adobe forms. This involves usage of multiple processors for the rendering and printing of the
generated forms. This parallel rendering significantly increase the performance particularly
when the total number of forms to be processed are greater than 1000.

See also
 f http://help.sap.com/saphelp_nw73/helpdata/en/48/5849326b6a41379

c4d5511abfc2525/content.htm

Adding error messages for interactive forms
In this recipe, we will see how we can add error messages to interactive forms. We will see
how a Date input field may be set to produce error messages when a wrong date is passed.

How to do it...
Follow these steps:

1. On the Object palette of the Date panel, select the Value tab.

2. Select a validation pattern from the list box provided.

3. Select the Error checkbox and in the Validation Pattern Message area and enter the
message that you like to be displayed.

4. Activate your form.

http://help.sap.com/saphelp_nw73/helpdata/en/48/5849326b6a41379c4d5511abfc2525/content.htm
http://help.sap.com/saphelp_nw73/helpdata/en/48/5849326b6a41379c4d5511abfc2525/content.htm

SAP Interactive Forms by Adobe

240

How it works...
When the user enters in the required format, no error is displayed. When a wrong date is
entered, the error is shown as shown in the following screenshot:

The error that you defined in the Validation Pattern Message area is displayed, and it is an
error since we have checked the Error indicator.

See also
 f http://help.adobe.com/en_US/LiveCycle/9.0/designerHelp/index.

htm?content=000412.html

PDF object API
The PDF object API allows communicating with the ADS and carrying out necessary functions
from an ABAP program. These include creation of forms and extraction of data, and so on.
In this recipe, we will see the code that will allow you to communicate with the ADS in order
to generate a PDF form object for a filled PDF form and then extract necessary data from it.
We assume that we are not using the Adobe offline infrastructure.

There are a few classes and interfaces involved. The factory class CL_FP is used for creating
the PDF document object instance that is based on the class CL_FP_PDF_OBJECT (using
interface IF_FP_PDF_OBJECT). The main implementation class for the PDF object is
CL_FP_PDF_OBJECT.

In this recipe, we will see how a filled form may be programmatically processed using the
ADS functions and then the entered data within the form may be extracted. We assume that
the form to be processed is stored in the variable MYFORM having type XSTRING. The recipe
takes on from there. Only the part that is relevant to the instantiation of the PDF object and
extraction is shown in the recipe.

http://help.adobe.com/en_US/livecycle/9.0/designerHelp/index.htm?content=000412.html
http://help.adobe.com/en_US/livecycle/9.0/designerHelp/index.htm?content=000412.html
http://help.adobe.com/en_US/livecycle/9.0/designerHelp/index.htm?content=000412.html

Chapter 13

241

How to do it...
Follow these steps:

1. We first need to declare variables for the factory class interface IF_FP and the
interface IF_FP_PDF_OBJECT.

2. The static method GET_REFERENCE of the CL_FP interface is then called and the
object returned is stored in MY_FP.

3. Next, the PDF object is then created using the CREATE_PDF_OBJECT method of
the CL_FP class. The value ADS is passed for the CONNECTION parameter. Then the
SET_DOCUMENT method is called and the PDF data contained in the xstring MYFORM
is assigned to it.

4. The SET_EXTRACTDATA method of the class CL_FP_PDF_OBJECT is then called
followed by the EXECUTE method.

5. The GET_DATA method is then called.

6. The entire block of code may be placed within the TRY and ENDTRY statements and
the Exception class CX_FP_RUNTIME_SYSTEM may be used.

SAP Interactive Forms by Adobe

242

How it works...
We initially declare references to the factory class CL_FP and the main implementation
class CL_IF_PDF_OBJECT (using appropriate interface names). The static GET_REFERENCE
method the CL_FP class is then called and an object is instantiated belonging to class CL_FP.
This is pointed to by the reference variable MY_FP.

The CREATE_PDF_OBJECT method of the factory class CL_FP is then called to create the
PDF object instance, the reference to which is stored in the variable MYPDFOBJECT.

The SET_DOCUMENT method is called for the variable MYPDFOBJECT in order to link the PDF
data stored in the MYFORM xstring. The SET_EXTRACTDATA method is then called in order to
specify the extraction of the entered data in the form. The Execute method allows the PDF
form to be passed to the ADS and the extraction of data to takes place.

It is only at the EXECUTE method that the ADS comes into action (the Execute method
triggers execution of all method beginning with SET_). The data entered in the form is
extracted and is made available in XML format. Once the extraction has been done, the
GET_DATA method may be called in order to read the form data into the xstring XMLDATA.
We can use transformations to place the data in ABAP variables.

See also
 f SAP Interactive Forms by Adobe, Andreas Deutesfeld, Stephan Rehmann, Thomas

Szücs, Philipp Thun, Jürgen Hauser, SAP press
 f http://wiki.sdn.sap.com/wiki/display/ABAP/Reading+PDF+attachmen

t+from+sap+inbox+through+ABAP

 f http://help.sap.com/SAPhelp_nw70/helpdata/en/46/25ed5cb2bc00c3e
10000000a11466f/frameset.htm

 f http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/4006d93c-3eed-2c10-ad9b-d11c4618c4e9?QuickLink=index&overr
idelayout=true

14
Web Dynpro for ABAP

In this chapter, we will see recipes involving Web Dynpro for ABAP. We will look at:

 f Creating trees

 f Creating navigation lists

 f Creating tabstrips

 f Displaying error messages

 f Calling dialog boxes of the same component

 f Displaying Adobe forms in Web Dynpros

Introduction
This chapter explores useful recipes related to Web Dynpro for ABAP. The Web Dynpro
Development framework may be accessed using the transaction code SE80. Then, from the
listbox on the left pane, select Web Dynpro. We will start with a discussion of the interfaces
generated in Web Dynpro components.

Web Dynpro for ABAP

244

Within a Web Dynpro component, a number of controllers exist, such as the component
controller, the window controller, and the view controller. We may add our own attributes and
methods to the various controllers. Each controller has a private interface (local interface)
generated during design time. From the transaction code SE80 and Web Dynpro selected,
you may use the menu path Goto | Controller Interface to see the details of this interface.

For the component controller the name of the interface is IF_COMPONENTCONTROLLER. For
the view controller, the name of this interface is of the format IF_<VIEWNAME>, and for the
window controller it is IF_<WINDOWNAME>.

The attribute WD_THIS contained within the controller is a reference to the local interface in
question. A wd_get_api()method is defined within the interface and provides a set of APIs
(controller-specific functions) related to the controller in question.

The type of interface reference returned by the WD_GET_API method depends on the
controller for which it is used. For the component controller, the interface is IF_WD_
COMPONENT. In case of the view and window controllers, the IF_WD_VIEW_CONTROLLER
interface is returned.

Both the interfaces, IF_WD_VIEW_CONTROLLER and IF_WD_COMPONENT include the
interface IF_WD_CONTROLLER.

Chapter 14

245

The API provides useful methods for Web Dynpro programming. The interfaces provided
contain a number of useful methods including generation of messages and creation of dialog
boxes possible through providing access to the Message Manager and Window Manager
(this will be discussed in the recipes in this chapter). The IF_WD_CONTROLLER method
provides the GET_MESSAGE_MANAGER method required for generating messages, such
as error messages that appear on the user screen where an incorrect input is provided.
The GET_WINDOW_MANAGER method is the method provided by the IF_WD_COMPONENT
interface for generating dialog boxes.

Though the window and view controllers use the interface, some methods such
as GET_CURRENT_ACTION can only be called from a view controller (from the
WDDOBEFOREACTION method).

Creating trees
In this recipe, we will see how we can display a tree in our Web Dynpro application. We will
create a tree that will display the employee department-wise data, that is, nodes showing
department names, each of which when opened will display a list of employees within the
department along with the employee names.

For the sake of this recipe, we assume that we have an internal table DATA_TAB comprising
of three fields, department, pernr, and sname containing the department name, employee
number, and the employee names respectively sorted according to the department name.

How to do it...
We will now follow the steps as shown:

1. We first define a context node TREE_NODE. The TREE_NODE context node has a
cardinality of 0..N and the Singleton property should be Off. An IS_OPENED
attribute will be based on the type WDY_BOOLEAN.

Web Dynpro for ABAP

246

2. Within the TREE_NODE context node there is another node, TREE_NODE_ITEM,
which is also a non-singleton node having cardinality 0..N. An attribute ITEM_TEXT
is created within the TREE_NODE_ITEM node. The ITEM_TEXT attribute has a
type STRING.

3. We will then define a TREE UI element in our view layout. We create a TREE UI
element along with two subelements. These are based on TreeNodetype and
TreeItemtype, having the names MY_NODES and MY_ITEMS, respectively.

4. We bind the TREE UI element datasource property with the TREE_NODE context
node. For MYNODES, the text property is bound with the TREE_NODE.TREE_NODE_
TEXT attribute. Likewise, for MYITEMS, the text property is bound with the TREE_
NODE.TREE_NODE_ITEM.TREE_ITEM_TEXT attribute. The IS_OPENED attribute of
the context node is assigned to the expanded property of the MYNODES subelement.

5. Next, we will write the code into the WDDOINIT method of the view created. We define
reference variables for the context nodes root_node, TREE_NODE, and ITEM_NODE.
We also define data variables pertaining to the ELEMENT_TREE_NODE element and
the ELEMENT_TREE_NODE_ITEM element.

Chapter 14

247

6. We then get the reference to the TREE_NODE context node by calling the
GET_CHILD_NODE method. The reference is stored in root_node.

7. Next, we populate the context nodes with appropriate data that may be displayed in
the tree.

8. We run a loop at the DATA_TAB, the table that contains the department name with
employee name and numbers. We place a AT NEW DEPARTMENT statement within
which we assign the department name to the NODE structure corresponding to our
TREE_NODE context node. We then call the BIND_STRUCTURE method of the
root_node context node and supply the data to be added to the node's element
collection. We then get the reference to the TREE_NODE_ITEM child context node
and store it in the ITEM_NODE variable (to be used later within the loop).

9. Outside the AT .. ENDAT block, we use the CONCATENATE statement in order to
combine the personnel number and name and store it in the ITEM-ITEM_TEXT
variable. This is then added to the ITEM_NODE context node's collection using the
BIND_STRUCTURE method.

Web Dynpro for ABAP

248

How it works...
We create a TREE UI element on the view layout. We create two subelements for the TREE
element; one is the TreeNodetype type and the other TreeItemtype type. The MYNODES
subelement (of type TreeNodetype) and MYITEMS subelement (of type TreeItemtype)
correspond to the department names, and the employee names and number respectively
in the final display. Appropriate bindings are defined for MYNODE and MYITEMS with relevant
context data node attributes.

A loop is used to populate the data for the TREE_NODE context node. We kept the IS_OPENED
attribute as a space while populating the data for the TREE_NODE context node and its child
node TREE_NODE_ITEM. When displayed, the department nodes are not expanded. When
the application is run, within the browser, we see a list of departments as shown in the
following screenshot:

When the relevant nodes are expanded, the employees within the departments are displayed
along with their number and name, as shown in the following screenshot:

Creating navigation lists
In this recipe, we will see how we can display data in the form of a navigation list. The
navigation list is similar to a tree. However, the nodes appear in expanded form when
displayed and may not be compressed. The entire navigation list may be expanded and
compressed (however, not the data nodes within it).

Chapter 14

249

We assume that we have an internal DATA_TAB table comprising of three fields,
department, pernr, and sname, containing the department name, employee number,
and the employee names respectively in sorted order according to the department name.

How to do it...
We will now see the steps required to create a navigation list:

1. We will first create the context node related to the navigation list in the component
controller. We create a context node by the name NAVLIST.

2. The Init Lead Selection field must be set to No (since, in this case, we do not require
lead selection and its initialization). The Singleton property of the node must be set
as No. The Cardinality field is set as 0..n.

Web Dynpro for ABAP

250

3. We then add three attributes to the context node NAVLIST, namely DISPLAYED_
TEXT, PERNR, and IF_SELECTED based on the type STRING, PERSNO, and
WDY_BOOLEAN, respectively.

4. We then add a recursive node to the NAVLIST context node and name it
NAVLISTREC. Right-click on the NAVLIST context node and from the context
menu that appears, navigate to Create | Recursive Node.

5. We then drag-and-drop the context node NAVLIST from the component controller to
the relevant view controller (define the mapping).

6. Next, we will create the navigation list UI element on the Web Dynpro view. Right-click
on the ROOTUIELEMENTCONTAINER option from the right pane of the layout editor
and choose the context menu option Create Element. Enter Navigation in the ID
field and choose the type NavigationList in the pop up that appears.

7. Right-click on the NAVIGATION node in the right pane of the layout editor and choose
the insert header option from the context menu that appears. This will add the
EXPANDABLETITLE header to the navigation list.

Chapter 14

251

8. Enter the text Department Wise List in the title property.

9. For the defined navigation list, we will set the itemSource property as the
MAIN.NAVLIST context node defined earlier. For the itemText property,
we set the value as the DISPLAYEDTEXT attribute of the context node.

Web Dynpro for ABAP

252

10. Once this is done, we will see the navigation list added in our layout editor,
as shown in the following screenshot:

11. The next step is to write the code for populating the context node with the appropriate
department data that is to be shown in the navigation list.

12. Appropriate variables are first defined for the navigation list node (NODE_NAVLIST)
and the navigation list recursive context node (RECNODE).

13. Also ELEMENT_NAVLIST is defined as a reference to a context element using
interface IF_WD_CONTEXT_ELEMENT.

14. The next step is to write the code for populating the data within the navigation list. We
run a loop at the DATA_TAB internal table that contains data of the department and
the personnel number and names.

15. At the beginning of a new department, we use the AT NEW DEPARTMENT statement
to add data to the context node NAVLIST.

16. The GET_CHILD_NODE method is called to get a reference to the NAVLIST context
node; the reference is stored in the NODE_NAVLIST navigation list node. The
NAVLIST structure is assigned the department name. The IS_SELECTABLE
property is kept as false.

17. The BIND_STRUCTURE node is then used to add the department name to the
NAVLIST context node element collection. The reference to the added element
is returned and stored in ELEMENT_NAVLIST. The GET_CHILD_NODE method is
then called to get the reference to the NAVLISTREC recursion node for the element
referred to by the ELEMENT_NAVLIST variable (this reference is stored in RECNODE)
to be used later.

Chapter 14

253

18. Outside the AT .. ENDAT block is the area that is executed for all rows in the data
internal table DATA_TAB. This area pertains to the employee data (employee name
and employee). We use the NAVLIST structure in this block.

19. We assigned the value ABAP_TRUE and the name and employee number to the
IS_SELECTABLE property to be displayed in the DISPLAYED_TEXT field. The
BIND_STRUCTURE node is then used for adding the employee data to the
NAVLISTREC recursive node using the RECNODE reference variable.

How it works...
We first created a NAVLIST context node containing a NAVLISTREC recursion node. We
then inserted a navigation list UI element on the view layout. Appropriate binding between
the navigation list UI element and the context nodes was defined. In the code, we formed
the higher nodes in the navigation list displaying departments (at the beginning of a new
department within the data table DATA_TAB). We then added child nodes (to the department
nodes) displaying the employee names and number contained within the department.

Web Dynpro for ABAP

254

The employee names within the department are selectable but may not be compressed (the
IS_SELECTABLE property is set to TRUE in the code). This navigation list is displayed as
shown in the following screenshot:

There's more...
We can further enhance the application by activating the selection feature of the selectable
nodes, that is, displaying the details of an employee selected on the user's screen. For this,
we first need to enter a suitable name in the Onselect property of the navigation list in the
layout editor. Then double-click in order to write the code. The GET_CHILD_NODE method will
be called when a particular selectable row is clicked by the user. The handler method will be
called when the SELECT event is raised.

This handler method contains one parameter, WDEVENT. In order to determine which
employee number and name has been selected, we will add a new parameter,
SEL_NODE, having type IF_WD_CONTEXT_ELEMENT. We then need to call the
GET_STATIC_ATTRIBUTES method for the SEL_NODE parameter in order to
retrieve the details of the selected node (including the employee number pernr).

See also
 f http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26

e10000000a114084/content.htm

Creating tabstrips
In this recipe, we will see how we can add tabstrips to an existing view containing various
layout elements.

http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26e10000000a114084/content.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26e10000000a114084/content.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26e10000000a114084/content.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26e10000000a114084/content.htm

Chapter 14

255

How to do it...
We will now follow the steps as shown:

1. We first go to the layout editor and in the right pane, right-click on the
ROOTUIELEMENTCONTAINER element in order to access the context menu. We then
select the Insert Element option. Now, we enter the name Tabstrip in the ID field
and select the type TabStrip.

2. This will create a TABSTRIP in our layout. We select the tabstrip and then add two
tabs by choosing the Insert tab option from the context menu.

3. Next we assign appropriate text in the text property of the added caption headers
for each of the two tabs.

Web Dynpro for ABAP

256

4. Then we will simply drag-and-drop any UI element already contained in our layout
editor to the tab of our choice. Any width and height adjustments are made if
required. We save and activate the component and run the relevant application.

How it works...
Suppose we had an interactive UI element that was transferred to the first tab. Running
the application will show the relevant Adobe form in the first tab, as shown in the following
screenshot. Selecting the other tab will show the elements contained in it.

Displaying error messages
In this recipe, we will see how we can display messages, such as error messages when a user
input is found to be incorrect. We will create a view that will have a button that displays a
message when the input is correct (for simplicity's sake, we will focus on the error generation
coding in this recipe).

In addition, it is recommended that you use assistance class for storing language-dependent
text that is to be displayed in the form of messages. For simplicity's sake, the assistance class
has not been shown in this recipe.

How to do it...
1. In the first step, we will create a Button element on our view and give it the caption

Check Data. Within the events, we will select BUTTON (as the onAction property)
from the listbox.

Chapter 14

257

2. A public attribute MYMESSMANAGER is defined at the component controller level, the
associated type of which is the IF_WD_MESSAGE_MANAGER interface.

3. Next, we write the relevant code within the WDDOINIT method of the component
controller. We define an interface reference for the IF_WD_CONTOLLER interface.

4. The WD_GET_API method is then used to get a reference to the interface containing
appropriate APIs. We will then call the GET_MESSAGE_MANAGER method in order
to get the handle to the message manager. This is assigned to the WD_THIS-
>MYMESSMANAGER interface we defined in the previous section.

Web Dynpro for ABAP

258

5. In the WDDOBEFOREREACTION method of the appropriate view, we will
write the coding for generating an error message. First, a reference to the
IF_WD_VIEW_CONTROLLER interface is defined. The WD_GET_API method
is then called to get the relevant set of APIs for the view controller. This is then
returned to the LO_API_CONTROLLER variable.

6. We use the GET_CURRENT_ACTION method in order to find out which of the
events have been triggered by the user. The name of the event triggered is returned
in the LO_ACTION->NAME attribute. We check if the name is equal to the BUTTON
element, that is, the button we define. We then carry out the necessary checks,
and if the data entered is invalid, the REPORT_ERROR_MESSAGE method of the
IF_WD_MESSAGE_MANAGER interface is called with the appropriate error text.
In this case, the public attribute, MYMESSMANAGER, defined in the component
controller, is used.

How it works...
In this case, the interface used for generating messages is the IF_WD_MESSAGE_MANAGER
interface. The interface has a number of methods used for generating warning error
messages on the screen.

First, we defined a public attribute MYMESSAGEMANAGER at the component controller level.
Appropriate code is written in order to get the handle to the message manager that can be
later used from any of the views in order to generate messages.

When the user clicks the button we defined, the WDDOBEFOREREACTION method of the
relevant view is called. Within the method, we wrote code to gain access to the API of the view
controller, the reference to which is used to call the GET_CURRENT_ACTION method. The
GET_CURRENT_ACTION method is used for determining the event that has been raised as a
result of the user interaction. We checked the LO_ACTION->NAME attribute in order to see
whether our button has been clicked. In case our button is clicked, we carry out the necessary
checks for checking the validity of the data that is entered (the code is not shown). Then the
REPORT_ERROR_MESSAGE method is called in order to display an error message.

Chapter 14

259

Calling dialog boxes of same component
In this recipe, we will see how we can display a dialog box based on a view of the same
component. We will create a MAIN view in the MAIN window and another view by the name
POP_UP in a new window, WIND_POP_UP. We will then create a button on the MAIN view,
which when clicked will display the POP_UP view as a dialog box.

How to do it...
We will now carry out the following steps:

1. We will define a public attribute by the name MY_WINDOW to the
IF_WD_WINDOW interface.

2. We will have a main view embedded within the MAIN window.

3. In addition, we will create a POP_UP view embedded within a WIND_POP_UP window.

Web Dynpro for ABAP

260

4. On the MAIN view, we will create a button.

5. On action button event handler method, we will write the appropriate code for calling
the POP_UP view as a pop-up dialog box. We use the WD_GET_API method of the
component controller to get access to the relevant APIs. The GET_WINDOW_MANAGER
function is then called in order to get reference to the IF_WD_WINDOW_MANAGER
interface, which is stored in the public attribute MY_WINDOW_MANAGER, as defined
in the previous section.

6. Next, we call the CREATE_WINDOW method of the IF_WD_WINDOW_MANAGER
interface. The necessary title, the desired message display mode, and the default
button information is also passed. Also, the window name in which the pop-up view
was created is mentioned (WIND_POP_UP).

7. Finally, the OPEN method is called for the MY_WINDOW interface that is created.

Chapter 14

261

How it works...
We carried out the necessary steps for displaying the pop-up dialog box. We first call the
appropriate method for getting a reference to the window manager, used for creating the
dialog box. We then call the CREATE_WINDOW method and specify the necessary title,
window name, message mode, and the buttons to be displayed (through the BUTTON_KIND
parameter). After the creation of the window, we need to show the dialog on the screen, which
is done via the OPEN method of the IF_WD_WINDOW_MANAGER interface.

For the BUTTON_KIND, MESSAGE_TYPE, and DEFAULT_BUTTON parameters, the possible
values that may be passed are shown in the following table:

Parameter Possible Values
BUTTON_KIND CO_BUTTONS_ABORTRETRYIGNORE

CO_BUTTONS_CLOSE

CO_BUTTON_OK

CO_BUTTONS_OKCANCEL

CO_BUTTONS_YESNO

CO_BUTTONS_YES_NOCANCEL

MESSAGE_TYPE CO_MSG_TYPE_ERROR

CO_MSG_TYE_INFORMTION

CO_MSG_TYPE_NONE

CO_MSG_TYE_QUESTION

CO_MSG_TYPE_STOP

CO_MSG_TYPE_WARNING

DEFAULT_BUTTON CO_BUTTON_ABORT

CO_BUTTON_CANCEL

CO_BUTTON_CLOSE

CO_BUTTON_IGNORE

CO_BUTTON_NO

CO_BUTTON_NONE

CO_BUTTON_OK

CO_BUTTON_RETRY

CO_BUTTON_YES

Web Dynpro for ABAP

262

There's more...
Also, for calling the pop-up dialog box after the click of the button, we can make use of the
Web Dynpro code wizard. While being in the editor for the code of the OnActionbutton
handler method, navigate to Edit | Web Dynpro Code Wizard. On the general tab, select
the Generate Popup option and enter the window name that embeds our view.

Simply press Enter. This will add the appropriate code.

Displaying Adobe forms in Web Dynpros
In this recipe, we will see how we can display an Adobe form within a Web Dynpro application.
We will use one of the forms that we created in the Creating nested tables recipe in Chapter
13, SAP Interactive Forms by Adobe.

How to do it...
We will now see the required steps in detail:

1. We create a new Web Dynpro component. On the MAIN view, we create an interactive
UI element. We name it INTERACTIVEUI.

Chapter 14

263

2. Within the properties, the template source (that is, Adobe form) was set as
ZST8_NESTED_TABLES_EXAMPLE as used in the Creating nested tables
recipe in Chapter 13, SAP Interactive Forms by Adobe.

We will also increase the height and width to 1500px instead of the default 300px.

3. After pressing Enter, a dialog box is displayed. This asks you whether context
nodes should be created within the view context node corresponding to the
context defined in the Adobe form. Click on the Yes button in order to generate
the context automatically.

Web Dynpro for ABAP

264

4. This will generate appropriate context nodes within the Web Dynpro view
corresponding to the context of the Adobe form. The two nodes EMPLOYEE_GRADES
and EMPLOYEE_ADDRESS are generated in the CONTEXT MAIN window of the view
in question.

5. Next, we will write the code that is necessary to populate the data regarding the
EMPLOYEE_GRADES and EMPLOYEE_ADDRESS nodes in the WDDOINIT method
of the MAIN view. We use the Web Dynpro code wizard and choose the settings
shown in the following screenshot (both for the EMPLOYEE_ADDRESS and the
EMPLOYEE_GRADES nodes).

6. The main part of the added code for the EMPLOYEE_GRADES node is shown
as follows:

DATA LO_ND_EMPLOYEE_GRADES TYPE REF TO IF_WD_CONTEXT_NODE.
DATA LT_EMPLOYEE_GRADES TYPE WD_THIS->ELEMENTS_EMPLOYEE_GRADES.
LO_ND_EMPLOYEE_GRADES = WD_CONTEXT->PATH_GET_NODE(PATH =
 `ZST8_NESTED_TABLES_E.EMPLOYEE_GRADES`).
""" code to fill LT_EMPLOYEE_GRADES not shown
LO_ND_EMPLOYEE_GRADES->BIND_TABLE(
 NEW_ITEMS = LT_EMPLOYEE_GRADES
 SET_INITIAL_ELEMENTS = ABAP_TRUE).

Chapter 14

265

How it works...
We first created an interactive UI element in our view layout. Then we linked it to our Adobe
forms using the template source property. We then generated a context corresponding to
the Adobe form in our view. The appropriate code was then added in the WDDOINIT view for
populating the data context nodes EMPLOYEE_GRADES and EMPLOYEE_ADDRESS. Upon
running the application, the data of the grades and addresses were passed on to the Adobe
form context node.

The displayed PDF form opens in the browser as shown in the following screenshot:

See also
 f http://help.sap.com/saphelp_nw04s/helpdata/en/43/

bccdcfe326332ee10000000a11466f/frameset.htm

 f http://help.sap.com/erp2005_ehp_04/helpdata/en/6c/7aae42cd7fb61
1e10000000a155106/frameset.htm

 f http://help.sap.com/saphelp_nw04s/helpdata/en/35/447741b0d6157d
e10000000a155106/frameset.htm

15
Floorplan Manager

In this chapter, we will see recipes involving Floorplan Manager (FPM) for Web Dynpro
applications. We will look at:

 f Creating applications based on OIF Floorplan design

 f Changing header and ticket area at runtime

 f Adding list GUIBBs to Floorplan applications

 f Viewing structure of FPM applications

 f Creating GAF applications

 f Creating FPM applications using Application Creation Tool

Introduction
FPM may be simply defined as templates that allow us to create large, complex, and big Web
Dynpro applications quickly and easily without the need for excessive programming. Using the
Floorplan framework, interface views of multiple components may be combined together to
form an application. The interface views, within the FPM arena, are termed as a UI building
blocks (UIBB).

We first create an application based on one of the four supported Floorplan designs. Then we
create the application and component configurations using the configuration editor. There are
four types of Floorplans:

 f Object Instances Floorplan (OIF)

 f Guided Activity Floorplan (GAF)

 f Quick Activity Floorplan (QAP)

 f Overview View Floorplan (OVP)

Floorplan Manager

268

Our main emphasis in this chapter will be on the OIF and GAF Floorplan designs.

Here is a brief introduction of the two:

 f OIF: This Floorplan focuses on a particular object type such as an employee or sales
order. It provides functionality such as Create, Change, Display, or Delete, and
may consist of multiple tabs that provide input/output fields relevant to the given
object instance (belonging to the object type in question).

 f GAF: As the name indicates, the guided activity Floorplan allows you to perform
a given task for an object over a number of steps (screens). The guided activity
Floorplan provides a roadmap showing all the numbered steps as well as the
current step highlighted for the user.

The Identification Region (IDR) is comprised of the application title. In addition, an
optional Extended IDR consists of the ticket area on the left-hand side and the items area
on the right-hand side. The ticket area may be configured while the items area may only be
accessed through coding. The ticket area has Ticket top and Ticket bottom as shown in the
following screenshot:

Creating applications based on OIF
Floorplan design

In this recipe, we will see how we can create an application based on the OIF Floorplan.
We will create the application configuration, then the IDR and the component configuration.

Getting ready
We will use the Web Dynpro component and application used in the Integrating Adobe forms
in Web Dynpro recipe in Chapter 14, Web Dynpro for ABAP. However, we need to make certain
changes in the component and its application in order for them to be used in the FPM design.

First, on the Properties tab of the created application, we will assign the FPM_OIF_COMPONENT
component in the Component field and the FPM_WINDOW component in the Interface
View field.

Chapter 15

269

Next, at the component level, a change is also required. On the Implemented Interfaces tab,
we will add the IF_FPM_UI_BUILDING_BLOCK component.

Then, click on the Reimplement button in the Action column. The Implementation State
column should show a green signal. A message will appear saying that the interface was
successfully implemented.

This adds a number of methods (related to the Floorplan design) to the component controller.
Each method is called at a particular instance during the execution of the application. Each
method serves a particular purpose and we can write coding within them in order to serve
our requirement.

How to do it...
For creating an FPM OIF application, proceed as follows:

1. Call transaction SE80. In the left-hand pane, choose the Web Dynpro Component
option in the list box and enter FPM_OIF_COMPONENT in the field provided. Then
press Enter.

Floorplan Manager

270

2. In the list that appears, under Web Dynpro applications, right-click our application
zst8_adobe_form, and from the context menu that appears, choose the option
Create/Change Configuration.

3. This will open the Editor for the Web Dynpro ABAP Application Configuration
window. Enter a suitable ID in the Configuration ID field provided (in our
case ZST8_MY_OIF_DEMO) and click the Create button.

Chapter 15

271

4. This leads you to the screen shown in the following screenshot:

5. On the Structure tab, enter the name of the configuration components
ZST8_MY_OIF_CONFIG and ZST8_MY_IDR_CONFIG in the fields provided.

6. First, select the OIF component row and click the Go to Component Configuration
button. This will take you to the screen that looks like the following screenshot:

7. Since the component configuration does not exist, an error occurs. Click the
Create button. The pop-up box appears as shown as follows:

Floorplan Manager

272

8. Enter suitable description and package (in our case local $TMP). Press the OK button.

9. The message appears, The Configuration ZST8_MY_OIF_CONFIG has been created
successfully. Click the Change button.

10. This will lead you to the Configuration Editor window showing one Main View (Main
View 1) having one Subview (Subview 1 1). On the left-hand pane, there is a tree
showing the various components.

11. We will now assign a UIBB to our subview.

12. On the right-hand side is the detail screen for the object selected in the left-hand
pane. Select the Subview 1 1 option, and make sure the attributes appear in
the lower part of the screen. Within the Component field, enter the name of the
component that we are using (ZST8_ADOBE_FORM). Also, enter ZST8_WEB_DYNPRO
in the View field, the respective window containing the view that we like to display in
the subview at the execution of the application.

13. If we need to change the displayed text for the main view and subview, simply select
the Main View or Subview node in the left-hand pane and then enter the new text in
the Main View name attribute or SubView name attribute. Save your entries.

Chapter 15

273

14. Now return to the application configuration screen. Now, we will create the IDR
configuration. Select the row showing the FPM_IDR_COMPONENT component and
click the Go to Component Configuration button. This will take you to the screen that
looks like the following screenshot:

15. In the left-hand pane, click the IDR Basic node. On the right-hand side, enter the
application title and the tooltip. Save your entries. You may click the Check button
to check the consistency of your configuration.

How it works...
We created an application configuration based on OIF Floorplan. It comprised of the IDR
configuration in which we specified the application title. We also created the component
configuration of the component FPM_OIF_COMPONENT and within the view and subview
we assigned the window (and view) that has been created earlier by us. You may add further
subviews to the application. The views displayed within the subviews may be in different Web
Dynpro components.

Floorplan Manager

274

There's more...
On the left-hand side of the component configuration, click the Add button and select the
Initial Screen option. You may then specify the component and view to be used as an initial
screen. The Initial Screen window is displayed before the OIF application is displayed.

Similarly, we may add a confirmation screen as well. The confirmation screen is displayed at
the end of the execution of the OIF application.

In addition, we need to make sure that the Implemented Interfaces tab on the used
components have the interface IF_FPM_UI_BUILDING_BLOCK implemented, otherwise
the error occurs as shown in the following screenshot:

Changing header and ticket area at runtime
In this recipe, we will see how we can change the IDR header (title and ticket area)
programmatically. In this case, the previously statically defined (through IDR configuration)
ticket area and title are overridden. This concept applies to both the OIF and OVP Floorplans.

In this recipe, we will write the code for changing within the view (window) shown within a
subview. When the particular subview is selected, the header title and ticket area will change.
We will write the code in the component whose view is used as an UIBB in a subview. We will
write the code in the respective view (WDDOINIT method).

Chapter 15

275

How to do it...
For dynamically changing the IDR title and ticket area, proceed as follows:

1. First, we define an attribute at the component controller level by the name
MY_FPM_IDR based on the type IF_FPM_IDR.

2. Next, we define a SET_IDR_TITLE_TICKET method in the component
controller. Then, we will write the coding in the method. We first define a
reference variable MY_FPM that point to the interface IF_FPM. We call the
static method GET_INSTANCE of the CL_FPM_FACTORY class in order to
create a reference to the FPM service object.

3. We then call the GET_SERVICE method with the constant attribute GC_KEY_IDR of
the class CL_FPM_SERVICE_MANAGER. The result of the method is then assigned to
MY_FPM_IDR attribute we defined in the first step.

4. We then call the SET_APPLICATION_TITLE method of the attribute MY_FPM_IDR.
We pass the New Title and New Tooltip parameters for the IDR.

Floorplan Manager

276

5. We then call the SET_TICKET method for the reference MY_FPM_IDR. The necessary
Ticket top and Ticket bottom texts are passed as values corresponding to
necessary parameters.

6. We then need to write the code for calling the method SET_IDR_TITLE_TICKET
from the WDDOINIT method of the view that is used in the UIBB of the subview.

By following these steps, we are accessing the IDR at runtime and specifying its
displayed IDR title and ticket area text.

How it works...
We created a method SET_IDR_TITLE_TICKET at the component controller level that
access the service object for accessing the IDR. Appropriate methods are called in order
to set the application title, ticket top, and bottom. Next, this method is called from the
WDDOINIT method of the view used in the UIBB of our OIF application.

When the application is run and the relevant subview is selected, the WDDOINIT method
is called that calls the SET_IDR_TITLE_TICKET method of the component controller.
The New Title, Ticket top, and Ticket bottom parameters are changed as shown in
following screenshot:

Chapter 15

277

Adding list GUIBBs to Floorplan applications
SAP provides a number of Generic User Interface Building Blocks (GUIBB) generic building
blocks such as Tabs UIBB, Form, and List UIBB. These allow you to reuse them into your
applications without programming from scratch. In this recipe, we will see how we can add
a list GUIBB in our applications.

The GUIBB list must have an associated feeder class that provides the data that is displayed
in the list. We will add the list GUIBB in OIF application created earlier. We will add the GUIBB
list in a new subview within the component configuration.

Within the list, we will display the columns showing the employee information based on our
previously created structure (in Chapter 14, Web Dynpro for ABAP) ZST8_EMPLOYEE_ADDRESS
as shown in the following screenshot:

Floorplan Manager

278

How to do it...
For adding the list GUIBB in our applications, proceed as follows:

1. We will first create the feeder class through transaction SE24. On the Interfaces tab,
we will add two interfaces IF_FPM_GUIBB_LIST and IF_FPM_GUIBB_LIST_EXT
interfaces (the IF_FPM_GIUBB interface will come by itself).

2. A number of methods are added due to the inclusion of the interfaces. We will write
code in the two methods GET_DEFINITION and GET_DATA.

3. We first write the code within the method GET_DEFINITION. We first call the
DESCRIBE_BY_NAME static method of the CL_ABAP_TYPEDESCR class in order to
get the details of the structure ZST8_PERNR_ADDRESS. The reference returned is
stored in the defined reference variable MYSTRUCTDESCR.

4. Next, the static method CREATE method of the CL_ABAP_TABLEDESCR
class is called and the returned reference is stored in EO_FIELD_CATALOG.

5. Next, we call the GET_COMPONENTS method in order to get the components of our
structure ZST8_PERNR_ADDRESS. The components returned in the internal table
MY_COMPONENT_TAB. A loop is then run on the internal table. For each component,
we set the properties as visible, read-only, and the column header to be used from
the data dictionary definition. The property information is set using the structure
WA_FIELD_DESCRIPTION which is then appended to the internal table (exporting
parameter) ET_FIELD_DESCRIPTION.

Chapter 15

279

6. Within the GET_DATA method, for our requirement we only need to make very small
code insertion. For simplicity sake, we assume that the data that is to be displayed
in the list is available in the internal table IT_ADDRESS (the coding for fetching this
data is not shown). The two lines to be inserted are shown as follows:

7. For all other methods, we will create empty implementations and save our code.
Then save and activate your class.

8. Next, we will go to the configuration editor and will add a new subview to our
application. We will then use the Add UIBB button on the right-hand side of the
configuration editor screen and choose the option Add List Component.

Floorplan Manager

280

9. For the List UIBB (1) window, within the attributes, we will enter a suitable
configuration name (in our case ZST_LIST_CONFIG) and click the Configure UIBB
button on the right-hand side of the screen (note the component FPM_LIST_UIBB
and view LIST_WINDOW are inserted automatically).

10. This will lead to the editor for the Web Dynpro ABAP Component Configuration
window and will generate an error saying that the configuration does not exist.

11. We will then click the Create button. A pop up appears that asks the feeder class to
be used for the list configuration. Enter the name of the feeder class created in the
first step. Click the Edit Parameters button.

Chapter 15

281

12. Since there are no parameters defined, the save pop up will appear and will ask us to
save our configuration. This will then take us to the component configuration of our
configuration ZST8_LIST_CONFIG.

13. Then we will click the Configure Columns button. This will show the columns that we
had set in the GET_DEFINITION method to be available for list configuration. We
will use the Add Columns button in order to select the columns that we need to be
shown in our list. We may change the header description also if we like and well as
the displayed length and sequence.

Floorplan Manager

282

14. We set the description of the three fields in our structure as shown in the
following screenshot:

15. We save our configurations and then test the application configuration of our
main application.

How it works...
We first define the feeder class using the transaction SE24. The code is written for the two
important methods GET_DATA and GET_DEFINITION. Both these methods are called each
time the GUIBB is processed.

The GET_DEFINITION method has two exporting parameters that are filled within the code
that we have written. The list of columns that are to be made available in the configuration
editor is specified in the exporting parameter EO_FIELD_CATALOG, whereas, the properties
of each column is specified in the exporting parameter ET_FIELD_DESCRIPTION. The
properties that are set include the column heading that may be later changed at the time
of configuration.

Within the GET_DATA method that provides the data to be displayed, the exporting parameter
CT_DATA is filled with data. The statement for setting the value of EV_DATA_CHANGE to
ABAP_TRUE must be there. If not, the data will not be displayed, however, the list columns
are displayed correctly upon application run.

The configuration is then done. We create the configuration of the list UIBB and assign
it the newly created feeder class. The GUIBB is attached to a new subview of our
existing application.

Chapter 15

283

Upon executing the application, the list is displayed along with the data.

There's more...
There are other notable methods of the feeder class such as GET_PARAMETER_LIST, used to
define parameters for your feeder class, the NEEDS_CONFIRMATION method that allows us to
display a data loss dialog box, and the PROCESS_EVENT method that is used for handling any
events triggered during the application execution.

At the minimal, coding must be entered in the mandatory methods GET_DEFINITION and
GET_DATA.

Viewing structure of FPM applications
In this recipe, we will see how we can use a standard Web Dynpro component in order to view
the entire structure of our FPM applications.

How to do it...
Follow these steps:

1. Call transaction SE80. In the left-hand pane, choose Web Dynpro Component from
the list box and enter the component name FPM_CFG_HIERARCHY_BROWSER in the
field provided. Click the Display button.

Floorplan Manager

284

2. Then open the Web Dynpro Applications node and double-click the
FPM_CFG_HIERARCHY_BROWSER application.

3. Then, choose the menu path: Web Dynpro Application | Test | In Browser - Admin
Mode.

4. The browser will open and the screen will appear as follows:

Chapter 15

285

5. Enter the name in the Application Configuration field provided and click
the Start button. We will use our already created application configuration
ZST8_MY_OIF_DEMO.

6. The entire hierarchy of the application (and configuration) will be displayed in the next
browser screen.

How it works...
We use a standard application to display the hierarchy of our FPM application. The IDR and
the OIF details are shown. The configuration IDs of the various involved configurations are
also displayed. The component used for the initial screen as well as the various subview
and views details are displayed. If a GUIBB is used, (for example, list UIBB), the component
name used along with the relevant configuration ID is displayed. We may click on a particular
configuration ID to display. In a separate browser session, the details of its configuration
are given.

See also
 f http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/

uuid/c0a2b7c2-1598-2e10-45bc-c556df3b9576?QuickLink=index&overr
idelayout=true&51591147228485

Floorplan Manager

286

Creating GAF applications
In this recipe, we will see how we can develop and configure Guided Activity Floorplan
(GAF) applications. By default, one single step is automatically added to the component
configuration. We will create one main step (step 2) that will comprise of one substep.
We will write coding that will display the substep after the Next button of the step 2 is
clicked. There is no ticket area for a GAF application.

In this recipe, we will focus on the steps relevant to GAF applications.

Getting ready
We create a component by the name ZST8_GAF that comprised of views and windows shown
in the following screenshot for the steps and substep:

The defined application is based upon the component FPM_GAF_COMPONENT and interface
view is FPM_WINDOW.

How to do it...
Follow these steps:

1. Within the configuration editor, one main step already exists. In addition, two toolbar
buttons, Previous and Next buttons also exist.

Chapter 15

287

2. Select the main step and in the Attributes UIBB: WINSTEP1 panel, assign the
component and view as shown in following screenshot:

3. Then add one more main step using the Add Main Step button on the right-hand
side of the screen. Assign the component and view appropriate values (WINSTEP2).

4. Then, select the Main Step 2, and add a substep using the Add Substep button.
For the substep, enter the component and view name created earlier.

Floorplan Manager

288

5. Also on the attributes of the Next button of Main Step 2, enter STEP2_NEXT in the
Event ID field.

6. Next, we will create a new toolbar button on the Substep2 1. We will press the button
Add Toolbar Element. The dialog appears as shown in the following screenshot:

7. Next, we need to know the substep variant parameter. Select the Substep variant
node from the left-hand pane and then choose the menu Change and then click
Substep Variant Parameters.

Chapter 15

289

8. Note the value from the pop up that appears and then press OK.

9. Save and activate your configurations.

10. Next, we will write the code for activating the substep. This code is written in the
PROCESS_EVENT method of the component controller.

11. We use a CASE statement to make sure our added code runs for the Next button
click of the MAINSTEP_2.

12. We call the CREATE_BY_ID method of the CL_FPM_EVENT class in order to create
an event object.

13. Next, the SET_VALUE method is called in order to specify the event parameters. The
method is called three times, for specifying the main step, the next active substep,
and the substep variant having the values MAINSTEP_2, SUBSTEP_2_1 and
SUBSTEPVARIANT_1 respectively.

Floorplan Manager

290

14. Finally, we raise the event that we have created using the RAISE_EVENT method.
The MY_EVENT object is passed for the parameter IO_EVENT.

How it works...
We created the GAF application configuration and component configuration. We created two
main steps and one substep. By default, the substep is not active. We wrote the code for
activating the substep at runtime. We also added a toolbar button Return to Main Step for
returning from the substep to the main step.

Running the application configuration will display the GAF application. You may use the Next
button to go to the next step.

Creating FPM applications using Application
Creation Tool

In this recipe, we will see how we can use a standard Web Dynpro application in order to
create new FPM-based applications quickly and easily.

Chapter 15

291

How to do it...
Follow these steps:

1. Call transaction SE80. Select the package from the list box. Enter APB_FPM_CONF in
the field provided.

2. Open the Web Dynpro Applications folder. Right-click the FM_CFG_APPL_
CREATION_TOOL component and then choose the Test option from the context
menu that appears.

3. The Application Creation Tool window opens in a browser window.

4. Enter a suitable name for your application. Enter a description and choose from the
list box the Floorplan type. Then click the Propose button.

5. The suggested configuration names are filled in the following table (screenshot) for
the application, IDR, and component configuration.

Floorplan Manager

292

6. You enter description in the field provided and make sure the required checkbox
is on.

7. Then click the Create button. The application will be created. Then we may select a
particular configuration and then click the Configuration Editor button to go to the
appropriate configuration.

How it works...
Application Creation Tool is a useful tool that allows you to quickly create an application
and its various configurations involved quickly and easily from one screen and relieve us
from the burden of creating each one by one manually. We may then also go directly to the
configuration using the Configuration Editor button.

See also
 f http://help.sap.com/erp2005_ehp_06/helpdata/en/08/1cd90cc855424

eb8177365a122a8b7/content.htm

 f http://help.sap.com/saphelp_nw70ehp2/helpdata/en/15/
daf7c77c704c64ac8c8e48307e2bb0/content.htm

 f http://help.sap.com/erp2005_ehp_06/helpdata/en/08/1cd90cc855424
eb8177365a122a8b7/content.htm

http://help.sap.com/erp2005_ehp_06/helpdata/en/08/1cd90cc855424eb8177365a122a8b7/content.htm
http://help.sap.com/erp2005_ehp_06/helpdata/en/08/1cd90cc855424eb8177365a122a8b7/content.htm
http://help.sap.com/erp2005_ehp_06/helpdata/en/08/1cd90cc855424eb8177365a122a8b7/content.htm

Index
Symbols
^ 68
? 68
?! 68
?= 68
. (68
(^\:.:) 79
([^\ 79
: 68
\< 68
\> 68
+ 68
$ 68
\1 68
\2 68
\d 68
 set_save_restriction method 52
\u 68
\w 68

A
ABAP

Web Dynpro 243
ABAP language 29
ABAP List Viewer. See ALV
ABAP objects 5
ABAP program

web service, calling 220-222
ABAP statement patterns

searching 161, 162
Activate button 173
Activation Log 90
adapter class 26

adapter method 26
adapter pattern based classes

about 24
creating 25, 26
working 27

add attachment method 201
add_recipient method 190
Add Toolbar Element button 288
Adobe Document Services. See ADS
Adobe forms

displaying, in Web Dynpros 262-265
Adobe LiveCycle Designer 223
Adobe offline infrastructure

about 233, 234
working with 234-237

ADS 224
ALV 45, 46
ALV columns

setting, as key columns 47, 48
zero amount, setting 47, 48

ALV toolbar
own buttons, adding 55-58
working 58-62

amount string
commas, inserting 76-78

Application Creation Tool
used, for FPM applications creating 290-292
working 292

applications based OIF Floorplan design
about 268, 269
creating 269-273
working 273, 274

attachments
adding, to e-mail message 194-196

294

B
background pictures

setting 117-120
BCS 187, 234
BCS classes

CL_BCS 188
CL_BCS_CONVERT 188
CL_CAM_ADDRESS_BCS 188
CL_DOCUMENT_BCS 188
CL_SAPUSER_BCS 188

Business communication services. See BCS
BUTTON_KIND parameter 261
button press method 58

C
characters

removing, from string 72
checkboxes

adding, to column 62-65
working 64

CL_BCS class 188
CL_BCS_CONVERT class 188
CL_CAM_ADDRESS_BCS class 188
CL_DOCUMENT_BCS class 188
CL_SALV_EVENTS_TABLE class 58
CL_SAPUSER_BCS class 188
Code Inspector

about 149, 150
check categories 149

Code Inspector checks
creating 163-166

columns
checkboxes, adding 62-64
Hotspot, adding 52-54
removing, from display 49, 50
removing, from layout 49, 50

commas
inserting, in amount string 76-78

comments
removing, from program code 78, 79

Configuration Editor button 292
CONSTRUCTOR method 165
consumer proxy’s logical port

creating 218
working 220

Continue button 208

created web service
configuring 211, 212
working 213

Create Extension Index option 89
create_internet_address method 193
Create New Version icon 156
CREATE_PDF_OBJECT method 242
create_persistent method 18
CREATE_WINDOW method 260

D
database-specific performance checks

carrying out 157, 158
database table contents

printing, data references used 30-34
printing, field symbols used 30-34

database tables
secondary indexes, creating 88-90

Database Utility 90
date

converting, into internal date type 73
DEFAULT_BUTTON parameter 261
Deserialization 168
desktop folder

input, taking 108-111
detach_commit method 10
dictionary table types

transformations, creating 177-179
working 180

directory_browse method 111
Display Trace button 145
Display Trace option 135
Display Trace screen 140
duplex printing

enabling, in forms 229
dynamic Open SQL

applying 35-38
dynamic program

generating 39-43
dynamic programming 29

E
e %_HINTS parameter 91
e-mail

sending, to Internet address 192, 193

295

error messages
displaying 256-258

Excel downloading
transformations, using 181-185

Executed icon 156
EXECUTE method 242
EXPLAIN TREE tab 138

F
factory method 26
factory method based classes

creating 19, 20
working 21

field’s hit list data source
finding 145-147

filename
input, taking 108-111

Floorplan Manager. See FPM
folder options

using, for page protection 120, 121
for all entries construct

replacing, ranges used 96-99
forms

duplex printing, enabling 229
parallel printing 238, 239

FPM 267
FPM applications

creating, Application Creation Tool used
290-292

structure, viewing 283, 285
full-fledged inspection

about 153
carrying out 153-155
working 155, 156

function module
used, for web service creating 205-210
working 210

G
GAF 267, 268
GAF applications

about 286
creating 286-289
working 290

Generic User Interface Building Blocks. See
GUIBBS

get_column method 63
GET_COMPONENTS method 278
GET_DATA method 241
GET_DEFINITION method 282
get_persistent method 18
GET_WINDOW_MANAGER function 260
GUIBBS

about 277
adding, to Floorplan applications 277-282
Form 277
List UIBB 277
Tabs UIBB 277
working 282

H
hashed table

single read access 94-96
hints

adding, in SELECT clause 91, 92
Hit List tab 87
Hotspot

columns, adding 52, 54
working 54

HTML e-mail
about 197
creating 197
working 198

HTML stream
interpreting 80, 81

I
i_att_content_hex parameter 196
IDR 268
IDR header (title and ticket area)

modifying 274-276
working 276

IF statement
regex, using as 70, 71

Import button 185
Insert new root option 178
interactive forms

creating, form elements used 230-232

296

creating, scripting used 230-232
error messages, adding 239, 240
working 232, 233

internal date type
date, converting into 73

internal tables
secondary indexes 93, 94
transformations, creating 175, 176
working 176

L
layout toolbar buttons

saving 51
working 51, 52

LIST_FROM_MEMORY function 199
LOOP statement 40

M
MESSAGE_TYPE parameter 261
multiselection parameter 110
mycheckbox method 63

N
navigation lists

about 248
creating 249-252
working 253, 254

nested tables
about 224, 225
creating 226, 227
working 227, 228

O
Object Instances Floorplan. See OIF
OIF 267, 268
OnActionbutton handler method 262
on_button_press method 58
on_click_checkbox method 64
Overview View Floorplan. See OVP
OVP 267

P
PDF object API

about 240
using 241
working 242

PDF output
Smart Form, converting to 124-126

persistent object
about 12
creating 13-16
working 17, 18

printed multiple forms
including, in single spool request 122-124

print preview
using 117-120

Print Preview option 119
program

running 199-202
program code

comments, removing 78, 79
program output

sending, as email 199-202
pseudo comments

used, for message suppressing 159, 160

Q
QAP 267
Quick Activity Floorplan. See QAP
quick code inspection

carrying out 150-152
working 152, 153

R
radio button selection

screen fields, changing 106-108
refresh method 63
regex

using, as IF statement 70, 71
regular expression 67, 68
regular expression operators, in ABAP

^ 68
?! 68

297

?= 68
. (68
: 68
\< 68
\> 68
+ 68
$ 68
\1 68
\2 68
about 68-70
\d 68
\u 68
\w 68

report selection screens
listboxes, adding 102-104
tabstrips, adding 102-104

restricted trace
carrying out 138-140

r_header table 99
RTTI 29
Runtime Type Identification. See RTTI

S
SAP 204
SAP interactive forms

recipes 223
screen field data source

finding 144, 145
screen fields

changing, on radio button selection 106-108
Search Function node

using 161
search help

creating 111, 112
exit function module, defining 112
working 113, 114

secondary indexes
creating, in database tables 88-90
for internal tables 93, 94

SELECT clause
hints, adding 91, 92

selection screen
toolbar buttons, adding 104, 105

SELECT statements 83

send method 190
serialization 168
Service Consumer node 220
service-oriented architecture. See SOA
set_cell_type method 64
set_data method 9
SET_DOCUMENT method 242
SET_EXTRACTDATA method 241
set_key method 51
set_screen_status method 58
set_technical method 50
shared memory object

about 6
creating 9
root class, creating 6-9
working 10-12

similar component dialog boxes
displaying 259-262

simple e-mail message
attachments, adding 194-196
creating 188-190
working 190, 191

simple transformations
about 168, 169
creating 170
creating, for internal tables 175, 176
creating, for nested structure 172-174
generating, for dictionary table types 177-181
used, for Excel downloading 181-185
working 171-177

single read access
hashed table 94, 96

single spool request
printed multiple forms, including 122-124

singleton class 22
singleton design pattern based classes

about 22
creating 22
working 24

Smart Form
about 115
converting, to PDF output 124-126

Smart Forms text editor
changing, to Microsoft Word 116

SOA 203

298

Source Code tab 182
special characters

\ 69
\^ 69
\? 69
\. 69
\(69
\) 69
\[69
\] 69
\+ 69
\$ 69

SQL list
summarizing 141-144

SQL trace
about 131
Activate Trace button, working 133
carrying out 132, 133

static adapter method 26
string

characters, removing 72

T
table fields

sorting, applying 126-130
subtotaling, applying 126-130

table-related information
viewing 141-144

tabstrips
about 254
creating 255, 256
working 256

telephone numbers format
validating 74, 75

Temporary Definition option 152
text string

repeated words, removing 75, 76
tokens

searching 161, 162
toolbar buttons

about 156
adding, on selection screen 104, 105

trace result
FETCH operation 137
generating 133-138

interpreting 133-138
OPEN operation 136
PREPARE operation 136

transaction SAT
using, for problem area search 84-86
working 86, 88

trees
about 245
creating 245-247
working 248

tt:template command 183
tt:value command 169

U
UDDI 203
UIBB 267
UI building blocks. See UIBB
Universal Description, Discovery,

and Integration. See UDDI
unwanted trace result entries

filtering 140, 141

V
value parameter 65

W
WDDOBEFOREREACTION method 258
WDDOINIT method 264
wd_get_api()method 244
Web Dynpro

about 243-245
Adobe forms, displaying 262-265
error messages, displaying 256
navigation lists, creating 248
tabstrips creating 254
trees, creating 245

Web Dynpro applications 267
web service

calling, from ABAP program 220-222
client service relationship diagram 205
consuming 214-217
creating, from function module 205-210

Web Service Definition Language. See WSDL

299

XSLT_TOOL 167
XSLT transformation 167

Z
ZST8MY_SPELL_AMOUNT method 222

Where Clause block 35
WSDL 203

X
XML Spreadsheet 2003 format 182
XML stream 167

Thank you for buying
SAP ABAP Advanced Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering SQL Queries for
SAP Business One
ISBN: 978-1-84968-236-7 Paperback: 352 pages

Utilize the power of SQL queries to bring Business
Intelligence to your small medium-sized business

1. Practical SAP query examples from an SAP
Business One expert

2. Detailed steps to create and troubleshoot SQL
queries for Alerts, Approvals, Formatted Searches,
and Crystal Reports

3. Understand the importance and benefit of keeping
SQL queries simple and easy to understand

SAP BusinessObjects
Dashboards 4.0 Cookbook
ISBN: 978-1-84968-178-0 Paperback: 352 pages

Over 90 simple and incredibly effective recipes
for transforming your business data into exciting
dashboards with SAP BusinessObjects Dashboards 4.0
Xcelcius

1. Learn valuable Dashboard Design best practices
and tips through easy to follow recipes

2. Become skilled in using and configuring all
Dashboard Design components

3. Learn how to apply Dynamic Visibility to enhance
your dashboards

4. Get introduced to the most important add-ons
available for Dashboard Design with the most up
to date information for Dashboards 4.0

Please check www.PacktPub.com for information on our titles

SAP NetWeaver MDM 7.1
Administrator's Guide
ISBN: 978-1-84968-214-5 Paperback: 336 pages

Don't just manager – excel at managing your master
data with SAP NetWeaver MDM 7.1

1. Written in an easy-to-follow manner, and in
simple language

2. Step-by-step procedures that take you from
basic to advanced administration of SAP MDM
in no time

3. Learn various techniques for effectively managing
master data using SAP MDM 7.1 with illustrative
screen shots

SAP Business ONE
Implementation
ISBN: 978-1-84719-638-5 Paperback: 320 pages

Bring the power of SAP Enterprise Resource Planning to
your small-to-midsize business

1. Get SAP B1 up and running quickly, optimize your
business, inventory, and manage your warehouse

2. Understand how to run reports and take
advantage of real-time information

3. Complete an express implementation from start
to finish

4. Real-world examples with step-by-step
explanations

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: ABAP Objects
	Introduction
	Creating a shared memory object
	Creating a persistent object
	Creating classes based on factory methods
	Creating classes based on singleton
design pattern
	Creating classes based on adapter pattern

	Chapter 2: Dynamic Programming
	Introduction
	Using field symbols and data references to print database table contents
	Applying dynamic Open SQL
	Dynamic program generation

	Chapter 3: ALV Tricks
	Introduction
	Setting ALV columns as key columns and making zero amount appear as blank
	Removing columns from display and layout
	Adding Hotspot to columns
	Adding your own buttons to ALV toolbar
	Adding checkboxes to columns

	Chapter 4: Regular Expressions
	Introduction
	Using regex as an IF statement
	Removal of characters from a string
	Converting date into internal date type
	Validation of format (telephone number)
	Removing repeated words from text string
	Inserting commas in an amount string
	Removing comments from program code
	Interpreting HTML stream

	Chapter 5: Optimizing Programs
	Introduction
	Using transaction SAT to find problem areas
	Creating secondary indexes in
database tables
	Adding hints in SELECT clause
	Secondary indexes for internal tables
	Hashed table for single read access
	Replacing for all entries construct
 with Ranges

	Chapter 6: Doing More with Selection Screens
	Introduction
	Adding tabstrips and listboxes to report selection screens
	Adding toolbar buttons on selection screen
	Changing screen fields on radio button selection
	Taking desktop folder and filename as input
	Coding search help exits for creating better F4 helps

	Chapter 7: Smart Forms – Tips and Tricks
	Introduction
	Toggle on/off the Microsoft Word text editor
	Using background pictures
and print preview
	Using folder options for page protection
	Printing several forms in one spool request
	Converting Smart Forms to PDF output
	Applying sorting and subtotaling to table fields

	Chapter 8: Working with SQL Trace
	Introduction
	Carrying out SQL trace
	Generating and interpreting the trace result
	Carrying out restricted trace
	Filtering unwanted trace result entries
	Summarizing an SQL list and viewing
table-related information
	Quickly finding the data source of a screen field
	Finding the data source of a field's hit list

	Chapter 9: Code Inspector
	Introduction
	Carrying out quick code inspection
	Carrying out a full-fledged inspection
	Carrying out database-specific performance checks
	Suppressing messages using pseudo comments
	Searching for ABAP statement patterns and tokens within code
	Creating your own Code Inspector checks

	Chapter 10: Simple Transformations
	Introduction
	Creating simple transformations
	Creating transformations for structures and calling them in programs
	Creating transformations for internal tables
	Generating transformations for dictionary table types
	Downloading into Excel made easy using simple transformations

	Chapter 11: Sending E-mail Using BCS Classes
	Introduction
	Creating a simple e-mail message
	Sending e-mail to Internet e-mail addresses
	Adding attachments to your message
	Creating HTML e-mail
	Running a program and sending its output as an e-mail

	Chapter 12: Creating and Consuming Web Services
	Introduction
	Creating a Web service from a function module
	Configuring the created Web service
	Consuming a Web service
	Creating a consumer proxy's logical port
	Calling a Web service from an ABAP program

	Chapter 13: SAP Interactive Forms by Adobe
	Introduction
	Creating nested tables
	Enable duplex printing in forms
	Using form elements and scripting to create interactive forms
	Working with Adobe offline infrastructure
	Parallel printing of form
	Adding error messages for interactive forms
	PDF object API

	Chapter 14: Web Dynpro for ABAP
	Introduction
	Creating trees
	Creating navigation lists
	Creating tabstrips
	Displaying error messages
	Calling dialog boxes of same component
	Displaying Adobe forms in Web Dynpros

	Chapter 15: Floorplan Manager
	Introduction
	Creating applications based on OIF Floorplan design
	Changing header and ticket area at runtime
	Adding list GUIBBs to Floorplan applications
	Viewing structure of FPM applications
	Creating GAF applications
	Creating FPM applications using Application Creation Tool

	Index

