T o = i
!
¥

T "
-
3 x

hy A | (8L
! “ i e

answers to common problems

’:;4«. "
'
g s

Quick

SAP ABAP Advanced
Cookbook

echnigues

Rehan Zaidi [PACKT] enterprise®

PUBLISHING

http://www.allitebooks.org

SAP ABAP Advanced
Cookbook

Over 80 advanced recipes with excellent programming
techniques that focus on the Netweaver 7.0 EHP2 and above

Rehan Zaidi

enterprise 8

professional expertise distilled

PUBLISHING

BIRMINGHAM - MUMBAI

[vww allitebooks.cond

http://www.allitebooks.org

SAP ABAP Advanced Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: December 2012

Production Reference: 1191212

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-488-0
www . packtpub.com

Cover Image by Artie Ng (artherng@eyahoo. com. au)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
Rehan Zaidi

Reviewers
Steffen Macke

Alvaro Tejada Galindo
Alexey Tveritinov

Eric Wildenstein

Acquisition Editor
Rukhsana Khambatta

Lead Technical Editor
Susmita Panda

Technical Editors
Kaustubh S. Mayekar

Kirti Pujari

Copy Editor
Laxmi Subramanian

Project Coordinator
Arshad Sopariwala

Proofreaders
Clyde Jenkins

Lydia May Morris
Kevin McGowen

Stephen Swaney

Indexer
Rekha Nair

Graphics
Aditi Gajjar

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Rehan Zaidi has more than 13 years of SAP experience and has been writing about SAP
topics since 2001. He co-authored an ABAP programming training manual for a course taught
in North America and has written a number of SAP books and articles about ABAP, workflow,
HR functional and technical users, and SAP user experiences. Rehan has carried out support
and implementation projects involving various areas of ABAP and workflow, and has worked in
technical and functional areas of SAP ERP HCM. He holds bachelor and master’s degrees in
computer science. You may reach Rehan via e-mail at erpdomain@gmail . com.

I am very thankful to my parents, especially my mother, whose prayers are
with me all the time. | am grateful to the many friends and well-wishers
who have supported and encouraged me both through the duration of this
project and throughout my life as a whole.

In the preparation of the book, | would like to thank Rukhsana Khambatta
for turning a book idea (that began in my mind) into reality. In addition, | am
indebted to the entire team at Packt Publishing, including Susmita Panda,
Sai Gamare, Arshad, and others. Last but not least, my thanks to those
who reviewed this book and provided me with feedback, especially Steffen
Macke for his invaluable suggestions.

| apologize to anyone whom | have failed to mention. There are many people
who have helped me in this process and who have encouraged the creation
of this book. To all of you, | extend my most heartfelt thanks.

[vww allitebooks.cond

mailto:erpdomain@gmail.com
http://www.allitebooks.org

About the Reviewers

Steffen Macke is a Civil Engineer and Software Developer. After several years of work
on water supply projects in the Middle East, he’s now back in Germany and has joined the
software industry.

Maps and Geographic Information Systems (GIS) played a key role in his hydraulic analysis
and customer database activities. They served him as an entry point to the world of
programming, relational databases, version management systems, and web technology. The
complexity of the projects he encountered made him embrace diversity, active communities,
and practical approaches. That's why he doesn’t have a favorite programming language,
operating system, or database management system.

Steffen is actively involved in a number of open source projects, among which the general
purpose drawing software Dia is the most popular (http://dia-installer.de). His
passion for open source does not mean that he’s ignorant to the advantages of commercial
software development models, he believes that they're great to make a living. If you're
interested in Steffen’s views and projects, make sure that you visit his website
http://sdteffen.de.

[vww allitebooks.cond

http://sdteffen.de/
http://www.allitebooks.org

Alvaro Tejada Galindo worked as a Senior ABAP Consultant for 11 years, then he
moved to SAP Labs in Montreal where he works as a Development Expert. Besides his SAP
background, Alvaro is very proficient in scripting languages like PHP, Python, Ruby, and R
and considers himself to be a regular expressions hero.

Alvaro has worked in Peru and Canada for some of the best consultant companies, namely
Stefanini IT Solutions, ActualiSap, and Beyond Technologies. Presently, he is working for SAP.

Alvaro has published several programming books on
http://www.lulu.com/spotlight/blag.

I would like to thank my wife Milly and my daughter Kiara for all their support
while | was doing this book’s review.

Alexey Tveritinov graduated from Moscow State University of Informatics and
Craftsmanship in 2008. After that he was hired by NVIDIA in a GPU and driver testing team
as Junior Software Engineer, where he undertook development of various tools for tests
automation and performance measurement. After spending one year at NVIDIA he left

the company as his work on the software had finished, and he wasn’t involved in other
developments.

After that he was hired by a medical company named Trackpore Technology where he
developed embedded software for plasmapheresis medical units using Linux and C++.

In 2011, he was hired by SAP CIS as Developer Associate and started to work on
implementing the framework for XML reports according to specifications of legal
units of Russia, Ukraine, and other CIS countries, without the limitations of DMEE.

I would like to thank Vasily Kovalsky, a teacher at the SAP training center, for
his patience and knowledge. In addition, | would like to thank my managers
Vadim and Juri for the trust in me and my skills. Also | would like to thank all
developers in the GS unit of SAP, who were open to share their knowledge
and experience. Also, | would like to thank my girlfriend Olga Tupikina for her
patience and understanding while | was working on several projects and had
little time to share with her.

[vww allitebooks.cond

http://www.allitebooks.org

Eric Wildenstein is a SAP independent Consultant, who has been working on ERP
implementations for blue chip companies in Western Europe and North Africa regions since
1997. He mainly specializes in ABAP Object programming, NetWeaver XI/Pl and SAP Business
Workflow, providing technical expertise across the core business modules of SAP. Prior to
being self-employed in 2000, he worked as an in-house Programmer Analyst on behalf of
PricewaterhouseCoopers, U.K. and Andersen Consulting, France, on both SAP R/3 and

C/S architectures.

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . PacktPub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . Packt Pub . com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee@
packtpub . com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range of
free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

[@]PACKT)

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book library. Here,
you can access, read and search across Packt’s entire library of books.

Why Subscribe?

» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . Packt Pub. com, you can use this to access PacktLib today
and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on Twitter, or
the Packt Enterprise Facebook page.

[vww allitebooks.cond

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: ABAP Objects 5
Introduction 5
Creating a shared memory object 6
Creating a persistent object 12
Creating classes based on factory methods 19
Creating classes based on singleton design pattern 22
Creating classes based on adapter pattern 24
Chapter 2: Dynamic Programming 29
Introduction 29
Using field symbols and data references to print database table contents 30
Applying dynamic Open SQL 35
Dynamic program generation 39
Chapter 3: ALV Tricks 45
Introduction 45
Setting ALV columns as key columns and making zero amount
appear as blank 47
Removing columns from display and layout 49
Enable Adding Layout toolbar buttons 51
Adding Hotspot to columns 52
Adding your own buttons to ALV toolbar 55
Adding checkboxes to columns 62
Chapter 4: Regular Expressions 67
Introduction 67
Using regex as an IF statement 70
Removal of characters from a string 72
Converting date into internal date type 73
Validation of format (telephone number) 74

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Removing repeated words from text string 75
Inserting commas in an amount string 76
Removing comments from program code 78
Interpreting HTML stream 80
Chapter 5: Optimizing Programs 83
Introduction 83
Using transaction SAT to find problem areas 84
Creation of secondary indexes in database tables 88
Adding hints in SELECT clause 91
Secondary indexes for internal tables 93
Hashed table for single read access 94
Replacing for all entries construct with Ranges 96
Chapter 6: Doing More with Selection Screens 101
Introduction 101
Adding tabstrips and listboxes to report selection screens 102
Adding toolbar buttons on selection screen 104
Changing screen fields on radio button selection 106
Taking desktop folder and filename as input 108
Coding search help exits for creating better F4 helps 111
Chapter 7: Smart Forms - Tips and Tricks 115
Introduction 115
Toggle on/off the Microsoft Word text editor 116
Using background pictures and print preview 117
Using folder options for page protection 120
Printing several forms in one spool request 122
Converting Smart Forms to PDF output 124
Applying sorting and subtotaling to table fields 126
Chapter 8: Working with SQL Trace 131
Introduction 131
Carrying out SQL trace 132
Generating and interpreting the trace result 133
Carrying out restricted trace 138
Filtering unwanted trace result entries 140
Summarizing a SQL list and viewing table-related information 141
Quickly finding the data source of a screen field 144
Finding the data source of a field's hit list 145

Table of Contents

Chapter 9: Code Inspector 149
Introduction 149
Carrying out quick code inspection 150
Carrying out a full-fledged inspection 153
Carrying out database-specific performance checks 157
Suppressing messages using pseudo comments 159
Searching for ABAP statement patterns and tokens within code 161
Creating your own Code Inspector checks 163

Chapter 10: Simple Transformations 167
Introduction 167
Creating simple transformations 169
Creating transformations for structures and calling them in programs 172
Creating transformations for internal tables 175
Generating transformations for dictionary table types 177
Downloading into Excel made easy using simple transformations 181

Chapter 11: Sending E-mail Using BCS Classes 187
Introduction 187
Creating a simple e-mail message 188
Sending e-mail to Internet e-mail addresses 192
Adding attachments to your message 194
Creating HTML e-mail 197
Running a program and sending its output as an e-mail 199

Chapter 12: Creating and Consuming Web Services 203
Introduction 203
Creating a Web service from a function module 205
Configuring the created Web service 211
Consuming a Web service 214
Creating a consumer proxy's logical port 218
Calling a Web service from an ABAP program 220

Chapter 13: SAP Interactive Forms by Adobe 223
Introduction 223
Creating nested tables 224
Enabling duplex printing in forms 229
Using form elements and scripting to create interactive forms 230
Working with Adobe offline infrastructure 233

Table of Contents

Parallel printing of form 238
Adding error messages for interactive forms 239
PDF object API 240
Chapter 14: Web Dynpro for ABAP 243
Introduction 243
Creating trees 245
Creating navigation lists 248
Creating tabstrips 254
Displaying error messages 256
Calling dialog boxes of same component 259
Displaying Adobe forms in Web Dynpros 262
Chapter 15: Floorplan Manager 267
Introduction 267
Creating applications based on OIF Floorplan design 268
Changing header and ticket area at runtime 274
Adding list GUIBBs to Floorplan applications 277
Viewing structure of FPM applications 283
Creating GAF applications 286
Creating FPM applications using Application Creation Tool 290
Index 293

Preface

Advanced Business Application Programming (ABAP) is SAP’s proprietary 4th Generation
Language (4GL). SAP core is written almost entirely in ABAP. ABAP is a high level programming
language used in SAP for development and other customization processes. This book

covers advanced SAP programming applications with ABAP. It teaches you to enhance

SAP applications by developing custom reports and interfaces with ABAP programming.

This cookbook has quick and advanced real world recipes for programming ABAP.

It begins with the applications of ABAP objects and ALV tips and tricks. It then covers

design patterns and dynamic programming in detail. You will also learn the usage of quality
improvement tools such as transaction SAT, SQL Trace, and the code inspector. Simple
transformations and its application in Excel downloading will also be discussed, as well as the
newest topics surrounding Adobe Interactive Forms and the consumption and creation of Web
services. The book comes to an end by covering advanced usage of Web Dynpro for ABAP and
the latest advancement in Floorplan Manager.

What this book covers

Chapter 1, ABAP Objects, introduces useful recipes related to the object-oriented
programming. This will include useful design patterns, the shared memory, and the
persistent object concept.

Chapter 2, Dynamic Programming, covers facets of dynamic programming as applied in ABAP,
such as Dynamic Open SQL and usage of field symbols and references.

Chapter 3, ALV Tricks, shows how you can get the most out of ALV programs. Starting with a
simple ALV program, we will add code in recipes to fulfill a variety of user requirements.

Chapter 4, Regular Expressions, guides you on how you can embed regex programming
in your ABAP programs and solve complicated problems in the least possible time and with
minimal code.

Preface

Chapter 5, Optimizing Programs, shows the newer feature of secondary indexes and the
transaction SAT (runtime analyzer) along with valuable program optimization tips.

Chapter 6, Doing More with Selection Screens, discusses recipes based on less frequently
applied functionality within ABAP programs’ selection screens, such as the addition of
tabstrips and placement of buttons on toolbar. In addition, we will see how to take folder
and file names as input, followed by a recipe for writing code in search help exits.

Chapter 7, Smart Forms - Tips and Tricks, introduces various recipes based on Smart forms
and fulfilling user’s form printing requirements in the least possible time.

Chapter 8, Working with SQL Trace, provides lesser-known tricks related to the SQL Trace tool.
This will include the performance optimization usage of the SQL trace tool as well as the use
of finding data source of screen fields.

Chapter 9, Code Inspector, shows how to check the quality of custom programs using
standard checks, along with the procedure for creating your own checks.

Chapter 10, Simple Transformations, discusses in detail the Simple Transformation language
and the representation of data variables in it, the application for Excel download format will
also be shown.

Chapter 11, Sending E-mail Using BCS Classes, covers the classes of the Business
Communication Service (BCS) for e-mail generation. This chapter will cover everything from
simple e-mails for SAP users to Internet e-mail addresses, and also the procedure for adding
attachments of various formats.

Chapter 12, Creating and Consuming Web Services, covers the step-by-step procedure for the
creation of Web services based on an ABAP function module using the Inside-Out approach.
The steps required to create a consumer of the Web service will also be shown.

Chapter 13, SAP Interactive Forms by Adobe, shows how to create both print and interactive
forms using the SAP Interactive forms technology. A number of scenarios such as Offline form
processing will also be covered.

Chapter 14, Web Dynpro for ABAP, shows how to create simple and advanced Web Dynpro for
ABAP (WD4A) applications. The advanced topics related to the Web Dynpro components will
also be covered.

Chapter 15, Floorplan Manager, covers newer features of the Floorplan Manager design used
for creating Web Dynpro applications quickly. Both the configuration and coding for useful
Floorplans will also be covered.

What you need for this book

ECC 6 system with Netweaver 7.02 or higher. A trial version of ABAP Netweaver 7.02 or higher
will also suffice.

—21

Preface

Who this book is for

SAP Developers and Consultants who have at least a basic knowledge of ABAP.

Conventions

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: “clicking the Next button
moves you to the next screen”.

% Warnings or important notes appear in a box like this.

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com,
and mention the book title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find

any errata, please report them by visiting http: //www.packtpub.com/support,

selecting your book, clicking on the errata submission form link, and entering the details

of your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded to our website, or added to any list of existing errata, under the Errata section
of that title.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

ABAP Objects

In this chapter, we start with recipes for ABAP objects. This chapter is designed to provide

useful recipes related to the storage of ABAP objects in shared memory and the database
(persistent objects), as well as some useful design patterns. In this chapter, we will look at
ways of:

» Creating a shared memory object

» Creating a persistent object

» Creating classes based on factory methods

» Creating classes based on singleton design pattern
» Creating classes based on adapter pattern

Introduction

This chapter explores recipes related to ABAP objects. Two useful features of the
object-oriented ABAP are storage options in the shared memory as shared objects, and
in the database as objects of persistent classes. The details about both the prerequisites
as well as the necessary steps needed to created shared memory-enabled objects and
persistent objects will be discussed later in this chapter.

Moreover, design patterns are very important in object-oriented programming. In this
chapter, we will see how to implement three of them using ABAP objects, namely the adapter,
singleton, and the factory design. We will create a class with a factory method design.
Later, we will show how this class may be modified in order to behave like a singleton class.
Finally, we will see how an object of one class may be converted to that of another using an
adapter class. The examples are kept simple in order to emphasize on the design

pattern concept.

For this chapter, we assume that the reader has basic knowledge of the ABAP objects, and is
familiar with the class-builder transaction.

ABAP Objects

Creating a shared memory object

This recipe shows how to store the instances of your classes in the shared memory of the
application server. A number of programs may access these objects that reside on the
application server shared memory.

Two classes are necessary for shared memory, namely the area class and the area root
class. The root class is necessary for storing (encapsulating) the data that are to be stored
in the shared memory. An area class may comprise of various instances that may consist of
a number of versions.

An important concept shown in this recipe is the CREATE OBJECT statement with the
addition AREA HANDLE. This will create the object in the application server that is shared
memory pointed to by the area handle myarea.

Getting ready

Prior to writing the code for storing objects in shared memory, an area root class must be
created and a shared memory area be defined using transaction SHMA.

The steps required for creating a root class are:

1. Call transaction SE24; enter a suitable name to your root class, as shown in
the following screenshot. On the Properties tab, we need to make sure that the
Shared-Memory checkbox is switched on.

Class Interface lzcL My moOT
_/ Properties]/Interl'aces l/Friends Vﬂttributes

[4; Superclass]I@ Undo inheritance ”z# Cha

Description | Root Class
Instantiation Public -
Final
General Data
[JReleased internally
[|Fixed point arithmetic [v|Unicode checks active
Sha red Memory-Enabled

Chapter 1

Downloading the example code

Al You can download the example code files for all Packt books you have
5 purchased from your account at http: //www.packtpub.com.
Q If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you

2. We have named it zCL._ MY ROOT. We will then define two Instance Attributes,
NUMBER and NAME, having private visibility, as shown in the following screenshot:

Class Builder: Change Class ZCL_MY_ROOT
= | PN E || B2 EF = Local Types (= Implen

Class Interface |ZCL_HY_BDDI | Implermented [/ Active
Properties l/Interl'-dces VFriends / Attributes]/Methods VEﬂ.rents VTypes i

BEkE] EE] %@ ()] b

Attribute | Level | Visibility | Read-Only | Typing | Associated Type
NTMBER Instance Attribute Private] Iype PERSNO
NAME Instance Attribute Private O Type EMNLM

] Type

3. Two suitable methods, SET_DATA and GET_DATA, are also added to the class. The
SET_DATA method contains code that imports number and name and assigns to
the attributes NUMBER and NAME of the class. The GET_DATA method does just
the opposite, that is, it exports the NUMBER and NAME attribute for a given shared
memory object.

4. Next, the shared memory area should be created. This is done via transaction SHMA.

vww allitebooks.conl

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.allitebooks.org

ABAP Objects

5.

6.

Enter a suitable name and click on the Create button. We have typed the name
ZCL_MY EMP_AREA. On the screen that appears, enter the description of the area.
Also, enter the name of the root class created earlier in the Root Class field. You
may leave the Client-Specific Area checkbox unchecked as it is not required for our
recipe. Now, save your entries. Refer to the following screenshot:

Change Area ZCL_MY_EMP_AREA

Area
Name |zcL My_EMP_ARER
Description |EInploYEE- Area

Basic Properties

Root Class |zcr, My_rooT |@
[Client-Specific Area

[JAut. AreaStructuring

[] Transactional Area

Fixed Properties
[v]With Versioning

This will also generate an area class by entering the same name
ZCL_MY EMP_AREA.

Chapter 1

Class Builder: Display Class ZCI_MY_EMP_AREA

= [P e B S EF | 3 Local Types (= Implementation & Macros
Class Interface |ZCL_MY_EMP_AREA | Implemented [Active
Properties l/lnterfaces I/Fn'ends l/Attn'butes)// Methods l/Events l/Types l/AIiases]

[o Parametersl[[ﬂ Exceptionsl[E] |@ |ﬂ§’ Eﬁl@- W ||:D |ﬁ [E [EIIE] @l@ [CIFitter

| Method Level | V... | M. | Description |
krass cowsTRUCTOR Stati. Pub.. dFe (CLASS_CONSTRUCTOR

GET_GENERATOR VERSION |Stati.. Pub.. Query Generator Version

ATTACH FOR_READ Stati.. Pub.. Reguest a Read Lock

ATTACH FOR WRITE Stati.. Fub.. Request a Write Lock

LTTACH FOR_UFDATE Stati.. Pub.. Request a Change Lock

DETACH ARFR Stati.. Pub.. Release al locks on all instances

INVALIDATE INSTANCE Stati.. Pub.. Active version of one instance wil be set to obsolete

INVALIDATE ARER Stati.. Pub.. Active versions of all instances will be set to obsolete
FREE_INSTANCE Stati.. Pub.. Deletion of an Instance

FREE RRER Stati.. Pub.. Delete all instances

GET INSTANCE INFOS Stati.. Pub.. Returns the names of all instances

BUILD Stati.. Pub.. Direct Call of Area Constructor

SET_ROOT Insta.. Pub.. Sets Root Objects

7. This area class will contain the necessary methods used for reading, changing,
and creating the area, such as ATTACH_FOR_UPDATE, ATTACH_FOR_READ, and
ATTACH_FOR_WRITE.

How to do it...

For creating the set of code that writes object's contents to the shared memory, follow
these steps:

1. Two object references my handle and my root are defined, one for area class and
the other for root class.

2. The static method attach for write of the area class zcl my emp area
is called.

3. The CREATE OBJECT with the area handle, my handle must then be called.

4. The root and the created area instance must be linked using the set _root method
of the handle.

5. The set_data method is called with the relevant number and name.

ABAP Objects

6. The detach commit method of the area class is then called.

data : my handle type ref to zcl _my emp area
data : my root type ref to zcl my root.

Try
CALL METHCD zcl my emp area=rattach for write
EXPCORTING
inst name = "INST HAME'
RECEIVING
handle = my_ handle.

CREATE CEJECT my root area handle my handle.
CALL METHCD my handle->set_root
EXPCRTING

root = III.Y_I‘CICIE .

CALL METHCD my root->set_data

EXPCORTING
number = "'00000024"
name = 'John Reed'.

CALL METHCD my handle->detach commit.

catch cx shm attach error.
write :/ 'Error in Writing to Area'
endtry.

In the shared memory-writing program, the statements collectively make the writing of object
in the shared memory. Let us see how the program code works.

An area instance version needs to be created before any data may be written in the shared
memory on the application server. The attach for write static method is used for this
purpose and returns a handle to the area instance created in the application server memory.
This imposes write lock on the version.

The CREATE OBJECT statement is then called with the name of the created handle. This
creates a root object in the area instance of the shared memory. The link between the area
instance and the root class is created using the set _root method. The set _data method
is then called for the root reference my root and supplied with the name and number of the
employee, which are then stored in the shared area. Finally, the detach commit method is
called and the write lock is released.

]

Chapter 1

Once the program has run successfully, you may see the created object in the shared memory
using the shared memory transaction SHMM. This will appear as your area class name
ZCL_MY_EMP_AREA. Refer to the following screenshot:

Shared Memory: Areas

S| @ Management 8 Trace Administration

| AEBEEN 2 tored oyecs wemary_|

EEEF AR view [[Buenien -
|J Area ‘ Instances | Versions | £ | = ‘ o ‘ yiy | i1 | Occup. [B] | Alocated... ‘ B3, Read
"—‘ZCL MY EMP ARER 1 1 0 u] 1 0 0 1 984 4 096 1

Double-click on the name of area to view the details, as shown in the following screenshot:

Shared Memory: Area Instances
B2 Trace Administration

| Area

Name |ZCL_MY_EMP_AREA
Occup. [Bytes] |3 988

Structuring @
oF Area Instances | (& Lock
ENEEIG 53| @ | T L@ View | Ovenview
C.. Inst.

INST_NZME a] 1

The read program is somewhat similar. However, instead of the attach for write method
used earlier, we will use attach_for read. The same instance name is passed and the
handle is received. The method imposes a read lock on the area instance. Then, the
get_data method of the root object is called using the area handle, my handle. This
returns the employee name and number stored earlier into the variables hame and

number respectively.

ABAP Objects

Finally, the detach method is called and the read lock is released.

data : my handle type ref to zcl my emp area
data @ my root type ref to zcl my root.

data : number type persno.

data :!: name type emnam.

Ty,

CALL METHCD zcl my emp area=>rattach for read
EXPORTING
inst name = 'INST HAME'
RECEIVING
handle = my handle.

CALL METHOD my handle->root->get data
IMPCRTING
number = number
name = name.

CALL METHOD my handle->detach.
catch cx shm attach error.

write :f 'Error in reading from area
L endtry.

Wwrite :/ name, number.

While creating the shared memory area, if we select the Transactional Area checkbox, the
area becomes transactional. In this case, the modifications to the area instance versions are
not active immediately after the call of detach commit method. Rather, they become active
when the next database commit is executed.

» http://help.sap.com/saphelp nw73ehpl/helpdata/en/4a/035233£1bd0
88cel0000000a421937/frameset . htm

Creating a persistent object

ABAP objects provide a persistent object service that allows the developer to store objects in
the database. The values of the attributes of the object are stored in appropriate fields of the
database table specified. This recipe shows how to define persistent classes and then how
to call them in your application programs.

Sk

http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/4a/035233f1bd088ce10000000a421937/frameset.htm

Chapter 1

Getting ready

Prior to storing objects in the database, a suitable database table with the name
ZEMP_TABLE is created to store the values of the objects' attributes. Two fields are defined,
NUMBER1 and NAME (the field name NUMBER was not allowed, so NUMBER1 has been
used as the field name). Refer to the following screenshot:

Attributes 5 Entry help/check l/mnencﬂquanﬁtv fields]
¥ BRRRE [ZPE[E[A] predefined Type | 1/2
| Ccomponent | R... | Component type | Data Type | Len... | Dec... | Short Description
| NUMBERL [] PERSNO NUMC 8 0 Personnel number
| NaME [EMHAM CHAR 40 0 Formatted Name of Employee
O

How to do it...

Once the database table is defined, a persistence class must be defined. In order to define
persistent classes, follow these steps:

1. Call transaction SE24. Enter a suitable name of the persistent class to be created.
We will create a class by entering the name zCL_MY PERSIST. Enter the name in
the Class field and click on the Create button.

[SBX(1)/800 Create Clhss ZCL_MY_PERSIST

Class ZCL MY PERSIST |@
Description Persistence Class _]I
Instantiation Protected =

Class Type

()Usual ABAP Class
() Exception Class
[Jwith Message Class
(@) Persistent class
() Test Class (ABAP Unit)
Final
[JOnly Modeled

[}

ABAP Objects

2. Enter a suitable description in the field provided. Make sure that the Persistent Class
indicator is selected, and click on Save.

Class Builder: Change Class ZCL._MY PERSIST
E= PR B A SET | Lol Types (= Implementation & Macros @ Persistence

Class Interface | ZCL_MY¥_PERSIST | Implemented / Inactive
Properties l/lnterhces l/Fn'ends l/Attributes /Meﬂ'm-ds l/Events l/Types l/AIiases]

o Parameters][[ﬂ Exceptions]@ ||ﬂ;—'* o ||ﬁ [E Hllﬂ @l@ [Filter
Method | Level | o | M. | Description |
IF 0S_STATE~HANDLE EXCE.. Inata. Pub Handles Exception After Reading State
IF_05_STATE~GET Insta.. Pub Object Services Private: Copy State Object
IF 05 _STATE~INIT Insta.. Pub.. Initializes Transient Part of Object State
Pub
Pub

IF_05_STATE~SET Insta.. Object Services Private: Replace State Object
IF 05 STATE~INVALIDATE |Insta.. Invalidate Object State

3. The programmer may only modify the methods HANDLE EXCEPTION and INIT.

4. Click on the Persistence button. Then, enter the name of the table that was created
for storage of data(in our case, we will enter the name ZEMP_TABLE). Refer to the
following screenshot:

[S SBX(1)/800 Class: ZCL_MY_PERSIST: Add table/structure

i}

=
Table/Structure |ZEMP_TRBLE

I

L=

5. This will take you to the mapping editor. The lower part of the screen will show Table/
Fields. Double-click each of the field that is to be included and stored as attributes of
the persistent class. The selected field appears in the area earlier (for example,
the NUMBERZ1 field as shown in the following screenshot). Click on the Set attribute
values button to include the field.

B |I-11:I1{BER1 ||Per50nne| nurmber

_LEuinr_v”_CI:uqng... v" Business key v" EERSHO
|Set attribute values|

Tables/Fields A. | Type | Description
> OO 7MY _EMP
*» 0O NUMBER1 PERSNO Personnel number

6. This will transfer the selected field in the topmost area of the editor.
7. Similarly, the NAME field must be included.

Chapter 1

= mn:l_ ||Formatted Name of Employee or Applicant |
Set attribute W|UEb|ng... v|| value attribute v||F.mmM |

Tables/Ficlds A, | Type | Description
> OO FZMY_EMP
*+ O NAME EMMAM Formatted Name of Employee or Applicant

8. All the mapped fields will appear at the top area of the mapper. The Number1 field

will appear as a business key, as show in the following screenshot:

Change Persistence Representation: ZCL_MY_PERSIST
= | PN s 2 EH| S

Class/Attribute Additional... | Modifiabiity | Visbiity | Type | L | Assigned field
v @ ZCL_MY_PERSIST

&> NUMBER1 D o] PERSNO MUMBER1

- T NAME 5] EMNAM NAME

9. Upon activation of the persistence class, the system asks for activation of the

actor class as well. Click on Yes, as shown in the following screenshot:

[= SBX(2)/800 Activate Persistent Classes

Should the Class Actor Also Be

€ Actiated

-
IL Yes Mo

]

ABAP Objects

10. The class zCL._MY PERSIST is created and necessary methods needed for the
persistence service are included. An actor class is also created with the class.
The agent class has been generated by the name zCA MY PERSIST. There is one
base agent class generated as a result. In total, three classes are generated, the
persistent class, the agent class, and the base class of the agent.

Object Type Name Short description

ZCA MY PERSTST Agent Persistence Class

ZCE MY PERSTST Base agent Persistence Class
ZCL MY PERSTST Peraistence Class

11. The class ZCL_MY_ PERSIST contains methods for setting and getting the values of
the attributes NAME and NUMBER1. Note that no SET method is generated for the
key field, in our case NUMBER1.

Class Interface |ZCL_MY_PE.RSISI | Implemented [Active
Properties L/Interﬁces VFriends I/Attributes /Meﬂmds I/El.rents VTypes I/Aliases]

= Parameters"'lﬂ Exceptions][E] El@lﬂ;—" El@ Mlﬁlﬁ [E [HIIE @l@ [C]Fitter

Method | Level | Visbiity | M. | Description

IF 0S5 STRATE~HANDLE EXCE.. Instance Method Public Handles Exception After Reading State

IF 05 _STATE~GET Instance Method Public Ohject Services Private: Copy State Object
IF_05_STATE~INIT Instance Method Public Initializes Transient Part of Object State
IF_0S5_STATE~SET Instance Method Public Object Services Private: Replace State Object
IF 0S5 STATE~INVALIDATE |[Instance Method Public Invalidate Object State
GET_NAME Instance Method Public 0, Reads Attribute NAME
GET_NuMBER1 jInsr.ance Method Public O, Reads Attribute NUMBERL

SET_NAME Instance Method Public b0 Sets Attribute NAME

12. The agent class provides number of useful methods related to the
persistent property. Important methods, such as create persistent,
delete persistant, and get persistent are provided. The methods
are implemented in the superclass zcb_my persist of the
agent class zca_my_persist.

Chapter 1

Class Builder: Class ZCB_MY _PERSIST Display

= |G E s B s B E | @& Pattern Pretty Printer | Signature
Ty. | Parameter | Type spec. | Description
o | I NAME TYPE EMNAM OPTIONAL Persistent Attribute
po |1 MUMBER1 TYPE PERSNO Business Key
g, | VALUE(RESULT) TYPE REF TO ZCL_MY_PERSIST Mewly Generated Persistent Object
Ml | C¥_0S_OBIECT_EXISTING Object Services Exception

Method |crEATE_PERSISTENT Active

During the generation of the persistent class zcl_my persist, two additional classes
are generated. These are the actor (agent) and the base agent classes having the names
zca_my persist and zcb my persist respectively. The base agent class is generated
as abstract (that is, no instance can be constructed from it), and cannot be modified. It is
created in a separate pool class from zcl my persist. The agent class zca_my persist
may be extended, as well as the loading and saving methods may be modified.

abstract class

ZCB_MY_PERSIST

|

final class persistence class
ZCA_MY_PERSIST ZCL_MY_PERSIST
Mapping

Data Dictionary

The instantiation mode of the persistence class may be set as abstract or protected. In our
recipe, we have chosen the instantiation mode as protected (which means that only instances
may be created from within the class or its subclasses). However, making the instantiation
mode of a persistent class as protected makes the generated base agent class a friend
of the persistent class (in the world of ABAP objects, a friend or its subclasses may create
instances of the class in question).

[}

vww allitebooks.conl

http://www.allitebooks.org

ABAP Objects

The coding for this recipe declares two references, emp and agent, to the persistent class
zcl my persist and the agent class zca_my persist, respectively. Next, the static
factory method agent is called for the class zca_my persist (agent class). The
reference returned is stored in the variable agent.

The agent class contains the method create persistent required for storing the data
into the database (this is analogous to the concept of insertion in database table).

The most important part is the calling of the create persistent method that is passed
the number and name that is to be stored. The employee with the number 00000017 and
name John Reed is created and reference is returned in emp. Finally, the COMMIT WORK
method stores the data of the emp object into the table created earlier in this recipe.

One row with the number and a name is added to the table ZEMP_TABLE.

DATA: emp TYPE REF TO zcl_my persist ,
agent TYPE REF TO zca_my persist ,
number TYPE persno ,

name TYPE emnam.
number 7

name
agent = zca_my persist=>agent .
IRY .
CALL METHOD agent->create persistent
EXPCRTING

i_numberl = number

i_name = name
RECEIVING

result = emp.

COMMIT WORK.
CATCH cx_root.
- ENDTRY.

For reading the stored value related to the employee number 00000017, a number
variable is declared and assigned the value 00000017. The static method agent of

the zca_my persist class is called in order to get a reference to the agent.

The get_persistent method is then called and the number (in our case, 00000017)
is passed. This method returns the entire object emp pertaining to the employee number.
You may then call the get _name method of the zc1 my persist class for the emp
object in order to retrieve the employee name.

mumber = "00000017"'.
agent = zca my persist=ragent .

CALL METHOD agent->get persistent

EXBORTING

i_numberl = number
RECEIVING

result = Emg.

CALL METHCD emp->get name
RECEIVING
result = name.
WRITE :/ name.

Chapter 1

See also

» http://help.sap.com/saphelp nw73ehpl/helpdata/en/06/
£23c40638d11d4966d00a0c94260a5/content .htm

» http://help.sap.com/saphelp nw73ehpl/helpdata/en/49/
e560e26149088fel10000000a421937/content .htm?frameset=/en/49/
e8807d7¢£0088¢cel0000000a421937/frameset . htm

Creating classes based on factory methods

One important design pattern that is used in object-oriented ABAP is the factory design. This
allows you to create objects of a particular class either via a factory class or via factory
method defined within the class. The emphasis of this recipe is to design a class that supports
the creation of its objects via a factory method, rather than direct instantiation outside the
class via CREATE OBJECT statement.

A factory method is a static method that creates and then returns (as a parameter) a
reference to the object of the class it belongs to. The code for the creation of the object
is contained within the factory method. This recipe shows the factory design. You may
further modify to enhance the structure in order to suit your needs

We have referred to the coding of the standard c1_salv_table class factory method for
creating the class shown in this recipe. The class created in this recipe will be used in the
subsequent recipes of singleton and adapter design pattern.

Getting ready

For the sake of this recipe and the ones that follow, we will focus on an employee and name
example. The class will encapsulate an eight-character number (in numeric form) for the
employee number 00000014 and a 30-character field for the employee name. For example,
there can be an employee John Reed with number. This will be stored in the private
attributes of the class as Name and Number.

[}

http://help.sap.com/saphelp_nw73ehp1/helpdata/en/06/f23c40638d11d4966d00a0c94260a5/content.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/06/f23c40638d11d4966d00a0c94260a5/content.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/06/f23c40638d11d4966d00a0c94260a5/content.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/e560e26149088fe10000000a421937/content.htm?frameset=/en/49/e8807d7cf0088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/e560e26149088fe10000000a421937/content.htm?frameset=/en/49/e8807d7cf0088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/e560e26149088fe10000000a421937/content.htm?frameset=/en/49/e8807d7cf0088ce10000000a421937/frameset.htm
http://help.sap.com/saphelp_nw73ehp1/helpdata/en/49/e560e26149088fe10000000a421937/content.htm?frameset=/en/49/e8807d7cf0088ce10000000a421937/frameset.htm

ABAP Objects

How to do it...

For creating a class as a factory method design, follow these steps:

1.

Create a class definition for fac_meth class in the program. The factory
method is a static method for the class and is defined via CLASS-METHODS.
The class definition contains the addition create private in order to stop
the instantiation of the class from outside via CREATE OBJECT. A constructor
is defined that allows setting the value of the number and the employee name.

CLASS fac_meth_class DEFINITICN create private.

DATA employee_no TYPE persno. """ sight digit emplovee number numeric type
DATA employee name TYPE smnam. """ name in (lastname firstname) format
ENDCLASS. "fac meth class DEFINITION

PUBLIC SECTION.

CLASS-METHODS |factory IMPORTING number TYPE persno

employee name TYPE smnam
EXPORTING employee_obj TYPE REF TQ fac_meth class.
METHCODS constructor IMPORTING number TYPE persno

employee_name TYPE smnam.
PRIVATE SECTION.

=]

The private attributes employee number and name are defined, as it is based on the
dictionary data elements persno and smnam respectively.

The static method factory imports the name and number of the employee to
be created and returns the employee object employee obj of the object
reference fac_meth class. The constructor takes as input the number and
the employee name.

The implementation of the fac_meth class object reference is then created. The
code for the factory and the constructor is written here. The factory method
receives the number and the name of the employee to be created. It includes the
CREATE OBJECT statement for creation of the employee object.

CLASS fac meth class IMPLEMENTATION.

METHOD factory.
CEEATE CBJECT employee obj EXPORTING number = number

enployee _name = employee name.

ENDMETHOD. "factory

METHOD constructor.

me-remployee no = number .
me-remployee name = employese_name.
WRITE : / ' Employee created having number' , number ,
'and names " , employee name.
ENDMETHOCD. "constructor
ENDCLASS. "fac meth class IMPLEMENTATION

Chapter 1

5. The constructor assigns the number and employee name to the corresponding
private attributes of the newly constructed object. A WRITE statement is also
included that outputs the name and number of the successful created employee.

6. Finally, the call for the factory method is included. The static method of the
fac_meth class=>factory object is included and passed with the number and
name of the employee to be created. A code shows two such method calls for object
references emp1 and emp2, that is, employee 00000012 and 0000014.

DLTR : emp TYPE REF TO fac meth class .
DATH = emp2 TYPE REF TO fac meth class .
DATZR : number TYPE persno.

DATR : name TYPE smnam

number = '00000012".

name = 'Fernandes John'.

CALL METHOD fac meth class=>factory

EXPCRTING
number = number
employee name = name
IMPCRTING
employee obj = emp.
number =
name = "Reed John'.
CALL METHOD fac _meth class=>factory
EXPCRTING
number = number
employee name = name
IMPCRTING
employee_ob] = empZ.

When the program calls the static factory method, the code within the factory method
is called for each of the two objects empl and emp2. The factory method triggers CREATE
OBJECT statement, which creates a new object and calls the constructor.

The constructor is called twice, once for each of the two instantiated objects empl and emp2.
This prints the message successful creation for emp1 and emp2.

Ermplovee created having number 00000012 and name Fernandes John
Ermplovee created having number 00000014 and name Reed John

s

ABAP Objects

Creating classes based on singleton

design pattern

A singleton class is a class that can have only one instance at a time. Any attempt to create
a second or more instances should not be allowed. This recipe shows how to create a class
based on the singleton design.

Getting ready

We will use the same class created in the last recipe of factory method. We will make few
changes to the class so that we can prevent the creation of multiple instances of the class.
We will make a copy of the class (program) shown in the previous recipe and modify it. The
name of the copy is singleton class.

How to do it...

For creating a singleton class, follow these steps:

1. Make sure the CREATE PRIVATE addition is included in the singleton
class definition.

2. Within the definition, a static attribute number of instances having type
integer is added to the private section.

CLASS singleton class DEFINITION |CREATE PRIVATE) .
PUBLIC SECTION.
CLASS-METHODS factory IMPORTING number TYPE persno
employee name TYPE smnam
EXPORTING employee_obj TYPE REF TO singleton class.
METHODS consctructor IMPORTING number TYPE persno
employee_name TYPE smnam.

PRIVATE SECTION.
DATA employee no TYPE persno. e
DATA employee name TYPE smnam. """
|CLASS—DATA : number of instances TYPE i .
ENDCLASS.

3. The implementation of the class is then written. The factory method has to be
slightly modified in order to force the singleton characteristic.

Chapter 1

CLASS singleton_class IMPLEMENTATION.
METHOD factory.
IF number of instances EQ O.
CREATE OBJECT employee_obj EXPORTING number = number
employee_name = employee_name.
number of instances = 1.
ELSE.
WRITE : / ' Only one object instantiation allowed'.
ENDIF.
ENDMETHOD. "factory
METHOD constructor.
me->employee no = number
me->employee name = employee name.
WRITE : / ' Employee created having number' , number ,
'and name ' , employee_name.
ENDMETHOD. "constructor
ENDCLASS

In the implementation of the singleton class, the factory method now

contains an IF statement that first checks the number of instances already

there when the factory call is made. If the first instance is being created

(thatis, number of instances equals 0), the employee object is created
and number of instances is setas 1. An ELSE condition is included to

output a message if one instance already exists.

DATE obj TYPE REF TO singleton_class
DATE number TYPE persno.

DATS name TYFE smnam

number = '00000012".

name = 'Fermnandes John'.

CALL METHOD singleton class=>factory

EXPCRTING
number = number
enployee name = name
IMPORTING
enployee_obj = obi.
DATR obj2 TYPE REF TO singleton class
nunber = '00000014".
name = '"Reed Jon'.

CALL METHOD singleton class=>factory

EXPCRTING
number = number
enployee name = name
IMPORTING
employee_obj = objz2.

ABAP Objects

Similar to the previous recipe, we try to instantiate two objects emp1 and emp2, having
number 0000012 and 00000014 respectively. However, in our singleton class, we have
added an attribute number of instances, which keeps track of the number of class
instances that already exist. Upon creation of the first object, the factory method increments
this static attribute to 1. On the second object creation attempt, the IF statement does not
allow the CREATE OBJECT statement to be called a second time. The result is that the

second object is not created. No further attempts of object creation will be allowed. Rather, a
message saying that only one object instantiation is allowed is outputted for the second object
creation attempt.

Erployee created having number 00000012 and name Fernandes Jcohn
Only one object inatantiation allowed

» http://www.abaptutorial.com/abap-singleton-design-pattern/

Creating classes based on adapter pattern

Another important design pattern is the adapter design. As the name suggests, the adapter
design is used for conversion of one object into another object belonging to a different class.
An adapter class will have a method that takes as input the object reference that is to be
converted and outputs it into the other object reference format.

We have referred to the c1_salv tree adapter standard class while making of
this recipe.

Getting ready

In order to demonstrate the adapter, we need two classes (input class and output class).
The input class will be the fac_meth class created earlier. For the output, we will create
another class fac_meth class2. This will serve as the class, into the format of which the
input object will be converted.

Chapter 1

CLASS fac meth class2 DEFINITION.
PUELIC SECTION.
METHODS constructor IMPORTING number TYPE char8
employee_name TYPE emnam.
PRIVATE SECTION.

DATA employee no TYPE char8. """ smployee number in charact
DATA employee_name TYPE emnam. """ name in (lastname firstna
ENDCLASS.

CLASS fac_meth_class2 IMPLEMENTATION.
METHOD constructor.

me->employee_no = number .
me->employee name = employee_name.
WRITE : ' Converted: Employee created having number' , number ,
'and name ' , employee name.
ENDMETHOD. "constructor
ENDCLASS . "fac meth class2 IMPLEMENTATION

It is without a factory method for sake of simplicity. It contains employee number and
employee name but the format of these two is different from the classes shown in the

previous recipes. The employee name of this class is based on data element emnam,

whereas the number is a character without zeros having length as eight. The name is of
the form (firstname lastname), meaning John Reed will be stored as John Reed and
not Reed John as in the previous recipes. The constructor outputs the message, Converted

employee created.

We will use the same class used previously as the input object for the adapter method.

How to do it...

For creating a singleton class, follow these steps:

1. Create a deferred definition of the adapter class adapter meth class that we

are going to create in the next step.

2. Specify the adapter meth class as a friend of our fact _meth class classin

the definition via the FRIENDS addition.

CLASS5 adapter meth class DEFINITION DEFERRED .

PUBLIC SECTICM.
CLAS5-METHCDS factory IMPORTING number TYPE perano
employee name TYFE smnam

METHODS constructor IMBPORTING number TYPE persno
employee name TYPE smnam.
PRIVATE SECTICH.

CLAS5 fac meth class DEFINITICN CREATE PRIVATE FRIENDS adapter meth class .

EXPORTING employee obj TYPE REF TO fac meth class.

DATE employee no IYPE persno. nen eight digit employves number numeric
DATA employee name TYPE smnam. """ pame in (lastname firstname) format
ENDCLASS. "fac meth class DEFINITION

t¥yp

1=

=]

ABAP Objects

3. The adapter class is then defined. It contains a static adapter method

adapter that imports an object based on fac_meth class and returns one
inthe fac meth class2 format.

CLASS adapter _meth class DEFINITICN
PUBLIC SECTICN.

CLASS5-METHODS : adapter IMPORTING

employee_ forml TYPE REF TO fac meth_class
EXPCORTING

employee_ form2 TYPE REF TCO fac_meth class2.

ENDCLASS.

4. The implementation of the adapter class is then created. It contains the code of
the adapter method. The adapter method will convert the incoming number of the
employee from numeric to character format. In addition, the name of the employee
is converted to the firstname lastname format. The new object based on the

second class fac_meth class2 is then created and returned as an exporting
parameter of the method.

CLASS adapter meth class IMPLEMENTATION.
METHCD adapter.
DATZL : number TYPE chard,
lastname (40) ,
firstname (40) ,
name TYPE emnam.

WEITE employee forml-remployee no TO number NO-ZERO.
CONDENSE number NO-GAPS.

SPLIT employee forml-employee name AT space INTC lastname firstname
COHCATENATE firstname lastname INT(name SEPARATED BY space.

CREATE OBJECT employee form2 EXFORTING number = number

enployee name = name.

ENDMETHCD.

"factory

5. While calling the adapter method, you first create an object based on the
fac_meth class class thatis a factory method (for illustrative purpose), similar
to the previous recipe for the object reference EMP. This is then passed on to the
static adapter method of the adapter meth class. The adapter class
returns the converted object in the second format.

=]

DATA :
DATA :
DATA :
DATA :

number
name =

emp TYPE REF TC fac meth class .

enp converted TYPE REF TC fac meth class2.
number TYPE persno.

name TYPE smnam

'Reed John'.

CALL METHCD fac meth class=>factory

EXPCRTING
number = number
enmployes Name = name
IMBCRTIHG
employee obj = emp.

CALL METHOD adapter meth class=radapter
EXPORTING
enployee forml = emp
IMBCRTIHNG
employee form? = emp converted.

When the program calls the static method adapter of the class adapter_meth_class , the
code in the adapter method is executed. The adapter method calls the necessary code

for converting the number into the character format and any zeros are removed from the
number. In addition, the SPLIT statement is called for converting name of the employee in

the (first name last name) format such as converting Reed John into John Reed. Finally the
CREATE OBJECT is called in order to create the object in the converted class format . This
triggers the constructor for the converted class fac_meth_class2 that outputs the message
"Converted: Employee Created having number 1234" and name John Reed. Since we called
the factory method of the original fac_meth_class before the adapter method call, the original
constructor was also called and message printed also.

Chapter 1

Original : Employee created having number 00001234 and name Eeed John
Converted: Employee created having number 1234

and name John Reed

» Design Patterns in Object-Oriented ABAP published by SAP-Press

vww allitebooks.conl

http://www.allitebooks.org

Dynamic Programming

In this chapter, we will cover recipes related to dynamic programming. This chapter is
designed to provide useful recipes related to field symbols and data references, as well
as dynamic SQL and ABAP code generation. In this chapter, we will look at the ways of:

» Using field symbols and data references to print database table contents
» Applying dynamic Open SQL

» Dynamic program generation

Introduction

This chapter explores recipes related to dynamic programming. Dynamic programming is a
very vast topic. It may be simply defined as a technique whose behavior/effect is only evident
at execution time. There are many facets of dynamic programming with ABAP. These include
generic programming such as dynamic source code generation. Also specifying parts of

the Open SQL statements (clauses) dynamically using string variables, and the creation of
data objects based on a type known only at runtime are within the dynamic programming
landscape. When using dynamic programming, we may also sometimes need to determine
the data type of data objects at runtime. This is called Runtime Type Identification (RTTI).

The ABAP language provides a number of features/options for making programs dynamic or
to avoid hardcoding of values. We will start with application of field symbols and references.
As an example, we will create a program that will take as input the name of a table and print
its contents.

Also we will look at some of the ways in which dynamic SQL may be applied to fulfill simple
requirements. We will also cover the option of generating ABAP programs at runtime using
the INSERT REPORT statement.

Dynamic Programming

The examples are kept simple in order to emphasize on the dynamic programming concept.
We assume that the reader is familiar with basics of SELECT statement, the CREATE DATA
statement and the concept of field symbols, and the ASSIGN statement. Also, the knowledge
of the c1_abap_ datadescr classes is assumed. Moreover, the knowledge of downcasting
(widening cast) is also important.

» http://help.sap.com/abapdocu 731/en/abendynamic_prog technique
guidl.htm

Using field symbols and data references to

print database table contents

Field symbols and references are an important combination for dynamic programming. Data
references are addresses of data objects stored in reference variables. Field symbols are
placeholders, or symbolic representations of these data objects.

This recipe shows how to print all the contents of a particular database table (the name
of which is only known at runtime). For simplicity sake, we will only focus on the main logic
pertaining to dynamic programming. In addition to data references and field symbols,

we will also see some dynamic SQL statement application.

Getting ready

The code will let you create a small data browser program that will take as input the database
table name whose contents are to be read, and the number of rows and columns (fields) to be
displayed. The output displays the table's field names as column headers along with the data
stored in the table.

The knowledge of the describe by data method of the c1_abap structdescr class
and widening (downcasting) will also be used.

How to do it...

For creating a program that prints the contents of an entered SAP table name, follow
these steps:

1. Declare parameters for inputting the name of the table whose data is to be
accessed. Also we take as input the number of rows and columns (fields) that
are to be displayed.

NED

http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm
http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm
http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm

Chapter 2

parameters : myt name (30) defawlt 'LEFRL',
rows type i,
columns type i.

2. Declare field symbols for the internal table, the table row, and the table fields.
In addition, data reference variables for internal table and the structure are defined.

data : tab reference type ref to data,
struc_reference type ref to data.

field-symbols @ <my SCruc> TyYpe any,
<my_field> type any,
<my_itab> type any table.

3. We place a small check statement to make sure the program runs only when the
columns value entered by the user is equal to one or more.

check columns ge 1.

4. Next, we create the data objects using the create data statement. We then
dereference and assign them to placeholders (field symbols) respectively. If the table
name entered by the user is wrong, a cx_sy create data error exception is
generated, and therefore need to catch it in our coding using the catch statement.

try .
create data tab reference type standard table of (myt name)
with non-unigue default key.
assign tab reference->* to <my itab>.

create data struc_reference type (myt name)
assign struc reference->* to <my struck.

=

FEE R R PR RE PR AR code for steps h- 8
PERRRRRRRR PR ID IR ID

o

o be added here

catch cx sy create data error.
write :/ '"Wrong Table Hame'.
endtry.

5. Then, the SELECT statement is written in order to fetch the data. The name from the
parameter is used as the table name and read into the internal table pointed by field
symbol my itab. The number of rows are also specified based on user input.

SELECT * FROM (myt name) INTO TAELE <my itab> UP TO rows ROWS.

Es

Dynamic Programming

6.

The description of the created row structure (pointed by my struc) of the
internal table is then read using the describe by data statement. An object
reference descr to the class c1_abap_ structdescr is declared. Then, the
static method describe by data ofthe c1_abap typedescr class is called
and returned to the descr variable. The operator (?=) is used for downcasting.
(Asthe c1_abap typedescr class is an abstract class and returns a reference
to the description object c1_abap_typedescr).

DATR : descr TYPE REF TOC cl_abap structdescr.
descr ?= cl_abap typedescr=>describe by data(<my struc> }.

As each column (field) of the database table is represented as a row in the component
components of the descr object, a loop is run on it. Only the number of columns
entered by the user is read using the from 1 to columns.

A positions internal table position is also created that will hold the position
(starting position) of each column displayed on the screen. The length of each field is
used for finding the next field position. Also included is the code for printing the table
column header.

data : begin of positions occurs O
position type i ,
end of positions.

data : end position type 1i.
data : wa_key type line of abap compdescr tab

positions-position = 1
loop at descr->components into wa key from 1 to columns.
write at positions-position '|°.
if wa_key-length 1t 10.
wa_ key-length = 10.
endif.
write : wa key-name.
append positions.
positions-position = wa_key-length + positions-position .
endloop.
end position = positions-position + 1.
write at end position '|°'.

Then, the main part for reading the contents of the table is written. The loop is then
run at the data internal table pointed to by field symbol my itab. A do loop is also
run for each row which used the assign statement for each field value. The table
positions value is read for getting the correct position of the corresponding

field column.

Chapter 2

loop at <my itab> into <my_ struck.
new-line.
do columns times.
read table positions index sy-index.
assign component sy-index of structure <my_ struck
to <my field>.
if sy-subrc eq 0.
write at positions-position | °'.
wrice : <my field> .
else.
exit.
endif.
write : at end position '|°'.
enddao.
endloop.
new-line.
uline at 1({end position).

In the data browser program, the statements read any table name entered by the user and
the number of rows and columns entered, and then display the relevant data from the table.
Let us see how the program code works.

The parameters statement displays the selection screen to the user, and takes as input the
table name and the table rows and columns.

Simple Data Browser
&
Table Name |1511
Table Rows to be Read [
Columns to be Shown [

The static method describe by data of the cl_abap typedescr class provides the
description object pertaining to the structure passed.

The widening cast method is used to store the returned object in the descr variable of
cl abap structdescrtype (asthe cl_abap typedescr class is the super class of
cl abap structdescr and cl abap typedescr is an abstract class).

s

Dynamic Programming

The descr object contains a component internal table components. A loop is then carried
out on the components table in order to print the name of the table fields as columns
headers. The length of the field is also taken into consideration. For example, if the table T511
is entered, the length and names of the various table fields exists in DESCR - >COMPONENTS.
The position table is also filled within this loop in order to store the appropriate positions of
the each. This will be later used so that the correct data is printed under the corresponding
column header (field name).

Table [DESCR->COMPONENTS |

Table Type Standard Table[23x4(72]]

o | LENGTH[I(4)] | DECIMALS[I(4 }] | TYPE_KIND[C(1)] | NAME[C(30...
1 6 0 c MANDT

e | 0 c MOLGA

ke o c LGART

Y 0 D ENDDA

5 e] D BEGDL

e 20 0 c BBTYZ

Finally, the main loop is run. The loop is carried out on the internal table, which contains all
the rows of the database table in question. For each row of the table, the do loop is run. within
the do loop, the components (fields) of the table row are processed and assigned to the field
symbol <my fields. The do loop is run the number of times equal to the number of table
fields asked by the user. The value of the field is then outputted. Once all required fields have
been processed, the do loop is exited. Within the do loop, the positions table filled earlier
is read in order to get the correct position where a particular cell is to be positioned.

Simple Data Browser
MANDT MOLGR LGART ENLCD2 BEGDA ABTYZ
200 01 /2BE 12/31/9999 01/01/1901 SIS LSIS LS LS LGL1
200 01 /2RER 12/31/9999 01/01/1901 LIS LSIS LS L3 LGL1
200 01 /453 12/31/2001 01/01/1300 aliLil
200 01 /453 12/31/9999 01/01/2002 aliLil
200 01 /454 12/31/2001 01/01/1300 aliLil
200 01 /454 12/31/9999 01/01/2002 ALl
Total Columns Shown [
Total Rows Shown &

The positions table along with the uline statements lets you give the box shape to
the output.

S E

http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3860358411d1829f0000e829fbfe/content.htm

Chapter 2

See also

» http://help.sap.com/saphelp nw04/helpdata/en/fc/
eb3860358411d1829f0000e829fbfe/content .htm

» http://help.sap.com/saphelp nw2004s/helpdata/en/fc/
eb3145358411d1829f0000e829fbfe/frameset.htm

Applying dynamic Open SQL

The Open SQL statement components may be specified statically or dynamically. This applies
to database read statement SELECT, as well as data manipulation statements such as
INSERT and UPDATE. The primary emphasis of this recipe will be on dynamic specifications
of the various components of the SELECT statement. The previous recipe saw some usage
of the dynamic SQL in the SELECT statement, where the table name, the target area internal
table (pointed to by a field symbol), and the number rows to read using UP TO addition

were specified dynamically. In addition to these, the GROUP BY, the ORDER BY, and

WHERE conditions may be specified dynamically.

In this recipe, we will create a program that will take input from the user and create dynamic
specifications for the where condition and the order by clause. (For simplicity's sake

we emphasize on the dynamic where and order by clauses and keep the table name

as spfli).

Getting ready

We will create a program that will contain a selection screen, which will allow you to take input
from the user. We will create two blocks on the selection screen, namely Where and Order by.

Dynamic Open SQL Demo
&

Where Clause

Field Name CRRRID Field Value LH

Order By Clause
(O] None

) Field Name

The table to be considered for this example is spf1i. The Where Clause block has one
checkbox (WHERE1) used for specifying the component of the WHERE condition. Also for
the Order By Clause, we have two radio buttons—orderbyl and orderby?2.

s

http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3860358411d1829f0000e829fbfe/content.htm
http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3860358411d1829f0000e829fbfe/content.htm
http://help.sap.com/saphelp_nw04/helpdata/en/fc/eb3860358411d1829f0000e829fbfe/content.htm

Dynamic Programming

How to do it...

For creating a program based on dynamic SQL, follow these steps:

1. Declare two string variables where cond and order by for specification of the
dynamic where condition and order by criteria, respectively.

data : order by type string.
data : where cond type string.

2. Next, the if statements are added for checking the options selected by the user.
In this part, we will make sure that the correct criteria/condition is filled in the
defined string variables.

if orderby? eqg 'X'.
order by = ordby f.
endif.

3. Forthe ORDER BY criteria, if the user selects the first option (orderby1—no sorting),
no code is added/executed. If the user has entered the sort criteria on the screen
(field ordby_£) using the second radio button (orderby2), the entered name is
assigned to the order by string.

4. Similarly, for the Where Clause formulation, the checkbox selection is checked. If the
checkbox is selected, the entered field name (field1) is concatenated with EQ and
the value entered (valuel).

if wherel eqg 'X'.
concatenate fieldl 'EQ waluel'" into where cond
separated by space .

endif.

5. Finally, the most important portion is added. The select statement is written using
the string variables, where cond and order by. We make sure that select is not
executed if where cond is empty (using a check statement).

NEQ

Chapter 2

check wherel eq "X'.
data: ex ref ctype ref to cx_sy dynamic osqgl_error.
data: message text type string.

Try .
select ® from spfli into tabkle t_spfli
where (where cond)
order by [(order by).
loop at t_spfli into wa spfli.
write :/ wa spfli-carrid ,
wa spfli-connid,
wa_ spfli-countryfr,
wa_spfli-citcyfrom,
wa_spfli-airpfrom,
wa_spfli-countryto,
wa_spfli-ecityto,
wa_spfli-airpto,
wa_spfli-fltime.

endloop.

CATCH cx sy dynamic osgl error into ex ref.

message text = ex ref-»get text().
write: / message text.
endtry.

6. The data is read and stored in the t _spfli internal table, and outputted to the user
using the 1oop and write statements.

7. Itis also necessary to catch the cx sy dynamic osgl error exception in case
the select statement's where conditions and order by sort criteria are incorrect.
Any exception occurring is caught, and the relevant message text is written using the
exception class cx_sy dynamic_osqgl error.

In the dynamic Open SQL program, there is one select statement executed that prints and
fetches the data that is to be read from the database. The program checks the input entered
by the user. If the where condition variable is empty, the program does not display any
records from the table.

Eis

vww allitebooks.conl

http://www.allitebooks.org

Dynamic Programming

Suppose the user enters values for fieldl and the valuel.

Dynamic Open SQL Demo
&

Where Cluse

Field Mame CRRRID Field Value 1H

Order By Clause
() Mone
) Field Name I:I

Then, after the execution of the i f statements related to the where condition,
the where cond variable will contain the corresponding criteria to be passed to
the select statement.

Dynamic Open S5QL Demo

LH 0400 DE FRANKFURT FEE US NEW YORK JFE 7:20
LH 0401 U5 HNEW YORK JFE DE FRANKFURT FRA 7:15
LH 0402 DE FRANKFURT FEE US NEW YORK JFE 7:35
LH 2402 DE FRANKFURT FEE: DE BERLIN S¥F 1:05
LH 2407 DE BERLIN T¥L DE FRANKFURT FRA 1:05

The valuel variable is passed on to the where condition and the system, at runtime,
evaluates their values in order to get the correct data from the database.

Similarly for the order by criteria, when the user specifies none as the sorting by, an empty
string is passed to the select statement. This has no effect on the sorting, and the data is
displayed as residing in the database table.

We may use field symbols and references as shown in the previous recipe in conjunction with
the code of this recipe in order to make the program work for any database table.

See also

» http://virtualforge.com/tl files/Theme/Presentations/HITB2011.
pdf

» http://help.sap.com/saphelp nw2004s/helpdata/en/8f/35del718944e
b8al462cf6362cc8b8/content . htm

http://virtualforge.com/tl_files/Theme/Presentations/HITB2011.pdf
http://virtualforge.com/tl_files/Theme/Presentations/HITB2011.pdf
http://virtualforge.com/tl_files/Theme/Presentations/HITB2011.pdf
http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944eb8a1462cf6362cc8b8/content.htm
http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944eb8a1462cf6362cc8b8/content.htm
http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944eb8a1462cf6362cc8b8/content.htm
http://help.sap.com/saphelp_nw2004s/helpdata/en/8f/35de1718944eb8a1462cf6362cc8b8/content.htm

Chapter 2

Dynamic program generation

The ABAP language also allows the creation of ABAP programs at runtime. An INSERT
REPORT statement may be used for creating a new program specified by the a name
in the statement. Dynamic program generation should only be used when there is no
alternate option.

Also, you may generate a subroutine pool using a GENERATE subroutine pool statement.
A subroutine pool is generated, and is of a temporary nature. The subroutines in the pool
may be called from within the generation program.

On the other hand, the programs created via the INSERT REPORT statement are permanent
and overwrite any prior existing programs with the same name. Within the generation
program, the new program may be called via a SUBMIT statement.

Getting ready

We will use the concepts of dynamic program generation in order to show how a simple
requirement may be solved. We will take as input two program names. The code of the first
program will be read and then any comments or unwanted blank lines will be removed and
a new program will be created by the name specified on the input screen.

How to do it...

1. Two parameters, origprog and newprog, are declared for taking the input names
of the existing and converted program respectively.

parameters: origprog type syv-repid,
newprog type sy-repid.

2. Internal tables, itab and itab2, are also declared for storing the source code
of the original program and converted program respectively. These are based on
string type. A work area of string type is also declared along with a temporary
variable tempwa.

data: itabk type table of =string,
itabkZ type tabkle of =string,
wa type string,
tempwWa type string.

s

Dynamic Programming

3.

The read report is then used with the original program name and the internal
table, itab. We will check the value of sy-subrc in order to proceed further.

read report origprog into itab.

check sv-subrc eqg 0.

The LOOP statement is then added for reading itab into wa. The APPEND statement
is used in conjunction with the IF and SPLIT statements in order to process all
non-blank lines without having asterisk at the beginning. The SPLIT statement splits
the source code line under consideration at the occurrence of a quotation mark (").
The work area, wa, contents are then appended to the internal table, itab2.

LOCOP AT itab INTC wa.

IF not wa is initial and wa(l) HE "*'.
SPLIT wa AT '"' INTO wa tempwa.
APPEND wa TO itab2.

ENDIF.

ENDLOOP .

The SELECT SINGLE statement is then written in order to check newprog in
trdir table.

SELECT SIMNGLE * FROM trdir WHERE name EQ newprog.

If the return code value is not equal to zero (0), the insert report statement
is added and on success a message Program Converted by Name message is
displayed. If the insert fails, a message Program Conversion failed message

is displayed.

If the return code value after the SELECT statement is equal to O, the message
saying that a program having the desired destination program name already
exists, is displayed.

if sy-subrc ne 0.
insert report newprog from itab2.
if sy-subrc eq 0.

write : f/ ' Program Converted by Name ', newprog.
else.
write : f ' Program Conversion failed'.
endif.
else.

write : /
'Program not converted =since destination program already exists'.
endif.

Chapter 2

The program statements collectively allow the conversion of a program. The new converted
program is free from all types of comments and blank lines.

Let us see how the program works.

The selection screen displays two fields for taking input for Original Program that is to be
converted and New Program that is to be generated.

Comments / Blank Lines Removal Program

Original Program YTEST_TO_BE_GENERATED
New Program YTEST_TO_BE_GENERATED3

For example, we can enter the Original Program value as YTEST TO BE GENERATED
whereas the new converted program is YTEST TO BE GENERATED3.

Report [YIEST To BE GENERATED [Active
1 H#g————]
2 *& Report YTEST TO BE GENERATED
3 5 -
4 b
5 &
8 g
7 e e e e o]
8
9 EEPORT ytest to be generated.
10
11
12 @+ this is & comment
13 L+ thnis is & omment
14
15 START-OF-SELECTICH.
1&
17 WRITE :/' Hello World'. "rihis is comment
isg
19 END-OF-SELECTION.

@l

Dynamic Programming

The code of the YTEST_TO_BE_EXECUTED program is read into the itab internal table using

the READ REPORT statement.

Internal table
13

Emaﬂ

14
15
16

* this is a ocmment

START-OF-SELECTION.

The loop is then run, and any blank lines are removed. Also the lines with asterisk (*) are
removed, and anything written after the quotation mark (") is ignored. The new lines are

appended to the itab2 internal table.

Internal table
1

=
itab2
=

EEPORT

WEITE
END-OF-SELECTION.

L8]

1 ytest to be generated.
2 START-0OF-SELECTION.
:/" Hello World’.

The last step is to check the trdir table's program directory. The SELECT statement checks

the table to see if a program already exists with

the new program name entered by the user.

If a program already exists, a message is displayed saying "Program not converted since
destination program already exists". This is necessary to avoid overwriting of the existing
program. If the name is unique, the INSERT REPORT statement is called and the new

program is generated.

YTEST_TO_BE_GENERATED3

Active

report
start-of-selection.
write :/' Hello

end-of-selection.

ytest to _be generated.

Chapter 2

While using the insert statement, the CX_SY WRITE SRC LINE TOO LONG exception may
occur if the program line to be inserted is too long. We may catch the exception using the try
and catch statements as shown in the following screenshot:

=] try .
select single * from trdir where name g newprog.

if sy-zubrc ne 0.
insert report newprogy from itabZ.
if sy-subrc eq 0.
else.
write : f
'Program not converted since destination program already exists'.
I endif.

catch CX 5Y WRITE SRC LINE TOO LONG.
write / '"Error: Program line too long'.
- endtry.

» http://help.sap.com/abapdocu 731/en/abendynamic_prog technique
guidl.htm

» http://help.sap.com/abapdocu_70/en/ABAPSYNTAX-CHECK FOR_ITAB.htm

» ABAP Keyword Documentation available at http://help.sap.com/
abapdocu_702/en/abenabap.htm

» SAP Advanced ABAP Course BC402

» Determining the Attributes of Data Objects available at http://help.sap.com/

saphelp 470/helpdata/en/fc/eb3145358411d1829£0000e829fbfe/
content.htm

http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm
http://help.sap.com/abapdocu_731/en/abendynamic_prog_technique_guidl.htm
http://help.sap.com/abapdocu_70/en/ABAPSYNTAX-CHECK_FOR_ITAB.htm
http://help.sap.com/abapdocu_70/en/ABAPSYNTAX-CHECK_FOR_ITAB.htm
http://help.sap.com/abapdocu_70/en/ABAPSYNTAX-CHECK_FOR_ITAB.htm

ALV Tricks

In this chapter, we will see recipes related to the ABAP List Viewer (ALV). Also, we will look at
ways of:

» Setting ALV columns as key columns and making zero amount appear as blank

» Removing columns from display and layout

» Enable Adding Layout toolbar buttons

» Adding Hotspot to columns

» Adding your own buttons to ALV toolbar

» Adding checkboxes to columns

Introduction

This chapter explores recipes related to the ALV displays. We will start with a simple
requirement with basic ALV displays. We will then enhance the basic ALV program by hiding
few columns from display as well as from the initial layout. We will then see a recipe showing
how to save user-specific layouts. Adding buttons to standard ALV toolbars will be shown,
along with checkboxes and hotspots displayed within ALV columns.

For this chapter, | assume that the reader has basic knowledge of the ABAP objects, the ALV
object model, and is familiar with basic ALV creation using CL._ SALV_TABLE. Also, the reader
should have knowledge of creating and changing of GUI status, and should have knowledge of
Ranges and Select-Options.

ALV Tricks

For the sake of this chapter, we will make a simple example that will display data into an ALV
format. This will be used in all the recipes mentioned in this chapter.

TYPES : BEGIN OF TY_ PRAOOOE,
PEEME TYFE PERSHC,
SUBTY TYPFE SUBTY,
BEGDA TYPE BEGDA,
ENDDA TYFE ENDDA,
BEDTHM TYFE AEDAT,
UNAME TYFPE AENAM,
BETO1 TYFE PAD AMT7S,
WAERS TYFE WAERS,
END OF TY PAQOOE.
DATH WA PROOOE TYFE TY PAOOOS.
DATA IT_PRODOE TYPE STAWNDARD TAELE OF TY_ PAO0OOS.
DATA MYALWV TYPFE REF TO CL_ SALV TAELE.
DATR HMYFUNCTIONS TYFE REF TO CL SALV FUNCTIONS LIST.
DATA MYCOLUMNS TYPE REF TCO CL_SALV COLUMNS TRELE.
STRART-OF-SELECTICH.
SELECT * FROM PAOOQ0O8 INTO CORRESFONDING FIELDS
OF TABLE IT PAOOOE UF TO 15 ROWS.

TRY.
CALL METHOD CL_SALV_TABLE=3>FACTORY
IMPORTING
R_SALV TABLE = MYALV
CHANGING
T_TABLE = IT_PAO00S.
CATCH CX_ SALV MSG.
ENDTRY.

MYCOLUMNS = MYALV->GET COLUMNS().
MYCOLUMNS->5ET OPTIMIZE().
MYFUNCTIONS = MYALV->GET FUNCTIONS(}.
MYFUNCTIONS->5ET_ALL().

CALL METHCD MYALV->DISPLAY.

In this example, we declared a data structure type containing simple important fields of table
PA0008. We then declared an internal table and a work area based on this type.

We selected 15 rows from the table PA0008 and stored them in the internal table.

The factory method is then called of the class CL._SALV_TABLE for instantiating the ALV
object. The GET COLUMNS method is called in order to get the columns object of the ALV.
The SET OPTIMIZE method of the columns object is used to optimize the column width.

Likewise, the GET FUNCTIONS method provides access to the ALV's functions' objects.
We then set all the functions using SET ALL method. Finally, ALV is displayed using the
DISPLAY method.

=)

Chapter 3

27
E 3 =

2

29

35

53

o6

57

62
67
68
69
70

71
12

0

=]

QO Q9 Q|9 QlQ|la

Simple ALV Example
2 FFE &

PersNo. | SType| Start Date

09/12/2011
10/12/2011
01/01/2012
09/13/2011
09/16/2011
01/04/2011
01/04/2011
01/05/2011
01/01/2012
11/29/2011
12/01/2011
01/01/2003
01/01/2003
01/01/2003
01/01/2003

[™ [n | =
| End Date | Changed on
10/11/2011 | 09122011
12/31/2011 | 10/12/2011
12/31f9999 | 10/14/2011
12/31f9999 | 09/13/2011
12/31/9990 | 09/16/2011
12f31f0999 | 10172011
12/31f9999 | 10/17/2011
12/31f0990 | 10/17/2011
12f31fo999 | 11/11/2011
12/31/9999 |11/29/2011
12/31f0990 | 12/01/2011
12/31f9999 | 09/17/2003
12/31/9999 | 09/17/2003
12/31/9990 | 09/30/2003
12/31f9999 | 09/30/2003

| Changed by
STUDEMTOO1

STUDENTOO3
STUDENTOOZ
STUDENTOO1
STUDENTOO3
STUDENTOO1
STUDENTOO1
STUDENTOO1
STUDENTOO1
STUDENTOG0
STUDENTOG60
HOLDERM

HOLDERM

HOLDERM

HOLDERM

Amount | Currency

0.00
1,500.00
1,000.00

0.00
15,000.00
50,000.00

800.00
25.00
0.00
0.00
2,500.00

0.00

0.00

0.00

0.00

EUR
EUR
EUR
EUR
EUR
EUR
EUR
EUR
EUR
EUR
EUR
GBP
GBP
GBP
GBP

Note that until this point, the ALV toolbar does not have a layout save button. No fields are
defined as keys (no blue colour). The Amount column displays 0.00 and not blank in case
the value is initial. No hotspots or checkboxes are enabled in the columns. In the next set of
recipes, we will see systematically how each of these options may be added.

» http://wiki.sdn.sap.com/wiki/display/ABAP/ALV+Grid+Report+-+wit
h+Object+Oriented+SALV+Classes

Setting ALV columns as key columns and

making zero amount appear as blank

This recipe is comprised of two subrecipes:

We will see how the personnel number (PERNR) column may be set as key with blue colour.
In addition, how a particular column Amount, where a zero amount is shown as 0.00, may
be made to appear blank.

[vww allitebooks.cond

@1

http://www.allitebooks.org

ALV Tricks

How to do it...

For making the above adjustments, proceed as follows:

1. Declare a column variable with reference to the class c1_salv_column table.

2. Next, use the get _column method of the mycolumns object pointing to the columns
of the ALV in order to get the reference to the column PERNR. We will then use the
set_key method to set the PERNR column as the key column.

3. Similarly, the get _column method is called for the Amount column BETO1.
The set _zero method is called to convert the zeros to blanks while outputting
the BETO01 column. It is necessary that the value space (' ') is passed to the
set_zero method.

data : mycolumn type ref to cl salv column table.
Cry.

mycolumn ?= mycolumns->get column('FERNR' |

mycolumn->zet key(|

mycolumn ?= mycolumns->get column("SETOL")
mycolumn->get zero| ' ')

catch CX_SALV_NOT FOUND.

endtry.

4. The code fragment was added before the ALV display method but after the
assignment to mycolumns statement followed by the factory method call.

We already had the reference to the entire set of ALV columns within the variable mycolumns.
For each of the two columns, PERNR and BET01, the single column object reference was
required. This was done through usage of the get _column method. Methods set key and
set_zero were then called and appropriate values passed for parameters (if necessary) for
setting the key column and removal of zeros respectively.

Any exception raised due to wrong name supplied to the get _column method is caught
using the TRY .. ENDTRY and CATCH statements. The exception that was addressed
was CX_SALV_NOT FOUND. We can add a suitable MESSAGE statement after the catch
statement to output a message in case an error arises, which is not been shown in the
previous screenshot:

=

Chapter 3

_PersNo.LSTypel Start Date | End Date |Changed on |Changed by Amount |
20 09/12/2011 | 10/11/2011 | 09/12/2011 | STUDENTO01

i 270 10/12/2011 | 12/31/2011 | 10/12/2011 |STUDENT003 | 1,500.00
2 0 01/01/2012 | 12/31/9999 | 10/14/2011 |STUDENT003 | 1,000.00
29 0 09/13/2011 | 12/31/9999 | 09/13/2011 | STUDENTO01
35 0 09/16/2011 | 12/31/9999 | 09/16/2011 | STUDENTO03 | 15,000.00
55 0 01/04/2011 | 12/31/9999 | 10/17/2011 | STUDENTO01 | 50,000.00
56 0 01/04/2011 12/31/9999 10/17/2011 STUDENTOQO1 800.00
57 0 01/05/2011 | 12/31/9999 |10/17/2011 | STUDENTO01 25.00
62 0 01/01/2012 12/31/9999 11f11/2011 STUDENTOQO1
67 0 11/29/2011 |12/31/9999 |11/29/2011 |STUDENTOGO
68 0 12/01/2011 12/31/9999 12/01/2011 STUDENTOGO | 2,500.00
69 0 01/01/2003 | 12/31/9999 | 09/17/2003 | HOLDERM
70 0 01/01/2003 | 12/31/9999 | 09/17/2003 | HOLDERM
71 0 01/01/2003 | 12/31/9999 | 09/30/2003 | HOLDERM
72 0 01/01/2003 | 12/31/9999 | 09/30/2003 | HOLDERM

Note the change in the PersNo. and the Amount column.

See also

» http://scn.sap.com/thread/752043

Removing columns from display and layout

By default, all columns that are defined in the internal table IT _PA0008 are displayed in the
ALV output. This recipe will now show how we will remove columns from ALV output.

There are two ways of doing this. We can remove columns from the initial layout. In this case,
we can still bring them back to display by choosing the Change Layout option. On the other
hand, you may remove columns totally, so that they are not even available in the layout.

In this recipe, we will see how the SUBTYPE (SUBTY) column is made invisible, and
the Changed on (AEDTM) column to be removed from initial output but still available
in the layout.

How to do it...

For making the SUBTY and AEDTM columns disappear, follow these steps:

1. We will use the same mycolumn variable used earlier referring to the class
CL_SALV_COLUMN_TABLE. For each column, we will use the get column
method to get a reference to the respective column.

2. Forthe SUBTY column, we will use the set _technical method for removing it from
the display (and also from the layout).

@]

http://scn.sap.com/thread/752043
http://scn.sap.com/thread/752043

ALV Tricks

3. For the AEDTM column, we will use the set_visible method of the class
CL SALV COLUMN TABLE. We will pass the value FALSE to the method.

mycolumn ?= mycolumnsg->get column('SUETY')
mycolumn->set technical('X')

mycolumn ?= mycolunns->get column('REDTH')
mycolumn->set _visible(IF_SALV_C BOOL_SAP=-FALSE)

The set_technical method is used for making the column as technical. This means that
the column is set as a technical column and not displayed in the output, and is not available
for display through the Change layout options.

On the other hand, we have made the AEDTM column (Changed On) invisible from the initial
display using the set _visible method of the CL._SALV COLUMN TABLE class.

Both the columns are not displayed in the new output.

| Pershlo. | Start Date | End Date |Changed by | Amount | Currency|
2409{12}2011 10/11/2011 | STUDEMTO01 EUR
2710/12/2011 |12/31f2011 |STUDENTO002 | 1,500.00 |EUR

2 01/01/2012 |12{31f9993 |STUDENTO003 | 1,000.00 |EUR

20 09/13/2011 |12/31/9999 | STUDENTO001 EUR

35 09/16/2011 | 12(31/9999 | STUDENTO0Z 15,000.00 EUR

55 01/04/2011 |12/31f9999 |STUDENTO001 50,000.00 | EUR

56 | 01/04/2011 |12/31/9999 | STUDENT001 800.00 EUR

57 | 01/05/2011 |12/31/9980 | STUDENT001 25.00 EUR

62 01/01/2012 |12/31/9990 | STUDENT001 EUR

When the user selects Change Layout, only the Changed on column is available for inclusion
in the output. The SUBTY column is totally unavailable for display.

00 Change Layout

r A
Current layout |
Displayed Colu | Sort Order | Fiter | View | Display |

I EaEIES] ()
Displayed Columns Column Set
Column Name |E Colurmn Name
Personnel number Changed on
Start Date
End Date
Changed by
Amount O
Currency

Chapter 3

Enable Adding Layout toolbar buttons

Up to this point, the output of the ALV does not allow the user to save changes made to layout.
In this recipe, we will add coding that will allow saving user-specific layouts, load layouts, as
well as specify a default layout.

How to do it...

For enabling layout saving, follow these steps:
1. We declare two variables and also, an object reference to the class c1_salv_layout.
In addition, a key is defined based on the type salv_s layout key.
2. The get_layout method is then used to get the layout object for the ALV.

The set_key method is called for the layout object mylayout. The mykey structure
having the report name sy-repid is passed to this method.

4. Next, the set _save restriction method is called. It is passed the static attribute
RESTRICT USER DEPENDANT of the interface if salv c layout.

5. Finally, the set _default layout method is called with the value 'X', as shown in
the next screenshot.

data mylayout type ref to cl salv layout.
data mykey type =alv_s layout key.

mylayout = myalv->get layout().

mykey-report = sy-repid.

mylayout—->set key(mykey).

mylayout->set_save_restriction(if salv_c layout=>RESTRICT_USER_ DEPENDANT).
mylayout->set default("X)

6. The code is added before the ALV display method call shown in the first screenshot
of this chapter.

In this recipe, we declared a layout variable based on the c1_salv_layout class. An
essential step is to set the key of the layout object and passing the name of the program.
This is done using the set_key method.

i

ALV Tricks

Next, for enabling the Save layout button, the set _save restriction method is used.
Based on the value passed on to the method, the system determines whether the user is
allowed to save layout as user-specific, user-unspecific, or without any restrictions. Three
possible constant values may be passed.

Interface ;|_IF_SALV_C_LAYOUI Ilmp lemented / Active
Properties }/Interhces /Ath'l:utes }/Methods VEue nts |/T'_.rpes VAIiases
BlEE] EE] [0 (2] EE
Attribute | Typing | Description | Initial value
RESTRICT_NONE Type Save Layout Without Restriction 3
RESTRICT USER_LDEPENDANT Type Save Layout Only User-Specific 2
RESTRICT_USER_INDEPENDANT Type Save Layout Only Across Users 1

Since our requirement was to enable user to store layout as User-Specific, we used
RESTRICT USER_DEPENDANT constant attribute of the interface if salv_c layout.

Finally, we wanted the Default setting checkbox to be enabled so that the user may save a
particular layout as his or her default. For this reason, the set _default method was called
with the value 'X'.

I 1
Layout L_TF.CI]
Name: |tec
[¥]User-Specific [| Default

The next time the user executes the report, his or her default layout is loaded and data
displayed in that layout format.

» http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-
through-selection-screen/

» http://forums.sdn.sap.com/thread.jspa?threadID=1001363

Adding Hotspot to columns

It may also be required to display hotspots (similar to hyperlinks) for an entire column in the
ALV display. Clicking a particular hotspot cell will take the user to another detail screen. In this
recipe, we will add hotspot functionality to the PERNR column.

=

http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-through-selection-screen/
http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-through-selection-screen/
http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-through-selection-screen/
http://www.sapgeek.net/2011/10/sap-abap-select-layout-of-alv-through-selection-screen/

Chapter 3

How to do it...

We will see how a particular column may be made to appear as a hotspot. We will also add
the necessary code that is needed to carry out the steps needed for the hotspot selection.
Proceed as follows:

1. We get access to the PERNR column and call the set _cell type method for it.
Then, we pass the hot spot static constant attribute of the if salv ¢ cell type
interface to it.

mycolumn ?= mycolumns->get column('FERNR')
mycolumn->set_cell type(if salv _c_cell type=>hotspot |

2. Next, we define the class myhotspot. Within the class definition, we create a static
public method on_click hotspot that will be called when a hotspot cell is clicked.
This imports the row and column pertaining to the selection.

class myhotspot definition.
public section.
class-methods on_click hotspot FOR EVENT link click
OF cl_salv_events_table IMPORTING row column .

endclass.

3. Within the implementation of this class, we read the row from the table IT PA0008
that the user has selected. The necessary details are read from table PA0008 using a
SELECT statement. The function module HR_INFOTYPE OPERATION is then called
in order to display the details of the employee Infotype 0008 record in display
mode of transaction PA20.

class myhotspot implementation.
method on_click hotspot.
clear wa paO008.
read table it_pa0008 index row into wa paQ008.

data : p0008 cype pO0OO0S8.
select single * from pa0008 into corresponding fields of p00os8
where pernr eg wa_pa0008-pernr
and begda eq wa pal000&-begda
and endda eg wa_pal008-endda.

CALL FUNCTION 'HR INFOTYPFE OFERATION'
EXPCRTING
INFTY
NUMEER
VALIDITYEND
VALIDITYBEGIN
RECCRD
OPERATION
DIALOG MODE
EXCEPTICNS
OTHERS = 0.

"Qoos’
p0008-pernr
p0008-endda
p0008-begda
POODB

"DI5"

13

endmethod.

endclass.

-

ALV Tricks

4. Finally, the SET HANDLER statement is called in order to link the static method
on_click hotspot of the class myhotspot to the ALV. Before that, we get the
handle to the events object of the ALV using the get _event method.

DATA: myevents TYPE REF TO cl salv events table.
nyevents = myalv->get event().
SET HANDLER myhotspot=>on click hotspot FOR myevents.

The previous code will make sure that the on_click hotspot method is called
when the user clicks a particular cell of PERNR.

The Pers.No column is displayed as underlined and selectable through a hotspot, as shown in
the following screenshot:

| PersMo. | Start Date |End Date |Changed by
2 '09/12/2011 |10/11/2011 |STUDENTOO1
;Jlﬂf’lZﬁUll 12/31/2011 | STUDENTOO3
2 01/01/2012 |12/31/9999 | STUDENTOO3
20 09/13/2011 |12/31/9999 | STUDENTOO1
35 09/16/2011 |12/31/9999 | STUDENTO03

When the user clicks a particular row displayed as a hotspot within the PERNR column,

the method on_click hotspot is triggered. Within the method, the importing parameters
row and column contain the number of the selected row and the column name

(PERNR) respectively.

Variables 1 l/\fariablesz l/Lch; l/Globab Vﬂuto l/MemoryAnarys's]

BEET & = W

5. | Variable | V. | val. | G | Hexadecimal Value
ROW % [Jogoooooo
COLUMN PEENE 5000450052004E0052002000...

The code written within the on_click hotspot method is then executed. The corresponding
record is read from the table IT _PA0008 using the READ statement. The SELECT statement

is used for reading additional information related to the employee selected. This information

is then passed on to the function module HR INFOTYPE OPERATION Wwith other Displays
parameters in order to display the record in transaction PA20 (Display Master Data) transaction.

=

Chapter 3

See also

» http://help-abap.zevolving.com/2008/09/salv-table-8-add-handle-
hotspot/

» http://www.sapfans.com/forums/viewtopic.php?f=13&t=158570

» Standard SAP demo programs SALV_DEMO_ TABLE EVENTS and SALV_DEMO
TABLE SIMPLE

Adding your own buttons to ALV toolbar

The standard ALV toolbar provides a number of useful functions. However, depending on the
requirement, you may be asked to add new buttons to the ALV toolbar. This recipe will show
how to add your own buttons to the ALV toolbar and then writing appropriate coding to be
executed when the user presses the button.

We will add a new button saying View Summary to the toolbar. Upon clicking, the total number
of displayed records will be shown (for purpose of illustration).

Getting ready

For creating your own toolbar buttons, we need to make a copy of the GUI status displayed in
the original ALV program. We will then make changes to the copied status. Proceed as follows:

1. For finding out the program whose GUI status is currently being called, generate
the output of the ALV program and then select the menu option System | Status..
On the dialog that appears, we will use the values shown in the Program (GUI) and
GUI status fields. The GUI status being used is ALV_TABLE STANDARD residing
in the program having name SAPLSALV_METADATA STATUS.

SAP data
Repository data
Transaction SEE0
Program (screen) SAPLSLVC FUL..

Screen number 500

—_— -
Program {GUI) SAPI.SALV_HE'.'Iﬂ

GUI status SATV_TAELE 5.

s

ALV Tricks

2. We will copy this GUI status from the respective standard SAP program into our
program. This may be done by using transaction SE80.

[S- M25(1)/800 Copy Status

Frm

Program

SAPLSALYV METADATA STATUS

Status

SALWV TRAELE STANDARD

to

Program

[zsT9_ATv_runctioN] L@

Status

[SALV_TABLE STANDARD |

In the next section, we will see how new buttons are added.

How to do it...

We will see how to add new buttons and adding appropriate coding. Proceed as follows.

1. Use transaction SE80 to see the various components of your program. The newly
copied status SALV_TABLE_STANDARD is shown under the GUI Status node.

|Program

=l

IZSTQ_ALV_FUN CTION

¥ e

€ L= LIFER](E)E S E

Object Name

Description

~ |54 ZSTO_ALV_FUNCTION test

¥ (] Classes

v (7 Types

v [Fields

v (] Events

~ &1 GUI Status

* SALV TABLE STANDARD Standard for General List Qutput in Fullscreen

2. Double-click the GUI status name to display its contents in the right-hand pane.
From the section of toolbar buttons, we will remove the INFO button item, as it
is not needed, and add our own function SUMM having the display text View
Summary, as shown in the following screenshot:

5]

Ttems 1 - 7 sETL =ER9 sREFRESH
a a |
Items & - 14 0P =0DN &ILT &ILD
= = ¥ i
Ttems 15 - 21 =ENT_FREV sVERID
& |
Items 22 - 28 FPC 35L =GRAPH
& 7 0 |
Ttems 29 - 35 STMM 1 =CRB
| Ei’_iew Su.. .| | L]

Chapter 3

3. Next, we will call the method set _screen status of the class c1_salv_table
and pass it the name of our program SY-REPID and the newly created status
SALV_TABLE STANDARD.

call method myalv->set screen status

eXporting
piztatus = "5ALV TASBLE STANDRRD'
report = sy-repid.

We will then create a class by the name summbutton (we can also use the existing

class for hotspot created in a previous Adding hotspots to columns recipe). In
the definition, a static method on_button press is defined that responds to
the triggering of the ALV event added_function. The method has an importing
parameter e _salv_function that provides the function code of the selected

customer function.

class summbutton
public section.

endclass.

definition.

class-methods on _button press FOR EVENT added function
OF cl =alv

events table IMPORTING e salv function

vww allitebooks.conl

http://www.allitebooks.org

ALV Tricks

5. Next, the implementation of the method is created. Within the on_button_press
method, we check to see if the SUMM function button has been pressed. If found true,
we then calculate the number of lines in the table IT PA0008, then concatenate the
line numbers with appropriate text and display in an information message.

class summbutton implementation.
method on button press.
data lines type 1.
data text type =string.
if e salv function eg 'SUMM".
describe table it pal00& lines lines.
text = lines.
concatenate texXt 'records are displayed' into text
separated by space.
message i208 (00) with text.
endif.
endmethod.
endclass.

6. Finally we use the SET HANDLER statement to link the static method
on_button_ press of the class newbutton with the events object myevents.
This will make sure the clicking on the New button triggers the execution of the
on_button press method.

SET HANDLER summbutton=>on button press FOR myevents.

Calling the set_screen status method results in the display of our newly created GUI
status having the button View Summary. The method is called in order to make sure that
instead of the standard GUI status, our newly created GUI Status is shown.

& &% F B | @& | | [(E3 TF If | B &F £ | view Summary

PersNo.lSiart Date | End Date |Changed by | Amount |Curn:.-r'|rz:1,r
gJUQ}lEﬁZUll 10f11/2011 |STUDENTOO1 EUR
2 10f12f2011 | 12{31f2011 |STUDENTOO3 | 1,500.00 EUR
2 01f01/2012 | 12{31f9999 |STUDENTOO3 @ 1,000.00 EUR

I

The CL_SALV_EVENTS_TABLE class contains an ADDED_FUNCTION event that is raised when
our added button is pressed.

NED

Chapter 3

Class Interface CI_SALV EVENTS TABLE Implemented [Active

Properties + Interfaces | Friends | Attributes Methods - Events [Types
Ok Parameters D%* EE QEE IE [H]llﬁl

Event Type Visibility
IF_SALV_EVENTS_LIST~TOP_OF PAG Instance Event Public
IF_SALV EVENTS LIST~END OF PAG Instance Event Public
IF_SALV_EVENTS_FUNCTIONS~BEFORE_SALV_FUNCTION Instance Ewvent Public
IF SRLV EVENTS FUNCTIIONS~AFTER SALYV FUNCTION Instance Ewvent Public
IF SALV _EVENTS FUNCTIONS~RDDED FUNCTION Instance Ewvent Public
IF_SALV EVENTS ACTIONS TABLE~DOUBLE CLICK Instance Event Fublic
IF_SALV EVENTS ACTIONS TABLE~LINK CLICK Instance Event Public

We registered this event with the static method on_button press of our class newbutton
using SET HANDLER statement.

Upon clicking the View Summary button, the code of the on_button_ press method is
called. We make sure in the method that the code is run only when the function code supplied
by importing variable e _salv_function contains SUMM. If that is the case, the number of
lines determined in the internal table are displayed using a MESSAGE statement.

0 15 records are displayed

For adding icons in the toolbar button, refer to the SAP documentation at http://help.
sap.com/saphelp nw04/helpdata/en/d1/801d43454211d189710000e8322d00/
frameset.htm.

There's more...

The work so far done looks fine, but has a small problem. Clicking on the View Summary
button will give the entire set of rows in the internal table IT_PA0008, irrespective of taking
into account any filter applied.

We will now refine the recipe in order to read the filters, the column names included on which
the filters have been applied, and the selection options specifying the filter values. At the end,
we will delete the rows from IT PA0008 that do not adhere to the filter criteria (so that the
row count is correct). The example may then be refined later for deletion of filters, and so on.

s

ALV Tricks

The code that will be added will be within the IF statement (checking the function code)
just before the DESCRIBE statement. The code is divided into three parts:

1. First, we declare necessary variable pertaining to ALV filters. We then use the
get_filters method in order to read the filter objects.

DATA: myfilters_obj TYPE REF TO cl_salv_filters,
myfilter obj TYPE REF TO cl_salv filter.
data : myfilters_tab TYPE salv_t filter ref.

data : myfilters_struc type salv_s_filter ref.

myfilters obj = myalv->get_filters().
myfilters_tab = myfilters_obj->get().

2. The get method of the c1_salv_filters class is then called in order to fetch
the internal table myfilters_ tab specifying the column names on which filter has
been specified. The R_FILTER component of this table row is a reference to the class
CL_SALV_FILTER, which contains the values, entered at the filter screen.

Table MYFILTERS_TAB o

Attrbutes Standard [2x2(68)] Wi

B columns ... |.
Row | COLUMMMAME [C(30)] @ R_FILTER [Reference]
1 ENDDA —>{0:565%\CLAS5=CL_SALV_FILTER}
2 UNAME —>{0:567%\CLAS5=CL_SALV_FILTER}

3. Next, aloop is run at this internal table and the details of the r_filter object
are fetched.

EGIN CF ty_range,
column TYPE string,
range TYPE RABNGE OF string,
END OF ty_range.
data : filter conditions table TYPE salv_t_selopt_ref,

TIYPES:

filter conditions TYPE REF TC cl_salv_selaopt,
final range table TYPE STANDARD TRBLE OF ty range,
final range struc TYPFE ty range,

ws_temp LIKE LINE OF final range_ struc-range.

loop at myfilters_tab into myfilters struc.
final range struc-column = myfilters struc-columnname.
CLERR final range struc-range.
filter conditions_table = myfilters_ struc-r filter->get|().

LOOF AT filter conditionsz_table INTC filter conditions.
wWS_temp-sign = filter conditions->get_sign().
w2_temp-option = filter conditions->get option().
wWs_temp-low = filter conditions->get_low().
wWs_temp-high = filter conditions->get_high().
INSERT ws_temp INTC TABLE final range struc-range.

ENDLCCPE.

INSERT final range struc INTO TRABLE final range_table.

endloop.

&)

Chapter 3

We run a loop atthe myfilters tab method and get the filter conditions object

for each column. The get_sign, get _option, get low, and get high methods
of the class c1_SALV_SELOPT is used for getting the sign, option, low, and high
values of the filter condition respectively. These are added to the range table of the
final range struc. Finally, the final range struc contents are inserted into
the internal table £inal range table. The purpose of this step is to form a final
range table named final range table, which will provide us with the name of
each column specified in the filter definition, along with the filter values in the form

of range table.

Tables /" Table Contents |
Table FINAL_RANGE TABLE =4
Attributes Standard [2x2(16)] o
[BBcolumns ... |
Row | COLUMN [CString] RANGE [Internal Table]
1 ENDDA Standard Table[lx4({24)]
2 TUHAME Standard Table[2x4(24)]

5. Asyou can see the user had specified two fields ENDDA and UNAME in the
filter criteria. For the UNAME field, two filter values are specified, that is,
UNAME = HOLDERM and UNAME = STUDENTO060.

Table FINAL_RANGE_TABLE[2]-RENGE =y
Attributes Standard [2x4(24)] o7
[EBcolumns ... |.]
Row | SIGN [C(1)] OPTION [C(2)] | LOW [CString] | HIGH [CString]
il 1 EQ HOLDERM
2 1 kq STUDENT0&0

6. We will keep the third step simple, and will run a loop at the final range table which
will delete from the main IT_PA0008 internal table those records that violate any of

the filter criteria.

loop at final range_table into final range struc.
case final range_ struc-column.
when 'FEENR'.
delete it _pal008 where not pernr in final range struc-range.
when 'SUBTY'.
delete it _pal008 where not subty in final range struc-range.
when 'BEGDA'.
delete it _pal008 where not begda in final range struc-range.
when 'ENDDA'.
delete it _pal008 where not endda in final range struc-range.
when 'REDTHM'.
delete it _pal008 where not aedtm in final range struc-range.
when 'UHAME'.
delete it _pal008 where not uname in final range struc-range.
endcase.
endloop.

[ei-

ALV Tricks

Once this additional code is added, the internal table IT PA0008 will take into account any
applied filter. Thus, the correct values will be shown by the View Summary button.

The code shown may be written more efficiently and elegantly using field symbols. Since the
table contains fewer entries and for the sake of simplicity, field symbols were not used.

See also

» http://wiki.sdn.sap.com/wiki/display/Snippets/Get+set+of+filter
ed+values+from+CL_SALV_ TABLE

Adding checkboxes to columns

In this recipe, we will see how we can display checkboxes in a column in the ALV output.
The user may select a checkbox and switch it on or off. Then, based on his or her selection,
a button may be pressed and function executed. The primary emphasis of this recipe will be
the display of checkboxes within a column and the coding to set it as on or off.

Getting ready

For this recipe, we will make a copy of the simple ALV program that was created in the
beginning of the chapter. We will then add the checkbox-related coding to this copy.

How to do it...

For adding a checkbox column to your ALV program, follow these steps:

1. Add a new field CHECKBOX to the type TY PA0008 defined in your program.
The position of the field will determine the position of this column in the ALV
display. We will place it at the end.

tvpes : begin of ty pal008,
pernr type PERSHNO,
subty type subty,
begda type begda,
endda type endda,
aedtm type AEDAT,
uname type AENAM,
bet0l type PAD AMTTS,
waers type Waers,

checkbox type c,

end of ty pal0Cs8.

&

Chapter 3

2. Then, use the get _column method to get access to the CHECKBOX column. We
will set the long , medium, and short texts of this column as Checkbox. The most
important step is to set the cell type of this column to a checkbox using the method
set cell type. The constant static attribute checkbox hotspot of the interface
if salv_c cell type is passed.

data : mycolumn type ref to cl_salv_column table.
try.
mycolumn ?= mycolumns-rget_column
mycolumn->set_medium text Checkbox
mycolumn->set_long_ text 1 T

mycolumn->set_short_ text ox
mycolumn->set_cell type(if salv c_cell type=>checkbox hotspot
catch CX_SALV_NOT FOUND.

endtry.

3. Anew class mycheckbox is defined, the definition of which contains a static method
on_click_checkbox defined for the 1ink click event for the ALV events. This
method imports the row and column of the user selection.

cla=ss mycheckbox definition.
public section.
class-methods on_click checkbox FOR EVENT link click
OF cl_=zalv_eventz_table
IMPCRTING row colummn.
endclass.

4. Next, the implementation of the mycheckbox method is created. As already
mentioned, this method is triggered when the user clicks on a particular checkbox
for any row of the displayed ALV table. The read statement is used to determine
which particular row's checkbox has been clicked. The IF statement checks whether
the checkbox field of the row in consideration is already on or off (meaning equal
to 'X' or space). Depending on the current value, the value of the checkbox field
is changed. A MODIFY statement is used to change the internal table IT_PA0008.
Finally, the refresh method of the ALV object is called.

clas=s mycheckbox implementation.
method on_click checkbox.
clear wa_paO008.
read takle it _pal008 index row into wa_pald0s8.
if wa_pal008-checkbox 15 initial.
wa_paldl08-checkbox =
else.
clear wa pal008-checkbox.
endif.
modify it_pal008 from wa_pal008 index sy-tabix.
myalv->refresh
endmethod.

endclass.

(&5}

ALV Tricks

5. The SET HANDLER statement is used to register the static method
on_click_ checkbox method of the mycheckbox class for the ALV events.

).

DATA: myevents TYPE REF TO cl_salv _events_table.
myevents = myalv->get event |
SET HRNDLER mycheckbox=>on_click checkbox FOR myevents.

When the program is run, the set_cell type method results in the CHECKBOX column to
be displayed with editable checkboxes. The set short text, set medium text, and
set_long text methods display the heading of this column as Checkbox.

Persi_ | SType| Start Date
20 09/12/2011

2.0 10/12/2011
2.0 01/01/2012
29 0 09/13/2011

End Date

10/11/2011
12/31/2011
12/31/9999
12/31/9939

Changed on
09/12/2011
10/12/2011
10/14/2011
09/13/2011

Changed by
STUDEMTOO1

STUDENTOO3
STUDENTOO3
STUDENTOO1

Amount
0.00
1,500.00
1,000.00
0.00

Currency | Checkbox
EUR]

EUR
EUR
EUR

f

When the user clicks a particular checkbox, the on_click checkbox method is executed.
The READ statement gets the selected row using the parameter row. If the value of the
CHECKBOX field of the selected row is found to be initial (meaning, checkbox off), it is
assigned 'X' (that is, switched on). Otherwise, if it is already on, the CHECKBOX field is
cleared (that is, switched off).

The table IT PA0008 that is linked to ALV display is modified in order to reflect the user's
selection. Finally, the refresh method is called to display the new state of the checkboxes

on the user screen.

Chapter 3

There's more...

Apart from the CHECKBOX display, there are other possibilities of a particular column. For the
set_cell type method, the various possible values supplied for the value parameter and
the relevant output is shown as follows:

Value Paramter of set_cell_type Output
TEXT
CHECKBOX
Button
DROPDOWN
Link
Hotspot

ua b W N P O

See also

» http://sites.google.com/site/ruslimchang/handle-checkbox-in-
alv-object-model

Regular Expressions

In this chapter, we will see recipes related to regular expressions as used in ABAP. We will
look at:

» Using regex as an IF statement

» Removal of characters from a string

» Converting date into internal date type

» Validation of format (telephone number)

» Removing repeated words from text string

» Inserting commas in an amount string

» Removing comments from program code

» Interpreting HTML stream

Introduction

As of release 7.0, ABAP supports regular expressions based on POSIX standard 1003.2.
Regular expressions may be specified after the addition REGEX within the FIND and
REPLACE statements.

An entire description of the topic constitutes a book by itself. However, the most important
and commonly used regular expressions requirements will be discussed.

In the introduction, we will cover important operators used in regular expression processing
within ABAP. These will be used in the various recipes mentioned in this chapter. We will then
see recipes for writing programs that uses regular expressions for pattern matching, validation
as well as conversion and extraction of data from a given text stream. Throughout the chapter,
the terms "Regular Expression" and "Regex" will be used interchangeably.

Regular Expressions

In addition to FIND and REPLACE statements, SAP provides classes CL. ABAP REGEX and
CL ABAP MATCHER for regex processing. However, the coding in the recipes will comprise
regular expressions used within FIND and REPLACE statements.

For this chapter, | assume that the reader has basic knowledge of the regular expressions,
and is familiar with basic FIND and REPLACE statements. We will use the DEMO REGEX
standard program screenshots for illustration, where required.

For more information on regex, see the following link:

http://help.sap.com/abapdocu_70/en/ABENREGULAR EXPRESSIONS.htm

Regular expressions

A regular expression comprises literals and operators. The operators are special characters
used for a particular purpose and have special meanings when we need to search for any
pattern within a text stream. Before the recipes, we will have a look at some useful operators
available in ABAP for regular expressions.

Operator Purpose
Dot matches a single character.

? Denotes either no or a single occurrence of a character or set of characters.

* Denotes any number of occurrences (0O, 1, or more) of a character or a set
of characters.

+ Matches one or more occurrence of a character or set of characters.

\< Matches start of a word.

\> Matches end of a word.

* Used for denoting negation when used with box brackets, as well as the start of
line marker.

?= Used as a preview condition.

?! Used as a negated preview condition.

\1,\2 Used for placeholders for subgroup registers (also called the back-referencing

operator). For replacement, $1 and $2 represent the subgroup registers in the
replacement string (this will be discussed in a recipe ahead).

$ Denotes end of a line.

\d Denotes a digit (0-9).

\w Denotes an alphanumeric character.
\u Matches a single alphabet.

&)

http://help.sap.com/abapdocu_70/en/ABENREGULAR_EXPRESSIONS.htm
http://help.sap.com/abapdocu_70/en/ABENREGULAR_EXPRESSIONS.htm

Chapter 4

All the three operators (*, +, and ?) must be used after a character or a character sequence
specification. The box brackets denote the possible characters that may occur in a string. On
the other hand, the round brackets denote a specific set of characters in a given sequence
to be matched. For example, the regex [01] ? will match 0 or 1. The expression [01] *
will match 01, 11 0101, and so on. On the other hand, (01) * will match 01, 0101,

or blank. (Also, \w+ denotes one or more alphanumeric characters.)

The special characters that are used in regex may also need to be searched in a given text.
For searching them, we must precede them with a backslash (Escape Character for special
characters). Some of the examples are shown in the following table:

Searching for special characters
\.
\+
\ n
\?
\$
\A

These are then treated as literals rather than operators.

The ?=is a preview condition. For example, if we write regex in the form a (?=g), the
expression behaves like an IF statement condition. The pattern a will be matched only
if the following substring matches the condition specified by s.

There is a difference between * when used within box brackets [1 and round brackets ().
When the * operator is used in box brackets, it represents the characters not included in
the text to be matched. For example, [*ab] will match all strings that do not include a and
b, such as cd, ch, hh, and so on. Whereas, * when used with round brackets (or without it)
specifies the beginning of a string. For example, * (ab) or “ab will match all strings starting
with ab, such as abc, abd, abbbbb, and so on.

[}

Regular Expressions

For simplicity's sake, our examples will contain the regex specified within the FIND or
REPLACE statements. In this case, any error in the regex is identified by the syntax checker,
as shown in the following screenshot along with the exact position on which the error has
occurred (so in this chapter, no error handling will be shown).

Report Z5T9_REGEX_DATE_TO_INT_FORMAT | Inactive

data : mydate (10
start-of-selection.

IS
R

mydate = "20120101".
replace first occurrence of regex *\d{4) di{2} d{z}

in mydate with '£3/52/31"'.
write :f 'Converted date is', mydate.

Lol el
mo=] on Nl

4

3

Syntax error

Description Rowr Type

Program Z5T9_REGEX_DATE_TO_INT_FORMAT 16 oo
ZRegular expression '(*\d{4 1 0\dL20)0\d{2}) is invalid in character j

position 2

For error handling, however, the CX_SY REGEX class within the TRY and CATCH statements
may be used, if required.

For replace statement, when the replace has been done successfully, the return
code SY-SUBRC value is equal to 0. This may be used for checking the success of
the replace statement.

Using regex as an IF statement

In this recipe, we will write a simple program that will function as an if statement. A simple
find regex statement will be used.

Getting ready

We will first write an i f statement that will check if the value of a parameter variable field1
has the value equal to ABC, DEF, or CDE. In case the value is equal to any of the three, the
message Field Value is Valid is displayed. We will then see the equivalent regex.

[

Chapter 4

parameters fieldl tvpe ¢ length 3 lower case.

if fieldl eq '"REC' or
fieldl egq "CDE' or
fieldl eqg 'DEF'

write :f 'Field Values i= Valid'.
else.

write :f 'Wrong Field Value'.
endif.

How to do it...

For replacing the i f statement with find regex statement, proceed as follows:

1. Instead of the if statement, we will write a find regex statement along with
the regex ' [ABC|CDE|DEF]'.

2. After the statement, the sy-subrc is checked, and the appropriate messages

are written.
find regex '"[ABC|CDE|DEF]"' in fieldl.
if sv-subrc eqg 0.
write :/ 'Field Value i Valid'
else.
write :f '"Wrong Field Values'.
endif.

We have used an OR (|) operator within the £ind statement. A match is found if the value
of the three-character £ield1 is equal to any of the three values specified. In this case,
sy-subrc is equal to zero, and the success message is then displayed.

There's more...

Suppose we need to ignore the case. Say the input is to be compared such that there is no
difference between ABC, abc, and ABc. In such a case, we may simply add ignoring case
to the statement, as shown in the following screenshot:

|find regex "[RBEC|CLDE|LDEF)]' in fieldl ignoring case.

Regular Expressions

Removal of characters from a string

In this recipe, we will see how special characters and blanks may be removed from a text
string comprising of a telephone number. We will create a program that will take as input
the number containing blank spaces and special characters such as +, (,and).

The replace statement along with suitable regular expressions will be used. Various regular
expressions may work in this case. We will see two such expressions in this recipe.

How to do it...

For meeting the mentioned requirement, proceed as follows:

1. Declare a parameter by the name number, consisting of 20 characters.
2. Thereplace all occurrences is added having the regular expression [*\d].

parameters @ number type © length 20.
start-of-selection.

replace all occurrences of regex
in number with
write :/ number.

The solution is based on searching all non-digit characters in the string and replacing them
with blank. The negated operator (*) is used within the box brackets and the \d denotes the
digits. We have used all occurrences, as this will replace all non-digits.

Suppose the user enters the number having + and parentheses and blank spaces.

MUMBER +67 (345) Bezsazsnas

This will remove all special characters, as well as spaces, and will only display numbers.

=

Chapter 4

There's more...

Alternately, you may also use [0-9] in place of \d. The regex will be then be written as
' [*0-9] '. In addition, it is important to include regex in the replace statement.
Otherwise, instead of searching the pattern within the text, the system searches for
[*\d] or [*0-9] inthe text, and the desired results will not be achieved.

Converting date into internal date type

As already mentioned, regular expressions are useful for converting data into the required
format. One good example is the conversion of a date stored in internal format into display
format, and vice versa. For example, a date may be available as 20120101 and we need
to format it in the form 01/01/2012, and so on. In this recipe, we will see how a single
statement of replace may be used to carry out this task. For this recipe, we assum

that input date is in the correct internal format.

How to do it...

For carrying out the previously mentioned conversion, proceed as follows:

1. First, declare a variable mydate having a length of 10 characters. A date having the
internal format date is then assigned to this variable. The same variable will be used
for storing the converted date.

2. The replace statement having the regex ' (\d{4}) (\d{2}) (\d{2}) ' is used,
along with the replacement '$3/$2/s1"'.

3. The converted date is then outputted on the screen.

data : mydate (1l
start-of-selection.

mydate = '20120101°'.

replace first occurrence of regex ' d{4} d{2} d{2}:)"
in mydate with '$3/%2/51°'.

write :/ 'Converted date is', mydate.

We have used three subgroups in the formation of the regular expression. The \d refers
to digits and the number given in curly brackets specifies the length of the various date
components (4 for year, 2 for month and the date). The three subgroups are specified
using parentheses.

(75}

Regular Expressions

Within the replace statement, the subgroup placeholders are used. It specifies the format in
which the date is to be outputted (the year followed by a forward slash, then the month, then
another forward slash, and finally the date). For the input date, 20120101, following are the
values in each of the subgroup registers:

» Subgroup register 1 denoted by $1: 2012

» Subgroup register 2 denoted by $2: 01

» Subgroup register 3 denoted by $3: 01

In this case, the date after the replace statement and the write statement is shown in the
following screenshot:

Converted date is 01/01/2012

Validation of format (telephone number)

In this recipe, we will see how to use the back-referencing operator in order to validate
telephone numbers. Suppose telephone numbers in a certain city follow the rule: a
number must be of exactly eight digits, and the first and second digit must be the same.

For example, the valid numbers of the city may be 44005600, 88008700, and so on. If the
number entered starts with a zero or has length less than eight, an error should be displayed.
We will see how a short validation program may be written.

How to do it...

For creating the program that checks the validity of a telephone number according to the
given criteria, proceed as follows:
Declare a parameter having the name tel no with eight characters.

We then use the £ind regex statement to search for the pattern ([1-9]1)\1[0-
9] {6} in the telephone number entered by the user.

3. The if statement is then used for checking the return code. For sy-subrc,
having the value 0, the message Number is Valid is displayed.

7

Chapter 4

parameters : tel no type chars.

start-of-selection.
find regex [1-9] 1[0-3]1{6} in tel no .
if sy-subrc eq 0.
write: /' Number is Valid
else.
write :/f Humber is Invalicd
endif.

There are two parts of the regular expression that we created, that is, the regex for the first
two digits and then for the remaining six digits. Let us look at this in detail.

The requirement is that the first and second number cannot be a zero. So, we have specified
therange [1-9] and not [0-9] for the first number. We want the first number to be part

of the first subgroup and hence the parenthesis is used. The first digit of the phone number
that matches the [1-9] part of the regex is stored in the first subgroup register. This value
may be addressed using the back-referencing operator \ 1. (Since, in this case, we have one
subgroup, the corresponding placeholder for the value stored in the first register is \ 1). Since
the first and the second number must match, we use \ 1 in place of the second digit.

The next part is comparatively simple. For the remaining six digits of the telephone may
include zeros as well, we use the [0-9] range along with the length of 6 specified in
curly brackets.

The find regex statement tries to find the given regex in the eight-character telephone
number. In case, a match is found, the return code sy-subrc equals 0, so we input the
message Number is Valid.

Removing repeated words from text string

In this recipe, we will use the start and end of word operators along with the subgroup register
placeholders in order to write a program that will remove adjacent duplicate words from a text
string. For example, from the text 'this this is is a repeated text text 11 11',
the duplication of words will be removed and the new text 'this is a repeated text
11' is given as the output.

How to do it...

In order to create a repeated word removal program, proceed as follows:

1. Declare the textstream string. Then assign some text to it that has repeated words
in it.

(7]

Regular Expressions

2. Areplace all occurrences statementis then written with the regular
expression (\<\w+\>) \1.The replacementkeyis '$1"'.

3. The if statement is then used for checking the return code. For sy-subrc
having the value 0, the message Number is Valid is displayed.

data : textstream type string.
start-of-selection.
textstream = 'this this i=s a repeated text text 11 11

replace all occurrences of regex W+l > 1
in textstream with '£1' ignoring case.

wWwrite :f textstream.

The regex used in this recipe is different from that used in the previous one. Since we

require searching of duplicate words rather than single characters, we will use the start and
end word operators. We used \w+ so that all words comprising of alphanumeric characters
will be found searched and then replaced. In order to find out repeated adjacent words (set of
characters surrounded by blank space) we used parenthesis for the first subgroup and then
the back-referencing operator \ 1 to find out repetition. It is also necessary to include a space
between the subgroup in brackets and the \1 (since we are dealing with words).

The replace statement uses the placeholder $1, referring to the first subgroup register. In
other words, via the replace statement, we are actually telling the system to first find the
occurrence of two adjacent words, and then replace this found duplicate with a single word
that is the one stored in the first subgroup register (thus removing duplicates).

For the example shown in the code, the string outputted after removal of adjacent duplicates
is shown in the following screenshot:

this i= a repeated text 11

Inserting commas in an amount string

In this recipe, we will see how a small program may be written to take as input an amount
string, and insert commas in it after every thousand (that is, every three digits from right).
This is interesting because the normal search of a pattern within a text is from the left.

7@

Chapter 4

We will use the preview condition and the negated preview condition, along with subgroups in
order to find a solution. Please note that one such example appears on the help.sap.com
site under business warehouse routines that has been slightly modified for this recipe.

How to do it...

For creating a program for comma insertion within an amount string, follow the following steps:
1. Declare a parameter amount of type character and length 10. We can increase the
length for a larger amount, keeping provision for the commas.

2. The REPLACE statement with the addition ALL. OCCURENCES and REGEX ' (\d)
(?=(\d{3})+(?!\d)) ' and replace substring 's1, '.

3. Awrite statementis then used to output the convert amount.

parameters: amount type ¢ length 10.
start-of-selection.

REPLACE ALL OCCURRENCES OF
REGEX ' (“d) (?=(\d{3})+(?!%d))' IN amount WITH '£1,'

We have used subgroups in conjunction with the preview condition. The first subgroup
denoted by (\d) is matched for digits within the number which subsequent numbers meet
the condition specified by (\d{3})+ (?1\d).(We may also write [0-9] in place of \d).

The preview condition finds all numbers that are followed by one or more sequence of
three digits after it starting from the left. (For this reason, the (\d{3}) + has been used.)
For example, we look for digits that are followed by three, six, or nine digits. (The negated
preview condition ensures that only those numbers are matched, which have multiples of
exactly three digit numbers after them.)

(77}

Regular Expressions

In case any such digit is matched, it is replaced using the register subgroup placeholder $1
followed by a comma. Suppose we choose 10000 as the input number, the first zero is the
matched digit (and in this case) the only match. This is replaced by the zero itself followed
by a comma. The match is shown in red in the following screenshot (output taken from
DEMO_REGEX TOY program):

Matches

18000

The output of the program is shown in the following screenshot:

Amount with added commas is 10,000

If 100 is entered, the condition does not meet, so no matches are found. That is why no
commas are inserted in the amount 100 at any position. Since a big amount may require
more than one comma, we use the REPLACE ALL OCCURRENCES addition.

Removing comments from program code

In this recipe, we will see how we can use the replace statement in conjunction with a
suitable regex in order to remove comments from a program. For the sake of this recipe,

we assume that the program whose comments are to be removed is syntactically correct.
Similar to program created for the Dynamic program generation recipe in Chapter 2, Dynamic
Programming, the program for this recipe will remove all statements beginning with a asterisk
(*) or all parts following a line after an inverted comma (").

Getting ready

For this recipe, we will make a copy of the program created in Chapter 2, Dynamic
Programming, that reads the source code of a program specified by user input. In the
previous program, we used two internal tables and used a loop at the first table itab to
delete comments. For this recipe, we will replace the loop with one replace statement and
use only one table that is the first internal table itab. The code of the original program is
read in the table from which comments are removed.

@

Chapter 4

How to do it...

For adjusting the program, proceed as follows:

1. The main part of the new portion is a replace statement. This replace statement
contains (“*.*) | ([*\"1*) (\"*.*) as the regular expression. The replace
statement is with the addition in table and with the substring s2.

2. Adelete statement is then used for deleting all blank rows from the internal table.

replace all occurrences of regex " ("W .%) | (["W"]=) (WTELF
in takle itab with '32' ignoring case.

delete itak where table line is initial.

There are three subgroups used in this recipe. An OR condition is used for separating the first
subgroup from the other two. Let us consider the two subgroups.

» (**.*):This part tries to match lines having the first character an asterisk (*)
that is, an entire line commented. The match found is stored in subgroup register 1.

» ([*\"1*) (\"*.*):This pattern tries to divide a given program line into two parts,
the first with set of characters without a double quote (") followed by the part that
begins with a inverted comma ("). The first part before the inverted comma is stored
in subgroup register 2 and is denoted by $2.

Since we do not require lines beginning with an asterisk and the part followed by the inverted
comma, the placeholders $1 and $3 are not used in the replace statement. Only the second
subgroup register has been used in the replace statement. This trims the comments from
the code.

If a line starting with an asterisk (*) is reached, the second register is empty, so the entire
code line is replaced by blank space. If a line having some code and then comments starting
with inverted comma is reached, we only pick up the code part.

We finally call the delete statement in order to remove any blank lines from the program's
internal table.

(For simplicity's sake, we have specified three subgroups with parenthesis, the third
parentheses subgroup may be omitted also, without affecting the functioning of the code).

(7]

Regular Expressions

Interpreting HTML stream

In this recipe, we will see how an HTML code may be read and interpreted using regular
expressions. We will create a program that will read an HTML stream in a string and will
display the tag names along with the content of the tags. The FIND and replace statements
are used together with a do loop. (This recipe will focus on reading tags beginning with <tag>
and ending with <\tag>).

How to do it...

For creating a program for interpreting HTML code, follow the steps shown in the
following steps:
Declare three strings by the name htmlstream, tagcontents, and tagname.
We then assign a suitable HTML code to the htmlstream variable.

Within a do loop, a FIND REGEX statement is added that finds tag names and their
contents. The regex used in this case for matching an HTML tag is ' < (\u\w¥*)
[*>]*>(.*)</\1>".

4. Once atagis processed, a replace all occurrences statement is used for
replacing the tag with '$$s$.

5. The tag name and tag contents are printed.

6. Once all the tags are processed, the exit statement is executed.

data : htmlstream type string.
data : tagcontents type string.
data : tagname type string.

htmlstream

do .
FIND REGEX "< (‘u'w®) [*>»]*>(.*)</"1>' in htmlstream IGNCRING CASE
SUBMATCHES tagname tagcontents.
replace all occurrences of tagname in htmlstream with "$53°'.
if sy-subrc ne 0.
exit.
endif.
write :/ tagname ,' --->' , tagconcents .

enddo.

(&)

Chapter 4

We have used ignoring case since the tag names may start with upper or lowercase such as
H1 or hl. The regular expression searches for tags starting with a <, then followed by a single
alphabet (denoted in regex by \u), followed by zero or more alphanumeric characters. After
this, an optional substring (comprising of all characters except for a > may be found, followed
by a > character. This will match HTML tag names such as H1, H2, HTML, or html. The tag
name without the special characters < and > is assigned to a subgroup that is then available
in the submatch variable tagname. The start and end of the tag is checked using the back-
referencing operator \ 1. Note that in this case, the forward slash / is part of the HTML code
denoting the end of the tag. The content of a particular tag is read into the submatch variable
tagcontents.

The find statement finds all the tags. Once a tag is processed, we replace the tag name as
3 in order to avoid it to be found by the £ind statement another time. On the next do loop
pass, the next tag is matched and contents are read.

Using a WRITE statement, all the tag names and tag contents are printed on screen.
The output is shown in the following screenshot:

html —> <hl> this is heading 1 </hl> <h2> this is heading 2 </h2>
hl —> +this is heading 1
h2 —>» this i3 heading 2

Once all the tags are processed, the sy-subrc condition of being not equal to zero is met
and the loop is exited.

» http://help.sap.com/saphelp erp2005/helpdata/en/42/9d6ceabb211d
73e10000000a1553f6/frameset . htm

» http://help.sap.com/abapdocu_702/en/abenregex search.htm

» http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/03a52be5-0901-0010-9da4-e9d5f8c5celc?QuickLink=1index&overr
idelayout=true

» http://help.sap.com/abapdocu_702/en/abenregex syntax operators.
htm

» http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/866072ca-0b01-0010-54bl-9c02a45ba8aa?QuicklLink=index&overr
idelayout=true

Optimizing Programs

In this chapter, we will see recipes related to program optimization. We will look at:

» Using transaction SAT to find problem areas

» Creation of secondary indexes in database tables
» Adding hints in SELECT clause

» Secondary indexes for internal tables

» Hashed table for single read access

» Replacing for all entries construct with Ranges

Introduction

An entire description of the topic constitutes a book by itself. However, we will see
some useful and important techniques, as well as some new tools and concepts

that are important for developers for program optimization. There are two main
techniques—optimizing database statements, particularly SELECT statements and the
optimizing ABAP code particularly internal table's access. We will see useful recipes related
to both the optimization of database statements as well as internal tables.

We will start with some general rules necessary for optimization. We will start with a recipe
showing the usage of transaction SAT for measuring performance of report programs.

Then, we will see in detail the steps required in creating secondary indexes for database
tables in order to boost performance of queries used in the concerned program. We will then
see how hints may be used in programs within SELECT statements, so that a particular index
may be used by the system. Finally, we will see how the FOR ALL ENTRIES construct may be
replaced with ranges table. The usage of hashed internal tables as well as the new concept
of secondary indexes for internal tables will be discussed in separate recipes.

Optimizing Programs

For this chapter, | assume that the reader has basic knowledge of SELECT statements

and database concepts and internal tables, as well as basic optimization techniques. For
the better understanding of the information in this chapter, the reader should know which
database would be used in his or her project and know some tricks specific to the database.

Before starting with the recipes, let us see some rules for program optimization:
» Do not use asterisk (*) in SELECT statements. It means not to select unnecessary
columns from database.
» Do not use nested SELECT statements. Rather use subqueries or inner joins.
» Create views when multiple tables' data is required.
» Appropriate and complete WHERE clause conditions should be written.

» Using FOR ALL ENTRIES within SELECT statements when multiple tables are
involved. Also check that the FOR ALL ENTRIES tables are not empty. Otherwise,
all records in the underlying table will be accessed that will drastically affect the
performance.

» Using Aggregate functions within SELECT clause such as AVG, MIN, MAX,
COUNT(DISTINCT col), and COUNT(*) rather than calculating them yourselves
in programs.

» Avoiding SELECT or SELECT SINGLE within a loop.
» Usage of hashed tables where a single record within the table is to be searched.
» Usage of secondary index for internal tables.

For more examples of the previously discussed items, see the Tips and Tricks screen of

transaction SAT. For doing so, you need to call transaction SAT. Then press the B#Tps& Trics
button on the toolbar.

Using transaction SAT to find problem areas

In this recipe, we will see the steps required to analyze the execution of any report,
transaction, or function module using the transaction SAT.

Getting ready

For this recipe, we will analyze the runtime of a standard program RIBELF00 (Display
Document Flow Program). The program selection screen contains a number of fields.
We will execute the program on the order number (aufnr) and see the behavior.

=

Chapter 5

How to do it...

For carrying out runtime analysis using transaction SAT, proceed as follows:

1. Call transaction SAT. The screen appears as shown:

Avessi. | Evabiate |
Measurement
CC@ The test times are reliable
Short Description il
Settings
Variant Eﬂj LEFRULT From User
Olfsr|# @ @
In Dialog In Parallel Session
(®) Transaction | [@ Switch On/Off]
)Program | Evaluate Immediately
(_JFunction Module |
Eval. Immediately (> Execute] For User/Senvice
[@ Schedule]
Data Formatting
[|Determine Mames of Internal Tables

2. Enter a suitable name for the variant (in our case, YPERF VARIANT) and click the
Create L button below it. This will take you to the Variant creation screen.

Variant [YPERF VARIANT | From User |sTUDENTO09

Description

Statements VProgram Components]

Maximum Size of File 2,000|KB

Maximum Execution Time 1,800|Seconds
Aggregation
(JNone

(®)Per Call Position

3. Onthe Duration and Type tab, switch on Aggregation by choosing the Per Call
Position radio-button.

&1

Optimizing Programs

4. Then, click on the Statements tab. On the Statements tab, make sure Internal
Tables, the Read Operations checkbox and the Change Operations checkbox,
and the Open SQL checkbox under Database Access are checked.

Processing Blocks Database Accesses
[#|Methods [¥|Open SQL
Events (ABAP Objects) Native SQL
[#]Function Modules [| Contexts
[¥]Subroutines []Database-Related Operations
Screen Data Transfer
Flow Logic EXPORT/IMPORT
Formatting for frontend DATASET
Modules
[#|Message Handling Miscelaneous
[v] Additional ABAP Statements
Internal Tables [] Statistics
[¢|Read Operations [JKernel Runtime Adminstration
Change Operations j [V|C clls

5. Save your variant. Come back to the main screen of SAT.

Make sure that within Data Formatting on the initial screen of SAT, the checkbox for
Determine Names of Internal Tables is selected.

7. Next, enter the name of the program that is to be traced in the field provided (in our
case, it is RIBELF00). Then click the ® Execute button.

8. The screen of the program appears as shown. We will enter an order number range
and execute the program.

9. Once the program output is generated, click on the Back key to come back to
program selection screen.

10. Click on the Back key once again to generate the evaluation results.

We carried out the execution of the program through the transaction SAT and the evaluation
results were generated. On the left are the Trace Results (in tree form) listing the statements/
events with the most runtime. These are like a summary report of the entire measurement

of the program. They are listed in descending order of the Net time in microseconds and the
percentage of the total time. For example, in our case, the OPEN CURSOR event takes 68
percent of the total runtime of the program.

~[ee]

Desktop1 | HitList | DBtables ¢ Profl. | Times |

(ERIEY
|Profile: Trace Results =
Profile Selection | Number | Net [mircosec] | Net [%] | |

~ ‘31 Runtime Measurement 397,351 37,544,498 100.00 -
~ i3 Not Assigned O 397,351 37,544,498 100.00 =

- [BY oren cursor O 15,885 25,572,034 68.11

- Bl FETCH O 16,110 4,841,607 12.90

- [BY seLECT sSINGLE O 24,652 4,164,245 11.09

- [B) pERFORM O 126,622 1,148,561 3.06

- B Loor AT O 26,366 364,276 0.97

« Bl caLL FunCTION O 18,470 275,437 0.73

s Blcac O 7,919 267,716 0.71

+ [Bl Load Report O 102 232,759 0.62

- [B) reaD TABLE O 61,866 226,971 0.60

« [Load Dynpro O 6 77,233 0.21

- B mserT O 37,215 72,090 0.19

- [Bl arpEND O 30,850 59,431 0.16

« Bl Load cuA Objects O 6 55,551 0.15

- [system Event O 3,901 39,243 0.10

- [BY PERFORM (ext) O 4,395 27,780 0.07

- Bl pa1 Dynpro O 7 19,861 0.05

- Bl peLETE O 6,104 16,626 0.04
« D) CALL SCREEN 1 2 16,445 0.04 =

Chapter 5

Selecting the Hit List tab will show the top time consumer components of the program. In this
example, the access of database tables AFRU and VBAK takes most of the time.

Hit List
3,043 0,909,801
3,043 9,595,758
3,602 2,357,589
3,602 2,269,879
3,043 1,574,522
3,043 1,294,445
619 1,205,982
3,602 1,130,753
3,043 995,902
3,043 928,195
3,043 882,760
3,043 860,107
1 680,984
19,609 305,907
43 257,639

0,900,801
9,595,758
2,357,589
2,269,879
1,574,522
1,294,445
1,205,983
1,120,733
995,902
928,195
882,760
860,107
680,984
305,907
257,639

26.37
25.53
6.27
6.04
4.19
3.44
3.21
3.01
2.65
2.47
2.35
2.29
1.81
0.81
0.69

26.39
25.56
6.28
6.05
4.19
3.45
3.21
3.01
2.65
2.47
2.35
2.20
1.81
0.81
0.69

Hits | Gross [mircosec] | Net [mircosec] |Gross [%] | Net [%6] |SGtemenUEvent

Open Cursor AFRU
Open Cursor VBAK
Open Cursor JEST
Select Single 15TO
Open Cursor AUFM
Open Cursor VBEP
Select Single VIQMEL
Fetch JEST

Fetch AUFM

Fetch VBEP

Fetch AFRU

Fetch VBAK

Open Cursor VIAUFKST
Select Single T102T
Call C C_DD_READ_FIELD

7}

Optimizing Programs

Double-clicking any item in the Trace Results window on the left-hand side will display (in the
Hit List area on the right-hand pane) details of contained items along with execution time

of each item. From the Hit List window, double-clicking a particular item will take us to the
relevant line in the program code. For example, when we double-click the Open Cursor VBAK
line, it will take us to the corresponding program code.

Include [MIBELFOL | Active
1687 { * ——>P AUFNR pm ordsr *
1688 e e e e *
1629 EFORM GET SALES ORDERS TAELES P SALES ORDER TAE STRUCTURE G_SALESDOC
1690 USING P_LUFHR.
1691
1692 || SELECT * FROM VBAK
1693 INTC CORRESPONDING FIELDS OF TRAELE P SALES ORDER TAE
1694 WHERE VBELN IN 5 _VBELNS
16395 AND VBTYE = 'L’
1698 IND AUFNR = P RUFNR
1697 IND KUNNR IN S_KUNNRS
1698 AND BSTNK IN S_ESTHKES
1699 ZND ERDAT IN S_ERDATS
1700 IND ERNAM IN S_ERNAMS.
17201

We have carried out analysis with Aggregation switched on. The switching on of Aggregation
shows one single entry for a multiple calls of a particular line of code. Because of this, the
results are less detailed and easier to read, since the hit list and the call hierarchy in the
results are much more simplified.

Also within the results, by default, the names of the internal table used are not shown.
In order for the internal table names to appear in the evaluation result, the Determine
Names checkbox of Internal tables indicator is checked.

As a general recommendation, the runtime analysis should be carried out several times for
best results. The reason being that the DB-measurement time could be dependent on a
variety of factors, such as system load, network performance, and so on.

Creation of secondary indexes in

database tables

Very often, the cause of a long running report is full-scan of a database table specified

within the code, mainly because no suitable index exists. In this recipe, we will see the steps
required in creating a new secondary index in database table for performance improvement.
Creating indexes lets you optimize standard reports as well as your own reports. In this recipe,
we will create a secondary index on a test table zZST9 VBAK (that is simply a copy of VBAK).

(e

Chapter 5

How to do it...

For creating a secondary index, proceed as follows:

1. Call transaction SE11. Enter the name of the table in the field provided, in our
case, ZST9_VBAK. Then click the Display button. This will take you to the Display
Table screen.

2.

Next, choose the menu path Goto | Indexes. This will display all indexes that
currently exist for the table.

[E- M25(1)/800 Indices for Table ZST9_VBAK

[&]F]HE]EFL(EEEL [E]E J@ @)D @]

Index IDJ1 Ext. 1| Short text

|Smtus | Unique|Author
TAUD [| Index for order date Active [| STUDENTOOZ
L g
ERD [| Index for order entry date Active

[| STUDEMNTOO9

Click the Create button [0 . and then choose the option Create Extension Index.

Create Index

Create Extension Index
=

[|STUDENTOO9 |02/05/2012

The dialog box appears. Enter a three-digit name for the index. Then, press Enter.

[M25(1)/800 Create Extension Index o

Table Name Z5T9_VBAK

T
Index Name Z12

This will take you to the extension index maintenance screen. On the top part, enter
the short description in the Short Description field provided.

Dictionary: Change Extension Index
S5 PN) & SsEER

Index Name Z5T9_VBRK FilA
Short Description Tast Index
Last changed STUDENT009 | |02mﬁf2012| Original nguage

6. We will create a non-unique index so the Non-unique index radio button is selected
(on the middle part of the screen).

]

Optimizing Programs

7. Onthe lower part of the screen, specify the field names to be used in the index. In our
case, we use MANDT and AUFNR.

Index Flds

Field name Short Description
MRNDT Client
AUFNR Order Number

8. Then, activate your index using keys Ctrl + F3. The index will be created in the
database with appropriate message of creation shown below Status.

Index Name Z5T9 VBAK ||£|
Short Description Test Index
Last changed STUDENT009 | |02!06!2012| Original language
Status Active ||Saved | Package
Index ZST9_VBAK~Z12 exists in database systern MSSQL

This will create the index on the database. Since we created an extension index, the index will
not be overwritten by SAP during an upgrade. Now any report that accesses ZST9 VBAK table
specifying MANDT and AUFNR in the WHERE clause, will take advantage of index scan using our
new secondary index.

It is recommended by SAP that the index be first created in development system and then
transport to quality, and to the production system. Secondary indexes are not automatically
generated on target systems after being transported. We should check the status on the
Activation Log in the target systems, and use the Database Utility to manually activate the
index in question.

A secondary index, preferably, must have fields that are not common (or as much as
uncommon as possible) with other indexes. Too many redundant secondary indexes
(that is, too many common fields across several indexes) on a table has a negative
impact on performance. For instance, a table with 10 secondary indexes is sharing more
than three fields. In addition, tables that are rarely modified (and very often read) are the
ideal candidates for secondary indexes.

» http://help.sap.com/saphelp erp2005/helpdata/EN/85/685a41cdbf80
47e10000000al1550b0/content .htm

5]

http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm

Chapter 5

» http://help.sap.com/saphelp nw04/helpdata/en/cf/21eb2d446011d1
89700000e8322d00/frameset .htmhttp://docs.oracle.com/cd/ SELECT
clause E17076_02/html/programmer reference/am second.html

» http://forums.sdn.sap.com/thread.jspa?threadID=1469347

Adding hints in SELECT clause

If there are many indexes that contain common fields (or for any other reason), the database
optimizer cannot decide the right index to be used for a particular query, and then use a
wrong index that may not be of optimal performance. From SAP Release 4.5, hints can be
provided using the & HINTS parameter. In this recipe, we will see the syntax for specifying
HINTS within your SELECT clause in order for a particular index to be used by the database
optimizer. We will see how the hints may be specified when the underlying database is

MS SQL Server.

Getting ready

In this recipe, we will have a small program that runs a SELECT statement on the table
ZST9_VBAK. We will use the index (z12) that we created in the previous Creating Secondary
Indexes in Database Tables recipe.

How to do it...

For creating the program containing the SELECT clause with the HINT parameter, proceed
as follows:

1. Aparameter P_AUFNR is declared for taking as input an order number.

2. Next, a data variable myvbeln is defined.

3. A SELECT statement is then written. The addition ¥ HINTS followed by the database
name, the table, and table index name is made to the SELECT clause.

parameters: p_aufnr type Z5T3 VBAK-aufnr.
data : myvbeln type Z5T9 VBAK-VEELN.

SELECT VBELN into myvbeln
FROM Z5T9_VBAK
WHERE aufnr eq p aufnr
%_HINTS MSSQLNT 'TABLE Z5TS5_VBAK ABINDEX (Z12)°'.
write :/ MYVEELN.
endselect.

i

http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm
http://docs.oracle.com/cd/E17076_02/html/programmer_reference/am_second.html
http://docs.oracle.com/cd/E17076_02/html/programmer_reference/am_second.html

Optimizing Programs

It is a very simple addition. There is a special syntax used for specifying the name of the
database index to be used for the particular SELECT statement. The name of the index we
used can be taken from the index name as defined in the ABAP Dictionary. The table name
and the index name are specified within TABLE <tablename> ABINDEX(<suffix>). The syntax
should be proper because other than the database name check, the syntax checker does not
check the index name. Therefore, if a wrong index is used, the corresponding query will not
give a syntax error but the desired results will not be achieved.

Index Name Z5T9 VBAK "E]
Short Description Test Index
Last changed STUDENTO0S] 02f06f2012] Original language
Status Active]Sa\red] Package
Index ZST9_VBAK~Z12 exists in database system MSSQL

In our case, we use MSSQLNT as the database name. However, you may use other database
names such as ADABAS, AS400, DB2, DB6, INFORMIX, MSSQLNT, and ORACLE (depending on
what is applicable to your underlying database). The code pertaining to the HINT parameter of
one database may differ from that of another.

For example, if we have an ORACLE database, the same z12 index may be specified in the
SELECT statement in the following manner:

SELECT VEELN into myvbeln
FRCM Z5TS VBAK
WHERE aufnr eg p aufnr
% _HINTS ORACLE 'INDEX("ZST9 VBAK" "Z5T9_VBRE~Z12")'.
write :/ MYVBELN.
endselect.

Note the database name added along with the changed format for index specification.

» http://blogs.msdn.com/b/saponsglserver/archive/2011/08/31/how-
to-integrate-sqgl-server-specific-hints-in-abap.aspx

[

http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-to-integrate-sql-server-specific-hints-in-abap.aspx
http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-to-integrate-sql-server-specific-hints-in-abap.aspx
http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-to-integrate-sql-server-specific-hints-in-abap.aspx
http://blogs.msdn.com/b/saponsqlserver/archive/2011/08/31/how-to-integrate-sql-server-specific-hints-in-abap.aspx

Chapter 5

Secondary indexes for internal tables

In this recipe, we will see the new concept of secondary keys/index within internal tables.
This lets you optimize your programs when accessing data residing within an internal table.

Getting ready

In this recipe, we will create a program that will store all data of table VBAK into an internal
table. Then we will use the secondary key in order to fetch a record pertaining to a given
order number, aufnr. The primary emphasis of this recipe is on the definition and usage
of a secondary key for internal tables.

How to do it...

For creating a program using secondary index in internal tables, follow the steps below:

1. We first declare a type ty vbak based on the database table vbak. We create two
keys for this table type. The first is a non-unique primary key having vbeln as the
key field. We also create a non-unique sorted secondary key sec_key having one
field aufnr. An internal table it _vbak is defined based on the type ty vbak. In
addition, a work area wa_vbak is declared for the table it vbak. It is always better
in terms of performance to use field symbols rather than work areas. In this example,
for simplicity's sake and since the performance gain is minimal, work areas have
been used.

types ty vbak type standard table of vbak
with non-unigue key primary key components vbeln
with non-unigue sorted key sec key components aufnr.

data : it_vbak type ty vbak.
data : wa vbak type line of ty vbak.

2. Next, all records from table vbak are read into table it _vbak.

3. Then, the read table statement is used to read the row of internal table
it _vbak pertaining to aufnr 503002 using the secondary key sec_key.

select * from vbak into table it_vbak.
read table it vbak into wa_vbak
with key sec key components aufnr = '000000503002°'.

write :/ wa vbak-vbeln.

55}

Optimizing Programs

In the table type definition, we specified a non-unique sorted secondary key (based on aufnr)
along with the primary key. For the read statement, we also specify that the secondary key
sec_key is to be used when searching in internal table it vbak the row corresponding

to aufnr 503002. Since the secondary key is used, the aufnr field is first searched in the
secondary index sec_key. A faster binary search is used since it is a sorted index. The row
number of the actual internal table it _vbak containing the aufnr 503002 field is then
determined. Once this number is known, the relevant row is read and values assigned to the
structure wa_vbak. The vbeln field is then printed. Had no secondary index been specified, a
sequential search through the internal table it _vbak would have been used, which was very
time consuming.

Hashed table for single read access

In this recipe, we will create a program that will use a hashed table and a standard table for
accessing and displaying employee data from two tables PA0003 and PA0006. There may be
many solutions to this requirement. We will use SELECT clause and hashed tables.

Getting ready

In this recipe, we create a program that will take as input personnel number and then print
the last payroll run date of the employee (from PA0003) and the permanent residence
address (subtype 1) stored in the STRAS field of the table PA0006. For simplicity's sake,
only one data field of each table has been shown.

How to do it...

For creating the program, proceed as follows:

1. We define select-options for taking input of personnel number.

tables :©: pernr.
select-options @ 5 _pernr for pernr-pernr.

=

Chapter 5

2. Next, we define a type ty_payroll based on payroll infotype fields pernr and
abrdt. A structure and a hashed table based on this type are also defined. The
hashed table has a unique key pernr.

types: begin of ty payroll,
pernr type pal003-pernr,
abrdt type palfd3-abrdt,

end of ty payroll.

data: wa_payroll type ty payroll,
it _payroll type hashed table of ty_payroll
with unigue key pernr.

3. Similarly, an address type ty_address is defined, along with a structure and
internal table.

types: begin of ty address,
pernr type pallfé-pernr,
stras type paf00&-stras,
end of ty_address.

data: wa_address ctype ty address,
it_addre=sz type standard table of ty address

4. We then write two select statements. The first reads PA0003 for all personnel
numbers specified and the date of last payroll run (abrdt). The second select
statement is used to read all the stras addresses corresponding to permanent
address type (subty = 1) valid at the system date.

select pernr ABRDT from pa0003
into takble it_payroll where pernr in S_pernr.

select pernr stras into table it address from pa0006
where pernr in s_pernr
and =subty eq '1l°'
and begda le sy-datum
and endda ge =sy-datum.

[55]-

Optimizing Programs

5. Finally, a loop is run on the addresses internal table it _address. Within the loop,
the read table statement is used for reading the payroll table it payroll
(the hashed table) for each of the personnel number processed. Within the loop,
the personnel number, abrdt date, and the address field stras are displayed.
We have used field symbols instead of work areas, in conjunction with 1oop and
read statements for better performance.

field-symbols : <fs_address> type ty_address,
<fz payroll> type ty_payroll.

loop at it_address assigning <Is_address>.
read table it_payroll with table key
pernr = <f2_address>-pernr assigning <fs_payroll:>.
write:/ <fs payroll>-pernr,<f= payroll>-abrdt,
«<fs_address>-stras.
endloop.

write :/ sy-dbent.

Two internal tables it _address and it_payroll are defined. it payroll is a hashed
table. We read data from both the database tables PA0003 and PA0006 into the internal
tables it_payroll and it _address respectively. We need to print each employee number
and the corresponding data from each of the two tables.

Therefore, a loop is carried out on the internal table it adrress and within the loop, a read
table is used to read the hashed table, the row corresponding to the employee number in
question. Since it is a single entry access from the internal table it _payroll which is a
hashed table with the value corresponding to the hash key (pernr) being passed, the read
statement is very quick. All the values that we need are there within the loop after the read
statement. These values are then outputted using a write statement.

» http://help.sap.com/saphelp nw70/helpdata/en/fc/
eb35de358411d1829f0000e829fbfe/content.htm

Replacing for all entries construct

with Ranges

In this recipe, we will see how we can replace for all entries withina select
statement with ranges in the where clause. The ranges maybe used to improve performance.
This two-table example is just for illustrative purpose and comparison. You may apply

the concepts to other tables and fields. You may or may not further refine this based

on your requirement.

5]

Chapter 5

Getting ready...

We will create a simple program that uses the for all entries addition in the select
statement for the two tables cobk and coep. We declare two internal tables t _header and
t line items. The t_header table contains one field for the belnr document number,
whereas the items table t _1ine items has three fields belnr, period (period), and
amount wtgbtr (amount).

We first select up to 35,000 numbers from table cobk into the internal table t _header
based on the code kokrs equal to 1000. Next, the table coep is read for kokrs 1000 and for
all document numbers contained in table t _header using the for all entries addition.
The data is read and stored in table t _1ine items. We also make sure that the for all
entries table is not empty.

data : t_header type standard table of co_belnr.
types : begin of ty line items,
belnr type co_belnr,
perio type co_perio,
wtgbtr type WIGKXX,
end of ty line items.

data : t_line items type standard table of ty line items.
start-of-selection.

select belnr from cobk into table t_header

up to 35000 rows where kokrs eqg "1000°'.

select distinct belnr perio wtgbtr from coep
into corresponding fields of table t_line items
for all entries in t_header
where kokrs eq '"1000" and
belnr eq t_header-table line.

How to do it...

In this recipe, we will see how we can improve the performance of the code by replacing the
for all entries construct with a range of document numbers. For this, we need to add
some additional code before the second select statement.

o7}

Optimizing Programs

For forming ranges of document numbers, we will use the function module
WLF_CREATE RANGE FOR_ WBELN. You may copy or write your own code as well

but since we have both the number used having same length and type (character 10),
the function module WLF_CREATE RANGE FOR WBELN may be used. The steps for
writing the additional code for forming ranges are shown as follows:

1.

We declare one range table r header based on the type WBELN RAN ITAB.
The structure of WBELN RAN ITAB is shown as follows:

Component | Typing Method | Component Type | Data Type | Length
5160 Types w RALDB SIGN CHAR 1
OPTION Types * BALDE OFTI CHLR 2
LOW Types ¥ WBELN LF CHRR 10
HIGH Types ~ WEELN LF CHAR 10

In addition, a temp header variable is declared based on the type WBRK_KEY ITAB
(our function module will accept this type).

We then sort the table t _header and assign the t _header table to our
temp header internal table.

The function module WLF_CREATE RANGE FOR WBELN is then called. We pass the
temp_header variable to the function module for exporting parameter it wbeln.
The function module creates the ranges from the values in the temp header table
and returns the range in the table r _header.

Finally, the select statement is written with the for all entries partreplaced
with the ranges r header.

data : r_header TYFE WBELN RAN IT4B.
data : temp header type WERE_KEY ITAE.

sort t_header.
temp header = t_header.

CALL FUNCTION 'WLF_CREATE RANGE FOR WBELN'
EXPCRTING
IT_WBELN = temp header
CHANGING
CT_WEBELN RAN = r header.

refresh t_ line items.

select distinct belnr perio wtgbtr from coep
into corresponding fields of table t_line itens
where kokrs eq "1000" and

belnr in r header.

Let us now see how the additional code works. The document numbers are passed to the
function module. The various numbers (in our case 35000) are used for creating ranges
and returned in the table r_header.

5]

Chapter 5

Table R_HERDER =

Attributes Standard [1085x4(46)] i

|@COIumn5 v |a
Row | SIGM [C(1)] OPTION [C{2)] | LOW [C(10)] | HIGH [C(10)]
1 I BT 0000000014 0000000016
2 I BT 0000000019 0000000058
3 I BT 0000000062 0000000063
4 I EQ 0000000067
5 I BT 0000000070 0000000111
6 I EQ 0000000113
7 I BT 0000000115 0000000117
8 I BT 0000000119 0000000146
] I BT 0000000246 0000000258
10 I BT 0000000260 0000000271

The r_header table is then used in the select statement for reading data from table coep.
This technique works best when the document numbers passed to the function modules are
close together, so that less rows exists in the ranges table.

The efficiency of the Ranges code may be easily demonstrated. We use the GET RUNTIME
statement to find out the relative runtime of other various program segments (such as original
select statement part, the function module call, and the select statement using the
Ranges table). The following are the runtimes (in microseconds) displayed on the screen:

Buntime before For All Entries Statement a
Buntime After For RAll Entries Statement 1,323,378
RBuntime after ranges function module 1,554,917

Runtime After Select Statement with Range 1,855,031

The t_header table contains 35,000 rows. It can be clearly seen that the time taken by the
select statement with for all entries in clause is 1.3 seconds. The function module
consumes 0.23 seconds, whereas the select statement having the Range table takes 0.3

seconds. Hence, the combined time for our replacement code is 0.53 seconds (0.23 + 0.30

) seconds. This is faster than the 1.3 seconds taken by the original select statement using

the for all entries clause.

See also

» http://help.sap.com/saphelp nw04/helpdata/en/9f/
db994235¢111d1829f0000e829fbfe/content . htm

» http://www.sdn.sap.com/irj/scn/index?rid=/library/uuid/
d0c750c1-7d04-2e10-8492-a11b9219371d

» http://help.sap.com/saphelp nw04/helpdata/en/cf/21eb2d446011d18
9700000e8322d00/frameset .htm

s

http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm
http://help.sap.com/saphelp_nw04/helpdata/en/cf/21eb2d446011d189700000e8322d00/frameset.htm

Doing More with
Selection Screens

In this chapter, we will see recipes related to enhancing report selection screens. We will
look at:

» Adding tabstrips and listboxes to the report selection screens
» Adding toolbar buttons on the selection screen

» Changing screen fields on radio button selection

» Taking desktop folder and filename as input

» Coding search help exits for creating better F4 helps

Introduction

There are three types of screens within the SAP R/3 system, namely dialog screens, list,
and the selection screen. Selection screens are used for taking input from the user. They
are formed by using ABAP statements without the screen painter. A selection screen may
comprise of input fields, checkboxes, radio buttons, tabstrips, and list boxes.

This chapter explores useful recipes that will help you in building better selection screens

for your programs as well as allow the addition of certain features for improving the user
experience. We will start with the first recipe that will show how to add toolbar buttons to your
program's selection screen. Then, we will see how tabstrips and list boxes may be added on
screens. Next, a recipe that will show how radio button inputs may be used to hide or unhide
other screen fields.

We will also see how standard function modules may be used to provide a browsing facility to
the user and take as input names of folder and files residing on his or her desktop. Finally,
we will have a recipe detailing the steps required to create search help exits.

Doing More with Selection Screens

We assume that the reader has knowledge of basic selection screen concepts and the usage
of selection screen blocks. Also, the familiarity with the screen table is recommended.

» http://help.sap.com/saphelp nw04/helpdata/en/e4/2adbec449911d19
49c0000e8353423/frameset .htm

» For more information about the screen table, refer to the link http://help.sap.
com/abapdocu_70/en/ABAPLOOP AT SCREEN.htm

Adding tabstrips and listboxes to report

selection screens

Within selection screens, tabstrips and listboxes may be displayed without the need of
knowing or using the screen painter. This may be done using a few ABAP statements. In this
recipe, we will see how tabstrips and listboxes may be added to selection screens. We will
create a program that will contain a tabstrip containing two tabs, each containing a listbox
representing country names. By default, we will have USA displayed on the first tab and
Canada on the second.

How to do it...

For creating tabstrips and listboxes, follow the following steps:

1. We create two Text Symbols, 001 and 002, that are to be used in the
subsequent steps.

« Text Symbols | Selection Texts | List Headings |
E £

S..| Text
001 Tab 1
002 Tab 2

2. First, we define a selection screen 100 as the subscreen. Within the subscreen we
define a block that contains a listbox. On the subscreen, we will create a listbox for
country that will, by default, show Us (USA) as the country. The subscreen will be
shown in the first tab of the tabstrip that we will be defined in a later step.

102

http://help.sap.com/abapdocu_70/en/ABAPLOOP_AT_SCREEN.htm
http://help.sap.com/abapdocu_70/en/ABAPLOOP_AT_SCREEN.htm

selection-screen begin of screen 100 as subscreen.
selection-screen begin of block blockl wicth frame title texc-001.
PARAMETERS country TYFE pa0O002-GBLND

A5 LISTBCX WISIBLE LENGIH 20

USER-COMMAND COUN

DEFAULT 'UsS'.

gelection-screen end of block blockl.
sslection-screen snd of screen 100,

Similarly, we define another subscreen 101, within which we create another

Chapter 6

parameter input displayed as a listbox having length 20. The default value we have
for this listbox is ca, that is Canada. The user command code, COU?2, is defined for

this listbox.

selection-=s2creen begin of screen 101 as subscreen.
selection-=screen begin of block block2 with frame title texc-002Z.
BARARMETERS country2 TYPE paQ002-GBLHD

A5 LISTBOX VISIELE LENGTH 20

USER-COMMAND COU2

DEFAUOLT 'CAR'.
gelection-screen end of block blockZ.
selection-screen end of screen 101.

Finally, the tabstrip (tabbed block containing two tabs) is defined. The two tabs are

assigned to the subscreens 100 and 101 defined earlier.

selection-acreen begin of tabbed block Tl for 20 lines,
selection-screen tab (20)
selection-acreen tab (20)

selection-screen end of block tl.

tabl user-command ucomml default screen 100.
tab2 user-command ucomm? default screen 101.

For the two tabs, the system creates character fields with the same names, that is,
tabl and tab2. Within the initialization event, the tabl and tab2 fields are
assigned the texts, Tabd and Tab2, using the text-001 and text-002 text symbols

defined earlier.

initialization.
tabl = '"Tab 1°'.
tab? = '"Takb 2°'.

Doing More with Selection Screens

The coding creates a tabstrip having two tabs with the text Tab1 and Tab2 respectively.

Each tab page is assighed a subscreen that contains a listbox having country as the input
field. When the user clicks on a particular tab title, the elements in that subscreen become
active and are displayed. The COUNTRY field is defined using the GBLND field of the PA0002
table. We specified US as the default value for the listbox on the first tab. The text for US, that
is United States, is displayed in the first tab.

Tabstrips and Listboxes
€7

Tab 1

COUNTRY

For the second tab, the country Canada is displayed by default. The user may choose the
country of his choice.

» http://wiki.sdn.sap.com/wiki/display/ABAP/ABAP-
Creating+Tabs+in+Report+program

» http://help.sap.com/saphelp nw04/helpdata/en/00/
deb23789e95378e10000009b38f8cf/content.htm

Adding toolbar buttons on selection screen

In this recipe, we will see how toolbar buttons (and their relevant click code) may be added to
selection screens. In this recipe, we will create a program that will display a selection screen
having three toolbar buttons, each of which when clicked, takes us to a different transaction.

How to do it...

For adding buttons on your selection screen toolbar, proceed as follows:

1. First, declare the dictionary structure, sscrfields.

2. Here we define buttons with function keys 1, 2, and 3 using the
selection-screen statement.

104

Chapter 6

3. Also, an integer abc is defined.

tables : sscrfields.

selection-=screen function key
selection-=screen function key
selection-=screen function key

[FV I S

parameters : abc type i.

4. Withinthe initialization event, the respective texts for the buttons are
assigned to the functxt 01, functxt 02, and functxt_ 03 fields of the
structure sscrfields.

initialization.
sscrfields-functxt 01 = 'REAP Editor’
sgcrfields-functrr 02 = 'Cbject MNavigator'.
sgcrfields-functaxt 03 = 'Business Workplace'.

5. Next, within the at selection-screen event, we check the value of the
field sscrfields-ucomm. The FC01, FC02, and FC03 values represent the
button-click event of the first, second, and third buttons respectively. We call
the respective transactions, SE38, SE80, and SBWP, for each button-click.

at selection-screen.
case sscrfields-ucomm.
when "FCOL1°'.
call ctran=saction "SE3E'.
when "FCO2".
call transaction "'3SES0'.
when "FCO3°'.
call tran=saction "SEWHE'.
endcase.

We will now see how the coding works in displaying the toolbar buttons along with the necessary
button text, and how the respective transactions are called after button-click events.

Doing More with Selection Screens

The selection-screen statements' coding and the initialization creates the three toolbar
buttons and the relevant texts, ABAP Editor, Object Navigator, and Business Workplace.
The function code FC01, FC02, and FC03 are assigned to the three buttons. When any of
the buttons are pressed, the at selection-screen eventis called. The value of the

field sscrfields-ucomm is checked. Depending on which button, the UCOMM field is
automatically populated with FC01, FC02, or FC03. After checking the value, the relevant
transaction code is called via the call transaction statement and the user is taken

to the appropriate transaction.

Adding Toolbar Buitons

@ ABAP Editor Object Navigator Business Workplace

= o]
ABC
1 4

» http://www.saptraininghouse.com/2011/adding-buttons-on-
application-toolbar-of-selection-screen/

Changing screen fields on radio button

selection

In this recipe, we will see how input fields may be hidden and shown, based on the input of

the radio buttons. We will create a program having a selection screen containing a group of

two radio buttons and an integer field. We will then add the code that will hide or display the
integer field based on which a radio button is selected.

How to do it...

For creating the program, proceed as follows:

1. First, three radio buttons show, no_show, and no_input, are defined. These are
assigned to the radio button group g1. The user command, INT1, is assigned.

2. Next, an integer is defined with the addition, modif id INT.

parameters: show radiobutton group gl user-command INTL1,
no_show radicbutton group gl, """ FCODE INTI
no_input radicbutton group gl.

parameters : integer type i1 modif id INT.

106

Chapter 6

3. The AT SELECTION-SCREEN output eventis then defined. A loop is run at the
screen table. Within the loop, the group1 of each screen element is checked
for INT. In addition, if show is equal to X, the active field is set as 1 (active). If
no_show is equal to X, the active field is set as 0 (inactive). In case no_input
equals to X, the input field is set as 0 (non-editable). Finally, the modify screen
statement is used to set the values in the screen table. (Though screen is an
internal table, we can't use 1oop at screen with the WHERE <XXX> variant).

AT SELECTICN-SCEEEN output.

loop at sScreen.

if screen-groupl eq "INT' and show eqg 'X'.

screen—active = 1.
modify screen.

elseif screen-groupl eq "INT' and no show eg "X'.
screen—active = 0.
modify screen.
elseif screen-groupl eg 'INT' and no_input eg "X'.

screen-input = 0.

modify screen.

endif.

endloop.

The code that we wrote displays three radio buttons and an integer field on the screen.

Changing Field Properties at Runtime
&

(® Show Integer Field
(T)Hide Integer Field
(") Make Integer Field Uneditable

I all
Integer] |

Doing More with Selection Screens

By default, the Show Integer Field radio button is selected. When the Hide Integer Field
radio button is selected, the integer field disappears. The Hide Integer Field radio button or
Make Integer Field Uneditable radio button selection triggers the at selection screen
output event. A loop is then run on each screen element, but we are only interested in the
one that has the group1 field assigned the value INT (as we assigned INT for the integer
field using the modify id addition). We will also check which radio button (Show Integer
Field, Hide Integer Field, or Make Integer Field Uneditable) is set. If the Hide Integer

Field radio button is on, the integer field is set as inactive (and thus made invisible).

Changing Field Properties at Runtime
&2

(O Show Integer Field
(®)Hide Integer Field
(O Make Integer Field Uneditable

If the Make Integer Field Uneditable radio button is set, the input field is set as 0, that is,
the input is not allowed, thus making the field uneditable for the user.

When the user selects the Show Integer Field radio button, the integer field is set as active
and displayed again to the user.

Taking desktop folder and filename as input

In this recipe, we will create a small program that will take as input a folder name and
filename(s) from the user. Both standard function modules, as well as classes, may be
used for this purpose.

In the main part of this recipe, we will use the function modules, TMP_ GUI BROWSE FOR
FOLDER and TMP_GUI FILE OPEN DIALOG. In addition to the browsing capability, the user
may also create a new folder while entering a folder. The file's function module lets you select
multiple files from your local directory.

The There's more... section of this recipe will show an equivalent based on the object oriented
approach. The methods, directory browse and file open_dialog, of the class
cl gui frontend services will be used.

How to do it...

For taking input of folder and files, proceed as follows:

1. First, two parameter input fields are declared for the folder and £ilename, having
a length of 80 and 50 characters respectively.

108

Chapter 6

parameters : folder type c length S0.
parameters : filename type c length 50

Then, we will write the code within the at selection-screen on value-
request event for the folder. We call the function module TMP_GUI_ BROWSE FOR
FOLDER. The window title parameter is passed to the relevant text, Choose the
folder of your choice.

at selection-screen on value-request for folder.
call function 'TMP GUI_EROWSE FOR_FOLDER®

exporting
window title = 'Choose the folder of your choice!
initial folder = folder

inporting
selected folder = folder

exceptions
cntl error =1
athers = 2.

Similarly, we will call the function module TMP_GUI FILE OPEN DIALOG for at
selection-screen on value-request forthe £ilename field. We will pass a
suitable window title to the function module. The importing parameter, rc, returns
the number of files selected by the user. The parameter multiselection is used
for controlling whether multiple files may be specified by the user. We will keep this
as (' ') meaning only one file may be specified. The filename and the complete path
is returned in the table parameter £ile table of the function module. As the user
will provide one filename, we use a read table statement in order to read the first
record, that is the filename and path specified by the user.

at selection-screen on value-regquest for filename.

data : number of filez type 1.
data : file names tab type STANDARD TRELE OF SDOKPATH .
data : wa_names tab type SDOEPATH .

call function 'TMPF GUI_FILE OFEN DIALOG'
exporting
window title = 'Enter the File names'
multiselection = " '
importing
rc
tables
file table = file nanes_tab
exceptions
cntl error =1

aothers =2

number_of files

read tabkle file namesg tab into wa_namesg tab index 1.
filename = wa names tab.

Doing More with Selection Screens

When the program is run, two input value fields for folder and filename are displayed.
When the folder input help is selected, the folder dialog box is displayed. The user specified a
folder name from his or her desktop. Alternatively, a new folder may be created and specified.
The folder complete path is returned in the variable folder, which may be later used in

the program.

Likewise, when the £ilename input help is called, the relevant function module is called
and the dialog box is displayed. The user selects the file of his or her choice. Only one file
may be selected. After the function module call, the first row of £ile names tab is called
and the £ilename input field is filled with the filename and path stored in the first row of
file names_tab.

There's more...

The function module's call for the files may be slightly altered in order to take input multiple
filenames from the desktop of the user. Then the multiselection parameter of the
function may be passed the value X in order to allow multiple files to be selected. In this case,
additional coding is required to loop through the file names tab in order to read all the
filenames specified.

As already mentioned, for the same requirement, the methods directory browse and
file open dialogoftheclass cl gui frontend services may also be used.

The relevant coding is shown in the following screenshot:

at selection-screen on wvalue-request for folder.
data: temp string type string .
CRLL METHOD cl_gui_ frontend services=rdirectory_browse
EXPCRTING
window_title
initial_folder
CHANGING
selected_folder = temp_string.

'File Directory’
o

CALL METHOD cl_gui cfw=>flush.
folder = cemp string.

AT SELECTICH-SCREEN ON VALUE-REQUEST FCOR filename.
data : number of files type i.
data : file names_tab type FILETABLE.
data : wa_names_tab type line of filetable .

clear file names_tab.
CALL METHOD cl_gui_frontend services=>file open_dialog
EXPCRTING
window_title
multiselection
CHANGING
file_table
re

"Enter the File NHame'

file_names tab
number of files.

read table file names tab into wa names_tab index 1.
filename = wa names tab.

Chapter 6

For the directory browse method, a temporary variable having string type
is declared. The call of the c1 gui cfw=>flush method is necessary after the
directory browse method.

Forthe file open dialog method, necessary data objects are defined prior to the
method call.

Coding search help exits for creating better

F4 helps

In this recipe, we will see how search help (and help exits) will help you meet the user
requirements when providing the input values of a particular selection screen's input
field. We will create a search help in this recipe and will assign it to an input field.

The requirement is to provide a personnel number field with input help that shows all the
employees whose birthdays fall in the current month. This means, if the program is run in
March, all the employees whose birthdays are in March will be shown in the input help.

Getting ready

We will create a search help for personnel number. The name of the search help is
ZST9 SEARCH HELP and it uses the database table, pa0002. The fields PERNR,
NACHN, VORNA, and GBDAT are selected and displayed in the hit list.

" Attrbutes ./ Definition |

Data collection Dialog behavior
Selection method [panooz |l Dialog type [Display values immediately -|
Text table Hot key m

Search help exit | |

¥ EREEE

Parameter
J Search help parameter | IMP | - | LPos | SPos | SDis | Data element
PERNR 1 [] PERSNO
_@ Ok 2 [] PAD NACHN
_@ Ol gl 3 [[] |BAD WORNA
" |eBDar OO 4 [] @BODRT

Doing More with Selection Screens

Next, we will create a program in which we will declare a parameter pernr, based on PERNR
of the table PA0002. We use the matchcode object addition to assign the search help
ZST9 SEARCH HELP to it.

REPCRT Z5T9 SEARCH HELP DEMO.

paramecers : pernr type pal00Z-pernr matchcode object ZSTS_SEARCH HELP

How to do it...

For defining search help exit function module, proceed as follows:

1. Copy FAIF_SHLP EXIT EXAMPLE. We will give it the name ZST9 SEARCH HELP

2.

EXTT.

Within the function module, we will add the following code under the step DISP.
This is the part where the filtering of employee data for birthdays falling in the

current month takes place. The function module is then activated.

*# This step 1s called, befors the selected data is displaved.
* You can e.g. modify or reduce the data in RECORD TAE
* gccording to the users suthority.

if callcontrol-step = "DISE'.
delete record tab where string+450(2) ne sy-datum+4(2).
exitc.

endif.

3. We will now assign the newly created function module in the Search help exit field of

the search help. The search help is then activated.

| Data collection | Dialog behavior |
Selection method FADDOZ | | Dalog type | Display values immediately |
Text table Hot: key []

Search help exit /25T9_SEARCH HELP EXIT | IJ:ﬂ

Chapter 6

The logic we used in this example is that we first fetched all records of the employees from
PA0002, irrespective of their dates of birth, using the search help. Then, within the Search
help exit, we removed all the employees whose dates of birth does not fall in the month the
program is run.

When the user takes the F4 help, the search help is called. The search help fetches the data
from the table PA0O002 and the relevant fields—PersNo, First name, Last name, and Birth
date. Next, the search help exit is called.

The table RECORD_TAB within the function module contains the content of the hit list. The
RECORD_TAB table contains a large string field that is comprised of all the fields PERNR,
NACHN, VORNA, and the GBDAT combined. (Prior to writing the code, we used the debugger
to find out the exact positions of the date of birth GBDAT field).

Field |RECOBD_TBB [500]-STRING+486 (8)

Data Type |C(B}

Absolute Type |\IYPE=IEK'IICIUCI

[JRead-0Only

View Tabufar v| =4

B Text =4 Hexadecimal

| Field Content: Text Display
Dffset I_Contents

0 [1978030¢]

The step DISP is called just before the hit list is about to be displayed. We will use this to
remove any records we do not want. The delete statement removes all the records where
the month does not match the month of the system date (sy-datum). The ones that remain
are the ones having birthdays in the current month. For example, when the report is run in
March, the input help is shown as in the following screenshot:

[~ Restrict Value Range (5) 48 Entries found

" Restrictions

|53 20 =) T

Perstio “| Last name | First name | Birth date
00001210 Bauar Pater 10/20/1959
00001216 Riegel Franz 10/10/1967
00001218 Schmidt Max 10/20/1959
00001219 Degen Otto 10/20/1959
00001220 Spitz Georg 10/20/1959
00001221 Stiirmer Harald 10/20/1959
00001242 Stampf Matthias 10/24/1964
00001253 Heldner Paul 10/10/1964
00001261 schmidt Hedi 10/20/1959
00001320 Krug Frank 10/01/1968
00001407 Kaiser Hans 10/12/1950

Doing More with Selection Screens

See also

» ABAP Keyword Documentation for AT SELECTION SCREEN OUTPUT statement
» http://www.sapdev.co.uk/dictionary/shelp/shelp exit.htm

http://www.sapdev.co.uk/dictionary/shelp/shelp_exit.htm
http://www.sapdev.co.uk/dictionary/shelp/shelp_exit.htm

Smart Forms - Tips
and Tricks

In this chapter, we will see recipes related to Smart Forms such as:

» Toggle on/off the Microsoft Word text editor

» Using background pictures and print preview
» Using folder options for page protection

» Printing several forms in one spool request

» Converting Smart Form to PDF output

» Applying sorting and subtotaling to table fields

Introduction

This chapter explores useful recipes related to Smart Forms. We will start with a simple recipe
that will allow you to change the text editor of the Smart Form to Microsoft Word. Then we will
see how page protection for a number of text lines may be applied using folders in order to
ensure that certain lines are printed together on one page.

We will also see how to set an image as background of a form page for only preview and also
for print. The procedure for generating multiple form outputs in a single spool request will be
discussed in an upcoming recipe. We will also see how the preview and the print dialog may
be suppressed, and the output directly converted to PDF. Finally we will see the recipe for
calculating subtotals using sorting criterion at the Smart Form level.

We assume that the reader has basic Smart Forms knowledge. In addition, the familiarity with
the structure of the form-calling program is needed.

Smart Forms - Tips and Tricks

Toggle on/off the Microsoft Word text editor

In this recipe, we will see how we can change the Smart Forms text editor to Microsoft Word.

How to do it...

Follow these steps:

1. Call transaction sE38 and enter RSCPSETEDITOR in the program field. Then execute
the program. The selection screen of the program is shown as follows:

Set MS Word as Editor
1 Activate

Use MS Word as Editor
| SAPscript

r__ |
v |5Smart Forms
L -

QOption
 |Mutti-Character Format Support(Pilat Phase)

2. Make sure the Smart Forms checkbox is checked. Then, click the Activate button.

3. For switching off the Microsoft Word editor for Smart Forms, uncheck the Smart
Forms indicator and then click the Activate button on the toolbar.

Depending on the settings saved for Smart Form, the editor changes. If the Smart Form

checkbox was on, the text editor appears as Microsoft Word. Otherwise, the normal Smart
Form text editor appears.

» http://wiki.sdn.sap.com/wiki/pages/viewpage.
action?pageld=77987849

» http://forums.sdn.sap.com/thread.jspa?threadID=1679160

Chapter 7

Using background pictures

and print preview

In this recipe, we will see how a picture may be set as the background image of forms.
We will see how we can set the graphic to appear both on the print preview and/or hard
copy of the Smart Form.

Getting ready

We will first create a background image and upload the image on the SAP Document Server
using the transaction SE78. The name of the image we upload is ZST9 BACKGROUND and is
in color (the supported formats are .tiff and .bmp).

Stored on Document Server
Name Z5T5_BACKGROUND
“Black and White Bitmap Image

=) Color Bitrmap Image

BACKGROUND GRAPHIC

How to do it...

We will now set the graphic as the form background. Follow these steps:

1. Call the transaction SMARTFORMS. Double-click the relevant node in the left-hand
pane of the page for which the background image is to be set.

2. Inthe right-hand pane, three tabs will appear for the page. The third is Background
Picture. On this tab, enter the name of the uploaded graphic. Select the Color
Bitmap Image (BCOL) radio button. Within the Output Mode list, select Print
Preview from the listbox.

General Attributes Qutput Options Background Picture

Name Z5T9_BACKGROUND (]
Object GRAPHICS |L|
D BMAP | a |

") Black and White Bitmap Image (BMON)
=) Color Bitmap Image (BCOL)
") Determine Dynamically (BMON, BCOL)

Output Attributes
Resolution DPI
Output Mode Print Preview -

Smart Forms - Tips and Tricks

3. The main window is placed on top of the background graphic.

E =1 (S FRr Y Y

1000 1o

BACKGROUND GRAPIHC |

LR R e

‘MAIN g
;@ g:::::
j /S

F‘?///"///"/'//"/'//"///"///"///"//I’//'}’//"///"///"///"///"///"///"_;ii """"""""""""

4. Next, we define a text within the MAIN Main Window on the page.

~ 2 Pages and Windows
- & 9%PAGEL Mew Page
~ [MAIN Main Window
« [wTEXTL Mew Text 1

5. Asuitable line TEST TEXT FOR BACKGROUND is created within the created text,
as shown in the following screenshot:

Text Type | Text Element > Start ew Paragraph
=3
= |(Da) ©
fye] 1l o
|_| _-:J_i/' SAP
Cut .:ﬁFind Undo ', Reset Paragraph Format ABC
3 Copy 2ac Replace Redo 2 Reset Character F atting || ¥
Iy Paste || lg Select - %Styles ~ : 1 '
Clipboard Editing Styles
TEST TEXT FOE BACEGROUND

Chapter 7

When the Smart Form is called (using a calling program), the background graphic is displayed
along with the line of text in the Print Preview mode. However, when the form is printed, no
background image appears (only the line of text created appears). This setting is very useful
when a pre-printed paper having the appropriate background graphic is used for printing, and
should not be printed in the form output (since the paper already has the graphic in it). The user,
however, needs to see the background graphic when the form preview is taken on the screen.

Print Preview of LOCL Page 00001 of 00001

(B archive &%aPrint and Archive Suppress Background Graphic

BACKGROUND GRAPHIC

TEST TEXT FOR BACHKGROUND

If the background graphic appears blurred or the pixel artefacts are visible, we may need to
use a high-resolution graphic. One option may be that we use a high quality (high-resolution
graphic). Also, we may try to control this using the resolution setting through the Resolution
field in the Output Attributes screen. Instead of keeping it blank, we may enter a value of
200. The higher the resolution, the clearer will be the graphic (however, the size of the
graphic may decrease as the resolution increases).

We may also slightly change the image's output mode in order to make the image work as a
watermark when printed on paper. Instead of the Print preview and no print option for the
Output Mode, we can choose the Print preview and print option.

Output Attributes

Resolution DPI
Qutput Mode Print preview and print -

This will print the image on both the Print option (and the Print Preview option) and when
printed on paper, it will make the image appear as a watermark on top of which text and data
will appear.

Smart Forms - Tips and Tricks

» http://wiki.sdn.sap.com/wiki/display/ABAP/Background+pictures+i
n+Smart+Forms

Using folder options for page protection

In this recipe, we will see how we can create a folder comprising a number of lines

(block of text) so that they are all printed on the same page. If the space within a page is
not enough for printing all the lines, the entire text block is printed on the subsequent page,
that is, page protected.

How to do it...

For defining a folder with page protection, follow these steps:

1. Right-click on the MAIN window. Then, from the context menu that appears, choose
the option Create and then select Folder, as shown in the following screenshot:

= 2] Pages and Windows
~ = %GPAGEL Mew Page

- @ AT
; E[" Create r window
- & Cut Graphic
* E Copy Address
Paste Text
Delete Table
Expand Template
Collapse Flowr Logic 3
Folder

2. Next, enter a suitable folder name. In the right-hand pane, on the Output Options tab
of the created folder, check the Page Protection indicator.

Events ./ Dutput Options | Conditions

Style
v|Page Protection

120

Chapter 7

3. Then add a text under the given folder.

* &S] %FOLDER1 Mew Folder 1
» |2 %TEXT2 Mew Text 2

4. Add three lines to the text.

Text Type | Text Element - Start Mew Paragraph

& @]
.'/_

— -
DI
: SAP
% Cut 3 Find 7} Undo 43_. Reset Paragraph Format w
=5 Copy wac Replace ¥ Redo ﬁf_b Reset Character Formatting
. Spelling &
[, Paste || ¢ Select~ A styles - Grammar
Clipboard Editing Styles

This is line 1 of protected text
This is line Z of protected text
This is line 3 of protected text

5. Save and activate your Smart Form.

When the form output is generated, irrespective of the number of lines printed above our
three-line text, a page protection is applied. If the space on the page is not enough so that all
three lines may be printed, a page break is automatically triggered and the lines are printed
on a fresh new page. Otherwise, the same page is utilized. In no case will the three lines be
broken into two pages.

Smart Forms - Tips and Tricks

Printing several forms in one spool request

In this recipe, we will see how printed multiple forms may be included in a single spool
request. We will create a number of form pages comprising employees data. Each page

will contain one employee's salary information. The recipe will focus on the important

parts of the program related to Smart Form processing. We assume that an internal table
EMPLOYEE LIST exists that contain the employee numbers of all personnel to be processed.

How to do it...

Follow these steps:

1. First, we call the function module SSF_FUNCTION MODULE_ NAME in order to get the
name of the Smart Form function module. The form name is passed to the function
module. The myfunction variable is based on the type RS381 FNAM (not shown in
the following screenshot):

call function '55F FUNCTICH MODULE MNAME®

exporting

formname = 'Z5T9 GRAPHICS BACKGROUND'
inporting

fm name = myfunction
exceptions

no_form =1

others = 2

2. Then appropriate variables are defined for the Smart Form control structure and
output options based on dictionary structures.

data : cont parameters type ssfctrlop,
output options type ssfcompop.

3. The function module SSF_OPEN is then called.

call function "55F CPEH'.

4. Aloop is run on the internal table employee 1list for all employees. For each
employee, the form get _employee data is called, which fetches the necessary
information of the employee in question and fills the internal table employee data.
The no_open and no_close fields of the control parameters structure are assigned
the value 'X'. In addition, the tdnewid field of the output options structure is
assigned 'X'.

122

Chapter 7

5. The function module of the Smart Form is then called and necessary data of the
employee provided along with control parameters and output option structures.

loop at employee list.
perform get_employee data.

Cont_parameters-no_open = "X°.
COnt_parameters-no_close = 'X'.
output options-tdnewid = 'XK'.

call funection myfunetion
exporting
Ccontrol parameters = CONC parameters
output options = output options
tables
enployee_table = employee_data
exceptions
formatting error
internal error
send error
user canceled
others =

I
[TR T

endloop.

6. Finally, the SSF_CLOSE function module is called.

|ca11 function '35F CLOSE'.

After executing the program, multiple pages of the forms are generated. For each employee,
a separate page appears along with the necessary information.

Print Preview of LOCL Page 00001 of 00002

[archive &aPrint and Archive Suppress Background Graphic
BACKGROUND GRAPHIC
Emp .No Bllowance Zmount
00000012 Basic Pay 11,000.00
00000012 HE Zllowancs 1,000.00
00000012 Transport 1,300.00

Smart Forms - Tips and Tricks

The call of the function module SSF_OPEN opens the spool job for form printing.

The tdnewid assigned to 'X' creates a new spool request. Within the loop, the no_open
and no_close fields are setto 'X', which ensures the spool request is not opened or closed
within the loop. The function module of the Smart Form is called in the loop and generates
the necessary output of each employee. When all employees are processed, the SSF_CLOSE
function module is called and the spool request is closed.

We can also avoid the usage of the SSF OPEN and SSF_CLOSE function modules. In this
case, when we program that on the first employee, the spool job is opened and when we
program that on the last employee, the spool job is closed.

See also

» http://help.sap.com/saphelp nw70/helpdata/en/64/
bf2f12ed1711d4b655006094192fe3/frameset.htm

Converting Smart Forms to PDF output

In this recipe, we will see how the form output may be suppressed and returned as internal
table to our calling program and then how a PDF is generated within the program. We will
set values to some fields in the control structure of the Smart Form and use it with the
CONVERT OTF_2_ PDF function module.

How to do it...

For generating PDF output without showing the Smart Form on the screen, follow these steps:

1. First, we define two structures cont parameters and myoutput based on the
dictionary structures ssfctrlop and ssfcrescl respectively.

data : cont_parameters type ssfoctrlop.
data : myoutput type ssfcrescl

2. Then, we assign 'X' to the setotf and no_dialog fields of the control structure.

cont parameters-getotf = "K',
cont parameters-no dialog = "H'.

Chapter 7

3. The dynamic call of the Smart Form function module is then carried out.

call function myfunction
exporting
control parameters = CONT_ pParameters
importing
job output info = myoutput
tables
employee table = enployees
exceptions
formatting error

internal error
send error

Il
[TS R SR

user canceled
athers =

4. Appropriate variables are then defined. The most important is the internal
table pdf content used for storing the converted PDF output of the form.
The filesize and doc_archive tables are necessary for calling the function
module CONVERT OTF 2 PDF.

data : pdf content type standard table of tline.
data : filesize type 1i.
data : doc _archive type standard table of docs.

5. The function module CONVERT OTF_2_ PDF is then called. The OTF parameter
passes the value of the field ot fdata of the myoutput structure.

call function 'CONVERT OTF 2 FDFE'
inporting
bin filesize = filesize
tables
otf = myoutput-otcfdata
lines = pdf content
doctab_archive = doc_archive.

Smart Forms - Tips and Tricks

The control structure fields no_dialog and the getotf are assigned the value 'X'. This
ensures that the form output is suppressed but the form generated is returned to the program in
ot f format. The call to the Smart Form function module (stored in the variable myfunction)
returns to the program the ot £ format in the ot £data field of the myoutput structure.

We then pass this ot £data to the function module CONVERT OTF 2 PDF.

The function module converts the smart form ot £ to a PDF and stores it in the internal table
pdf content passed to the function module for table 1ines. The PDF file may then be
saved on the desktop using the method CL. GUI_FRONTEND SERVICES=>GUI_ DOWNLOAD,
or e-mailed to another user.

See also

» http://help.sap.com/saphelp nw70/helpdata/EN/27/67443cc0063415e
10000000al1405a/frameset .htm

Applying sorting and subtotaling to table

fields

In this recipe, we will see how we can sort a given table within the Smart Form and calculate
totals based on a particular field as the sort criterion. In this recipe, we will use an example of
employees and their allowances and amounts.

Getting ready

For this recipe, we define a structure in the database ZST9_EMPLOYEES comprising three
fields PERNR, ALLOWANCE, and AMOUNT. We define a table type also based on this
structure, as shown in the following screenshot:

Dictionary: Change Structure
5 | PUE s e S E Hierarchy Display ~ Append Structure...

Structure Z5T9_EMPLOYEES Active
r
Short Description LEmpbyees Details|

Attributes ./ Components - Entry help/check Currency/quantity fields

|EI|EI@|E| |€|E|?|§ Predefined Type il e
Component Typing Method | Component Type Data Type Len... Dec... Short Description
EERNR Types ¥ BERSNO NUMC 8 0 Personnel number
LLLOWRNCE Types ¥ LGTXT CHRAR 25 0Wage Type Long Text
AMOTNT Types w PAD RMT73 CTURR 13 2Wage Type Amount for Payments

126

Chapter 7

A table EMPLOYEE_TABLE (based on the defined dictionary table type) is included in the
TABLES tab of the Smart Form interface, and a corresponding work area WA_EMPLOYEE
in the global definition.

Atable is then created on the Smart Form layout. The loop of the table is shown as follows:

LOOP Loop
| Internal Table EMPLOYEE_TABLE

Row to

INTO ¥ WA_EMPLOYEE

Appropriate texts are created within the cells in order to print the employee number,
allowance, and amount values passed. A program is then created and the Smart Form is
called. A tabular output is generated.

Emp .No Rllowance AZmount

00000012 Basic Pay 11,000.00
00000012 HE Zllowance 1,000.00
00000012 Cransport 1,300.00
00000017 Easic Pay 13,000.00

In this recipe, we will see how sorting along with totaling may be so that the total of each
employee's allowance is printed at the end of each employee's details.

How to do it...

For subtotaling and sorting, proceed as follows:

1. Double-click the defined table node in the left-hand pane. In the right-hand pane, on
the Data tab, within Sort Criteria, select the Event on Sort End checkbox. Also, enter
PERNR as the field name.

Sort Criteria
Field Mame &= 5 Event on Sort Begin Event on Sort End
FERNE ® | O] *

Smart Forms - Tips and Tricks

2. This will add a PERNR Event on Sort End node.

~ & %PAGEIL New Page
~ [h MAIN Main Window

b Header
b Main Area

b Footer

R
~ 1 % TABLEL New Table 1

» % PERNR Event on Sort End

»] %FOLDER1 Mew Folder 1

3. We define a subtotal variable in the global definition. This is a temporary storage
variable for totals of each employee's allowances.

" Global Data } Types

" Field Symbols

< Initialization

EEEENE =T

Variable MName

Wh_EMPLOYEE TYEFE
EBRLOOQOE TYEFE
SUBTOTAL TYEFE

Type assignment

Associated Type
Z5T9_EMFLOYEES
PROOOE
PAD RMITS

4. On the Calculations tab of the table, we enter the values shown in the

following screenshot:

Table - Data ./ Calculations } Output Options | Conditions
FEIEIRE =T
Field Namea Target Field Name | Time Initialization Reset For Field Name
WA _EMPLOYEE-ZMOUNI SUBTOTAL After Loop ¥ v Sort Criterion PERNR

-

-

-

5. Right-click the PERNR Event on Sort End node to create a table line. Use the same
line type used for the rows of the table (containing three cells).

6. Forthe second and third cell, we define texts outputting SUBTOTAL and VARIABLE

and SUBTOTAL respectively.

128

Chapter 7

7. Also, a line of code is added after the text that clears the SUBTOTAL variable.

Pragram Lines $CODEL
Mezning Mew Program Lines 1

< General Attributes | Conditions

Input Parameters Qutput Parameters
SUBTOTAL - SUBTOTAL
-
LI i i)

clear subtotal.

L Ry

P

8. The final state will look like the one shown in following screenshot:

- % TABLEL New Table 1
» Header
¥ Main Area
¥ 0O %ROW2 New Line 2
¥ O O9CELL4 New Column 4
S @ %PERMNE_VALUE Pernr Value
v O 9CELLS New Column 5
+ [“ALLOWANCE TEXT Allowance Tesxt
¥ O ©SCELL6 New Colurmn &
U @ %ALLOWANCE_AMOUNT Allowance Amount
~ % PERNR Event on Sort End
~ 0O oGROWS3 New Line 3
b O SRCELL7 New Column 7
¥ O O9CELLS New Column 8
- [%SUBTOTAL_TEXT Subtotal text
v O 9CELLY New Column 9
+ [Z "eSUBTOTAL_VALUE Subtotal Value
~ 0O oGROW4 New Line 4
v O ©9CELL10 Mew Column 10
o ’% %CODEL Mew Program Lines 1
b O 95CELL11 Mew Column 11
b O SpCELL12 Mew Column 12
~ Footer

Smart Forms - Tips and Tricks

The settings we did in the Smart Form will output the subtotal of the allowances of each
employee as shown. At the end of each employee, the total allowances are calculated
and printed.

Emp .No Bllowance Emount
00000012 Basic Pay 11,000.00
00000012 HE AZllowance 1,000.00
00000012 Cransport 1,300.00
Subtotal 13,300.00
00000017 Basic Pay 13,000.00
Subtotal 13,000.00

The entries made on the Calculation tab of the table totals all the amounts of a particular
PERNR field (the SORT criterion) and stores in the SUBTOTAL variable. The output will then be
generated at the EVENT on SORT end. After that, we clear the old value of SUBTOTAL so that
the value of the next employee may be calculated.

» http://help.sap.com/saphelp nw2004s/helpdata/en/8a/60da59394bl1l
d5b69b006094192fe3/frameset .htm

130

Working with SQL Trace

In this chapter, we will see recipes related to SQL trace such as:

» Carrying out SQL trace

» Generating and interpreting the trace result

» Carrying out restricted trace

» Filtering unwanted trace result entries

» Summarizing an SQL list and viewing table-related information
» Quickly finding the data source of a screen field

» Finding the data source of a field's hit list

Introduction

In Chapter 5, Optimizing Programs, we discussed the performance optimization and the tool
Runtime Analyzer transaction SAT. This chapter explores useful recipes related to SQL trace.
We will see in this chapter how the SQL trace may be used in order to optimize a program

by pinpointing the exact "problem areas" in database-related code. Also, we will use the SQL
trace to find out the underlying data source (table name and field name) of a particular screen
field. We assume that the reader has basic selects and optimization knowledge.

We will start with a brief explanation of the steps required in carrying out an SQL trace. In the
subsequent recipe, we will see how the performance trace results may be interpreted. Also,
we will see how we can access the various menu and toolbar functions of the list display. Our
other recipes will be tips and tricks for finding out quickly the data source of screen fields and
their F4 helps.

Working with SQL Trace

Carrying out SQL trace

In this recipe, we will see how we can carry out an SQL trace. We will run the trace on the
program RIBELF00 (Display Document Flow).

How to do it...

We will now carry out the following steps:

1. In one SAP session, open the transaction that is to be traced. In our case, we have
to trace the program RIBELF00. We enter on transaction SE38 the program name
in the field provided, and execute the program in order to display the selection
screen. We will not execute the program, yet we will enter the input values on
the selection screen.

2. Then, open another session and call transaction ST05. The screen appears,
as shown in the following screenshot:

Performance Analysis

Activate Trace Activate Trace with Filter Deactivate Trace Display Trace Enter SQL Statement

Select Trace

W|SQL Trace RFC Trace HTTP Trace
Engueue Trace Buffer Trace

Trace Status

All Traces are Switched Off - Stack trace deactivated - Progress Display Off

3. Make sure the SQL trace checkbox is on. Click the Activate Trace button on the
toolbar. Make sure that before doing this, the message in the lower part of the
screen reads, All Traces are Switched Off....

4. Now return to the first SAP session and execute the report with the relevant input
values, as shown in the following screenshot:

132

Chapter 8

Order
Order 200000 to [s00000 (=]
Equipment to |E|
Functional Location fo |E|
Customer to |E|
Created on to |E|
Entered by to |§|

5. Once the output is displayed, go back to the SQL trace session and click on the
Deactivate Trace button.

6. Then, click on the Display Trace button to generate the results.

The Activate Trace button switches on the database trace. Then, any database-related activity
related to SELECT and UPDATE statements are recorded. This may be displayed using the
Display Trace button.

For carrying out a trace, you may even stop a program in the debugger in one session and
then switch on the trace in another session. In addition, you may enter data on a SAP entry
screen and just before pressing the Save button, switch on the SQL trace, and then switch off
the trace after Save is pressed and the success message appears. In this case, all database
statements are executed between the time the Save button is pressed and the message
display are recorded.

It is recommended that you run only the concerned program transaction and stop any other
activity. Otherwise, many irrelevant entries will also be included in the trace result, making it
very large and difficult to read.

The next recipe will cover how the trace results may be displayed.

Generating and interpreting the trace resuit

In this recipe, we will generate the results of the trace carried in the previous recipe, Carrying
out SQL trace. The mentioned recipe should be completed in order to proceed with this one.
We will then interpret the results in order to get a better idea of the various tables and their
access times involved.

Working with SQL Trace

How to do it...

We will now carry out the following steps:

1. From the main screen of the transaction ST05, click on the Display Trace button.
This will take you to the screen, as shown in the following screenshot:

Display Performance Trace
Trace Type
[v|SQL Trace [|RFC Trace [JHTTP Trace
[|Engqueue Trace [|Buffer Trace
Trace Period
(= o —
Date L03f21f2012|_| To 03/21/2012
Time 13:14:54 To 13:15:02
Restrictions
User name STUDENTO0S (2|
Object Name
Execution Time =
Executed Operation m

2. The User name field and the Date and Time fields appear by default. You may change
the Date and Time fields, and also enter data in the other fields if desired.

3. Then press F8. This will display the Performance Trace.

Chapter 8

When the Display Trace option is chosen, the performance trace is displayed. All the
database activities (database access and database update statements) that were recorded
during the time between the trace on and off duration are displayed, as shown in the
following screenshot:

Trace List

& DDIC Information SGExphin B 2 @ B
&) (&[] ¥ (2] 5L (B @) @ ([@)

HH Execution Time | Program Name Object name | Operations | curs Amaysze T Recs. RC | Conn Statement

14 9 SAPLRHDB HRP1001 PREPARE o 0 0 R/3 SELECT WHERE "MANDT" = ? AND "PLVAR" = ?|
14 52,783 SAPLRHDB HRP1001 OPEN 1048 0 0 0 Rf3 SELECT WHERE "MANDT" ='800" AND "PLVAR"
14:47; 125 SAPLRHDB HRP1001 FETCH 1048 66 1 0 R3

14:47; 3 SAPLRHDB HRP1001 PREPARE 1] 0 0 0 R/3 SELECT WHERE "MANDT" = ? AND "PLVAR" = ?|
14:47: 39,251 SAPLRHDB HRP1001 OPEN 1048 0 0 0 Rf3 SELECT WHERE "MANDT" ='800" AND "PLVAR"
14:47: 91 SAPLRHDB HRP1001 FETCH 1048 66 1 0 R3

14:47: 11 CL_HRPA_INFOTYPE_CONTAINER====CP PAOOO3 PREPARE 1] 0 0 0 R/3 SELECT WHERE "MANDT" = ? AND "PERNR" = ?|
14:47: PADDO3 OPEN 1048 0 0 0 R/3 SELECT WHERE "MANDT" ='800" AND "PERNR"
14:47: PAOOO3 FETCH 1048 4 1 0 R3

14:47; PADOO1 PREPARE o 0 0 0 R/3 SELECT WHERE "MANDT" = ? AND "PERNR" = ?|
14:47; PADOO1 OPEN 1048 0 0 0 R/3 SELECT WHERE "MANDT" ='800" AND "PERNR"
14:47: PAOOO1 FETCH 1048 34 6 0 Rf3

14:47; | PADDO3 OPEN 1048 0 0 0 R/3 SELECT WHERE "MANDT" ='800" AND "PERNR"
14:47: 18 CL_HRPA_VIEKN== PAOOO3 FETCH 1048 1 1 0 R3

14:47; 5 SAPLHRAC PADOO1 PREPARE a 0 0 0 R/3 SELECT WHERE "MANDT" = ? AND "PERNR" = ?|
14:47: 466 SAPLHRAC PAOOO1 OPEN 1048 0 0 0 Rf3 SELECT WHERE "MANDT" ='800" AND "PERNR"
14:47: 112 SAPLHRAC PAOOO1 FETCH 1048 34 6 0 R/3

14:47; 5 SAPLHRAC PADDOD PREPARE a 0 0 0 R/3 SELECT WHERE "MANDT" = ? AND "PERNR" = ?|
14:47: 21,773 SAPLHRAC PAOOOO OPEN 1048 0 0 0 R/3 SELECT WHERE "MANDT" ='800' AND "PERNR"
14:47: 125 SAPLHRAC PADDOO FETCH 1048 91 11 0 R3

14:47: 11 SAPLHRAC PAOO16 PREPARE a 0 0 0 Rf3 SELECT WHERE "MANDT" = ? AND "PERNR" = ?|
14:47; 14,508 SAPLHRAC PAOO1E OPEN 1048 0 0 0 R/3 SELECT WHERE "MANDT" ='800" AND "PERNR"
14:47:16.394 126 SAPLHRAC PADO16 FETCH 1048 43 0 0 R3

In this example, since we had a report that only reads data from the database, no database
update statements are involved.

Each statement that is contained in the ABAP program is subdivided into various operations
such as PREPARE, OPEN, and FETCH. There are various useful columns in the displayed
performance trace. The trace results contain the table name (Object name) that refers to
the table from which data is read. The duration of the statement/operation is also shown

in milliseconds, along with the name of the program that contained the ABAP statement in
qguestion. Most importantly, the number of records fetched from the database as a result of
the FETCH operation is also shown.

Working with SQL Trace

The various operations are as follows:

» PREPARE: After the PREPARE operation, the Open SQL statement is translated into
native SQL of the underlying database. The statement is not assigned the parameter
values for which the data is to be read (that is, the WHERE clause specification).
Double-clicking the particular PREPARE operation line will show this detail. The data
access method (execution plan) is determined at this point.

SELECT

"MENDT™ A5 c ,"OTYEE" &5 ¢ ,"OBJID" &S c ,"PLVAR" &S c ,"RSIGN"™ 25 c ,

"RELAT™ AS c ,"ISTAT" A5 c ,"PFRIOX" LS c ,"BEGDA" 1S c ,"ENDDA™ 25 c ,

"VARRYF"™ LS c ,"SEQNR" A5 ¢ ,"INFTY" &S c ,"0TJID" &S c ,"SUBTY" 25 c ,

"LEDTM™ RS c ,"UMRME"™ A5 c ,"RERSN" BS c ,"HISTO" &5 c ,"ITXNR" 25 c ,

"SCLAS™ AS c ,"30BID" AS c ,"FROZT" AS c ,"ADATANR" 15 c

FROM

"HRE1001™

WHERE

"MENDT™ = 2 AND "PLVAR" = ? RND "OTJID" = 7 LND "SUBTY" = 7 RND "ISTAT" = 2

AND "BEGDA" <= ? AND "ENDDA" >= ? /* R3:SAPLREDB:2932 T:HRP100l */

» OPEN: The OPEN operation opens a cursor declared earlier using the DECLARE

operation, and assigns the relevant comparison values to the WHERE clause fields.
The records fulfilling the selection criteria are read from the database table using the
relevant execution plan (involving either a sequential or an index search). Until here,
the records are at the database level.

SGL Statement

SELECT
"MANDT™ AS c ,"OTYPE" AS c ,"OBJID"™ AS c ,"FLVAR"™ AS c ,"RSIGN" &S c ,
"RELAT"™ L3 c ,"ISTAT™ &S c ,"PRIQK" AS c ,"BEGDA"™ A3 c ,"ENDDL" 45 c ,
"VARYF" L5 c ,"SEQNR"™ A5 c ,"INFTY" A5 c ,"0TJID" A5 c ,"SUBTY" &5 c ,
"REDTM" L5 ¢ ,"UMAME™ AS c ,"RERSN" RS c ,"HISTO" AS c ,"ITENR" &S5 c ,
"SCLAS"™ LS ¢ ,"SCBID™ AS c ,"PROZT"™ RS c ,"ADATANR" RS c
FROM
"HRP1001™
WHERE
"MANDT™ = 2 LND "PLVAR"™ = ? RND "CQTJID" = 7 AND "SUBTY" = ? RND "ISTAI" = 2
BND "BEGDA"™ <= ? BND "ENDDA™ »>= % /* R3:3AFLRHDB:29%2 T:HRF1001 */ /*unc.
rd.*/
Variable
RO(CH,3) = 800
R1{CH,2) =01
A2 (CH,10) = F 00000001
L3 (CH,4) = R2049
R4(CH,1) =1
AS(NU, 8 = 99991231
R6(NU,8) = 19000101

136

Chapter 8

Note the difference between the SQL statement pertaining to the OPEN and the
PREPARE statement.

» FETCH: Finally, the FETCH operation transfers the record(s) matching the criteria
specified to the application server. The various records read are shown in the
Records column.

If a FOR ALL ENTRIES construct is involved, the data records are not read by a single set of
operations. Rather, multiple sets of PREPARE-OPEN-FETCH operations are involved. You may
see them in the following screenshot:

COEP OPEN 9233 0 0 0 R/3 SELECT WHERE T_00 ."MANDT" ='800" AND T_00 ."KOKRS" ="1000'

COEP FETCH 9233 512 54 0 R/3

COEP PREPARE 0 0 0 0 R/3 SELECT WHERE T_00 ."MANDT" = ? AND T_00 ."KOKRS" = ? AND T_00 ."BELNR" 3
COEP OPEN 9233 0 0 0 R/3 SELECT WHERE T_00."MANDT" ='800" AND T_00 ."KOKRS" ="1000'

COEP FETCH 9233 512 53 0 R/3

COEP PREPARE 0 0 0 0 R/3 SELECT WHERE T_00 ."MANDT" = ? AND T_00 ."KOKRS" = ? AND T_00 ."BELNR" 5
COEP OPEN 9233 0 0 0 R/3 SELECT WHERE T_00."MANDT" ='800" AND T_00 ."KOKRS" ="1000'

COEP FETCH 9233 512 54 0 R/3

COEP PREPARE 0 0 0 0 R/3 SELECT WHERE T_00 ."MANDT" = ? AND T_00 ."KOKRS" = ? AND T_00 ."BELNR" 3
COEP OPEN 9234 0 0 0 R/3 SELECT WHERE T_00."MANDT" ='800" AND T_00 ."KOKRS" ="1000'

COEP FETCH 9234 512 56 0 R/3

If database update statements are involved, the EXEC operation appears in the Trace List.
In addition, in this case, the Records column will show the number of records updated in the
database table rather than the records read.

At the end of the list is the total of the number of fetched records and the total execution time.

Trace List
[@j DDIC Information “YEpkEin B 2 @ B

(&)= L) [B1.)%.) [S]E @ =] [0b) 5]

HH:MM:SS5.M5 £ Execution Time | Program Mame | Object name | Operations | Curs Array size £ Recs.

13:15:02.140 436 SAPLSSQOACC TFDIR OPEN 2484 0 0
13:15:02.122 179 | RIBELFOO VBEP OPEN 1234 0 0
13:15:02.120 137 RIBELFOO VBEP FETCH 1234 1,280 0
13:15:02.127 719 SAPLBSVA 1570 OPEN 1234 0 0
13:15:02.128 154 | SAPLBSVA JEST OPEN 1234 0 0
13:15:02.129 2 RIBELFOO AFRU PREPARE 0 0 0
13:15:02.129 3,387 RIBELFOO AFRU OPEM 1234 0]
13:15:02.134 403 RIBELFOO AUFM OPEN 1234 0 0
13:15:02.135 3 RIBELFOO VBAK PREPARE 0 0 0

. 4,561,481 = 5,648

[j
W
~

Working with SQL Trace

Also, we can go to the ABAP code and display the execution plan from the performance Trace
List. For finding out the exact location, in the ABAP program, of the corresponding statement
shown in the Trace List, keep the cursor on a line showing an OPEN operation, and then click
the (&) icon from the toolbar. This will take you to the exact line in the program that generated
the entry in the trace list.

In addition, for viewing the execution plan of a particular statement, select the FETCH
operation line and click the toolbar button Explain. The details about the index used (or
whether the search within the table was sequential) are shown. After clicking the Explain
button, the screen looks like the one shown in the following screenshot (for a MS SQL server
database). Click on the EXPLAIN TREE tab to view whether an index has been used for the
statement in question.

| EXPLAIN TREE

[EXPLAIN METHOD : Execution Plan |

Statement Logical Operation Argument

\4
v

[=] Clustered Index Seek Clustered Index Seek [VBAK].[VBAK- 0]

» http://blogs.msdn.com/b/saponsglserver/archive/2009/05/10/sql-
execution-plans-part-3-how-to-get-the-plan.aspx?Redirected=true

Carrying out restricted trace

Until now, we have seen how we are able carry out the trace on our user, as well as without
any restrictions. In this recipe, we will see how a trace may be carried out on other users along
with additional imposed restrictions.

Problem areas may be difficult to find at first. One approach is to run an unrestricted trace
in order to find out the problematic program/transaction or a user. We may then run a
"restricted" trace focusing only on the particular program or user.

138

Chapter 8

In addition, one more use of a restricted trace is when we run multiple programs/transactions
in various sessions. We may run a time-consuming report of Finance (FI) module in one
session, and at the same time, want to trace an HR transaction code, say PA30, in another
session. We can then specify the transaction code of HR in the restriction criteria of a
restricted trace. In this way, the trace records of the Fl report that is running or any other
activity in any session will not be included in our trace results.

How to do it...

1. For carrying out a trace that is restricted, call transaction ST05.

2. Onthe main screen, click the Activate Trace with Filter button. The Set Restrictions
for Writing Trace dialog appears.

[M25(1)/800 Set Restrictions for Writing Trace

User Name JON_2
Transaction Name PR30
HCR

Program Name

Process Mumber

Table Mames

Include Exclude
HRP*
PROO*

3. Enter the User Name in the field provided. We enter the value JON_2. In the
Transaction Name field, we enter the transaction code PA30. In the Include Table
Names area, we enter HRP* and PA00*. In addition, if we know the Process Number
of the process, we can simply enter the three digit Process Number in the field
provided. This will only trace the process number in question.

4. Press Enter when all entries are done. The trace is on. When we like to switch off the
trace, the same Deactivate Trace button is used.

Working with SQL Trace

In this recipe, we have switched on the trace for the user JON_2 and focused only on the
transaction PA30 and also the tables whose names start with either HRP or PA. The trace
file will therefore look like the following screenshot:

130,565
39,342
12,153

9,444
32,046
64,680
57,202
51,020
43,066
40,444
40,235
33,864
28,168
26,747

& DDIC Information 4§ Explain

Length BfTp TabType

1,470
362
662

62

1,972
444
922

1,116
104
206
168

1,654
508
238

TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP
TRANSP

Summarized SQL Statements

B2

Object name
PADOOG
HRP1001
PADDOL
PAD_ENQ_LOG
PADODOZ
PADODOZ
PADOOS
PADD21
PADTOD
PAD130
PADOOOD
PADO28
PADDO4
PADOBO

Statement

SELECT WHERE
SELECT WHERE
SELECT WHERE

SELECT WHERE
SELECT WHERE
SELECT WHERE
SELECT WHERE
SELECT WHERE
SELECT WHERE
SELECT WHERE
SELECT WHERE
SELECT WHERE
SELECT WHERE

& (& FH6E[FL) ([BL5EL) (8] & =) 08 (]
Min Time/R.
"MANDT"
"MANDT"
"MANDT"
UPDATE "PAD_ENQ_LOG"
"MANDT"
"MANDT"
"MANDT"
"MANDT"
"MANDT"
"MANDT"
"MANDT"
"MANDT"
"MANDT"
"MANDT"

=7 AND "PERMR" = ? /* R3:SAPMP50A:944 T:PAD0O6 */ /*unc. rd.*/

=7 AND "PLVAR" = ? AND "OTJID" = ? AND "SUBTY" = ? AND "ISTAT" {
=7 AND "PERMR" = ? AND "BEGDA" <= ? AND "ENDDA" == ? ORDER BY
SET "TIMESTAMP" = ?,"UNAME" = ? WHERE "MANDT"= ? AND "OTYPE"

=7 AND
=7 AND
=7 AND
=7 AND
=7 AND
=7 AND
=7 AND
=7 AND
=7 AND
=7 AND

"PERMR"
"PERMR"
"PERMR"
"PERMR"
"PERMR"
"PERMR"
"PERMR"
"PERMR"
"PERMR"
"PERMR’

= 7 AND "BEGDA" <= ? AND "ENDDA" >= ? ORDER BY
= 7 AND "BEGDA" <= ? AND "ENDDA" >= ? ORDER BY
= 7 /* R3:SAPMP50A:944 T:PADO0OS */ /*unc. rd.*/
= 7 /* R3:SAPMP50A:944 T:PAG021 */ [*unc. rd.*/
=7 AND "BEGDA" <= ? AND "ENDDA" >= ? ORDER BY
= ? AND "BEGDA" <= ? AND "ENDDA" >= ? ORDER BY
= 7 AND "BEGDA" <= ? AND "ENDDA" >= ? ORDER BY
= 7 /* R3:SAPMP50A:944 T:PAD0O28 */ /*unc. rd.*/
= 7/ R3:SAPMP50A:044 T:PAOOO4 */ [“unc. rd.*/
" = 7 [* R3:5APMP50A:044 T:PAQ0SD */ /*unc. rd./

It is recommended that for performance optimization, we first run a trace without restrictions.
We can then filter the results according to the various criteria of the selection fields or the
Display Trace screen. We will see how this is done in the next recipe.

Filtering unwanted trace result entries

SQL performance trace files may be very huge and searching for tables may be a

time-consuming task. In this recipe, we will see how we can filter irrelevant values from
the SQL trace list. We assume that an unrestricted trace like the one shown in the first
recipe, Carrying out SQL Trace has already been done.

How to do it...

1. After a trace has been carried out from the transaction ST05 screen, press the
Display Trace button. The portion of the screen that appears is shown in the
following screenshot:

140

Chapter 8

Restrictions
User name STUDENTO09
Object Name
Execution Tima

EEDE

Executed Operation

2. The User name appears as default. You may enter a particular table name in the
Object Name field, or a set of letters followed by asterisk (*), such as VB* or PA*
may be entered.

3. You may enter one or more operations in the Executed Operation field.
4. Also, we can enter a value for execution time with a greater-than (GT) operator.

Instead of the huge trace list, only the values that pertain to the values entered on the Display
Trace screen are shown. For example, if we enter VB*, all tables with names beginning with
VB such as VBAK, VBRP, and so on will be shown. Also, if we enter the EXEC operation, only
this operation's entries will be displayed. Similarly, the Execution Time is taken into account.
For finding the slowest statements, the Execution Time field is very important. We can enter a
value greater than the particular time duration. This will list all costly statements that we need
to optimize.

Summarizing a SQL list and viewing

table-related information

For each SQL statement in the program, the trace list shows a number of lines corresponding
to the various operations, thus making the list very huge in size. We can see a summarized
(view), and also apply table-related functions on the list values. In this recipe, we will see how
to apply these functions.

How to do it...

For displaying summarized information, carry out the following steps:

1. From the SQL list, choose the menu option Trace List | Summarize Trace by SQL
Statement. Alternately, you may use the keys Shift + F8.

| Trace List | Edit Goto System Help
§ Summarize Trace by SQL Statement Shift+F8]
Combined Table Accesses Ctrl+F8
Display Identical Selects Ctrl+Shift+F8

Working with SQL Trace

2. In order to see a list of all identical selects within the trace, choose the menu option

Display Identical Selects.

3. For generating a combined view for various table accesses and without the details
of the SQL statement, use the menu option Trace List | Combined Table Accesses
or use keys Ctrl + F8. You may also see an Aggregate table view from the Combined
Table Accesses list, by using the menu path Table List | Aggregate.

Print
Export
Send To
Exit

= Table list | Edit
‘ Aggregate

Goto Settings
Shift+F8
Cirl+p
v List Viewer
»
Shift+F3

System

N Ca@ BRE

B T B = wl

Help

The summarized table view generates a shorter list, as shown in the following screenshot.
The details of the operations such as OPEN, FETCH, and so on are omitted, and only one line
exists for each SELECT or UPDATE statement used in the program. In addition, no detail of

the SQL statement or parameters passed from the program for the WHERE clause is shown. If
there are multiple accesses to a particular table, each access is shown in the list along (in the
following screenshot) with the time at which the access was made:

Combined Table Accesses
| Work Proc. No.” PType| Client| HH:MM:55.M5

Transaction Table Name

4 TDIA 800 | 14:47:15.527
I JDL". 800 14:47:15.609
DIA 800 14:47:15.974
DIA 800 14:47:16.147
DIA 800 14:47:16.221
DIA 800 14:47:16.267
DIA 800 14:47:16.345
DIA 800 14:47:16.379
DIA 800 14:47:16.405
DIA 800 14:47:16.467
DIA 800 14:47:16.627
DIA 800 14:47:16.678
DIA 800 14:47:16.804
DIA 800 14:47:17.002
DIA 800 14:47:17.058
DIA 800 14:47:17.114
DIA 800 14:47:17.160
DIA 800 14:47:17.164
DIA 800 14:47:17.250

PAZD HRP1001

PA30 HRP1001

PA30 PADOOZ

PA30 PADOOL

PAZD PADOOZ

PA30 PADOOL

PA30 PADOOD

PA30 PADOLG

PAZD PADO41

PA30 PADOOO

PA30 PAD709

PA30 PADL0S

PAZD PADOOZ

PA30 PAD322

PA30 PAD_ENQ_LOG
PA30 PAD_ENQ_LOG
PAZD PADOOL

PA30D PADOOZ

PA30 PAD130

Statement E Records E Access Time

SELECT 1 52,908
SELECT 1 39,342
SELECT 1 64,680
SELECT 7] 72,917
SELECT 1 1,764
SELECT 5] 578
SELECT 11 21,898
SELECT 1] 14,634
SELECT 2 17,810
SELECT 1 40,235
SELECT 1 43,966
SELECT 1] 16,919
SELECT 1 2,447
SELECT 1} 6,912
UPDATE 1 56,702
UPDATE 1 9,444
SELECT 6 833
SELECT 1 2,432
SELECT 0 40,444

DB Connection
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3
R/3

142

Chapter 8

If we further want to refine and want an Aggregate Table Accesses list showing the total time
taken for accessing a particular table along with the number of records read and the number
of times the respective table was accessed throughout the trace period, we will go for the
Aggregate Table Accesses view. For each table accesses, there is a single line shown in

this list, as shown in the following screenshot:

Aggregated Table Accesses
Transaction™ Table Name E Access to tables Statement E Records E Access Time E Percentage DB Connection
[PA3U jHRPlDDl 4 SELECT 4 93,305 10.0 Rf3
PAOQOOD & SELECT 36 68,192 7.3 Rf3
PaOOO1 7 SELECT a7 78408 8.4 R/3
PaDQ02 4 SELECT 5 68,789 7.3 R/3
PADOO3 6 SELECT] 72,210 7.7 R/3
PADOO4 1 SELECT 0 28,168 3.0 R/3
PADOOG 1 SELECT il 130,565 13.9 R/3
PaAOOOT 1 SELECT 2 20,108 2.2 R/3
PAOOQOS 1 SELECT 1 37,202 6.1 Rf3
PADOLE 2 SELECT 0 15,073 1.6 Rf3
PaD021 1 SELECT al 31,020 5.4 R/3
PADO28 1 SELECT i} 33,864 3.6 R/3
PaDO41 2 SELECT 4 18,302 2.0 R/3
PADOBD 1 SELECT 0 26,747 2.9 R/3
PAD1OS 2 SELECT i} 17,489 1.9 R/3
PAD130 1 SELECT i} 40,444 4.3 R/3
pan322 1 SELECT 0 6,912 0.7 R/3
PaO7OS 2 SELECT 2 44,412 4.7 R/3
PAD_EMQ_LOG 2 UPDATE 2 66,140 7.1 R/3
" 46 " 101 = 937,356 = 100.1

We also have a percentage column that will show the table whose access takes the most
percentage of the runtime.

If the appropriate path is chosen, a list of identical selects may also be generated.

List Identical Select Statements
€] DDIC Information R Explin B @

EY I EY N

= Executions © Durtn ri Records | TimefExec | Rec/Exec AvgTimefR. | MinTime/R. Length BfTp | TabType | Obj. name @ Statement

3 27,554 3 9,185 1.0 9,185 427 148 TRANSP REPOTEXT SELECT WHERE "PROGNAME" ='RIBELFO0" AND
2 17,489 T i 1 8,745 0.0 8,745 570 704 TRANSP PAO105 SELECT WHERE "MANDT" ='800" AND "USRTY"
2 1,231 12 616 6.0 103 96 662 TRANSP PADOOL SELECT WHERE "MANDT" ='800" AND "PERNR"
2 1,144 2 o972 1.0 572 531 42 FUL TRANSP EUOB] SELECT WHERE "ID" ='0'
2 1,065 2 533 1.0 333 522 3,052 CUST TRANSP VARIL SELECT WHERE "MANDT" ='000" AND "RELID"
4 984 g 246 0.0 246 170 1} COMMIT

. 5 = 49467 19

Working with SQL Trace

Here, the number of times the SELECT statement was executed is shown, along with the
number of records read and the duration of the execution. Reducing/eliminating the number
of identical selects (particularly the more expensive ones in terms of execution time) will
greatly help in performance optimization. They are just repeated SELECT statements that
only consume runtime and resources.

Quickly finding the data source of a screen

field

In this recipe, we will see a quick method that will enable us to find the database table and
field in which the data of a particular SAP screen field is stored. We will use the SQL trace and
the EXEC operation for this purpose.

Getting ready

We will use PA30 and its Infotype 0002 in this example transaction. We assume that we are
not sure which table name and field stores the first name of an employee.

How to do it...

Proceed as follows:
1. Call transaction PA30. Enter an employee number in the field provided. Also enter
0002 (personal data)in the Infotype field, and then click on the Change button.

2. Once you are in the Change Screen, change the First Name of the employee in the
relevant field. Do not press the Save button.

Pers. Mo. 26099714 Pers.Assgn 26099714 - |@|
Name Jose Granados -

EE group 1 Active Pers.area CREE Calber A Bicycle Company
EE subgroup |¥5| Management Pers. subare 0003 Head office
Start 03/01/1975 to 12/31/9999 Chng (07/05/2005 WOLTERAR

Mame

Title Mr. = Mame Format

Last name Granados Birth name

First name [_'IuseN]In'rtials

MName prefix hd N.prefix 2 -

Title i Second title b

Other title hd Mickname

Chapter 8

3. Inanother session, switch on the SQL trace.
Go back to the transaction PA30 and save the data.

5. Once the save message appears, go back to the SQL trace transaction and click the
Display Trace button.

6. On the Display Trace selection screen, enter EXEC* in the Operation field and take
the Trace List.

We used a small trick to find out the data source of a screen field. In order to avoid searching
through a lot of table names by using display of data, we only focused on the relevant field
and used a change operation. Since we changed a record, the corresponding field must be
updated in the database. Also the operation name must begin with EXEC. So, we generated
a list and searched for only EXEC operations. From this, we found out the name of the table
PA0002 shown in the list. When we look at this closely, we see that the value we entered in
the first name field was passed for update in the field VORNA.

Finding the data source of a field's hit list

In this recipe, we will use the SQL trace in order to find out the data source of the F4 help of
a screen field. The aim of this recipe is to devise a strategy that will make the procedure for
finding the data source quicker and easier.

Getting ready

We will use the transaction SE24 as an example. We assume that we are not sure of the
various tables in which the class names and descriptions reside. We may take the Class Field
input help for names starting with any letter. For our example, we view a list of all classes with
names starting fromy.

Working with SQL Trace

How to do it...

Proceed as follows:

1. Inone session, call transaction SE24. Enter y* in the Object type field.

Class Builder: Initial Screen
g 1 =l T O EP | Class Browser

Object type o

Iﬁf’ Display ‘ Iﬁ Change ‘ ID Create J

2. Inanother session, call transaction ST05 and switch on the trace using the Activate
Trace button.

3. Now go back to the transaction SE24 and press F4 while keeping the cursor on the
Object type field. The list of values will appear.

4. Now go back to the ST05 screen, switch off the trace, and take the display of
the trace.

When we pressed F4, the classes whose names start with Y appear as shown in the
following screenshot:

[E M25(2)/800 Repository Info System: Class/Interface Find (36 Hits)

Obhject Type Name Short description

YCHCL B11A_EINKAUF
YCHCL B11A LAGER

YCHCL B11A MATERIAL
YCHCL_B13A RGENT
YCHCL_B13A_SINGLEION
YCHCL_B13B_RGENT
YCHCL_B13B_SINGLEICN

YCHCL _B14B_2DIVISION
YCHCL_B14B_2ZMULTIELIKATION
YCHCL D10A RECHNER

YCHCLASS FLUGAUSWERTUNG
YCHCLASS RECHNER
YCHIF_B10A_BESTANDSEUCHUNG
YCHIF_B10B_EINAUSZAEHLUNG
YCHIF_B14B_1RECHNER

YSVMAL TGT_DYNAMIC VALUES Disjunction ID CACS_TGT_DYNAMIC VALUES
YIELOS_TGT_DYNAMIC VALUES Disjunction ID CACS_TGT_DYNAMIC_VALUES

146

Chapter 8

The number of entries fetched (number of the entries in the hit list) is also shown. In our
system, we get 39 hits. This figure is very important and will be used later.

Then, we take the Combined Table Accesses to see which table access shows 39 records
fetched. We find two tables SEOCLASS and TADIR from which 39 records are read. After
looking at the two tables, we find that SEOCLASS contains the class hames. For description
we can go the class text table SEOCLASSTX.

Combined Table Accesses

Work Proc, No. | PType Clie | HH:MM:55.MS | Transaction Table Name Stateme | Records = Access Time
2 DIA 800 16:16:43.061 SE24 SEOQCLASS SELECT 39 1,462
2 DIA 800 16:16:43.082 SE24 TADIR SELECT 39 80,101

Another method for arriving at the text table can be used. For the list shown in our system for
classes beginning with Y, we have only four descriptions shown with the rest being blanks.

If we further look at the trace list, we find that the table SEOCLASSTX is accessed and four
records are shown as accessed (for blank texts, no corresponding records are fetched).

Code Inspector

In this chapter, we will see recipes related to the Code Inspector tool. We will look at:

» Carrying out quick code inspection

» Carrying out a full-fledged inspection

» Carrying out database-specific performance checks

» Suppressing messages using pseudo comments

» Searching for ABAP statement patterns and tokens within code

» Creating your own Code Inspector checks

Introduction

The Code Inspector allows you to check your program for consistency, performance, and
quality. It also allows you to search for patterns of ABAP statements or tokens within a
program. The variable-naming convention adherence may also be verified. Unlike SQL trace
and SAT tool, the Code Inspector does not execute the program. It only checks the syntax,
and some times, depending on the checks selected, refers to the dictionary attributes of the
table(s) involved.

Some of the categories of checks are shown as follows:

» Performance

» Security
» General
» Syntax

» Robust Programming

» Search Function

Code Inspector

For programs, the simplest way of running the Code Inspector is to use the Menu option and
go to Program | Check | Code Inspector. However, you do not have control over the checks
carried out through this Menu option. The default variant DEFAULT is executed and the set
of checks contained within it are run. Moreover, only one program at a time may be inspected
through the Menu option.

This chapter explores useful recipes related to the Code Inspector. We will start with the
simplest method for running inspections on one program or a small number of programs.
Then, a full-fledged inspection with further options such as inspection saving and background
execution will be discussed. Next, we will focus on the performance checks and the various
cases they generate messages in the inspection results. Search functions and the procedure
for suppressing messages in exceptional cases will also be discussed. Finally, we will see how
we can create our own checks and add it in the list of standard checks.

For simplicity sake, | will use the term programs throughout the chapter when inspection
is involved. However, other repository objects may be included in the inspection for
checking purpose.

Carrying out quick code inspection

In this recipe, we will see how we can do a quick code inspection on a single program or an
object set. This is also termed as an Ad Hoc Inspection, since the inspection results are not
saved and are not available for future.

How to do it...

We will now carry out these steps:

1. Call the SAP transaction SCII. Alternatively, you may go to transaction SCI and on
the main screen, leave the Inspection field blank and press the Create button below
the Inspection Input field. The screen appears as follows:

150

Chapter 9

Code Inspector: Inspection
O
Object Selaction
) Object Set) Vers.
" IRequest/Task
“ISingle -
Check Variant
) Predefined)
= Temporary Definition
Selection D.. A.. Tests
=1 List of Checks
v 3 Code Excellence
3 General Checks
R Performance Checks
o s) Security Checks
3 Syntax Check/Generation
3 Robust Programming
| Programming Conventions
3 Metrics and Statisitics
r 3 Dynamic Tests
» OV User Interfaces

2. Select the Single radio-button option. From the list box, select the Program option
and then enter the name of the program in the field provided. We enter the name
of a previously created program zST9_TEST FOR ALL ENTRIES 2.

Object Selection

) Object Set 5] Vers.
“IRequest/ Task

#)5ingle Program - Z5Ta_TEST FOR_ALL ENTRIES 2

Code Inspector

3. From the area in the lower part of the screen, we will select the option Temporary
Definition. Then we select from the available checks that we want to be carried out.
Selecting or deselecting a particular category will include or exclude all checks within
the category in the inspection. For resetting to default values at any time, select the
menu path by going to Utilities | Set Initial. Alternatively, use the toolbar button =

or press F7.

Check Variant

“)Predefined |@|

) Termporary Definition

Selection D.. A.. | Tests

M= List of Checks
v (3 Code Excellence
’ GI_______I General Checks
v Ol Performance Checks
| Security Checks
r 3 Syntax Check/Generation
r (3 Robust Programiming

4. Finally, press F8 to carry out the inspection.

The code of the program mentioned is scanned and checked based on the selected checks.
The results are then displayed. The results comprise of tree structure (hierarchy) within nodes
corresponding to the checkbox selected. There are three columns shown for messages within
the different categories and then the checkboxes pertaining to the category in question.

These are Errors, Warnings, and Information messages. You may open the various

categories to see the detail of the messages found in each category. For example,

we have two information messages found under Use of Indexes in SELECT statement.

Code Inspector: Results

& F E G
Person Responsible STUDENT009 Inspection & \ersion
Messages
Docum... | ... | E...| Tests
SE| Mested Loops
" - Low Performance Operations on Internal Tables
. = Copy Large Data Objects
EE = Low-Perform. Parameter Transfers
s = Copy current table row for LOOP AT ...
: '~ EXIT or no statement in SELECT...ENDSELECT loop
: = Invalidation of SAP Table Buffer
-3 - Use of Indexes in SELECT Statement
-3 Information
= Message Code 0001
B Program Z5T9_TEST_FOR_ALL_ENTRIES_? Sub-Object Type TABL...
u COBK~0.uuuis 1
COBK~O.uveaea 0
E] Program Z5T9_TEST_FOR_ALL_ENTRIES_2 Sub-Object Type TABL...

COEP~D....... 2

Error | Warn...

o

coococoooooo

cooocoocooooo

Infor...

HFMNMMO oo oo oo

152

Chapter 9

You may double-click on a particular message to reach the actual line of the code in the
program that generated the message in question.

There's more...

While selecting the checks to be run from a particular category, a check may have further
attributes. This is denoted by the # icon before it. You may click on the icon to view a list of
the attributes and choose the ones relevant for your requirement. If you find an icon, it means
that there is at least one value that must be set for the attributes contained within the check.
Otherwise, selecting the check will produce an error and the inspection will not run.

Performance Checks

& Analysis of WHERE Condition for SELECT

& Analysis of WHERE Condition in UPDATE and DELETE
SELECT Statements That Bypass the Table Buffer
SELECT Statements with Subsequent CHECK
SELECTs in Loops

.o

“

) m i
%
= =] = =

For running another inspection from the results screen, use the toolbar button .
For viewing the results in a compact display format, use the toolbar button i

You have also the option of checking objects using object sets or the object contained within a
request. However, the transaction has a limitation that you may not check over 50 objects and
that the inspection may not be saved for reuse. In this case, the inspection is not stored and
does not have a name (that is, it is anonymous). The next recipe will cover the ones that will
overcome these limitations.

Carrying out a full-fledged inspection

For checking over 50 programs, you may use a reusable inspection. In this recipe, we will see
how we can carry out such an inspection. Existing standard and custom variants may be used
for this recipe. However, we will create variant and object sets from scratch. We will create a
global inspection that will check all programs that begins with ZST9 _*, and as well as create
global variant and global object set.

As the name indicates, an object set is a collection of objects that may be comprising of ABAP
programs, class, function groups, and classes. All repository objects may be assigned to an
object set. An object set may also have a number of versions such as 001, 002, and so on.

Code Inspector

How to do it...

Follow these steps:

1. Call the SAP transaction SCI. The screen appears as follows:

Code Inspector: Initial Screen

Person Responsible STUDENTO09

Inspection

Mame @ Vers.]
|02 Jmjes TS|

Object Set

Mame [f]zsc_o J"rs.]
|02 |m|a]

Check Variant

Mame @
|02 @3]

2. We will first create an object set (that is, the set of programs on which we need to run
the inspection) of type global. For doing so, we will toggle the local icon 2 so that the
global icon @ appears. Then, enter a name (in our case, ZST9_OBJ_SET) in the field
and then click the Create button.

Object Set

Mame |BF|ZST9 OBJ SET Vers. |00l

6|02 Jmid

3. The screen having the block appears as follows:

Object Selection

Classes, Func. Groups... } Free Obj. Choice

EJ(E

[v| Class/Interface

to =
[v|Function Group to
[¥|Program =] |z5T9+ to .
[v|Web Dynpro Component to -

Chapter 9

4. Enter zsT9* in the Program field within the Object Selection block. Then save your
object set and come back to the initial screen of the transaction SCI (you will see
001 entered automatically in the Version field).

5. Next, we will define the variant. Enter a suitable name in the variant field. Then click
the Create O button below the variant input field.

Check Variant
Name |68 z5Ta_crECK vARTANT
se|0) |m|a)

6. On the screen that appears, check the various checks that you need to include.
You may include from various categories as discussed in the previous recipe.

7. We then create an inspection. Enter a suitable name in the Name field.

Inspection

Name |69]zsT9_tnspEcT Ve

o

Finally, we run the inspection by pressing the Execute button.

Code Inspector: Inspection
B &..

Inspection @ @ Z5T9_INSPECT Vers. 001
Executed on Changed on 04/19/2012 Last Changed By STUDENTO09
Deleted On 06/08/2012

Description Z5T9_INSPECT__001
Object Selection

=) Object Set 7 z5T9_0BJ_SET Vers. |001
“JRequest/Task
“)5ingle v

Check Variant
| Z5T9_CHECK_VARIANT

Once the inspection is run, it takes some time for executing. The time taken depends on the
number of programs included in the object set and the number of checks selected on the
variant. Initially the inspection has the status Not Yet Executed 2.

Code Inspector

This will carry out the inspection on programs having names that begin with ZST9_ based on

the checks of the two categories that we selected, Performance and Robust Programming.

Once execution is completed, you may then click on the Results £ icon to view the results.
The new status will then be denoted by a green Executed icon.

After making corrections in the program(s) involved, rerun the inspection by generating a new

version of the inspection. This may be done by the Create New Version ¢ icon.

DEEEEE

1]

2=
@@@._

&
&

&

Performance Checks

Analysis of WHERE Condition for SELECT

Analysis of WHERE Condition in UPDATE and DELETE

Errors

Message Code 0501

Function YCRMO1_SUM_UPDATE_SUMRES1 Row 98 Colurmn 4
Large table YCRMO1_SUMRES1: Mo WHERE condition

Function YCRMO1_SUM_UPDATE_SUMREZ1 Row 118 Column &
Large table YCRMO1_SUMRES1: Mo WHERE condition

Function Group YCRMO01_SUM_UPDATE_SUMRE91 Include LYC...

Large table YCRMO1_SUMRES1: No WHERE condition

Function Group YCRM01_SUM_UPDATE_SUMRE?1 Include LYC...

Large table YCRM01_SUMRES1: Mo WHERE condition

134
49
32
32
32

1

1

12989
236
a5

263

There's more...

You can also execute to schedule the inspection using as a background job. For this, click on
the Toolbar button @-- in the inspection screen. The dialog box appears as follows:

[& M25(2)/800 Code Inspector: Execution O...

Execution on
(®)Server Group
Mama

1 Immediately

|"5' In Background (Periodically also)

(OLocal Server
(In Single Process
(¢ Parallel

| Display Exempted Massages As Well
" |Mo Messages for ABAP Unit Test Classes
" |Ignore Object Classification

(v)@[x]

Enter a suitable name of the screen group and select the In Background (Periodically also)

option. Then, you may then click [@@ (Maintain Server group) and enter further details.

You may schedule the inspection to be scheduled every week, or month, and so on.

156

Chapter 9

See also

» http://help.sap.com/saphelp nw70ehp2/helpdata/en/82/
e6e8abfd59490e9e811940ccl1027ef/frameset . htm

Carrying out database-specific performance

checks

In this recipe, we will see a few examples of problems of the SELECT statements that the
code inspector may highlight. This may help in improving performance of the program at the
development stage. The performance checks are available in both the transactions SCI and
SCII. We will emphasize on the selection of the database-specific performance checks during
variant creation, and some of the typical statements/constructs that may be caught using
code inspector.

How to do it...

1. Within the checks, expand the Performance Checks category.

2. From the list of checks that appear, select the checks shown in the
following screenshot:

Analysis of WHERE Condition for SELECT
Analysis of WHERE Condition in UPDATE and DELETE
SELECT Statements That Bypass the Table Buffer
SELECT Statements with Subsequent CHECK
SELECTs in Loops
Changing Database Accesses in Loops
MNested Loops
Low Performance Operations on Internal Tables
Copy Large Data Objects
Low-Perform. Parameter Transfers
Copy current table row for LOOP AT ...
EXIT or no statement in SELECT...ENDSELECT loop
Invalidation of SAP Table Buffer
Use of Indexes in SELECT Statement

- Instance Creation of BAdIs

i, Table Attributes Check

<5 < <] %

(o) [fo) (o) (o) [[[[) o) (o) [() [)
DR E DS
Hosooboey

=_o

The inspection checks the various program and highlights as warning statements that are
performance statements. During this, the code inspector checks the syntax of the program
and refers to the attributes and technical settings of the tables involved.

» CHECK or EXIT statements used within a SELECT statement instead of highlighting
a WHERE clause.

Code Inspector

» SELECT statements included in a loop such as a DO loop or within a loop at ITAB.
» Any SELECT statements that use the BYPASSING BUFFER addition.

» SELECT statements that are without a WHERE clause will be included in the warning.
The following is one such example:

SELECT * FROM ZMYTAB INTO IT TAB

» In addition to this, any table that is buffered but is included in a subquery will also
result in a warning. This is because the buffering may not be used in this case, since
the result of the subquery will be used at the database level in order to determine the
selection set of the main SELECT statement.

SELECT FIELD1 INTO TABLE IT FIELDS
FROM ZTABl1
WHERE FIELD2 EQ 'ABC' AND
FIELD3 IN (SELECT FIELD1l FROM ZTAB2
WHERE FIELD2 EQ 'Zl' AND FIELD3 EQ'A'.)

» Ifthe zTAB2 table is buffered, a warning message will appear in the result.

» Also, if the coding includes a SELECT statement on any table that is single-record
buffered and a SELECT * ENDSELECT statement is used in the program, the
corresponding statement will be highlighted in the results.

» Any query that may cause problems as far as the index selection is concerned will
result in a message. In case, the WHERE clause of the query does not correspond
to any index in the database for the table in question, a message appears in the
inspection results. This hints that there is a possibility that a full sequential scan
will be run for the query that could be very time-consuming.

» Also for indexes, if a particular field is not included in the WHERE clause—for example,
if the index in the database comprise of fields A1, B1, and C1, and the WHERE clause
of the query includes B1 and C1 but not 21, a warning is generated.

There's more...

Though the Code Inspector aid in writing better code, they have certain limitations. It is
possible that a program generates no messages during the inspection, but may be slow
when actually executed in QAS or production system.

The code is only analyzed and scanned along with the information pertaining to attributes of
the dictionary tables used. The code is not executed (with actual data). The true performance
test and analysis must be based on the actual execution tools such as transaction SAT and
SQL trace. The checks of code inspector do not replace these tools.

158

Chapter 9

See also

» http://blogs.msdn.com/b/saponsglserver/archive/2008/01/03/
using-sap-code-inspector-to-improve-quality-and-performance.
aspx

Suppressing messages using pseudo

comments

In this recipe, we will see how we can suppress messages (generated from checks) of a
particular category so that they do not appear in the results tree. It is not possible to hide all
messages. However, there are some that may be hidden. These are known as exception.

In this recipe, we will see the different ways of finding out whether a particular message may
be hidden and the code for hiding such messages using pseudo-comments.

How to do it...

Carry out these steps:

1. From the message results, navigate to the specific message that you like to suppress.
2. Expand the message to display its details.

3. Then, check if the icon & is displayed before the message as shown in the
following screenshot:

-3 Performance Checks 134 12389 263
] & Analysis of WHERE Condition for SELECT 49 236
-3 & Analysis of WHERE Condition in UPDATE and DELETE 32 a5

~a Errors 32 0
-3 : Message Code 0501 32 0
N Function YCRMO1_SUM_UPDATE SUMREZ1 Row 98 Column 4 1]
J Large table YCRMO1_SUMRES1: No WHERE condition
LE,B Function YCRMO1_SUM_UPDATE_SUMRES1 Row 118 Column & 1 1]
Large table YCRMO1_SUMRES1: Mo WHERE condition
LE,B Function Group YCRMO1_SUM_UPDATE_SUMRES1 Include LYC... 1 o
Large table YCRM01_SUMRES1: Mo WHERE condition
LE,B Function Group YCRMO1_SUM_UPDATE_SUMRES1 Include LYC... 1]
Large table YCRMO1_SUMRES1: Mo WHERE condition

Code Inspector

4. Click the & icon. This will display the dialog box, as shown in the following screenshot:

[S M25{3)/800 Exception with Pseud... x

E
I_The message can be hidden using pseudo
comment "#EC CI_NOWHERE

1 1

5. Note the comment. This may be included in the coding with the statement that
generated the message as shown as follows:

SELECT * FROM ZTAB. "EC# CI_NOWHERE

We used the results to find out whether the message may be suppressed or not. The presence
o f the icon confirmed the possibility of hiding the NO_WHERE message. We then wrote the
pseudo comment along with the SELECT statement. When we rerun the inspection, the
SELECT statement with the pseudo comment will not be shown in the messages.

Suppose we need to suppress message for multiple SELECT statements, we need to write the
corresponding pseudo comment correctly with each statement.

There's more...

We can also find out the pseudo comment of a check (if applicable) directly from the
categories and checks display. For this, expand the relevant category folder in order to display
the relevant check. Click the IH icon next to the check title. This will display the documentation
of the check in a separate window. The pseudo comment will then be displayed at the end of
the window as shown in the following screenshot:

160

Chapter 9

Code Inspector
Analysis of the WHERE condition for UPDATE and DELETE
Table xyz: No WHERE condition

UPDATE dbtab SET ... Of DELETE FROM dbtab ... without a WHERE condition
changes or deletes all the entries of the table. Check whether dataset to be changed or
deleted can be limited by a suitable WHERE condition.

Priority of the message is dependent on the size category of the table:
Size category 0,1 ==Waming
Size category ==2 == Ermor

|I‘u‘1&ssage can be suppressed using the pseudo comment "#EC CI_NOWHERE |

Searching for ABAP statement patterns and

tokens within code

In addition to the quality, performance checks, you may use the Search Function node
provided to formulate your own criteria in order to search for tokens and ABAP statement
patterns within the program(s) in question. In this recipe, we will see how this may be done.

How to do it...

Follow these steps:

1. In the variant specification, expand the Search Function node. This checks appear as
shown in the following screenshot:

M= Search Functs.
. v 5 Search of ABAP Tokens
* v 5 Search ABAP Statement Patterns
. & Find Unwanted Language Elements
: & Look for WRITE Stmints
C & Find ORACLE Rule Hints

2. Click the [®licon to enter values for the Search of ABAP Tokens function.

Code Inspector

3. Then, enter the search string in the Search String dialog box that appears.

["lComments

[Literals
- _
Search String T512T |]j>|

4. Enter one token in the field. For search of multiple tokens within the code, select the
icon.

C | Single value

| 15127
| [rROM

5. For searching for ABAP statement patterns, click the = icon for the check.

Then enter the single value in the field provided as shown in the following screenshot:

- select single values |

C Single value
SELECT * FROM PADO++ CLIENT SPECIFIED

7. Finally run the inspection.

The search for token function will search all the programs for the token FROM and T512T
and will highlight when found in the results. Suppose the word FROM occurs twice and T512T
appears once in the display, then total three messages will be displayed, that is, one for each
found token.

For the pattern search, the programs are scanned for all SELECT statements that read data
from tables having names beginning from PA00 followed by two characters such as PA0023,
PA0008, and so on, followed by CLIENT SPECIFIED. The asterisk (*) after SELECT does not
mean the code for fetching all fields of the database table but is a search function operator
that means any set of tokens after the token SELECT such as *, PERNR INTO WA PERNR,
and so on.

162

Chapter 9

Creating your own Code Inspector checks

In this recipe, we will see how we can create our own company specific checks and categories
and display them with the standard check categories. For simplicity's sake, we will create a
check by the name My Check under a new category My Check category. When this check
will run, it will search for the token T512T in the program and will display the number of
occurrences and the corresponding line numbers.

How to do it...

Follow these steps:

1. Call the SAP transaction SE24. Enter the class name CL. CI_CATEGORY TEMPLATE
in the class field and click the Copy button. The screenshot appears as follows:

[S M25(1)/800 Copy CL_CI_CATEGORY_TEMPLATE

Class CL_CI_CATEGORY_TEMPLATE
=
Copy to I_zstQ_CL_CI_n'r',rcategor',r_class

23

2. Open the new class in the Change mode and the CONSTRUCTOR method in the Edit
mode. Add the code given in the following screenshot:

Class Builder: Class ZST9_CL_CI_MYCATEGORY_CLASS Change
= | PHOE L B a8 E @R Pattern Pretty Printer | Signature
| Ty. | Parameter | Type spec. | Descri.
Method |comsTRUCTOR Active
1; IMETHOD CONSTRUCTICE .
2 super->constructor().
3 description = "My Check Category'. "EEC NOTEXT
4 category = '"CL_CI CATEGORY TOF'."#EC NOTEXT
5 "e.g. 'CL CI CATEGORY TOP'
& position = '999"', "or 020
7 ENDMETHOD .

Code Inspector

3. Next, we will create a copy of the CL. CI_TEST SCAN TEMPLATE class having the
name ZST9 CL_CI_ CHECK. In the CONSTRUCTOR method, add the code given in
the following screenshot:

Class Builder: Class Z8T9_CL_CI CHECK Change
= P E @ == S = S| | @2 @& Pattern Pretty Printer | Signature
Ty. |Parameter |T',rpe spec. |Descn'___
Method |consTRUCTOR Inactive
1! Hmethod CCNSTRUCTICR
2
3 SUPER->CONSTRUCTOR () .
4
s DESCRIPTION = 'My Check' (001). ‘"reguired
&y CATEGCRY = 'Z5T8_CL_CI_MYCATEGORY CLASS'. "reguired
T VERSICH = 'go1'. "regulred
g B = HAS ATTRIBUTES = 'X'. "optional
9 * ATTRIBUTES OK = 'X' or ' '. "optional
10
11! | endmethod. "CONSTRUCTOR

4. Add the code in the run method of the Check class, which is given in the
following screenshot:

Method RON Active
Hmethed rum .

2 if ref scan is initial.

3 T check get|) = "X'.

4 endif.

Sk

& loop at ref scan->tokens into token wa
T B if token wa-str eg 'T512T!'

8 inform|

=] p_kind = C_note

10 p_test = 'Z5T9 CL CI_CHECK"
11 p_line = token wa-row

12 p_column = token wa-col

13 p_param 1 = 'T512T found in program
14 p_code = Qg

15 endif.

1a

17 endloop.

=)

5. Add the code for the GET_MESSAGE_TEXT method of the class given in the
following screenshot:

164

10.

Chapter 9

Class Builder: Class ZS8T9_CL_CI_CHECK Change

5 PHE O 4o) B s 2 DM @ @ Pattern Pretty Printer

Ty. Parameter Type spec. Description

po P_TEST TYPE CLIKE Test code

po P_CODE TYPE CLIKE Code

o P_TEXT TYPE CLIKE Text
Method GET_MESSAGE TEXT

Active

Emethod GET_MESSAGE TEXT.

» if p code eqg '0001°.
p_text = 'T512T found in code'.

endif.
endmethod.

s W R

Activate the two classes. Make sure all components are also active.

Next we will do the necessary setting for displaying the newly created check and
category along with standard checks in transactions SCI and SCII. Follow the menu

path from the transaction SC1I.

= Code Inspector Edit | Goto | Utiities(M} System Help
@ Management of 3 Tests Ctri+Shift+F5
Exceptions 3 Object Collectors Ctri+Shift+F6
Code Inspector: i Back F3 Message Priorities Ctrl+Shift-+F4

gt

The two newly created classes will appear in the list that is displayed.

|¥25T9_CL_CI_CHECK My Check
[#] 25T9_CL_CI_MYCATEGORY CLASS My Check Category

First, select the category class and click Save. A confirmation dialog box

appears. Click Yes.

Repeat the last step for the check class.

First we create the category class. We assign the necessary text (My Check Category)
to be displayed in the CONSTRUCTOR method. The folder of the category will have this text
displayed. Next the check class is defined and the text My Check. The linkage between

the check class and the category class is done in the CONSTRUCTOR method of the
check class.

Code Inspector

The run method is executed when the check is executed. The REF_SCAN object supplied with
the TOKENS table within the method is used for checking all the tokens of the program code
that is to be included in the inspection. A loop is run on the TOKENS table and if the token
t512T is found, the method INFORM is called with the necessary information supplied. We
want the information message to be displayed along with the row and column of the token.
The P_CODE value 0001 is also supplied, for which an appropriate text message is added in
the GET MESSAGE_TEXT method.

Then, both classes were activated.

Finally, the activation setting will display the new check and the category along with standard
categories and checks for transactions SCI and SCII, as shown in the following screenshot:

A= My Check Category
i My Check

We ran the inspection for a program having two occurrences of the token T512T. The output
of the results is shown in the following screenshot:

List of Checks

My Check Category

My Check

Information

Message Code 0001

Program ZST9_CHECK Include Row 15 Column 9
T512T found in code

Program ZST9_CHECK Include Row 18 Column 14 1] 1] 1
T512T found in code

==> T512T found in code

4
(0
o

[
=

» http://sapignite.com/enhancement-of-code-inspector/

» http://wiki.sdn.sap.com/wiki/display/Snippets/
Code+Inspector+Check

166

10

Simple Transformations

In this chapter, we will see the following recipes for simple transformations:

» Creating simple transformations

» Creating transformations for structures and calling them in programs
» Creating transformations for internal tables

» Generating transformations for dictionary table types

» Downloading into Excel made easy using simple transformations

Introduction

This chapter explores useful recipes related to simple transformations. We will start with a
brief overview of simple transformations and their structure. We will also discuss the process
of the conversion of ABAP data into an XML stream (serialization) and the reverse process
(deserialization).

We will start with a simple recipe in which we create a simple transformation that contains

no root element but only XML literal elements and text. We will then see how to create
transformations to interpret ABAP structures and internal tables. Next, we will see how we

can quickly generate a transformation for a dictionary-defined table type using the transaction
XSLT_TOOL.

There are two types of transformations possible via the transformation editor transaction
XSLT_TOOL. They are the XSLT transformation the and simple transformation. XSLT
transformations are defined using the XSLT programming language (and additional SAP-
related statements). In addition to XSLT elements, ABAP calls are also allowed in XSLT
transformations. They may be used, for example, to read data from the database. On the
other hand, simple transformations are created using the simple transformation language.

Simple Transformations

Simple transformations allow XML-to-ABAP and ABAP-to-XML conversion, whereas for XSLT
transformation, XML-to-XML and ABAP-to-ABAP transformations are also possible.

A recipe for calling transformations from ABAP programs will also be discussed. Finally, we will
see a recipe that uses transformations to generate Excel output for internal table contents
from within an ABAP program.

An entire discussion of Simple transformation commands is not possible in one chapter.
However, we will see the most important and commonly used features. The primary emphasis
will be on simple transformations for structure (simple and nested) as well internal tables.

Simple transformation is a meta language that allows the conversion of ABAP data into XML
form and vice versa. The conversion of data into XML is known as Serialization. On the other
hand, the processing of an XML stream in order to populate ABAP data objects is termed
Deserialization. Simple transformations may be called from ABAP programs using the

CALL TRANSFORMATION statement. Simple transformation programs are created using

the transaction XSLT TOOL.

A "simple" simple transformation is as follows:

_Transformation Z5T6_FIRST Active
Properties <" SourceCde]

FEE)
<?zap.transform simple?>
<tt:transform xmlns:tt="http://www.sap.com/transfocrmaticn-templates™>
<tt:template>
<X0>
<¥1> my transformation first line </¥1>
<¥2><ttitexty> second line </ttitext>-C/H2>
< /X0
</tt:template>
</tt:transform>

The first line signifies the type of the transformation. It is automatically inserted by the system
while creating a new transformation.

All objects contained within < and > are termed XML elements. The XML elements may be
divided into two categories, ST commands or literal elements.

168

Chapter 10

ST commands serve a special purpose and have been defined in the namespace
http://www.sap.com/transformation-templates. tt:transform, tt:root
and tt:template are XML elements that are ST commands (the prefix tt is used in the
namespace for ST commands).

The literal XML elements are not contained in the namespace. X0, X1, and X2 are the

XML literal attributes. These are neither literal XML elements nor ST commands. my
transformation first line inthe figure is literal text. Within the literal XML element
X2, there is the literal text second 1ine defined with the identification using <tt:texts.
The literal text between <tt:text>and </tt:text> isincluded in the serialization even if it
comprises of only blank spaces. If the text is without identification (that is, if <tt :text> and
</tt:text> are not used) the elements comprising of only blank spaces are ignored at the
time of serialization.

Data roots are those that serve as the interfaces between the XML and the ABAP.
Transformations that do not have a data root do not use any ABAP data during serialization
and deserialization. At the minimum, one root element must be present for ABAP data to be
used by the transformation.

The command tt :value is used for serialization of elementary data objects and fields of
structures, whereas the command tt : loop is used for the serialization of internal tables.
tt:template defines the block used to create the XML document from ABAP data during
serialization (or the block used to extract ABAP data objects from an XML document when

deserialization is carried out).

» http://help.sap.com/abapdocu_70/en/ABAPCALL TRANSFORMATION.htm

» http://help.sap.com/saphelp nw70ehp2/Helpdata/EN/7f/
b7463c32a3fel3e10000000al114084/frameset.htmA

Creating simple transformations

In this recipe, we will see how we can create a simple transformation comprising of literal texts
and no data root. We will use the transaction XSLT TOOL.

Simple Transformations

How to do it...

We will carry out the following steps:

1. Call the transaction XSLT TOOL. Enter a suitable transformation name in the field
provided (we give the name zst6_first). Then, press the Create button.

Edit Transformation
ao 1 & & pebugging 2 mm

Transformation z3t6_first

[63’ Display ‘ Iﬂ Change ‘ ID Create I

2. This will display a dialog box asking you for the description and the type
of the transformation. Enter a short description in the field provided. From
the Transformation Type list box, make sure to choose the option Simple
Transformation. Then, press Enter.

[M2P(1)/800 Create Transformation

Transforrmation Z5T6_FIRST
Short Description first transformation
Transformation Type Simple Transformation -

3. From the screen that appears, choose the SourceCde tab. You will find the source
code editor filled with the basic code.

Transformation Z5T6_FIRST Inactive

Properties . Sol

k?sap. transform simple?>
<tt:transform xmlns:tt="http://wwW.3ap.com/transformation-templates™>

<tt:root name="ROOT™/>

<tt:i:template>
<ftt:template>

<ftt:transform>

170

Chapter 10

4. We will now write the code for our "simple" simple transformation. We will delete
the root element. Within the template, we will add literal elements along with the
necessary literal texts with and without identification. We create a literal element X0
that contains the literal elements X1 and x2. After the addition of the lines, the code
appears as shown in following screenshot:

Transformation Z5To_FIRST Active

Propertiesw]
Efse)

<?3ap.transform simple?>
<tt:transform xmlns:tt="http://www.3ap.comn/transformation-templates™>
<tt:templateX
<X0>
<X1> my transformation first line </X1>
<X2>tt:text> second line </tt:text>/E2>
<SH0>
< ftt:template>
</tt:transform>

We created a simple transformation. It contains no root element, meaning that it can be
passed any ABAP data object when called from an ABAP program.

When the transformation is serialized, the resulting XML code looks like the following code:

<X0>
<X1> my transformation first line </X1>
<X2> second line </X2>

</X0>

The literal element X1 contains literal text without identification, whereas X2 contains text with
identification defined within <tt:text> and </tt:texts>.

Simple Transformations

There's more...

To better understand the literal text with the identification feature, consider the
following example:

Transformation Editor: Change Transformation Z8T12 FIRST
& = | P % e an | E Bpebugong = | F EH 2 %% Tag Lbrary Pretty Printer

Transformation Z5T12_FIRST Active
Properties/SourceCde]
1 <?sap.transform simple?>
2 <tt:transform zmlns:tt="http://www.=ap.con/transformation-templates">
3
4 <ttiroot name="RCOT"/»>
5 <tt:template>
& <X0>
7 <¥1> my transformation first line </¥1>
8 <X2> </X2»
=} <H3>» <tt:itext> </tt:itext> </X3>
10 </X0>»
11 </ftt:template>
1z </tt:transform>
13

We create an element x2 without identification and an element X3 with identification. Both
contain blank spaces. The resulting XML string (as seen in the debugger) will be as follows:

Variable | V. | val.

KMI. STRING+41 (4} <¥0>

KMI. STRING+45 (40) <¥1>» my transformation firat line </¥1>
WML STRING+E5(5) K2/

KMI. STRING+590 (14) <¥3> <SE3

KMI. STRING+104 (5) </¥0>

For element x3, the white spaces are preserved, whereas for X2 they are not.

Creating transformations for structures and

calling them in programs

In this recipe, we will see how we can create transformations that correspond to a nested
structure defined within an ABAP program. We will create a transformation, then call the
transformation from a program using the CALL. TRANSFORMATION statement and pass it to
a populated ABAP structure corresponding to the root element of the transformation. We will
then see how serialization will generate the XML stream.

172

Chapter 10

How to do it...

We will now see the steps needed to create a transformation corresponding to a structure:

1.

Call the transaction XSLT TOOL. Then, enter a suitable name for your
transformation. We gave it the name zSTé_FOR_STRUCTURE.

Click on the Create button. Then, on the Create Transformation dialog box that
appears, choose the option Simple Transformation and proceed further.

Enter the following code within the transformation editor:

<?3ap.transform simple?>
<tt:transform xmlns:tt="http://www.sap.com/transformation-tenplates™:>
<tt:root name="SIRUC"/>
<tt:template>
<H0>
<H1>
<tt:value ref="5TRUC.FIELD1"/>
< 1>

<K2>
<E3x
<tt:value ref="3TROC.NEST1.FIELD1"™/>
</E3>

<Hd>
<tt:value ref="STRUC.HEST1.FIELD2"/>
< /X4
</E2x
</EK0>
</tt:template>
<ftt:transform>

When done, click on the Activate (1) button.

Next, we will create the program that will call the transformation and pass it to an
ABAP structure.

In the program, we will first define the nested structure, as shown in the following
screenshot. The name of the structure is struc. It has a field £ield1 and contains
another structure nest1, comprising of the fields fieldl and field2.

CATZ : BEGIN OF struc,
fieldl TYPE < LENGTH 10,
BEEGIN OF nestl,
fieldl TYPE < LENGTH 10,
field2 TYPE c LENGTH 10,
END CF nestl,
END COF struc.

Simple Transformations

7. Then, populate the structure fields with suitable values.

struc-fieldl = "123°".
struc-nestl-fieldl = "&7E300".
struc-nestl-field2 = "TaoIeTE".

8. Finally, in the ABAP program we will define a string named xml string and call the
transformation using the CALL, TRANSFORMATION statement. The result of the CALL
TRANSFORMATION statement corresponding to the passed structure is returned in
xml_ string.

DATA: zml string TYFE string.

CALL TRANSFOBMATION =zsté for structure
SOURCE struc = struc
EESULT XML =ml_ string .

The transformation created is comprised of a structure that will be passed during serialization
via the root variable struc. Within the XML literal elements X1, X3, and x4, the current node
is set using the reference of the data root struc. For X1, we include the field field1l of

struc. For X3, we address the field1 field of the nest1 structure contained within struc.

The ABAP program calls the transformation using the CALL, TRANSFORMATION statement.
Since it is serialization, we passed a populated ABAP structure struc as the SOURCE
structure. The result is read into xml string. The contents of the string xml string
may be viewed in the ABAP debugger, as shown in the following screenshot:

Field [r_sTRING

Data Type CString{102}

IAbsolute Type \TYPE=STRING

[1Read-Only

View [XML Browser |

<?xml version="1.0" encoding="utf- 16" 7>
— «X0=
<X1=123</X1=
— X2
<X¥3=678900</X3>
<H4=7665678</X4>
=2
=KD

Chapter 10

Creating transformations for internal tables

In this recipe, we will see how we can create transformations for internal tables. We will use
the transformation editor to define the transformation for the internal table, ITAB, comprising
of two fields, FIELD1 and FIELD2.

How to do it...

We will now see the steps for creating a transformation corresponding to internal tables:

1. Create a simple transformation using the steps shown in the previous recipe.
We will give it the name zst6_internal table.

2. Enter the following code in the transformation editor:

<?sap.transform simple?>
<tt:transform xmlns:tt="http://www.3ap.comn/transformation-templates™>

<tt:root name="ITAB"/>

<tt:template>
<itab¥>
<tt:loop ref=".ITAB">
<line>
<fieldl>
<tt:value ref="FIELD1"™/>
</fieldl>
<field2>
<tt:value ref="FIELD2"/>
</field2>
<fline>
</ttt loop>
</itab>
</ttitemplate

</tt:transform>

3. Next, we will write the code of the ABAP program that calls the transformation and
supplies it with an ABAP internal table.

Simple Transformations

4. We create an internal table with the name itab with fields £ieldl and £ield2 and

fill it with the necessary data.

data :

begin of itab occcurs O

Y

fieldl type c length 10,
field?2 type c length 10,

end of itab.

itab-fieldl = "AEC".
itab-field2 = "ABC text'.
append itab.

itab-fieldl = "X¥YZ'.
itab-field2 = "XYZI text'.
append itab.

itab-fieldl = "ATC".
itab-field2 = "ATC text'.

append itab.

5. Finally, the CALL, TRANSFORMATION statement is called, the internal table is
passed, and the result is stored in xml string.

DATA : zml string TYPE string.

CLLL TRAWSFORMATION zst6é internal table
SQURCE itab = itabl[]
RESULT XML zml string.

The transformation contains a root element representing the internal table by the name of
ITAB. Within the template, the XML literal element, itab, is defined to show the contents

of the internal table. The tt : Lloop command is included. This command addresses each

line of the table itab (since ref=".ITAB" is used as the current node). For each record of
the table, the content of the XML element 1ine is included in the XML file. Within the XML
elements FIELD1 and FIELD2, the contents of the FIELD1 and FIELD?2 fields of the relevant
line of the table itab is written. Since the current node is the row of the internal table in
question, including FIELD1 and FIELD2 it will print the right contents.

176

Chapter 10

We create the program and pass the necessary data for itab. After the serialization, the
resulting XML file appears as shown in the following screenshot:

<?xml version="1.0" encoding="utf-16" ?>
- <itab=
- <line=
<fieldl=ABC<=/fieldl=
<field2 =ABC text-/field2>
<fline=
- <line=
<field1=XYZ </ field1=
<field2 >XYZ text</field2=
<fling=
- <line=
<field1=ATC</fieldl=
«field2 >ATC text</field2=
<fline=
<fitab>

Generating transformations for dictionary

table types

In this recipe, we will see how we can create transformations for dictionary table types. We will
first create a table type using SE11 and then generate its transformation using the graphical
tool editor of the transaction XSLT TOOL.

We will create a table type, ZST6_TT PER, that will comprise of employee number, PERNR,
employee name, NAME, and grade field, GRADE.

How to do it...

We will now carry out the following steps:

1. Call transaction SE11. We will first create a line type by the name of ZST6_ST_PER.
Enter the name in the Data Type field. Then, click on the Create button and choose
the Structure option in the dialog box that appears.

[& M2P(1)/800 Create Type Z5T...

") Data element
®) Structure
") Table type

Simple Transformations

2. Next, we specify the fields of the line type. These are: PERNR, GRADE, and
NAME. These are based upon the component types, PERSNO, TRFGR, and
EMNAM, respectively.

Structure Z5T6_ST_PER Active
Short Description line type

Attributes . Components | Entry help/check Currency/guantity fields

B EEENEEE S 173
Component RType Component type Data Type Len... Dec... Short Description
PERNE [PERSNO NUMC 8 0 Personnel number
NAME [] EMNZM CHRER 40 0 Formatted Mame of Employee
GRADE] TRFGR CHLR 8 0 Pay Scale Group

3. We then create a table type using the transaction SE11. We give it the name
ZST_TT PER. We make sure that the line type defined earlier is used as the
line type for the table type.

Then, call the transaction XSLT TOOL. Create a simple transformation.

5. From the transformation change screen, click the Edit Transformation
Graphically (2%) button from the toolbar. This will take you to the screen
shown as Transformation Editor.

6. On the left-hand side, select the ROOT node and choose the context menu option
Insert new root.

Template | (Defaul) -
Data roots
(oROOT
Insert new root
Delete root
Expand al
Collapse al

Mark data object

178

Chapter 10

7. Inthe dialog box that appears, enter MYTAB and ZST_TT PER in the Root-Name
and Type-Name fields respectively. (Alternatively, we may enter the line type created
earlier, that is, ZST6_ST_PER, in the Type-Name field and check the Line Type?
indicator). Then, press Enter.

[M2P(4)/800 ST-Programm: ZST6_FOR_TABLE_TYPE... X

Insert new root

Root-Name |[MYTAB
Type-Mame Z5I_TT_FER

|g| |Line-Type?

8. This will add the MYTAB table node to the Data roots section. Drag-and-drop the

MYTAB node to the right-hand side (the Simple Transformation pane). This will
create MYTAB and its components within the Simple transformation pane.

ST-Programm: Z§T6_FOR_TABLE_TYPE Change
E % P am 1 H =) Predecessor First Child
Template | (Default) -
Data roots Index Simple Transformation Index
* O ROOT 1 u @xmlns:tt="http:,l',l'wwl.'u.sap.cnn‘u’tmnsformation-templates"
~ [MyTAB - ZST6_TT_PER 2 -~ @ MYTAB =
- oo * : 75T6_ST_PER 3 - 2
* O PERMR : PERSNO 4 ~ @ ZST6_ST_PER -
* O MNAME : EMMAM 5 * @ PERNR 4
+ O GRADE : TRFGR] * @ NAME 5
» @ GRADE 6

9.

We need to make adjustments in the nodes. We will delete the ROOT node on the
left-hand side so that only one ROOT element (that is, MYTAB) remains.

Simple Transformations

We first declared a line type and then created a table type. We then created a new simple
transformation. We then inserted a root element named MYTAB based on the dictionary type
ZST6_TT PER defined earlier. Drag-and-drop added the table MYTAB to Transformation
and also included all the components, PERNR, NAME, and GRADE. The generated code of the

transformation is shown in the following screenshot:

Transformation Z5To_FOR_TABLE_TYPE

Active

<?gap.transfiorm simple?>

<tt:transform xmlns:tt="http://www.sap.com/transformation-templates

xmlns:ddic="http://www.3ap.com/abapaml /types/dicticnary™
xmlns:def="http://www.3ap.com/abapxml /types/defined™>
<tt:root name="MYTAB" type="ddic:Z3T&_IT_PER"/>
<tt:itemplate>

<MYTZAB>

<tt:loop ref=".MYTAB">

<Z5T6_ST_PER>

<PEENE tt:value-ref="PERNR"/>
<NAME tt:value-ref="NAME™/>
<GRADE tt:value-ref="GRADE"/>

</EST6_ST_PER>

</tt:loop>
< /MYTAB>
</tt:templates
</tt:transform

In the template, a loop is run on each line of the table MYTAB. The contents of the fields
PERNR, NAME, and GRADE are written within the XML text element ZT6_ST_PER (based on
the name of the line type). The completed graphical form of the transformation is shown in the

following screenshot:

Template |(Default)

Data roots
= MYTAB : ZST6_TT_PER
v OO *:75T6_ST_PER
O PERNR : PERSNO
* O NAME : EMNAM
O GRADE : TRFGR

Index

[R R

Simple Transformation
S| xmins:tt="http://www.sap.com/transformation-templates”
= xmins:ddic="http://www.sap.com/abapxm|/types/dictionary”
« %o yrins:def="http://www.sap.com/abapxml/types/defined”
> @ MYTAB
<
> @ Z5T6_ST_PER

+ @ PERMR

+ @ NAME

* @ GRADE

Index

Ll

W

180

Chapter 10

The transformation may then be called in programs using the statement
CALL TRANSFORMATION.

Downloading into Excel made easy using

simple transformations

In this recipe, we will see how we can use simple transformations in order to download the
contents of an internal table into Excel format. The advantage of this method is that the Excel
file will contain the desired font size and colors without any programming effort required.

We will first create a sample Excel file in XML format. Then, we will upload it via the
transformation editor XSLT TOOL and generate a transformation accordingly. (The Excel
XML and the transformation language may be mixed, thus the Excel XML is converted into

a transformation.) The generated transformation will serve as a template representing our
Excel file format. We will make slight changes in it and call it in our ABAP program in order to
generate the Excel file.

The primary emphasis of this recipe is to generate an XML string containing the content of the
Excel data in XML format. The download part of the XML will not be shown.

How to do it...

We will now see in detail the required steps:

1. We first create an Excel file with the appropriate required column headings and some
sample data. We will consider an example of employee number, name, and grade.

A B C D
1
2
3
4 Emp. No Name Grade
5 130 John Reed 16
6 200 Amy Jones 17
7
8
9
10
11

Simple Transformations

2.

182

Next, we will save the Excel file in the XML Spreadsheet 2003 format.

_/‘“\../I Wﬂ < Users » admin » Desktop » v|‘¢||559m’.‘ P
Favorite Links Name Date modified Type Size S
. 48B0EN_06
fE, Documents
. 48B0EN_O7
More »
. 48B0EN_08
Folders v || 4380EN_09
[l Desktop + | | 4380EN_10
- 4880EN | HR Version 6.05
- 4880EN || || Mew Folder 111
. 4880EMN | Sengs
i 4880EN IE_ql'ﬂ-lew Micrasoft Office Excel Worksheet
. 4880EM _
File name: ExcelXML -
Save as type: [XML Spreadsheet 2003 hd
Authors: admin Tags: Add atag
“ Hide Folders Tools = [Save] [Cancel]

Next, we will create a new simple transformation using transaction XSLT TOOL.

Then, from the Source Code tab, click on the Import (@) button. On the File
dialog box that appears, select the ExcelXML file created earlier. This will
create a transformation program within the editor.

Next, we need to make some minor changes within the transformation. First, we

will remove ss: ExpandedRowCount="6" from the Table element. The data

rows pertaining to the sample data uploaded must be removed as well. These are
contained within Row and Cel1 elements. (Our uploaded Excel XML file generated

a transformation for our sample data. We need to delete the hard-coded lines
pertaining to the sample data within the Row and Cell elements. We then make the
necessary changes so that the transformation may be used for dynamic data passed
in an internal table from our program.)

Chapter 10

<Worksheet s3:Name="5Sheetl">

<Takle 3s:ExpandedColumnCount="3" |3s:ExpandedRowlount="6"| x:FullCoclumns="1"

®:FullRows="1" s3:Defaul tRowHeight="15">

<Column s53:Width="62.25"/>

<Column ss:Width="54.75"/>

<Column s3:Width="45.75"/>

<Bow 33:Index="4" azs:Height="21"3>

<Cell =z=:5tylelD="3685"»<Data sz:Ivpe="String">Emp. MNo</Datax</Cell>
<Cell =3s3:3tylelD="3685"><Data s3:Type="String">Name</Data><,/Cell>
<Cell s3:5tylell="3685"><Data s3:Ivpe="5String">Grade</Data></Cell>
</Row>

<Row>

<Cell><Data =zz:Iype="Nurber">190</Data></Cell>
<Cell»<Data s3:Type="String">Jchn Reed</Datax»</Cell>
<Cell><Data =zz:Iype="Nurber">l&</Data></Cell>
</Row>

<Row>

<Cell»<Data 33:Type="Nurber">200</Data></Cell>
<Cell><Data ss:Type="String">Amy Jones</Data></Cell>
<Cell»<Data 33:Type="Nurber">17</Data></Cell>
</Raow>

</Table>

6. We will now add a root element table at the beginning of the transformation, before
the tt:template command.

<?m3c—application progid="Excel.Sheet"2>

<?3ap.transform simple?>

<tt:transform xmlns:tt="http://www.3ap.com/transformation-templates™>
| <tt:root name="table"/> |

<tt:template>
<Workbook xmlns="urn:schemas-microsoft-com:office:spreadshest™

7. tt:loop isthen added in place of the removed employee data. The loop addresses
each line of the internal table "table". We print the contents of the fields PERNR,
NAME, and GRADE as texts within the element Cel1 for every Row.

<tt:loop ref=".table">
<ROW>
<Cell=
<Data 55:Type="Number"= <tt:value ref="PERNR"/></Data>
</Call>
<Cell>
<Data ss:Type="5tring =<tt:value ref="NAME" /></Data>
</Cell>
<Cell=
<Data s5:Type="Number"><tt:value ref="GRADE" /></Data>
</Cell=
=/ Row>
</tt:loop=

Simple Transformations

8. We will save and activate the transformation.

9. We will then make a simple program to populate an internal table based on the
root element table. We define an internal table, itab, and work area, wa, based on
the table type zst6_tt per and line type zst6_st_per, respectively. We then
populate the table with suitable values.

DRTZA : itab TYPE zsté tt_per
DRTA : wa TYFE zZst&_st_per

wa-pernr = '13
wa-name = 'John Mann'.
wa-grade = "15°".
APPEND wa TC itab.

wa-pernr = '14

wa-name = 'Elizabeth Jones
wa-grade = "1 .

APPEND wa TC itab.

wa-pernr = "1
wWwa-name =

wa-grade = "l1&",
LPPEND wa TO itab.

10. Then, the CALL TRANSFORMATION statement is called and the internal table itab
is passed. The resulting xml string string contains the Excel data in XML format.

DATR: xml string TYPE string.

CALL TERANSFORMRTION zsté excel download?2
S50URCE table = itab
RESULT ®ML =zml string .

184

Chapter 10

We uploaded the transformation using the XSLT TOOL transaction's Import button. This
transformation is based on the file that we uploaded. If we call the same transformation, the
result will be the same file that was uploaded. Since we want the Excel output to be based

on the content of the internal table of the ABAP program, we made the necessary changes to
the transformation in order to incorporate a loop on a root element table. During serialization,
the internal table itab was passed in place of the root element table defined within the
transformation. The loop was run and the content of the table was included in the XML string.
The xml_string may then be written as saved on the desktop or emailed to another user.
When opened in Excel, it will show the user the data in Excel format along with the column
heading colors and the fonts of the original sample file.

» help.sap.com

» http://sapblog.rmtiwari.com/2009/04/generate-simple-
transformation-for-xml.html

11

Sending E-mail Using
BCS Classes

In this chapter, we will see recipes of e-mail programming using the Business communication
services (BCS). We will look at:

>

>

>

>

>

Creating a simple e-mail message

Sending e-mail to Internet e-mail addresses
Adding attachments to your message
Creating HTML e-mail

Running a program and sending its output as an e-mail

Introduction

This chapter explores useful recipes related to the programming of e-mail sending. We will
start with a brief overview of BCS and the various classes available. Then we will see a simple
recipe that will generate an e-mail to an SAP user in his or her inbox. Then, we will show how
the same program may be changed in order to send the e-mail to Internet e-mail addresses.

We will then add attachments such as an Excel (XML file) to the e-mail. Creating HTML
documents will also be discussed. Finally, we will create a program that will execute another
ABAP program, convert its output into PDF, and attach the PDF to an e-mail message.

We will see the most important and commonly used classes (and their methods) used
for e-mail creation. In addition to e-mail programming classes such as CL._BCS and
CL_BCS_DOCUMENT, we Wwill also see classes such as CL._CONVERT_BCS that are used
for converting files into appropriate formats suitable for attaching to e-mail documents.

Sending E-mail Using BCS Classes

Throughout the chapter, the terms e-mail and SAP Office Document will be used
interchangeably.

The BCS classes provide a newer object-oriented means of generating e-mails
programmatically. The function modules should no longer be used for sending
e-mails. The BCS classes are much simpler to program, particularly when we have
attachments involved.

The classes relevant to e-mail programming are discussed as follows:

Class name Use

CL_BCS This class is for creating sent requests. The document (e-mail
body and attachments) is assigned to it and recipients are
specified. Finally, the request is sent.

CL_DOCUMENT BCS This is the document class for specifying the content of the
e-mail and attachments (if any).
CL_CAM ADDRESS BCS This class provides a number of useful methods. The notable

one uses an Internet e-mail address such as abc@yahoo.
com and returns a recipient user object.

CL_SAPUSER_BCS This class creates a recipient object based on an SAP user ID
to be used.
CL_BCS_CONVERT This class converts data from one format to another, such as

conversion of text string to binary table or from a hexadecimal
string to a binary table, and so on.

Creating a simple e-mail message

In this recipe, we will see how we can create a simple program that will send an e-mail (SAP
Office Mail) to an SAP user AJON1. There are no attachments involved in this recipe. However,
we will want the SAP user AJON1 to see a pop-up express message when the e-mail document
is received in his or her inbox.

How to do it...

We will now perform the steps shown as follows:

1. Declare two reference variables sendrequest and myrecpient to the classes
cl besandcl_sapuser bes.

DATA : sendreguest TYFE REF TO cl bes.
DATA : myrecipient TYPE REF TC cl sapuser bcs.

188

Chapter 11

We will then declare a variable for specifying the content of the e-mail email text.
This is based on the type bcsy text. We also declare an object reference to the
class c1_document bcs with the name document.

DATA : email text TYPE besy text.
DATA : document TYPE REF TG cl document bcs.

We call the static factory method create persistent of the class c1_bces.

The returned reference is stored in the sendrequest reference variable
declared earlier.

sendregquest = cl beos=lkcreate persistent().

An SAP user object is then created using the CREATE method. This will be used later
for specifying the e-mail recipient. The returned object is stored in myrecipient
variable. The corresponding object for the user AJON1 is created.

myrecipient = cl sapuser bes=>create| "LJON1')

Next, we call the add_recipient method of the c1_bces class for the object
reference sendrequest. We supply the recipient through the myrecipient
object and we pass the value 'X' forthe i express parameter.

CALL METHOD sendrequest-radd recipient

EXPORTING
i recipient = myrecipient
i _express = X',

Next, we create the e-mail text. A simple one-line text My first email content
is added to the internal table email text. In addition, the factory method
create_ document is called for class c1_document bcs. The type RAW

is specified through the parameter i _type.

APPEND 'My first email content' TO email text.

document = cl document bcs=rcreate_ document |
i type = 'RAW!'
i text = email text
i subject = 'my email subject').

Sending E-mail Using BCS Classes

8. We then call the SET_DOCUMENT method and pass the document object as
the parameter. The send method of the class c1_bcs for the object reference
sendrequest is also called.

CALL METHOD sendrequest->set document | document).
sendrequest->send().

9. Finally, we call the COMMIT WORK statement.

CCHMMIT WORE.

10. The entire code block is placed within a TRY .. ENDTRY statement and the cx_bcs
exception class will be used for catching exceptions.

We created object references for the send request and the e-mail document as well for the
recipient user object. The static factory method create persistent of the c1_bcs class
is called in order to create a send request.

Then, we define appropriate text for the content of the e-mail body and add it to the created
send request along with the subject of the e-mail.

A recipient object (based upon the class c1_sapuser bcs) is created for the SAP user
AJONL1. This recipient is then added to the send request using the method add recipient
of the c1_bes class. For the 1_express parameter of the add_recipient method,

the value 'X' is passed so that the user receives an express message when the e-mail is
received in his or her inbox. A new document is created using the static create document
method of the c1_document_bcs class. The document is having type RAW and relevant
subject and content. The add_document method is then called in order to add the document
to the send request. Finally, the COMMIT WORK statement is called and the e-mail is sent.

An express message is generated as shown in the following screenshot:

[M2P({1)/800 SAPoffice express info

@ Express document "my email subject™ received from author "M2B STUDENTOO&™

|E||§| Choose || Inbox |

190

Chapter 11

The message appears in the document (Unread Documents) of the SAP Business
Workplace (transaction SBWP). The message header for the corresponding message
appears as shown in the following screenshot:

Unread Documents 1

Massage attributes Type | Title At | Author Date rﬂc:—:-_”v
2 ' my emai subject T M2B STUDENTOOG 05/14/2012
1 1

It contains the red icon that denotes an express message has been generated. The title
(Title), author name (Author), and the date received (Date received) are shown as well.
The preview of the document body is shown in the following screenshot:

Display Document: my email subject
TeE 240 20 B Reply... Reply wiReference...

~/ Doc. contents - Attrbutes | Recipient list

my email subject

Created =1 M2B STUDENT006

My first email content

The My first email content text is the e-mail text, whereas as the my email subject text is the
subject as coded in the program.

In case the e-mail is to be sent immediately, the SET SEND IMMEDIATELY method of the
cl Dbcs class must be called before the SEND method (and the COMMIT WORK Statement),
as shown as follows:

SENDREQUEST->SET SEND IMMEDIATELY('X').

Sending E-mail Using BCS Classes

Sending e-mail to Internet e-mail addresses

In this recipe, we will see how we can modify the existing program so that, instead of
the SAP user, we can send the same e-mail to an Internet address. We will make a copy
of the same program and add additional code. The class that is to be used, in this case,
is cl_bcs cam_address (instead of the c1_sapuser bcs class). The method
create internet address will be used for creating Internet user addresses.

How to do it...

We will now see the changes we need to make to the given program:

1. Instead of the myrecipient object reference being based upon the class
cl sapuser bcs, we will use the class c1_cam_address bcs.

DATZA : myrecipient TYPE REF TC cl cam address bcs.

2. Next, we will call the method create internet address of the
cl cam_addess_bcs class for creating an e-mail address.

myrecipient = ¢l cam address bes=>create internet address| 'myemzilfyahoo.com')

3. We may remove the i_express parameter assignment from the add_recipient
method call of the c1_Dcs class (since the e-mail is going to an e-mail address
outside the SAP system, pop-up express messages are irrelevant).

CALL METHOD sendrequest--radd recipient
EXPORTING
i recipient = myrecipient

4. Next we define a reference to the interface if _sender bcs for our e-mail address
(that is, sender e-mail address).

DATA : myemailaddress TYFE EEF TO if sender bos

192

Chapter 11

5. An Internet address is created for our e-mail address using the same
create internet address method of the c1 _cam address bcs class.
The created object is stored in the variable myemailaddress defined earlier.

myemailaddress =
cl cam address bcs=>create_internet address | 'myuser@packtpub.com') .

6. Finally, the e-mail address is added as the sender of the send request using the
set_sender method of the c1_bcs class.

sendreqguest->set sender(myemailaddress | .

7. The rest of the coding remains the same as in the previous recipe.

We made a copy of the program in the previous recipe. The class c1_cam bcs_address

is used for defining the recipient user. Since we have the e-mail address of the recipient, we
used the static method create internet address ofthe cl _cam address_ BCS class.
The necessary recipient is returned because of the method call. This is later added to the
send request, thus specifying the Internet address.

Once the COMMIT WORK statement is executed, the e-mail is sent to the Internet user
address. In the receiver's inbox, we will see our e-mail address as the sender (since the
set_sender method has been used).

Class Interface CL_CAM RDDEESS BCS Implemented / Active
Properties - Interfaces - Friends Attributes - Methods f Events -~ Types - Alases

o Pammeters”fﬁl E:-:ceptinns"E| II@IEI B Rk e i) |E| |E|E| o (05 " | Filter

Method Level Visibility M. | Description
SET_ADDRESS NAME Instance Me.. Public #0 Sets the Attribute ADDRESS_MNAME
SET_RDDRESS_STRING Instance Me_ Public ¥0 Sets Attribute ADDRESS_STRING
SET_RDDRESS TYPE Instance Me.. Public ¥ Sets Attribute ADDRESS_TYPE
E::REAIE_IN‘IERHET_ADDRESS]Static: Meth_ Public Creates an Internet Address
CREATE RML LDDRESS Static Meth.. Public Creates an RML Address

E-mail transfers are complicated. It may be possible that the programming done is correct
but the e-mails are not sent. From experience, many times the problems arising when testing
programmatic e-mail sending are e-mail server configuration/routing problems.

Sending E-mail Using BCS Classes

Adding attachments to your message

In this recipe, we will see how we can add attachments to our e-mail message (we will use
the program created in the previous recipe). We will also use the code fragment from the
XML String (for Excel data) generated in the Downloading into Excel made easy using simple
transformations recipe of Chapter 10, Simple Transformations chapter.

We will copy the program of the last recipe and add the transformation code for the
conversion into binary file of the XML string. We will then write the code for attaching the
XML file to the e-mail message. The recipe shows the additional code required to attach
a file to the e-mail.

The necessary steps for defining the send request and the subsequent steps are the
same. This recipe code will be inserted after the create document method call of the
cl document bcs class and before the set _document method call of the c1_bces class.

How to do it...

We will now perform the steps shown as follows:

1. Afterthe CALL TRANSFORMATION statement, we will declare internal table
attached xml based on the table type solix_tab. We then call the static method
string to solixofthe cl becs convert class for creating binary content out of
the XML string. The solix_tab type is an internal table in binary format. The code
page for Unicode UTF-16LE is passed 4103. The result is then stored in converted
form in the attached xml file.

DATA: xml string TYFE string.

CALL TRAMNSFORMATION zsté excel download2
SCURCE table = itab
REESULT ¥ML xml string .

DATAZ : attached xzml TYPE solix tab

CALL METHCD cl_bes convert=>string to solix

EXPORTING
iv_string = xml string
iv_codepage = '4103°
IMBCRTING
et_solix = attached xml.

Chapter 11

2. Next, we call the method add_attachment of the class c1_bcs_document. For
the parameter attachment type I_ATTACHMENT TYPE, we pass the value BIN. For
the name of the file (1_attachment subject), we specify the name XML Excel
Data.XLS. The parameter i_att content hex is for passing the internal table
containing the file to be attached.

CALL METHCD document->add attachment

EXPORTING
i attachment type = 'BIN"'
i attachment subject = 'XML Excel Data.XL5"
i att_content hex = attached =xml.

After the CALL. TRANSFORMATION statement, we have the file content in the form of a

large XML string. This string needs to be converted to an Excel format. We convert this into a
binary format (an internal table based on dictionary structure SOLIX) using the static method
string to_ solix of the class c1 _bes convert. The structure of SOLIX is as follows:

Dictionary: Display Structure
o = ﬁ? % qﬁ“ o] 1 ﬁ%’ P E, ES| Hierarchy Display Append Structure

= ol
Structure I_Eﬂ()I-D(JP.cti*.fe
Short Description SAPoffice: Binary data, length 255

Attributes ° Components } Entry help/check - Currencyfquantity fields

M||ﬁ@|} Ellﬁllﬁ Predefined Type 1/1
Component R... Component type Data Type | Len... Dec... Short Description
LINE | /S0 RAW255 RLW 255 0SAPoffice: Binary data, length 255

For converting the XML string into binary data, we use the code page 4103. Excel files expect
the data to be in the UTF-16 LE format, thatis, 4103.

The code is then added to insert the attachment to the created document using the
add_attachment method of the c1_becs document class.

Sending E-mail Using BCS Classes

The attachment subject is the name of the file (in our case XML. Excel Data.XLS)as it
should appear in the receiver's inbox, the type is BIN meaning binary. For the content of the
file,the i_att content hex parameter is supplied with the converted Excel file data. The
attachment appears as shown in the following screenshot:

Display Document: my email subject
e &S0 & th|EE Reply... Reply w/Reference...

- Doc. contents } Attributes Recipient list - Attachments

my email subject

Created =] M2B STUDENT006
Changed =] M2B STUDENT006

My first email content

e

XML Excel Data.XLS

The file when opened in Excel looks like following screenshot:

A B C
1
2
3
a2 Emp. No Name Grade
5 13 John Mann 15
B 14 Elizabeth Jones 17
7 15 Harold Mann 16
t]
9
10

Similarly, other types of attachments such as PDF or HTML may be added to your documents.

If we need to know the code page of the underlying application server, we go to transaction
SNL1. For our server, the code page 4103 is used for the UTF-16 LE encoding.

196

Chapter 11

Adj. DB according to country Mot completely installed
Systemn language (database)

Database codepage Unicode

Current Codepage of Appl. Server 4103

Codepage of Front End 4110 UTF-8 GUI

||__if) Mew Interface

See also

» http://scn.sap.com/thread/1842532
» http://ceronio.net/2012/02/unicode-in-abap/

Creating HTML e-mail

In this recipe, we will see how we can display the body of our e-mail in HTML to our messages
body. We will see how text may be displayed in bold, in various colors, for example, red and
how to set the background color of the e-mail body. We will copy the program shown in the
first recipe and make few changes in it. The detail of HTML coding is beyond the scope of this
book. The focus of the recipe will be on how basic HTML code is shown in the e-mail body.

How to do it...

We will now carry out the steps shown as follows;

1. Fortheemail text internal table, we will append a number of rows. Each
row appended will correspond to the lines of the HTML code. We will specify a
background color for the e-mail body. Then on the first line, we will write a text Dear
Sirin font size = 2.0nthe nextline, we will write text in red color. Finally, on
the last line we write text in bold format, as shown in the following screenshot:

APPEND '<html> <body style="background-color:#FFALEE;"> ' TO email text.

APPEND '<p> Dear Sir </p> </HIML>' TC email text.

ALPPEND '<p>» <font size
TO email text.

2 color = Red » This is an important mail. </p> </HTML>'

APPEND '<p> Packt Team </p> </HIML>' TO email text.

http://scn.sap.com/thread/1842532
http://scn.sap.com/thread/1842532
http://scn.sap.com/thread/1842532

Sending E-mail Using BCS Classes

2. The e-mail text will then be used to create the document that will later be attached
to the send request. While calling the create document method, the type of
document specified will be HTML, rather than RAW in the previous recipes.

document = cl_document bcs=>create document |
i type = 'HTM'
i text = email text
i subject = 'my html email®).

We made a few changes in the program. First, we entered the entire HTML code in the form of
an internal table. It should be made sure that the entire code is enclosed within <HTML> and
</HTML> tags.

In the next step, the appropriate type (HTML) of the document that is to be created is specified
for the method create document and the internal table containing the HTML coding is
passed. The rest of the coding remains the same. The e-mail generated from the program
appears as shown in the following screenshot:

Dot contents | Attrbutes | Redipient st Attachments

my html email

created =] M2B STUDENT006
Changed =] M2B STUDENTO06

Dear Sir
This is an important mail.

Packt Team

We have used only one font size. However, within the HTML body we may have different
font sizes.

198

Chapter 11

Running a program and sending its output

as an e-mail

In this recipe, we will see how we can create a small program that will run another ABAP
program and will send the second program's output as an e-mail attachment in PDF form.
The basic steps for creating the send request and defining the recipient will remain the same
as mentioned in the previous recipes. This recipe will emphasize on the additional portion
required in order to run the program, capture its output, and convert the output into PDF
form. The second program (program to be called) is created first and we have named it

ZST 6 CALLED PROGRAM.

How to do it...

We will now list the steps needed:

1. We will call the SUBMIT statement that will call another program zst 6 called
program (Which simply prints Hello World). The EXPORTING LIST TO MEMORY
AND RETURN addition is used along with the SUBMIT statement.

SUBMIT zsté _program to be called
EXPCRTING LIST TC MEMCRY AND RETURHN.

2. Next, we define an internal table based on the dictionary type abaplist. We then
call the LIST FROM MEMORY function module and use the prog_output object for
storing the list fetched from the memory.

DATA : prog output TYPE STRANDARD TABLE OF abaplist.
CRALL FUNCTICN 'LIST FROM MEMORY
TAELES

liztobject = prog output.

Sending E-mail Using BCS Classes

3. We then define an internal table binary tab of dictionary type solix. The function
module TABLE_COMPRESS is then called that converts the program output into a
table of binary format solix.

DRTA : binary tab TYPE STANDRRD TRELE COF solix.

CALL FUNCIION 'TRELE COMPRESSS
TABLES
in = prog_output

out = binary tab.

4. We then call the function module SX_OBJECT CONVERT ALI_ PDF. Before the
call of the function module, we define necessary variables and internal tables
necessary for the function module call. The various parameters should be provided
with appropriate values. The format src parameter should be assigned value
ALI(meaning ABAP list), the format dst parameter is assigned PDF, whereas the
funcpara parameter is assigned the value DELETE. The address type addr_type
is passed PRT, whereas devtype is passed PDF1.

DATR : w_transfer bin TYPE =x boolean VALUE 'X°
DATZ : it_content txt TYFE =oli tab.

DATZ : objhead TYPE =oli tab.

DATZ : w_len TYPE so _obj len.

CALL FUNCTION 'SX OBJECT CONVERT ALI FPRT'
EXPORTING
format src = 'ALI’
format_dst = 'PDF’
addr type = 'PRT'
devtype = 'PDF1°

funcpara = 'DELETE'
CHANGING

transfer bin

content Xt

W_transfer bin
it _content TXt

content_bin = binary_ tab
objhead = objhead
len = w_len.

200

Chapter 11

5. We then call the add attachment method of the class c1_bcs_document for the
document object. The type is specified as PDF and the binary tab value is passed
as the content of the file to be attached.

CALL METHOD document-radd attachment

EXPORTING
i attachment type = '"PDF
i atrtachment subject = 'Frogram Cutput
1 att_content hex = binary tab

We have used the SUBMIT statement in order to run the other program. The output of the
program is generated and sent to the memory using the SUBMIT statement. The function
module 1ist from memory then fetches the program's output from the memory and stores
it in the internal table prog output. We then use the function module table compress

in order to convert the ABAP list into an internal table of binary data format based on the
dictionary structure solix.

The function module sx_object convert ali pdf is then called. We supply it with the
necessary parameters and the necessary variables and internal table. The ALI corresponds

to the ABAP list format (for the source format) whereas the target format is specified as PDF.
The function module converts the ABAP list stored in the binary format into PDF. After the
function module execution is complete, the PDF generated is stored in the internal table
named binary tab. For the parameters of the function module addr_type and device type
devtype, the values PRT (meaning printer name) and PDF1 are passed, respectively. The
funcpara parameter is supplied with DELETE. This is to delete the spool request created by
this function module created during the PDF conversion process.

This PDF content stored in the internal table binary tab is then attached to the e-mail
document using the add attachment method. We specify the type as PDF and pass the
binary tab for the method's importing parameter i_att content hex.

The PDF output generated will be attached to the e-mail document.

201

Sending E-mail Using BCS Classes

There's more...

This is one of the ways of capturing the output of a program. We may also use the SEND
TO SAP-SPOOL addition for the SUBMIT statement. This allows the generated list to be
sent to the SAP spool, which can then be turned into a PDF.

Also, we covered a scenario where a simple program is called. The called program may
contain a number of selection screen input fields. You may supply appropriate values for these
selection screen parameters while calling the program using the SUBMIT statement. This may
be done, for example, using the WITH SEL1 EQ VALI1 addition of the SUBMIT statement.

See also

» http://help.sap.com/abapdocu_70/en/ABAPSUBMIT SHORTREF.htm

» http://help.sap.com/erp2005 ehp 04/helpdata/en/2d/lc5d3aebba4c3
8e10000000a114084/frameset.htm

202

http://help.sap.com/abapdocu_70/en/ABAPSUBMIT_SHORTREF.htm
http://help.sap.com/abapdocu_70/en/ABAPSUBMIT_SHORTREF.htm
http://help.sap.com/abapdocu_70/en/ABAPSUBMIT_SHORTREF.htm
http://help.sap.com/erp2005_ehp_04/helpdata/en/2d/1c5d3aebba4c38e10000000a114084/frameset.htm
http://help.sap.com/erp2005_ehp_04/helpdata/en/2d/1c5d3aebba4c38e10000000a114084/frameset.htm

12

Creating and Consuming
Web Services

In this chapter, we will look at the following recipes related to Web services:

» Creating a Web service from a function module
» Configuring the created Web service

» Consuming a Web service

» Creating a consumer proxy's logical port

» Calling a Web service from an ABAP program

Introduction

The Service-Oriented Architecture (SOA) is the current paradigm in which one type of
software communicates with another software written in a different language and exchanges
information. In a service-oriented design, we have a service provider that provides a particular
service. Web service technology is not specific to SAP.

For a Web service, a Web Service Definition Language (WSDL) file exists that contains the
necessary information required in calling the Web service in question, such as the input and
the output parameters (that is, the interface). The information about the necessary input and
output parameters for Web service call is specified using the WSDL. The WSDL and the SOAP
and HTTP are universal concepts and therefore allow SAP integration with the outside world.

There is a registry called UDDI (acronym for Universal Description, Discovery, and Integration)
where the service provider may be registered and the necessary information about the service
is stored. The caller or potential consumer may refer to the registry for information about the
service. We may also have a direct binding between the service provider and the service caller
using SOAP and HTTP. The necessary input is sent to the provider, which then returns the
relevant results after the Web service execution back to the consumer.

Creating and Consuming Web Services

In a service-oriented architecture (SOA) world, the service consumer and the service provider
may use different technologies, and both of them do not need to worry about the technology
used by the other. They communicate using SOAP over HTTP. A SAP system can call a Web
service provided by a non-SAP system and vice versa. A Web service encapsulates a particular
process and accepts input as well as provides output to the caller. The consumer may call the
service to send input data into the specified format and receive the results. The technology
used inside the service is not to be of concern to the consumer.

SAP allows you to both create, as well as consume Web services from the outside world. This
chapter will take an approach from the SAP side—the creation and consumption of services.
The wizard that quickly and easily creates Web service providers and consumers will also be
discussed. We will start with the creation of a Web service using the Web service creation
wizard and then cover the configuration of the Web service in question using the SOAMANAGER
transaction. While defining a Web service, an endpoint is specified, which is the ABAP object
used as the basis for the creation of the Web service. This could be a function module, a BAPI,
an entire function group, or an XI message interface. We will use the existing objects (in our
case, a function module) to generate or create a Web service. This approach is known as an
Inside-Out approach in the chapter. The primary emphasis of this chapter will be on the
Inside-Out approach.

In order to create a consumer program for calling a Web service, a consumer proxy has to be
generated. It creates a link to the Web service that is to be consumed. During the generation
of the proxy, a class is generated that encapsulates the process of communicating with the
Web service provider and the formation of SOAP messages that are to be sent to the provider.
Once you have generated a proxy (and then a logical port is created), the ABAP code may

be written for calling the Web service and getting the desired results. We will cover recipes
related to consumer proxy generation, creation of a logical port, and the coding related to
service call.

For the sake of illustration, in this chapter we will create a Web service in our system and will
generate a proxy for calling the same service from within the system (though practically the
service consumer and provider will not be in the same system). All the recipes in this chapter
are based on this service provider and consumer scenario.

204

Chapter 12

A diagram showing the client service relationship of Web service consumer and provider
is as follows:

client binding server
web service » web service
consumer SOAP / HTTP provider
find wsdl Publish wsdl
ubDI
Registry

» http://www.adfahrer.com/workplace/Sem/2006-11-28-ADSIG-SBN-
WalldorfABAP/SRothaug-ProvidingWebServinABAPNordicABAP.pdf

» http://www.w3schools.com/webservices/ws intro.asp

» http://www.xmethods.net/ve2/index.po

Creating a Web service from a function

module

In this recipe, we will see how we can create a Web service using a Web service creation
wizard from a remote-enabled function module. The function module simply takes as input
an amount (in figures, for example, 1000) and currency such as USD, and then outputs the
corresponding amount in words such as One Thousand US Dollars (similar to the function
module SPELL_AMOUNT).

205

Creating and Consuming Web Services

Getting ready

Since the SPELL_AMOUNT function module is not remote-enabled, it cannot be used
for generating a Web service. One such attempt will result in the following error during
creation of the service.

[Information x

=
0 I_Function module SPELL_AMOUNT either does not exist
or is not RFC-enabled

So, we will copy the function module SPELL_AMOUNT and rename it as
ZST8_MY_SPELL_AMOUNT and make the copy remote-enabled after making
necessary changes in the interface. In this recipe, we will use our remote-enabled
function module as the basis for creation of a Web service. The function group
containing this function module was created by the name ZST8_SPELL.

How to do it...

We will now follow the steps as shown:

1. Call transaction SE80. From the list of the local objects of your user ID, we select
the root node and right-click to access the context menu. We then navigate to
Create | Enterprise Service.

S50 STMP STUD "

v [Class L~ Create 4 Development Coordination »
v (Jprogram Change Program
+ (3 Functior Display 3 Function Group
» [Includes Capy... Web Dynpro 3
» (O Transac - o)
Delete Dictionary Object »
Check » Class Library b
Display Object Directory Entry STETEEE S
Wirite Transport Entry BSP Library 4
Where-Used List Enhancement '
Qther Functions N Business Engineering 3
g 1 Form Object 3
Test Object 3

206

Chapter 12

2. This will start the wizard for Web service creation. On the first screen of the wizard,
a number of radio buttons are presented.

Object Type
() ServiceGroup () Exception Classes
[@Sen!ice Provider j () Service Consumer
()Data Types ()Data Types Enhancement
(OBusiness Object (O Business Object Enhancement
OProcess Agents () Event Provider
[E Back][B Continue] [X Cancel]

3. Since we are creating a Web service, (we will choose the option Service Provider).
The same wizard may be used for creating proxies for a number of object types such
as a Service Consumer, or a Service Group. Then click on the Continue button.

207

Creating and Consuming Web Services

4. Next, a number of options are again presented. You may either create a Service
Provider using the ESR Service Interface, a Service Variant, or an Existing ABAP
Object (Inside Out) option. We will choose the third option Existing ABAP Object
(Inside Out) approach. (A Service Variant uses certain parameters of a service that
are relevant to a particular business scenario. The ESR object option allows us to
create a proxy based on the Outside-In approach. In this case, the service interface
exists in the enterprise service repository.) Then, click on the Continue button.

[Service Provider X

You can create a senvice provider for a new Senvice Interface, for a
existing Service Interface or a ABAP object.

Object Type

Service Provider
Select source

Service Variant

@
(AY
a
a
B Select Destination
B Select Senice
B ESR Object
|8 Enter Package/Request
a
a
a
- |
a
a
a

Service Provider

(JESR Service Interface

G T

() Service Variant

: r_
SenviceGroup (# Existing ABAP Objects (Inside Out)
Object Type
Choose Endpoint

Choose Operations
Configure Senvice

Enter Package/Request
Complete

|@ Back ||@ Continue | |3i Cancel |

5. On the next screen (step of the wizard), we need to enter the Service Definition
name, its description, and the Endpoint type (meaning whether a BAPI, function
group, or a function module) is used as the basis for creating the service. Appropriate
entries are made and the function module option is selected as the Endpoint type.
Then, click on the Continue button.

208

Chapter 12

[= Pron e Definition details

Service Definition Z5TE_MYSERVICE
Short Description My first service

Endpoint Type Function Module -

6. This will take you to the next screen where you are able to enter the name of the
function module, based on which the Web service is to be created. Enter the function
module name in the field provided.

[& Choose Endpoint

Object
Function Module |Z5T8_MY_SPELL REMOUNT 7

[¥|Mapping der Namen

209

Creating and Consuming Web Services

7. Onthe next screen, enter the profile PRF DT IF SEC NO in the Profile field. Then
click on the Next button.

Choose a profile for Security Settings.

Remember that the service does not have any runtime configuration and
therefore cannot be used. Create the Web senice configuration in the
MNetWeaver Admninistrator (transaction WSADMINZ).

@ Object Type
@ Senice Provider
@ Object Type

@ Choose Endpoint
*

a

a

Configure Senice
Enter Package/Request
Complete

SOAP Application
SOAP Application soap:runtime:application:rfc:710 -
Prafile PRF_DT_IF_SEC NO Ad

|| No Authentication and Mo Transport Guarantee

8. 0On the screen that appears now, you will be asked to enter data in the Request
number and the Package fields. We will choose the checkbox Local Object.
Then click on the Next button.

9. Finally, you will be asked to complete your action. Click on the Complete button.

We first created a remote-enabled function module that was used for creation of the Web
service. The essential steps that we need to carry out for creation of a Web service are done
using the wizard. The approach we follow is the Inside-Out approach. We used a function
module as the basis of our Web service—the endpoint. The wizard guides us through the
various steps and essentials for creating a service provider. The Web service is created by
the name ZST8_MYSERVICE, as specified. We did not keep any authentication for the

Web service.

This web service has been created but cannot be called yet. Now we need to make
this configuration of the Web service created. The runtime configuration needs to be
undertaken via transaction SOAMANAGER. We will do this in the next recipe.

There's more...

Instead of the path shown in the recipe, we may use transaction SE37, which directly creates
creating a Web service. From inside the Function Builder, navigate to Utilities | More
Utilities | Create Web Service.

210

Chapter 12

An alternate path is to go to transaction SE80 and then navigate to Edit | Other Object. Then
choose the tab Enterprise Services. Now, enter a name in the Service Definition field and
click on the Create button.

On the Security Settings profile screen, we choose PRF_DT_IF_SEC_NO (meaning without
authentication and no transport guarantee). There are three other possibilities:

» PRF DT IF SEC LOW: Authentication with user ID and password but no
transport guarantee

» PRF DT IF SEC MEDIUM: Authentication with user ID and password
as well as transport guarantee

» PRF DT IF SEC HIGH: Authentication with certificates as well as
transport guarantee

Configuring the created Web service

In this recipe, we will see how we can create the runtime configuration of our Web service.

How to do it...

We will now follow the steps as shown:

1. Call transaction SOAMANAGER. This opens a new browser session. Choose the Single
Service Configuration link on the Service Administration tab.

SOA Management (R3_800;M25;800)

Technical Administration Service Administration | Logs and Traces Monitoring Tools

Single Service Configuration
Administer and configure web services and service consumers

Simplified Service Configuration
Configure web service providers intended for simple web service consumers

Busineses Scenario Configuration
S0A configuration of multiple service providers and service groups

Logical Receiver Determination
Define rules for routing a service call to a provider system

Publication Rules
Create publication rules for service providers and service groups

User Account Management
Manage user accounts and their assignment to provider systems, individual service providers, and service groups

Creating and Consuming Web Services

2. We now need to locate our newly created service. Make sure the Search by listbox
has the value Service selected. Enter zst8+* in the Search Pattern field, and click
on the Go button.

Web Service Administration
Search Design Time object for Web Service Configuration

- Search | Browse

Search By Service, Consumer Proxy or Service Group

Search by: Search Pattern: | zst8* ‘ Field: |Exterr|aIName | in System: | M25/800 Show Advanced Search

Search Results

External Name Namespace Internal Name:
+ (W) ZST8 MYSERVICE urn:zap-com:document:sap:soap: functions: me-style Z5T8_MYSERVICE
Apply Selection

3. This will bring up your service in the results area. Select the service name and click
on the Apply Selection button.

4. The lower part of the screen will show additional settings related to the service in
question. On the Configurations tab, you click on the button Create Endpoint.
The dialog box will appear as shown in the following screenshot:

Service Information

@ Service Mame: * |Z5T8_MYSERVICE |

Description; * |5&r'.riu:e for Service Definition "ZST2_MY SERVICE

Binding Information

New Binding Name: * |binding |

[Apply Settings | [Cancel |

5. Enter a suitable name for the binding. Then click on the Apply Settings button.

6. This will add a new row to the table in the Configurations tab.

Chapter 12

Details of Service Definition: ZST8_MYSERVICE

Back to search

Overview - Configurations Clazsifications Details

[Create Endpoint | | Delete Endpoint || Edit || Display

Service

T

|| zsTa_MvsERVICE

State

Active

7. Click on the Save button.

We created the runtime configuration of the Web service. The service may now be called by
a consumer. You may open the WSDL generated for the given service by clicking on the Open

WSDL document for selected binding or service.

Details of Service Definition: Z5TE_MYSERVICE

Back to search

Overview Configurations Clazsifications Details
Object Status: Services: 1/ Endpoints: 1
Porttype Namespace: urn:zap-com:document sap:soap: functions:mc-style
Porttype Mame: Z5T8_MYSERVICE
Internal Name: Z5T8_MYSERVICE
SOAP Applikation: URN:SAP-COM:S0AP:RUNTIME: APPLICATION:RFC:710
Package Mame: STHMP
Selected Binding: |ZSTB_MYSERVICE::binding

Open porttype WSDL document

Open WSDL decument for selected binding or service
COpen Web Service navigator for selected binding
Dizplay selected Binding's or Service's WSDL URL
Design Time Documentation

In this recipe, we have a created the configuration for our newly created service. Now any

consumer can call the given service using the binding.

Creating and Consuming Web Services

If you go to transaction SICF, you can see your service running, as shown in the
following screenshot:

Virtuele Hosts [Services

Consuming a Web service

In this recipe, we will see how we can create a client proxy based on a given Web service
(using its WSDL document). As an example, we will use the Web service that we created
earlier in this chapter. We will use the Web service wizard from the transaction SEg0. This
will generate the class and other necessary objects that are needed to call the Web service.

How to do it...

We will now follow the steps as shown:

1. Gototransaction SE80, and select the menu option Edit Other Object.

2. 0On the dialog box that appears, choose the Enterprise Services tab and in the
Client Proxy field enter a suitable name. Then click on the Create button.

[M25(2)/800 Object Selection x
Test Objects " Enterprise Services -~ Enhancements][5

) Service Definition

. 5 =t
=) Client Proxy I_zsm_m_oonsnuml _|
") Server Proxy

") DataType

) Exception Class

214

Chapter 12

3. The wizard will then start. The first step will ask for the Source of the Web service.
Choose the option URL/HTTP Destination and click on Continue.

Source

() Enterprise Service Repository
E'G':-URL;‘HTTP Destination K
() Local File

() 1UDD1 Registry

() Service Reqistry

=l

&

"@ Continue ‘ IR Cancel J

m
ol
=

4. For the next step of the wizard, enter the WSDL URL of our Web service binding.
This is the same URL as shown in the Service Definition Overview tab in the
SOAMANAGER transaction.

Details of Service Definition: ZST8_MYSERVICE

Back to search
 Overview | Configurations Classifications Detais

Object Status: Services: 1 /Endpoints: 1

Porttype Namespace: urn:sap-comdocument:sap:soap: functions:mc-style
Porttype Name: ZST8_MYSERVICE

Internal Name: ZST8_MYSERVICE

SOAP Applikation: URN:SAP-COM:SOAP:RUNTIME:APPLICATION:RFC:710
Package Name: STMP

Selected Binding: ?@_l.ﬁ\’SERVICE:'bhdMg

Open po ¢ WSDL document
Open WSDL document for selected binding or service

Open Web Service navigator for selacted bindin:
I DESEL’!V selected Binding's or Service's WSDL URL

esion Time Documentation

Creating and Consuming Web Services

5. Enter the URL in the URL field and then click on Continue.

URL/HTTP
- ™ 1
(»)URL I_cllll,l'allinont-z,l’l.'trs_poIic',r,l'clocurn‘,ant?sap-cIient=E%DDJ
(JHTTP Destination

Path Suffix

|E| Back |||§>j Continue | |x Cancel |

6. You will then be asked to specify the Package and Request number. Choose the

Local Object checkbox and enter a suitable Prefix of the class to be generated.
We will use the prefix zsT8_. Then click on Continue.

Enter Package & Prefix
Package sTME
Prefix Z5T8_ (Optional)
Request/ Task (Optional)
[|Local Object
|@ Back ||B Continue | |3f Cancel |

7. Finally, the screen appears where it is specified that clicking the complete button will
generate the proxy class. Press the Confirm button to complete the action.

This will create the service consumer proxy as shown in the following screenshot. The proxy
by the name ZST8_CO_ZST8_MYSERVICE is created. The relevant class corresponding to the
proxy is also generated and activated along with the necessary methods.

Chapter 12

Fervice Consumer {external definition) _;ZSIB_HYSER'FIC.'E Active
. Properties I External View Internal View IUsed Objects Configuration Warnings
External Key
Type | Source -
MName Z3T8_MYSEEVICE
MNamespace urn:sap-com:document : sap: soap: functions::mc-style
Description
Direction o
Proxy
Proxy Mame ZST8 C0 Z5TE8 MYSERVICE Prefix Z5T8
Description Proxy Class (generated)
Interface
Communication Type o

The method contains the necessary logic for converting the amount based on the function
module used while defining. The input structure corresponds to the importing parameters,
whereas the output structure corresponds to the exporting parameters of the function module
used for generating the Web service. All the necessary objects are generated. In addition,

the relevant structures needed for the Web service call (consumer proxy method call) are

also generated.

In the next recipe, we will see how to create a logical port for the Web service consumer.
After this, the service may be called from a program using the proxy class methods.

There's more...

Apart from WSDL URL, you may use other options as the source of your web service. You may
use a local file that contains the WSDL document pertaining to the service or the enterprise
service repository of a Pl instance. In addition, a UDDI registry (maintained on the SAP server
that provides access to information about published Web services) may also be specified.

Alternatively, a more sophisticated Service Registry may be used as the source. The service
registry is a UDDI v3 complaint registry within an SOA landscape. It may have services
published from activated service interfaces from ESR, or from sender agreements from
Integration Directory. Also, it may be used on ABAP or Java services definitions from AS,
ABAP, or Java, respectively. They provide important information about services along with the
reference to WSDL data. After entering the name of the UDDI registry or service registry the
name of the relevant service may then be specified on the next screen.

Creating and Consuming Web Services

See also

» http://help.sap.com/saphelp nwpi7ll/helpdata/en/fa/82£552b49249
5d8961df56c0fa2dde/content .htm

» http://help.sap.com/saphelp nw70ehp2/helpdata/en/69/8ale9553dc4
baba6026a3db510cadb/frameset .htm

» http://help.sap.com/saphelp nwpi7l/helpdata/en/47/0ae6al4ddbOes8
ael0000000al155369/frameset.htm

» http://www.netweavercentral.com/index.php/2011/consume-a-web-
service-in-abap/old link

» http://sapignite.com/consuming-a-web-service-in-abap/
» http://help.sap.com/saphelp nw04/helpdata/en/81/845£3¢31727d59e
10000000a114084/frameset.htm

» http://help.sap.com/saphelp nwpi7l/helpdata/en/e6/6d40£3fb35c48f
a9fdfsf4e70d49f37d/frameset .htm

Creating a consumer proxy's logical port

In this recipe, we will see how we can create a logical port for the consumer proxy created in
the last recipe.

How to do it...

We will now perform the following steps:

1. Call transaction SOAMANAGER. Follow the the same single service administration
link we used for creation of the Web service in the previous recipe. On the
Search tab, make sure that, instead of Service, the Search by listbox contains
Consumer Proxy. In the Search Pattern, we will enter the prefix of our service,
zst8*, and click on the Go button. This will search and show the consumer proxy
ZST8_CO0_ZST8_MYSERVICE that we created for our service ZST8_MYSERVICE.
Select this and click on the Apply Selection button.

Chapter 12

Search By Service, Consumer Proxy or Service Group

Search by: |Consumer Proxy | Search Pattern: | zsta® | Figld: [ExternalName | in Syst
Search Results

External Name Namespace Internal Hame

- ZSTE_HYSERVME urn:sap- Z5T8 CO_Z5T8 MY SERWVICE

com:document:sap:seap: functions: me-style

Apply Selection

2. Select the Consumer Proxy and click on the Apply Selection button. Note that the
Internal Name will be the same as the proxy generated in the previous recipe.

3. The lower part of the screen will open the details of the proxy definition. On the
Configuration tab, click on the button Create Logical Port. A dialog box will appear.
Enter the relevant details pertaining to your service. Use the same WSDL URL for the
binding shown in the SOAMANAGER transaction for your Web service definition. Enter
any user ID and password that you need to set. You may set the logical port as default
if you like. Then press Enter.

4. This will add a new logical port to your proxy definition.

Details of Proxy Definition: Z5T8_CO_Z5T&_MYSERVICE

Back to search

Overview Configurations | Details.

| Create Logical Port || Delete Logical Port | | Display || Ping Web Service |
Logical Port State Default Port

i3
Z3T8_LOGICAL_PORT Active true

Creating and Consuming Web Services

In this recipe, we created the logical port for our consumer proxy. We created one logical port.
However, a given proxy can have multiple logical ports, only one of which may be the default
port. In the next recipe, we will see how we can call the Web service using the logical port we
have created.

Calling a Web service from an ABAP

program

In this recipe, we will see how we can programmatically call a web service using the proxy
class generated in the previous recipes. We will see the main steps required in coding
the program.

Getting ready

For quickly creating the template code within a program, first create a new program in the
ABAP editor using SE80 and open the code of the program in the right-hand side pane.
Then, in the left-hand side pane navigate to the customer proxy generated under the Service
Consumer node. Select the name of our consumer proxy and simply drag-and-drop from the
left-hand side to the right-hand side pane (within the ABAP editor). The template code

will be generated and added to your program. You may modify the code according to

your requirements.

Object Name
-3 $TMP STUDENTOOS
» (7 cass Library
* (1 Programs
* [J Function Groups
» [Includes
= Enterprise Services
* [J service Provider
* 33 Service Consurmer

v] Data Types
* [J Transactions

220

Chapter 12

How to do it...

We will now dive into the details of the program:

1.

We first declare an object reference to the ZST8 CO ZST8 MYSERVICE proxy class
that is generated. We will name the reference MYPROXY. We then instantiate the
object using the CREATE OBJECT statement. We also specify the logical port name,
ZST8 LOGICAL_ PORT, created in the previous recipe. This is written within a TRY
and ENDTRY statement.

DATA: MYPROXY TYPE REF TO ZST& CO_ZSTE MYSERVICE
= TRY.
CREATE OEJECT MYPROXY
EXPORTING
LOGICAL PORT NAME = 'ZST& LOGICAL PORT'.
CATCH CX_AI_SYSTEM FAULT
ENDTRY.

Then we declare our input and output structures based on the structures
generated during the proxy class generation. The INPUT structure contains

three fields (amount, currency, and language) corresponding to the importing
parameters of our function module. Appropriate values are assigned to them.

data: OUTPUT type Z5T8 Z5TEMY SPELL AMOUNT RESFO .
data: INPUT type Z5T8 ZS5TEMY SPELL AMOUNT

input-amount = "1200°".
input-currency = 'UJSD".
input-language = "EN'.

Finally, we call the method ZST8 MY SPELL_AMOUNT and pass the input
values via the INPUT structure. The result of the execution is the Web service
execution and is in the OUTPUT structure. For printing the words, we can print
the OUTPUT-IN_WORDS-WORD.

E TRY.
CALL METHOD myproxy->Z5T8MY SPELL AMOUNT
EXFPORTING
INEFOUT = input
IMBCRTING
OUTEUT = output.
CATCH CX AT SYSTEM FAULT .
CATCH ZST8 CX ZSTS8MY SPELL BMOUNT EX .
CRTCH CX_AT APPLICATION FAULT .
ENDTRY.

221

Creating and Consuming Web Services

We first declare an object based on our proxy class. Before calling the method for converting
the amount into words we fill the INPUT structure with appropriate values. The two structures
INPUT and OUTPUT correspond to the importing and exporting parameters of the function
module, respectively. The zST8MY SPELL AMOUNT method corresponds to the function
module we initially used for creating the Web service. We call the method and pass the INPUT
structure containing the relevant input values. The Web service is called and returns the result
(amount in words) in the OUTPUT structure.

222

13

SAP Interactive Forms
by Adobe

In this chapter, we will see recipes involving Adobe forms. We will look at:

» Creating nested tables

» Enabling duplex printing in forms

» Using form elements and scripting to create interactive forms
» Working with Adobe offline infrastructure

» Parallel printing of form

» Adding error messages for interactive forms

» PDF object API

Introduction

This chapter explores useful recipes related to SAP interactive forms by Adobe. For an
introduction to forms, see http://wiki.sdn.sap.com/wiki/display/ABAP/
Adobe+Forms+from+Scratch.

They involve two scenarios, print scenario and interactive scenario. In print scenarios, the user
is not allowed to enter data on the form (PDF output) and this type of form has no buttons or
interactive elements. This is not true, however, for the interactive scenarios. The interactive
scenarios are of two types, namely, online and offline. The online scenario requires a
connection with the SAP system while the user makes entries in the form. On the other hand,
the offline scenarios, where user may download the blank form to his or her PC or the form
may be sent through e-mail. The user may then fill the form and send through e-mail and then
the data is extracted and updated in SAP system. There are some special settings needed for
interactive forms while creating them in the Adobe LiveCycle Designer. Validation messages
(or errors) are an important part of the interactive scenarios.

SAP Interactive Forms by Adobe

Scripting may also be used in Adobe forms. These are used for validation and generation of
messages, or adding colors to elements on the form, as well as hiding form elements. They
may be written in FormCalc or Javascript.

A typical program that calls the form in question (and generate its output) for one or

multiple objects in question uses a number of function modules such as FP_ JOB OPEN, FP
FUNCTION MODULE_NAME, the actual function module generating form output (determined
at runtime and stored in a variable) and the function module FP_JOB CLOSE.

The rendering of forms is done in the Adobe Document Services (ADS) that runs on the Java
Stack. You may make the rendering and printing of the forms sequential or in parallel by the
ADS. The form function module does the communication with the ADS in order to generate the
PDF output. However, PDF Object APIs are also available that allows communication with the
ADS. For example, if we have a form received that contains data entered by the user, we can
use the PDF Object APIs to create PDF object instance for the given form and then extract the
entered data from it.

Some new features are only available if you are using the NetWeaver Release 7.02. These will
be covered in this chapter. Throughout the chapter, the terms Adobe forms and forms will be
used interchangeably.

Creating nested tables

In this recipe, we will see how we can create a nested table. A nested table involves two
internal tables, an inner and an outer table.

Before we dive into the details of creating our nested table, we will create two tables types in
the ABAP dictionary. The first type ZST8 T PERNR ADDRESS is based on the line type shown
as follows:

Dictionary: Display Structure
o | PR LS E Hierarchy Display ~ Append Structure...

Structure Z5TE_PERNR ADDRESS Active
Short Description Z5T8_PERNR_ADDRESS

Attributes .~ Components Entry help/check Currency/quantity fields

¥ [EE FFEEa] 1/3
Component Typing Method | Component Type Data Type | Len... Dec... Short Description
PERNE ~ PERSNO HIMC g 0 Personnel number
NAME ¥ ENAME CHAR 5 0Field name

ADDRESS ¥ CHRR20 CHRLR 20 0Char 20

224

Chapter 13

The table type zST8 T PERNR GRADES is based on the on the line type shown as follows:

Structure
Short Description

Attributes . Components } Entry help/check Currency/quantity fields

Z3TE_PERNR_GRADES Active
ZST8_PERMR_GRADES

QEEE [@ll@l‘ﬁ] Predefined Type
Component Typing Method = Component Type | Data Type Len...
[PERNR }'_':_:53 ¥ PERSNO NUMC 8
GRALES Types ¥ IRFGR CHAR 8

There has to be a connecting field or fields between the two. We keep the PERNR employee
number as the connecting field between the two tables. We then create the interface based

on ABAP dictionary type using transaction SFP.

[E M25(3)/800 Create Interface

Interface ZST8_NESTED TABLES INTERFACE
Description nested table interface
Interface Type ABAP Dictionary-Based Interface

We define two variables in the data definition, the interface EMPLOYEE_GRADES and

EMPLOYEE_ADDRESS, as shown in the following screenshot:

B L) (O] @) E) (@

Parameter Name Type assignment Type Name
/1BCDWB/DOCPARAMS TYPE Z SFPDOCPARAMS
EMPLOYEE_GRADES TYPE % ZST8_T_PERMR_GRADES
EMPLOYEE_ADDRESS TYPE % ZST8_T_PERMR_ADDRES

Optional Flag Pass Value

(¥

(¥

sl

225

SAP Interactive Forms by Adobe

How to do it...

We will now carry out the following steps:

1. We create a new form using the transaction SFp. The name of the form is
ZST8 NESTED TABLES EXAMPLE based on the interface defined earlier.

Form ZST8_NESTED TABLES EXAMFLE
Description nested table example
Interface Z3T8_NESTED TABLES INTERFACE

2. Within the context definition of the form, we include the EMPLOYEE ADDRESS
interface from the interface to the context through drag-and-drop. We then
drag-and-drop the EMPLOYEE_GRADES node from the interface to the
EMPLOYEE_ADDRESS node. This will include the EMPLOYEE_GRADES
node under the EMPLOYEE_ADDRESS node.

Context Inactive Generated | Description
~ &Y Z5T8_NESTED_TABLES_EXAMPLE
' EMPLOYEE_ADDRESS Z5T8_t_PERNR_address|
v OO DATA
« O PERMNR E Personnel number
- 0 NAME] Field name
* _D_ADDRESS =) char 20
' EMPLOYEE_GRADES Grades table
¥ DO DATA
* O PERNR =] Personnel number
* O GRADES E Pay Scale Group
[=Hproperties |[@where conditions |[8 Control Levels |[# conditions |
#|E®L) O]
Operator | Operand R Operand
| PERNR |§| EMPLOYEE_ADDRESS-PERNR

3. We will now link the two tables through the PERNR fields. For this, we need to click the
WHERE Conditions tab after selecting the EMPLOYEE_GRADES node. Then we will
enter the PERNR field as Operand 1 and the EMPLOYEE_ADDRESS-PERNR node.

4. Now click on the Layout tab within the Adobe LiveCycle designer. Drag-and-drop the
EMPLOYEE_ADDRESS table shown under the Data View panel to the Form Layout
panel. Initially the nested table is created as shown in following screenshot:

226

Chapter 13

Design View "\ Master Pages ® %% Preview PDF

D. .I.|.|-I.|.I.|.|2.|.I.|.|3

||.|.|4...

||||I—l

=
|

PersNo. |EMPLOYEE_GRADES

Mame . .
“fpesho

5. We adjust the header of the table. We will delete the header line of the inner table
EMPLOYEE_GRADES and adjust the text.

Employee number |} Employee Grades Since Joining .

We created two table types. Then we used them in the interface that is later used in our

form. Within the context definition of the form, we included the EMPLOYEE_ADDRESS
table from the interface to the context through drag-and-drop. Then we included the
EMPLOYEE_GRADES table within the EMPLOYEE_ADDRESS table. After creating the

EMPLOYEE_ADDRESS table on the form layout and making necessary changes, testing

the form on sample data gave the output as shown in the following screenshot:

Employee number |Name City Employee Grades
GRADE 11
00000001 JOHN BRUSSELS
GRADE 14

227

SAP Interactive Forms by Adobe

There's more...

We can modify the header of the table in order to include a one-cell heading. For this we
select the top header row and right-click in order to choose the context menu as shown in
following screenshot:

Cut

Copy
Paste

Clear Del

Wrap in Subform

Insert » Column to the Left
Delete 3 Column to the Right
Select 3 Row Above

Merge Cells Row Below

e X £"‘: Preview PDF

Split Cell Horizontally

Distribute Rows Evenly

Section Above

Section Below

R A TS s A oy Wmrra ATy b Y
o Distribute Columns Evenly DRI
Go to Row... iob]'ect IZIQCC
Palettes [A Ja\—
E —— }RT Type: Text
Name ey “J[Employe

We then choose the option Row Above. This will include a new row. Then select the newly
created row and right-click. From the context menu that appears, choose the option Merge
Cells. This will combine the four cells and make a single cell. We then right-click and choose
option Edit Text and then write the title of the form as EMPLOYEE DETAILS REPORT. The
output of the report is shown as follows:

EMPLOYEE DETAILS REPORT
Employee number |Name City Employee Grades Since Joining
16
00000001 JOHN BRUSSELS
15

If the table is to run on multiple pages, you may set the Page Break Within Content property
for the table to make the table go on multiple pages.

Also, for performance reasons, while definition of the interface, we may also uncheck the
checkbox Pass Value for the tables EMPLOYEE_GRADES and EMPLOYEE_ADDRESS.

228

Chapter 13

See also

» http://blogs.adobe.com/blink/2007/10/best practices with adobe
inte.html

Enabling duplex printing in forms

In this recipe, we will see how we carry out the settings for enabling duplex (double-sided)
form printing for your Adobe form. This will work on printers that have the capability of printing
duplex forms.

We assume that we have two master pages, page 1 and page 2, and we need them to be
printed in duplex form.

How to do it...

Follow these steps:
1. From the Adobe LiveCycle Designer's left-hand pane, select the Master Page root
node. Also, select the root node Page Set under hierarchy tree.
Then on the Object palette, go to the Page Set tab.
Then, choose the Print on Both Sides option from the list box for the printing field.

| object ="q_Accessibility
J Page Set

ame: MYPAGE

priting: -

4. Click the Yes button to continue. The dialog box appears as shown in
following screenshot:

Management of all page sets are controlled by the "Printing” option.
Selecting a "Printing” option will disable the occurrence property for all
page sets in this form. This option is only supported by the latest

wersion Acrobat 8,

Do you want to make this change?

229

SAP Interactive Forms by Adobe

The necessary settings have been made in order to enable duplex printing. However, as
mentioned earlier, we need a duplex printer for the correct printing to take place. When the
form is printed on such a printer, based on the settings, the printing will be done on two-sided
format (that is, duplex).

Using form elements and scripting to create

interactive forms

In this recipe, we will see how we can create a simple interactive form with form elements and
some script written in FormCalc language. We will create an example where we create three
fields on the screen and a button that will calculate the total of the value of the first two fields
and display within the third field.

Getting ready

From the Adobe LiveCycle Designer, choose the menu option Edit and then select Form
Properties. On the Defaults tab, within the Preview block, select Interactive Form within
the Preview Type drop-down list and Acrobat 8 (Dynamic) XML Form for the XDP Preview
Format drop-down list.

Form Properties =25

Info | Defaults |performance | Varizbles | Compatibiity

Locale

Default Form Locale: English{LISA) -
Scripting
Default Language: | FormCalc - | Default Run At: | Client -

Preserve Scripting Changes To Form When Saved:

@ Automatically (Script-based state changes will be saved locally in an insecure
fashion. Mot allowed for certified forms)
Manually {Use preSave and initialize scripts to save, validate, and restore
state information.)

Preview

Preview Type: |Inberach've Form ~ ‘ ‘ Generate Preview Data... |
DataFie: @
¥DP Preview Format: | Acrobat 8 (Dynamic) XML Form M

Server
Override Default Rendering

OK || Cancel || Help

230

How to do it...

Follow these steps:

Chapter 13

1. We create a new interface. We add three amount fields in the global definition of

the interface.

(84][8))| [O ()) 2
[variable Name Type assignment | Type Name
AMOUNTL TYPE & BETRG
AMOUNTZ TYPE 8 BETRG
TOTAL TYPE @ BETRG

Default Value

2. We create a new form using the interface and include the three variables defined
in the interface. On the layout editor, add three fields for each of the three variables
created earlier in the context. This will create three decimal fields on the layout.

3. Then add a button and give it the caption Total.

Design View \Master Fages IZI\XML Source IZI\Z Preview FDF =

|||||\|2||||||||3||\|||||4|\||||||5|||||\||G|||I||||_"’|\

4. For the Amount 1 and Amount 2 fields, we set the Display Pattern drop-down list as

$9,999.99 using the Field tab on the Object palette.

[{object = 4_Accessiiity

Field {\c‘alue {Einding

7Tl " * Decimal Field -

Caption: Amount 2
Bppearance: Sunken Box hd

[Limit Length to Visible Area

7] Comb of characters
Display Pattern: §9,999.99 -

Edit Pattern: -

231

SAP Interactive Forms by Adobe

5. For the two fields, we will set the Type drop-down list as User Entered - Required on

the Value tab.

1] object =] Accessiility

Field 1 Value {Einding

(§"==Hl User Entered - Required -

6. While being in the Design View window, click on the button that was created in the
previous steps. Make sure the Scripting palette is visible. Then, from the list box of
Scripts, choose the Click event. The script editor appears as shown in the following
screenshot. Write the following code in the script editor and then activate.

Show: dick®

TOTAL = AMCOUNT1

_L 1 @ 1mo%

.ﬁx

data.#subform[0] .Buttonl::click:

+ AMOUNTZ

-0 [@) =

- (FormCalc, client)

We can see the PDF Preview window by clicking on the Preview PDF tab in the layout editor.
We can only enter a maximum of two decimal places. Any amount entered in the first two
fields is shown in the format specified. For example, if we enter 1200. 78, it will be changed
10 $1,200.78. When the Total button is pressed, the two values are totaled and shown in the
Total field. Upon clicking the Total button, the script for the button-click event of the button is
executed. The totaling is done and then displayed.

[Design view "] Master Pages =] XML Source | Preview POF &

Please fill out the following form. You cannot save data typed into this form.
Please print your completed form if you would like a copy for your records.

Amount 1

Amount 2

Total

1

Total

i
»

$1,200.78

$5,678.78

[

$6,879 56

232

Chapter 13

There's more...

We may also test the form through the Test button of transaction SFP. In this case, the
SFP transaction will take us to the function module test screen. For testing the interactive
scenario, the FILLABLE field for the /1BCDWB/DOCPARAMS structure must be passed
the value 'X'. This will open the PDF form in the interactive mode, as shown in the
following screenshot:

Structure Editor: Change /1BCDWB/DOCPARAMS)|
Sl & W4 » M Edcolumn Metadata [ER

La| COU(F|U| D| DARATAR RE(RE|RE

| - g .
L X 0 Entries

» http://www.adobepress.com/articles/article.
asp?p=1021020&segNum=4

Working with Adobe offline infrastructure

In this recipe, we will see the usage of the Adobe offline infrastructure. The Adobe offline
infrastructure allows you to process user-filled PDF forms (received by e-mail), and then
extract data from it and update in the SAP database. It allows you to implement offline
interactive scenario when you have the user to fill the PDF form offline and then send
back to you at a given e-mail address.

The inbound processing of the form sent via e-mail requires a configuration setting in
transaction so50 (Exit Rules for Inbound Processing). In our context, it lets us specify how the
received PDF form attachment at a given e-mail address is to be handled. The generic main
inbound handler class CL._FP_INBOUND_ HANDLER should be entered in the Exit Name field
for the receiving e-mail address.

Once an e-mail is received, the PDF attachment is forwarded for processing to the generic
inbound handler, which retrieves the entered data and then calls the application inbound
handler relevant to the form in question.

In addition, an (application) inbound class handler based on the interface IF_FP OFFLINE
must be created and necessary code written in its methods. This class is used for processing
the received form data in XML format (received from the generic handler) and extract the data
entered by the user in it by converting them to ABAP variables.

233

http://www.adobepress.com/articles/article.asp?p=1021020&seqNum=4
http://www.adobepress.com/articles/article.asp?p=1021020&seqNum=4

SAP Interactive Forms by Adobe

The advantages are that with minimal configuration and coding, the desired requirement may
be achieved. This recipe will cover the configuration of transaction s050 and the inbound
handler class (and its method coding).

The standard SAP examples were referred to while creating this recipe. This includes
the inbound handler class CL. FP OFFLINE FP TEST IA 01 and the Adobe form
FP_TEST IA 01.

Getting ready

As a prerequisite, the basis consultant must do the settings for the activation of the SMTP
plug-in in the SAP system. This ensures that e-mail communication takes place and is
received without problems.

An ABAP program must be created that will send the PDF form to the respective user.

This will then be filled by the user and then sent to the specified e-mail address in SO50

(and our inbound processing will take on from there). The program will use the Business
Communication Service. An important thing to make sure is that when the function module
for the Adobe form is called, the FILLABLE field of parameter structure /1BCDWB/DOCPARAMS
must be assigned the value F (and not X).

Properties - Definition . Value Range |
¥EEEE F
Single Vals

1 Fix.val Short Descript.

= Print Form
b4 Interactive Form with Additional Usage Rights
i) rInte.-l'clct'n.fs.- Form Without Additional Usage Rights
F

L

In addition to the earlier, the value F means Activates Special handling for Offline
Interactive Scenarios.

For the sake of this recipe, we assume that we have created two fields FIELD1 and FIELD2
in the interface and the context respectively. The user has entered the values of the FIELD1
and FIELD?2 fields in the form and these values are to be extracted.

How to do it...

We will now carry out the following steps:

1. The appropriate setting must be done in the transaction so50. Call the transaction
S050. The screen appear as shown in the following screenshot:

Exit Rules for Inbound Processing (Maintenance Mode)
F

J OO [&]FEH]E) S) (@]

Communication Type Recipient Address Document Class | Exit Name Call
Internet Mail o 1Cs CL_APPOINTMENT_REPLY 1
Internet Mail i example@packtpub.com * CL_FP_INBOUND_HANDLER 2

2. Click the T button. A new row appears as shown. Enter the class name

CL FP INBOUND HANDLER in the Exit Name field. Select the Communication

Chapter 13

Type as Internet Mail. Enter the recipient address at which the user will send the

filled form. For example, example@packtpub.com.

3. Next, we will create the inbound handler class.

4. Call transaction SE24 and enter the name of the inbound class that you like to create

(inour case ZST8 OFF HANDLER).

[E M25(1)/800 Create Class ZST8_OFF_HANDLER x

Class Z5T8_OFF_HANDLER
T

Description Lofﬂine handler !

Instantiation Public -

Class Type

(#)Usual ABAP Class
" Exception Class

" Persistent class
"I Test Class (ABAP Unit)

| Final

[+ save ||g|

5. We will include the interface IF FP_OFFLINE. This will include two methods in our

class (namely, GET INSTANCE and HANDLE_PDF).

Class Interface Z5T8_OFF_HANDLER Implemented / Active

Properties | Interfaces | Friends + Attributes - Methods |' Events | Types - Alases
> pramter [8_excepeon 1] (B B (W IE[] (@] BUDE (@15] e
_Method Level Visibility Method type = Description
IF FP OFFLINE~GET_INSTANCE jStatic‘. Method Public Get Instance for Inbound Handler
IF_FP_OFFLINE~HENDLE PDF Instance Method Public Inbound Handler for Interactive PDF Form

235

SAP Interactive Forms by Adobe

6. Asimple one line code needs to be added to the GET INSTANCE method as

shown below:

Method | IF_FF_OFFLINE~GET_ INSTANCE

ENDMETHCD.

1i EIMETHOD IF_FP OFFLINE~GET_ INSTANCE.
2 \‘ CREATE OBJECT RO INSTANCE TYPE ZS5TE OFF HANDLER.
3

7. The method HANDLE PDF code is then written. Within the HANDLE PDF method,
we first call the function module FP_FUNCTION MODULE NAME. The form name
parameter of the function module is supplied with the form name stored in the
method parameter IVv_FORM_ NAME. The inbound function module name is then

imported in the variable INBOUND FM. The code is shown in the following screenshot:

ENDTRY.

DATA : INBOUND FM TYPE FUNCHAME.
TRY.
CALL FUNCTICN 'FP_FUNCTION MODULE MAME'
EXPORTING
I_NAME = IV_FORM NAME
IMPORTING

EV_FUNCHAME INBOUND = INBOUND FM.

CATCH CX FP API REPOSITORY CX FP API USAGE
CX_FP_API_INTERNAL.

8. We then declare variables corresponding to the two data fields defined in the context.
The inbound function module is then called that transforms the XML data of the form

into the variables MYFIELD1 and MYFIELD2 of our class.

DATA : MYFIELD1 TYFE
DATA : MYFIELDZ TYFE

EXPORTING
IV_XML_DATR =

IMPORTING
FIELD1 =
FIELD2 =

EXCEETIONS
USAGE_ERROR
SYSTEM_ERROR
INTERNAL ERROR
OTHERS

[T U R

charl0.
charld.

CALL FUNCTION INBOUND FM

IV_XML

MYFIELD1
MYFIELDZ

236

Chapter 13

9. The values of the two fields may then be saved into the database (for testing purpose,
we save it in a cluster in a table ZST_TAB under cluster ID ZA under key with value
in MYFIELD1).

export myfieldl from myfieldl myfield? from myfield?2
to database zst tab(ZA4) id myfieldl.

10. Next, we need to connect the inbound class created with the form in question.
For this we will go to transaction SFP and enter the name of the class created in
the previous steps in the Properties tab of the form under consideration.

Form L5TE_INTERACTIVE_FORM Active

. Properties | Context Layout

Description Test

Layout Type Standard Layout -
Interface Z5T8_INTERACTIVE INTERFACE
Inbound Handler Z5T8_OFF_HANDLER

Within the mail-sending program, the assignment of F for the FILLABLE field adds necessary
information to the attached PDF relevant to the offline scenario. Once the form is filled and
sent back by the user to the e-mail address specified in transaction S050, it is handled by the
Adobe Infrastructure offline, that passes it and the XML data contained in it to the inbound
handler class.

The main method HANDLE PDF is used for transforming the XML data entered in the form
into data variables. The form name and the data in XML form are passed to the method
through the parameters IV_FORM and IV_XML respectively. We first get the function module
corresponding to our form that allows the transformations of the XML data into ABAP variables
corresponding to context data. The FP_ FUNCTION MODULE function is passed the name

of the form name contained in importing parameter Iv_FORM and then the function

module corresponding to EV_FUNCNAME _INBOUND parameter is imported and stored

in INBOUND_FM. The function module whose name is stored in variable INBOUND FM is

then called and supplied with the XML Data (contained in Iv_XML). The function module
transforms the XML and the returned ABAP data is stored in FIELD1 and FIELD2 variables.

237

SAP Interactive Forms by Adobe

» http://help.sap.com/saphelp nw73/helpdata/en/4a/
a193d2acd5007fel10000000a42189¢c/frameset . htm

» http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/f091d8bb-7bce-2b10-¢c192-9d91090c6be9?QuickLink=index&overr
idelayout=true&37804302173927

Parallel printing of form

In normal circumstances, we will have a sequential rendering and printing of PDF forms by
the Adobe Document Services. In this recipe, we will see how we can enable parallel printing
through a small change in the code.

In the newer release, a special parameter has been added to the function module parameter
FP_OPEN. It is recommended to set the PARALLEL parameter value to 'X' when there are
more than thousand forms to be printed.

For having print request to be processed in parallel, the Adobe Document Services must be
running on a Java Stack 7.2 or higher.

How to do it...

Follow these steps:
1. First, we define a structure that is based on the dictionary structure
SFPOUTPUTPARAMS.
2. The PARALLEL field of the structure must be assigned the value of 'X'.

Finally, the function module FP_JOB_ OPEN is called. For simplicity sake, we have only
shown the PARALLEL field assignment. For the changing parameter of the function
module FP_JOB_OPEN, the structure MYOUTPUTPARAMS is passed.

data :
myoutputparams TYPE sfpoutputparams.
myoutputparams-parallel = "X'.

* Opening print job
CALL FUNCTION 'FF JOE OFEN'

CHAMNGING

ie outputparams = myoutputparams
EXCEPTICHS

OTHERS = 1.

238

http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f091d8bb-7bce-2b10-c192-9d91090c6be9?QuickLink=index&overridelayout=true&37804302173927
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f091d8bb-7bce-2b10-c192-9d91090c6be9?QuickLink=index&overridelayout=true&37804302173927
http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/uuid/f091d8bb-7bce-2b10-c192-9d91090c6be9?QuickLink=index&overridelayout=true&37804302173927

Chapter 13

When values 'X' is passed for the field PARALLEL, the ADS performs parallel printing of
adobe forms. This involves usage of multiple processors for the rendering and printing of the
generated forms. This parallel rendering significantly increase the performance particularly
when the total number of forms to be processed are greater than 1000.

See also

» http://help.sap.com/saphelp nw73/helpdata/en/48/5849326b6a41379
c4d551labfc2525/content .htm

Adding error messages for interactive forms

In this recipe, we will see how we can add error messages to interactive forms. We will see
how a Date input field may be set to produce error messages when a wrong date is passed.

How to do it...

Follow these steps:

1. On the Object palette of the Date panel, select the Value tab.

| object =" Accessiilty
Field h'alue '{Einding

Type: Lser Entered - Required -

Default:
Empty Message:

Validation Pattern: Y -MM-DD -

Validation Pattern Message: Errar
Date format invalid -

2. Select a validation pattern from the list box provided.

Select the Error checkbox and in the Validation Pattern Message area and enter the
message that you like to be displayed.

4. Activate your form.

239

http://help.sap.com/saphelp_nw73/helpdata/en/48/5849326b6a41379c4d5511abfc2525/content.htm
http://help.sap.com/saphelp_nw73/helpdata/en/48/5849326b6a41379c4d5511abfc2525/content.htm

SAP Interactive Forms by Adobe

When the user enters in the required format, no error is displayed. When a wrong date is
entered, the error is shown as shown in the following screenshot:

Adobe Reader

'.6.' Date format invalid

Ok

The error that you defined in the Validation Pattern Message area is displayed, and it is an
error since we have checked the Error indicator.

» http://help.adobe.com/en US/LiveCycle/9.0/designerHelp/index.
htm?content=000412.html

PDF object API

The PDF object API allows communicating with the ADS and carrying out necessary functions
from an ABAP program. These include creation of forms and extraction of data, and so on.

In this recipe, we will see the code that will allow you to communicate with the ADS in order
to generate a PDF form object for a filled PDF form and then extract necessary data from it.
We assume that we are not using the Adobe offline infrastructure.

There are a few classes and interfaces involved. The factory class CL_FP is used for creating
the PDF document object instance that is based on the class CL._FP_PDF_OBJECT (using
interface IF_FP_PDF OBJECT). The main implementation class for the PDF object is
CL_FP PDF OBJECT.

In this recipe, we will see how a filled form may be programmatically processed using the
ADS functions and then the entered data within the form may be extracted. We assume that
the form to be processed is stored in the variable MYFORM having type XSTRING. The recipe
takes on from there. Only the part that is relevant to the instantiation of the PDF object and
extraction is shown in the recipe.

240

http://help.adobe.com/en_US/livecycle/9.0/designerHelp/index.htm?content=000412.html
http://help.adobe.com/en_US/livecycle/9.0/designerHelp/index.htm?content=000412.html
http://help.adobe.com/en_US/livecycle/9.0/designerHelp/index.htm?content=000412.html

Chapter 13

How to do it...

Follow these steps:

1. We first need to declare variables for the factory class interface IF_FP and the
interface IF_FP PDF OBJECT.

DATZ: MY FP TYPE REF TC IF FP VALUE IS5 INITIAL.
DATAZ: MYPDFOEJECT TYPE REF TQ IF FP EDF OBJECT VALUE IS5 INITTIAL,
EXCEPTION TYPE REF TO CX ROOT.

2. The static method GET REFERENCE of the CL._FP interface is then called and the
object returned is stored in MY FP.

MY FP = CL_FP=>GET REFERENCE().

3. Next, the PDF object is then created using the CREATE PDF_OBJECT method of
the CL_FP class. The value ADS is passed for the CONNECTION parameter. Then the
SET_DOCUMENT method is called and the PDF data contained in the xstring MYFORM
is assigned to it.

MYPDFOBJECT = MY FP->CREATE PDF OBJECT (CONNECTION = 'AD3").
MYPDFOEJECT->SET DOCUMENT (PDFDATA = MYFOEM).

4. The SET EXTRACTDATA method of the class CL. FP_PDF OBJECT is then called
followed by the EXECUTE method.

MYPDFOBJECT->5SET_EXTRACTDATA().

MYPDFOBJECI->EXECUIE().

5. The GET_DATA method is then called.

DATZ: MYXMLDATA TYPE XSTRING.
MYPDFOBJECT->GET DATA (IMPORTING FORMDATA = MYXMLDATA).

6. The entire block of code may be placed within the TRY and ENDTRY statements and
the Exception class CX FP_RUNTIME SYSTEM may be used.

CATCH CX FP_RUNTIME SYSTEM INTO EXCEPTION.

241

SAP Interactive Forms by Adobe

We initially declare references to the factory class CL_FP and the main implementation

class CL._IF PDF OBJECT (using appropriate interface names). The static GET REFERENCE
method the CL_FP class is then called and an object is instantiated belonging to class CL_FP.
This is pointed to by the reference variable MY FP.

The CREATE PDF OBJECT method of the factory class CL_FP is then called to create the
PDF object instance, the reference to which is stored in the variable M\YPDFOBJECT.

The SET DOCUMENT method is called for the variable MYPDFOBJECT in order to link the PDF
data stored in the MYFORM xstring. The SET EXTRACTDATA method is then called in order to
specify the extraction of the entered data in the form. The Execute method allows the PDF
form to be passed to the ADS and the extraction of data to takes place.

It is only at the EXECUTE method that the ADS comes into action (the Execute method
triggers execution of all method beginning with SET). The data entered in the form is
extracted and is made available in XML format. Once the extraction has been done, the
GET DATA method may be called in order to read the form data into the xstring XMLDATA.
We can use transformations to place the data in ABAP variables.

See also

» SAP Interactive Forms by Adobe, Andreas Deutesfeld, Stephan Rehmann, Thomas
Sztics, Philipp Thun, Jirgen Hauser, SAP press

» http://wiki.sdn.sap.com/wiki/display/ABAP/Reading+PDF+attachmen
t+from+sap+inbox+through+ABAP

» http://help.sap.com/SAPhelp nw70/helpdata/en/46/25ed5cb2bc00c3e
10000000al1466f/frameset .htm

» http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/4006d93c-3eed-2cl0-ad9%b-dllc4618c4e9?QuicklLink=index&overr
idelayout=true

242

14

Web Dynpro for ABAP

In this chapter, we will see recipes involving Web Dynpro for ABAP. We will look at:

» Creating trees

» Creating navigation lists

» Creating tabstrips

» Displaying error messages

» Calling dialog boxes of the same component

» Displaying Adobe forms in Web Dynpros

Introduction

This chapter explores useful recipes related to Web Dynpro for ABAP. The Web Dynpro
Development framework may be accessed using the transaction code SE80. Then, from the
listbox on the left pane, select Web Dynpro. We will start with a discussion of the interfaces
generated in Web Dynpro components.

Web Dynpro for ABAP

Within a Web Dynpro component, a number of controllers exist, such as the component
controller, the window controller, and the view controller. We may add our own attributes and
methods to the various controllers. Each controller has a private interface (local interface)
generated during design time. From the transaction code SE80 and Web Dynpro selected,
you may use the menu path Goto | Controller Interface to see the details of this interface.

= window Edit Goto | Utiliies(M) Environment System Help

@ Online Text Repository Browser % | @
Controller Interface Ctrl+Shift-+F1
Web Dynpro| Text Symbok 5T8 U

Object directory ent
&= |P%yg ey @
Documentation

@ ABAP Unit Browsg Transktion
£ MIME Repository Application Help " Windd
= Repository Brows Back F3

For the component controller the name of the interface is IF_COMPONENTCONTROLLER. For
the view controller, the name of this interface is of the format IF_<VIEWNAME>, and for the
window controller it is IF_<WINDOWNAME>.

The attribute WD_THIS contained within the controller is a reference to the local interface in
question. Awd_get_api () method is defined within the interface and provides a set of APIs
(controller-specific functions) related to the controller in question.

The type of interface reference returned by the Wb_GET API method depends on the
controller for which it is used. For the component controller, the interface is IF WD
COMPONENT. In case of the view and window controllers, the IF WD VIEW CONTROLLER
interface is returned.

Both the interfaces, IF_WD_VIEW_CONTROLLER and IF_WD_COMPONENT include the
interface IF_WD_CONTROLLER.

Class Builder: Display Interface IF_ WD _COMPONENT
o | PREDE) & 22 FE & | 53 Source Code-Based

Interface [1F_wp_coMpoNENT | Implemented / Active

.~ Properties / Interfaces I/Attributes l/Methods L/Events I/Types L/Aliases]
B] =

| Includes J\ M... | Description
IF WD CONTROLLER | [[] Web Dynpro: Controller Interface
0

Chapter 14

The API provides useful methods for Web Dynpro programming. The interfaces provided
contain a number of useful methods including generation of messages and creation of dialog
boxes possible through providing access to the Message Manager and Window Manager
(this will be discussed in the recipes in this chapter). The IF_ WD CONTROLLER method
provides the GET MESSAGE_MANAGER method required for generating messages, such

as error messages that appear on the user screen where an incorrect input is provided.

The GET WINDOW MANAGER method is the method provided by the IF_WD_COMPONENT
interface for generating dialog boxes.

Though the window and view controllers use the interface, some methods such
as GET CURRENT ACTION can only be called from a view controller (from the
WDDOBEFOREACTION method).

Creating trees

In this recipe, we will see how we can display a tree in our Web Dynpro application. We will
create a tree that will display the employee department-wise data, that is, nodes showing

department names, each of which when opened will display a list of employees within the
department along with the employee names.

For the sake of this recipe, we assume that we have an internal table DATA TAB comprising
of three fields, department, pernr, and sname containing the department name, employee
number, and the employee names respectively sorted according to the department name.

types : begin of ty tab,
department type char3h,
pernr type persno,
sname type Sname,
end of ty tab.

data: wa_ tab type ty tab.
data: data tab type standard table of ty tab.

How to do it...

We will now follow the steps as shown:

1. We first define a context node TREE_NODE. The TREE_NODE context node has a
cardinality of 0. .N and the Singleton property should be Off. An IS_OPENED
attribute will be based on the type WDY BOOLEAN.

245

Web Dynpro for ABAP

2. Within the TREE_NODE context node there is another node, TREE NODE ITEM,

which is also a non-singleton node having cardinality 0. .N. An attribute ITEM TEXT

is created within the TREE NODE ITEM node. The ITEM TEXT attribute has a
type STRING.

Context COMPONENTCONTROLLER
~ () CONTEXT
~ [&] TREE_NODE
~ [2] TREE_NODE_ITEM
- S ITEM_TEXT
* 93 TREE_NODE_TEXT
+ 93 IS_OPENED

3. We will then define a TREE Ul element in our view layout. We create a TREE Ul
element along with two subelements. These are based on TreeNodetype and
TreeItemtype, having the names MY NODES and MY ITEMS, respectively.

- [MYNODES
. MYITEMS

4. We bind the TREE Ul element datasource property with the TREE_NODE context
node. For MYNODES, the text property is bound with the TREE_NODE . TREE_NODE _
TEXT attribute. Likewise, for MYITEMS, the text property is bound with the TREE
NODE.TREE NODE ITEM.TREE ITEM TEXT attribute. The IS OPENED attribute of
the context node is assigned to the expanded property of the MYNODES subelement.

5. Next, we will write the code into the WDDOINIT method of the view created. We define
reference variables for the context nodes root node, TREE_NODE, and ITEM_NODE.
We also define data variables pertaining to the ELEMENT TREE NODE element and

the ELEMENT TREE NODE_ITEM element.

DATA root node TYPE EEF TO IF WD CONTEXT NODE.
DATAR TREE NODE TYPE REF TC IF WD CONTEXT ELEMENT.
DATA ITEM NODE TYPE REF TC IF WD CONTEXT NODE.

DATA NODE TYPE WD THIS->ELEMENT TREE NODE.
DATA ITEM TYPE WD THIS->ELEMENT TREE MNODE ITEM.

246

Chapter 14

We then get the reference to the TREE_NODE context node by calling the
GET_ CHILD NODE method. The reference is stored in root node.

root node
HAME

WD_CONTEXT->GET_CHILD NODE (
WD_THIS->WDCTX_TREE NODE).

Next, we populate the context nodes with appropriate data that may be displayed in
the tree.

We run a loop at the DATA TAB, the table that contains the department name with
employee name and numbers. We place a AT NEW DEPARTMENT statement within
which we assign the department name to the NODE structure corresponding to our
TREE_NODE context node. We then call the BIND STRUCTURE method of the
root_node context node and supply the data to be added to the node's element
collection. We then get the reference to the TREE_NODE _ITEM child context node
and store it in the ITEM_NODE variable (to be used later within the loop).

Outside the AT .. ENDAT block, we use the CONCATENATE statement in order to
combine the personnel number and name and store it in the ITEM-ITEM TEXT
variable. This is then added to the ITEM NODE context node's collection using the
BIND STRUCTURE method.

LOOF AT DATA TAB INTC WA DATA.
AT NEW DEPARTMENT.
NODE-TREE_NODE TEXT = WA DATA-DEPARTMENT.
TREE_NODE = root_node->BIND STRUCTURE
NEW_ITEM = NODE
SET INITIAL ELEMENTS = ABAP FALSE).
ITEM NODE = TREE NODE->GET CHILD NODE (
NAME = WD THIS->WDCTX TREE NODE ITEM)
ENDAT.

CONCATENATE WA DATA-PERNE WA DATA-SHAME THNTO
ITEM-ITEM TEXT SEPARATED EBY '-'.

ITEM NODE->EIND STRUCTURE |
HEW_ITEM = ITEM
SET_THNITTAT. ELEMENTS = ABAF FALSE).

ENDLOCE.

247

Web Dynpro for ABAP

We create a TREE Ul element on the view layout. We create two subelements for the TREE
element; one is the TreeNodetype type and the other TreeItemtype type. The MYNODES
subelement (of type TreeNodetype) and MYITEMS subelement (of type TreeItemtype)
correspond to the department names, and the employee names and number respectively

in the final display. Appropriate bindings are defined for MYNODE and MYITEMS with relevant
context data node attributes.

A loop is used to populate the data for the TREE_NODE context node. We kept the IS _OPENED
attribute as a space while populating the data for the TREE_NODE context hode and its child
node TREE_NODE_ITEM. When displayed, the department nodes are not expanded. When
the application is run, within the browser, we see a list of departments as shown in the
following screenshot:

Department Wise Data

-
F Human Resources

F Information Technology

When the relevant nodes are expanded, the employees within the departments are displayed
along with their number and name, as shown in the following screenshot:

Department Wise Data

-

 Human Resources
= 00000012-Andrew Haynes
= (0000016-Krista Maine
= 00000017-John Taylor

w Information Technology
= 00000020-Peter Anderson
= 00000021-James Philip

Creating navigation lists

In this recipe, we will see how we can display data in the form of a navigation list. The
navigation list is similar to a tree. However, the nodes appear in expanded form when
displayed and may not be compressed. The entire navigation list may be expanded and
compressed (however, not the data nodes within it).

248

Chapter 14

We assume that we have an internal DATA TAB table comprising of three fields,
department, pernr, and sname, containing the department name, employee number,
and the employee names respectively in sorted order according to the department name.

types : begin of ty_tab,
department type char3s,
pernr type persno,
sname Lype Sname,
end of ty tab.

data: wa_tab type ty_tab.
data: data tab type standard takle of ty tab.

How to do it...

We will now see the steps required to create a navigation list:

1. We will first create the context node related to the navigation list in the component
controller. We create a context node by the name NAVLIST.

[M25(1)/800 Create Modes

= =1l
Mode Name NAVLIST|

L =]
Interface Node No -
Input Element (Ext.) Mo -
Dictionary structure
Cardinality 0..n -
Selection 0.1 -
Init. Lead Selection MNa -
Singleton Mo -
Supply Function

IV’ Add Attributes from Structure HV Additional Node]

2. The Init Lead Selection field must be set to No (since, in this case, we do not require
lead selection and its initialization). The Singleton property of the node must be set
as No. The Cardinality field issetas 0. .n.

249

Web Dynpro for ABAP

3. We then add three attributes to the context node NAVLIST, namely DISPLAYED
TEXT, PERNR, and IF SELECTED based on the type STRING, PERSNO, and
WDY BOOLEAN, respectively.

4. We then add a recursive node to the NAVLIST context node and name it

NAVLISTREC. Right-click on the NAVLIST context node and from the context
menu that appears, navigate to Create | Recursive Node.

[E- M25(1)/800 Create Recursion Node b
MNode Mame MAVLISTREC
Repeated Mode COMPONENTCONTROLLER . HEVLIST |5‘?E1; Select |

vf Additional Attribute |[%]

5. We then drag-and-drop the context node NAVLIST from the component controller to
the relevant view controller (define the mapping).

6. Next, we will create the navigation list Ul element on the Web Dynpro view. Right-click
on the ROOTUIELEMENTCONTAINER option from the right pane of the layout editor
and choose the context menu option Create Element. Enter Navigation in the ID
field and choose the type NavigationList in the pop up that appears.

ID Nawvigation

Typ |MavigationList -

[v]%]

7. Rightclick on the NAVIGATION node in the right pane of the layout editor and choose
the insert header option from the context menu that appears. This will add the
EXPANDABLETITLE header to the navigation list.

+ [] CONTEXT_MENUS
~ [] RODTUIELEMENTCONTAINER
- & HAVIGATION
Iy =1
* [EXPANDABLETITLE [Header]]

250

8. Enter the text Department Wise List in the title property.

Properties (ExpandableTitle)

D
expandable
expanded
title

Events
onToggle

EXPAMDABLETITLE

v
Department Wise List

For the defined navigation list, we will set the itemSource property as the

MAIN.NAVLIST context node defined earlier. For the itemText property,
we set the value as the DISPLAYEDTEXT attribute of the context node.

Chapter 14

Property

Properties (MavigationList
ID

contentHeight
contextMenuBehaviour
contextMenuld
enabled

temSelectable
temSource

temText

tootip

visible

Events

onselect

Layout Data (FlowData
cellDesign

wEutter

Value

HAVIGATION
0
Inherit

< %]

MAIM.MAVLIST
IM AIM.MAVLIST.DISPLAYEDTEXT

Visible

padless
Maone

Binding
I
El
I
|
&
= &
1
|

251

Web Dynpro for ABAP

10.

11.

12.

13.

14.

15.

16.

17.

Once this is done, we will see the navigation list added in our layout editor,
as shown in the following screenshot:

Department Wise List

MAIH.NAVLIST.DISPLAYEDTEXT
MAINNAVLIST.DISPLAYEDTEXT
MAIN NAVLIST. DISPLAYEDTEXT
MAIN NAVLIST. DISPLAYEDTEXT

MAIH.NAVLIST.DISPLAYEDTEXT
WMAIN NAVLIST. DISPLAYEDTEXT
WMAIN NAVLIST. DISPLAYEDTEXT
WMAIN NAVLIST. DISPLAYEDTEXT

MAINNAVLIST.DISPLAYEDTEXT
WMAIN.NAVLIST. DISPLAYEDTEXT
WMAIN.NAVLIST. DISPLAYEDTEXT
WMAIN.NAVLIST. DISPLAYEDTEXT

The next step is to write the code for populating the context node with the appropriate
department data that is to be shown in the navigation list.

Appropriate variables are first defined for the navigation list node (NODE NAVLIST)
and the navigation list recursive context node (RECNODE).

Also ELEMENT NAVLIST is defined as a reference to a context element using
interface IF_WD_CONTEXT ELEMENT.

DATA NAVLIST TYPE WD THIS->ELEMENT NAVLIST.

DATA NODE NAVLIST TYFE REF TC IF WD CONTEXT NODE.

DATE ELEMENT WAVLIST TYPE REF TO IF WD CONTEXT ELEMENT.
DATE RECHODE TYFE REF TC IF WD CONTEXT NHODE.

The next step is to write the code for populating the data within the navigation list. We
run a loop at the DATA TAB internal table that contains data of the department and
the personnel number and names.

At the beginning of a new department, we use the AT NEW DEPARTMENT statement
to add data to the context node NAVLIST.

The GET_CHILD NODE method is called to get a reference to the NAVLIST context
node; the reference is stored in the NODE_NAVLIST navigation list node. The
NAVLIST structure is assigned the department name. The IS_SELECTABLE
property is kept as false.

The BIND STRUCTURE node is then used to add the department name to the
NAVLIST context node element collection. The reference to the added element

is returned and stored in ELEMENT NAVLIST. The GET CHILD_ NODE method is
then called to get the reference to the NAVLISTREC recursion node for the element
referred to by the ELEMENT NAVLIST variable (this reference is stored in RECNODE)
to be used later.

252

Chapter 14

18. Outside the AT .. ENDAT block is the area that is executed for all rows in the data
internal table DATA TAB. This area pertains to the employee data (employee name
and employee). We use the NAVLIST structure in this block.

19. We assigned the value ABAP_TRUE and the name and employee number to the
IS SELECTABLE property to be displayed in the DISPLAYED TEXT field. The
BIND STRUCTURE node is then used for adding the employee data to the
NAVLISTREC recursive node using the RECNODE reference variable.

LOOF AT DATRA TAE INTO WA DATA.
AT MNEW DEPARTHMENT.
NODE NAVLIST = WD CONTEXT->GET CHILD NODE |
NAME = WD THIS->WDCTX NAVLIST).
CLEAR NAVLIST.
NAVLIST-DISPLAYEDTEXT = WA DATA-DEPARTMENT.
NAVLIST-I5 SELECTAELE = REAP FALSE.

ELEMENT MAVLIST = NODE NAVLIST->BIND STRUCTURE |
NEW ITEM = NAVLIST
SET_INITIAL ELEMENTS = ABRP FRLSE).
RECNODE = ELEMENT NAVLIST->GET CHILD NODE |
NAME = 'HNAVLISTEEC').
ENDAT.

NAVLIST-I5_SELECTABLE = ABAP TRUE.
NAVLIST-PERNE = WA_DATR-PEERNR.
CONCATENATE WA DATA-FEENE WA DATR-SNRME
INTO NAVLIST-DISPLAYEDTEXT SEFRRATED BY "-'.
RECHODE->BIND STRUCTURE (| NEW ITEM = NAVLIST
SET INITIAL ELEMENTS = ABAP FALSE).

ENDLOCPE.

We first created a NAVLIST context node containing a NAVLISTREC recursion node. We
then inserted a navigation list Ul element on the view layout. Appropriate binding between
the navigation list Ul element and the context nodes was defined. In the code, we formed

the higher nodes in the navigation list displaying departments (at the beginning of a new
department within the data table DATA_ TAB). We then added child nodes (to the department
nodes) displaying the employee names and number contained within the department.

253

Web Dynpro for ABAP

The employee names within the department are selectable but may not be compressed (the
IS SELECTABLE property is set to TRUE in the code). This navigation list is displayed as
shown in the following screenshot:

Department Wise List

Human Resources
00000012-Andrew Haynes
00000016-Krista Maine
00000017-John Taylor

Information Technology
00000020-Peter Anderson
00000021-James Philip

There's more...

We can further enhance the application by activating the selection feature of the selectable
nodes, that is, displaying the details of an employee selected on the user's screen. For this,
we first need to enter a suitable name in the Onselect property of the navigation list in the
layout editor. Then double-click in order to write the code. The GET CHILD NODE method will
be called when a particular selectable row is clicked by the user. The handler method will be
called when the SELECT event is raised.

This handler method contains one parameter, WDEVENT. In order to determine which
employee number and name has been selected, we will add a new parameter,
SEL_NODE, having type IF WD CONTEXT ELEMENT. We then need to call the

GET_ STATIC ATTRIBUTES method for the SEL. _NODE parameter in order to
retrieve the details of the selected node (including the employee number pernr).

» http://help.sap.com/saphelp nwO4s/helpdata/en/79/555e3f71e4le26
e10000000a114084/content .htm

Creating tabstrips

In this recipe, we will see how we can add tabstrips to an existing view containing various
layout elements.

http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26e10000000a114084/content.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26e10000000a114084/content.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26e10000000a114084/content.htm
http://help.sap.com/saphelp_nw04s/helpdata/en/79/555e3f71e41e26e10000000a114084/content.htm

Chapter 14

How to do it...

We will now follow the steps as shown:

1. We first go to the layout editor and in the right pane, right-click on the
ROOTUIELEMENTCONTAINER element in order to access the context menu. We then
select the Insert Element option. Now, we enter the name Tabstrip in the ID field
and select the type TabStrip.

[E M25(1)/800 Create Element

D Tabstrip
I =1
T Tab5trip -
YE il —Jl

2. This will create a TABSTRIP in our layout. We select the tabstrip and then add two
tabs by choosing the Insert tab option from the context menu.

- [] CONTEXT_MENUS
* [] ROOTUIELEMENTCOMTAINER

D T
I_EI TABSTRIP.

- <» INTERACT Insert Tab

To First Position
Up

Down

To Last Position

Display UI Elernent Document

3. Next we assign appropriate text in the text property of the added caption headers
for each of the two tabs.

Property Value

Properties (Caption

D CAPTION_1
contextMenuBehaviol Inherit =]
contextMenuld
enabled
imageFirst
imageSource
isDragHandle
text [Tab 3 =]

qQ

255

Web Dynpro for ABAP

4. Then we will simply drag-and-drop any Ul element already contained in our layout
editor to the tab of our choice. Any width and height adjustments are made if
required. We save and activate the component and run the relevant application.

Suppose we had an interactive Ul element that was transferred to the first tab. Running
the application will show the relevant Adobe form in the first tab, as shown in the following
screenshot. Selecting the other tab will show the elements contained in it.

Tab1 Tab2

EMPLOYEE DETAILS REPORT
Employee number |Name City Employee Grades
15
00000010 John Mall Road, Brussels
17

Displaying error messages

In this recipe, we will see how we can display messages, such as error messages when a user
input is found to be incorrect. We will create a view that will have a button that displays a
message when the input is correct (for simplicity's sake, we will focus on the error generation
coding in this recipe).

In addition, it is recommended that you use assistance class for storing language-dependent
text that is to be displayed in the form of messages. For simplicity's sake, the assistance class
has not been shown in this recipe.

How to do it...

1. Inthe first step, we will create a But ton element on our view and give it the caption
Check Data. Within the events, we will select BUTTON (as the onAction property)
from the listbox.

256

Chapter 14

+ [CONTEXT_MENUS
. |:| ROOTUIELEMENTCOMTAIMER
* o BUTTON
Property Value
visible Visihle 2]
width
Events
onAction BUTTON g
Layout Data (FlowData)
cellDesign padless |
wiEutter Mane]

2. A public attribute MYMESSMANAGER is defined at the component controller level, the

associated type of which is the IF_ WD MESSAGE MANAGER interface.

Component Controller

COMPONENTCONTROLLER | Inactive(revised)

Properties Context Attributes |' Events -~ Methods

EE ¥ bE EE G

Attribute Publc = RefTo Associated Type Description
WD_CONTEXT [] IF_WD_CONTEXT_NODE Reference to Local Controller Context
WD_THIS [/ IF_COMPONENTCONTROLLER Self-Reference to Local Controller Interface
MYMESSMENLGER] rl IF WD MESSAGE MANLGER Message Manager

Next, we write the relevant code within the WDDOINIT method of the component
controller. We define an interface reference for the IF_WD CONTOLLER interface.

The WD_GET_API method is then used to get a reference to the interface containing
appropriate APIs. We will then call the GET MESSAGE MANAGER method in order

to get the handle to the message manager. This is assigned to the WD_THIS-
>MYMESSMANAGER interface we defined in the previous section.

METHCD WDDOINIT

DATR: THIS_CONTROLLER TYPE REF TC IF WD CONTROLLER.
THIS5 CONTRCOLLER ?= WD THIS->WD GET AFI().
WD THIS->MYMESSMAMAGER = THIS CONTROLLER->GET MESSAGE MAWAGER (|).

ENDMETHCD.

257

Web Dynpro for ABAP

5. Inthe WDDOBEFOREREACTION method of the appropriate view, we will
write the coding for generating an error message. First, a reference to the
IF WD VIEW CONTROLLER interface is defined. The Wb GET API method
is then called to get the relevant set of APIs for the view controller. This is then
returned to the LO API CONTROLLER variable.

6. We use the GET CURRENT ACTION method in order to find out which of the
events have been triggered by the user. The name of the event triggered is returned
in the LO_ACTION->NAME attribute. We check if the name is equal to the BUTTON
element, that is, the button we define. We then carry out the necessary checks,
and if the data entered is invalid, the REPORT ERROR MESSAGE method of the
IF WD _MESSAGE MANAGER interface is called with the appropriate error text.

In this case, the public attribute, MYMESSMANAGER, defined in the component
controller, is used.

DATR LO_API CONTROLLER TYPE REF TO IF WD VIEW CONTROLLER.
DATA LO_ACTION TYPE REF TO IF WD ACTION.

LO API CONTROLLER = WD THIS->WD GET API().

L0 _ACTION = LO API CONTROLLER->GET CURRENT ACTION().

IF LO ACTION IS BOUND.
CASE LO ACTION-->NAME.
WHEN 'BUITCH

WD_COMP_CONTROLLER->MYMESSMANAGER->REPORT_ERRCR MESSAGE |(
MESSAGE TEXT = 'Error in Entry
ENDCASE.
ENDIF.

In this case, the interface used for generating messages is the IF_ WD MESSAGE_MANAGER
interface. The interface has a number of methods used for generating warning error
messages on the screen.

First, we defined a public attribute MYMESSAGEMANAGER at the component controller level.
Appropriate code is written in order to get the handle to the message manager that can be
later used from any of the views in order to generate messages.

When the user clicks the button we defined, the WDDOBEFOREREACTION method of the
relevant view is called. Within the method, we wrote code to gain access to the API of the view
controller, the reference to which is used to call the GET CURRENT ACTION method. The
GET CURRENT_ ACTION method is used for determining the event that has been raised as a
result of the user interaction. We checked the LO ACTION->NAME attribute in order to see
whether our button has been clicked. In case our button is clicked, we carry out the necessary
checks for checking the validity of the data that is entered (the code is not shown). Then the
REPORT ERROR_MESSAGE method is called in order to display an error message.

258

Chapter 14

n Errorin Entry

Check Data

Calling dialog boxes of same component

In this recipe, we will see how we can display a dialog box based on a view of the same
component. We will create a MAIN view in the MAIN window and another view by the name
POP_UP in a new window, WIND_POP_UP. We will then create a button on the MAIN view,
which when clicked will display the POP_UP view as a dialog box.

How to do it...

We will now carry out the following steps:

1. We will define a public attribute by the name MY WINDOW to the
IF_WD WINDOW interface.

EIENEEEEENEE

Attribute Associated Type Description

WD_CONTEXT IF_WD_CONTIEXT NOLE Reference to Local Controller Context
WD_THIS IF_COMPONENTCONTROLLER Self-Reference to Local Controller Interface
MYMESSMANRGER IF WD_MESSAGE MANAGER Message Manager
MY WINDOW IF WD_WINDOW Window

2. We will have a main view embedded within the MAIN window.

In addition, we will create a POP_UP view embedded within a WIND_POP_UP window.

Window Structure

+ &S DEFAULT

259

Web Dynpro for ABAP

4. Onthe MAIN view, we will create a button.

View MATN Active
Properties - Layout |' Inbound Plugs Outbound Plugs

favorites IE‘ a | | Show Dialog

text [=]

5. On action button event handler method, we will write the appropriate code for calling
the POP_UP view as a pop-up dialog box. We use the WD_GET API method of the
component controller to get access to the relevant APls. The GET WINDOW MANAGER
function is then called in order to get reference to the IF. WD WINDOW MANAGER
interface, which is stored in the public attribute MY WINDOW MANAGER, as defined
in the previous section.

DATA: MY WINDOW_MANAGER TYPE REF TO IF_WD_WINDOW MANAGER,
MY CMP_API TYPE REF TO IF_WD_COMPONENT.

MY CMP API = WD_COMP_CONTROLLER->WD GET API().
MY_WINDOW MANAGER = MY CMP_API->GET_WINDOW_MANAGER().

6. Next, we call the CREATE WINDOW method of the IF. WD WINDOW MANAGER
interface. The necessary title, the desired message display mode, and the default
button information is also passed. Also, the window name in which the pop-up view
was created is mentioned (WIND_POP_UP).

WD CCMP CONTROLLER->MY WINDOW
= MY WINDOW MANAGER->CREATE WINDOW |

WINDOW MAME = 'WIND BOE UB’

TITLE = 'My Pop Up'

MESSAGE DISPLAY MODE = IF WD WINDOW=>CO MSG DISPLAY MCDE SELECTED

BUTTON XIND = IF WD WINDOW=>CC BUTTCNS OK

MESSAGE TYPE = IF WD WINDOW=>CO MSG TYPE NONE

DEFAULT BUTTON = IF WD WINDOW=>CC_BUTTCN OK).

7. Finally, the OPEN method is called for the MY WINDOW interface that is created.

WD COMEP CONTROLLER->MY WINDOW->OPEHN |

260

Chapter 14

We carried out the necessary steps for displaying the pop-up dialog box. We first call the
appropriate method for getting a reference to the window manager, used for creating the
dialog box. We then call the CREATE_WINDOW method and specify the necessary title,
window name, message mode, and the buttons to be displayed (through the BUTTON KIND
parameter). After the creation of the window, we need to show the dialog on the screen, which
is done via the OPEN method of the IF WD WINDOW MANAGER interface.

For the BUTTON KIND, MESSAGE_ TYPE, and DEFAULT BUTTON parameters, the possible
values that may be passed are shown in the following table:

Parameter Possible Values
BUTTON_KIND CO_BUTTONS_ ABORTRETRYIGNORE

CO_BUTTONS_ CLOSE
CO_BUTTON OK
CO_BUTTONS OKCANCEL
CO_BUTTONS_YESNO
CO_BUTTONS_YES NOCANCEL

MESSAGE_TYPE CO_MSG_TYPE_ ERROR
CO_MSG_TYE INFORMTION
CO_MSG_TYPE_NONE
CO_MSG_TYE_QUESTION
CO_MSG_TYPE_ STOP
CO_MSG_TYPE WARNING

DEFAULT BUTTON CO_BUTTON_ ABORT
CO_BUTTON_CANCEL
CO_BUTTON_ CLOSE
CO_BUTTON_IGNORE
CO_BUTTON_ NO
CO_BUTTON_NONE
CO_BUTTON_ OK
CO_BUTTON_ RETRY

CO_BUTTON_YES

261

Web Dynpro for ABAP

There's more...

Also, for calling the pop-up dialog box after the click of the button, we can make use of the
Web Dynpro code wizard. While being in the editor for the code of the OnActionbutton
handler method, navigate to Edit | Web Dynpro Code Wizard. On the general tab, select
the Generate Popup option and enter the window name that embeds our view.

% Generate Popup
Component Use
Window MName WIND_ECE_UF

" Portal Integration
Portal Manager IF_WD_PORTAL INTEGRATICH
Method

") Personalization
Pers. Manager IF WD PERSONALIZATICN
Method

Simply press Enter. This will add the appropriate code.

Displaying Adobe forms in Web Dynpros

In this recipe, we will see how we can display an Adobe form within a Web Dynpro application.
We will use one of the forms that we created in the Creating nested tables recipe in Chapter
13, SAP Interactive Forms by Adobe.

How to do it...

We will now see the required steps in detail:

1. We create a new Web Dynpro component. On the MAIN view, we create an interactive
Ul element. We name it INTERACTIVEUI.

* [] ROOTUIELEMENTCONTAINER
+ < INTERACTIVEUI

262

2. Within the properties, the template source (that is, Adobe form) was set as
ZST8 NESTED TABLES EXAMPLE as used in the Creating nested tables

recipe in Chapter 13, SAP Interactive Forms by Adobe.

Property Value Binding

D "INTERACTIVEUI T
additionalArchives r 1
contextMenuBehaviour Inherit g
contextMenuld

dataSource MAIN.ZST8_NESTED_TABLES E | & |
display Type native E
enabled — [

height 300px [
jobProfile [
pdfSource [

readOnly — [
templateSource Z5T8 MESTED_TABLES EXAMPLE

tooltip [
visible Visible 2 |

width 300px |

Chapter 14

We will also increase the height and width to 1500px instead of the default 300px.

3. After pressing Enter, a dialog box is displayed. This asks you whether context
nodes should be created within the view context node corresponding to the
context defined in the Adobe form. Click on the Yes button in order to generate
the context automatically.

[= mM25(2)/800 Web Dynpro Explorer: Change View for ZST8_ADOBE_F...

Either Your interactive form UL element is not
bound to a context, or a corresponding context
does not yet exist for the form interface. You
have the option of automatically generating the
context from the form interface and binding the
form object to this context. If the dataSource
property for the Interactive Form iz already
bound to the context. this node iz used again.
This will result in the deletion of any child

elements (nodes or attributes).

Do you want to generate the context

automatically?

Yes || Mo

263

Web Dynpro for ABAP

4. This will generate appropriate context nodes within the Web Dynpro view
corresponding to the context of the Adobe form. The two nodes EMPLOYEE GRADES
and EMPLOYEE ADDRESS are generated in the CONTEXT MAIN window of the view
in question.

Context MAIN
~) CoNTEXT
~ [G] Z5T8_NESTED_TABLES_E
| EMPLOYEE_GRADES
e EMPLOYEE_ADDRESS

5. Next, we will write the code that is necessary to populate the data regarding the
EMPLOYEE GRADES and EMPLOYEE ADDRESS nodes in the WDDOINIT method
of the MAIN view. We use the Web Dynpro code wizard and choose the settings
shown in the following screenshot (both for the EMPLOYEE ADDRESS and the
EMPLOYEE GRADES nodes).

[E M25(2)/800 Web Dynpro Statement Structure x
. Context | General

r 1

Node/Attrbute |EMPLOYEE_ADDRESS &% Context |
Operation on Context

JRead

(s)Set

(1 Append

[|As Table Operation

6. The main part of the added code for the EMPLOYEE_GRADES node is shown
as follows:

DATA LO_ND EMPLOYEE GRADES TYPE REF TO IF_WD_ CONTEXT NODE.
DATA LT_EMPLOYEE_ GRADES TYPE WD_THIS->ELEMENTS EMPLOYEE_ GRADES.
LO_ND_EMPLOYEE_ GRADES = WD_CONTEXT->PATH GET NODE(PATH =

“ZST8 NESTED TABLES E.EMPLOYEE GRADES™) .
"nr code to fill LT EMPLOYEE GRADES not shown
LO_ND EMPLOYEE_ GRADES->BIND TABLE (

NEW_ITEMS = LT EMPLOYEE GRADES
SET INITIAL ELEMENTS = ABAP TRUE).

264

Chapter 14

We first created an interactive Ul element in our view layout. Then we linked it to our Adobe
forms using the template source property. We then generated a context corresponding to
the Adobe form in our view. The appropriate code was then added in the WDDOINIT view for
populating the data context nodes EMPLOYEE GRADES and EMPLOYEE_ADDRESS. Upon
running the application, the data of the grades and addresses were passed on to the Adobe
form context node.

The displayed PDF form opens in the browser as shown in the following screenshot:

& Adobe Form Integration Demo - Windows Internet Explorer ==
" P
) > http:// fsap/bc/webdynpro/sap/zst8_ajdobe_form v | ¥4 | % ||| Yahoo! Search Jol
L] P P ynpi P
— . 3
W [@Adobe Form Integration Demo l l ﬁ ~ B - o= - |7k Page v {{} Tools v

EMPLOYEE DETAILS REPORT
Employee number |Name City Employee Grades |

15 L

00000010 John Mall Road, Brussels
17

[« I Ll

See also

» http://help.sap.com/saphelp nwO4s/helpdata/en/43/
bccdcfe326332ee10000000a11466f/frameset . htm

» http://help.sap.com/erp2005 ehp 04/helpdata/en/6c/7aae42cd7fb6l
1e10000000a155106/frameset . htm

» http://help.sap.com/saphelp nwO4s/helpdata/en/35/447741b0d6157d
€10000000a155106/frameset .htm

265

15

Floorplan Manager

In this chapter, we will see recipes involving Floorplan Manager (FPM) for Web Dynpro
applications. We will look at:

» Creating applications based on OIF Floorplan design

» Changing header and ticket area at runtime

» Adding list GUIBBSs to Floorplan applications

» Viewing structure of FPM applications

» Creating GAF applications

» Creating FPM applications using Application Creation Tool

Introduction

FPM may be simply defined as templates that allow us to create large, complex, and big Web
Dynpro applications quickly and easily without the need for excessive programming. Using the
Floorplan framework, interface views of multiple components may be combined together to
form an application. The interface views, within the FPM arena, are termed as a Ul building
blocks (UIBB).

We first create an application based on one of the four supported Floorplan designs. Then we
create the application and component configurations using the configuration editor. There are
four types of Floorplans:

» Object Instances Floorplan (OIF)

» Guided Activity Floorplan (GAF)

» Quick Activity Floorplan (QAP)

» Overview View Floorplan (OVP)

Floorplan Manager

Our main emphasis in this chapter will be on the OIF and GAF Floorplan designs.
Here is a brief introduction of the two:

» OIF: This Floorplan focuses on a particular object type such as an employee or sales
order. It provides functionality such as Create, Change, Display, or Delete, and
may consist of multiple tabs that provide input/output fields relevant to the given
object instance (belonging to the object type in question).

» GAF: As the name indicates, the guided activity Floorplan allows you to perform
a given task for an object over a number of steps (screens). The guided activity
Floorplan provides a roadmap showing all the numbered steps as well as the
current step highlighted for the user.

The Identification Region (IDR) is comprised of the application title. In addition, an

optional Extended IDR consists of the ticket area on the left-hand side and the items area
on the right-hand side. The ticket area may be configured while the items area may only be
accessed through coding. The ticket area has Ticket top and Ticket bottom as shown in the
following screenshot:

New Title

Ticket top
Ticket bottom

Creating applications based on OIF

Floorplan design

In this recipe, we will see how we can create an application based on the OIF Floorplan.
We will create the application configuration, then the IDR and the component configuration.

Getting ready

We will use the Web Dynpro component and application used in the Integrating Adobe forms
in Web Dynpro recipe in Chapter 14, Web Dynpro for ABAP. However, we need to make certain
changes in the component and its application in order for them to be used in the FPM design.

First, on the Properties tab of the created application, we will assign the FPM_OIF COMPONENT
component in the Component field and the FPM_WINDOW component in the Interface
View field.

268

Application

z5t8_adobe_form

.~ Properties } Parameters

Saved

Description
Component
Interface View

Plug Name

-
,Adobe Form Integration Dema|
FEM_OIF_COMPONENT
FEM_WINDOW
DEFAULT

Chapter 15

Next, at the component level, a change is also required. On the Implemented Interfaces tab,

we will add the IF_FPM_UI BUILDING BLOCK component.

Used Components . Implemented interfaces |

EE

Implemented Web Dynpro Component Interfaces

Mame Description Implementation State Action

IF_FPM_UI_BUILDING_BLOCK IF_FPM_UI_BUILDING_BLOCK @CO

Reimplermnent

Then, click on the Reimplement button in the Action column. The Implementation State
column should show a green signal. A message will appear saying that the interface was

successfully implemented.

Implemented Web Dynpro Component Interfaces
MName
IF_FPM_UI_BUILDING_BLOCK

Description Implementation State
IF_FPM_UL BULLDING_BLOCK CO@

This adds a number of methods (related to the Floorplan design) to the component controller.
Each method is called at a particular instance during the execution of the application. Each
method serves a particular purpose and we can write coding within them in order to serve

our requirement.

How to do it...

For creating an FPM OIF application, proceed as follows:

1. Call transaction SE80. In the left-hand pane, choose the Web Dynpro Component
option in the list box and enter FPM_OIF COMPONENT in the field provided. Then

press Enter.

269

Floorplan Manager

2. Inthe list that appears, under Web Dynpro applications, right-click our application
zst8_adobe form, and from the context menu that appears, choose the option
Create/Change Configuration.

&2 ABAP Unit Browser
L@‘MIME Repository

|
I

Ea Repository Browser]

ﬁ:Repositorv Information System Create

Tag Browser Change

L%Tmnsport Organizer Display »

F@ Test Repository Create/Change Configuration

[88 Enterprise Services Browser Check

Test

|W9b Dynpra Comp. / Intf. ﬂ | Test in Business Client 3

|FPM—OIF—COMPONENT = Start ECATT Recording
L= HIE]E] eets
Object Name Display Object Directory Entry

» C WD_DPSPP_PERSON; Change Package Assignment
v B¥ wd_reor_hm_services

Write Transport Entry S

. :_Eq;q] zst8_adobe_form =
» (] Component Configurations -

3. This will open the Editor for the Web Dynpro ABAP Application Configuration
window. Enter a suitable ID in the Configuration ID field provided (in our
case zST8_MY OIF DEMO) and click the Create button.

Editor for the Web Dynpro ABAP Application Configuration

| Change || Display || Cancel | | Create || Copy | | Delete || Other Functions « |

Which application do you want to configure?

Application Name: |ZSTS_ADOBE_FORM Configuration ID: * |ZST8_MY_OIF_DEMO |

270

4. This leads you to the screen shown in the following screenshot:

Application Configuration ZST8_MY_OIF_DEMO ::

My test OIF DEMO

[save |[check | [New Window | | | Display |

Attributes Structure |’ Application Parameters

Assignment of Component Configurations

Compenent Usage Component Implementation Configuration
w ZST3 ADOBE_FORM FPM_OIF_COMPONENT FPM_OIF_COMPONENT ZSTS_MY_OIF_CONFIG
= [DR_USAGE FPM_IDR_COMPONENT | FPM_IDR_COMPONENT = ZST8_MY_IDR_CONFIG

On the Structure tab, enter the name of the configuration components

Chapter 15

ZST8 MY OIF CONFIGand zZST8 MY IDR_CONFIG in the fields provided.

First, select the OIF component row and click the Go to Component Configuration
button. This will take you to the screen that looks like the following screenshot:

@ 1he specified configuration does not et exist

Path Z5T8 WY OIF DEMO = ZSTa MY _OIF_CONFIG

[change | [Display | [Cancel | | | Create | [Copy || Delete | [Other Functions 4 |

Which component do you want to configure?

Compeonent Name: |FPr.1_0IF_C0 WMPONENT | Configuration ID: * |ZS'S_I.1Y_DIF_CDNFIS

Create button. The pop-up box appears as shown as follows:

Hew Configuration

Configuration: ISTE_ MY _OIF _CONFIG
Desctiption: [QIF configuration for my demo |
Package: [3TMP 7 Local Object

7. Since the component configuration does not exist, an error occurs. Click the

271

Floorplan Manager

8. Enter suitable description and package (in our case local $TMP). Press the OK button.

9. The message appears, The Configuration ZST8_MY_OIF_CONFIG has been created
successfully. Click the Change button.

10. This will lead you to the Configuration Editor window showing one Main View (Main
View 1) having one Subview (Subview 1 1). On the left-hand pane, there is a tree
showing the various components.

Element
- O Variant; Variant (1}
- Ii| Main View: Adobe Form
] [-'_"I Subview: Display Mest. ..
w = Toolkar
my Activation Function: Savg

= 5 Wire Model

11. We will now assign a UIBB to our subview.

12. On the right-hand side is the detail screen for the object selected in the left-hand
pane. Select the Subview 1 1 option, and make sure the attributes appear in
the lower part of the screen. Within the Component field, enter the name of the
component that we are using (zST8_ADOBE_FORM). Also, enter ZST8 WEB DYNPRO
in the View field, the respective window containing the view that we like to display in
the subview at the execution of the application.

Main View 1

Subview 11

UIBB (1)

Component Name: Z5TE_ADOBE_FORM

View: Z5T8_WEB_DYNPRO Mo Configuration Name

Aftributes Configure UIBB

[H Attributes UIBB: ZST8_WEB_DYNPRO Final
Fomponent: * 75T3_ADOBE_FORM View: * Z5T8_WEB_DYNPRO
Fonfiguration Name: Sequence Index: 1

eeds stretching: -

13. If we need to change the displayed text for the main view and subview, simply select
the Main View or Subview node in the left-hand pane and then enter the new text in
the Main View name attribute or SubView name attribute. Save your entries.

272

Chapter 15

14. Now return to the application configuration screen. Now, we will create the IDR
configuration. Select the row showing the FPM_IDR_COMPONENT component and
click the Go to Component Configuration button. This will take you to the screen that
looks like the following screenshot:

Component Configuration ZST8_MY_IDR_CONFIG
[save][check | [New window |[Deep-Cop View:

Z5Té ADOBE FORM : Z5T8 WY OIF DEMO > IDR : Z5T8_MY_IDR_CONFIG

Hierarchy

Application title

Expand All || Collapse Al

Element O Atftributes IDR Basic [Final
~ ()R
- () IDR Basic Application Title: Toottip of ttle:

15. In the left-hand pane, click the IDR Basic node. On the right-hand side, enter the
application title and the tooltip. Save your entries. You may click the Check button
to check the consistency of your configuration.

We created an application configuration based on OIF Floorplan. It comprised of the IDR
configuration in which we specified the application title. We also created the component
configuration of the component FPM_OIF_COMPONENT and within the view and subview

we assigned the window (and view) that has been created earlier by us. You may add further
subviews to the application. The views displayed within the subviews may be in different Web
Dynpro components.

Displaying Adobe Form

|
Riacs=e| La|l—sl=l-]| BB |Z 0|6

EMPLOYEE DETAILS REP(
Employee number |Name City

273

Floorplan Manager

There's more...

On the left-hand side of the component configuration, click the Add button and select the
Initial Screen option. You may then specify the component and view to be used as an initial
screen. The Initial Screen window is displayed before the OIF application is displayed.

O Initial Screen
(=) Wariant
(=) Main Screen
(O Confirmation Screen
O Dialog Box |:|

Add 4 || Copy 4 || Delete 4 || Change 4 |
Initial Screen

Variant
arian E

Confirmation Screen

Dialog Box

Similarly, we may add a confirmation screen as well. The confirmation screen is displayed at
the end of the execution of the OIF application.

In addition, we need to make sure that the Implemented Interfaces tab on the used
components have the interface IF_FPM_UI_BUILDING_BLOCK implemented, otherwise
the error occurs as shown in the following screenshot:

Component Configuration ZST8 MY _OIF CONFIG

QIF configuration for my demo

0 Configuration "ZST& MY _0IF_CONFIG" could not be saved
& Variant:/ Main View: Main View 1/ Subview: Subview 11
o Component ZST8_ADOBE_FORM of UBB (View) Z5T&8 WEB_DYNPRO does not implement a valid interface

Changing header and ticket area at runtime

In this recipe, we will see how we can change the IDR header (title and ticket area)
programmatically. In this case, the previously statically defined (through IDR configuration)
ticket area and title are overridden. This concept applies to both the OIF and OVP Floorplans.

In this recipe, we will write the code for changing within the view (window) shown within a
subview. When the particular subview is selected, the header title and ticket area will change.
We will write the code in the component whose view is used as an UIBB in a subview. We will
write the code in the respective view (WDDOINIT method).

274

Chapter 15

How to do it...

For dynamically changing the IDR title and ticket area, proceed as follows:

1. First, we define an attribute at the component controller level by the name
MY FPM_ IDR based on the type IF_FPM IDR.

Component Controller [coMPONENTCONTROLLER | Active(revised)

Properties VContex't waenm I/Meﬂ'lods]
EIENEEENE BN

| Attrbute | public |Reffo | Associated Type

WD_CONTEXT O IF WD _CONTEXT NODE
_WD_IHIS O IF COMPONENTCONTROLLER
| [unESSMANAGER IF_WD_MESSAGE_MANAGER
_HY_E'PH_I DR IF FEM IDR

2. Next, we define a SET _IDR TITLE TICKET method in the component
controller. Then, we will write the coding in the method. We first define a
reference variable MY FPM that point to the interface IF_FPM. We call the
static method GET INSTANCE of the CL._FPM_FACTORY class in order to
create a reference to the FPM service object.

DATZ : MY FPM TYPE REF TC IF FPM.
MY FPM = CL _FPM FACTORY=>GET INSTRNCE().

3. Wethen call the GET SERVICE method with the constant attribute GC_KEY IDR of
the class CL._FPM SERVICE MANAGER. The result of the method is then assigned to
MY FPM IDR attribute we defined in the first step.

WD THIS->MY FEM IDR ?= MY FEM->GET SERVICE (
CL FPM SERVICE MANAGER=>GC KEY IDR).

4. We then call the SET_APPLICATION TITLE method of the attribute MY FPM IDR.
We pass the New Title and New Tooltip parameters for the IDR.

WD _THIS->MY FPM IDR->5ET_APPLICATION TITLE |
IV TITLE = 'New Title '
IV _TITLE TOOLTIF = 'New Tooltip').

275

Floorplan Manager

5. We then call the SET TICKET method for the reference MY FPM IDR. The necessary
Ticket topand Ticket bottom texts are passed as values corresponding to
necessary parameters.

TRY.
WD THIS->MY FFM IDR->SET_TICKET |
IV _TOF = 'Ticket top '
IV _BOTTOM = 'Ticket bottom '
IV_TOF_TOOLTIF = 'Top tooltip '
IV_BOTTOM TOOLTIP = 'bottom tooltip').

CATCH CX FPM IDR.

ENDIRY.

6. We then need to write the code for calling the method SET IDR TITLE TICKET
from the WDDOINIT method of the view that is used in the UIBB of the subview.

DATZ MYCOMPONENTCONTROLLER TYFE REF TO IG COMPONENTCONTROLLER .

MYCOMPONENTCONTROLLER = WD THIS->GET_COMPONENTCONTROLLER CTIR().
MYCOMPONENTCONTROLLER->SET IDR TITLE TICKET().

By following these steps, we are accessing the IDR at runtime and specifying its
displayed IDR title and ticket area text.

We created a method SET_IDR TITLE_ TICKET at the component controller level that
access the service object for accessing the IDR. Appropriate methods are called in order
to set the application title, ticket top, and bottom. Next, this method is called from the
WDDOINIT method of the view used in the UIBB of our OIF application.

When the application is run and the relevant subview is selected, the WDDOINIT method
is called that calls the SET IDR TITLE TICKET method of the component controller.
The New Title, Ticket top, and Ticket bottom parameters are changed as shown in
following screenshot:

New Title

Ticket top
Ticket bottom

276

Chapter 15

Adding list GUIBBs to Floorplan applications

SAP provides a number of Generic User Interface Building Blocks (GUIBB) generic building
blocks such as Tabs UIBB, Form, and List UIBB. These allow you to reuse them into your
applications without programming from scratch. In this recipe, we will see how we can add

a list GUIBB in our applications.

The GUIBB list must have an associated feeder class that provides the data that is displayed
in the list. We will add the list GUIBB in OIF application created earlier. We will add the GUIBB
list in a new subview within the component configuration.

Within the list, we will display the columns showing the employee information based on our
previously created structure (in Chapter 14, Web Dynpro for ABAP) ZST8_EMPLOYEE_ADDRESS
as shown in the following screenshot:

Dictionary: Display Structure
S O T S = eS| Hierarchy Display Append Structure...

Structure [zsT2_PERNR RDDRESS | Active
Short Description | Z5T8_PERNR_ADDRESS

/ Attributes/Cmponents]/Entn‘r helpfcheck |/Currenq|r,(quant'rtyr fields |

|¥ﬁ|@|@| Z[&E[E£] rredefined Type | 1/3
| Component | Typing Method | Component Type | Data Type | Length | Short Description
__PE.RNR j‘[}-‘pes ¥ PERSNO NUMC & Personnel number
NAME Typea v EMNAM CHER 40 Forrmatted Name of Employee or Applicant
| |xDoRESS Types v CHAR20 CHAR 20(Char 20

277

Floorplan Manager

How to do it...

For adding the list GUIBB in our applications, proceed as follows:

1.

278

We will first create the feeder class through transaction SE24. On the Interfaces tab,
we will add two interfaces IF_FPM GUIBB LIST and IF _FPM GUIBB LIST EXT
interfaces (the IF_FPM_GIUBB interface will come by itself).

Class Interface [z5T8_LIST_FEEDER CLASS | Implemented / Inactive
Properties ﬁmtetfaceﬁ-l/Fn'ends l/httnbutes l/l'«'lethods I/Events l/Types l/hliases]
@l@ [IFitter
Interface | Abstrace | Final | Mod... | Description
IF_FPM GUIBB LIST EXT d O [] GUIBB List extended
IF FEFM GUIEB [l O [[] Generic UI Building Block
IF_FPM GUIBB LIST O O [|seneric List UI Building Block
M M M

A number of methods are added due to the inclusion of the interfaces. We will write
code in the two methods GET DEFINITION and GET DATA.

We first write the code within the method GET_DEFINITION. We first call the
DESCRIBE_BY NAME static method of the CL_ ABAP TYPEDESCR class in order to
get the details of the structure ZST8 PERNR ADDRESS. The reference returned is
stored in the defined reference variable MYSTRUCTDESCR.

Next, the static method CREATE method of the CL._ABAP TABLEDESCR
class is called and the returned reference is stored in EO_FIELD CATALOG.

DATA MYSTRUCTDESCR TYPE REF TO CL_ABAP STRUCTDESCR.
MYSTRUCTDESCR ?= CL_ABAP TYPEDESCR=>DESCRIBE BY NAME("Z5TEZ_ PERNR ARDDRESS').
EQ FIELD CATALOG = CL ABRP TABLEDESCR=>CREATE (MYSTRUCTDESCR).

Next, we call the GET COMPONENTS method in order to get the components of our
structure ZST8_PERNR_ADDRESS. The components returned in the internal table
MY COMPONENT TAB. A loop is then run on the internal table. For each component,
we set the properties as visible, read-only, and the column header to be used from
the data dictionary definition. The property information is set using the structure
WA FIELD DESCRIPTION which is then appended to the internal table (exporting
parameter) ET_FIELD DESCRIPTION.

Chapter 15

DRTR MY CCMPCHENT TAE TYPE ABAP CCMPCONENT TLE.
DATR WA _COMPCHENT TAE LIKE LINE COF MY COMPCNENT TAE.
DATR WA_FIELD DESCRIPTICN TYPE FPMGB_5_LISTFIELD DESCR.

MY COMPONENT TAE = MYSTRUCIDESCR->GET_COMPONENTIS().
LOCP AT MY COMPONENT TAE INTC WA COMPONENT TAE.
WA_FIELD DESCRIPTICN-NAME = WA CCMPCNENT TAB-NAME.
WL_FIELD DESCRIPTION-VISIBILITY = CL_WD UIELEMENT=>E_ VISIBLE-VISIBLE.
WE_FIELD DESCRIPTICN-RERD ONLY = ABAP TRUE.
WA_FIELD DESCRIPTION-HEADER LABEL BY DDIC = ABAP TRUE.
RPPEND WA_FIELD DESCRIPTION TC ET_FIELD DESCRIPTICN.
ENDLOOP.

6. Within the GET_DATA method, for our requirement we only need to make very small
code insertion. For simplicity sake, we assume that the data that is to be displayed
in the list is available in the internal table IT ADDRESS (the coding for fetching this
data is not shown). The two lines to be inserted are shown as follows:

ct_data = it _address.
ev_data changed = abap true

7. For all other methods, we will create empty implementations and save our code.
Then save and activate your class.

8. Next, we will go to the configuration editor and will add a new subview to our
application. We will then use the Add UIBB button on the right-hand side of the
configuration editor screen and choose the option Add List Component.

Add UIBB

Add Form Component

Add List Component

Add Tabbed Component

Add Search Component

Add Tree Component

Add Analytics List Component

279

Floorplan Manager

9. For the List UIBB (1) window, within the attributes, we will enter a suitable
configuration name (in our case ZST_LIST CONFIG)and click the Configure UIBB
button on the right-hand side of the screen (note the component FPM_LIST_UIBB
and view LIST_WINDOW are inserted automatically).

List UIBB (1)
Component Name: FPM_LIST_UIBE
Wiew: LIST_WINDOW

H Aftributes UIBB: LIST_WINDOW

Lomponent: * [FPm_uisT_uiBs

]

onfiguration Mame: |ZSTS_L\ST_CONFIG

]

No Configuration Name

Configure UIBB

["1Final Delete

View: * |LI5T_WIN Dow

[m]

Sequence Index:

eeds stretching: |

10. This will lead to the editor for the Web Dynpro ABAP Component Configuration
window and will generate an error saying that the configuration does not exist.

o The specified configuration does not vet exist

Path ZST8 MY OIF CONFIG > ZST8_LIST_CONFIG

Editor for the Web Dynpro ABAP Component Configuration

[L change | [Display | [Cancel |

[create | [Copy | [Delete | [Other Functions « |

Which component do you want to configure?

Component Name: |FPWM_LIST_UIBB

Configuration ID: * |Z5T8_LIST_CONFIG

]

11. We will then click the Create button. A pop up appears that asks the feeder class to
be used for the list configuration. Enter the name of the feeder class created in the
first step. Click the Edit Parameters button.

280

Edit Feeder

Feeder

Feeder Class: * |FST8_LIST_FEEDER_CLAJT|

| Eclit Parameters | [Cancel |

Chapter 15

12. Since there are no parameters defined, the save pop up will appear and will ask us to
save our configuration. This will then take us to the component configuration of our

configuration ZST8 LIST CONFIG.

Component Configuration ZST8 LIST_CONFIG

test

[save | [check | [New Window || Dee [Display | wiew: [Component-Defned |

IR | Edit Feeder || Edit Parameters | [Configure Toolbar |[Configure Columns |
Details

Element
= () List Details

- I:‘ Column: Personnel number

TEy| Personnel number
00000000
00000000
oooooooo
ooQooooo

= I:‘ Column: Employee Name
= I:‘ Column: Address

= () Seftings
O Attributes List: Details []Final
Feeder Class: ZST8_LIST_FEEDER Text:

Lead Selection Action Assignment: | A88ign Action | | Unassign Action

Employee Name

13. Then we will click the Configure Columns button. This will show the columns that we
had set in the GET DEFINITION method to be available for list configuration. We
will use the Add Columns button in order to select the columns that we need to be
shown in our list. We may change the header description also if we like and well as

the displayed length and sequence.

Configure Columns E X
Groug: | All Fields -
Available Columns Displayed Columns
T | Column | Header 5y Column Header
ARE ADDRESS Char20
PERMR Perzonnel number
Add Columnzs k
4 Remove Columns
[Hidle Technical Field Mames | @ |Z| Change Sequence |E| E

281

Floorplan Manager

14. We set the description of the three fields in our structure as shown in the
following screenshot:

Msplayed Columns
M5y | Column Header
ADDRESS Address
P A AE Employes Mame|

PERMR Personnel number

15. We save our configurations and then test the application configuration of our
main application.

We first define the feeder class using the transaction SE24. The code is written for the two
important methods GET DATA and GET DEFINITION. Both these methods are called each
time the GUIBB is processed.

The GET DEFINITION method has two exporting parameters that are filled within the code
that we have written. The list of columns that are to be made available in the configuration
editor is specified in the exporting parameter EO_FIELD CATALOG, whereas, the properties
of each column is specified in the exporting parameter ET FIELD DESCRIPTION. The
properties that are set include the column heading that may be later changed at the time

of configuration.

Within the GET DATA method that provides the data to be displayed, the exporting parameter
CT_DATA is filled with data. The statement for setting the value of EV_DATA CHANGE to
ABAP_TRUE must be there. If not, the data will not be displayed, however, the list columns
are displayed correctly upon application run.

The configuration is then done. We create the configuration of the list UIBB and assign
it the newly created feeder class. The GUIBB is attached to a new subview of our
existing application.

282

Chapter 15

Upon executing the application, the list is displayed along with the data.

Displaying GUIBB List Help
Employee Details

Employee Addresses Employee Grades

Details
5| Personnel number Employee Name Address

ooooo01s Simon James John Road, Brno | Be
00000020 Krizta Jones Mall Road Bruszels
00000021 Andrea James Walldorf , Germany

There's more...

There are other notable methods of the feeder class such as GET PARAMETER LIST, used to
define parameters for your feeder class, the NEEDS CONFIRMATION method that allows us to
display a data loss dialog box, and the PROCESS_EVENT method that is used for handling any
events triggered during the application execution.

At the minimal, coding must be entered in the mandatory methods GET DEFINITION and
GET_DATA.

Viewing structure of FPM applications

In this recipe, we will see how we can use a standard Web Dynpro component in order to view
the entire structure of our FPM applications.

How to do it...

Follow these steps:

1. Call transaction SE80. In the left-hand pane, choose Web Dynpro Component from
the list box and enter the component name FPM_CFG_HIERARCHY BROWSER in the
field provided. Click the Display button.

283

Floorplan Manager

2. Then open the Web Dynpro Applications node and double-click the
FPM_CFG_HIERARCHY_BROWSER application.

|Web Dynpro Comp. / Intf.ﬂ
[FPM_CFG_HIERARCHY_BROWS | w | i |

€ L=] [F]2] =] . E]

Object Mame Description
¥ a8l FPM_CFG_HIERARCHY_BROWSER Application Hierarchy Browser
v [J Assistance Class
u ‘@ COMPOMENTCOMTROLLER
v df Component Interface
v B Views
’ Windows
L <i§£§| Component Usages
~ B8 web Dynpro Applications
. L'f{ fpm_cfg_hierarchy_browser FPM Application Hierarchy Browser

3. Then, choose the menu path: Web Dynpro Application | Test | In Browser - Admin
Mode.

E’I Web Dynpro Application | Edit Goto Utiities(M) Environment System Help
§ Other Object... Shift+F5 COQoHE oTmof

Display <-= Change Ctri+F1

Check Cirl+F2 vy Web Dynpro Application
4 Save 5= v |

Test 3 In Browser F8
E Print... Ctrl+P In Browser - Admin Mode Shift+F8
E e Shift+F3 In Business Client - HTML
Eﬁmow Browser In Business Client - Desktop

@3 Repository Information System

4. The browser will open and the screen will appear as follows:

Floorplan Manager: Application Hierarchy Browser

Application Configuration: | |
Component Cenfiguration: | |

284

Chapter 15

5. Enter the name in the Application Configuration field provided and click
the Start button. We will use our already created application configuration
ZST8 MY OIF_ DEMO.

6. The entire hierarchy of the application (and configuration) will be displayed in the next
browser screen.

Floorplan Manager: Application Hierarchy Browser ‘=
Application: ZST8_ADOBE_FORM

(#) Browser Mode () Deep-Copy Mode

Application Higrarchy

[Expand Configurable Components || Expand All || Collapse Al |

Component Interface View Configuration ID
- O Application Configuration Z5T8 MY OIF DEMO
» () Identification Region FPM_IDR_COMPONENT Z5T2 WY IDR CONFIG
- O Object Instance Floorplan FPM_OIF_COMPONENT Z5T8 MY OIF CONFIG
~ () Initial Screen
= [Z57T8_ADOBE_FORM Z5T8_ADOBE_FORM INITIAL1
~ {3 Wariant (1)
- D Employee Details
- [-:l Employee Addresses
- [EFPM_LIST_UIBE FPM_LIST_UIBB LIST_WINDOW Z5T8 LIST CONFIG

=[] Employee Grades
- E Z5TE _ADOBE_FORK ZSTE_ADOBE_FORM Z5T8 WEB_DYNPRO

We use a standard application to display the hierarchy of our FPM application. The IDR and
the OIF details are shown. The configuration IDs of the various involved configurations are
also displayed. The component used for the initial screen as well as the various subview

and views details are displayed. If a GUIBB is used, (for example, list UIBB), the component
name used along with the relevant configuration ID is displayed. We may click on a particular
configuration ID to display. In a separate browser session, the details of its configuration

are given.

» http://www.sdn.sap.com/irj/scn/go/portal/prtroot/docs/library/
uuid/c0a2b7¢c2-1598-2e10-45bc-c556df3b9576?QuickLink=index&overr
idelayout=true&51591147228485

285

Floorplan Manager

Creating GAF applications

In this recipe, we will see how we can develop and configure Guided Activity Floorplan
(GAF) applications. By default, one single step is automatically added to the component
configuration. We will create one main step (step 2) that will comprise of one substep.
We will write coding that will display the substep after the Next button of the step 2 is
clicked. There is no ticket area for a GAF application.

In this recipe, we will focus on the steps relevant to GAF applications.

Getting ready

We create a component by the name zsT8 GAF that comprised of views and windows shown
in the following screenshot for the steps and substep:

- [B Views
-+ [mirTiaL
- E mam
- H sTEPL
+ B sTEP2
- [suBsTEP2
~ B windows
+ [mrTiaLt
- [WINSTEPL
- [WINSTEP2
+ [WINSUBSTEP2

The defined application is based upon the component FPM_GAF_COMPONENT and interface
view is FPM_WINDOW.

Application zst8_gaf Saved

. Properties | Parameters

Description ZGAF Component
Component FEM_GAF COMPONENT
Interface View FPM_WINDOW

Plug Name DEFAULT

How to do it...

Follow these steps:

1. Within the configuration editor, one main step already exists. In addition, two toolbar
buttons, Previous and Next buttons also exist.

286

Chapter 15

Component Configuration ZST8 MYGAF

[save][check | [New Window | [Deep-Copy | | [Display | | View: [ComponentDefined +|

Z5T8 GAF : Z5T8 MY GAF DEMO > GAF : ZST8_MYGAF

<) Variant Appﬁcatfon tf.t'e
=) Main Steps Y 1 =4
Main Step 1

[Add « |[Copy « | [Delete « |[Change « |

Hierarchy
Expand All |[Collapse Al UIBB (1)
Element Component Name:
O View: UIBB_1_1
- “ariant: Variant (1) :
__Aﬂrlbutes

» [Main Step (1)

= @ wire Model

2. Select the main step and in the Attributes UIBB: WINSTEP1 panel, assign the
component and view as shown in following screenshot:

UIBB (1)

Component Name; Z5T8 GAF
View: WINSTEP1

iz Attributes UIBB: WINSTEP1

Component: * [Z5TB_GAF]
iew: * [WiNSTEP1]
eeds stretching: | -

3. Then add one more main step using the Add Main Step button on the right-hand
side of the screen. Assign the component and view appropriate values (WINSTEP2).

4. Then, select the Main Step 2, and add a substep using the Add Substep button.
For the substep, enter the component and view name created earlier.

287

Floorplan Manager

5. Also on the attributes of the Next button of Main Step 2, enter STEP2 NEXT in the
Event ID field.

GAF Demo

Ticket 1

Ticket 2

I» T2 a 4
Main Step 1 Main Step 2 Substep 21

UIBB (1)
Component Name: ZST8_GAF
View: WINSTEP2

= Aftributes Next []Final

Default Button: [

Event ID; STEPZ_NEXT

6. Next, we will create a new toolbar button on the Substep2 1. We will press the button
Add Toolbar Element. The dialog appears as shown in the following screenshot:

Add Toolbar Element [=] E3

Applicstion specific Function Buttons (optional):
[cther Function | [Other Function [
Sepatator swithin Cther Functions

Standard Functions (optional):
Finizh
“Yersion Handling (optional):

Save Draft

Only on Subroadmap Steps:
Exit to Main Step

henus:

¥ou can also Related Links

Cancel

7. Next, we need to know the substep variant parameter. Select the Substep variant
node from the left-hand pane and then choose the menu Change and then click
Substep Variant Parameters.

288

8.

10.

11.

12.

13.

M Mapper Sett
[Expand All|[Collapse All | oo 2c aPPEr =Elings

“ariant Parameters
Elernent

Substep Variant Parameters
A (:) Wariant: Variant 1)
« 2 Wire Model
¥ [Main Step: Main Step 1
= [Main Step: Main Step 2
= = Toolbar
- O Substep Variant: Subs__
- |1"| Substep: Substep 21
= = Toolbar
- E UIBE: WINSUBST...
- E UIBB: WINSTER2

Add 4 || Copy 4 || Delete || Change « i
WMain Step 1
7 Global Setti
Hierarehy et s | [Next]

Component Name: Z5T8_(
View: WINSUBSTERZ2

Note the value from the pop up that appears and then press OK.

Substep Variant Parameters E x
Substep Variart ID: [SUBSTEPYARIANT 1 |

Substep Yariant Mame: |Substep Wariant 1 |

Cancel

Save and activate your configurations.

Chapter 15

Next, we will write the code for activating the substep. This code is written in the

PROCESS_EVENT method of the component controller.

We use a CASE statement to make sure our added code runs for the Next button

click of the MAINSTEP_ 2.

We call the CREATE_BY ID method of the CL._ FPM EVENT class in order to create

an event object.

Next, the SET VALUE method is called in order to specify the event parameters. The
method is called three times, for specifying the main step, the next active substep,
and the substep variant having the values MAINSTEP_2, SUBSTEP 2 1 and

SUBSTEPVARIANT 1 respectively.

289

Floorplan Manager

14. Finally, we raise the event that we have created using the RAISE_EVENT method.
The MY EVENT object is passed for the parameter I0_EVENT.

1 EMETHOD PROCESS_EVENT .

2 CASE IO _EVENT->MV_EVENT_ID.

3 WHEN 'STEF2_NEXT'.

WD_THIS->FFM = CL_FPM FACTORY=>GET_INSTANCE().

DATA my EVENT TYPE REF TO CL _FPM EVENT.

my EVENT = CL_FPM_EVENT=>CREATE BY ID(CL_FPM _EVENT=>GC_EVENT_ CHANGE_ STEF).

my EVENT->MC_EVENT DATA->SET_VALUE (IV KEY = CL_FPM EVENT=>GC_EVENT_PARAM MAINSTEF ID
IV VALUE = 'MRINSTEE 2').

E my EVENT->MC_EVENT DATA->SET_VALUE (IV KEY = CL_FEM EVENT=>GC_EVENT_PARAM SUBSTEE_ID

10 IV VALUE = 'SUSSTEP 2 _1').

11 my EVENT->MC_EVENT DATA->SET_VALUE (IV _KEY = CL_FEM EVENT=>GC_EVENT_PARAM SUSVARIANT ID

12 IV_VALUE = 'S0 1

13 WD_THIS->FPM->RAISE_EVENT (IO EVENT = my EVENT

1 ok

ENDCASE.
1 ENDMETHOD.

We created the GAF application configuration and component configuration. We created two
main steps and one substep. By default, the substep is not active. We wrote the code for
activating the substep at runtime. We also added a toolbar button Return to Main Step for
returning from the substep to the main step.

ELE:

Running the application configuration will display the GAF application. You may use the Next
button to go to the next step.

GAF Demo
» 1 2 4
Main Step 1 Main Step 2
Pravious
Step 1

Creating FPM applications using Application

Creation Tool

In this recipe, we will see how we can use a standard Web Dynpro application in order to
create new FPM-based applications quickly and easily.

290

Chapter 15

How to do it...

Follow these steps:

1. Call transaction SE80. Select the package from the list box. Enter APB_FPM CONF in
the field provided.

2. Openthe Web Dynpro Applications folder. Right-click the FM_CFG_APPL_
CREATION_TOOL component and then choose the Test option from the context
menu that appears.

| Package |

|APE_FPM_CONF > |ér]

e L= e &)E .8 =]

Object Name Description

» (3 web Dynpro Components

» [J web Dynpro Comp. Interfaces

~ {21 Web Dynpro Applicat. i
4 |[:| FPM_CFG_APPL_CREATION_TOOL Application Creation Tool
v (] FPM_CFG_APPL_TOOL_REFER_GAF Reference application for|
» (] FPM_CFG_APPL_TQOL_REFER_OTF Reference application for
» (] FPM_CFG_APPL_TOOL_REFER_OVP |Reference application for
» (] FPM_CFG_HIERARCHY_BROWSER FPM Application Hierarchy
» (] FPM_CFG_MESSAGE_MAPPER Customizing tool to map

3. The Application Creation Tool window opens in a browser window.

4. Enter a suitable name for your application. Enter a description and choose from the
list box the Floorplan type. Then click the Propose button.

5. The suggested configuration names are filled in the following table (screenshot) for
the application, IDR, and component configuration.

Application Creation Tool

Configuration Editor | || Test Application New

Application Name: * [ZST8_MY_NEW_APP |

Description:

My new application

Floorplan: |0bjed Instance Floorplan V|

Proposed Configuration Mames:

Configuration Type Configuration Name Description | Reguired
Application Configuration ZSTS_MY_NEW_APP
Floorplan Cenfiguration ZETE MY _NEW_APP_OIF
Header Configuration Z5T& MY _NEW_APP_IDR

291

Floorplan Manager

6. You enter description in the field provided and make sure the required checkbox
is on.

7. Then click the Create button. The application will be created. Then we may select a
particular configuration and then click the Configuration Editor button to go to the
appropriate configuration.

Application Creation Tool is a useful tool that allows you to quickly create an application
and its various configurations involved quickly and easily from one screen and relieve us
from the burden of creating each one by one manually. We may then also go directly to the
configuration using the Configuration Editor button.

See also

» http://help.sap.com/erp2005 ehp 06/helpdata/en/08/1cd90cc855424
eb8177365al22a8b7/content .htm

» http://help.sap.com/saphelp nw70ehp2/helpdata/en/15/
daf7c77c704c64ac8c8e48307e2bb0/content . htm

» http://help.sap.com/erp2005 ehp 06/helpdata/en/08/1cd90cc855424
eb8177365al22a8b7/content .htm

292

http://help.sap.com/erp2005_ehp_06/helpdata/en/08/1cd90cc855424eb8177365a122a8b7/content.htm
http://help.sap.com/erp2005_ehp_06/helpdata/en/08/1cd90cc855424eb8177365a122a8b7/content.htm
http://help.sap.com/erp2005_ehp_06/helpdata/en/08/1cd90cc855424eb8177365a122a8b7/content.htm

Symbols

~ 68

? 68

?! 68
?= 68
.(68
("\:.2) 79
"\ 79

: 68

\< 68
\> 68

+ 68

$ 68

\1 68
\2 68
\d 68
set_save_restriction method 52
\u 68
\w 68

A

ABAP
Web Dynpro 243
ABAP language 29
ABAP List Viewer. See ALV
ABAP objects 5
ABAP program
web service, calling 220-222
ABAP statement patterns
searching 161, 162
Activate button 173
Activation Log 90
adapter class 26

Index

adapter method 26
adapter pattern based classes
about 24
creating 25, 26
working 27
add attachment method 201
add_recipient method 190
Add Toolbar Element button 288
Adobe Document Services. See ADS
Adobe forms
displaying, in Web Dynpros 262-265
Adobe LiveCycle Designer 223
Adobe offline infrastructure
about 233, 234
working with 234-237
ADS 224
ALV 45, 46
ALV columns
setting, as key columns 47, 48
zero amount, setting 47, 48
ALV toolbar
own buttons, adding 55-58
working 58-62
amount string
commas, inserting 76-78
Application Creation Tool
used, for FPM applications creating 290-292
working 292
applications based OIF Floorplan design
about 268, 269
creating 269-273
working 273, 274
attachments
adding, to e-mail message 194-196

background pictures
setting 117-120
BCS 187,234
BCS classes
CL_BCS 188
CL_BCS_CONVERT 188
CL_CAM_ADDRESS_BCS 188
CL_DOCUMENT_BCS 188
CL_SAPUSER_BCS 188
Business communication services. See BCS
BUTTON_KIND parameter 261
button press method 58

C

characters

removing, from string 72
checkboxes

adding, to column 62-65

working 64
CL_BCS class 188
CL_BCS_CONVERT class 188
CL_CAM_ADDRESS_BCS class 188
CL_DOCUMENT_BCS class 188
CL_SALV_EVENTS_TABLE class 58
CL_SAPUSER_BCS class 188
Code Inspector

about 149, 150

check categories 149
Code Inspector checks

creating 163-166
columns

checkboxes, adding 62-64

Hotspot, adding 52-54

removing, from display 49, 50

removing, from layout 49, 50
commas

inserting, in amount string 76-78
comments

removing, from program code 78, 79
Configuration Editor button 292
CONSTRUCTOR method 165
consumer proxy’s logical port

creating 218

working 220
Continue button 208

294

created web service

configuring 211, 212

working 213
Create Extension Index option 89
create_internet_address method 193
Create New Version icon 156
CREATE_PDF_OBIJECT method 242
create_persistent method 18
CREATE_WINDOW method 260

D

database-specific performance checks
carrying out 157, 158
database table contents
printing, data references used 30-34
printing, field symbols used 30-34
database tables
secondary indexes, creating 88-90
Database Utility 90
date
converting, into internal date type 73
DEFAULT_BUTTON parameter 261
Deserialization 168
desktop folder
input, taking 108-111
detach_commit method 10
dictionary table types
transformations, creating 177-179
working 180
directory_browse method 111
Display Trace button 145
Display Trace option 135
Display Trace screen 140
duplex printing
enabling, in forms 229
dynamic Open SQL
applying 35-38
dynamic program
generating 39-43
dynamic programming 29

e %_HINTS parameter 91
e-mail
sending, to Internet address 192, 193

error messages
displaying 256-258
Excel downloading
transformations, using 181-185
Executed icon 156
EXECUTE method 242
EXPLAIN TREE tab 138

F

factory method 26
factory method based classes
creating 19, 20
working 21
field’s hit list data source
finding 145-147
filename
input, taking 108-111
Floorplan Manager. See FPM
folder options
using, for page protection 120, 121
for all entries construct
replacing, ranges used 96-99
forms
duplex printing, enabling 229
parallel printing 238, 239
FPM 267
FPM applications
creating, Application Creation Tool used
290-292
structure, viewing 283, 285
full-fledged inspection
about 153
carrying out 153-155
working 155, 156
function module
used, for web service creating 205-210
working 210

G

GAF 267,268

GAF applications
about 286
creating 286-289
working 290

Generic User Interface Building Blocks. See
GUIBBS

get_column method 63
GET_COMPONENTS method 278
GET_DATA method 241
GET_DEFINITION method 282
get_persistent method 18
GET_WINDOW_MANAGER function 260
GUIBBS

about 277

adding, to Floorplan applications 277-282

Form 277

List UIBB 277

Tabs UIBB 277

working 282

H

hashed table
single read access 94-96
hints
adding, in SELECT clause 91, 92
Hit List tab 87
Hotspot
columns, adding 52, 54
working 54
HTML e-mail
about 197
creating 197
working 198
HTML stream
interpreting 80, 81

i_att_content_hex parameter 196
IDR 268
IDR header (title and ticket area)
modifying 274-276
working 276
IF statement
regex, using as 70, 71
Import button 185
Insert new root option 178
interactive forms
creating, form elements used 230-232

295

creating, scripting used 230-232
error messages, adding 239, 240
working 232, 233

internal date type
date, converting into 73

internal tables
secondary indexes 93, 94
transformations, creating 175, 176
working 176

L

layout toolbar buttons

saving 51

working 51, 52
LIST_FROM_MEMORY function 199
LOOP statement 40

MESSAGE_TYPE parameter 261
multiselection parameter 110
mycheckbox method 63

navigation lists
about 248
creating 249-252
working 253, 254

nested tables
about 224, 225
creating 226, 227
working 227, 228

0

Object Instances Floorplan. See OIF
OIF 267, 268

OnActionbutton handler method 262
on_button_press method 58
on_click_checkbox method 64
Overview View Floorplan. See OVP
OVP 267

296

P

PDF object API
about 240
using 241
working 242
PDF output
Smart Form, converting to 124-126
persistent object
about 12
creating 13-16
working 17, 18
printed multiple forms
including, in single spool request 122-124
print preview
using 117-120
Print Preview option 119
program
running 199-202
program code
comments, removing 78, 79
program output
sending, as email 199-202
pseudo comments
used, for message suppressing 159, 160

Q

QAP 267
Quick Activity Floorplan. See QAP
quick code inspection

carrying out 150-152

working 152, 153

radio button selection
screen fields, changing 106-108
refresh method 63
regex
using, as IF statement 70, 71
regular expression 67, 68
regular expression operators, in ABAP
~ 68
?! 68

?= 68
.(68
. 68
\< 68
\> 68
+ 68
$ 68
\1 68
\2 68
about 68-70
\d 68
\u 68
\w 68
report selection screens
listboxes, adding 102-104
tabstrips, adding 102-104
restricted trace
carrying out 138-140
r_header table 99
RTTI 29
Runtime Type Identification. See RTTI

S

SAP 204
SAP interactive forms
recipes 223
screen field data source
finding 144, 145
screen fields
changing, on radio button selection 106-108
Search Function node
using 161
search help
creating 111, 112
exit function module, defining 112
working 113, 114
secondary indexes
creating, in database tables 88-90
for internal tables 93, 94
SELECT clause
hints, adding 91, 92
selection screen
toolbar buttons, adding 104, 105
SELECT statements 83

send method 190
serialization 168
Service Consumer node 220
service-oriented architecture. See SOA
set_cell_type method 64
set_data method 9
SET_DOCUMENT method 242
SET_EXTRACTDATA method 241
set_key method 51
set_screen_status method 58
set_technical method 50
shared memory object
about 6
creating 9
root class, creating 6-9
working 10-12
similar component dialog boxes
displaying 259-262
simple e-mail message
attachments, adding 194-196
creating 188-190
working 190, 191
simple transformations
about 168, 169
creating 170
creating, for internal tables 175, 176
creating, for nested structure 172-174
generating, for dictionary table types 177-181
used, for Excel downloading 181-185
working 171-177
single read access
hashed table 94, 96
single spool request
printed multiple forms, including 122-124
singleton class 22
singleton design pattern based classes
about 22
creating 22
working 24
Smart Form
about 115
converting, to PDF output 124-126
Smart Forms text editor
changing, to Microsoft Word 116
SOA 203

291

Source Code tab 182 interpreting 133-138

special characters OPEN operation 136
\ 69 PREPARE operation 136
* 69 transaction SAT
\? 69 using, for problem area search 84-86
\. 69 working 86, 88
\(69 trees
\) 69 about 245
\[69 creating 245-247
\] 69 working 248
\+ 69 tt:template command 183
\$ 69 tt:value command 169
SQL list
summarizing 141-144 U
SQL trace
about 131 uDDI 203
Activate Trace button, working 133 UIBB 267
carrying out 132, 133 Ul building blocks. See UIBB
static adapter method 26 Universal Description, Discovery,
string and Integration. See UDDI
characters, removing 72 unwanted trace result entries
filtering 140, 141
T
Vv
table fields
sorting, applying 126-130 value parameter 65
subtotaling, applying 126-130
table-related information W
viewing 141-144
tabstrips WDDOBEFOREREACTION method 258
about 254 WDDOINIT method 264
creating 255, 256 wd_get_api()method 244
working 256 Web Dynpro

about 243-245

Adobe forms, displaying 262-265
error messages, displaying 256
navigation lists, creating 248

telephone numbers format
validating 74, 75
Temporary Definition option 152

text string e)
repeated words, removing 75, 76 Abstrips creating

tokens trees, creating 245
searching 161, 162 Web Dynpro applications 267

web service
calling, from ABAP program 220-222
client service relationship diagram 205

toolbar buttons
about 156

adding, on selection screen 104, 105 .
trace regsuu consuming 214-217

FETCH operation 137 creating, from function module 205-210
generating 133-138 Web Service Definition Language. See WSDL

298

Where Clause block 35
WSDL 203

X

XML Spreadsheet 2003 format 182
XML stream 167

XSLT_TOOL 167
XSLT transformation 167

y 4
ZSTS8MY_SPELL_AMOUNT method 222

299

enterprise &

professional expertise distilled

PUBLISHING

Thank you for buying
SAP ABAP Advanced Cookbook

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www . PacktPub. com.

About Packt Enterprise

In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order
to continue its focus on specialization. This book is part of the Packt Enterprise brand, home
to books published on enterprise software - software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub. com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

"PUBLISHING

Mastering SQL Queries
for SAP Business One

Gordon Du

enferprise &

professional expertise distiled

Mastering SQL Queries for
SAP Business One
ISBN: 978-1-84968-236-7 Paperback: 352 pages

Utilize the power of SQL queries to bring Business
Intelligence to your small medium-sized business

1. Practical SAP query examples from an SAP
Business One expert

2. Detailed steps to create and troubleshoot SQL
queries for Alerts, Approvals, Formatted Searches,
and Crystal Reports

3. Understand the importance and benefit of keeping
SQL queries simple and easy to understand

nnnnnnnnnnnn

SAP BusinessObjects
Dashboards 4.0 Cookbook

Foreword by Donald MacCormick, Chief Product and Marketing Officer, Antivia

Xavier Hacking David Lai [PF\(:,K'[] enterprise ®

SAP BusinessObjects
Dashboards 4.0 Cookbook

ISBN: 978-1-84968-178-0 Paperback: 352 pages

Over 90 simple and incredibly effective recipes

for transforming your business data into exciting
dashboards with SAP BusinessObjects Dashboards 4.0
Xcelcius

1. Learn valuable Dashboard Design best practices
and tips through easy to follow recipes

2. Become skilled in using and configuring all
Dashboard Design components

3. Learn how to apply Dynamic Visibility to enhance
your dashboards

4. Getintroduced to the most important add-ons
available for Dashboard Design with the most up
to date information for Dashboards 4.0

Please check www.PacktPub.com for information on our titles

enterprise &

professional expertise distilled

"PUBLISHING

SAP NetWeaver MDM 7.1
Administrator’s Guide

Uday Rao

SAP NetWeaver MIDM 7.1

Administrator's Guide
ISBN: 978-1-84968-214-5 Paperback: 336 pages

Don't just manager - excel at managing your master
data with SAP NetWeaver MDM 7.1

1. Written in an easy-to-follow manner, and in
simple language

2. Step-by-step procedures that take you from
basic to advanced administration of SAP MDM
in no time

3. Learn various techniques for effectively managing
master data using SAP MDM 7.1 with illustrative
screen shots

SAP®Business ONE
Implementation

En

L5

SAP Business ONE

Implementation
ISBN: 978-1-84719-638-5 Paperback: 320 pages

Bring the power of SAP Enterprise Resource Planning to
your small-to-midsize business

1. Get SAP B1 up and running quickly, optimize your
business, inventory, and manage your warehouse

2. Understand how to run reports and take
advantage of real-time information

3. Complete an express implementation from start
to finish

4. Real-world examples with step-by-step
explanations

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: A
BAP Objects
	Introduction
	Creating a shared memory object
	Creating a persistent object
	Creating classes based on factory methods
	Creating classes based on singleton
design pattern
	Creating classes based on adapter pattern

	Chapter 2
: Dynamic Programming
	Introduction
	Using field symbols and data references to print database table contents
	Applying dynamic Open SQL
	Dynamic program generation

	Chapter 3
: ALV Tricks
	Introduction
	Setting ALV columns as key columns and making zero amount appear as blank
	Removing columns from display and layout
	Adding Hotspot to columns
	Adding your own buttons to ALV toolbar
	Adding checkboxes to columns

	Chapter 4
: Regular Expressions
	Introduction
	Using regex as an IF statement
	Removal of characters from a string
	Converting date into internal date type
	Validation of format (telephone number)
	Removing repeated words from text string
	Inserting commas in an amount string
	Removing comments from program code
	Interpreting HTML stream

	Chapter 5
: Optimizing Programs
	Introduction
	Using transaction SAT to find problem areas
	Creating secondary indexes in
database tables
	Adding hints in SELECT clause
	Secondary indexes for internal tables
	Hashed table for single read access
	Replacing for all entries construct
 with Ranges

	Chapter 6
: Doing More with
Selection Screens
	Introduction
	Adding tabstrips and listboxes to report selection screens
	Adding toolbar buttons on selection screen
	Changing screen fields on radio button selection
	Taking desktop folder and filename as input
	Coding search help exits for creating better F4 helps

	Chapter 7
: Smart Forms – Tips
and Tricks
	Introduction
	Toggle on/off the Microsoft Word text editor
	Using background pictures
and print preview
	Using folder options for page protection
	Printing several forms in one spool request
	Converting Smart Forms to PDF output
	Applying sorting and subtotaling to table fields

	Chapter 8
: Working with SQL Trace
	Introduction
	Carrying out SQL trace
	Generating and interpreting the trace result
	Carrying out restricted trace
	Filtering unwanted trace result entries
	Summarizing an SQL list and viewing
table-related information
	Quickly finding the data source of a screen field
	Finding the data source of a field's hit list

	Chapter 9
: Code Inspector
	Introduction
	Carrying out quick code inspection
	Carrying out a full-fledged inspection
	Carrying out database-specific performance checks
	Suppressing messages using pseudo comments
	Searching for ABAP statement patterns and tokens within code
	Creating your own Code Inspector checks

	Chapter 10
: Simple Transformations
	Introduction
	Creating simple transformations
	Creating transformations for structures and calling them in programs
	Creating transformations for internal tables
	Generating transformations for dictionary table types
	Downloading into Excel made easy using simple transformations

	Chapter 11
: Sending E-mail Using BCS Classes
	Introduction
	Creating a simple e-mail message
	Sending e-mail to Internet e-mail addresses
	Adding attachments to your message
	Creating HTML e-mail
	Running a program and sending its output as an e-mail

	Chapter 12
: Creating and Consuming Web Services
	Introduction
	Creating a Web service from a function module
	Configuring the created Web service
	Consuming a Web service
	Creating a consumer proxy's logical port
	Calling a Web service from an ABAP program

	Chapter 13
: SAP Interactive Forms
by Adobe
	Introduction
	Creating nested tables
	Enable duplex printing in forms
	Using form elements and scripting to create interactive forms
	Working with Adobe offline infrastructure
	Parallel printing of form
	Adding error messages for interactive forms
	PDF object API

	Chapter 14
: Web Dynpro for ABAP
	Introduction
	Creating trees
	Creating navigation lists
	Creating tabstrips
	Displaying error messages
	Calling dialog boxes of same component
	Displaying Adobe forms in Web Dynpros

	Chapter 15
: Floorplan Manager
	Introduction
	Creating applications based on OIF Floorplan design
	Changing header and ticket area at runtime
	Adding list GUIBBs to Floorplan applications
	Viewing structure of FPM applications
	Creating GAF applications
	Creating FPM applications using Application Creation Tool

	Index

