
www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front

matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ... xxv

About the Technical Reviewer .. xxvii

Acknowledgments ... xxix

Introduction ... xxxi

Chapter 1: ERP and SAP Overview ■ ...1

Chapter 2: ABAP Dictionary/Data Dictionary/DDIC – 1 ■ ..21

Chapter 3: ABAP Dictionary/Data Dictionary/DDIC – 2 ■ ..81

Chapter 4: ABAP Language Basics ■ ..141

Chapter 5: WRITE Statement (Classical Reporting) ■ ...197

Chapter 6: Internal Tables ■ ...245

Chapter 7: Modularization ■ ...323

Chapter 8: Open SQL Data Retrieval ■ ..391

Chapter 9: SELECTION-SCREENS ■ ..447

Chapter 10: Interactive Lists ■ ...513

Chapter 11: ABAP OOP ■ ...575

Chapter 12: ABAP List Viewer Outputs—Part 1 ■ ...647

Chapter 13: ABAP List Viewer Output—Part 2 ■ ..707

Chapter 14: Screen Programming ■ ...735

Appendix A: Description of the SAP-Delivered Tables Used in the Hands-On Exercises ■ 829

Index ...845

www.allitebooks.com

http://www.allitebooks.org

xxxi

Introduction

ABAP (Advanced Business Application Programming) is the programming language and the platform on which the
entire SAP software has been developed. Originally, a procedure oriented language, OOP constructs and features were
added to it more than a decade back. hough, its core constructs remain the same, it underwent many enhancements
over the last decade. he ABAP platform is used during both the customization and implementation phases of the SAP
software in the enterprise.

Target Audience
he book addresses people who want to learn ABAP afresh and people working with ABAP for a few years (0-4 years).
People with experience in ABAP will ind this book useful as a reference for hands-on examples, from the context of
doing meaningful things.

Target Audience Pre-requisites
he target audience must have a fair exposure to OOP language/s like C++, Java, etc. hey must be exposed to the
basic features of OOP including encapsulation, inheritance, polymorphism, etc.

hey must also have a good exposure to RDBMS basics like RDBMS tables, table columns, relationships, primary
key, foreign key, cardinality, entity, attribute and table metadata. An exposure to RDBMS SQL, especially the data
retrieval statement, is required.

Book’s Approach
he whole of the book’s thrust is on the doing something meaningful part: to be able to create programs and objects
required as per a deined context or scenario.

he book uses a scenario oriented presentation style. Concepts, commands and statements are communicated
through illustrative examples and scenarios. Wherever possible, small business scenarios are used to communicate
concepts, commands and statements.

Shorn of weighty theoretical treatment and preoccupations with language syntax, the book is a completely
practical approach, demonstrating and conveying the language’s commands, features through hands-on examples.

Deinitions, descriptions, syntax, etc. are introduced even as you set about implementing a scenario.
he presentation of the features is scenario oriented: most of the features are demonstrated in terms of small

business scenarios. he book’s scenario descriptions along with source program resource containing the ABAP
program source enable the reader to create all objects related to the scenario and run or execute them. he underlying
concepts of a feature/command are totally conveyed through execution of these hands-on programs.

www.allitebooks.com

http://www.allitebooks.org

■ INTRODUCTION

xxxii

he demonstrating/illustrating objects, including the programs, rely on some of the SAP functional module
tables being populated (the term functional module is explained in Chapter 1). his is assured if the reader is logged
on to an IDES (internet demonstration & evaluation server) server or system. he IDES server is briely described in
Chapter1. An IDES server is now a de facto system for all SAP training related activities. Speciically SAP functional
module tables used for illustration and hands-on exercises in the book are the basic tables of sales and purchase. Most
people with nil or little to no exposure to the business, and commercial world relate to the business areas of sales and
purchase.

All of the hands-on exercises in the book are performed using SAP sales and purchase functional module tables.
he IDES server is used ensuring substantial data in the SAP functional module tables. Details of the SAP functional
module tables used in the hands-on exercises are to be found in Appendix A. he authors strongly advise you to go
through the appendix describing the functional module tables used in the hands-on exercises of the book. You can
visit this Appendix A before you commence the reading of a chapter from Chapter 5 onwards (when you start using
the SAP functional module tables).

he book also uses a “carry forward” approach for the hands-on exercises. Where ever possible, a hands-on
exercise performed in earlier chapters is carried forward to subsequent chapters, with additions and enhancements
carried out to it. his involves re-usability of created objects again and again.

Chronology and order of presentation of topics and sub topics is related to pre requisites required for the
presented topics and sub topics. At some places, topics and sub topics are introduced on a preview basis to make the
current hands-on exercise more meaningful. Subsequently the topics and sub topics introduced on a preview basis
are formally presented.

he authors strongly insist that you perform the hands-on exercises as you read a chapter and encounter the
hands-on exercises—do not defer performing them until after reading a chapter or the book. It should not be just
reading, but reading and simultaneously performing the hands-on exercises.

Resources
he book is supplemented with an E-resource or source program resource.

he E-resource or source program resource contain the hands-on exercises source programs. Most source
programs in the E-resource are also listed in the book. Some source programs of the E-resource are partially listed
in the book and some are not listed in the book. his is indicated in the respective chapters. he E-resource is
downloadable and each of the hands-on exercise source programs can be opened as a separate ile in Windows
Notepad. While performing the hands-on exercises, you can copy and paste an entire source program from the
E-resource, or manually enter the source program by referring to the source program lines of the E-resource. Manual
entry of source programs will get you a feel of the syntax of statements. If you are copying and pasting, remember
to replace the ‘REPORT. . .’ statement line from the E-resource program into the created ABAP program in the ABAP
workbench environment. You will be introduced to the ABAP workbench environment in Chapter 1.

In addition to the book and the supplementary E-resource, you will use the following additional resources:
You must have connectivity to SAP, preferably a SAP IDES server. Your log-in user id must be able to create, edit

and delete objects in the ABAP workbench environment. Your log-in user id must be able to access data from SAP
functional module tables. Apart from book reading, some extra reading is required such as:

You will need to read extra theory and description not exposited in the book. You need to refer to some detailed
information not provided in the book.

You will need to read up the detailed tutorial or documentation related operations in the ABAP workbench
environment not described in the book.

You will likely refer to and read the detailed properties, methods and events, etc. of some SAP supplied classes.
he material for most of the above mentioned readings is available in freely downloadable PDF documents

from the following link http://www.easymarketplace.de/online-pdfs.php. You will not violate any copyright law
downloading the documents from this link. hese are PDF documents of SAP version 4.6C. hough the documents are
older versions; they will largely serve your purposes.

www.allitebooks.com

http://www.easymarketplace.de/online-pdfs.php
http://www.allitebooks.org

■ INTRODUCTION

xxxiii

Download the following PDF documents from the link: http://www.easymarketplace.de/online-pdfs.php.

ABAP Programming (BC-ABA) BCABA.pdf

ALV Gird Control (BC-SRV-ALE) BCSRVALV.pdf

BC - ABAP Dictionary BCDWBDIC.pdf

BC ABAP Workbench Tools BCDWBTOO.pdf

BC ABAP Workbench Tutorial BCDWBTUT.pdf

SAP List Viewer (ALV): Classic CAGTFLV.pdf

You will need to refer (not read) to these documents for information during your reading of this book. Preferably,
you won’t read these documents during your chapter reading. Read these documents between chapters. At what
stage, which of these documents are to be read or referred is indicated in the book’s chapters.

So, on to stimulating reading. Not just readings though, the hands-on exercises should be performed
simultaneously with your reading. he documents mentioned above will also be available for download on
http://www.apress.com/9781430248033.

www.allitebooks.com

http://www.easymarketplace.de/online-pdfs.php
http://www.apress.com/9781430248033
http://www.allitebooks.org

1

CHAPTER 1

ERP and SAP Overview

ERP Overview
Enterprise Resource Planning (ERP) software products are business application, packaged software. They are used
to run large- to medium-sized business enterprises. The ERP software suppliers claim that their software can cater
to every business activity of every category of business enterprise. In most cases, an enterprise relies on multiple
databases to maintain its operations: to facilitate the migration, the ERP software supports multiple databases for
interaction and input but relies primarily on a centralized database for storing all function module data. The ERPs
integrate the different business activities of a business enterprise. They support multiple currency handling, an
essential feature for business enterprises operating globally. The ERPs also have the feature of consolidation, which
facilitates the consolidation or accumulation of the accounting numbers of transnational business enterprises having
a large number of subsidiaries around the world. The ERP software suppliers claim that all advances in hardware and
software technologies are incorporated in their newer upgrades or versions. Quite a few phrases and terms have been
used in this attempt at defining an ERP. Explanations of these terms and phrases follow.

Business Enterprises
A language dictionary meaning of business enterprise does not help in the present context. A definition is being
attempted from the point of view of law or statute. The users of ERP software are large- and medium-sized business
enterprises. Such business enterprises have to be registered or incorporated companies. Any group of people wanting
to start a business enterprise should apply for registration or incorporation. Business enterprises are also called
companies, enterprises, firms, or organizations. Any of these synonymous terms will be used. In the ERP world,
the registered companies are also called ‘legal entities’. Once a company is registered, it can commence business
operations. The registered company must, as per law, publish its audited financial results once a year, and unaudited
financial results every three months or quarter. Audited means the financial results generated by the company would
be cross-checked and verified for its accuracy, or authenticity, by an independent audit company. These are statutory
financial results as required by law distinct from financial results the company would produce for its own internal
purposes. The statutory financial results must be reported in the currency of the country where the company is
registered. Hence, companies registered in the United States would produce their financial results in U.S. dollars.
This currency, in which a company has to produce financial results, as per law, could be termed ‘operating currency
of the company’.

A company registered in one country, generally, will not directly operate a full-scale business in another country.
A company ‘ABC U.S.’ registered in one country, say the United States, wanting to conduct a full-scale business in
another country, say the United Kingdom, will register a local company in the United Kingdom, such as ‘ABC U.K.’ .
This company in the United Kingdom, ‘ABC U.K.’, is designated as a subsidiary of the parent company ‘ABC U.S.’ .
A parent company can own 100% of a subsidiary or less. A parent company can have any number of subsidiaries
around the world. A subsidiary company can, in turn, have many subsidiaries.

Business enterprises are categorized based on their prime activity. Figure 1-1 shows the categories of
business enterprises.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ ERP AND SAP OVERVIEW

2

The first category of business enterprise, ‘Trading’, does not involve producing or manufacturing any goods.
Such enterprises buy goods and sell them. A very common example of this subcategory is ‘Retail Trading’, such as
supermarkets. The second category of business enterprise is ‘Utilities & Services’ (‘Electric Energy Distribution’,
‘Banking’) and do not do any manufacturing. Though electricity is produced, it is not a good in the normal sense of
the word, so it is categorized under ‘Utilities’.

The third category of business enterprise is ‘Manufacturing’. This category is further subcategorized into ‘Process’,
‘Engineering’, and ‘Turnkey’. The subcategories reflect the production or manufacturing characteristic. In the first
subcategory ‘Process’, ingredients pass through a process, and the product at the end of the process is frequently
packaged in different modes. Once ingredients and processes are fixed, this is repetitive in nature. The most common
examples of ‘Process’ manufacturing are the soft drink companies and the pharmaceutical companies. One other
example of the subcategory ‘Process’ would be an oil refinery company. The crude oil passes from one fractional
distillation process to another, producing various petroleum products at each stage of fractional distillation.

In the second subcategory of manufacture, ‘Engineering’, components or parts are produced and/or procured
in the first stage. Then these components are assembled to produce the final product. Before the assembly stage, all
the required components should be available if the assembly is to be carried out successfully. So in the ‘Engineering
Manufacture’, to produce a certain number of finished products, components required before the assembly stage
are to be ascertained. This is called ‘Requirement Planning’, a major exercise to be performed in ‘Engineering
Manufacture’. In fact, a set of software called ‘Material Requirement Planning’ – MRP – were predecessor to the ERP.
The most common example of this subcategory is a business enterprise manufacturing automobiles. It is to be noted
that once the specifications of, for example, a car model are finalized, the process of production, procurement, and
assembly is repeated over and over again, a kind of routine process to produce that model of the car. Components
could be manufactured within the business enterprise: for example, an engine is manufactured within the business
enterprise from some raw materials. Ready-made components could be procured (outsourced) components: for
example, headlights and tail lights are procured from other business enterprises. Therefore, in the assembly stage,
there could be a mix of produced components and procured components.

The third subcategory of ‘Manufacture’ is ‘Turnkey Manufacture’. This subcategory is similar to the subcategory
‘Engineering Manufacture’ to the extent that components are produced first and then subsequently assembled. But
in ‘Turnkey Manufacture’, unlike the ‘Engineering Manufacture’, there is a degree of non-repetitiveness in the process.
Some parts of the process could be repetitive, but some parts would be non-repetitive.

Business Enterprises

Trading,

(Retail Supermarkets)

Utilities & Services

(Banking, Insurance, Electricity)

Manufacturing

Process Manufacture

(Soft Drink, Pharms)

Engineering Manufacture

(Automobile)

Turnkey Manufacture

(Specialized contracts a nuclear reactor)

Figure 1-1. Business Enterprise Categories

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ ERP AND SAP OVERVIEW

3

Though each of the business enterprise categories is complex in its own way, as shown in Figure 1-1, the
complexity of business increases in relative terms as you move from left to right. So ‘Services’ are perceived as
relatively more complex than ‘Trading’, ‘Manufacture’ more complex than ‘Services’, ‘Engineering Manufacture’ more
complex than ‘Process Manufacture’, and so on.

There could also be more categories of business enterprises. Try to think whether packaged software companies
such as SAP, Oracle, and Microsoft would fit into these categories or require a new one. Similarly, think about whether
‘Real Estate’ business enterprise (selling houses) fits into an existing category in the diagram or not.

The categories of business enterprises in the diagram might not be complete. The subcategories of
manufacturing business enterprises might not pass muster from a fastidious production planning professional. But
the objective here of describing the categories and subcategories is to give a feel for the complexities of business
enterprises that ERP software has to address to people having their first exposure to business in a commercial world.

Business Activities
Within a business enterprise, different business activities are performed. These business activities are ‘Accounting’
or ‘Finance’, ‘Sales’, ‘Material Accounting’ or ‘Material Management’, ‘Production Planning’, ‘HR’, etc. Some of these
business activities could be common to categories of business enterprises such as ‘Finance’ (‘Finance’ is the heart
of every business, and every business enterprise must perform this business activity); ‘Sales’; ‘HR’; or ‘Material
Management’. Some of the business activities could be specific to certain categories of business enterprises. The
business activity ‘Material Management’ is relevant to the categories of ‘Manufacturing’ and ‘Trade’ but not to the
category ‘Services’. Similarly, the business activity ‘Production Planning’ is not relevant to the categories ‘Trade’,
‘Services,’ and so on. These business activities could be viewed as departments performing a specific function in a
business enterprise. In ERP parlance, these departments are termed business functions or functional modules, and
each functional module caters to a specific business function. Henceforth, you will refer to the business activities as
functional modules.

ERP Concept, Its Evolution
Pre ERP Business Application Software Scenario: Before the advent of the ERP concept — in the mid-1970s and
earlier (a long time ago) — business application software used to be created around each business function. The
accounting or finance functional module would have its set of programs or software and data; the sales would have
their own software and data to run the application. The data of the different functional modules was maintained
separately, not in a centralized database. The software of different functional modules was running in a segregated
manner (i.e., there was no integration – a major hallmark of the ERP software). Moreover, the software was the so-called
tailor-made software. At that time there was no concept of packaged, off-the-shelf software that is available today.
Business application software used to be created much like the tailor-made shirt. Every time you want a shirt, you
go to the tailor with the requisite cloth, give measurements, and specify the shirt’s features (for example, how many
pockets?). Are the pockets flapped? Are they full or half sleeved? In an analogous fashion, to create new business
application software for a functional module of a business enterprise, personnel designated as ‘systems engineers’
or ‘systems analysts’ would interact with the functional modules’ personnel of the business enterprise, study the
functional module’s processes and systems, do a conceptual design and a data design, write programs, test programs,
and implement and maintain the programs. Next time that software for the same functional module is to be produced
for a different business enterprise, the same gamut of activities would be completed, maybe involving repetition of
some or most of these activities.

Pre ERP Technology Scenario: In the 1970s, the computer industry was in its nascent stage. The level and scale
of hardware and software features available were nowhere close to what is available today.

To give a bare idea of what was conspicuously not available in hardware, consider this list: (i) No
microprocessors. (ii) No distributed processing, only centralized processing represented by the mainframes and mini
computers. (Mini computers subsequently vanished.) (iii) No semiconductor RAM. RAM sizes were of the order of
kilobytes and a few megabytes. Disk sizes of the order of 10s of megabytes. (v) Very little networking, almost to the
extent of nonexistence (i.e., no connectivity).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ ERP AND SAP OVERVIEW

4

Here is now an idea of what was conspicuously not available in software: (1) No Graphical User Interface – GUI.
(2) No networking operating systems. (3) No OOPS technology. (4) The operating systems were rudimentary; even a
task like disk and file space management was performed by the end user. (5) RDBMS was in a very nascent stage.

And all of this cost lot of money, millions of dollars. The computers could only be afforded by the Fortune
500 companies!

The ‘Pre ERP Business Application Software Scenario’ and ‘Pre ERP Technology Scenario’ descriptions have been
included because ERP software carries a legacy relating to these scenarios, and exposure to this helps relate to the
legacies in the ERP software.

Major Attributes of ERP Software
Centralized Database

In ERP software, all the data relating every functional module is stored in one centralized database. The next attribute,
integration, is possible only with a centralized database.

Integration

The term ‘integration’ has been introduced in the context of ERP software. Let this integration be illustrated by a
simple business need. Consider the instance of business enterprise payroll processing. Every week/month (depending
on the payment period), an enterprise has to generate the pay sheet of its employees. For each employee, a pay sheet
has to be created detailing the various earnings – basic salary, house allowance, conveyance allowance, etc.; and
the various deductions – provident fund, health insurance, etc. Each employee will receive his or her respective pay
sheets through an e-mail or by some other mode. The functional module responsible for the pay sheet (perhaps HR)
will maintain the pay sheet data.

Now, since the pay sheet involves money payment, the finance functional module should be notified. This is a
basic need of any business. Any activity involving payment or receipt of money will invariably involve this notification
to the finance functional module. But the finance functional module requires the pay sheet information in a different
fashion. They do not want the detailed information of every employee. Instead, they want summary information for
each functional module: the total of every type of earning and deduction. Tables 1-1 and 1-2 elaborate this scenario.

Table 1-1. Employee Pay Sheet

Functional

Module/

Department

Employee

No.

Basic House

Allowance

Conveyance

Allowance

Provident

Fund

Health

Insurance

HR 500001 20000 4000 2000 1600 1000

HR 500010 30000 6000 3000 2400 1500

HR 500015 25000 5000 2500 2000 1250

Total - HR 75000 15000 7500 6000 3750

Sales 500030 50000 10000 5000 4000 2500

Sales 500035 40000 8000 4000 3200 2000

Total – Sales 90000 18000 9000 7200 4500

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ ERP AND SAP OVERVIEW

5

Table 1-2. Functional Module Wise Pay Sheet Summary

Functional

Module

Department

Basic House

Allowance

Conveyance

Allowance

Provident

Fund

Health

Insurance

Total - HR 75000 15000 7500 6000 3750

Total – Sales 90000 18000 9000 7200 4500

For illustrative purposes, only three employees for the first functional module have been considered, and only
two employees for the second functional module. In a real-life scenario, there could hundreds and thousands of
employees in a functional module, and there would be quite a few functional modules, not just two. What is to be
understood is the way the functional module of finance should receive the pay sheet data.

In the ERP software, this facility of summarizing the data and sending the data from HR to finance is built in. The
sending and receiving of data in technical terms obviously means transfer of data from HR tables to finance tables of
the centralized ERP database.

Multiple Currency Handling

Business enterprises conduct business around the globe. They buy goods and services from suppliers in countries
other than the country of their registration, so they may have to pay in the currencies of the countries where the
suppliers are located. Similarly, they sell goods and services to customers located in countries other than the country
of their registration, so they may raise bills in the currencies of the countries where the customers are located. But as
per the law of the land, ultimately everything has to be converted into the currency of the country where the business
enterprise is registered. So the element of conversion from one currency to another comes into play. The conversion
rate to convert from one currency to another is called the exchange rate. The issue of conversion is complicated by
requirements of the laws. Most countries’ laws require that different exchange rates be adopted in different contexts.
This entails maintenance of a large number of exchange rates to be used and assigned in different contexts as
prescribed by laws. Let these concepts be again explained with a simple business scenario.

Assume that there is a software services company ‘ABC Ltd.’ operating in India; its operating currency is Indian
rupees. ‘ABC Ltd.’ has provided services (probably implemented SAP) to a customer company located in the United
States. For the services provided, ‘ABC Ltd.’ presents a bill of 5,000,000 U.S. dollars. As per the law, this figure needs to
be converted to Indian rupees to incorporate this into the book of accounts of ‘ABC Ltd.’. The issue is what exchange
rate to adopt. This is a context of sales (i.e., software services have been sold). Suppose the law states that in the
context of sales, the exchange rate (U.S. dollar vis-à-vis Indian rupee) prevailing on the last trading day of the month on
the money market in which the sales bill was raised should be adopted. Suppose this rate was 1 U.S. dollar = 55.00 Indian
rupees. [There is a money market, where money of different currencies is sold and purchased like a commodity].
Hence the figure of 5,000,000 is taken into ‘ABC Ltd.’ account books as 275,000,000. This is the end of this transaction.
This was a simple scenario of currency conversion and multiple currency handling.

The issue of multiple currency handling is a complex one. The ERP software has built-in features to enable the
handling of this issue.

Consolidation

This feature is required by business enterprises having subsidiaries around the globe. When the financial statements
are prepared for these business enterprises (parent companies) having a number of subsidiaries around the world,
the financial statements must incorporate the numbers of all the subsidiaries as well. This flow of numbers from the
subsidiaries to the parent is called consolidation. The process of incorporating subsidiaries’ numbers is complicated
by two factors: (a) When the numbers of the subsidiaries flow to the parent company, they should be converted to the
currency of the parent company, as the parent company and its subsidiaries will be operating in different currencies.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

6

The multiple currencies factor is again operating. (b) The parent company’s ownership is not direct but through
other subsidiaries, and ownership might be less than 100%. The ERP software addresses these issues and has built-in
features to enable consolidation.

Figure 1-2 attempts to graphically convey the consolidation of a simple scenario.

USA ABC Inc. (USD)

90% ownership

80% ownership 20% ownership

100% ownership

INDIA ABC Ltd. (INR) UK ABC LLC (GBP)

BANGLA DESH ABC Ltd. (TAKKA)

Figure 1-2. Parent & Subsidiary Companies

Table 1-3. Flow of Numbers from Subsidiary Companies to Parent Company

From Company Currency Conversion % Ownership To Company

INDIA ABC Ltd. INR to USD 90 USA ABC Inc.

UK ABC LLC GBP to USD 100 USA ABC Inc.

BANGLA DESH ABC Ltd. TAKKA to USD 20 USA ABC Inc.

BANGLA DESH ABC Ltd. TAKKA to INR 80 INDIA ABC Ltd.

INDIA ABC Ltd. INR (from TAKKA) to USD USA ABC Inc.

In the graphic hierarchal representation, the parent company USA ABC Inc. has subsidiaries INDIA ABC LTD.
(90% ownership), UK ABC LLC (100% ownership), and BANGLA DESH ABC Ltd. (20% ownership). USA ABC Inc.
also owns BANGLA DESH ABC Ltd. through subsidiary INDIA ABC Ltd. (80% ownership). The currencies of these
countries are indicated in parentheses.

When figures of parent company USA ABC Inc. are prepared, the numbers of its subsidiaries should flow in the
manner shown in Table 1-3.

This is a small illustrative scenario. A real-life scenario would involve more subsidiaries and more complex
parent vis-à-vis subsidiary relationships. The ERP software is equipped to deal with the consolidation process.

Technology Advances

Every major ERP supplier/vendor has a technical tie-up with every other hardware and software supplier/vendor.
These major ERP suppliers claim they introduce and incorporate features of technology advances into their newer
release/versions.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

7

Multiple Lingual Support

Business enterprises conduct business in their respective native language: business enterprises located in China
conduct business in Mandarin, business enterprises located in Germany conduct business in German, and so on. The
ERP software supports multiple languages. At the user login stage or a process of setup, a language is input. In the ERP
operating environment, the messages, labels, and texts, etc. will then appear in the logged language.

SAP Overview
SAP - Systems, Applications, and Products in Data Processing – is the name of the company as well as the product.
The company was later renamed as SAP A.G. It is headquartered in Germany and was started by five engineers who
were then employed with IBM. At IBM they performed the task of creating tailor-made business application software.
At that time every single computer supplier supplied everything related to computers such as all hardware (processors
and memory devices), operating systems, development tools such as language compilers, and tailor-made business
application software. When the five engineers left IBM and started their own company, they persuaded IBM to
subcontract the business-application-software part to their company, probably the first instance of outsourcing in
the IT industry. Wherever IBM delivered mainframe hardware and accompanying deliverables, except the business
application software, SAP created this business application software.

SAP came out with product SAP R/1 in 1972. In this product specification, ‘R’ signified real time. Real time was
then a hot technology feature like cloud computing is today. The simplest example of real time is when your airline
tickets are booked, the seat availability for booked flight/s of the specific day/s are updated instantly. The ‘1’ signified
one or single-tier architecture; the database, application, and presentation resided on a single system.

In 1979, SAP released the multiuser SAP R/2 with the following features:

Supported on IBM Mainframe•

‘R’ indicated ‘Real Time’•

‘2’ indicated 2-tier architecture: (1) Database+Applications layer (2) Presentation layer•

Most of the common modules, such as Finance, Sales, Material Management, Manufacturing, •
and HR were offered

Until mid-1992, when SAP R/3 was released, the number of SAP installations » 300.
In mid-1992, SAP released the SAP R/3 product with the following features:

‘3’ indicated a 3-tier architecture: (1) Database (2) Applications layer (3) Presentation layer•

Supported on (1) popular flavors of UNIX: IBM, HP, Sun Solaris; (2) OS/2, Windows•

Supported the following databases: (1) ADABAS now called SAP MaxDB (2) Oracle (3) •
Informix (4) IBM DB2 (5) MS SQL Server (when it was released)

SAP as of now supports the following additional databases: (1) Sybase ASE (2) HANA•

No other ERP suppliers or vendors could match this multi-platform offering of SAP at that time. Because of a
drastic reduction in hardware and software licensing costs in following years (more and companies could afford it),
SAP witnessed an exponential growth in these years. Its installed base crossed 100,000 in 2010. It is now the third
largest software company.

SAP followed up the SAP R/3 product with MySAP Business Suite (with integration through the Internet),
E.C.C. 5.0 (E.C.C. – ERP Core Component), and E.C.C. 6.0. The latest version at this time of writing is E.C.C. 6.0 EHP6
(Enhancement package 6).

CHAPTER 1 ■ ERP AND SAP OVERVIEW

8

Client Server Architecture
At this stage, it is sufficient to have only a basic idea about the client server architecture, which is the software view
of SAP architecture. An SAP installation consists of a database server, typically on a UNIX-based machine/system;
one or more application server/s, each typically on a UNIX-based machine/system (maybe a maximum of six); and
many window-based presentation servers or systems. The database server is meant to provide the services of data
maintenance and data access. Programs are loaded into the application server/s and executed in the application
server/s’ RAM. Presentation servers are for user access, operation, interaction, and dialogue.

In typical window-based SAP training environments, the database server and application servers are located
on a single system/machine. If you install SAP software on a laptop or a desktop and work on it, all three servers
(i.e. database, application, and presentation) are located on the same system or machine.

SAP NetWeaver
SAP NetWeaver is an integration framework. It was designed to operate in service-oriented architecture (SOA). It constitutes
cooperative technologies that integrate SAP functional modules and also provide connectivity to external systems.
The NetWeaver is a successor to SAP R/3. The first NetWeaver version 6.2 was released in 2003. The latest NetWeaver
version is 7.3 at the time of this writing. The NetWeaver version is distinct from The SAP software version (E.C.C. 6.0).
The SAP NetWeaver has components, tools, and applications.

The application server is a component of the SAP NetWeaver and also part of the software view of SAP
architecture. The application server has a complex architecture. The application server is called the NetWeaver
Application Server (SAP NW AS). The NetWeaver application server has a five-tiered architecture: presentation,
business, integration, connectivity, and persistence. The NetWeaver application server consists of an application
server ABAP (AS ABAP) and an application server Java (AS JAVA).You can install either one or both.

Other components of NetWeaver: business warehouse, business process management, business rules
management, process integration, master data management, mobile, portal, Auto-ID Infrastructure, identity
management, and information life-cycle management.

SAP Functionalities
The SAP business suite consists of five components:

Enterprise Resource Planning – ERP

Customer Relationship Management –CRM

Supply Chain Management - SCM

Supplier Relationship Management – SRM

Product Life-Cycle Maintenance - PLM

The ERP component, in turn, consists of the various functional modules. The functional modules are referred by
the short forms: FI for finance, SD for sales and distribution, and so on.

A partial list of functional modules with their names and their short forms:

 1. Accounting/Finance FI

 2. Control(Cost) CO

 3. Sales & Distribution SD

 4. Material Management MM

 5. Production Planning PP

CHAPTER 1 ■ ERP AND SAP OVERVIEW

9

 6. Human Resources HR

 7. Quality Maintenance QM

 8. Plant Maintenance PM

 9. Project System PS

 10. Treasury TR

SAP Implementation Overview
The SAP implementation is a substantial exercise and involves large high-skill manpower resources and time resources.
The cost of SAP implementation exceeds the combined cost of hardware and software licensing. Generally the company
planning to use the SAP software does not implement the software; they would not have the requisite know-how. The
implementation for the most part is done by third parties. These third parties are SAP-authorized implementation
partners. The SAP implementers form implementation teams at the commencement of implementation. There is a team
from the implementer side and another team from the company that will use the SAP software. A company planning
to use SAP will not implement all the SAP functional modules. They will only implement functional modules relevant
or required by them. Even the functional modules to be implemented by a company need not be implemented in one
phase. The implementation could be done in phases, with a time gap between the phases. A typical SAP implementation
time period is 18 months.

A SAP implementation involves configuration, customization, enhancement, and modification. Modification
involves modifying SAP-provided objects - not advisable except in rare situations.

A typical configuration activity will involve creation of a company code: assigning a chart of accounts and
business area to the company code, etc.

A simple example of customization: on a SAP-provided data entry screen, disabling fields not required by
the enterprise.

An example of enhancement: addition of fields required by the enterprise to a SAP-delivered table.

Implementation Team Composition

An implementer side team will have a hierarchy such as project managers, project leads, team leaders, team
members, and so on. The team from the implementer side consists of three main categories of consultants. They are:

 I. The Basis consultants

 II. The Functional consultants

 III. The ABAP/Technical consultants

Implementation Environments

The SAP implementation is carried out in well-defined controlled environments. Different stages of implementation
are carried out in different environments segregated from each other. The typical implementation environments are
(i) development and (ii) testing and quality assurance. The outcome of these two environments will flow to the
third environment, which is the live environment (a typical implementation has at least three stages, which are
discussed here).

End-user training is a very critical activity of SAP implementation that commences after configuration,
customization, and enhancement stages are complete. It deals with training of staff at the customer site in usage of
software to carry out their day-to-day tasks.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

10

Objects would be created by an ABAP consultant in the development environment. These would be moved - or to
use the SAP terminology - transported to the testing and quality assurance environment. Once they pass testing and
quality assurance, they will be transported to the live environment.

Similarly, a functional consultant will create functional components (like company codes, charts of accounts, etc.)
in the development environment. These would be transported to testing and quality assurance. Once they pass
testing and quality assurance, they will be transported to the live environment.

Suppose, in another scenario, testing and quality assurance are two separate environments. Then, objects/
components would be transported from development to testing, from testing to quality assurance, and from quality
assurance to live environment.

Now how an object/component travels is determined by the transport layer that gets associated with the object/
component. The transport layer and transportation of objects/components are part of a feature, ‘Central Transport
System’, which is the purview of the Basis consultant.

In today’s hardware and software scenario, you can have different systems for different environments (a three-system
‘Landscape’). You can have one Windows-based system assigned to the development environment. (Windows can
support a few hundred users without any performance or response bottlenecks.) Similarly another Windows-based
system is assigned to testing and quality assurance. The end-user training usually resides on one of these two systems. On
the other hand, a UNIX-based system is assigned to a live environment. The systems are connected to each other through
network for transporting objects and data from one environment to another as per transport layer specification. The
objects and data in these environments are segregated from each other because they are residing physically on different
systems. This is called the three-system landscape. This description is represented in Figure 1-3.

Development System

client 100, 200

Testing & Quality Assurance System

client 300 - Testing & Quality Assurance

client 450 - End-User Training

Production/Live/

Operational System

client 500

Figure 1-3. Three-System Landscape

The ‘Clients’ are explained in the section entitled ‘Client Code Perspectives’.
Now, consider this case in the SAP R/2 mainframe system. A separate mainframe could not have been assigned

for each environment (development, testing and quality assurance, live). All the environments had to reside on
a single mainframe system. Yet these environments needed to exist in a segregated manner. The segregation
was obviously implemented through a logical means. The means of logical segregation is a legacy carried by the
subsequent and latest version of SAP software.

The segregation is essential. Whatever is being done in the development environment should not be visible and
available in other environments and vice versa. There is a separate environment for end-user training. To train an
end user in the procedure and process of creation of customer data, dummy customers are created in the end-user
training. These dummy customers must not appear in the live environment or other environments. There would
normally be no transport of objects and data from end-user training environment to other environments.

Overview of SAP Login, SAP GUI, ABAP Workbench
You are advised to use the SAP IDES server. (The IDES server has been elaborated in the section entitled ‘SAP IDES
Server and use of SAP IDES Server for Trainings.) All the hands-on exercises in this book have been performed on the
IDES server.

It is assumed you have access to a SAP server, preferably to an IDES server. The front-end software has been
installed, connectivity established, and you are ready with the login pad.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

11

SAP Login

When you click on the SAP login pad on your system, the SAP Login screen will look like the one in Figure 1-4.

Figure 1-4. SAP Login

The SAP login screen (Figure 1-4) prompts for four fields of information:

 1. Client

 2. User

 3. Password

 4. Language

1. The Client, a three-digit number, is one of the parameters through which environment segregation
(development, testing & quality assurance, et al.) is implemented. In the section entitled ‘Client Code Perspectives’,
this has been discussed.

2 & 3 Userand.Password – essential in any multiuser system.
4. A language code (‘EN’ for English, ‘DE’ for German et al.) is to be input here. Language code field in the SAP

tables is a single character, but while presented on screen, appears as two characters. This is the typical situation
prevailing in the SAP environment. The internal storage of data fields in the tables is different from the manner in
which it presented on the screen and printer. During SAP installation, you can specify a default language for the
installation. You can also specify the language/s to be installed. (All the languages supported by SAP need not be
installed.) The German language (‘DE’) gets installed mandatorily. You cannot omit its installation. If you leave the
Language field blank on the login screen, login will occur with the default language.

The User and Language are case insensitive. The Password is case sensitive.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

12

SAP GUI

After the entries on this screen have been accepted, the SAP opening screen appears called the SAP Easy Access.
(Figure 1-5)

Figure 1-5. SAP Easy Access Screen

In the SAP Easy Access screen, the following areas, indicated by arrows in Figure 1-5, need to be recognized:

 1.

The SAP Menu Bar, Menu Options: This will vary screen to screen except for the last two
bars, System and Help.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

13

 2.

The Standard Tool Bar: The buttons or icons appearing in this area are the same from
screen to screen. Buttons or icons are enabled or disabled depending on the context. The
button is for saving. On the opening SAP Easy Access screen, this is in a disabled
state, as there is nothing to save on this screen.

 3.

The Window Title: This contains the title of the window.

 4.

The Application Tool Bar: The buttons or icons on the Application Tool Bar vary from
screen to screen.

 5.

SAP Easy Access Menu Tree: In the SAP GUI environment, you need to navigate to different screens to carry out
different tasks. One way of navigating to different screens is to use the menu tree. Clicking on or expanding the nodes
of the menu tree will give access to subnodes and to the innermost subnode; clicking on this innermost subnode will
enable you to navigate to different screens to carry out the various tasks. If you wanted to create an ABAP program,
you will (1) click on the node ‘Tools’ (at the bottom), and subnodes will appear. (2) Click on the subnode ‘ABAP
Workbench’, and further subnodes will appear. (3) Click on the subnode ‘Development’, and further subnodes will
appear. (4) Click on the last level of subnode ‘ABAP Editor’. This will take you to the screen supporting the ABAP
program maintenance. This is the ABAP editor screen. This sequence of nodes/subnodes will appear, provided
nobody has customized the SAP Easy Access screen from its initial default. In this manner the user can navigate to
various screens to carry out different tasks.

 6.

Command Field: Using the command field is another way of navigating to screens to carry out various tasks
by the SAP user. One mode has been described under SAP Easy Access Menu Tree. The other shorter mode is to enter
the transaction code in the command field and press the <Enter> key. For instance, again, you want to navigate to
the ABAP editor screen. The transaction code to navigate to the ABAP editor screen is ‘SE38’. You enter SE38 in the
command field and press <Enter>. If you want to navigate to the ABAP dictionary screen, the transaction code is
‘SE11’. These are predefined transaction codes provided by SAP. You can also create your own transaction codes.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

14

You will create your own transaction code during in the Chapter14 entitled ‘Screen Programming’. There are more
than 100,000 predefined SAP provided transaction codes available in the SAP GUI environment. You will be familiar
with around 15 transaction codes by the time you finish reading this book. The command field can be made to
appear/disappear through the button at the right.

 7.

Status Bar: This is at the bottom of the screen. In the right side area of the status bar, system-related information
such as ‘system id.’, ‘system no’, log-in client, application server name and status of keyboard INS key on/off is presented.
The left side of the status bar is used for notifications to the user through messages during program execution. If the
button appearing on the status bar after ‘system id.’, ‘system no’ and log-in client is clicked; a pop-up like the one shown
below appears. You get to know the program, transaction code getting executed, and login client et al.

Most of the icons in the SAP GUI environment are peculiar and specific to the SAP GUI environment. You will get
familiar with them and what they signify as you operate in the SAP GUI environment.

Function keys can be used in the SAP Workbench environment to perform operations. A partial list is available
in Table 1-4.

Table 1-4. Function Keys Operations

Function Key Operation

F1 When the cursor is on a screen field, help text for the screen field pop-ups.
When the cursor is on an ABAP program keyword, ABAP documentation for the ABAP program
keyword in a new session pop-ups.

F2 Mouse Double Click.

F3 Goes to previous screen.

F4 Selection List pop-ups.

F5 To create a new object.

F6 To edit or change an existing object.

F7 To display an existing object.

F8 To execute a program.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ ERP AND SAP OVERVIEW

15

Table 1-5. Very Commonly Used Icons or Buttons

Icon or Button Description

s Equivalent to pressing <enter> key. The <enter> key has a different meaning in the SAP GUI
environment. When you are finished with a screen, you press the <enter> key. To navigate
forward from one field to another, use the [tab] key; to navigate backwards between fields use
the [shift]+ [tab] key combination.

Universal Save

Navigate to previous screen [F3]

Exit screen

Cancel operation

Find

Create session

Execute [F8]

Create object [F5]

Display object [F7]

Change or Edit object [F6]

 Delete

A list of very commonly used icons or buttons (on the system and application tool bars) is available in Table 1-5.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

16

SAP External Sessions, Sessions’ Control

In a standard tool bar, the button is to create new external sessions. Alternatively, you can select the menu option

‘System’ and select the sub-option ‘Create Session’ to do the same. The system creates a new task or window. In this
manner, a single SAP logged-in user can create a maximum of 16 windows, which are called external sessions. The
Basis administrator can reduce this limit to less than 16. This limit of 16 is excluding the external sessions the system
spawns when a nonclassical debugger is used and when the function key F1 is pressed on the keyword of an ABAP
program. These are external sessions (simply different windows operating system tasks)and there is the concept of
internal sessions. The difference between the two will be known when the concept of internal sessions is introduced
in Chapter 7.

A developers’ work involves handling of multiple objects like ABAP program, ABAP dictionary objects, screens,
GUI status etc. One way of carrying out the developmental work involving multiple objects is to have multiple
windows or external sessions. In one external session, the developer would be operating the ABAP editor; in a second,
operating ABAP dictionary; in a third, the screen painter; in a fourth, the menu painter and so on.

The external sessions can be manipulated through the command box. Table 1-6 summarizes this:

Table 1-6. SAP Sessions’ Handling

Command Box Content Explanation

/NXXXX This terminates the current transaction and starts Transaction XXXX (example: /NSE38).

/N This terminates the transaction. This generally corresponds to pressing F15 to go back.

/NEND This terminates all separate sessions and logs off (corresponds to System – Logoff).

/NEX This terminates all separate sessions and logs off immediately (without any warning!).

/NOXXXX This opens a new session and starts transaction XXXX in this session.

/O This lists existing sessions and allows deletion or opening of a new session.

/I This terminates the current session (corresponds to System End).

Perform each of the commands in the table as an exercise.

ABAP Workbench

 ABAP – Advanced Business Application Programming is SAP’s propriety language, earlier called ABAP/4: ‘/4’
signified a fourth-generation language and has been dropped now that most of the languages are fourth-generation
languages. In the SAP environment, except for very few kernel programs, (like login screen) every other program is an
ABAP program, and the entire SAP ERP software has been written in ABAP. When you click on the button on the

status bar of SAP GUI screen, the name of the ABAP program in execution is available. Refer to SAP GUI 7. ABAP is not
just a language. It is a full-fledged developmental platform with a plethora of tools. The whole gamut of
developmental tools such as ABAP editor, ABAP dictionary, Function module (general purpose, generic subroutines)
builder, Class builder, Screen painter, Menu painter et al. constitute the ABAP Workbench. As the chapters of this book
unfold, these workbench tools will be introduced: how to access them (transaction codes), how to operate them, and
settings, etc. will be elaborated.

In this book, the focus is on the creation of workbench objects as per scenarios. The operations required to create
these objects is described. For more elaborate descriptions of workbench operations, you can refer to the downloaded
documents: BC ABAP Workbench Tools and BC ABAP Workbench Tutorial.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

17

Client Code Perspectives
In the SAP login section, you have seen that the first field on the login screen is the client or client code. It is a three-
digit number. When a new user is created by the Basis administrator, client code will be part of it; a user cannot be
created without a client code. And the client associated with a user has to exist on the system. It was mentioned that
the client code is one of the parameters used to implement the segregation of SAP environments: development,
quality, testing and live. You will then get a clearer picture of the environment segregation. A functional consultant
will view the client code very differently; a basis administrator will perceive a client differently than a functional
consultant. You, as an ABAP consultant or an aspiring ABAP consultant, will view the client code from a technical and
developer perspective.

When SAP software is installed, the SAP database gets created automatically as part of the installation process.
This database (in version E.C.C. 6.0) contains more than 70,000 tables. Almost all of these tables will be empty
after installation. A few of the tables envisaged contain the universal nature of data such as country codes and
names; states/provinces/regions of countries; and currency codes and names will be populated with data after SAP
installation.

Every developmental object that a developer creates inside SAP such as programs, screens, and ABAP dictionary
objects, etc. are stored in tables of SAP database.

A majority of the 70,000+ tables of SAP database will store the functional module data. To mention simple
examples: data relating to customers; suppliers or vendors; business documents data such as customers’ bills,
purchase orders, etc. The tables storing the functional module data invariably contain in the table structure a field of
ABAP dictionary type ‘CLNT’ as the first field. ABAP dictionary supports its own 20 odd data types; ‘CLNT’ is one of
them. The next chapter (Chapter 2) will introduce these 20 odd data types. Most often the name of this first field of
type ‘CLNT’ is ‘MANDT’.

All tables containing in its structure the first field of type ‘CLNT’ are termed client dependent tables. Tables not
containing this field as the first field in the structure are termed client independent tables. Shown below in Figure 1-6
is a partial structure of a functional module (client dependent) table and in Figure 1-7, a partial structure of a client
independent table.

Figure 1-6. Table KNA’ Structure – Client Dependent

CHAPTER 1 ■ ERP AND SAP OVERVIEW

18

It has been mentioned earlier that SAP supports different database brands: Oracle, MS SQL server, Informix,
ADABAS, and IBM DB/2. You can have any one of these installed. (Database brand can be specified during SAP
software installation time. Installation of database software forms part of SAP software installation.) This creates
an ABAP program portability problem. Suppose you have created an ABAP program using Oracle SQL statements.
This program would run as long as the installed database of SAP installation is Oracle. If the installed database is
other than Oracle, the source program needs to be modified. SAP got over this portability problem by introducing its
own SQL called the ‘Open SQL’. If programs are written using Open SQL statements, they are portable across all the
supported brands of databases. The ABAP language supports Open SQL as well as the SQL of the supported database
brands. In practice, invariably the Open SQL is used; the use of database SQL is rare and infrequent.

When data is retrieved or updated through SELECT or UPDATE statements using Open SQL statement for
any of the functional module tables (i.e., the client dependent tables), the system will retrieve or update only data
belonging to the client code with which user has logged in. To explain in specific terms: A user has logged into client
800. Once logged in, user executes an ABAP program using Open SQL SELECT statement to retrieve data from a
client dependent table, say TCURC (table containing the currency codes, data of universal nature); only rows having
MANDT = 800 are retrieved. It is as if an implicit ‘WHERE MANDT = 800’ is executed. The table will contain data
belonging to template client code/s such as client code 000 and/or client code 001. (Template clients are explained in
the following text in this section.) The table could contain data of non-template clients, if non-template clients exist.

When data is inserted through the INSERT statement of Open SQL statement for any client dependent tables,
the system will automatically assign logged-in client values to the client code fields (i.e., a row will be inserted with
a client code value equal to the value of the logged-in client code). Similar will be the case for the SQL DELETE
statement; only rows belonging to the client in which the user is logged in will be operated upon by the DELETE
statement of Open SQL.

With client dependent tables, Open SQL statements, in normal course, will operate only on data belonging to
client in which the user is logged in.

The SQL commands INSERT, UPDATE, DELETE will not be used in an ABAP program by a developer in the SAP
implementation or support team on the SAP delivered tables. The SAP delivered tables are strictly maintained by SAP
provided programs for the most part.

You are seeing the effect of segregation. The SAP implementation environments are associated and assigned a
specific client code. In an installation, the development environment would be one client, say 100; testing and quality
would be a second client, say 200; live, a third client say 300; end-user training, a fourth client, say 400 and so on.

When SAP software is installed, as part of the installation process, template client/s gets created. The option is to
either create 000 or 001 or both. These are classified as template clients. The template clients are not to be operated in.
The template clients are copied into the environmental clients such as developmental, testing/quality, and live. For
example, suppose you decide to have client 100 for developmental environment, 200 for testing/quality, 300 for live.
Then these would be derived by making copies of 000/001 into 100, 200, and 300. The process of copying (template or
even non-template) clients is a task carried out by the basis administrator.

Figure 1-7. Table TADIR Structure – Client Independent, first field not TYPE CLNT

CHAPTER 1 ■ ERP AND SAP OVERVIEW

19

The difference between the template clients 000 and 001 is that the client 001 contains the special functionalities
of Euro sales tax VAT. (Value Added Tax). If Euro VAT functionalities are required (implementation or support is being
done for a customer located in European Union), 001 needs to be copied to non-template/operational clients, or else
000 needs to be copied to non-template/operational clients. One can, of course, copy one non-template to another
non-template client.

There is one other client that gets created as part of SAP software installation. This is client 066 called the
‘early watch system’. When SAP is installed initially in an enterprise, it could face performance and response time
issues. The SAP On-line Support System – OSS - offers its services to help fix these issues. For this, the SAP OSS
requires login into the enterprise SAP system. They would log through client 066. After all, the SAP OSS should not
access the enterprise data.

SAP IDES (Internet Demonstration & Evaluation System) Server and Usage
of IDES Server for Trainings
When SAP software is installed, as has been mentioned earlier, except for the few tables containing data of universal
nature, such as countries, states/provinces/regions, currencies et al., all other functional module tables will be
empty. It has also been mentioned that the SAP functional module tables are populated through SAP provided ABAP
programs that perform rigorous validation before data is accepted and inserted into the said tables.

Also, data can be inserted into functional module table, (through SAP provided ABAP programs) provided
the functional modules have been configured and customized by the functional consultants. To give one scenario,
if you want to create a new customer (i.e., insert data into customer tables), the SD (Sales and Distribution) or FI
(Accounting/Finance) module should have been configured and customized by the respective functional consultants.

When SAP software is installed, no module is configured and customized. If this were so, there would be no need
for the costly exercise of implementation through functional consultants.

Since the SAP functional module tables are maintained by SAP provided ABAP programs, ABAP consultants
implementing and supporting SAP projects are absolved of this task of maintaining data of SAP tables. One of the
major tasks required to be performed by ABAP consultants implementing and supporting SAP is retrieving data
(SQL SELECT statements) and presenting data (reports).

To get good exposure to the data retrieval aspect, you need to do fairly complex exercises in data retrieval. With
no data in the SAP functional module tables of bare SAP installed software, this would be impossible. Even if modules
were configured and customized, it would require some skills to manually enter data. And manually you can’t be
creating too much of data: data running into thousands of rows. Not everybody can have access to SAP installation
with substantial data in functional module tables.

The IDES server is preconfigured and customized for a number dummy business enterprises and contains lo of
dummy data in functional module tables.

As its name suggests, SAP initially intended the IDES server for demonstration of software to prospective buyers.
But now it is being used everywhere for training, especially for functional modules’ trainings. To those undergoing
training in the functional modules, the preconfigured dummy data of more than a dozen companies is a very handy
reference.

Most ABAP trainings, including the certification training, use SAP provided tables of ‘Flight Data System’ for
exercises. These tables have been specially created and provided for ABAP trainings. But these are small tables.
(Small in terms of number of fields, small in terms of number of tables, less than a dozen.) These tables are available
in all servers. They can be populated by data through executing an ABAP program. They are of hypothetical nature.

But why use hypothetical tables when the real-world ones are available? You will use a few tables of sales and
purchase in your exercises. People not exposed to the business and commercial world can easily relate to the basic
sales and purchase functionalities. Though these tables on an average contain more than 100 fields, you will be
restricted to using a few fields, maybe 15-20. But you will get the feel and exposure of the SAP real-world tables while
doing the exercises with these tables.

CHAPTER 1 ■ ERP AND SAP OVERVIEW

20

Typically, the IDES server installed with default and not custom options creates four clients: 800, 810, 811,
and 812. The client 800 could be used as it contains substantial dummy data. Typically, it contains:

Data of more than 15 companies’ codes.•

More than 7,000 customers.•

More than 1,500 suppliers or vendors.•

More than 30,000 billing documents.•

More than 10,000 purchasing documents.•

Terminology Clarification
The functional modules have been described. In the ABAP Workbench, there is an object ‘Function Module’. The
‘Function Modules’ are general purpose routines existing in the library area. They can be called from multiple ABAP
programs (Reusability). The function modules are the most powerful construct of the procedure-oriented ABAP.
This will be covered in Chapter 7 entitled ‘Modularization’. The two similar sounding terms – functional modules
and function modules – should not be confused. Sometimes, functional consultants refer to functional modules as
function modules!

The word company refers to a business enterprise. In the SAP environment, the word company has a different
meaning. In the SAP environment, the word company is used to refer to a business group. For instance, suppose
there is a business group called ‘Super Group’. This business group operates a number of registered companies or
business enterprises such as ‘Super Iron & Steel Co. Inc.’, ‘Super Motors Inc.’, and ‘Global Beverages Inc.’. The registered
companies in the SAP environment are termed as company codes. It is important to know this terminology.

Conclusion
In this chapter, you learned the basics of ERP, SAP, and SAP GUI environments. You have also learned about client
code and have been apprised of the suitability of SAP IDES server for SAP trainings. In the forthcoming chapters you
will be learning technical aspects of the ABAP developmental platform. In the next two chapters, you will be learning
about the SAP ABAP dictionary or data dictionary (DDIC) as it is popularly known.

21

CHAPTER 2

ABAP Dictionary/Data
Dictionary/DDIC – 1

ABAP Dictionary, data dictionary, dictionary, and DDIC are synonymous terms. DDIC — a contraction of data
dictionary — will be used throughout this book. The DDIC is a multifaceted facility that is a substantial feature of the
ABAP Development Workbench environment.1

Any developmental activity invariably uses DDIC objects. This chapter and the next one list and identify DDIC
objects that will be covered in subsequent chapters. This chapter also describes the major attributes of the DDIC,
introduces the DDIC Data Types, and teaches the reader to create Domains, Data Elements, and Transparent Tables
through hands-on exercises framed in a simple business scenario.

Note ■ The word object is used in this book in its natural language meaning of thing. Object will not be used in the

context of OOP unless explicitly stated.

ABAP Dictionary: Initial Screen
To navigate to the screen for maintaining and viewing DDIC objects from the SAP Easy Access screen, enter the
transaction code SE11 in the command field. Alternatively, you can always navigate from the SAP Easy Access menu
tree. A screenshot of the ABAP Dictionary: Initial Screen is shown in Figure 2-1. (The term ABAP Dictionary is used
here to match the window title in Figure 2-1. Throughout this book, the term DDIC will be used by default).

1ForadetailedtheoreticaltreatmentoftheDDIC,downloadBC–ABAPDictionaryfrom
http://help.sap.com/printdocu/core/print46c/en/data/pdf/bcdwbdic/bcdwbdic.pdf.

http://help.sap.com/printdocu/core/print46c/en/data/pdf/bcdwbdic/bcdwbdic.pdf

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

22

A complete list of DDIC objects follows. The non-struck items in the list are covered in this chapter and the next
one. The struck-out items in the list will be covered in subsequent chapters as detailed below, after the reader has
acquired prerequisite knowledge.

Database table Data type

Data element

Structure (Chapter 6)

Table type (Chapter 6)

Type group (Chapter 4)

Domain

Search help

Lock object (Chapter 14)

View

Database

Projection

Help

Maintenance (Chapter 7)

Transparent

Pooled

Cluster

Figure 2-1. ABAP Dictionary: Initial screen

View Table Structure Definitions of the SAP Delivered
VBRK and VBRP Tables
You will be using the VBRK and VBRP tables frequently in the hands-on programming exercises, so let’s view the
structure of these table definitions as a first exposure to the DDIC object database table. To view the VBRK structure
definitions, click on the Database Table radio button, enter the table name VBRK, and click on the Display button

or function key F7. The structure definitions of the VBRK database table are displayed as shown in Figure 2-2.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

23

The VBRK table consists of 97 fields. The VBRP table consists of 190 fields. You can locate a field by its name by
using the Find button. Functional module tables in the SAP environment typically consist of more than 100 fields.

These tables store data of customer bills. A single bill might consist of 1 or n number of items. The bill (called
Billing Document in SAP parlance) information is located in two tables. One table, designated the header table,
contains the header information of the bill, with one row for each bill. The second table, designated the item table,
contains the item information of the bill, with as many rows as the number of items in each bill.

DDIC Attributes
The prime attributes of the DDIC are described in the following sections.

Figure 2-2. Structure definitions of the VBRK database table

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

24

Metadata
The DDIC can be viewed as metadata (data about data) that resides in the SAP database along with the metadata
maintained by the database (Figure 2-3).

Figure 2-4. A field occurring in two tables should have identical data type and length in both

Figure 2-5. Field names should appear identically across different screens

Figure 2-3. The two distinct sets of metadata in the SAP database: Database metadata and DDIC metadata

Standardization and Uniformity
SAP ECC ERP Version 6.0 has more than 70,000 tables in its database. Initially, SAP R/2 versions had many fewer tables
in their database — typically only a few thousand. Yet whenever the number of tables in a database runs into thousands,
two issues need to be addressed in the design and maintenance of the database: standardization and uniformity.

Standardization: When a database has thousands of tables, a field — such as customer
code — might occur in multiple tables. And in this manner, many more fields would be
occurring in multiple tables. Any field occurring in two or more tables must have identical
type and length in all its table occurrences. This enforcement of standardization on fields
occurring in multiple tables is implemented through the DDIC object Domain, graphically
represented in Figure 2-4.

Uniformity: The name of a field in a table is the technical name for it used by technical
personnel and developers. It is not expected to make sense to an end user. When a field
appears on a screen, however, it must carry a field label that will make sense to the end user.

An example: The field name of a customer code in the SAP database table KNA1 is KUNNR, which would mean
nothing to end users. For a user logged in English, the field KUNNR should appear on the screen with a label such
as Customer Code — and similarly for users who are logged in in other languages. When a given field appears on
multiple screens, care must be taken to ensure that the label is uniform across screens for a given login language.
These requirements are implemented through the DDIC object Data Element (Figure 2-5).

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

25

Open SQL and the Data Definition Language
SAP supports the following databases, among others: Oracle, Microsoft SQL Server, Informix, ADABAS, IBM DB/2,
and Sybase ASE. In the ABAP programs, SQL commands are commonly written in SAP Open SQL rather than in the
respective databases’ SQL languages. As mentioned in the Client Code Perspectives section of Chapter 1,
Open SQL enables portability. Open SQL uses the DDIC as an interface and reference. For Open SQL to operate on
a table, a table structure definition must exist in the DDIC. If a table exists in the database as database metadata but
no definition exists in the DDIC as DDIC metadata, the table is nonexistent to Open SQL. In the ABAP Workbench,
table definitions are not created using the SQL script of the respective database, such as CREATE TABLE. The DDIC
provides an interface to create and define database tables. When a DDIC table structure definition is activated for the
first time, the objects created in the ABAP Workbench environment are activated such that a database table definition
is automatically created at the back-end database, resulting in two definitions for the given table — one related to
the DDIC and the other to the back-end database’s own metadata. Likewise, views (including database views and
projection views) do not have to be created with SQL script because interfaces exist in the DDIC environment to
create them. The DDIC also has interface to create secondary indexes. All these tasks are handled in a typical database
environment such as Oracle through the data definition language (DDL). In this context, one might view the DDIC as
serving the function of the DDL.

DDIC Object References in ABAP Programs
Various objects in the DDIC environment can be referenced in ABAP programs. The DDIC is called the global area.
The objects in the DDIC are global to all ABAP programs. Data in ABAP programs can be declared by reference to DDIC
global objects. The declared data in ABAP programs referring to DDIC objects inherit the attributes of these DDIC
objects. DDIC objects that can be referenced in ABAP programs to declare data are (1) tables, (2) views, (3) structures,
(4) table/view/structure fields, (5) table types, (6) type groups, and (7) data elements. The use of DDIC objects to
declare data in ABAP programs will be demonstrated in the coding of ABAP programs beginning in Chapter 4.

Data Control Language
In the SAP environment, an entity and transaction data reside in multiple tables. Suppose, for instance, that customer
information resides in 20 tables. If a user is operating on a customer by insertion or update, the rows corresponding
to this customer in all the 20 tables need to be locked to users other than the one who initiated the insert or update
operation. Any database supports only locking or unlocking at table level; automatic locking or unlocking at an entity
level where data resides in multiple tables is not supported. To accommodate the automatic locking or unlocking of
rows in multiple tables, SAP offers its own locking or unlocking mechanism through the DDIC object: Lock Object.
The DDIC thereby serves as a data control language (DCL).

Search Helps/Pop-up Selection Lists
In the SAP environment pop-up lists are available at appropriate screen fields for the user to make a selection from
the list instead of manually entering field data. These pop-up selection lists can be created as Search Help objects in
the DDIC. Otherwise these pop-up selection lists would have to be provided through program code. Also the pop-up
selection lists or Search Helps created in the DDIC environment can be used on fields of multiple screens. The DDIC
circumvents the necessity of writing program code and enables the reusability of Search Help objects (Figure 2-6).

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

26

Data Types in the DDIC
The predefined DDIC data types available are listed in Table 2-1.

Figure 2-6. Search Help pop-up list

Table 2-1. DDIC Data Types

Data Type Description Initial Value

ACCP Account posting period (YYYYMM, fixed length 6 bytes) ASCII zeroes

CHAR Character string, can store 1 character/byte in non-Unicode and
1 character/two bytes in 16 bit Unicode(length can vary 1-255)

Spaces

CLNT Client code(3 digit number in 3 bytes) ASCII zeroes

CUKY Currency code/key, referenced by type CURR fields (fixed length 5) Spaces

CURR Currency field, internal storage & output same as type DEC Binary zeroes

DATS Date field (YYYYMMDD, fixed length 8 bytes) ASCII zeroes

DEC Numeric field with comma, decimal, and sign in output. Binary zeroes

FLTP Floating point, maximum accuracy up to 16 digits Exponent range.
From 10 +307 to 10 -308 Fixed length of 8 bytes

Binary zeroes

INT1 1-byte integer, unsigned number (value 0 – 255) Binary zeroes

INT2 2-byte integer, to be used only for length field before fields of types
LCHR & LRAW

Binary zeroes

INT4 4-byte integer, integer number with sign. Can store numbers between
-2177483647 to -2177483648

Binary zeroes

(continued)

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

27

Data Type Description Initial Value

LANG Language code/key (1 byte) Spaces

LCHR Long character string, requires a preceding INT2 type field Cannot be set

LRAW Long byte string, requires a preceding INT2 type field Cannot be set

NUMC Character string with only digits 0-9 (length can vary 1 - 255 bytes)
Normally should be used for codes (employee code etc.)

ASCII zeroes for length < 33.
Length > 32, cannot be set

PREC Precision of a QUAN type field Binary zeroes

QUAN Quantity field, internal storage & output same as type DEC Binary zeroes

RAW Un-interpreted sequence of bytes Cannot be set

RAWSTRING Byte String of Variable Length N/A

SSTRING Short Character String of Variable Length N/A

STRING Character String of Variable Length N/A

TIMS Time field (HHMMSS), (Fixed length of 6 bytes) ASCII zeroes

VARC Long character string, not supported from Rel. 3.0 onwards N/A

UNIT Unit key referenced by QUAN fields (length 3) Spaces

All the Data Types listed in Table 2-1 with the descriptions are self-explanatory. Data Types DEC, CURR, and
QUAN are further elaborated upon below.

The Initial Value column indicates what is stored, if no value is assigned to a field.

Data Type DEC
Two decimal digits are stored in one byte. (Like maximum 99 in a byte)•

Half a byte is reserved for storage of sign.•

A maximum of 31 decimal digits (digits before + after decimal) are supported.•

The length can vary between 1–16 bytes.•

The number of digits after decimal can be specified, by default is 0.•

A maximum of 16 digits after decimal is allowed.•

Decimal (.) is not stored separately, but will appear during output. Thousand separators •
(i.e., commas after thousand, million and billion) will appear by default during output like for
other numeric types (i.e., CURR, FLTP, INT4, and QUAN). Commas are made to appear with
numeric Data Types to enable them to be discerned easily. Consider the number 1000000 vis-
à-vis 1,000,000 with million, thousand separator “ , ”. The latter is visually easier to discern.

Data Types CURR, QUAN
Fields with DDIC Data Type CURR are used to store currency amounts. The internal storage of Data Type CURR is
identical to Data Type DEC. The currency amounts are incomplete information. Whether the amount or figure is U.S.
Dollars, Euros, Great Britain Pounds, etc., is to be included to make the information complete. (What currency?)

Table 2-1. (continued)

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

28

In the DDIC Data Type CUKY the currency key or code can be stored. So DDIC Data Types CURR, CUKY goes together.
If a DDIC structure definition contains a field of Data Type CURR, this field must point to the corresponding CUKY field
(called reference field in DDIC environment). How Data Types CURR, CUKY go together is simplified below:

Amount (Data Type CURR) 10000 Currency (Data Type CUKY) USD

Internal storage of DDIC Data Type QUAN is identical to Data Type DEC. On similar and parallel lines of DDIC
Data Types CURR & CUKY, the DDIC Data Types QUAN and UNIT will exist together. Inventory quantities are stored
in Data Type QUAN fields. The quantities being incomplete information, whether the quantities are numbers, dozens,
kilograms, tons, etc. (unit of measure or UOM for short) will have to be incorporated to make the information complete.
The unit of measure information (unit code) is contained in a field Data Type UNIT. If a DDIC structure definition
contains Data Type QUAN, this field must point to the corresponding UNIT field. A simplification is given below:

Quantity (Data Type QUAN) 100 UOM (Data Type UNIT) TON

To see an example of the CURR, CUKY & QUAN, UNIT fields in the DDIC environment, you can navigate to the table
structures of SAP functional module tables VBRK (billing document – header) and VBRP. (Billing document – items).

VBRK Table

The header table - VBRK – contains the document’s header information (document No., document date, document
type, customer code, Net Value in Document Currency (Data Type CURR field), document currency (Data Type CUKY
field), etc. In the table structure, select the tab Currency/Quantity Fields.

In the table VBRK, the Net Value in Document Currency field (Data Type CURR) is NETWR. The columns
Reference Table, Reference Field of this field contain VBRK and WAERK respectively. It means that the corresponding
CUKY field is in the table VBRK and the field name is WAERK. The table name where DDIC Data Type CUKY field is
located is contained in Reference Table, and field name is contained in Reference Field.

VBRP Table

The item table - VBRP – contains the document’s items information (material code, sale quantity (Data Type QUAN),
sales unit of measure (Data Type UNIT), amount for the item (Data Type CURR field), etc.

In the table VBRP, the item amount field (Data Type CURR) is NETWR; this is the amount for each item, whereas
the field NETWR in the table VBRK is the total amount for all items in the document. The columns Reference Table,
Reference Field of this field contain VBRK and WAERK respectively. It means that the CUKY field for Data Type CURR
field NETWR (in table VBRP) is in the table VBRK and the field name is WAERK.

In the table VBRP, the sales quantity field is FKIMG (Data Type QUAN). The columns Reference Table, Reference
Field of this field contain VBRP and VRKME respectively. It means that the corresponding UNIT field is in the table
VBRP and the field name is VRKME.

The coverage each of the DDIC objects: domain, data element, and transparent table follow.

DDIC Object Domain
Domains are for enforcement of standardization on fields occurring in multiple tables. Theoretically, any two or more
table fields having same Data Type and length can share or be assigned the same domain. (Ensure fields occurring in
multiple tables having same Data Type & length).

View or Examine an SAP Delivered Domain
The predefined domain selected for viewing is ECN_COLOR. On the SE11 screen, click the Domain radio button,
enter the name ECN_COLOR and click the display button.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

29

Figure 2-7. Domain – tab Properties

There are hundreds of thousands of predefined domains being used in SAP delivered tables in the DDIC.
The Short Description is to be mandatorily entered for any object created in ABAP Workbench. The Properties

tab fields are controlled and inserted by the system except for the Package, which is assigned by the user creating
the object.

Figure 2-8. Domain – tab Definition

The screen shot for domain with the three tabs Properties, Definition, Value Range is shown:

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

30

Under the Definition tab, in the Format area, the following are assigned:-

 1. Data Type: DDIC Data Type, (refer to Table 2-1 under DDIC Data Types)

 2. No. Characters: Length (length is in positions/digits and not in bytes)

 3. Number of decimals. (Applicable to Data Types CURR, QUAN, DEC, FLTP, only. For Data
Type FLTP the number of decimals is fixed: i.e., 16)

Under the Definition tab, in Output Characteristics area, the following can be assigned:-

 1. Output Length: Is assigned by the system, it can be modified if needed.

 2. Convers. Routine: Can be specified. The Conversion Routine is covered in Chapter 7
entitled Modularization. Sign: For numeric fields only. (Applicable to Data Types: CURR,
DEC, FLTP, INT4, QUAN) By default, these Data Types will not support negative numbers.
This check box is to be enabled for storing negative numbers.

 3. Lower Case: By default, there is no case sensitivity for character storage. Data Types CHAR,
CUKY, LANG, LCHR, STRING, SSTRING and UNIT) If case sensitivity is required, this
check box is to be enabled.

Figure 2-9. Domain – tab Value Range

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

31

In the Value Range tab, under Single vals, you can enter values (fixed Values & Short text) as is shown for the SAP
provided domain ECN_COLOR. Ideally, values should be entered here when (a) there are few entries (less than 32),
and (b) these values do not change or change very infrequently.

The implication of entering values here is as follows: when this domain is assigned to a data element, this data
element is assigned to a table field, a field appearing on a screen is referring to this table field automatically, and a
pop-up list facility is available for this screen field to the user. The pop-up list will display the values entered here;
when a user makes a selection, the Fixed Value selected will be assigned to the screen field.

Under the Value Range tab, in Intervals, you can enter valid values and valid ranges of values. When this domain
is assigned to a data element, this data element is assigned to a table field; a field appearing on a screen is referring to
this table field, the values which can be entered for the field will have to be in the range of values entered here.

DDIC Object Data Element
(Ensure field appearing on multiple screens has the same field label).

Data elements are for enforcement of uniformity, ensuring that a field occurring on multiple screens has the
same label.

View or Examine an SAP Delivered Data Element
You will view a predefined data element: ECN_COLOR.

On the SE11 screen, click the Data type radio button, enter the name ECN_COLOR, and click the display button.
The screen shot for data element with the four tabs Attributes, Data Type, Further Characteristics, and Field label

is shown:

Figure 2-10. Data element – tab Attributes

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

32

In the Data Type tab, the following are assigned:

 1. The default first main radio button is Elementary Type. Under this main radio button there
are two radio button options:

a. Domain – A domain can be assigned to data elements. The physical characteristics,
Data Type, and length are inherited from the assigned domain. The domain ECN_
COLOR has been assigned to the data element ECN_COLOR. A pop-up selection
list is available. One can enter the pattern (ECN* in the present context), and all the
domains fitting the pattern will be listed for selection.

b. Predefined Type – This is just like in domain. A DDIC Data Type can be assigned here
(refer to Table 2-1 under DDIC Data Types). This is equivalent to short circuiting the
domain, not using the domain facility, and assigning DDIC Data Type to the data
element. This option is rarely used.

This is the display of SAP provided Data element ECN_COLOR.

Figure 2-11. Data element – tab Data Type

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

33

 2. The second main radio button is Reference Type. Under this there are two radio button
options:

a. Name of Ref Type – A built-in class, interface can be assigned here

b. Reference to Predefined Type - Again a DDIC Data Type can be assigned here.
(Refer to Table 2-1 under DDIC Data Types.)

Figure 2-12. Data element – tab Field Label

Field labels or text can be maintained here in multiple languages. Four types of labels can be entered: Short,
Medium, Long, and Heading. These texts will appear as labels when the table field associated with this data element
appears on screen. By default a label entered in the field Medium will appear but can be overridden. The label in the
field Heading will appear when the table field associated with this data element appears in a list or report.

In this Data Element ECN_COLOR, the same text Color has been entered in all the four fields (i.e., Short,
Medium, Long, and Heading).

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

34

In Figure 2-13, all labels are appearing in German, demonstrating the multiple language support of SAP. The label
in the kurz, mittal, lang, and Überschrift (German equivalents of Short, Medium, Long, and Heading) is Farbe, the
German equivalent of Color.

Domain and Data Element Relationship
An example (demonstrative but somewhat contrived) to bring out the relationship between domains and data
elements: Let it be assumed that an enterprise wants to standardize in the payroll application the amounts related to
allowances. (Various allowances paid to employees such as house allowance, conveyance allowance, etc.) Suppose
they fix the type and length of allowance amounts as DDIC Data Type DEC and length 5, 2. (Five digits before
decimals and two digits after decimals and a total length of 7 digits or 4 bytes.) So a domain can be created with DDIC
Data Type DEC and length 5, 2. This same domain can serve for house allowance, conveyance allowance, etc.
In the context of data elements, separate labels are required such as House Allowance, Conveyance Allowance, etc.,
for house allowance and conveyance allowance respectively. Hence as many data elements need to be created as
the number of allowances. All these data elements would be assigned the same domain created with DDIC Data
Type DEC length 5, 2. So a domain can be assigned to one or more data elements. The relationship is shown here
diagrammatically:

Figure 2-13. Data element – tab Field Label [logged in language DE]

The same screen logged in the German language – DE – is shown in Figure 2-13.

Figure 2-14. Domain, Data Element relationship

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

35

DDIC Object Table
There are three types of tables supported in the DDIC environment: the transparent table, the pooled table, and the
clustered table. For the present, our detailed coverage is confined to the transparent tables. The pooled and clustered
tables are mentioned in passing.

For a pooled table, many random table definitions in the DDIC will go as one definition in the database
metadata. A pool consisting of many pooled tables will go as one table definition in the database metadata.

The clustered tables principle is similar to that of pooled table (many tables) except that the many clustered table
definitions residing in a cluster are not on a random basis. For all the clustered tables to reside in one cluster, the
clustered tables must have part of their primary key field/s in common.

For the pooled and clustered tables, the special mode of storage and retrieval technology is SAP’s propriety
technology. With Open SQL, pooled and clustered tables can be used in the same way as transparent tables –
SELECT.., INSERT…, UPDATE…, DELETE with some constraints.

A table pool or table cluster is used exclusively for storing internal control information (screen sequences,
program parameters, temporary data, and continuous texts such as documentation). All business/commercial data are
stored exclusively in transparent tables.

For a transparent table, for every table definition in the DDIC, there will be exactly one corresponding table
definition in the installed database metadata.

Transparent Tables
The table structures are defined or created in the DDIC. When a DDIC table structure definition is activated for
the first time, a table definition is automatically created in the respective database installed on the database server
(Oracle, MS SQL Server et al.). There are two definitions of any table in a SAP database: one corresponding to
the DDIC and the other corresponding to the respective installed database. The additional definition of a table
accrues benefits and advantages. One benefit has already been mentioned: Open SQL affording portability of ABAP
programs. Open SQL uses DDIC as a reference and interface. The table structures defined in DDIC offer extra features
such as CURR CUKY & QUAN UNIT fields check, table buffering, Search Help attachment, delivery class, etc. The
standardization, uniformity (domain & data element) is also implemented through the DDIC table metadata. In the
following text, transparent tables will be referred as tables (transparent is implicit).

Domain, Data Element, and Table Relationship
The relationship of a domain data element has been explained earlier. When table fields are specified during a
table definition, a data element is to be assigned to every table field. In this way, a field occurring in multiple tables
would be assigned the same data element, thus ensuring the same label for the field on multiple screens. Also, since
a domain is assigned to a data element, a field occurring in multiple tables would be assigned the same domain
ensuring Data Type and length to be the same. The relationship is shown here diagrammatically in Figure 2-15.

Figure 2-15. Domain, Data Element, and Table relationship

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

36

View, Examine an SAP Delivered Table
SAP delivered domains and data elements were examined and viewed. You will view an SAP delivered table: T005T. It
stores the texts of different countries. The texts of the countries are stored in all the SAP supported natural languages.

Display Table – the tabs

On the SE11 screen, click the Database table radio button, enter the name T005T, and click the display button.
The screen shot for a table with the five tabs Attributes, Delivery and Maintenance, Fields, Entry help/check, and
Currency/Quantity Field are shown in Figures 2-16 and 2-17.

Figure 2-16. Table – tab Attributes

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

37

In the Delivery and Maintenance tab, the following are assigned:

 1. Delivery Class: This controls the transport of table data during installation, upgrade, client
copy, and transportation between customer systems. It is also used in the extended table
maintenance.

 2. Data Browser/Table View Maint.: Three options are available:

a. Display/Maintenance Allowed with Restrictions: When this option is operative,
new entries/rows cannot be created in the table, existing entries cannot be edited
or deleted through the table maintenance dialog or maintenance view. The table
maintenance dialog is automatically generated when the table is activated.

b. Display/Maintenance Allowed: When this option is operative, new rows can be
created through the table maintenance dialog or maintenance view. Existing
entries can be edited, viewed, and deleted through the table maintenance dialog or
maintenance view.

c. Display/Maintenance Not Allowed: When this option is operative, the table
maintenance dialog is not generated when the table is activated. New entries cannot
be created, and existing entries cannot be viewed.

Figure 2-17. Table – tab Delivery and Maintenance

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

38

In this tab, the table structure fields can be entered.

 1. Field: Field names start with an alphabet letter normally and the rest of the characters
can be alphanumeric with embedded underscores (_), and the maximum length of a field
name can be 16 characters.

 2. Check box Key: The primary key field/s of the table must have this check box enabled. All
the fields constituting the primary key must occur in the table structure in the beginning
and in the sequence required.

 3. Initial Values: Find an elaborate explanation when you create custom tables.

 4. Data element: In this column, the data element to be assigned to the field is to be entered.
A pop-up selection list is available. One can enter the pattern and all the data elements
fitting the pattern will be listed for the selection. When a field is assigned a data element,
the columns Data Type, Length, Decimals, and Short Description are automatically filled
from the selected data element.

On the top right side of Figure 2-18, under the tabs there is a button with the legend Predefined Type. This is a
toggle button. When it is pressed (the button pressing changes its legend to Data Element), you can assign directly
the DDIC Data Type to a table field instead of assigning a data element. In this case, you are short circuiting the data
element and domain. You are not using the features of the domain and data element; however, this is not advisable.

Figure 2-18. Table – tab Fields

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

39

All the columns under this tab are entered and controlled by the system.

 1. Foreign Keys (check box): This check box, when in enabled state, indicates the field to be
a foreign key or part of foreign key (fields can be declared as foreign key or part of
foreign key).

 2. Check table: If the field is a foreign key or part of foreign key, then the check or primary
table name is automatically entered by the system in this column (i.e., Check table).
Check table and primary table are synonymous. You will use the term Check table.

 3. Origin of the input help: This refers to the origin of a pop-up list for this field when this
field is appearing on the screen. This will be covered with in the DDIC topic Search Help in
the next chapter.

 4. Srch Help: The column entry like all columns under this tab is controlled by the system;
the name of the search help if assigned appears here. It will be covered in the DDIC topic
Search Help in the next chapter.

 5. Defaults: Check box that indicates whether the set of values of a domain is restricted
through entry of fixed values.

 6. Domain: The name of the domain derived from the data element assigned to the field is
entered by the system.

Figure 2-19. Table – tab Entry help/check

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

40

Reference Table and Ref. field: This tab with its two columns is relevant for fields of Data Type CURR and QUAN
only. These columns are in a disabled state for field types other than CURR and QUAN. As described in this chapter,
these types store the currency amount or quantity numbers respectively.

Whenever there is a field of type CURR in a table structure or structure definition, the column Reference table for
a type CURR field will have to be filled up with the name of the table structure or structure where the type CUKY field
is occurring. And the column Ref. field will have to be filled with the name of the type CUKY field.

Similarly, the column Reference table for a type QUAN field will have to be filled up with the name of the table
structure or structure where the type UNIT field is occurring. And the column Ref. field will have to be filled with the
name of the type UNIT field.

Display Table – Technical Settings

This is part of a table definition. You get to the screen by clicking the application toolbar button Technical Settings.
The technical settings screen looks like Figure 2-21.

Figure 2-20. Table – tab Currency/Quantity Fields

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

41

In the Logical storage parameters area of Figure • 2-21:

Data class: The data class has relevance only for ORACLE and INFORMIX database •
systems. It defines the physical area of data base in which the table is logically stored.
Typical values to be assigned when you are creating a table in Y/Z name space are USER,
USER1, USER6, and USER7.

Size Category: The assigned size category will determine the initial probable space •
requirement for a table in the database.

 Buffering area: Buffering (selective disk data is maintained in RAM) is available with •
Open SQL to improve performance. An ideal table for buffering would be small sized
(a few KB), very frequently accessed, and rarely updated. Not all database brands deliver
performance improvement with buffering.

Figure 2-21. Table - Technical Settings

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

42

There are three options under Buffering: (1) Buffering not allowed, specifying no buffering for the table.
(2) Buffering allowed but switched off; the buffering is switched off because the particular database installed does
not deliver performance with buffering. (3) Buffering switched on; the buffering is on because the particular database
installed delivers performance with buffering.

Buffering type area: There are three options in buffering type: Single record buff, Generic Area •
Buffered, and Fully Buffered.

With Single record buff. option, when a row is fetched from a database table, it is retained in RAM (buffered
area). If the immediate next fetching of a row from the same table refers to the same row fetched earlier, then no disk
operation takes place, and data is transferred from the buffered area of RAM.

Generic Area Buffered: Partial contents of the table are loaded into the buffer. The basis on which partial data
is selected to be loaded into the buffer is explained. The data selection will be elaborated in the context of an SAP
provided table T005T. This table stores all the texts/names of all the countries for all the clients installed and in all the
natural languages installed. The table fields are as shown in Figure 2-22.

Figure 2-22. Fields in Table T005T

The table is client dependent. The primary key in the table is consisting of the first three fields (MANDT, SPRAS,
and LAND1 - marked as PK). When this buffering option is opted for, you need to enter a number in the field No.
of key fields. This number can have a minimum value of 1 and a maximum value equal to the number of fields
constituting the primary key (in the present context, 3). If this number is 1, it means the first primary key field; if the
number is 2, it means the first, second primary key fields; and so on. The number indicates to the system, for one
unique value of how many primary key fields, the buffering data should be loaded. The number existing in this field
for the chosen table (T005T) is 2 (Figure 2-21). In this context, it means to load the buffer with a specified value of field
MANDT (first field) and a specified value of field SPRAS (second field). If you are logged into client 800 and language
E, the buffer will be loaded with rows belonging to client 800, and language E, though the table is containing rows
belonging to clients 000, 001 (one of these or both depending on the installation option), 810, 811, 812, and language
codes A, B, C, D, and so on. The total number of rows in this table (for all client codes, all language codes) on our
system is 22,608. The number of rows in this table for client = 800 and language code = E on our system is 248. All this
is based on the assumption of working on a typical IDES server.

With the Fully Buffered option, all the rows of the table (full table) are fetched into the buffered area.
All subsequent retrieval of row/s will be from the buffered area.

The buffers are loaded on the application server/s.

Log data changes check box: If enabled, changes to the data rows of this table are logged.•

Write access only with JAVA check box: If enabled, contents of the table can be changed from •
within Java only.

Maintain as transparent table check box: This flag indicates that a table should be transparent •
and that this attribute should be kept even after a change of release or an upgrade.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

43

Display Table – Setting up Foreign Key Relationships

From the Technical Settings screen, navigate back to the normal table maintenance screen by clicking the standard
tool bar button or alternatively pressing function key F3.

For all the table field/s that are foreign keys (these fields are primary key fields in the check tables), the
foreign key relationships are established. The foreign key relationships of a table field can be established or viewed by
positioning the cursor on that field and clicking on the button (under the tabs). (See Figure 2-23).

Figure 2-23. Table - Proceed to Foreign Key Relationship

For the selected table T005T, you can view the foreign key relationship for the field SPRAS (language code).
The screen would look like that in Figure 2-24.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

44

The check table for the field SPRAS is T002. When the Check required check box is enabled, values entered in this
field in the secondary table will be checked for existence in the check table. Values not existing in the check table will
trigger an error condition.

The Cardinality entries operate as follows:
The cardinality (n:m) describes the foreign key relationship as regards the number of possible dependent rows

involved (rows of the foreign key table) vis-à-vis referred rows (rows of the check table).

 1. For the left side of the cardinality signifying the check table:

 a. If n = 1 then, for each dependent row there is exactly one row in the check table.

 b. If n = C then, there can be rows in the foreign key table that do not reference any row
of the check table (orphan dependent rows can exist).

 2. For the right side of the cardinality signifying the foreign key table:

 a. If m = 1, for each row in the check table there is exactly one dependent row.

 b. If m = C then, for each row in the check table there is, at most, one dependent row.

 c. If m = N then, for each row of the check table there is at least one dependent row.

 d. If m = CN then, for each row of the check table there are any number of dependent rows.

Figure 2-24. Table - Foreign Key Relationship

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

45

You have examined and viewed existing DDIC objects domain, data element, and transparent table. The DDIC
metadata is much more complex than database metadata. But then, DDIC table definition is addressing issues
of standardization (domain) uniformity, (data element) providing facilities such as OPEN SQL portability, table
buffering, search help attachment, and check for CURR & CUKY; QUAN & UNIT fields, etc.

Scenario for Hands-on Exercise on Domain, Data Element,
and Table
When SAP is installed, the database tables and other objects that get created as part of the installation are called
SAP delivered tables or objects. Post installation, further database tables or objects created by developers are called
custom tables or objects.

You will create your own or custom DDIC objects: domains, data elements, and transparent tables. The
possibility, in a real-life situation for creation of custom tables is rare, unless one is developing a new application on
an ABAP platform or doing a large enhancement entailing creation of new tables.

The objective of creating custom tables here is for better understanding of the SAP table definitions, becoming
familiar with the DDIC table definitions, and being able to relate to SAP delivered tables.

Let there be a business scenario for creating custom tables. A simple everyday scenario: Probably every one of
you has walked into a casual restaurant. And you have received and paid the bill at the end of your meal.

A rough format of a typical restaurant bill is presented in Figure 2-25.

Figure 2-25. A typical restaurant bill

Map this bill (business document) and its related information into RDBMS tables, and the fields in the tables.
This is being done here in an intuitive, manual way. In a real-life situation, with complex and involved scenarios
(many database tables and many fields), you will use some data designer or data modeler tool.

You will call this storage of restaurant bills and its related information “a restaurant billing system.”

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

46

Table and Table Fields
First, the restaurant bill data will have to reside in two database tables:

The two database tables will be related through Bill No. and Bill No. will be a foreign key in the database table Bills – Items.
You will have two more database tables storing information connected to the restaurant billing: Item Master

storing Item information and Waiter Master storing Waiter information.

Waiter No will be a foreign key in database table Bills – Header. Item Code will be a foreign key in database table
Bills – Items.

Entity Relationship Diagram – Restaurant Billing System

Figure 2-26. Four-table ER diagram. PK – Primary Key. FK- Foreign Key

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

47

Assigning DDIC Data Types and Lengths to Table Fields
Assigning DDIC Data Types and lengths to these fields is the next step. You are assigning Data Type DEC to the
amount and quantity fields. A restaurant does not raise bills in multiple currencies, so the currency can be implicit.
This restaurant is serving and delivering only in numbers (i.e., a number of pizzas and burgers, etc.). So the unit of
measure for the quantity is also implicit. The tables and fields with Data Type and lengths are
shown in Tables 2-2, 2-3, 2-4, and 2-5:

The notation 6, 2 for Data Type DEC is 6 digits before the decimal point and 2 digits after the decimal
(a total length of 8 digits or 5 bytes). This is not standard notation; this is custom notation.

The Data Types and lengths have been assigned to fields by experience.

Summary of Data Types, Lengths, and List of Tables’ Entities and Attributes
A summary of Data Types and lengths in the four tables (with the fields):

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

48

To create table definitions for the four tables, you need to create a minimum of 10 domains. Recall that domain
is related to Data Type and length. Two or more fields having the same Data Type and length may or may not be
assigned the same domain. In the four-table scenario, two or more fields sharing same Data Type and length are:

Let the same domain be assigned for fields of the same Data Type and length. (This is an arbitrary decision).
A summary list of all fields in the four-table scenario (entities & attributes):

As each of these fields must have a label when appearing on the screen, you need to create 17 data elements, 1 for
each of these fields.

You have to create 10 domains, 17 data elements, and 4 tables for the restaurant billing system.

Creation of Domains, Data Elements, and Tables
Objects Naming Convention, Listing of Objects
Before you commence the creation of custom DDIC objects, let a naming convention be adopted for the objects to be
created in the ABAP Workbench. Most of the objects created in the ABAP Workbench environment (not SAP delivered)
have to start with the letters Y or Z. In the DDIC environment, except for lock objects, all other custom object names
start with Y or Z. Hence, the objects you are planning to create (domains, data elements, tables, and others) will have
the starting letter as Y or Z. This practice of starting the object names with letters Y or Z is a basic procedure to ensure
separation of SAP delivered objects that exist just after SAP installation and the objects created by SAP customers or other
users of the SAP development platform. It ensures there is no conflict of object names, and the separation ensures that the
objects created by SAP customers (or you) remain intact during a version upgrade. You will be creating all objects in the
ABAP Workbench environment starting with prefix YCL. Next you will identify an object with a two-digit chapter number
such as CH01, CH02 … Next you give some meaningful suffix – for example, when you are creating a domain of Data Type
NUMC and length 4, you would give it a name YCL_CH02_NUMC4. You will name custom objects in this manner.

The DDIC objects you create should start with Y/Z; the rest of the characters in the names can be any
combination of alphanumeric characters (A-Z & 0-9) with embedded underscores (_). The names are case insensitive.
This is so with all of the objects in the ABAP Workbench. Normally, a developer after logging into SAP set the Caps

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

49

Lock key on. The name space (maximum characters allowed in the object name) varies from object to object.
For tables it is 16; for domains and data elements it is 30.

A list of the 10 domains as they would be named as per the naming convention is given in Table 2-6:

Table 2-6. Domains List

No. Domain Name Data Type Len

1 YCL_CH02_NUMC4 NUMC 4

2 YCL_CH02_DATS DATS 8

3 YCL_CH02_NUMC2 NUMC 2

4 YCL_CH02_DEC62 DEC 6,2

5 YCL_CH02_NUMC3 NUMC 3

6 YCL_CH02_DEC30 DEC 3,0

7 YCL_CH02_DEC52 DEC 5,2

8 YCL_CH02_CHAR30 CHAR 30

9 YCL_CH02_CHAR10 CHAR 10

10 YCL_CH02_CHAR35 CHAR 35

Table 2-7. Data Elements List

Na Data Element Label Domain to be assigned

1 YCL_CH02_BILL_NO Bill No YCL_CH02_NUMC4

2 YCL_CH02_BILL_DATE Bill Date YCL_CH02_DATS

3 YCL_CH02_TAB_NO Table No YCL_CH02_NUMC2

4 YCL_CH02_WAIT_NO Waiter No YCL_CH02_NUMC2

5 YCL_CH02_TOTAL Total YCL_CH02_DEC62

6 YCL_CH02_VAT_AMT VAT Amount YCL_CH02_DEC52

7 YCL_CH02_NET_AMT Net Amount YCL_CH02_DEC62

8 YCL_CH02_SRL_NO Serial No. YCL_CH02_NUMC3

9 YCL_CH02_ITEM_CODE Item Code YCL_CH02_NUMC4

10 YCL_CH02_QNTY Quantity YCL_CH02_DEC30

11 YCL_CH02_RATE Rate YCL_CH02_DEC52

12 YCL_CH02_AMOUNT Amount YCL_CH02_DEC62

13 YCL_CH02_ITEM_DESC Item Description YCL_CH02_CHAR30

14 YCL_CH02_TITLE Title (Mr. Ms. et al) YCL_CH02_CHAR10

15 YCL_CH02_NAME Name YCL_CH02_CHAR35

16 YCL_CH02_STREET Street YCL_CH02_CHAR35

17 YCL_CH02_CITY City YCL_CH02_CHAR35

A list of data elements as they would be named as per the naming convention is given in Table 2-7:

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

50

A list of the tables with fields, Data Types & lengths, data elements and domains is shown in Tables 2-8, 2-9, 2-10,
and 2-11. All the DDIC objects have been given names as you would in the ABAP Workbench environment.

 1. Database Table Description: Bills - Header Name: YCL_CH02_BILLH

Table 2-8.

Field Description Field Name Data Type Length Data Element Domain

Bill Number (PK) BILL_NO NUMC 4 YCL_ CH02_BILL_NO YCL_CH02_NUMC4

Bill Date BILL_DATE DATS 8 YCL_ CH02_BILL_DATE YCL_ CH02_DATS

Waiter No. (FK) WAIT_NO NUMC 2 YCL_ CH02_WAIT_NO YCL_ CH02_NUMC2

Table No. TABL_NO NUMC 2 YCL_ CH02_TAB_NO YCL_ CH02_NUMC2

Total TOTAL DEC 6,2 YCL_ CH02_TOTAL YCL_ CH02_DEC62

VAT Amount VAT_AMT DEC 6,2 YCL_ CH02_VAT_AMT YCL_ CH02_DEC52

Net Amount NET_AMT DEC 6,2 YCL_ CH02_NET_AMT YCL_ CH02_DEC62

Table 2-9.

Field Description Field Name Data Type Length Data Element Domain

Bill Number (FK, PK) BILL_NO NUMC 4 YCL_ CH02_BILL_NO YCL_ CH02_NUMC4

Serial No. (PK) SRL_NO NUMC 3 YCL_ CH02_SRL_NO YCL_ CH02_NUMC3

Item Code (FK) ITEM_CODE NUMC 4 YCL_ CH02_ITEM_CODE YCL_ CH02_NUMC4

Quantity QNTY DEC 3,0 YCL_ CH02_QNTY YCL_ CH02_DEC30

Rate RATE DEC 5,2 YCL_ CH02_RATE YCL_ CH02_DEC52

Amount AMOUNT DEC 6,2 YCL_CH2_AMOUNT YCL_CH02_DEC62

 2. Database Table Description: Bills - Items Name: YCL_CH02_BILLI

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

51

Table 2-10.

Field Description Field Name Data Type Length Data Element Domain

Waiter No. (PK) WAIT_NO NUMC 2 YCL_ CH02_WAIT_NO YCL_ CH02_NUMC2

Title TITLE CHAR 10 YCL_ CH02_TITLE YCL_ CH02_CHAR10

Waiter Name WAIT_NAME CHAR 35 YCL_ CH02_NAME YCL_ CH02_CHAR35

Street STREET CHAR 35 YCL_ CH02_STREET YCL_ CH02_CHAR35

City CITY CHAR 35 YCL_ CH02_CITY YCL_ CH02_CHAR35

 3. Database Table Description: Waiter Master Name: YCL_CH02_WAITM

 4. Database Table Description: Item Master Name: YCL_CH02_ITEMM

Table 2-11.

Field Description Field Name Data Type Length Data Element Domain

Item Code (PK) ITEM_CODE NUMC 4 YCL_ CH02_ITEM_CODE YCL_ CH02_NUMC4

Item Description ITEM_DESC CHAR 30 YCL_ CH02_ITEM_DESC YCL_ CH02_CHAR30

Rate RATE DEC 5,2 YCL_ CH02_RATE YCL_ CH02_DEC52

Start creating the DDIC objects: 10 domains, 17 data elements, and 4 tables. You have to create domains, data
elements, and tables in that order.

Create Domains
From SAP Easy Access, get to the DDIC maintenance screen; SE11, etc.

Select the radio button for domain (fifth radio button from the top).

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

52

Enter the name of first domain (i.e., YCL_CH02_NUMC4). The initial screen will look like the one shown in
Figure 2-27.

Figure 2-27. Create Domain – Initial SE11 Screen

After clicking on the Create button or pressing the function key F5, the screen with the Definition tab enabled is
opened.

The entered fields are (1) Short Description with Data Type NUMC, LEN 4, (2) Data Type with NUMC, and (3) No.
Characters with 4. Do not enter any value in the field Output Length; it will be generated by the system. Other fields on
this screen are not applicable.

Field Data Type has been assigned value through the pop-up selection list appearing by pressing function key F4
or pressing the button on the field. The pop-up selection list is appearing on the right side with all of the 24 DDIC

Data Types. Wherever pop-up selection lists are available, it is good practice to assign value through a selection list
rather than manually entering data. To make a selection either double-click on the selected row or choose the row by
single click (chosen row appears in yellow, orange color), then click on the button.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

53

Click the Value Range tab. You are entering a single value range her, (i.e., 0001–5000) under the Intervals area
of the screen (bottom area of the screen, see Figure 2-29). When a field associated with this domain will appear on
screen, it automatically checks the entered value, and values outside the range will trigger an error condition. You
have entered only one range for the purpose of illustrating the feature rather than a practical necessity. In a real-life
situation, multiple ranges of values in this area can be entered as warranted by a scenario requirement.

Do not enter anything in this Intervals area for other domains.
Under the Intervals area, there is a field Value Table as shown in Figure 2-29. You can enter a DDIC table name

here. When you assign this domain to a data element, assign this data element to a table field, and this table field is
to be made into a foreign key field through a foreign key relationship; then the system will propose this table as the
default check table.

Figure 2-28. Create Domain – tab ‘Definition’ with fields entered

This is shown in Figure 2-28.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

54

A Brief on Packages

After entering the single range, press the save button. When this is done, a pop-up modal window appears prompting
for the package to be assigned to this domain object. Any object created in the ABAP Workbench environment has to
be assigned a package. The package concept existed from the very inception of the ABAP platform. The package is like
client code: a segregating parameter for the objects created and maintained in the ABAP Workbench environments. In
the SAP implementation process, developers will create their own custom packages. Packages can be maintained and
viewed in transaction code SE21. The package is a complex concept, beyond the scope of this book. The core of the
package is the transport layer that specifies the path the object will travel (development environment to
quality/testing, etc.).The transport layer as has been mentioned in the section entitled Implementation Environments
is the purview of a Basis Administrator. When SAP started supporting Java, the ABAP Workbench package
incorporated the JAVA aspects as a package.

Since, most of you will operate in a single system environment, like SAP IDES installed on a laptop or desktop,
and for a subscription to a SAP IDES server, the implementation environments will not exist. There are no three/two
system landscapes. Your objects will not move or be transported from one implementation environment to another
because no other implementation environments exist for the objects to be transported to. Even though your objects
will not undergo transport, they need to be assigned a package. In this learning phase, you can use the SAP delivered
package $TMP. If you assign this package to an ABAP Workbench object, you cannot transport this object. This SAP
delivered package $TMP is designated as a package to be assigned to local objects (i.e., the objects are local to the
environment where they are created and cannot be transported to other environments).

Domain Creation Continued

On the modal dialog box prompting for the package, click on the button. The system will assign the

SAP delivered package $TMP to the domain. The screen shot appears as in Figure 2-30.

Figure 2-29. Create Domain – Saved message on the status bar

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

55

An ABAP Workbench object whenever it is created and if subsequently changed or edited will be checked for
inconsistencies. You can do this by clicking the button on the application tool bar or alternatively pressing

<Ctrl>+<F2> keys (combination of Ctrl & F2 keys, + indicating combination). If inconsistencies exist in the object, this
will throw an error message on the status bar. This should be investigated and fixed. For instance if you had entered a
number in the domain field Decimal Places, it would have displayed an error message. Decimals places are not
applicable to the DDIC Data Type NUMC.

Figure 2-30. Create Domain – Enter Value Range Intervals, assign package $TMP

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

56

Once an object has passed the consistency check, it needs to be activated. The activation of an object generates
a runtime version. An object has to be in an activated state to be usable. In the present context, if the domains are not
active, they cannot be assigned to data elements.

The activation is done by pressing the button or alternatively pressing <Ctrl>+<F3> keys. The screen after

object activation will appear as in Figure 2-32.

Figure 2-31. Create Domain – Successful check for consistency, message on status bar

After a successful check for object consistency, the system will display a message on the status bar as appearing
in Figure 2-31.

Figure 2-32. Create Domain – Activation

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

57

In a similar manner, you can create the nine other domains of a restaurant billing system.
When creating domains of DDIC Data Type DEC, remember for DEC 6, 2, there will a total of 8 digits: 6 digits

before decimal position and 2 digits after decimal position. So in the fields on the domain screen: No. Characters 8
should be entered; Decimal Places 2 should be entered.

For domains of DDIC Data Type CHAR, if case sensitivity is desired (i.e., storage of both upper, lower case of
alphabets), click on the check box with label Lower Case on the domain screen.

For the field TITLE, in the corresponding domain, you will use the Single Vals Area of the Value Range tab. The
restaurant billing system is making provision for waiters as well as waitresses. When the data for them is stored, the
TITLE field can contain values such as MR., MS., MRS., etc., you will enter these possible values in Single Vals area
of the Value Range tab of domain. When the TITLE field appears on the screen, the user has the facility of a pop-up
selection list. This pop-up selection list will display all the values entered in this Single Vals area of Value Range tab.
Ideally you should enter values in this area when the number of entries are few (less than 32) and the entries do not
change over time or change rarely. In the present context, the titles by which people are addressed in English language
are not going to change in foreseeable future. A screen shot of the Value Range tab for the domain
 YCL_CH02_CHAR10 (domain for field TITLE) is shown in Figure 2-33.

Figure 2-33. Create Domain- Single Vals

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

58

If you have created all 10 domains and activated them, you would like to view these as a list with just the names
of domains appearing in the list. For this, go to the ABAP Dictionary Initial Screen – SE11. Select the domain radio
button. Enter the pattern of your domain names (i.e., YCL_CH02_* in domain field of the SE11 screen and press the
function key F4). This is appearing in Figure 2-35. You are indicating to the system to filter out all domains whose
names start with YCL_CH02_ and produce a pop-up selection list. You should see a screen like the one appearing in
Figure 2-36.

Figure 2-35. Create Domain – Get overview of domains created

Figure 2-34. Multiple Row Manipulation

You will be making multiple row entries in many situations of ABAP Workbench objects’ maintenance. In all
these situations, you will have the facility of this user interface that enables you make one or more row/s selection,
copy, cut, paste, and delete with the buttons shown in the Figure 2-34. You can insert rows as well; a row will be
inserted where your cursor is positioned.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

59

The list appears with a name and short description. If the short description is appearing as blank, the
corresponding domain is in an inactive state. The List appears in alphabetic ascending order.

Editing/Changing domains

If you need to perform any changes to domains, you can do so by selecting the Domain radio button and entering
the name of the domain you want to change in the Domain field. (Alternatively, you can get the list of domains
you created by entering the pattern in the Domain field, pressing function key F4, and making a selection from the
list). Click on the Change button or press function key F6. Perform the changes, save, and reactivate the domain.
After editing any object, the changed version of the object is in an inactive mode. The changed version needs to be
activated to enable its usage. Take care to do this.

Create Data Elements
On the SE11 ABAP Dictionary: Initial Screen, select the radio button Data type (third radio button from the top). Enter
the name of the first data element to be created (i.e., YCL_CH02_BILL_NO.). (Table 2-7 is a list of data elements to be
created with the respective labels and assigned domains.) Press the Create button or function key F5. The following
screen will appear:

Figure 2-36. Create Domain – Overview of domains created

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

60

You can create one of the three DDIC objects listed here: Data element, Structure, and Table type. For now, you
want to create a Data element, which is the default option. So press the <Enter> key and you will be presented with the
data element screen, with the Data Type tab, see Figure 2-38. You will enter the short description (like for all objects
in the ABAP Workbench environment). Next you need to assign the appropriate domain (YCL_CH02_NUMC4) to this
data element. Assign this through the pop-up selection list. A filtered list of the domains you created can be made
to appear by entering the pattern YCL_CH02* in the domain field and pressing the function key F4. This is shown in
Figure 2-38.

Figure 2-37. Create Data Elements – Opening Screen

Figure 2-38. Create Data Element – Tab: ‘Data Type’

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

61

Having assigned the domain, click on the Field Label tab. (You are by-passing the Further Characteristics tab.)
In the Field Label tab, you need to enter the screen labels for the field to which this data element will be assigned

in the tables subsequently when you create tables. There is a provision for four labels (i.e., Short, Medium, Long, and
Heading. You must make a distinction between the first three and the last. The first three will

Bill No.: 1234

In case of Heading Field value will appear under field label. The Heading serves as column or field heading when
this field is output on screen or printer like

Bill No.

 1234

In this context, when the data length is very small (like in the case of Waiter No. or Table No. of length 2), the label
in the heading should not be too long. There should be an attempt to make the label for heading cryptic.

For most part (even in the SAP delivered data elements), the same label is entered in all the three (i.e., Short,
Medium, and Long). Let the same label be entered in these three fields: Short, Medium, and Long as well as the
heading.

The screen shot with entered labels is shown in Figure 2-39.

Figure 2-39. Create Data Element – tab Field Label

There are two set of fields: Length and Field Label. Do not enter any values in the Length field. The system
generates the lengths automatically after you enter the labels and save them. Subsequently, if you want to change a
label resulting in an increase in label length, then you have to manually adjust the Length field (not very user friendly).

You can create labels in other languages by clicking on menu bar option Go to and suboption Translation.
When you are finished with the label entry, click the save button. The system will prompt for package assignment.

Assign the SAP delivered package $TMP or click on the Local Object button.
Perform a consistency check by clicking on the button or press <Ctrl>+<F2> keys. If the consistency check is

without errors, activate the data element by clicking the button or pressing the keys <Ctrl>+<F3> keys.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

62

A screen shot of activated data element YCL_CH02_BILL_NO is shown in Figure 2-40.

Figure 2-40. Create Data Element – Activated Data Element

In a similar manner, create, check (consistency), and activate the remaining 16 data elements. Having created all
the 17 data elements, you can have a review list of them. In the SE11 opening screen, ABAP Dictionary: Initial Screen,
enable the Data type radio button (third from the top); enter the pattern YCL_CH02_* in the Data type field and press
the function key F4. A screen like the shown in Figure 2-41 will appear, prompting for a specified Data type. Click on
the button Search for Data Elements.

Figure 2-41. Create Data Element – Prompt for selection of Data type of list

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

63

A list like the one in Figure 2-42 will appear. The list is appearing with name and short description. If the short
description is appearing blank, the corresponding data element is in an inactive state. The List is appearing in
alphabetic ascending order.

Figure 2-42. Create Data Element – Review List

Editing or Changing data elements: If you need to perform any changes to data elements, you can do so by
selecting the Data type radio button and entering the name of the data element you want to change in the Data type
field. (Alternatively, you can get the list of data elements you created by entering the pattern in the Data type field,
pressing function key F4, and making a selection from the list.) Click on the Change button or press function key F6.
Perform the changes; save and reactivate the data element. After editing any object, the edited version of the object is
in an inactive mode. The edited version needs to be activated to enable its usage.

Create Tables
Now that you have the required domains and data elements created and activated for the four tables, you are ready
to create your custom tables. You will first create the tables without the foreign keys (i.e. Waiter Master: YCL_CH02_
WAITM, Item Master: YCL_CH02_ITEMM). You will then create Bills – Header: YCL_CH02_BILLH and Bills – Items:
YCL_CH02_BILLI.

Tables 2-8, 2-9, 2-10, and 2-11 can be referred while creating them.
In the SE11 opening screen – ABAP Dictionary Initial Screen: click on the Database table radio button. Enter the

table name YCL_CH02_WAITM, press button Create or function key F5. The Delivery and Maintenance tab screen will
appear as shown in Figure 2-43.

In the field Delivery Class, press the function key F4 for a pop-up selection list. Select the value G, the most
appropriate and protected against SAP upgrade. The assigned value G signifies an SAP customer table that will not be
overwritten or disturbed when the SAP version upgrade takes place.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

64

In the field Data Browser/Table View Maint., a drop-down list is available. Select the option Display Maintenance
Allowed. With this option you can create, edit, delete, and view data in the table through an automatically generated
dialog box or a maintenance view. (SAP DDIC supports four types of views. One of them is maintenance view.) If you
look up this field of any SAP delivered table such as VBRK, etc., this field is assigned the value Display Maintenance
Allowed with Restrictions. This means that the table data can be viewed, but creation, editing, and deletion operations
cannot be performed on the table data through the automatically generated dialog box or a maintenance view. For
the custom created tables, you would like to be able to create, edit, delete, and view data. Hence the option: Display
Maintenance Allowed.

Next, Click on the Fields tab. Here you need to enter the name of the fields and assign the corresponding
data elements. The fields’ Data Type and lengths are derived from the corresponding domains assigned to the data
elements. Refer to the section entitled Domain, Data Element, and Table Relationship.

The fields in a table are not DDIC objects. They are part of the objects. So normally they need not start with
the letters Y or Z. In a specific context they should start with the letters Y or Z. This specific context is not explicitly
covered in this book. The field names have to start with an alphabet, subsequent positions can be a combination of
alphanumeric characters with embedded underscores (_). The maximum length of a field name is 16 characters.

The primary key fields have to appear at the beginning. The check box under Key is to be enabled to make a field
as a primary key field.

So fill in the field names starting with WAITER_NO. Enable the check box field Key to designate this field
WAIT_NO as a primary key field.

When you populate a table and do not enter data in some fields, the system automatically incorporates initial
values in these fields (i.e., the system takes care of the null value issue). The initial value is dependent on the DDIC
Data Type of the field. Refer to the last column of Table 2-1. To give examples: if one of the fields is of Data Type
NUMC and no data is entered in this field, ASCII zeroes (ASCII code for zero is 01100100 or 64) is stored.

The initial check box for primary key fields is controlled by the system. Whether you enable it or disable it, it gets
enabled when you activate the table. This system is allowing one initial value for primary key field/s. Considering the
context of the table YCL_CH02_WAITM, you can omit entering values in the primary key fields; a row will be created
with primary key fields equal to initial value/s. In the table YCL_CH02_WAITM, the system will allow creation of one
row with field WAIT_NO equal to 00.

The enabling or disabling of the initial check box for non-primary key fields has relevance in the context of
modification of the table structure subsequently on insertion of new fields. If this check box is enabled, the system will
fill the fields with initial values or else they will be null values in such fields.

Figure 2-43. Create Table – tab Delivery and Maintenance

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

65

Assign the data element YCL_CH02_WAIT_NO. Do not key in these data elements manually. Instead key in the
pattern YCL_CH02*’ in the field Data element and press function key F4 for a selection list. This is shown in Figure 2-44.

Figure 2-44. Create Table – Assigning Data Element to a Field from Selection List

In a similar manner, enter the other fields, and assign data elements to them. After all the fields have been
entered and data elements assigned to them, the screen will appear like that in Figure 2-45.

Figure 2-45. Create Table – Fields with Data Elements assigned

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

66

For each field, The Data Types, lengths, and decimals are appearing automatically, derived from the domain
assigned to the corresponding data element.

Some older SAP versions might show these lengths to be zero. The lengths will appear only after table activation.
At this stage, save the object, assign the package $TMP, etc.

The next tab Entry help check is maintained by the system. If a field is a foreign key field in this table, the Foreign
Key check box field would be enabled and the name of the check table will appear in the field Check table. You will
see this for the tables containing foreign key fields (YCL_CH02_BILLH and YCL_CH02_BILLI). In the case for table
field TITLE, input help with fixed values is appearing in the field Origin of the input help. If a search help is attached to
the table field, its name will appear in the field Srch Help. (Search help is covered in the next chapter, Chapter 3) The
Default check box field is enabled if fixed values have been created in the domain. This is so for the table field TITLE.
The last column or field in this tab, Domain contains the name of the domain. The Entry help check tab screen shot is
shown in Figure 2-46.

Figure 2-46. Create Table – tab Entry help check

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

67

The last tab on the screen Currency/Quantity Fields is meant to assign a reference table and reference field to
the DDIC Data Types CURR and QUAN fields. As you do not have any table fields of DDIC CURR and QUAN in the
restaurant billing system, you will not be using this tab.

Table Technical Settings: You need to assign technical settings next. Click on the application toolbar button
Technical Setting or from the menu bar Go to, and select the option Technical Setting. The Technical Setting screen is
shown in Figure 2-47.

Figure 2-47. Create Table – Technical Settings

You are assigning values to two fields. The Data class signifies a physical area in the database. Press the function
key F4 and assign values of pattern USER*, and the physical area for users of SAP.

The field Size category is for initial allocation of disk space. Assign the value 0 from the pop-up selection list
available. Do not plan to create too many entries or rows in the tables: the value 0 will suffice. Save the Technical
Settings.

Enhancement Category

You need to perform one more tasks before you can activate your table; this is specifying the enhancement category. It
is not advisable to modify structure definitions of the SAP delivered tables. Fields can be added to SAP delivered tables
through the concept of Enhancements. This is an advanced topic not covered in this book. The four tables you are
creating are custom tables. You can modify their structure definitions as you want, subject to some constraints. So you
need not provide for future enhancement of the tables. This is to be indicated to the system. From menu bar Extras,
select the option Enhancement Category. An information message pop-up will appear, and then press <Enter>. Next,
a pop-up screen will appear like the one in Figure 2-48.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

68

Select or click on the radio button Cannot Be Enhanced (since you do not want a provision for tables’
enhancement). Click on the button Copy. This will assign the Enhancement Category to the table.

Perform the consistency check for the table, and press the button or press <Ctrl>+<F2> keys. If the consistency

check is without errors, activate the table by clicking the button or pressing the keys <Ctrl>+<F3> keys. If the

consistency check results in errors, investigate the errors, fix them, and then activate.

Database Metadata

When a DDIC table definition is activated for the very first time, the system will create the table definition in the
database. The table definition then is ready for creation or insertion of data.

In a similar manner create the tables YCL_CH02_ITEMM, YCL_CH02_BILLH.
Creating Foreign Key Relationship – Table: YCL_CH02_BILLH, Field WAIT_NO
Create the table YCL_CH02_BILLH, fill in all the tabs, create Technical Settings; then assign Enhancement

Category and save.
In the table YCL_CH02_BILLH, the field WAIT_NO is a foreign key field, and for this field, this is the foreign key

table. So you need to establish a relationship between the tables YCL_CH02_WAITM and YCL_CH02_BILLH.
On the Fields tab, position the cursor on the field WAIT_NO (you want to establish the foreign key relationship for

this field); then click on the Foreign Keys button (just above the data element column), and a pop-up dialog box
appears as shown in Figure 2-49.

Figure 2-48. Create Table – Assign Enhancement Category

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

69

Fill in the following fields in this pop-up dialog box:

Short text with meaningful text. For once this is optional. You are leaving it blank.•

In the Check table field, press function key F4. A list will appear with a single entry YCL_CH02_•
WAITM and the name of the check table with which you want to establish a relationship. This
table YCL_CH02_WAITM is appearing on the basis of the common domain of field WAIT_NO
in both the tables YCL_CH02_WAITM and YCL_CH02_BILLH (YCL_CH02_NUMC2).

After the field Check table is filled with the value from the single entry of the selection list, click •
on the button Generate Proposal. This will fill up the columns Check table, Chk Tab Fld, For
key table, and Foreign Key Field (i.e., which field/s in the check table relate with which field/s
in the foreign key or secondary table).

In the Screen check area, enable the check box Check required. This will prevent the creation •
of row/s in the foreign key table without a corresponding row in the check table. (No orphan
rows are allowed in the foreign key table.)

Next, fill in the cardinality – 1: CN. This means for every row in the check table, there can be •
any number of corresponding rows (including 0) in the foreign key table.

Figure 2-49. Create Table – Establish Foreign Key Relationship for field WAIT_NO

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

70

Click on button at the bottom of the dialog box, and the foreign key relationship is established.

Do a consistency check. (Click button or keys <Ctrl>+<F2>)Activate the table. (Click button or keys

<Ctrl>+<F3>)
Creating Foreign Key Relationships – Table: YCL_CH02_BILLI, Fields BILL_NO & ITEM_CODE
Create the table YCL_CH02_BILLHI, fill in all the tabs, create Technical Settings; assign Enhancement Category

and save.
In the table YCL_CH02_BILLI, the fields BILL_NO and ITEM_CODE are foreign keys, and for these fields this is

the foreign key table. So you need to establish relationships between the tables YCL_CH02_BILLH, YCL_CH02_BILLI
and YCL_CH02_ITEMM, and YCL_CH02_BILLI.

First, let a relationship be established between tables YCL_CH02_BILLH and YCL_CH02_BILLI. So position the
cursor on the foreign key field (which also happens to be a primary key field in this table), and click on the Foreign
Keys button. The pop-up dialog box Create Foreign Key appears. Press function key F4 in the field Check table for

the selection list of check table/s. A screen shot of this is shown in Figure 2-50.

Figure 2-50. Create Table – Foreign Key Relationship for field BILL_NO, Check Table List

The system is proposing two check tables: YCL_CH02_BILLH and YCL_CH02_ITEMM. This is obviously
erroneous.

The system is doing so because the key fields of these tables BILL_NO and ITEM_CODE are sharing the same
domain (i.e., YCL_CH02_NUMC4. This has been done deliberately to highlight this issue. Key fields that have the
same DDIC Data Type and length should not share the same domain.

For now, you know that you should select the table YCL_CH02_BILLH as the check table, as the foreign key field
for which you are establishing relationship now is BILL_NO.

After selecting the check table YCL_CH02_BILLH, click on the button Generate Proposal.
The columns under Foreign Key Fields will be filled up.
Ensure the Check required check box is enabled (and to ensure no orphan rows are in the foreign key table).

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

71

Enter cardinality 1: CN. (One row in check table can have 0 to many rows in foreign key table.
The Create Foreign Key dialog box for the field BILL_NO with the required fields filled up is shown in the

Figure 2-51. Clicking on the Copy button will establish the foreign key relationship for the field BILL_NO.

Figure 2-51. Create Table – Establish Foreign Key Relationship for field BILL_NO

On similar lines position the cursor on the field ITEM_CODE and carry out the creation of foreign key
relationship for the field ITEM_CODE. The filled-up dialog box for foreign key relationship of field ITEM_CODE is
shown in Figure 2-52.

Clicking on the button will establish the foreign key relationship for the field ITEM_CODE.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

72

If after establishing foreign key relationship, you want to delete it for some reason; you can do so by positioning
the cursor on foreign key field, clicking on the button, and clicking on the delete button that will appear beside

the button on the pop-up dialog box.

Do a consistency check. Click button or keys <Ctrl>+<F2>) Activate the table. Click button or keys

<Ctrl>+<F3>
You have created all four tables. You can populate the tables with data. You will first populate the tables without

the foreign keys, so that when you create entries in the tables with foreign keys, data is available in the check tables.

Create Data in Tables
Data in Table YCL_CH02_WAITM
Let the data entry be started with the table YCL_CH02_WAITM. In the ABAP Dictionary Initial Screen, select the
Database table radio button. Enter the table name (i.e., YCL_CH02_WAITM). Click on the Display button. The
Dictionary: Maintain Table screen appears. From the menu bar Utilities, select Table Contents -> Create Entries path.

A screen shot of data creation for the table YCL_CH02_WAITM is shown in Figure 2-53.

Figure 2-52. Create Table – Establish Foreign Key Relationship for field ITEM_CODE

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

73

Notice that the data element labels are appearing with the fields. If this is not happening and you are getting
table field names like WAIT_NO, etc., then click on the menu bar Settings ➤ User Parameters. A User Specific Settings
dialog box pops up as shown in Figure 2-54. Ensure that the radio button Field Label is enabled (at the very bottom).

Figure 2-53. Create Data in Table YCL_CH02_WAITM

Figure 2-54. User Specific Settings

Enter data. There is a pop-up selection list available for the field TITLE. This list’s source of data is the fixed values
of the domain associated with the field TITLE. You can test that the system will not accept any other values than those
of the selection list.

After entering all fields, press the save button on the standard tool bar. Press the Reset button on the application
tool bar to clear the fields for the next row.

Enter three/four waiters’ data. You can exit by pressing the button (back/previous screen) on the standard

tool bar or by pressing function key F3. This brings you to the structure screen. You can see or view the table contents
by clicking on the application tool bar button, then clicking the execute button on the next screen application

tool bar. The contents of the table will appear as shown by screen shot in Figure 2-55.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

74

You can select rows by clicking on the Row Selection Check Boxes. You can then view the rows one row at a time:
through application tool bar button, change contents one row at a time; through application tool bar button,

delete selected rows by clicking on the menu bar Table Entry and using Delete options. You can create new rows
(Waiters) by clicking on the application toolbar button.

You can select all rows through application tool bar button. You can deselect all rows through application

toolbar button.

If you want to navigate to the SE11 opening screen, then press button three times.

Data in Table YCL_CH02_ITEMM

The same procedure is to be used as for table YCL_CH02_WAITM. For the field ITEM_CODE, with the assigned
domain YCL_CH02_NUMC4 (through data element) it will accept values in the range 0001–5000. Pressing function
key F4 will show the range of values acceptable in this field. You had assigned this range of values in the Intervals area
of the Value Rang’ tab of the domain. Confirm that the system is triggering an error when you enter values outside the
range of 0001–5000. After entering a few rows, you can view the table contents by clicking on the application tool bar

 button in the table structure screen and then clicking the execute button on the next screen application toolbar.

The contents of the table will appear as shown by the screen shot in Figure 2-56.

Figure 2-55. View and Manipulate Data in Table YCL_CH02_WAITM

Figure 2-56. View and Manipulate Data in Table YCL_CH02_ITEMM

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

75

The screen shows the four created rows. This data can be manipulated through the display, change, create, etc.,
buttons on the application toolbar.

Data in Table YCL_CH02_BILLH

Let the data be created in this table by a different procedure. If an end user (nondeveloper) was entering data into a
table, he would not have access to the DDIC object maintenance screens. Such users can enter data into tables
through transaction code SE16. So enter /NSE16 in the command box and press the <Enter>/ button. The screen

shot of SE16 Data Browser: Initial Screen is shown in Figure 2-57.

Figure 2-57. SE16/Data browser: Initial Screen - Data in Table YCL_CH02_BILLH

Figure 2-58. Create Data in Table YCL_CH02_BILLH [SE16]

The field BILL_NO was assigned the domain YCL_CH02_NUMC4. It will accept values in the range 0001–5000.
For the field BILL_DATE, which is DDIC Data Type DATS, pressing function key F4 pops up a calendar, and you can
assign a date from this calendar. You get this facility for DDIC Data Type DATS. This is shown in Figure 2-59.

The screen prompts for the table name. The table name YCL_CH02_BILLH has been entered. Press the
application toolbar button to create entries. The screen shot of the data entry screen is shown in Figure 2-58.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

76

If you press function key F4 in the foreign key field WAIT_NO, a pop-up list appears displaying the primary
key values from the corresponding check table (YCL_CH02_WAITM). This is shown in Figure 2-60. You can make a
selection from this list. This facility is available for any foreign key field on the screen. The pop-up list with primary
key values is a rudimentary selection list. You would have preferred, in the present context, for the name of the waiter
to appear in the selection list. This will be possible through the DDIC object Search Help. If you enter a value in the
field WAIT_NO other than the values in the pop-up list (values in the check table), an error condition is triggered. This
is so because you had enabled in the foreign key dialog box the check box Check required.

Figure 2-59. Calendar for Date Selection – DDIC Data Type DATS

Figure 2-60. Pop-up List of Primary Key Values for Foreign Key Fields

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

77

After entering data into all the fields, save. Press the Reset button to clear fields. Create a few rows. When you are
finished, click the button (back/previous screen) on the standard tool bar or press function key F3 to return to

the SE16 opening screen.
Click the application toolbar button to review the entered data. A screen shot of the entered data is shown in

Figure 2-61.

Figure 2-61. View and Manipulate Data in Table YCL_CH02_BILLH

Figure 2-62. Create Data in Table YCL_CH02_BILLI [SE16]

Data in Table YCL_CH02_BILLI

Create data in this table through transaction code SE16.

The screen prompts for the table name. Enter the table name YCL_CH02_BILLI. Press application tool bar

button to create entries. The screen shot of data entry screen is shown in Figure 2-62.

After entering data into all the fields, save. Press the Reset button to clear fields. If you enter BILL_NO and ITEM_
CODE in the foreign key fields a value other than the values in the pop-up list (values in the check tables), an error
condition is triggered. Create a few rows. When you are finished, click the button (back/previous screen) on the

standard tool bar or press function key F3 to return to the SE16 opening screen.

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

78

Click the application toolbar button to review the entered data. A screen shot of the entered data is shown in

Figure 2-63.

Figure 2-63. View and Manipulate Data in Table YCL_CH02_BILLI

There are two foreign key fields in the table YCL_CH02_BILLI (i.e., BILLI_NO and ITEM_CODE. In each of these
fields, when you press function key F4, a pop-up list will appear (rudimentary selection list) displaying the primary
key field from the respective check tables. When you make a selection, the primary key value from the list is returned
to the foreign key field on the screen.

In the case of the field BILL_NO, it would be desirable to have a selection list that displays BILL_NO, BILL_DATE,
WAIT_NO, or TABL_NO instead of just the BILL_NO.

And in the case of the field ITEM_CODE, it would desirable to have a selection list that not only displays ITEM_
CODE, ITEM_DESC, and RATE, but assigns the value of RATE field from the list of the selected ITEM_CODE to the
screen field. This will be implemented when the DDIC object search help in the next chapter (Chapter 3) is covered.

You are now entering the data for the two tables YCL_CH02_BILLH and YCL_CH02_BILLi separately through
separate dialog boxes. The two tables contain data of the same category of document (i.e., restaurant bill). In real-life
scenarios, a complex ABAP program would be created to enter data of business documents that map to two or more
RDBMS tables.

Foreign Key Relationship Dialog Box Again
When you establish a field as part of a foreign key (multiple fields constituting the foreign key), you have the option to
omit field/s from the check procedure. You can do this by enabling the Generic check box of this field in the Foreign
Key Fields area under the Generate proposal button. The effect of this is that when values are entered in the foreign
key fields, a check is performed whether the entered set of foreign key values exist in the check table; this field is
omitted in the check.

Similarly, you have the option to enter a constant value for the foreign key field by entering the constant value
in the field Constant, next to the Generic check box. This constant value should be a valid one and must exist in the
check table

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

79

In the Foreign Key relationship dialog box Semantic attributes area, (at the bottom), there are the four radio
buttons:

• Not Specified

• Non-key-fields/candidates (The foreign key fields are not part of the primary key in
the current table)

• Key-fields/candidates (The foreign key fields are part of the primary key in the
current table)

• Key fields of a text table (If the primary key of the current table differs from
the primary key of the Check table only in terms of an
additional language code field, this radio button needs
to be enabled)

The enabling of one of these radio buttons along with the cardinality serves documentary purposes only except
in two contexts:

 1. In a text table, for the code field, the radio button Key fields of a text table should be
enabled. This is one indication to the system that this is a text table apart from the DDIC
Data Type LANG field preceding the code field and forming part of the primary key.

 2. In case of the table being used in maintenance, help view, the information of cardinality
and the semantic attributes is used by the system.

A table with a generic key field could be located. A table with a constant key field was not able to be located.
The above descriptions are in the screen shot (Figure 2-64).

Figure 2-64. Table: ‘BUT000_TD’ with Generic Key Field ‘CLIENT’

CHAPTER 2 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 1

80

Text Tables
Short texts (text length <= 255 characters) are required to be maintained in the SAP functional modules tables and
related tables. Some very common instances: texts of currency names (table TCURT), texts of country names, (table
T005T), texts of state/province/region names (table T005U), material descriptions (table MAKT), and so on. These
tables storing texts are called text tables. The texts have to be maintained in multiple languages. Thus the language
code has to be a part of the primary key of the text tables. The language code field is assigned the DDIC Data Type
LANG. Most of the text tables have the language code field of Data Type LANG named as SPRAS. And most of the text
table names end with the letter T.

These text tables are foreign key tables to the respective check tables where the codes are stored: currency codes,
country codes, state/province/region codes, material codes, etc. These code fields are foreign key fields as well as
part of the primary key in the text tables. The primary key fields in the text tables are in the order MANDT, <language
code field>, and <code field1> [<code field2>.]. There can be more than one code field like in table T005U (LAND1 &
BLAND). Only client dependent tables are being considered.

You can confirm this with the tables mentioned earlier: TCURT, T005T, T005U, and MAKT.
You can confirm one other thing. When you browse the data of the check table of these text tables: TCURC/T005/

T005S/MARA (either in SE11 or SE16), the texts or descriptions appear in the logged-in language automatically.
You could face a problem with table T005. The texts might not appear. If this is so, in the restrictive or filter

dialog box preceding the data browser window, enter a value >=1000 in the field Width of Output List above the field
Maximum No. of Hits. By default the values in these two fields is 250 and 200 respectively. By default the width of
output is 250 columns, and the maximum number of rows output is 200. The number of fields in the table T005 are
many – also (65) field titles are very long, hence you need the output width to be >=1000 columns.

Recapitulation: Domains, Data Elements, and Tables
You started with the restaurant bill. You wanted to store the restaurant bill and related data in the SAP system. You
identified the four tables to store the restaurant bill and related data. You identified fields in each table. You assigned
the DDIC Data Type and length to these fields. You identified table relationships. You created an ER diagram.

You made a summary list of DDIC Data Types and lengths in the four tables. You identified this summary list
of DDIC Data Types and lengths as minimum number of domains to be created. You mapped this summary list to
domains.

You made a summary list of the fields in the four tables. This summary list of fields, you mapped to the data
elements.

You adopted a naming convention to create DDIC objects.
First, you created domains; next you created data elements and finally the tables.
You created a few entries in each of these tables through the table maintenance dialog box generated for each

table automatically when the table is activated.
You reviewed the data in the tables.
The whole elaborate exercise was done to get a firsthand exposure to these three DDIC objects. Instead of

creating the DDIC objects in a random and hypothetical fashion, you adopted a simple real-world scenario and
created these three DDIC objects in the context of the scenario.

You will now proceed to learn the other two DDIC objects in the next chapter: Views and Search helps.

81

CHAPTER 3

ABAP Dictionary/Data
Dictionary/DDIC – 2

Creation of custom DDIC objects continues in this chapter. You will create DDIC objects: views and search helps.
You will create views and search helps using custom tables as well as the SAP delivered tables. The search helps
using the SAP delivered tables are tested using ABAP programs. ABAP programming is introduced in this chapter on
a preview basis.

DDIC Objects Views
In the DDIC, you can create the following four types of views:

 1. Database

 2. Projection

 3. Maintenance

 4. Help

In this chapter, the view types 1and 2 will be created and demonstrated; the view type 3 will be described. View
type 4 will be covered in Chapter 7 entitled Modularization.

Database Views
A database view can consist of one or more tables. Mostly it is multiple tables.•

Database views consisting of multiple tables implement an inner join. That is, when you •
consider two tables at a time, a row has to exist in both the tables for it to appear in the result.
The view is a cross product of the two tables. The joining condition is generally with the
primary key fields in one table and foreign key fields in the other table, but it need not be so.
A join condition can be established on non-key fields as well.

If you consider the scenario of creating a database view with your custom tables YCL_CH02_WAITM and YCL_
CH02_BILLH, and the field WAIT_NO joining the two tables, you will get a result where only the waiters have bills. Of
course, a waiter having multiple bills will appear that many times in the result (cross product). The waiters having no
bills will not appear in the result. Your first hands-on exercise will implement this scenario.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

82

If the database view consists of multiple tables, it is designated as a read-only view, and the •
participating tables of database view cannot be updated (insert, update, delete) through the
view. If the database view consists of a single table, this table can be updated (insert, update,
delete) through the view.

When you activate a DDIC database view for the first time, a view is created in the database •
metadata.

A database view can consist of only transparent tables.•

The database view can be used in the Open SQL SELECT statement just like a table.•

A database view (in fact, all the four types of views) can be referred to declare data in an ABAP •
program.

With the plethora of tables in the SAP environment, data required in an ABAP program is •
spread across many tables. An efficient way of retrieving this data spread across many tables
is to create database view/s and retrieve data with simple SELECT statements instead of
using complex SELECT statements implementing the inner joins – a simple process of data
gathering. The database view also serves the purpose of reusability. A single database view
could be used in multiple ABAP programs.

A database view just like the tables has technical settings. So buffering can be set up if desired.•

Database view retrieval will perform faster than the retrieval with individual tables.•

Database Views – Inner Join

It is better to explain the inner join (that a database view uses) with a simple example involving your custom tables:-
Suppose the data in the table YCL_CH02_WAITM is as follows: (5 rows)

WAIT_NO ...
01...
02 ...
03
04
05

The data in the table YCL_CH02_BILLH is as follows (10 rows)

You perform an inner join on the two tables using the field WAIT_NO. This field is a primary key in YCL_CH02_
WAITM and a foreign key in the table YCL_CH02_BILLH. The result of the inner join will be to drop the WAIT_NO
values 01 and 03 originating from table YCL_CH02_WAITM in the result as they do not have any corresponding row in
the table YCL_CH02_BILLH. The 10 rows from the table YCL_CH02_BILLH will appear in the result. Waiters having no
bills will not appear in the result.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

83

This was hypothetical data contrived for explanation. The tables do not contain this data.
Now let a database view be created with these very tables in DDIC. The interface of the database view creation is

peculiar and has to be understood.

Create Database View with Tables YCL_CH02_WAITM and YCL_CH02_BILLH

In the SE11 opening screen, select the radio button View. Enter the name of the view to be crested. (Name space, like
tables, are 16 characters.) Let the name of the database view be YCL_CH03_WBH. Click on the Create button or press
function key F5. The system will prompt for the view type to be created as shown in Figure 3-1.

Figure 3-1. Create Database View – Choose View Type

Select the database view, which is also the default, and press the button. The screen to create

database view, as shown in Figure 3-2, appears.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

84

Enter suitable text in the field Short Description.
On the left side, in the single column, you enter the table names. On the right side, there are four columns to

enter the table name of the left side table, first field name of the left side table; table name of the right side table, first
field name of the right side table, and so on.

The entries in the table column as well as the join columns are for most part entered by the system. Sometimes
they are entered manually.

In the present scenario the entries should look like this:

YCL_CH02_BILLH YCL_CH02_WAITM WAIT_NO YCL_CH02_BILLH WAIT_NO

YCL_CH02_WAITM The present exercise is of a very simple scenario: only two tables; only one field in the join
condition. A real-world scenario would consist of more than two tables and more than one field in a join condition.
In such situations, it is always better to define a hierarchy. Of course, in a hierarchy, at a time you are tackling two
tables for an inner join condition. In an inner join condition of two tables, it is immaterial which table appears on
the left side of join condition and which table appears on the right side. But it is a good practice to follow the RDBMS
hierarchy where possible.

In the present hands-on exercise, the table YCL_CH02_WAITM is the check table, and the table YCL_CH02_
BILLH is the foreign key table. So you will have the table YCL_CH02_WAITM on the left side of the join condition and
the table YCL_CH02_BILLH on the right side of the join condition.

There are five tabs including the Attributes tab, which is maintained by the system. You are on the Table/Join
Conditions tab. You need to enter the participating tables and the join conditions.

When you want the join condition to be generated by the system, the procedure is to enter the name of the
foreign key table under the column Table, and click on the button Relationships, which is at the bottom. The system
will extract the check table/s from the foreign key relationship you defined when creating the table definitions and list
out these with a prompt as shown in Figure 3-3.

Figure 3-2. Create Database View – Table/Join Conditions tab

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

85

There is one entry under Referenced tables. In this dialog box, the table on the left (YCL_CH02_BILLH) is the
foreign key table, and the table on the right is the check table (YCL_CH02_WAITM).

Under the Dependent tables, there is one entry. The table on the left again is the foreign key table (YCL_CH02_
BILLI), and the table on the right is the check table (YCL_CH02_BILLH).

The entries under the heading Referenced tables are of interest to you. The table YCL_CH02_BILLH you entered
under the column Tables of the Tables/Join Conditions tab is a foreign key table, and in clicking the button
Relationships, you are seeking the check table, which is the table YCL_CH02_WAITM. Enable the check box of this row
and press the button. The screen will look like that in Figure 3-4.

Figure 3-3. Create Database View – Relationships of Table YCL_CH02_BILLH

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

86

The system has generated the join condition and entered the check table under the foreign key table.
When you are manually entering the join conditions you must bear this in mind: The join conditions must be

entered from top to bottom in a hierarchal way and the tables under the column Tables are entered in reverse order
(i.e., tables higher in the hierarchy must appear at the bottom, and tables lower in the hierarchy must appear at the top).

Having entered the tables and join conditions, proceed to the next tab View Flds where you select fields which
should appear in the view. In the case of your custom tables, there are only a few fields, so you can select all the fields.
In case of the SAP delivered tables, the number of fields is of the order of 100 or more. Field selection becomes a
necessary exercise; you cannot select all fields. Fields should be selected depending on the scenario requirements.

The View Flds tab screen is shown in Figure 3-5.

Figure 3-5. Create Database View – View Flds tab

You can manually fill in the fields, but a better way is to select them from lists. The fields’ names in the view can
be different from their corresponding names in the tables, but it is better to retain field names of tables in the view. To
select fields, click on the Table fields button. A pop-up dialog box as shown in Figure 3-6 appears.

Figure 3-4. Create Database View – Join Condition Generation by the System

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

87

You have to select the table from which to make field selections. Proceed in a hierarchal manner. You select
YCL_CH02_WAITM first. So either double-click on that table name or position the cursor on the table name and click
on the button. The field selection screen as shown in Figure 3-7 appears.

Figure 3-6. Create Database View – Choose Table for Field Selection

Figure 3-7. Create Database View – Field Selection from Table YCL_CH02_WAITM

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

88

You can select fields by enabling the check box against the field. Select the two fields, WAIT_NO and
WAIT_NAME by enabling their check boxes. Then click on the button at the bottom of the dialog box. In a

similar manner select the fields from the table YCL_CH02_BILLH. Select the three fields BILL_NO, BILL_DATE, and
NET_AMT. After these three fields have been fetched, the screen will be as shown in Figure 3-8.

Figure 3-8. Create Database View – Selected Fields

Always select the primary key fields either from the table where they are primary key fields or where they are
foreign key fields. Having fetched the required fields from the two tables, they need to be ordered. All the primary key
fields (fields with the Key check box enabled) of different tables should be at the beginning and in the hierarchal order.
In the present context, the first field should be WAIT_NO, and the second field should be BILL_NO. Reposition the
fields by cutting and pasting. Use the buttons: above the fields. The order of rest of the fields is

immaterial. If the same field with the same name is selected from more than one table in the view for some reason,
the fields should be renamed, because the view field’s names, like in tables, should be unique. After the fields have
been ordered and the view saved, the screen will be as in Figure 3-9.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

89

Click the Selection Conditions tab of the view. You can enter simple, compound (with logical operators AND/OR)
WHERE conditions to filter data. One constraint is that the value on the right side of the WHERE condition has to be a
literal (No run-time decision). A screen shot of the Selection Conditions tab appears in Figure 3-10.

Figure 3-9. Create Database View – Primary Key Fields ordered hierarchically

Figure 3-10. Create Database View – Selection Conditions tab

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

90

For now, you will not enter any Selection Condition.
The next tab is Maint.Status. Like in a table, you can set the maintenance status. But since your view is consisting

of two tables, it is a read-only view. A screenshot of the Maint.Status tab is shown in Figure 3-11.

Figure 3-12. Create Database View – Consistency Check Message

Figure 3-11. Create Database View – Maint.Status tab

Perform a view consistency check (Button or keys <Ctrl>+<F2>).

A warning message will appear stating this is a read view only. (Warning messages in the SAP environment
appear in Yellow color) This is shown in Figure 3-12.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

91

If any other error/s occurs; troubleshoot and fix them.
Activate the database view (Button or keys <Ctrl>+<F3>).

You can display the contents of the view by clicking on the application toolbar button, then pressing function
key F8 (execute) in the Selection Screen. The data in the participating tables YCL_CH02_WAITM and YCL_CH02_
BILLH is available in Figures 3-13 and 3-14. The contents of the view are shown in Figure 3-15.

Figure 3-15. Database View Contents - YCL_CH03_WBH

Figure 3-13. Table Contents – YCL_CH02_WAITM

Figure 3-14. Table Contents - YCL_CH02_BILLH

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

92

There are 4 rows in table YCL_CH02_WAITM: WAIT_NO values = 01,02,03,04.
There are 2 rows in YCL_CH02_BILLH: WAIT_NO values = 02, 01.
In the database view YCL_CH03_WBH WAIT_NO values = 01, 02 appear. WAIT_NO = 03, 04 are dropped, as there

are no bills for these values of WAIT_NO.

Create Database View with SAP delivered Tables KNA1and VBAK

A database view was created with your custom created, populated tables. The tables were simple, consisting of a few
fields, and there was hardly any data.

Let a database view be created with the SAP functional module tables.
(Recall from Chapter 1 that all SAP functional module tables are client dependent. That is, the first field in these

tables is of DDIC TYPE CLNT and data of the client you have logged in is only visible and retrievable). Let a database
view with the following SAP delivered tables be created:

KNA1 Customer Primary table
VBAK Sales Document – header

The two tables are related by the field KUNNR, which is the customer code. The field KUNNR is part of the
primary key in table KNA1 and it is a foreign key in the table VBAK. Check this out in SE11.

The customer information is contained in multiple tables; KNA1 is the primary table for customer information.
Table VBAK contains Sales Document header data. There is a Sales Document – item table: VBAP. You will only

use the two tables KNA1 and VBAK.
The specifications for the proposed database view:

Object Specification

Database view name: YCL_CH03_KNVK
Tables: (1) KNA1 (Customer Primary) (2) VBAK (Sales Document – Header)

Relationship fields MANDT, (Client Code) KUNNR (Customer Code)

Hierarchy: KNA1
 |
 VBAK

Fields from KNA1 MANDT Client code
 KUNNR Customer Code
 NAME1 Customer Name
 STRAS Street
 ORT01 City
 PSTLZ Postal Code

Fields from VBAK VBELN Document Number
 AUDAT Document Date
 NETWR Net Amount in Document Currency
 WAERK Document Currency

Selection Condition VBTYP = C. Filter out the data of Sales Order
 (VBTYP is indicator for Sales Document Type)

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

93

Object Creation

On the SE11 opening screen, select the radio button for View.
Enter the view name YCL_CH03_KNVK. Click the Create button or press function key F5. Select the Database

view (default) on the Choose View Type screen and click on the button. You will get to the Table/Join

Conditions tab. Enter Short description. Under the Tables, enter the name of your foreign key table VBAK. Click on the
button Relationships. The screenshot of the dialog box is shown in Figure 3-16.

Figure 3-16. Create Database View – Relationships

A relationship involving KNA1 and VBAK is appearing twice in the list. Which one is to be selected? Double-click
on both and the screen as shown in Figure 3-17 will appear.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

94

When the relationships have been expanded by double-clicking on the relationship lines, you observe that the field
KNKLI is appearing in one proposal, and the field KUNNR is appearing in the other proposal. Since your specifications
mention the field KUNNR, disable the check box of KNKLI, enable the check box of KUNNR, and click on the copy button.

The system enters KNA1 (primary table) under the column Tables and generates the join condition. The screen
with the join condition is shown in Figure 3-18.

Figure 3-17. Create Database View – Relationships expanded

Figure 3-18. Create Database View – Join Conditions

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

95

Notice that the DDIC TYPE CLNT field MANDT is on the first line of join condition, because the field MANDT is
the first field in every client dependent table. When entering the join condition manually, bear this in mind.

With the join condition in place, proceed to the View Flds tab. Select the fields as per the specifications. Recall
from the previous exercise that you have to use the Table fields button to select the table and then select the fields of
the chosen table.

Recall from the previous exercise that fields have to be ordered. The primary key fields (with the Key check
enabled have to be located at the beginning and should be in order of table hierarchy. The order of primary keys
should be as follows:

MANDT

KUNNR

VBELN

The rest of the fields can be in any order.
Notice that you can select the field KUNNR from either one of the tables KNA1 or VBAK. If you select the field

from the table KNA1 where it is part of primary key, it will have the Key check box enabled in the view; if you choose
KUNNR from the table VBAK, where it is a foreign key, it will have the Key check box disabled in the view. If you have
selected KUNNR from table KNA1, you need to put the first three fields in the order mentioned above. If you have
selected KUNNR from table VBAK, then the first two fields should be:

MANDT

VBELN

You have selected the field KUNNR from table KNA1.A screenshot of the selected fields as per the specifications
and ordered as expected by interface is shown in Figure 3-19.

Figure 3-19. Create Database View – Fields Selected, Ordered

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

96

Next, click on the Select Conditions tab. According to the specifications, you have to enter a condition as to
filter out rows in which the field VBTYP = C. The field VBTYP is in the table VBAK. Table VBAK contains different
types or kinds of sales documents. The field VBTYP (DDIC TYPE CHAR & length 1) contains 1 character code for
each document type. It contains C for sales orders. When a customer of an enterprise places an order, a sales order is
generated. In the present database view, you will filter out rows where VBTYP = C (sales orders).

Use the button Table fields to select the table (VBAK) Field (VBTYP). Select the relational operator from the
list (function key F4) – EQ/=. Under the Comparison Value column enter ‘C’. (Enclose C within single quotes. Recall
C is the code for sales orders). A screenshot of the Selection Conditions tab after the fields are entered is shown in
Figure 3-20.

Figure 3-20. Create Database View – Selection Conditions

Save. Perform a consistency check (Button or keys <Ctrl>+<F2>).

Activate the database view (Button or keys <Ctrl>+<F3>).

For any object you create and deliver, you must have assurance about its correctness: that it has been created
as per specifications. You have created the database view with two tables KNA1 and VBAK joined by (inner join) the
fields MANDT and KUNNR; set up a condition to filter out rows having VBTYP = C.

The database view you created earlier had very little data in its participating tables, so you visually checked it
for its accuracy (i.e., the number of rows in the result). In the present database view, the participating tables have
thousands of rows, so visual inspection and accuracy determination is not feasible.

View Audit

The present database view is on a parallel basis to the previous exercise. In the previous exercise, it was stated that all
the bills will appear in the result, and the waiters having no bills will be omitted in the result. Of course, the condition
is that there will be no bills without a waiter.

In the present exercise it can be stated that all the rows of table VBAK with VBTYP = C must appear in the result,
customers having no sales document will not appear in the result. So if the number of rows in the table VBAK with
VBTYP = C are appearing in the result, you are assured of the correctness of the database view. Of course the condition
has to be fulfilled that there are no sales documents without a customer code. In fact, you are assured of this condition.
In the SAP environment, you cannot create a sales document without a valid customer code being assigned.

So your task is to determine:

 a. The number of rows in the table VBAK with VBTYP = C.

 b. The number of rows in your database view.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

97

If these two match, your database view is correct. If they do not match, you have to troubleshoot. When join
conditions are not generated by the system but entered manually, this is one area prone to errors.

Now let the number of rows in the database view YCL_CH03_KNVK be determined. Click on the button of

the Database view application toolbar. The screen Data Browser: Table YCL_CH03_KNVK: Selection Screen will
appear. On this screen there is a button Number of Entries on the application toolbar. Click on this button. The system
will display the number of rows in the database view. This is shown in Figure 3-21.

Figure 3-21. Database View – Selection Screen: Determine number of rows

The number of rows in the database view is 6504.
Now determine the number of rows in the table VBAK with field VBTYP = C. Navigate to the transaction code

SE16 screen; enter the table name as VBAK. Click on the table of contents button. The screen Data Browser: Table

VBAK: Selection Screen will appear. You have to filter out rows with VBTYP = C. For this, click on the menu bar
Settings ➤ Fields for Selections. A dialog box will appear with the fields of tables and check boxes as shown in
Figure 3-22.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

98

Ensure the check box for the field VBTYP is enabled, and click on the button.

In the Document cat. field enter C (just the letter C) and click on the application toolbar button Number of
Entries. The system will display the number of rows in the table VBAK where VBTYP = C. This is shown in Figure 3-23.

Figure 3-22. Table VBAK – Selection Screen: Choose Fields for Selection

Figure 3-23. Table VBAK – Selection Screen with VBTYP = C: Number of Rows/Entries

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

99

The number of rows in the table VBAK with VBTYP = C is 6504. This is matching with the number of rows in the
database view.

The Selection Screen (where you entered C in the field Document cat. /VBTYP is a sophisticated feature, which
will be covered when prerequisites are in place. For now you can take it that initially if this field was not on the
Selection Screen, you made it appear on the Selection Screen through Settings ➤ Fields for Selections, etc. Once it was
on the Selection Screen, you entered the value C (for sales document type sales order) the system filtered data as per
this value (i.e., it fetched and counted rows with VBTYP = C).

Making the Database View Client Independent

In the database view YCL_CH03_KNVK, the first field is the client code field MANDT of DDIC TYPE CLNT. As the first
field is DDIC TYPE CLNT, your view is client dependent. Let the position of this field be changed and its repercussions
observed. As shown in Figure 3-24, the field MANDT has been shifted to the second position. Since the first field is no
longer DDIC TYPE CLNT, your view now will be client independent; that is, the data of clients other than the logged in
client is also retrieved.

Figure 3-24. Database View YCL_CH03_KNVK – Shift MANDT to Second Position: The View Becomes Client
Independent

After making this change, do an object consistency check. The system will highlight two warnings: (a) View
access is read only, and (b) View is client independent.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

100

Activate the object. Click on the contents button. The selection screen appears. In the field Maximum No. of

Hits (at the very bottom), change the value to 9999. Normally, as per default settings, the value here is 200 (i.e., it lists a
maximum of 200 rows). In your present situation, the number of rows in your view is > 6,500. So you have changed the
value to 9999 (i.e., display a maximum of 9999 rows). This is shown in Figure 3-25. Press function key F8 or the execute

 button.

Figure 3-25. Database View YCL_CH03_KNVK made Client Independent: Selection Screen

The data has been fetched for all clients instead of just the logged in client. The number of entries or rows is
appearing on window title and in your case are 6,639, which are greater than your earlier count of 6,504 rows in the
client dependent view. A list appears displaying the fields of your view. Next position your cursor on the list column
heading Client as shown in Figure 3.26. Then click on the application tool bar button. This would sort your view

list in descending order of client code: that is high value client code appears first, low value client next, etc. The list
that appears is shown in Figure 3-26. You can observe that list is starting with client 811; clients other than 800, etc.,
are visible.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

101

This is rarely done in a practical world; that is, making a view consisting of a functional module table’s client
independent. It has been done here to highlight and demonstrate the client dependency feature. Restore the view to
its original configuration.

Exercise: Create Database View with SAP delivered Tables KNA1, VBAK, VBAP

Extend the two table database view to three table database views:

KNA1 Customer Primary table
VBAK Sales Document – header
VBAP Sales Document – item

The two tables KNA1 & VBAK are related by the field KUNNR, which is the customer code. The field KUNNR is
part of the primary key in table KNA1 and it is a foreign key in table VBAK.

The two tables VBAK and VBAP are related by the field VBELN, which is the Document Number. The field VBELN
is part of the primary key in table VBAK, and it is a foreign key in table VBAP as well as part of the primary key. Check
this out in SE11.

Figure 3-26. Database View YCL_CH03_KNVK made Client Independent: List

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

102

The specifications for the proposed database view:

Object Specification

Database view name: YCL_CH03_KNVKP

Tables: (1) KNA1 (Customer Primary) (2) VBAK (Sales Document – Header)
 (3) VBAP (Sales Document – Item)

Relationship fields (1) KNA1, VBAK - MANDT, (Client Code) KUNNR (Customer Code)
 (2) VBAK, VBAP – MANDT (Client Code) VBELN (Document No.)

Hierarchy: KNA1
 |
 VBAK
 |
 VBAP

Fields from KNA1 MANDT Client code
 KUNNR Customer Code
 NAME1 Customer Name
 STRAS Street
 ORT01 City
 PSTLZ Postal Code

Fields from VBAK VBELN Document Number
 AUDAT Document Date
 NETWR Net Amount in Document Currency
 WAERK Document Currency

Fields from VBAP POSNR Sales Document Item (Serial No.)
 MATNR Material No
 ZMENG Target Quantity
 ZIEME Target Unit of Measure

Selection Condition VBTYP = C. Filter out the data of Sales Order
 (VBTYP is indicator for Sales Document Type)

Tables Join Conditions

VBAP KNA1 MANDT VBAK MANDT
VBAK KNA1 KUNNR VBAK KUNNR
KNA1 VBAK MANDT VBAP MANDT
 VBAK VBELN VBAP VBELN

Fields Table

MANDT KNA1
KUNNR KNA1
VBELN VBAK
POSNR VBAP
NAME1 KNA1
STRAS KNA1

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

103

ORT01 KNA1
PSTLZ KNA1
AUDAT VBAK
NETWR VBAK
WAERK VBAK
MATNR VBAP
ZMENG VBAP
ZIEME VBAP

Selection Conditions

VBAK VBTYP EQ C

After creation, a perform consistency check and activate the database view. Test and ascertain that the number of
rows in the database view is as per the inner joins expectations.

This concludes the database views.

Projection View
A projection view is used to restrict access to only certain fields of a table. •

A projection view consists of exactly one database table.•

A projection view can use pooled, clustered tables.•

Selection Conditions are not available for projection views.•

A projection view can be used with an Open SQL SELECT statement.•

A projection view can be referred to declare data in an ABAP program.•

Table data can be maintained through the projection view (insert, update, delete).•

Create Projection View with SAP delivered TableKNA1

Object Specification

Projection view name: YCL_CH03_KNA1_PJ

Table: KNA1 (Customer Primary)

Fields from KNA1 MANDT Client code
 KUNNR Customer Code
 NAME1 Customer Name
 STRAS Street
 ORT01 City
 PSTLZ Postal Code

Object Creation

In the SE11 opening screen, select the radio button View. Enter the name of the view to be crested YCL_CH03_KNA1_
PJ. Click on the Create button or press function key F5. The system will prompt for the view type to be created as
shown in Figure 3-27.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

104

Select the Projection view on the Choose View Type screen and click on the button. You will be

prompted with an information message like the one shown in Figure 3-28.

Figure 3-27. Create Projection View – Choose View Type

Figure 3-28. Create Projection View – Information Message

Information messages have the icon . They are notifying messages. This one reminds you to Observe

constraints for use in Logical database. The Logical database is a feature in the ABAP Workbench somewhat obsolete
now (HR functional module uses it). The Logical database is not covered in this book. Press <Enter> on the
information message. You are on the View Fields tab. Enter Short description. Enter the table name KNA1 in the field
Base Table. Click on the button Table fields. The system pop ups the Field Selection from Table KNA1 window as
shown in Figure 3-29.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

105

Select the fields as per the object specifications and click on the button. The screen shot with the

selected fields is shown in Figure 3-30.

Figure 3-29. Create Projection View – Field Selection from Table KNA1

Figure 3-30. Create Projection View – Selected Fields

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

106

You are finished with the field selection. Click on the tab Maintenance Status. This is shown in Figure 3-31.

Figure 3-31. Create Projection View – Maintenance Status tab

You should not intend to operate on the data of KNA1 (insert, update, delete). Operating on the data of SAP delivered
functional module tables is not advisable. Click on the radio button “read only” in the Access area. Select Display/
Maintenance Allowed with Restrictions option from the drop-down list of the field Data Browser/Table View Maint.

Save the projection view. Perform the consistency check. This should produce the screen shown in Figure 3-32.

Figure 3-32. Create Projection View – Consistency Check Message

From the Log display screen, press function key F3 or the standard toolbar button. Activate the Projection

view. Let the contents of the projection view be examined. On one of the projection view tabs, click on the button.

The selection screen will appear. Enter A* in the field Name to retrieve and display customer names starting with A,
and change field Maximum No. of Hits from default 200 to 9999. This is shown in Figure 3-33.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

107

Press function key F8 or the button. The projection view contents are appearing in Figure 3.34 (only

customers; names starting with A).

Figure 3-33. Projection View – Selection Screen

Figure 3-34. Projection View – Contents

You are finished with the Views for now. You will proceed to the next DDIC object, Search Help.

DDIC Objects Search Helps
The DDIC object search help enables users to make a selection from a selection list (also called the hit list) to assign
value to a screen field instead of manually entering the value, which is tedious and error prone.

You have already seen the search help in operation when you assigned domains to data elements in the section
entitled Create Data Elements, and assigned data elements to table fields in the section entitled Create Tables in
Chapter 2. The selection list’s appearance is generally preceded by a dialog box called the restrictive or filter dialog

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

108

box. In this book, it is being referred to as a restrictive dialog box. The restrictive dialog box contains fields, and
the user can enter values or patterns in these fields. The search help will filter out the data as per value/s, pattern
specification in the restrictive dialog box fields, so that the resulting selection list is small and manageable. This is true
of situations where the unrestricted selection lists contain large amounts of data.

Out of the hundreds of thousands of domains, you could filter out your 10 domains into a selection list; out of the
hundreds of thousands of data elements, you could filter out your 17 data elements into a selection list.

Search helps are of two types: (a) elementary search help, and (b) collective search help. A collective search help
consists of multiple elementary search helps. The search help can be attached to a primary key table, a table field
(usually a foreign key field), a data element, or a screen field, etc.

You will perform hands-on exercises to create elementary as well as collective search helps. Search help creation
will be scenario based. At first, you will create search helps using your custom tables. You will follow this up by
creating search helps using SAP delivered tables.

Search Help with Custom Tables
Create Search Help: Scenario of Elementary Search Help with Custom Table

In your table YCL_CH02_BILLI, the field ITEM_CODE is a foreign key, and the check table for this field is YCL_CH02_
ITEMM.

When you are entering data in this table (i.e., YCL_CH02_BILLI in the Data Browser, and SE16/SE11, etc.), when
you press the function key F4 on the foreign key field ITEM_CODE, a list of primary key field values from the check
table YCL_CH02_ITEMM is displayed. And when a user makes a selection by double-clicking, etc., the value of the
primary key is assigned to the screen field. See Figure 3-35.

Figure 3-35. Create Data in Table YCL_CH02_BILLI, Press F4 key in Field ITEM_CODE

This is not very user friendly. First, you want a description of the item and rate (fields ITEM_DESC, RATE) to be
displayed on the list along with ITEM_CODE. Next, you would like the field RATE value to be assigned from the list to
the screen field RATE along with the field ITEM_CODE.

To achieve this, you are going to create an elementary search help, attach this search help to the foreign key field
ITEM_CODE in the table YCL_CH02_BILLI, and test the attachment of the search help.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

109

Create Elementary Search Help with Table YCL_CH03_ITEMM - Object Specification

Search Help name: YCL_CH03_ITEMS_SH

Database Table: YCL_CH02_ITEMM (source of data)

Attachment: Table – YCL_CH02_BILLI
 Field – ITEM_CODE (Foreign Key)
Selection List Fields: ITEM_CODE – LPos = 1.
 ITEM_DESC – LPos = 2.
 RATE - LPos = 3.

Restrictive Dialogue Box Fields ITEM_CODE – Spos = 1.
 ITEM_DESC – Spos = 2.

Export Fields: ITEM_CODE – Export = X.
 RATE- Export = X

Import Fields: None

You are creating an elementary search help YCL_CH03_ITEMS_SH (maximum name space 30 •
characters). This search help’s source of data is the table YCL_CH02_ITEMM. The source of
data can either be a table, a projection view, a database view, or a help view.

You will attach this search help to the foreign key field ITEM_CODE of table YCL_CH02_BILLI •
(Bills –Items).

The fields that will be displayed in the pop-up selection list are ITEM_CODE, ITEM_DESC, •
and RATE - Lpos values.

The fields that will be displayed in the restrictive dialog box are ITEM_CODE and ITEM_DESC •
– Spos values.

The screen fields that will be assigned values from the selection list fields of table YCL_CH02_•
ITEMM are ITEM_CODE and RATE – check box Export.

There are no import parameters. The concept of search help import parameters will be •
explained and demonstrated with real-life type scenario in Chapter 14, entitled Screen
Programming.

In the context of search help, export parameters means what the search help selection list sends values to the
screen fields on the screen when the user has made a selection.

In the context of search help, import parameters means what the search help restrictive dialog box fields receives
from the screen fields where user presses the function key F4.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

110

Create Elementary Search Help YCL_CH03_ITEMS_SH with Table YCL_CH02_
ITEMM, to be attached to field ITEM_CODE of table YCL_CH02_BILLI

In the SE11 opening screen, select the radio button for Search help. Enter the name of the search help to be created.
The name as per your object specification is YCL_CH03_ITEMS_SH. Click on the Create button or press function key
F5. The system will prompt for the search help type to be created as shown in Figure 3-36.

Figure 3-36. Create Search Help – Select Search Help Type

Figure 3-37. Create Search Help – Selection Method

Select the Elementary search help, which is the default; press the button. The screen to create elementary

search help as shown in Figure 3-37 appears.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

111

After the selection method is entered, the next field is the Dialog type. This controls the appearance of the
restrictive dialog box, whether it appears immediately on the user pressing function key F4 or not. There is a drop-
down list with three options. You will select the third option: Dialog with value restriction. This option pops up the
restrictive dialog box first, and next the selection list makes its appearance. You can try out the other options as an
exercise.

The Search help exit is an advanced feature beyond the scope of this book.
Next is the parameter area. In this area there are nine column fields. For each Search help parameter or field

these column fields have to be entered as per requirements. Explanation for these column fields follows:-

 1. Search help parameter: This is a field from the source of data. A F4 pop-up (search help)
facility is available. The fields from the table or view are listed in the selection list. With
your source of data, the table YCL_CH02_ITEMM; its three fields ITEM_CODE, ITEM_
DESC and RATE appear in the selection list as shown in Figure 3-39. One of these fields is
entered in this column.

Figure 3-38. Create Search Help – A Selection List on Selection Method

In the selection method, you have to indicate first whether your source of data is a table or a view. (Database,
projection and help views are acceptable.) In your case it happens to be a table. The table is YCL_CH02_ITEMM. It is
selected from a selection list as shown in Figure 3-38.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

112

The fields participating in the search help would be entered, one field in each row. As per the object
specifications, all the three fields from the table are participating in the search help. How each field participates is
indicated in the rest of the columns (i.e., export, import, LPos, Spos, etc.).

 2. Import: The second field in the Parameter area is a check box for indicating whether a
Search help parameter is an import parameter. The export or import is with reference to
the search help. The import will be of value/s from screen field/s to one or more of the
restrictive dialog box field/s. As has been stated earlier, the import parameter feature will
be demonstrated in Chapter 14 entitled Screen Programming.

 3. Export: The third field in the Parameter area is a check box for indicating whether a Search
help parameter is an export parameter. The export will be transfer of field values from the
selection list to screen fields. As per the object specifications, you are exporting two fields
such as ITEM_CODE and RATE.

 4. LPos: This is the fourth field in the parameter area. Its value controls the physical position
of Search help parameter or field in the selection list. If you enter a value 1, the field will
appear in the first position in the selection list and so on. If you don’t enter any value, this
field will not appear in the selection list.

 5. SPos: This is the fifth field in the parameter area. It controls the physical position of Search
help parameter or field in the restrictive dialog box. If you enter a value of 1, the field will
appear in the first position in the restrictive dialog box and so on. If you don’t enter any
value, this field will not appear in the restrictive dialog box. As per the object specification,
the field RATE will qualify for this; you don’t want it to appear in the restrictive dialog box.

Figure 3-39. Create Search Help – Search help parameter Selection List

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

113

 6. SDis: The sixth field, the SDis, is a check box; it goes with the check box import and so will
be covered along with the import. Refer to item 2 for a description.

 7. Data element name & Modified check box: (seventh and eighth fields). Every Search
help parameter or field by default is assigned a data element that was assigned to it in
the source of data (Table or View). This data element name appears in display mode. If
for some reason, you want to assign some other data element, then you enable the check
box Modified. When you enable this check box, the data element column switches from
display to edit mode and you can assign another data element of your choice. The data
element and check box Modified go together.

 8. Default value: This goes with the check box import and will be covered along with the
import.

As per the object specifications, three rows with the appropriate values have been entered in the parameter area,
and this is shown in Figure 3-40.

Figure 3-40. Create Search Help – All Fields filled up as per Object Specification

Perform a consistency check (button or keys <Ctrl>+<F2>).

Activate the search help (button or keys <Ctrl>+<F3>).

Once the search help is activated, it is ready for attachment to the field ITEM_CODE of table YCL_CH02_BILLI.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

114

Attach Search Help YCL_CH03_ITEMS_SH to Table YCL_CH02_BILLI,
Field ITEM_CODE

In attaching a search help to a table field, you will be basically modifying a DDIC table definition.
To attach a search help to a table, in the SE11 opening screen, click on the Database table radio button, enter the

name of the table YCL_CH02_BILLI. (Alternatively, you can make a selection from the selection list by entering the
pattern YCL_CH02_* and pressing F4, etc.) Click on the Change button or press the function key F6. You will be
presented with the table definition screen. On this screen position the cursor on the field to which you want to attach
search help: that is, ITEM_CODE (the foreign key field), and click on the Srch help button, next to the foreign key
relationship button just above the fields. A dialog box prompting for the search help name will pop up. Enter the

name or select the search help from the selection list. The dialog box with the search help name is shown in Figure 3-41.

Figure 3-41. Attach Search Help – Initial Screen

Click on the button and a window and the search help attachment dialog box as shown in Figure 3-42

appears.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

115

All the import, export parameters are listed here. Your two export parameters will appear in the Field assignment
area. If the fields are not appearing, click on Generate Proposal Button at the top right corner. Click on the

button to copy search help.
Save the table changes. Perform a consistency check: button or keys <Ctrl>+<F2>. Activate the table

button or keys <Ctrl>+<F3>.Click on the Entry help/check tab on the table maintenance screen, and you will see the
search help entry under the Srch Help column for the field ITEM_CODE as shown in Figure 3-43.

Figure 3-42. Attach Search Help – Field Assignment

Figure 3-43. Attach Search Help – Entry in Srch HELP

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

116

You can delete an attached search help if so desired by using the button on the search help attachment

dialog box.

Test Attached Search Help YCL_CH03_ITEMS_SH

You need to test the working of the attached search help. Enter table data creation mode. In the Dictionary: Maintain
Table screen click on the menu option: Utilities ➤ Table Contents ➤ Create entries or in the SE16 opening screen,
enter the table name, click on the application toolbar button. The data creation screen will appear. Enter a valid

bill no, serial no; then press F4 in the field ITEM_CODE (Label Item Code). The screen appears as in Figure 3-44.

Figure 3-44. Test Search Help – Restrictive Dialogue Box

You are viewing the search help restrictive dialog box with the two fields ITEM_CODE and ITEM_DESC. SPos
values for these two fields were 1 and 2 respectively, and they appear in the first and second position in the restrictive
dialog box. You can enter some value/s or pattern/s in these fields in the dialog box and data will be filtered as per
the value/s, pattern/s in the selection list. If you do not enter any value and press <Enter>, all the rows (up to the
Maximum of Hits) will appear in the selection list. Press <Enter> in the restrictive dialog box. The selection list of the
search help will appear on the screen as shown in Figure 3-45.

Figure 3-45. Test Search Help – Selection List

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

117

The search help selection list is displaying ITEM_CODE in the first position, ITEM_DESC in the second position,
and RATE in the third position as per the object specification; LPos value assignments to these fields are 1, 2, and 3.
Select an item in the selection list by double-clicking on it or selecting the row and clicking on the button (the

Button is used for cancellation and exit of selection list). Select ITEM_CODE value 0015 with RATE value 320.00. The
search help exports the two fields’ ITEM_CODE and RATE values from the selection list fields to the respective screen
fields. This is shown in Figure 3-46.

Figure 3-46. Test Search Help – Export from Selection List to Screen Fields

You have fully tested the search help and it is operating as per the object specifications.

Search Helps with SAP delivered Tables
Scenario of Elementary Search Help with SAP Delivered Table

You will create search helps using the SAP customer primary table KNA1. You will not be able to attach this search
help to a SAP table field (no modification of SAP delivered objects); you will test the search through an ABAP program.
ABAP program writing is being introduced in a preview manner. It will be formally introduced in the Chapter 4.

The object specification for this search help follows in the next section:

Create Elementary Search Help with Customer Primary Table KNA1 - Object
Specification

Search Help name: YCL_CH03_KNA1_SH1

Table: KNA1 (source of data)

Test: ABAP Program

Selection List Fields: KUNNR – LPos = 1.
 NAME1 – LPos = 2.
 ORT01 - LPos = 3.
 LAND1 – Lpos = 4. (Country Code)

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

118

Restrictive Dialogue Box Fields KUNNR – SPos = 1.
 NAME1 – SPos = 2.
 ORT01 – SPos = 3.
 LAND1 – SPos = 4. (Country Code)

Export Fields: KUNNR – Export = X.

Import Fields: None

Create Elementary Search Help with Table KNA1 - YCL_CH03_KNA1_SH1

In the SE11 opening screen, select the radio button Search help. Enter the name of the search help to be created. The
name is YCL_CH03_KNA1_SH1. Click on the Create button or press function key F5. The system will prompt for the
search help type to be created. Select the default Elementary search help and press the button.

The screen to create elementary search help will appear. Fill in the values as per the object specification. After
filling in the values, the screen will appear as shown in Figure 3-47.

Figure 3-47. Create Search Help –YCL_CH03_KNA1_SH1

Save and perform a consistency check and activate.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

119

Test Elementary Search Help YCL_CH03_KNA1_SH1 in its environment

There is a mode of testing a search help within the search help environment. Select menu option Search Help ➤ Test.
A window appears as shown in Figure 3-48.

Figure 3-48. Test Search Help – YCL_CH03_KNA1_SH1 in Search Help Screen

Click in the field Ready for inp and press F4. The restrictive dialog box as shown in Figure 3-49 appears.

Figure 3-49. Test Search Help – YCL_CH03_KNA1_SH1 Restrictive Dialogue Box

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

120

Enter S* in the Name1 field and Berlin in ORT01 field. That is, fetch all customers of Berlin starting with the
letter S. This produces the selection list as shown in Figure 3-50.

Figure 3-50. Test Search Help – YCL_CH03_KNA1_SH1 Selection List

If you select a customer, the customer code field KUNNR value should be exported from the selection list to the
screen field. Select the customer code 2999. When you double-click on this, it is returned to the screen field. This is
shown in Figure 3-51.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

121

This search help is as per the object specification. It has four fields in the restrictive dialog box in the order
specified by SPos values. It has the same four fields in the selection list in the order specified by LPos values. It is
returning the value of KUNNR from the selection list to the screen field.

Test Elementary Search Help YCL_CH03_KNA1_SH1 with an ABAP Program

Create an ABAP program. The transaction code for ABAP program maintenance is SE38. The SE38 opening screen is
shown in Figure 3-52.

Figure 3-51. Test Search Help – YCL_CH03_KNA1_SH1 Export

Figure 3-52. ABAP Editor – Opening Screen

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

122

An ABAP program is not just the source. It has five components represented by the five radio buttons shown on
the screen of Figure 3-52. At present, you will concern yourself with just two components: Source code and Attributes.

Like any other ABAP Workbench object, you create an ABAP program by entering the name of the object, clicking
the Create button or pressing function key F5. So enter the program name as YCL_CH03_TEST_SEARCH_HELPS.
The maximum name space is 30 characters. The name has to start with a Y or Z. The rest of the characters can be
alphanumeric with embedded underscores (_). The attributes screen is shown in Figure 3-53.

Figure 3-53. ABAP Editor – Program Attributes

In the Attributes screen, enter the Title (Equivalent of Short description of other objects). Select program type or
Type as Executable program from the drop-down list. Click on the button. The system will prompt for the

package. Assign $TMP or click on the local object button. The system, upon accepting the assigned package and
saving, presents the screen shown in Figure 3-54.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

123

The ABAP text editor has all the facilities to create and maintain source text. Its features will be covered in detail
when ABAP is introduced formally in Chapter 4.

If a line has an asterisk or * in the first column, the entire line is treated as a comment line.
If a line has a double quote or “, the rest of the line to the right of double quote ‘“’is treated as a comment.
When you create a program, the system generates seven lines of comments, as well as the REPORT statement for

an executable program (the executable program is the program type assigned on the attribute screen). The REPORT
is a key word and is followed by the name of a program and is terminated by a period (.). All statements except the
chained ones are terminated by a period. Chained statements are separated by commas (,) with the last statement in
the chain again terminated by a period.

The convention is to create ABAP source in upper case.
The following lines have been entered in the editor. There is elaborate comment at the beginning of program. Read

this comment carefully. The PARAMETER statement is somewhat like the scanf of C. It creates a screen prompt. You
are attaching the search help to the prompt variable with the key phrase MATCHCODE OBJECT. The prompt variable is
referring to the DDIC field KUNNR of table KNA1. The prompt variable will derive its TYPE, length, etc., from the TYPE
length of field KUNNR in the table KNA1. The notation KNA1-KUNNR denotes field KUNNR of table KNA1.

Figure 3-54. ABAP Source Text Editor

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

124

The ABAP Program:

REPORT YCL_CH03_TEST_SEARCH_HELPS.
**
* PARAMETERS - keyword *****
* *****
* : - for chaining (Avoid repetition of *****
* key word PARAMETERS) *****
* *****
* CUST_CD1 - prompt variable name. *****
* Variable name can 8 char *****
* long, starting with alpha *****
* rest can be alphanumeric *****
* with embedded underscores *****
* *****
* TYPE - key word *****
* *****
* KNA1-KUNNR - TYPE, LENGTH of CUST_CD1 *****
* same as TYPE, LENGTH OF *****
* KNA1-KUNNR *****
* *****
* MATCHCODE - key phrase to attach *****
* OBJECT search help *****
* *****
* YCL_CH03_KNA1_SH1 - name of search help *****
**
PARAMETERS:
 CUST_CD1 TYPE KNA1-KUNNR MATCHCODE OBJECT YCL_CH03_KNA1_SH1

Perform a program syntax check (the button or keys <Ctrl>+<F2>).

Activate the program (the button or keys <Ctrl>+<F3>).

Execute the program by clicking on the button or pressing the function key F8. A screen prompt will appear as

shown in Figure 3-55.

Figure 3-55. PARAMETERS Variable with Search Help Attached

On pressing the function key F4 on this prompt variable, the restrictive dialog box as shown in Figure 3-56 pops up.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

125

Entering the S* pattern in Name field and Berlin in the City field will fetch all customers’ names starting with S of
City Berlin, and these will appear in the search help selection list as shown in Figure 3-57.

Figure 3-56. PARAMETERS Search Help Restrictive Dialogue Box

Figure 3-57. PARAMETERS Search Help Selection List

On double-clicking on the customer 1173, this is returned or exported to the screen prompt variable. This is
shown in Figure 3-58.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

126

So you have observed that the elementary search help created with SAP delivered table, attached to
PARAMETERS variable works just fine, as per the object specifications.

Collective Search Help with SAP delivered Table
Create Collective Search Help with Table KNA1 –Scenario, Object Specification

You will create a collective search help with SAP delivered with table KNA1. A collective search help consists of a
collection of elementary search helps. In the elementary search help YCL_CH03_KNA1_SH1, the first field in the
selection list is KUNNR for which LPos = 1. The selection list by default is produced in ascending order of the first field
in the selection list (i.e., the field for which LPos = 1).

Let two more elementary search helps be created: (a) YCL_CH03_KNA1_SH2 in which LPos for NAME1 = 1, and
(b) YCL_CH03_KNA1_SH3 in which LPos for ORT01 = 1.

Both these elementary search helps will have the same export parameter KUNNR.
Finally you will have three elementary search helps:

YCL_CH03_KNA1_SH1 – field KUNNR, LPos = 1. The selection list is produced customer code •
wise ascending. Export parameter - KUNNR.

YCL_CH03_KNA1_SH2 – field NAME1, LPos = 1. The selection list is produced customer name •
wise ascending. Export parameter - KUNNR.

YCL_CH03_KNA1_SH3 – field ORT01, LPos = 1. The selection list is produced city wise •
ascending. Export parameter – KUNNR.

You will create a collective search help in which you will locate these elementary search helps. The idea is that the
same information of customers is presented in different ways (i.e., code wise, name wise, city wise).

Figure 3-58. PARAMETERS Search Help Return/Export value

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

127

Create Two Elementary Search Helps to be included in collective search helps

Create the elementary search help YCL_CH03_KNA1_SH2. The filled-in values of the search help screen are shown in
Figure 3-59.

Figure 3-59. Search Help YCL_CH03_KNA1_SH2, NAME LPos = 1

Perform a consistency check and activate.
Test the elementary search help in the search help environment.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

128

Perform a consistency check and activate.
Test the elementary search help in the search help environment.

Create, Test Collective Search Help

In the SE11 opening screen, select the radio button Search help. Enter the name of the search help to be crested:
YCL_CH03_KNA1_CSH. Click on the Create button or press the function key F5. The system will prompt for the search
help type to be created. Select this time the collective search help radio button, and press the button.

The screen to create collective search help appears as shown in Figure 3-61.

Figure 3-60. Search Help YCL_CH03_KNA1_SH3, ORT01 LPos = 1

Create the elementary search help YCL_CH03_KNA1_SH3. The filled-in values of the search help screen are
shown in Figure 3-60.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

129

Click on the Included search helps tab. The second tab under the first column Search Help, you have to
incorporate the elementary search helps, one in each row. Enter the pattern YCL_CH03* and press F4. A selection list
to choose an elementary search help appears as shown in Figure 3-62.

Figure 3-61. Create Collective Search Help – Definition tab

Figure 3-62. Create Collective Search Help – Included search helps tab

Assign each of the three elementary search helps YCL_CH03_KNA1_SH1, YCL_CH03_KNA1_SH2, and
YCL_CH03_KNA1_SH3. The check box to hide an elementary search help is in the context of enhancing an SAP
delivered collective search help. The screen with the assigned elementary search helps is shown in Figure 3-63.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

130

Click the Definition tab. Now, on this tab, you have to manually enter all the export and import parameters of
all the elementary search helps included in the collective search help. In your scenario, you have only one export
parameter KUNNR for all your three elementary search helps and no import parameter. Enter this export parameter
under the column Search help parameter, and enable the export check box; enter the data element name for KUNNR,
which is KUNNR itself. (Verify from the KNA1 table definition, the data element name for the field KUNNR). After
entering parameter KUNNR, enabling the export check box, entering the data element KUNNR; the screen is as
shown in Figure 3-64.

Figure 3-63. Create Collective Search Help –Enter elementary search helps

Figure 3-64. Create Collective Search Help – Enter parameters in Definition tab)

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

131

Click again on the Included search helps tab. You have to assign export and import parameters to each of the
included elementary search helps. To do this, position the cursor on each of the elementary search help rows in turns
(YCL_CH03_KNA1_SH1 and so on) and click on the button Param. assignment. A message prompt appears asking
whether the system should propose parameter assignment. Click on the button Yes. This is shown in Figure 3-65.

Figure 3-65. Create Collective Search Help – parameters assignment message prompt

On clicking the button Yes, the parameter assignment system proposal window will appear as shown in Figure 3-66.

Figure 3-66. Create Collective Search Help – parameters assignment System Proposal

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

132

Click on the button. Repeat this procedure for remaining two elementary searches helps

(i.e., YCL_CH03_KNA1_SH2 and YCL_CH03_KNA1_SH3).
Perform a consistency check. Activate the collective search help.
You are ready to test the collective search help. Let it be done in the ABAP program. Modify your program that

you used to test the elementary search help. Write a statement to have the PARAMETERS variable to attach the
collective search help. At the same time, to test the two other elementary search helps created and incorporated in the
collective search help, let there be a PARAMETERS variable without attachment of any of your search helps. So you
will have five PARAMETERS variables, four with attachment to your search helps and one without attachment to any
of your search helps. Recall that search help is attached to a PARAMETERS variable with the phrase MATCHCODE
OBJECT. Attachment of search help to a PARAMETERS variable is optional. Recall that in an ABAP program, whatever
follows a double quote (“) is treated as a comment. The program lines follow:

REPORT YCL_CH03_TEST_SEARCH_HELPS.

PARAMETERS:
 CUST_CD1 TYPE KNA1-KUNNR MATCHCODE OBJECT YCL_CH03_KNA1_SH1,
 CUST_CD2 TYPE KNA1-KUNNR MATCHCODE OBJECT YCL_CH03_KNA1_SH2,
 CUST_CD3 TYPE KNA1-KUNNR MATCHCODE OBJECT YCL_CH03_KNA1_SH3,
 CUST_CD4 TYPE KNA1-KUNNR MATCHCODE OBJECT YCL_CH03_KNA1_CSH,
 CUST_CD5 TYPE KNA1-KUNNR. no explicit search help attached

After the modifications have been carried out, perform syntax check, troubleshoot syntax errors and fix them if
any; activate the program, and execute it (F8 /). The screen will be as shown in Figure 3-67.

Figure 3-67. Test Search Helps in ABAP Program – Initial Prompt

Let the elementary search help YCL_CH03_KNA1_SH2 be tested first. So click on the PARAMETERS variable
CUST_CD2 and press F4. The restrictive dialog box as shown in Figure 3-68 appears.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

133

Press <Enter>. The selection list appears with customers’ names in alphabetic ascending order. This is shown in
Figure 3-69.

Figure 3-68. Test Search Helps in ABAP Program – CUST_CD2-Restrictive Dialogue Box

Figure 3-69. Test Search Helps in ABAP Program – CUST_CD2-Selection List

Click the cancel button and return to the PARAMETERS prompt. Click on CUST_CD3 and press F4. The

restrictive dialog box appears, which is the same as for CUST_CD2. Press <Enter>.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

134

The selection list appears with customers’ cities in alphabetic ascending order. This is shown in Figure 3-70.

Figure 3-70. Test Search Helps in ABAP Program – CUST_CD3-Selection List

Click the cancel button and return to the PARAMETERS prompt. Click on CUST_CD4 (the collective search

attached to this variable) and press F4. The restrictive dialog box appears (different from the earlier one for
CUST_CD1, CUST_CD2, and CUST_CD3, which were identical) with three tabs, one for each elementary search help
incorporated. This is shown in Figure 3-71.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

135

The three tabs for Customer Code Wise, Customer Name Wise, and Customer City Wise correspond to each of the
elementary search helps. For simplicity, your restrictive dialog box is the same for all the elementary search helps
(i.e., the SPos values are identical for all the elementary search helps). The texts Customer Code Wise, etc., are picked
up from the short description of the respective elementary search helps.

You are now on the Customer Code Wise tab, and when you press <Enter>, customer code wise selection list
appears as shown in Figure 3-72.

Figure 3-71. Test Collective Search Help in ABAP Program – CUST_CD4-Restrictive Dialogue Box

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

136

Figure 3-72. Test Collective Search Help in ABAP Program – CUST_CD4-Selection List

If you click on the Customer Name Wise tab, the restrictive dialog box for it appears (identical to the restrictive
dialog box of the Customer Code Wise tab) as shown in Figure 3-73.

Figure 3-73. Test Collective Search Help in ABAP Program – CUST_CD4-Restrictive Dialogue Box

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

137

When you press <Enter> on this restrictive dialog box, the Customer name wise selection list appears. Similarly,
you can press Customer City Wise tab, press <Enter> and get the city wise selection list.

In this manner, the end user can get the same information presented in a different manner. It is a requirement
when your data is very large. Different people relate to different presentations in different situations.

In the collective search help, the restrictive dialog box can be different for every elementary search help.
The export and import parameters can be different for every elementary search help. This would depend on the
requirement and scenario. In your scenario, to keep things simple, you are using an identical restrictive dialog box,
with one export parameter for all elementary search helps located in the collective search help.

Let the last of the PARAMETERS prompt variables CUST_CD5 be tested to which you have not attached explicitly
any search help through the phrase MATCHCODE OBJECT. Click on the variable, and press F4. It presents the screen
shown in Figure 3-74.

Figure 3-74. Test Search Helps in ABAP Program – CUST_CD5-Restrictive Dialogue Box

A collective search help is implicitly attached to the PARAMETERS variable CUST_CD5. If the number of
elementary search helps is very many, like in the present case of 17 elementary search helps, all the tabs corresponding
to these elementary search helps cannot appear horizontally. A button at the top right corner of the restrictive dialog
box is provided as shown in the Figure 3-75. Clicking on this toggle button, you make the elementary search help list
appear and disappear and make selection of a particular tab, or you can horizontally scroll across the tabs.

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

138

The collective search help appearing by default is because you have declared all the PARAMETERS variables
(CUST_CD1, CUST_CD2, CUST_CD3, CUST_CD4 and CUST_CD5) with the phrase TYPE KNA1-KUNNR. These
PARAMETERS fields are deriving their attributes or characteristics from the DDIC table field KUNNR. A collective
search help is attached to the field KUNNR of table KNA1. This is getting derived or inherited.

In case of the PARAMETERS variables CUST_CD1, CUST_CD2, CUST_CD3, CUST_CD4, then this derived
collective search help is overridden by the local attachment of your search helps.

So you are witnessing the power of DDIC. A reference to a DDIC object in an ABAP program will have the local
data object inheriting all the characteristics of the DDIC objects.

Confirm an attachment of collective search help to the KUNNR field of table KNA1. On the SE11 opening screen,
select the Database table radio button, enter KNA1 in the field, and click on the Display button or F7.

In the table structure, position the cursor on the field KUNNR, and click on the button Srch Help. The screen
appears as in Figure 3-75.

You can explore and view this collective search help DEBI as an exercise. You can do so by double-clicking on
the search help name on this screen. The system will navigate to the DEBI collective search help screen. In the ABAP
Workbench environment, you have this facility. If you double-click on an assigned object, the system will navigate to
that object screen.

Like, for example, if you double-click on the data element assigned to a table field, it will navigate to that data
element screen as if you opened that object in change or display mode. If you double-click on the domain assigned to
a data element, the system will navigate to the screen of that domain.

If on double-clicking on an assigned object, if the object exists, the system will navigate to the object screen; if the
object does not exist, the system message prompts whether you want to create the object.

Figure 3-75. Collective Search Help DEBI attached to field KUNNR

CHAPTER 3 ■ ABAP DICTIONARY/DATA DICTIONARY/DDIC – 2

139

Search Help Attachments
The search helps can be attached to table fields. In the coverage of search help, you have two instances of this: (1)
attaching elementary search help to the field ITEM_CODE (foreign key field) of your custom created table
YCL_CH02_BILLI, and (2) the collective search help DEBI attached to KUNNR (primary key field) field of table KNA1.

You can attach search helps to a primary table. This has been done in the SAP functional module table LFA1,
which is the Vendor/Supplier primary table. Look this up as an exercise. In the LFA1 table structure definition, click
on the menu Extras ➤ Search Help for Table. The collective search help is attached to the table as KRED.

You can attach a search helps to a data element. You can do this in the Further Characteristics tab, Search Help
area. You can attach a search help to a data element, provided the search help has one export parameter, because
there is a provision for one parameter only in the Search Help area of the data element.

Search helps can be attached to screen fields like you have seen in the ABAP program. More of this search helps
attached to screen fields, and you will see this in Chapter 14 entitled Screen Programming.

Search Help with Help View
A help view implements a left outer join. If you create a help view with the tables KNA1 and VBAK, you will obtain in
the result all the rows from the table VBAK as well as the customers having no corresponding rows in the VBAK table.
You can try this out as an exercise. Create a help view using tables KNA1 and VBAK. Using this help view, create a
search help. The result of a left outer join is sometimes required in business scenarios.

DDIC Tit Bits
In the DDIC opening screen, there is a provision to copy objects. Use the application toolbar copy button to do

this. The copied object will not be in an active state. To use the copied object, you need to activate it.
You can delete DDIC objects, provided they are not in use. You cannot delete a domain that has been assigned to

ata element/s. You cannot delete an object referred to in an ABAP program. Use the application toolbar delete
 button to do so.

You should also be aware of the where used button. Using this button, you can derive the information of where

all DDIC objects are being used. A domain has been assigned to what all data elements; and a data element has been
assigned to what all table fields and referred in what all ABAP programs, etc. A data element can be referred to in an
ABAP program to declare data.

Conclusion
In the forthcoming chapters, you will find multiple references to DDIC objects to declare data in ABAP programs. You
will learn about business scenarios that warrant creation of DDIC objects, notably database views, structures, table
types, type groups, search help, and data elements.

DDIC is ubiquitous as regards the ABAP developmental platform.

141

CHAPTER 4

ABAP Language Basics

Introduction
Advanced Business Application Programming (ABAP), the proprietary language of SAP, has basically procedure
oriented constructs. When it was created (in the 1970s), there was no OOP technology application. The OOP
constructs in ABAP were incorporated sometime in the beginning of the millennia. It is an interpreter driven
language. And its limited repertoire of statements and features at the time SAP R/3 release (in 1992) have grown
considerably.

The ABAP source programs are stored in the SAP database. The complied runtime version, much akin to the Java
byte code, is also stored in the SAP database. The maintenance of ABAP source programs can be done only in the SAP
environment: that is, you have to be logged into SAP to create, edit, and syntax check ABAP programs.

The ABAP programs can only be executed in the SAP environment. The execution of ABAP requires the ABAP
runtime environment, only available when you are logged into SAP. An ABAP runtime code is extracted from the
database, loaded onto the RAM of an application server, and executes in the application server and presentation
server for interaction with the end user.

The ABAP runtime environment is part of the work processes, and the work processes are, in turn, components of
the application server, which is called the NetWeaver Application Server (AS) ABAP. The NetWeaver AS ABAP has the
complete technology and infrastructure to run ABAP applications.

The work processes (components of NetWeaver AS ABAP) execute individual dialog steps of ABAP application
programs. The work processes are constituted by the ABAP processor, the screen processor, and the database
interface. The ABAP processor takes care of the processing logic of ABAP programs, and the screen processor takes
care of the screen flow logic and the database interface to provide all the database related services (DDIC is part of this
database interface).

Almost the entire SAP ERP application has been developed in ABAP. Every screen in the SAP environment is an

ABAP program. If you click on the button on the right side of the status bar, you get ABAP program information.

The SE11 transaction operations you performed in the last two chapters are coded in ABAP.
The ABAP language is used by ABAP implementation consultants to customize interfaces and reports and to

perform enhancements of SAP provided functionalities.
In this chapter, the ABAP language basic elements are covered: data types available, data declarative statements,

arithmetic operations, string handling, data movement, condition testing, and repetitive process – looping. These
elements are part of all computer languages. Most of you are already familiar with these. You will learn how these
elements, which are common to all computer languages, exist and operate in ABAP.

For a detailed theoretical treatment of ABAP programming, you can refer from time to time to the document
ABAP Programming (BC-ABA), downloadable from the link given in the introduction to the book.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

142

ABAP Data Types
In Chapter 2, you were introduced to the DDIC data types. Shown in Figure 4-1 are the data types available in ABAP
programs called the ABAP types.

Data types

Elementary types Complex types

Fixed Length

Variable Length

type C

type D

type N

type T

type F

type I

type P

type X

Character types

type STRING

type XSTRING

Numeric types

types

types

Structure

Reference

Reference

Interface

Class

Object

Reference

Reference

Table

Data

Reference types

Figure 4-1. Data types in an ABAP Program

Elementary Types
In elementary types, the ‘Fixed Length’ (types C, D, N, T, F, I, P, and X) means that either the length of this type is
inherently fixed (TYPES D, F, I, or T) or while declaring a data item; length in bytes or characters is specified for that
data item, and the length of this data item remains fixed all through its existence.

In ‘Variable Length’, (types STRING and XSTRING), the length of a data item is not specified while declaring it: it
varies during the execution of a program as you assign data to it.

The bunching of elementary types as ‘Character types’ is for the types that store one ASCII character/byte
(in a 16-bit Unicode system, 2 bytes/character). The bunching as ‘Numeric types’ is for the types on which you can
perform normal arithmetic operations. You can perform arithmetic operations on elementary type N, but it is not very
advisable. You can perform date arithmetic on elementary type D and time arithmetic on elementary type T.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

143

Table 4-1 describes the elementary data types that are predefined in ABAP. (The valid size and initial size are
given in bytes or characters.) The mapping to DDIC data types is also specified.

Table 4-1. ABAP Elementary Data Types

Data Type Initial Size Valid Size Initial Value Description DDIC

Data Type

C 1 Character 1-65,535
Characters

SPACE Text, Characters (Alphanumeric Characters) CHAR

N 1 Character 1-65,535
Characters

Character
Zeroes

Will accept only digits 0-9. Used for assigning
codes like employee code, etc. Normally not
used in arithmetic operations

NUMC

D 8 characters 8 Characters Character
Zeroes

Date: YYYYMMDD DATS

T 6 characters 6 characters Character
Zeroes

Time: HHMMSS TIMS

X 1 Byte 1-65535 Bytes Binary
Zeroes

Hexadecimal: stores two Hexadecimal digits
per Byte

-

P 8 Bytes 1-16 Bytes Binary
Zeroes

Like the DDIC Data Type DEC. Up to 14
digits allowed after the decimal

DEC

CURR

QUAN

I 4 Bytes 4 Bytes Binary
Zeroes

Integer / Whole Number. Range 231-1 to -231 INT4

F 8 Bytes 8 Bytes Binary
Zeroes

Like the DDIC Data Type FLTP. The
maximum accuracy is up to 15 digits after
decimal depending upon the hardware
platform

FLTP

STRING 0 Characters Like type C, length varies at runtime with the
amount of data stored

STRING

XSTRING 0 Characters Like type X, length varies at runtime with the
amount of data stored

The data types D, F, I, and T are predefined in all respects including the size, but the data TYPES C, N, P, and X
can have additional specifications. For example, you can specify the size of these data types in the program in bytes or
characters, when data is declared. For type F and P, you can specify the number of decimals with the data declaration.

The ‘Initial Size’ column specifies the default length, a data item will assume, if its length is not specified while
declaring a data item.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

144

Complex Types
The complex types are categorized into the (a) structure types and (b) table types.

 a. In the structure types, elementary types, structure types (structure embedded in a
structure) are grouped together. You will consider only the grouping of elementary
types. The grouping involving structures (structure/s embedded in a Structure – nested
structures) are an advanced feature beyond the scope of this book. You must be aware
of the facility or availability of nesting of structures. When the elementary types are
grouped together, the data item can be accessed as a grouped data item or the individual
elementary type data items (fields of the structure) can be accessed.

 b. The table types are called arrays in other programming languages. Arrays can either be
simple or structure arrays. The arrays are called internal tables in ABAP. In ABAP, the
internal tables can be declared and operated upon in many more ways than in other
programming languages. An entire chapter, Chapter 6, entitled ‘Internal Tables’ is devoted
to the declarations and operations of internal tables.

Reference Types (Discussion Is in OOP Context)
The reference types are used to refer to instances of classes, interfaces, and runtime data items.

The ABAP OOP Run Time Type Services (RTTS) enables declaration of data items at run time. A reference
variable of type ‘\\Data Reference’\\\ is used to refer to instances of the runtime data items.

When an instance of a class is created, a reference variable of type ‘Class Reference’ is used.
When an instance of an interface is created, a reference variable of type ‘Interface Reference’ is used.
Either of the reference variables, ‘Class Reference’ or ‘Interface Reference’, will be categorized as ‘Object

Reference’ .
The discussion of OOP context is over!

Data Objects in ABAP Programs
In an ABAP program, you can work with four kinds of data objects:

Internal Data Objects
Internal data objects are declared in a particular ABAP program. They do not have any existence outside the particular
program. Internal data objects are assigned RAM. Internal data objects further categorization:

Literals (constants defined as part of an ABAP statement or command)•

Variables•

Constants•

External Data Objects
External data objects exist independent of ABAP programs. You cannot work with them directly, but you can copy
them to internal data objects and write them back when you have finished. External data objects can be used globally
throughout the system environment.

ABAP stores external data objects in tables defined in the DDIC. To access this data from within a program, you
declare the tables in the program with the TABLES or DATA statement.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

145

System-defined Data Objects
Besides user-defined data objects, some data objects are defined automatically by the system. Some of the system
defined data objects - SPACE, SY-SUBRC, SY-DATUM, SY-UZEIT and SY-TCODE.

Special Data Objects
ABAP also includes some data objects with special features, namely:

- PARAMETERS

PARAMETERS are variables that are linked to a selection screen. They can accept values after an ABAP program
is started (input).

- Selection criteria - SELECT-OPTIONS

Selection criteria are special internal tables used to specify value ranges. They are also linked to a selection
screen. Set of values are accepted after a program is started (ranges of values input).

All data objects you want to work with in the programs (except system data objects and literal data objects) have to
be declared. While declaring data objects, you must assign attributes to them. The most important of these attributes
is the data type (except for data object declared with keyword ‘TABLE’). In ABAP, you can either use predefined data
types similar to other programming languages, or user-defined data types.

The user-defined data types in ABAP provide you with a powerful tool since they allow for great flexibility in
programming. They range from elementary types (e.g., character strings of a given length) to very complex structures
(e.g., nested structures).

Assigning user-defined data types to data objects allow you to work with precisely the data objects you require.
User-defined data types can be used in the same way as predefined data types. You can declare them locally within a
program or store them globally in the ABAP Dictionary (DDIC object: Type Group).

There are three hierarchical levels of data types and objects:

Program-independent data, defined in the ABAP Dictionary•

Internal data used globally in one program•

Data used locally in a procedure (subroutine, function module)•

ABAP Program Components
ABAP programs are maintained with transaction code SE38.

An ABAP program consists of five subobjects (see SE38 screen radio buttons):-

 1. Source code (source lines)

 2. Variants (will be covered in Chapter 9 entitled ‘SELECTION-SCREEN’ and require
knowledge of ‘Internal Tables’ and ‘SELECTION-SCREEN’

 3. Attributes (mandatory: Title, Type, (program type) and Package (local object/$TMP)

 4. Documentation (You will not create separate documentation in the course of your
exercises. You will comment your program source lines profusely, making them
self-documentary as well as self-explanatory)

 5. Text elements, which, in turn, consist of: (i) Text Symbols, (ii) Selection Texts
(will be covered in Chapter 9), and (iii) List Headers (will be covered in Chapter 5)

CHAPTER 4 ■ ABAP LANGUAGE BASICS

146

The attributes (item 3) of an ABAP program consists of:

‘Title’ , equivalent of short description you were entering when creating DDIC objects•

‘Original language’ , logged-in language code when the program was created (maintained by •
the system)

‘Created’ , date of program creation, user id.(maintained by the system)•

‘Last changed by’ , last date of change, user id. (maintained by the system)•

‘Program Attributes’ area•

‘Type’: program type is mandatory. A drop-down list is available with the following •
options:

Executable program – A program that can be executed.•

Include Program – The lines of these programs can be incorporated in other •
programs.

Module Pool – It contains screen flow logic modules.•

Function group – It contains function modules, which are generic routines. Cannot •
be created in the ABAP editor. (SE38) Is to be created in SE37, SE80.

Subroutine Pool – It contains external subroutines.•

Interface pool – It contains interfaces. Cannot be created in the ABAP editor. •
(SE38) Is to be created in SE24.

Class pool – It contains classes. Cannot be created in the ABAP editor. (SE38) Is to be •
created in SE24.

Type Pool – It contains user-defined TYPES. Cannot be created in the ABAP editor. •
(SE38) Is to be created in SE11.

XSLT Program. Cannot be created in the ABAP editor. (SE38) Is to be created in SE80.•

‘Status’: This is an optional program categorization. A drop-down list is available with the •
following options:

SAP Standard Production Program•

Customer Production Program•

System Program•

Test Program•

‘Application’: An optional entry. You can assign a program to an application. A drop-down •
list is available.

‘Authorization Group’: An optional entry. Authorization is a security feature. •
A pop-up (F4) list is available.

‘Package’: Any object created in the ABAP Workbench environment is to be assigned •
a package. You are designating all your objects as local (i.e., not transportable to other
implementation environments). You are assigning the SAP delivered package $TMP.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

147

‘Logical database’: An optional entry. Logical database is basically a data retrieval •
reusable object. A Logical database created can be used by multiple programs (programs
that are retrieving similar data from almost the same database tables), saving the effort of
data retrieval in the programs using the Logical database. Works slow. Still used in the
HR Module.

‘Selection screen’: An optional entry. Maintained by the system or goes along with the •
‘Logical database’ . Will be covered in Chapter 9 entitled ‘SELECTION-SCREEN’ .

‘Editor lock’ check box: Enabling this prevents other user ids from editing the program.•

‘Fixed point arithmetic’ check box: Enabled by default. In business applications, you •
perform mostly fixed point arithmetic, not floating point arithmetic.

‘Unicode checks active’ check box: To enable the program syntax checks relating to •
Unicode.

‘Start using variant’ check box: Will be covered in Chapter 9 entitled •
‘SELECTION-SCREEN’ .

A screenshot of ABAP program attributes is shown in Figure 4-2.

Figure 4-2. ABAP Program Attributes

CHAPTER 4 ■ ABAP LANGUAGE BASICS

148

ABAP Editors
There are three types of ABAP editors you can choose from: (i) Front-End Editor (New), (ii) Front-End Editor (Old),
or (iii) Back-End Editor. To choose an ABAP editor, on the SE38 ‘ABAP Editor: Initial Screen’, select the menu option:
Utilities(M) ➤Settings. . . This menu selection pops up the screen as shown in Figure 4-3.

Figure 4-3. ABAP Editor – User-Specific Settings

Front-End Editor (New, also Called ‘Source Code Mode’)
It is most recent from the ABAP editors, and as its name suggests, the editor program is loaded in presentation server.
The program line numbers appear; keywords appear in a separate color, when the first few letters of keyword are
entered; and the system proposes the keyword. Even as you enter program lines, the editor interacts. It has a host of
formatting facilities. You can select font, etc. specifically for editor environment separate from SAP environment. It
should be the preferred choice for those starting to learn ABAP programming.

Front-End Editor (Old, also Called ‘Plain Text Mode’)
It is the predecessor of the new front-end editor. The editor program is loaded in presentation server. The program
line numbers do not appear. It is a simple text editor; there is no action by the editor when you enter program lines
(i.e., no interactiveness).

CHAPTER 4 ■ ABAP LANGUAGE BASICS

149

Back-End Editor (also Called ‘Line Based Mode’)
This is more like a line editor than a text editor. Selecting multiple source lines involves extra effort. You have the
option to make program line numbers appear and disappear. It is recommended to be used when handling large
programs in a wide access network.

The three modes of the ABAP editor are interchangeable and completely compatible.
This is bare outline overview of the three ABAP editor modes that is ample to get you started.

Common Features of the Three ABAP Editor Modes
The ABAP source is case insensitive: you can code in upper or lower case. The convention is to use upper case. In your
hands-on source programs, you are coding the statements in upper case and using lower case for comments with
keywords in comments in the upper case.

The usual text editor features: navigation, selection, copy, cut, paste, delete, undo, redo, save, etc. are implicit.
They are not listed here. The features listed here are for a beginner and non-advanced ABAP programmer.

The ABAP editor offers the following prime functions and features:-

Table 4-2. ABAP Editor Prime Features

Feature Menu Path/Keys/Button

Pretty Printer – Standardization of Program layout Edit ➤ Pretty Printer

<Shift>+<F1>

Pretty Printer Button

Pattern – To autogenerate code lines, especially when calling a
function module, a method.

Edit ➤ Pattern

<Ctrl>+<F6>

Pattern Button

Find, Find and replace text Edit ➤ Find/Replace

<Ctrl> + F

 Button

Block/Buffer X,Y,Z

In addition to O.S. clipboard, ABAP editor offers every logged-in
user three other buffers designated as X, Y, Z. These are
non-volatile buffers. Their contents are saved in the SAP database
when the user logs off/server is shut down and restored when
user logs in again. These buffers contents can be edited as well.

Utilities(M) ➤ Block/Buffer

Upload/Download – You can upload text files on the
presentation server into your ABAP programs and download
your ABAP source lines onto a text file on a presentation server

Utilities(M) ➤ More Utilities ➤ Upload/Download

Comment/De-comment Selected Block of Source Lines. If
you want to convert a block of lines into comment lines or vice
versa, use this function. In ABAP a line with asterisk (*) in the
first column is treated as a comment.

<Ctrl>+< to comment

<Ctrl>+> to de-comment

(continued)

CHAPTER 4 ■ ABAP LANGUAGE BASICS

150

Feature Menu Path/Keys/Button

Check Program Syntax Program ➤ Check ➤ Syntax

<Ctrl>+<F2> / button

Extended Program Check Program ➤ Check ➤ Extended Program Check

Code Inspector Program ➤ Check ➤ Code Inspector

Activate Program Program ➤ Activate

<Ctrl>+<F3> / button

Test/Run/Execute Program Program ➤ Test ➤ Direct Processing

<F8> / Button

Toggle between Edit/Change Mode & Display Mode Program ➤ Display ➤ Change

<Ctrl>+<F1>

 button

Table 4-2. (continued)

You can use the context menu (mouse right click) as well for most of these operations.
There is also a very sophisticated debugger, a runtime analysis facility and an online help (ABAP documentation)

available in the ABAP developmental environment.

ABAP Program Structure
An ABAP program consists of the following two parts:

Declaration Part- Global Data, Selection Screens, and Local Classes
All global data declaration statements (global in the context of a program). Global data is •
accessible in all internal processing blocks. You define it using declarative statements that
appear before the first processing block, in dialog modules, or in event blocks. You cannot
declare local data in dialog modules or event blocks.

All selection screen definitions.•

All local class definitions (CLASS DEFINITION statement).•

Data declaration statements made in procedures (methods, subroutines, function modules) •
form the declaration part for local data in those processing blocks. This data is only existent,
accessible in the procedure in which it is declared.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

151

Container for Processing Blocks
The second part of an ABAP program contains all of the processing blocks for the program. The following types of
processing blocks exist:

Dialog modules (no local data area, whatever data declared treated as global)•

Event blocks (no local data area, whatever data declared treated as global)•

Procedures (methods, subroutines, and function modules with their own •
local data definitions)

The dialog modules and procedures are enclosed in the ABAP keywords that define them. There are keywords
for start of modules, procedures and corresponding keywords for end of modules and procedures. Event blocks are
introduced with event keywords and conclude implicitly with the beginning of the next processing block.

All ABAP statements (except declarative statements in the declaration part of the program) are part of a processing
block. Non-declarative ABAP statements, which occur between the declaration of global data and a processing block is
automatically assigned to the START-OF-SELECTION event or processing block by the ABAP processor.

Calling Processing Blocks
You can call processing blocks either from outside the ABAP program or using ABAP statements that form part of a
processing block. Dialog modules and event blocks are called from outside the ABAP program by the ABAP runtime
environment. Procedures are called using ABAP statements in ABAP programs.

Calling event blocks is different from calling other processing blocks for the following reasons:
An event block call is triggered by an event. User actions on selection screens, lists, and the runtime environment

trigger events that can be processed in ABAP programs. You only have to define event blocks for the events to which
you want the program to react (whereas a subroutine call, for example, must have a corresponding subroutine).
This ensures that while an ABAP program may react to a particular event, it is not mandatory to do so.

ABAP Statement Structure
An ABAP source program will consist of comments and ABAP statements.

Comments
A comment can be incorporated by

 i. Starting a line with an asterisk (*). The asterisk has to be in the very first column of the line.
An asterisk in the first column will make the entire line comment. Like:-

* This is the Hello World program

 ii. By using a double quote ("). Whatever follows the double quote is treated as comment.

This is a right side comment; you can incorporate comments on the right side of an ABAP
statement. If a line starts with a double quote, the entire line is treated as comment. A line
could have an ABAP statement followed by a comment. Like:-

WRITE / 'Hello World'."this will output the string literal Hello World

You can always have blank lines in the source code.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

152

ABAP Statements
ABAP statements begin with an ABAP keyword and are terminated by a period (.) or a comma (,) when they are within
a chain and not the last statement in the chain. The last statement in a chain must terminate with a period. ABAP
statements can run into multiple lines; or a line may contain multiple ABAP statements. Enterprise convention is not
to code lines with multiple ABAP statements.

A statement running into multiple lines:

DATA COMPANY_NAME(50) TYPE C VALUE
'NO BIG DEAL Inc.'.

A line with multiple statements: (two statements)

DATA EMPLOYEE_CODE(5) TYPE N. DATA EMPLOYEE_NAME(25) TYPE C.

In this last line of ABAP code, the keyword DATA is repeated. The keyword DATA is used to declare variables
(one type of internal data objects) in an ABAP program. A real-world program would have many variables declared;
each of these declarations must start with the keyword DATA. The ABAP editor provides a means to avoid the
repetition of word/s through the feature of chaining statements.

In the chaining feature, whatever word or words repeating on the left side of ABAP statements will be chained
and the repetition is avoided. The above code rewritten with chaining will be:

DATA: EMPLOYEE_CODE(5) TYPE N, EMPLOYEE_NAME(25) TYPE C.

The keyword DATA is followed by a colon (:) to signify chaining. The first statement is not terminated by a period
but by a comma; and the last statement in the chain is terminated by a period. Another example of chaining:

WRITE /5: 'FIRST', 'SECOND', 'THIRD', 'FOURTH'.

Unchained version of this:

WRITE /5 'FIRST'. WRITE /5 'SECOND'. WRITE /5 'THIRD'. WRITE /5 FOURTH'.

ABAP Statements and Keywords
The first element of an ABAP statement is an ABAP keyword. The keyword determines the category of the statements.
The different statement categories are:

Declarative Statements

These statements declare user-defined data types or declare internal data objects that are used by the other
statements in a program or routine.

Examples of declarative keywords:

TYPES, DATA, TABLES

CHAPTER 4 ■ ABAP LANGUAGE BASICS

153

Modularization Statements

The modularization statements define the processing blocks in an ABAP program.
The modularization keywords are further categorized into:

Event Keywords•

You use event keywords in statements to define event blocks. There are no statements to signify the conclusion of
processing blocks - they end when another processing block is defined.

Examples of event keywords:

INITIALIZATION, AT SELECTION SCREEN, START-OF-SELECTION, END_OF_SELECTION

Defining keywords•

You use statements containing these keywords to define subroutines, function modules, dialog modules, and
methods. You conclude these processing blocks using the corresponding END statement.

Examples of definitive keywords:

FORM.....ENDFORM.
FUNCTION... ENDFUNCTION.
MODULE. ... ENDMODULE.

Control Statements

You use the control statements to control the ABAP program flow within a processing block according to conditions.
Examples of control keywords:

IF ... ENDIF, WHILE ... ENDWHILE, CASE ... ENDCASE.

Call Statements

You use the call statements to call processing blocks that you have already defined using modularization statements.
The blocks you call may be located in the same or a different ABAP program.

Examples of call keywords:

PERFORM, CALL, MODULE

Operational Statements

The keywords operate on the data that you have defined with declarative statements.
Examples of operational keywords:

WRITE
MOVE
CONCATENATE

CHAPTER 4 ■ ABAP LANGUAGE BASICS

154

Figure 4-4. Maintaining Text Symbols – Information Message on Saving

Database Statements

The statements use the database interface to access the tables in the SAP database system. Examples of database
keywords are:

SELECT and INSERT

Now, that you have had a review of ABAP program components, ABAP editor, ABAP program structure, and
ABAP statement structure, you are ready to code your first program.

First ABAP Program
You will create the proverbial Hello World program. You will, though, create it with a multilingual facility. You will
program it in a way that the user can see the text is output in the logged-in language, using the multilanguage support
feature of SAP. And you will be introduced to the ABAP program feature that will enable this: maintain multilingual texts.

You will use a ‘WRITE’ statement to output the text. The ‘WRITE’ statement is being introduced in a preview
manner. The ‘WRITE’ statement is formally introduced in chapter 5 entitled ‘WRITE Statement (Classical Reporting)’ .

On the SE38 screen, enter the program name YCL_CH04_01_HELLO_WORLD. The name space of an ABAP
program is a maximum of 30 characters and must start with letters Y or Z, but the rest can be alphanumeric with
embedded underscores. (_)

Click on the Create button or press function key F5. The program attributes screen appears. Enter a suitable
program title. Select the Executable program in the program type. Click the save button on the dialog box. The system
will prompt for a package. Assign your usual package $TMP. The system will generate the REPORT statement and
enter into the ABAP editor mode.

In the ABAP program environment, you can create and maintain multilingual text through the ‘Text Symbols’
sub component of the program component ‘Text elements’ . The ‘Text elements’ are attached to ABAP programs and
can be accessed from within that program only. Of course ‘Text elements’ can be copied from one program to another
(Transaction code SE32).

You will create a ‘Text Symbol’ to contain the Hello World text. The ‘Text Symbols’ can be assigned a
three-character alphanumeric identification and be referred to by that identification.

To create ‘Text Symbols’ from within the ABAP editor, select the menu option Goto ➤ Text Elements ➤
Text Symbols. The screen with the created text is shown in Figure 4-4.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

155

The defined length is the length of the entered string. The maximum length by default is the defined length. If
you entered text in a text symbol id.: for example, 001 and want to subsequently add more text to it, you will have to
manually adjust the maximum length to be able to add more text to the text symbol id 001. This is just like it was in the
DDIC data element label environment: not very user friendly.

Manually create the German equivalent text of ‘Hello World’ . To do so, select the menu option Goto ➤ Translate.
A prompt will appear for source and target languages. Enter ‘EN’ as the source and ‘DE’ as the target languages, then
click on the continue button. A screen as shown in Figure 4-5 appears.

Figure 4-5. Text Symbols – Maintaining Language Texts

All the text associated with a program appears on this screen. In the present context, you have only two text items
associated: the program title and a single text symbol.

The German equivalent of Hello World ‘Hallo Walt’ has been manually entered.
There is procedure of automatic translation by the system translator. It is a bit complex and a digression for the

scope of this book.
Press the save button and go back to text element – text symbol screen and activate the text symbol. Activation of

the text symbol is separate from activation of the ABAP source program.
Return to the ABAP source editor screen. Your program will look like:-

REPORT YCL_CH04_01_HELLO_WORLD.

* Hello World ! - Use Text Symbol *

WRITE /5 TEXT-001. " / - start output on new line. 5 - start output
 " from 5th column.
 " text symbols are addressed with pre-fix TEXT,
 " followed by the text symbol three character
 " identification

The WRITE statement outputs data objects on the screen. The output on the screen can be printed, spooled, etc.
The program comments explain the syntax of the WRITE statement.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

156

Save the program, perform a syntax check, and activate. Execute the program. The output will appear as
in Figure 4-6.

Figure 4-6. Hello World output using Text Symbols

Figure 4-7. Hello World output – Logged in German using Text Symbols

Log into the German language. Execute this Program. The output will appear as in Figure 4-7.

Observe that the program title is not appearing above the output of the WRITE statement, even as it is not
appearing in the window title. This is because you have not created any German text for the program title.

ABAP Program – Output a Few System Fields
System Fields
One of the data objects in an ABAP program is the system data object. The system data object consists of the system
fields or variables. There are more than one hundred system fields. The system fields make available to the ABAP
developer, information related to the ABAP runtime environment. For instance, there are system fields that give
logged-in information: user, client, language. There is a system field that provides the developer with the success or
failure information of an operation.

You will find a complete list of the system fields in the PDF document ABAP Programming (BC-ABA) under
System Fields, downloadable from the link given in the Introduction of this book. The system fields are listed
alphabetically as well as theme wise in this manual.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

157

The system fields start with the prefix SY-. There are five categories of these system fields. The category of the
system field is identified by icon flags as follows:

 This category of system fields is set by the runtime environment. The developer can
interrogate the field for its value.

 These are set by the runtime environment; you can change their value in a program.
It will affect the runtime behavior of the program.

 These should be set in the ABAP program. They will be used by the runtime
environment and in the program For SAP internal use.

 Obsolete.

The system fields will be introduced as and when their context arises.
You should also be aware of the system field DDIC Data Type and length. This is available in the list. You will find

that the Data Type and length of the very first system field SY-ABCDE is CHAR, 26 – to accommodate the 26 alphabet
letters of the English language.

Thirteen system fields are introduced right now. In this program, you output the values of the 13 system fields
listed in Table 4-3.

Table 4-3. System Fields

System Field Description

SY-ABCDE English Alphabet Set

SY-DATUM Date of Application Server on which the Program is Executing (YYYYMMDD)

SY-DBSYS Installed Database

SY-HOST Host name of Application Server on which the Program is Executing

SY-LANGU Logged-in language

SY-MANDT Logged-in client

SY-OPSYS Application Server Operating System on which the Program is Executing

SY-REPID Name of the Program which is Executing/Current Program

SY-SAPRL NetWeaver Version

SY-SYSID Application Server System Id.

SY-TCODE Current Transaction Code

SY-UNAME Logged in User Name/Id.

SY-UZEIT Time on Application Server on which the Program is Executing (HHMMSS)

CHAPTER 4 ■ ABAP LANGUAGE BASICS

158

Create the following program, perform a syntax check, and activate.

REPORT YCL_CH04_02_LIST_SYS_FIELDS.

* Output System Fields **

WRITE:/5 'SY-ABCDE', SY-ABCDE, " / start output on new line
 /5 'SY-DATUM', SY-DATUM, " 5 start the output from 5th column
 /5 'SY-DBSYS', SY-DBSYS, " : & , are for chaining i.e. avoiding
 " repetition of the key word WRITE
 /5 'SY-HOST ', SY-HOST, " text literals enclosed in single quotes
 /5 'SY-LANGU', SY-LANGU,
 /5 'SY-MANDT', SY-MANDT,
 /5 'SY-OPSYS', SY-OPSYS,
 /5 'SY-REPID', SY-REPID,
 /5 'SY-SAPRL', SY-SAPRL,
 /5 'SY-SYSID', SY-SYSID,
 /5 'SY-TCODE', SY-TCODE,
 /5 'SY-UNAME', SY-UNAME,
 /5 'SY-UZEIT', SY-UZEIT.

When you execute this program, the following output is generated.

Figure 4-8. Output of Program: YCL_CH04_02_LIST_SYS_FIELDS

In the preceding code, WRITE is the keyword to output, and / is to start the output on a new line: 5 to start output
from column 5 onwards. Chaining has been used to avoid repetition of the keyword WRITE.

For the first WRITE statement, starting on a new line, from column 5 onwards, the literal ‘SY-ABCDE’ and its value
are output on the same line one beside the other with a blank column between them. Similarly for the succeeding
WRITE statements, a total of 13 lines are output.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

159

You are using 13 string or text literals (‘SY-ABCDE’ etal.) in this program.
String literals must be avoided in the ABAP programs. Instead, enter the literals in the text symbols (that is what

they are meant for with multilingual support). But in the teaching, training paradigm that you are in, this profuse use
of literals occasionally can be excused.

Internal Data Objects (Elementary) Declarations
Internal data objects (variables, constants, literals):

Data objects are physical units that a program uses at runtime.•

Each data object has a specific data type assigned to it.•

Each data object occupies some space in memory.•

ABAP processes a data object according to its data type.•

There are three hierarchical levels of data types and objects:

 1. Program-independent data, defined in the ABAP Dictionary

 2. Internal data used globally in one program

 3. Data used locally in a procedure (subroutine, function module)

Variables
A variable is used to store and reference data under a certain name and in a certain format. Variables can differ in:

name•

type•

length•

structure•

You declare variables in your program with the DATA statement.
Naming a Variable (internal data objects’ name, special data objects’ name)
The variables and constants names of internal data objects may be up to 30 characters long and special data

objects up 8 characters. You can use any alphanumeric characters except:
Plus sign + or a period . or a comma , or a colon : or parentheses ()
Do not use a name consisting entirely of numeric characters.

ABAP Program: Declare Internal Data Objects – Variables
(with VALUE) - Output
The program declares each of the 10 elementary types of data objects and assigns appropriate, applicable lengths and
decimals. It assigns each of these data objects starting values through the VALUE clause. (Except XSTRING, which
disallows this.)

The program outputs the value of these data objects through the WRITE statement already introduced.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

160

Create the program, perform a syntax check, and activate.

REPORT YCL_CH04_03_ELEM_DATA_OBJECTS.

* declare elementary DATA objects, assign values with declaration *
* output data objects *

* key word DATA used to declare data (variables) **
* **
* : & , used for chaining i.e. avoid repetition of key word DATA. **
* **
* variable TYPE is specified with the key word TYPE followed by **
* C/D/F/I/N/P/T/X/STRING/XSTRING. if TYPE not specified, assumes **
* default TYPE as C. **
* **
* length to be specified for TYPES C,N,P,X in parenthesis. length **
* is in bytes for P & X. if length not specified for TYPES C,N,P,X **
* it assumes the default length.(see table 4-1) lengths of TYPES **
* D,F,I,T is fixed. TYPES STRING, XSTRING length varies at run time **
* **
* the VALUE clause is to assign a starting value. it is optional. **
* **
* decimals for TYPE F,P are specified with key word DECIMALS **
* followed by the number of decimals **
* **
* if single quote required as part of literal string,single quote **
* should be entered twice like 'ABC''' is for string ABC' **

DATA: CNAME(25) TYPE C
 VALUE 'MPHASIS - an H.P. Company', " length in parenthesis
 " VALUE is optional

 TODAY TYPE D
 VALUE '20130101', " numeric literals not containing any sign
 " & decimal can be enclosed in single quotes
 " numeric literals containing sign or decimal
 " should be enclosed in single quotes

 FNUM TYPE F VALUE '12345.6789',
 COUNT TYPE I VALUE 987654321,
 ECODE(7) TYPE N VALUE 2191778,
 BASIC_SAL(4) TYPE P DECIMALS 2 VALUE 20000,
 NOW TYPE T VALUE '094500', "give value in quotes
 HEXA(8) TYPE X VALUE '0123456789ABCDEF',
 STRNG TYPE STRING VALUE 'MORGAN''S GATE', "single quote
 "as part of string

CHAPTER 4 ■ ABAP LANGUAGE BASICS

161

 XSTRNG TYPE XSTRING." XSTRING does not take VALUE addition

WRITE:/5 'TYPE C :', CNAME,
 /5 'TYPE D :', TODAY,
 /5 'TYPE F :', FNUM,
 /5 'TYPE I :', COUNT,
 /5 'TYPE N :', ECODE,
 /5 'TYPE P :', BASIC_SAL,
 /5 'TYPE T :', NOW,
 /5 'TYPE X :', HEXA,
 /5 'TYPE STRING :', STRNG.

The output will appear as:

Figure 4-9. Output of Program: YCL_CH04_03_ELEM_DATA_OBJECTS

In the output, type D is output as DDMMYYYY (internal storage is YYYYMMDD) without the separator character
between date & month and between month & year. The separator character was appearing when you output the
system field SY-DATUM in the previous program. This issue will be addressed in Chapter 5 entitled ‘WRITE Statement
(Classical Reporting)’ .

Type F is output in normalized form. Type F is output by the WRITE statement in 22 columns by default including
1 column for the sign. TYPE F is used rarely in business applications. Type F will not be discussed further.

Type I is output with only one thousand separators, (thousand separator comma [,]) when it should have been
appearing with two thousand separators: one after millions and one after thousands like 987,654,321 instead of
987654,321. The type I by default outputs through a WRITE statement in 11 columns with one column reserved for
the sign on the right. So there was scope for only one comma. This issue will be addressed in Chapter 5 entitled
‘WRITE Statement (Classical Reporting)’ .

Type P by default is output by the WRITE statement in columns twice the number of bytes plus one specified
in its declaration. (In your present context 9.) These columns include one column for decimal (.) and one column
for sign on the right. In your present case with the value stored in the data object (20000.00), there is no scope for a
thousand separator. This issue will be addressed in Chapter 5 entitled ‘WRITE Statement (Classical Reporting)’ .

CHAPTER 4 ■ ABAP LANGUAGE BASICS

162

Type T is output without the separator character between hours & minutes and between minutes & seconds.
The separator character was appearing when the system field SY-UZEIT in the previous program was output.

Type X, XSTRING (hexadecimal) is not used in business applications, and no more reference will be made to
these types.

ABAP Program: Declare Internal Data Objects – Constants - Output
If you use a constant frequently in a program, you can declare it as a fixed value variable with the CONSTANTS
statement.

The CONSTANTS Statement syntax:

CONSTANTS:
<constant name> TYPE <type>[(<length>)] [DECIMALS <decimals>] VALUE <value>,
......

The parameters of the CONSTANTS statements are the same as for the DATA statement.
The use of the <value> parameter is mandatory for the CONSTANTS statement and not optional as in the

DATA statement. The start value specified with the <value> parameter cannot be changed during the execution of the
program.

A program to declare and output a few Constants:
Create the program, perform the syntax check, activate and execute.

REPORT YCL_CH04_04_CONSTANTS.

* declare Constant data objects, assign values (which is mandatory) *
* declarative statement CONSTANTS . *
* output constant data objects *

* key word CONSTANTS used to declare constants **
* **
* the VALUE clause is to assign a starting value. it is mandatory **
* **

CONSTANTS: INDIAN_REPUBLIC_DAY TYPE D VALUE '19500126',
 AMERICAN_INDE_DAY TYPE D VALUE '17760704',
 ZERO TYPE I VALUE IS INITIAL.

WRITE:/5 'INDIAN_REPUBLIC_DAY', INDIAN_REPUBLIC_DAY,
 /5 'AMERICAN_INDE_DAY', AMERICAN_INDE_DAY.

The output is shown in Figure 4-10.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

163

Figure 4-10. Output of Program: YCL_CH04_04_CONSTANTS

Literals
A literal is a fixed value. ABAP distinguishes between text literals and number literals.

Text literals.
Text literals are sequences of alphanumeric characters enclosed in single quotation marks.

'SAP AG Germany'
'ABAP WORKBENCH'

Text literals can be up to 254 characters long. If a text literal contains a quotation mark, you must repeat it to
enable the system to recognize the contents as a text literal and not as the end of the literal.

To ensure that the programs offer multilingual support, do not use text literals. Instead, create them as text
symbols as you did in the HELLO WORLD program.

Number literals:
Number literals are sequences of digits that may contain a leading sign. They can contain up to 15 digits like:

123, -321, +456

If you need a noninteger value or a longer number, you must use a text literal, which is converted to the correct
type automatically, such as:

'12345678901234567890’, '+0.58498', '-8473.67'

Elementary Data Objects - Assigning Values or Data Movement
The MOVE statement or the assignment operator (=) is used to assign a value to a data object.

Syntax

MOVE <f1> TO <f2>.
<f2> = <f1>.
<f4> = <f3> = <f2> = <f1>.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

164

f1 can be a variable, constant, or literal.•

f2, f3, f4 have to be to be a variable.•

The contents of f1 remain unchanged.•

In the multiple assignment <f4> = <f3> = etc., ABAP processes them from right to left.•

For each MOVE or assignment operator, the system checks the data types of source and •
destination. If type conversion for the combination is defined (compatibility), it converts the
contents of source to the data type of destination and assigns the converted value to it.

There are two issues when data is moved or assigned from one data object to another:•

Compatibility. You cannot move type D to type T and vice versa. They are not compatible •
with each other. Such assignments will result in syntax error.

Convertibility. Suppose you have source data object as type C and destination as type N. •
This is accepted by the compiler. As long as the source is containing 0 to 9 numerals and
blanks, the assignment or movement from source to destination is successful. If the source
contains characters other than 0 to 9 or blanks, the assignment or movement fails, source
data is not convertible and a runtime error occurs. This is the issue of convertibility.

In the real world, with so much control on the type and length of data objects (domains etc.), the possibility of
such scenarios is rare. The SAP ABAP help documentation discusses these issues elaborately.

Elementary Data Objects – Assignment or Movement with Offsets and
Lengths (Types C, D, N and T)
For the elementary predefined types C, D, N, T; which store one character oriented, assignment or movement
statement can access individual characters.

Let this be demonstrated with an example. When you output type D or type T, the date or time is output by
WRITE statement without the separator characters. Date was output as DDMMYYYY.

Let your requirement be that the date should be output as MM-DD-YYYY (US requirement). The separator
character is a hyphen (-). You will output the date in this format with the MOVE statement using offsets and lengths.

In Figure 4-11, what is available in the type D as on the left, needs to be transformed to the form as shown on the
right. Type D length is 8 characters. The transformed date as on the right will require 10 characters (2 extra characters
for separators).

Figure 4-11. Source, Destination for Date Transformation

The offset datum (first character) starts as 0, not 1.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

165

The operations required for transformation will be as follows:

Move offset 4, length 2 from source (MM) to offset 0, length 2 in destination.
Move '-' to offset 2, length 1 in destination(Separator character).
Move offset 6 and length 2 from source (DD) to offset 3, length 2 in destination.
Move '-' to offset 5, length 1 in destination.(Separator character).
Move offset 0 and length 4 from source (YYYY) to offset 6, length 4 in destination.

ABAP program:to transform type D from YYYYMMDD to MM-DD-YYYY and output:

REPORT YCL_CH04_05_TRANSF_DATE_MOVE.

**
* Date Transformation with MOVE Offset & Length **
* convert YYYYMMDD to MM-DD-YYYY **
**

* Source-Offsets Destination-Offsets *
* 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 *
* ----------------- --------------------- *
* |Y|Y|Y|Y|M|M|D|D| |M|M|-|D|D|-|Y|Y|Y|Y| *
* ----------------- --------------------- *

DATA: SOURCE TYPE D VALUE '20130116',
 DESTIN(10) TYPE C.

MOVE SOURCE+4(2) TO DESTIN+0. "MOVE MM to DESTIN
MOVE '-' TO DESTIN+2. "MOVE '-' TO DESTIN

MOVE SOURCE+6(2) TO DESTIN+3. "MOVE DD to DESTIN
MOVE '-' TO DESTIN+5. "MOVE '-' TO DESTIN

MOVE SOURCE+0(4) TO DESTIN+6. "MOVE YYYY to DESTIN

WRITE:/5 'SOURCE-DEFAULT OUTPUT (DDMMYYYY) :', SOURCE,
 /5 'DESTIN-TRANSFORMED OUTUT (MM/DD/YYYY) :', DESTIN.

The execution of the program will generate the output shown in Figure 4-12.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

166

Structured Data Objects, Own Data Types
A structured data object is a group or collection of internal fields in a program. The structured data object can be
accessed as a single entity; and individual fields in the structure can be accessed as well. You use the DATA statement
and mark the beginning and the end of the group of fields with BEGIN OF and END OF statements. The syntax is
as follows:

DATA: BEGIN OF <structure name>,
<field1>.....,

 END OF <structure name>.

A structured data object can contain elementary data objects as well as complex data objects (i.e., another
structured data object or internal table). A structured data object containing complex data object is not discussed
in this book.

Structured Data Object–ABAP Program: Access Individual Fields

REPORT YCL_CH04_06_STRU_DATA_OBJ.

**
* Structured Data Objects: Access Individual Fields **
**

**
* declare structured data object. Assign **
* starting values to fields in the structured **
* data object. output these fields by accessing **
* the individual fields. **
**

Figure 4-12. Output of Program: YCL_CH04_05_TRANSF_DATE_MOVE

CHAPTER 4 ■ ABAP LANGUAGE BASICS

167

DATA: BEGIN OF CONTACT_MODES," CONTACT_MODES-name of struc data object

 NAME(25) TYPE C VALUE 'SURAJ NAIR',
 LAND_LINE(12) TYPE N VALUE '009126960021',
 CELL_NO(14) TYPE N VALUE '00919502102377',
 EMAIL TYPE STRING VALUE 'snair23@gmail.com',

END OF CONTACT_MODES.

 WRITE :/5 'Name :', CONTACT_MODES-NAME,
 /5 'Land Line No. :', CONTACT_MODES-LAND_LINE,
 /5 'Cell No. :', CONTACT_MODES-CELL_NO,
 /5 'Email Address :', CONTACT_MODES-EMAIL.

In this program, a structured data object has been declared using BEGIN OF..END OF.. notation to indicate
the beginning and ending of the structured data object declaration. The four fields inside the structure have been
declared in the usual manner. When you refer to the individual fields in the structure, you have to specify the structure
name hyphen followed by the field name. The field is inside the structure.

The following output is generated upon this program execution.

Figure 4-13. Output of Program: YCL_CH04_06_STRU_DATA_OBJ

Structured Data Object: Access Complete Structure
To access a complete structure, let there be a context. Let there be two identical structures: that is, having the same
fields in the same order, and each of the corresponding fields in the structures identical in type length, etc. You will
move data from one structure to another by referring to the structure and not individual fields.

User Defined Structure Types

You have to declare two identical structures. In declaring these structures, another ABAP feature is introduced: the user
defined types. The user defined types can be declared in an ABAP program and used to refer to these types to declare
data objects within that program. The user defined types can also be declared in the DDIC object ‘Type Group’, the
fourth radio button on the SE11 opening screen. The user defined types declared in the DDIC object ‘Type Group’ can
be referred to in multiple ABAP programs to declare data objects or types.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

168

When you declare user defined types in an ABAP program, they are just definitions. They are not data objects,
and they do not occupy memory. You cannot operate on them (i.e., assign values, etc.). They can only be referred to
declare data objects. The data objects declared by referring to them will have the attributes (type, length etal.) of the
referred types.

User defined types are declared in an ABAP program with the keyword ‘TYPES’ . Other notations used in declaring
user defined types are same as when declaring data with the keyword ‘DATA’ .

In your present context you needed to declare a user defined structured type. You can declare an elementary user
defined type, a table user defined type, and so on.

Structured Data Object in an ABAP Program: User Defined Type in
ABAP Program, Access Complete Structure
Your ABAP program will have a user defined structured type. Two identical structured data objects will be declared by
referring to this user defined structure type.

REPORT YCL_CH04_07_STRU_DATA_TYP_OBJ1.

**
* User Defined TYPE, Reference to Structured Data Object **
**

**
* declare user defined structured TYPE with TYPES **
* statement. declare two structured data objects **
* (source, destination) by referring to this user **
* defined structured TYPE **
* assign values to individual fields of source **
* use MOVE statement to transfer entire data of **
* source to destination. output from destination **
**

TYPES: BEGIN OF CONTACT_MODES_TYPE, "user defined structured TYPE

 NAME(25) TYPE C,
 LAND_LINE(12) TYPE N,
 CELL_NO(14) TYPE N,
 EMAIL TYPE STRING,

 END OF CONTACT_MODES_TYPE.

DATA: CONTACT_MODES_SRCE TYPE CONTACT_MODES_TYPE,
 CONTACT_MODES_DEST TYPE CONTACT_MODES_TYPE.

CONTACT_MODES_SRCE-NAME = 'ATUL VASAN'.
CONTACT_MODES_SRCE-LAND_LINE = '00912696008'.
CONTACT_MODES_SRCE-CELL_NO = '00919502102355'.
CONTACT_MODES_SRCE-EMAIL = 'atulvs@yahoo.co.in'.

MOVE CONTACT_MODES_SRCE TO CONTACT_MODES_DEST. "MOVE stru to stru

CHAPTER 4 ■ ABAP LANGUAGE BASICS

169

WRITE: /5 'Name :', CONTACT_MODES_DEST-NAME,
 /5 'Land Line No. :', CONTACT_MODES_DEST-LAND_LINE,
 /5 'Cell No. :', CONTACT_MODES_DEST-CELL_NO,
 /5 'Email Address :', CONTACT_MODES_DEST-EMAIL.

You might very well ask, why assign values to fields of CONTACT_MODES_SRCE, move the data of this structure
to CONTACT_MODES_DEST and output? Why not directly assign values to fields of CONTACT_MODES_DEST and
output? Well! This is a demonstrative program. In the real world, data is fetched into structured data objects from
database tables. Data is rarely assigned to literals as has been done here.

This was a demonstration: (a) to declare data by referring to user defined types, and to (b) MOVE operation on an
aggregate of fields or structure.

The output of this program is shown in Figure 4-14.

Figure 4-14. Output of Program: YCL_CH04_07_STRU_DATA_TYP_OBJ1

User Defined Type in DDIC
You will code the previous program by shifting the user defined structured type from the program to the DDIC
‘Type Group’ . You need to create a ‘Type Group’ and locate your user defined structured type in it.

On the SE11 opening screen, click the ‘Type Group’ radio button, and enter a name for the ‘Type Group’
as YCLG1 (Name space only 5 characters). Click on the Create button or press F5. The following screen appears
prompting for Short text.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

170

Enter appropriate text, click on the button, and assign the package ($TMP). An ABAP editor screen

appears with the statement TYPE-POOL YCLG1 generated by the system. YCLG1 is the name of your Type Group.
Enter your structured type lines under a ‘TYPES’ keyword. In the Type Group environment, each of the types you
declare must have the prefix YCLG1_: that is, the name of the Type group followed by an underscore (_). You can
declare any number of types in a Type Group. The entered definition lines after the syntax check, and activation would
appear as shown in Figure 4-16.

Figure 4-16. Define user defined TYPES in Type Group – YCLG1

Figure 4-15. Create DDIC object Type Group – Short text

CHAPTER 4 ■ ABAP LANGUAGE BASICS

171

Structured Data Object in an ABAP Program
Referring to DDIC Type Group
The ABAP program must contain a statement to list the Type Groups used in the program starting with the key
phrase TYPE-POOLS. You are using only one Type Group (i.e., YCLG1). The two structured data objects have been
declared, referring to the structured type you defined in the Type Group. The rest of the program is the same as the
previous one.

REPORT YCL_CH04_08_STRU_DATA_TYP_OBJ2.

* User Defined TYPE in DDIC, Reference to Structured Data Object **

**
* declare two structured data objects **
* (source, destination) by referring to structured **
* TYPE defined in DDIC Type Group **
* assign values to individual fields of source **
* use MOVE statement to transfer entire data of **
* source to destination. output from destination **
**
TYPE-POOLS YCLG1. "list Type Group you are using in this program

DATA: CONTACT_MODES_SRCE TYPE YCLG1_CONTACT_MODES_TYPE,
 CONTACT_MODES_DEST TYPE YCLG1_CONTACT_MODES_TYPE.

CONTACT_MODES_SRCE-NAME = 'AGHA SHEIK'.
CONTACT_MODES_SRCE-LAND_LINE = '00912696010'.
CONTACT_MODES_SRCE-CELL_NO = '00919502102350'.
CONTACT_MODES_SRCE-EMAIL = 'asheik41@yahoo.co.in'.

MOVE CONTACT_MODES_SRCE TO CONTACT_MODES_DEST. "MOVE stru to stru

WRITE: /5 'Name :', CONTACT_MODES_DEST-NAME,
 /5 'Land Line No. :', CONTACT_MODES_DEST-LAND_LINE,
 /5 'Cell No. :', CONTACT_MODES_DEST-CELL_NO,
 /5 'Email Address :', CONTACT_MODES_DEST-EMAIL.

After the syntax check, activation, and execution, the output appears as in Figure 4-17.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

172

Structured Data Objects: MOVE Statement – Source, Destination
Not Identical
In the preceding programs involving data movement from one structured data object to another, you had identical
structures: the source and destination contained the same number of fields, the order of the fields was same, and each
of the fields in the source was identical to the corresponding field in the destination as far as TYPE, length, etc. The
MOVE statement, when operated on structured types, treats an entire aggregate of fields in the structure as one field of
TYPE C; the bytes in the source are transferred to the corresponding byte nos. in the destination.

This identicalness of source and destination structured data objects might not always be so. In such a case,
you should not operate the MOVE command at the structure level. Perhaps you could issue a MOVE statement for
individual fields. If there are 10 fields to be transferred from one structure to another, issue 10 MOVE or assignment
statements.

There is a variation of a MOVE statement that lets you copy the fields of a source structure to the fields of
a destination structure. The transfer of data is based on the names of the fields of source and destination being
identical. The contents of fields in destination whose names do not match with names in the source have their
contents undisturbed. The data movement is field wise.

Syntax

MOVE-CORRESPONDING <structure1> TO <structure2>.

Figure 4-18 represents this graphically. There will be no data transfer for LAND_LINE since there is no field with
this name in the destination. Also, the field CELL_NO length is 14 bytes in source and 12 bytes in destination. The data
movement for TYPE N is right to left; the leading first two digits ‘00’ will get truncated in the destination.

Figure 4-17. Output of Program: YCL_CH04_08_STRU_DATA_TYP_OBJ2

CHAPTER 4 ■ ABAP LANGUAGE BASICS

173

Figure 4-18. Operation of MOVE-CORRESPONDING in Structured Data Objects

The ABAP program for this scenario is

REPORT YCL_CH04_09_STRU_MOVE_CORR.

* Structured Data Objects - MOVE-CORRESPONDING **

* declare two structured data objects with one field **
* name differing in source & destination **
* **
* assign values to individual fields of source and **
* destination **
* **
* use MOVE-CORRESPONDING statement to transfer from **
* source to destination. output from destination **

DATA: BEGIN OF CONTACT_MODES_SRCE,
 NAME(25) TYPE C VALUE 'GURU DAS',
 LAND_LINE(12) TYPE N VALUE '00912696113',
 CELL_NO(14) TYPE N VALUE '00919592302444',
 EMAIL TYPE STRING VALUE 'gu_das@gmail.com',
 END OF CONTACT_MODES_SRCE,

 BEGIN OF CONTACT_MODES_DEST,
 NAME(25) TYPE C VALUE 'ZZZZZZZZ',
 LAND_LINE_NO(12) TYPE N VALUE '999999999999',
 CELL_NO(12) TYPE N VALUE '999999999999', " length differs from source
 EMAIL TYPE STRING VALUE 'ZZZZZZZZZZZZZZZZ',
 END OF CONTACT_MODES_DEST.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

174

MOVE-CORRESPONDING CONTACT_MODES_SRCE TO CONTACT_MODES_DEST.

WRITE: /5 'Name :', CONTACT_MODES_DEST-NAME,
 /5 'Land Line No. :', CONTACT_MODES_DEST-LAND_LINE_NO,
 /5 'Cell No. :', CONTACT_MODES_DEST-CELL_NO,
 /5 'Email Address :', CONTACT_MODES_DEST-EMAIL.

The output is shown in Figure 4-19.

Figure 4-19. Output of Program: YCL_CH04_09_STRU_MOVE_CORR

Date, Time Arithmetic
You can perform some basic arithmetic operations on types D and T. You add days to a date to derive a future date,
subtract days from a date to derive a past date, and derive the difference in days between two dates. Similarly, you
can add seconds to a time to derive advanced time, subtract seconds from a time to derive a time in the past and the
difference in seconds between two times.

Date Arithmetic – ABAP Program
An ABAP program demonstrating date arithmetic is coded.

REPORT YCL_CH04_10_DATE_ARITHM.

* Date Arithmetic **

* input of two dates DATE1 DATE2 through **
* PARAMETERS statement (special data object) **
* the DEFAULT clause with PARAMETERS assigns **
* starting value to the prompt variables just like **
* VALUE for data objects in DATA statement **
* **

CHAPTER 4 ■ ABAP LANGUAGE BASICS

175

* input of DAYS (TYPE I) **
* **
* calculate & output difference between DATE1,DATE2**
* calculate & output date by adding DAYS to DATE2 **
* calculate & output the last day of month of DATE1**
* **
* bit of jugglary code to calculate last day of **
* month. you are first deriving the date as of **
* first day of next month, next subtracting 1 from **
* that date. (there would be better ways) **
* **
* the IF statement has not been introduced, but **
* should not be a problem **
* **
* VAR is TYPE I, outputs in 11 columns by default. **
* (5) sigifies the output must appear in 5 columns **
* **
* when you output TYPE D data objects, you are **
* specifying the clause DD/MM/YYYY for separator. **
* you are not able to output separator of your **
* choice. the period (.) as separatr is appearing **
* from global setting / master record **

* when you press F8 system will prompt for input **
* DATE1, DATE2, DAYS. when you finished with input **
* press F8 again to obtain output. **
* press F3 to return from output to input screen **
* press F3 to return from input screen to program **

DATA: VAR TYPE I,
 DATE TYPE D,
 YEAR(4) TYPE N,
 MONTH(2) TYPE N,
 DAY(2) TYPE N.
PARAMETERS: DATE1 TYPE D DEFAULT '20131025',
 DATE2 TYPE D DEFAULT '20121125',
 DAYS TYPE I DEFAULT 100.

VAR = DATE1 - DATE2. "difference between DATE1,DATE2

WRITE:/5 'Diff. between Dates:', DATE1 DD/MM/YYYY,
 DATE2 DD/MM/YYYY, '=', (5) VAR.

DATE = DATE2 + DAYS. "the date ahead/behind of DATE2 by DAYS

WRITE:/5 DATE2 DD/MM/YYYY, '+', (5) DAYS, '=', DATE DD/MM/YYYY.

YEAR = DATE1+0(4). "offset & length used
MONTH = DATE1+4(2).

CHAPTER 4 ■ ABAP LANGUAGE BASICS

176

IF MONTH < 12.
 MONTH = MONTH + 1.
ELSE.
 MONTH = 1.
 YEAR = YEAR + 1.
ENDIF.

DATE+0(4) = YEAR. "get to first day of next month
DATE+4(2) = MONTH.
DATE+6(2) = '01'.

DATE = DATE - 1. "subtract 1 from first day of next month
 "for last day of month

DAY = DATE+6(2).

WRITE:/5 'Last day of month date', DATE1 DD/MM/YYYY, '=', DAY.

When you execute the program with the default values, the output in Figure 4-20 is generated.

Figure 4-20. Output of Program: YCL_CH04_10_DATE_ARITHM

You can attempt an exercise with TYPE T on a parallel basis.

Arithmetic - Numerical Operations
Basic Arithmetic Operations/Operators

CHAPTER 4 ■ ABAP LANGUAGE BASICS

177

The arithmetic assignment statement has the syntax

[COMPUTE] <n> = <expression>.

The word COMPUTE is optional.

The field <n> is assigned to the result of the arithmetic expression.•

The numerical precision is defined by the operand of the numerical operation that has the •
highest hierarchy level. The system treats the target field <n> and the floating point functions
as operands. The order of the hierarchy levels is I, P, and F. ABAP converts all numbers of a
numerical operation into its hierarchically highest data type that occurs in the operation. Then
the system executes the operation with the converted numbers.

The order or precedence of operations or evaluation is as follows:-

Expressions in parentheses•

Functions•

** Exponentiation•

* / MOD / DIV (Multiplication, division, & MOD)•

+ - (additions & subtractions)•

When writing arithmetic expressions and statements, you must leave a blank before an = sign and after an equal
sign. You must also leave a blank between an operator and operand like:

TAX = (TAX_RATE / 100) * TAX_AMOUNT.

In addition to the mathematical operators, you can use the ADD, SUBTRACT, MULTIPLY, DIVIDE. . . statements.
The usage of these is rare. Most people stick to mathematical operators.

Functions Common to All Numeric Data Types
Table 4-4. Numeric Functions

Function Description

ABS(X) Absolute value of the argument

SIGN(X) = 1 if X > 0; = 0 if X = 0; = -1 If X < 0

CEIL(X) Smallest integer value not smaller than the argument

FLOOR(X) Largest integer value not larger than the argument

TRUNC(X) Integer part of argument

FRAC(X) Fraction part of argument

Floating Point Functions
There are floating point functions. You can refer to the PDF document ABAP Programming (BC-ABA) under Basic
Statements ➤ Numerical Operations ➤ Mathematical Functions. However, these are not of much significance in
business applications.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

178

Arithmetic Operations on Structures
Similar to a MOVE-CORRESPONDING statement involving identical field names in Structures, you can perform
arithmetic operations on fields of two structures having identical field names and type numerical:

ADD-CORRESPONDING•

SUBTRACT-CORRESPONDING•

MULTIPLY-CORRESPONDING•

DIVIDE-CORRESPONDING•

You will not have any exclusive hands-on programs for arithmetic operations. Most of you will have already be
exposed to these concepts. The arithmetic operations in ABAP are very similar to that in other computer languages.
You will be performing arithmetic operations in the subsequent chapters, when and as a scenario demands it.

String Operations
You are creating and executing a half dozen hands-on programs to cover the major features of string operations or
statements.

An ABAP Program Demonstrating TRANSLATE. UPPER CASE/LOWER
CASE is Coded
REPORT YCL_CH04_11_TRANSLATE.

* TRANSALATE: UPPER CASE, LOWER CASE **

**
* take a string input through PARAMETERS **
* variable ISTRING **
* **
* in the PARAMETERS statement the phrase **
* LOWER CASE enables input in LOWER as well **
* as UPPER case.(case sensitivity) by default **
* the PARAMETERS statement accepts only UPPER **
* case i.e. even if you enter lower case it **
* is converted to UPPER case. **
* **
* the ISTRING is assigned to OSTRING. the **
* TRANSALATE.. TO UPPER CASE is performed on **
* OSTRING. OSTRING is output **
* **
* the ISTRING is assigned to OSTRING. the **
* TRANSALATE.. TO LOWER CASE is performed on **
* OSTRING. OSTRING is output **
**

CHAPTER 4 ■ ABAP LANGUAGE BASICS

179

Figure 4-21. Output of Program: YCL_CH04_11_TRANSLATE

DATA: OSTRING(50) TYPE C.
PARAMETERS: ISTRING(50) TYPE C LOWER CASE DEFAULT
 'MpHasIS - An H.p. CoMPanY'.

OSTRING = ISTRING.
TRANSLATE OSTRING TO UPPER CASE.

WRITE:/5 'Original String :',ISTRING,
 /5 'UPPER CASE STRING:',OSTRING.

OSTRING = ISTRING.
TRANSLATE OSTRING TO LOWER CASE.
WRITE:/5 'lower case string:',OSTRING.

The program with the DEFAULT value of ISTRING will generate the output in Figure 4-21.

In the ABAP editor, when you position the cursor on a keyword and press F1, the system opens a new window.
The new window displays ‘the ABAP Keyword Documentation’ for the keyword on which F1 was pressed. If you
pressed F1 on the keyword TRANSLATE in the ABAP program, then the screen shown in Figure 4-22 is displayed.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

180

Keep visiting the ABAP Keyword Documentation as often as you can.

An ABAP Program Demonstrating CONCATENATE is Coded
The CONCATENATE statement has been used to transform the date from YYYYMMDD to MM/DD/YYYY format
and output. Earlier you had used the MOVE statement to implement this. As you will observe, this is a better option.
The CONCATENATE statement joins multiple source strings into one destination string with an optional separator
character string.

If the destination string is insufficient for accommodating the result, truncation will occur on the right side and
no runtime error occurs.

Figure 4-22. ABAP Keyword Documentation

CHAPTER 4 ■ ABAP LANGUAGE BASICS

181

REPORT YCL_CH04_12_CONCATENATE.

* CONCATENATE - Join Multiple Strings Into One String *

**
* input a date IDATE through PARAMETERS **
* use CONCATENATE statement to join MM **
* [IDATE+4(2)] '/' DD [IDATE+6(2)] '/' **
* YYYY [IDATE+0(4)] in CDATE. CDATE will **
* will contain MM/DD/YYYY. **
* Output IDATE and CDATE **
* **
* repeat the CONCATENATE statement by **
* specifying separator string/character **
* Output IDATE and CDATE **
**

DATA: CDATE(10) TYPE C.
PARAMETERS IDATE TYPE D DEFAULT '20130116'.

CONCATENATE IDATE+4(2) '/' IDATE+6(2) '/' IDATE+0(4) INTO CDATE.
WRITE:/5 IDATE, CDATE.

CONCATENATE IDATE+4(2) IDATE+6(2) IDATE+0(4) INTO CDATE
 SEPARATED BY '/'. "use of separator character
WRITE:/5 IDATE, CDATE.

The program with the DEFAULT value of IDATE will generate the following output:

Figure 4-23. Output of Program: YCL_CH04_12_CONCATENATE

An ABAP Program Demonstrating SPLIT, the Reverse of CONCATENATE
is Coded
The SPLIT statement breaks one source string into multiple destination strings. You have to specify a separator
string/character that determines the splitting. If is blank or SPACE is specified, this will split a sentence into its
constituent words.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

182

If there are not enough destination strings, the residual string after the last split will go into the destination string
variable appearing last in the statement. If the last variable in the statement is insufficient for accommodating the
residual string, truncation will occur on the right side and no runtime error occurs.

REPORT YCL_CH04_13_SPLIT.

* SPLIT – Break One Source String Into Multiple Strings *
* (Break Into Words) *

* take input string as ISTRING through PARAMETERS **
* 5 destination variables provided **
* operate the SPLIT statement on ISTRING AT SPACE **
* output destination variables **

DATA:STR1(10) TYPE C,
 STR2(10) TYPE C,
 STR3(10) TYPE C,
 STR4(10) TYPE C,
 STR5(10) TYPE C.

PARAMETERS: ISTRING(50) TYPE C DEFAULT 'NIGHT AT THE MUSEUM'.

SPLIT ISTRING AT SPACE INTO STR1 STR2 STR3 STR4." SPACE is a System Data
 " Object - blank/s

WRITE /5: STR1,
 STR2,
 STR3,
 STR4.

The program with the DEFAULT value of ISTRING will generate the following output:

Figure 4-24. Output of Program: YCL_CH04_13_SPLIT

A variation of this statement that returns the destination strings in an array is mostly used. This variation will be
covered in Chapter 6 entitled ‘Internal Tables’ .

CHAPTER 4 ■ ABAP LANGUAGE BASICS

183

An ABAP Program Demonstrating the Function STRLEN() is Coded
The STRLEN() function returns the length of a string variable. The leading blanks are counted and the trailing blanks
are not counted in the length.

REPORT YCL_CH04_14_STRLEN.

* STRLEN() – returns the length of a string variable *

DATA: LEN(2) TYPE P DECIMALS 0.

PARAMETERS: ISTRING(50) TYPE C DEFAULT ' ABAP WORKBENCH '.

LEN = STRLEN(ISTRING).

WRITE AT :/5 'String Length of:', (LEN) ISTRING, (2) LEN.

The program with the DEFAULT value of ISTRING will generate the output as in Figure 4-25.

Figure 4-25. Output of Program: YCL_CH04_14_STRLEN

An ABAP Program Demonstrating the Statement CONDENSE is Coded
The CONDENSE statement removes the leading/left side blanks and reduces the embedded blanks to one or zero.

REPORT YCL_CH04_15_CONDENSE.

* CONDENSE Statement **

**
* take input string as ISTRING through PARAMETERS **
* **
* assign ISTRING to OSTRING. operate CONDENSE on OSTRING. **
* output OSTRING **
* **

CHAPTER 4 ■ ABAP LANGUAGE BASICS

184

* assign ISTRING to OSTRING. operate CONDENSE on OSTRING with **
* NO-GAPS. output OSTRING **
* **
* CONDENSE statement operation: **
* (a) removes all leading/left side blanks. (b) it reduces **
* embedded blanks to one blank. (c) if the addition NO-GAPS **
* is specified, it reduces embedded blanks to zero i.e. **
* embedded blanks will be removed totally **
**

DATA OSTRING(50) TYPE C.
PARAMETERS: ISTRING(50) TYPE C DEFAULT
 ' ABAP LANGUAGE BASICS'.

MOVE ISTRING TO OSTRING.
CONDENSE OSTRING.
WRITE:/5 'Original String :', ISTRING,
 /5 'Condense String :', OSTRING.

MOVE ISTRING TO OSTRING.
CONDENSE OSTRING NO-GAPS.
WRITE:/5 'Condense String(NO-GAPS) :', OSTRING.

The program with the DEFAULT value of ISTRING will produce an output as in Figure 4-26.

Figure 4-26. Output of Program: YCL_CH04_15_CONDENSE

Not all string operators are covered here. Any string operator you might need in a scenario would be introduced
in the scenario context.

Program Internal Flow Control
Like in any other programming language, ABAP also executes statements sequentially one after another. This
sequential execution is broken by the so-called flow control statements. ABAP, like any other fourth-generation
language is event driven. In ABAP there are two types of flow control statements: (i) Internal Control and (ii) External
Control.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

185

The internal flow control consists of the following categories of statements:-

Table 4-5. Internal Flow Control Statement Categories

Condition Testing IF, ELSE, ELSEIF, ENDIF

Single variable equality testing CASE, WHEN, ENDCASE

Unconditional looping or repetitive procedures DO, ENDDO

Conditional looping or repetitive procedures WHILE, ENDWHILE

Modularization, calling external procedures PERFORM, CALL

The external flow control consists of events. Events will be introduced in Chapter 5 entitled ‘WRITE Statement
(Classical Reporting)’ .

Conditions, Conditional Operators
The internal flow of programs is controlled with conditions. To construct a condition, logical expressions are used that
compare data fields as follows:-

. . . <f1><conditional operator><f2> . . .

The expression compares two fields (operands) <f1>, <f2>. These fields can be database fields, program
data objects, literals, or constants. Structured data types can also be used as operands. Structures are compared
component by component, and nested structures are broken down into elementary fields. The ABAP supports the
following conditional operators.

Conditional Operators

Operator Meaning

EQ = EQUAL TO

NE <>>< NOT EQUAL TO

LT < LESS THAN

LE <= LESS THAN OR EQUAL TO

GT > GREATER THAN

GE >= GREATER THAN OR EQUALTO

BETWEEN BETWEEN

IS INITIAL IS INITIAL

If fields of different data types are compared, they must be convertible. Before performing the comparison, the
system executes an automatic conversion. The conversion is according to the following hierarchical rules:-

If one of the operands is a floating point number (type F), the system converts the other •
operands also to type F.

If one of the operand is a packed decimal number (type P,) the system converts the other •
operand also to type P.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

186

If one of the operands is a date field type (type D) or a time field (type T), the system converts •
the other operands to type D or T. Comparison between date and time fields are not allowed.

If one of the operands is a character field (type C) and the other is a hexadecimal field (type X), •
the system converts type X to type C.

If one of the operands is a character field (type C) and the other is a numeric string (type N), •
the system converts both the operands to type P.

ABAP also supports special comparison pattern operators for TYPES C, D, N, and T. Look in the PDF document
‘ABAP Programming (BC-ABA)’ under Basic Statements ➤ Logical Expressions ➤ Comparing Strings.

Logical Operators

AND
OR
NOT

The IF Condition Statement
Syntax & some variations

ABAP allows unlimited nesting of IF - ENDIF statement blocks, but they must terminate within the same
processing block. So an IF - ENDIF block cannot contain an event keyword.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

187

Conditional Branching with CASE
Syntax & some variations

To execute different mutually exclusive statement blocks depending on the contents of a particular data object,
you can use the CASE statement as follows:

CASE <f>.
 WHEN <f1>.
<statement block>
 WHEN <f2>.
<statement block>
 WHEN ...

 WHEN OTHERS.
<statement block>
ENDCASE.

The system executes the statement block after the WHEN statement if the contents of <f> equals the contents
of <fi>, it and continues processing after the ENDCASE statement. The statement block after the optional
WHEN OTHERS statement is executed if the contents of <f> are not equal any of the <fi> contents. The last statement
block must be concluded with ENDCASE.

The Unconditional Loops: DO - ENDDO
Repetitive execution of a statement block is achieved by the unconditional loop statement DO.

Syntax

DO [<n> TIMES] [VARYING <f> FROM <f1> NEXT <f2>].
<statement block>
ENDDO.

The system processes the statement block between DO & ENDDO repeatedly until it finds an •
EXIT, STOP statement.

The number of times the loop should perform repeatedly can be optionally specified by the •
TIMES option. The parameter <n> can be a literal or variable. If <n> is zero or less than zero,
the system does not process the loop.

Each time the execution proceeds from the start to the end of the loop, it is called a •
loop pass. The system field SY-INDEX contains the value of the loop pass of the current
loop being executed.

It should be ensured that the loop is executed endlessly or infinite times.•

Loops can be nested one inside another any number of times. The unconditional loop DO •
can be combined in the nesting with the other type of loop, the conditional loop statement:
WHILE - ENDWHILE.

The VARYING option is used infrequently, but its operation can be referenced in the manual •
ABAP Programming (BC-ABA) under Basic Statements ➤ Loops.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

188

Three statements: EXIT, CONTINUE, and CHECK operate inside the loop as follows:-

EXIT (Terminate Loop) is for exiting and coming out of the current loop altogether. •

CONTINUE (Terminate Loop Pass Unconditionally) is for bypassing the current pass of the •
loop and starting the execution of the next pass, if any.

The CHECK (Terminate a Loop Conditionally) statement if true allows the statement block •
following it to be executed. If the check statement evaluates to be false, the statement block
following it is not executed, and it is equivalent to the rest of loop statements being bypassed
for that pass of the loop.

The Conditional Loops: - WHILE - ENDWHILE
Conditional repetitive execution of a statement block is achieved by the conditional loop statement WHILE.

Syntax

WHILE <condition> [VARYING <f> FROM <f1> NEXT <f2>].
<statement block>
ENDWHILE.

The <condition> can be a simple condition or a compound condition like in IF statements.•

The system processes the statement block between WHILE & ENDWHILE repeatedly until it •
finds an EXIT or STOP statement or the <condition> evaluates as false.

The VARYING option works the same way as for unconditional loop DO - ENDDO.•

Also the CONTINUE and CHECK statements work the same way as for the unconditional •
loops.

The internal flow control statements in ABAP is simple, and you are not performing any specific hands-on
programs on these. In the forthcoming chapters, you will have the occasion to use these.

You will though have one hands-on program demonstrating the behavior of the system field SY-INDEX
associated with looping constructs. This system field assumes the value of the pass number of the current loop.

An ABAP program coded for demonstrating the behavior of system field SY-INDEX in a two-level loop nesting.

REPORT YCL_CH04_16_SY_INDEX.

**
* Demonstrate the Behavior of System Field SY-INDEX **
**

* SY-INDEX contains the pass no of current loop **
* **
* if you are in the outer loop, it will contain pass no of **
* outer loop. if you are in the inner loop, it will **
* contain pass no of inner loop **
* **
* the inner loop will perform twice (IF SY-INDEX > 2. EXIT.) **
* for every pass of outer loop. the outer loop will **
* perform thrice (IF SY-INDEX > 3. EXIT.) **
* **

CHAPTER 4 ■ ABAP LANGUAGE BASICS

189

* the WRITE statement in outer loop outputs starting from **
* column 5. SY-INDEX is TYPE I. TYPE I outputs by default in **
* 11 columns. SY-index is being output in two columns **
* (its value never excedding 3 in this program) **
* **
* the WRITE statement in inner loop outputs starting from **
* column 10. **

 DO.
 IF SY-INDEX > 3.
 EXIT.
 ENDIF.

 WRITE:/5 'Outer Loop:', (2) SY-INDEX.

 DO.
 IF SY-INDEX > 2.
 EXIT.
 ENDIF.

 WRITE:/10 'Inner Loop:', (2) SY-INDEX.
 ENDDO.
 ENDDO.

The program will produce an output as in Figure 4-27.

Figure 4-27. Output of Program: YCL_CH04_16_SY_INDEX

CHAPTER 4 ■ ABAP LANGUAGE BASICS

190

Determine Attributes of Data Objects
Sometimes, you need to determine in a program, the attributes of a data object declared by reference to a DDIC
object. The attributes that can be determined are type (elementary types: C, D, F, I, N, P, T, X, STRING, XSTRING;
Reference types; Complex types: Structure or Table), length, decimals, output length, etc.

The DESCRIBE FIELD statement is available to ascertain the attributes of a data object. The syntax of the
DESCRIBE FIELD statement:

DESCRIBE FIELD <field name> [TYPE <type>] [LENGTH <length>IN {BYTE|CHARACTER} MODE]
[DECIMALS <decimals>] [COMPONENTS <components>]
[OUTPUT-LENGTH<output length>] [EDIT MASK<edit mask>] [HELP-ID <help-id>].

DESCRIBE FIELD Key phrase

<field name> Name of data object whose attributes are to be determined

TYPE Keyword

<type> Variable in which the type will be returned. <type> should be type C and the
appropriate length (see Table 4-6 for the different types returned)

LENGTH Keyword

<length> Variable in which the length is returned as number of characters / bytes <length>
desirably be type I

IN CHARACTER MODE Key Phrase. Length is returned in Character Count. This should be given for TYPES C,
D, N, and T Only

IN BYTE MODE Key Phrase. Length is returned in Byte Count. This can be given for elementary and
structure TYPES

DECIMALS Keyword (relevant only for TYPES F and P)

<decimals> Variable in which the number of decimals is returned.<decimals> would desirably be of
type I(relevant only for TYPES F and P)

COMPONENTS Key Phrase

<components> Returns number of fields in a structure. Relevant for structure type

OUTPUT-LENGTH Key Phrase

<output length> Variable in which the output length is returned. If this field is associated with a domain,
the output length is picked up from here. Else, the output length is as per the default
output length in the WRITE statement

EDIT MASK Key Phrase

<edit mask> Field in which EDIT MASK is returned. EDIT MASK is covered in Chapter 5 entitled
‘WRITE Statement (Classical Reporting)’ .

HELP-ID Key Phrase

<help-id> Field in which HELP-ID is returned HELP-ID is covered in Chapter 9 entitled
‘SELECTION-SCREEN’

CHAPTER 4 ■ ABAP LANGUAGE BASICS

191

The different types returned by the DESCRIBE FIELD statement (other than the elementary types that are
returned as ‘C’, ‘D’, ‘F’, ‘I’, ‘N’, ‘P’, ‘T’, ‘X’, ‘STRING’, and ‘XSTRING) are listed in Table 4-6.

Table 4-6. DESCRIBE FIELD: TYPE Return Values

Description Return Type Value

Elementary ABAP TYPE STRING g

Elementary ABAP TYPE XSTRING Y

Object Reference r

Data Reference l

DDIC INT1 b

DDIC INT2 s

Flat structure (structure with no embedded structure or table) u

Deep Structure (structure with embedded structure or table) v

Internal Table h

An ABAP program coded for demonstrating the DESCRIBE FIELD statement:

REPORT YCL_CH04_17_DESCRIBE_FIELD.

**
* DESCRIBE FIELD: Determine Attributes of Data objects *
**

* declare elementary data objects referring to DDIC table fields **
* declare elementary data object referring to DDIC data element **
* declare structure data object referring to DDIC table definition **
* declare elementary TYPE STRING **
* **
* use DESCRIBE FIELD statement to determine attributes **
* output attributes **
* **

DATA: NAME1 TYPE KNA1-NAME1, "DDIC table field
 FKDAT TYPE VBRK-FKDAT, "DDIC table field
 NETWR TYPE VBRK-NETWR, "DDIC table field
 TEXT1 TYPE TBOOKSHOP-TEXT1, "DDIC table field
 LENGTH TYPE TBOOKSHOP-LENGTH, "DDIC table field
 WAERS TYPE WAERS, "reference to data element
 INT1 TYPE MCSAPINT1, "reference to data element
 VBRK TYPE VBRK, "reference to table structure
 STRNG TYPE STRING,

CHAPTER 4 ■ ABAP LANGUAGE BASICS

192

 TYP(1) TYPE C,
 LEN TYPE I,
 OLEN TYPE I,
 DECI TYPE I,
 COMPO TYPE I.

**
DESCRIBE FIELD NAME1 TYPE TYP.

IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
 DESCRIBE FIELD NAME1 LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD NAME1 LENGTH LEN IN BYTE MODE.

ENDIF.

WRITE:/5 'KNA1-NAME1 TYPE & LENGTH :', TYP,
 (3) LEN.

DESCRIBE FIELD FKDAT TYPE TYP.

IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
 DESCRIBE FIELD FKDAT LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD FKDAT LENGTH LEN IN BYTE MODE.

ENDIF.

WRITE:/5 'VBRK-FKDAT TYPE & LENGTH :', TYP,
 (3) LEN.
**
DESCRIBE FIELD NETWR TYPE TYP.

IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
* DESCRIBE FIELD NETWR LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD NETWR LENGTH LEN IN BYTE MODE.

ENDIF.

IF TYP = 'F' OR TYP = 'P'.
 DESCRIBE FIELD NETWR DECIMALS DECI.

ENDIF.
DESCRIBE FIELD NETWR OUTPUT-LENGTH OLEN.
WRITE:/5 'VBRK-NETWR TYPE, LENGTH OUTPUT-LENGTH & DECIMALS :', TYP,
 (3) LEN, (2) OLEN, (2) DECI.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

193

DESCRIBE FIELD TEXT1 TYPE TYP.

IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
 DESCRIBE FIELD TEXT1 LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD TEXT1 LENGTH LEN IN BYTE MODE.

ENDIF.

WRITE:/5 'TBOOKSHOP-TEXT1 TYPE & LENGTH :', TYP,
 (4) LEN.

DESCRIBE FIELD LENGTH TYPE TYP.

IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
* DESCRIBE FIELD LENGTH LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD LENGTH LENGTH LEN IN BYTE MODE.

ENDIF.

WRITE:/5 'TBOOKSHOP-LENGTH TYPE & LENGTH (DDIC TYPE INT2) :', TYP,
 (3) LEN.

DESCRIBE FIELD WAERS TYPE TYP.

IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
 DESCRIBE FIELD WAERS LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD WAERS LENGTH LEN IN BYTE MODE.

ENDIF.

WRITE:/5 'CURRENCY CODE WAERS TYPE & LENGTH :', TYP,
 (3) LEN.
**
DESCRIBE FIELD INT1 TYPE TYP.

IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
* DESCRIBE FIELD INT1 LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD INT1 LENGTH LEN IN BYTE MODE.

ENDIF.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

194

WRITE:/5 'DDIC TYPE INT1 & LENGTH (REF. TO DATA ELEMENT) :', TYP,
 (3) LEN.

**
DESCRIBE FIELD VBRK TYPE TYP COMPONENTS COMPO LENGTH LEN IN BYTE MODE.

WRITE:/5 'VBRK TYPE, LENGTH & CMPONENTS :', TYP, (4)
 LEN, (3) COMPO.
**

DESCRIBE FIELD STRNG TYPE TYP.

IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
* DESCRIBE FIELD STRNG LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD STRNG LENGTH LEN IN BYTE MODE.

ENDIF.

WRITE:/5 'LOCALLY DEFINED TYPE ''STRING'' TYPE & LENGTH :',
 TYP, (3) LEN.

The program output will appear like this:

Figure 4-28. Output of Program: YCL_CH04_17_DESCRIBE_FIELD

You can cross-check the output length of domain NETWR as 21. The length of TYPE STRING is appearing as 8,
which is the initial allocation of RAM to it.

The length for TYPES C, D, N, and T can be determined either in characters or bytes. So you can give either of the
options: IN CHARACTER MODE/IN BYTE MODE. With 16-bit Unicode in operation (2 bytes), the length returned in
bytes will be twice the length returned in characters.

CHAPTER 4 ■ ABAP LANGUAGE BASICS

195

For the TYPES other than C, D, N, and T, the length will be returned in bytes and hence the option ‘IN BYTE
MODE’ is acceptable syntactically. During the compilation, the ABAP compiler checks the DDIC data object
references and also determines the TYPE and syntactically rejects the ‘IN CHARACTER MODE’ option if the
TYPES are other than C, D, N, and T. That is the reason you have commented on the lines where this syntax error
is highlighted. You will be able to tackle this syntax error after learning subroutines in the forthcoming Chapter 7:
‘Modularization’ .

Conclusion
You have learned the basic elements of the ABAP language. A few programs, mostly involving string operations, were
coded. These programs were small and simple. You were also introduced to the ‘WRITE’ statement used for getting
output. This was used to visually see the result of our operations in the programs.

From the next chapter onward, you are going to retrieve data from database tables. In business applications –
notably SAP – data retrieval from database tables forms a major task.

197

CHAPTER 5

WRITE Statement (Classical
Reporting)

Part of any business application programming involves retrieval and presentation of data (reporting or reports). Data
in typical situations is retrieved from diverse multiple sources (database tables) and presented in character and/or
graphic form. With any object oriented reporting tools (Crystal Reports), graphic interface, objects drag and drop,
properties, methods, and events will take care of every reporting requirement.

WRITE Statement
In the ABAP environment, the WRITE statement is used to output data (produce lists or reports). It was conceived and
created before OOP technology was an option. There are a few events associated with the WRITE statement. The one
simple conspicuous feature absent in the WRITE statement from that of the OOP reporting tools is that one cannot
impart specific styling (font type, font size, bold, underline, and italic) to specific areas of a report. With the WRITE
statement, the entire report is generated with a single font type and size. When the styling feature is available as in
the current reporting tools, one has to deal with physical dimensions in the areas of the report: inches, centimeters,
points, and so on. When using the WRITE statement, physical dimensions are not used as such; instead you deal
with columns and rows (not to be confused with columns and rows in the context of a database). A specific field to
be output occupies a certain number of characters or column positions; all the fields being output on a line occupy a
certain number of characters or column positions; and how many lines or rows are output in a page(for a specific type
of page: for example, ‘A3’, ‘A4’, and so on).

A partial syntax of the WRITE statement is as follows:-

WRITE: [/][col1][(len1)] <dobj1> [color specification1]
 [<format specification1>],
 [/][col2][(len2)] <dobj2> [color specification2]
 [<format specification2>], ...

Where

• [] has the usual meaning – Anything enclosed in this is optional.

• WRITE is the keyword. ‘:’ and ‘,’ combination is for avoiding the repetition of the keyword
WRITE (i.e., the process of chaining).

• / (optional) is for the output to start on a new line.

• Col1, col2. (Optional) to indicate the absolute column position at which output should start.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

198

• (len1), (len2), (optional) for output to appear in len1, len2 column length positions.

• <dobj1>, <dobj2> - data objects.(they can be variables/constants/literals).

• <format specification1> .. to output the field in a specified format.

• <color specification1> .. to impart color to the data object output.

The WRITE statement will not accept a function as an output item. This is a constraint of the WRITE statement.
You cannot issue a statement like this:

WRITE:/5 ABS(AMOUNT).

WRITE statement - a simple syntax example:

REPORT YCL_CH05_01_LIST_SYNTAX.
DATA: FLD1(20) TYPE C VALUE 'Message I :-',
 FLD2(20) TYPE C VALUE 'Message II:-'.

WRITE:/10(12) FLD1, 'Hello World',
 /,
 /15 FLD2, 'Hello U.S.A.'.

FLD1 and FLD2 contain 12 characters of actual data.•

• WRITE:/10(12) FLD1 – means

/ ... start output on a new line.•

10 ... start output from column position 10.•

(12) ... output FLD1 in 12 column positions (not 20 column positions).•

FLD1 ... output the data object FLD1 value.•

• 'Hello World' outputs the literal ‘Hello World’ on the same line as the variable data object
FLD1. By default there will be one column position gap between the two data objects variable
FLD1 and the literal ‘Hello World’.

• / will generate a blank line.

• /15 FLD2 will start output of FLD2 from the 15th column position on a new line, and FLD2
output will appear in 20 column positions (length of data object).

• 'Hello U.S.A.' will output the literal ‘Hello U.S.A.’ on the same line. By default there will be
one column position gap between the two data objects variable FLD2 and literal ‘Hello India’.

The output would appear like this:-

 Message I :- Hello World

 Message II:- Hello U.S.A.

Terminology: You will refer to the output of WRITE statements as list or lists; this is the SAP terminology. The
output of WRITE statements is also called a report or reports.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

199

You will learn, in this chapter, how to produce output from data retrieved from a database. To retrieve data from
a database, the Open SQL basic looping construct is introduced in the chapter on a preview basis. You will produce
page headers and page footers. In this context, the events START-OF_SELECTION, TOP-OF-PAGE, END-OF-PAGE
are introduced and program flows are described. The features of imparting color to outputs are to ensure part of
the output to appear on a page, enclosing output in boxes, and make sure that freezing columns on the left, etc., are
covered. This chapter is concluded with the WRITE statement’s miscellaneous features and output formatting options.

WRITE Statement: Hands-on Exercise - A Simple Customer List
You will execute a hands-on exercise using the WRITE statement with data from a database table. Output of ‘Hello
world’ in a few lines is a bit frivolous. You will want to output not only multiple lines, but also multiple pages. Since the
focus is on the WRITE statement, data retrieval will be kept simple at this stage. You will use the Open SQL SELECT
statement to retrieve data from a single database table. The Open SQL is formally covered in the Chapter 8 entitled
‘Open SQL: Data Retrieval’. In the present chapter, it is an informal introduction to Open SQL. The simplest form of
the SELECT statement is a looping procedure and has the following syntax:-

 SELECT <field list> FROM <source> INTO <destination structure>.
....<statements>
 ENDSELECT.

Each pass of this loop fetches one row of data from fields specified in <field list> from a table or view specified
in <source> into the structure specified in <destination structure>. The next row fetched with the next pass of the
loop will overwrite the existing contents of the structure specified in <destination structure>. This repetitive process
goes on until all the rows have been fetched from the <source>. At the end of the loop process, the program control
goes to the statement following the statement ENDSELECT (if there is a statement else exit in the program). The
statements located between the looping statements SELECT ... ENDSELECT will be executed as many times as the
number of times the loop is executed or the number of rows fetched. A graphical representation of the looping process
is shown in Figure 5-1.

Database

SELECT ... ENDSELECT

Structure

Table/View

Figure 5-1. SELECT.. ENDSELECT Process

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

200

You will use this form of SELECT...ENDSELECT and the WRITE statement to generate a simple customer list for
data retrieved from the primary customer table KNA1. The KNA1 table contains one row for each customer. Each line
in the list will have information for one customer. You will output the following fields from the KNA1 table:-

This kind of a list should be output with a serial number. You can declare a numeric data object in the program,
increment it before the WRITE statement, and output it as the first item within the WRITE statement. If a system field
avails you, this is unnecessary. The system field that serves your purpose in the present context is SY-DBCNT. Within
the SELECT...ENDSELECT loop, this system field will contain the number of the current row fetched or the number of
the loop pass.

The output layout with column positions will be as follows:-

BLANK indicates a blank column between two adjoining fields on the same line. So your output in terms of
total number of columns positions is 139 (139 is the last column position in a line). It is always a good practice to list
out fields to be output in this manner. When the WRITE statement is coded, this list is available for ready reference.
You need to know the total number of columns in a line. Depending upon the resolution of the screen and the font
end setting of a presentation server on which the program is executed; the ABAP runtime system sets the default
maximum number of columns in a line (i.e., the line width). The higher the screen resolution, the more the number
of columns in a line. The default line width can be reset or changed. If the program output exceeds this default
line width, the output appears in an embarrassing word wrap fashion. To ensure that the word wrap output does
not appear, the line width can be set by an addition in the REPORT statement (when an executable ABAP program
is created, the REPORT statement is generated by the system). The line width is set in the following manner by
modifying the REPORT statement.

REPORT YCL_CH05_02_CUST_LIST01 LINE-SIZE 140.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

201

The addition LINE-SIZE 140 sets the line width to 140 columns. The actual line width has been rounded to 140.
The line width is available in the system field SY-LINSZ. The maximum value of LINE-SIZE can be 1023.

The source code for generating the customer list is:-

REPORT YCL_CH05_02_CUST_LIST01 LINE-SIZE 140.

* WRITE - Simple Customer List **

* KUNNR LIKE KNA1-KUNNR - the field KUNNR of **
* our declared structure CUST_STRU has same **
* attributes as the field KUNNR of DDIC table**
* definition KNA1. here either the key word **
* LIKE or TYPE can be used. difference **
* LIKE & TYPE will be discussed subsequently **
* **
* like wise for NAME1, STRAS, ORT01, PSTLZ **

DATA: BEGIN OF CUST_STRU,
 KUNNR LIKE KNA1-KUNNR, "referring to a DDIC table field
 NAME1 LIKE KNA1-NAME1,
 STRAS LIKE KNA1-STRAS,
 ORT01 LIKE KNA1-ORT01,
 PSTLZ LIKE KNA1-PSTLZ,
 END OF CUST_STRU.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO CUST_STRU.
 WRITE:/5(5) SY-DBCNT, CUST_STRU-KUNNR USING NO EDIT MASK,
 CUST_STRU-NAME1, CUST_STRU-STRAS, CUST_STRU-ORT01, CUST_STRU-PSTLZ.
ENDSELECT.

 1. The field order KUNNR NAME1 STRAS ORT01 PSTLZ in the SELECT statement should
be in the same order as in the structure CUST_STRU definition. The structure should not
contain any other fields. The fields in the structure should be of the same type and length
as in the database table. You are ensuring this by referring to the database table fields
while defining the fields in structure CUST_STRU. You must adhere to these rules in all
situations where you are fetching data from database table/s or view/s and specifying the
fields in the SELECT statement into structure/s.

You have seen that a typical SAP functional table consists of fields of the order of hundreds.
Your fields of interest will mostly be few of these. So the SELECT * (fetch all fields) should
be used discreetly, only when the number of fields are few in a data source (table/view) or
you are fetching only a few rows of data.

 2. WRITE is a keyword.

 3. ‘:’ and ‘,’ are as usual for chaining (i.e., avoid repetition of the keyword WRITE).

 4. ‘/’ is to get the output on a new line (each customer’s information on one line).

 5. ‘5’ to have the output starting from column position 5 (4 blank column positions on the left
as a left margin).

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

202

 6. ‘(5)’ to have the output of SY-DBCNT occupy 5 column positions. The system field SY-
DBCNT is DDIC Data Type INT4 (integer 4 bytes) or ABAP type I. The output of ABAP
type I by default occupies 11 column positions including a column on the right for sign.
You know the number of customers to be less than 10000 (5 column positions). If output
length is not specified with (5), it would generate a large gap between the fields SY-DBCNT
and CUST_STRU-KUNNR. In business applications, the output should be clear, crisp, and
attractive. To compress this unnecessarily large gap, you have specified the output length
as (5) for field SY-DBCNT.

 7. The addition ‘USING NO EDIT MASK’ with CUST_STRU-KUNNR (customer number/code)
is to enable the leading zeroes for the field to appear; by default they are suppressed.

 8. By default, a blank column will be generated between two adjoining fields in a line. So the
information of a customer in a line will appear with a blank column between fields.

The output will appear like Figure 5-2.

Figure 5-2. Output of Program YCL_CH05_02_CUST_LIST01

The output obtained by executing the program can be redirected from the screen to printer spool, SAP folder,
reporting tree, and desktop software: Rich text (Word file), Excel spreadsheet, HTML file, Notepad file, and Clip
board. The menu path for redirection to desktop software from a generated list is System ➤ Lists ➤ Save ➤ Local File.
The desktop files (Word, Excel, etc.) are saved on the presentation server. The facilitation of redirection of output is
through the list processor, part of the ABAP runtime environment.

When the output is viewed, an end user will not be able to make out what the information is about. Obviously the
list should contain a header for the output mentioning what this list is (list of customers) and must contain headings
for each of the output fields (Serial no, Customer code, Customer Name, and so on). So the list needs a list or report
header and field headings. The field heading is referred to in standard documentation as Column heading; so you

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

203

will refer to it as Column heading though you are always referring to data objects as fields. The List header and the
Column heading can be implemented using one of two methods: (a) Creating, using an ABAP program text element’s
List Headings. This is referred to as a Standard Page Header; or (b) Triggering the event TOP-OF-PAGE, coding, or
programming for the List header and the Column heading. This is referred to as a nonstandard page header.

The first method requires no programming; the second requires programming. You will execute a hands-on
exercise for each of these.

WRITE Statement: Hands-on Exercise - A Simple Customer List
with Standard Page Header or List Headers
The List Headers or List Headings is one of the components of a Text element. The other two are: Text symbols and
Selection texts. You used Text symbols in Chapter 4 (the Hello World program).

List Headers can be created from the ABAP editor opening screen (transaction code SE38) by selecting the
Text elements radio button (the last radio button), clicking the Create/Change push button, and selecting the
List Heading’ tab. It can also be created from inside the source program editor by selecting the ‘Goto’ menu option
and selecting the Text elements option and further selecting the List Headings sub-option. List Headers can also be
created with transaction code SE32.

When the List Headers screen appears, you can see that there can be only one line for List header, and the
maximum length of this can be 70 characters or column positions.

For the Column heading, you can have a maximum of 4 lines. The maximum width of Column heading can be
255 characters. The width of the list cannot exceed 255 columns with a Standard Page Header.

If your list output exceeds 255 columns, you have to use the nonstandard page header.
In the List header and Column heading area, multiple language texts can be entered and maintained just like

in the DDIC data element field label area and the ABAP program text symbol. The language texts appear as per the
logged-in language. The List Headers also allow variable or runtime information to be incorporated. This is achieved
through the concept of placeholders and 10 special system fields. The placeholders (where variable information,
determined at runtime, will sit) are indicated by place holders &0 &1 &2 &3 &4 &5 &6 &7 &8 &9. The corresponding
10 system fields are SY-TVAR0 to SY-TVAR9. Wherever &0 is placed in the List Headers area, it will be replaced by the
contents of the system field SY-TVAR0 at run time. In a similar manner, &1 will be replaced by the contents of SY-TVAR1
and so on. It should be ensured in the program that the desired value is assigned to the system field SY-TVAR0 so
that it appears in place of &0 in the List Headers area. You can use none or one or two up to a maximum of ten place
holders. The placeholders &0 and so on and system field SY-TVAR0 can be used arbitrarily (i.e., you need not start
from &0 only). The ABAP type of SY-TVAR0 to SY-TVAR9 is type ‘C’ and length 20.

In your List header, let the application server system date SY-DATUM be output. The value of SY-DATUM is
determined at run time. You will use the feature of placeholder (&0 to &9) and one of the system fields (SY-TVAR0 to
SY-TVAR9) to implement this.

Your List header area will be like this: List of Customers as on &1........
The List Headers screen will look like Figure 5-3.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

204

You are using the ‘&1’ placeholder. The ‘&1’ is followed by eight periods (full stops). The periods are used to
indicate the width of output. You intend to output the SY-DATUM with a separator character in the form DD/MM/YYYY
(&1 and 8 periods indicate a length of 10). The periods are necessary because if they are missing, it will assume
an output length of 2, only the day DD will be output, and the rest of the data will be truncated. You have to assign
the value of SY-DATUM with the separator character ‘/’ into the system field SY-TVAR1. You do this by using the
CONCATENATE statement:

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4)
 INTO SY-TVAR1 SEPARATED BY '/'.

The source code for generating the customer list with List Headings:-

REPORT YCL_CH05_03_CUST_LIST02 LINE-SIZE 140 LINE-COUNT 60.

* WRITE - Simple Customer List With List Headings**
* (STANDARD HEADER) **

Figure 5-3. Text Element: List Headers

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

205

DATA: BEGIN OF CUST_STRU,
 KUNNR LIKE KNA1-KUNNR, "referring to a DDIC table field
 NAME1 LIKE KNA1-NAME1,
 STRAS LIKE KNA1-STRAS,
 ORT01 LIKE KNA1-ORT01,
 PSTLZ LIKE KNA1-PSTLZ,
 END OF CUST_STRU.

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4)
 INTO SY-TVAR1 SEPARATED BY '/'.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO CUST_STRU.
 WRITE:/5(5) SY-DBCNT, CUST_STRU-KUNNR USING NO EDIT MASK,
 CUST_STRU-NAME1, CUST_STRU-STRAS, CUST_STRU-ORT01, CUST_STRU-PSTLZ.
ENDSELECT.

The CONCATENATE statement has already been explained. The data is stored in SY-DATUM in the form
YYYYMMDD (8 characters). Using the CONCATENATE statement, it is converted and stored in the system field
SY-TVAR1 in the form DD/MM/YYYY (10 characters).

Create, perform the syntax check, activate, execute, and observe the results of the ABAP program YCL_CH05_03_
CUST_LIST02. The output will appear like Figure 5-4.

Figure 5-4. Output of Program YCL_CH05_03_CUST_LIST02

The list is output with List header, run date, and column heading. The List header and Column heading have been
output (without any program coding) using ABAP program’s text element’s List Headings feature.

Realignment of Column Heading from the Output:
If after the output is generated, you realize that Column heading needs shifting or realignment, you can go back to

ABAP editor mode and go to text elements, List Headings, and make the corrections. There is also a simpler way to shift
and realign the Column heading from the output screen itself.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

206

On the output screen, click on menu options System ➤ List ➤ List Header like it is shown in Figure 5-5:

Figure 5-5. List Heading – Navigate for Realignment of Column Heading from Output

Figure 5-6. List Heading – Realignment of Column Headings from Output

When you make the menu selections as shown in Figure 5-5, the following screen will appear:
On this screen (Figure 5-6), you can move, shift, and realign your List header and Column heading. When you are

finished with this realignment exercise, save your changes. Re-execute the program for the changes to be reflected in
the output.

On the line of the List header ‘List of Customers as on 18/08/2012’ is appearing, on the extreme right a number ‘1’
is output. This is the page number. The entire list of 7000+ customers is appearing on a single page!

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

207

If a hard copy is to be produced from this screen output, you need to take into account the physical size of the
stationery (page size) used for the hard copy. When using a WRITE statement to output, you specify the page size
not in physical dimensions such as inches/centimeters/millimeters, etc., but in terms of maximum number of lines
available on a page (line count). The line count is set in the REPORT statement in the following manner:

REPORT YCL_CH05_03_CUST_LIST02 LINE-COUNT 60.

The addition of LINE-COUNT 60 sets the page size to a maximum of 60 lines. The line count is available in the
system field SY-LINCT. So your REPORT statement with LINE-SIZE and LINE-COUNT will be:

REPORT YCL_CH05_03_CUST_LIST02 LINE-SIZE 140 LINE-COUNT 60.

Executing the program YCL_CH05_03_CUST_LIST02 with the LINE-COUNT 60 in the REPORT statement, output
will look like Figure 5-7.

Figure 5-7. Output of Program YCL_CH05_03_CUST_LIST02 with LINE-COUNT

Observe that 55 lines are output in the list body; and 5 lines consumed by the List header and Column heading,
including two horizontal lines enclosing the Column heading.

The default value of SY-LINCT is zero. In this case, the entire output appears on a single page. The maximum
number of lines that can appear on this single page is 60,000.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

208

An Introduction to Events in ABAP Programs
Event - START-OF-SELECTION
The kinds of program structures you have created until now (in Chapters 3, 4, and the current chapter) have
consisted of:

Declarative statements - DATA, TYPES, CONSTANTS, PARAMETERS•

Control statements (internal flow control) - DO ENDDO, IF ENDIF•

Operational statements - MOVE, WRITE, TRANSLATE, CONCATENATE et al.•

Database statements- SELECT ENDSELECT•

You have not used any event keywords to code for events. Events have not been introduced. You must recall that
in ABAP (from Chapter 4) there are event keywords to indicate when an event code starts, but there are no keywords
to indicate the conclusion of an event in the code. The conclusion of an event in the code is when you begin the code
for another event (i.e., an implicit event conclusion). You are being introduced to the event START-OF-SELECTION.
The first thing to understand about an event is to know when an event is triggered: that is, when program control
jumps to the code under an event.

Scenario-I

If there are no PARAMETERS statements in a program, pressing the function key F8 will begin the execution of the
program starting from the first nondeclarative statement in the program. Refer to any of the programs up to this point
in this chapter.

Scenario-II

If there is a PARAMETERS statement/s in a program, when you execute such a program (function key F8, etc.), the
input prompt/s of the PARAMETERS statement/s appears on the screen. When you press F8 on the input prompt
screen, other nondeclarative program statements start getting executed. Refer to programs YCL_CH04_11_TRANSLATE
and YCL_CH04_12_CONCATENATE of Chapter 4.

The START-OF-SELECTION event will be explained in the context of these two scenarios described and extended
to other scenarios. In the scenario-I (no PARAMETERS statement/s) when the program is executed, control jumps to
the event START-OF-SELECTION. In scenario-II, when the user presses F8 on the input prompt screen, control jumps
to the event START-OF-SELECTION. In scenario-II, if you are validating the inputs, invalid inputs will trigger error
conditions, and you will remain on the input prompt screen. An F8 key press for valid inputs will make the control
jump to START-OF-SELECTION.

In Chapter 4, under the heading, “Container for Processing Blocks,” it was mentioned that all Nondeclarative
ABAP statements, which occur between the declaration of global data and a processing block, are automatically
assigned to the START-OF-SELECTION event by the ABAP processor (i.e., implicit assignment of statements to this
event). This has been happening to all your programs coded up to now; before now, you have never explicitly defined
the event START-OF-SELECTION. All the nondeclarative statements were getting assigned to this event implicitly by
the ABAP processor.

Henceforth, all your ABAP programs will have an explicit coding of the START-OF-SELECTION event.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

209

WRITE Statement: Hands-on Exercise - Simple Customer List
with the Nonstandard Page Header
TOP-OF-PAGE Event
If you do not want to be bound by the limits of List Headers and you wish to have full control over the list header and
column heading, you have to resort to the nonstandard page header. The nonstandard page header is implemented
using the event TOP-OF-PAGE. This event is triggered in two situations:

 a. When the WRITE statement is encountered for the very first time during the program
execution. In this situation, the program does not generate the output for the WRITE
statement; instead, control jumps to the event TOP-OF-PAGE and executes statements
in this event. After executing all the statements in this event, control jumps to the WRITE
statement that triggered the TOP-OF-PAGE event and generates output of this statement.

 b. When the WRITE statement is encountered and the number of lines output on the current
page is equal to the value of the system field SY-LINCT set in the REPORT statement
through the addition of LINE-COUNT (current page is full), in this situation the program
again jumps to the event TOP-OF-PAGE, starts a new page and executes statements in
this event. After executing all the statements in this event, control jumps to the WRITE
statement that triggered the TOP-OF-PAGE event and generates output of this statement.

Let a customer list be generated with a nonstandard page header.
A rough layout with the list header and column heading:

Text Element Component Text Symbols
In the Text elements component List Header, the environment supported the maintenance of multilanguage texts.
Now, in the nonstandard page header, you will have to issue WRITE statements to output the list header (‘List of
Customers as on ‘), etc. For the column heading, you will have to issue WRITE statements (‘Srl No’, ‘Customer Code’),
etc. You can’t be using literals; you will be unable to support multiple languages. You will be using the Text Symbols
component of text elements to store texts of the list header and column heading.

From inside the source program editor click the ‘Goto’ menu bar, and select the Text elements option and
further select the Text symbols suboption. Figure 5-8 is a screenshot of text symbol with the text for the list header
and column heading.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

210

The source code for generating the customer list with a nonstandard page heading:-

REPORT YCL_CH05_04_CUST_LIST03 LINE-SIZE 140 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

* Simple Customer List With NON STANDARD PAGE HEADER **

DATA: BEGIN OF CUST_STRU,
 KUNNR LIKE KNA1-KUNNR,
 NAME1 LIKE KNA1-NAME1,
 STRAS LIKE KNA1-STRAS,
 ORT01 LIKE KNA1-ORT01,
 PSTLZ LIKE KNA1-PSTLZ,
 END OF CUST_STRU,
 DATE_CHR(10) TYPE C .
**
TOP-OF-PAGE.
WRITE:/5 TEXT-001, DATE_CHR, 130 TEXT-002, 137(3) SY-PAGNO.
SKIP 1.
WRITE:/5(135) SY-ULINE.
WRITE:/6 TEXT-003, 12 TEXT-004, 23 TEXT-005, 60 TEXT-006,
 96 TEXT-007, 130 TEXT-008.
WRITE:/6 TEXT-009, 13 TEXT-010, 131 TEXT-010.
WRITE:/5(135) SY-ULINE.

Figure 5-8. Program YCL_CH05_04_CUST_LIST03 - Text Symbols

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

211

START-OF-SELECTION. " event triggered in this program, when user
 " presses F8 i.e. control will jump to the
 " statement next to START-OF-SELECTION and
 " execution of statements starts

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4)
INTO DATE_CHR SEPARATED BY '/'.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO CUST_STRU.
 WRITE:/5(5) SY-DBCNT, CUST_STRU-KUNNR USING NO EDIT MASK,
 CUST_STRU-NAME1, CUST_STRU-STRAS, CUST_STRU-ORT01, CUST_STRU-PSTLZ.
ENDSELECT.

Source Program, the Program Flow
The flow of the program will be as follows:-

When the function key F8 is pressed or the button is pressed, control jumps to the statement following the
event START-OF-SELECTION: that is, the CONCATENATE statement. This statement will convert the SY-DATUM
contents into the form DD/MM/YYYY and assign it to the data object DATE_CHR. Next the SELECT ENDSELECT
looping procedure will commence. The first row from table KNA1 will be fetched into the structured data object
CUST_STRU.

With the first row fetched, the WRITE statement is being encountered for the first time in the •
program execution. The control will jump to the statement following the event TOP-OF-PAGE.

The WRITE statements in the TOP-OF-PAGE event will be executed and will generate 6 lines of •
list header and column heading.

After the list header and column heading is output, control will return to the WRITE statement. •
The WRITE statement within the SELECT ENDSELECT loop will execute 54 times to output
54 customers. Recall, your LINE-COUNT is set to 60 in the REPORT statement (i.e., a maximum
of 60 lines in a page). When 54 customers (54 lines) are output on a page, the total number of
lines output on the page is 60 (54 customers lines + 6 lines of list header and column heading).
When the WRITE statement is encountered for the 55th customer, before the 55th customer is
output, control again jumps to the TOP-OF-PAGE event. The WRITE statements in TOP-OF-PAGE
event will again generate a 6 line list header and column heading on a new page. Then the
55th customer will be output. This process will go on. After every 54 customers, before the
next customer is output, the control will jump to TOP-OF-PAGE event. When all the customers
have been output, the SELECT...ENDSELECT loop and the program are exited.

The addition in the REPORT statement, NO STANDARD PAGE HEADING, suppresses the standard header if any.
By default, the program title entered as part of the program attributes along with a horizontal line and appears on
every page as part of the standard page header. When the list is output with the nonstandard page header, you want
these two lines to be suppressed. Hence the addition: NO STANDARD PAGE HEADING.

The Text symbols are referred as TEXT-001, TEXT-002, and so on, and the prefix TEXT- with Text symbol
identification.

The system field SY-PAGNO contains the value of the current page number. You can readily use this to output the
page number on the list header.

The SKIP statement generates blank lines. Either a variable or a literal number can be specified with the SKIP
statement. As many blank lines will be generated as the value of the variable and literal. A simple SKIP statement will
generate one blank line.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

212

The system field SY-ULINE outputs horizontal lines. You are enclosing the column heading in horizontal lines
(see the rough layout of a list header and column heading).

The command WRITE:/5(135) SY-ULINE will output a horizontal line, starting on a new line, starting from
column position 5, length of 135 column positions. The rest of the program statements are self-explanatory.

Create, perform the syntax check, activate, execute, and observe the results of the ABAP program YCL_CH05_04_
CUST_LIST03. The output will appear like Figure 5-9.

Figure 5-9. Output of Program YCL_CH05_04_CUST_LIST03

You could have located the TOP-OF-PAGE event after START-OF-SELECTION. In this case, you could remove
the event statement START-OF-SELECTION (a case of an implicit START-OF-SELECTION). But from now on,
no implicitness and no leaving matters to the ABAP processor. You will code all programs with an explicit
START-OF-SELECTION.

On the other hand with the TOP-OF-PAGE event before the START-OF-SELECTION like in the present program,
if you comment or remove the event statement START-OF-SELECTION, all the statements that were under
START-OF-SELECTION will now be under the TOP-OF-PAGE event. The ABAP processor will not find any statements
to assign to START-OF-SELECTION. Executing this program will not generate any output.
Please try this out: commenting out the START-OF-SELECTION statement and execution.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

213

WRITE Statement: Hands-on Exercise - Simple Customer List
with the NonStandard Page Header, Footer
A list often needs a footer on every page. With the WRITE statement, a list footer can be generated with the event
END-OF-PAGE. For generating a footer, footer lines need to be reserved. The footer lines are reserved with the
addition of LINE-COUNT in the REPORT statement. Suppose you wanted to reserve 5 lines for the footer out of the
total 65 lines in a page (LINE-COUNT 65), then the statement will look like this:

REPORT YCL_CH05_05_CUST_LIST04 LINE-COUNT 65(5).

The ‘5’ within parentheses is for reserving 5 lines for the footer. The footer lines need to be reserved in this
manner if the footer is to be output. If the footer lines are not reserved, then even though the END-OF-PAGE event
would have been triggered with WRITE statements to output the footer, no footer will appear, as no footer lines were
reserved.

The END-OF-PAGE event is triggered every time the number of lines output on a page is the total lines in a page
less the lines reserved for the footer. So in this example, with the total lines in a page being 65 (LINE-COUNT 65), 5 lines
are reserved for the footer, and the END-OF-PAGE event will be triggered every time 60 lines are output on a page.

Let the customer list with the nonstandard page header and footer be output. Let one line of the footer be output
on each page. The footer line would just indicate the list being continued on the next page. So the footer at the bottom
of the first, second, third... pages will appear like this:

Continued on page 2
Continued on page 3
...

For the hands-on exercise, let there be a LINE-COUNT of 60, let 3 lines be reserved for the footer, 1 blank line
between the list body and list footer, 1 line for the ‘Continued on page xx’ text, and 1 blank line after the footer text.
There will be 6 lines for the nonstandard page header. So there will be 60-6-3 = 51 lines for the body of the list: that is,
51 customers will output on each page.

The source code for generating the customer list with nonstandard page header and footer is:-

REPORT YCL_CH05_05_CUST_LIST04 LINE-SIZE 140 LINE-COUNT 60(3)
 NO STANDARD PAGE HEADING.

* Simple Customer List - NON STANDARD PAGE HEADER & FOOTER **

DATA: BEGIN OF CUST_STRU,
 KUNNR LIKE KNA1-KUNNR,
 NAME1 LIKE KNA1-NAME1,
 STRAS LIKE KNA1-STRAS,
 ORT01 LIKE KNA1-ORT01,
 PSTLZ LIKE KNA1-PSTLZ,
 END OF CUST_STRU,
 DATE_CHR(10) TYPE C,
 NXT_PAGE(3) TYPE N. "to store next page, increment current page

TOP-OF-PAGE.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

214

WRITE:/5 TEXT-001, DATE_CHR, 130 TEXT-002, 137(3) SY-PAGNO.
SKIP 1.
WRITE:/5(135) SY-ULINE.
WRITE:/6 TEXT-003, 12 TEXT-004, 23 TEXT-005, 60 TEXT-006, 96
 TEXT-007, 130 TEXT-008.
WRITE:/6 TEXT-009, 13 TEXT-010, 131 TEXT-010.
WRITE:/5(135) SY-ULINE.

**
END-OF-PAGE.
NXT_PAGE = SY-PAGNO + 1.
SKIP 1.
WRITE:/60 TEXT-011,(3) NXT_PAGE.
**

START-OF-SELECTION.

CONCATENATE SY-DATUM+6(2) '/' SY-DATUM+4(2) '/' SY-DATUM+0(4)
 INTO DATE_CHR.
SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO CUST_STRU UP TO 51 ROWS.
 WRITE:/5(5) SY-DBCNT, CUST_STRU-KUNNR USING NO EDIT MASK,
 CUST_STRU-NAME1, CUST_STRU-STRAS, CUST_STRU-ORT01, CUST_STRU-PSTLZ.
ENDSELECT.

The program statements are self-explanatory. After the program creation, you can copy the text symbols of
program YCL_CH05_04_CUST_LIST03 into the current program with the transaction code SE32. Add one text symbol
011 as ‘Continued on’. Save. Activate the text symbols. The text in this will be used for the nonstandard page header and
footer. The text symbols screen will appear like Figure 5-10.

Figure 5-10. Text Symbol Screen – Program YCL_CH05_05_CUST_LIST04

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

215

The output will appear like Figure 5-11.

There is no output beyond the last page and the footer on the last page ‘Continued on Page xxx’ is not only
redundant but erroneous. In most contexts, the footer would be required on the last page. It is only in your present
context that the footer is not required on the last page.

The footer is output by the event END-OF-PAGE. This event is triggered in your context only when 57 lines (list
header + column heading + body) are output on a page or 51 customers (body) are output on a page. So only if the last
page of your list has 51 customers, will the footer line ‘Continued on Page xxx’ appear on the last page. Or else there
will be no footer on the last page.

The problem of the footer being output on the last page is simulated by retrieving a multiple of 51 rows by
addition in the SELECT command:

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO CUST_STRU
 UP TO 51 ROWS.

ENDSELECT.

Figure 5-11. Output of Program YCL_CH05_05_CUST_LIST04

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

216

Figure 5-12. Output of Program YCL_CH05_05_CUST_LIST04 – 51 Rows Only

This is a latent program bug, the bug manifests itself only if a particular condition occurs in the program; and the
number of rows fetched is a multiple of the number of lines output on a page in the list body.

To overcome this problem, you have to have an insight into the flow of the program: that is, when the last time
(for the last page) the event END-OF-PAGE is triggered. The event END-OF-PAGE is triggered for the last page
only after execution of statements (if any) following the ENDSELECT statement. Presently, there are no statements
following the ENDSELECT statement in the program. Since END-OF-PAGE is triggered for the last page only after
execution of statements following the ENDSELECT statement (you are getting the control before the footer is output
on the last page), you can control the contents of a FLAG or SWITCH type variable and make the footer output
conditional on the contents of this variable. You will make the following changes in the program:

 1. Declare a variable FLAG of TYPE C, length 1, in the DATA declarative statement.

 2. The footer is now output conditionally on this FLAG variable being blank (i.e., IF FLAG = ‘ ‘,
with the corresponding ENDIF).

 3. At the end of the SELECT...ENDSELECT loop, after the ENDSELECT statement, assign the
variable FLAG a non-blank value (i.e., FLAG = ‘X’).

The revised program code will be as follows:-

REPORT YCL_CH05_05_CUST_LIST04 LINE-SIZE 140 LINE-COUNT 60(3)
 NO STANDARD PAGE HEADING.

The output, when a multiple of 51 customers is retrieved will appear like this:-

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

217

* Simple Customer List - NON STANDARD PAGE HEADER & FOOTER **

DATA: BEGIN OF CUST_STRU,
 KUNNR LIKE KNA1-KUNNR,
 NAME1 LIKE KNA1-NAME1,
 STRAS LIKE KNA1-STRAS,
 ORT01 LIKE KNA1-ORT01,
 PSTLZ LIKE KNA1-PSTLZ,
 END OF CUST_STRU,
 DATE_CHR(10) TYPE C,
 NXT_PAGE(3) TYPE N, "to store next page, increment current page

 FLAG(1) TYPE C. "initially this will be blank
 "on exiting SELECT.. ENDSELECT loop
 "you are assigning it a non-blank value
 "footer will be outputted on the
 "condition FLAG = ' '

TOP-OF-PAGE.

WRITE:/5 TEXT-001, DATE_CHR, 130 TEXT-002, 137(3) SY-PAGNO.
SKIP 1.
WRITE:/5(135) SY-ULINE.
WRITE:/6 TEXT-003, 12 TEXT-004, 23 TEXT-005, 60 TEXT-006, 96
 TEXT-007, 130 TEXT-008.
WRITE:/6 TEXT-009, 13 TEXT-010, 131 TEXT-010.
WRITE:/5(135) SY-ULINE.

**
END-OF-PAGE.
IF FLAG = ' '. " footer outputted conditionally on FLAG = ' '.
 NXT_PAGE = SY-PAGNO + 1.
 SKIP 1.
 WRITE:/60 TEXT-011,(3) NXT_PAGE.
ENDIF.
**

START-OF-SELECTION.

CONCATENATE SY-DATUM+6(2) '/' SY-DATUM+4(2) '/' SY-DATUM+0(4)
 INTO DATE_CHR.
SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO CUST_STRU UP TO 51 ROWS.
 WRITE:/5(5) SY-DBCNT, CUST_STRU-KUNNR USING NO EDIT MASK,
 CUST_STRU-NAME1, CUST_STRU-STRAS, CUST_STRU-ORT01, CUST_STRU-PSTLZ.
ENDSELECT.

FLAG = 'X'. " control will jump to END-OF-PAGE after executing this
 " statement

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

218

The output will appear like Figure 5-13.

Figure 5-13. Output of Program YCL_CH05_05_CUST_LIST04 – 51 Rows Only

The problem of the footer appearing on the last page if the number of rows fetched is a multiple of the number of
lines in the list body has been resolved.

WRITE Statement: Hands-on Exercise - Simple Customer List
Using COLOR Options
There is a facility to impart colors to the lists. The color options operate as follows:

 1. Either the foreground color (INVERSE or INVERSE ON) or background color (INVERSE
OFF) can be controlled at a time, not both. By default, output is in the background color.
(INVERSE OFF).

 2. When controlling the background color, there is an option to have deeper or sharper
shades (INTENSIFIED ON) or paler shades. (INTENSIFIED OFF) By default INTENSIFIED
ON is operative.

 3. Color can be specified with the FORMAT statement. The output will appear as per the
color specification in the FORMAT statement. Color can also be specified with the field
in the WRITE statement. Color specified with the field in the WRITE statement overrides
the color specified in the FORMAT statement. The statement FORMAT RESET restores
the default colors. The FORMAT statement is operative in a particular event: START-OF-
SELECTION, TOP-OF-PAGE, END-OF-PAGE, etc.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

219

 4. Eight colors are supported. Colors can be specified by color codes (0-7) or color names.

 5. A quick reference to how the colors operate, the color codes, and names are shown in
Figure 5-14.

Figure 5-14. WRITE Statement Output – Color Options

You are generating the same customer list using color options. Create program YCL_CH05_06_LIST05. Copy the
appropriate lines from the previous program. Copy text symbols from one of the earlier programs for the nonstandard page
header you are going to have in this program. Use transaction code SE32 to copy the text symbols. Activate the text symbols.

The source code for generating the customer list with color options: -

EPORT YCL_CH05_06_CUST_LIST05 LINE-SIZE 140 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* Simple Customer List - Usage of COLOR **
**

**
* (1) color can be specified with FORMAT statement. all WRITE **
* statements will be output as per the color specified in **
* FORMAT statement **
* (2) but if color is specified for field/s in the WRITE **
* statement,this will override specification of FORMAT **
* statement **
* (3) FORMAT RESET will restore default colors **
* (4) only 8 colors are supported **
* (5) either the foreground(INVERSE ON) or the background **
* color(INVERSE OFF) can be controlled at a time, not **
* both. by default INVERSE is OFF **
* (6) background color can be sharp(INTENSIFIED ON) or faint **
* (INTENSIFIED OFF) by default INTENSIFIED is ON **
* (7) colors can be specified by color code 0,1,2,3,4,5,6,7 **
* or name see color table **
**

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

220

DATA: BEGIN OF CUST_STRU,
 KUNNR LIKE KNA1-KUNNR,
 NAME1 LIKE KNA1-NAME1,
 STRAS LIKE KNA1-STRAS,
 ORT01 LIKE KNA1-ORT01,
 PSTLZ LIKE KNA1-PSTLZ,
 END OF CUST_STRU,
 DATE_CHR(10) TYPE C .
**

TOP-OF-PAGE.

FORMAT RESET. "header in default color

WRITE:/5 TEXT-001, DATE_CHR, 130 TEXT-002, 137(3) SY-PAGNO.
SKIP 1.
WRITE:/5(135) SY-ULINE.
WRITE:/6 TEXT-003, 12 TEXT-004, 23 TEXT-005, 60 TEXT-006, 96 TEXT-007, 130 TEXT-008.
WRITE:/6 TEXT-009, 13 TEXT-010, 131 TEXT-010.
WRITE:/5(135) SY-ULINE.
**
START-OF-SELECTION.
CONCATENATE SY-DATUM+6(2) '/' SY-DATUM+4(2) '/' SY-DATUM+0(4) INTO DATE_CHR.

FORMAT INVERSE ON COLOR COL_POSITIVE. "foreground green

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO CUST_STRU.
 WRITE:/5(5) SY-DBCNT INVERSE OFF COLOR = 4, CUST_STRU-KUNNR USING NO
 EDIT MASK, CUST_STRU-NAME1 INVERSE ON COLOR COL_GROUP, CUST_STRU-STRAS,
 CUST_STRU-ORT01, CUST_STRU-PSTLZ.
ENDSELECT.

The FORMAT RESET statement appearing in the TOP-OF-PAGE event will make the heading •
appear in the default color set by the system.

The statement • FORMAT INVERSE ON COLOR COL_POSITIVE appearing before the WRITE
statement inside the SELECT...ENDSELECT loop will make the output appear in the color
COL_POSITIVE (green) in the foreground (INVERSE ON).

The color specification for the field SY-DBCNT (INVERSE OFF COLOR = 4) will override the •
color specification of the FORMAT statement.

The color specification for the field CUST_STRU-NAME1 (INVERSE on COLOR COL_GROUP) •
will override the color specification of the FORMAT statement.

The output will appear like Figure 5-15.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

221

WRITE Statement: Hands-on Exercise - Simple Customer List
with Fields Enclosed in Boxes
Figure 5-16 is an output of the WRITE statement (program). You can enclose each field being output in a box to impart
good appearance to the output. You use the horizontal and vertical lines generated by the system fields SY-ULINE
(already used in earlier programs) and SY-VLINE respectively. The output must look like this:

Figure 5-15. Output of Program YCL_CH05_06_CUST_LIST05 – Color in Lists

Figure 5-16. Sample Box enclosed Output

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

222

When you issue a WRITE statement to output a number of fields on a single line:

WRITE:/5(5) SY-DBCNT, CUST_STRU-KUNNR, CUST_STRU-NAME1,
 CUST_STRU-STRAS, CUST_STRU-ORT01, CUST_STRU-PSTLZ.

The system is generating a blank column between fields:

SY-DBCNT and CUST_STRU-KUNNR
CUST_STRU-KUNNR and CUST_STRU-NAME1

... and so on being output on the same line.
You will have to replace this blank column with a vertical line and suppress generation of blank columns. The

default blank column generated between adjoining fields with the WRITE statement is suppressed with the addition
of NO-GAP.

Your list body output layout with the column numbers should be as follows:

You need to have a horizontal line above and below (before and after the fields are output in a line). You should
have an identical layout for the list column heading. Except for the first line, the bottom horizontal line for one set of
field values will serve as the top horizontal line for the next set of field values.

The following code will generate the customer list with field values and Column Headings in boxes:

REPORT YCL_CH05_07_CUST_LIST06 LINE-SIZE 145 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* Simple Customer List - Fields Enclosed in Boxes **
**

DATA: BEGIN OF CUST_STRU,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 STRAS TYPE KNA1-STRAS,
 ORT01 TYPE KNA1-ORT01,
 PSTLZ TYPE KNA1-PSTLZ,
 END OF CUST_STRU.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

223

TOP-OF-PAGE.

WRITE :/5 TEXT-001, SY-TVAR9, 132 TEXT-002, 139(3) SY-PAGNO.
SKIP.

WRITE :/5(137) SY-ULINE.

WRITE :/5 SY-VLINE NO-GAP, TEXT-003 NO-GAP, 11 SY-VLINE NO-GAP,
 TEXT-004 NO-GAP, 22 SY-VLINE NO-GAP, TEXT-005 NO-GAP, 58
 SY-VLINE NO-GAP, TEXT-006 NO-GAP, 94 SY-VLINE NO-GAP, TEXT-007
 NO-GAP, 130 SY-VLINE NO-GAP, TEXT-008 NO-GAP, 141 SY-VLINE NO-GAP.

WRITE :/5 SY-VLINE NO-GAP, TEXT-009 NO-GAP, 11 SY-VLINE NO-GAP,
 TEXT-010 NO-GAP, 22 SY-VLINE NO-GAP, 58 SY-VLINE NO-GAP, 94
 SY-VLINE NO-GAP, 130 SY-VLINE NO-GAP, TEXT-010 NO-GAP, 141
 SY-VLINE NO-GAP.

WRITE :/5(137) SY-ULINE.
**
START-OF-SELECTION.

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4) INTO SY-TVAR9
SEPARATED BY '-'.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO CUST_STRU.

 WRITE :/5 SY-VLINE NO-GAP, (5) SY-DBCNT NO-GAP, 11 SY-VLINE NO-GAP,
 CUST_STRU-KUNNR USING NO EDIT MASK NO-GAP, 22 SY-VLINE NO-GAP,
 CUST_STRU-NAME1 NO-GAP, 58 SY-VLINE NO-GAP, CUST_STRU-STRAS
 NO-GAP, 94 SY-VLINE NO-GAP, CUST_STRU-ORT01 NO-GAP, 130 SY-VLINE
 NO-GAP, CUST_STRU-PSTLZ, 141 SY-VLINE NO-GAP.

WRITE :/5(137) SY-ULINE.

ENDSELECT.

Copy the appropriate lines from previous programs. Use transaction code SE32 to copy text symbols from
previous programs. Activate the text symbol.

When executed, the program will generate the output in Figure 5-17.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

224

WRITE Statement: Hands-on Exercise - List of Billing Documents
of a Specified Company Code
Your next hands-on exercise will list or output a few prime fields from the SAP billing documents header table VBRK
for a specified company code. The company code field in the table VBRK is BUKRS. You will input a company code
through a PARAMETERS statement and have a WHERE condition in the SELECT statement to retrieve only the data
for the input company code of the PARAMETERS statement. Recall, the company code in a SAP environment is for a
registered or incorporated company.

In this list, you will want to incorporate the customer name and customer city available in the customer primary
table KNA1. You will create a database view of these tables and access fields from it. You will output the amount field
from table VBRK (i.e., NETWR). The amount in the billing document header can be in different currencies. But you
will convert the different currencies to the operating currency of the company code for which you are producing the
list. You can do this by multiplying the amount field with the exchange rate field in the VBRK table KURRF.

In the list heading, (nonstandard page header) you will output the company code, the name of the company code
and currency of the company code. The name and currency of the company code are available in table T001. (Fields:
BUTXT Data Type CHAR length 25 and WAERS Data Type CUKY length 5).

You can retrieve the fields BUTXT and WAERS for a company code with a SELECT SINGLE... statement.

Figure 5-17. Output of Program YCL_CH05_07_CUST_LIST06 – Boxed Output

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

225

Output - Rough Format
A rough layout of your list:

Output - Fields
On an overall basis, you will have the fields in Table 5-1 in the output.

Table 5-1. List of Fields in the Output

Field Table DDIC Data Type & Length Description Output Area

BUKRS T001 CHAR

04

Company Code Header

BUTXT T001 CHAR

25

Company Code Name Header

WAERS T001 CUKY

05

Company Code Currency Header

SY-DBCNT System Field INT4 For Serial No. Body

VBELN VBRK CHAR

10

Billing Document No. Body

FKDAT VBRK DATS

08

Billing Document Date Body

KUNNR KNA1 CHAR

10

Customer Code Body

NAME1 KNA1 CHAR

35

Customer Name Body

ORT01 KNA1 CHAR

35

Customer City Body

NETWR VBRK CURR

15,2

Billing Document Net Value/Amount in
Document Currency. Multiply this with
the field KURRF and output

Body

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

226

Output Body - Layout
The output body will have the following layout:

Table 5-2. Output Body Layout

Field Name Table Name Description Column Positions

SY-DBCNT System Field Serial No. 005,009 (5)

010

VBELN VBRK Billing Document No. 011,020 (10)

021

FKDAT VBRK Billing Document Date 022,031 (10)

032

KUNNR KNA1 Customer Code 033-042 (10)

043

NAME1 KNA1 Name 044-078 (35)

079

ORT01 KNA1 City 080-114 (35)

115

NETWR VBRK Billing Document Net Value

(Converted to Company Code Currency)

116-132 (17)

The field NETWR (CURR) is output in 17 columns. This includes 3 column positions for commas of billion,
million, thousand; 1 column position for decimal and 1 column position for the sign on the right side. That leaves
you with 12 digit positions: 10 digits before the decimal and 2 digits after the decimal. With 10 digits, you can have a
maximum figure of 9 billion, 999 million, 999 thousand, 999, etc. Good enough for your present context.

Output Data Source – Database View
Create a database view YCL_CH05_VBRKKNA with the tables KNA1 and VBRK. The tables and join conditions

will be like this:

 VBRK
 KNA1 KNA1 MANDT = VBRK MANDT
 KNA1 KUNNR = VBRK KUNAG

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

227

The view fields:

Source Program
The source code for billing document list:

REPORT YCL_CH05_08_BILL_DOCS_LIST LINE-SIZE 135 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

* List of Billing Documents of a Specified Company Code with Total **

* Billing Documents of XXXX/XXXXXXXXXXXXXXXXXXXXXXXXX Curr: XXXXX
* --
* Doc No. Doc Date Customer N a m e C i t y Amount
* Code
* --
* SY-DBCNT 005 - 009 **
* VBELN 011 - 020 **
* FKDAT 022 - 031 **
* KUNNR 033 - 042 **
* NAME1 044 - 078 **
* ORT01 080 - 114 **
* NETWR 116 - 132 **

* database view with tables KNA1 (customer primary) **
* YCL_CH05_VBRKKNA VBRK (billing docs-header) **
* **
* VBRK KNA1 MANDT = VBRK MANDT **
* KNA1 KNA1 KUNNR = VBRK KUNAG **
* **
* View field Table Field **
* **
* MANDT KNA1 MANDT **
* KUNNR KNA1 KUNNR **
* VBELN VBRK VBELN **
* NAME1 KNA1 NAME1 **

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

228

* ORT01 KNA1 ORT01 **
* PSTLZ KNA1 PSTLZ **
* STRAS KNA1 STRAS **
* FKDAT VBRK FKDAT **
* KURRF VBRK KURRF **
* BUKRS VBRK BUKRS **
* NETWR VBRK NETWR **
* **

TABLES: YCL_CH05_VBRKKNA, " creates a local structure having all
 " fields of view YCL_CH05_VBRKKNA
 T001. " local structure with all fields of T001

DATA: STRNG TYPE STRING,
 TOTAL TYPE VBRK-NETWR.

PARAMETERS CCODE TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.
 " the clause VALUE CHECK will check values
 " in the primary table of this foreign key field

TOP-OF-PAGE.

WRITE :/5 STRNG, 129(3) SY-PAGNO. " STRNG - refer CONCATENATE sttement in
 " START-OF-SELECTION
SKIP 1.
WRITE:/5(127) SY-ULINE.
WRITE:/5 TEXT-003,11 TEXT-004, 22 TEXT-005, 33 TEXT-006, 46 TEXT-007,
 83 TEXT-008, 126 TEXT-009.

WRITE:/6 TEXT-010, 35 TEXT-011.
WRITE:/5(127) SY-ULINE.

START-OF-SELECTION.

SELECT SINGLE * FROM T001 WHERE BUKRS = CCODE." fetches a single row, no
 " loop construct SELECT
 " ENDSELECT

CONCATENATE TEXT-001 CCODE '/' T001-BUTXT TEXT-002 T001-WAERS INTO STRNG.

SELECT * FROM YCL_CH05_VBRKKNA WHERE BUKRS = CCODE.
 YCL_CH05_VBRKKNA-NETWR = YCL_CH05_VBRKKNA-NETWR *
 YCL_CH05_VBRKKNA-KURRF.

 WRITE:/5(5) SY-DBCNT, YCL_CH05_VBRKKNA-VBELN, YCL_CH05_VBRKKNA-FKDAT,
 YCL_CH05_VBRKKNA-KUNNR, YCL_CH05_VBRKKNA-NAME1,
 YCL_CH05_VBRKKNA-ORT01, (17) YCL_CH05_VBRKKNA-NETWR.

 TOTAL = TOTAL + YCL_CH05_VBRKKNA-NETWR.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

229

ENDSELECT.

END-OF-SELECTION.
SKIP 1.

WRITE: /(17) TOTAL UNDER YCL_CH05_VBRKKNA-NETWR. " the field TOTAL will
 " be outputted
 " UNDER NETWR. no need
 " to count columns
 " for alignment

Text Symbols
For the nonstandard page header, you require text. Create the text symbols and activate it. It will look like Figure 5-18.

Figure 5-18. Text Symbols - Program YCL_CH05_08_BILL_DOCS_LIST

Source Program– New Features

The • TABLES statement. You declare structured data objects by referring to DDIC objects:
(a) tables, (b) views (any of the four type of views), and (c) structure. The ABAP compiler
checks the entries against existence of DDIC tables/views/structures. If no entries exist with
the name, it is a syntax error. If an entry exists, a structure of this name gets defined in the
program (internal data object); the fields in this structure are the same as the fields in the
corresponding DDIC table/view/structure.

In the present program, you have declared with the TABLES statement two internal data objects:

YCL_CH05_VBRKKNA is reference to a DDIC view. A structure of this name with the
same fields as the DDIC view YCL_CH05_VBRKKNA gets defined in the program. This is
the structure into which you are fetching a row of data repeatedly through the SELECT
statement from the database view. In the earlier programs you defined the structure in the
DATA statement with BEGIN OF... END OF...

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

230

T001 is reference to the DDIC transparent table. A structure with this name gets defined
in the program. This structured internal data object has the same fields as the DDIC T001
table definition.

The DATA statement equivalent of the TABLES statement in this context will be:

DATA : YCL_CH05_VBRKKNA TYPE YCL_CH05_VBRKKNA,
 T001 TYPE T001.

Though this notation throws a compiler warning/s, it works the same way as the TABLES
statement.

The TABLES statement is not supported in an OOP environment and so is not
recommended to be used except with dynpro programming – Chapter 14. The DATA
statement equivalent of the TABLES statement can be used to declare a structured data
object referring to DDIC objects and carrying the same name as the DDIC object.

Let’s continue our discussion of the code:

Note the VALUE CHECK clause in the PARAMETERS statement. You are declaring the
CCODE PARAMETERS prompt variable by referring to the DDIC field BUKRS in the table
VBRK. It is a foreign key field in this table; its check table is T001. At runtime, when you
enter a value in this variable and press F8 (execute), the system checks an entered value
against the primary key values in the table T001. If the entered value does not exist in the
T001 table, an error message is displayed. The program will remain in prompt mode and
will not go into execute mode. This is a simple and effective way of data validation.

You can try by entering invalid values in CCODE and pressing F8.

You must remember that this works only for PARAMETERS variables referring to foreign
key fields.

A search help is attached to the data element BUKRS. The data element BUKRS is assigned to •
the field BUKRS of table VBRK. That is how you are getting the selection list, etc., when you
press F4 on the PARAMETERS variable CCODE.

YCL_CH05_VBRKKNA-NETWR = YCL_CH05_VBRKKNA-NETWR * YCL_CH05_VBRKKNA-•
KURRF.

You are multiplying the field NETWR of structure YCL_CH05_VBRKKNA with the field
KURRF of structure YCL_CH05_VBRKKNA and assigning it back to the field NETWR of
structure YCL_CH05_VBRKKNA. All this is happening in RAM. You are not disturbing
the database tables. You are losing the original value of NETWR in which you are not
interested after the conversion/multiplication.

SELECT SINGLE• ... This is to fetch a single row. You require the name of the company code
and its currency from the table T001 corresponding to the single value of the company code
entered in CCODE. In Table T001, the company code is the primary key (in addition to the
client code MANDT). For a logged-in client, each value of the company code will be unique;
your prior RDBMS exposure is tested.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

231

The event END-OF-SELECTION. This event is triggered when all the statements in the event •
START-OF-SELECTION have been executed. You could have done without this event in
the present context. The idea was to introduce this event. This event is more relevant in the
context of logical databases.

WRITE...UNDER... In the WRITE statement for TOTAL in the END-OF-SELECTION event, you •
have used the clause UNDER YCL_CH05_VBRKKNA-NETWR. It means the output variable
TOTAL is aligned with or under the previously output variable YCL_CH05_VBRKKNA-
NETWR. This is one of the formatting features of a WRITE statement.

When you execute the program, the output will look like that in Figures 5-19 and 5-20.

Figure 5-19. Output of Program YCL_CH05_08_BILL_DOCS_LIST

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

232

The DDIC Data Type DATS field FKDAT when output, has by default a separator character from the master
record. [Here, it is a period (.)] When you output ABAP type D, no separator appears by default.

WRITE Statement: Hands-on Exercise - Getting Part of Output on
a Single Page, Not Splitting between Pages
Scenario:
Consider the customer primary table KNA1. You want to output the following fields from it:

KUNNR Customer Code/Number
NAME1 Name
STRAS Street
ORT01 City
PSTLZ Postal Code
LAND1 Country Code

Suppose, instead of the country code field LAND1, you need to output the country name. The country name is
available in the language dependent text table T005T. The fields of table T005T are:

MANDT Client Code
SPRAS Language Key/Code
LAND1 Country Code
LANDX Country Name

Figure 5-20. Output of Program YCL_CH05_08_BILL_DOCS_LIST Showing TOTAL

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

233

NATIO Nationality
LANDX50 Country Name (Max 50 Characters)
NATIO50 Nationality (Max 50 Characters)
PRQ_SPREGT Super region per country text

So, you need to create a database view to be able to fetch all the required fields from a single data source.
When you create a database view with tables KNA1 and T005T, if you join the two tables with the fields MANDT

(client code) and LAND1, (country code) you will end up fetching country names in all the installed languages.
However, you do not need the country names in all the installed languages.

KNA1 MANDT T005T MANDT
KNA1 LAND1 T005T LAND1

The customer primary table KNA1 also contains the language key or code field SPRAS. This signifies the language
key or code in which the customer communicates. This field is in the Vendor/Supplier primary table LFA1 as well.
An enterprise needs to maintain this information – in what language the business partners (customers and vendors)
communicate.

If you include the SPRAS field in the join condition, you will end up fetching country names in different
languages (i.e., country names will be fetched in the respective language of customers).

KNA1 MANDT T005T MANDT
KNA1 LAND1 T005T LAND1
KNA1 SPRAS T005T SPRAS

On the other hand, if you do not include the SPRAS field in the join condition, but specify a single language key or
code value in the Selection Conditions of the database view, you will be fetching country names in a single language
for all the customers.

Your output requirements will determine which of these options to choose. If you are communicating with the
customers, you will include the language key or code SPRAS in the join condition. If you are producing a list for the
enterprise internal purpose (the enterprise will be operating in a specific language), you can resort to the second of
the options described.

Let it be assumed that your present output is for internal purposes. So create a database view with the tables
KNA1, T005T. Join conditions would include the fields MANDT and LAND1. In the Selection Conditions, include an
equal condition for the SPRAS field:

T005T SPRAS EQ 'E'

Take care to enter the language key or code value in upper case, enclosed in single quotes.
The View Flds tab will look like this:

MANDT KNA1 MANDT
KUNNR KNA1 KUNNR
SPRAS T005T SPRAS
LAND1 T005T LAND1
NAME1 KNA1 NAME1
ORT01 KNA1 ORT01
PSTLZ KNA1 PSTLZ
STRAS KNA1 STRAS
LANDX T005T LANDX

Save, then perform a consistency check; activate and audit the database view.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

234

Strictly, in formal terms you should reach the text table T005T through the country code master table T005 in the
view. In your database view, you have resorted to a shortcut and reached it directly. Your output’s rough format will be:

KUNNR
NAME1
STRAS
ORT01
PSTLZ
LANDX

Each field is output on a separate line, a total of 6 lines for each customer.
Your requirement is that each customer’s information must not split between two pages, with certain fields of a

customer appearing in one page, and remaining fields appearing in the next page:

KUNNR
NAME1
STRAS

--------------------- Page boundary

ORT01
PSTLZ
LANDX

Each customer’s information is output in 6 lines. So if 6 lines are not available on the current page, the system
must automatically go to the next page to output the customer. This is achieved with the RESERVE LINES feature. The
previous output with RESERVE 6 LINES:

--------------------- Page boundary

KUNNR
NAME1
STRAS
ORT01
PSTLZ
LANDX

In the program YCL_CH05_09_RESERVE_LINES, you are implementing this. Source lines of this program:

REPORT YCL_CH05_09_RESERVE_LINES LINE-COUNT 55 LINE-SIZE 50
 NO STANDARD PAGE HEADING.

* Part Of Output Not Splitting Between Pages - RESERVE LINES **

TABLES: YCL_CH05_KNAT5T.

TOP-OF-PAGE.
WRITE:/40 'Page:', (5) SY-PAGNO.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

235

**
START-OF-SELECTION.

SELECT * FROM YCL_CH05_KNAT5T UP TO 1000 ROWS.

 RESERVE 6 LINES. " checks 6 lines are available in the current page
 " if 6 lines available, it outputs
 " else goes to next page and outputs

 WRITE /5: YCL_CH05_KNAT5T-KUNNR USING NO EDIT MASK,
 YCL_CH05_KNAT5T-NAME1,
 YCL_CH05_KNAT5T-STRAS,
 YCL_CH05_KNAT5T-ORT01,
 YCL_CH05_KNAT5T-PSTLZ,
 YCL_CH05_KNAT5T-LANDX.
 SKIP 1.

ENDSELECT.

Execute the program first with RESERVE 6 LINES commented. Next, de-comment the RESERVE 6 LINES
and execute.

The program outputs without RESERVE LINES and with RESERVE LINES would appear like Figure 5-21.

Figure 5-21. Output of Program YCL_CH05_09_RESERVE_LINES – RESERVE 6 LINES Commented

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

236

This requirement of not allowing certain parts of information splitting between pages is a requirement in
business applications.

This was a contrived demonstrative example of the RESERVE <n> LINES feature.

WRITE Statement: Hands-on Exercise - Freeze Columns on the
Left: SET LEFT SCROLL-BOUNDARY
When an output on the screen is wide and horizontal, scrolling is in operation to view the output; sometimes you
want information on the left to be frozen: that is, remain on screen even on scrolling. This is achieved by the feature
SET LEFT SCROLL-BOUNDARY COLUMN <c>. The <c> specifies the absolute column number until which the
information is to be frozen.

Figure 5-22. Output of Program YCL_CH05_09_RESERVE_LINES – RESERVE 6 LINES De-commented

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

237

Let the database view YCL_CH05_KNAT5T be an input again, and let the six fields – KUNNR, NAME1, STRAS,
ORT01, PSTLZ, LANDX be listed in one line along with the serial number (SY-DBCNT). This would make the output
line wide enough to create scope for horizontal scrolling. The output layout:

SY-DBCNT 005,009 (5)
 010
YCL_CH05_KNAT5T-KUNNR 011-020 (10)
 021
YCL_CH05_KNAT5T-NAME1 022-056 (35)
 057
YCL_CH05_KNAT5T-STRAS 058-092 (35)
 093
YCL_CH05_KNAT5T-ORT01 094-128 (35)
 0129
YCL_CH05_KNAT5T-PSTLZ 130-139 (10)
 140
YCL_CH05_KNAT5T-LANDX 141-155 (15)

Let the statement SET LEFT SCROLL-BOUNDARY COLUMN <c> be used to freeze the serial number (SY-DBCNT)
and customer code YCL_CH05_KNAT5T-KUNNR. These two fields reach up to column 20. (Your output starts from
column 5, SY-DBCNT is 5 columns, 1 intermediate blank column between SY-DBCNT and YCL_CH05_KNAT5T-KUNNR,
10 columns for YCL_CH05_KNAT5T-KUNNR, 2 blank columns to make freezing more apparent.) So set the left scroll
boundary to column 22.

The source program of this hands-on:

REPORT YCL_CH05_10_LEFT_SCROLL_BNDRY LINE-SIZE 160.

**
* SET LEFT SCROLL-BOUNDARY COLUMN <c> **
**

TABLES: YCL_CH05_KNAT5T.

**
START-OF-SELECTION.

SELECT * FROM YCL_CH05_KNAT5T.
 SET LEFT SCROLL-BOUNDARY COLUMN 22.
 WRITE:/5(5) SY-DBCNT, YCL_CH05_KNAT5T-KUNNR USING NO EDIT MASK, YCL_CH05_KNAT5T-NAME1,
 YCL_CH05_KNAT5T-STRAS, YCL_CH05_KNAT5T-ORT01, YCL_CH05_KNAT5T-PSTLZ,
 YCL_CH05_KNAT5T-LANDX.
ENDSELECT.

The outputs before and after a horizontal scroll will look like Figure 5-23.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

238

Figure 5-23. Output of Program YCL_CH05_10_LEFT_SCROLL_BNDRY: Pre-scroll

Figure 5-24. Output of Program YCL_CH05_10_LEFT_SCROLL_BNDRY: Post-scroll

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

239

WRITE Statement: Miscellaneous Features, Statements
WRITE Statement - Features
Output Blank Lines with WRITE: By default, blank lines are not output with the WRITE statement (you generated
blank lines with the SKIP statement). If you want blank lines to be output with the WRITE statement, you need to give
the following SET statement:

SET BLANK LINES ON.

By default, BLANK LINES is OFF.
Output Icons: There are more than 1100 icons in the SAP GUI environment. The definitions and particulars of

these icons are stored in the SAP table ICON. Icons are identified by names such as ICON_CREATE, ICON_CHANGE,
ICON_DISPKAY... et al. The icon definitions and particulars are also stored in the DDIC TYPE GROUP ICON. So
a program in which icons are to be output with a WRITE statement, the statement TYPE-POOLS ICON should be
included. Icons can be output with the WRITE statement in the following manner:

TYPE-POOLS ICON.
...

WRITE <icon name> AS ICON.

Output Symbols: The symbol definitions and particulars are stored in the DDIC TYPE GROUP SYM. So a program
in which symbols are to be output with the WRITE statement, the statement TYPE-POOLS SYM should be included.
Icons can be output with the WRITE statement in the following manner:

TYPE-POOLS SYM.
...

WRITE <symbol name> AS SYMBOL.

Output HOTSPOTS: You can output fields and lines in the WRITE statement as HOTSPOTS. When you output
fields and lines as a HOTSPOT, when the mouse pointer is positioned on these fields and lines, a hand symbol will
appear as a mouse pointer instead of the normal mouse pointer. A HOTSPOT can be set to for instance, COLOR, with
the FORMAT statement or at the individual field level of the WRITE statement:

FORMAT HOTSPOT. "no specification: ON"
FORMAT HOTSPOT OFF.

WRITE XXX HOTSPOT.

HOTSPOT has significance in the context of Interactive Lists; see Chapter 10.
Output CHECKBOX: You can output the enable/disable check box with a WRITE statement. This has meaning

and significance in Interactive lists in Chapter 10. The variable associated with the checkbox can be any. If it is
number oriented (TYPE D, F, I, N, P, T, X, XSTRING), it will store 0 for disabled and 1 for enabled. For character
oriented data (TYPE C, STRING), it will store X for enabled and SPACE for disabled. You should preferably declare a
check box variable as TYPE C and length 1.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

240

The program YCL_CH05_11_MISC is implementing these miscellaneous features. Source lines of this program:

REPORT YCL_CH05_11_MISC.

* WRITE STATEMENT - MISCELLANEOUS FEATURES **

TYPE-POOLS: ICON, "TYPE GROUP for icon definitions
 SYM. "TYPE GROUP for symbol definitions

DATA CBOX(1) TYPE C. "for check box

START-OF-SELECTION.

*********** outputting blank lines ************************
SET BLANK LINES ON. "blank lines outputted on with this setting
SKIP 2.

WRITE:/10(25) ' ' INTENSIFIED ON COLOR COL_TOTAL.
WRITE:/10(25) ' ' INTENSIFIED ON COLOR COL_KEY.
WRITE:/10(25) ' ' INTENSIFIED ON COLOR COL_POSITIVE.
WRITE:/10(25) ' ' INTENSIFIED ON COLOR COL_NEGATIVE.
WRITE:/10(25) ' ' INTENSIFIED ON COLOR COL_GROUP.

*********** output icons ***********************************
SKIP 1.
WRITE: /10 'ICON_SYSTEM_SAVE', ICON_SYSTEM_SAVE AS ICON,
 /10 'ICON_CHECK ', ICON_CHECK AS ICON.

*********** output symbols *********************************
SKIP 1.
WRITE: /10 'SYM_FOLDER ', SYM_FOLDER AS SYMBOL,
 /10 'SYM_DOCUMENTS ', SYM_DOCUMENTS AS SYMBOL.
*********** output HOTSPOT *********************************
SKIP 1.

 " HOTSPOT like COLOR can be specified with
 " (1) FORMAT statement like
 " FORMAT HOTSPOT = <ON/OFF>. subsequent output will support
 " HOTSPOT
 "
 " (2) it can be specified in a field of WRITE statement like
 " WRITE XXX HOTSPOT.

WRITE /10: 'This is HOTSPOT output' HOTSPOT,
 'This is NORMAL output '.
*********** output check box *********************************
SKIP 1.
 " checkbox variable to be TYPE C, preferable length 1
 " can assume only two values i.e. X when enabled
 " SPACE when disabled

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

241

 " if number oriented TYPE D, F, I, N, P, T, X: values 1 when enabled
 " 0 when disabled

WRITE: /10 'Check Box:', CBOX AS CHECKBOX. " this phrase AS CHECKBOX
 " to make output check box

When the program is executed, the output will look like Figure 5-15.

SET COUNTRY <c>.

Figure 5-25. Output of Program YCL_CH05_11_MISC

The table T005X contains output settings for countries. There are two output settings in this table: one for
period/decimal (.) and comma (,) and the other for date. For the country code ‘DE’, Germany, they use a comma (,) to
separate the integer and fraction parts of a number [where you use a period/decimal (.). They use a period/decimal (.)
as a thousand separator [where you use a comma (,)]. If this statement is given, the output for numeric data and date
will appear as per the entry of that country code in table T005X.

WRITE Statement – Associated Statements
NEW-PAGE: This statement is used to skip to a new page. You will deal with this in detail in Chapter 10, entitled
‘Interactive Lists’.

NEW_LINE: To start a new line.
ULINE: To output horizontal lines, it is an alternative to WRITE SY-ULINE, etc. The horizontal line generated with

ULINE statement will always start from a new line.

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

242

POSITION <column>: (absolute horizontal positioning) this is another way to start output from a specified
column. The system field SY-COLNO is set to the <column> value after this statement. The system field SY-COLNO
contains the current column number.

SKIP TO <line no>: (Absolute vertical positioning) This statement will skip to the absolute <line no>. The
system field SY-LINNO is set to this value. The system field SY-LINNO contains the current line number. The SKIP
statement skips line/s forward relative to current line number. The line number starts from 1 up to a maximum of
value in SY-LINCT.

BACK: If this statement is given in the START-OF-SELECTION event, not following a RESERVE statement, it
positions to the line after the header (i.e., the first line of the list body).

If this statement is given in the TOP-OF-PAGE event, the positioning is under the standard header.
If this statement is given in the START-OF-SELECTION event following a RESERVE statement, it positions to the

first line after the RESERVE.

Output Formatting Options
Default Output Format of ABAP Predefined Elementary Types are shown in Table 5-3.

Table 5-3. Default Output Format of ABAP Predefined Elementary Types

Data Type Output Length Positioning Remarks

C Field Length Left-Justified Data Movement From Left To Right

D 8 Columns Left-Justified Data Movement From Left To Right

F 22 Columns

Including Sign

Right-Justified Data Movement From Right To Left

I 11 Columns

Including Sign

Right-Justified Data Movement From Right To Left

N Field Length Left-Justified Data Movement From Left To Right

P 2 * Field Length

In Bytes + 1 Including Sign

Right-Justified Data Movement From Right

To Left

T 6 Columns Left-Justified Data Movement From Left To Right

X 2 * Field Length

In Bytes

Left-Justified Data Movement From Left To Right

STRING Length Of Data Left-Justified Data Movement From Left To Right

XSTRING 2 * Length Of Data In Bytes Left-Justified Data Movement From Left To Right

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

243

Table 5-4. Output Formatting Options for All Types

Formatting Option Description

LEFT-JUSTIFIED Output LEFT-JUSTIFIED

If By Default Output Is RIGHT-JUSTIFIED,

Requirement Is LEFT-JUSTIFIED

CENTERD Output CENTERED

RIGHT-JUSTIFIED Output RIGHT-JUSTIFIED.

If By Default Output Is LEFT-JUSTIFIED,

Requirement Is RIGHT-JUSTIFIED

UNDER <field> Output Aligned With , Under Previously Output Field <field>

NO-GAP The Default Blank Generated Between Two Fields Suppressed

USING EDIT MASK <mask> Output Using The Format Template <mask>.

Will be elaborated in Chapter 7.

USING NO EDIT MASK Suppresses DDIC Format Template When Output. Will be further elaborated in
Chapter 7.

NO-ZERO Zeroes Are Replaced By Blanks In The Output. In TYPE C, N Fields, The Leading
Zeroes Are Replaced By Blanks

Table 5-5. Output Formatting Options for Numeric Types – F, I, P

Formatting Option Description

NO-SIGN Sign Is Not Output

DECIMALS <d> The Number Of Decimals To Appear In The Output

EXPONENT <e> For TYPE F, The Exponent Is Defined In <e>

Normalize mantissa as per this value

ROUND <r> For TYPE P, Multiplication Is Done By

(10** -<r>) And Then Rounding Is Performed

CURRENCY <c> Format AS Per The Entry Of Currency <c> In Table TCURX

UNIT <u> The Number Of Decimal Places In The Output Is Fixed According To The Unit <u> In in
Table T006 For Type P

Output Formatting Options available For ABAP Predefined Elementary Types:

Try out LEFT-JUSTIFIED, RIGHT-JUSTIFIED, CENTERED, and NO-ZERO as exercises.
Output Formatting Options available For Numeric ABAP Predefined Elementary Types: (TYPE F, I, P).

CHAPTER 5 ■ WRITE STATEMENT (CLASSICAL REPORTING)

244

Try out each one of these as exercises. For CURRENCY <c>, you should make the figure a whole number before
it is output. In most SAP functional area tables, the amount fields (DDIC TYPE CURR: field NETWR in table VBRK)
contain two digits after the decimal. For instance, suppose you want to output an amount figure as per Kuwaiti
Dinar currency, with three digits after the decimal. You will multiply the DDIC TYPE CURR with 1000 or 10 to the
power of the number of decimal digits in the currency you want to output and then output it. The following code
communicates this description:

DATA: NETWR TYPE VBRK-NETWR VALUE
 '123456.78', " VBRK-NETWR has two digits after decimal
 AMT(5) TYPE P . " in TYPE P, by default no of decimals is 0

AMT = NETWR * 1000.

WRITE AMT CURRENCY 'KUD'. " Kuwaiti currency code, has entry in TCURX

This will generate the following output (three decimals digits as per ‘KUD’ record in table TCURX):

123456.780

Output Formatting Options available For ABAP Predefined Elementary Type D:

Table 5-6. Output Formatting Options for Type D

Formatting Option Description

DD/MM/YY Separator Character As Defined In User’s Master Record

MM/DD/YY Separator Character As Defined In User’s Master Record

DD/MM/YYYY Separator Character As Defined In User’s Master Record

MM/DD/YYYY Separator Character As Defined In User’s Master Record

MMDDYY No Separator Character

DDMMYY No Separator Character

YYMMDD No Separator Character

For ABAP predefined elementary TYPE D, you have used the CONCATENATE statement to format output in a
much more flexible manner.

Conclusion
These are the major features of the WRITE statement used to generate classical lists (outputs). This is not all as there
are ‘Interactive Lists’ in Chapter 10, also using the WRITE statement. In every other chapter, whenever you want to
visually see the results of your operations, you will resort to the WRITE statement to produce them.

Chapters 12 and 13 will cover the deployment of OOP built-in classes to produce outputs - ALV reports (Lists).

245

CHAPTER 6

Internal Tables

Internal tables are complex data objects distinct from elementary data objects in an ABAP program. The earlier
complex data objects covered were structures. An internal table is what is called a structured array in other platforms.
Like its name suggests, it can store multiple rows of data, and it can grow and shrink dynamically during program
execution. It exists only during the program’s execution. An internal table can be a structured array or a simple array.
Most often, it would be a structured array. In the SAP R/3 client server architecture, data will be retrieved and loaded
from the database tables in large chunks into the internal tables (application server RAM) and processed from these
internal tables. The database server should not be burdened with application processing. The database services are to
be requisitioned selectively and infrequently for data maintenance, management, and retrieval. That is why retrieval
of large chunks of data is preferred instead of frequent retrieval of small amounts of data; all of this is for better
performance. The internal tables fit into this scenario.

The internal tables can be declared in many different ways, and the number of operations you can perform on the
internal tables are a lot more compared to the structured arrays of the other platforms.

The internal tables are sometimes referred to as just “tables,” but this should not cause confusion. The context
will make it apparent that when the word “table” is used, the reference is to an internal table.

In this chapter, the internal table types and declarations are covered. You will learn the different ways to fill or
load internal tables, how to process internal table data sequentially, and how to retrieve a row randomly. You will
further learn how to change or update existing data in internal tables and how to delete data in internal tables. The
use of internal tables to generate a multilevel summary is explained. The chapter concludes with statements to derive
internal table attributes and initialize internal tables.

You will also know how to create and use the DDIC objects structure and Table type.

DDIC Object: Structure
You will be creating a DDIC structure first. Its usage is subsequently required in this chapter.

You can maintain DDIC structure through the third radio button on the SE11 ABAP Dictionary opening screen:
the same radio button you used to maintain data elements. A third DDIC object the Table type is also maintained through
this radio button. A DDIC structure or simply a structure, like its name suggests, is a bare definition. Unlike the
DDIC table definition, this does not create any definition in the database metadata on activation. So it cannot be
populated with any data.

It serves the purpose of being used in DDIC table definitions and other DDIC structures, Table type definitions,
and referenced in ABAP programs.

You can check this out (DDIC structure used in DDIC table definitions) in the customer primary table KNA1.
When you scroll down the fields in the KNA1 table, you will see the ‘.INCLUDE’ as a field name under the column
‘Field’ and ‘SI_KNA1’ under the column ‘Data element’ (double-click on ‘SI_KNA1’ and view this structure). This
is an instance of fields from a DDIC structure incorporated in a DDIC table definition. The incorporated fields
appear in a blue color against the local fields (fields defined in the table definition) appearing in black. Through
this concept of incorporating structure fields into a table definition, SAP customers can incorporate their own fields

CHAPTER 6 ■ INTERNAL TABLES

246

into SAP delivered tables. When SAP customers incorporate such fields into SAP delivered tables, it is an instance
of enhancement (i.e., enhancement of SAP delivered objects). Like tables, most SAP delivered objects in the ABAP
Workbench environment can be enhanced. However, enhancements are not covered in this book.

DDIC structure definitions are assigned to DDIC Table type (internal table) definitions. This will be apparent in
the forthcoming topic ‘Create DDIC Internal Table Type’ of this chapter.

A DDIC structure definition is very similar to a DDIC table definition. A DDIC structure has no Delivery and
Maintenance tab, and no Technical Settings button – these two relate to data. The DDIC structure definition can have
search help attached to fields, have foreign key fields, and reference table and reference field columns for currency
quantity fields.

Apart from being used in other tables, structure definitions and Table type definitions, a DDIC structure can be
referenced to declare internal data objects in the ABAP programs. The SAP functional module entity data normally
resides in multiple tables. The fields of the multiple tables can be included in one composite DDIC structure
definition. This composite structure can be used to declare structured data in ABAP programs. This facilitates screen
programming involving multiple tables and multiple screens.

Let’s create a DDIC structure YCL_CH06_CUST_STRU consisting of the following customer data fields:

The entered fields with the data elements will appear as shown in Figure 6-1.

Figure 6-1. DDIC Object Structure YCL_CH06_CUST_STRU

You can use some other field names, but it is good practice to stick to the SAP standard names. The standard data
elements have been assigned to these structure fields.

Set Enhancement Category to Cannot Be Enhanced, perform a consistency check, and activate the structure.
You have now created a DDIC structure.

CHAPTER 6 ■ INTERNAL TABLES

247

Internal Tables Declarations
You have two broad ways of declaring internal tables. First, the way internal tables were declared until SAP R/3
version 3.X (i.e., version 3 and all its subversions) and the way internal tables are declared from SAP R/3 version 4.0
onward. You will call the internal table declarations in the 3.X mode and 4.x mode of declaration. You are advised
to use the 4.X mode of internal table declaration. In fact, within the ABAP OOPS environment (class definitions
and implementations), the 3.X mode of internal table declaration is not supported. The 3.X mode of internal table
declaration will be introduced first, so that you are exposed to it. You will then switch over to the 4.X mode of
declaration and use the 4.X mode of declaration throughout the rest of the book.

Internal Tables – 3.X Mode of Declarations
The internal tables declared in 3.X mode are called the standard tables. What follows are different ways of declaring
internal tables in 3.x mode. The roman numerals signify this.

Declaring the Internal Table and Structure Together

The simplest way of declaring an internal table in 3.X mode:

DATA: BEGIN OF <internal table name> OCCURS <number>,
 <field1>.........,
 <field2>.........,

 END OF <internal table name>.

OCCURS <number>: The above declaration is somewhat like the way you declared structures in your programs
until now, except that there is the addition OCCURS <number>. This addition is what makes it an internal table.
The word ‘OCCURS’ is a reserved keyword. The <number> can be any small integer value, even zero. The <number>
will determine the initial RAM allocation when the program starts execution. The internal table, of course, grows
dynamically. The <number> also determines the incremental block of RAM allocated every time the internal
table grows.

Two Data Objects with the Same Name: The declaration made above creates two data objects of the same name
(i) a structure and (ii) an internal table. With two data objects with the same name, the issue of ambiguity arises.
When a reference is made with this name, how do you know whether this is a reference to the internal table data
object or to the structured data object? Most of the time, the system will resolve this ambiguity by context (i.e., certain
ABAP statements operate only on the internal table while certain statements operate only on the structure). When
statements are common to both types of data objects, you should add brackets ([]) after the data object name if you
mean to refer to the internal table data object. A name without the brackets refers to the structure.

Example:

DATA: BEGIN OF CUSTOMER_TAB OCCURS 5,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 END OF CUSTOMER_TAB.

This declaration creates an internal table and a structure using the same name: CUSTOMER_TAB.

CHAPTER 6 ■ INTERNAL TABLES

248

You Declare an Internal Table by Referring to a Local/Global Structured TYPE or
Local/Global Structure

(a global structure includes a database table and all kinds of views).

DATA <internal table name> {TYPE|LIKE} <structure name> OCCURS <number>.

<structure name> is either

a. A structured TYPE declared locally with the TYPES key word. The key word TYPE not
LIKE should be used when referring to it.

Example:

* Internal table declared by referring to
* a local structure TYPE
TYPES: BEGIN OF CUSTOMER_STRU_TYPE,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 END OF CUSTOMER_STRU_TYPE.

DATA: CUSTOMER_TAB TYPE CUSTOMER_STRU_TYPE OCCURS 5.

b. A structured TYPE declared in the DDIC object Type Group. The key word TYPE not
LIKE should be used when referring to it.

Example:

* Internal table declared by referring to
* a DDIC structure TYPE in Type Group

TYPE-POOLS YCLG1.
DATA: CUSTOMER_TAB TYPE YCLG1_CUSTOMER_TYPE OCCURS 5.

A TYPE YCLG1_CUSTOMER_TYPE has been created in the Type Group YCLG1 as shown in Figure 6-2.

CHAPTER 6 ■ INTERNAL TABLES

249

Figure 6-2. {TYPE YCLG1_CUSTOMER_TYPE in Type Group YCLG1 [highlighted]

 c. A structure declared locally. The key word LIKE, not TYPE, should be used when referring to it.

Example:

* Internal table declared by referring to
* a local structure
DATA: BEGIN OF CUSTOMER_STRU,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 END OF CUSTOMER_STRU.

DATA: CUSTOMER_TAB LIKE CUSTOMER_STRU OCCURS 5.

Next let’s look at a structure created in a DDIC data type or a database table or a view. The key words TYPE or
LIKE can be used when referring to it.

Examples:

* Internal table declared by referring to
* a DDIC structure
DATA: CUSTOMER_TAB TYPE YCL_CH06_CUST_STRU OCCURS 5.

A DDIC type structure YCL_CH06_CUST_STRU is shown in Figure 6-3.

* Internal table declared by referring to
* a DDIC table definition
DATA: CUSTOMER_TAB TYPE KNA1 OCCURS 5.

CHAPTER 6 ■ INTERNAL TABLES

250

* Internal table declared by referring to
* a DDIC view
DATA: CUSTOMER_TAB TYPE YCL_CH05_VBRKKNA OCCURS 5.

Figure 6-3. DDIC Structure YCL_CH06_CUST_STRU

Declaring Both an Internal Table and a Structure by Referring to a Structured
Local/Global TYPE or Local/Global Structure

(global structure includes a database table and all kinds of views)
All considerations of II apply here except that you are creating two data objects of the same name (i) an internal

table and (ii) a structure:

DATA <internal table name> {TYPE|LIKE} <structure name> OCCURS <number>
WITH HEADER LINE.

WITH HEADER LINE is a reserved key phrase. The addition of this phrase creates a structure. A declaration
without this phrase as in II creates only an internal table. The ambiguity issue is resolved in the same way as in I.

Examples:
You could add the phrase WITH HEADER LINE to the examples of II and derive examples for this mode of

internal table declaration.

Declaring Nonstructured Internal Tables (Simple Arrays)

The nonstructured internal tables can be declared by referring to elementary data type (local/global), data object
(local/global), and data element.

Examples:

* non-structure internal table referring to local TYPE
TYPES STR_TYPE(10) TYPE C.
DATA STR_TAB TYPE STR_TYPE OCCURS 5 WITH HEADER LINE.

* non-structure Internal table declared by referring to
* a DDIC structure TYPE field in Type Group

CHAPTER 6 ■ INTERNAL TABLES

251

TYPE-POOLS YCLG1.
DATA: STR_TAB TYPE YCLG1_CUSTOMER_TYPE-KUNNR OCCURS 5.

* non-structure internal table referring to local data object
DATA: STRNG(10) TYPE C,
 STR_TAB LIKE STRNG OCCURS 5.

* non-structure internal table referring to global data object
DATA: STR_TAB LIKE KNA1-KUNNR OCCURS 5 WITH HEADER LINE.

* non-structure internal table referring to DDIC data element
DATA: STR_TAB TYPE KUNNR OCCURS 5. " KUNNR is data element

Declaring a Structure by Referring to an Internal Table

Example:

* a structure declaration by referring to
* an internal table
TYPES: BEGIN OF CUSTOMER_STRU_TYPE,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 END OF CUSTOMER_STRU_TYPE.
DATA: CUSTOMER_TAB TYPE CUSTOMER_STRU_TYPE OCCURS 5,
CUSTOMER_STRU LIKE LINE OF CUSTOMER_TAB.

CUSTOMER_STRU is declared by referring to the internal table CUSTOMER_TAB. The phrase LIKE LINE OF
here means LIKE the structure of internal table. The declared structure will have the same fields as the internal
table structure.

The structures used with internal tables are often referred to as work areas. A structure with the same name as an
internal table is often referred to as a header line.

Hands-On Exercise: List of Billing Documents of a Specified
Company Code
You will repeat the exercise of Chapter 5 that used the SELECT...ENDSELECT loop with the view YCL_CH05_VBRKKNA.
This view contains fields from the tables KNA1 and VBRK. Now, you will load date from this view into an internal
table and process from the internal table.

You will declare an internal table with the notation BEGIN OF...OCCURS... END OF.... (Internal table and
structure are created with this declaration). You will load this internal table with data from the view with a variation
of the SELECT statement. As you are not fetching one row at a time from the view, this will not be a looping repetitive
construct of the SELECT statement.

Once the internal table is loaded with data, you have to fetch data row by row from the internal table into a
structure and output it from structure fields using the WRITE statement.

The process of loading an internal table from a database table/view and processing it row by row from the
internal table into a structure is represented in Figure 6-4.

CHAPTER 6 ■ INTERNAL TABLES

252

An internal table construct LOOP AT...ENDLOOP somewhat a parallel to the SELECT...ENDSELECT is available
for a row by row processing. A simple syntax of this internal table construct is like:

LOOP AT <internal table name> into <structure name>.
 <statement block>
ENDLOOP.

Your output body will have the layout in Table 6-1 (from Chapter 5).

Database

Table/View

Internal Table

Structure

Loaded

Internal

Table

SELECT...... INTRO TABLE...

to load internal table

LOOP AT.. ENDLOOP. to process

Figure 6-4. Load Internal Table from Database Table/View & Process in LOOP..ENDLOOP Construct

Table 6-1. Output Body Layout

Field Name Table Name Description Column Positions

SY-TABIX System Field Serial No. 005,009 (5)

010

VBELN VBRK Billing Document No. 011,020 (10)

021

FKDAT VBRK Billing Document Date 022,031 (10)

032

KUNNR KNA1 Customer Code 033-042 (10)

043

NAME1 KNA1 Name 044-078 (35)

079

ORT01 KNA1 City 080-114 (35)

115

NETWR VBRK Billing Document Net Value

(Converted to Company Code Currency)

116-132 (17)

CHAPTER 6 ■ INTERNAL TABLES

253

You have declared the internal table with only the required fields: that is, the fields appearing in the output and
the field KURRF (exchange rate) to convert all amounts to the operating currency of the company code. You don’t
need the field BUKRS (company code) from the view, though you are specifying it in the WHERE condition of the
SELECT statement.

The data is transferred from view to internal table with the SELECT statement variation. You are using the key
phrase INTO TABLE and specifying the internal table name next.

The LOOP AT statement fetches one row at a time from the internal table into the structure starting from the first
row, then the second row overwriting the existing contents of the structure, and so on until all the rows have been
fetched from the internal table. When all rows are fetched, the control will fall to the statement next to the ENDLOOP
statement if any, or else it will exit the program. There are few variations in the LOOP AT statement. You can specify a
WHERE condition and you can specify a starting row to fetch from and an ending row to conclude the fetching. You
need not fetch a row into a structure as you can directly refer to the data in a row.

When the internal table name and the destination structure name (following the INTO key word) are the
same, the INTO <destination/structure name> can be dropped and the destination is implicit. Inside classes this
implicitness is disallowed. And it is a good practice to mention the destination explicitly.

The order of the fields in the SELECT statement and the internal table structure must be identical. The internal
table structure must not contain any other fields. Each of the fields in the table structure must be identical to the
corresponding field in the SELECT statement <result> in terms of type, length, etc.

You were using in your Chapter 5 program the system field SY-DBCNT in the SELECT...ENDSELECT loop. This
contained the current number of the row of data fetched. You can no longer use this. You are now processing row by
row from an internal table in a LOOP...ENDLOOP construct. In your present program, you are loading the internal
table from the view in one go. The system field SY-DBCNT after the SELECT...INTO TABLE...has been executed will
contain the total number of rows loaded into the internal table.

You need a serial number for the list. You can always declare a numeric data object (type I, N, P) and increment it
before the WRITE statement and output it, but you have a system field relating to internal table operations parallel to
the SY-DBCNT. This is the system field SY-TABIX. Within the LOOP...ENDLOOP construct, it contains the number of
the row fetched. So you can use this to output the serial number. The system field SY-TABIX is of type I.

Copy and activate the text symbols from the Chapter 5 program into the current program using the transaction
code SE32.

The rest of the code is same as in Chapter 5. The source code for generating the Billing Document list using an
internal table:

REPORT YCL_CH06_ITAB01 LINE-SIZE 135 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

* List of Billing Documents of a Specified Company Code with Total **

* declare internal table in 3.X mode:BEGIN OF <itab> OCCURS <n>. **
* .. **
* END OF ,itab> **
* **
* PARAMETERS CCODE TYPE VBRK-BUKRS VALUE CHECK DEFAULT 3000 **
* to select company code **
* **
* get BUTXT WAERS from T001 - SELECT SINGLE etc. **
* **
* load the internal table from the view YCL_CH05_VBRKKNA **
* with SELECT <fields> from YCL_CH05_VBRKKNA INTO TABLE <itab> **
* WHERE BUKRS = CCODE. **
* **

CHAPTER 6 ■ INTERNAL TABLES

254

* set LOOP AT <itab> into <itab>. **
* calculate amount in operating currency of chosen CCODE **
* WRITE... **
* build total **
* ENDLOOP. **
* **
* output total **
* **

TABLES: T001. " local structure with all fields of T001

DATA: BEGIN OF BILL_DOCS_TAB OCCURS 5,
 VBELN TYPE YCL_CH05_VBRKKNA-VBELN,
 FKDAT TYPE YCL_CH05_VBRKKNA-FKDAT,
 KUNNR TYPE YCL_CH05_VBRKKNA-KUNNR,
 NAME1 TYPE YCL_CH05_VBRKKNA-NAME1,
 ORT01 TYPE YCL_CH05_VBRKKNA-ORT01,
 NETWR TYPE YCL_CH05_VBRKKNA-NETWR,
 KURRF TYPE YCL_CH05_VBRKKNA-KURRF,
 END OF BILL_DOCS_TAB,

 STRNG TYPE STRING,
 TOTAL TYPE VBRK-NETWR.

PARAMETERS CCODE TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.
 " the clause VALUE CHECK will check values
 " in the primary table of this foreign key field
**
TOP-OF-PAGE.

WRITE :/5 STRNG, 129(3) SY-PAGNO. " STRNG - refer CONCATENATE statement in
 " START-OF-SELECTION
SKIP 1.
WRITE:/5(127) SY-ULINE.
WRITE:/5 TEXT-003,11 TEXT-004, 22 TEXT-005, 33 TEXT-006, 46 TEXT-007,
 83 TEXT-008, 126 TEXT-009.

WRITE:/6 TEXT-010, 35 TEXT-011.
WRITE:/5(127) SY-ULINE.

**
START-OF-SELECTION.

SELECT SINGLE * FROM T001 WHERE BUKRS = CCODE." fetches a single row, no
 " loop construct SELECT
 " ENDSELECT

CONCATENATE TEXT-001 CCODE '/' T001-BUTXT TEXT-002 T001-WAERS INTO STRNG.

CHAPTER 6 ■ INTERNAL TABLES

255

SELECT VBELN FKDAT KUNNR NAME1 ORT01 NETWR KURRF FROM
 YCL_CH05_VBRKKNA INTO " dumps filtered full data from
 TABLE BILL_DOCS_TAB " view into the internal table
 WHERE BUKRS = CCODE.

**
LOOP AT BILL_DOCS_TAB INTO BILL_DOCS_TAB.

 BILL_DOCS_TAB-NETWR = BILL_DOCS_TAB-NETWR * BILL_DOCS_TAB-KURRF.

 WRITE:/5(5) SY-TABIX, BILL_DOCS_TAB-VBELN, BILL_DOCS_TAB-FKDAT,
 BILL_DOCS_TAB-KUNNR, BILL_DOCS_TAB-NAME1,
 BILL_DOCS_TAB-ORT01, (17) BILL_DOCS_TAB-NETWR.

 TOTAL = TOTAL + BILL_DOCS_TAB-NETWR.

ENDLOOP.

END-OF-SELECTION.
SKIP 1.

WRITE: /(17) TOTAL UNDER BILL_DOCS_TAB-NETWR. " the field TOTAL will
 " be output
 " UNDER NETWR.

The outputs will look like Figures 6-5 and 6-6.

Figure 6-5. Output of Program YCL_CH06_ITAB01

CHAPTER 6 ■ INTERNAL TABLES

256

Hands-On Exercise: Customer Code Wise List of Billing
Documents of a Specified Company Code with Totals for Every
Customer and a Grand Total
Let a hands-on exercise be performed with a different mode of internal table declaration. The preceding hands-on
exercise is being tweaked a bit. This hands-on exercise will use as input, the same database view as the preceding one.

You will again produce a billing document list. But the billing documents list will be ordered. All business
application lists or reports are ordered: data is never presented in a random fashion. Let the billing document list be
produced customer wise, so all the billing documents of a customer will be bunched together. You will implement this
by operating the sort statement on the internal table.

You are adding two more fields (of VBRK table) to the output list. The additional fields will be:

VBRK-BSTNK_VF Customer Purchase Order No
VBRK-MWSBK Tax Amount in Doc. Currency

You will also output totals of fields NETWR and MWSBK for each customer, and finally grand totals for
these fields.

Figure 6-6. Output of Program YCL_CH06_ITAB01 – Grand Total

CHAPTER 6 ■ INTERNAL TABLES

257

You can either create a new database view with these additional fields incorporated or add these two fields to
the existing database view YCL_CH05_VBRKKNA. Since you are building totals to output them, you will convert the
billing document amounts (net value & tax) into the operating currency of the company code. A rough layout of
your output:

Study this layout carefully. You have planned to have all the billing documents of a customer bunched in the
output. So you need not output customer info in the regular output body as columns with column headings: the
same values will repeat again and again. The customer information (KUNNR, NAME1) is planned to be output as a
subheading. The data in the internal table is sorted in ascending order of the field KUNNR. You should build the logic
in a way that when a customer changes, output the total for the previous customer, next output the code and name of
the current customer; then the billing documents for the current customer will follow as the list body.

The serial number is not a running serial number; it is a serial number of a billing document for a customer.
For every customer, it will commence from 1. Hence a variable CNT (type I) is declared. The variable CNT is
incremented before the WRITE statement of a billing document and initialized before output for the next customer
starts (SY-TABIX will not serve this present context).

CHAPTER 6 ■ INTERNAL TABLES

258

The list body layout:

Create, perform syntax check and activate the program. Create and activate the text symbols. The source code to
generate the output:

REPORT YCL_CH06_ITAB02 LINE-SIZE 105 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* Customer Wise List of Billing Documents of a Specified Company Code **
**

* declare internal table in 3.X mode: **
* <itab> TYPE <database view name> OCCURS <n>. **
* **
* declare structure <structure name> TYPE <database view name>. **
* **
* PARAMETERS CCODE TYPE VBRK-BUKRS VALUE CHECK DEFAULT 3000 **
* to select company code **
* **
* get BUTXT WAERS from T001 - SELECT SINGLE etc. **
* **
* load the internal table from the view YCL_CH05_VBRKKNA **
* with SELECT * from YCL_CH05_VBRKKNA INTO TABLE <itab> **
* WHERE BUKRS = CCODE. **
* **
* SORT <itab> BY KUNNR ASCENDING **
* **
* set LOOP AT <itab> into <structure name>. **
* **

Table 6-2. Output Body Layout

Field Name Table Name Description Column Positions

CNT Program Field Serial No. 005,009 (5)

010

VBELN VBRK Billing Document No. 011,020 (10)

021

FKDAT VBRK Billing Document Date 022,031 (10)

032

BSTNK_VF VBRK Customer Purchase Order No. 033–067 (35)

068

NETWR VBRK Billing Document Net Value

(Converted to Company Code Currency)

069–085 (17)

086

MWSBK VBRK Tax (Converted to Company Code Currency) 087–100 (14)

CHAPTER 6 ■ INTERNAL TABLES

259

* check for customer change. if change output totals for **
* previous customer, output current customer info **
* **
* calculate amount in operating currency of chosen CCODE **
* **
* WRITE... **
* **
* build customer totals, grand totals **
* **
* ENDLOOP. **
* **
* output customer total, grand total **
* **

TABLES: T001.

DATA: BILL_DOCS_TAB TYPE YCL_CH05_VBRKKNA OCCURS 5, " reference to view
 BILL_DOCS_STRU TYPE YCL_CH05_VBRKKNA, " reference to view
 CNT TYPE I, "count of billing docs of a customer
 PREV_KUNNR TYPE KNA1-KUNNR, " previous KUNNR
 CTOTAL TYPE VBRK-NETWR, " customer net value total
 CTAX_TOTAL TYPE VBRK-MWSBK, " customer tax total
 GTOTAL TYPE VBRK-NETWR, " grand net value total
 GTAX_TOTAL TYPE VBRK-MWSBK. " grand tax total

PARAMETERS CCODE TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.
**
TOP-OF-PAGE.

WRITE :/5 TEXT-001, CCODE NO-GAP, '/' NO-GAP, T001-BUTXT,
 93 TEXT-003, 98(3) SY-PAGNO.
WRITE :/33 TEXT-002, T001-WAERS.
SKIP 1.
WRITE:/5(96) SY-ULINE.

WRITE:/5 TEXT-004,11 TEXT-005, 22 TEXT-006, 33 TEXT-007,
 79 TEXT-008, 91 TEXT-009.
WRITE:/6 TEXT-010, 34 TEXT-011.

WRITE:/5(96) SY-ULINE.

**
START-OF-SELECTION.

SELECT SINGLE * FROM T001 WHERE BUKRS = CCODE." fetches a single row, no
 " loop construct SELECT
 " ENDSELECT

SELECT * FROM
 YCL_CH05_VBRKKNA INTO " dumps filtered full data from
 TABLE BILL_DOCS_TAB " view into the internal table
 WHERE BUKRS = CCODE.

CHAPTER 6 ■ INTERNAL TABLES

260

SORT BILL_DOCS_TAB BY KUNNR ASCENDING. " SORT table on the field KUNNR
 " in ASCENDING order
**
LOOP AT BILL_DOCS_TAB INTO BILL_DOCS_STRU.

 IF BILL_DOCS_STRU-KUNNR <> PREV_KUNNR .

 IF CNT > 1 AND SY-TABIX > 1.

 FORMAT INVERSE COLOR COL_GROUP. " customer total-different color
 WRITE: /(17) CTOTAL UNDER BILL_DOCS_STRU-NETWR,
 (15) CTAX_TOTAL UNDER BILL_DOCS_STRU-MWSBK.
 FORMAT RESET. " restore default colors
 ENDIF.

 IF SY-TABIX > 1.
 SKIP.
 CTOTAL = 0.
 CTAX_TOTAL = 0.
 CNT = 0.
 ENDIF.

 FORMAT INVERSE COLOR COL_POSITIVE. "customer info-different color
 WRITE:/5 TEXT-011, BILL_DOCS_STRU-KUNNR USING NO EDIT MASK,
 BILL_DOCS_STRU-NAME1.
 FORMAT RESET. " restore default colors

 ENDIF.

 BILL_DOCS_STRU-NETWR = BILL_DOCS_STRU-NETWR * BILL_DOCS_STRU-KURRF.
 BILL_DOCS_STRU-MWSBK = BILL_DOCS_STRU-MWSBK * BILL_DOCS_STRU-KURRF.

 CNT = CNT + 1.
 WRITE:/5(5) CNT, BILL_DOCS_STRU-VBELN, BILL_DOCS_STRU-FKDAT,
 BILL_DOCS_STRU-BSTNK_VF, (17) BILL_DOCS_STRU-NETWR,
 (15) BILL_DOCS_STRU-MWSBK.

 GTOTAL = GTOTAL + BILL_DOCS_STRU-NETWR.
 CTOTAL = CTOTAL + BILL_DOCS_STRU-NETWR.

 GTAX_TOTAL = GTAX_TOTAL + BILL_DOCS_STRU-MWSBK.
 CTAX_TOTAL = CTAX_TOTAL + BILL_DOCS_STRU-MWSBK.

 PREV_KUNNR = BILL_DOCS_STRU-KUNNR.

ENDLOOP.

END-OF-SELECTION.

IF CNT > 1.

CHAPTER 6 ■ INTERNAL TABLES

261

 FORMAT INVERSE COLOR COL_GROUP. " customer total-different color
 WRITE: /(17) CTOTAL UNDER BILL_DOCS_STRU-NETWR,
 (15) CTAX_TOTAL UNDER BILL_DOCS_STRU-MWSBK.

ENDIF.

SKIP 1.

FORMAT INVERSE COLOR COL_TOTAL. " grand total-different color

WRITE: /(17) GTOTAL UNDER BILL_DOCS_STRU-NETWR,
 (15) GTAX_TOTAL UNDER BILL_DOCS_STRU-MWSBK.

The customer info (BILLS_STRU-KUNNR, BILLS_STRU-NAME1) are output in a different •
color (COL_POSITIVE).

The customer wise totals (CTOTAL, CTAX_TOTAL) are output in a different color •
(COL_GROUP).

The grand totals (GTOTAL, GTAX_TOTAL) are output in a different color (COL_TOTAL).•

For the rest of the info, you are using the default color, hence the FORMAT RESET statement.
If a customer has only one billing document, that is, CNT = 1, customer wise totals are not output. The rest of the

logic should be okay! The output will appear like Figures 6-7 and 6-8.

Figure 6-7. Output of Program YCL_CH06_ITAB02

CHAPTER 6 ■ INTERNAL TABLES

262

Internal Table Declarations – Continued
You were introduced to internal table declarations in 3.x mode. You performed hands-on exercises using internal
tables declared in 3.x mode. You will now be introduced to declaration of internal tables in 4.x mode. In all the
subsequent chapters, you will declare internal tables in 4.x mode.

Internal Tables – 4.X Mode of Declarations
The 3.X mode of internal table declarations supported only one type of internal table: the standard table. The internal
tables you used in your two hand-on exercises were standard tables.

The standard tables have standard keys. The standard key is composed of all the non-numeric fields of the
internal table structure (elementary types C, D, N, and T). For the internal table you declared in our first hands-on
exercise program:

DATA: BEGIN OF BILL_DOCS_TAB OCCURS 5,
 VBELN TYPE YCL_CH05_VBRKKNA-VBELN,
 FKDAT TYPE YCL_CH05_VBRKKNA-FKDAT,
 KUNNR TYPE YCL_CH05_VBRKKNA-KUNNR,
 NAME1 TYPE YCL_CH05_VBRKKNA-NAME1,
 ORT01 TYPE YCL_CH05_VBRKKNA-ORT01,
 NETWR TYPE YCL_CH05_VBRKKNA-NETWR,
 KURRF TYPE YCL_CH05_VBRKKNA-KURRF,
 END OF BILL_DOCS_TAB,

Figure 6-8. Output of Program YCL_CH06_ITAB02 – Grand Totals

CHAPTER 6 ■ INTERNAL TABLES

263

The standard key of this internal table is VBELN, FKDAT, KUNNR, NAME1, and ORT01.
The 4.X mode of internal table declarations support the standard tables as well as two additional internal table

types: the sorted tables and the hashed tables.

Internal Tables Features, Attributes

Key

A standard table can have the default/standard key (all fields of TYPES C, D, N, and T) or a defined key. The key fields
of a defined key are specified with the table declaration. A standard table supports only a NON-UNIQUE defined key.
Rows with duplicate key values can exist in standard tables.

Sorted and hashed tables can have only defined keys. The key fields are a mandatory part of table declaration for
sorted and hashed tables.

A sorted table can be declared with UNIQUE KEY or with NON-UNIQUE KEY. If a sorted table has been declared
with UNIQUE KEY, rows with duplicate key values cannot exist. If a sorted table is declared with NON-UNIQUE KEY,
rows with duplicate key values can exist.

A hashed table can be declared only with UNIQUE KEY. Rows with duplicate key values cannot exist in the
hashed internal table.

Search Method

There is an internal table statement

READ TABLE <internal table name> WITH TABLE KEY <k1> = <f1>
 ...INTO <structure name>.

This statement searches for a row on the basis of the key field values provided through <k1> = <f1>. If located,
it fetches the row into the <structure name>.

In the standard tables, the searching for the row with the provided key field values is by default a linear search.
The search will commence from the first row and will continue until a row is located with provided key field values
or the search concludes with the last row without locating a row with the provided key field values. The access time
in linear search is dependent on the number of rows in the internal table. For the standard tables, you can specify
a binary search method with the READ statement, but it is your responsibility to ensure that the table is sorted in
ascending order of key fields specified in the READ statement. If the internal table is not ordered, the system will not
check and alert; it will provide erroneous results. The access time in binary search is logarithmically proportionally to
the number of rows in the internal table.

In the sorted tables, the READ...statement uses the binary search method to locate a row with the provided key
fields. The access time in binary search is logarithmically proportional to the number of rows in the internal table.

In hashed tables, the READ...statement uses a hashed algorithm method to locate a row with the provided key
fields. The access time in hashed tables is independent of the number of rows in the internal table.

Sort

A standard table can sorted any number of times with the SORT statement.
You cannot perform SORT on a sorted table. When data is loaded into the sorted table with the SELECT

statement or with the INSERT statement, the rows are maintained in the ascending order of the key fields
automatically.

A hashed table can be sorted, but it does not make sense. You sort data when you want to process data
sequentially or serially with the data appearing in ordered manner. The hashed table is conceived for random and
frequent speedy access and not serial access.

CHAPTER 6 ■ INTERNAL TABLES

264

Indexed Access: (SY-INDEX Operative)

With standard tables and sorted tables, you can access a row by providing the row number (indexed access is the
fastest access). These tables together are called as indexed tables. For these tables, the system field SY-TABIX contains
the row number operated upon or the number of rows processed, that is, the system field SY-TABIX is operative for
these tables. A hashed table cannot be accessed through a row number. The system field SY-TABIX is inoperative for a
hashed table and will contain a value zero after an operation on a hashed table.

The three internal table types – standard, sorted, and hashed – with their features is listed in Table 6-3.

When totally serial or sequential processing is required, a standard table can be used.•

When the processing is part random and part sequential, a sorted table can be used.•

When processing a large amount of data with totally frequent random key access, a hashed •
table can be used.

Table 6-3. Internal Table Types – Features and Attributes

Table Type Key Search Sort SY-TABIX

Standard Standard key as well as
defined key

Defined key can be only
be NON-UNIQUE

By default linear search

Binary search – optional
user should ensure that table is
in sorted order of search field/s

Time for search dependent on
number of entries

Can be sorted
or resorted any
number of times

Indexed table, row
can be accessed
with row no.

SY-TABIX
operative

Sorted Defined key

The standard key fields
can be assigned to
defined key

Defined key can be
UNIQUE & NON-
UNIQUE

Binary search

Time for search dependent on
number of entries

Logarithmically proportional to
number of entries

Table is in the
order of defined
key

Cannot be sorted

Indexed table, row
can be accessed
with row no.

SY-TABIX
operative

Hashed Defined key

The standard key fields
can be assigned to
defined key

Defined key can be only
UNIQUE

Hashed algorithm Search

Time for search independent on
number of entries

Can be resorted

Sorting does not
make sense

Non Indexed table,
row cannot be
accessed with
row no.

SY-TABIX
inoperative

What follows are different ways of declaring internal tables in 4 x mode. The roman numerals signify the ways of
declaring internal tables in 4.x mode.

CHAPTER 6 ■ INTERNAL TABLES

265

4.X Mode: Declaring the Internal Table (and Structure as well) by Referring to a
Local/Global Structured TYPE or Local/Global Structure

Global structure includes a database table or any type of view.
General Syntax:

DATA <internal table name> {TYPE|LIKE} {STANDARD|SORTED|HASHED} TABLE
 OF <structure name> WITH {UNIQUE|NON_UNIQUE} KEY <field1><field2>...
[INITIAL SIZE <n>] [WITH HEADER LINE].

INITIAL SIZE is equivalent to OCCURS of 3.X mode. The INITIAL SIZE clause is optional.
The WITH HEADER LINE has the same meaning as in 3.X mode, that is, an internal table and a structure of the

same name get defined.

<structure name> is either

a. A structured TYPE declared locally with the TYPES keyword. The keyword TYPE not
LIKE should be used when referring to it.

Examples:

* Internal tables declared by referring to
* a local structure TYPE

TYPES: BEGIN OF CUSTOMER_STRU_TYPE,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
END OF CUSTOMER_STRU_TYPE.

DATA: CUSTOMER_ST_TAB TYPE STANDARD TABLE OF CUSTOMER_STRU_TYPE.

DATA: CUSTOMER_SR_TAB TYPE SORTED TABLE OF CUSTOMER_STRU_TYPE
 WITH NON-UNIQUE KEY KUNNR INITIAL SIZE 5.

DATA: CUSTOMER_HS_TAB TYPE HASHED TABLE OF CUSTOMER_STRU_TYPE
 WITH UNIQUE KEY KUNNR INITIAL SIZE 5.

b. A structured TYPE declared in DDIC object Type Group. The keyword
TYPE not LIKE should be used when referring to it.

Examples:

* Internal tables declared by referring to
* a DDIC structure TYPE in Type Group

TYPE-POOLS YCLG1.

DATA: CUSTOMER_ST_TAB TYPE STANDARD TABLE OF YCLG1_CUSTOMER_TYPE
WITH NON-UNIQUE KEY KUNNR.

CHAPTER 6 ■ INTERNAL TABLES

266

DATA: CUSTOMER_SR_TAB TYPE SORTED TABLE OF YCLG1_CUSTOMER_TYPE
WITH UNIQUE KEY KUNNR.

DATA: CUSTOMER_HS_TAB TYPE SORTED TABLE OF YCLG1_CUSTOMER_TYPE
WITH UNIQUE KEY KUNNR WITH HEADER LINE.

A TYPE YCLG1_CUSTOMER_TYPE has been created in the Type Group YCLG1 as shown in Figure 6-9
(repeat of Figure 6-2).

Figure 6-9. TYPE YCLG1_CUSTOMER_TYPE in Type Group YCLG1 [Highlighted]

c. A structure declared locally. The keyword LIKE not TYPE should be used when
referring to it.

Example:

* Internal tables declared by referring to
* a local structure
DATA: BEGIN OF CUSTOMER_STRU,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 END OF CUSTOMER_STRU.

DATA: CUSTOMER_ST_TAB LIKE STANDARD TABLE OF CUSTOMER_STRU
WITH NON-UNIQUE KEY KUNNR." defined key for standard table

DATA: CUSTOMER_SR_TAB LIKE SORTED TABLE OF CUSTOMER_STRU WITH
NON-UNIQUE KEY KUNNR.

DATA: CUSTOMER_HS_TAB LIKE HASHED TABLE OF CUSTOMER_STRU WITH
UNIQUE KEY KUNNR.

CHAPTER 6 ■ INTERNAL TABLES

267

Figure 6-10. DDIC Structure YCL_CH06_CUST_STRU

d. A structured type declared in a DDIC data type or a database table or a view.
The keyword TYPE or LIKE can be used when referring to it.

Examples:

* Internal table declared by referring to
* a DDIC table definition
DATA: CUSTOMER_TAB LIKE STANDARD TABLE OF KNA1.

* Internal tables declared by referring to
* a DDIC structure
DATA: CUSTOMER_SR_TAB TYPE SORTED TABLE OF YCL_CH06_CUST_STRU WITH
NON-UNIQUE KEY KUNNR.

* Internal table declared by referring to
* a DDIC view
DATA: CUSTOMER_HS_TAB TYPE HASHED TABLE OF YCL_CH05_VBRKKNA WITH
UNIQUE KEY KUNNR.

A DDIC type structure YCL_CH06_CUST_STRU is shown in Figure 6-10 (repeat of Figure 6-1).

Create DDIC Internal Table Type
This is a digression from describing various modes of internal table declarations in 4.X mode, which will be resumed
after the coverage of creation of the DDIC Table type (internal table type).

You can create a DDIC internal table type. You can then refer to it to declare internal tables in ABAP programs.
Let a DDIC internal table type be created.

Before you create an internal table type, you need to have a DDIC structure that will be used in the DDIC internal
table type. Let DDIC objects that you will use in your forthcoming hands-on exercises are created.

You are going to do a hands-on exercise of customer wise sales summary. Each customer’s billing documents
amounts are summed or accumulated and outputted. You will need the following fields to enable you to generate the
customer wise sales summary.

CHAPTER 6 ■ INTERNAL TABLES

268

Earlier you created a DDIC structure YCL_CH06_CUST_STRU. In a like manner, you will create a DDIC structure
YCL_CH06_SALES_SUM_STRU. You do not need the billing document currency code field WAERK. It is incorporated
because for the DDIC Data Type CURR field NETWR and the structure definition insists on a corresponding DDIC Data
Type CUKY field in the structure or elsewhere. Recall from Chapter 2, DDIC Data Types, the SAP supplied database
table viewing. Enter all the six fields in the structure along with the data elements. For the field NETWR, (DDIC Data
Type CURR), click on the fourth tab Currency/quantity fields. In the Reference table column, enter the name of your
structure YCL_CH06_SALES_SUM_STRU and in the Ref. field column, enter WAERK. Assign the Enhancement Category
(menu option Extras) Cannot Be Enhanced. Perform a consistency check and activate the structure.

Now proceed to create a DDIC internal table type. On the SE11 opening screen, click on the radio button Data
type (third from the top). Enter the name of the internal table type object: YCL_CH06_SALES_SUM_TAB. The system
will prompt whether a Data element / Structure / Table type is to be created? Click on the radio button Table type and
press continue (<Enter>). The screen of tab Line Type as shown in Figure 6-11 will appear.

Figure 6-11. Create Table Type YCL_CH06_SALES_SUM_TAB: Tab Line Type

CHAPTER 6 ■ INTERNAL TABLES

269

Figure 6-12. Create Table Type YCL_CH06_SALES_SUM_TAB: Tab Initialization and Access

Enter the Short text. In the Line Type tab, three main radio button options appear:

 1. Line Type: If you want your table type be structured type, enter the name of the structure
here (it can be a DDIC structure, database structure, or view structure). Enter the DDIC
structure created in the previous step. You can get a selection list by entering the pattern
YCL_CH06* and pressing F4.

 2. If you select the second radio button, you can enter one of the DDIC predefined Data
Types: CHAR, NUMC, and DEC, etc. You are then defining an unstructured table type
(what you call the simple array).

 3. If you select the third radio button, you will enter the name of the reference type.

Next, click on the Initialization and Access tab. This tab will like that in Figure 6-12.

In this tab, you select the table type: standard, sorted, or hashed. There are two more radio buttons: (i) Indexed
Table and (ii) Not Specified. These types are generic. They are in the context of OOP. At runtime the table type can
be decided. For the Indexed Table, you can make the table type at runtime either a standard or sorted. For the Not
Specified, you could assign at runtime any of the table types: standard, sorted, or hashed.

The field Initial Line Number corresponds to the Initial Size clause when you declare an internal table in an ABAP
program. It is optional.

Next, click on the tab key. A screen like the one shown in Figure 6-13 will appear.

CHAPTER 6 ■ INTERNAL TABLES

270

In the Key definition area, you can specify the table key:

 1. Clicking the Standard key radio button will assign all non-numeric fields to the key.

 2. Clicking the Line type radio button will assign all the fields of the structure to the key.

 3. Clicking the Key components radio button will enable the screen area Key components
below and you can select and assign the structure fields to the key.

 4. Clicking the Not specified radio button will enable a runtime key specification.

In the Key category area, you can opt for UNIQUE, NON-UNIQUE, or Not specified (the Not specified selection
specifies a key category at runtime).

Create a standard table with a standard key. Perform a consistency check and activate this DDIC table type definition.

Internal Tables – 4.X Mode of Declarations – Continued

4.X Mode: Declaring Internal Table by Referring to a DDIC Table Type

Only key word TYPE can be used.
Examples:

* Internal tables declared by referring to
* a DDIC table type - no HEADER LINE

DATA: SALES_SUM_TAB_ST_TAB1 TYPE YCL_CH06_SALES_SUM_TAB.

* Internal tables declared by referring to
* a DDIC table type WITH HEADER LINE

DATA: SALES_SUM_TAB_ST_TAB2 TYPE YCL_CH06_SALES_SUM_TAB
WITH HEADER LINE.

Figure 6-13. Create Table Type YCL_CH06_SALES_SUM_TAB: Tab Key

CHAPTER 6 ■ INTERNAL TABLES

271

4.X Mode: Declaring Nonstructured Internal Tables (Simple Arrays)

The nonstructured internal tables can be declared by referring to an elementary data type (local/global) data object,
(local/global) and data element similar to the 3.X mode.

Refer to examples of 3.X. You can declare standard, sorted, and hashed nonstructured internal tables.

Declaring a Structure by Referring to an Internal Table

Refer to examples of 3.X.
The internal tables will be featured in most of our forthcoming chapters’ hands-on exercises. You will stick to

declaring tables in 4.X mode only. You will also try to avoid the WITH HEADER LINE feature (where internal table and
structure names are the same). This mode of declaration is not supported in the OOP environment.

To start with, you will do a couple of simple hands-on exercises with internal table declarations in 4.X mode.

Hands-On Exercise: Split a String, Get Output in Nonstructured
Internal Table
In Chapter 4, you had used a SPLIT statement to split a string into its constituent words and each word returned
in a separate variable. The issue was posed that the number of words in a string in the real world cannot be
predetermined. The SPLIT statement used in Chapter 4 was not a practical feature. With internal tables, a variation of
the SPLIT statement will get each word of a string in a separate row. So the issue of a predetermined number of words
in a string is resolved.

The source program:

REPORT YCL_CH06_ITAB03 NO STANDARD PAGE HEADING.

**
* Internal Tables - Split a String & Get Words Into itab Rows **
**

* PARAMETERS - input string **
* **
* perform SPLIT statement, each word **
* will be returned as a row in the **
* unstructured internal table **
* **
* set LOOP AT...ENDLOOP to output **
* rows of unstructured internal table **

DATA: WORD(15) TYPE C,
 WORDS_TAB LIKE STANDARD TABLE OF WORD. "unstructured internal table

PARAMETERS: ISTRING(50) TYPE C DEFAULT
 'ONCE UPON A TIME THERE LIVED A NERD'.

CHAPTER 6 ■ INTERNAL TABLES

272

START-OF-SELECTION.

SPLIT ISTRING AT ' ' INTO TABLE WORDS_TAB. "each word returned as a row

LOOP AT WORDS_TAB INTO WORD.

 WRITE:/5 WORD.

ENDLOOP.

The output will appear like that in Figure 6-14.

Figure 6-14. Program YCL_CH06_ITAB03: Output

SORT Statement
This is a statement to order rows of internal tables. You have already used a simple version of this statement in the
hands-on exercise: Customer Wise List of Billing Documents of a Specified Company Code.

The statement can be used for standard and hashed tables. The syntax and different forms of this statement:
SORT <internal table name> [ASCENDING|DESCENDING] [AS TEXT] [STABLE].
This form of the statement sorts the table in ascending (lowest values first and highest values last)/

descending (highest values first and lowest values last) order of defined key fields of the table. For the standard
tables, if key fields are undefined, the sorting will be performed in the order of the standard key fields. If the order
ASCENDING|DESCENDING is omitted, by default it will sort in ascending order. The sort fields in this form of sort
statement are implicit. The ASCENDING|DESCENDING applies to all key fields. You do not have the option to specify
ASCENDING|DESCENDING for each field separately.

The option [AS TEXT] is applicable to TYPE C fields. It is specified for alphabetic sorting. The codes used to
store characters in bytes ASCII, EBCDIC, etc., were organized to store English alphabet letters. Other European
languages such as German and French contain extra vowels (more than five). These extra vowels are not contained
in the alphabetic range of the ASCII orEBCDIC codes. Ordinary sorting will go by the byte value. For example, the
German alphabet has the vowel ö. (o with two dots on top), and the vowel ö in the German alphabet set occurs after
the letter o. But in the ASCII or EBCDIC code, it occurs after z. To take care of this, SAP has provided the feature TEXT
sort to generate true alphabetic order. A hands-on exercise demonstrates and elucidates this issue better. A hands-on
exercise on TEXT sort follows the sort syntax explanations.

The option STABLE is relevant in the context of an internal table being sorted again and again on the same key
fields. The option ensures that order of multiple key values is retained after every sort on the same key fields.

CHAPTER 6 ■ INTERNAL TABLES

273

Structure

Internal Table

Figure 6-15. Operation of APPEND Statement

The second form of sort statement is:

SORT <internal table name> [STABLE] BY <field1> [ASCENDING|DESCENDING]
 [AS TEXT] <field2> [ASCENDING|DESCENDING] [AS TEXT].......

The fields on which sorting are to be performed are explicit. For each field, you have the option of
ASCENDING|DESCENDING.

APPEND Statement
The APPEND statement can be used only for indexed tables, that is, standard and sorted. For sorted tables, it is not
advisable to use the APPEND statement. With this statement, you can (i) transfer the contents of the structure as
a new row in the internal table, (ii) create a new blank row in the internal table, or (iii) transfer rows from a source
internal table to a destination internal table. In these three operations, the new rows are added at the end of the
existing rows in the destination internal table.

Most of the time, you are using (i), so the APPEND statement is elaborated on here in this context. If the internal
table is empty to start with, an APPEND statement will transfer the structure contents as the first row in the internal
table. A second APPEND will transfer the structure contents as a second row in the internal table and so on. It can
be used in a scenario such as where an internal table has to be filled row by row. This is unlike the way you have
filled internal tables until now: multiple rows dumped from a database table or view into an internal table. A graphic
representation of this form of APPEND statement is shown in Figure 6-15.

Hands-On Exercise: Internal Table Text Sort (Use APPEND to
Populate Internal Table)
You will use the APPEND statement to fill an unstructured internal table with data having the additional vowels to
add to English. You will assign literal values containing extra vowels to the elementary field and APPEND the value of
elementary field to the internal table. This is one of the few times you are using literals in an ABAP program. You will
perform the sort without the AS TEXT option and output from the internal table; next perform the sort with the
AS TEXT option and output from the internal table and note the results.

CHAPTER 6 ■ INTERNAL TABLES

274

The source program is:

REPORT YCL_CH06_ITAB04.

* Internal Tables: APPEND, TEXT SORT **

**
* declare simple/non-structured TYPE C internal table **
* in 4.X mode **
* **
* fill this table with text containing extra vowels **
* through APPEND statement **
* **
* output table rows - LOOP...ENDLOOP **
* output will appear in order in which rows were appended **
* **
* perform ordinary sort on the table **
* output will appear in order of byte values **
* **
* perform text sort on the table **
* output will appear in true alphabetic order **
**
TYPES: NAME_TYPE(25) TYPE C.

DATA : NAMES TYPE STANDARD TABLE OF NAME_TYPE WITH HEADER LINE
 INITIAL SIZE 0. " unstructured internal table

NAMES = 'BÖLLINGER'.
APPEND NAMES TO NAMES. " adds a row at the end

NAMES = 'BOLLINGER'.
APPEND NAMES TO NAMES.

NAMES = 'BILLINGER'.
APPEND NAMES TO NAMES.

NAMES = 'BÏLLINGER'.
APPEND NAMES TO NAMES.

NAMES = 'BULLINGER'.
APPEND NAMES TO NAMES.

FORMAT INVERSE ON COLOR COL_TOTAL.
WRITE:/5 'Original Data:'.
LOOP AT NAMES.
WRITE:/5 NAMES.
ENDLOOP.

CHAPTER 6 ■ INTERNAL TABLES

275

SORT NAMES.
SKIP.
FORMAT INVERSE ON COLOR COL_KEY.
WRITE:/5 'Ordinary Sort:'.
LOOP AT NAMES.
WRITE:/5 NAMES.
ENDLOOP.

SORT NAMES AS TEXT.
SKIP.
FORMAT INVERSE ON COLOR COL_POSITIVE.
WRITE:/5 'Text Sort:'.
LOOP AT NAMES.
WRITE:/5 NAMES.
ENDLOOP.

The output will appear like this:

Figure 6-16. Program YCL_CH06_ITAB04: Output

The ordinary sort is placing BÏLLINGER and BÖLLINGER at the end. The text sort is positioning BÏLLINGER after
BILLINGER and BÖLLINGER after BOLLINGER.

CHAPTER 6 ■ INTERNAL TABLES

276

Table 6-4. Output Body Layout

Field Name Table Name Description Column Positions

SY-TABIX System Field Serial No. 005,008 (4)

009

KUNNR KNA1 Customer Code 010,019 (10)

020

NAME1 KNA1 Name 021,055 (35)

056

ORT01 KNA1 City 057-091 (35)

092

NETWR VBRK Total of Converted Billing Document Net Value 093-109 (17)

Hands-On Exercise: Customer Wise Sales Summary of a
Specified Company Code Using the COLLECT Internal Table
Statement on a Standard Table
You will produce a customer wise sales summary. Let the output be ordered customer wise. In this output, if a
customer has n number of billing documents, the amounts of this n number of billing documents are accumulated,
and the total amount of the customer along with the customer code, name, and city will appear as one line in the
output. Since you are adding amount figures, they need to be converted to a single currency: the operating currency
of the company code. You will use the exchange rate field to convert the amount from document currency to the
operating currency.

Summary output lists are a very common demand in enterprises.

Output
The rough layout of the customer wise sales summary will appear like this:

The output body layout:

Inputs
The input data for this output will be our database view YCL_CH05_VBRKKNA.

To declare the internal table in the ABAP program, you will refer to the DDIC table type YCL_CH06_SALES_SUM_
TAB you created earlier in this chapter.

CHAPTER 6 ■ INTERNAL TABLES

277

COLLECT Statement
You will be using the COLLECT statement to produce the summary. The COLLECT statement is a handy feature
to consolidate or summarize data. With the COLLECT statement you can generate a one-level summary. You are
summarizing data here based on the customer. If you were requiring a list for each customer of how much of material
‘A’ was sold and how much of material ‘B’ was sold – that is, a two-level summary output involving the customer and
material, the COLLECT statement cannot be used.

An understanding of the COLLECT statement is crucial. The COLLECT statement works for all table types:
standard, sorted, or hashed. In the current hands-on exercise, you are using a standard table. So for now, the
discussion of the COLLECT statement is in the standard table context. Subsequently, there will be discussions of the
COLLECT statement in the context of sorted and hashed tables.

The syntax of the COLLECT statement:

COLLECT <structure name> INTO <internal table name>.

COLLECT Statement Operation
Like in an APPEND statement, there is a transfer of data from a structure to an internal table, but in a peculiar way.

The COLLECT statement is a two-in-one statement. It operates on the basis of the standard key values. So the
standard table on which you operate a COLLECT statement must not have a defined key or a defined key that is the
same as the standard key. Recall that the standard key of an internal table consists of all the structure fields of
type C, D, N, and T.

The COLLECT statement first checks whether the standard key value in the structure has any corresponding row
in the table.

If no row exists with the standard key values of the structure in the table, the structure data will •
go as a new row in the table; this is effectively an APPEND operation.

If a row exists in the table of the standard key values in the structure, the numeric field values •
from the structure are added to the numeric field values in the corresponding row in the table.
Numeric fields in the present context will mean type F, I, and P. The type N fields as part of
standard key are not considered numeric fields.

An example will help elucidate this. Let there be an internal table with the following structure:

DATA: BEGIN OF EMP_STRU,
 DEPT_CODE(2) TYPE C,
 EMP_CODE(4) TYPE N,
 POINTS(3) TYPE P DECIMALS 0,
 END OF EMP_STRU,EMP_TAB LIKE STANDARD TABLE OF EMP_STRU.

The standard key in this instance will be DEPT_CODE, EMP_CODE. Let values be assigned to the structure fields
and the COLLECT statement be operated on the internal table.

EMP_STRU-DEPT_CODE = 'A1'.
EMP_STRU-EMP_CODE = 1234.
EMP_STRU-POINTS = 100.
COLLECT EMP_STRU INTO EMP_TAB. " this will operate as an APPEND
 " first row A1 1234 100

CHAPTER 6 ■ INTERNAL TABLES

278

EMP_STRU-POINTS = 200.
COLLECT EMP_STRU INTO EMP_TAB. " row with standard key values A1 1234
 " already exists, 200 will be added
 " to 100. first row: A1 1234 300

EMP_STRU-DEPT_CODE = 'A1'.
EMP_STRU-EMP_CODE = 1236.
EMP_STRU-POINTS = 400.
COLLECT EMP_STRU INTO EMP_TAB. " this will operate as an APPEND
 " second row : A1 1236 400
EMP_STRU-DEPT_CODE = 'B1'.
EMP+_STRU-EMP_CODE = 1234.
EMP_STRU-POINTS = 100.
COLLECT EMP_STRU INTO EMP_TAB. " this will operate as an APPEND
 " third row: B1 1234 100

EMP_STRU-DEPT_CODE = 'A1'.
EMP_STRU-EMP_CODE = 1236.
EMP_STRU-POINTS = 100.
COLLECT EMP_STRU INTO EMP_TAB. " row with standard key vales A1 1236
 " already exists, 100 will be added to 400
 " second row : A1 1236 500
At the end of the above operations, the internal table will contain:

A1 1234 300
A1 1236 500
B1 1234 100

If you want to output the summary table at the end of COLLECT statements operation, you need to have a LOOP
AT...WRITE...ENDLOOP.

An internal table with only the COLLECT statement operating on it in a loop construct (SELECT...ENDSELECT)
will result at the end with unique standard key values, and the numeric fields of standard key values will be
summarized.

How you frame the table structure standard key consisting of the non-numeric fields is critical. The
summarization occurs on its basis.

Reverting to your hands-on exercise, your table structure should be:

KUNNR Customer Code
NAME1 Name
ORT01 City
NETWR Billing Document Net Value
KURRF Exchange Rate

Your standard key will consist of KUNNR, NAME1, and ORT01 (non-numeric fields). You only need to summarize
on the basis of customer code KUNNR, but you need NAME and ORT021 in your output. The addition of these two
fields in the standard key does not affect the results in any way.

The two numeric fields NETWR and KURRF will be accumulated. You do not need to have KURRF accumulated.
It makes no sense to total exchange rate. You need the KURRF of each row from the view (each unique value of the
billing document) to convert the net billing document value NETWR from billing document currency to the operating
currency of the company code. But you can’t help it. The COLLECT statement accumulates all numeric fields.
You have to ignore the accumulation of KURRF. The accumulation of KURRF might result in a numeric over flow.
This overflow issue can be addressed as you will see.

CHAPTER 6 ■ INTERNAL TABLES

279

You will input the company code for which a sales summary is required (PARAMETERS...). To build your
customer wise sales summary internal table, you have to have a SELECT...ENDSELECT looping construct with your
database view YCL_CH05_VBRKKNA. After each row is fetched from the database view, you must issue the COLLECT
statement in the SELECT...ENDSELECT loop. At the end of the SELECT...ENDSELECT loop, your summarized table
will be ready. You will sort the table on KUNNR, you will then use LOOP...WRITE...ENDLOOP...to output your sorted
summary table. At the end of LOOP... ENDLOOP... you will output the grand total.

The source program to generate a customer wise sales summary of a specified company code using COLLECT
statement on a standard table is:

REPORT YCL_CH06_ITAB05 LINE-SIZE 120 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* Customer Wise Sales Summary of a company code using **
* COLLECT statement **
**
**
* declare internal table by reference to DDIC table **
* type. declare structure by reference to internal **
* table **
* **
* PARAMETERS to input company code **
* SELECT SINGLE.. to fetch company code name(BUTXT) **
* operating currency of company code WAERS **
* **
* SELECT...ENDSELECT to fetch rows from database view **
* multiply NETWR KURRF to convert NETWR to operating **
* currency. initialize KURRF to 0 after multiplication **
* to prevent KURRF accumulation overflow. **
* issue COLLECT **
* **
* at end of SELECT...ENDSELECT, summary table created **
* **
* sort summary internal table by KUNNR **
* **
* set up LOOP...WRITE...ENDLOOP **
* **
* end of LOOP.. WRITE...ENDLOOP output grand total **
**

DATA: SALES_TAB TYPE YCL_CH06_SALES_SUM_TAB, "key word TYPE only
 SALES_STRU LIKE LINE OF SALES_TAB, " declare structure by
 " referring to internal
 " table

 TOTAL TYPE VBRK-NETWR,
 BUTXT TYPE T001-BUTXT,
 WAERS TYPE T001-WAERS,
 BUTXTS TYPE STRING.

CHAPTER 6 ■ INTERNAL TABLES

280

**
PARAMETERS: CCODE TYPE VBRK-BUKRS DEFAULT 3000.
**

TOP-OF-PAGE.
WRITE:/5 TEXT-001, CCODE NO-GAP, '/' NO-GAP, BUTXTS, 102 TEXT-003,
 107(3) SY-PAGNO.
WRITE:/40 TEXT-002, WAERS.
SKIP 1.
WRITE:/5(104) SY-ULINE.
WRITE:/5 TEXT-004, 11 TEXT-005, 23 TEXT-006, 60 TEXT-007, 91(17)
 TEXT-008 RIGHT-JUSTIFIED.
WRITE:/5 TEXT-009, 13 TEXT-010.
WRITE:/5(104) SY-ULINE.

**
START-OF-SELECTION.

SELECT SINGLE BUTXT WAERS FROM T001 INTO (BUTXT, WAERS) WHERE
 BUKRS = CCODE.

BUTXTS = BUTXT. "assignment to TYPE STRING drops trailing blanks

SELECT KUNNR NAME1 ORT01 NETWR KURRF FROM YCL_CH05_VBRKKNA INTO
 CORRESPONDING FIELDS OF SALES_STRU WHERE BUKRS = CCODE.

 SALES_STRU-NETWR = SALES_STRU-NETWR * SALES_STRU-KURRF.
 SALES_STRU-KURRF = 0. "to prevent overflow
 COLLECT SALES_STRU INTO SALES_TAB.
ENDSELECT.

SORT SALES_TAB BY KUNNR.

LOOP AT SALES_TAB INTO SALES_STRU.
 WRITE :/5(4) SY-TABIX, SALES_STRU-KUNNR USING NO EDIT MASK,
 SALES_STRU-NAME1,SALES_STRU-ORT01, (17) SALES_STRU-NETWR.
 TOTAL = TOTAL + SALES_STRU-NETWR.
ENDLOOP.

SKIP 1.
WRITE :/(17) TOTAL UNDER SALES_STRU-NETWR.

The SELECT statement in the program is:

SELECT KUNNR NAME1 ORT01 NETWR KURRF FROM YCL_CH05_VBRKKNA
INTO CORRESPONDING FIELDS OF SALES_STRU WHERE BUKRS = CCODE.

You are using a variation of the SELECT statement with CORRESPONDING FIELDS OF. This variation is to be used
whenever the source and destination are not identical. In your present situation, the database view (source) does not
have the field currency code WAERK present in your destination structure. This is analogous to the statement MOVE-
CORRESPONDING to be used when moving data from a source structure to a destination structure; the source and
destination are not identical in terms of number of fields and/or ordering of the fields in the structures (Chapter 4).

CHAPTER 6 ■ INTERNAL TABLES

281

Figure 6-17. Program YCL_CH06_ITAB05: Text Symbols

Figure 6-18. Program YCL_CH06_ITAB05: Output

The currency code DDIC Data Type CUKY field WERK had to be incorporated in your DDIC structure
YCL_CH06_SALES_STRU to take care of the DDIC Data Type CURR field (NETWR) having a corresponding CUKY field.

The text symbols for the program are:

The program output will be like this:

CHAPTER 6 ■ INTERNAL TABLES

282

You have generated the customer wise sales summary for a specified company code as per your specifications.
You employed the COLLECT statement on a standard table. The COLLECT statement operates on the basis of the
standard key. The COLLECT statement is a two-in-one statement, APPEND and updating of numeric fields. You used
a DDIC defined table type to declare the internal table.

Hands-On Exercise: Customer Wise Sales of a Specified
Company Code Using COLLECT Internal Table Statement on a
Sorted Table
Let this exercise be repeated with a sorted table. You will define the sorted internal table in the ABAP program itself
unlike the previous exercise where you had defined the standard table in the DDIC. For this sorted table, you have to
define the key. The defined key must have all the fields of the standard key, that is, fields of TYPE C, D, N, and T for the
COLLECT statement to operate.

If the defined key has all the standard key fields, only then the COLLECT statement will be accepted at the source
level. If your defined key is different from the standard key fields, a syntax error occurs during compilation.

In a sorted internal table, rows are always in the ascending order of key values. The operation of the COLLECT
statement would ensure this. So you can say that the COLLECT statement for a sorted table is a two-in-one
command: if the key values in the structure do not exist in the table, a row INSERT will occur (instead of APPEND in
the case of standard table), and the row will be inserted at the appropriate position. If the structure key value exists,
the numeric field values from the structure are added to the numeric fields of the corresponding row in the table.

Figure 6-19. Program YCL_CH06_ITAB05: Total Output

CHAPTER 6 ■ INTERNAL TABLES

283

You can copy the preceding exercise’s ABAP program and make appropriate changes or code a new program.
You can make a copy ABAP program with a different name from the SE38 opening screen. Enter the name of the
source program to be copied, and click on the button on the application toolbar. The system will prompt for the

name of the destination program (YCL_CH06_ITAB06). The copied program will be in an inactive state. You can
rename programs from the SE38 opening screen by entering the name of the ABAP program and clicking on the
button on the application toolbar.

Copy and activate the text symbols from the preceding exercise into the current one using transaction
code SE32.

In the preceding exercise, you sorted the summary table generated. In the current exercise this is unnecessary as
our table is a sorted table. The rest of the statements are the same as in the preceding exercise.

The source program is available in the source programs resource. Execute and tally the results with the results of
YCL_CH06_ITAB05. The results should be identical.

Until now, you have filled an internal table with a SELECT statement using an APPEND statement and a
COLLECT statement. You have retrieved rows from an internal table only with the LOOP...ENDLOOP construct:
fetching one row at a time sequentially from the internal table into structure.

The APPEND statement, even though it can be used, hypothetically, for indexed tables, that is, standard and sorted
tables, should be used on standard tables. In sorted tables, when you use an APPEND statement, the structure key field
value should be greater than or greater than or equal to (depending on the defined key to be UNIQUE / NON-UNIQUE)
the highest key value in the table. Recall that the APPEND statement adds the row at the very end. So if you try to
APPEND to a sorted table, the row should be able to fit at the end. If this doesn’t happen, a runtime error occurs.
You can test this out as an exercise.

Hands-On Exercise: READ with Index (Retrieve a Row Given a
Row Number)
The indexed tables (standard or sorted) allow you to retrieve data of any row from the table into a structure (READ with the
index statement). You have to provide the row number. If the row number exists, the row will be fetched from the table into
the structure; if the row number does not exist, this is an error condition. In the ABAP programming environment, you use
a system field to ascertain the result of an operation. The system field is SY-SUBRC. If after an operation the system field
contains a zero value, the operation is successful; otherwise it is a failure. The syntax of READ with Index is:

READ TABLE <internal table name>
 INDEX <Variable/literal>/<constant>
 INTO <structure name>
 [TRANSPORTING {<field1> [<field2>..]} | {ALL FIELDS} | {NO FIELDS}.

<Variable/literal> - You can supply either a variable (the variable must contain a number) or a •
numeric literal.

If the addition TRANSPORTING <field1><field2>...is used, you have the option to transfer •
selected fields from a table into the structure.

If the addition TRANSPORTING NO FIELDS is used, the INTO <structure name> should be •
omitted. In this case, when the read operation is performed and the supplied row number
exists, it will set the system field SY-TABIX to the row number value and set the system field
SY-SUBRC to zero. If the supplied row does not exist, the system field SY-TABIX is set to zero
and the system field SY-SUBRC is set to a non-zero value.

If the addition TRANSPORTING ALL FIELDS is used, all the fields will be fetched from the •
table into the structure. By default all the fields are fetched from the table to the structure.

CHAPTER 6 ■ INTERNAL TABLES

284

If the row number provided exists, the system field SY-TABIX is set to the value of the row •
number, and the system field SY-SUBRC is set to zero.

In your exercise program, you have declared a structure TABLES TCURT. The database table •
TCURT is a text table. It is containing the world’s currency descriptions in all the languages
supported by SAP. The TCURT structure:

Referring to this structure, you have declared an internal table of type sorted. You are loading •
this internal table from the database table TCURT with only the currency descriptions of the
logged in language: WHERE SPRAS = SY-LANGU.

You are retrieving a row through the PARAMETERS variable ROW_NO. You have given the •
addition TRANSPORTING WAERS LTEXT. This will fetch data of only two fields WAERS and
LTEXT. You are checking if SY-SUBRC = 0 (retrieval successful); then you output the currency
code (WAERS), the long text (LTEXT), and the short text. (KTEXT) KTEXT will be output as
blank/space as you are not retrieving this field from table into the structure. If SY-SUBRC is
non-zero, you are highlighting ROW_NO as an invalid row number.

The Source program:

REPORT YCL_CH06_ITAB07.

* Internal Table READ With Index **

**
* declare TABLES TCURT. declare sorted **
* table with TCURT structure key WAERS **
* **
* input record/row no. (PARAMETERS) **
* **
* load internal table from TCURT WHERE **
* SPRAS = SY-LANGU **
* **
* issue READ.. INDEX.. **
* check SY-SUBRC & output **
**

TABLES TCURT. " local structure having all fields
 " of database table TCURT

DATA: CURR_TAB TYPE SORTED TABLE OF TCURT WITH
 UNIQUE KEY WAERS.

**

CHAPTER 6 ■ INTERNAL TABLES

285

PARAMETERS: REC_NO(4) TYPE N DEFAULT 75.

START-OF-SELECTION.

SELECT * FROM TCURT INTO TABLE CURR_TAB WHERE " *(star) justified. table
 SPRAS = SY-LANGU. " consists of few fields

READ TABLE CURR_TAB INTO TCURT INDEX REC_NO " fetch only
 ."TRANSPORTING WAERS LTEXT. " WAERS LTEXT

IF SY-SUBRC = 0.
 FORMAT INVERSE COLOR COL_POSITIVE.
 WRITE:/5(4) SY-TABIX, TCURT-WAERS, TCURT-LTEXT, TCURT-KTEXT.
ELSE.
 FORMAT INVERSE COLOR COL_NEGATIVE.
 WRITE:/5 'Row No.:', REC_NO, 'Invalid'.
ENDIF.

Comment the TRANSPORTING addition in the READ...statement and confirm that the value of field KTEXT is output.
Execute the program with a high value of REC_NO to trigger an invalid row condition.
The outputs will look like this:

Figure 6-20. Program YCL_CH06_ITAB07: With REC_NO = 75 & TRANSPORTING WAERS LTEXT

Figure 6-21. Program YCL_CH06_ITAB07: With REC_NO = 555

Figure 6-22. Program YCL_CH06_ITAB07: With REC_NO = 75 & TRANSPORTING Option Commented

CHAPTER 6 ■ INTERNAL TABLES

286

Hands-On Exercise: READ...WITHKEY... (Retrieve a Row Given Key
Field Values)
Fetch a row from the table into the structure corresponding to the supplied table key field values.

The syntax of READ...WITH KEY...statement is:

READ TABLE <internal table name>
 WITH KEY <key field1> = <data object1>
 [<key field2> = <data object2>..]
 [BINARY SEARCH}
INTO <structure name> [TRANSPORTING options].

The <data object1> can be variables, literals, and hypothetically constants.
The TRANSPORTING options are TRANSPORTING ALL FIELDS | TRANSPORTING NO FIELDS |

TRANSPORTING <field1> [<field2]...
This statement works for all the three table types: standard, sorted, and hashed.
For the sorted table, a binary search method is used to locate a row of the supplied key field values. This is the way

data from a sorted table is to be retrieved on a random basis.
For the hashed table, the hashed algorithm is used to locate a row of the supplied field values. This READ

statement should be used to retrieve data from a hashed table when frequently accessing on random basis (key field
values changing) from a very large number of entries.

For the standard table, a binary search method is used to locate a row of the supplied field values if the key phrase
BINARY SEARCH is specified with the statement. It should be ensured that the table is in the ascending order of the
key field values. If this additional phrase is not specified with the statement, the system will use the linear search
method to locate a row with the supplied key field values.

You will repeat the exercise you did with 3.X declaration of internal tables: listing out the billing documents of a
specified company code. In this hands-on exercise, you were loading an internal table with data from the database
view (created with tables VBRK and KNA1). Subsequently you output from the internal table with the LOOP...WRITE...
ENDLOOP statements.

In the present hands-on exercise, you will not use the view. You will load one internal table (standard – sequential/
serial processing) say, ‘itab I’ with data from the database table VBRK of a specified company code (WHERE BUKRS =...)
You will choose the following fields from this database table:

VBELN Billing Document Number
FKDAT Billing Document Date
KUNAG Customer Code
NETWR Net Value in Document Currency
KURRF Exchange Rate

You will load a second internal table (hashed – frequent random access) say, ‘itab II’ with data from the database
table KNA1. You will choose the following fields from this database table:

KUNNR Customer Code
NAME1 Name
ORT01 City

You need to output the following fields:

SRL_NO (internal data object/program variable)
VBELN
FKDAT

CHAPTER 6 ■ INTERNAL TABLES

287

NAME1
ORT01
NETWR this will be NETWR * KURRF

You will have the output in order of billing document number (i.e., VBELN).
You will set a LOOP...ENDLOOP with ‘itab I’. You can output fields VBELN, FKDAT, KUNAG, and NETWR from

this internal table. For the fields NAME1, ORT01, you will read the ‘itab II’ through READ...WITH KEY...Retrieving
customer info NAME1, ORT01 with KUNAG of ‘itab I’.

You can copy the earlier program into a new name or code the program from scratch. If you code the program
from scratch, you can copy text symbols from the earlier program using the transaction code SE32 and activate.

This whole exercise is to demonstrate the frequent random access of an internal table (hashed) using READ...
WITH KEY...Statement.

The source program to generate a List of Billing Documents of a specified company code using two internal
tables: a standard table and a hashed table is:

REPORT YCL_CH06_ITAB08 LINE-SIZE 135 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* List of Billing Docs of a Specified Company Code with Total **
* Using Two Internal Tables **
**

* declare 2 structures & internal tables:(1)loading data from VBRK**
* (2) loading data from KNA1 **
* **
* PARAMETERS CCODE TYPE VBRK-BUKRS VALUE CHECK DEFAULT 3000 **
* to select company code **
* **
* get BUTXT WAERS from T001 - SELECT SINGLE etc. **
* **
* load internal table <iatb1> from the VBRK **
* SELECT <fields> from VBRK INTO TABLE <itab1> **
* WHERE BUKRS = CCODE. **
* **
* load internal table <iatb2> from the KNA1 **
* SELECT <fields> from KNA1 INTO TABLE <itab2>. **
* **
* set LOOP AT <itab> into <itab>. **
* calculate amount in operating currency of chosen CCODE **
* **
* Retrieve NAME1, ORT01 from <itab2> by READ.. WITH KEY.. **
* from second internal table <itan2> **
* increment SRL_NO (serial no) **
* WRITE... **
* build total **
* ENDLOOP. **
* **
* output total **
* **

TABLES: T001.

CHAPTER 6 ■ INTERNAL TABLES

288

DATA: BEGIN OF BILL_DOCS_STRU,
 VBELN TYPE VBRK-VBELN,
 FKDAT TYPE VBRK-FKDAT,
 KUNAG TYPE VBRK-KUNAG,
 NETWR TYPE VBRK-NETWR,
 KURRF TYPE VBRK-KURRF,
 END OF BILL_DOCS_STRU,

 BILL_DOCS_TAB LIKE STANDARD TABLE OF BILL_DOCS_STRU,

 BEGIN OF CUST_INFO_STRU,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 ORT01 TYPE KNA1-ORT01,
 END OF CUST_INFO_STRU,

 CUST_INFO_TAB LIKE HASHED TABLE OF CUST_INFO_STRU
 WITH UNIQUE KEY KUNNR,

 STRNG TYPE STRING,
 SRL_NO TYPE SY-TABIX,
 TOTAL TYPE VBRK-NETWR.

PARAMETERS CCODE TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.

TOP-OF-PAGE.

WRITE :/5 STRNG, 129(3) SY-PAGNO.

SKIP 1.
WRITE:/5(127) SY-ULINE.
WRITE:/5 TEXT-003,11 TEXT-004, 22 TEXT-005, 33 TEXT-006, 46 TEXT-007,
 83 TEXT-008, 126 TEXT-009.

WRITE:/6 TEXT-010, 35 TEXT-011.
WRITE:/5(127) SY-ULINE.

START-OF-SELECTION.

SELECT SINGLE * FROM T001 WHERE BUKRS = CCODE.

CONCATENATE TEXT-001 CCODE '/' T001-BUTXT TEXT-002 T001-WAERS INTO STRNG.

SELECT VBELN FKDAT KUNAG NETWR KURRF FROM
 VBRK INTO
 TABLE BILL_DOCS_TAB
 WHERE BUKRS = CCODE.

CHAPTER 6 ■ INTERNAL TABLES

289

SELECT KUNNR NAME1 ORT01 FROM
 KNA1 INTO
 TABLE CUST_INFO_TAB.
**
SORT BILL_DOCS_TAB BY VBELN. "default is ASCENDING

LOOP AT BILL_DOCS_TAB INTO BILL_DOCS_STRU.

 BILL_DOCS_STRU-NETWR = BILL_DOCS_STRU-NETWR * BILL_DOCS_STRU-KURRF.

 READ TABLE CUST_INFO_TAB WITH KEY KUNNR = BILL_DOCS_STRU-KUNAG
 INTO CUST_INFO_STRU. " the READ operation will set SY-TABIX to zero

 SRL_NO = SRL_NO + 1.

 WRITE:/5(5) SRL_NO, BILL_DOCS_STRU-VBELN, BILL_DOCS_STRU-FKDAT,
 BILL_DOCS_STRU-KUNAG, CUST_INFO_STRU-NAME1,
 CUST_INFO_STRU-ORT01, (17) BILL_DOCS_STRU-NETWR.

 TOTAL = TOTAL + BILL_DOCS_STRU-NETWR.

ENDLOOP.

END-OF-SELECTION.
SKIP 1.

WRITE: /(17) TOTAL UNDER BILL_DOCS_STRU-NETWR.

Observe the fact that you cannot use the system field SY-TABIX for a serial number. When you are at the
statement next to the LOOP AT...statement (LOOP AT is operating on a standard table/indexed table), the system
field SY-TABIX will contain the fetched row number. But after the statement READ... WITH KEY...is executed (READ...
WITH KEY...is operating on a hashed/non-indexed table), the system field SY-TABIX is set to zero. Recall that for a q
hashed table, the system field SY-TABIX is inoperative.

You could have saved a SY-TABIX value in another declared variable before the READ...WITH KEY...statement
and output this variable as a serial number. You cannot avoid a declared variable to output a serial number.

CHAPTER 6 ■ INTERNAL TABLES

290

Figure 6-24. Output Of Program YCL_CH06_ITAB08 Grand Totals

Figure 6-23. Output of Program YCL_CH06_ITAB08

The output will be identical to the one generated by your earlier program YCL_CH06_ITAB01. The output will
appear like this:

CHAPTER 6 ■ INTERNAL TABLES

291

Hands-On Exercise: INSERT...INDEX... (Insert a Row at a Specified
Row Position)
This statement can be used to insert a row at a specified row position and can be used for indexed tables, that is,
standard and sorted tables, though for sorted tables, it is not very advisable. The sorted table rows have to be in the
ascending order of the key fields. So in this form of INSERT statement, the row being inserted into a sorted table must
fit in that row position as to maintain the ascending order key values.

The syntax of this statement is:

INSERT <structure name> INTO <internal table name>
 INDEX <index data object>

The data from the <structure name> will get inserted in the row position specified by <index data object>.
The row existing in that row position and beyond, if any, are shifted one row position ahead. For instance, if there
are 10 rows in a table, and you insert a row at row position 5, the row existing in 5th position prior to the INSERT
statement will be shifted to the 6th row position and so on with the 10th row prior to the INSERT statement shifted to
the 11th row position.

If the INSERT is successful, the system field SY-TABIX is set to the row number value of the inserted row; the
system field SY-SUBRC is set to zero.

If the INSERT is a failure, the row insertion cannot take place because:

 1. It is disrupting the ascending order state of the sorted table.

 2. It is attempting to create duplicate key value rows in a sorted table with UNIQUE KEY.

 3. The <index data object> LT 1.

 4. The <index data object> GT current number of rows + 1. For instance, if a table is
containing 10 rows, you can assign a maximum value of 11 to <index data object>. You
cannot assign a value > 11. The system will not be able to insert a row in that position.

In this case of INSERT failure, the system field SY-TABIX is set to zero and the system field SY-SUBRC is set to
non-zero.

A source program of a hands-on exercise with a standard table to highlight this feature:

REPORT YCL_CH06_ITAB09.

* Internal Tables - INSERT.. INDEX.. **

**
* declare structure TCURT, internal table **
* of this structure **
* **
* input INSERT row number PARAMETERS **
* **
* load internal table with data from **
* database table TCURT for currency code **
* starting with 'I' - WHERE WAERS LIKE **
* 'I%'. **
* **

CHAPTER 6 ■ INTERNAL TABLES

292

* LOOP...ENDLOOP. output from internal **
* table output: pre-insert **
* **
* INSERT TCURT INTO CURR_TAB index REC_NO **
* **
* if SY-SUNRC = 0 LOOP..ENDLOOP output **
* from internal table: post insert **
* else **
* output error **
**

TABLES TCURT. " currency description text table

DATA : CURR_TAB TYPE STANDARD TABLE OF TCURT.

PARAMETERS: REC_NO(2) TYPE N DEFAULT 5.

START-OF-SELECTION.
SELECT * FROM TCURT INTO TABLE CURR_TAB
 WHERE SPRAS = 'E' AND WAERS LIKE 'I%'. " currency codes starting
 " with I

WRITE: /5 'Pre-Insertion:'.

LOOP AT CURR_TAB INTO TCURT.
 WRITE: /5(2) SY-TABIX, TCURT-WAERS, TCURT-LTEXT.
ENDLOOP.

TCURT = SPACE. " initial structure TCURT

TCURT-WAERS = 'IJK'.
TCURT-LTEXT = 'DUMMY CURRENCY'.

INSERT TCURT INTO CURR_TAB INDEX REC_NO.

IF SY-SUBRC = 0.
 SKIP 1.
 WRITE: /5 'Post-Insertion:'.

 LOOP AT CURR_TAB INTO TCURT.
 WRITE: /5(2) SY-TABIX, TCURT-WAERS, TCURT-LTEXT.
 ENDLOOP.

ELSE.
 SKIP 1.
 FORMAT INVERSE COLOR COL_NEGATIVE.
 WRITE:/5 'Error Inserting Row No.', (2) REC_NO.

FORMAT RESET.
ENDIF.

CHAPTER 6 ■ INTERNAL TABLES

293

You inserted a row at row position 5. The row existing in this position prior to INSERT was INR Indian Rupee, and
the following rows have been pushed ahead by one row.

In the next instance, you tried to INSERT a row at row position 11.

The outputs of program YCL_CH06_ITAB09 will look like this:

Figure 6-25. Output Of Program YCL_CH06_ITAB09 Row INSERTED

Figure 6-26. Output of Program YCL_CH06_ITAB09 Row INSERT Error

CHAPTER 6 ■ INTERNAL TABLES

294

The number of rows existing prior to INSERT is 9. The last row position where you can successfully INSERT a row
is 10. So this has resulted in an error condition.

There is a variation of this INSERT statement whereby you can insert multiple rows from a source internal table
to a destination internal table.

Non-Index INSERT Statement
The statement Syntax is:

INSERT <structure name> INTO TABLE <internal table name>.

This form of INSERT statement is generally used to build sorted and hashed tables row by row. If you use this
statement for a standard table, it operates as an APPEND statement. When you are transferring data from a database
table to an internal table: In the case of the sorted tables, the rows are entered into the internal table in the ascending
order of the key fields; In the case of hashed tables rows are inserted into the internal table by the hash administration
according to its key values. The same principles apply when you insert one row at a time from the structure to the
internal table of type sorted or hashed.

There is a variation of this INSERT statement whereby you can insert multiple rows from a source internal table to
a destination internal table.

Delete Data from Internal Tables
Sometimes, you need to delete a row or rows from an internal table. You use the DELETE statement to do this.

DELETE Single Rows
The syntax to DELETE single rows is:

DELETE {TABLE <internal table name><key values>}|
 {<internal table name> [INDEX <data object>]}.

You can delete a row by supplying the key values – for sorted or hashed tables.
You can delete a row by supplying the index or row number – for indexed tables.
When a DELETE with index statement is located inside a LOOP...ENDLOOP construct, the INDEX specification is

optional. Implicitly it will delete the currently fetched row.

DELETE Multiple Rows
The syntax for deleting multiple rows from an internal statement is:

DELETE <internal table name> [FROM <start index>] [TO <end index>
 [WHERE <condition>].

All the rows starting from <start index> and till <end index> satisfying the <condition> will be deleted.

CHAPTER 6 ■ INTERNAL TABLES

295

Hands-On Exercise: Delete Adjacent Duplicates
Scenario
Suppose you want to have a list of customers with billing documents against them. This is just a simple list containing
customer code, name, and city for customers with billing documents.

Recall the database view you created with the tables KNA1 and VBRK. This contains the information you want
but not in the exact fashion. A customer having n number of billing documents will have n number of rows in this
database view. In our output you want this n number of rows to be reduced to one row. You can reduce the n number
of rows to one row with the statement DELETE ADJACENT DUPLICATES. This statement, on specification of fields,
deletes all duplicates and retains one row for one value of the specified fields (equivalent in effect to SQL SELECT
DISTINCT...). The prerequisite for this is that the internal table should be sorted in the ascending order of the fields on
which you want to delete duplicates. The system will not check whether the table is in the sorted order.

As usual, you will provide for the output to be produced for a specified company code.
The syntax of this statement is:

DELETE ADJACENT DUPLICATES FROM <internal table name>
[COMPARING { <field1> [<field2>...]} | {ALL FIELDS}].

Your output body layout is shown in Table 6-5.

Table 6-5. Output Body Layout

Field Name Table Name Description Column Positions

SY-TABIX System Field Serial No. 005,008 (4)

009

KUNNR KNA1 Customer Code 010,019 (10)

020

NAME1 KNA1 Name 021,055 (35)

056

ORT01 KNA1 City 057-091 (35)

The source program:

REPORT YCL_CH06_ITAB10 LINE-SIZE 95 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* DELETE ADJACENT DUPLICATES - List of Customers With Billing Documents **
**
**
* declare structure and internal table **
* **
* input company code - PARAMETERS **
* **
* load internal table -SELECT etc. **
* **

CHAPTER 6 ■ INTERNAL TABLES

296

* sort internal table BY KUNNR **
* DELETE ADJACENT DUPLICATES...COMPARING KUNNR **
* **
* LOOP AT...WRITE..ENDLOOP. **
**
DATA: BEGIN OF CUST_STRU,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 ORT01 TYPE KNA1-ORT01,
 END OF CUST_STRU,

 CUST_TAB LIKE STANDARD TABLE OF CUST_STRU,

 BUTXT TYPE T001-BUTXT.

PARAMETERS CCODE TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.

TOP-OF-PAGE.

WRITE:/5 TEXT-001 NO-GAP, CCODE NO-GAP, '/' NO-GAP, BUTXT, 92(2) SY-PAGNO.
WRITE:/5(88) SY-ULINE.
WRITE:/5 TEXT-002, 11 TEXT-003, 22 TEXT-004, 58 TEXT-005.
WRITE:/6 TEXT-006, 13 TEXT-007.
WRITE:/5(88) SY-ULINE.

START-OF-SELECTION.

SELECT SINGLE BUTXT FROM T001 INTO (BUTXT) WHERE BUKRS = CCODE.

SELECT KUNNR NAME1 ORT01 FROM YCL_CH05_VBRKKNA
 INTO TABLE CUST_TAB
 WHERE BUKRS = CCODE.

SORT CUST_TAB BY KUNNR.

DELETE ADJACENT DUPLICATES FROM CUST_TAB COMPARING KUNNR.

**
LOOP AT CUST_TAB INTO CUST_STRU.

 WRITE:/5(4) SY-TABIX, CUST_STRU-KUNNR USING NO EDIT MASK,
 CUST_STRU-NAME1, CUST_STRU-ORT01.

ENDLOOP.

Create text symbols and activate. They will appear like Figure 6-27.

CHAPTER 6 ■ INTERNAL TABLES

297

The output will appear like this:

Figure 6-27. Program YCL_CH06_ITAB10 – Text Symbols

Figure 6-28. Program YCL_CH06_ITAB10 – Output

MODIFY Statement – Update/Change Existing Rows in
Internal Tables
You can update or change rows in internal tables with the MODIFY statement. You can update one or multiple rows
with this statement.

CHAPTER 6 ■ INTERNAL TABLES

298

MODIFY Statement – Update or Change a Single Row
 a. The syntax of the MODIFY statement to update a single row by supplying the row number

of a table is:

MODIFY <internal table name> INDEX <data object name> FROM
 <structure name> [TRANSPORTING <field1> [field2..]].

The <data object name> is the row number to be updated. It can be a literal / constant / •
variable. If this number is a nonexistent row, an error condition arises.

If the TRANSPORTING option is not specified, the complete data from the <structure •
name> will be written to the row number specified with the <data object name> in the
internal table.

If the TRANSPORTING option is specified, only the data of the fields specified with •
TRANSPORTING are written to the row number specified with the <data object name> in
the internal table.

If you give this statement within a LOOP...ENDLOOP construct and you want to modify •
the current row fetched; the INDEX <data object> can be dropped. The row number in
this case is implicit.

This syntax works for indexed tables.•

 b. The syntax of the MODIFY statement to update a single row by supplying key field values
of a table is:

MODIFY TABLE <internal table name> FROM <structure name>
[TRANSPORTING <field1> [field2..]].

Data will be updated for rows located through the key field values of <structure name>. •
If a row is not locatable for the key field values, an error condition arises.

If the TRANSPORTING option is not specified, the complete data from the •
<structure name> will be written to the row corresponding to the key field values
in the internal table.

If the TRANSPORTING option is specified, only the data of the fields specified with •
TRANSPORTING are written to the row corresponding to the key field values in the
internal table.

MODIFY Statement – Update or Change Multiple Rows
The syntax of the MODIFY statement to update or change multiple rows is:

MODIFY <internal table name> FROM <structure name>
 TRANSPORTING <field1> [field2>..]WHERE <condition>.

All the rows in the internal table fulfilling the <condition> will be updated.

CHAPTER 6 ■ INTERNAL TABLES

299

Hands-On Exercise: MODIFY Single Row
As it was enumerated, single rows can be updated through (a) The INDEX, that is, supply the row number to the
MODIFY statement and the supplied row number if it exists will be updated with the data from the structure; (b) Key
field values. Assign the key fields of the structure with the appropriate values, issue the MODIFY statement and the
MODIFY statement will locate the row corresponding the key field values of the structure and will update this row if it
exists from the structure.

These two forms of the MODIFY statement have been used to update misspelled data loaded from the
database table T005U into a sorted internal table. The T005U table contains texts of the states/provinces/regions of
all the countries.

Refer to the comment lines of the source program for a detailed description of the exercise.
The source program is:

REPORT YCL_CH06_ITAB11.

* Internal Tables - MODIFY statement on Sorted Table **
* (Single row) **

* table T005U is a text table. it contains the state/ **
* region/province texts of all countries. like for **
* example it contains the texts of all the indian states **
* and union territories. the texts are in all the **
* languages supported. the primary key fields of this **
* table are **
* MANDT client code **
* SPRAS language key code **
* LAND1 country code **
* BLAND state/region/province code **
* **
* the text field is BEZEI **
* **
* for india (LAND1 = 'IN'), language english (language **
* key code SPRAS = 'E'), the state code '01': the state **
* has been miss-spelt. it is 'Andra Pradesh' instead of **
* being 'Andhra Pradesh' (letter h is missing in first **
* word) **
* **
* similarly for BLAND = '26' the text is 'Andaman und **
* Nico.In.' instead of 'Andaman and Nico.In.' ('and' has **
* miss-spelt as 'und' **
* **
* you will load texts of indian states in english into a **
* sorted internal table from database table T005U. **
* (WHERE SPRAS = 'E' AND LAND1 = 'IN') **
* this sorted table defined key will be MANDT, SPRAS, **
* LAND1, BLAND **
* **

CHAPTER 6 ■ INTERNAL TABLES

300

* you will assign the structure text field: **
* BEZEI = 'Andhra Pradesh' **
* **
* you will issue the MODIFY statement with INDEX 1 and **
* TRANSPORTING BEZEI i.e. only update field BEZEI. **
* **
* the system will locate the row in the internal **
* sorted table thru the INDEX 1 (row number 1) **
* it will update the field BEZEI from the value in the **
* structure field into the BEZEI field in the located **
* row. **
* this is MODIFY with INDEX **
* **
* **
* you will assign the structure primary key fields the **
* values: **
* MANDT = 800, SPRAS = 'E', LAND1 = 'IN', BLAND = '26' **
* **
* you will assign the structure text field: **
* BEZEI = 'Andaman and Nico.In. **
* **
* you will issue the MODIFY statement with TRANSPORTING **
* BEZEI i.e. only update field BEZEI. **
* **
* the system will locate the row in the internal **
* sorted table thru the values in structure key fields **
* it will update the field BEZEI from the value in the **
* structure field into the BEZEI field in the located **
* row. **
* this is MODIFY with key **
* **
* **
* this is happening only in the internal table. no **
* changes are occurring in the database table T005U **

TABLES T005U.
DATA: STATES_TAB LIKE SORTED TABLE OF T005U WITH UNIQUE KEY
 MANDT SPRAS LAND1 BLAND.

START-OF-SELECTION.

SELECT * FROM T005U INTO TABLE STATES_TAB WHERE
 SPRAS = 'E' AND LAND1 = 'IN'.

WRITE:/5 'Pre MODIFY Output (Only States Starting With A)'.
SKIP.
LOOP AT STATES_TAB INTO T005U WHERE BEZEI CP 'A*'.
 WRITE:/5 T005U-BLAND, T005U-BEZEI.
ENDLOOP.

CHAPTER 6 ■ INTERNAL TABLES

301

*T005U-MANDT = 800.
*T005U-SPRAS = 'E'.
*T005U-LAND1 = 'IN'.
*T005U-BLAND = '01'.
T005U-BEZEI = 'Andhra Pradesh'.
MODIFY STATES_TAB FROM T005U INDEX 1 TRANSPORTING BEZEI.

T005U-MANDT = 800.
T005U-SPRAS = 'E'.
T005U-LAND1 = 'IN'.
T005U-BLAND = '26'.
T005U-BEZEI = 'Andaman and Nico.In.'.
MODIFY TABLE STATES_TAB FROM T005U TRANSPORTING BEZEI.

SKIP 3.
WRITE:/5 'Post MODIFY Output (Only States Starting With A)'.
SKIP.
LOOP AT STATES_TAB INTO T005U WHERE BEZEI CP 'A*'.
 WRITE:/5 T005U-BLAND, T005U-BEZEI.
ENDLOOP.

In the LOOP statement, you have given a WHERE condition. You want to filter out the field BEZEI values starting
with ‘A’. You have given the string comparison operator ‘CP’ (contains pattern). Refer to Chapter 4. It is equivalent to
giving LIKE ‘A%’ in a SQL statement. The ‘*’ (asterisk) is for pattern, just like ‘%’ in a SQL statements.

The output will be like this:

Figure 6-29. Program YCL_CH06_ITAB11 – Output

CHAPTER 6 ■ INTERNAL TABLES

302

Hands-On Exercise: MODIFY Multiple Rows
As has been spelled out in II, you can update multiple rows with the MODIFY statement.

You are using the database table LFA1 – supplier/vendor primary table. It is on parallel lines of the customer
primary table KNA1. You are loading a few fields of this table into an internal table. The field ANRED contains blanks
for some rows. Where the value for ABRED is blank, you are replacing it with ‘Messrs.’ using the MODIFY statement.
The internal table is output before MODIFY and after MODIFY.

The source program:

REPORT YCL_CH06_ITAB12 LINE-SIZE 110 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

* Internal Tables - Update/Change (MODIFY) - Multiple Rows **

* database table LFA1 is supplier/vendor primary table. **
* the table has a field ANRED which contains the title for **
* the enterprise like 'Company', 'Firma' etc. **
* (the same field is there in customer primary table KNA1) **
* **
* Many of the rows have blank in this field ANRED **
* you will load the fields LIFNR (supplier code), ANRED, NAME1,**
* ORT01 into an internal table. you will replace the blank **
* ANRED values with 'Messrs.' with the MODIFY statement **
* output the internal table before the MODIFY statement and **
* after the MODIFY statement **

DATA: BEGIN OF VENDOR_STRU,
 LIFNR TYPE LFA1-LIFNR,
 ANRED TYPE LFA1-ANRED,
 NAME1 TYPE LFA1-NAME1,
 ORT01 TYPE LFA1-ORT01,
 END OF VENDOR_STRU,

 VENDOR_TAB LIKE STANDARD TABLE OF VENDOR_STRU,

 STRNG TYPE STRING.
**
TOP-OF-PAGE.
WRITE :/5 TEXT-001, STRNG, 104(3) SY-PAGNO.
WRITE:/5(102) SY-ULINE.
WRITE:/5 TEXT-002, 12 TEXT-003, 23 TEXT-004, 39 TEXT-005, 75 TEXT-006.
WRITE:/5 TEXT-007, 13 TEXT-008.
WRITE:/5(102) SY-ULINE.
**
START-OF-SELECTION.

SELECT LIFNR ANRED NAME1 ORT01 FROM LFA1 INTO TABLE VENDOR_TAB
 UP TO 100 ROWS.

CHAPTER 6 ■ INTERNAL TABLES

303

Figure 6-30. Program YCL_CH06_ITAB12 – Text Symbols

SORT VENDOR_TAB BY LIFNR.

STRNG = TEXT-009.
LOOP AT VENDOR_TAB INTO VENDOR_STRU.

 WRITE:/5(4) SY-TABIX, VENDOR_STRU-LIFNR USING NO EDIT MASK,
 VENDOR_STRU-ANRED, VENDOR_STRU-NAME1, VENDOR_STRU-ORT01.

ENDLOOP.

VENDOR_STRU-ANRED = 'Messrs.'.

MODIFY VENDOR_TAB FROM VENDOR_STRU TRANSPORTING ANRED
 WHERE ANRED = ' '.

STRNG = TEXT-010.

NEW-PAGE. "start post MODIFY on a new page

LOOP AT VENDOR_TAB INTO VENDOR_STRU.

 WRITE:/5(4) SY-TABIX, VENDOR_STRU-LIFNR USING NO EDIT MASK,
 VENDOR_STRU-ANRED, VENDOR_STRU-NAME1, VENDOR_STRU-ORT01.

ENDLOOP.

The text symbols:

CHAPTER 6 ■ INTERNAL TABLES

304

The output:

Figure 6-32. Program YCL_CH06_ITAB12 – Output [Post-MODIFY]

Figure 6-31. Program YCL_CH06_ITAB12 – Output [Pre-MODIFY]

CHAPTER 6 ■ INTERNAL TABLES

305

Hands-On Exercise: DESCRIBE TABLE Statement, Function: LINES()
You can know the attributes of an internal table using the DESCRIBE TABLE statement. You can ascertain the
number of rows in the internal table, the table type, the number given with the clause INITIAL SIZE. The syntax of the
DESCRIBE TABLE is:

DESCRIBE TABLE <internal table name> [LINES <lines variable name]
[OCCURS <occurs variable name] [KIND <table kind variable name>].

After the statement is issued, the system field SY-TFILL will contain the number of rows of the •
internal table on which the DESCRIBE TABLE statement was operated upon.

If you want the number of rows of the internal table in your declared variable, you can use the •
optional LINES <lines variable name>.

If you want the number specified with the INITIAL SIZE or OCCURS clause, you can give the •
optional addition OCCURS <occurs variable name>.

If you want the internal table TYPE: standard, sorted, or hashed; you can give the optional •
addition KIND <table kind variable name>. This addition returns a one character internal
table type: ‘T’ for standard, ‘S’ for sorted, or ‘H’ for hashed.

As an alternative to the DESCRIBE TABLE.. statement, a function is available to determine the number of rows in
an internal table:

<no of rows variable> = LINES(internal table name).

The function LINES(itab) is the preferred way of ascertaining the number of rows in an internal table over the
statement DESCRIBE TABLE...LINES...

These features have been highlighted in the hands-on exercise program. For this hands-on exercise, a hashed
table YCL_CH06_TCURT_TAB has been defined in the DDIC with line type TCURT and INITIAL SIZE 50, and UNIQUE
KEY FIELDS: MANDT, SPRAS, and WAERS. This internal table is loaded from currency text database table TCURT.

The source program is:

REPORT YCL_CH06_ITAB13.

* Internal Tables - DESCRIBE TABLE **
* Function: <var> = LINES(itab). **

* DESCRIBE TABLE statement returns: **
* **
* (1) the internal table TYPE - H for hashed **
* /KIND - S for sorted **
* - T for standard **
* the table TYPE is returned by using the **
* addition/clause KIND followed by the **
* variable name **
* **

CHAPTER 6 ■ INTERNAL TABLES

306

* (2) the number rows/lines in the internal **
* table. you can get this info **
* (a) in your defined variable by using **
* the addition/clause LINES followed **
* by your variable name **
* (b) it is automatically loaded into the **
* system field SY-TFILL. another **
* DESCRIBE statement will overwrite **
* this system field **
* **
* (3) INITIAL SIZE: returned by using the **
* addition/clause OCCURS followed by the **
* variable name **
* **
* The number of rows/lines in the internal **
* table are also determined by the function **
* LINES(). To get the number of rows/lines **
* in your defined variable using this function **
* <variable> = LINES(<internal table name>). **
* **

DATA: INT_TABLE TYPE YCL_CH06_TCURT_TAB,
 "referring to DDIC table TYPE

 TABLE_TYP(1) TYPE C,
 TABLE_LINES1 TYPE SY-TFILL, "SY-TFILL is TYPE I
 TABLE_LINES2 TYPE SY-TFILL,
 INIT_SIZE(2) TYPE N.
**
START-OF-SELECTION.

SELECT * FROM TCURT INTO TABLE INT_TABLE.

DESCRIBE TABLE INT_TABLE LINES TABLE_LINES1
 KIND TABLE_TYP OCCURS INIT_SIZE.

TABLE_LINES2 = LINES(INT_TABLE). "function to determine table lines

SKIP 5.
WRITE:/5 'TABLE TYPE ''H''/''S''/''T'' :', TABLE_TYP,
 /5 'TABLE ROWS/LINES-DESCRIBE :', (4) TABLE_LINES1,
 /5 'TABLE ROW/LINES-LINES() :', (4) TABLE_LINES2,
 /5 'SY-TFILL :', (4) SY-TFILL,
 /5 'INITIAL SIZE :', INIT_SIZE.

CHAPTER 6 ■ INTERNAL TABLES

307

Hands-On Exercise: Produce Multilevel Summary Using Internal
Table Control Level Processing
The internal table feature of control level processing facilitates easy production of multilevel summary lists.
You had produced single level summary lists using the COLLECT statement in programs YCL_CH06_ITAB05 and
YCL_CH06_ITAB06. Both the programs produced customer wise sales summary. There was one summarizing entity:
the customer. You can produce single level summary outputs without the COLLECT statement. That would have
entailed extra coding. Similarly, the control level processing helps cut down on coding.

Scenario
You require a two-level summary list involving the entities: customer and material. In technical terms, our fields of
summarization are KUNNR and MATNR. The output should list the sale of different materials for each customer.

A very rough layout:

Observe that under each customer the sales total of each material for the customer is listed.
When all the materials for the customer are exhausted the total for the customer is output to the right of the totals

for each material.
Similarly, when all the customers are exhausted, a grand total is output to the right of the totals for each customer.

Figure 6-33. Program YCL_CH06_ITAB13 – Output

The output:

CHAPTER 6 ■ INTERNAL TABLES

308

An output would generally be proposed by the end use. A less rough output layout:

In this layout, you have not been able to accommodate the grand total on the extreme right due to lack of
horizontal space. So it is implicit.

Input Data Identification
You must identify the tables and fields required to produce this output. The table of the basic data always should be
identified. You need material wise sales basic data. This is available in the billing document item database table VBRP.
In the table the amount for each material or item is available as a separate row. The fields required by you in VBRP
table are:

MATNR Material Code length 18
NETWR Net Value of Material/Item in Document Currency

Note that material code MATNR is 18 characters. The NETWR in VBRP should be distinguished from the NETWR
of VBRK. In VBRP, this is the net value of each material. If in a billing document, 10 bolts are sold for $1000, NETWR
of that row in VBRP will contain this. If in the same billing document there is one more material or item 5 nuts for
$250, this will be another row in VBRP and the field NETWR in this row will contain $250. In the VBRK table (billing
document header), the billing document row to which these materials or items belong, the NETWR field will contain
a total of these two materials or items (i.e., 1000+250 = $1250. The document currency of this billing document was
US Dollar denoted by USD. Note that in the data model, VBRK is the primary table and VBRP the secondary. They are
related through the fields MANDT and VBELN.

Earlier, in your customer wise sales summary, you were using the NETWR of the table VBRK. You wanted a
customer wise summary and were not bothered with individual materials/items.

Each billing document of a company code can have a different currency. Suppose the company code to which
this billing document belongs has the operating currency as Indian Rupee denoted as INR. Then for your summary
list purposes, you need to convert the amounts from USD to INR. Similarly for every amount, you need to convert the
amounts from document currency to the company code currency. So you need the exchange rate. The exchange rate
field KURRF is available in the table VBRK:

KURRF in table VBRK - Exchange Rate

You need material descriptions. The material descriptions are maintained in multiple languages in the text
table MAKT.

MAKTX in table MAKT - Material Description

CHAPTER 6 ■ INTERNAL TABLES

309

You need a customer code and customer name. These are available in table KNA1:

KUNNR Customer Code
NAME1 Customer Name

The table KNA1 cannot be linked to table VBRP directly. There are no common fields. They are to be linked
through the table VBRK that contains customer code field KUNAG. You are accessing the field KURRF from VBRK.

So you need to retrieve data from four database tables:

VBRP Billing Documents - Item
MAKT Material Descriptions
VBRK Billing Document - Header
KNA1 Customer Primary

You will create a database view consisting of these four tables and gather all the data in one DDIC object.
Your data model for the view is:

Figure 6-34. Data Model – Database View YCL_CH06_CM_SALE

Since the database view uses an inner join, positioning a table on the left or right does not matter. You are treating
the table VBRP at the top of the hierarchy because it is containing the basic data.

Database View
The database view table column and join conditions columns will be like this:

KNA1
VBRK VBRP MANDT = MAKT MANDT
MAKT VBRP MATNR = MAKT MATNR
VBRP VBRP MANDT = VBRK MANDT
 VBRP VBELN = VBRK VBELN
 VBRK MANDT = KNA1 MANDT
 VBRK KUNAG = KNA1 KUNNR

CHAPTER 6 ■ INTERNAL TABLES

310

The database view field list will be like this:

MANDT VBRP MANDT
VBELN VBRP VBELN
POSNR VBRP POSNR
SPRAS MAKT SPRAS
KUNNR KNA1 KUNNR
MATNR VBRP MATNR
NETWR VBRP NETWR
MAKTX MAKT MAKTX
BUKRS VBRK BUKRS
KURRF VBRK KURRF
WAERK VBRK WAERK
NAME1 KNA1 NAME1

The database view selection conditions should be like this:

MAKT SPRAS EQ 'E'

You need to have this condition, or else the view will have material descriptions in all the installed languages.
You are filtering out the descriptions in English.

Create a database view YCL_CH06_CM_SALE with these specifications. Check, activate and audit the view.

Output Main Body Layout
The output body layout in terms of fields, table origins, and column positions is:

Table 6-6. Customer, Material Wise Sales Summary of a Company Code: Output Layout

Field Name Table Name Description Column Positions

KUNNR KNA1 Customer Code 005-014 (10)

015

NAME1 KNA1 Name 016-050 (35)

MATNR VBRP Material Code 008-025 (18)

026

MAKTX MAKT Material Description 027,066 (40)

067

Total of
(NETWR * KURRF)

VBRP VBRK Total of Material Net Value

– Material Wise Total in Company Code Currency

068,083 (16)

084

Total of
(NETWR * KURRF)

VBRP, VBRK Total of Customer Net Value – Customer
Wise Total in Company Code Currency

085,100 (16)

101

Total of
(NETWR * KURRF)

VBRP, VBRK Grand Total of Net Value – Grand Total in
Company Code Currency

102-117 (16)

CHAPTER 6 ■ INTERNAL TABLES

311

Control Levels
The whole process of a multilevel summarization of data takes place within the LOOP...ENDLOOP.

There are the hierarchical control level statements corresponding or mapping to your summarization levels or
fields. Like in your scenario, your summarization fields are KUNNR (customer code) and MATNR (material code).
The control will jump to these control level statements depending on conditions arising with the processing of data.
A control level statement block starts with the key word AT and ends or terminates with the key word ENDAT.

You should ensure that your table is sorted in the ascending order of summarization or control fields, that is,
KUNNR or MATNR.

The control level statements are as follows:

AT FIRST•

AT NEW <control field>•

AT END OF <control field>•

ON CHANGE <control field>•

AT LAST•

With the LOOP...ENDLOOP, the control level statements will appear like this:

LOOP AT <internal table name> INTO <structure name>.

 AT FIRST.
 <statement block>.
 ENDAT

 AT NEW <first level of control field>.
 <statement block>.
 ENDAT.

 AT NEW <second level of control field>.
 <statement block>.
 ENDAT.

 " more AT NEW controls if any
 " more AT END OF controls if any

 AT END OF <second level of control field>.
 <statement block>.
 ENDAT.

 AT END OF <first level of control field>.
 <statement block>.
 ENDAT.

 AT LAST.
 <statement block>.
 ENDAT.

ENDLOOP.

CHAPTER 6 ■ INTERNAL TABLES

312

The order or hierarchy of these control level statements is to be maintained as shown in the preceding pseudo
code as a standard practice. You may not have any action to be taken for a particular control level and can omit it.

Note that for the AT NEW control levels, the order is the same as the summarization levels, that is, AT NEW <first
level of control or summarization>, AT NEW <second level of control or summarization> and so on if there are more
than two levels of summarization.

The order of AT END OF control levels is the reverse of the order of AT NEW control levels. Starting with AT END
OF <second level of control or summarization>, next the AT END OF <first level of control or summarization>.

The control level AT FIRST is at the top and the control level AT LAST at the bottom.
The control level statements cannot be used in LOOP...ENDLOOP with WHERE and/or FROM and TO. Also, the

table should not be modified during the LOOP...ENDLOOP.
AT FIRST: After the first row is fetched from the internal table (first pass of the loop), the control will jump to the

control level AT FIRST. If you have some action to be performed for this control level, you need to put this control level
else you can omit it. This applies to all control levels.

AT NEW: Every time a new value of <second level of control field> or <first level of control field> is fetched,
control will jump to this control level.

In case of a new value of <first level of control field>, it first jumps to the control level of <first level of control
field> followed by a jump to <second level of control field>.

In case where a new value of <second level of control field>, it only jumps to <second level of control field>.
AT END OF: Every time all the rows for a particular value of <second level of control field> or <first level of control

field> have been fetched, control will jump to this control level.
In the case where all rows of a particular value of <first level of control field> have been fetched, it first jumps to

the control level of <second level of control field> followed by a jump to <first level of control field>.
In the case where all rows of a particular value of <second level of control field> have been fetched, it only jumps

to <second level of control field>.
ON CHANGE OF: This is similar to AT NEW control. Every time there is a change of value in the field, control will

jump to this level. This is not specified in the LOOP ENDLOOP pseudo code.
AT LAST: When all the rows of the internal table have been fetched, before exiting the LOOP...ENDLOOP, control

will jump to this control level.
To recapitulate, you need to use control levels within the LOOP...ENDLOOP to be able to take action for the

situations triggering the control levels. There are the two essential prerequisites: (a) The control levels should be in
the order given in the pseudo code as a standard practice; (b) The internal table should be sorted in the ascending
order of the summarization or control fields. The discussion has been conducted for the sake of easy understanding,
in terms of two control fields. It would apply to n number of control fields.

Mapping Application of Control Levels to Scenario
Now, let these control levels be mapped to your output layout:

Every time a new customer row is fetched, you need to output the customer info, that is, customer code and
name. These are serial numbers 1 and 2 in Table 6-6. So you can use AT NEW KUNNR for this.

Consider the output of summary lines for each material sold to this customer. A material could be sold once, twice,
or n number of times to a customer. These n number of rows of a material need to be summarized and a total is to be
output along with a material code and material description. So you want control when all the rows for a particular
material under a particular customer have been fetched. You can use the AT END OF MATNR control level. You output
the material code, description, and total amount for a material, that is, serial numbers 3, 4, and 5 of Table 6-6.

When all the rows of a particular customer have been fetched, you need to output the total for the customer
appearing to the right of material wise total. You can use the AT END OF KUNNR. This is serial number 6 of Table 6-6.

For your grand total, you can use the control level AT LAST. This is serial number 7 of Table 6-6.

CHAPTER 6 ■ INTERNAL TABLES

313

SUM statement
The next issue is how the totals will be built and accumulated for the three instances: material wise, customer wise,
and the grand total. Along with the control level feature the SUM statement is provided. The syntax of the SUM
statement is:

SUM.

The SUM statement can only be given inside a LOOP...ENDLOOP construct. If there is a nesting of LOOP...
ENDLOOP, the SUM statement is not accepted.

The SUM statement operates in the following way:
The SUM statement operates on types F, I, and P that are numeric fields.
It accumulates the numeric fields for all the rows fetched for a particular value of the control field if the SUM

statement is given in the AT END OF...control block.
It accumulates the numeric fields for all the rows to be fetched for a particular value of the control field if the SUM

statement is given in the AT NEW...control block.
The accumulated totals are placed in the numeric fields of the structure. You can use the accumulated control,

numeric fields, and output it, etc.
To illustrate with an example, your internal table name is SALES_SUM_TAB and your work area/structure name

is SALES_SUM_STRU. Suppose some of your data is as follows:

 MATNR MAKTX NETWR

1234 BOLT 50000
1234 BOLT 20000
1234 BOLT 70000
1234 BOLT 30000
1235 NUT 10000
....................

LOOP AT SALES_SUM_TAB INTO SALES_SUM_TRU.

 AT END OF MATNR.
 SUM.
 ENDAT.
ENDLOOP.

So, when the four rows of MATNR value equal to 1234 have been fetched, control will jump to the AT END OF
MATNR. The SUM STATEMENT will be executed. After the execution of the SUM statement, the field SALES_SUM_
STRU-NETWR will contain 170000. Now, all that is required is to output this field with MATNR and MAKTX.

A similar illustration can be given for the customer wise total and the grand total.

Extra Processing
You need to take care of two more issues.

I. The first issue is related to the field NETWR and the SUM statement. The SUM statement will total the NETWR
values of individual rows. So the individual rows in the internal table must have the converted value of NETWR, that
is, NETWR multiplied by KURRF, the exchange rate field. This will convert all the values of NETWR into one currency,
the currency of the company code (or the operating currency). Otherwise you will end up adding Indian Rupee (INR)
values to US Dollars (USD) values, a meaningless exercise. To incorporate these converted amounts into internal table

CHAPTER 6 ■ INTERNAL TABLES

314

individual rows, you will run a LOOP...ENDLOOP in which you fetch one row from the internal table into the structure
and multiply the structure fields:

SALES_SUM_STRU-NETWR = SALES_SUM_STRU-NETWR * SALES_SUM_STRU-KURRF.

Write/update this converted amount from the structure to the internal table row using the MODIFY statement.
The code will be like this:

LOOP AT SALES_SUM_TAB INTO SALES_SUM_STRU.

 SALES_SUM_STRU-NETWR = SALES_SUM_STRU-NETWR * SALES_SUM_STRU-KURRF.

 MODIFY SALES_SUM_TAB FROM SALES_SUM_STRU INDEX SY-TABIX
TRANSPORTING NETWR.

ENDLOOP.

This will result in all the NETWR values in the internal table in converted form.
II. When there is a jump to the control levels, the non-numeric, non-control fields like NAME1 and MAKTX are

filled with null (output as ‘*’ asterisks). You need to output these fields. So these fields need to be appropriately saved
as to enable you to output. This is being taken care of in the program.

The source code for customer, material wise sales summary:

REPORT YCL_CH06_ITAB14 LINE-SIZE 120 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

* Internal Tables Control Totals For Two Level Summary **

**
* declare table structure. ensure the control fields **
* are in the beginning of structure. the order of these **
* fields should be same as control order KUNNR MATNR **
* declare table & other variables **
* **
* input company code - PARAMETERS **
* **
* load internal table with data from the view. set up **
* LOOP...ENDLOOP. for each row convert amount NETWR **
* to the operating currency of company code. make KURRF **
* = 0 to prevent overflow. update in the table MODIFY etc.**
* **
* sort table on fields of control levels i.e. KUNNR MATNR **
* **
* set up LOOP...ENDLOOP.. set up control levels **
* AT NEW KUNNR, AT END OF MATNR, AT END OF KUNNR, AT LAST **
* as per output format. output appropriate info in each **
* these control levels as per output format **
**

CHAPTER 6 ■ INTERNAL TABLES

315

DATA: BEGIN OF SALES_SUM_STRU,
 KUNNR TYPE KNA1-KUNNR, " I level of control
 MATNR TYPE VBRP-MATNR, " II level of control
 NAME1 TYPE KNA1-NAME1,
 MAKTX TYPE MAKT-MAKTX,
 NETWR TYPE VBRP-NETWR,
 KURRF TYPE VBRK-KURRF,
 END OF SALES_SUM_STRU,

 SALES_SUM_TAB LIKE STANDARD TABLE OF SALES_SUM_STRU,

 NAME1 TYPE KNA1-NAME1,
 MAKTX TYPE MAKT-MAKTX,
 STR(50) TYPE C,
 BUTXT TYPE T001-BUTXT,
 WAERS TYPE T001-WAERS.
**
PARAMETERS CMP_CD TYPE VBRK-BUKRS VALUE CHECK DEFAULT 3000.

TOP-OF-PAGE.
WRITE:/5 TEXT-001, CMP_CD NO-GAP, '/' NO-GAP, BUTXT, 81(3) SY-PAGNO.
WRITE:/46 TEXT-002, WAERS.
SKIP 1.
WRITE:/5(79) SY-ULINE.
WRITE:/9 TEXT-003, 29 TEXT-004, 78 TEXT-005.
WRITE:/5(79) SY-ULINE.

**
START-OF-SELECTION.

SELECT SINGLE BUTXT WAERS FROM T001 INTO (BUTXT, WAERS) WHERE
 BUKRS = CMP_CD.

SELECT KUNNR MATNR NAME1 MAKTX NETWR KURRF FROM
 YCL_CH06_CM_SALE
 INTO TABLE SALES_SUM_TAB WHERE BUKRS = CMP_CD.

** convert amount NETWR to company code currency
**
LOOP AT SALES_SUM_TAB INTO SALES_SUM_STRU.
 SALES_SUM_STRU-NETWR = SALES_SUM_STRU-NETWR * SALES_SUM_STRU-KURRF.
 SALES_SUM_STRU-KURRF = 0.
 MODIFY SALES_SUM_TAB FROM SALES_SUM_STRU.
ENDLOOP.

SORT SALES_SUM_TAB BY KUNNR MATNR. " sort in order of control levels

CHAPTER 6 ■ INTERNAL TABLES

316

** loop to generate customer, material summary
**
LOOP AT SALES_SUM_TAB INTO SALES_SUM_STRU.

 NAME1 = SALES_SUM_STRU-NAME1.

 AT NEW KUNNR. " first row of new value of KUNNR fetched
 SKIP 1.
 FORMAT INVERSE ON COLOR COL_POSITIVE.
 CONCATENATE SALES_SUM_STRU-KUNNR NAME1 INTO STR SEPARATED BY '/'.
 WRITE:/5 TEXT-006, STR.
 ENDAT.

 MAKTX = SALES_SUM_STRU-MAKTX.

 AT END OF MATNR. " all rows of particular value of KUNNR & MATNR fetched
 SUM.
 FORMAT INVERSE ON COLOR COL_GROUP.
 WRITE:/8 SALES_SUM_STRU-MATNR USING NO EDIT MASK, MAKTX,
 (16) SALES_SUM_STRU-NETWR.
 ENDAT.

 AT END OF KUNNR. " all rows of particular value of KUNNR fetched
 SUM.
 FORMAT INVERSE ON COLOR COL_POSITIVE.
 WRITE:/85(16) SALES_SUM_STRU-NETWR.
 ENDAT.

 AT LAST. "all rows in internal table fetched
 SUM.
 FORMAT INVERSE ON COLOR COL_TOTAL.
 WRITE:/102(16) SALES_SUM_STRU-NETWR.
 ENDAT.

ENDLOOP.

CHAPTER 6 ■ INTERNAL TABLES

317

The outputs:

Figure 6-35. Program YCL_CH06_ITAB14 – Text Symbols

Figure 6-36. Program YCL_CH06_ITAB14 – Output

The text symbols:

CHAPTER 6 ■ INTERNAL TABLES

318

A Note on the Data Sources – Program YCL_CH06_ITAB14 vis-à-vis
the Program YCL_CH06_ITAB05
Consider the grand total being output in the present program with the grand total that was output in the previous
program, YCL_CH06_ITAB05, (customer wise sales summary). The grand total should be identical in both these
programs. The grand total being output in these two programs are the total sales for the company code in the
currency of the company code. The source of data in these two programs is different. In the present program the
field NETWR from table VBRP is multiplied by the exchange rate field KURRF and accumulated. In the previous
program YCL_CH06_ITAB05, the field NETWR from table VBRK is multiplied by the exchange rate field KURRF and
accumulated. Moreover, the data in these two programs is not retrieved directly from the tables but from database
views involving other tables.

If you execute both the programs with company code = 3000, the grand totals are identical.
But if you execute both the programs with company code = 1000, there is a mismatch. This is because in the

billing document 90023037, the sum of individual values in field NETWR of table VBRP do not tally with the value in
NETWR field of table VBRK. Also the item R-NET-INST does not have an English description, so it gets excluded in
your database view.

For company code = 0001, there is no output with the current program (no data in the view for company
code = 001). Whereas, if you execute the program YCL_CH06_ITAB05, there is output. This is because, for company
code = 0001, all billing document items have a material number = Erste Hilfe. The material number = Erste Hilfe has
no corresponding row in the tables MARA and MAKT (an orphan row), so it gets omitted in the database view.

These are problems related to the IDES server data.
In your database views, you are not involving the sales administration table VBUK. The billing documents

tables VBRK and VBRP are not directly linked. These two tables are linked to each other through the table sales
administration VBUk. In all the hand-on exercises in the book, you are linking these two tables directly for simplicity.

You are being made aware of the issues. In the present learning paradigm, you will not bother with these issues.

Figure 6-37. Program YCL_CH06_ITAB14 – Output with Grand Total

CHAPTER 6 ■ INTERNAL TABLES

319

Hands-On Exercise: Initialize Internal Tables Rows
or Complete Data
You can initialize internal tables, that is, delete all the rows with a single statement. There are three separate
statements available to clear internal data. The three statements are:

Clear
The CLEAR statement can clear any data object, that is, elementary, structured, or internal table.

When the CLEAR statement is used on an elementary data object, the elementary data object is filled with the
INITIAL value. The INITIAL value for type C is spaces; it is Unicode/ASCII/EBCDIC zeroes for type D, etc. Refer to
Chapter 4 for INITIAL values of different predefined ABAP elementary types.

When the CLEAR statement is operated on a structured data object, each of the elementary data objects or fields
in the structure are filled with the INITIAL values of the corresponding type.

When the CLEAR statement is operated on an internal table, all the rows in the internal table are deleted.
If an internal table exists with a header line and you want the CLEAR statement to operate on the internal table,

you should add brackets - [].
When operating with the APPEND statement, it is a good programming practice to use the CLEAR statement after

the APPEND statement as to ensure the old data that has not been overwritten is cleared.

Refresh
The REFRESH statement is exclusive to internal tables. It deletes all rows in the internal table.

Free
The FREE statement is exclusive to internal tables. It deletes all rows in the internal table and releases the
memory as well.

The program YCL_CH06_ITAB15 demonstrates the three statements to clear internal tables of data.
The source program:

REPORT YCL_CH06_ITAB15.

**
* Internal Tables, Remove Data - CLEAR, REFRESH, FREE **
**
**
* declare three internal tables of structure TCURT **
* **
* load the three internal tables with TCURT data **
* **
* operate DESCRIBE TABLE on the three internal tables **
* determine number of rows. output the number of rows **
* **
* operate CLEAR, REFRESH, FREE statements on the **
* internal tables. **
* **
* operate DESCRIBE TABLE on the three internal tables **
* determine number of rows. output the number of rows **
**

CHAPTER 6 ■ INTERNAL TABLES

320

DATA: CURR_TAB1 TYPE STANDARD TABLE OF TCURT WITH HEADER LINE,
 CURR_TAB2 TYPE STANDARD TABLE OF TCURT,
 CURR_TAB3 TYPE STANDARD TABLE OF TCURT WITH HEADER LINE.

START-OF-SELECTION.
SELECT * FROM TCURT INTO TABLE : CURR_TAB1,
 CURR_TAB2,
 CURR_TAB3.

DESCRIBE TABLE CURR_TAB1.
WRITE:/5 'CURR_TAB1-PRE CLEAR STATUS :', (4) SY-TFILL.

DESCRIBE TABLE CURR_TAB2.
WRITE:/5 'CURR_TAB2-PRE REFRESH STATUS:', (4) SY-TFILL.

DESCRIBE TABLE CURR_TAB3.
WRITE:/5 'CURR_TAB3-PRE FREE STATUS :', (4) SY-TFILL.

SKIP 2.
CLEAR CURR_TAB1[]." to distinguish itab from structure of
 " the same name
DESCRIBE TABLE CURR_TAB1.
WRITE:/5 'CURR_TAB1-POST CLEAR STATUS :', (4) SY-TFILL.

REFRESH CURR_TAB2.
DESCRIBE TABLE CURR_TAB2.
WRITE:/5 'CURR_TAB2-POST REFRESH STATUS:', (4) SY-TFILL.

FREE CURR_TAB3.
DESCRIBE TABLE CURR_TAB3.
WRITE:/5 'CURR_TAB3-POST FREE STATUS :', (4) SY-TFILL.

The output will look like this:

Figure 6-38. Program YCL_CH06_ITAB15 – Output

CHAPTER 6 ■ INTERNAL TABLES

321

MOVE, Assign, Copy, Internal Tables
You can use internal tables as operands in the MOVE and assignment statements. When using the MOVE statement or
making assignments, ensure that the source and destination internal tables have identical structures.

Conclusion
In the remaining chapters of this book, internal tables are invariably used. For better performance, the de facto way of
processing retrieved data from database tables or views is through the internal tables.

Refer to the E-Resource program YCL_CH06_DATA_DEC_REFS. It summarizes the different references used to
declare data in ABAP programs.

323

CHAPTER 7

Modularization

Introduction
In the ABAP environment, modularization involves the organization of programs into modular units, also known
as logical blocks. The modularization should reduce redundancy and increase program readability even as you are
creating it and subsequently during the maintenance cycle. Modularization also enables reusability of the same code
again. ABAP, with its roots in procedure oriented technology, has made it necessary for developers to modularize:
organize the programs relatively more than in the OOPS based languages, which have relatively more built-in
modular features.

In addition to modularization, ABAP message maintenance and the MESSAGE... statement is also covered in
the present chapter. The MESSAGE... statement is used to issue messages as well as raise error exceptions inside a
function module. Function modules are part of modularization.

Recall from Chapter 4 about the structure of ABAP programs. The ABAP programs are made up of processing
blocks. Two of the processing blocks are:

The processing blocks called from outside the program and from the ABAP runtime •
environment (i.e., event blocks and dialog modules).

Processing blocks called from ABAP programs:•

Subroutines – Internal and external•

Function modules (basically generic subroutines)•

Methods•

These processing blocks are called as the modularizing processing blocks. Event processing blocks have been
already introduced. As more contexts arise, more events will be introduced. Dialog modules will be covered in
Chapter 14 entitled ‘Screen Programming’.

Apart from allowing the modularization with processing blocks, ABAP also facilitates modularization with source
code through local macros and global include programs. The following will be discussed in this chapter:

Modularization at Source Code Level•

Local Macros•

Global Include programs•

Modularization through processing blocks Called from ABAP programs•

Internal subroutines•

Function modules•

CHAPTER 7 ■ MODULARIZATION

324

External subroutines are essential only in one context (i.e., SAP Scripts). Function modules are the preferred
option over external subroutines. Methods will be covered in Chapters 11, 12, and 13.

For now, the coverage will consist of:

Macros•

Internal subroutines•

Include programs•

Function modules•

Macros
This is the most rudimentary mode of modularization. A typical situation when a macro can be used is when in an
ABAP program, a number of source lines or statements are being repeated. The repeated statements can be located
at one place as a macro and invoked from multiple places. It is a case of reducing redundancy and avoiding the
cluttering of too many statements. The ABAP compiler on encountering the macro will expand the macro, that is,
replace its invocation with the statements contained in the macro definition.

A rough syntax of a macro definition is as follows:

DEFINE <macro name1>. "DEFINE is key word
<statements>
END-OF-DEFINITION. "END-OF-DEFINITION is key phrase
........
<macro name1> [<parameters 1> <parameters 2>..]. "Macro invocation

 It is necessary to define a macro first before invoking it.•

The <parameter 1>... etc. replace the place holders &1... in the ABAP statements contained in •
the macro definition. There can be a maximum of nine placeholders in a macro definition.

You can invoke a macro within another macro, but not the same macro.•

You should be careful when using both macros and include programs, as there is no syntax •
check of include programs except the top include.

If you recall from Chapter 4, we had a program DESCRIBE FIELD... It offers you the scope of macro application.
There are a lot of repetitive lines in that program. But before you apply macros to this program, let the internal
subroutine be introduced, and you will then apply macros and subroutines to the Chapter 4 program
DESCRIBE FIELD...

Subroutines
This discussion is confined to internal subroutines. When the word subroutine is used, internal is implicit.

Like macros, the subroutines also reduce redundancy and enhance program readability, but with some more
advantages over the macros. The subroutines can accept all types of parameters unlike the macros, which accept
only strings in the placeholders. The subroutines can also return values (output parameters). Error handling or
raising exception is supported within the subroutines. The subroutines can also have local data. Like the macros, the
subroutines have to be defined and then invoked or called.

CHAPTER 7 ■ MODULARIZATION

325

Subroutine Definition

A rough syntax of a subroutine definition is:

FORM <subroutine name> USING <formal parameter 1>
 VALUE(<formal parameter 2>) TYPE <data object2>
 CHANGING <formal parameter 3> LIKE <data object 3>
 VALUE(<formal parameter 4>). "this is a single statement to define subroutine
 <statements block>
ENDFORM.

Deliberately, four parameters have been specified to make the explanation easy to understand.
The parameter/s specified with the subroutine definition is the formal parameters.

FORM is the keyword to define a subroutine. The keyword has to be followed by the name of •
the subroutine.

Parameters can be passed by reference (the default), value, and value and result.•

If you use either of the keywords USING or CHANGING followed by the formal parameter, •
(without the key word VALUE), the parameter is passed by reference.

If you use the keywords USING VALUE followed by the formal parameter enclosed in •
parentheses, then the parameter is passed by value.

If you use the key words CHANGING VALUE followed by the formal parameter enclosed in •
parenthesis, then the parameter is passed by value and result.

You can assign a type to a parameter by using the appropriate keyword TYPE or LIKE followed •
by either the predefined ABAP elementary types, C, D, F, I, N, P, T, X, STRING, and XSTRING)
or a local type declared with the TYPES statement or a DDIC data type in the DDIC type group
or a data object name (in most cases a DDIC data object) or a system field. You can also assign
type to the formal parameters by referring to the ABAP generic types. A table of the ABAP
generic types is to be found in the online documentation through the navigation: ABAP - By
Theme ➤ Built-In Types and Data Objects and Functions ➤ Built-In Data Types ➤ Generic
ABAP Types. When subroutine formal parameters are assigned types, then at compile time,
the actual parameter type will be compared with the type specified for this formal parameter,
and a mismatch will trigger a compatibility error condition.

The keyword ENDFORM is to indicate the end of the subroutine.•

In the syntax statement, you are passing <formal parameter 1> by reference, <formal parameter 2> by value,
<formal parameter 3> by reference and <formal parameter 4> by value and result.

You have assigned type to the parameters <formal parameter 2> and <formal parameter 3>.
A subroutine cannot be located within a subroutine – no nesting.
A subroutine can call itself, and a subroutine can be recursive. Subroutines should be located at the end of an

ABAP program.
You can also specify along with parameters, the exceptions in the subroutine. The parameters’ specification along

with the exceptions is called the subroutine interface. In Chapter 11, the class based exceptions will be elaborated, and
class based exceptions raised inside subroutines will be illustrated.

CHAPTER 7 ■ MODULARIZATION

326

Subroutine calling

A rough syntax of calling a subroutine:

PERFORM <subroutine name> USING <actual parameter1> <actual parameter2>
 CHANGING <actual parameter3> <actual parameter4>.

PERFORM is the key word to call a subroutine. The control jumps to the first executable statement in the
subroutine <subroutine name>. When ENDFORM is encountered, control jumps back to the statement following the
PERFORM statement.

The keyword VALUE is specified only with the formal parameters in the subroutine definition. The keyword
VALUE with the keyword USING is to indicate parameters are being passed by value. The keyword VALUE with the
keyword CHANGING is to indicate parameters are being passed by value and result.

The order and number of the formal parameters must be identical to the actual parameters.

Subroutine Parameter Passing
By Reference

You are passing parameters by reference when you are using either of the keywords USING or CHANGING without
the keyword VALUE. The key words USING or CHANGING can be used interchangeably. They serve the purpose of
documentation. If you are changing the value of this parameter within the subroutine, use the keyword CHANGING;
or else use the key word USING. The memory address of the data object is passed on to the formal parameter of the
subroutine. The subroutine will directly operate on this data object passed as parameter by reference. If within the
subroutine, the value of the formal parameter is changed, the value of actual parameter also changes because they are
one and the same.

By Value

You are passing parameters by value when you use the keyword USING followed by the keyword VALUE and the
formal parameter enclosed in parentheses. In this case, the subroutine creates a duplicate of the actual parameter
within the subroutine as a local copy. Any changes made to the formal parameter are performed on the local copy,
and the original or actual parameter remains unchanged.

By Value and Result

You are passing parameters by value and result when you use the keyword CHANGING followed by the keyword
VALUE and the formal parameter enclosed within parentheses. When a parameter is passed in this manner, the
subroutine again makes a duplicate local copy of the actual parameter. When the formal parameter is changed within
the subroutine, the changes are performed on the local copy. If the subroutine exits in a normal way (not through
an error exception), the values of the formal parameter or the duplicate copy is copied back to the original or actual
parameter. If the subroutine exits through an error exception, the value of formal parameter is not copied to the
original or actual parameter. Class based error exceptions are covered in Chapter 11; and the effect of value and result
subroutine parameter is demonstrated in Chapter 11.

CHAPTER 7 ■ MODULARIZATION

327

Subroutines – Internal Tables and Structures as Parameters

You can pass internal tables and structures like any other elementary type parameters by reference, value, and by
value and result.

Internal Tables

When passing internal tables by value and value and result, you should bear in mind (a) the extra RAM to maintain a
duplicate of internal table, and (b) that there is an operation of copying of internal tables (once in the case of passing
by value and twice in the case of passing by value and result). This could have an effect on performance. The internal
tables should preferably be passed by reference.

You must assign type to an internal table formal parameter as STANDARD TABLE, INDEX TABLE, ANY TABLE,
SORTED TABLE, and HASHED TABLE. A hands-on exercise demonstrates the passing of an internal table as a
subroutine parameter. You can pass a standard internal table by reference using the keyword TABLES in place of
USING or CHANGING. But this notation is now considered obsolete.

Structures

When a structure is passed as a parameter and the components or fields of the structure are to be accessed in the
subroutine, the structure formal parameter must be assigned a type by referring to an appropriate DDIC or program
structure. When assigning a type to a structure parameter, you can use the keyword STRUCTURE instead of the
keywords TYPE or LIKE. A hands-on exercise demonstrates the passing of structure parameter and accessing of
structure fields inside the subroutine.

Subroutines – Local Data and Local Data Declarations

Data can be declared within a subroutine like you do with the keywords DATA, TABLES, and CONSTANTS.
The data declared within a subroutine is local to the subroutine and can be accessed only within the
subroutine. The data declared in a subroutine comes into existence only when the subroutine is entered but
ceases to exist when the subroutine is exited. In this context, data declared within a subroutine is referred as
local data vis-à-vis the data declared in the main program, which is referred to as program global data: data that
can be referred anywhere within an ABAP program.

Subroutine – STATIC: Retain Local Variable Values

Sometimes when you are executing a subroutine a multiple number of times, you want the data declared within
a subroutine to retain values. Normally, like it has been mentioned in the preceding item, every time you enter a
subroutine, the data declared within the subroutine comes into existence and gets undefined on exiting the subroutine.
So whatever values were assumed by the variables within the subroutine are lost when you next enter the subroutine
again. If you want the values to be retained, declare the data using keyword STATIC instead of the keyword DATA.

Subroutine – LOCAL: Protect Global Data

Within a subroutine, if you declare data with the same name as data objects in the main program, the locally declared
data objects will be operated upon within the subroutine. The local data objects will mask out the main program data
objects of the same name. The subroutine local data objects (declared with keyword DATA) having the same name as
the data objects in the main program might not have the same attributes (type, length, etc.).

CHAPTER 7 ■ MODULARIZATION

328

You could enforce the subroutine local data objects having the same name as main program data objects to
have the same attributes as the main program data objects by using the keyword LOCAL to declare such data objects.
With the keyword LOCAL, the system will not allow the type, length, etc., to be specified. The type, length, etc., will
be inherited from the main program data objects attributes of the same name. The following bit of ABAP code will
elucidate this further:

TABLES: TCURT.
DATA: COUNT1 TYPE I VALUE 100,
 COUNT2 TYPE I VALUE 200,
 T005T TYPE T005T.

TCURT-LTEXT = 'U.S. Dollar'.
PERFORM SRTN.
WRITE:/5 TCURT-LTEXT.
WRITE:/5(6) COUNT1, (6) COUNT2.

FORM SRTN.
*TABLES TCURT. "erroneous, will give syntax error
LOCAL: TCURT,
 COUNT1. "type I in main program.

DATA: T005T TYPE T005T,
 COUNT2 TYPE P. "type I in main program.

TCURT-LTEXT = 'DOLLAR'.
COUNT1 = 1000.
COUNT2 = 2000.
ENDFORM.

Subroutine - Reference to Main Program Global Data within a Subroutine

A subroutine can refer to any of the main program’s data object (program global data objects). This makes the parameter
passing a redundant exercise. In this case, there will be no encapsulation. Hence, to enforce encapsulation, all the
references to the main program’s data objects should be channeled through the subroutine’s parameter interface.

Subroutine – Terminating or Exiting

You can use the EXIT statement to exit a subroutine. You used an EXIT statement to exit a loop in Chapter 4. You
can also use the CHECK statement. If the CHECK statement condition is true, the statements following the CHECK
statement are executed or else the subroutine is exited.

Hands-On Exercise: Modify Chapter 44 Program on DESCRIBE
FIELD – Use Macro and Subroutine to Make It an Efficient Program
After the theoretical background and the syntax of macros and subroutines, let the features be applied to an ABAP
program. In Chapter 4, you had a hands-on exercise using the DESCRIBE FIELD statement. In this program, you have
a lot of repetitive, similar statements. The repetitiveness gives scope for locating the repetitive statements in macros or
subroutines.

CHAPTER 7 ■ MODULARIZATION

329

One awkward issue you were facing in this program was related to the determination of the length of a field. You
wanted the length to be returned in characters (IN CHARACTER MODE) when the field type is C or D or N or T. You
wanted the length to be returned in bytes (IN BYTE MODE) if the field type is other than C, D, N, and T. You were
using an IF statement to check the field type and appropriately giving the addition: IN CHARACTER MODE or IN
BYTE MODE in the DESCRIBE FIELD <field> LENGTH <length> statement. The compiler was doing its own checking
of type and syntactically not accepting IN CHARACTER MODE if the field type is other than C, D, N, and T. You do not
want this checking by the compiler, because you want your checking to take effect. You circumvented the problem by
simply commenting the lines with the syntax error. You could do this because you already knew field types: NAME1 is
type C; NETWR is type P, etc.

If you locate the DESCRIBE FIELD <field> LENGTH <length> statement inside a subroutine, the compiler is not
performing any check of the field type and relating it to the addition IN CHARACTER MODE or IN BYTE MODE. The
compiler is treating it as a runtime issue, not a compile time issue.

So, in the current hands-on exercise, you will locate the repetitive similar statements in a macro and locate
a DESCRIBE FIELD <field> LENGTH <length> statement in a subroutine. But first, a segment of the original
Chapter 4 program:

**
* DESCRIBE FIELD: Determine Attributes of Data objects *
**
DATA: NAME1 TYPE KNA1-NAME1, "DDIC table field
 FKDAT TYPE VBRK-FKDAT, "DDIC table field
 NETWR TYPE VBRK-NETWR, "DDIC table field

 TYP(1) TYPE C,
 LEN TYPE I,
 OLEN TYPE I,
 DECI TYPE I,
 COMPO TYPE I.

**
DESCRIBE FIELD NAME1 TYPE TYP.
IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
 DESCRIBE FIELD NAME1 LENGTH LEN IN CHARACTER MODE.
ELSE.
 DESCRIBE FIELD NAME1 LENGTH LEN IN BYTE MODE.
ENDIF.
WRITE:/5 'KNA1-NAME1 TYPE & LENGTH :', TYP, (3) LEN.
**
DESCRIBE FIELD FKDAT TYPE TYP.
IF TYP = 'C' OR TYP = 'D' OR TYP = 'N' OR TYP = 'T'.
 DESCRIBE FIELD FKDAT LENGTH LEN IN CHARACTER MODE.

ELSE.
 DESCRIBE FIELD FKDAT LENGTH LEN IN BYTE MODE.

ENDIF.

WRITE:/5 'VBRK-FKDAT TYPE & LENGTH :', TYP, (3) LEN.
**
............

CHAPTER 7 ■ MODULARIZATION

330

The statements:

DESCRIBE FIELD <field name> TYPE TYP...
If TYP = ...
 WRITE...
...........

are repetitive. They are marked in the source program listed above. So you can locate these repetitive lines in a
macro. You will also create text symbols for the text literals in the WRITE statements. Each call or invocation to the
macro will determine and output the attributes of one field. You will feed the macro with two parameters: the field
name whose attributes are to be determined and the text symbol.

From within the macro you will call a subroutine to determine the field length. The subroutine will have three
parameters (i.e., field whose length is to be determined), a variable in which length will be returned, and the field
type to be used in the IF statement. The call to the subroutine is enabling you to overcome the awkward situation of
compiler checking field type when you don’t want it to be checked.

The program text symbols will look like Figure 7-1.

Figure 7-1. Program YCL_CH07_01_DESCRIBE_FLD_MODUL – Text Symbols

Remember to remove the occurrence of single quotes twice in literals, if you are copying Chapter 4 literals to the
text symbols.

The revised source program:

REPORT YCL_CH07_01_DESCRIBE_FLD_MODUL.

**
* DESCRIBE FIELD: Determine Attributes of Data objects *
* Modularize Code. Usage of Macro & Subroutine *
**

CHAPTER 7 ■ MODULARIZATION

331

**
* declare elementary data objects referring to DDIC table fields **
* declare elementary data object referring to DDIC data element **
* declare structure data object referring to DDIC table definition **
* declare elementary TYPE STRING **
* **
* invoke macro which uses DESCRIBE FIELD to determine TYPE. **
* from within the macro, PERFORM subroutine which uses DESCRIBE FIELD **
* to determine length. **
* **
* from within the macro, output attributes TYPE, length **
* (also no of decimals for TYPE P, no of components for structure) **
* **
**

DATA: NAME1 TYPE KNA1-NAME1, "DDIC table field
 FKDAT TYPE VBRK-FKDAT, "DDIC table field
 NETWR TYPE VBRK-NETWR, "DDIC table field
 TEXT1 TYPE TBOOKSHOP-TEXT1, "DDIC table field
 LENGTH TYPE TBOOKSHOP-LENGTH, "DDIC table field
 WAERS TYPE WAERS, "reference to data element
 INT1 TYPE MCSAPINT1, "reference to data element
 VBRK TYPE VBRK, "reference to table structure
 STRNG TYPE STRING,

 TYP(1) TYPE C,
 LEN TYPE I,
 DECI TYPE I,
 COMPO TYPE I.

* macro to avoid repetition of similar lines **
* macro takes two parameters: **
* &1 the field name **
* &2 text symbol id.**

DEFINE DESCRIBE_FLD. " macro definition

 DESCRIBE FIELD &1 TYPE TYP. " determine TYPE
 PERFORM GET_LENGTH USING &1 LEN TYP. " determine length

 IF TYP <> 'F' AND TYP <> 'P' AND TYP <> 'u' AND TYP <> 'v'.
 WRITE:/5 &2, TYP, (4) LEN.

 ELSEIF TYP = 'F' OR TYP = 'P'.
 DESCRIBE FIELD &1 DECIMALS DECI. " determine no of decimals
 WRITE:/5 &2, TYP, (4) LEN, (2) DECI.

 ELSEIF TYP = 'u' OR TYP = 'v'.
 DESCRIBE FIELD &1 TYPE TYP COMPONENTS COMPO. " determine no of fields
 WRITE:/5 &2, TYP, (4) LEN, (3) COMPO.
* DESCRIBE FIELD &1 COMPONENTS COMPO.

CHAPTER 7 ■ MODULARIZATION

332

ENDIF.
END-OF-DEFINITION.

START-OF-SELECTION.

DESCRIBE_FLD NAME1 TEXT-001. " macro calls

DESCRIBE_FLD FKDAT TEXT-002.

DESCRIBE_FLD NETWR TEXT-003.

DESCRIBE_FLD TEXT1 TEXT-004.

DESCRIBE_FLD LENGTH TEXT-005.

DESCRIBE_FLD WAERS TEXT-006.

DESCRIBE_FLD INT1 TEXT-007.

DESCRIBE_FLD VBRK TEXT-008.

DESCRIBE_FLD STRNG TEXT-009.

* subroutine to determine length. takes three parameters **
* (1) field (FLD) whose length is to be determined - by value**
* (2) returning field length (LNGT) - by reference **
* (3) field TYPE (TP) - by value **
* **
* returns length in characters for TYPES C, D, N, T **
* returns length in bytes for TYPES other than C, D, N, T **

FORM GET_LENGTH USING VALUE(FLD) LNGT VALUE(TP).

IF TP <> 'C' AND TP <> 'D' AND TP <> 'N' AND TP <> 'T'.

 DESCRIBE FIELD FLD LENGTH LNGT IN BYTE MODE.

ELSE.
 DESCRIBE FIELD FLD LENGTH LNGT IN CHARACTER MODE.

ENDIF.
ENDFORM.

You have incorporated the START-OF-SELECTION statement. In Chapter 4, the events were not introduced
though alluded to. You had decided in Chapter 5 that every ABAP program will have an explicit START-OF-
SELECTION statement.

The output will look like Figure 7-2.

CHAPTER 7 ■ MODULARIZATION

333

Hands-On Exercise: Modify Chapter 44 Program on DESCRIBE
FIELD – Use Subroutine Only
This is another version of the DESCRIBE FIELD program, this time using a subroutine only. Macros should be used
only in the scenario of just text replacement. You have also shifted the variables TYP, LEN, DECI, and COMPO from
the main program to the subroutine.

All three programs (of Chapter 4 and the two programs in the current chapter) produce identical results, but the
code is progressively more efficient from the first program to the third.

The source program:

REPORT YCL_CH07_02_DESCRIBE_FLD_SROUT.

**
* DESCRIBE FIELD: Determine Attributes of Data objects *
* Modularized Program - Usage of Subroutine *
**

**
* declare elementary data objects referring to DDIC table fields **
* declare elementary data object referring to DDIC data element **
* declare structure data object referring to DDIC table definition **
* declare elementary TYPE STRING **
* **
* call subroutine to determine field attributes & output **
* **
**

DATA: NAME1 TYPE KNA1-NAME1, "DDIC table field
 FKDAT TYPE VBRK-FKDAT, "DDIC table field
 NETWR TYPE VBRK-NETWR, "DDIC table field
 TEXT1 TYPE TBOOKSHOP-TEXT1, "DDIC table field

Figure 7-2. Program YCL_CH07_01_DESCRIBE_FLD_MODUL – Output

CHAPTER 7 ■ MODULARIZATION

334

 LENGTH TYPE TBOOKSHOP-LENGTH, "DDIC table field
 WAERS TYPE WAERS, "reference to data element
 INT1 TYPE MCSAPINT1, "reference to data element
 VBRK TYPE VBRK, "reference to table structure
 STRNG TYPE STRING.

START-OF-SELECTION.

PERFORM PROCESS USING NAME1 TEXT-001.

PERFORM PROCESS USING FKDAT TEXT-002.

PERFORM PROCESS USING NETWR TEXT-003.

PERFORM PROCESS USING TEXT1 TEXT-004.

PERFORM PROCESS USING LENGTH TEXT-005.

PERFORM PROCESS USING WAERS TEXT-006.

PERFORM PROCESS USING INT1 TEXT-007.

PERFORM PROCESS USING VBRK TEXT-008.

PERFORM PROCESS USING STRNG TEXT-009.

* subroutine to process & output. takes two parameters **
* **
* (1) field (FLD) whose attributes to be determined - by value **
* (2) text symbol id (TSYM) - by value **
* **
* variables TYP, LEN, DECI, COMPO shifted from main program to **
* the subroutine. **

FORM PROCESS USING VALUE(FLD) VALUE(TSYM).

DATA: TYP(1) TYPE C,
 LEN TYPE I,
 DECI TYPE I,
 COMPO TYPE I.

DESCRIBE FIELD FLD TYPE TYP. " determine TYPE

IF TYP <> 'C' AND TYP <> 'D' AND TYP <> 'N' AND TYP <> 'T'.

 DESCRIBE FIELD FLD LENGTH LEN IN BYTE MODE.

CHAPTER 7 ■ MODULARIZATION

335

ELSE.
 DESCRIBE FIELD FLD LENGTH LEN IN CHARACTER MODE.

ENDIF.
**
 IF TYP <> 'F' AND TYP <> 'P' AND TYP <> 'u' AND TYP <> 'v'.
 WRITE:/5 TSYM, TYP, (4) LEN.

 ELSEIF TYP = 'F' OR TYP = 'P'.
 DESCRIBE FIELD FLD DECIMALS DECI. " determine no of decimals
 WRITE:/5 TSYM, TYP, (4) LEN, (2) DECI.

 ELSEIF TYP = 'u' OR TYP = 'v'.
 DESCRIBE FIELD FLD TYPE TYP COMPONENTS COMPO. " determine no of fields
 WRITE:/5 TSYM, TYP, (4) LEN, (3) COMPO.
* DESCRIBE FIELD &1 COMPONENTS COMPO. "syntactically not acceptable

ENDIF.

ENDFORM.

The main program consists here of just calls to the subroutines. A typical procedure oriented environment
modular program would be just like this. Every other functionality is implemented by subroutines, with the main
program just consisting of calls to the subroutines. Even no repetitive program lines consisting of exclusive logic and
action are located in a subroutine.

The output of this program will look like this:

Figure 7-3. Program YCL_CH07_02_DESCRIBE_FLD_SROUT – Output

CHAPTER 7 ■ MODULARIZATION

336

Hands-On Exercise: Subroutine with an Internal Table
as Parameter
This hands-on exercise is to demonstrate a subroutine having an internal table as a parameter. You will load an
internal table with data and call a subroutine in which you set up LOOP AT...WRITE ...ENDLOOP.

You can declare an internal table referring to a DDIC structure you created earlier: YCL_CH06_CUST_STRU
in Chapter 6. You will fill this internal table with data from DDIC customer primary table KNA1. Then, you call a
subroutine passing this internal table as a parameter by reference. Within the subroutine you will have the LOOP AT...
WRITEENDLOOP. Let the following fields be output:

SY-TABIX Serial No. 05-09
KUNNR Customer code 11-20
NAME1 Name 22-56
ORT01 City 58-92

You will need within the subroutine a work area or structure to fetch one row at a time from the internal table.
You will declare the structure within the subroutine referring to the DDIC structure YCL_CH06_CUST_STRU.

The text symbols for a nonstandard page heading are shown in Figure 7-4.

Figure 7-4. Program YCL_CH07_03_ITAB_AS_PARM - Text Symbols

CHAPTER 7 ■ MODULARIZATION

337

The source program:

REPORT YCL_CH07_03_ITAB_AS_PARM LINE-SIZE 95 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* Subroutine With Internal Table As Parameter **
* Simple Customer List **
**

**
* declare internal table **
* **
* report heading **
* fill internal table from table KNA1 **
* PEFFORM <subroutine> using <internal table> **
* **
* FORM <subroutine using <internal table> **
* TYPE ANY TABLE. **
* LOOP AT...WRITE...ENDLOOP. **
* ENDFORM **
**

DATA: CUSTOMER_TAB TYPE SORTED TABLE OF YCL_CH05_CUST_STRU
 WITH UNIQUE KEY KUNNR,
 DAT(10) TYPE C.

TOP-OF-PAGE.
WRITE:/5 TEXT-001, DAT, 81 TEXT-002, (3) SY-PAGNO.
WRITE:/5(83) SY-ULINE.
WRITE:/5 TEXT-003, 12 TEXT-004, 24 TEXT-005, 60 TEXT-006.
WRITE:/6 TEXT-007, 14 TEXT-008.
WRITE:/5(83) SY-ULINE.

START-OF-SELECTION.

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4) INTO DAT
 SEPARATED BY '/'.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO TABLE CUSTOMER_TAB.

PERFORM OUTPUT_LIST USING CUSTOMER_TAB.

FORM OUTPUT_LIST USING CUST_TAB TYPE ANY TABLE. " internal table parameter
 " has to be assigned type

DATA CUST_STRU LIKE YCL_CH05_CUST_STRU. " subroutine local data

CHAPTER 7 ■ MODULARIZATION

338

LOOP AT CUST_TAB INTO CUST_STRU.
 WRITE: /5(5) SY-TABIX, CUST_STRU-KUNNR USING NO EDIT MASK,
 CUST_STRU-NAME1, CUST_STRU-ORT01.
ENDLOOP.

ENDFORM.

The output is found in Figure 7-5.

Figure 7-5. Program YCL_CH07_03_ITAB_AS_PARM – Output

Hands-On Exercise: Subroutine with a Structure as Parameter
The program YCL_CH07_03_ITAB_AS_PARM has been modified so that only the WRITE statement is executed
inside the subroutine. LOOP AT...ENDLOOP is shifted to the main program. The subroutine is receiving the structure
data. Since you want to access the individual fields of the structure, you have to assign a type to the formal structure
parameter. The formal parameter is referring to the DDIC structure YCL_CH06_CUST_STRU, and the keyword
STRUCTURE is used instead of TYPE or LIKE. This is a demonstrative program used to demonstrate the passing of a
structure parameter.

The source:

REPORT YCL_CH07_04_STRU_AS_PARM LINE-SIZE 95 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* Subroutine With Structure As Parameter **
* Simple Customer List **
**

**
* declare internal table **
* **
* report heading **
* fill internal table from table KNA1 **
* LOOP AT...PERFORM WRITER...ENDLOOP. **
* **

CHAPTER 7 ■ MODULARIZATION

339

* FORM <subroutine using <structure> **
* TYPE YCL_CH05_CUST_STRU. **
* WRITE... **
* ENDFORM **
**

DATA: CUSTOMER_TAB TYPE SORTED TABLE OF YCL_CH05_CUST_STRU
 WITH UNIQUE KEY KUNNR WITH HEADER LINE,
 DAT(10) TYPE C.

TOP-OF-PAGE.
WRITE:/5 TEXT-001, DAT, 81 TEXT-002, (3) SY-PAGNO.
WRITE:/5(83) SY-ULINE.
WRITE:/5 TEXT-003, 12 TEXT-004, 24 TEXT-005, 60 TEXT-006.
WRITE:/6 TEXT-007, 14 TEXT-008.
WRITE:/5(83) SY-ULINE.

START-OF-SELECTION.

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4) INTO DAT
 SEPARATED BY '/'.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO TABLE CUSTOMER_TAB.

LOOP AT CUSTOMER_TAB INTO CUSTOMER_TAB.
 PERFORM WRITER USING CUSTOMER_TAB.
ENDLOOP.

FORM WRITER USING CUST_STRU STRUCTURE " key word STRUCTURE
 YCL_CH05_CUST_STRU. " structure parameter
 " has to be assigned type
 " for accessing fields

 WRITE: /5(5) SY-TABIX, CUST_STRU-KUNNR USING NO EDIT MASK,
 CUST_STRU-NAME1, CUST_STRU-ORT01.

ENDFORM.

The output will appear like Figure 7-6.

CHAPTER 7 ■ MODULARIZATION

340

Hands-On Exercise: List of Icons in SAP GUI Environment – Fields
Enclosed in Boxes Using Macro and Subroutine
The database table ICON contains the icons and their particulars (icon name, icon id, etc.). You will list these icons’
particulars, enclosing each field in a box.

A macro is enclosing the output field in a box. The macro outputs one field at a time. The macro outputs a field
with a SY-VLINE on the left and right side of it and SY-ULINE at the top and bottom. Only the first field being output
on a line requires a SY-VLINE on the left. The subsequent fields already have a SY-VLINE on the left (the right side
SY-VLINE of previous field serves as left side SY-VLINE of the next field). Similarly, the first line of the output requires
an SY-ULINE at the top. Subsequent lines can use the bottom SY-ULINE of the previous line as their top SY-ULINE.
These things are not taken care by the macro. There is an occurrence of overwriting. You can, as an exercise, eliminate
the overwriting and refine the macro.

The macro is also imparting color to the output field through FORMAT statement. The FORMAT statement in
the macro takes as macro parameters whether INVERSE is ON/OFF, INTENSIFIED is ON/OFF and color name
(COL_KEY et al.). The other parameters of macro are field or text symbol and output width in columns.

The particulars of the icons appearing in SAP GUI environment are stored in the database table ICON. There are
13 fields in this table. You output only two fields in your list.

ID Icon picture
ID+1(2) Icon Code (second, third character of the field ID)
NAME Icon Name

Figure 7-6. Program YCL_CH07_03_STRU_AS_PARM – Output

CHAPTER 7 ■ MODULARIZATION

341

You output field ID twice and the full field once (this will output the icon picture) and next the second and third
characters of the field ID (i.e., ID+1(2); this will output the icon code). All the icons are identified by two character
codes as well as icon names. You have used icon names in Chapter 5. You used the Type Group ICON in the
Chapter 5 program. The Type Group ICON contains all the SAP GUI icon definitions. You output icon pictures in
the Chapter 5 program by referring to the icon name and using the key phrase AS ICON with the WRITE statement.
You can also output the icon picture with the WRITE statement by giving the icon code enclosed within the
character ‘@’. If you want to output the icon ‘ICON_SYSTEM_SAVE’, the code for this icon is 2L and the field ID in the
corresponding row in the table ICON contains @2L@. Similarly, the code for the icon ‘ICON_CHECK’ is 38. So the
field ID in the corresponding row will contain @38@. The two programs given below will generate the same output.

You generate the list header in this program through a subroutine that is called conditionally and not through the
TOP-OF-PAGE event. The mix of the TOP-OF-PAGE event and the macro did not generate correctly formatted output.

You are using two new system fields in this program:

SY-COLNO Current Output Column Position
SY-LINNO Current Line Number in a Page (Varies from 1 to SY-LINCT)

The source program:

REPORT YCL_CH07_05_OUTPUT_INBOX_MACRO NO STANDARD PAGE HEADING
 LINE-COUNT 60 LINE-SIZE 75.

**
* SAP Icon List-Use Macro To Impart Color & Enclose Output In Box **
* Use Subroutine to Output Report Header Instead of TOP-OF-PAGE **
* Event **
**

* retrieve data from the database table ICON. SELECT ENDSELECT **
* output ICON particulars i.e. ICON-NAME (icon name) **
* ICON-ID (icon id.) **
* & ICON+1(2) (icon code) **
* **
* use a macro to output icon particulars enclosed in box in **
* specified color. **
* **
* each time macro is invoked, one item of info (field) is **
* output. each field is enclosed in a box: SY-VLINE on left & **
* right, SY-ULINE on top & bottom. **
* **
* the column pointer after output points to the column next to **
* the right side SY-VLINE. **
* (system field SY-COLNO stores the current column number) **
* **
* the row pointer points to the row between top & bottom **
* horizontal SY-ULINE. **
* (system field SY-LINNO stores the current row) **
* **
* color is through the FORMAT statement. **
* **
* macro takes 5 parameters(place holders &1, &2, &3, &4, &5) : **
* (1) field name/text symbol id. **

CHAPTER 7 ■ MODULARIZATION

342

* (2) output width in column positions **
* (3) ON/OFF for INVERSE ON/OFF **
* (4) ON/OFF for INTENSIFIED ON/OFF **
* (5) color name (COL_KEY, COL_POSITIVE et al) **
* **
* usage of 'SKIP TO..' & 'POSITION..' statements. **
* **
* After each line, (all fields are output) two lines are **
* skipped. column position is set to 5. **

* in the report heading, the page number (SY-PAGNO) is **
* output as well as the column headings. the column headings **
* are enclosed in boxes & output through the macro again. **
* the report heading is not generated using the TOP-OF-PAGE **
* event. it is generated using a subroutine. this subroutine **
* is called either when CNT IS INITIAL OR CNTR >= 58. **
* you are using the NEW-PAGE statement to start output on a new**
* page every time the report heading is to be output. this **
* was happening automatically with TOP-OF-PAGE event. **
* **
* you are not using the TOP-OF-PAGE event because the mix of **
* TOP-OF-PAGE event & macro is not generating properly **
* formatted output. **
* **

TABLES: ICON.
DATA: COL TYPE SY-COLNO,
 LIN TYPE SY-LINNO,
 LENGTH TYPE I,
 PG TYPE SY-PAGNO,
 CNTR TYPE I,
 CNT(6) TYPE C.

**** OUTPUT IN A BOX MACRO ***

DEFINE WRITE_GRID.
 COL = SY-COLNO. LIN = SY-LINNO. " save current column & line/row no.

 FORMAT INVERSE &3 INTENSIFIED &4 COLOR &5.

 WRITE: '|' NO-GAP, (&2) &1 NO-GAP,
 '|' NO-GAP. " output field with left & right SY-VLINE

 LENGTH = SY-COLNO - COL. " derive length of horizontal line

CHAPTER 7 ■ MODULARIZATION

343

 LIN = LIN - 1. SKIP TO LINE LIN. POSITION COL.

 ULINE AT COL(LENGTH). " top horizontal line

 LIN = LIN + 2. SKIP TO LINE LIN. POSITION COL.

 ULINE AT COL(LENGTH). " bottom horizontal line

 LIN = LIN - 1. COL = SY-COLNO - 2.

 SKIP TO LINE LIN. " set line & column no for next output
 POSITION COL.

END-OF-DEFINITION.

START-OF-SELECTION.

SELECT * FROM ICON ORDER BY NAME.
 IF CNTR >=58 OR CNT IS INITIAL. " value 58 arrived by trial & error
 PERFORM PHEAD.
 ENDIF.

 CNT = SY-DBCNT. " CNT TYPE C to suppress thousand separator/comma

 WRITE_GRID CNT 6 ON OFF COL_TOTAL. " output CNT column width 6
 " INVERSE ON INTENSIFIED OFF
 " COLOR COL_TOTAL
 WRITE_GRID ICON-NAME 35 ON OFF COL_KEY.

 WRITE_GRID ICON-ID 7 ON OFF COL_POSITIVE.

 WRITE_GRID ICON+1(2) 4 ON OFF COL_HEADING.

 SKIP 2. " one extra line for bottom horizontal line

 POSITION 5.

 CNTR = CNTR + 2. " increase line count by 2

ENDSELECT.

************* report header ******************
FORM PHEAD.

NEW-PAGE NO-HEADING.

PG = PG + 1.

WRITE 59(3) PG.

CHAPTER 7 ■ MODULARIZATION

344

SKIP 2. " make one row available for top horizontal line

POSITION 5. "all output is starting as usual from column 5

WRITE_GRID TEXT-001 6 ON OFF COL_TOTAL.

WRITE_GRID TEXT-002 35 ON OFF COL_KEY.

WRITE_GRID TEXT-003 7 ON OFF COL_POSITIVE.

WRITE_GRID TEXT-004 4 ON OFF COL_HEADING.

 SKIP 2.

 POSITION 5. " for next row column position 5

 CNTR = 4. " line count set to 4

ENDFORM.

The output will appear like Figures 7-7 and 7-8.

Figure 7-7. Program YCL_CH07_05_OUTPUT_INBOX_MACRO –Output

CHAPTER 7 ■ MODULARIZATION

345

Messages Maintenance and Issuing in ABAP Workbench
Notifications and alerts have to be given to a user of a system for the basic man machine interaction. You have
encountered these notifications when you were alerted about a syntax error in your ABAP program and when you
activated an object in Workbench environment and so on. These notifications and alerts are designated as messages
in the ABAP Workbench environment.

Message Text Maintenance
Message texts are maintained centrally in the ABAP Workbench environment. As usual, like in any other context
of text maintenance, the message texts can be maintained in multiple languages. Messages can be issued in an
ABAP program through the MESSAGE statement. There is a provision to pass runtime information to the MESSAGE
statement through the concept of placeholders in message texts. This is similar to the placeholder facility in List
Heading component of text elements of an ABAP program (&0...&9 in Chapter 5). There can be a maximum of four
placeholders: &1, &2, &3, &4 for one message text.

Message texts are maintained through the transaction code SE91. The message texts are contained in an entity
called message class or message id. A single message class can contain a maximum of one thousand message texts. The
message texts in the message class are identified by message numbers, with the numbers running from 000 to 999. You
can enter texts arbitrarily in any of these number slots. When a message is issued with the MESSAGE statement, the
message class, message number, and the runtime information to sit in the placeholders if any, has to be given.

Figure 7-8. Program YCL_CH07_05_OUTPUT_INBOX_MACRO – Output

CHAPTER 7 ■ MODULARIZATION

346

There is no explicit activation process for a message class. The saving is enough.
The naming conventions follow the naming conventions of any other ABAP Workbench object. The name space

of message class is a maximum of 20 characters.
You are on the Attributes tab. Click on the Messages tab. The screen will look like this:

Figure 7-9. Message Class Creation

Figure 7-10. Message Texts Screen

You can enter the texts against the text identification numbers. The text entry can be a maximum of 73 characters.
There are the usual buttons to handle multiple row screen entries: namely, select, cut, copy, paste, delete, etc. There
are additional buttons to find, find, and replace. There is a check box on the right with the column heading Self-
explanatory (Self-explanatory). If you disable this check box, you can create a long text for the message. When the
normal text appears on message issuance and the user double-clicks on it, the long text of the message appears. In
any case, you can create the long text for a message. If the check box Self-explanatory is enabled, a confirmatory dialog
box will appear before the long text dialog box appears. If the check box Self-explanatory is disabled, no confirmatory
dialog box will appear before the long text dialog box appears. The long text can be created by clicking the Long Text
button on the application toolbar.

Go to SE91 opening screen. Enter a name for the message class as YCL_CH07_MCLASS01. Press Create button/
F5, enter short text, press the save button, and assign your usual $TMP package. The screen will look like this:

CHAPTER 7 ■ MODULARIZATION

347

Message Issuance
Let there be a simple scenario for creation and issuance of a message:

Messages are issued with the MESSAGE statement.
In an ABAP program input customer code through PARAMETERS statement. You will check the validity of the

customer code. If the customer is valid (should be available in the database table KNA1), you will issue a message that
the input customer code is valid. If the customer code is invalid, you will issue a message that the input customer code
is invalid. If the input customer is blank, issue a message that the input customer code is blank. So there will be three
messages. The messages reporting validity or invalidity of customer code must have runtime information: the input
customer code.

So, on the SE91 screen, in the message class YCL_CH07_MCLASS01, in the Messages tab, enter the messages 000,
001, 002 as shown in Figure 7-11.

Table 7-1. Message Types

Message Type Description

A Abort. Issue of this Message Type Aborts the Program/Job

E Error. Issue of this Message Type may Abort the Program/Job

I Information. Appears as a dialog

S Status

W Warning. Issue of this Message Type may Abort the Program/Job

X Exit. Issue of this Message Type Aborts the Program/Job with a Short Dump

Figure 7-11. Message Texts – Messages 000, 001, 002

The placeholder &1 in messages 000, 001 will be replaced by the runtime information you will provide with the
message issuing statement.

There are six types of messages. You can use any one of these message types depending on the context when
issuing messages. Table 7-1 lists the message types with their meanings.

CHAPTER 7 ■ MODULARIZATION

348

The message type determines how the message appears and whether the program continues execution or
aborts/terminates. In online documentation, you will find elaborate descriptions of how messages appear for each
message type and whether the program continues or aborts in different contexts. For message types I and S, the
program continues execution. For message types A and X, the program terminates.

Message Statement Syntaxes
Before you write an ABAP program, let the ABAP message issuing statement MESSAGE syntax be introduced.
Two syntaxes are being introduced. When you do classes, more syntax will be introduced. The two syntaxes of a
message statement:

Syntax 1

MESSAGE <message type><message number>[(<message class>)]
[WITH <data object1>...<data object4>].

In this statement, you specify in
<message type>: one of the types: A, E, I, S, W, X.
<message number>: Three-digit message number. Like in your present proposed ABAP program: 000/001/002.
<message class>: In your present case, the name of your message class: YCL_CH07_MCLASS01 enclosed in

parentheses. The message class can also be specified in the REPORT or FUNCTION-POOL statement. In that case, the
message class need not be given with the MESSAGE statement, if you want to use the same message class specified
with REPORT or FUNCTION-POOL statement. If you want to use a message class other than the one in the REPORT
or FUNCTION-POOL statement, you specify a message class with the MESSAGE statement. The message class given
with MESSAGE statement overrides the one given in REPORT or FUNCTION-POOL (local overrides global). The
message class is given with the REPORT or FUNCTION-POOL with the keyword MESSAGE-ID followed by the name
of the message class.

WITH: You specify data object/s following the keyword WITH. This is optional but required if you want to pass
runtime information to the message text placeholders. There is a maximum limit of four. In your case this could be the
following:: WITH CUST_CD. CUST_CD will be your PARAMETERS variable name. So if you were issuing message for a
valid customer, your message statement will be:

MESSAGE S001(YCL_CH07_MCLASS01) WITH CUST_CD.

Syntax 2

MESSAGE ID <message id data object> TYPE <message type data object>
NUMBER <message number data object> [WITH <data object1>..<data object4>].

This syntax offers the facility of having the message class, type, and number as variables. The earlier syntax
hard-coded this information. So appropriate values can be put in the three variables: <message id data object>,
<message type data object> and <message number data object> and the message issued with these variables.

There are seven system fields associated with the issuing of messages. These system fields are filled with values
after the MESSAGE statement is executed: They are:

SY-MSGID: This is filled with the message class given with the message statement.
SY-MSGTY: This is filled with the message type given with the message statement.
SY-MSGNO: This is filled with the message number given with the message statement.
SY-MSGV1, SY-MSGV2, SY-MSGV3 and SY-MSGV4: Filled with values in the data objects specified after the key

word WITH in MESSAGE statement. If less than four data objects are specified, these system fields will contain blanks.

CHAPTER 7 ■ MODULARIZATION

349

Message Statement Additional Options
There are two more options you can specify with the two syntaxes of MESSAGE statement. They are:

[RAISING <exception name>]

This option can be specified only in a function module. Specifying this option does not result in issuing of a
message. The system fields are filled with the values and the function module terminates. This option is used in the
forthcoming topic Function modules of the present chapter.

[DISPLAY LIKE <message type>]

Sometimes, you want a message to look like an error message but do not want the program termination. This
kind of a requirement can be handled through this option. So if a message has been issued as a status (S) message,
you can use the option DISPLAY LIKE ‘E’ to give the appearance of error type ‘E’ message. The program will not be
terminated. A hands-on exercise demonstrating message issuance follows.

Hands-On Exercise: Message Issuance
The source program:

* Demonstrate Issuing Messages *

DATA: KUNNR TYPE KNA1-KUNNR.

PARAMETERS: CUST_CD TYPE KNA1-KUNNR.

**
START-OF-SELECTION.

SELECT SINGLE KUNNR FROM KNA1 INTO KUNNR
 WHERE KUNNR = CUST_CD.

IF CUST_CD IS INITIAL.
 MESSAGE S002(YCL_CH07_MCLASS01) DISPLAY LIKE 'E'.

ELSEIF SY-SUBRC = 0.
 MESSAGE S000(YCL_CH07_MCLASS01) WITH CUST_CD.

ELSE.
 MESSAGE S001 WITH CUST_CD DISPLAY LIKE 'E'.

ENDIF.

The outputs for a valid, invalid, blank customer code – CUST_CD are shown:

Figure 7-12. Program YCL_CH07_11_ISSUE_MESSAGE – Output: Customer Code Valid

CHAPTER 7 ■ MODULARIZATION

350

Function Modules, INCLUDE Programs
Function Modules Introduction
The function modules can be viewed as generic or general purpose external subroutines. They can be called from
multiple ABAP programs – reusability. They reside in a central library. They are contained in function groups (special
ABAP programs): a function group can contain one or more function modules. If you call or invoke one function
module in the group, all the function modules in that group are loaded into RAM. If you have a situation where
you are calling more than one function module in an ABAP program frequently, then you can locate these function
modules in a function group to improve performance. One other scenario where you will locate multiple function
modules in a function group is when the function modules located in a function group share lot of common data and
data objects. In this scenario, the common data can be located in the global area of the function group and shared by
the function modules in a function group.

The function groups and function modules are maintained in the function builder. The transaction code to
navigate to the function builder is SE37.

The function modules have an interface to define the input, output parameters, and the error exceptions.
Error exceptions can be raised in function modules through the MESSAGE statement as well as through class based
exceptions. In this chapter; the exceptions raised through a MESSAGE statement will be described and demonstrated.
In Chapter 11, class based exceptions will be described and demonstrated in function modules.

There are more than 300,000 SAP supplied function modules, most of them used by SAP for its own internal
purpose. A list of 50 odd function modules is given at the end of this chapter. Good enough for a beginner.

Examine or View an SAP Delivered Function Module: SPELL_AMOUNT
You will examine the SAP delivered function module SPELL_AMOUNT. This function module converts an amount
figure into text or words. It takes four input parameters:

An Amount Figure (DDIC Data Type CURR etc.) – Formal parameter name: AMOUNT•

A Language Code (the language in which to return the text – DDIC Data Type LANG) – Formal •
parameter name: LANUAGE

A Currency Code (DDIC Data Type CUKY) – Formal parameter name: CURRENCY•

The Separator character or string between the words (by default a space) – Formal parameter •
name: FILLER

The function module output parameter is the amount figure converted into text in the language specified in input
parameter.

A business document (check, billing document, etc.) in most countries must have the amount figure presented in
text on the business document. The function module SPELL_AMOUNT is used to convert amount figure into text.

Figure 7-14. Program YCL_CH07_11_ISSUE_MESSAGE – Output: Customer Code Blank

Figure 7-13. Program YCL_CH07_11_ISSUE_MESSAGE – Output: Customer Code Invalid

CHAPTER 7 ■ MODULARIZATION

351

Let this function module be examined. Navigate to the function builder opening screen – transaction code
SE37 – enter the name of the function module SPELL_AMOUNT. The screen will look like Figure 7-15.

Figure 7-15. Function Builder Initial Screen – Examine Function Module SPELL_AMOUNT

Click on the Display button. The screen will show seven tabs: Attributes, Import, Export, Changing, Tables,
Exceptions, and Source code... Click the Attributes tab. The screen in Figure 7-16 will appear.

Figure 7-16. Examine Function Module SPELL_AMOUNT – Attributes Tab

CHAPTER 7 ■ MODULARIZATION

352

Function Module: SPELL_AMOUNT – Attributes Tab

There are three types of function modules (three radio buttons):

Normal Function Module•

Remote Enabled Module: This function module can be called in other applications such as •
Java, Dot Net, etc. It can be called from one server while it is resident on another server.

Update Module: Like its name suggests, these are meant to update database tables. There is •
further categorization of this type of function module.

Only the normal function module will be considered in this book. It was mentioned earlier that a function
module is assigned to a function group. The function group to which this function module is assigned is F017. The
function module is assigned to a package ID-CSC.

Next, click the Import tab. The import or input parameters are listed in this tab. The screen is shown in Figure 7-17.

Figure 7-17. Examine Function Module SPELL_AMOUNT – Import Tab

Function Module: SPELL_AMOUNT – Import Tab

Each row will have one import formal parameter. This function module has four import formal parameters as
described earlier.

This tab has the following columns:

Parameter Name: The name of the formal import parameter is entered here. The formal •
parameter names must start with an alphabet letter and can contain alphanumeric characters
with embedded underscores (_). The maximum length of a formal parameter name can be
30 characters.

Type and Associated Type: With these two column entries, you are assigning a type to a formal •
parameter. In the Type column, you can enter the key word LIKE or TYPE. In the Associated
Type column, you can enter the ABAP elementary predefined types, (C, D et al.) an object
name: either a DDIC object or a system field or the ABAP Generic Types. (A table listing the
ABAP Generic Types can be found in the on-line documentation: ABAP - By Theme ➤ Built-In
Types, Data Objects and Functions ➤ Built-In Data Types ➤ Generic ABAP types). If no type
is assigned to a formal parameter, the type of the formal parameter is adopted at runtime
from the type of the actual parameter. If a type is assigned to a formal parameter, this type is
matched with the type of the actual parameter. In case of mismatch, a type conflict runtime
error is triggered.

The parameter CURRENCY has been assigned the system field SY-WAERS. The system field •
SY-WAERS is of DDIC TYPE CUKY. The system field SY-WAERS is classified as obsolete in the
SAP ABAP documents.

CHAPTER 7 ■ MODULARIZATION

353

Default value: Under this column, you can assign a default value to the formal parameter. If no •
value is received from the actual parameter, the function module will execute with this default
value assigned to the import formal parameter.

Optional (check box): You can indicate whether the import parameter is mandatory (check •
box disabled) or optional (check box enabled).

Pass Value: If you enable this check box, the import parameter is received by value; or else it is •
received by reference (pass by value or pass by reference).

Short text: A short description about the import parameter can be optionally entered under •
this column.

Long Text: If you click on this button, the SAP environment • word processor screen appears,
where you can enter an elaborate description about the import parameter.

All the four import parameters in this function module: AMOUNT, CURRENCY, FILLER and LANGUAGE is
optional, and all are received or passed by value.

Next, click the Export tab. Here the export or output parameters are listed. The screen will appear like Figure 7-18.

Figure 7-18. Examine Function Module SPELL_AMOUNT – Export Tab

Function Module: SPELL_AMOUNT – Export Tab

This tab has two columns less than the Import tab: the columns Default value and Optional are omitted. They are
irrelevant to export parameters. If the check box Pass Value is enabled, the parameter is passed by value and result else
parameter is passed by reference. The meaning of parameter passing by value and result is the same as in the context
of subroutines. That is, when the function module is entered, a local copy of the parameters passed by value and result
is made. All operations on the parameters by value and result are performed on the local copy. If the function module
exits without an error exception, the local copies are copied back to the originals, if the function module exits through
error exception, original values of parameters by value and result remain unchanged.

Other columns do not need explanation.
There is only one export parameter in this function module SPELL_AMOUNT. This is IN_WORDS. The parameter

is being passed by value and result. It is assigned to a type, the DDIC structure SPELL. The DDIC structure SPELL has
the following fields with particulars as in Table 7-2.

CHAPTER 7 ■ MODULARIZATION

354

Out of the 20 fields in this structure, you will concern yourself with the two fields: WORD DDIC Data Type CHAR,
length 255 and DECWORD DDIC Data Type CHAR, length 128. The function module fills the first field WORD with
text of the figure or number before the decimal and fills the second field DECWORD with text after the decimal.

Next, click the Changing tab. Here the input-output parameters are listed. The screen will appear like Figure 7-19.

Table 7-2. Examine Function Module SPELL_AMOUNT - Field Particulars of DDIC Structure: SPELL

Field Name Data Element Data Type Length Description

NUMBER IN_NUMBERS NUMC 15 Whole digits of the amount converted

DECIMAL IN_DECI NUMC 03 Decimal places of the amount converted

CURRDEC CURRDEC INT1 03 Number of decimal places

WORD IN_WORDS CHAR 255 Amount in words – before decimal

DECWORD DECWORD CHAR 128 Amount in words – after decimal

DIG01 DZWORT CHAR 07 Figure in words (units, tens, ...)

......

DIG15 DZWORT CHAR 07 Figure in words (units, tens, ...)

Figure 7-19. Examine Function Module SPELL_AMOUNT – Changing Tab

Function Module: SPELL_AMOUNT – Changing Tab

In this tab, you will enter parameters that are received, as well as send values (i.e., input-output parameters or
changing parameters). This has the same number of columns as the import parameters. There is a column for default
value. Enabling the Pass Value check box is to have the parameter passed by value and result else by reference.

There are no changing parameters for this particular function module.
Next, click the Tables tab. Here the internal table parameters are listed. The screen will appear like this:

CHAPTER 7 ■ MODULARIZATION

355

Function Module: SPELL_AMOUNT – Tables Tab

Figure 7-20. Examine Function Module SPELL_AMOUNT – Tables Tab

You can enter the internal table parameters in this tab. The internal tables can be passed through other tabs as well
(import, export, changing). When you enter internal table parameters here, they are passed by reference (there is no
Pass Value check box column). There is no Default value column.

When you pass internal tables through this tab, you will implicitly get a header line (a structure of the same name
as the formal parameter name).

There are no internal table parameters for the function module.
Click the Exceptions tab. The screen will appear like Figure 7-21.

Figure 7-21. Examine Function Module SPELL_AMOUNT – Exceptions Tab

Function Module: SPELL_AMOUNT – Exceptions Tab

As mentioned earlier, error exceptions can be raised in function modules through either the MESSAGE statement or
the class based exceptions. When you develop and create a custom function module, you must anticipate the possible
error conditions and provide exceptions for the possible errors.

The exception names must start with an alphabet letter and can contain alphanumeric characters with
embedded underscores (_). The maximum length of an exception name can be 30 characters.

For the function module SPELL_AMOUNT, there are two exceptions listed:

NOT_FOUND Argument Not Found in T015Z•

TOO LARGE Amount Too Large to Be Spelled Out•

All of the numerical text used to convert figure or number into text is stored in the database table T015Z (see
contents of table T015Z as an exercise). The first exception is related to not able to retrieve text for a particular
argument or key value (the error seems to be a bit hypothetical).

CHAPTER 7 ■ MODULARIZATION

356

The second exception is related to the maximum upper limit of the number submitted for conversion to text. The
function module supports a maximum of fifteen (15) digits before the decimal. With 15 digits you can represent a figure
of nine hundred ninety trillion... This is an astronomical figure in the context of the business and commercial world.

Click the Source code tab. The screen will appear like Figure 7-22.

Figure 7-22. Examine Function Module SPELL_AMOUNT – Source code Tab (Beginning of the function module)

Function Module: SPELL_AMOUNT – Source code Tab

The first statement starts with the key word FUNCTION equivalent to the key word FORM for a subroutine. This
keyword is followed by the name of the function module.

Following this, there are the system generated comment lines describing the function module interface, that
is, the various parameters and the exceptions. If you change the function module interface, these comment lines
are regenerated.

If you scroll down to the end of the function module, the screen will look like Figure 7-23.

CHAPTER 7 ■ MODULARIZATION

357

The function module concludes with the keyword ENDFUNCTION equivalent to the keyword ENDFORM of
subroutines.

All the function module statements have to be located between the keywords FUNCTION and ENDFUNCTION.
You are not bothering about the implementation of logic in this function module. To use a function module, you don’t
have to do so. You generally treat the logic implemented in an SAP supplied function module as an encapsulated black
box. You should understand what the function module takes and what it gives: that is, understand the parameters.

The raising of an exception in a function module with the MESSAGE statement has the following effect:

The system fields: SY-MSGID, (message class/id.) SY-MSGNO, (message number) SY-MSGTY, •
(message type) SY-MSGV1, (first placeholder) SY-MSGV2, (second placeholder) SY-MSGV3
(third placeholder), and SY-MSGV4 (fourth placeholder) are filled with appropriate values
from the MESSAGE statement. No message is issued at this stage.

Further execution of the function module ceases. The function module is exited and control •
returns to the program or procedure from where the function module was called. The message
may be issued in the program calling the function module using the system field values for
message class, message type, message number, and the placeholders.

Figure 7-23. Examine Function Module SPELL_AMOUNT – Source code Tab (End of function module)

CHAPTER 7 ■ MODULARIZATION

358

Hands-On Exercise: CALL Function Module SPELL_AMOUNT
You still have to examine the relationship between function groups and function modules at •
the level of source code. This is being deferred.

At this stage, let the function module: SPELL_AMOUNT be called or invoked in an executable •
ABAP program. You will supply it with the inputs: a number or figure input through a
PARAMETERS statement and the rest of the input parameters (currency code, language, and
filler) as literals. The function module will return the text for input figure in the two fields: WORD,
DECWORD of a structure referring to DDIC structure SPELL. You will output these two fields if
after returning from the function module, the value of system field SY-SUBRC = 0 (successful).

A function module may have many parameters and error exceptions. Manual coding of the •
statement to call a function module in an ABAP program will be tedious. The ABAP editor
enables the generation of the template code of calling function modules. This template code has
to be completed in terms of providing actual parameters and de-commenting the desired lines.

To generate the template code of calling function modules, in the ABAP editor, position the •
cursor on the line from where you want the call statement to start, and click on the menu
options: Edit ➤ Pattern. This is shown in Figure 7-24.

Figure 7-24. Menu Options to Generate Template Code of Calling a Function Module

CHAPTER 7 ■ MODULARIZATION

359

As you observe in the dialog box, there is provision to generate template source code for different ABAP
statements such as CALL FUNCTION, MESSAGE, SELECT * FROM et al. The autogeneration of template code works
in case of CALL FUNCTION (calling a function module). In the case of other statements, less of the code is generated,
and more code has to be entered manually.

You want the template code for calling a function module, so the first of the radio button (default) will do.
Enter the name of the function module: SPELL_AMOUNT. You can make a selection from a list, and a search help is
attached to this field (function key F4, etc.).

The generated template code, after pressing the continue key will be like Figure 7-26.

Figure 7-26. Template Code Generated for Function Module SPELL_AMOUNT

Figure 7-25. Dialog Box to Generate ABAP Template Code for Different Statements

On selecting this menu option, a dialog box will appear prompting for the statement for which template code is to
be generated, etc., as shown in Figure 7-25:

CHAPTER 7 ■ MODULARIZATION

360

Observe that the statement starts with CALL FUNCTION... and ends with a period or full stop appearing in a
separate line just above the IF SY-SUBRC... statement. This is a single ABAP statement running into multiple lines.

The keyword EXPORTING is for export parameters. The export parameters in the CALL... statement are the
import parameters in the function module (calling program is sending and function module is receiving).

The keyword IMPORTING is for import parameters. The import parameters in the CALL... statement are the
export parameters in the function module (calling program is receiving and the Function module is sending).

Following the keywords EXPORTING, IMPORTING (also CHANGING and TABLES) are name of the formal
parameters (AMOUNT, CURRENCY, FILLER et al.) followed by the equal sign (=). On the right side of the equal sign,
you should provide the actual parameter (the equal sign ‘=’ should be followed by a space and the name of the formal
parameter).

The function module exceptions are listed with values (NOT_FOUND = 1...). These are the values for the system
field SY-SUBRC. You can modify these values if you want to.

The optional formal parameters with the exceptions are generated as comment lines. You need to de-comment
these lines.

The message issuing statement MESSAGE ID... is also commented. This also should be de-commented. Recall
that when an exception is raised in a function module, the system fields SY-MSGID, SY-MSGNO, SY-MSGTY,
SY-MSGV1, SY-MSGV2, SY-MSGV3, and SY-MSGV4 are filled with the appropriate values. No message is issued, and
the function module is exited.

The statements with the appropriate modifications will look like this:

CALL FUNCTION 'SPELL_AMOUNT' " CALL statement starts here

 EXPORTING
 AMOUNT = AMOUNT " amount figure
 CURRENCY = 'USD' " currency code
 FILLER = ' '
 LANGUAGE = SY-LANGU " language code
 IMPORTING
 IN_WORDS = RET_SPELL
 EXCEPTIONS
 NOT_FOUND = 1
 TOO_LARGE = 2
 OTHERS = 3
 . " CALL statement ends here

IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

The complete source program:

REPORT YCL_CH07_06_CALL_SPELL_AMOUNT LINE-SIZE 170.

* CALLING Function Module SPELL_AMOUNT **

CHAPTER 7 ■ MODULARIZATION

361

* input figure to be converted - PARAMETERS etc. **
* CALL function module SPELL_AMOUNT **
* check for error (SY-SUBRC <> 0) **
* if error, error message else **
* **
* output SPELL-WORD & SPELL-DECWORD **

DATA : RET_SPELL TYPE SPELL.

PARAMETERS: AMOUNT(16) TYPE P DECIMALS 2 DEFAULT '87654321.90'.

START-OF-SELECTION.

CALL FUNCTION 'SPELL_AMOUNT' " CALL statement starts here

 EXPORTING
 AMOUNT = AMOUNT " amount figure
 CURRENCY = 'INR' " currency code
 FILLER = ' '
 LANGUAGE = SY-LANGU " language code
 IMPORTING
 IN_WORDS = RET_SPELL
 EXCEPTIONS
 NOT_FOUND = 1
 TOO_LARGE = 2
 OTHERS = 3
 . " CALL statement ends here

IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ELSE.

WRITE /5: RET_SPELL-WORD,
 RET_SPELL-DECWORD.
ENDIF.

You are checking for SY-SUBRC <> 0 (error condition), and if there is no error, the fields RET_SPELL-WORD and
RET_SPELL-DECWORD are output. The output will look like Figure 7-27.

Figure 7-27. Program YCL_CH07_06_CALL_SPELL_AMOUNT – Output

This was an illustration of how a function module can be called in an ABAP program.

CHAPTER 7 ■ MODULARIZATION

362

Link, Relationship between Function Group & Function
Module Source Code (Examine/View Function Module
SPELL_AMOUNT – Continued)
The examination of the function module SPELL_AMOUNT will be resumed. There was a digression to demonstrate
the calling of the function module SPELL_AMOUNT in an ABAP program.

From the attributes tab of the function module SPELL_AMOUNT, you know that the function group containing
the function module SPELL_AMOUNT is F017 (refer to Figure 7-10). In the SE37 function builder opening screen,
ensure the field Function Module is blank, and select menu options: Goto ➤ Function Groups ➤ Display Group like it
is shown in Figure 7-28.

Figure 7-28. Menu Options – Display Function Group

This menu option selection will pop-up a dialog box for input of function group name like this:

Figure 7-29. Display Function Group – Enter Name

Enter the name of the function group F017 and press the continue button. The screen in Figure 7-30 will appear.

CHAPTER 7 ■ MODULARIZATION

363

Click on the Main program button. This will take you to

Figure 7-30. Display Function Group F017

Figure 7-31. Function Group F017 – Main Program: SAPLF017

CHAPTER 7 ■ MODULARIZATION

364

When you create a function group of, for example, name YCL_CH07_GRP01 (you will •
create one in your next hands-on exercise), the system creates an ABAP program of name
SAPL_YCL_CH07_GRP01 of type Function group. (Until now, you have created only two
types of ABAP programs: Executable in SE38 and Type Pool in SE11). This is called as the
main program. Recall from Chapter 4 the different program types you can create in ABAP
workbench. Observe the naming of this main program. The system has prefixed the function
group name with SAPL. Here the function group name was F017; the name of the main
program assigned by the system is SAPLF017.

The main program has these program lines of INCLUDE statements. INCLUDE statements •
incorporate source program lines from other ABAP programs that are of program type
INCLUDE. Observe the name of the INCLUDE programs. The first INCLUDE program name
is LF017TOP, and the system has added a prefix of L and a postfix of TOP to the name of the
function group. Similarly, for the name of the second INCLUDE program, the system has
added a prefix of L and a postfix of UXX to the name of the function group.

The third INCLUDE statement has an INCLUDE program named LF017F01. This INCLUDE •
statement was initially a commented statement. In the commented statement, the system
proposes the name of INCLUDE programs.

Double-click on the statement:

INCLUDE LF017TOP. "Global Data

The double-click will navigate you to the INCLUDE program LF017TOP. The screen will look like Figure 7-32.

Figure 7-32. Function Group F017 – Include Program: LF017TOP

This first INCLUDE program of the function group F017 has the first statement FUNCTION-•
POOL F017. The key phrase FUNCTION-POOL is followed by the name of the function group
F017. This is similar to REPORT <name of program> in the ABAP Executable programs.

There are DATA, TABLES statements in this INCLUDE program. This INCLUDE program with •
the first statement FUNCTION POOL is a function group global declarative area. You declare
data and types that can be shared and referred in all the function modules residing in this
function group.

CHAPTER 7 ■ MODULARIZATION

365

Go back to the previous screen with the INCLUDE statements, the screen of Figure 7-31. Now double-click on the
INCLUDE statement:

INCLUDE LF017UXX. "Function Modules

The screen will be like this:

Figure 7-33. Function Group F017 – Include Program: LF017UXX

In this INCLUDE program with postfix ‘UXX’ there will be as many INCLUDE statements as there are function
modules in the function group. Initially, when only a function group has been created without any function modules,
this would be empty. As the function group F017 contains only one function module SPELL_AMOUNT and there is
only one INCLUDE statement:

INCLUDE LF017U01 "SPELL_AMOUNT.

Observe again the naming of INCLUDE program: Prefix L followed by the function group name, followed by the
postfix U01. If there were more function modules, the second function module would have a postfix of U02 and so on.
The developer can change these system generated names with attendant task of changing the source code wherever a
reference is made to these names. So it better to stick to the names proposed and generated by the system.

If you now double-click on the line:

INCLUDE LF017U01 "SPELL_AMOUNT.

The system will navigate to the source lines of function module SPELL_AMOUNT. The screen will look like
Figure 7-34: a repeat of Figure 7-22.

CHAPTER 7 ■ MODULARIZATION

366

This is the source of the function module SPELL_AMOUNT, with all the source lines enclosed between the
keywords FUNCTION and ENDFUNCTION. It is a good idea to go through these source lines at a later date.

Now, go back to the screen of Figure 7-31 (press function key F3 twice). Double-click on the statement:

INCLUDE LF017F01. "Subprograms

The screen in Figure 7-35 will appear.

Figure 7-34. Function Group F017 – Include Program: LF017U01 (Source Lines of Function Module SPELL_AMOUNT)

Figure 7-35. Function Group F017 – Include Program: LF017F01 (Subroutines Called From Function Modules in the
Function Group)

This INCLUDE program contains the subroutines called from the different function modules of the function
group. If there are no subroutines, this will be empty. If a subroutine is called from only one function module in the
function group, it can be located after the ENDFUNCTION statement within the function module code. The better
choice is to locate all the subroutines in this INCLUDE program.

In addition to these, a developer can always put additional INCLUDE statements in the main program with their
corresponding INCLUDE programs. This is the link or relationship between the function group and the function
modules source lines. It might take a while to get the hang of the structure or layout of these INCLUDES. Figure 7-36
sums up the links.

CHAPTER 7 ■ MODULARIZATION

367

Having examined the function module SPELL_AMOUNT in its entirety, the next stage is to create a function
group of your own, locate a function module in this function group, and then call this custom created function
module in an ABAP program.

Hands-On Exercise: Create a Function Module to Split a String
without breaking a Word
The function module SPELL_AMOUNT takes:

An amount figure

A language code

A currency code

A filler string

Figure 7-36. Structure of a Function Group and the Relationship between the Programs

CHAPTER 7 ■ MODULARIZATION

368

and returns the amount figure converted into text in the language of language code supplied. If you were to
output this returned text on a hard copy of a business document like a check, customer bill, purchase, etc. (typically
on A4 size 8.5" x 11"), it could word wrap as it is one long string.

It would be desirable that the single text or string returned by the function module SPELL_AMOUNT be split into
multiple lines of text without breaking a word (i.e., a word must not split from one line to another). Your proposed
function module will do just this: split the single line text into multiple lines of specified column length without
breaking a word, if there is not enough horizontal space for a word on the current line, it will automatically shift to the
next line.

The proposed function module will take as import parameter a single line of text. It will return this single line of
text into multiple lines loaded into a nonstructure internal table or simple array. The element of this array will be of
ABAP type C of a specified length. The number of columns in a line will be the length of this element. If you express
the program calling the proposed function module in terms of semi pseudo ABAP code:

**
* Program Calling the function module splitting a string/text into **
* multiple Lines **
**
DATA: SPELL_RET TYPE SPELL,
 TO_SPLIT_STR(300) TYPE C,
 STRNG(35) TYPE C,
 STRNG_TAB LIKE STANDARD TABLE OF STRNG.

PARAMETERS: AMT TYPE VBRK-NETWR DEFAULT '1234567.50'.

START-OF-SELECTION.

CALL FUNCTION 'SPELL_AMOUNT'
 EXPORTING
 AMOUNT = AMT
 CURRENCY = 'INR'
 FILLER = ' '
 LANGUAGE = SY-LANGU
IMPORTING
 IN_WORDS = SPELL_RET
....

CONCATENATE SPELL_RET-WORD SPELL_RET-DECWORD INTO TO_SPLIT_STR
 SEPARATED BY ' '.

CALL <proposed function module>
 EXPORTING
 INPUT_STR = TO_SPLIT_STR
 TABLES
 STR_TAB = STRNG_TAB
...
LOOP AT STRNG_TAB INTO STRNG.
 WRITE:/5 STRNG.
ENDLOOP.

CHAPTER 7 ■ MODULARIZATION

369

So, you will have in the proposed function module:

An IMPORT parameter of TYPE C or TYPE STRING. (will support both types)•

A TABLES parameter (nonstructure internal table)•

You will raise exceptions for the failure of following checks in the proposed function module:•

You will check the type for the IMPORT parameter and raise an exception if IMPORT •
parameter type is not ‘C’ or ‘STRING’ (the DESCRIBE statement will return ‘C’ or ‘g’).
Refer to Table 4-7 of Chapter 4.

Your second formal parameter will be defined in the • TABLES tab; and the system
will automatically check the actual parameter type during compile time. If the actual
parameter is not of type internal table, a syntax error will occur and the message will be
issued in the calling program.

As mentioned earlier, when a function module has a • TABLES parameter, the function
module automatically creates a header line of the same name as the formal parameter
name (in your case of nonstructure internal table, this will be an elementary data item).
You will check the type for this header line and raise an exception if it is not type ‘C’.

Proposed Function Module Interface:
The proposed function module will have two parameters: •

 (i) IMPORT – text to be split

(ii) TABLES – to return the split text (without breaking a word)

It will have two exceptions:•

 (i) The IMPORT parameter is not of TYPE ‘C’ OR ‘STRING’.

(ii) The header line of TABLES parameter is not of TYPE ‘C’.

Tasks to Create, CALL, and Test the Proposed Function Module
Having identified the proposed function module interface (parameters and exceptions), let the tasks be identified and
carried out to create, call, and test the proposed function module.

Create a function group, perform consistency check and activate.•

Create two message texts for the two exceptions in the already created message class YCL_•
CH07_MCLASS01 (transaction code SE91).

Create the proposed function module; assign it to the function group created in the •
preceding step.

Enter parameters•

Enter exceptions•

Enter source•

Do consistency check, activate the function module•

CHAPTER 7 ■ MODULARIZATION

370

Click on the Main program button. This will display the main program screen in Figure 7-38.

Create an ABAP program to call the function module. In this program, input the amount figure •
through the parameters statement.

Call the function module SPELL_AMOUNT•

Check for SY-SUBRC error: if error exit, else continue•

Call the proposed function module•

Check for SY-SUBRC error•

If no error, output the un-split and split string.•

Create a Function Group
On the SE37 function builder opening screen, ensure a blank in the field Function Module and click on menu options
Goto ➤ Function Groups ➤ Create Group.

This menu selection will pop up a dialog box prompting for the name of the function group and short text. Enter
the name of the function group: YCL_CH07_GROUP01 and short text. The usual naming rules that apply to other
Workbench objects apply to the function group as well. The name space for function group is 26 characters. Save. The
system will prompt for a package. Assign as usual the $TMP package. The function group is created.

The function group created is not in active status. You need to activate the function group. So again click on menu
options Goto ➤ Function Groups ➤ Change Group. The system will again prompt for the name of the function group
to be changed. Enter the name. A screen as shown in Figure 7-37 will appear.

Figure 7-37. Function Group: YCL_CH07_GROUP01 Attributes

CHAPTER 7 ■ MODULARIZATION

371

On this screen, click on the activate button or the key combination <Ctrl>+<F3>. The object activation list will appear:

Activate Main Program and Global Data

Ensure that both the main program (SAPLYCL_CH07_GROUP01) and global data program (LYCL_CH07_
GROUP01TOP) are selected for activation like it is shown in Figure 7-39. After activation, go back (function key F3).
This will take you back to the Change Function Group screen in Figure 7-40.

Figure 7-38. Function Group: YCL_CH07_GROUP01 Main Program

Figure 7-39. Function Group: YCL_CH07_GROUP01 Activation

CHAPTER 7 ■ MODULARIZATION

372

You have completed the creation of messages.

Do not click on the Save button. This will create a new inactive version. Click on the cancel button to navigate
back to the SE37 opening screen.

It is better to create function groups in the transaction code SE80. In the transaction code SE80, you do not
have to go through a tedious procedure of activation. The function group is activated as it is created. You will use
transaction code SE80 to create Workbench objects in Chapter 14.

Create Messages

Go to transaction code SE91. Enter the name of message class: YCL_CH07_MCLASS01.
Select the Messages radio button, and click on the Change button/F6. Enter text for message numbers 006, 007.

These two messages are meant for the two exceptions in the function module. Save. The screen will appear like that
in Figure 7-41.

Figure 7-40. Function Group: YCL_CH07_GROUP01 Activated

Figure 7-41. Message Class: YCL_CH07_MCLASS01 Messages

CHAPTER 7 ■ MODULARIZATION

373

Next click on the Import tab. Enter the import parameter (nspace: 30 characters). Click on the Pass Value check
box to have the parameter passed by value. The screen will look like Figure 7-43.

Create Function Module

On the transaction code SE37 opening screen, enter the name of the function module as: YCL_CH07_SPLIT_
STRING. Click on the Create button/F5. The system will prompt for the function group and the short text. Enter the
short text and function group name or assign a function group from the selection list. Press the Save button. The
system pops up an information message (the main program and function pool do not start with Y/Z). The screen
should look like Figure 7-42.

Figure 7-42. Function Module: YCL_CH07_SPLIT_STRING – Assign Function Group

Figure 7-43. Function Module: YCL_CH07_SPLIT_STRING – Import Parameter

Click on the Tables tab. Enter the table parameter. The screen will be like Figure 7-44.

CHAPTER 7 ■ MODULARIZATION

374

When you click on the Source tab, the system will generate the statements FUNCTION and ENDFUNCTION as
well as the comments of the interface description (parameters and exceptions). All the functions of an ABAP editor
are available here. This is shown in Figure 7-46.

Click on the exceptions tab. Enter the two exceptions (name space 30 characters). The screen for exceptions:

Figure 7-44. Function Module: YCL_CH07_SPLIT_STRING – Tables Parameter

Figure 7-46. Function Module: YCL_CH07_SPLIT_STRING – Initial Source Screen

Figure 7-45. Function Module: YCL_CH07_SPLIT_STRING – Exceptions

CHAPTER 7 ■ MODULARIZATION

375

The source code of function module YCL_CH07_SPLIT_STRING is listed. The logic employed is elaborated in the
comments at the beginning:

FUNCTION YCL_CH07_SPLIT_STRING.
*"--
""Local Interface:
*" IMPORTING
*" VALUE(STRING_TO_SPLIT)
*" TABLES
*" STABLE
*" EXCEPTIONS
*" IMPORT_PARAMETER_TYPE_INVALID
*" RETURN_TABLE_ELEMENT_NOT_TYPEC
*"--

**
* note: the parameter STABLE is being passed as TABLES. **
* in your case it is expected to be an unstructured **
* internal table. in function modules parameters passed **
* as TABLES implicitly generate a header line. **
* so in your function module, there are two data objects**
* of the same name STABLE: (i) STABLE - unstructured **
* internal table (ii) STABLE - elementary pre-defined **
* TYPE C. **
* you are referring to internal table as STABLE[] and **
* elementary pre-defined TYPE as STABLE. Strictly **
* speaking, this is not necessary/mandatory. **
* **
* you are operating directly on the IMPORT parameter **
* STRING_TO_SPLIT. this is being passed by value. so **
* operations are on local copy. original remains intact **
**

**
* declare data. **
* **
* check & RAISE exceptions **
* **
* REFRESH STABLE[] (remove existing rows) **
* **
* determine length of element & assign to LEN, CLEN **
* this is the max number of characters in each row of **
* split string/text being returned **
* LEN after this assignment will remain constant **
* **
* CLEN value reflects available characters in a row **
* at any time. during start of row CLEN = LEN **
* **
* the logic is: in a loop extract one word at a time **
* from STRING_O_SPLIT (source) and concatenate/assign to**
* STABLE - elementary. (destination) **
* **

CHAPTER 7 ■ MODULARIZATION

376

* if columns are available in STABLE - elementary, **
* CONCATENATE the extracted word. **
* **
* if columns are not available to accommodate extracted **
* word, APPEND STABLE TO STABLE[]. assign word to **
* STABLE - elementary. **
* **
* continue this process till all the words are **
* extracted and transferred to final destination i.e. **
* unstructured internal table STABLE[] **
* **
* set up unconditional loop DO. **
* check if all words extracted from STRING_TO_SPLIT **
* i.e. STRING_TO_SPLIT = ' ' if so EXIT loop. **
* **
* you are extracting one word at a time from **
* STRING_TO_SPLIT into WORD through SEARCH ' . .' i.e. **
* search for embedded blank i.e. more than one word in **
* the STRING_TO_SPLIT. **
* **
* if this SEARCH is success/ **
* SY-SUBRC = 0, SPLIT STRING_TO_SPLIT INTO WORD **
* STRING_TO_SPLIT i.e. get the first word in WORD, **
* residual text back in STRING_TO_SPLIT. **
* **
* if SEARCH SY-SUBRC <> 0 i.e. only one last word in **
* the STRING_TO_SPLIT. assign i.e.WORD = STRING_TO_SPLIT**
* **
* determine length of WORD and store in WLEN **
* **
* check whether WLEN <= CLEN. if so CONCATENATE WORD to **
* STABLE. **
* **
* if VLEN not <= CLEN, CONDENSE STABLE. APPPEND STABLE **
* TO STABLE[]. STABLE = WORD. CLEN = LEN **
* **
* adjust CLEN i.e. CLEN = CLEN - WLEN - 1 **
* ENDDO end loop **
* **
* if STABLE <> ' ' APPEND STABLE TO STABLE[] **
* **
**
DATA: WORD TYPE STRING, " store extracted word
 TYP(1) TYPE C, " store variable TYPE
 LEN TYPE I, " store length of string
 CLEN TYPE I, " store available characters/columns
 WLEN TYPE I. " store extracted word length

DESCRIBE FIELD STRING_TO_SPLIT TYPE TYP.

CHAPTER 7 ■ MODULARIZATION

377

IF TYP <> 'C' AND TYP <> 'g'.
 MESSAGE S006(YCL_CH06_MCLASS01) RAISING
 IMPORT_PARAMETER_TYPE_INVALID.
ENDIF.

DESCRIBE FIELD STABLE TYPE TYP. " STABLE reference to the elementary
 " data item, STABLE[] reference to itab
IF TYP <> 'C' .
 MESSAGE S007(YCL_CH06_MCLASS01) RAISING
 RETURN_TABLE_ELEMENT_NOT_TYPEC.
ENDIF.

REFRESH STABLE[]. " clear internal table of existing rows

DESCRIBE FIELD STABLE LENGTH LEN IN CHARACTER MODE. " get length of element

CLEN = LEN.

DO.

 IF STRING_TO_SPLIT IS INITIAL.
 EXIT.
 ENDIF.

 SEARCH STRING_TO_SPLIT FOR '. .'. " SEARCH for embedded blank

 IF SY-SUBRC <> 0. "last word in the text
 WORD = STRING_TO_SPLIT.
 STRING_TO_SPLIT = ''.
 ELSE.
 SPLIT STRING_TO_SPLIT AT ' ' INTO WORD STRING_TO_SPLIT.
 ENDIF.

 WLEN = STRLEN(WORD).

 IF SY-INDEX = 1.
 STABLE = WORD.
 ELSEIF WLEN <= CLEN.
 CONCATENATE STABLE WORD INTO STABLE SEPARATED BY ' '.
 ELSE.
 APPEND STABLE TO STABLE[].
 STABLE = WORD.
 CLEN = LEN.
 ENDIF.

 CLEN = CLEN - WLEN - 1.
ENDDO.

IF STABLE <> ' '.
 APPEND STABLE TO STABLE[].
ENDIF.

ENDFUNCTION.

CHAPTER 7 ■ MODULARIZATION

378

The MESSAGE statement to raise exceptions is supported only inside a function module and method of a class.
This form of MESSAGE statement is not acceptable in an executable ABAP program.

Create an ABAP Program to Call Function Module

The program calling the function module YCL_CH07_SPLIT_STRING is YCL_CH07_CALL_SPLIT_STRING.
The source code of YCL_CH07_CALL_SPLIT_STRING:

REPORT YCL_CH07_07_CALL_SPLIT_STRING LINE-SIZE 150.

**
* Calling Function Module YCL_CH07_SPLIT_STRING **
**

* note on MESSAGE statement:- **
* **
* exceptions raised in function module has **
* message type 'S' or status. if you raise **
* exception with message type 'E' or error **
* the program exits after return from **
* function module, on issuing the message. **
* you do not want the program to be exit, **
* yet you want the message to appear like **
* an error message. that is why you have **
* added the phrase DISPLAY LIKE 'E' with the **
* message statement after return from **
* function module 'YCL_CH07_SPLIT_STRING'. **

* declare data. **
* input amount figure through PARAMETERS **
* **
* CALL FUBCTION 'SPELL_AMOUNT'.. **
* check SY-SUBRC etc. **
* CONCATENATE SPELL-WORD SPELL-DECWORD INTO **
* ISTR SEPARATED BY ' ' **
* **
* CALL FUNCTION 'YCL_CH07_SPLIT_STRING'... **
* check SY-SUBRC etc. **
* output ISTR, STRGA (LOOP...ENDLOOP.) **

DATA: STRG(40) TYPE C,
 STRGA LIKE STANDARD TABLE OF STRG,
 ISTR TYPE STRING,
* ISTRD(300) TYPE N,
 SPELL TYPE SPELL.
**

CHAPTER 7 ■ MODULARIZATION

379

PARAMETERS: AMT(7) TYPE P DECIMALS 2 DEFAULT
 '987654321.50'.

START-OF-SELECTION.

CALL FUNCTION 'SPELL_AMOUNT'
 EXPORTING
 AMOUNT = AMT
 CURRENCY = 'INR'
 FILLER = ' '
 LANGUAGE = SY-LANGU
 IMPORTING
 IN_WORDS = SPELL
 EXCEPTIONS
 NOT_FOUND = 1
 TOO_LARGE = 2
 OTHERS = 3
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 EXIT.
ENDIF.

CONCATENATE SPELL-WORD SPELL-DECWORD INTO ISTR
 SEPARATED BY ' '.

CALL FUNCTION 'YCL_CH07_SPLIT_STRING'
 EXPORTING
 STRING_TO_SPLIT = ISTR
* STRING_TO_SPLIT = ISTRD
 TABLES
 STABLE = STRGA
 EXCEPTIONS
 IMPORT_PARAMETER_TYPE_INVALID = 1
 RETURN_TABLE_ELEMENT_NOT_TYPEC = 2
 OTHERS = 3
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4
 DISPLAY LIKE 'E'.
ELSE.

 WRITE:/5 ISTR.
 SKIP 2.
 LOOP AT STRGA INTO STRG.
 WRITE:/5 STRG .
 ENDLOOP.

ENDIF.

CHAPTER 7 ■ MODULARIZATION

380

The second exception checks for the return internal table element type to be C. Restore the source program
to status prior to testing of first exception. Make the STRG some other type than C. Run the program. The second
exception will be raised, and the screen with the error message on the status bar will appear like this:

You will execute the calling program and thereby test that the function module is working.
Let the exceptional conditions be tested first. The first exception checks the type of input parameter: it should

be either type C or STRING (DESCRIBE statement returns ‘g’ for type STRING). For this testing, you can de-comment
the data declaration of variable ISTRD in the DATA statement. In the CALL FUNCTION YCL_CH07_SPLIT_STRING...
statement, you can comment the line STRING_TO_SPLIT = ISTR and de-comment the STRING_TO_SPLIT = ISTRD.
ISTRD is type N and will result in exception: IMPORT_PARAMETER_TYPE_INVALID. Execute the program. The
PARAMETER statement prompt will appear on the screen, and press the execute button/F8. The screen with the error
message on the status bar will appear like this:

Figure 7-47. Program: YCL_CH07_CALL_SPLIT_STRING – Exception I

Figure 7-48. Program: YCL_CH07_CALL_SPLIT_STRING – Exception II

Restore the type of STRG to C. Execute the program. The default input of 987654321.50 had been changed to
7777777777.50. The output will appear like Figure 7-49.

Figure 7-49. Program: YCL_CH07_CALL_SPLIT_STRING – Output

Reduce the length of STRG from its existing value of 50 to 40. Execute the program again. The output will appear
like Figure 7-50.

CHAPTER 7 ■ MODULARIZATION

381

With the reduced number of characters or columns in a line from 50 to 40, the output has extended from 3 lines
in the first instance to 4 lines in the second instance.

So now you have created and tested your own function module, which is of some practical usage.
You could have created some DDIC objects and assigned a type to the function module parameters by reference

to the DDIC objects. But that would not have given you scope for exception handling. In a practical scenario, assigning
a type to function module parameters by reference to DDIC objects should be the desired procedure. Here, you have
not done so, in order to use the exception handing feature.

Normally, a function module is not created directly. The functionality and logic of proposed function module is
created in a normal, executable ABAP program. This program is tested thoroughly. It is then transferred and fitted into
the function module. This is especially true of function modules requiring substantial data for testing.

The function module has its own testing environment. You can, as an exercise tryout testing this function module
in SE37 test environment.

You have tested the function module by calling it in an executable ABAP program.

Special Function Modules - Conversion Routines
Conversion Routines Background
In the first hands-on exercise in Chapter 5 (WRITE statement...) while having the field KUNNR (customer code/
number) output from the table KNA1, you had an addition USING NO EDIT MASK. As an explanation, it had
mentioned that this addition was to output KUNNR with leading zeroes: by default, the WRITE statement outputs
KUNNR field with suppressed zeroes. It was also mentioned that in the SAP environment, the internal storage of data
in database tables is different from the way it presented on the screen or printer.

So a numeric customer code (KUNNR) is stored in the database table with leading zeroes (a customer code can
be alphanumeric as well). The field KUNNR is DDIC Data Type CHAR and length 10. When it is output, the zeroes are
suppressed by default. The idea is to save the labor of entering the leading zeroes by the end user during input. An end
user can just enter ‘1’ for the customer ‘0000000001’ on an input screen; and the system will automatically insert the
leading zeroes for internal storage.

Conversion Routines Assignment
The behind-the-scenes action of inserting and suppressing zeroes is performed by the conversion routine function
modules. The conversion routine function modules are attached to domains. If you open the screen for the domain
KUNNR (field KUNNR in table KNA1 is assigned the data element KUNNR and data element KUNNR in turn is
assigned the domain KUNNR), you will see in the Output Characteristics area of the Definition tab and the value
‘ALPHA’ entered in the field Convers Routine. This is shown in Figure 7-51.

Figure 7-50. Program: YCL_CH07_CALL_SPLIT_STRING – Output, Reduced Line Width

CHAPTER 7 ■ MODULARIZATION

382

Conversion Routine Attributes
 The full name of the function modules are:

CONVERSION_EXIT_ALPHA_INPUT

CONVERSION_EXIT_ALPHA_OUTPUT

The conversion routine function modules exist in pairs: an input version and an output version. The conversion
routine function modules have the prefix: CONVERSION_EXIT_ followed by the five-character identification (in your
chosen context ALPHA) followed by the postfix of either INPUT or OUTPUT.

At the domain level, only the five-character identification is specified, and the prefix and postfix are implicit.
In the case of ALPHA, the function module ending with input inserts zeroes and the one ending with output
suppresses the zeroes. The ALPHA is also attached to the domain LIFNR (the domain associated with vendor code).
Look this up, as well as just look up the function modules:

CONVERSION_EXIT_ALPHA_INPUT

CONVERSION_EXIT_ALPHA_OUTPUT

The conversion routine function modules have only two parameters: one import parameter named INPUT and
one export parameter named OUTPUT. If you create your custom conversion routine function modules, you can
define only two parameters: one import parameter named INPUT and one export parameter named OUTPUT.

If you are having a database table field with the same characteristics as KUNNR or LIFNR – TYPE CHAR,
length 10, you want the same action to happen: automatic zero insertion/suppression. You can use the same domain
or create a domain and assign ALPHA to the conversion routine field of the domain.

From what has been described, the conversion routine function modules are getting invoked behind the scenes.
You can also call the conversion routine function modules explicitly like any other function module.

Figure 7-51. Domain: KUNNR – Convers. Routine ALPHA

CHAPTER 7 ■ MODULARIZATION

383

You used the addition USING NO EDIT MASK in the Chapter 5 WRITE statement to skip or bypass the execution
of conversion routine CONVERSION_EXIT_ALPHA_OUTPUT, which gets executed by default. There is an addition
which is the opposite of USING NO EDIT MASK i.e. USING EDIT MASK <conversion routine id>. Through this
addition with the WRITE statement, you can have for the field the output version of the conversion routine executed.
The syntax of the statement:

WRITE:/5<field name> USING EDIT MASK '==<conversion routine id>...

A forthcoming hands-on exercise is demonstrating this.
You can also determine the conversion routine associated with a field with the DESCRIBE FIELD statement

covered earlier in Chapter 4.
The exact syntax is: DESCRIBE FIELD <field name> EDIT MASK <edit mask name>.
If you execute the following lines:

DATA: KUNNR TYPE KUNNR,
 EMASK TYPE STRING.

DESCRIBE FIELD KUNNR EDIT MASK EMASK.
WRITE: /5 'Edit Mask of KUNNR:', EMASK.

It will output:
Edit Mask of KUNNR: ==ALPHA
The DESCRIBE statement returns the conversion routine name prefixed by ‘==’.

Conversion Routine – Hands-On Exercise: 1
In this program, there is an input of the field CUST_CD.

The input field is defined referring to the data element KUNNR. So you are assured of the conversion routine
ALPHA in action for this field.

The user can enter a number: for example, 1 (just 1 without leading zeroes). After entering the number, press
execute button/F8.

The statements following the event START-OF-SELECTION start getting executed. You are assigning the
input field CUST_CD to another field: STRING10. The input field CUST_CD will contain internally 0000000001 as
the conversion routine ALPHA (CONVERSION_EXIT_ALPHA_INPUT) will insert the leading zeroes. So the field
STRING10 having been assigned to CUST_CD will also contain 0000000001.

The field STRING10 is declared as type C and length 10. Though the fields CUST_CD and STRING10 have the
same characteristics of type C and length 10, STRING10 is not associated with domain KUNNR. So conversion routine
ALPHA is not in action for the field STRING10.

You output both the fields CUST_CD and STRING10 twice.
CUST_CD is output without the addition USING NO EDIT MASK. This will output with leading zeroes

suppressed as CONVERSION_EXIT_ALPHA_OUTPUT is executed through the association with domain KUNNR.
CUST_CD is output with the addition USING NO EDIT MASK. This will output with leading zeroes as execution

of CONVERSION_EXIT_ALPHA_OUTPUT is bypassed.
STRING10 is output without the addition USING EDIT MASK. This will output with leading zeroes as STRING10

has no association with domain KUNNR.
STRING10 is output with the addition USING EDIT MASK. This will output with leading zeroes suppressed

because the addition USING EDIT MASK will execute CONVERSION_EXIT_ALPHA_OUTPUT.

CHAPTER 7 ■ MODULARIZATION

384

The source code, input, and output are shown under:

REPORT YCL_CH07_08_TEST_CONV_ROUT01.

DATA STRING10(10) TYPE C.
**
* Function modules CONVERSION_EXIT_ALPHA_INPUT **
* CONVERSION_EXIT_ALPHA_OUTPUT **
* in action **
**

**
* input: PARAMETERS: CUST_CD TYPE KUNNR **
* assign CUST_CD to STRING10 (TYPE C length 10) **
* **
* output CUST_CD, **
* CUST_CD USING NO EDIT MASK **
* STRING10 **
* STRING10 USING EDIT MASK **
**

PARAMETERS: CUST_CD TYPE KUNNR.

START-OF-SELECTION.

STRING10 = CUST_CD.

WRITE: /5 'CUST_CD :', CUST_CD,
 "output without leading zeroes
 /5 'CUST_CD (USING NO EDIT MASK) :', CUST_CD USING NO EDIT MASK.
 "output with leading zeroes
SKIP 2.

WRITE: /5 'STRING10 :', STRING10,
 "output with leading zeroes
 /5 'STRING10 (USING EDIT MASK) :', STRING10 USING
 EDIT MASK '==ALPHA'.
 "output without leading zeroes

Figure 7-52. Program: YCL_CH07_08_TEST_CONV_EXIT01 – Input

CHAPTER 7 ■ MODULARIZATION

385

Conversion Routine – Hands-On Exercise: 2 and 3
In this hands-on exercise, you will create your own pair of conversion routines. They are:

CONVERSION_EXIT_ICOMA_INPUT
CONVERSION_EXIT_ICOMA_OUTPUT

The two function modules insert and suppress commas for numeric TYPE P fields. The internal storage of
numeric fields has been described earlier. You have also been familiarized with the default output of numeric fields
and the thousand separators or comma appearing after thousand, million, billion, etc. This is to make large numeric
figures easily readable.

The conversion routine introduced above inserts a comma character as per the Indian business practice. In the
Indian business practice, you have the first comma after thousand; a second comma after hundred thousand – called
Lakh/Lac; and a third comma after ten million – called Crore. You are stopping at this. Since this is a demonstration,
the function modules support a maximum figure of 99,99,99,999 (i.e., 99 crore, 99 lac, 99 thousand...).

You locate the two function modules CONVERSION_EXIT_ICOMA_INPUT and CONVERSION_EXIT_ICOMA_
OUTPUT in the same function group (this is mandatory). The function group is YCL_CH07_GROUP02.

You will use two subroutines in the function group that are being called from an output conversion routine. You
will locate some data in the global data area. This was not essential but done to demonstrate declaration and usage of
data in the global data area.

The logic used might not be the best. The focus is on creation of conversion routine, locating data in the global
data area, using subroutines in the function group, and deploying the conversion routines.

The various components of the function group YCL_CH07_GROUP02:

 I. Main program–SAPLYCL_CH07_GROUP02

 II. Global data area – LYCL_CH07_GROUP02TOP

 III. Function modules – LYCL_CH07_GROUP02UXX

 LYCL_CH07_GROUP02U01

 LYCL_CH07_GROUP02U02

 IV. Include program for subroutines

 LYCL_CH07_GROUP02F01

Figure 7-53. Program: YCL_CH07_08_TEST_CONV_EXIT01 – Output

CHAPTER 7 ■ MODULARIZATION

386

Copy the source program lines of global data definitions from the E-resource into the function group global data
area - LYCL_CH07_GROUP02TOP. Activate the function group.

When you double-click on the include statement of LYCL_CH07_GROUP02F0, the system will alert that the
program does not exist. Create the program? This message will appear on the status bar and not as a pop-up. Press the
<Enter> key to create the include program. Copy the source lines of subroutines from the E-Resource into the include
program LYCL_CH07_GROUP02F01. Activate the include program as well as the main program.

To invoke and demonstrate the function modules, the ABAP executable programs: YCL_CH07_09_TEST_CONV_
ROUT02 and YCL_CH07_10_TEST_CONV_ROUT03 are coded. The source code of the function group, function
modules and executable programs is available in the E-Resource. Copy the source lines from the E-Resource. Test the
ABAP programs and the function modules.

INCLUDE Programs
Include programs have not been elaborated upon, for the reason that there is not much of conceptuality associated
with them. But they are handy and, like macros, a modularization aid at source code level. They help uncluttering a
program as well enable reusability. You can maintain include programs in SE38 or double-clicking on the program
name of the INCLUDE statement. In SE38, in the program attributes, where you were assigning all the while program
type as executable, you need to assign program type as Include for include programs. An include program cannot
include itself.

There is no independent syntax check for include programs. The source lines in the include program undergo
syntax checking only at the time of syntax check of the program where include program lines are included.

Function Modules Tidbits
On the function builder opening screen, you have the usual set of buttons available on any of the ABAP Workbench
object maintenance screens and some more relevant to function modules and function groups such as:

Check for consistency and activation buttons.•

Execute the button for execution of the function module in the function module test •
environment.

Delete a function module button.•

Rename a function module button.•

Deletion and renaming should be done with caution. The system checks for static calls to the function module
and will disallow deletion or renaming if a function module is statically being called elsewhere. But there cannot be a
check for dynamic calls. You have called function modules with the CALL statement, specifying the function module
name as a literal (a static call). There is a variation of the CALL statement that accepts a variable containing the
function module name (a dynamic call). The system cannot check such dynamic calls.

Copy function module button.•

Reassign a function module to another function group.•

From the menu, you can navigate to the global data (program: L<function group name>TOP>) •
the program with the first statement as: FUNCTION-POOL, where you can declare global
(global to the function group) types and data.

From the menu, you can go to the main program (program: SAPL<function group name>). •
All the INCLUDE statements are in this main program.

You can from the menu and navigate to the documentation if it is available. There is separate •
documentation for the function group and function modules.

CHAPTER 7 ■ MODULARIZATION

387

Except for delete, rename, copy, and reassign, other options are available inside the function module editor
screen as well.

List of a Few Function Modules
A few (50 odd) SAP Standard function modules are listed in Table 7-3. They are categorized under various heads.
Some of these, you will be using in your hands-on exercise of forthcoming topics. The function modules names in
italics can be tried out as exercises immediately before proceeding to the next chapter. Contrive scenarios to call these
function modules. Go through the function module interface. You need not pass all optional parameters always.

Table 7-3. List of a Few SAP Supplied Function Modules

Function Module Name Description

Pop-Up to Decide

POPUP_TO_CONFIRM A 2/3 Buttons dialog Pop-up

POPUP_TO_INFORM A Pop-up to Inform

POPUP_TO_CONFIRM_DATA_LOSS A Pop-up to Confirm Abort and Lose Data

Pop-Up to Select

F4_CLOCK A Pop-up to Select Time

F4_DATE A Pop-up to Select Date

POPUP_TO_SELECT_MONTH A Pop-up to Select Month

POPUP_TO_DECIDE_LIST A Pop-up to Make Single/Multiple Selections

POPUP_WITH_TABLE_DISPLAY A Pop-up Selection from an Internal Table, Returns Row Number Selected

FITRV_CALCULATOR A Pop-Up Calculator

Conversion Routines

CONVERSION_EXIT_ALPHA_INPUT

CONVERSION_EXIT_ALPHA_OUTPUT

Suppress, Insert Leading Zeroes in Customer Code and Vendor Code
(Data Type CHAR, Length 10)

CONVERSION_EXIT_MATN1_INPUT

CONVERSION_EXIT_MATN1_OUTPUT

Suppress, Insert Leading Zeroes in Material Code (Data Type CHAR,
Length 18)

Conversions

ROUND_AMOUNT Rounding Amount as per Company Code Currency

CURRENCY_CODE_SAP_TO_ISO Convert Currency Code: SAP to ISO

CURRENCY_CODE_ISO_TO_SAP Convert Currency Code: ISO to SAP

UNIT_OF_MEASURE_ISO_TO_SAP Unit of Measure Code ISO to SAP

UNIT_OF_MEASURE_SAP_TO_ISO Unit of Measure Code SAP to ISO

SPELL_AMOUNT Convert Amount Figure into Text

SO_SPLIT_FILE_AND_PATH Split the Full File Name to Drive, Directories, and File Name

CONVERT_ABAPSPOOLJOB_2_PDF Convert Spool Output to PDF File

(continued)

CHAPTER 7 ■ MODULARIZATION

388

Function Module Name Description

Date & Time

ADD_TIME_TO_DATE Used in MM Module to Determine Date of Expiry from Shelf Life

HR_SGPBS_ADD_TIME_TO_DATE Used in HR Module to determine End Date by Adding Days/Months/
Years to a Date

COMPUTE_YEARS_BETWEEN_DATES Years between Two Dates

DAYS_BETWEEN_TWO_DATES Days Between Two Dates for Interest Calculation

MONTH_NAMES_GET Get All the Month Names in an Internal Table in Specified Language

MONTH_PLUS_DETERMINE Add/Subtract Months to Get Forward/Backward Date

WEEKDAY_GET Get All the Week Days in an Internal Table in Specified Language

Strings

STRING_CENTER Center a String

STRING_MOVE_RIGHT Move String Right

STRING_REVERSE Reverse a String

Files

GUI_DOWNLOAD Download Internal Table to a File on Presentation Server

GUI_UPLOAD Upload a File on Presentation Server into an Internal Table

F4_FILENAME Displays a Dialog Box for File Selection from Presentation Server

TMP_GUI_BROWSE_FOR_FOLDER Displays a Dialog Box for Folder Selection from Presentation Server

TMP_GUI_GET_FILE_EXIST Check File Existence on Presentation Server

Lists

SAPGUI_PROGRESS_INDICATOR Progress Meter/Indicator for a Process

Miscellaneous

CLOI_PUT_SIGN_IN_FRONT Get the Sign on Left

RS_VARIANT_VALUES_TECH_DATA Retrieve variant values

RS_VARIANT_EXISTS Check variant existence

SAP_CONVERT_TO_XLS_FORMAT Convert internal table data into Excel

RS_COPY_SELECTION_SETS Copy variant from one program to another

MG_FIELDNAME_TEXT Retrieve texts from data elements

ICON_CREATE Transfer icon name and text to screen field

ALV

REUSE_ALV_GRID_DISPLAY Simple ALV grid type display

(Three Dimensional)

Table 7-3. (continued)

(continued)

CHAPTER 7 ■ MODULARIZATION

389

Conclusion
In the forthcoming chapters, you will use a few of the SAP supplied function modules. You will not create any custom
function modules, though. Going forward in this book, whenever the context warrants a subroutine and INCLUDE
program, they will be created and used.

Function Module Name Description

REUSE_ALV_LIST_DISPLAY Simple ALV list type display

(Two Dimensional)

REUSE_MINIALV_LIST_DISPLAY ALV grid (no event support)

REUSE_ALV_FIELDCATALOG_MERGE Create default field catalog

(ALV using function modules)

LVC_FIELDCATALOG_MERGE Create default field catalog

(ALV using classes)

REUSE_ALV_COMMENTARY_WRITE ALV output header at top of page

REUSE_ALV_EVENTS_GET Get possible events of an ALV list

REUSE_ALV_BLOCK_LIST_APPEND Append ALV list to a block

REUSE_ALV_BLOCK_LIST_DISPLAY Output ALV Block

Random Numbers

QF05_RANDOM Random number generator

QF05_RANDOM_INTEGER Random number generator – integer

Table 7-3. (continued)

391

CHAPTER 8

Open SQL Data Retrieval

Introduction
SAP Open SQL is the de facto SQL used to operate database tables in ABAP programs. It was introduced in Chapter 5
on a preview basis. In Chapter 5, you wanted substantial output running into multiple pages. You resorted to retrieving
large amounts of data available in a database table that could produce multiple page output. You used Open SQL to
retrieve the data. You also used Open SQL data retrieval in Chapter 6 to load internal tables.

You have been exposed to some basic forms of the SELECT statement in these chapters. Similar to other SQL
offerings, the SELECT statement is used in Open SQL to retrieve data from database tables and views. You can use
the SQL of a specific database as well. Called Native SQL in SAP documentation terminology, it restricts you to
running the program only on SAP systems with that specific database installed. In this chapter, you are learning only
the SELECT statement (data retrieval) with its variants. The other data manipulation statements: INSERT, UPDATE,
MODIFY, DELETE, etc., are covered in Chapter 14.

Figure 8-1 represents the processing of Open SQL vis-à-vis Native SQL statements by the ABAP interpreter and
ABAP runtime database interface system.

ABAP Interpreter

Native SQL

Database

Database Meta Data And Tables

Database Interface

With Local BuffersData Dictionary

Open SQL

Figure 8-1. Open SQL, Native SQL Data Manipulation Flow

Let the processing of Open SQL statements by the ABAP runtime database interface system be traced. From the
ABAP interpreter, the Open SQL statement is processed first by the database interface. It is determined whether the
table definition exists in the DDIC. If a table definition exists in the DDIC, the Open SQL statements are translated
to the SQL statements of the installed database. Other information is extracted from the DDIC table definition such
as table maintenance, technical settings, domain and data element information, etc. The Open SQL translated
statements are passed to the database metadata. And then the database metadata takes over.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

392

After the Open SQL operation on the database, processing is via the database interface (filling buffers, etc.) and
back to the ABAP interpreter.

As elaborated upon in Chapter 1, under the heading ‘Client Code Perspectives’, the Open SQL by default filters
and operates only on row/s belonging to the client code into which the user is logged in for client dependent tables.

In Native SQL, the SQL statements are passed directly from the ABAP interpreter to the installed database’s
metadata and after the operation on the database, back to the ABAP interpreter. There is absolutely no reference to
the DDIC.

In this chapter, you will go through the different variations of the Open SQL SELECT statement. The variations
are these: the <result> specification, <source> specification, <destination> specification, WHERE <condition>
specification, and the ORDER BY <sort> specification.

The Open SQL special features of runtime specifications of <result>, <source>, <destination>, WHERE
<condition>, and ORDER BY <sort> are introduced.

The chapter also covers the ABAP FIELD-SYMBOLS. Some rudimentary applications of the FIELD-SYMBOLS
are demonstrated. The FIELD-SYMBOLS are used to access and process rows of an internal table directly instead of
fetching them into a structure and processing. The creation of runtime or dynamic data objects (OOPS) is introduced.
FIELD-SYMBOLS are then used to access individual fields of a runtime created structured object.

Open SQL SELECT Statement
Instead of introducing you to a single comprehensive syntax of the SELECT statement, it is being introduced in pieces
as different features and variants. After chapter completion, you can navigate to the online SAP documentation of
the SELECT statement (press F1 on the keyword SELECT), and you will be able to relate to the single comprehensive
syntax of the SELECT statement with its myriad options.

SELECT… ENDSELECT with WHERE Condition, ORDER BY and UP TO
Clauses
The most basic form of the SELECT statement is the SELECT…ENDSELECT statement, where one row is fetched from
the database table into a destination structure or destination of individual fields:

SELECT <result> FROM <source>
INTO [CORRESPONDING FIELDS OF] <destination>
[WHERE <condition>]
[ORDER BY <sort specification>]
[UP TO <no of rows> ROWS].
……………….
ENDSELECT.

<result>: This can be ‘*’ or individual fields. (‘*’ should be used judiciously).
<source>: This can be a database table or database view or projection view.
<destination>: This can be a structure or list of individual fields. The individual fields have to be enclosed in

parentheses separated by commas, like: (KUNNR, NAME1, ORT01). For a single field as destination, the parentheses
can be omitted.

CORRESPONDING FIELDS OF: The addition of this phrase applies when the destination is a structure and when
the source and destination are not identical in terms of the number of fields and/or their order. The data movement
takes place field by field with the CORRESPONDING FIELDS OF usage.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

393

<condition>: A condition can be simple or compound. In a compound condition, the simple conditions are
conjoined by the logical operators AND and OR. The logical operator NOT is to be used judiciously for performance
reasons.

The following condition operators are supported:

Table 8-1. Condition Operators in Open SQL

Operator Description

EQ / = Equal To

NE / <> / >< Not Equal To

GT / > Greater Than

GE / >= Greater Than Or Equal To

LT / < Less Than

LE / <= Less Than Or Equal To

BETWEEN Between Two Values (interval)

IN In a Set Of Values

LIKE (%, _) String Pattern Comparison

<sort specification>: You can get data sorted by fields in ascending/descending order like: ORDER BY ORT01
ASCENDING NAME1 DESCENDING.

If you do not specify the addition ASCENDING/DESCENDING, the default is ASCENDING.
<no of rows>: The loop will run <no of rows> times or it will fetch only <no of rows> rows. This variation is used at

the testing stage.
The SELECT statement can also be nested but is not advisable. You can use one-level loop construct SELECT…

ENDSELECT judiciously. You used it to build a summary internal table with the COLLECT statement. If the data is
small, you can use it. In a client server environment, the suggested procedure is to load an internal table from the
database table and set up row-by-row processing with the internal table looping construct.

The system field SY-DBCNT is set to the number of rows fetched or the pass number of the SELECT…ENDSELECT
loop. The system field SY-SUBRC is set to zero if a row is fetched and is set to non-zero, if a row cannot be fetched.

SELECT SINGLE with/without WHERE condition
To retrieve a single row from a database table or database view or projection view, you use:

SELECT SINGLE <result>
FROM <source>
INTO [CORRESPONDING FIELDS OF] <destination>
[WHERE <condition>].

This is not a looping construct – no ENDSELECT. The meaning of <result>, <source>, <destination>, etc., are
the same as explained in the preceding syntax. The statement will fetch the first row in the table or view fulfilling the
WHERE condition if there is a WHERE condition, else it fetches the first row.

Though the WHERE condition is optional, in practical terms it could be mandatory.
If a row is fetched, the system field SY-SUBRC is set to zero or else to non-zero. The system field SY-DBCNT is set

to 1 if SY-SUBRC = 0.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

394

SELECT… INTO TABLE
To fetch data from a database table or database view or projection view into an internal table, you use the
following syntax:

SELECT <result> FROM <source>
INTO [CORRESPONDING FIELDS OF] TABLE <itab>
[WHERE <condition>]
[ORDER BY <sort specification>]
[UP TO <no of rows> ROWS].

<itab> is the specification for the internal table; other clauses have the same meaning as in earlier syntaxes. There
is no ENDSELECT statement; there is no repetitive, looping process, and data is fetched into the internal table at one
go. This is the preferred way of data retrieval in the client server environment.

The system field SY-DBCNT is set to the number of rows fetched. The system field SY-SUBRC is set to zero if a
row/rows is fetched, or else it is set to non-zero.

Hands-On Exercise – INTO TABLE… PACKAGE SIZE…
If the number of rows being fetched into an internal table is very high, there is a pressure on the application server
of RAM usage. Then, instead of loading the internal table fully, it can be loaded partially in batches of a specified
number of rows. The fetched rows are processed and the next batch of rows fetched into the internal table replacing
the preceding batch. This process of fetching and processing goes on until all rows are processed. This is a looping
process and hence the ENDSELECT statement. The syntax:

SELECT <result> FROM <source>
INTO [CORRESPONDING FIELDS OF] TABLE <itab>
PACKAGE SIZE <no of rows in batch> [WHERE <condition>]
[ORDER BY <sort specification>]
[UP TO <no of rows> ROWS].
………
ENDSELECT.

PACKAGE SIZE is the key phrase to provide the batch size in number of rows.
<no of rows in batch> can be literal or variable to specify the number of rows in the batch.
Other clauses carry the same meaning as in the earlier syntaxes.
As a hands-on to fetch, process data with this syntax, you output customer list, fetching the data in batches, batch

size, or package size input through the PARAMETERS statement. The source program:

REPORT YCL_CH08_02_PSIZE_INTO_TAB NO STANDARD PAGE HEADING
 LINE-SIZE 95 LINE-COUNT 60.

* Fetch Data From Database Table In Batches INTO TABLE **

**
* if no of rows/data is very large exerting pressure**
* on RAM usage, then in this scenario data can be **
* fetched in batches of smaller size. **
* **

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

395

* in the present scenario, you are fetching data in **
* batches of 1000 rows at a time. this batch size **
* can be specified with the phrase PACKAGE SIZE & a **
* literal/variable. **
* **
* every time batch of rows is fetched, existing data**
* in the internal table is overwritten/deleted. **
* **
* at any instant only one batch of data/rows is **
* existing in the internal table. **
* **
* you are using an INCLUDE program **
* YCL_CH08_01_INCLUDE_HEADING for non standard **
* header. you are using this same INCLUDE program **
* for the hands-on YCL_CH08_03_PSIZE_APPEND_TAB **
**
**
* declare data. input PACKAGE SIZE thru PARAMETERS **
* INCLUDE program for heading **
* **
* retrieve a batch of rows with SELECT...PACKAGE **
* SIZE...etc. **
* output retrieved batch LOOP AT...WRITE...ENDLOOP **
* ENDSELECT. **
**

DATA: CUSTOMER_TAB TYPE STANDARD TABLE OF YCL_CH05_CUST_STRU
 WITH HEADER LINE,
 CNTR(3) TYPE P DECIMALS 0,
 CDATE TYPE STRING.

PARAMETERS: PKSZ(4) TYPE N DEFAULT 1000.
**
INCLUDE YCL_CH08_01_INCLUDE_HEADING. " INCLUDE program for heading

START-OF-SELECTION.

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4)
 INTO CDATE SEPARATED BY '/'.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 INTO
 TABLE CUSTOMER_TAB PACKAGE SIZE PKSZ.

 LOOP AT CUSTOMER_TAB. " output fetched batch
 CNTR = CNTR + 1. " cannot use SY-TABIX for serial number

 WRITE:/5(5) CNTR, CUSTOMER_TAB-KUNNR USING NO EDIT MASK,
 CUSTOMER_TAB-NAME1, CUSTOMER_TAB-ORT01.
 ENDLOOP.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

396

 SKIP 2. " gap between batches of data

ENDSELECT.

You are using INCLUDE program YCL_CH08_01_INCLUDE_HEADING to output the heading for the customer
list. You are also using this same INCLUDE program to output the header for the next hands-on exercise:
YCL_CH08_03_PSIZE_APPEND_TAB.

This INCLUDE program contains the TOP-OF-PAGE event along with the other code lines to output the header.
Notice the position of the INCLUDE statement in the program YCL_CH08_03_PSIZE_INTO_TAB. Reusability – that is,
modularization techniques, has been employed.

The source lines of INCLUDE program YCL_CH08_01_INCLUDE_HEADING:

**
* INCLUDE program for heading of customer list **
* used by programs: - YCL_CH08_02.. **
* YCL_CH08_03.. **
**

TOP-OF-PAGE.

WRITE:/5 TEXT-001, CDATE, 92(3) SY-PAGNO.
WRITE:/5(89) SY-ULINE.
WRITE:/5 TEXT-002, 11 TEXT-003, 22 TEXT-004, 58 TEXT-005.
WRITE:/6 TEXT-006, 13 TEXT-007.
WRITE:/5(89) SY-ULINE.
**

A screenshot of the text symbols is shown in Figure 8-2.

Figure 8-2. Program: YCL_CH08_02_PSIZE_INTO_TAB – Text Symbol

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

397

The output will be like Figure 8-3.

Figure 8-3. Program: YCL_CH08_02_PSIZE_INTO_TAB – Output

Hands-On Exercise – APPENDING TABLE… PACKAGE SIZE…
If the number of rows being fetched into an internal table is very high and clogging the network and database server
and there no application server RAM issues, then, instead of loading the internal table fully at one go, it can be loaded
in increments of batches of a specified number of rows. When the internal table has been fully loaded, it can be
processed. The process of loading the internal table with an incremental number of rows is again a looping process
and hence the ENDSELECT statement. The syntax:

SELECT <result> FROM <source>
APPENDING [CORRESPONDING FIELDS OF] TABLE <itab>
PACKAGE SIZE <no of rows in batch>
[WHERE <condition>]
[ORDER BY <sort specification>]
[UP TO <no of rows> ROWS].
………
ENDSELECT.

The only difference between the preceding syntax and the current one are the keywords: INTO and APPENDING.
The preceding syntax was using INTO TABLE.

When the keyword INTO is used as in the preceding example, data was fetched in batches of a specified number
of rows, and the current batch wiped or deleted the existing data in the internal table.

When the keyword APPENDING is used, data is fetched in batches of a specified number of rows, and the current
batch is appended to the already existing data in the internal table in the case of a standard table. In case of sorted and
hashed tables, the current batch of rows insert to the existing data in the internal table.

In all other situations, clauses remain the same for the two syntaxes.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

398

As a hands-on exercise using this syntax to fetch in batches and build the internal table, then process the internal
table, you output again the customer list, batch size, or package size input through the PARAMETERS statement. The
source program:

REPORT YCL_CH08_03_PSIZE_APPEND_TAB NO STANDARD PAGE HEADING
 LINE-SIZE 95 LINE-COUNT 60.

**
* Fetch Data From Database Table In Batches APPENDING TABLE **
**

**
* if no of rows/data is very large putting pressure on network, **
* then in this scenario data can be fetched in batches of **
* smaller size & appended to the internal table. in the present **
* scenario,you are fetching data in batches of 1000 rows at a **
* time. this batch size can be specified with the phrase PACKAGE**
* SIZE & a literal/variable. every time batch of rows is **
* fetched, existing data in the internal table is appended to. **
* at the end of SELECT...ENDSELECT loop, internal table **
* contains all the fetched rows of all the batches. **
**
**
* declare data. input PACKAGE SIZE thru PARAMETERS **
* INCLUDE program for heading **
* **
* retrieve a batch of rows with SELECT...PACKAGE **
* SIZE...etc. append to existing data ENDSELECT. **
* **
* output retrieved batch LOOP AT...WRITE...ENDLOOP **
**

DATA: CUSTOMER_TAB TYPE STANDARD TABLE OF YCL_CH05_CUST_STRU
 WITH HEADER LINE,
 CNTR(3) TYPE P DECIMALS 0,
 CDATE TYPE STRING.

PARAMETERS: PKSZ(4) TYPE N DEFAULT 1000.
**
INCLUDE YCL_CH08_01_INCLUDE_HEADING. " heading

START-OF-SELECTION.

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4)
 INTO CDATE SEPARATED BY '/'.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1 APPENDING
 TABLE CUSTOMER_TAB PACKAGE SIZE PKSZ.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

399

ENDSELECT.

LOOP AT CUSTOMER_TAB.

 WRITE:/5(5) SY-TABIX, CUSTOMER_TAB-KUNNR USING NO EDIT MASK,
 CUSTOMER_TAB-NAME1, CUSTOMER_TAB-ORT01.

 CNTR = SY-TABIX MOD PKSZ.

 IF CNTR = 0.
 SKIP 2. " gap between batches
 ENDIF.

ENDLOOP.

The output should look like Figure 8-4.

Figure 8-4. Program: YCL_CH08_03_PSIZE_APPEND_TAB – Output

Hands-On Exercise – SELECT DISTINCT…
To retrieve distinct or unique values for field/s, you use the Open SQL SELECT DISTINCT… statement.

The syntax:

SELECT DISTINCT <result> FROM <source>
{INTO|APPENDING} [CORRESPONDING FIELDS OF] <destination>
[PACKAGE SIZE <no of rows in batch>]
[WHERE <where condition>]
[ORDER BY <sort specification>]
[UP TO <no of rows> ROWS].

 ………
[ENDSELECT].

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

400

Apart from DISTINCT, all the other clauses have been explained and have the same meaning as in earlier
syntaxes. The ENDSELECT has been indicated as optional, depending on the <destination>. If the <destination> is a
structure or individual fields, it will be a looping construct with ENDSELECT. If the destination is an internal table and
PACKAGE SIZE is used, again it will be a looping construct with ENDSELECT. If the destination is an internal table
without the addition of PACKAGE SIZE, then it is case of retrieving data at one go, and there will be no ENDSELECT.

As a hands-on exercise, you are repeating the Chapter 6 internal table hands-on exercise: YCL_CH06_ITAB10.
This hands-on exercise listed out the customers with billing documents of a given company code. Your basic source
of data was the table VBRK, and there were two issues you faced then: the table VBRK could contain multiple entries
for a customer, and the table VBRK does not contain the customer name and city that you wanted in the output.
You addressed these issues by creating a database view with tables VBRK and KNA1 (to incorporate the customer
name and city) loading an internal table with data from this view and using the internal table statement DELETE
ADJACENT DUPLICATES…. Before issuing the DELETE ADJACENT DUPLICATES… statement, the internal table
was sorted in ascending order of the field KUNNR. (Internal table has to be sorted in ascending order of the fields for
which duplicates are to be eliminated.) This statement deleted multiple entries in the internal table for a value of field
KUNNR, reducing them to one row for every value of KUNNR.

For the current hands-on exercise, you are using the same database view of Chapter 6. You are using the
SELECT DISTINCT… statement to fetch distinct values of fields KUNNR, NAME1, and ORT01.

Copy the text symbols from program YCL_CH06_ITAB10 (transaction code SE32, etc.) to output the header.
The source program:

REPORT YCL_CH08_04_SELECT_DISTINCT LINE-SIZE 95 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

**
* SELECT DISTINCT - List Billed Customers **
* of a Specified Company Code **
**

**
* if rows with unique/distinct field values are to be **
* fetched, then you can use the SELECT DISTINCT SQL **
* statement variation. **
* **
* in this hands-on, you have generated the same output**
* as in program YCL_CH06_ITAB10: list of customers **
* with billing documents. **
* **
* a customer may have multiple billing documents. **
* you were using the internal table statement **
* DELETE ADJACENT DUPLICATES...to reduce multiple **
* occurrences of a customer code value KUNNR to a **
* single occurrence. your source data was a database **
* view with tables KNA1 & VBRK. **
* **
* you are using the same view, using a SELECT DISTINCT**
* statement to generate a customer list with billing **
* documents. **
**
**
* declare data. input company code. retrieve company **
* code name. (SELECT SINGLE etc.) for heading **
* **

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

401

* use SELECT DISTINCT...to retrieve data from view **
* into internal table. sort internal table. output **
* from internal table: LOOP AT...ENDLOOP. **
**

TYPES: BEGIN OF CUSTOMERS_STRU_TYPE,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 ORT01 TYPE KNA1-ORT01,
 END OF CUSTOMERS_STRU_TYPE.

DATA: CUSTOMERS_TAB TYPE STANDARD TABLE OF CUSTOMERS_STRU_TYPE,
 CUSTOMERS_STRU TYPE CUSTOMERS_STRU_TYPE,
 BUTXT TYPE T001-BUTXT.

PARAMETERS CCODE TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.
**
TOP-OF-PAGE.

WRITE:/5 TEXT-001 NO-GAP, CCODE NO-GAP, '/' NO-GAP, BUTXT, 92(2) SY-PAGNO.
WRITE:/5(88) SY-ULINE.
WRITE:/5 TEXT-002, 11 TEXT-003, 22 TEXT-004, 58 TEXT-005.
WRITE:/6 TEXT-006, 13 TEXT-007.
WRITE:/5(88) SY-ULINE.
**
START-OF-SELECTION.

SELECT SINGLE BUTXT FROM T001 INTO (BUTXT) WHERE BUKRS = CCODE.

SELECT DISTINCT KUNNR NAME1 ORT01 FROM YCL_CH05_VBRKKNA
 INTO TABLE CUSTOMERS_TAB
 WHERE BUKRS = CCODE.

SORT CUSTOMERS_TAB BY KUNNR.

LOOP AT CUSTOMERS_TAB INTO CUSTOMERS_STRU.

 WRITE:/5(4) SY-TABIX, CUSTOMERS_STRU-KUNNR USING NO EDIT MASK,
 CUSTOMERS_STRU-NAME1, CUSTOMERS_STRU-ORT01.

ENDLOOP.

The output will appear like Figure 8-5.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

402

Hands-On Exercise – Aggregate Functions
One-level summarized data can be produced by using aggregate functions of the Open SQL SELECT statement.

The Open SQL aggregate functions do not support expressions. You cannot write SUM(NETWR * KURRF) that
is, the sum of the amount in document currency multiplied by the exchange rate). Practically speaking, the Open
SQL aggregate feature cannot be used for amount summarizations. Alternatively, you can write to an intermediate
database table, for the result of amount multiplied by the exchange rate and use this intermediate table in an Open
SQL statement with aggregate functions for amount fields like NETWR.

The aggregate functions, though, can be used for quantity fields. You are assured that materials are sold in one
specific unit of measure for a material code and purchased in another specific unit of measure for a material code for
a plant.

The syntax:

SELECT <group by fields> <aggregate function>([DISTINCT]<field>) as <alias1> <aggregate function>
([DISTINCT]<field>) as <alias2>……….
{INTO|APPENDING} <destination> [UP TO <no of rows.]
[WHERE <where condition>]
GROUP BY <group by fields>
[HAVING <having condition>]
[ORDER BY <sort specification>].
………
[ENDSELECT].

<group by fields>: The summarizing fields.
<aggregate function>: The Open SQL supports the following aggregate functions:

SUM
Total for the <field>. This should be a numeric field. If the key word DISTINCT is used in the argument of the
aggregate function, only distinct values are considered for aggregate operation.

Figure 8-5. Program: YCL_CH08_04_SELECT_DISTINCT – Output

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

403

COUNT
Number of rows for the <field>. COUNT(*) returns number of rows for the selection. COUNT(DISTINCT <field>)
will return the number of rows for DISTINCT values of <field>.

MAX
Maximum value for the <field>. If the keyword DISTINCT is used in the argument of the aggregate function, only
distinct values are considered for aggregate operation.

MIN
Minimum value for the <field>. If the key word DISTINCT is used in the argument of the aggregate function, only
distinct values are considered for aggregate operation.

AVG
Average for the <field>. This should be a numeric field. If the keyword DISTINCT is used in the argument of the
aggregate function, and only distinct values are considered for aggregate operation.

<alias1>: The aggregate values returned have to be loaded into a structure or table or individual fields.
(INTO/APPENDING <destination>….) Through the <alias1>, <alias2>.., you are assigning names to the returned
aggregate values to enable them to be loaded into the destination.

<having condition>: The conditions operating on aggregate functions.
The other clauses carry the same meaning as in earlier syntaxes. The ENDSELECT has been indicated as optional

and will depend on the <destination> and presence/absence of the clause PACKAGE SIZE.
The current hand-on exercise is a summarization of material wise quantities sold. Your basic Source of data is the

table VBRP (Billing Document – Items). For material descriptions, you need to access table MAKT. So you are using
the view YCL_CH08_VBRP_MK created with the tables VBRP and MAKT. The output layout:

Table 8-2. Program: YCL_CH08_05_AGGREGATE_FUNC – Output Layout

Field Description Column Positions

SY-DBCNT Serial Number 005-008 (4)

MATNR Material Code 010-027(18)

MAKTX Material Description 029-068(40)

VRKME Unit of Measure 070-072(3)

COUNT(*) Count of Sales 074-078(5)

SUM(FKIMG) Sum of Quantity Sold 080-091(12)

MAX(FKIMG) Maximum of Quantity Sold 093-104(12)

MIN(FKIMG) Minimum of Quantity Sold 106-117(12)

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

404

The source program:

REPORT YCL_CH08_05_AGGREGATE_FUNC NO STANDARD PAGE HEADING
 LINE-SIZE 120 LINE-COUNT 60.

**
* SELECT Statement with Aggregate Functions **
**
**
* SELECT statement aggregate functions to get summarized **
* data. **
* **
* a clarification:- the open sql aggregte functions do **
* not support expressions. you cannot write **

Figure 8-7. Database View: YCL_CH08_VBRP_MK – View Fields

Figure 8-8. Database View: YCL_CH08_VBRP_MK – Selection Conditions

Figure 8-6. Database View: YCL_CH08_VBRP_MK – Tables and Join Conditions

The database view YCL_CH08_VBRP_MK will appear like Figures 8-6 to 8-8.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

405

* SUM(NETWR * KURRF) i.e. sum of **
* (amount in document currency multiplied by exchange rate) **
* **
* practically speaking, the open sql aggregate feature **
* cannot be used for amount summarization. unless you write **
* to an intermediate database table the result of amount **
* multiplied by the exchange rate and use this intermediate **
* table in open sql statement with aggregate functions for **
* amount fields like NETWR. **
* **
* the aggregate functions though can be used for quantity **
* fields. because you are assured that quantities are mostly**
* sold in one specific unit of measure for a material code, **
* purchased in another specific unit of measure for a **
* material code. (of specific organizational unit) **
* **
* the current hand-on, is summarization of material wise **
* quantities sold **
* your basic Source of data is the table VBRP. for material **
* description, you need to access table MAKT. so you are **
* usimg the view YCL_CH08_VBRP_MK created with the tables **
* VBRP, MAKT. **
**
**
* declare data. code for heading. **
* use SELECT statement with aggregate functions SUM(), **
* MAX(), MIN(), COUNT(*) to retrieve and store for a **
* material code total quantity sold, maximum quantity sold **
* at a time, minimum sold at a time, number of times sold. **
* output the retrieved data. ENDSELECT. **
**

DATA: BEGIN OF SALES_STRU,
 MATNR TYPE MATNR,
 MAKTX TYPE MAKTX,
 VRKME TYPE VRKME,
 CONT TYPE I,
 TOTAL TYPE FKIMG,
 MAX TYPE FKIMG,
 MIN TYPE FKIMG,
 END OF SALES_STRU.

TOP-OF-PAGE.
WRITE:/5 TEXT-001, 115(3) SY-PAGNO.
SKIP 1.
WRITE:/5(112) SY-ULINE.
WRITE:/5 TEXT-002, 10 TEXT-003, 30 TEXT-004,
 70 TEXT-005, 74 TEXT-006, 82 TEXT-007,
 96 TEXT-008, 109 TEXT-009.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

406

WRITE:/6 TEXT-010.

WRITE:/5(112) SY-ULINE.

START-OF-SELECTION.

SELECT MATNR MAKTX VRKME COUNT(*) AS CONT SUM(FKIMG) AS TOTAL
 MAX(FKIMG) AS MAX MIN(FKIMG) AS MIN FROM YCL_CH08_VBRP_MK
 INTO SALES_STRU
 GROUP BY MATNR MAKTX VRKME HAVING SUM(FKIMG) <> 0
 ORDER BY MATNR .

 WRITE:/5(4) SY-DBCNT, SALES_STRU-MATNR USING NO EDIT MASK,
 SALES_STRU-MAKTX, SALES_STRU-VRKME, (5) SALES_STRU-CONT,
 (12) SALES_STRU-TOTAL, (12) SALES_STRU-MAX, (12) SALES_STRU-MIN.

ENDSELECT.

The output will be like Figure 8-9.

Figure 8-9. Program: YCL_CH08_05_AGGREGATE_FUNC – Output

In this program, you have assigned the aggregates aliases (AS …) and the Open SQL destination is a structure. You
wanted the unit of measure field VRKME in the output. So you had to include it perforce in the GROUP BY fields.

You output this list for a specified company code. You will be producing this kind of lists plant wise (i.e., field
WERKS). A plant within a company code will be producing specified products or product lines. You are not producing
a report for a specified plant. In the training paradigm, you can be absolved of this.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

407

In the E-Resource, there are two more variations of this program using aggregate functions of SELECT statement.
They are:

YCL_CH08_06_AGGREGATE_FUNC_VR1

YCL_CH08_07_AGGREGATE_FUNC_VR2

In the first program YCL_CH08_06_AGGREGATE_FUNC_VR1, the destination in SELECT statement is specified
as individual fields. No aliases are required, and so no aliases are assigned.

In the second program YCL_CH08_07_AGGREGATE_FUNC_VR2, the destination in SELECT statement is
specified as an internal table with a PACKAGE SIZE addition, just to demonstrate that the addition PACKAGE SIZE
can be used in an aggregate function SELECT statement. No aliases are required, and so no aliases are assigned.

All the three programs:

YCL_CH08_05_AGGREGATE_FUNC

YCL_CH08_06_AGGREGATE_FUNC_VR1

YCL_CH08_07_AGGREGATE_FUNC_VR2

Produce the same output.

SELECT Statement Using More Than One Table or View – Joins
You have used a single database table or database view in the SELECT statements until now. You can code SELECT
statement using more than one table or can view it by employing the inner and left outer join.

The DDIC database views implement inner join. So instead of writing an Open SQL statement implementing
inner join, a better option is to create a DDIC database view with the reusability advantage and avoidance of coding.
This is true if you want only database tables to participate in the inner join. But if you want database views and
projection views to participate in the inner join, you have to write a SELECT statement for inner join. In the DDIC
database and projection views, the source of data can only be tables. Syntax: the syntax for joins given below is only
for the join part of the SELECT statement. Other clauses such as destination and the WHERE condition, etc., are
implicit.

The syntax for inner and left outer joins:

<source left> [AS <alias left>]
{ [INNER] JOIN } |{ LEFT [OUTER] JOIN }
{<source right> [AS <alias right>] ON <join condition}

INNER JOIN, JOIN is synonymous.
LEFT OUTER JOIN, LEFT JOIN is synonymous.
Since you are fetching and comparing fields from multiple sources, (tables and views), the fields have to be

referred with source qualification in the SELECT statement. You will refer to field KUNNR as KNA1~KUNNR. You
use the tilde character (~) to associate a field with its origin or source just like you were using the hyphen/dash (-)
character to associate a field with a structure.

You can assign aliases to the source (tables and views). You should then refer to the sources by aliases only.
Join Operation: Firstly, a recapitulation of inner join and a bare definition of left outer join are in place.
Let there be a simple scenario with the very familiar tables. Let the SELECT inner and outer joins be implemented

with fields from tables KNA1 and VBRK (customer primary and billing document header). The two tables are joined
through foreign key relationship fields: MANDT, KUNNR from KNA1 and MANDT, and KUNAG from VBRK.

If you have inner join of these tables, a row must exist in both the tables for it to appear in the result. If you
assume that there is no billing document without a valid customer code (no orphan rows), all the rows from the table
VBRK will appear in the result. Or all the customers having billing documents will appear in the result, and a customer

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

408

having multiple billing documents will have that many rows in the result. But customers having no billing documents
will not appear in the result.

When you have left outer join of these tables, with the primary table KNA1 on the left side of the join, a row
existing in either of the tables will appear in the result. If you assume that there is no billing document without a valid
customer code (no orphan rows), all the rows from the table VBRK plus the customers having no billing documents
will appear in the result. A customer having multiple billing documents will have that many rows in the result. For
customers having no billing documents in the result, the fields from the table VBRK will contain INITIAL values
(blanks, zeros, etc.).

You will use the same data sources for your two hands-on inner join and left outer join. You can then compare results.

Hands-On Exercise – Inner Join
The first of the hands-on exercise is on inner join. You are deliberately using a database view as the left source instead
of the table KNA1 to demonstrate the usage of database view in join SELECT statement. The database view you
created in Chapter 5 contains your frequently used fields from table KNA1 and country text – field LANDX from the
table T005T. The view name is YCL_CH05_KNAT5T. The right source is the table VBRK.

You input the customer code in both of the hands-on exercises for inner join and left outer join. You are fetching
customer codes less than or equal to this value. This is to limit the output as to be able to compare results of inner join
and left outer join more easily.

The output layout:

Table 8-3. Program: YCL_CH08_09_INNER_JOIN – Output Layout

Field Name Description Column Positions

SY=TABIX Serial Number 005-009(5)

KUNNR Customer Code 011-020(10)

NAME1 Customer Name 022-056(35)

LANDX Country 058-072(15)

VBELN Billing Document Number 074-083(10)

FKDAT Billing Document Date 085-094(10)

You have the same output layout for the hands-on exercise of inner join and left outer join. So you have a
common INCLUDE program to output the list headers.

INCLUDE program source code: (YCL_CH08_08_HEADER_JOINS)

TOP-OF-PAGE.
WRITE: /5 TEXT-001, TEXT-010, 93(3) SY-PAGNO.

WRITE:/5(90) SY-ULINE.
WRITE:/5 TEXT-002, 12 TEXT-003, 24 TEXT-004, 59 TEXT-005,
 74 TEXT-006, 85 TEXT-007.
WRITE:/6 TEXT-008, 13 TEXT-009.

WRITE:/5(90) SY-ULINE.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

409

The main program source code:

REPORT YCL_CH08_09_INNER_JOIN NO STANDARD PAGE HEADING
 LINE-SIZE 100 LINE-COUNT 60.

**
* INNER JOIN With Customer Primary Data & Billing Docs. **
**

* declare TYPES, DATA **
* input customer code - PARAMETERS **
* **
* INCLUDE heading **
* **
* SELECT statement using INNER JOIN **
* into internal table for customer **
* less than or equal to input **
* customer **
* **
* sort internal table on KUNNR **
* **
* output from internal table **

TYPES: BEGIN OF CUST_BILLS_TYPE,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 LANDX TYPE T005T-LANDX,
 VBELN TYPE VBRK-VBELN,
 FKDAT TYPE VBRK-FKDAT,
 END OF CUST_BILLS_TYPE.

DATA: CUST_BILLS TYPE STANDARD TABLE OF CUST_BILLS_TYPE
 WITH HEADER LINE.

PARAMETERS: CUST_CD TYPE VBRK-KUNAG VALUE CHECK
 DEFAULT '0000001000'.

INCLUDE YCL_CH08_08_HEADER_JOINS.

START-OF-SELECTION.

SELECT VW~KUNNR VW~NAME1 VW~LANDX TB~VBELN TB~FKDAT
 INTO CORRESPONDING FIELDS OF TABLE CUST_BILLS
 FROM (YCL_CH05_KNAT5T AS VW
 INNER JOIN VBRK AS TB ON VW~MANDT = TB~MANDT
 AND VW~KUNNR = TB~KUNAG)
 WHERE VW~KUNNR <= CUST_CD.

SORT CUST_BILLS BY KUNNR.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

410

LOOP AT CUST_BILLS.
 WRITE:/5(5) SY-TABIX, CUST_BILLS-KUNNR USING NO EDIT MASK,
 CUST_BILLS-NAME1, CUST_BILLS-LANDX, CUST_BILLS-VBELN,
 CUST_BILLS-FKDAT.
ENDLOOP.

The text symbols for the heading are shown in Figure 8-10.

Figure 8-10. Program: YCL_CH08_09_INNER_JOIN – Text Symbols

The output will appear like Figure 8-11.

Figure 8-11. Program: YCL_CH08_09_INNER_JOIN – Output

For KUNNR <= ‘0000001000’, 36 rows have appeared in the output as shown in Figure 8-11.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

411

Hands-On Exercise – Outer Join
You will use the same source of data as for the inner join: database view YCL_CH05_KNAT5T and database table
VBRK. You will output the same fields, so the output layout of Table 8-3 can be adopted.

In the inner join program, you sorted the internal table before output. In the result of the outer join, the rows
existing in both the sources will appear first followed by the rows in the left side source having no corresponding
rows in the right side source (i.e., customers having billing documents first), followed by customers having no billing
documents. In this hands-on exercise, you are not sorting the data generated by the outer join statement. So your
output will, first, have all the rows with billing documents, followed by the rows having no billing documents. The
fields VBELN and FKDAT in the rows having no billing documents will contain INITIAL values. This is reflected in the
output.

The source code:

REPORT YCL_CH08_10_OUTER_JOIN NO STANDARD PAGE HEADING
 LINE-SIZE 100 LINE-COUNT 60.

**
* OUTER JOIN With Customer Primary Data & Billing Docs. **
**

* declare TYPES, DATA **
* input customer code - PARAMETERS **
* **
* INCLUDE heading **
* **
* SELECT statement using OUTER JOIN **
* into internal table for customer **
* less than or equal to input **
* customer **
* **
* sort internal table on KUNNR **
* **
* output from internal table **

TYPES: BEGIN OF CUST_BILLS_TYPE,
 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 LANDX TYPE T005T-LANDX,
 VBELN TYPE VBRK-VBELN,
 FKDAT TYPE VBRK-FKDAT,
 END OF CUST_BILLS_TYPE.

DATA: CUST_BILLS TYPE STANDARD TABLE OF CUST_BILLS_TYPE
 WITH HEADER LINE.

PARAMETERS: CUST_CD TYPE VBRK-KUNAG VALUE CHECK
 DEFAULT '0000001000'.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

412

INCLUDE YCL_CH08_08_HEADER_JOINS.

START-OF-SELECTION.

SELECT VW~KUNNR VW~NAME1 VW~LANDX TB~VBELN TB~FKDAT
 INTO CORRESPONDING FIELDS OF TABLE CUST_BILLS
 FROM (YCL_CH05_KNAT5T AS VW
 LEFT OUTER JOIN VBRK AS TB ON VW~MANDT = TB~MANDT
 AND VW~KUNNR = TB~KUNAG)
 WHERE VW~KUNNR <= CUST_CD.

*SORT CUST_BILLS BY KUNNR.

LOOP AT CUST_BILLS.
 WRITE:/5(5) SY-TABIX, CUST_BILLS-KUNNR USING NO EDIT MASK,
 CUST_BILLS-NAME1, CUST_BILLS-LANDX, CUST_BILLS-VBELN,
 CUST_BILLS-FKDAT.
ENDLOOP.

The text symbols:

Figure 8-12. Program: YCL_CH08_10_OUTER_JOIN – Text Symbols

The output will appear like Figure 8-13.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

413

The row highlighted in black (serial number 36) is the last row that has a row existing in the left side source as
well as the right side source. From the next row onward until the end (serial no 112), rows of the left side source do not
have any corresponding rows in the right side source. The fields VBELN and FKDAT have INITIAL values reflected in
the output in Figures 8-13 and 8-14.

Figure 8-13. Program: YCL_CH08_10_OUTER_JOIN – Output

Figure 8-14. Program: YCL_CH08_10_OUTER_JOIN – End of Output

Hands-On Exercise – Subquery
You can specify a SELECT statement in the WHERE and HAVING clauses (SELECT within a SELECT), called
subqueries.

The subquery cannot have INTO and ORDER BY clauses. You can nest subqueries. The subquery cannot be given
in the ON <condition> of join clause. Subqueries can be scalar or non-scalar. Scalar subqueries will have only one
field or aggregate function in the subquery SELECT statement.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

414

A scalar subquery can return either one row or multiple rows. If a scalar subquery returns a single row (maybe
with SELECT SINGLE), it must have the following comparison syntax:

... <source field> <operator> <sub-query> ...

If a scalar subquery returns multiple rows, it must have the following comparison syntax:

... <source field> <operator> ALL|ANY|SOME <sub-query> ...

If you use the ALL prefix, the condition is true only if the comparison is true for all the rows in the subquery. If
you use ANY or SOME prefix, the condition is true only if the comparison is true for at least one row of the subquery.
The equality operator (=or EQ) in conjunction with ANY or SOME has the same effect as the IN operator for checking
a value.

You are demonstrating a simple scalar subquery. You have a scenario where you need to output billing
documents data for customers of a specified city. So your SELECT statement involving the database tables VBRK,
KNA1 would be like this:

SELECT VBELN FKDAT KUNAG WAERK NETWR FROM VBRK
INTO TABLE BILLS_TAB
WHERE KUNAG IN (SELECT KUNNR FROM KNA1 WHERE ORT01 = 'Berlin').

This will return all billing document rows from VBRK for customer codes having ORT01 value = ‘Berlin’ in the
table KNA1.

The program source code:

REPORT YCL_CH08_11_SUBQUERY NO STANDARD PAGE HEADING
 LINE-SIZE 90 LINE-COUNT 60.

**
* SELECT statement in WHERE condition: Sub-query **
**

* declare data. input city. **
* code heading **
* **
* load internal table from table **
* VBRK using sub-query in SELECT **
* statement. **
* **
* sort internal table by VBELN **
* output from internal table **

DATA: BEGIN OF BILL_STRU,

 VBELN TYPE VBRK-VBELN,
 FKDAT TYPE VBRK-FKDAT,
 KUNAG TYPE VBRK-KUNAG,
 WAERK TYPE VBRK-WAERK,
 NETWR TYPE VBRK-NETWR,
 END OF BILL_STRU,

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

415

 BILL_TAB LIKE STANDARD TABLE OF BILL_STRU.

PARAMETERS: ORT01 TYPE ORT01_GP LOWER CASE " reference to data element
 DEFAULT 'Berlin'.
**
* try: Frankfurt, Hamburg, Bonn, San Francisco, NEW YORK etc. **
* note the case sensitivity of field ORT01 **
**
TOP-OF-PAGE.

WRITE: /5 TEXT-001, ORT01, 66(3) SY-PAGNO.
SKIP.
WRITE:/5(63) SY-ULINE.
WRITE:/5 TEXT-002, 11 TEXT-003, 22 TEXT-004, 33 TEXT-005,
 56 TEXT-006, 64 TEXT-007.
WRITE:/6 TEXT-008, 34 TEXT-009.
WRITE:/5(63) SY-ULINE.
**

START-OF-SELECTION.

SELECT VBELN FKDAT KUNAG WAERK NETWR FROM VBRK INTO TABLE BILL_TAB
 WHERE KUNAG IN (SELECT KUNNR FROM KNA1 WHERE ORT01 = ORT01).

SORT BILL_TAB BY VBELN.

LOOP AT BILL_TAB INTO BILL_STRU.
 WRITE:/5(4) SY-TABIX, BILL_STRU-VBELN, BILL_STRU-FKDAT,
 BILL_STRU-KUNAG USING NO EDIT MASK,
 BILL_STRU-NETWR, BILL_STRU-WAERK.
ENDLOOP.

The text symbols used in the header are shown in Figure 8-15.

Figure 8-15. Program: YCL_CH08_11_SUBQUERY – Text Symbols

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

416

The Output is shown in Figure 8-16.

Figure 8-16. Program: YCL_CH08_11_SUBQUERY – Output

Tabular WHERE Condition
Consider the scenario: you have two internal tables, one designated as primary and the second one designated as
secondary. Into the primary internal table, you have retrieved data from a database table or view. Now you want to
retrieve into the secondary internal table only the data that is related to the data in the primary internal table.

Let this scenario be in terms of specific database tables. Suppose you have retrieved into the primary internal
table (named, say, PITAB) data from the database table VBRK (billing documents – header) for specific customer
codes. The primary internal table will contain data pertaining to some billing document numbers (document number
is part of the primary key in table VBRK). Now you want to retrieve data from the table VBRP (billing documents
– items) into the secondary internal table, belonging to or related to the billing document, a number rows in the
primary internal table (named, say, SITAB).

This is where the tabular WHERE condition comes in handy. The Tabular WHERE condition will be used for
retrieving data of the secondary internal table.

The syntax for a tabular condition:

SELECT ... FOR ALL ENTRIES IN <primary internal table> WHERE <condition>...

FOR ALL ENTRIES IN in a key phrase.
In your described scenario, this would be like:

SELECT ... FROM VBRP INTO TABLE SITAB FOR ALL ENTRIES IN PITAB
WHERE VBELN = PITAB-VBELN.

The semantics of this: retrieve rows from VBRP into SITAB only of VBELN values that are residing in the internal
table PITAB.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

417

The program source code:

REPORT YCL_CH08_12_TABULAR_CONDITION.

* Tabular WHERE Condition **

* try this with customer codes: 473, 401081 **
* **
* the following billing documents will be loaded **
* into primary internal table PITAB **
* **
* customer code billing document no. **
* (KUNAG) (VBELN) **
* **
* 473 0090026209 **
* 473 0090029855 **
* **
* 401081 0090032165 **
* **
* **
* corresponding to these three billing documents **
* the following materials/items will be loaded into **
* secondary internal table SITAB **
* **
* billing document no. material code **
* (VBELN) (MATNR) **
* **
* 0090026209 HT-1011 **
* 0090026209 HT-1010 **
* **
* 0090029855 HT-1011 **
* **
* 0090032165 HT-1040 **
* **
* **

* declare data. prompt input for two customers **
* **
* load primary internal table with billing documents **
* of the input customers **
* **
* load the secondary internal table with materials/ **
* items belonging to the billing documents in the **
* primary internal table with the tabular WHERE **
* condition **
* **
* output from primary, secondary internal tables **

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

418

DATA: BEGIN OF PITAB_STRU,
 VBELN TYPE VBELN_VF,
 FKDAT TYPE FKDAT,
 KUNAG TYPE KUNAG,
 NETWR TYPE NETWR,
 WAERK TYPE WAERK,
 END OF PITAB_STRU,
 PITAB LIKE STANDARD TABLE OF PITAB_STRU,
 BEGIN OF SITAB_STRU,
 VBELN TYPE VBELN_VF,
 MATNR TYPE MATNR,
 NETWR TYPE NETWR,
 END OF SITAB_STRU,
 SITAB LIKE STANDARD TABLE OF SITAB_STRU.
**
PARAMETERS: CUST_CD1 TYPE VBRK-KUNAG VALUE CHECK
 DEFAULT '473',
 CUST_CD2 TYPE VBRK-KUNAG VALUE CHECK
 DEFAULT '401081'.

*SELECT-OPTIONS CUST_CDS FOR PITAB_STRU-KUNAG.
**
START-OF-SELECTION.

SELECT VBELN FKDAT KUNAG NETWR WAERK FROM VBRK
 INTO TABLE PITAB WHERE KUNAG IN (CUST_CD1, CUST_CD2). " IN CUST_CDS

SELECT VBELN MATNR NETWR FROM VBRP
 INTO TABLE SITAB FOR ALL ENTRIES IN PITAB
 WHERE VBELN = PITAB-VBELN. " tabular condition

LOOP AT PITAB INTO PITAB_STRU.
 WRITE:/5(4) SY-TABIX, PITAB_STRU-KUNAG, PITAB_STRU-VBELN.
ENDLOOP.

SKIP 2.

LOOP AT SITAB INTO SITAB_STRU.
 WRITE:/5(4) SY-TABIX, SITAB_STRU-VBELN, SITAB_STRU-MATNR.
ENDLOOP.

You have used the IN operator in the first SELECT statement. You could have used
WHERE KUNAG = CUST_CD1 OR KUNAG = CUST_CD2.

To enable an easy demonstration, a small amount of data has been identified and selected (i.e., two customers
having few billing documents): two billing documents for the first customer and one for the second, a total of three
billing documents (see the program comments).

The billing documents identified have few items: one billing document having two items and two other billing
documents having a single item – a total of four items.

You can check this data for tables VBRK and VBRP in the data browser SE16 transaction code. You can execute
the program with other customer codes and verify results.

The output is shown in Figure 8-17.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

419

ABAP FIELD-SYMBOLS
The ABAP FIELD-SYMBOLS, which will be referred as field symbols, is a digression from the coverage of SELECT
statement variants. The field symbols enable dynamic access of data objects. The field symbols have been part of
the ABAP procedure oriented language. RTTS – Run Time TYPE Services, a feature of ABAP OOP, enables creation
of runtime data objects or the dynamic data objects that are unlike the static data objects you were declaring with
keywords DATA, TABLES, etc. The combination of runtime data objects and field symbols take Open SQL data
retrieval to a different level as you will see in the forthcoming hands-on exercises.

Until now you were accessing data objects in a static manner by using the name of the data objects or fields.
The field symbols and ABAP OOP data references enable you to access data objects whose name, attributes
(TYPE, length, etc.) you know only at runtime.

The field symbols can be assigned to data objects. They serve as a kind of symbolic name for the data objects
assigned to them. When you use field symbols, the system works with the contents of the data object and not with the
contents of the field symbols.

ABAP OOP data references point to the data objects. To access the contents of a data object to which ABAP OOP
data reference is pointing, you must dereference it.

Field Symbol Declarations
The field symbols have to be declared before they are assigned to data objects. The field symbols are declared in the
following way:

FIELD-SYMBOLS: <FSYBOL1>, <FS>, <FSTRU>.

The FIELD-SYMBOLS is a keyword just like DATA, TYPES, etc. The name of field symbols starts with the less
than (<) character and ends with the greater than (>) character. The name space of field symbols is a maximum of 30
characters including the enclosing characters: <>. The usual naming conventions apply: name (after ‘<’) has to start
with an alphabet, and the rest of the characters can be alphanumeric with embedded underscores (_).

Figure 8-17. Program: YCL_CH08_12_TABULAR_CONDITION – Output

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

420

While declaring field symbols, you can specify the types, just like you did for the formal parameters of
subroutines.

You can, while declaring the field symbols, specify the ABAP predefined elementary types, local TYPES, global
TYPES (Type Groups and data elements), local data objects, global data objects, and system fields. Reference can
also be to the generic ABAP Types. A list of generic ABAP Types can be found in the online documentation with
the following navigation: ABAP - By Theme ➤ Built-In Types, Data Objects and Functions ➤ Built-In Data Types ➤
Generic ABAP Types. The keywords TYPE and LIKE can be used just like in the formal parameters of subroutines.

If you do not specify the type while declaring field symbols, the field symbols will assume the attributes of the
assigned data objects/TYPE during the assignment process to field symbols. You can also specify generic or partially
generic types for field symbols during their declaration. In this case, the exact or remaining attributes of the field
symbols will be inherited from data objects or TYPES to which Field Symbol is assigned.

Partial list of generic and partially generic type specifications during field symbols declaration:

Table 8-4. Declare field symbols – Generic, Partially Generic types: Partial List

Generic/Partially Generic Type Description

Unspecified/ TYPE ANY Any type of Data Object Can Be Assigned

TYPE C, N, P, X Any One of Them. The Length, Decimals If Any Are Inherited
From the Assigned Data Object

TYPE TABLE

TYPE STANDARD TABLE

Standard Internal Table Can Be Assigned

TYPE ANY TABLE Standard Table or Sorted Table or Indexed Table or Hashed Table
Can Be Assigned

TYPE INDEX TABLE Standard Table or Sorted Table Can Be Assigned

TYPE SORTED TABLE Sorted Table Can Be Assigned

TYPE HASHED TABLE Hashed Table Can Be Assigned

Field symbols declarations using generic or partially generic TYPES:

FIELD-SYMBOLS: <ANY1> TYPE ANY,
 <ANY2>,
 <ELEM1> TYPE C,
 <ELEM2> TYPE P,
 <STABL> TYPE TABLE,
 <ATABL> TYPE ANY TABLE,
 <STAB> TYPE SORTED TABLE.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

421

Field symbols declaration using fully specified TYPES:

DATA: NAME(25) TYPE C,
 CURR_TAB TYPE STANDARD TABLE OF TCURT.

PARAMETERS DAY(9) TYPE C.

FIELD-SYMBOLS: <DATE> TYPE D,
 <INT4> TYPE I,
 <TYP1> TYPE KUNNR,
 <TYP2> TYPE VBRK-NETWR,
 <DOBJ1> LIKE NAME,
 <DOBJ2> LIKE DAY,
 <TLINE> LIKE LINE OF CURR_TAB.

Field Symbol Static Assignments
You can assign or reassign a field symbol to data objects. If the field symbol specified type does not match with the
assigned data object type, a syntax error or runtime error is triggered, depending on the assignment being done to a
static or dynamic data object.

If the assignment is successful, the system field SY-SUBRC is set to zero or else to non-zero.
Field symbol declarations, assignments:

DATA: CURR_TAB TYPE STANDARD TABLE OF TCURT
 WITH HEADER LINE.

FIELD-SYMBOLS: <ITAB> TYPE ANY TABLE,
 <TLINE> LIKE LINE OF CURR_TAB,
 <FIELD>.

Table 8-5. Declare field symbols – Specify types fully

Fully Specified TYPE Description

TYPE D, F, I, T Any One of Them

TYPE <type> Declaration In ABAP Program With TYPES

DDIC Type Group

DDIC Data Element

Other DDIC Global Data Objects: Table, Structure, Table/Structure Field

TYPE <data object> Internal, External, System, Special Data Object

TYPE REF TO Reference Variable, Referring To Class/Interface

TYPE /LIKE LINE OF Structure Of Internal Table

List of fully specified TYPE during Field Symbols Declaration:

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

422

ASSIGN: CURR_TAB[] TO <ITAB>,
 CURR_TAB TO <TLINE>,
 CURR_TAB-LTEXT TO <FIELD>

ASSIGN is the keyword to assign data objects to Field Symbols.
Following the keyword ASSIGN, you specify the name of the data object to be assigned and the keyword TO be

followed by the name of the field symbol to which you want to assign the data object.
In these code lines:
When you use <ITAB> or CURR_TAB[], you are accessing the same data object and the internal table CURR_TAB.
When you use <TLINE> or CURR_TAB, you are accessing the same structure data object CURR_TAB.
When you use <FIELD> or <TLINE>-LTEXT or CURR_TAB-LTEXT, you are accessing the same data object as the

field LTEXT of structure CURR_TAB.
You can use the offsets and lengths in case of TYPES C, D, N, and T.
You can also assign one field symbol to another.
In this example, the structure CURR_TAB declared with the keyword DATA is a static data object. If your structure

data object is not static (i.e., you do not know it till runtime), you can access its fields or components with another
variation of the ASSIGN statement.

ASSIGN COMPONENT <component number> OF STRUCTURE <structure name>
 TO <field symbol name>.

<component number> is the sequence number of the field in the structure. It can be either literal/variable.
<structure name> is the name of the structure or name of another Field Symbol assigned to a structure.
<field symbol name> is the field symbol to which assignment is being made.
In your preceding example, if you had written:

ASSIGN COMPONENT 4 OF STRUCTURE CURR_TAB TO <FIELD>.

It is equivalent to:

ASSIGN: CURR_TAB-LTEXT TO <FIELD>

The fourth field of structure CURR_TAB is LTEXT.
These are static assignments. The data object to which assignments are made is predetermined.

Field Symbol Hands-On Exercise
Let the field symbols be applied in a hands-on exercise. Until now, in the context of internal tables, you were always
retrieving a row of data from the internal table into a work area or header line (i.e., a structure and operating on the
contents of the structure like output, etc.). With the help of field symbols you can directly operate on the row in the
internal table without fetching it into a structure. The definition of a separate structure is uncalled for. Consider the
code lines:

DATA: CURR_TAB TYPE STANDARD TABLE OF TCURT.
FIELD-SYMBOLS: <ROW_POINTER> LIKE LINE OF CURR_TAB.
SELECT * FROM TCURT INTO TABLE CURR_TAB WHERE SPRAS = SY-LANGU.

LOOP AT CURR_TAB ASSIGNING <ROW_POINTER>.
 WRITE:/5(4) SY-TABIX, <ROW_POINTER>-WAERS, <ROW_POINTER>-LTEXT.
ENDLOOP.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

423

The LOOP...ENDLOOP construct is different from the ones you were using. In this construct, you are not fetching
a row from the internal table into the structure for each pass of the loop (there is no work area/header line declared).
Rather, the field symbol <ROW_POINTER> is accessing the contents of internal table’s first row directly during the first
pass of the loop, the contents of the second row during the second pass of the loop, and so on until all the rows have
been accessed. It is like during each pass of the loop, the corresponding row is the work area.

If you are processing very large volume of data with a LOOP…ENDLOOP construct, this is the preferred way of
doing it. It saves the overhead of moving data from the internal table into structure, resulting in reduced execution time.

A hands-on using this notation of LOOP…ENDLOOP will be performed using the data from the customer primary
table KNA1.

You will code two programs to provide a comparison of execution times. The two programs are identical except
for the LOOP…ENDLOOP construct. The first program YCL_CH08_13_CUST_LIST_WITHSTRU generates a customer
list with a LOOP AT…INTO…notation. The second program YCL_CH08_14_CUST_LIST_WOUTSTRU generates a
customer list with a LOOP AT ASSIGNING… notation.

A statement GET RUN TIME… is used to get the execution time in micro seconds in both the programs. The
statement is elaborated in the comment lines of the programs. The first program is not listed here, as its code is
obvious. It is available in E-Resource. The second program YCL_CH08_14_CUST_LIST_WOUTSTRU is listed here:

REPORT YCL_CH08_14_CUST_LIST_WOUTSTRU LINE-SIZE 140 LINE-COUNT 60
 NO STANDARD PAGE HEADING.

* List Customers - Use Field Symbol To Access Row Directly **
* No Work Area/Header Line **

**
* the GET RUN TIME statement is used to ascertain **
* the execution time for a program block in micro **
* seconds. the first time it is executed, it **
* assigns zero to the specified variable. from **
* the second and subsequent occurrences, it loads **
* /assigns cumulative elapsed time in micro **
* seconds. **
* **
* so you can determine the execution time of a **
* program block by subtracting the value assigned **
* at the beginning of programming block from the **
* value assigned at the end of the programming **
* block (difference) **
**

DATA: TIME_ELAPSED TYPE I VALUE 100,
 DATE_CHR(10) TYPE C.
DATA: CUSTOMERS_TAB LIKE STANDARD TABLE OF
 YCL_CH05_CUST_STRU.

FIELD-SYMBOLS: <FS1> LIKE LINE OF CUSTOMERS_TAB.
 " specifying TYPE/LIKE to static data object
**
TOP-OF-PAGE.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

424

WRITE:/5 TEXT-001, DATE_CHR, 130 TEXT-002, 137(3) SY-PAGNO.
SKIP 1.
WRITE:/5(135) SY-ULINE.
WRITE:/6 TEXT-003, 12 TEXT-004, 23 TEXT-005, 60 TEXT-006, 96
 TEXT-007, 130 TEXT-008.
WRITE:/6 TEXT-009, 13 TEXT-010, 131 TEXT-010.
WRITE:/5(135) SY-ULINE.

**
START-OF-SELECTION.

GET RUN TIME FIELD TIME_ELAPSED.

CONCATENATE SY-DATUM+6(2) SY-DATUM+4(2) SY-DATUM+0(4) INTO DATE_CHR
 SEPARATED BY '/'.

SELECT KUNNR NAME1 STRAS ORT01 PSTLZ FROM KNA1
 INTO TABLE CUSTOMERS_TAB.

SORT CUSTOMERS_TAB BY KUNNR.

LOOP AT CUSTOMERS_TAB ASSIGNING <FS1>.
 " <FS1> addresses/accesses first row, second row & so on

 WRITE:/5(5) SY-TABIX, <FS1>-KUNNR USING NO EDIT MASK,
 <FS1>-NAME1, <FS1>-STRAS, " structure components/fields are
 <FS1>-ORT01, <FS1>-PSTLZ. " addressable because <FS1> TYPE to static data object
ENDLOOP.

GET RUN TIME FIELD TIME_ELAPSED.

SKIP 2.
WRITE:/5 'Time elapsed:', (7) TIME_ELAPSED.

The text symbols are shown in Figure 8-18.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

425

The output of program YCL_CH08_13_CUST_LIST_WITHSTRU (LOOP AT… INTO…) is shown in
Figures 8-19 and 8-20.

Figure 8-18. Program: YCL_CH08_14_CUST_LIST_WOUTSTRU – Text Symbols

Figure 8-19. Program: YCL_CH08_13_CUST_LIST_WITHSTRU – Output

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

426

The output of program YCL_CH08_14_CUST_LIST_WOUTSTRU (LOOP AT… ASSIGNING…) is shown in
Figures 8-21 and 8-22.

Figure 8-20. Program: YCL_CH08_13_CUST_LIST_WITHSTRU – Output

Figure 8-21. Program: YCL_CH08_14_CUST_LIST_WOUTSTRU – Output

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

427

The syntax and notation of the AGGIGNING <field symbol> can be used in the internal tables’ READ statements.
You can directly access a row through the READ statement with an ASSIGNING notation. You can also directly
assign values to fields of a row to which the Field Symbol is pointing, thus avoiding the MODIFY statement you used
earlier to alter the contents of internal table rows. The use of the MODIFY statement involves transfer of data from the
table into the structure and then from the structure to the table. With the ASSIGNING notation, these transfers can be
avoided. These features are demonstrated in the programs: YCL_CH08_15_READ_KEY_ASSIGN, YCL_CH08_16_READ_
INDEX_ASSIGN, and YCL_CH08_17_CHANGE_WOUT_MODIFY. These programs are not listed here, but you can find
them in the E-Resource.

Field Symbol Dynamic Assignments, UNASSIGN, Check If Assigned
You can decide at runtime, what data object is to be assigned to a field symbol. This is called dynamic assignment. The
syntax for dynamic assignment:

ASSIGN: (<variable name>) TO <Field Symbol>.

<variable name> will contain the name of the runtime field to which you want to assign the <Field Symbol>.
The <variable name> has to be enclosed in parentheses. You cannot use offsets and length with dynamic assignments.

You can unassign a Field Symbol. The syntax:

UNASSIGN: <Field Symbol>.

Figure 8-22. Program: YCL_CH08_14_CUST_LIST_WOUTSTRU – Output

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

428

You can check in the IF condition statement whether a field symbol is assigned or not:

IF <Field Symbol> IS ASSIGNED.

You can refer to this topic in the PDF document ABAP Programming (BC-ABA).
You will see the power of Field Symbols in the current and forthcoming Chapters 10, 12, and 13.
A switch back to the main topic: Open SQL SELECT statement variants.

Specify the <source> In Open SQL SELECT Statement at Runtime
The Open SQL SELECT statement allows the <source> (i.e., the database table/view) from which data is to be
retrieved to be specified at runtime.

Associated with the runtime specification of the source and the <destination> (following the keywords:
INTO/APPENDING, etc.), not known until runtime cannot be declared/defined statically with DATA and TABLES
statements. The <destination> data object (structure/internal table) needs to be created dynamically at runtime.

Create Dynamic Data Objects
The ABAP OOP feature (run time type services) RTTS provides for the creation of runtime data objects.. RTTS will be
covered in more detail in Chapter 11 entitled ‘ABAP OOP’, but here’s a short introduction so that you can see how it’s
used in the Open SQL SELECT statement. To create a runtime data object using RTTS:

You have to declare a reference variable using the keyword DATA like this:•

DATA: RF_VAR TYPE REF TO DATA.

RF_VAR is the name of the ABAP reference variable following the naming conventions of any
other ABAP variable.
TYPE REF TO DATA is a key phrase, indicating that this reference variable will point to the
runtime data object to be created.

Using the declared reference variable, you have to create the runtime data object:•

CREATE DATA RF_VAR {TYPE/LIKE} <referred object>.

<referred object> can be any local/DDIC TYPES or any of the local/DDIC data objects.

For example, if you want to create a dynamic data object the same as the DDIC table structure KNA1, you should
be writing:

CREATE DATA RF_VAR TYPE KNA1.

But again you are hard-coding. This will create only a data object like the table structure KNA1, not any other.
Hence, you have to use another variation of the statement CREATE DATA… The code will be like this:

DATA: RF_VAR TYPE REF TO DATA.
PARAMETERS: OBJ_NAME(50) TYPE C DEFAULT 'KNA1'.
START-OF-SELECTION.
CREATE DATA RF_VAR TYPE (OBJ_NAME).

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

429

This will create a runtime data object of the TYPE whose name is contained in the variable OBJ_NAME (input
through the PARAMETERS statement). Whatever object name you enter in the input variable OBJ_NAME, the CREATE
DATA… statement will create a data object of that TYPE. The reference variable points to this data object, not to the
contents of the data object. You need to access the contents. One way doing this – that is, to get access to contents is to
dereference the reference variable RF_VAR and assign it to a field symbol. The code to do this will be like this:

DATA: RF_VAR TYPE REF TO DATA.

FIELD-SYMBOLS: <DOBJ>.

PARAMETERS: OBJ_NAME(50) TYPE C DEFAULT 'KNA1'.
START-OF-SELECTION.
CREATE DATA RF_VAR TYPE (OBJ_NAME).

ASSIGN RF_VAR->* TO <DOBJ>.

The ->* is to dereference.

Run Time <source> Specification in SELECT Statement – Hands-on
Having been introduced to the bare essentials of the creation of dynamic data objects, let a hands-an exercise
be performed.

In the ABAP program, let the database table or view name from which the data is to be retrieved be input through
the PARAMETERS statement. Using this input, you will create two dynamic data objects: (a) a structure, and (b) an
internal table.

You will load data from the database table or view into the internal table.
You will use LOOP…ENDLOOP construct to retrieve data from the internal table into a structure. As you do not

know the field names, you will use the ASSIGN COMPONENT variation of the ASSIGN field symbol statement to
access individual fields. You will output the first five fields.

The source program:

REPORT YCL_CH08_18_SRCE_AT_RUN_TIME LINE-SIZE 150
 NO STANDARD PAGE HEADING.

* <source> In SELECT At Runtime, Dynamic Data Objects *

* from which database table/view to retrieve **
* data is decided at run time. **
* **
* the runtime database table name is input **
* through PARAMETERS statement. (TABLE_NM) **
* **
* when you are retrieving data from a database **
* table/view into an internal table, the **
* internal table must have a structure which **
* can accommodate the retrieved fields. (all **
* fields of database table/view for now) **
* **

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

430

* when you are retrieving data, one row at a **
* time from the internal table into a structure**
* you do not know the structure's attributes **
* in terms of fields/components till runtime **
* **
* so you are creating a dynamic structure data **
* object using the table/view name input. **
* the way to create dynamic structure data **
* object is: **
* (a) declare using DATA statement a reference **
* variable like: **
* DATA STRU_REF TYPE REF TO DATA. **
* (b) create dynamic structure data object by **
* referring to the input table/view name **
* like: **
* CREATE DATA STRU_REF TYPE (TABLE_NM). **
* **
* this will create a structure data object **
* having the same fields as the table/view **
* input in TABLE_NM. if for Instance, KNA1 **
* was input, the CREATE DATA STRU_REF TYPE **
* (TABLE_NM). will create a structure data **
* object having all the fields of table **
* structure KNA1. the reference variable **
* STRU_REF will point to the structure data **
* object. **
* **
* to be able to refer/point to the data **
* you need to de-reference the reference **
* variable STRU_REF. you are dereferencing and **
* assigning to a Field Symbol <FS_STRU> like **
* ASSIGN STRU_REF->* TO <FS_STRU>. **
* **
* you are creating a dynamic internal table **
* data object using the table/view name input. **
* the way to create dynamic internal table **
* data object is: **
* (a) declare using DATA statement a reference **
* variable like: **
* DATA ITAB_REF TYPE REF TO DATA. **
* (b) create dynamic internal table data object**
* by referring to the input table/view **
* name like: **
* CREATE DATA ITAB_REF TYPE STANDARD TABLE **
* OF (TABLE_NM). **
* **
* this will create a internal table data object**
* having the same fields as the table/view **
* input in TABLE_NM. if for instance, KNA1 **
* was input, the CREATE DATA ITAB_REF TYPE **
* STANDARD TABLE OF (TABLE_NM). will create an **

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

431

* internal table data object having all the **
* fields of table structure KNA1. the reference**
* variable ITAB_REF will point to the internal **
* table data object. **
* **
* to be able to refer/point to the data in the **
* internal table, you need to dereference the **
* reference variable ITAB_REF. you are **
* dereferencing and assigning to a Field Symbol**
* <FS_ITAB> like: **
* ASSIGN ITAB_REF->* TO <FS_ITAB>. **
* **
* to access the individual fields of structure **
* you are using the Field Symbol assignment **
* statement form: **
* ASSIGN COMPONENT <component number> OF **
* <structure name> TO <field symbol name>. **
* **
* the individual fields accessed in this way **
* are output. **
* **
* the concept of creating dynamic data objects **
* is being introduced in a preview manner. it **
* is covered with in the regular course in **
* Chapter 10. **

* input the table/view name from which data to **
* be retrieved **
* **
* create a dynamic structure data object of **
* type same as the inputted table/view. **
* deference and assign to Field Symbol **
* **
* create a dynamic internal table data object **
* whose structure type is same as the inputted **
* table/view. **
* deference and assign To another Field Symbol **
* **
* use the SELECT statement variation with **
* runtime <source> to fetch data into dynamic **
* internal table data object **
* **
* set up LOOP...ENDLOOP **
* **
* assign individual fields of structure data **
* object to another Field Symbol & output **
* **
* LOOP...ENDLOOP will run through till all **
* rows fetched & outputted **

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

432

DATA: STRU_REF TYPE REF TO DATA, " reference variable for structure
 ITAB_REF TYPE REF TO DATA. " reference variable for internal table

FIELD-SYMBOLS: <FS_STRU>, " Field Symbol for table/view structure
 <FS_ITAB> TYPE TABLE, " Field Symbol for internal table
 <FS_FLD>. " Field Symbol for individual fields

PARAMETERS TABLE_NM TYPE DD03L-TABNAME DEFAULT 'T001' VALUE CHECK.

START-OF-SELECTION.

CREATE DATA STRU_REF TYPE (TABLE_NM). " creation of run time structure

ASSIGN STRU_REF->* TO <FS_STRU>. " dereference and assign to Field Symbol

CREATE DATA ITAB_REF TYPE STANDARD TABLE OF (TABLE_NM). " creation of run time internal table

ASSIGN ITAB_REF->* TO <FS_ITAB>. " dereference and assign to Field Symbol

SELECT * FROM (TABLE_NM) INTO TABLE <FS_ITAB>. " source at run time

LOOP AT <FS_ITAB> INTO <FS_STRU>.
 DO 6 TIMES.
 IF SY-INDEX = 1. " bypass the presumed client code (first) field
 CONTINUE.
 ENDIF.
 ASSIGN COMPONENT SY-INDEX OF STRUCTURE <FS_STRU> TO <FS_FLD>.
 " Field Symbol <FS_FLD> being assigned & re-assigned
 IF SY-INDEX = 2.
 WRITE:/5 <FS_FLD>. " new line for the first outputted field
 ELSE.
 WRITE: <FS_FLD>.
 ENDIF.
 ENDDO.
ENDLOOP.

The output for the input value T001 will look like Figure 8-23.
You can try this for a few other tables.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

433

You have seen the power of SELECT statement, field symbols and dynamic data objects in combination in
this program.

In Chapter 10 entitled ‘Interactive Lists’, you will incorporate further functionality into this program. The program
on input of database table or view name will first display all the fields of the table or view structure with check boxes
for the user to select/de-select fields. Once the fields are selected, the program will retrieve data only for the selected
fields and output the selected fields with column headings, etc.

Specify in the Open SQL SELECT Statement
Run Time <result>, <where condition>, and <order by>

SELECT (<result>) FROM <source>
INTO <destination>
WHERE (<where condition>)
ORDER BY (<order by>).

Mark the <result>, <where condition> and <order by> enclosed in parentheses.
With this syntax:
You can load an internal table with the name of the fields <result> for which you want data to be retrieved.
You can load another internal table with the WHERE condition <where condition> to be applied to the SELECT

statement. Part of the WHERE condition can be in the internal table <where condition>, part can be hard-coded and
the two conjoined by the logical operators AND and OR if required.

You can load a third internal table with the name of the fields <order by> for which you want the data to be sorted.
When you are supplying the <result>, <where condition> and <order by> in internal tables, you have the facility to

effectively build these on a runtime basis.
You can supply any one of these, any two of these, or all of these in internal tables.
The Open SQL system concatenates the individual rows of each of these internal tables into one string.

Figure 8-23. Program: YCL_CH08_18_SRCE_AT_RUN_TIME – Output

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

434

In your current hands-on exercise, you are frivolously filling the three internal tables by assigning literals and
demonstrating the features of <result>, <where condition>, and <order by> in internal tables. But in Chapters 10 and 13,
these features are demonstrated in a more effective manner. In Chapter 13, you are coding a program similar to the
SE16 data browser.

The source program:

REPORT YCL_CH08_19_RSWHOR_AT_RUN_TIME LINE-SIZE 140
 NO STANDARD PAGE HEADING.

**
* <result>, <where condition>, <order by> In Internal Tables **
**

**
* declare data: elementary & internal table (simple array) for**
* fields, WHERE condition & order by. **
* declare structure KNA1. (TABLES etc.) provision to fetch all**
* fields. **
* **
* fill the first internal table with field names for which **
* data to be retrieved. **
* fill the second internal table with the WHERE condition **
* fill the third internal table with order by field names with**
* order by option: ASCENDING/DESCENDING. **
* **
* SELECT...WRITE...ENDSELECT statements with the usage of the **
* three internal tables **
**

TABLES: KNA1.

DATA: FIELD(15) TYPE C,
 FIELDS_TAB LIKE STANDARD TABLE OF FIELD, " for <result> in internal table
 CONDT(50) TYPE C,
 CONDTS_TAB LIKE STANDARD TABLE OF CONDT, " for <where condition> in internal table
 ORDER(30) TYPE C,
 ORDER_TAB LIKE STANDARD TABLE OF ORDER. " for <order by> in internal table

START-OF-SELECTION.

FIELD = 'KUNNR'.
APPEND FIELD TO FIELDS_TAB.

FIELD = 'NAME1'.
APPEND FIELD TO FIELDS_TAB.

*FIELD = 'STRAS'. " de-comment these lines & try out
*APPEND FIELD TO FIELDS_TAB.

FIELD = 'ORT01'.
APPEND FIELD TO FIELDS_TAB.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

435

CONDT = 'NAME1 LIKE ''A%'' OR '.
APPEND CONDT TO CONDTS_TAB.

CONDT = 'NAME1 LIKE ''C%'' OR '.
APPEND CONDT TO CONDTS_TAB.

CONDT = 'NAME1 LIKE ''S%'''.
APPEND CONDT TO CONDTS_TAB.

ORDER = 'ORT01 DESCENDING'.
APPEND ORDER TO ORDER_TAB.

ORDER = 'NAME1 ASCENDING'.
APPEND ORDER TO ORDER_TAB.

**
SELECT (FIELDS_TAB) FROM KNA1
 INTO CORRESPONDING FIELDS OF KNA1
 WHERE (CONDTS_TAB)
 ORDER BY (ORDER_TAB).

 WRITE:/5(5) SY-DBCNT, KNA1-ORT01, KNA1-NAME1, KNA1-KUNNR USING NO EDIT MASK,
 KNA1-STRAS.
ENDSELECT.

The output will appear like Figure 8-24.

Figure 8-24. Program: YCL_CH08_19_RSWHOR_AT_RUN_TIME – Output

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

436

If you scroll to the right, the field STRAS will appear blank, because you are not retrieving data for it. De-comment
the lines to append a row for the field STRAS. Executing the program after de-commenting the lines will make the
output for field STRAS appear.

Similarly, a SELECT statement with aggregate functions can have the <group by fields> and <having condition>
entered in an internal table and specified (i.e., run time <group by fields> and <having condition>).

BYPASSING BUFFER, CLIENT SPECIFIED, CURSORS
BYPASSING BUFFER
To circumvent the buffer, fetch data directly from the database table or view, or you can use the BYPASSING BUFFER
phrase in the Open SQL SELECT statement:

SELECT ... FROM <source>
BYPASSING BUFFER..

CLIENT SPECIFIED
It was emphasized earlier that OPEN SQL by default retrieves only data belonging to the user’s logged-in client. If you
want to retrieve data other than the one belonging to the logged-in client, you can use the phrase CLIENT SPECIFIED
in the Open SQL SELECT statement:

SELECT ... FROM <source>
CLIENT SPECIFIED..

By default, the Open SQL SELECT statement does not allow the client code field MANDT in the WHERE
condition. If the phrase CLIENT SPECIFIED is added in the SELECT statement, the field MANDT is allowed in the
WHERE condition.

Execute the following code and see the result:

TABLES: TCURT.
START-OF-SELECTION.
SELECT * FROM TCURT CLIENT SPECIFIED INTO TCURT
 WHERE (MANDT = '810' OR MANDT = '811') AND SPRAS = SY-LANGU.
 WRITE:/5(4) SY-DBCNT, TCURT-MANDT, TCURT-LTEXT.
ENDSELECT.

CURSORS
To disassociate the INTO <destination> from the Open SQL SELECT statement, you can use cursors. You create a
cursor with the OPEN CURSOR <cursor name> FOR SELECT… Subsequently, you retrieve one row at a time from the
cursor into a structure with FETCH NEXT CURSOR <cursor name> INTO <destination>. You check the SY-SUBRC
value. If this is not zero, there are no rows to be fetched. You close the cursor with CLOSE CURSOR <cursor name>.

Performance Notes
Read up the ‘Performance Notes’ of the PDF document: ABAP Programming (BC-ABA).

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

437

A Brief on ABAP Debugger
A program debugger is part of any developmental platform. When programs do not execute as per specifications,
errors or bugs have to be located and identified. The identified bugs have to be fixed. The debuggers help in locating
and identifying the bugs. The program bugs relate to program flow and variables not assuming values as planned.
So the debuggers must have the facility to trace program flow and interrogate variable values at different stages of
program execution, even at the level of single statement execution.

Break Points, Watch Points, and Executing Programs in Debugging Mode
The ABAP debugger provides for break points and watch points during program execution. Program halts occur
because of the break points and/or watch points. A break point can be set on any executable ABAP statement
(dynamic break points). A break point can also be set with a special ABAP statement: BREAK-POINT (static break
points). When the program executes and reaches the statement where a break point has been set or reaches the
special ABAP statement ‘BREAK-POINT’, a program halt occurs. The watch points, like the break points, generate halts
in program execution. The watch point halts are determined by values of watch point variables. The watch points
are set by associating a watch point with a variable and specifying the value/range of a watch point variable. When a
watch point variable assumes a value/range set for the watch point variable, a halt occurs in the program execution.
When a program halt occurs, generated by a break point or a watch point, the ABAP debugger pop ups a dialog box.
This dialog box will be called the debugger dialog box. The ABAP debugger dialog box is a full screen dialog box. In
the debugger dialog box, the developer can interrogate data object values, change data object values, set further break
points, reset existing break points, view memory allocation of data objects including the internal tables, and set and
reset watch points, etc.

Apart from the break points and watch points generating program halts and popping up the debugger dialog box,
you can execute an ABAP program in a debugging mode instead of the normal mode.

Dynamic break points can be set and reset before the commencement of program execution and also during
program execution during the halts. Watch points cannot be set and reset before the commencement of program
execution. Watch points can be set and reset only during program halts (i.e., when debugging, the dialog box pops up).

Debugger Types
In the ABAP workbench, two debugger types are available: the classical debugger and the new debugger. You can set
which debugger type you want to use either from the ABAP editor opening screen or the ABAP program editor screen.
The menu path to set the debugger: Utilities ➤ Settings. In the settings dialog box, ensure that you have selected the
ABAP Editor tab and the Debugging tab. The screen for setting the debugger is shown in Figure 8-25.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

438

The new debugger is an advanced version of the older classical debugger.
One of the basic and obvious differences between the classical debugger and the new debugger is the appearance

of a debugger dialog box during program halts. With the new debugger, the debugger dialog box appears in a new
external session (extra external session); whereas with the classical debugger, the debugger dialog box appearing during
program execution halt is in the same external session in which the program is being executed and debugged. Apart
from this, there are a host of other differences between the new debugger and the classical debugger. The new debugger
is to suitable for use in advanced programming involving many levels of procedure and method calls.

This brief on an ABAP debugger is confined to coverage of only the classical debugger.

Break Point Types
There are two types of break points: static and dynamic.

The static break points can be set with the special ABAP statement: BREAK-POINT. When the program execution
reaches this statement, the debugger dialog pops up, enabling the developer to interrogate data object values, set
new dynamic break points, reset existing dynamic break points, set watch points, reset existing watch points, and
control subsequent program halts, etc. The static break point statements should be deleted or commented before the
program is released to the end user.

There are two types of dynamic break points: internal and external. If you want program halts to occur in external
procedures like external subroutines, function modules, and methods of global classes being called by your main
program, you set external break points in the external subroutines, function modules, and methods of global classes.
The external break points expire or get reset after a time period (time out) set by the basis administrator.

The internal break points are set in the main program you are testing. The internal break points get reset when
the user logs off. The internal break points can be set only for activated programs.

The dynamic break points can be set by positioning the cursor on a program executable line and clicking on the
internal/external break point button on the application toolbar.

The static break points are rarely used in ABAP programs. They are used in environments where there is no
facility for dynamic break points – like, for example, the ‘Smart Forms’ (not covered in this book). In the present
coverage and demonstrations, you will only use dynamic break points. So the terms ‘dynamic break point’ and ‘break
point’ are synonymous in the present discussion.

Figure 8-25. Select ABAP Debugger

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

439

Execute Programs in Debugging Mode
You can execute a program in debugging mode by selecting the following menu option on the ABAP editor opening
screen: Program ➤ Execute ➤ Debugging. You can also execute an ABAP program in debugging mode from inside the
ABAP editor with the menu option: Program ➤ Test ➤ Debugging.

With this brief introduction and description of break points and watch points, further debugging features will be
explained through hands-on exercises.

At any given time, for a logged-in user, you can have a maximum of 30 dynamic (internal + external) break points
and a maximum of 10 watch points.

Hands-On Exercise I - ABAP Debugger
Let the ABAP source program YCL_CH05_05_CUST_:LIST04 of Chapter 5 be debugged. A dynamic (internal) break
point is set on the statement: FLAG = 'X' as shown in Figure 8-26.

Figure 8-26. Program YCL_CH05_CUST_:LIST04 - Set Internal Break Point

In this program, you listed the customer data with a nonstandard header and footer. You output one line of footer
as ‘Continued on XX’. The footer should not appear on last page of the list. The footer was appearing on the last page
if the rows output were a multiple of lines output in the list body. A solution to this problem was proposed, which was
based on the flow/sequence of execution of program lines. It was maintained that the event END-OF-PAGE for the last
page was triggered after execution of program lines following the ENDSELECT statement. You can verify this program
flow using the debugger.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

440

As shown in Figure 8-26, a break point is set on the statement FLAG = 'X' following the statement ENDSELECT.
With a default color setting, an ABAP program statement with a break point set appears in a yellow background. When
the program is executed, the break point on the statement FLAG = 'X' will trigger a halt, and the debugger dialog box
will pop up as shown in Figure 8-27.

Figure 8-27. Debugger Dialog Box, Program YCL_CH05_05_CUST_:LIST04

The explanation of the text boxes or legends in Figure 8-27 will be elaborated upon following a sequence from left
to right and top to bottom. The explanation of the legends in Figure 8-27 follows.

Buttons to Control Further Halts

With the four buttons marked as ‘Buttons – Control Further Program Halts’ , you can control the halts as the program
executes further from the current halt. The four buttons with their legends are shown in Figure 8-28.

Figure 8-28. Debugger Dialog Box: Buttons for ‘Control Further Program Halts’

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

441

The left-most button with the legend ‘Single Step (F5)’ enables you to execute the program statement by
statement (i.e., halt will occur on each statement). If a procedure (external subroutine or function module or method)
is called, the halts occur at every statement of the called procedure as well. This button should be used as the last
resort, as in the extreme case when you want to debug every statement.

The second button from the left with the legend ‘Execute (F6)’ also enables you to execute the program statement
by statement but differs from the execution when using the first button. A procedure call (external subroutine or
function module or method) is considered a single statement. If there are no break points or watch points in the called
procedure, then, when you click on this button when a halt has occurred on a statement calling the procedure, the
next halt occurs on the statement following the statement calling the procedure.

If your current halt is inside a procedure (external subroutine or function module or method), there are no
further break points or watch points in this procedure, and clicking on the third button from the left with the legend
‘Return (F7)’ will trigger the next halt at a statement following the statement calling the procedure. This is shown
graphically in Figure 8-29.

Figure 8-29. Operation of ‘Control Further Program Halts’ Button: ‘Return (F7)’

Clicking the button on the extreme right with the legend ‘Run (To Cursor) (F8)’ will execute the program and
trigger program halts based only on break points and watch points encountered.

Button to Create Watch Point

Clicking on this button will pop up the watch point creation dialog box. In the watch point creation dialog box, you
can specify the watch point data object (variable) and the value/range of watch point variable. The watch point
creation is demonstrated in the subsequent hands-on exercise.

Buttons – Display Field (Contents) and Table (Internal Table Contents)

The first of the two buttons is used to display and change elementary data object contents. The second of the two
buttons is used to display and change internal table contents. You can also insert and append rows to internal tables.
You can delete rows from internal tables. You can change contents of rows of internal tables. The debugger dialog box
showing internal table contents is covered in the subsequent hands-on exercise.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

442

To view structure contents, select the following menu path in the debugger dialog box: Go to ➤ Display data
object ➤ structure field. The system will prompt for structure name. When you enter the structure name, the structure
is displayed field wise, each field in one row. Structure contents cannot be changed directly. To change structure data,
you have to access individual fields of the structure. If the structure contains only elementary types: C, D, N, and T, the
structure can be displayed as one field.

In Figure 8-27, the field ‘FLAG’ is entered and its value is displayed. You can enter any elementary data object or
a system field and its value will be displayed. By default, four system fields values are displayed at the bottom of the
debugger dialog box.

Buttons – Break Points and Watch Points Overview

These two buttons pop up the break points and watch points overview dialog boxes.

Program Pane, Program V Scroll, and H Scroll Buttons

The source program pane displays the source program lines. There are four buttons to scroll horizontally left and
right, and to scroll vertically up and down.

Break Point Statements and Current Halt statement

In the program pane of the debugger dialog box, an ABAP statement with a break point set appears with the icon

on the left side and an ABAP statement where the current halt occurred appears with the icon on the left side. An

ABAP statement with a break point and the current halt appears with both of these icons on the left side like this: .

You can reset a break point on a statement by double-clicking on the statement. Similarly, you can set a break point by
double-clicking on the statement.

Change Field Contents Button

At the bottom right, there is a button to confirm the change of contents of a field.

Following the Program Flow

In Figure 8-27, the program has halted at the statement FLAG = 'X'. The value of the variable FLAG is blank at this stage.
In the source program pane, scroll up and set a break point at the statement IF FLAG = ' ' following the event

statement: END-OF-PAGE. A break point can be set by positioning the cursor on the statement and selecting the
menu option: Break Points ➤ Create/Delete. A break point on a statement can be set or reset by double-clicking on
the statement.

Next, click on the ‘Run’ (function key F8) button. The debugger dialog box will appear for the break point set at
the statement IF FLAG = ' '. The value of the variable FLAG is now ‘X’. This is shown in Figure 8-30.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

443

The program flow is as per the claims made in Chapter 5, and the program lines following the ENDSELECT
statement get executed before the END-OF-PAGE event gets triggered for the last page of the list.

The next hands-on exercise will demonstrate the display of internal table content and watch points.

Hands-on Exercise II - ABAP Debugger
Let the ABAP source program YCL_CH06_ITAB05 of Chapter 6 be debugged. In this program, you listed customer
wise sales summary of a specific company code. You used the internal table COLLECT statement to generate the sales
summary. A dynamic (internal) break point is set on the statement: SORT SALES_TAB BY KUNNR. Execute the program
with company code ‘3000’. When the program is executed with this dynamic break point, the program comes to a halt
and pops up the debugger dialog box as shown in Figure 8-31.

Figure 8-30. Break Point halt at statement: IF FLAG = ' '

Figure 8-31. Internal Break Point in Program YCL_CH06_ITAB05

If you click on the Table button, the debugger dialog box will prompt for the internal table name. Enter the internal
table name as SALES_TAB. You can view the contents of the internal table SALES_TAB as shown in Figure 8-32.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

444

As shown in Figure 8-32, you can change row contents, insert rows, append rows, and delete rows in the internal
table with buttons provided at the bottom of the debugger dialog box.

If you want the memory allocation information for the internal tables, select the menu option: Settings ➤ Memory
Display On/Off. This menu option toggles for appearance or disappearance of the memory allocation of data objects.
The memory allocations appear at the bottom of the ABAP debugger screen. Figure 8-33 shows the memory allocation
for the internal table SALES_TAB.

Figure 8-32. Program YCL_CH06_ITAB05: Internal Table SALES_TAB Contents

Figure 8-33. Program YCL_CH06_ITAB05 –Memory Allocation of Internal Table SALES_TAB

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

445

Let a watch point be created. When you click the button to display internal table contents, the application tool
bar changes and the button to create watch points disappears. So to create a watch point, make the following
menu selection: Break Points ➤ Create watchpoint. When you make this menu selection, the following dialog appears:

Figure 8-34. Dialog Box to Create a Watch Point

Figure 8-35. Watch Point Dialog Box with Entered Values

In the watch point dialog box, you enter the watch point field name or watch point variable for which you
want to establish a watch point in the field ‘Field name’. You enter the watch point relation operator in the field
‘Relational Operator’. The relational operators accepted are <, <=, =, <>, >=, and >. The mnemonic equivalents of these
arithmetical relational operators are also accepted. A selection list (F4) is available. You can compare the watch point
variable either with another variable or a literal. If you are comparing the watch point variable with another variable,
(comparison variable), enable the check box with the legend ‘Comparison field…’ If you are comparing the watch
point variable with a literal, then ensure this check box is disabled. Enter the comparison variable or literal in the field
‘Comp. field/value’.

Let a watch point be created for the variable ‘SALES_STRU-NETWR’. So enter this variable as the watch point
variable. Select the relational operator as ‘GE’ (>=). Let the watch point variable be compared with a literal. Enter the
value 4000000 (four million) in the field ‘Comp. field value’. What you desire is that whenever the watch point variable
‘SALES_STRU-NETWR’ is greater than or equal to four million, a halt must occur. Figure 8-35 shows the watch point
dialog box with the entered values.

CHAPTER 8 ■ OPEN SQL DATA RETRIEVAL

446

Click on the continue button of the watch point creation dialog box. A watch point creation message will appear
on the status bar. Click on the ‘Run (To Cursor) (F8)’ button. A halt will occur every time the value of the watch
point variable >= 4,000,000. In this program, the first time the watch point halt occurs for the customer code
SALES_STRU-KUNNR = ‘0000300700’. The value of system field SY-TABIX is 46. This is shown in Figure 8-36.

Figure 8-36. Watch Point Halt for SALES_STRU-KUNNR = ‘0000300700’

In a like manner, five more halts will occur when the watch point variable SALES_STRU-NETWR >= 4000000.
The corresponding values of the field SALES_STRU-KUNNR for the five halts are ‘0000300701’, ‘0000300703’,
‘0000300704’, ‘0000300705’, and ‘0000300719’. The corresponding values of the system field SY-TABIX for the five
halts are 47, 48, 50, 51, and 60.

This was a demonstration of viewing an internal table contents, viewing memory allocation of an internal table,
and the setting up of a watch point.

Conclusion - ABAP Debugger
This brief on the ABAP debugger introduced you to the debugger types and setting a debugger type. It introduced
you to the break points, types of break points, and watch points. You learned how to execute an ABAP program in
debugging mode.

The elements of the debugger dialog box and its basic operations were demonstrated in the first of the hands-on
exercises. The second hands-on exercise further demonstrated the operations of the debugger dialog box.

The ABAP debugger was demonstrated with apparently bug-free programs. The objective was to expose you to
the basic features of an ABAP debugging environment including the operation of the debugger dialog box.

Explore and try out other features and options of the debugger. Try to use the debugger in at least one hands-on
exercise of an upcoming chapter. Use a debugger in your own hands-on exercises. Try out the new debugger as well.

Conclusion
The Open SQL SELECT statement will be utilized in all the upcoming chapters.

The threesome features of Open SQL run time specifications, FIELD-SYMBOLS, and the run time creation of data
objects is carried forward and developed in Chapters 10 and 13 into advanced sophisticated applications.

You were also introduced in this chapter to the ABAP debugger.

447

CHAPTER 9

SELECTION-SCREENS

ABAP programs that are generating outputs or reports use selection screens for simple inputs. For full-fledged,
multiple screen data input and data capturing, the ABAP Workbench provides a screen painter with drag and drop
and all the other facilities associated with creating input screens and programs in a graphical environment.

You have used some forms of the selection screen statement PARAMETERS in your hands-on exercises. You used
it in the program demonstrating the COLLECT statement to input the company code for which the customer wise
sales summary report was to be generated.

In enterprise environments, the output to be generated will, for the most part, be of filtered data: of specified
company codes, plant codes, etc. The basis of filtering data is to be decided at runtime. So the appropriate values for
data filtration are input through the selection screen.

The PARAMETERS statement enabled input of single values. The ABAP selection screen provides for multiple,
complex inputs through the SELECT-OPTIONS statement to be covered later in this chapter.

The PARAMETERS and SELECT-OPTIONS variables belong to the category of special data objects. In Chapter 4,
ABAP program data objects were categorized as the following:

Internal data objects (through declarative statements: DATA, TABLES, and CONSTANTS, etc.)
External data objects (references to DDIC tables, structures, table or structure fields, internal tables, and

data elements)
Special data objects (selection screen PARAMETERS and SELECT-OPTIONS variables)
System data objects (the SY- series variables: SY-DATUM, SY-MANDT…, etc.)
The selection screen does not provide for positioning of screen elements through drag-and drop-facility. With

the selection screen, you have to write ABAP code to create and position screen elements. The ABAP runtime system
automatically generates the screens from the selection screen code.

In the ABAP Workbench environment, screens are numbered from 1–9999 for identification. The selection
screens can be standard with a preassigned screen number 1000. The selection screens can be user defined with the
screen number assigned during the selection screen definition. With the user defined selection screens, they need to
be called after the definition.

With an executable ABAP program, you can have one standard selection screen (screen number 1000) and any
number of user defined selection screens. With module pool programs and function modules, you can have only user
defined selection screens.

You can create the following screen elements on the selection screens:

Labels or texts•

Text boxes or input fields•

Radio buttons•

Check boxes•

Multiple complex selections (SELECT-OPTIONS)•

Push buttons•

CHAPTER 9 ■ SELECTION-SCREENS

448

Blank lines•

Blocks•

Horizontal lines•

Subscreens•

Tab strip controls•

In the hands-on exercises in this chapter, the major screen elements are going to be covered. The screen
elements subscreens and tab strip controls will be covered in Chapter 14.

The selection screen will be covered in two separate stages: (a) the layout – how to create position screen
elements on the selection screen, and (b) the selection screen events and other subtopics.

All selection screen statements start with one of the key phrases:

 1. SELECTION-SCREEN

 2. PARAMETERS

 3. SELECT-OPTIONS

Recapitulation – PARAMETERS Statement
Before a hands-on exercise, let the features of PARAMETERS statement that you have used until now be recapitulated
formally. The syntax of PARAMETERS statement:

PARAMETERS: <variable name> {TYPE | LIKE}
<ABAP elementary TYPE or reference to local or global TYPE or local or global data object>
LOWER CASE
DEFAULT <default value>
VALUE CHECK
MATCHCODE OBJECT <search help name>.

<variable name> – Can be a maximum of eight characters, must start with an alphabet letter, and the rest can be
alphanumeric with embedded underscores (_).

{TYPE | LIKE} – You can use the keyword TYPE/LIKE. Refer to ‘Summary of Data Declaration by Reference to
Other Data Objects, Types’ available in the E-Resource of Chapter 6.

<ABAP elementary predefined TYPES> - TYPES C, D, I, N, P, T, X, STRING. TYPE ‘F’ and TYPE XSTRING are
not supported.

<reference to local or global TYPES> –Reference can be to locally declared types with the keyword TYPES. Or it
can be a reference to a DDIC data element or a DDIC TYPE GROUP.

<reference to local or global data object> – Reference can be to a locally declared data object or it can be a
reference to a DDIC data object.

LOWER CASE – Case sensitivity for TYPE C and TYPE STRING (by default, case insensitive).
DEFAULT <default value> – To assign an initial or starting value to the input field.
VALUE CHECK – To have the entered value checked against values in a check table. The PARAMETERS variable

should be declared by reference to a foreign key field in a secondary table.
MATCHCODE OBJECT <search help name> – Attach a search help.
There are some more clauses or additions available with the PARAMETERS statement. They will be covered as

contexts arise.
By convention, the selection screen statements are located in an ABAP program after the data declarations.

An ABAP program should have the program’s global data declared in the very beginning followed by the selection
screen statements.

CHAPTER 9 ■ SELECTION-SCREENS

449

By convention, the selection screen events follow the selection screen statements. When an ABAP program is
executed, the selection screen statements get executed with input prompts that appear. When the execute button/
F8 is pressed on the selection screen, the non-selection screen statements get executed. The program after the end of
execution of non-selection screen statements returns to the selection screen input prompt.

You can check this out executing the ABAP program with the COLLECT statement (YCL_CH06_ITAB05). Initially
the system prompts for the company code. Input of a valid company code and pressing the execute button/F8
generates the sales summary list or report for the input company code. Pressing the back button/F3 on the list takes
you back to the selection screen prompting you for the company code.

Selection Screen: Layout and Positioning of Screen Elements
Instead of covering each of the selection screen elements creation and positioning in isolation, a hands-on exercise
will be undertaken; and the creation and positioning of selection screen elements will be introduced in the context of
the hands-on exercise.

Your exercise is to reproduce in appearance and looks the ABAP Editor opening screen using the selection
screen statements.

A screenshot of the SE38 ABAP Editor opening screen is shown in Figure 9-1.

Figure 9-1. SE38 ABAP Editor Opening Screen

The selection screen that you are going to produce will resemble the SE38 ABAP Editor opening screen only in
terms of look and appearance – not the functionality.

CHAPTER 9 ■ SELECTION-SCREENS

450

The SE38 ABAP Editor opening screen layout consists and involves the following:

 1. A gap of two lines at the top – generates blank lines on the selection screen

 2. A label, an input field, and a push button on a single line – place multiple selection screen
elements on a single line

 3. Create a label or text (Program) on the Selection Screen

 4. Create an input field for entering the program name or accepting it from a selection list
(search help, F4, etc.) on the selection screen

 5. Create a push button with an icon and text on the selection screen

 6. A gap of one line – generates a blank line on selection screen

 7. Commencement of a shaded area with a title (‘Subobjects’) extending to a little more than
half the width of the screen – begins a selection screen block

 8. Within the shaded area are five radio buttons. Each radio button with its label or text appears
in one line. – creates five radio buttons (one in each line) with labels on the select screen

 9. A gap of one line after the five radio buttons. – generate a blank line on selection screen

 10. Two push buttons with icon and text. The two push buttons are on the same line and in the
shaded area – create two push buttons on the same line on the selection screen

 11. Conclusion of the shaded area - ends a selection screen block

A step-by-step procedure is described to create the selection screen, which resembles the SE38 ABAP Editor
opening screen in appearance. Even as a statement is required, its syntax is introduced and explained. At the end of
the syntax explanation, the exact statement to create the screen elements follows.

Generate Blank Lines
To generate blank lines on the selection screen, you use the statement:

SELECTION-SCREEN SKIP [<number of lines>].

SKIP – Keyword.
<number of lines> - A literal to specify the number of lines to skip (0–9 only).
If you omit <number of lines>, it will skip one line by default.

Statement

SELECTION-SCREEN SKIP 2.

Multiple Elements on a Single Line
By default, each screen element on the selection screen occupies one full line. To position multiple screen elements in
the same line on the selection screen, you use the statements:

SELECTION-SCREEN BEGIN OF LINE.
..........
SELECTION-SCREEN END OF LINE.

CHAPTER 9 ■ SELECTION-SCREENS

451

You locate the statements to create the three screen elements: that is, a label or text, an input field, and a push
button on the same selection screen line between the following:

Statements

SELECTION SCREEN BEGIN OF LINE. & SELECTION-SCREEN END OF LINE.

Create Label or Text
To create label or text on the selection screen, you use the statement:

SELECTION-SCREEN COMMENT [/]<col position>(<width in columns/characters>) { <text symbol id> |
<comment id> }.

COMMENT – Keyword.
[/] – (Optional) to start the label or text on a new line.
<col position> – The starting column position from where to start the label or text. It can be a literal in the

range 1–83.
(<width in columns/characters>) – The width of the label or text in characters. It can be a literal in the range 1–83.
{ <text symbol id> | <comment id> } – You can either give a <text symbol id.> or a <comment id.>. The <comment

id.> can be a maximum of eight characters, starting with an alphabet, and the rest alphanumeric with embedded
underscores (_).

The <comment id.> must be assigned text at an appropriate event: INITIALIZATION,
AT SELECTION-SCREEN OUTPUT.

Statement

SELECTION-SCREEN COMMENT 1(15) TEXT-001.

The text symbol TEXT-001 will contain: ‘Program’.

Input Field
To input value in a field, you use the familiar PARAMETERS statement.

PARAMETERS <variable name> MATCHCODE OBJECT <search help>
VISIBLE LENGTH <visible columns>

You are using an additional clause VISIBLE LENGTH. The length of field TRDIRT-NAME is 40 characters. In the
SE38 screen, you are able to view only 30 characters of a program name. The name space of an ABAP program name
is 30 characters. The name space of SAP delivered program names can be 40 characters. Hence in the SE38 screen,
after 30 columns, there is horizontal scrolling (check this out). Through the clause VISIBLE LENGTH, you can reduce
visible columns of any selection screen element.

CHAPTER 9 ■ SELECTION-SCREENS

452

Statement

PARAMETERS PROGRAM TYPE TRDIRT-NAME
 MATCHCODE.OBJECT YCL_CH09_TRDIRT
 VISIBLE LENGTH 30.

The SE38 screen functionality has been created using the full-fledged screen programming features of the ABAP
Workbench. When you press F4 in the program field of ABAP Editor opening screen, there is no search help operating:
there is a complex code that presents the user with a very sophisticated dialog box. You can’t be doing this with your
limited first formal exposure to a selection screen.

So you are creating a simple search help using the table TRDIRT. This table contains only three fields: the ABAP
program name, language code, and the title or short text that you enter on the attributes screen of program creation.
A screenshot of the search help YCL_CH09_TRDIRT is shown in Figure 9-2.

Create a Push Button with Icon and Text
A push button is created and located on the Selection Screen with the statement:

SELECTION-SCREEN PUSHBUTTON [/]<col position>
(<width in columns/characters>)
{ <text symbol id> | <push button name> }
USER-COMMAND <user command>.

PUSHBUTTON – Keyword.
[/] - (Optional) to position the push button on a new line.
<col position> – Is starting column from where to position the push button. It can be a literal in the range 1–83.
(<width in columns/characters>) – The width of the push button in characters. It can be a literal in the range 1–83.

Figure 9-2. Search Help: YCL_CH09_TRDIRT

CHAPTER 9 ■ SELECTION-SCREENS

453

{ <text symbol id> | <push button name>} – You can either give a <text symbol id.> or a <push button name>.
The <push button name> can be a maximum of eight characters, starting with a letter of the alphabet, and the rest
alphanumeric with embedded underscores (_).

The <push button name> must be assigned text at an appropriate event: INITIALIZATION,
AT SELECTION-SCREEN OUTPUT.

USER-COMMAND <user command> –
A push button mandatorily should be assigned a <user-command>. It is through this <user-command> that you

will know in the program which push button was pressed and take the appropriate action. The <user command> can
start with special characters such as * _ = etc., but it is a good convention to start them with an alphabet letter and
stick to alphanumeric combinations with embedded underscores (_). The <user-command> can be a maximum of 20
characters. The system field SY-UCOMM is loaded with assigned <user-command> when the push button is pressed.
The event AT SELECTION-SCREEN is triggered when a user clicks on a push button. Which push button is pressed
is ascertained by interrogating the contents of the system field SY-UCOMM in the event AT SELECTION-SCREEN.
Caution: the <user command> is case insensitive. Synonymous terms for USER-COMMAND: function code and fcode.

Statement

SELECTION-SCREEN PUSHBUTTON 53(15) TEXT-002

 USER-COMMAND CREAT.

The text symbol TEXT-002 will contain ‘@0Y@ Create’.
Your aim is to put the icon picture and text on the push button face. The contents of text symbol id. TEXT-002

could be like ‘@0Y@ Create’. If you want the create icon followed by the text ‘Create’ in the push button, you have to
enclose the icon code 0Y with the character ‘@' followed by the text ‘Create’.

For a list of icon codes and names, execute the Chapter 7 program: YCL_CH07_05_OUTPUT_INBOX_MACRO.
You can locate the ‘Create’ icon in the list by pressing <Ctrl> F and entering ‘create’ in the dialog box. The find
result will list out all icons names containing the string ‘create’. You can select the appropriate icon and look up
the icon code for the icon. Whenever the icon code is enclosed in the character ‘@’ and presented on screen, it will
automatically output an icon picture or image.

There is another elaborate way of placing an icon picture and text on a Selection Screen push button. This involves
the usage of function module: ICON_CREATE demonstrated in program: YCL_CH09_SELECTION_SCREEN01VR. The
function module takes as one of the inputs the icon name and does the same thing, gets the icon code, and encloses it
like @<icon code>@ The function module also returns the ‘info text’ or ‘tool tip’. The program: YCL_CH09_SELECTION_
SCREEN01VR is not listed here. But it is available in the E-Resource. Upload it, peruse its code, and try it out.

Generate a blank line through the already covered statement
Statement: SELECTION-SCREEN SKIP.

Selection Screen Block, BEGIN OF BLOCK
Create a shaded area with a title: ‘Subobjects’. This can be produced with the selection screen element: block. The
syntax for creating a selection screen block:

SELECTION-SCREEN BEGIN OF BLOCK <name of block>
[TITLE { <text symbol id.> | <title name> }]
[WITH FRAME]
[NO INTERVALS].
…………
SELECTION-SCREEN END OF BLOCK <name of block>.

CHAPTER 9 ■ SELECTION-SCREENS

454

BEGIN OF BLOCK – Key phrase to commence a block.
<name of block> – A block name can be a maximum of 20 characters, should start with a letter of the alphabet,

but the rest can be alphanumeric with embedded underscores (_).
TITLE – Keyword.
{ <text symbol id> | <title name> } – You can either give a <text symbol id.> or a <title name>. The <title name> can

be a maximum of eight characters, starting with an alphabet letter, with the rest being alphanumeric with embedded
underscores (_).

WITH FRAME – Key phrase. If you provide this optional key phrase, the shading effect is created.
NO INTERVALS - Key phrase. This has relevance only if you have specified the key phrase WITH FRAME. If you

provide this optional key phrase, the shading will extend to half the width of the screen. If you omit this key phrase,
shading will extend to the end of the screen.

END OF BLOCK – Key phrase to end a block.
You locate all the selection screen elements within a block by enclosing the selection screen elements’ creation

statements within SELECTION-SCREEN BEGIN OF BLOCK…& SELECTION-SCREEN ENDOF BLOCK.
You can nest blocks (i.e., blocks within blocks). The nesting can be up to five levels.
Statements:

 SELECTION-SCREEN BEGIN OF BLOCK BL1
 WITH FRAME TITLE TEXT-003 NO INTERVALS.
 …………….
 SELECTION-SCREEN END OF BLOCK BL1.

The text symbol TEXT-003 will contain ‘Subobjects’.

Selection screen radio buttons
Create radio buttons with labels or texts. As each radio button with its corresponding label or text has to be positioned
in a single line, you have to enclose the label or text and radio button creation statements within SELECTION-SCREEN
BEGIN OF LINE and SELECTION-SCREEN END OF LINE.

To create a radio button on a selection screen, you use a variation of the PARAMETERS statement:

PARAMETERS: <variable name> RADIOBUTTON
GROUP <radio button group name> [USER-COMMAND <user command>].

PARAMETERS: – Keyword.
<variable name> - Maximum of eight characters, must start with a letter of the alphabet, but the rest can be

alphanumeric with embedded underscores. (_)
RADIOBUTTON GROUP – Key phrase.
<radio button group name> – A radio button has to be assigned to a radio button group. A radio button group

must consist of a minimum of two radio buttons. Within a radio button group, if you click/enable one, all others in the
group get disabled. The TYPE and length of radio button variables is ‘C’ and 1. If a radio button is enabled, it assumes
the value ‘X’ and when disabled assumes a value blank or ‘ ’. A radio button group name can be a maximum of four
characters. Other rules applicable to user defined ABAP variables apply to the radio button group name.

By default, the first radio button in the group is enabled when the selection screen appears. If you want other
than the first radio button in a group to be enabled initially when the selection screen appears, you can do this by
assigning a DEFAULT ‘X’ to the radio button variable you want as enabled initially.

USER-COMMAND – Key phrase.
<user command> – Same as described in the context of push button.
You can assign a <user command> to a radio button group. This is optional. If you assign a <user command> to a

radio button group, clicking on any of the radio buttons in the group will trigger the events AT SELECTION-SCREEN,

CHAPTER 9 ■ SELECTION-SCREENS

455

AT SELECTION-SCREEN ON RADIOBUTTON GROUP <radio button group name>, etc. To assign a <user command>
to a radio button group, use the clause USER-COMMAND <user command> for the first radio button in the group only.

Statements:

 SELECTION-SCREEN BEGIN OF BLOCK BL1
 WITH FRAME TITLE TEXT-003 NO INTERVALS.

 SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS SRCE RADIOBUTTON GROUP GRP. " radio button Source
 SELECTION-SCREEN COMMENT 2(20) TEXT-004.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS VARA RADIOBUTTON GROUP GRP. " radio button Variants
 SELECTION-SCREEN COMMENT 2(20) TEXT-005.
 SELECTION-SCREEN END OF LINE.

 ……………….

 SELECTION-SCREEN END OF BLOCK BL1.

The text symbols TEXT-004 will contain ‘Source’ and TEXT-005 will contain ‘Variants’. In a like manner you will
code for the remaining three radio buttons.

Two Push Buttons on a Line
At the last, you have to create two push buttons (‘Display’, ‘Change’) on a single line. So you have to enclose the push
button creation statements within SELECTION-SCREEN BEGIN OF LINE. & SELECTION-SCREEN END OF LINE.

 Statements:

 SELECTION-SCREEN BEGIN OF LINE.

 SELECTION-SCREEN PUSHBUTTON 1(15) TEXT-009
 USER-COMMAND DISPL.

 SELECTION-SCREEN PUSHBUTTON 19(15) TEXT-010
 USER-COMMAND CHANG.

 SELECTION-SCREEN END OF LINE.

Generate a blank line through the already covered statement
Statement: SELECTION-SCREEN SKIP.

CHAPTER 9 ■ SELECTION-SCREENS

456

END OF BLOCK
The shaded area – block – has to be concluded with this statement:

Statement: SELECTION-SCREEN END OF BLOCK.

AT SELECTION-SCREEN event
In the program, you have triggered the selection screen event AT SELECTION-SCREEN. This event is triggered when
user interacts with the selection screen, such as when:

The <Enter> key is pressed.•

A selection screen push button is clicked.•

A selection screen radio button is clicked and the optional USER-COMMAND clause was used •
for this radio button group.

A selection screen check box is clicked and the optional USER-COMMAND clause was used •
for this check box.

Application toolbar or standard toolbar button is clicked, and a menu selection is made.•

You have imparted a very limited functionality to this program through this AT SELECTION-SCREEN event.
You are checking which of the selection screen push button (‘Create’, ‘Display’, or ‘Change’) is pressed and

issuing a message to this effect with the MESSAGE statement. You are determining which of the push buttons is
pressed by checking the contents of the system field SY-UCOMM against the USER-COMMAND string assigned to
each of the three push buttons. Please keep in mind that the system field SY-UCOMM is case insensitive. Do not
assign lower case USER-COMMAND strings. They will be converted to upper case.

The complete source program:

REPORT YCL_CH09_SELECTION_SCREEN01
 MESSAGE-ID YCL_CH07_MCLASS01.

**
* SLECTION-SCREEN - Create SE38 Look Alike Screen **
* Put Icon & Text On SLECTION-SCREEN Push Buttons **
* Without Usage Of Function Module 'ICON_CREATE' **
**

* generate 2 blank lines: **
* SELECTION-SCREEN SKIP 2. **
* **
* three elements on the same line: **
* (1) a label 'Program' for field **
* (2) a field (of type text box) **
* to input the program name **
* (3) a 'Create' push button **
* **
* SELECTION-SCREEN BEGIN OF LINE. **
* SELECTION-SCREEN COMMENT 1(20) TEXT-001. **
* PARAMETERS PROGRAM TYPE TRDIRT-NAME MATCHCODE OBJECT **
* VISIBLE LENGTH 30. **
* SELECTION-SCREEN PUSHBUTTON 53(15) TEXT-002 **

CHAPTER 9 ■ SELECTION-SCREENS

457

* USER-COMMAND CREAT. **
* SELECTION-SCREEN END OF LINE. **
* **
* a gap of one line i.e. **
* SELECTION-SCREEN SKIP 1. **
* **
* START block with title 'Subobjects' & shaded effect **
* extending to half the screen width: **
* **
* SELECTION-SCREEN BEGIN OF BLOCK BL1 WITH FRAME **
* TITLE TEXT-003 NO INTERVALS. **
* **
* five radio buttons. each radio button with **
* label on the same line: **
* **
* SELECTION-SCREEN BEGIN OF LINE. **
* PARAMETERS: SRCE RADIOBUTTON GROUP GRP. **
* SELECTION-SCREEN COMMENT 2(20) TEXT-004. **
* SELECTION-SCREEN END OF LINE. **
* **
* **
* a gap of one line after 5 radio buttons i.e. **
* SELECTION-SCREEN SKIP 1. **
* **
* two push buttons ('Display' & 'Change') on same line **
* **
* SELECTION-SCREEN BEGIN OF LINE. **
* SELECTION-SCREEN PUSHBUTTON 1(15) TEXT-009... **
* **
* **
* SELECTION-SCREEN END OF LINE. **
* **
* SELECTION-SCREEN END OF BLOCK BL1 **
* **

SELECTION-SCREEN SKIP 2. " 2 blank lines at top

SELECTION-SCREEN BEGIN OF LINE.
 SELECTION-SCREEN COMMENT 1(15) TEXT-001. " label 'Program'

 PARAMETERS PROGRAM TYPE TRDIRT-NAME MATCHCODE OBJECT
 YCL_CH09_TRDIRT VISIBLE LENGTH 30. " input program name

 SELECTION-SCREEN PUSHBUTTON 53(15) TEXT-002
 USER-COMMAND CREAT. " push button 'Create'
SELECTION-SCREEN END OF LINE.

SELECTION-SCREEN SKIP 1. " a blank line

SELECTION-SCREEN BEGIN OF BLOCK BL1 WITH FRAME TITLE
 TEXT-003 NO INTERVALS. " block BL1 commencement

CHAPTER 9 ■ SELECTION-SCREENS

458

 SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS SRCE RADIOBUTTON GROUP GRP. " radio button Source
 SELECTION-SCREEN COMMENT 2(20) TEXT-004.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS VARA RADIOBUTTON GROUP GRP. " radio button Variants
 SELECTION-SCREEN COMMENT 2(20) TEXT-005.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS ATTR RADIOBUTTON GROUP GRP. " radio button Attributes
 SELECTION-SCREEN COMMENT 2(20) TEXT-006.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS DOCU RADIOBUTTON GROUP GRP. " radio button Documentation
 SELECTION-SCREEN COMMENT 2(20) TEXT-007.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS TXEL RADIOBUTTON GROUP GRP. " radio button Text elements
 SELECTION-SCREEN COMMENT 2(20) TEXT-008.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN SKIP 1. " a blank line

 SELECTION-SCREEN BEGIN OF LINE.

 SELECTION-SCREEN PUSHBUTTON 01(15) TEXT-009 " @10@ Display
 USER-COMMAND DISPL. " push button 'Display'
 SELECTION-SCREEN PUSHBUTTON 19(15) TEXT-010 " @0Z@ Change
 USER-COMMAND CHANG. " push button 'Change'

 SELECTION-SCREEN END OF LINE.

SELECTION-SCREEN END OF BLOCK BL1.

AT SELECTION-SCREEN. " triggered when user interacts with
 " the Selection-Screen
CASE SY-UCOMM.
 WHEN 'CREAT'.
 MESSAGE I011 WITH 'Create'.
 WHEN 'DISPL'.
 MESSAGE I011 WITH 'Display'.
 WHEN 'CHANG'.
 MESSAGE I011 WITH 'Change'.
ENDCASE.

The text symbols screen is shown in Figure 9-3.

CHAPTER 9 ■ SELECTION-SCREENS

459

You have used the message class created in Chapter 7. You are using a single message (message number 011) to
take care of the three situations with a place holder. The place holder is receiving the button pressed info. A screen
shot of SE91 messages is shown in Figure 9-4.

Figure 9-3. Program: YCL_CH09_SELECTION_SCREEN01 – Text Symbols

Figure 9-4. Message Class: YCL_CH07_MCLASS01 – Messages

CHAPTER 9 ■ SELECTION-SCREENS

460

When the program YCL_CH09_SELECTION_SCREEN01 is executed, the screen will look like Figure 9-5.

When one of the selection screen push button is clicked, an information message (pop-up) will be issued
like Figure 9-6.

Figure 9-5. Program: YCL_CH09_SELECTION_SCREEN01 – Reproduced SE38 Screen

Figure 9-6. Program: YCL_CH09_SELECTION_SCREEN01 – Message on Button Click

CHAPTER 9 ■ SELECTION-SCREENS

461

When F4 is pressed on the field ‘PROGRAM’ with a pattern YCL_CH07* entered in the filter dialog box, the search
help selection list will appear like Figure 9-7.

The original ABAP Editor opening screen has been created using the screen painter, etc., where you have a larger
degree of control than when creating screens through selection screen statements. That is why the width of the shaded
area (block frame) might differ in the output of your program from the original of which you have tried to create a
replica. For most part, the screen of your program resembles the SE38 ABAP Editor opening screen.

Try to re-create some of the other ABAP Workbench screens: SE11, SE91, SE32, etc., to get proficient in laying the
selection screen elements.

Take care not to overlap screen elements. If screen elements are overlapped, the ABAP runtime will be unable
to generate a screen and will result in a dump if you are executing an inactive version of the program. If you have
overlapping screen elements and are activating the program, the ABAP runtime will alert with ‘error when generating
selection screen..’.

A selection screen must have a minimum of one input element for it to appear. A selection screen consisting only
of label or text, (COMMENT) blocks will not appear.

Event INITIALIZATION, Selection Screen Event – AT
SELECTION-SCREEN OUTPUT
Changing Screen Properties - Events
In screen programming environments; a common, basic requirement is changing the properties of screen elements
at runtime. This could involve enabling/disabling a field for input or making a field appear/disappear, etc. In the
selection screen environment, the properties can only be changed through the events: AT SELECTION-SCREEN
OUTPUT or INITIALIZATION.

The event INITIALIZATION is not a selection screen event. It is triggered only once when the user presses the
execute button, etc. If screen attributes need to be changed only once before the screen appears to the user for the first
time, the INITIALIZATION event can be opted for.

Figure 9-7. Program: YCL_CH09_SELECTION_SCREEN01 – Selection List on Field ‘PROGRAM’

CHAPTER 9 ■ SELECTION-SCREENS

462

The event AT SELECTION-SCREEN OUTPUT is triggered on two occasions:

 1. Before the selection screen appears to the user for the first time. Between the user pressing
the execute button and the appearance of the screen. After the INITIALIZATION event.

 2. It succeeds the event AT SELECTION-SCREEN. That is, every time the event AT
SELECTION SCREEN is triggered, it is followed by the triggering of the event AT
SELECTION-SCREEN OUTPUT.

If screen attributes need to be changed every time a user interacts with the screen (event AT SELECTION-
SCREEN), the event AT SELECTION-SCREEN OUTPUT can be opted for.

Changing Screen Properties – Data Objects SCREEN
In the ABAP screen programming environment, the runtime screen properties are maintained by the system in
an internal table of name SCREEN. There is an internal table and also a structure with the same name:
(header line) SCREEN.

The structure fields of the internal table SCREEN can be found in the PDF document ABAP Programming
(BC-ABA) under the heading ‘Setting Attributes Dynamically’. The table in this PDF document lists all the fields of the
internal table SCREEN. Alternatively, you can locate it in the ABAP online documentation under User Dialogs ➤ Screens
➤ ABAP Statements for Screens ➤ LOOP AT SCREEN. (Make a habit of visiting the ABAP on-line help F1 as frequently
as you can.) This internal table will contain one row for each of the screen elements. The first field in the structure
‘NAME’ contains the screen element name as identifier, and the rest of the 14 (very few compared to other platforms)
fields are the various attributes of a screen element. Here, a partial list of these fields of structure SCREEN is reproduced:

Table 9-1. Few Fields of Internal Table Structure SCREEN

Field Name Type, Length Description

NAME C, 30 Name of the screen element. Like when you created a PARAMETER variable of
name ‘PROGRAM’, this name of the screen element/variable will be stored in
this field.

GROUP1 C, 3 Modification Group I (will be explained subsequently in this chapter).

INPUT C, 1 Whether the screen field is enabled / disabled for input. A flag variable: assumes
1/0 values. By default is set to 1.

OUTPUT C, 1 Whether the screen field is displayed or not. A flag variable: assumes 1/0 values.
By default is set to 1.

INVISIBLE C, 1 Whether the screen field is invisible / visible. A flag variable: assumes 1/0
values. By default is set to 0.

ACTIVE C, 1 Whether the screen field is active or not. A flag variable: assumes 1/0 values.
By default is set to 1.

Changing Screen Properties – Operations on Data Objects SCREEN
You can perform limited operations on these system maintained data objects SCREEN. You can:

 1. Set up LOOP AT SCREEN…ENDLOOP.

 2. Assign values to the different fields of the structure SCREEN. Assigning values to the field
SCREEN-NAME is not advisable.

 3. Perform MODIFY (update internal table) statement on the internal table SCREEN.

CHAPTER 9 ■ SELECTION-SCREENS

463

Apart from these, you cannot perform any other operations on the internal table SCREEN. You cannot perform
READ, INSERT, APPEND, DELETE, CLEAR, REFRESH, FREE, etc. You cannot have LOOP AT ASSIGNING…ENDLOOP.

The permitted operations on the internal table SCREEN are sufficient to be able to change the attributes of
screen elements.

Let a very simple exercise be performed to demonstrate the event AT SELECTION-SCREEN OUTPUT along with
the manipulation of the internal table SCREEN to change properties of screen elements.

In the PDF document ABAP Programming (BC-ABA), under the heading ‘Setting Attributes Dynamically’, there
is a table listing out the screen behavior for different values of the screen attribute fields ACTIVE, INPUT, OUTPUT,
INVISIBLE. By default the fields ACTIVE, INPUT, OUTPUT are set to 1 and INVISIBLE is set to 0. If all the four fields
ACTIVE, INPUT, OUTPUT, INVISIBLE are set to 1, the field assumes the password mode and entered values are invisible.

So in an ABAP program with a single input field, let the event INITIALIZATION be triggered. In this event for the
input field screen element, let the field attribute INVISIBLE be set to 1 and use the MODIFY statement to alter the
internal table row. This should set the input field to password mode.

The source program:

REPORT YCL_CH09_SELECTION_SCREEN02.

* Demo INITIALIZATION event, LOOP AT SCREEN Etc. **
* to change screen element properties **

SELECTION-SCREEN SKIP 5.

SELECTION-SCREEN BEGIN OF LINE.
SELECTION-SCREEN COMMENT 1(12) COMMENT1. "label
PARAMETERS: PASS_WRD(10) TYPE C. " input field
SELECTION-SCREEN END OF LINE.

**
INITIALIZATION.
COMMENT1 = 'Pass word:'(001). " this notation means use text symbol
 " TEXT-001 if it exists. if it does not
 " exist, use the literal text
LOOP AT SCREEN.

 IF SCREEN-NAME = 'PASS_WRD'. " there are two screen elements
 " COMMENT1 & PASS_WRD. we are interested
 " to change properties of PASS_WRD only
 SCREEN-INVISIBLE = '1'.
 MODIFY SCREEN.
 ENDIF.

ENDLOOP.

A new notation has been used for assignment of text to COMMENT1:

COMMENT1 = 'Pass word:'(001).

(See the code in the INITIALIZATION event)
This notation means, use the text of text symbol id. TEXT-001 if it exists. If the text symbol id. does not exist, use

the literal text. It ensures that a text is always assigned to an element.

CHAPTER 9 ■ SELECTION-SCREENS

464

When you execute this program, the screen will look like Figure 9-8.

Figure 9-8. Program: YCL_CH09_SELECTION_SCREEN02 – Screen

Figure 9-9. A Screen for Mode of Payment

This was a demonstration of the event INITIALIZATION.
When you are on the selection screen of this code, if you press <Enter> key, the ‘INVISIBLE’ property of the

screen element ‘PASS_WRD’ gets set to 0 and the entered valued in the field become visible. The ‘INVISIBLE’ property
has to be set to 1 in the event AT SELECTION-SCREEN OUTPUT to ensure the entered values in the field ‘PASS_WRD’
remains invisible. This is implemented in the program YCL_CH09_SELECTION_SCREEN02_VR. The program is not
listed here but is available in the E-Resource.

Changing Screen Properties Using Event AT SELECTION-SCREEN
OUTPUT (A Simple Payment Mode Scenario)
A demonstration of changing the screen attributes using the event AT SELECTION-SCREEN OUTPUT with a scenario:

Scenario
You want to represent a mode of payment on the selection screen. The mode of payments can be either by (a) Cash,
(b) Check, or (c) Credit Card. This can be represented on the screen by three radio buttons with labels like Figure 9-9.

If the mode of payment is by check, you want a further input field for the check number. The check number input
field should be enabled for input only if the radio button corresponding to the mode of payment by check is enabled.
If the mode of payment by check radio button is disabled, the input field for check number should be disabled.

CHAPTER 9 ■ SELECTION-SCREENS

465

Similarly, if the mode of payment is by credit card, you want a further input field for the credit card number. The
credit card number input field should be enabled for input only if the radio button corresponding to the mode of
payment by credit card is enabled. If the mode of payment by credit card radio button is disabled, the input field for
credit card number should be disabled.

If the mode of payment is by cash, both the input fields check number and credit card number should be
disabled for input.

Since you want the selection screen to interact when radio buttons are clicked, you should use the optional
reserved phrase USER-COMMAND and assign <user command> to the radio button group.

The screen could look like Figure 9-10.

Figure 9-10. Mode of Payment, Proposed Screen

The properties should be changed in the event AT SELECTION-SCREEN OUTPUT. This is because properties
need to be changed every time a user interacts with the selection screen by clicking on one of the radio buttons. The
event INITIALIZATION will not help.

Since the radio button group has been assigned <user command>, clicking one of them in the group will trigger
the event AT SELECTION-SCREEN. You don’t want to have any action/code for this event. This event is succeeded by
the event AT SELECTION-SCREEN OUTPUT. You need to manipulate the properties of the selection screen elements
in this event. In effect, this is a manipulation of the internal table SCREEN with LOOP AT SCREEN…. and MODIFY
statements.

We are interested in changing the properties of only two selection screen elements: the check number and the
credit card number. You have to enable/disable these elements depending on the values of the three radio buttons
corresponding to cash, check, and credit card. The enabling/disabling of input is carried by assigning values 1/0 to the
field INPUT of the internal table SCREEN.

If the cash radio button is enabled, both the fields check number and credit card number should be disabled
for input.

If the check radio button is enabled, the field check number should be enabled for input and the field credit card
number should be disabled for input.

If the credit card radio button is enabled, the field credit card number should be enabled for input and the field
check number should be disabled for input.

CHAPTER 9 ■ SELECTION-SCREENS

466

Your pseudo code in the selection screen event at SELECTION-SCREEN OUTPUT should look like:

LOOP AT SCREEN.

IF SCREEN-NAME <> <cheque no> AND SCREEN-NAME <> <credit card no>.
 CONTINUE. " properties of <cheque no>, <credit card no> only to be changed
ENDIF.

IF <cash radio button> = 'X'. " <cash radio button> enabled
 SCREEN-INPUT = 0.
 <cheque no> = ' '.
 <credit card no> = ' '.

ELSEIF <cheque radio button> = 'X' AND SCREEN-NAME = <cheque no>.
 SCREEN-INPUT = 1.
 <credit card no> = ' '.

ELSEIF <cheque radio button> = 'X' AND SCREEN-NAME = <credit card no>.
 SCREEN-INPUT = 0.

ELSEIF <credit card radio button> = 'X' AND SCREEN-NAME = <credit card no>.
 SCREEN-INPUT = 1.
 <cheque no> = ' '.

ELSEIF <credit card radio button> = 'X' AND SCREEN-NAME = <cheque no>.
 SCREEN-INPUT = 0.
ENDIF.
 MODIFY SCREEN.

ENDLOOP.

You are already familiar with selection screen layout statements, so there will be no explanations of the layout
statements here. You have located all the elements within a selection screen block to enhance the screen appearance.

You have assigned explicitly DEFAULT ‘X’ to the cash radio button variable ‘CASH_RB’. In SAP R/3 earlier
versions, if you do not do so, the initial appearance of selection screen is not proper. At the time the event AT
SELECTION-SCREEN OUTPUT is triggered for the first time, before the screen appears to the user for the first time,
the values of all the radio buttons are indeterminate if no explicit DEFAULT has been assigned. The implicit DEFAULT
‘X’ is assigned only after the event AT SELECTION-SCREEN OUTPUT. To ensure that the radio buttons do not have
indeterminate values at the time of first triggering of the event AT SELECTION-SCREEN OUTPUT, you have added the
DEFAULT ‘X’ clause for cash radio button variable ‘CASH_RB’.

The source code:

 REPORT YCL_CH09_SELECTION_SCREEN03.

 * Demo AT SELECTION-SCREEN OUTPUT To Change Properties **
 * Of Screen Elements **

 SELECTION-SCREEN SKIP 2.

CHAPTER 9 ■ SELECTION-SCREENS

467

 SELECTION-SCREEN BEGIN OF BLOCK BLK1 WITH FRAME TITLE
 TEXT-001 NO INTERVALS.

 SELECTION-SCREEN BEGIN OF LINE.

 PARAMETERS CASH_RB RADIOBUTTON GROUP MOP DEFAULT 'X'
 USER-COMMAND RBCLICK.

 SELECTION-SCREEN COMMENT 3(20) TEXT-002.

 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.

 PARAMETERS CHEQ_RB RADIOBUTTON GROUP MOP.
 SELECTION-SCREEN COMMENT 3(15) TEXT-003.
 SELECTION-SCREEN COMMENT 20(15) TEXT-004.
 PARAMETERS CHQNO(12) TYPE C.

 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.

 PARAMETERS CCRD RADIOBUTTON GROUP MOP.
 SELECTION-SCREEN COMMENT 3(15) TEXT-005.
 SELECTION-SCREEN COMMENT 20(15) TEXT-006.
 PARAMETERS CCRDNO(16) TYPE C.

 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN END OF BLOCK BLK1.
 **

 AT SELECTION-SCREEN OUTPUT.

 LOOP AT SCREEN.

 IF SCREEN-NAME <> 'CHQNO' AND SCREEN-NAME <> 'CCRDNO'.
 CONTINUE. " changing properties of only 'CHQNO' & 'CCRDNO'
 ENDIF.

 IF CASH_RB = 'X' .
 SCREEN-INPUT = 0.
 MOVE ' ' TO CCRDNO.
 MOVE ' ' TO CHQNO.

 ELSEIF SCREEN-NAME = 'CHQNO' AND CHEQ_RB = 'X'.
 SCREEN-INPUT = 1.
 MOVE ' ' TO CCRDNO.

CHAPTER 9 ■ SELECTION-SCREENS

468

 ELSEIF SCREEN-NAME = 'CHQNO' AND CHEQ_RB = ' '.
 SCREEN-INPUT = 0.

 ELSEIF SCREEN-NAME = 'CCRDNO' AND CCRD = 'X'.
 SCREEN-INPUT = 1.
 MOVE ' ' TO CHQNO.

 ELSEIF SCREEN-NAME = 'CCRDNO' AND CCRD = ' '.
 SCREEN-INPUT = 0.

 ENDIF.

 MODIFY SCREEN.

 ENDLOOP.

The text symbol screen is shown in Figure 9-11.

When the check/credit card radio buttons are enabled in turn, the screens will look like Figure 9-12 and 9-13.

Figure 9-11. Program: YCL_CH09_SELECTION_SCREEN03 – Text Symbols

CHAPTER 9 ■ SELECTION-SCREENS

469

This concludes the demonstration of the selection screen event AT SELECTION-SCREEN OUTPUT.

Selection Screen Event – AT SELECTION-SCREEN ON
VALUE-REQUEST FOR <field>
Whenever you wanted to provide the user, for a screen field, the facility of making a selection from a pop-up list
instead of manually entering a value for the field, you have attached search help to the field (MATCHCODE OBJECT
etc.). Often, when you are declaring screen fields by referring to DDIC table fields, search helps have been inherited
from the original DDIC fields (KNA1-KUNNR is one such instance). You are able to provide a pop-up selection list
by creating fixed values in the DDIC domain. (An option you should exercise only if these values are few: maximum
of 25–30, and these values do not change over time, so there is no necessity for maintenance of these values.)

You must remember that search helps derive their list data from the SAP database: tables and views. The DDIC
domain fixed values are also part of the SAP database. If you want to present the user with a list whose data is not
derived from the SAP database, obviously the search helps will not be relevant. An example of presenting the user with
non-SAP database data: present the user with a dialog box for making a selection of a folder on presentation server.

Figure 9-12. Program: YCL_CH09_SELECTION_SCREEN03 – Radio Button Check Enabled

Figure 9-13. Program: YCL_CH09_SELECTION_SCREEN03 – Radio Button Credit Card Enabled

CHAPTER 9 ■ SELECTION-SCREENS

470

There might be scenarios where you want to present the user with a much more sophisticated filter dialog box
than search helps can provide. You will write complex sophisticated coding to provide the sophisticated filter
dialog boxes.

It is in these contexts in the selection screen environment, that you will trigger the event AT SELECTION-SCREEN
ON VALUE-REQUEST FOR <field>.

This event is demonstrated to make a folder selection from the presentation server. The event is triggered for a
specific selection screen field, which you indicate following the key word FOR.

You input a folder field (PARAMETERS FOLDER(50) TYPE C).
You are triggering the AT SELECTION-SCREEN ON VALUE-REQUEST FOR the screen field FOLDER.
In the triggered event AT SELECTION-SCREEN ON VALUE-REQUEST FOR FOLDER, you are calling the function

module: TMP_GUI_BROWSE_FOR_FOLDER. This function module presents the user (on pressing F4 in the field
FOLDER) with presentation server folder selection dialog box and returns to the calling program the selected
folder name.

The function module accepts two optional import parameters:

WINDOW_TITLE

INITIAL_FOLDER

The function module returns one export parameter:

SELECTED_FOLDER.

On successful return from function module, (SY-SUBRC = 0) you are issuing a message of what folder was
selected. You are using the message number 012 of message class YCL_CH07_MCLASS01 created in Chapter 7.

The source code of program triggering, using the event: AT SELECTION-SCREEN ON VALUE-REQUEST FOR <field>.

REPORT YCL_CH09_SELECTION_SCREEN04.

**
* Demo AT SELECTION-SCREEN ON VALUE-REQUEST FOR <field> Event **
**

SELECTION-SCREEN BEGIN OF BLOCK BL1 WITH FRAME TITLE
 TEXT-001.

SELECTION-SCREEN SKIP 2.
PARAMETERS FOLDER(50) TYPE C.

SELECTION-SCREEN SKIP 2.
SELECTION-SCREEN END OF BLOCK BL1.
**
AT SELECTION-SCREEN ON VALUE-REQUEST FOR FOLDER.

CALL FUNCTION 'TMP_GUI_BROWSE_FOR_FOLDER'
 EXPORTING
 WINDOW_TITLE = 'Select Folder'
* INITIAL_FOLDER =
 IMPORTING
 SELECTED_FOLDER = FOLDER
 EXCEPTIONS
 CNTL_ERROR = 1
 OTHERS = 2
 .

CHAPTER 9 ■ SELECTION-SCREENS

471

IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ELSE.
 MESSAGE S012(YCL_CH07_MCLASS01) WITH FOLDER.

ENDIF.

The initial selection screen will look like Figure 9-14.

Figure 9-14. Program: YCL_CH09_SELECTION_SCREEN04 – Initial Selection Screen

Figure 9-15. Program: YCL_CH09_SELECTION_SCREEN04 – F4 on Field ‘FOLDER’

On pressing F4 in the selection screen field ‘FOLDER’, the screen will appear like Figure 9-15.

After making a folder selection, the screen will look like Figure 9-16.

CHAPTER 9 ■ SELECTION-SCREENS

472

This was a demonstration of the SELECTION-SCREEN event: AT SELECTION-SCREEN OUTPUT.

Selection Screen Event – AT SELECTION-SCREEN ON HELP
REQUEST FOR <field>
The Origins of F1 Help on a Screen Field
When you press the function key F1 on any screen field in the SAP environment, a screen or window titled
‘Performance Assistant’ pops up. This is the documentation of the field. Normally, a screen field in the SAP
environment is associated with DDIC data element and domain. This documentation is normally fetched from the
documentation created in DDIC data element.

To know the data element of a screen field, press function key F1. The ‘Performance Assistant’ screen appears.
On the ‘Performance Assistant’ screen, click on the button , and a window entitled ‘Technical Information’

appears. The data element of the screen field is available on this ‘Technical Information’ window.
You have done this exercise for the field ‘Database table’ on the SE11 opening screen. You positioned the cursor

on the field ‘Database table’ on the SE11 opening screen and pressed the function key F1. The ‘Performance Assistant’
screen as shown in Figure 9-17.

Figure 9-16. Program: YCL_CH09_SELECTION_SCREEN04 – Folder Selection

CHAPTER 9 ■ SELECTION-SCREENS

473

Clicking the button on the screen will make ‘Technical Information’ window appear as shown in Figure 9-18.

Figure 9-17. Screen ‘Performance Assistant’ On Pressing F1 on Field Database Table of SE11 Opening Screen

Figure 9-18. Technical Information of Field Database Table of SE11 Opening Screen

CHAPTER 9 ■ SELECTION-SCREENS

474

The data element for the field ‘Database table’ on the SE11 opening screen is ‘TABNAME16’ highlighted in
Figure 9-18.

If you open the screen for the data element ‘TABNAME16’, it will look like Figure 9-19.

Figure 9-19. Data Element: ‘TABNAME16’ – Goto ➤ Documentation

On the data element screen, if you select the menu option: Goto ➤ Documentation ➤ Display as shown in
Figure 9-19, you will have the same screen as in Figure 9-17, the screen that appeared when you pressed function
key F1 on the field ‘Database table’ of the SE11 opening screen. In the data element, there is provision to create
documentation. This documentation appears by default when the user presses the function key F1 on a screen field
assigned to the data element.

Situation for the Event: AT SELECTION-SCREEN ON HELP REQUEST
FOR <field>
You will trigger the event AT SELECTION-SCRREN ON HELP REQUEST FOR <field> for a specific selection screen
field, where you do not want the default documentation created in data element associated with the screen field to
be displayed. You want some alternative text to be displayed. You will fetch the text from its origin and create the
requisite coding to display the custom text when the user presses the function key F1 on the specified selection
screen field.

There is no hands-on exercise for this event. The basic concept has been described here.

CHAPTER 9 ■ SELECTION-SCREENS

475

Selection Screen Event – AT SELECTION-SCREEN ON <field>
You can validate a selection screen field and report error of invalid field value by triggering the event AT SELECTION
SCREEN On <field name>. When reporting the error, the selection screen disables all the fields for input except the
field with the invalid value. If validation is being performed on more than one selection screen field, the physical
order of fields on the selection screen will determine the order of error reporting. At this time, error for only one field
will be reported. On correction of the value of error field, error of subsequent field/s, if any, will be reported.

This is being demonstrated with the program YCL_CH09_SELECTION-SCREEN05.
In this program, the selection screen has three fields: NAME1, KUNNR, and ORT01 in this order (through the

PARAMETERS statement). You are triggering the event AT SELECTION-SCREEN on <field name> for the fields
KUNNR and ORT01. You are checking for INITIAL value in these fields and issuing error message (message type ‘E’).

The system will issue error message if KUNNR contains INITIAL value. The field KUNNR will be enabled for
input, and the other two fields NAME1 and ORT01 are disabled for input.

On entering a value in the field KUNNR, with INITIAL value in the field ORT01, the event AT
SELECTION-SCREEN ON ORT01 will be triggered. An error message will be issued, the field ORT01 will be enabled
for input, and other fields NAME1 and KUNNR will be disabled for input.

The source program:

REPORT YCL_CH09_SELECTION_SCREEN05.

* Demo AT SELECTION-SCREEN ON <field name> **

**
* you are triggering the event AT SELECTION-SCREEN ON <field name>**
* for two fields: (1) KUNNR (2) ORT01. the event for ORT01 is **
* positioned first and then event for KUNNR. this positioning of **
* events is immaterial. since KUNNR is positioned on the selection**
* first, the event AT SELECTION-SCREEN ON KUNNR will be triggered **
* first followed by the event AT SELECTION-SCREEN ON ORT01 **
* **
* which ever validating first field triggers error will be **
* reported. on correction of this field's error, error of **
* subsequent field if any will be reported. at any time only **
* one field's error will be reported **
**

PARAMETERS: NAME1 TYPE KNA1-NAME1,
 KUNNR TYPE KNA1-KUNNR,
 ORT01 TYPE KNA1-ORT01.

AT SELECTION-SCREEN ON ORT01.

IF ORT01 IS INITIAL.
 MESSAGE E013(YCL_CH07_MCLASS01).
ENDIF.
**
AT SELECTION-SCREEN ON KUNNR.

IF KUNNR IS INITIAL.
 MESSAGE E013(YCL_CH07_MCLASS01).
ENDIF.

CHAPTER 9 ■ SELECTION-SCREENS

476

With INITIAL value in field KUNNR, pressing the <Enter> key will have the screen look like Figure 9-20.

Figure 9-20. Program: YCL_CH09_SELECTION_SCREEN05 – Field KUNNR Blank

With a non-blank value the field KUNNR and INITIAL value in field ORT01, pressing the <Enter> key will have
the screen look like Figure 9-21.

Figure 9-21. Program: YCL_CH09_SELECTION_SCREEN05 – Field ORT01 Blank

CHAPTER 9 ■ SELECTION-SCREENS

477

This program is contrived to demonstrate the event AT SELECTION-SCREEN on <field name>. There is a simpler
way to check for blank fields. You can use the addition clause OBLIGATORY with the PARAMETERS statement. (It is
obligatory or mandatory to enter values in the fields having the addition clause OBLIGATORY.) The system will check
for INITIAL values in the fields and report INITIAL value error. The syntax:

PARAMETERS <field name> {TYPE | LIKE} {<ABAP elementary TYPE> |
<TYPE or data object>} OBLIGATORY.

Example: PARAMETERS KUNNR TYPE KUNNR OBLIGATORY.
But this check by the ABAP runtime system will not disable other fields for input after the error. And if you want

custom message to be issued, you will opt for the triggering of event AT SELECTION-SCREEN ON <field name>.
Moreover, you confined yourselves to validating the fields not containing INITIAL values. Validation would in real life
consist of checking against a set of values (in a check table, etc.) and more. In the present program, the objective was
to highlighted in a simple way: the event AT SELECTION-SCREEN ON <field name>.

The program YCL_CH09_SELECTION_SCREEN05VR demonstrates the addition OBLIGATORY. The program is
not listed here but can be found in the E-Resource.

An obligatory or mandatory field in the SAP environment is signified by .

Selection Screen Event – AT SELECTION-SCREEN ON BLOCK
<block name>
If on the selection screen, you want validation to apply on multiple fields, you can locate these fields in a block and
trigger the event AT SELECTION-SCREEN ON BLOCK <block name>.

Consider the customer info database table KNB1. This table stores the company code of customers. If you look
up the primary key fields of this table, they are ‘MANDT’, ‘KUNNR’, and ‘BUKRS’. The same customer code can exist for
multiple company codes.

If you want to validate the existence of field values in the table KNB1, you have to provide the values of the two
primary key fields: ‘KUNNR’ and ‘BUKRS’ (the field ‘MANDT’ value is implicitly the value of the logged-in client).

The hands-on exercise is doing exactly this. On the selection screen, you have the two fields ‘KUNNR’ and
‘BUKRS’ located inside the block ‘BLK1’. You are triggering the event AT SELECTION-SCREEN ON BLOCK BLK1.
In this event, you are using the SELECT SINGLE… statement to ascertain whether the combination of the two field
values entered on the selection screen exists in the database table KNB1. In case the combination of selection screen
field values do not exist in the database table KNB1, (SY-SUBRC <> 0), you are issuing an error message. This will
enable only the two fields inside the block ‘BLK1’ for input; all other fields outside the block on the selection screen
are disabled for input.

You are referring to the DDIC structure fields: ‘RF02D-KUNNR’ and ‘RF02D-BUKRS’ when defining the selection
screen fields ‘KUNNR’ and ‘BUKRS’. The search help ‘DEBI’ is attached to the structure field: ‘RF02D-KUNNR’. (Recall
the collective search help DEBI you reviewed in Chapter 3.) The definition of selection screen fields by reference to the
structure ‘RF02D’ fields is enabling you to have a selection pop-up list on the selection screen field ‘KUNNR’. It is also
enabling the export of multiple fields [‘KUNNR’ and ‘BUKRS’ for collective search help tab ‘Customers (by company
code)’] from the search help to the selection screen fields. For some reason the field ‘KUNNR’ in the structure ‘RF02D’
is DDIC TYPE CHAR and length 16, whereas in the database tables KNA1 and KNB1, the field ‘KUNNR’ is DDIC TYPE
CHAR and length 10. This is being taken care before the SELECT statement is issued in the event AT SELECTION-
SCREEN ON BLOCK BLK1.

CHAPTER 9 ■ SELECTION-SCREENS

478

The source program:

REPORT YCL_CH09_SELECTION_SCREEN06.

* Demo AT SELECTION-SCREEN ON BLOCK <block name> **

DATA: KEY_KUNNR TYPE KUNNR.

PARAMETERS: NAME1 TYPE KNA1-NAME1.

SELECTION-SCREEN BEGIN OF BLOCK BLK1 WITH FRAME.

PARAMETERS: KUNNR TYPE RF02D-KUNNR, " combination of these two fields
 BUKRS TYPE RF02D-BUKRS. " checked for in the table KNB1

SELECTION-SCREEN END OF BLOCK BLK1.

SELECTION-SCREEN BEGIN OF BLOCK BLK2 WITH FRAME.

PARAMETERS: STRAS TYPE KNA1-STRAS,
 ORT01 TYPE KNA1-ORT01.

SELECTION-SCREEN END OF BLOCK BLK2.

AT SELECTION-SCREEN ON BLOCK BLK1.

 KEY_KUNNR = KUNNR+6(10). " adjust for KUNNR length being 16

 SELECT SINGLE KUNNR BUKRS FROM KNB1 INTO (KUNNR, BUKRS)
 WHERE KUNNR = KEY_KUNNR AND BUKRS = BUKRS.

 IF SY-SUBRC <> 0.
 MESSAGE E014(YCL_CH07_MCLASS01) WITH KUNNR BUKRS.
 ENDIF.

When the user presses F4 on the field ‘KUNNR’, the screen will appear like Figure 9-22.

CHAPTER 9 ■ SELECTION-SCREENS

479

On pressing <Enter> key on this dialog box, the screen will appear like Figure 9-23.

Figure 9-23. Program: YCL_CH09_SELECTION_SCREEN06 – F4 Customer List

Figure 9-22. Program: YCL_CH09_SELECTION_SCREEN06 – F4 on Field KUNNR

CHAPTER 9 ■ SELECTION-SCREENS

480

Figure 9-25. Program: YCL_CH09_SELECTION_SCREEN06 – Invalid Values in Block Fields

Figure 9-24. Program: YCL_CH09_SELECTION_SCREEN06 – Selection Screen after Making Selection from List

After making a selection, (the very first highlighted entry in the list – customer code 484, company code 3000), the
values of customer code and company code are transferred from list to the screen fields. The screen after selection will
look like Figure 9-24.

If you deliberately change the selection screen field values as to be invalid and press <enter> key, the event AT
SELECTION-SCREEN ON BLOCK BLK1 is triggered, and the values do not exist in the database table KNB1 – the error
message is issued and only the fields within the block ‘BLK1’ are enabled for input. The screen will look like Figure 9-25.

This concludes the coverage of event AT SELECTION-SCREEN ON BLOCK <block name>.

CHAPTER 9 ■ SELECTION-SCREENS

481

SELECTION-SCREEN Complex and Multiple
Selections – SELECT-OPTIONS
The PARAMETERS statement enables a user to enter single values. On the basis of this single value, you can in the
SELECT statement use the operators EQ, NE, GT, LT, GE, and LE (or their equivalent mathematical operators) to filter
out data. Of course you can have multiple PARAMETERS input prompt statements/variables that you can use to filter
data with SELECT statement.

With the selection screen statement: SELECT-OPTIONS, a user can make complex multiple value selections
for a variable.

SELECT-OPTIONS – Syntax
The syntax of the SELECT-OPTIONS statement

SELECT-OPTIONS <variable name> FOR
 { <local data object> | (<data object>) }
 [OBLIGATORY]
 [VISIBLE LENGTH]
 [NO INTERVALS]
 [NO-EXTENSION]
 [DEFAULT <default value>]
 [LOWER CASE]
 [MATCHCODE OBJECT <search help name>]
 [<more addition clauses>]...

SELECT-OPTIONS – Key phrase.
<variable name> - A variable name can be maximum of eight characters, has to start with an alphabet letter, but

the rest can be alphanumeric with embedded underscores (_).
FOR – Keyword.
<local data object> - A field or an elementary data object defined in the ABAP program.
<data object> – A field or an elementary data object in ABAP program (TYPE: C/STRING) that has been assigned the

name of a global/DDIC field like ‘LFA1-LIFNR’. This <data object> is to be enclosed in parentheses as part of the syntax.
The addition clauses OBLIGATORY, VISIBLE LENGTH, DEFAULT, LOWER CASE, MATCHCODE OBJECT <search

help name> have been introduced in the context of the PARAMETERS statement and carry the same meaning here
except DEFAULT has some more additions or options here and will be explained in subsequent TEXT.

The additions NO INTERVALS, NO-EXTENSION will be explained, along with <more addition clauses>…
Let the SELECT-OPTIONS be elaborated with a simple example:

SELECT-OPTIONS – Data objects
Consider the following code:

DATA: KUNNR TYPE KUNNR.

SELECT-OPTIONS: CUST_CD1 FOR KUNNR.

When a selection screen statement SELECT-OPTIONS is made in the manner as in the preceding code lines, the
system internally creates two data objects of the same name ‘CUST_CD1’:

 1. CUST_CD1 – a structure.

 2. CUST_CD1 – an internal table – called the selection table.

CHAPTER 9 ■ SELECTION-SCREENS

482

The structure ‘CUST_CD1’ contains the following four fields with their TYPES and lengths:

SIGN(1) TYPE C, " this field can take two values:-
 " 'I' for include
 " 'E' for exclude

OPTION(2) TYPE C, " this field can take the following values:-
 " 'EQ','NE','GT','GE','LT','LE','CP','NP' & 'BT','NB'

LOW LIKE KUNNR,
HIGH LIKE KUNNR.

 1. The first field ‘SIGN’ of structure ‘CUST_CD1’ is TYPE C and length 1. It can assume only

two values: ‘I’ for inclusion of values, ‘E’ for exclusion of values.

 2. The second field ‘OPTION’ of structure ‘CUST_CD1’ is TYPE C, length 2. It can assume
a value from either one of the two sets of values depending on whether the fourth field
‘HIGH’ has INITIAL value or NON-INITIAL value.

If the field ‘HIGH’ has INITIAL value, the second field ‘OPTION’ can assume one of the following values:

EQ Equal To

NE Not Equal To

GT Greater Than

LT Less Than

GE Greater Than or Equal To

LE Less Than or Equal To

CP Contains Pattern

NP Does Not Contain Pattern

If the field ‘HIGH’ has NON-INITIAL value, the second field ‘OPTION’ can assume one of the following values:

BT Between

NB Not Between

 3. The third field ‘LOW’ of structure ‘CUST_CD1’ derives it attributes from the field or data
object specified after the keyword ‘FOR’. In the present example, you have specified the ABAP
program field/data object ‘KUNNR’ The ABAP field ‘KUNNR’ has been declared referring to
the DDIC data element ‘KUNNR’. Hence, the field ‘LOW’ of structure ‘CUST_CD1’ has all the
attributes of the data element ‘KUNNR’ including the attached search help ‘C_KUNNR’
(refer to data element ‘KUNNR’, tab: ‘Further Characteristics’).

 4. Like the third field ‘LOW’, the fourth field ‘HIGH’ of structure ‘CUST_CD1’ derives its
attributes from the field or data object specified after the key word ‘FOR’.

If for a row in the selection table ‘CUST_CD1’, the fields ‘LOW’ and ‘HIGH’ have values, it serves as a range of
value selection: the ‘LOW’ field having the start value of the range, the ‘HIGH’ field having the end value of the range.
In this case, the field ‘HIGH’ must contain value greater than or equal to the value in the field ‘LOW’.

If for a row in the selection table ‘CUST_CD1’, the field ‘LOW’ has a value and the field ‘HIGH’ has INITIAL value,
this serves as a single value selection.

CHAPTER 9 ■ SELECTION-SCREENS

483

Having described the data object aspect of the selection screen statement: SELECT-OPTIONS, let the selection
screen input prompts and the associated dialog boxes aspect be described next.

SELECT-OPTIONS – Screens, Prompts And Dialog Boxes
When the simple code lines introduced in the preceding head: SELECT_OPTIONS – Data Objects is executed, a screen
appears as in Figure 9-26.

Figure 9-27. SELECT-OPTIONS: CUST_CD1 – Multiple Selection Dialog Box, ‘Select Single Values’ tab

Figure 9-26. SELECT-OPTIONS: CUST_CD1 – Opening Screen

The screen has input prompts for the fields ‘LOW’ and ‘HIGH’. On the extreme right it has the ‘Multiple selection’
button. Clicking on this ‘Multiple selection’ button, the dialog box as in Figure 9-27 will appear.

Tabs: The multiple selection dialog box has four tabs:

 1. ‘Select Single Values’: If you enter values (one value in each row), each value will be entered
as one row in the selection table CUST_CD1. The value will map to the field ‘LOW’. The field
‘HIGH’ will contain INITIAL value. The field ‘SIGN’ will assume a value ‘I’ (Include). The
field ‘OPTION’ will assume a default value of ‘EQ’. If you want other of the values such as
‘NE’, ‘GT’, ‘LT’, ‘GE’, or ‘LE’ to be assigned, you have to click on the button – ‘Maintain
Select Options’ (function key F2) to make a selection. You can use the operators CP, NP
(contains pattern, etc.) if you end a row value with ‘*’ or ‘+’. See Figure 9-28.

CHAPTER 9 ■ SELECTION-SCREENS

484

Figure 9-29. SELECT-OPTIONS: CUST_CD1 – Multiple Selection Dialog Box, tab ‘Select Intervals’

Figure 9-28. SELECT-OPTIONS: CUST_CD1 – ‘Select Single Values’ tab, ‘Maintain Select Options’ Dialog Box

 2. ‘Select Intervals’: If you click on this tab, you can enter range of values (Figure 9-29). Each
range of values will be entered as one row in the selection table CUST_CD1. The value
entered on the left side field will map to the field ‘LOW’, the value entered on the right side
field will map to the field ‘HIGH’. The field ‘HIGH’ on any row should contain a value
greater than or equal to the value on the corresponding left side field: that is, ‘LOW’.
(CUST_CD1-HIGH GE CUST_CD1-LOW on any row.) The field ‘SIGN’ will assume a value
‘I’ (Include). The field ‘OPTION’ will assume a default value of ‘BT (Between). If you want
other of the values such as ‘NB’ (not between) to be assigned, you have to click on the

button – ‘Maintain Selection Options’ (function key F2) to make a selection. See Figure 9-30.

CHAPTER 9 ■ SELECTION-SCREENS

485

3. And 4. are similar to 1. and 2., respectively, except that the field ‘SIGN’ will take a value of ‘E’ (Exclude). For the
first two tabs the field ‘SIGN’ will have value ‘I’ and for the last two tabs the field ‘SIGN’ will have value ‘E’.

Buttons at the Bottom of the Dialog Box: A brief on the buttons at the bottom of the multiple selection
dialog box:

 Accept entered values, close the multiple selection dialog box, and go back to selection screen.

 Check or validate entered values (values are validated. HIGH LOW, etc.)

 Maintain Select Options. You can select an operator from a list (EQ, NE…).

 Insert/Delete rows.

 Delete all values.

 Help.

 Clicking on the button will bring up the value selection/filter dialog box of a

search help, if any.

 Import values from a text file on presentation server.

 Paste from clipboard.

 Cancel, close the multiple selection dialog box.

This is about the SELECT-OPTIONS input prompts and dialog boxes.

Figure 9-30. SELECT-OPTIONS: CUST_CD1 – tab ‘Select Intervals’, ‘Maintain Select Options’ Dialog Box

CHAPTER 9 ■ SELECTION-SCREENS

486

SELECT-OPTIONS –Selection Table In WHERE Condition of
SELECT Statement
How the SELECT-OPTIONS variable – selection tables operates with the SELECT statement be described.

Let there be a simple scenario. Let it be assumed that you are listing your customers: customer code, customer
name, customer city, etc., from the database table KNA1. You will output only the customers selected through the
complex multiple selections of SELECT-OPTIONS CUST_CD1.

Suppose you want to list only the following individual and range of customer codes:

Include 255

Include 260

Include 470

Include 1001 to 7000

Include 300001 to 399999

Exclude 3201 to 3300

In effect, you have three include single values; two include range values and one exclude range value. Include
single values will be entered in the tab ‘Select Single Values’, and include range of values will be entered in the tab
‘Select Intervals’. The exclude range value will be entered in the tab ‘Exclude Intervals’. The three tabs of the multiple
selection dialog box with the entered values will appear like Figure 9-31, 9-32, and 9-33.

Figure 9-31. SELECT-OPTIONS: CUST_CD1 – Entered Include Single Values

Figure 9-32. SELECT-OPTIONS: CUST_CD1 – Entered Include Range of Values

CHAPTER 9 ■ SELECTION-SCREENS

487

There will a total of six rows in the selection table CUST_CD1 with following field values:

Figure 9-33. SELECT-OPTIONS: CUST_CD1 – Entered Exclude Range of Values

Table 9-2. Contents of Selection Table CUST_CD1 as Per
Entries in Figures 9-31, 9-32, and 9-33

SIGN OPTION LOW HIGH

I EQ 255

I EQ 260

I EQ 470

I BT 1001 7000

I BT 300001 399999

E BT 3201 3300

The Open SQL SELECT statement to filter out customer codes with the SELECT-OPTIONS selection table using
the ‘IN’ operator will be:

SELECT <result> from KNA1 INTO <destination itab>
 WHERE KUNNR IN CUST_CD1.

This Open SQL statement implicitly operates the ‘OR’ logic between the individual CUST_CD1 row contents with
SIGN = ‘I’. The Open SQL statement operates the ‘AND NOT’ logic between the individual row contents with SIGN = ‘E’.
For your set of values, it is equivalent to writing:

SELECT <result> from KNA1 INTO TABLE <destination itab>
 WHERE (KUNNR = '0000000255'
 OR KUNNR = '0000000260'

CHAPTER 9 ■ SELECTION-SCREENS

488

 OR KUNNR = '0000000470'
 OR (KUNNR BETWEEN '0000001001' AND '0000007000')
 OR (KUNNR BETWEEN '0000300001' AND '0000399999'))
 AND NOT (KUNNR BETWEEN '0000003201' AND '0000003300').

You have to provide the leading zeroes with the literals; the literals are not associated with the domain
‘KUNNR’ having the conversion routine ‘ALPHA’, which automatically inserts leading zeroes to input fields. The
fields CUST_CD1-LOW and CUST_CD1-HIGH are associated with the domain ‘KUNNR’, and the conversion routine
‘ALPHA’ is operative on them.

In general the rows with SIGN = ‘I’ and rows with SIGN = ‘E’ will be operated upon as follows:

 1. If all the rows of the selection table contain only ‘I’ in the SIGN field, the logical operator
‘OR’ will be operative between the individual selection table rows.

Example:
Suppose you want the following values of customer codes:

Include 255
Include 4001 between 7000
Include 3201 not between 3300

For this set of values, it is equivalent to writing:

SELECT <result> from KNA1 INTO TABLE <destination itab>
WHERE
KUNNR = '0000000255' OR (KUNNR BETWEEN '0000004001' AND '0000007000')
 OR (KUNNR NOT BETWEEN '0000003201' AND '0000003300').

 2. If all the rows of the selection table contain only ‘E’ in the SIGN field, the logical operator

‘AND NOT’ will be operative between the individual selection table rows and the logical
operator ‘NOT’ will operate on the first row.

Example:
Suppose you want the following values of customer codes to be output:

Exclude 1000
Exclude 1001 between 7000

For this set of values, it is equivalent to writing:

SELECT <result> from KNA1 INTO TABLE <destination itab>
WHERE
NOT KUNNR = '0000001000'
AND NOT (KUNNR BETWEEN '0000001001' AND '0000007000').

 3. If the rows of the selection table contain ‘I’ and ‘E’ in the SIGN field, the logical operator

‘OR’ will be operative between the rows with SIGN = ‘I’, the logical operator ‘AND NOT’
between the rows with SIGN = ‘E’ and the logical operator ‘AND NOT’ will operate
between the rows with SIGN = ‘I’ and the rows with SIGN = ‘E’.

CHAPTER 9 ■ SELECTION-SCREENS

489

Example:
Suppose you want the following values of customer codes to be output:

Include 255
Include 1001 between 7000
Exclude 3001 between 4000

For this set of values, it is equivalent to writing:

SELECT <result> from KNA1 INTO TABLE <destination itab>
WHERE
(KUNNR = '0000000255' OR KUNNR BETWEEN '0000001001' AND '0000007000')
AND NOT (KUNNR BETWEEN '0000003001' AND '0000004000').

The program YCL_CH09_SELECTION_SCREEN07 is not being listed here. It is available in E-Resource. You can
try out the various SELECT-OPTIONS values with the SELECT statement with selection table in the WHERE condition
with the IN operator. You can compare this with the equivalent SELECT statements with logical operators and
literals values.

The program YCL_CH09_SELECTION_SCREEN08 is listed. It is a modified version of the Chapter 6 program
YCL_CH06_ITAB05. You were summarizing the sales data customer wise for a specified company code input through
the PARAMETERS statement. You were using the COLLECT statement to generate summarized data. In the present
program you have added the SELECT-OPTIONS statement for customer code, so that you can report the summarized
customer wise sales for a specified company code for specified customers. You can copy the text symbols (used in the
non-standard header) from the program YCL_CH06_ITAB05 using transaction code SE32.

At the very beginning of the list, you will output the contents of the selection table. It serves as a record, as to the
generated report based on what values in the selection table.

The source:

REPORT YCL_CH09_SELECTION_SCREEN08 NO STANDARD PAGE HEADING
 LINE-SIZE 120 LINE-COUNT 60.

* Demo SELECT-OPTIONS: Customer Sales Summary **

DATA: SALES_TAB TYPE YCL_CH06_SALES_SUM_TAB,
 SALES_STRU LIKE LINE OF SALES_TAB,
 TOTAL TYPE VBRK-NETWR,
 BUTXT TYPE T001-BUTXT,
 WAERS TYPE T001-WAERS,
 BUTXTS TYPE STRING.

PARAMETERS: CCODE TYPE VBRK-BUKRS DEFAULT 3000 VALUE CHECK.

SELECT-OPTIONS CUST_CD1 FOR SALES_STRU-KUNNR.
 " data object/field after key word
 " FOR has to be a local data object

CHAPTER 9 ■ SELECTION-SCREENS

490

**
TOP-OF-PAGE.
WRITE:/5 TEXT-001, CCODE NO-GAP, '/' NO-GAP, BUTXTS, 102 TEXT-003,
 107(3) SY-PAGNO.
WRITE:/40 TEXT-002, WAERS.
SKIP 1.
WRITE:/5(104) SY-ULINE.
WRITE:/5 TEXT-004, 11 TEXT-005, 23 TEXT-006, 60 TEXT-007, 91(17)
 TEXT-008 RIGHT-JUSTIFIED.
WRITE:/5 TEXT-009, 13 TEXT-010.
WRITE:/5(104) SY-ULINE.

**
START-OF-SELECTION.

SELECT SINGLE BUTXT WAERS FROM T001 INTO (BUTXT, WAERS) WHERE
 BUKRS = CCODE.

BUTXTS = BUTXT.

SELECT KUNNR NAME1 ORT01 NETWR KURRF FROM YCL_CH05_VBRKKNA INTO
 CORRESPONDING FIELDS OF SALES_STRU

 WHERE BUKRS = CCODE
 AND KUNNR IN CUST_CD1. " IN operator with SELECT-OPTIONS
 " variable

 SALES_STRU-NETWR = SALES_STRU-NETWR * SALES_STRU-KURRF.
 SALES_STRU-KURRF = 0. "to prevent overflow
 COLLECT SALES_STRU INTO SALES_TAB.
ENDSELECT.

SORT SALES_TAB BY KUNNR.

LOOP AT CUST_CD1.

 WRITE:/5(2) SY-TABIX, CUST_CD1-SIGN, CUST_CD1-OPTION, CUST_CD1-LOW,
 CUST_CD1-HIGH.

ENDLOOP.

SKIP 4. " a gap of 4 lines between CUST_CD1 data &
 " customer data.

LOOP AT SALES_TAB INTO SALES_STRU.

 WRITE :/5(4) SY-TABIX, SALES_STRU-KUNNR USING NO EDIT MASK,
 SALES_STRU-NAME1,SALES_STRU-ORT01, (17) SALES_STRU-NETWR.
 TOTAL = TOTAL + SALES_STRU-NETWR.

ENDLOOP.

SKIP 1.
WRITE :/(17) TOTAL UNDER SALES_STRU-NETWR.

CHAPTER 9 ■ SELECTION-SCREENS

491

The output will look like Figures 9-34 and 9-35.

The three aspects of the SELECT-OPTIONS were described: the internally created data objects, (selection table
and structure) the screen prompts and dialog boxes and the use of the SELECT-OPTIONS variable in the SELECT
statement with the ‘IN’ operator to filter data. The SELECT-OPTIONS data object provides a sophisticated means of
filtering data based on runtime values. This concludes the coverage of the SELECT-OPTIONS.

ABAP Program Variants
An ABAP program may have a number of SELECT-OPTIONS variables as well as a number of PARAMETERS variables
to enter values and filter out data based on these values for output. The multiple selection values of SELECT-OPTIONS
variables as well as the single values of PARAMETERS variables may be fixed. That is, the same set of values is being

Figure 9-34. Program: YCL_CH09_SELECTION_SCREEN08 – Output

Figure 9-35. Program: YCL_CH09_SELECTION_SCREEN08 – Output With Total

CHAPTER 9 ■ SELECTION-SCREENS

492

used again and again (every week or every month…). In this situation, it could be a good idea to be able to save and
retrieve these values being used again and again.

The variants feature of ABAP program enables you to do this. You can save any number of set of values for
the SELECT-OPTIONS and PARAMETERS variables. You can retrieve any of the stored set of values before executing
a program.

You can store a set of SELECT-OPTIONS and PARAMETERS values under a variant name. The name space of
a variant is a maximum of 14 characters. A variant name can contain special characters except ‘&’ and ‘%’. But it is
better to stick to the convention of starting a variant name with an alphabet letter, and the rest of the characters as
alphanumeric with embedded underscores. (_)

The variants like the text elements, etc., do not have an independent existence. They are attached to a program
and are part of an ABAP program.

You can create variants from the ABAP editor opening screen. It is assumed that you have already created the
source code. Enter the ABAP source program name in the program field, select the radio button ‘Variants’, and click
on the change button. You are now creating variants for the program YCL_CH09_SELECTION_SCREEN07. The
selection screen of this program consists of a single SELECT-OPTIONS variable ‘CUST_CD1’ referring to a local data
object ‘KUNNR’, which, in turn, is referring to the data element ‘KUNNR’. The variant maintenance screen will look
like Figure 9-36.

Figure 9-36. Program: YCL_CH09_SELECTION_SCREEN07 – Maintain Variants

Enter a variant name ‘VAR1’, and click on the Create button. (If variants already exist, you can select from a
selection list: F4, etc.). The familiar SELECT-OPTIONS prompt will appear with ‘Multiple Selection’ button on the
extreme right. Click on the ‘Multiple Selection’ button. Enter the values in the tabs: ‘Select Single Values’, ‘Select
Intervals’, ‘Exclude Single Values’, ‘and Exclude Intervals’. You entered the following values for the selection table
‘CUST_CD1’:

Select Single Values:
250
260
470

Select Intervals
1001 to 7000
300001 to 399999

CHAPTER 9 ■ SELECTION-SCREENS

493

Exclude Single Values
1031

Exclude Intervals
3201 to 3300
4001 to 4500

Click on the copy button (first button from the left) of the multiple selection dialog box. The screen after
returning from the multiple selection dialog box will look like Figure 9-37.

Figure 9-37. Program: YCL_CH09_SELECTION_SCREEN07 – Create Variant: After Entry of Values

Figure 9-38. Program: YCL_CH09_SELECTION_SCREEN07 – Create Variant: Attributes

There is only one prompt variable: ‘CUST_CD1’; if more SELECT-OPTIONS and PARAMETERS statements were
given in the program, more prompts will appear on the selection screen. You can enter values for as many selection
screen variables as you want.

The multiple selection screen has been skipped now as you are already familiar with it, being exposed to it in the
previous topic:’ SELECTION-SCREEN Complex and Multiple Selections: SELECT-OPTIONS.’

You can optionally enter attributes for the variants by clicking on the attributes button on the application toolbar.
The variants attributes screen will be like Figure 9-38.

You entered Meaning or Short Text.
There are other attributes: ‘Only for Background Processing’, ‘Protect Variant’, and ‘Only Display in Catalog’.
If the attribute ‘Only for Background Processing’ check box is enabled, the variant is operative only if the

ABAP program is run in the background. The very basics of a background job are conveyed in the course of one
of the forthcoming hands-on exercises. By default a variant can be operative when an ABAP program is run in the
background as well as online/foreground mode.

If you enable the check box for the attribute ‘Protect Variant’, only the user who created it can change the variant.
If you enable the check box ‘Only Display in Catalog’, the variant is inoperative. It will appear only in the list/

catalog of the ABAP program’s variants. To view the list/catalog of an ABAP program’s variants, in the ABAP: Variants
– Initial Screen (Figure 9-36), select the menu option: Variants ➤ Catalog. You can make a catalogued, inoperative
variant operative by disabling this check box.

CHAPTER 9 ■ SELECTION-SCREENS

494

These attributes are the attributes of all the variables/objects of a variant. In your program YCL_CH09_
SELECTION_SCREEN07, you have a single selection screen variable, CUST_CD1. In the other program YCL_CH09_
SELECTION_SCREEN08, you have two selection screen variables, CCODE and CUSTCD1. There can any number
of selection screen variables. The set of values stored as a variant will cover all selection screen variables. There are
attributes pertaining to each selection screen variable. You can see this in Figure 9-38 under ‘Objects for selection
screen’. These attributes of individual selection screen variables are not discussed.

Variants can be created in one other way. When you execute the program, the selection screen prompts will
appear. You can enter the values. Single values are entered for PARAMETERS statement/s, and single and/or multiple
values are entered for SELECT-OPTIONS statement/s. After entering all the desired values, you can click on the menu
option: Goto ➤ Variants ➤ Save As Variant. The menu on the selection screen will look like Figure 9-39.

Figure 9-39. Variant Creation after Selection Screen Variables Entry

The clicking on the menu option Goto ➤ Variants ➤ Save As Variant will bring up the variant attributes screen.
You can enter the name of the variant and optional Meaning/Short Text and save. The entered values will be saved
under this variant name.

If variants exist for an ABAP program and the program is executed, the selection screen prompts will appear. On
the application toolbar, the get variant button will appear . If an ABAP program has no variants, this button will not

appear on the application toolbar. You can retrieve a variant (have the saved values loaded into the selection screen
variables) by clicking on this button. The variants of the program will be listed. You can make a variant selection from
the list.

The options ‘Get’, ‘Display’, and ‘Delete’ under the main menu option ‘Goto’ are in a disabled state if variants do
not exist for an ABAP program, and in an enabled state for an ABAP program having variants.

Variants can be deleted, modified, and saved under the same or another name. They can also be renamed. They
can be copied in the same ABAP program to another name. They can be transported. (Package should not be ‘$TMP’/
local.) All these facilities are available on the ‘ABAP: Variants – Initial Screen’. See Figure 9-36.

To copy variants from one program to another, you can use the function module: RS_COPY_SELECTION_SETS.
This function module copies all variants from a source ABAP program to a destination ABAP program. You cannot
copy specific variants from one program to another like you can do with text elements with transaction code SE32.

SELECT-OPTIONS – Additions NO INTERVALS, NO-EXTENSION
You can give the additions NO INTERVALS and NO-EXTENSION with the SELECT-OPTIONS statement. You have
seen the effect of the phrase NO INTERVALS along with the addition WITH FRAME in the context of a block on
the selection screen. It created a shaded area that extended only to half the screen width with the addition
NO-INTERVALS.

In the following hands-on exercise, you observe the effect of the NO INTERVALS in the context of the SELECT-
OPTIONS statement. With this addition on the selection screen, only the ‘LOW’ field will appear. The ‘HIGH’ field will
not appear on the selection screen. The multiple selection button appears on the extreme right. Multiple selections
are available. See Figure 9-40.

CHAPTER 9 ■ SELECTION-SCREENS

495

With the addition NO-EXTENSION to the SELECT-OPTIONS statement, the multiple selection button disappears,
and multiple selections are not available. You can then enter either a single value or one range of values.

With the additions NO INTERVALS and NO-EXTENSION, the ‘HIGH’ field will not appear on the selection
screen, and the multiple selection button disappears. You can enter only one single value.

In the following ABAP source program, four SELECT-OPTIONS statements have been issued:

 1. SELECT-OPTIONS statement without any additional clause

 2. SELECT-OPTIONS statement with the addition clause NO INTERVALS

 3. SELECT-OPTIONS statement with the addition clause NO-EXTENSION

 4. SELECT-OPTIONS statement with addition clauses NO INTERVALS and NO-EXTENSION

Until now you have issued a SELECT-OPTIONS statement by reference to an ABAP local data object (a variable
name following the keyword ‘FOR’) In the following ABAP program, you have issued a SELECT-OPTIONS statement
by reference to a DDIC table field. The name of the DDIC table field (KNA1-KUNNR) has been stored in a local data
object. (STRNG) When issuing the SELECT-OPTIONS statement, this local data object containing the DDIC table
field name is given within parenthesis (a variable name following the key word ‘FOR’). This is the way to issue a
SELECT-OPTIONS statement referring to DDIC table/structure field.

The source program:

REPORT YCL_CH09_SELECTION_SCREEN09.

* SELECT-OPTIONS: NO INTERVALS, NO-EXTENSION **
* SELECT-OPTIONS Declaration By Reference To **
* DDIC Field Stored In An Internal Data Object **

DATA: STRNG TYPE STRING VALUE 'KNA1-KUNNR'.

SELECT-OPTIONS: CUST_CD1 FOR (STRNG), " reference to DDIC field/not local field
 CUST_CD2 FOR (STRNG) NO INTERVALS,
 CUST_CD3 FOR (STRNG) NO-EXTENSION,
 CUST_CD4 FOR (STRNG) NO INTERVALS NO-EXTENSION.

Figure 9-40. Program: YCL_CH09_SELECTION_SCREEN09 – NO INTERVALS, NO-EXTENSION

CHAPTER 9 ■ SELECTION-SCREENS

496

When this program is executed, the screen will look like this:

Coding an ABAP Program to Be Able to Run It in Background
Background Jobs
Until now, you have been running and testing your ABAP programs in the online or foreground mode. You will
continue to do so: test and run your programs in the online or foreground mode.

In SAP real-time environment, most reporting or output jobs are run in background. Most ERP software has the
feature of background jobs. A background job is a topic in itself. This is not the place to cover background jobs as a
topic. A very basic idea of background jobs is described.

Background jobs are characterized by the absence of user interaction and intervention during its execution
(response times are not relevant and uncritical). The output of a background job is not listed onto the screen but sent
to the printer spool file on the disk. In a subsequent process of de-spooling, the spool files on the disk are dumped
onto the printers attached to application servers.

There are many other facilities in background jobs. One specific facility is the ability to schedule jobs. Scheduling
can be on the basis of specific date and time. Background jobs can also be scheduled on a periodical basis, triggering
every first working day of a week, month, etc.

A New Version of the Program YCL_CH09_SELECTION_SCREEN08
Enabling it to Run in the Background
Scenario:

Let it be assumed that a new version of your program YCL_CH09_SELECTION_SCREEN08 (customer wise
sales summary for a specified company code and specific customer codes input through PARAMETERS and
SELECT-OPTIONS statements) needs to be run in the background. The first requirement of a background job
is the absence of user interaction. You cannot have the input prompts waiting for the end user to input values
(i.e., no PARAMETERS, SELECT-OPTIONS statements). The new version of program YCL_CH09_SELECTION_SCREEN08
should not have any selection screen. But, it should still have the facility to filter data of a specific company code and
specific customer codes (filter and selection values).

The program has to be fed the filter, selection values some other way than through a selection screen. Recall the
data object aspect of the SELECT-OPTIONS statement (i.e., the selection table with its four fields: SIGN, OPTION,
LOW, and HIGH).

Declaring an Internal Table Having Structure of Selection Table

In your new version of the program YCL_CH09_SELECTION_SCREEN08, you can have an internal table declared with
a data declarative statement having the structure like the selection table. You can have this internal table having the
structure of a selection table filled with the requisite filter values from the variant of another ABAP program. You can
then use this internal table with the ‘IN’ operator in the SELECT statement to filter data. The rest of the new version of
program can remain the same as the original YCL_CH09_SELECTION_SCREEN08.

CHAPTER 9 ■ SELECTION-SCREENS

497

You can declare an internal table having the structure of selection table for the DDIC field ‘KNA1-KUNNR’ in the
following manner:

TYPES: BEGIN OF SEL_TABLE_TP,
 SIGN(1) TYPE C,
 OPTION(2) TYPE C,
 LOW TYPE KNA1-KUNNR,
 HIGH TYPE KNA1-KUNNR,
 END OF SEL_TABLE_TP.
DATA: CUST_CD TYPE STANDARD TABLE OF SEL_TABLE_TP
 WITH HEADER LINE.

ABAP language provides for declaration of internal table having structure of selection table in a simpler way with
the following syntax:

DATA: <itab name> TYPE | LIKE RANGE OF <field> [WITH HEADER LINE].

<itab name> - Name of the internal table data object
RANGE OF – Key phrase to declare an internal table having structure of selection table
<field> - Any local/global elementary data object, any elementary field declared locally with TYPES statement or

in global Type Groups. The attributes of the fields ‘LOW’ and ‘HIGH’ are derived from this <field>.
So, the preceding declaration is simplified to:

DATA: CUST_CD TYPE RANGE OF KNA1-KUNNR WITH HEADER LINE.

Filling the internal table having the structure of selection table with
required filter values

Let an ABAP program you want to run in the background (new version of program: YCL_CH09_SELECTION_SCREEN08)
be designated as ‘Program A’. This ‘Program A’ needs to retrieve variant values from another ABAP program and load
the variant values into the internal table with the structure of the selection table. Let this ABAP program with variants
be designated as ‘Program B’. The ‘Program B’ has the selection screen with the PARAMETERS and SELECT-OPTIONS
statement. You will maintain variants in ‘Program B’ running in online/foreground mode. The variants in ‘Program B’
can modified before ‘Program A’ is submitted for execution or triggered in the background. Using a function module
you can retrieve the variant values of ‘Program B’ and load them into the internal table having structure of selection
table in ‘Program A’.

The function module to retrieve variants is RS_VARIANT_VALUES_TECH_DATA. It takes two import parameters:
the name of the ABAP program and the name of the variant. It returns variant values in an internal table having a
structure like the DDIC structure RSPARMS. The DDIC structure RSPARMS has the following fields:

CHAPTER 9 ■ SELECTION-SCREENS

498

After the function module RS_VARIANT_VALUES_TECH_DATA has retrieved the variant values into an internal
table of structure RSPARMS, you can set up LOOP…ENDLOOP of this internal table and build your selection table like
an internal table.

The variant storage system stores the values in the fields ‘LOW’ and ‘HIGH’ without the leading zeroes. You are
inserting leading zeroes using the conversion routine CONVERSION_EXIT_ALPHA_INPUT (can be used for variables
of length 10 only).

Program that can be run in background

In your case you have chosen the ABAP program YCL_CH09_SELECTION-SCREEN08 as ‘Program B’ (the program
where variant values are to be retrieved). Your ‘Program A’ is YCL_CH09_SELECTION_SCREEN10 (the program that
can be run in the background).

The ‘Program A’ source:

REPORT YCL_CH09_SELECTION_SCREEN10 NO STANDARD PAGE HEADING
 LINE-SIZE 120 LINE-COUNT 60.

**
* Use F.M. RS_VARIANT_VALUES_TECH_DATA To Retrieve **
* Variant Values Into Internal Data Object **
* Use Internal Data Object In SELECT Statement To **
* Filter Data. **
* Program Submit-able IN BACKGROUND **
**

* I. declare selection table like data object without **
* using selection screen statement SELECT-OPTIONS **
* **
* you can declare an internal table data object like **
* the selection table - internal table having the **
* four fields: SIGN, OPTION, LOW, HIGH using the **
* DATA statement with the key phrase RANGE OF.. **
* **

Table 9-3. DDIC Structure RSPARMS Fields

Field Name Data Type & Length Description

SELNAME CHAR / 8 Name of the SELECTION-SCREEN data object / variable:
i.e., PARAMETERS / SELECT-OPTIONS variable name

KIND CHAR / 1 Kind of SELECTION-SCREEN variable:

‘S’ for SELECT-OPTIONS

‘P’ for PARAMETERS

SIGN CHAR / 1 ‘I’ for include, ‘E’ for exclude

OPTION CHAR / 2 ‘EQ’, ‘NE’, ‘GT’, ‘LT’, ‘GE’, ‘LE’, ‘CP’, ‘NP’, ‘BT’, ‘NB’

LOW CHAR / 45 Start value of range

HIGH CHAR / 45 End value of range

CHAPTER 9 ■ SELECTION-SCREENS

499

* DATA: CUST_CD TYPE RANGE OF KNA1-KUNNR. **
* **
* **
* II. retrieve variant values into internal table **
* **
* the variants are stored in the DDIC structure form **
* RSPARAMS. the fields with TYPES, lengths of DDIC **
* structure RSPARAMS: **
* **
* SELNAME(8) TYPE C selection screen variable name **
* KIND(1) TYPE C 'S' for SELECT-OPTIONS variable **
* 'P' for PARAMETERS variable **
* SIGN(1) TYPE C **
* OPTION(2) TYPE C **
* LOW(45) TYPE C **
* HIGH(45) TYPE C **
* **
* this is the way the variant data is stored. (source) **
* it is retrieved into the program declared internal **
* table VAR_VALUES using the function module: **
* RS_VARIANT_VALUES_TECH_DATA. this function module **
* takes two import parameters i.e. program name and **
* variant name. it returns the variant values in the **
* internal table of structure RSPARAMS. **
* **
* your import parameters to the function module: **
* program name: YCL_CH08_SELECTION_SCREEN08 **
* variant name: VARIANT_I **
* **
* the variant values will be retrieved for two **
* selection screen variables defined/declared in **
* program YCL_CH09_SELECTION_SCREEN08: **
* (1) CCODE: thru PARAMETERS for company code **
* (2) CUST_CD1: thru SELECT-OPTIONS for customer code **
* **
* III. transfer variant values from internal table **
* VAR_VALUES into selection table CUST_CD declared**
* with TYPE RANGE OF.. etc. and CCODE. **
* **
* setup LOOP AT VAR_VALUES. **
* **
* check VAR_VALUES-SELNAME = 'CUST_CD1' and **
* VAR_VALUES-KIND = 'S' **
* **
* then use MOVE-CORRESPONDING to move data from **
* structure VAR_VALUES to structure CUST_CD. **
* variant values are not saved/stored with leading **
* zeroes. use conversion exit routine **
* 'CONVERSION_EXIT_ALPHA_INPUT' to insert leading **
* zeroes to CUST_CD-LOW, CUST_CD-HIGH fields. **
* APPEND to selection table like internal table **
* CUST_CD. **

CHAPTER 9 ■ SELECTION-SCREENS

500

* **
* check if VAR_VALUES-SELNAME = 'CCODE' and **
* KIND = 'P' then CCODE = VAR_VALUES-LOW. **
* **
* ENDLOOP. **
* **
* **
* IV. use the variables CCODE and CUST_CD in the **
* SELECT statement to filter data as per variant **
* values **
* **
* rest of program same as YCL_CH09_SELECTION_SCREEN08 **

DATA: SALES_TAB TYPE YCL_CH06_SALES_SUM_TAB,
 SALES_STRU LIKE LINE OF SALES_TAB,
 TOTAL TYPE VBRK-NETWR,
 BUTXT TYPE T001-BUTXT,
 WAERS TYPE T001-WAERS,
 BUTXTS TYPE STRING,
 CCODE TYPE VBRK-BUKRS,

 CUST_CD TYPE RANGE OF KNA1-KUNNR WITH HEADER LINE,
 "create internal table of stru SIGN, OPTION, LOW, HIGH

 VAR_VALUES TYPE STANDARD TABLE OF RSPARAMS WITH HEADER LINE.
 " function module formal parameter VARIANT_VALUES
 " is TYPE RSPARAMS
**
TOP-OF-PAGE.
WRITE:/5 TEXT-001, CCODE NO-GAP, '/' NO-GAP, BUTXTS, 102 TEXT-003,
 107(3) SY-PAGNO.
WRITE:/40 TEXT-002, WAERS.
SKIP 1.
WRITE:/5(104) SY-ULINE.
WRITE:/5 TEXT-004, 11 TEXT-005, 23 TEXT-006, 60 TEXT-007, 91(17)
 TEXT-008 RIGHT-JUSTIFIED.
WRITE:/5 TEXT-009, 13 TEXT-010.
WRITE:/5(104) SY-ULINE.
**
START-OF-SELECTION.

CALL FUNCTION 'RS_VARIANT_VALUES_TECH_DATA'
 EXPORTING
 REPORT = 'YCL_CH09_SELECTION_SCREEN08'
 VARIANT = 'VARIANT_I'
* SEL_TEXT = ' '
* MOVE_OR_WRITE = 'W'
* SORTED = ' '
* EXECUTE_DIRECT =
* IMPORTING

CHAPTER 9 ■ SELECTION-SCREENS

501

* TECHN_DATA =
 TABLES
 VARIANT_VALUES = VAR_VALUES[]
* VARIANT_TEXT =
 EXCEPTIONS
 VARIANT_NON_EXISTENT = 1
 VARIANT_OBSOLETE = 2
 OTHERS = 3
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO WITH SY-MSGV1 SY-MSGV2
 SY-MSGV3 SY-MSGV4.
 EXIT.
ENDIF.

LOOP AT VAR_VALUES.
 IF VAR_VALUES-SELNAME = 'CUST_CD1' AND VAR_VALUES-KIND = 'S'.
 " = 'S' - SELECT-OPTIONS variable

 MOVE-CORRESPONDING VAR_VALUES TO CUST_CD. " MOVE to selection table stru

 CALL FUNCTION 'CONVERSION_EXIT_ALPHA_INPUT' " insert leading zeroes into
 " CUST_CD-LOW
 EXPORTING
 INPUT = CUST_CD-LOW
 IMPORTING
 OUTPUT = CUST_CD-LOW
 .

 CALL FUNCTION 'CONVERSION_EXIT_ALPHA_INPUT' " insert leading zeroes into
 " CUST_CD-HIGH
 EXPORTING
 INPUT = CUST_CD-HIGH
 IMPORTING
 OUTPUT = CUST_CD-HIGH
 .

 APPEND CUST_CD.

 ELSEIF VAR_VALUES-SELNAME = 'CCODE' AND VAR_VALUES-KIND = 'P'.
 " = 'P' - PARAMETERS variable

 CCODE = VAR_VALUES-LOW.
 ENDIF.

ENDLOOP.

SELECT SINGLE BUTXT WAERS FROM T001 INTO (BUTXT, WAERS) WHERE
 BUKRS = CCODE.

BUTXTS = BUTXT.

CHAPTER 9 ■ SELECTION-SCREENS

502

SELECT KUNNR NAME1 ORT01 NETWR KURRF FROM YCL_CH05_VBRKKNA INTO
 CORRESPONDING FIELDS OF SALES_STRU

 WHERE BUKRS = CCODE
 AND KUNNR IN CUST_CD . " IN operator with selection table
 " type variable

 SALES_STRU-NETWR = SALES_STRU-NETWR * SALES_STRU-KURRF.
 SALES_STRU-KURRF = 0. "to prevent overflow
 COLLECT SALES_STRU INTO SALES_TAB.

ENDSELECT.

SORT SALES_TAB BY KUNNR.

LOOP AT CUST_CD. " output selection table

 WRITE:/5(2) SY-TABIX, CUST_CD-SIGN, CUST_CD-OPTION, CUST_CD-LOW,
 CUST_CD-HIGH.

ENDLOOP.

SKIP 4. " a gap of 4 lines between CUST_CD data &
 " customer data.

LOOP AT SALES_TAB INTO SALES_STRU.

 WRITE :/5(4) SY-TABIX, SALES_STRU-KUNNR USING NO EDIT MASK,
 SALES_STRU-NAME1,SALES_STRU-ORT01, (17) SALES_STRU-NETWR.
 TOTAL = TOTAL + SALES_STRU-NETWR.

ENDLOOP.

SKIP 1.
WRITE :/(17) TOTAL UNDER SALES_STRU-NETWR.

You are executing the program in the o-line/foreground mode only to demonstrate the results (list on screen).
The output will appear like Figure 9-41 and 9-42.

CHAPTER 9 ■ SELECTION-SCREENS

503

The output is identical to the output of program YCL_CH09_SELECTION_SCREEN08, but this program having no
selection screen can be run in the background.

SELECT-OPTIONS - Miscellanea
SELECT-OPTIONS Events
There are two events related to SELECT-OPTIONS statement:

 1. AT SELECTION-SCREEN ON <select-option variable>

This is of the same category as the AT SELECTION-SCREEN ON <parameters variable> in some aspects because
of the SELECT-OPTIONS variable being complex. It is triggered in the following contexts:

When the <Enter> key, execute button/F8 etc. (screen processing is over) is pressed on the •
selection screen.

When the multiple selection button is pressed on the selection screen.•

If values have been entered in multiple selection dialog box/window, this event is triggered for •
all buttons except for the following buttons:

Figure 9-41. Program: YCL_CH09_SELECTION_SCREEN10 – Output

Figure 9-42. Program: YCL_CH09_SELECTION_SCREEN10 – Output

CHAPTER 9 ■ SELECTION-SCREENS

504

 2. AT SELECTION-SCREEN ON END OF <select-option variable>

This event is triggered when you press any of the buttons at the bottom of multiple selection dialog
box/window except the buttons:

You can trigger the events AT SELECTION-SCREEN ON VALUE-REQUEST FOR <field> and
AT SELECTION-SCREEN ON HELP-REQUEST for SELECT-OPTIONS LOW and HIGH variables like:

DATA: KUNNR TYPE KUNNR.

SELECT-OPTIONS CUST_CD FOR KUNNR.
........

AT SELECTION-SCREEN ON VALUE-REQUEST FOR CUST_CD-LOW.
......
.......

AT SELECTION-SCREEN ON VALUE-REQUEST FOR CUST_CD-HIGH.
.....
......

AT SELECTION-SCREEN ON HELP-REQUEST FOR CUST_CD-HIGH.
.....

SELECT-OPTIONS with DEFAULT Addition
You can use the DEFAULT clause with the SELECT-OPTIONS statement the way you used it with the PARAMETERS
statement to assign a starting value to the variable. With the SELECT-OPTIONS variable being a complex variable,
some additions go with the DEFAULT clause. The syntax:

SELECT-OPTIONS <variable> FOR <field> DEFAULT <low value>
 [TO <high value>] [SIGN <sign value>] [OPTION <option value>].

<sign value> - Can be either I or E (should not be enclosed within single quotes)
By default, <sign value> will assume I value
<option value> - Can be EQ, NE, GT, LT, GE, LE, BT, NB, CP, NP
(Should not be enclosed within single quotes)
By default, <option value> will assume value EQ if there is no <high value>
By default, <option value> will assume value BT if there is a <high value>
Example:

DATA: KUNNR TYPE KUNNR.

SELECT-OPTIONS CUST_CD FOR KUNNR DEFAULT 1 TO 1000 SIGN E OPTION BT.

CHAPTER 9 ■ SELECTION-SCREENS

505

Figure 9-44. Blank Label or Text

Figure 9-43. Variable Name as Label or Text

SELECT-OPTIONS Other Additions
The following additions you used with PARAMETERS statement also apply to SELECT-OPTIONS statement.

OBLIGATORY (mandatory input)•

VISIBLE LENGTH <length in columns> (reduce the visible length of screen element)•

LOWER CASE (input with case sensitivity)•

MATCHCODE OBJECT <search help name> (attach search help)•

NO-DISPLAY (makes element disappear, sets property INVISIBLE = 1. Can be reset in the AT •
SELECTION-SCREEN OUTPUT event: i.e., set property SCREEN-INVISIBLE = 0)

Selection Texts
When you issue PARAMETERS / SELECT-OPTIONS statements without COMMENTS, without locating any other
screen elements on the same line, the ABAP runtime system uses the name of the selection screen variable as a label
or text.

Example:

PARAMETERS: CUST_CD TYPE KNA1-KUNNR.

The selection screen for this statement:

If you issue PARAMETERS / SELECT-OPTIONS statements without COMMENTS and locate other screen
elements on the same line, the ABAP runtime system assigns blank label or text.

Example:

SELECTION-SCREEN BEGIN OF LINE.

PARAMETERS: CUST_CD1 TYPE KNA1-KUNNR.
SELECTION-SCREEN PUSHBUTTON 25(15) BUTTON1 USER-COMMAND ABC.

SELECTION-SCREEN END OF LINE.

INITIALIZATION.
BUTTON1 = 'Button I'.

The selection screen for the statements is shown in Figure 9-44.

CHAPTER 9 ■ SELECTION-SCREENS

506

There is another way of assigning label or text to the PARAMETERS / SELECT-OPTIONS variables. This is through
the ‘Selection texts’ component of ABAP program ‘Text elements’. You have already used two of the ‘Text elements’
components: ‘List Heading’ (standard headers) and the ‘Text symbols’.

For each PARAMETERS / SELECT-OPTIONS statement, the ‘Selection texts’ creates a row/entry with a blank label.
Consider the source lines of the program YCL_CH09_SELECTION_SCREEN11:

REPORT YCL_CH09_SELECTION_SCREEN11.

* Selection Texts **

PARAMETERS: CUST_CD1 TYPE KNA1-KUNNR. " name of variable will appear
 " as label by default
SELECTION-SCREEN SKIP 2.

SELECTION-SCREEN BEGIN OF LINE.

PARAMETERS: CUST_CD2 TYPE KNA1-KUNNR. " blank label by default

SELECTION-SCREEN END OF LINE.

SELECTION-SCREEN SKIP 2.

PARAMETERS: CUST_CD3 TYPE KNA1-KUNNR. " label from selection text
 " selection text from data element
 " label

In this program, when you open the ‘Selection texts’ tab of text element screen, the screen will appear like
Figure 9-45.

CHAPTER 9 ■ SELECTION-SCREENS

507

You can enter selection texts for variables. The selection texts entered for the variables will appear as label or text
on the selection screen. If you enable check box on the extreme right and save, it will fetch text from the data element
associated with the field. (In your present program, the data element is ‘KUNNR’.) It fetches the ‘Medium’ field label.
Recall that in the data element, field labels are ‘Short’, ‘Medium’, ‘Long’, and ‘Heading’.

The screen with the ‘Medium’ field label text fetched from data element will look like Figure 9-46.

Figure 9-45. Program YCL_CH09_SELECTIONSCREEN11 - Selection texts Screen: Initially

Figure 9-46. Program YCL_CH09_SELECTION_SCREEN11 - Selection texts Screen: Labels or Texts from Data Element

CHAPTER 9 ■ SELECTION-SCREENS

508

The selection screen of the program YCL_CH09_SELECTION_SCREEN11 now will be like 9-47.

Figure 9-47. Program: YCL_CH09_SELECTION_SCREEN11 – Selection Screen

When using selection texts, you must remember that you cannot control/format the line (SELECTION-SCREEN
BEGIN OF LINE, etc.).

There is a function module: MG_FIELDNAME_TEXT
retrieves the short, medium, long, and heading texts from data element. The function module has two import

parameters: DDIC table/structure name and field name. The function module returns texts in the logged-in language.
It also returns short text of the data element. You can retrieve the data element texts for DDIC fields in this manner
and use it as label on the selection screen. This is demonstrated in program: YCL_CH09_SELECTION_SCREEN13.
The program is not listed here. It is available in the E-Resource.

SELECTION-SCREEN - Miscellanea
Check Box on a Selection Screen
You can locate a check box on selection screen with the following syntax of PARAMETERS statement:

PARAMETERS: <variable name> [{TYPE C | TYPE <data element>}]
AS CHECKBOX [USER-COMMAND <user command>] [DEFAULT ‘X’].

<variable name> – The usual naming rules for PARAMETERS variables apply. The length of the variable should
not be specified [like PARAMETERS: VAR(2)…]. The length of check box variable is fixed as 1. The TYPE is implicitly
‘C’ and can be specified explicitly as TYPE ‘C’ only. The check box variable assumes only two values: ‘X’ when the
check box is enabled and ‘ ’ when the check box is disabled.

<data element> - This data element should have been assigned a domain where the ‘Data Type’ is ‘CHAR’ and
length is 1. Further in the fixed values of this domain, there can be two rows of values: ‘X’ and ‘ ’.

AS CHECKBOX – Key phrase to define a check box. This key phrase can be omitted when you are referring to a
data element that has been assigned a domain where the ‘Data Type’ is ‘CHAR’ and length is 1. Further in the fixed
values of this domain, there should be two rows of values: ‘X’ and ‘ ’.

CHAPTER 9 ■ SELECTION-SCREENS

509

The USER-COMMAND <user command> – Like in the case of the radio buttons, this can be optionally specified.
When IT is specified, clicking on the check box will trigger the events AT SELECTION-SCREEN and AT
SELECTION-SCREEN ON <field>, etc.

The rest of the terms carry the same meaning as explained in earlier syntax descriptions of the
PARAMETERS statement.

An example:

PARAMETERS: VL_ONOFF TYPE RUNSIMUL, " reference to data element assigned
 " to domain: Data Type CHAR, length 1
 " fixed values: two rows: 'X' & ' '
 " domain: 'CHCKBX'

 IN_ONOFF TYPE RUNSIMUL NO-DISPLAY, " can use NO-DISPLAY
 " addition when referring
 " to data element
 BL_ONOFF TYPE C AS CHECKBOX DEFAULT 'X',
 GR_ONOFF AS CHECKBOX,
 YL_ONOFF TYPE CHAR1 AS CHECKBOX. " reference to data element
 " assigned to domain: Data
 " Type CHAR, length 1 but no
 " fixed values.

Horizontal Line on a Selection Screen
You can draw a horizontal line on selection screen with the following syntax:

SELECTION-SCREEN ULINE [/]<col position>(<width in columns/characters>).

ULINE – Keyword to draw a horizontal line on a selection screen
Other terms are obvious and were explained earlier.
Example:

 SELECTION-SCREEN ULINE /5(15).

Addition MODIF ID with Selection Screen Elements
The addition MODIF ID can be used with most of the selection screen elements covered:

COMMENT (For Labels or Texts)•

Text Boxes/Input Fields (PARAMETERS statement)•

Radio Buttons (PARAMETERS statement)•

Check Boxes (PARAMETERS statement)•

Multiple Complex Selections (SELECT-OPTIONS statement)•

Push Buttons•

Horizontal Lines•

CHAPTER 9 ■ SELECTION-SCREENS

510

Example for the addition MODIF ID:

PARAMETERS: CHQNO(12) TYPE C MODIF ID GP1,
 CCRDNO(16) TYPE C MODIF ID GP1.

The addition MODIF ID is being explained in the context of this chapter’s program YCL_CH09_SELECTION_
SCREEN03. In this program you used the event AT SELECTION-SCREEN OUTPUT to change screen properties.

MODIF ID is a key phrase. It is to be followed by a three-character string like the one you have given in the
example above ‘GP1’. In this example, basically, you are assigning selection screen elements ‘CHQNO’ and ‘CCRDNO’
(check number and credit card number) to a group with identification ‘GP1’. In this manner, you can assign two or
more screen elements to a group. You can have any number of group identifications assigned to various selection
screen elements.

In the current chapter, while dealing with the events INITIALIZATION, and AT SELECTION-SCREEN OUTPUT,
you were introduced to the structure of system maintained internal table SCREEN. The second field in this structure is
GROUP1 TYPE ‘C’, length 3. Refer to Table 9-1.

The MODIF ID is a three-character string (group identifications) assigned to the selection screen elements and
will be stored in the field GROUP1 for the selection screen elements with MODIF ID addition.

Inside LOOP AT SCREEN…ENDLOOP you had the statement:

IF SCREEN-NAME <> 'CHQNO' AND SCREEN-NAME <> 'CCRDNO'.
 CONTINUE. " changing properties of only 'CHQNO' & 'CCRDNO'
ENDIF.

You wanted to change the properties of only ‘CHQNO’ and ‘CCRDNO’. You wanted to bypass all other rows
(in the internal table SCREEN) corresponding to selection screen elements other than ‘CHQNO’ and ‘CCRDNO’.

As you have assigned both the selection screen elements ‘CHQNO’ and ‘CCRDNO’ to ‘GP1’, you can simplify the
above IF statement to:

IF SCREEN-GROUP1 <> 'GP1'.
 CONTINUE. " changing properties of only 'CHQNO' & 'CCRDNO'
ENDIF.

When you have a long string of logical operators ‘AND’ and ‘OR’ being used inside the execution of the LOOP
AT SCREEN…ENDLOOP construct, you can assign the selection screen elements to groups and simplify your code,
avoiding the logical operators.

This is the purpose and function of the addition MODIF ID.

Event AT SELECTION SCREEN ON EXIT-COMMAND
When you press on the system toolbar any of the buttons: (Back), (Exit), or (Cancel), this event is triggered.

Clean-up operations can be performed in this event.

Define and Call User Defined SELECTION-SCREEN
The selection screens you have created and used until now are the standard selection screens. The ABAP runtime
system generates screen number 1000 for the standard selection screens. In addition to this standard selection screen,
you can have user defined selection screens.

CHAPTER 9 ■ SELECTION-SCREENS

511

The user defined selection screens need to be defined and then called. The syntax for user defined selection screens:

SELECTION-SCREEN BEGIN OF SCREEN <screen number>
 [TITLE <title>] [AS WINDOW].
 ...

SELECTION-SCREEN END OF SCREEN <screen number>.

SELECTION-SCREEN BEGIN OF SCREEN – Key phrase to start selection screen Definition
<screen number> - Any number 1–9999 excluding 1000 reserved for standard selection screen
TITLE – Keyword
<title> – You can specify either a text symbol id with the prefix ‘TEXT-‘ like TEXT-001 or a name (name can

be maximum of eight characters long, starting with an alphabetic character, and the rest of characters can be
alphanumeric with embedded underscores (_). The name should be assigned text in an INITIALIZATION / AT
SELECTION-SCREEN OUTPUT event. This will appear as a window title. If no <title> is specified, the program title/
short text will appear as a window title.

AS WINDOW – This addition will make the selection screen a modal window.
SELECTION-SCREEN END OF SCREEN - Key phrase to end selection screen Definition
All the selection screen statements to create the elements: PARAMETERS, SELECT-OPTIONS, SELECTION-SCREEN…

for the user defined selection screen must be enclosed within the SELECTION-SCREEN BEGIN OF SCREEN… and the
SELECTION-SCREEN END OF SCREEN… statements.

After the definition of user defined selection screens, they need to be called. The syntax for calling a user defined
selection screen:

CALL SELECTION-SCREEN <screen number>
[STARTING AT <start column number> <start line number>
[ENDING AT <end column number> <end line number>]]
[USING SELECTION-SET <variant name>].

CALL SELECTION-SCREEN – Key phrase to call user defined selection screen
<screen number> – The selection screen number defined earlier
STARTING AT – Key phrase to indicate the starting coordinates of the user defined selection screen in terms of

column and row number
<start column number> – Starting column number
<start row number> – Starting row number
ENDING AT – Key phrase to indicate the ending coordinates of the user defined selection screen in terms of

column and row number
<end column number> – Ending column number
<end row number> – Ending row number
USING SELECTION-SET – Key phrase to load variant values into selection screen variables
<variant name> - Variant name. The Variant must exist in the same program
A hands-on exercise program YCL_CH09_SELECTION_SCREEN12 demonstrates the definition and calling of

a user defined selection screen. In this program, some random variant values have been created for the SELECT-
OPTIONS (customers) and PARAMETERS (company code) under the name ‘VAR1’.

The source program:

REPORT YCL_CH09_SELECTION_SCREEN12.

* User Defined SELECTION-SCREEN **

CHAPTER 9 ■ SELECTION-SCREENS

512

When multiple selection screens are used in a program, you can determine the current selection screen by
interrogating the contents of the system field SY-DYNNR. The system field SY-DYNNR contains the current
screen number.

With the definition, calling of user defined selection screen; the chapter on SELECTION-SCREEN is being concluded.

Conclusion
The selection screens will be part of report programs (programs producing outputs) executed in foreground mode
to make data selections. The selection screens will be used indirectly to provide selections through variants of report
programs executed in background mode. The use of a selection screen to provide selections through variants was
demonstrated in the program YCL_CH09_SELECTION_SCREEN10. The selection screens can be deployed for
simple inputs.

DATA: KUNNR TYPE KUNNR.

SELECTION-SCREEN BEGIN OF SCREEN 500.

SELECT-OPTIONS CUST_CD FOR KUNNR.
SELECTION-SCREEN SKIP 2.
PARAMETERS: CCODE TYPE T001-BUKRS DEFAULT 1000.

SELECTION-SCREEN END OF SCREEN 500.

CALL SELECTION-SCREEN 500 STARTING AT 5 1
 ENDING AT 85 15 USING SELECTION-SET 'VAR1'.
 " start row & column, end row & column

The selection screen displayed as a modal window will look like Figure 9-48.

Figure 9-48. Program: YCL_CH09_SELECTION_SCREEN12 – Selection Screen

513

CHAPTER 10

Interactive Lists

Multiple Lists Generation by an ABAP Program
Through the feature of ‘I=interactive lists’ , an ABAP program can generate multiple lists or reports. Frequently, in
an enterprise, reporting requires the data to be presented initially in a summarized form, and as an option, levels
of detail of selected summarized data should be available. Let’s look at this in terms of a simple business scenario.
Recall the customer sales summary list of a specified company code, generated in Chapter 6, using the COLLECT
statement. In this list, you totaled the converted individual billing document amounts of a customer and output this
totaled/summarized amount as one line. A customer can have n number of billing documents, and the sum total of
the n number of billing documents converted amounts was output as a single line. Let this customer sales summary
be called the first list. Now, suppose the end user wants the following on this first list as an option: for any selected
customer, the billing documents of the selected customer to be listed as a second list (I level detail). Then, again,
the end user wants as an option on the second list, for a selected billing document, all the items or materials of the
selected billing document to be output as a third list (II level detail). At any time one of the lists will be displayed.
A diagrammatic representation of these three lists appears in Figure 10-1.

Customer Wise sales Of

Company Code 3000 Curr: USD

Customer Amount

North Energy Ltd.

Media Store
Compu Tech.

Walmart

42.666.67
6.447.30

57.368.00
8.000.00

First List (Summary) Second List (I Level Detail)

Third List (II Level Detail)

Billing Docs Of Media Store

Doc. No. Date Amount

90031824
90032842
90032962

90034693
90036011

75.00

2.147.70
2.003.30

248.00
2.003.30

6.477.30Total

Item/Materials of Billing

Doc. 90032842

Material Code

HT1010
HT1080
HT1100

Amount

2.003.30

53.30
91.10

2.147.70Total

04.02.2004
25.06.2002
23.08.2002
08.06.2004
19.12.2005

Figure 10-1. Summary & Detailed Lists

CHAPTER 10 ■ INTERACTIVE LISTS

514

In Figure 10-1, the first list is the same as the one generated by the program YCL_CH06_ITAB05, that is, for a
specific company code (say 3000), the total sales of each customer in the currency of the company code.

When the end user double clicks on any customer (or positions the cursor on a customer and presses the function
key F2), for example, for customer ‘Media Store’ , a second list will appear, (I Level Detail) listing out all the billing
documents of the customer ‘Media Store’ . There are five billing documents listed for the customer ‘Media Store’ . The
total derived and output at the end, $6,447.30, will be equal to the amount in the preceding list line on which the end
user double clicked.

Similarly, in the second list, when an end user double clicks on a billing document, say, billing document number
‘90032842’ , a third list will appear, (II Level Detail) listing out all the items in the billing document ‘90032842’ . There
are three items in the billing document ‘90032842’: HT1010, HT1080, and HT1100 with their respective individual
amounts. The total derived and output at the end, $2,147.70 will be equal to the amount in the preceding list line
on which the end user double clicked. It is to be ensured that all the amounts are in the one and same currency, the
currency of the company code ‘3000’: USD ($).

At any time only one list will be active. If you are on the third list, you can navigate to the previous second list
by pressing on the standard toolbar, the ‘Back’ button or pressing the function key F3. And if you are on the second
list, you can navigate to the previous first list by pressing on the standard toolbar, the ‘Back’ button or pressing the
function key F3. When you are navigating forward from one list level to the next higher list level, the ABAP runtime
system saves the previous list before generating a new list. When you are navigating back from one list level to the
previous lower list level, the system releases or deletes the list from where you are navigating back.

Navigating back to the first list, the end user can double click on another customer to get details for that customer
and so on. Details lists are always for one specific selected item (customer, billing document).

These multiple lists are called interactive lists, as they enable end-user interaction.
Such business requirements are common and frequent, where a summarized list is produced with the option to

produce details of any one selected item in the summary at a time, not detailed reporting of all the data.

Interactive Lists: Events and Considerations
Let’s take a look at this in more detail. This generation of interactive lists is enabled through the two (the third is
obsolete) list events:

AT LINE-SELECTION

AT USER-COMMAND

AT PF<function key number> (Obsolete)

The event AT LINE-SELECTION will be described and used first. In subsequent coverage, the event
AT USER-COMMAND will be described and used.

The event AT LINE-SELECTION is triggered when the end user double clicks on a non-HOTSPOT area of a list
line – equivalent to positioning the cursor on a list line and pressing the function key F2 - or single clicks on a
HOTSPOT area of a list line. (Recall HOTSPOT from Chapter 5.)

The multiple lists generation has the following considerations:

The first list is called the • primary list. The subsequent lists are called the secondary lists.
The system field SY-LSIND assumes a value of 0 (zero) for the primary list. It assumes
values 1, 2 . . . 20 for the first, second . . . twentieth secondary list. There can be a total of 21 lists,
one primary, and a maximum of 20 secondary lists.

You cannot have separate processing blocks for every • secondary list. You have to process
all secondary lists in the same processing block of the event: AT LINE-SELECTION or
AT USER-COMMAND triggered repeatedly on user interaction on the list. Which list is to be
processed can be determined by interrogating the value of the system field SY-LSIND in the
processing block of the event.

CHAPTER 10 ■ INTERACTIVE LISTS

515

Preferably, in one ABAP program, use one of the two events: either the AT LINE-SELECTION •
or the AT USER-COMMAND.

The headers for the • secondary lists cannot be produced through the text element component
List Headings (standard header) or the event TOP-OF-PAGE. The headers for secondary lists
will have to be produced using the event TOP-OF-PAGE DURING LINE-SELECTION.

The footers for the • secondary lists can be produced through the event END-OF-PAGE, which
you used earlier in Chapter 5.

The interactive lists requiring user interaction can be run only in online or foreground mode •
and cannot be run in the background mode of processing.

The first list is also referred as a • basic list, the further lists as detail lists. In this book, the first
list is being referred to as the primary list, and the subsequent lists as secondary lists.

Hands-on Exercise to Highlight Event AT LINE-SELECTION and
the Operation of the System Field SY-LSIND
In this hands-on exercise, a single line is output in the event START-OF-SELECTION. A literal is output along with
the system field SY-LSIND. This will constitute the primary list. Single clicking (HOTSPOT) on this list will trigger the
event AT LINE-SELECTION. A literal is output with the system field SY-LSIND. This will constitute the secondary lists.
Double clicking on the first secondary list will trigger the event AT LINE-SELECTION again, and the same literal with
the incremented value of the system field SY-LSIND will be output. Double clicking again and again on the secondary
list will produce the same output with the system field SY-LSIND incremented every time. Double clicking on the
twentieth secondary list will result in a dump error because a maximum of only 20 secondary lists are supported.

Every time you click the ‘Back’ button of the standard toolbar on the secondary list, it will navigate to the previous
list if any.

The Source:

REPORT YCL_CH10_ILISTS01.

**
* Inter Active Lists - Demo Maximum Of 21 lists **
**
**
* single click (because of HOTSPOT) on primary **
* list will trigger event AT LINE-SELECTION and **
* output the first secondary list. **
* subsequent double clickings will trigger **
* the event AT LINE-SELECTION and output the **
* respective secondary list. every clicking **
* increments the system field SY-LSIND **
* **
* you are changing the color of each secondary **
* list by incrementing the variable COLOUR. when**
* all colour codes are exhausted i.e. COLOUR = 7**
* you are initializing the variable COLOUR = 1 **
* **

CHAPTER 10 ■ INTERACTIVE LISTS

516

* the system field SY-LSIND is zero for the **
* primary list, 1,2...20 for a maximum of 20 **
* secondary lists. if you double click on 20th **
* secondary list, it will result in dump error **
**
DATA: COLOUR TYPE I VALUE 1.

START-OF-SELECTION.

WRITE:/5 'This is a Primary List. List No.:' HOTSPOT, (2) SY-LSIND .

AT LINE-SELECTION.

FORMAT INVERSE ON COLOR = COLOUR.
WRITE:/10 'This is a Secondary List. List No.:', (2) SY-LSIND.
IF COLOUR = 7.
 COLOUR = 1.
ELSE.
 COLOUR = COLOUR + 1.
ENDIF.

The Primary list output will look like Figure 10-2.

Figure 10-2. Program YCL_CH10_ILISTS01 – Primary List

Figure 10-3. Program YCL_CH10_ILISTS01 – First Secondary List

Figure 10-4. Program YCL_CH10_ILISTS01 – Twentieth Secondary List

The first secondary list output will look like Figure 10-3.

The Twentieth secondary list output will look like Figure 10-4.

This was a demonstration of the generation of a primary list and 20 secondary lists.

CHAPTER 10 ■ INTERACTIVE LISTS

517

Hands-on Exercise: Produce Two Level Sales Report Using the
AT LINE-SELECTION Event (1 Primary and 1 Secondary)
This hands-on exercise will produce a customer wise sales summary of a specified company code as the primary list
(one line, one customer). This list is same as the output of the Chapter 6 program YCL_CH06_ITAB05. You can copy
lines from this program into the current program YCL_CH10_ILISTS02 and test out this part.

The layout of the primary list body is shown in Table 10-1.

Table 10-1. Customer Wise Sales - Output Body Layout

Field Name Table Name Description Column Positions

SY-TABIX System Field Serial No 005,008 (4)

009

KUNNR KNA1 Customer Code 010,019 (10)

020

NAME1 KNA1 Name 021,055 (35)

056

ORT01 KNA1 City 057-091 (35)

092

NETWR VBRK Total of Converted Billing
Document Net Value

093-109 (17)

When the end user double clicks on a line, you will list out all the billing documents of the customer on that line.
This will constitute your secondary list. You will stop at this in this current exercise. There will be one primary list
and one secondary list. You will generate the secondary list using the event AT-LINE-SELECTION. A rough layout of
secondary list is shown in Figure 10-5.

List of Bills for

Srl. Doc. Doc. Amount

KUNNR
NAME1

Curr.

Doc. DateNo.

No.

xxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxx
xx

x/xxx

-
-

Figure 10-5. The Body Layout of the Secondary List

CHAPTER 10 ■ INTERACTIVE LISTS

518

In a subsequent hands-on exercise, you will extend this to a second secondary list as described in the opening
section of this chapter ‘Multiple Lists Generation by an ABAP Program’ , Figure 10-1, etc.

To generate the secondary list, you have to know the customer code on which an end user double clicked on
the primary list. On the basis of customer code, you will be retrieving data of billing documents to be output in the
secondary list. There are a few methods that enable the extraction of information of a primary list or any previous list
in the processing block of event AT LINE-SELECTION for the current list. One of these methods will be described now,
and the other methods will be described in the subsequent hands-on exercises.

The system field SY-LISEL contains, after double clicking on a line (on any of the lists), the contents of the clicked
line as it was output on the screen. To know on which customer the end user double clicked, you need to extract the
customer code information (or any other field value on the clicked line) from this system field SY-LISEL.

To generate the secondary list, you have to perform the following coding tasks:

Data Declarations
Declare an internal table and structure to store smf process data to be output for •
a secondary list.

Declare data to store the customer code and name to appear in the heading of the • secondary
list. The customer code is also used in the WHERE condition of SELECT statement to retrieve
data for the secondary list.

Declare data to build and output the total amount in the • secondary list.

Coding in the Event Block AT LINE-SELECTION
Ensure that the system field SY-LSIND does not exceed value 1. If it exceeds 1, assign it the •
value 1. You are supporting with this program one primary and one secondary list. If the end
user double clicks on the secondary list, nothing must happen and no further interactivity.

Extract customer code and name from the system field SY-LISEL into the declared variables.•

Load internal table from database table VBRK for extracted customer code and entered •
company code (Data for the secondary list).

Table 10-2. Billing Docs of a Customer Output Body Layout

Field Name Table Name Description Column Positions

SY-TABIX System Field Serial No. 005,008 4)

009

VBELN VBRK Billing Doc. Number 010,019 (10)

020

FKDAT VBRK Billing Doc. Date 021,030 (10)

031

WAERK VBRK Billing Doc. Currency 032-036 (5)

037

NETWR VBRK Converted Billing Document
Net Value (Amount)

038-052 (15)

CHAPTER 10 ■ INTERACTIVE LISTS

519

Initialize total field for • secondary list. It could contain a value from previous processing.

Set up LOOP AT . . . ENDLOOP . . . to output • secondary list and build secondary list total.

Write code for the header of the • secondary list using the event TOP-OF-PAGE DURING
LINE-SELECTION. (Event TOP-OF-PAGE cannot be used for secondary lists.)

Output the • secondary list total at the end of LOOP AT . . . ENDLOOP.

It was mentioned that the system field SY-LISEL contains the complete line on which clicking was done as it was
output on the screen (i.e., amount fields will contain commas, and the field ‘KUNNR’ will contain leading zeroes if the
clause USING NO EDIT MASK was used to output the field, etc.).

So, if you want to extract the value of output ‘KUNNR’ field and store it in the field ‘KUNNR’ declared with DATA
statement, you will be doing the following:

KUNNR = SY − LISEL + 9(10).

Refer to the output layout of primary list in Table 10-1. The ‘KUNNR’ field in the primary list is output in
columns 10-19. The starting column is 10 (i.e., offset 9). The length of output is 10. Hence the expression
SY − LISEL + 9(10). You have output the ‘KUNNR’ field with leading zeroes in the primary list. So there is no necessity
of inserting leading zeroes to the field before using it in the WHERE condition of the SELECT statement for retrieving
data for the secondary list.

Similarly, the customer name field is extracted from the system field SY-LISEL and stored in the declared
field ‘NAME1’:

NAME1 = SY − LISEL + 20(35).

The extracted customer code and name are being used in the heading of the secondary list.
The DDIC Data Type of system field SY-LISEL is CHAR and length 255.
The source program:

REPORT YCL_CH10_ILISTS02 NO STANDARD PAGE HEADING
 LINE-COUNT 60.

* Customer Wise Sales Summary & 1 Level Detail. Click **
* On a Customer To List Billing Docs of That Customer **

* Primary list same as the output of program **
* YCL_CH06_ITAB05. Copy those lines. **
* **
* declare internal table, structure to store **
* Data to be output for secondary list. **
* declare data to store customer code, name to **
* appear in the heading of secondary list **
* declare data to total amount to be output in **
* secondary list. **
* **
* in the event block AT LINE-SELECTION:- **
* 1.ensure that the system field SY-LSIND Does **
* not exceed 1. **
* **

CHAPTER 10 ■ INTERACTIVE LISTS

520

* 2. extract customer code & name on which **
* clicking was done **
* **
* 3. load internal table from database table **
* VBRK for extracted customer code and **
* company code input **
* **
* 4. initialize total field for secondary list **
* **
* 5. set up LOOP AT...ENDLOOP to output **
* secondary list and build secondary list **
* total. **
* **
* 6. code for the secondary list heading using **
* event TOP-OF-PAGE DURING LINE-SELECTION **
* **
* 7. end of loop, output secondary list total **

DATA: SALES_TAB TYPE YCL_CH06_SALES_SUM_TAB,
 SALES_STRU LIKE LINE OF SALES_TAB,

 BEGIN OF BILLS_STRU,
 VBELN TYPE VBRK-VBELN,
 FKDAT TYPE VBRK-FKDAT,
 WAERK TYPE VBRK-WAERK,
 KURRF TYPE VBRK-KURRF,
 NETWR TYPE VBRK-NETWR,
 END OF BILLS_STRU,
 BILLS_TAB LIKE STANDARD TABLE OF BILLS_STRU,

 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 TOTAL TYPE VBRK-NETWR,
 TOTAL1 TYPE VBRK-NETWR,
 BUTXT TYPE T001-BUTXT,
 WAERS TYPE T001-WAERS,
 BUTXTS TYPE STRING.
**
PARAMETERS: CCODE TYPE VBRK-BUKRS VALUE CHECK
 DEFAULT 3000.
**

TOP-OF-PAGE.

WRITE:/5 TEXT-001, CCODE NO-GAP, '/' NO-GAP, BUTXTS,
 102 TEXT-003, 107(3) SY-PAGNO.
WRITE:/40 TEXT-002, WAERS.
SKIP 1.
WRITE:/5(104) SY-ULINE.

CHAPTER 10 ■ INTERACTIVE LISTS

521

WRITE:/5 TEXT-004, 11 TEXT-005, 23 TEXT-006, 60 TEXT-007, 91(17)
 TEXT-008 RIGHT-JUSTIFIED.
WRITE:/5 TEXT-009, 13 TEXT-010.
WRITE:/5(104) SY-ULINE.

**
START-OF-SELECTION.

SELECT SINGLE BUTXT WAERS FROM T001 INTO (BUTXT, WAERS) WHERE
 BUKRS = CCODE.

BUTXTS = BUTXT. "assignment to TYPE STRING drops trailing blanks

SELECT KUNNR NAME1 ORT01 NETWR KURRF FROM YCL_CH05_VBRKKNA INTO
 CORRESPONDING FIELDS OF SALES_STRU WHERE BUKRS = CCODE.

 SALES_STRU-NETWR = SALES_STRU-NETWR * SALES_STRU-KURRF.
 SALES_STRU-KURRF = 0. "to prevent overflow
 COLLECT SALES_STRU INTO SALES_TAB.
ENDSELECT.

SORT SALES_TAB BY KUNNR.

LOOP AT SALES_TAB INTO SALES_STRU.
 WRITE :/5(4) SY-TABIX, SALES_STRU-KUNNR USING NO EDIT MASK,
 SALES_STRU-NAME1,SALES_STRU-ORT01, (17) SALES_STRU-NETWR.
 TOTAL = TOTAL + SALES_STRU-NETWR.
ENDLOOP.

SKIP 1.
WRITE :/(17) TOTAL UNDER SALES_STRU-NETWR.
**
**
AT LINE-SELECTION.

IF SY-LSIND > 1. " ensure SY-LSIND does not exceed 1
 SY-LSIND = 1.
ELSE.
 TOTAL1 = 0.
 KUNNR = SY-LISEL+9(10). " extract customer code
 NAME1 = SY-LISEL+20(35). " extract customer name

 SELECT VBELN FKDAT WAERK KURRF NETWR FROM VBRK INTO TABLE BILLS_TAB
 WHERE KUNAG = KUNNR AND BUKRS = CCODE.

 LOOP AT BILLS_TAB INTO BILLS_STRU.
 BILLS_STRU-NETWR = BILLS_STRU-NETWR * BILLS_STRU-KURRF.
 TOTAL1 = TOTAL1 + BILLS_STRU-NETWR.
 WRITE:/5(4) SY-TABIX, BILLS_STRU-VBELN, BILLS_STRU-FKDAT,
 BILLS_STRU-WAERK, (15) BILLS_STRU-NETWR.
 ENDLOOP.

CHAPTER 10 ■ INTERACTIVE LISTS

522

 SKIP 1.
 WRITE:/38(15) TOTAL1.
ENDIF.

TOP-OF-PAGE DURING LINE-SELECTION. " event for secondary list headers

WRITE:/5 TEXT-011, 44 TEXT-003, 49(3) SY-PAGNO.
WRITE:/5 KUNNR USING NO EDIT MASK NO-GAP, '/' NO-GAP, NAME1.
WRITE:/5(48) SY-ULINE.
WRITE:/5 TEXT-004, 10 TEXT-012, 21 TEXT-013, 32 TEXT-014, 46 TEXT-008.
WRITE:/6 TEXT-009, 32 TEXT-015.
WRITE:/5(48) SY-ULINE.

The text symbols used in the lists’ headers are shown in Figure 10-6.

Figure 10-6. Program YCL_CH10_ILISTS02 – Text Symbols

The primary list – Customer Wise Sales of a Specified Company Code - will look like Figure 10-7.

CHAPTER 10 ■ INTERACTIVE LISTS

523

Double click on the customer code ‘0000003271’ (‘Media Store’ , Srl. No. 31). The explanation of multiple lists in
the opening section of this chapter (Figure 10-1) used this customer ‘Media Store’ . Using the same customer makes
the perusal easier.

The secondary list will be like Figure 10-8.

Figure 10-7. Program YCL_CH10_ILISTS02 – Primary List

Figure 10-8. Program YCL_CH10_ILISTS02 – Secondary List

The five billing documents of customer ‘0000003271’ are output in the secondary list.
In the IDES server, the billing documents data is for multiple years: 2002, 2004, and 2005. So, multiple years’ data

was output. In a real-life situation, output or reporting will be for specific time periods: month/quarter/financial year.
You are not reporting for a specific period, you are reporting using the full data. In the current learning paradigm,
this is okay.

This is the end of the hands-on exercise of two level lists. You will extend this two level interactive list to a three
level interactive list in the next hands-on exercise.

CHAPTER 10 ■ INTERACTIVE LISTS

524

Hands-on Exercise: Produce Three Level Sales Report Using the
AT LINE-SELECTION Event (1 Primary and 2 Secondary)
You will extend the two level interactive lists to a three level interactive list in the current hands-on exercise. When
the end user clicks on a billing document in the first secondary list, you will list all the items of the billing document
clicked upon.

The program will generate one primary list and two secondary lists: secondary list I and secondary list II.
The primary list will be customer wise sales summary for a specified company code. (Already generated earlier,

code lines can be copied.)
The secondary list I will be the billing documents of a customer line double clicked upon. (Already generated

earlier, code lines can be copied.)
The secondary list II will be the items of a billing document line double clicked upon. (New code lines to be

created and other required modifications to be done.)

Layout:

Information Passing: From One List to Another – the HIDE Statement
If you have to retrieve the items of the billing document clicked upon, you have to know the billing document number
clicked upon (i.e., the value of the variable ‘VBELN’). You can retrieve it the way you did in the previous hands-on
exercise from the system field SY-LISEL.

Table 10-3. Items/Materials of a Billing Doc. Output Body Layout

Field Name Table Name Description Column Positions

SY-TABIX System Field Serial No. 005,008 (4)

009

MATNR VBRP Material Code 010,027 (18)

028

FKIMG VBRP Billed Quantity 029,040 (12)

041

VRKME VBRP Unit of Measure (Sales) 042-046 (5)

047

NETWR VBRP Converted Item Net Value (Amount) 048-062 (15)

Srl. Material Code

Items/Materials of Billing Doc.

UOM Amount

Page:

Quantity
No.

xxxxxxxxxxxxx VBELNxx

xxxxxxxxxxx xxx

-

Figure 10-9. The Body Layout of the Secondary List II

CHAPTER 10 ■ INTERACTIVE LISTS

525

The HIDE statement is being introduced in this hands-on exercise. The HIDE statement will be used to retrieve
the data of the line clicked upon a list.

The statement ‘HIDE’ is misleading. There is nothing being hidden as such. With the HIDE statement, data objects
are being saved and retrieved. The HIDE statement is a means of saving and retrieving data object values. In the
current exercise, the code lines to output the secondary list I:

LOOP AT BILLS_TAB INTO BILLS_STRU.

 WRITE:/5(4) SY-TABIX, BILLS_STRU-VBELN, BILLS_STRU-FKDAT,
 BILLS_STRU-WAERK, (15) BILLS_STRU-NETWR.

 HIDE: BILLS_STRU-KURRF, BILLS_STRU-VBELN.
ENDLOOP.

The HIDE statement will save or store the names and values of the data objects or variables specified, that is,
BILLS_STRU-KURRF, BILLS_STRU-VBELN in the hide area for every list line in a kind of table form. If there are
100 output lines in the list, the HIDE statement will store 100 values of the variables. Each value of each variable is
associated with the line number of the most recent output. When a list line is double clicked, the saved values of data
objects or variables corresponding to the clicked line will be fetched into the variables.

In the present context, when an end user double clicks on a billing document, the system will fetch the
corresponding billing document number and exchange rate from the saved or hide area and load them into the
variables BILLS_STRU-VBELN and BILLS_STRU-KURRF. You can then use the retrieved values in these variables in
your secondary list II. You will use BILLS_STRU-VBELN in the WHERE condition of the SELECT statement to retrieve
items for the billing document number contained in BILLS_STRU-VBELN. You will use the exchange rate value in the
field BILLS_STRU-KURRF to derive the amount in the currency of the company code from the amount in the currency
of the billing document.

A demonstrative example of the HIDE statement:

START-OF-SELECTION.

 DO 5 TIMES.
 WRITE:/5 'Primary List. Line No.:', SY-INDEX.
 HIDE SY-INDEX.
ENDDO.

AT LINE-SELECTION.
WRITE:/5 'Secondary List. Clicked Line No.:', SY-INDEX.

The primary list output will be:

Line No.: 1
Line No.: 2
Line No.: 3
Line No.: 4
Line No.: 5

If you double click on the fourth line, the secondary list will be:

Secondary List. Clicked Line No.: 4

CHAPTER 10 ■ INTERACTIVE LISTS

526

Whichever of the five lines you double click on the primary list, the secondary list will output that line number with
the literal ‘Secondary List. Clicked Line No::’ . The value of system field SY-INDEX saved through the HIDE SY-INDEX
statement is being retrieved and placed into SY-INDEX by double clicking on a line of the primary list.

It is important where you locate your HIDE statement. Since the saving and retrieval is based on list line, it
is preferable that you have the HIDE statement right next to the WRITE statement if you are using a single WRITE
statement to output a line (as you are doing in your secondary list I). If you are using multiple WRITE statements to
output one line, the HIDE statement should follow the last WRITE statement used to output a line.

A demonstrative code to show how an inapt positioning of HIDE statement will lead to erroneous results:

START-OF-SELECTION.

 DO 5 TIMES.
 HIDE SY-INDEX.
 WRITE:/5 'Primary List. Line No.:', SY-INDEX.
ENDDO.

AT LINE-SELECTION.
WRITE:/5 'Secondary List. Clicked Line No.:', SY-INDEX.

You have placed the HIDE statement before the WRITE statement. The SY-INDEX value will be saved and
retrieved as follows:

The first time the HIDE SY-INDEX statement is encountered; there is no prior output line, or no corresponding
list line, so no saving of SY-INDEX = 1.

When the statement: HIDE SY-INDEX is encountered in the second pass of the loop, that is, SY-INDEX = 2, the
only output line is ‘ Line No.: 1’ . So the first line of the primary list gets associated or linked to the SY-INDEX value 2.
On the same pattern, the output line ‘Line No.: 2’ of the primary list gets associated or linked to the SY-INDEX value 3.
And the output line ‘ Line No.: 4’ of the primary list gets associated or linked to the SY-INDEX value 5. The last line
of the primary list ‘ Line No.: 5’ is not associated with any value of SY-INDEX. After the output of this line, no HIDE
statement is encountered and the loop exits.

When you double click on the first line of the primary list ‘Line No.: 1’ , you get the following output:

Secondary List: Clicked Line No.: 2

This was because the first line of the primary list was associated with the SY-INDEX value 2.
The data objects you can save and retrieve through the HIDE statement can be elementary or flat structures.

Create the Text in Text Symbols for the Header of a Secondary List II
To generate the secondary list II, you have to perform the following coding tasks:

Data Declarations

Declare an internal table and structure to store, and process data to be output for •
secondary list II.

Declare data to build, and output total amount in • secondary list II.

CHAPTER 10 ■ INTERACTIVE LISTS

527

Coding in LOOP . . . ENDLOOP of Secondary List I

HIDE: BILLS_STRU-KURRF, BILLS_STRU-VBELN.

Coding in the Event Block AT LINE-SELECTION

You have now two • secondary lists. The value of the system field SY-LSIND should not exceed 2.
If the end user double clicks on the secondary list II, there should be no further interaction.

Both the • secondary list will be in the event AT LINE-SELECTION. So you have to check the
value of system field SY-LSIND to produce a specific secondary list – CASE . . . ENDCASE
statements, etc.

Initialize the total for • secondary list II; it might contain a value from previous processing.

Load data into the internal table from database table VBRP to produce the secondary list II. •
The WHERE condition: VBELN = BILLS_STRU-VBELN.

Set up LOOP . . . ENDLOOP . . . to produce the body of secondary list II and build total. Refer to •
layout tables whenever coding for the body of a list. Output the built total at the end of LOOP
AT . . . ENDLOOP process.

Coding For the Secondary List II Header

In the event: TOP-OF-PAGE DURING LINE-SELECTION, you have to check the value of the system field SY-LSIND
and code for the appropriate secondary list header.

Coding for Improvements, Sophistication

• No Data Check: When there is no data to be listed, you should not output anything like a
heading, etc. You must issue a message and alert the end user. This is what you are doing for
all the three lists (i.e., one primary and two secondary lists). Strictly speaking, in your present
context, you will have data for the secondary list I. Your source of data for the primary list is a
database view that has gathered data of customers having billing documents. So the scenario
of customers having no bills does not arise with the view data you are using. But you are
checking the no data condition for the secondary list I also. (Redundant.) You can test the no
data condition for a primary list with company code values 2000, 4000, 5000, etc., In a real-life
scenario, the no data condition will be incorporated in every listing or reporting program.

• Produce lists only when double clicking on valid data: In the output generated by the
program YCL_CH10_ILISTS02, if the user double clicks on the report area, other than in the
body of the report-like report heading or column headings, the AT LINE-SELECTION event
will be triggered, and an erroneous secondary list will be generated.

For example, if the user double clicks on the primary list heading, the system field SY-LISEL will be filled
up with the contents of the clicked line, that is, ‘Customer Wise Sales Summary of Company Code . . .’ You are
extracting the 10-19 columns/bytes of this system field SY-LISEL into the variable ‘KUNNR’ as customer code: KUNNR
= SY-LISEL+9(10). In this case, you will have the value ‘Wise Sales’ in the field ‘KUNNR’ . This is not a valid customer
code. No data will be fetched from the database table ‘VBRK’ . You will not have any output in the body of the
secondary list. Though there is nothing wrong happening, this is an awkward situation. You overcome this awkward
situation in the current program. You can ensure that only when the user double clicks on any of the fields of the list
body, interaction and further list generation occurs.

CHAPTER 10 ■ INTERACTIVE LISTS

528

If the user double clicks on any area of the list other than the fields of the list body, there should be no interaction.
The Fields in the list body of the primary list are:

 (i)

SY-TABIX

SALES_STRU-KUNNR

SALES_STRU-NAME1

SALES_STRU-ORT01

SALES_STRU-NETWR

The fields in the list body of secondary list I are:

 (ii)

SY-TABIX

BILLS_STRU-VBELN

BILLS_STRU-FKDAT

BILLS_STRU-WAERK

BILLS_STRU-NETWR

You have to determine before the generation of secondary list I that double clicking occurred on any of the fields
listed under (i). And determine before the generation of secondary list II that double clicking occurred on any of the
fields listed under (ii). You use the GET CURSOR . . . ABAP statement to determine the field on which an end user
double clicked. A simple syntax of the GET CURSOR statement:

GET CURSOR FIELD <data object>.
GET CURSOR FIELD – Key phrase
<data object> - A character type variable: TYPE C or STRING.

The name of the list field double clicked upon is returned in the <data object>. If there is no field like the blank
column being implicitly generated between adjoining data objects output on the same line, the GET CURSOR
statement will return blank. That is why, in the current program, if the end user double clicks on the blank column
between adjoining fields of the list body, there is no interaction and generation of a further list.

After the GET CURSOR . . . statement, you are using the IF statement to determine the field double clicked upon.
If the field name is not as per your fields listed in (i) and (ii), you are decrementing the system field SY-LSIND by 1
and exiting the processing block. Double clicking incremented the system field SY-LSIND, as you want to stay put
on the current list with no interaction, you have to restore to the system field the value of the list on which the user
double clicked.

Variations of the GET CURSOR . . . statement can obtain field values from any page and line. So the statement
can be used to exchange information from the lower level lists to a higher level list. So you can use GET CURSOR . . .
statement in lieu of the system field SY-LISEL, HIDE . . . statement if you want.

You can look up these variations of the GET CURSOR . . . in the online documentation or the documents under
ABAP Programming (BC-ABA).

When using the event AT LINE-SELECTION, the control of the system field SY-LSIND is critical and has to be
taken care of in the coding.

CHAPTER 10 ■ INTERACTIVE LISTS

529

The source code:

REPORT YCL_CH10_ILISTS03 NO STANDARD PAGE HEADING
 LINE-COUNT 60.

* Customer Wise Sales Summary & 2 Level Detail. **
* 1. Click On A Customer To List Billing Docs Of That Customer **
* 2. Click On A Billing Doc To List items Of That Billing Doc. **

* primary list same as the output of program **
* YCL_CH06_ITAB05. copy those lines. **
* **
* secondary list I same as the output of **
* program YCL_CH10_ILISTS02. copy those lines. **
* **
* to pass info from secondary list I to II, use**
* the HIDE statement after the WRITE statement **
* in secondary list I like: **
* HIDE: BILLS_STRU-VBELN, BILLS_STRU-KURRF. **
* **
* declare internal table, structure to store **
* data to be output for secondary list. II **
* declare data to total amount to be output **
* in secondary list II. **
* **
* in the event block AT LINE-SELECTION:- **
* 1.ensure that the system field SY-LSIND Does **
* not exceed 2. chech value of SY_LSIND and **
* code for appropriate secondary lists **
* **
* 2. load internal table from database table **
* VBRP for value in BILLS_STRU-VBELN **
* **
* 3. initialize total field for secondary **
* list II **
* **
* 4. set up LOOP AT...ENDLOOP to output **
* secondary list II and build secondary **
* list II total. **
* **
* 5. code for the secondary list II heading **
* using event TOP-OF-PAGE DURING **
* LINE-SELECTION **
* **
* 6. end of loop, output secondary list II **
* total **
* **

CHAPTER 10 ■ INTERACTIVE LISTS

530

* 7. check for no data condition in primary **
* list, issue message for no data **
* you have done no data check for secondary **
* lists I & II though not necessary **
* **
* 8. use GET CURSOR statement to determine **
* user double clicked on a valid output **
* field on the primary and secondary list I,**
* generate subsequent lists only if double **
* click on valid fields **

DATA: SALES_TAB TYPE YCL_CH06_SALES_SUM_TAB,
 SALES_STRU LIKE LINE OF SALES_TAB,

 BEGIN OF BILLS_STRU,
 VBELN TYPE VBRK-VBELN,
 FKDAT TYPE VBRK-FKDAT,
 WAERK TYPE VBRK-WAERK,
 KURRF TYPE VBRK-KURRF,
 NETWR TYPE VBRK-NETWR,
 END OF BILLS_STRU,
 BILLS_TAB LIKE STANDARD TABLE OF BILLS_STRU,

 BEGIN OF BILL_ITEMS_STRU,
 MATNR TYPE VBRP-MATNR, " material code
 FKIMG TYPE VBRP-FKIMG, " quantity
 VRKME TYPE VBRP-VRKME, " unit of measure
 NETWR TYPE VBRP-NETWR, " amount for item
 END OF BILL_ITEMS_STRU,
 BILL_ITEMS_TAB LIKE STANDARD TABLE OF BILL_ITEMS_STRU,

 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 TOTAL TYPE VBRK-NETWR,
 TOTAL1 TYPE VBRK-NETWR,
 TOTAL2 TYPE VBRK-NETWR,
 FNAME TYPE STRING, " to store field name in GET CURSOR

 BUTXT TYPE T001-BUTXT,
 WAERS TYPE T001-WAERS,
 BUTXTS TYPE STRING.
**
PARAMETERS: CCODE TYPE VBRK-BUKRS VALUE CHECK
 DEFAULT 3000.
**

TOP-OF-PAGE.

WRITE:/5 TEXT-001, CCODE NO-GAP, '/' NO-GAP, BUTXTS,
 102 TEXT-003, 107(3) SY-PAGNO.
WRITE:/40 TEXT-002, WAERS.

CHAPTER 10 ■ INTERACTIVE LISTS

531

SKIP 1.
WRITE:/5(104) SY-ULINE.
WRITE:/5 TEXT-004, 11 TEXT-005, 23 TEXT-006, 60 TEXT-007, 91(17)
 TEXT-008 RIGHT-JUSTIFIED.
WRITE:/5 TEXT-009, 13 TEXT-010.
WRITE:/5(104) SY-ULINE.

**
START-OF-SELECTION.

SELECT SINGLE BUTXT WAERS FROM T001 INTO (BUTXT, WAERS) WHERE
 BUKRS = CCODE.

BUTXTS = BUTXT. "assignment to TYPE STRING drops trailing blanks

SELECT KUNNR NAME1 ORT01 NETWR KURRF FROM YCL_CH05_VBRKKNA INTO
 CORRESPONDING FIELDS OF SALES_STRU WHERE BUKRS = CCODE.

 SALES_STRU-NETWR = SALES_STRU-NETWR * SALES_STRU-KURRF.
 SALES_STRU-KURRF = 0. "to prevent overflow
 COLLECT SALES_STRU INTO SALES_TAB.
ENDSELECT.

IF SY-DBCNT > 0.

 SORT SALES_TAB BY KUNNR.

 LOOP AT SALES_TAB INTO SALES_STRU.
 WRITE :/5(4) SY-TABIX, SALES_STRU-KUNNR USING NO EDIT MASK,
 SALES_STRU-NAME1,SALES_STRU-ORT01, (17) SALES_STRU-NETWR.
 TOTAL = TOTAL + SALES_STRU-NETWR.
 ENDLOOP.

 SKIP 1.
 WRITE :/(17) TOTAL UNDER SALES_STRU-NETWR.
ELSE.
 MESSAGE S021(YCL_CH07_MCLASS01) WITH " no data for the company code
 'Primary List' DISPLAY LIKE 'W'.
ENDIF.
**
**
AT LINE-SELECTION.

IF SY-LSIND > 2. " ensure SY-LSIND does not exceed 2
 SY-LSIND = 2.

ELSE.
 CASE SY-LSIND.

 WHEN 1.

CHAPTER 10 ■ INTERACTIVE LISTS

532

 GET CURSOR FIELD FNAME. "check for cursor on a field
 IF FNAME <> 'SY-TABIX' AND FNAME <> 'SALES_STRU-KUNNR' AND
 FNAME <> 'SALES_STRU-NAME1' AND FNAME <> 'SALES_STRU-NETWR'.

 SY-LSIND = SY-LSIND - 1.
 EXIT.
 ENDIF.

 TOTAL1 = 0.
 KUNNR = SY-LISEL+9(10). " extract customer code
 NAME1 = SY-LISEL+20(35). " extract customer name

 SELECT VBELN FKDAT WAERK KURRF NETWR FROM VBRK INTO TABLE BILLS_TAB
 WHERE KUNAG = KUNNR AND BUKRS = CCODE.

 IF SY-DBCNT = 0.
 MESSAGE S021(YCL_CH07_MCLASS01) WITH 'Secondary List I' DISPLAY LIKE 'W'.
 SY-LSIND = 0.
 EXIT.
 ENDIF.
 LOOP AT BILLS_TAB INTO BILLS_STRU.

 BILLS_STRU-NETWR = BILLS_STRU-NETWR * BILLS_STRU-KURRF.
 TOTAL1 = TOTAL1 + BILLS_STRU-NETWR.
 WRITE:/5(4) SY-TABIX, BILLS_STRU-VBELN, BILLS_STRU-FKDAT,
 BILLS_STRU-WAERK, (15) BILLS_STRU-NETWR.

 HIDE: BILLS_STRU-KURRF, BILLS_STRU-VBELN.

 ENDLOOP.

 SKIP 1.
 WRITE:/38(15) TOTAL1.

 WHEN 2.

 GET CURSOR FIELD FNAME. "check for cursor on a field
 IF FNAME <> 'SY-TABIX' AND FNAME <> 'BILLS_STRU-VBELN' AND
 FNAME <> 'BILLS_STRU-FKDAT' AND FNAME <> 'BILLS_STRU-WAERK'
 AND FNAME <> 'BILLS_STRU-NETWR'.

 SY-LSIND = SY-LSIND - 1.
 EXIT.
 ENDIF.

 TOTAL2 = 0.

CHAPTER 10 ■ INTERACTIVE LISTS

533

 SELECT MATNR FKIMG VRKME NETWR FROM VBRP INTO TABLE BILL_ITEMS_TAB
 WHERE VBELN = BILLS_STRU-VBELN.

 IF SY-DBCNT = 0.
 MESSAGE S021(YCL_CH07_MCLASS01) WITH 'Secondary List II' DISPLAY LIKE 'W'.
 SY-LSIND = 1.
 EXIT.
 ENDIF.

 LOOP AT BILL_ITEMS_TAB INTO BILL_ITEMS_STRU.

 BILL_ITEMS_STRU-NETWR = BILL_ITEMS_STRU-NETWR * BILLS_STRU-KURRF.
 TOTAL2 = TOTAL2 + BILL_ITEMS_STRU-NETWR.
 WRITE:/5(4) SY-TABIX, BILL_ITEMS_STRU-MATNR, (12) BILL_ITEMS_STRU-FKIMG,
 BILL_ITEMS_STRU-VRKME, (15) BILL_ITEMS_STRU-NETWR.
 ENDLOOP.

 SKIP 1.
 WRITE:/46(15) TOTAL2.

 ENDCASE.

 ENDIF.

TOP-OF-PAGE DURING LINE-SELECTION. " event for secondary list headers

CASE SY-LSIND.

 WHEN 1.

 WRITE:/5 TEXT-011, 44 TEXT-003, 49(3) SY-PAGNO.
 WRITE:/5 KUNNR USING NO EDIT MASK NO-GAP, '/' NO-GAP, NAME1.
 WRITE:/5(48) SY-ULINE.
 WRITE:/5 TEXT-004, 10 TEXT-012, 21 TEXT-013, 32 TEXT-014,
 46 TEXT-008.
 WRITE:/6 TEXT-009, 32 TEXT-015.
 WRITE:/5(48) SY-ULINE.

 WHEN 2.

 WRITE:/5 TEXT-016, BILLS_STRU-VBELN, 53 TEXT-003, 59(3) SY-PAGNO.
 WRITE:/5(56) SY-ULINE.
 WRITE:/5 TEXT-004, 11 TEXT-017, 32 TEXT-018, 42 TEXT-019, 55 TEXT-008.
 WRITE:/6 TEXT-009.
 WRITE:/5(56) SY-ULINE.

ENDCASE.

CHAPTER 10 ■ INTERACTIVE LISTS

534

Figure 10-11 shows the no data condition.

Figure 10-10. Program YCL_CH10_ILISTS03 – Text Symbols

Figure 10-11. Program YCL_CH10_ILISTS03 – No Data Condition

A partial list of Text symbols is listed in Figure 10-10.

CHAPTER 10 ■ INTERACTIVE LISTS

535

The secondary list I will look like Figure 10-13.

Figure 10-13. Program YCL_CH10_ILISTS03 – Secondary List I

The primary list will look like Figure 10-12.

Figure 10-12. Program YCL_CH10_ILISTS03 – Primary List

The secondary list II will look like Figure 10-14.

CHAPTER 10 ■ INTERACTIVE LISTS

536

With this hands-on exercise, you have implemented what was described in the opening section of this chapter.
You have used the same data as in the description, that is, the customer code and billing document number.

In this manner, you can present a summarized list as a primary list and levels of detail of the selected
summarized data as secondary lists triggering the AT LINE-SELECTION event. You can produce a maximum of 20
secondary lists as demonstrated in the program YCL_CH10_ILISTS01.

You will produce these same outputs using the event AT USER-COMMAND in the next hands-on exercise.

Hands-on Exercise: Produce Three Level Sales Reports Using the
AT USER-COMMAND Event (1 Primary and 2 Secondary)
You will produce the same outputs as of previous program YCL_CH10_ILISTS03 using or triggering the event AT
USER-COMMAND instead of the event AT LINE-SELECTION. The event AT USER-COMMAND is triggered when
the end user clicks on an application or standard toolbar button or its equivalent menu option or an assigned
function key.

Trigger AT USER-COMMAND Event by Clicking Custom Buttons on the
Custom Application Toolbar:
You will create your own application toolbar to locate your custom buttons on it. The custom buttons will enable you
to trigger the AT USER-COMMAND event and produce the secondary lists in this event. The custom buttons will also
enable the navigation back to the previous list or screen, etc.

 1. In your primary list (customer wise sales of a specified company code), you will have the
following application toolbar buttons:

The ‘Exit’ button is used to leave the primary list and return to the PARAMETERS Selection Screen prompting for
a company code.

The ‘Detail I’ button is to produce the first level detail: billing documents of a customer.

 2. In your secondary list I (billing documents of a specified customer), you will have the
following application toolbar buttons:

Figure 10-14. Program YCL_CH10_ILISTS03 – Secondary List II

CHAPTER 10 ■ INTERACTIVE LISTS

537

The ‘Back’ button is used to leave the secondary list I and navigate back to the primary list.
The ‘Detail II’ button is used to produce the second level detail: the items/materials of a specified billing

document.

 3. In your secondary list II (the items/materials of a specified billing document), you will
have the following application toolbar button:

The ‘Back’ button is used to leave the secondary list II and navigate back to the secondary list I.
You may copy the previous hands-on exercise program YCL_CH10_ILISTS03 to the current program

YCL_CH10_ILISTS04 and carry out the requisite modifications. All the declarations and logic of the previous program
can be used. The program needs to be modified for some extra text symbols, some extra declarations, setting of a custom
application toolbar for the lists, and triggering the AT USER-COMMAND event instead of the AT LINE-SELECTION.

Create a Custom Application Toolbar in the Menu Painter
The custom application toolbars called ‘GUI Statuses’ or ‘Statuses’ can be maintained in transaction code
SE41 – Menu Painter.

A ‘Status’ is an ensemble of application toolbar buttons with its equivalent menu options, function keys, and
context menus. For an application toolbar, an end user must have the choice of using the buttons on the application
toolbar or the menu options or function keys or context menu options. It constitutes a good user interface. A ‘Status’
can be positioned on a Normal Screen or on a Dialogue Box Screen. A ‘Status’ can be a ‘context menu’ . (Mouse right
click.) For now, in the current chapter, you will create a ‘Status’ for the Normal Screen and Dialogue Box Screen; context
menus will be covered in Chapter 11.

You can also create in the SE41 transaction – menu painter, the ‘Title Lists’ . With the ‘Title Lists’ , you can
assign windows or dialogue box screens ‘titles’ . By default, when you execute an ABAP program, the short text of the
program appears as the window title. You can override this by creating titles in ‘Title Lists’ in the menu painter and set
these titles on the windows or dialogue box screens in an ABAP program.

A ‘Status’/’Title List’ is identified with or attached to an ABAP program. It has no independent existence. The
multiple ‘Statuses’ and ‘Title Lists’ created for an ABAP program, together, are called an ‘Interface’ .

A program can use more than one ‘Status’ (i.e., more than one ensemble of buttons, etc., and context menus).
A program can use more than one ‘Title List’ . The program YCL_CH10_ILISTS04 will be using two ‘Statuses’ for your
three lists. (One primary and two secondary lists.) As shown in items I, II, and III above, you have three sets of buttons,
one for each list. The third set (only one button) is a subset of the second set. Hence, you will manage with two ‘Statuses’ .

A ‘Status’ other than the Context Menu consists of Menu Bar, Application Toolbar and Function Keys. Figure 10-15
shows the ‘Interface’ , ‘Status’ , and its constituents.

Statuses - Normal Screen
Statuses - Dialogue Box
Statuses - Context Menu

Title Lists

Menu Bar

Application Toolbar
Standard Tool bar
Function Keys

Interface

Figure 10-15. Interface, Status, Etc

CHAPTER 10 ■ INTERACTIVE LISTS

538

Let two statuses be created with the menu painter.
Creation of statuses in the menu painter is the first part of this process. This is described in the following pages.

The created status has to be used in the ABAP program. The appropriate statuses must appear in appropriate lists. To
use a status or make it appear in a list, you use the ABAP statement SET PF-STATUS . . . described subsequently.

Status for Primary List

Create a status for the primary list consisting of the ‘Exit’ , ‘Detail I’ buttons.
Navigate to the Menu Painter screen – transaction code SE41. Enter the name of the ABAP program:

YCL_CH10_ILISTS04. Ensure the radio button ‘Status’ is enabled. Enter the name of the status: it must start with a
letter. The rest can be alphanumeric with embedded underscores (_). You need not start with ‘Y’/’Z’ . The maximum
namespace is 20 characters. We have named the first status ‘STAT1’ . The screen will look like Figure 10-16.

Figure 10-16. Program YCL_CH10_ILISTS04, Create Status ‘STAT1’: Opening Screen

Click the create button or press function key F5. A pop-up dialogue box appears and will look like Figure 10-17.

Figure 10-17. Create Status ‘STAT1’: Short Text, Status Type

CHAPTER 10 ■ INTERACTIVE LISTS

539

You are creating a status for a normal screen. (The normal screen is the default option.) Enter the short text and
click on the continue button. The screen will be like Figure 10-18.

Figure 10-19. Create Status ‘STAT1’: Application Toolbar Bar

Figure 10-18. Create Status ‘STAT1’

There are three expandable nodes: Menu Bar, Application Toolbar, and Function Keys. Click on the node of the
Application Toolbar. The entries to be made in each of these three nodes are described under steps (1), (2), and (3).

Application Toolbar (Second Node)

When you expand the Application Toolbar node, the screen will look like Figure 10-19:

There is a provision for creation of a maximum of 35 buttons on the application toolbar. An application toolbar
button can have either an icon or text or both. There is only one row of buttons available, that is, the application
toolbar does not extend to multiple rows.

On this screen, you should enter the function codes for the buttons you intend to place on the application
toolbar. The meaning of the function code is the same as was explained in the context of function codes for push
buttons on Selection Screens. The function code can be a string of maximum 20 characters. It can have special
characters. But it is better to stick to the convention of starting it with a letter, with the rest alphanumeric with

CHAPTER 10 ■ INTERACTIVE LISTS

540

embedded underscores (_). The function code is case insensitive. If you enter it in lower case, it will be converted to
upper case. The function code of a button will be loaded into the system field SY-UCOMM when the corresponding
button is pressed on the application toolbar.

You entered function code ‘EXIT’ for your exit button as shown in Figure 10-19.
After entering the function code for the button, double click on it. Figure 10-20 will appear.

Figure 10-20. Create Status ‘STAT1’: Application Toolbar Bar – Text Type

The system is prompting you for the text type: whether static or dynamic. If runtime text is to be provided, you
should opt for the dynamic text. (Text at run time).

Whatever text is created in the menu painter environment viz. icon text, menu bar text, menu item text, etc., can
be maintained (like in other text environments) in multiple languages. The menu path to maintain multiple language
texts is: Goto ➤ Translation etc.

You are now selecting the static text. In the next status for secondary list I, you will opt for the dynamic test.
In this way, both options are covered. With the option ‘Static Text’ selected, on pressing the continue button
Figure 10-21 will appear.

Figure 10-21. Create Status ‘STAT1’: Application Toolbar Bar – Entry of Button Texts

The first field to be entered in the dialogue box is Function Text. This text is mandatory. This text appears as menu
text in the menu bar items or the context menu. If you do not enter the icon name field and/or the icon text field, the
function text will also appear on the button. It can be a maximum of forty characters. We entered in the function text
field: ‘Exit’ .

The second field to be entered is Icon name. You can choose from a list. (Function key F4, etc.) You have chosen
the icon ICON-PDIR_BACK/ . This field is optional.

CHAPTER 10 ■ INTERACTIVE LISTS

541

The third field to be entered is Info.text. The text entered in this field appears as a tool tip (i.e., when the mouse is
positioned on the button, this text appears). It can be a maximum of sixty characters. If you do not enter the Info.text
field, the function text will be used as Info.text. We have entered in the Info.text field: ‘Exit Lists’ .

The screen with three fields entered will be like Figure 10-22.

Figure 10-23. Create Status ‘STAT1’: Application Toolbar Bar – Function Key Assignment

Figure 10-22. Create Status ‘STAT1’: Application Toolbar Bar – Entered Button Texts

Press the continue button after the entry of button texts, etc. The system prompts for the assignment of a function
key to the button. Function key assignment is mandatory. You cannot assign the reserved function keys in the context.
(F1, F3, F4) We have assigned ‘Shift-F9’ as shown in Figure 10-23.

After the function key assignment, pressing the continue button will pop up the function attributes screen shown
in Figure 10-24.

CHAPTER 10 ■ INTERACTIVE LISTS

542

We have entered in the icon text field ‘Exit’ as shown in Figure 10-24.
In the function attributes screen, the field: Functional Type, will be explained in Chapter 14. You are using in

this chapter, the Functional Type value ‘Normal Application Function’ , which is the default having the value blank / ’
‘code. A selection list is available (i.e., function key F4, etc).

In the field Fastpath, you can enter a character. This will enable the end user to operate exclusively with the keys
and without the usage of mouse. For example, if you enter the letter ‘X’ in the field Fast path for the function code
‘EXIT’ the end user pressing the key ‘Alt’ followed by the key ‘X’ will be the same as clicking on the ‘Exit’ button on the
application toolbar.

In a like manner, create the second button of the application toolbar for your primary list with the following:

Function Code: DETAIL1
Function Text: Detail I
Icon Name: ICON_SELECT_DETAIL
Icon Text: Detail I
Info.Text: Detail Level I
Fastpath: D

The screen after creation of these two buttons will look like Figure 10-25.

Figure 10-24. Create Status ‘STAT1’: Application Toolbar Bar – Function Attributes

Figure 10-25. Create Status ‘STAT1’: Application Toolbar Bar Buttons

CHAPTER 10 ■ INTERACTIVE LISTS

543

Function Keys (Third Node)

Collapse the Application Toolbar node and expand the Function Keys node. Under this node, you can view the
function key assignments made and the function keys available for assignments. You can reassign function keys, if
needed. Scroll down, if function key assignments are not visible.

You can also view the standard toolbar. By default, when you create a status, the buttons: on standard

toolbar are disabled. If you want one or more of them enabled, you can assign function codes to them. We have
assigned the function code ‘BACK’ to the button . This is shown in Figure 10-26.

Figure 10-26. Create Status ‘STAT1’: Function Key Assignments, Standard Toolbar

The button will be operational with your status.

Next, you can enter values into the Menu Bar and its subobjects. This is not mandatory. If you do not enter values,
the menu options will not appear. But a good user interface must have application toolbar buttons and its equivalent
menu options.

Menu Bar (First Node)

Clicking on the Menu Bar node will expand it. The screen with menu bars will appear. You will create one menu bar.
So enter the text in the first menu bar as ‘List Options’ as shown in Figure 10-27.

CHAPTER 10 ■ INTERACTIVE LISTS

544

Double clicking on the first menu bar text: ‘List Options’ will make the fields for menu codes and menu texts
appear. The menu codes will be same as the function codes entered earlier for the two buttons. Under the column
‘Code’ , enter the function code: ‘EXIT’ and press the <enter> key. The function text ‘Exit’ entered earlier for the
function code ‘EXIT’ will appear under the column ‘Text’ . You can change this text or retain it. In the next row enter
the second function code ‘DETAIL1’ and press the <enter> key. The function text ‘Detail I’ will appear. The menu
codes and text will appear like Figure 10-28.

Figure 10-27. Create Status ‘STAT1’: Menu Bar Text

Figure 10-28. Create Status ‘STAT1’: Menu Codes, Texts

You have completed the process of creating a status ‘STAT1’ . You can save the status. Check the syntax by clicking

the button /Ctrl+F2. Activate the status by clicking the button /Ctrl+F3. As has been stated earlier, the

status ‘STAT1’ will appear on the primary list. The activated status ‘STAT1’ screen will be like Figure 10-29.

CHAPTER 10 ■ INTERACTIVE LISTS

545

Status for Secondary List I

Let a status be created to appear for the secondary list I consisting of the ‘Back’ and ‘Detail II’ buttons like the
following.

You will name this status ‘STAT2’ .
The ‘Back’ button will have the following values:

Function Code: BACK
Function Text: Back
Icon Name: ICON_PDIR_BACK
Icon Text: Back
Info.Text: Back

The ‘Detail II’ button will have the following values:

Function Code: DETAIL2
Function Text: Detail II
Icon Name: ICON_SELECT_DETAIL
Icon Text: Detail II
Info.Text: Detail II

Earlier, when creating the status ‘STAT1’ , you used ‘Static Text’ . Let the ‘Dynamic Text’ be used in creating the
status ‘STAT2’ .

In the ‘Dynamic Text’ feature, the text can be provided through (a) ABAP program fields of a prespecified DDIC
structure or (b) database table fields. In the present hands-on exercise, dynamic texts are being provided through
ABAP program fields of DDIC structure SMP_DYNTXT with the fields in Table 10-4.

Figure 10-29. Status ‘STAT1’ Activated

CHAPTER 10 ■ INTERACTIVE LISTS

546

Referring to the DDIC structure SMP_DYNTXT, you have to declare as many structures as the number of buttons
and menu bars to which you want to provide dynamic texts. In the status ‘STATUS2’ , you have two buttons and one
menu bar. Let dynamic texts be provided to both these buttons and the menu bar. Your ABAP program will contain
the following declarations:

DATA:.....

 BACK_TXT TYPE SMP_DYNTXT, " text for BACK button
 DTL2_TXT TYPE SMP_DYNTXT, " text for DETAIL2 button
 MNU_BAR2 TYPE SMP_DYNTXT, " text for meznu bar

These structure fields are to be assigned appropriate values before the application toolbar for the secondary list I
appears. You will maintain the text values in text symbols. They can be maintained in other ways such as in a database
text table. The aim is to provide multi-language support for text maintenance. The code lines for the assignment of
values will be as follows:

BACK_TXT-TEXT = TEXT-020.
BACK_TXT-ICON_ID = '@CF@'. " code for icon ICON_PDIR_BACK
BACK_TXT-ICON_TEXT = TEXT-020.
BACK_TXT-QUICKINFO = TEXT-020.

DTL2_TXT-TEXT = TEXT-021.
DTL2_TXT-ICON_ID = '@16@'. " code for icon ICON_SELECT_DETAIL
DTL2_TXT-ICON_TEXT = TEXT-021.
DTL2_TXT-QUICKINFO = TEXT-021.

MNU_BAR2-TEXT = TEXT-022.

A screenshot of the text symbols used in these statements:

Table 10-4. Menu Painter – DDIC Structure for Passing Dynamic Texts

Field Name TYPE/Length Description

TEXT CHAR/40 Function Text

ICON_ID CHAR/4 Icon Code Enclosed in @

ICON_TEXT CHAR/40 Icon Text

QUICKINFO CHAR/60 Info.Text

PATH CHAR/1 Fastpath

Figure 10-30. Status ‘STAT2’: Text Symbols Used in Dynamic Texts

CHAPTER 10 ■ INTERACTIVE LISTS

547

For simplicity, you have used the same text symbol TEXT-020 for Function Text, Icon Text, and Info.Text of ‘Back’
button. And the same text symbol TEXT-021 for Function Text, Icon Text, and Info.Text of ‘Detail II’ button.

To create status ‘STAT2’ , navigate to the menu painter, and enter the name of the program as YCL_CH10_
ILISTS04 and the name of status as ‘STAT2’ in the respective fields; click on create button/function key F5. You are
creating status for a normal screen, the default radio button in the pop-up dialogue box; enter the short text and click
the continue button.

Click on the Application Toolbar node. Enter the function code ‘BACK’ for your first button. Double click on this
function code. The dialogue box prompting for the static or dynamic text option appears. Select the dynamic text
option and click on the continue button. Figure 10-31 will appear.

Figure 10-31. Create Status ‘STAT2’: Field Name for Dynamic Text – ‘Back’ Button

Figure 10-32. Create Status ‘STAT2’: Field Name for Dynamic Text – ‘Back’ Button

Press function key F4 for a list. This will present the dialogue box in Figure 10-32.

If you had declared the structure for function texts with the keyword TABLES in the ABAP program, you could
use the first radio button option: ‘Table field’ . You have stored text values in different structure fields of declared
structures with the key word DATA, (BACK_TXT, DTL2_TXT, etc.) so you will use the second radio button option:
‘Program field’ in the dialogue box shown in Figure 10-32. Clicking the continue button will pop up the list of fields
declared in the ABAP program as a selection list shown in Figure 10-33.

CHAPTER 10 ■ INTERACTIVE LISTS

548

Make the selection of field ‘BACK_TXT’ as shown in Figure 10-33. After selection and return from the selection
list, the screen will look like Figure 10-34.

Figure 10-33. Create Status ‘STAT2’: Select Field Name for ‘Back’ Button

Figure 10-34. Create Status ‘STAT2’: Selection of Field Name for ‘Back’ Button

Pressing the continue button will show the dialogue box for function key assignment in Figure 10-35.

CHAPTER 10 ■ INTERACTIVE LISTS

549

After the function key assignment, the dialogue box for entry of function attributes (function type, etc.) is
prompted as in Figure 10-36.

Figure 10-35. Create Status ‘STAT2’: Function Key Assignment for ‘Back’ Button

Figure 10-36. Create Status ‘STAT2’: Function Attributes for ‘Back’ Button

Clicking on the continue button will take you to the screen with the three nodes: Menu Bar, Application Toolbar,
and Function Keys.

In a similar fashion, create the second button of your application toolbar: ‘Detail II’ . After the creation of the two
buttons the screen will be like this:

Figure 10-37. Create Status ‘STAT2’: Application Toolbar Buttons

CHAPTER 10 ■ INTERACTIVE LISTS

550

Having finished with the application toolbar, collapse its node and expand the menu bar node. Position the
cursor on the empty first menu bar. To assign dynamic text to a menu bar, select the menu option: Edit ➤ Insert ➤
Menu with dyn.text as shown in Figure 10-38.

Figure 10-38. Create Status ‘STAT2’: Dynamic Text for Menu Bar

Figure 10-39. Create Status ‘STAT2’: ‘Menu Attributes’ Dialogue Box

Making this menu selection will pop up the ‘Menu Attributes’ dialogue box shown in Figure 10-39.

Pressing the function key F4 in the field ‘Field Name’ will again first prompt for ‘Table field’ or ‘Program field’ .
Selecting the ‘Program field’ radio button and clicking the continue button will pop up the selection list of the
program fields. Select the program field MNU_BAR2 from the list. Figure 10-40 shows the screen after the program
field selection. Clicking the continue button will take you to the screen with the nodes.

Figure 10-40. Create Status ‘STAT2’: Menu Bar Text, Menu Codes, and Function Texts

CHAPTER 10 ■ INTERACTIVE LISTS

551

Double click on the menu bar with the text ‘<MNU_BAR2>’ . The function code, text fields, will appear. Enter the
function codes for the two buttons: ‘BACK’ and ‘DETAIL2’ . Pressing the <enter> key after keying the function code
will automatically fetch the function texts. The codes and texts for the menu items will appear like this:

This is the end of status ‘STAT2’ creation. Check and activate the status. The activated status screen is shown in
Figure 10-41.

Figure 10-41. Activated Status ‘STAT2’

You have completed the task of creating two statuses: ‘STAT1’ , and ‘STAT2’ . These will serve your three lists: 1
primary, two secondary. The secondary list II has only one ‘Back’ button, which is a subset of the status ‘STAT2’ .

More of Menu Painter

Function codes and function texts are shared between different statuses, between application toolbar, menu items,
and context menus. By default, whatever options are on the application toolbar are available in the context menu.
If something other than these default entries is required in the context menu, you have to tweak things at runtime.
The runtime manipulation of the context menu is covered in Chapter 11.

There are a lot more facilities and features in the menu painter. Here is a list of some of these features:

Maintain Status Screen•

Cut, copy, and paste functions for subobjects of status.•

Delete / • , Insert / functions for subobjects of status. (Delete button/s, insert

button/s between existing buttons.)

Activate/deactivate a function code • .

Attributes of objects/subobjects: interface, status, function, etc. Menu path - Goto • ➤
Attributes.

Test Status • .

Menu Painter: Initial Screen•

Delete User Interface. (Will delete the entire interface with all the statuses, titles, etc.)•

Delete Status. (Will delete a specific status.)•

Copy User Interface. (Will copy the entire interface with all the statuses, titles, etc. from •
one ABAP program to another. The destination ABAP program must exist.)

CHAPTER 10 ■ INTERACTIVE LISTS

552

Copy status. (Will copy the specific status from one ABAP program to another. •
The destination ABAP program must exist.)

Create title: enable the ‘Title List’ radio button (at the bottom) click on the create button.•

Copy, delete, and rename titles: enable the ‘Title List’ radio button, (at the bottom) click •
on the change button, etc.

Test status: menu path – User Interface • ➤ Test Status.

There are five radio buttons (between the first ‘Status’ and the last ‘Title List’) such as •
‘Interface Objects’ , ‘Status List’ , ‘Menu bars’ , ‘Menu list’ , ‘F-Key Settings’ and ‘Function
list’ . These radio buttons enable you to view the specific objects; make object selection
from these lists; navigate; and be able to create, edit, and maintain these objects.

This coverage of menu painter had to be part of the hands-on exercise of interactive lists using the event AT
USER-COMMAND. Getting back to the coding part of the hands-on exercise, the following tasks are to be carried out:

Create Text in Text Symbols for Providing Dynamic Texts to Status ‘STAT2f’
For this exercise, refer to Figure 10-30.

Coding Tasks:

To generate the primary list and two secondary lists using the event AT USER-COMMAND, you have to perform the
following code modification tasks to the program YCL_CH10_ILISTS03:

Data Declarations:

Declare structures to provide dynamic texts to status ‘STAT2’ referring to DDIC structure •
‘SMP_DYNTXT’ for two buttons and one menu bar.

BACK_TXT TYPE SMP_DYNTXT, "text for BACK button
DTL2_TXT TYPE SMP_DYNTXT, "text for DETAIL2 button
MNU_BAR2 TYPE SMP_DYNTXT. "text for menu bar

Assign Text Symbols To Dynamic Text Structure Fields: Coding at the Beginning of
the Event START-OF-SELECTION

BACK_TXT-TEXT = TEXT-020.
BACK_TXT-ICON_ID = '@CF@'.
BACK_TXT-ICON_TEXT = TEXT-020.
BACK_TXT-QUICKINFO = TEXT-020.

DTL2_TXT-TEXT = TEXT-021.
DTL2_TXT-ICON_ID = '@16@'.
DTL2_TXT-ICON_TEXT = TEXT-021.
DTL2_TXT-QUICKINFO = TEXT-021.

MNU_BAR2-TEXT = TEXT-022.

CHAPTER 10 ■ INTERACTIVE LISTS

553

SET PF-STATUS

The statement to place your custom status (application toolbar, menu, etc., created in menu painter) is SET PF-STATUS.
The syntax of the SET PF-STATUS statement is:

SET PF-STATUS <status name> [OF PROGRAM <program name>]
 [EXCLUDING <function code/s>] [IMMEDIATELY].
SET PF-STATUS – Key phrase
<status name> - Name/identification of the status
OF PROGRAM - Key phrase

<program name> - Name of the program. This needs to be given only if the status is created for a program other
than where the SET PF-STATUS statement is located. That is, you can use a status of another program.

EXCLUDING – Key word

<function code/s> - The function code/s of a button/s to be excluded. If a single button is to be excluded, the
function code of the button can be specified as a literal or an elementary data item of TPPE C or STRING to which the
function code to be excluded is assigned. If multiple buttons are to be excluded, the function codes of these buttons to
be excluded have to be stored in an internal table and this internal table specified with the keyword EXCLUDING.

IMMEDIATELY – By default, the SET PF-STATUS . . . sets the status to current list, the list represented by the value
of system field SY-LSIND. If the key word ‘IMMEDIATELY’ is used, the SET PF-STATUS . . . sets the status to the list
represented by the value of system field SY-LISTI. The system field SY-LISTI contains the value of the list number that
last triggered the event AT LINE-SELECTION or AT USER-COMMAND.

The SET PF-STATUS statement is located before the generation of each of your lists: 1 primary, 2 secondary.
The statement is located before the LOOP AT . . . END LOOP construct of each list.

The statement SET PF-STATUS SPACE restores the default list application toolbar.
Primary List:

SET PF-STATUS 'STAT1'.

Secondary List I:

SET PF-STATUS 'STAT2'.

Secondary List II:

SET PF-STATUS 'STAT2' EXCLUDING 'DETAIL2'.
 " to exclude Detail II button

Code Changes or Modifications in the Event Block AT USER-COMMAND

You have to modify the source code in the secondary list event block as you are triggering the AT USER-COMMAND
event instead of the AT LINE-SELECTION event in the earlier hands-on exercise.

You need not bother about controlling the maximum value of the system field SY-LSIND •
depending on the number of lists being supported now. You controlled the maximum value of the
system field SY-LSIND while triggering the event AT LINE-SELECTION in the previous hands-on
exercise YCL_CH10_ILISTS03. Every time, the end user double clicked on a line, the event AT
LINE-SELECTION was triggered incrementing the system field SY-LSIND by one. You are not
triggering the event AT LINE-SELECTION. The list interacts on pressing the toolbar buttons. As
you have not provided any button on the application toolbar to go beyond the last list, the system
field SY-LSIND will not assume values to generate lists beyond the secondary list II.

CHAPTER 10 ■ INTERACTIVE LISTS

554

You are using the CASE . . . ENDCASE construct to interrogate the system field SY-UCOMM •
(function code) and produce the appropriate list.

When exiting the primary list - WHEN ‘EXIT’ , you have used the statement: • LEAVE SCREEN.
This statement will, in the ABAP environment, take the end user back to the previous screen in
your context; the Selection Screen prompting for the company code. Alternatively, you can also
use the back button of the standard toolbar that you enabled for ‘STAT1’ and ‘STAT2’ .

In the previous hands-on exercise, you did not have your own toolbar, the back button of

the standard toolbar was enabled by default, and you were using it to navigate from the primary
list to Selection Screen and from secondary lists to previous lists.

You have provided your own button to navigate to the previous list in addition to the standard •
toolbar back button. The process of navigating to a previous list using your own button

should be clearly understood. You are managing it by manipulating the value of the system
field SY-LSIND. Suppose the end user is on the secondary list I. (SY-LSIND = 1) the end user
wants to navigate to the primary list. (SY-LSIND should be 0) When the end user presses the
application toolbar button , the event AT USER-COMMAND is triggered, and the value

of the system field SY-LSIND will get incremented from its present value 1 to 2. (Every time the
AT USER-COMMAND is triggered, the system field SY-LSIND get incremented by 1.) You want
to navigate to the primary list; the value of system field SY-LSIND should be 0. That is why the
system field SY-LSIND is being decremented by 2. The same inductive logic you can apply to
navigating from secondary list II to secondary list me. You are using the same button in

both of the lists – secondary list I and secondary list II – to navigate to previous lists.

Apart from the above enumerated modifications, all the other code lines of the current program YCL_CH10_
ILISTS04 are identical to the previous program YCL_CH10_ILISTS03. That is why the full list of this program is not
provided here. It is available, though, in the E-Resource.

The outputs of the program YCL_CH10_ILISTS04 are shown in Figures 10-42 to 10-44.

Figure 10-42. Program YCL_CH10_ILISTS04: Primary List

CHAPTER 10 ■ INTERACTIVE LISTS

555

Figure 10-44. Program YCL_CH10_ILISTS04: Secondary List II

Figure 10-43. Program YCL_CH10_ILISTS04: Secondary List I

This discussion was about production of three level lists: one primary and two secondary. The lists were
produced triggering the event AT USER-COMMAND. You used the HIDE . . . statement. The hands-on exercise
involved the creation of custom statuses and their deployment. The custom statuses were created using the menu
painter. So the menu painter was introduced in this chapter.

Hands-on Exercise: Output Data of Runtime Specified Fields of
a Runtime Specified Database Table or View with Column
Heading from Corresponding Data Elements
Lists or Outputs
The program in this hands-on exercise is a generic program to list values from specific fields of any database table
or view. The database tables can be transparent, pooled, or clustered. The views can be database views or projection
views (i.e., views you can use in the SELECT . . . statement).

The program will take as input a database table or view. Name (PARAMETERS statement, etc.). The input is being
checked for its validity. If the database table or view name is invalid, an alert message is issued.

CHAPTER 10 ■ INTERACTIVE LISTS

556

The fields of the input database table or view are retrieved from the database metadata table DD03L and listed
(primary list) with checkboxes so that the end user can select fields to be output. After the field selections are made, by
pressing the button on the application toolbar, the selected fields’ data from the input database table or view are

retrieved and output with the column headings (the Secondary list). The column headings of the fields are fetched from
the corresponding data elements. If no fields are selected and the button is pressed, an alert message is issued.

On the application toolbar, (Figure 10-46) there are two other buttons: to select all the fields and to deselect all
the fields. There is, of course, the usual ‘Exit’ button.

The output appears in ascending order of the primary key fields.
If the database table or view is a text table (with DDIC Data Type LANG field as part of primary key), the data is

retrieved only for the logged-in language.
To sum up, you will first produce a primary list of the fields of an input table or view along with checkboxes to

enable the end user to make field selections. You will then produce a secondary list (triggering the event AT USER-
COMMAND) consisting of data for the selected fields of the input table or view. The secondary list of the selected
field’s data will have column headings. These column headings are fetched from the corresponding data elements of
the selected fields. It should be clear what you are setting out to implement. The input and the outputs should be like
Figure 10-45 to Figure 10-47.

Figure 10-45. Output Specific Fields of a Database Table or View Name- Input

Figure 10-46. Output Specific Fields of a Database Table or View – Make Field Selections

CHAPTER 10 ■ INTERACTIVE LISTS

557

Program Features, Considerations
The validity of an input database table/view is implemented using the •
AT SELECTION-SCREEN event and the database metadata table DD02L.

The detailed process of creating statuses in the menu painter need not be repeated here. •
The program is using two statuses: ‘STAT1’ , ‘STAT2’ each for the primary and secondary list
respectively. The statuses can be created as per the buttons appearing in Figures 10-46 and 10-47.
You have used only static text.

You are using window titles: ‘TITLE01’ , ‘TITLE02’ for the primary and secondary lists. •
The window titles can be created in the menu painter. Recall that the window titles are part
of the user interface in the menu painter. Subsequently, window titles can set for a screen or
window with the statement:

SET TITLEBAR <title bar name> [WITH <var11> [<var2>]...[<var9>]].

The optional WITH addition enables variable or runtime information to be incorporated in a title. The variables
provided with the addition ‘WITH’ will replace the placeholders in title text. There can be a maximum of nine
placeholders.

If you do not create and set a window title, the short text from the ABAP program attributes appears as the
window title by default.

You will have window titles for each of the lists: primary and secondary. The window titles for primary and
secondary lists are:

'Select Fields of Table/View: <Table/View Name>'
'Output of Table/View: <Table/View Name>'

Figure 10-47. Output Specific Fields Data of a Database Table or View – Output

CHAPTER 10 ■ INTERACTIVE LISTS

558

To create/maintain window titles in the menu painter, click on the ‘Title List’ radio button of the SE41 opening
screen. Click on the create button/function key F5. A dialogue box pops up prompting for the title name (‘Title Code’)
and title text. The title name can be a maximum of 20 characters long, has to start with a letter, and the rest can be
alphanumeric with embedded underscores (_). The dialogue box with entered values will be like Figure 10-48.

Figure 10-48. Program YCL_CH10_ILISTS05: Create Title ‘TITLE01’

Figure 10-49. Program YCL_CH10_ILISTS05: Created, Inactive Title ‘TITLE01’

If you click on the continue button, the title will be created but the interface is not activated. So click on the
‘All title’ (second) button. The screen will appear like Figure 10-49.

Activate the interface by pressing the ctrl-F3 keys or the activate button. After activation, the screen will look
like Figure 10-50.

Figure 10-50. Program YCL_CH10_ILISTS05: Created, Activated Title ‘TITLE01’

In a similar manner create the ‘TITLE02’ . On the screen shown in Figure 10-50, there are buttons to create, delete
copy, and rename titles.

CHAPTER 10 ■ INTERACTIVE LISTS

559

Titles can be maintained in multiple languages (such as text symbols, messages, etc.) in the menu painter.

The ‘Select All’ , ‘Deselect All’ buttons in the primary list enables the end user to select or •
deselect all fields. The checkbox values are changed for all the lines or fields using the ABAP
statement: MODIFY LINE . . . being introduced in this program. With this statement, you can
alter the contents of lists but not the value of the variables output in the lists. The MODIFY
LINE . . . statement you have used (inside LOOP AT . . . ENDLOOP) for enabling or disabling all
checkboxes of the list:

MODIFY LINE SY-TABIX FIELD VALUE FIELDS_STRU-CBOX FROM 'X'
 FIELDS_STRU-FIELDNAME FROM FIELDS_STRU-FIELDNAME.

Within the LOOP AT . . . ENDLOOP the value of SY-TABIX will assume values 1, 2 . . . You are
modifying each output line of primary list in the event AT USER-COMMAND (i.e., the list
number contained in system field SY-LISTI) until all output lines have been modified. With the
MODIFY LINE . . . statement, the output checkbox variable ‘FIELDS_STRU-CBOX’ in each line is
changed to ‘X’ or enabled for every pass of the loop. For disabling all check box values of all lines,
the FROM ‘X’ in the above statement would be FROM ‘ ‘ .

The full syntax of the MODIFY LINE . . . statement can referred to in the online documentation.
There is a provision for modifying or altering lines from any of the pages of any of the
preceding lists.

Which of the listed database table or view fields have enabled check boxes is determined using •
the ABAP statement: READ LINE . . . being introduced in this program. With this statement,
you can read a complete output line and/or the individual variable values in the output line.
In your present context, you want to read the value of checkbox output with each database
table or view field variable on each line.

To read the values of the checkboxes on each line of output, we have set up a DO . . . ENDDO
loop. Inside the loop the following statement reads the value of check box on each line:

READ LINE SY-INDEX FIELD VALUE FIELDS_STRU-CBOX INTO CK_BOX

Inside the loop, the system field SY-INDEX will assume values 1,2 . . . You are reading each
output line of the primary list that triggered the event AT USER-COMMAND (i.e., the list number
contained in system field SY-LISTI) until all output lines have been read. With the READ LINE . . .
statement, the output variable ‘FIELDS_STRU-CBOX’ in each line is fetched into the CK_BOX for
every pass of the loop. Thus you are able to ascertain whether a field is enabled for it to be output
in the subsequent secondary list. You are assuming that the first field name of the table or view
with the checkbox variable ‘FIELDS_STRU-CBOX’ in the primary list is on the first line on the
screen. This is ensured by giving the addition NO STANDARD PAGE HEADING in the REPORT
statement and not having any standard header for the primary list.

The full syntax of the READ LINE . . . statement can be referred in the online documentation.
There is a provision for reading lines from any of the pages/lines of any of the preceding lists. The
system field SY-LISEL and the fields specified with the HIDE . . . statement are affected.

The READ LINE . . . statement can be used to exchange information from the lower level lists to a
higher level list. So you can use this statement in lieu of the system field SY-LISEL, HIDE . . . GET
CURSOR . . . statements if you want.

The retrieval of data of runtime specified fields from a database table or view specified at •
runtime is implemented using the special form of the Open SQL SELECT statement,
dynamic/run time creation of data objects and field symbols. (Internal table: SFIELDS_TAB)

CHAPTER 10 ■ INTERACTIVE LISTS

560

The ordering of the output data in ascending order of primary key fields is implemented using the •
runtime ORDER BY feature of the Open SQL SELECT statement. (Internal Table: ORDER_BY_TAB)

Retrieval of data only of the logged-in language for text tables or views is implemented using •
the runtime WHERE condition feature of the Open SQL SELECT statement. (Internal Table:
CONDS_TAB)

The column headings of the output fields are fetched from the corresponding data elements •
using the function module: MG_FIELDNAME_TEXT. This function module takes two input
parameters such as database table/view/structure name and field name. It returns the short,
medium, long, and heading (field or column heading) field labels from the data element
assigned to the field in the database table/view/structure.

The LINE-SIZE (maximum width of a line in terms of number of columns) is set as per the total •
width of all fields or columns. The width of a field or column is determined on the basis of the
output length of the field (derived with the DESCRIBE FIELD. OUTPUT-LENGTH... statement)
and the length of the column heading retrieved from the data element. The higher of these
two values is adopted as the width of the field for output. An example of this: the width of
language code in any text table is output in two columns, (‘EN’ , ‘DE’ etc.) the column heading
for language code is ‘Language’ (i.e. eight columns). Hence the output width of language code
field is adopted as eight. The LINE-SIZE for secondary lists can be set with the NEW-PAGE . . .
statement. The NEW-PAGE . . . statement accepts variable values for LINE-SIZE as well as LINE-
COUNT. The LINE-SIZE for the primary list can be set only with the REPORT . . . statement,
the REPORT . . . statement can only accept literals for LINE-SIZE, LINE-COUNT. Before the
LINE-SIZE is set, its value (based on the total width of all fields to be output including the gap
or single space between two fields) is checked. If it exceeds 1023, an alert message is issued.

You are using a LINE-COUNT of 60 for your secondary list. You are setting the LINE- COUNT •
along with the LINE-SIZE in the statement NEW-PAGE.

To output the secondary list body, you are using two WRITE . . . statements: one to output the first •
field or column of a row, this should start on a new line. The other WRITE . . . statement is to output
fields or columns other than the first field or column. These fields or columns are to be output on
the same line. You are using WRITE AT . . . notation instead of the WRITE This is necessary, if
you are specifying the output width, column positions as variables instead of literals.

The column heading of numeric variables (TYPE I, P, etc.) is output RIGHT-JUSTIFIED.•

The messages used in program - message numbers 022, 023, 024 of message id./class •
YCL_CH10_MCLASS01 are listed in Figure 10-51.

Figure 10-51. Program YCL_CH10_ILISTS05: Messages Used

Other small tweaks and logics have been used in the program. You should peruse and resolve.•

CHAPTER 10 ■ INTERACTIVE LISTS

561

The source:

REPORT YCL_CH10_ILISTS05 NO STANDARD PAGE HEADING.

* Output Specific Fields Of A Specific Database Table/View **

DATA: BEGIN OF FIELDS_STRU,
 FIELDNAME TYPE DD03L-FIELDNAME," field name
 POSITION TYPE DD03L-POSITION, " field position in stru 1, 2..
 " line no. & field position map
 " one-to-one. helps in accessing
 " a field with line no.
 INTTYPE TYPE DD03L-INTTYPE, " ABAP TYPE: C,D,F,I,N,P etc.
 DATATYPE TYPE DD03L-DATATYPE, " DDIC TYPE: CHAR, NUMC etc.
 KEYFLAG TYPE DD03L-KEYFLAG, " flag for primary key field
 CBOX(1) TYPE C, " field enabled/disabled check box
 OBLEN TYPE I, " width of output
 END OF FIELDS_STRU,

 BEGIN OF SFIELDS_STRU,
 FIELDNAME TYPE DD03L-FIELDNAME,
 END OF SFIELDS_STRU,

 BEGIN OF ORDERBY_STRU,
 FIELDNAME TYPE DD03L-FIELDNAME,
 END OF ORDERBY_STRU,

 BEGIN OF OHEAD_STRU,
 FIELDNAME TYPE DD03L-FIELDNAME,
 OLEN TYPE I, " width of output
 OTEXT TYPE STRING,
 INTTYPE TYPE DD03L-INTTYPE,
 END OF OHEAD_STRU,

 FIELDS_TAB LIKE STANDARD TABLE OF FIELDS_STRU, " all fields of
 " selected table

 SFIELDS_TAB LIKE STANDARD TABLE OF SFIELDS_STRU," selected fields of
 " selected table. used
 " in SELECT statement

 ORDERBY_TAB LIKE STANDARD TABLE OF ORDERBY_STRU, " primary key fields
 " (in sort)
 CONDS_TAB TYPE STRING OCCURS 0 WITH HEADER LINE, " condition for
 " text tables
 OHEAD_TAB LIKE STANDARD TABLE OF OHEAD_STRU, " texts for
 " column headings

CHAPTER 10 ■ INTERACTIVE LISTS

562

 CTR TYPE I, " outputted field number
 LINSZ TYPE I, " LINE-SIZE
 LCNT TYPE I, " temporary
 PAGE(3) TYPE C,
 CK_BOX(1) TYPE C, " READ..FIELDS_STRU-CBOX INTO..
 TABCLASS TYPE DD02L-TABCLASS, " destination field from table DD02L
 DSTRU TYPE REF TO DATA. " ref. variable of structure object

FIELD-SYMBOLS: <DSTRU>, " field symbol to access structure
 <FLD>. " field symbol to access field

***********SELECTION-SCREEN***************************
PARAMETERS: TAB_NAME TYPE DD03L-TABNAME VALUE CHECK.

AT SELECTION-SCREEN.

SELECT SINGLE TABCLASS FROM DD02L INTO TABCLASS WHERE TABNAME = TAB_NAME.

IF TABCLASS <> 'TRANSP' AND TABCLASS <> 'CLUSTER' AND
 TABCLASS <> 'POOL' AND TABCLASS <> 'VIEW'.
 MESSAGE E022(YCL_CH07_MCLASS01) WITH TAB_NAME.
ENDIF.

START-OF-SELECTION.

SELECT FIELDNAME POSITION INTTYPE DATATYPE KEYFLAG FROM DD03L
 INTO CORRESPONDING FIELDS OF TABLE FIELDS_TAB
 WHERE TABNAME = TAB_NAME AND FIELDNAME NOT LIKE '.%' AND
 FIELDNAME NOT LIKE '/%'.

SORT FIELDS_TAB BY POSITION.

SET PF-STATUS 'STAT1'.
SET TITLEBAR 'TITLE01' WITH TAB_NAME.

*********primary list - list of fields **********************

LOOP AT FIELDS_TAB INTO FIELDS_STRU.
 WRITE:/5 FIELDS_STRU-CBOX AS CHECKBOX, FIELDS_STRU-FIELDNAME.
ENDLOOP.

* AT USER-COMMAND event **

AT USER-COMMAND.

CASE SY-UCOMM.

CHAPTER 10 ■ INTERACTIVE LISTS

563

 WHEN 'EXIT'.
 LEAVE SCREEN.

 WHEN 'BACK'.
 SY-LSIND = SY-LSIND - 2.

*****************select all**************
 WHEN 'SALL'.

 LOOP AT FIELDS_TAB INTO FIELDS_STRU .
 MODIFY LINE SY-TABIX FIELD VALUE FIELDS_STRU-CBOX FROM 'X'
 FIELDS_STRU-FIELDNAME FROM FIELDS_STRU-FIELDNAME.
 ENDLOOP.

 SY-LSIND = 0.

****************de-select all*************
 WHEN 'DSALL'.

 LOOP AT FIELDS_TAB INTO FIELDS_STRU .
 MODIFY LINE SY-TABIX FIELD VALUE FIELDS_STRU-CBOX FROM ' '
 FIELDS_STRU-FIELDNAME FROM FIELDS_STRU-FIELDNAME.
 ENDLOOP.

 SY-LSIND = 0.

********************output***************
 WHEN 'DDATA'.
 REFRESH: SFIELDS_TAB, ORDERBY_TAB, OHEAD_TAB, CONDS_TAB.
 " initialize internal tables
 LINSZ = 0.
 CREATE DATA DSTRU TYPE (TAB_NAME).
 ASSIGN DSTRU->* TO <DSTRU>.

******determine selected fields, build internal tables******
 DO.
 READ LINE SY-INDEX FIELD VALUE FIELDS_STRU-CBOX INTO CK_BOX.
 IF SY-SUBRC <> 0. " no more lines in the list
 EXIT.
 ENDIF.
 IF CK_BOX = 'X'.
 READ TABLE FIELDS_TAB INTO FIELDS_STRU INDEX SY-INDEX.
 FIELDS_STRU-CBOX = CK_BOX.
 SFIELDS_STRU-FIELDNAME = FIELDS_STRU-FIELDNAME.
 APPEND SFIELDS_STRU TO SFIELDS_TAB.

 ASSIGN COMPONENT SY-INDEX OF STRUCTURE <DSTRU> TO <FLD>.

 PERFORM FILL_OHEAD_TAB TABLES OHEAD_TAB USING TAB_NAME
 FIELDS_STRU <FLD>.

CHAPTER 10 ■ INTERACTIVE LISTS

564

 MODIFY FIELDS_TAB FROM FIELDS_STRU INDEX SY-INDEX.

 IF FIELDS_STRU-KEYFLAG = 'X'.
 ORDERBY_STRU-FIELDNAME = FIELDS_STRU-FIELDNAME.
 APPEND ORDERBY_STRU TO ORDERBY_TAB.
 ENDIF.

 IF FIELDS_STRU-DATATYPE = 'LANG' AND FIELDS_STRU-KEYFLAG = 'X'.
 CONCATENATE FIELDS_STRU-FIELDNAME '= SY-LANGU' INTO
 CONDS_TAB SEPARATED BY ' '.
 APPEND CONDS_TAB TO CONDS_TAB.
 ENDIF.

 ELSE.

 READ TABLE FIELDS_TAB INTO FIELDS_STRU INDEX SY-INDEX.
 FIELDS_STRU-CBOX = CK_BOX.
 MODIFY FIELDS_TAB FROM FIELDS_STRU INDEX SY-INDEX.

 IF FIELDS_STRU-KEYFLAG = 'X'.
 ORDERBY_STRU-FIELDNAME = FIELDS_STRU-FIELDNAME.
 APPEND ORDERBY_STRU TO ORDERBY_TAB.
 ENDIF.

 IF FIELDS_STRU-DATATYPE = 'LANG' AND FIELDS_STRU-KEYFLAG = 'X'.
 CONCATENATE FIELDS_STRU-FIELDNAME '= SY-LANGU' INTO
 CONDS_TAB SEPARATED BY ' '.
 APPEND CONDS_TAB TO CONDS_TAB.
 ENDIF.

 ENDIF.
 ENDDO.

 DESCRIBE TABLE SFIELDS_TAB.

 IF SY-TFILL = 0. " no fields selected
 MESSAGE S023(YCL_CH07_MCLASS01) WITH
 TAB_NAME DISPLAY LIKE 'W'.
 SY-LSIND = SY-LSIND - 1.
 EXIT.
 ENDIF.

 LINSZ = LINSZ + 3.

 IF LINSZ > 1023. " SY-LINSZ CANNOT EXCEED 1023.
 MESSAGE S024(YCL_CH07_MCLASS01) WITH
 LINSZ DISPLAY LIKE 'W'.
 SY-LSIND = SY-LSIND - 1.
 EXIT.

 ENDIF.

CHAPTER 10 ■ INTERACTIVE LISTS

565

 CREATE DATA DSTRU TYPE (TAB_NAME).
 ASSIGN DSTRU->* TO <DSTRU>.
 SET PF-STATUS 'STAT2'.

 NEW-PAGE LINE-SIZE LINSZ LINE-COUNT 60. " LINSZ as per total width
 " of all outputted columns

 SET TITLEBAR 'TITLE02' WITH TAB_NAME.

**************retrieve data & output***********************
 SELECT (SFIELDS_TAB) FROM (TAB_NAME) INTO CORRESPONDING FIELDS OF
 <DSTRU> WHERE (CONDS_TAB) ORDER BY (ORDERBY_TAB).
 CTR = 0.
 DO.
 ASSIGN COMPONENT SY-INDEX OF STRUCTURE <DSTRU> TO <FLD>.
 IF SY-SUBRC <> 0.
 EXIT.
 ENDIF.
 READ TABLE FIELDS_TAB INTO FIELDS_STRU INDEX SY-INDEX.
 IF FIELDS_STRU-CBOX <> 'X'.
 CONTINUE.
 ENDIF.
 CTR = CTR + 1.
 IF CTR = 1.
 WRITE AT :/5(FIELDS_STRU-OBLEN) <FLD>.
 ELSE.
 WRITE AT :(FIELDS_STRU-OBLEN) <FLD>.
 ENDIF.
 ENDDO.

 ENDSELECT.

ENDCASE.

**
* heading using event TOP-OF-PAGE DURING LINE-SELECTION **
**
TOP-OF-PAGE DURING LINE-SELECTION.

 LCNT = LINSZ - 2.
 PAGE = SY-PAGNO.
 WRITE AT /LCNT PAGE RIGHT-JUSTIFIED.

 LCNT = LINSZ - 4.

 WRITE AT /5(LCNT) SY-ULINE.

 LOOP AT OHEAD_TAB INTO OHEAD_STRU.

CHAPTER 10 ■ INTERACTIVE LISTS

566

 IF SY-TABIX = 1.
 IF OHEAD_STRU-INTTYPE = 'F' OR OHEAD_STRU-INTTYPE = 'I'
 OR OHEAD_STRU-INTTYPE = 'P'.
 WRITE AT /5(OHEAD_STRU-OLEN) OHEAD_STRU-OTEXT RIGHT-JUSTIFIED.
 ELSE.
 WRITE AT /5(OHEAD_STRU-OLEN) OHEAD_STRU-OTEXT.
 ENDIF.
 ELSE.
 IF OHEAD_STRU-INTTYPE = 'F' OR OHEAD_STRU-INTTYPE = 'I'
 OR OHEAD_STRU-INTTYPE = 'P'.
 WRITE AT (OHEAD_STRU-OLEN) OHEAD_STRU-OTEXT RIGHT-JUSTIFIED.
 ELSE.
 WRITE AT (OHEAD_STRU-OLEN) OHEAD_STRU-OTEXT.
 ENDIF.
 ENDIF.
 ENDLOOP.

 WRITE AT /5(LCNT) SY-ULINE.
 SKIP 1.

**
* Get Column Heading Texts, **
* build column heading internal table **
**

FORM FILL_OHEAD_TAB
 TABLES
 OTAB LIKE OHEAD_TAB

 USING
 VALUE(TNAME)
 FSTRU LIKE FIELDS_STRU VALUE(FLD).

 DATA: LNGT TYPE I,
 OSTRU LIKE LINE OF OTAB.

 CALL FUNCTION 'MG_FIELDNAME_TEXT'
 EXPORTING
 TABNAME = TNAME
 FIELDNAME = FSTRU-FIELDNAME
 IMPORTING
 REPTEXT = OSTRU-OTEXT.

 OSTRU-FIELDNAME = FSTRU-FIELDNAME.
 OSTRU-INTTYPE = FSTRU-INTTYPE.

 DESCRIBE FIELD FLD OUTPUT-LENGTH OSTRU-OLEN.

CHAPTER 10 ■ INTERACTIVE LISTS

567

 LNGT = STRLEN(OSTRU-OTEXT).

 IF LNGT > OSTRU-OLEN.
 OSTRU-OLEN = LNGT.
 ENDIF.

 FSTRU-OBLEN = OSTRU-OLEN.
 APPEND OSTRU TO OTAB.
 LINSZ = LINSZ + OSTRU-OLEN + 1.

ENDFORM.

This was a generic program to output data of runtime specified fields of a data source – table or view- that is also
specified at runtime. You have used a range of tools and features to implement your lists’ generation in the program.
You have used two SAP metadata database tables: DD02L and DD03l.

The advanced concepts Field Symbols, dynamic (run time) data objects, introduced in Chapter 8 entitled ‘Open
SQL Data Retrieval’ are used to good effect in this exercise. The special features of Open SQL SELECT statement
specifying source, destination, ORDER BY and WHERE conditions at runtime have been demonstrated.

Two new list features MODIFY LINE . . . and READ LINE . . . are also used in the program.
This concludes the hands-on exercise.

Hands-on Exercise: Demonstration of SET USER-COMMAND and
Lists in Dialogue Boxes
A concluding hands-on-exercise of this chapter, the program YCL-CH09_ILISTS06 demonstrates the features of lists in
dialogue boxes or windows and the statement SET USER-COMMAND. You can locate lists in dialogue boxes instead of
the normal full screen. Until now, you have located all your lists in a normal full screen, which is by default. By locating
lists in dialogue boxes, you could have the end user viewing more than one list at a time. But only the secondary lists
can be located in dialogue boxes. The primary list has to be necessarily located in the normal full screen.

If you want to locate secondary lists in dialogue boxes, simply precede the list generation with the WINDOW . . .
statement. The syntax of the WINDOW . . . statement:

WINDOW STARTING AT <start column> <start row>
 [ENDING AT <end column> <end row>].

If the ‘ENDING AT . . . ’ is omitted, the dialogue box will spread to the end of the screen at the bottom.
If the status is set (SET PF-STATUS . . .) the application toolbar appears at the bottom of the dialogue box. If no

status is set, the system default application toolbar appears at the bottom of the dialogue box. The dialogue boxes do
not have menu or standard toolbar. You can set the dialogue box/window title by the SET TITLEBAR . . . statement.

The SET USER-COMMAND . . . statement triggers list events: AT USER-COMMAND, AT LINE-SELECTION
without any buttons pressed or double clicking performed. The syntax of SET USER-COMMAND . . .:

SET USER-COMMAND <function code>.

CHAPTER 10 ■ INTERACTIVE LISTS

568

If the function code is the predefined function code ‘PICK’ (function key F2) the AT LINE-SELECTION event is
triggered. Refer to the document ABAP Programming (BC-ABA) on page 861 for a list of predefined function codes.
If the function code is user defined, the AT USER-COMMAND event is triggered.

This hands-on exercise is producing effectively two lists:

The customer wise sales summary of a specified company code; •

Billing documents of a selected customer. •

The program is using the AT USER-COMMAND event. Both the lists are appearing in dialogue boxes. So both
these lists are secondary lists. Your primary list is just one line of output: WRITE: ‘DUMMY’ . You are preceding this
statement with the SET USE-COMMAND ‘ABCD’ triggering the AT USER-COMMAND and paving the way for the
appearance of your first secondary list: customer wise sales summary of a specified company code. This way the
primary list is bypassed and not appearing on the screen. You have an ‘EXIT’ button on this first secondary list as part
of the status. On pressing of this button on the application toolbar of your first secondary list, the LEAVE SCREEN
statement will be executed, thus navigating back to the Selection Screen statement prompting for company code. In
this manner, the primary list is being bypassed on forward and backward navigation. The primary list remains behind
the scenes not making any appearance.

You have the ‘DETAIL’ button on the first secondary list, which will take you to the second secondary list – billing
documents of a selected customer – this is appearing in an adjoining dialogue box/window. Though the first
secondary list is visible with the appearance of second secondary list in the adjoining window, you cannot operate on
the first secondary list when the second secondary list has been produced in terms of clicking on its application
toolbar buttons, etc. On the second secondary list, you have not set any status. So the system default buttons appear
on the application toolbar at the bottom of the second secondary list. Clicking on the Cancel button on the second

secondary list will take you to the first secondary list.
You can create a status ‘STAT1’ for the first secondary list consisting of the two buttons ‘EXIT’ and ‘DETAIL’

with their respective icons. Remember, when creating the status ‘STAT1’ , that it is for a dialogue box – not for a
normal screen.

There could be a demand from a capricious end user: to output all the lists in dialogue boxes!
Fewer fields are output in both the secondary lists only so that screen shot captures all fields of the two lists.
The output screens will look like Figures 10-52 and 10-53.

Figure 10-52. Program YCL_CH10_ILISTS06: Secondary List I

CHAPTER 10 ■ INTERACTIVE LISTS

569

The source:

REPORT YCL_CH10_ILISTS06 NO STANDARD PAGE HEADING
 LINE-COUNT 60.

**
* INTERACTIVE LISTS - SET USER-COMMAND, **
* Lists In Dialogue Boxes **
**

DATA: SALES_TAB TYPE YCL_CH06_SALES_SUM_TAB,
 SALES_STRU LIKE LINE OF SALES_TAB,

 BEGIN OF BILLS_STRU,
 VBELN TYPE VBRK-VBELN,
 FKDAT TYPE VBRK-FKDAT,
 WAERK TYPE VBRK-WAERK,
 KURRF TYPE VBRK-KURRF,
 NETWR TYPE VBRK-NETWR,
 END OF BILLS_STRU,
 BILLS_TAB LIKE STANDARD TABLE OF BILLS_STRU,

 KUNNR TYPE KNA1-KUNNR,
 NAME1 TYPE KNA1-NAME1,
 TOTAL TYPE VBRK-NETWR,
 TOTAL1 TYPE VBRK-NETWR,
 BUTXT TYPE T001-BUTXT,
 WAERS TYPE T001-WAERS,
 BUTXTS TYPE STRING.

Figure 10-53. Program YCL_CH10_ILISTS06: Secondary Lists I & II

CHAPTER 10 ■ INTERACTIVE LISTS

570

**
PARAMETERS: CCODE TYPE VBRK-BUKRS VALUE CHECK
 DEFAULT 3000.

**
**
START-OF-SELECTION.

SELECT SINGLE BUTXT WAERS FROM T001 INTO (BUTXT, WAERS)
 WHERE BUKRS = CCODE.

BUTXTS = BUTXT.

SET USER-COMMAND 'ABCD'. " will trigger AT USER-COMMAND
WRITE: 'DUMMY'. " dummy primary list. will not appear
 " because of SET USER-COMMAND

AT USER-COMMAND.

IF SY-UCOMM = 'EXIT'. " EXIT button on secondary i
 LEAVE SCREEN.
ENDIF.

 CASE SY-LSIND.

 WHEN 1.

 TOTAL = 0.

 SELECT KUNNR NAME1 ORT01 NETWR KURRF FROM YCL_CH05_VBRKKNA INTO
 CORRESPONDING FIELDS OF SALES_STRU WHERE BUKRS = CCODE.

 SALES_STRU-NETWR = SALES_STRU-NETWR * SALES_STRU-KURRF.
 SALES_STRU-KURRF = 0. "to prevent overflow
 COLLECT SALES_STRU INTO SALES_TAB.
 ENDSELECT.

 DESCRIBE TABLE SALES_TAB.

 IF SY-TFILL > 0.

 SORT SALES_TAB BY KUNNR.

 WINDOW STARTING AT 1 1 ENDING AT 73 13. " WINDOW statement start column
 " start row end column end row

CHAPTER 10 ■ INTERACTIVE LISTS

571

 SET PF-STATUS 'STAT1'.
 LOOP AT SALES_TAB INTO SALES_STRU.
 WRITE :/5(4) SY-TABIX, SALES_STRU-KUNNR USING NO EDIT MASK,
 SALES_STRU-NAME1, (17) SALES_STRU-NETWR.
 TOTAL = TOTAL + SALES_STRU-NETWR.
 ENDLOOP.

 SKIP 1.
 WRITE :/(17) TOTAL UNDER SALES_STRU-NETWR.
 ELSE.
 MESSAGE S021(YCL_CH07_MCLASS01) WITH " no data for the company code
 'Customer Summary' DISPLAY LIKE 'W'.
 LEAVE SCREEN.
 ENDIF.

 WHEN 2.

 TOTAL1 = 0.
 KUNNR = SY-LISEL+9(10). " extract customer code
 NAME1 = SY-LISEL+20(35). " extract customer name

 SELECT VBELN FKDAT WAERK KURRF NETWR FROM VBRK
 INTO TABLE BILLS_TAB
 WHERE KUNAG = KUNNR AND BUKRS = CCODE.

 DESCRIBE TABLE BILLS_TAB.

 IF SY-TFILL > 0.

 WINDOW STARTING AT 78 1 ENDING AT 120 13.

 SET PF-STATUS ' '.

 LOOP AT BILLS_TAB INTO BILLS_STRU.
 BILLS_STRU-NETWR = BILLS_STRU-NETWR * BILLS_STRU-KURRF.
 TOTAL1 = TOTAL1 + BILLS_STRU-NETWR.
 WRITE:/1(4) SY-TABIX, BILLS_STRU-VBELN, BILLS_STRU-FKDAT,
 (15) BILLS_STRU-NETWR.
 ENDLOOP.

 SKIP 1.
 WRITE:/28(15) TOTAL1.

 ELSE.
 MESSAGE W021(YCL_CH07_MCLASS01) WITH " no data for the company code
 'Bills Of A Customer' DISPLAY LIKE 'I'.

 SY-LSIND = 1.

 ENDIF.
 ENDCASE.

CHAPTER 10 ■ INTERACTIVE LISTS

572

TOP-OF-PAGE DURING LINE-SELECTION.

CASE SY-LSIND.

 WHEN 1.

 WRITE:/5 TEXT-001, CCODE NO-GAP, '/' NO-GAP, BUTXTS.
 WRITE:/40 TEXT-002, WAERS, 66 TEXT-003, 71(3) SY-PAGNO..
 SKIP 1.
 WRITE:/5(68) SY-ULINE.
 WRITE:/5 TEXT-004, 11 TEXT-005, 23 TEXT-006, 56(17)
 TEXT-008 RIGHT-JUSTIFIED.
 WRITE:/5 TEXT-009, 13 TEXT-010.
 WRITE:/5(68) SY-ULINE.

 WHEN 2.

 WRITE:/1 TEXT-011, 35 TEXT-003, 40(3) SY-PAGNO.
 WRITE:/1 KUNNR USING NO EDIT MASK NO-GAP, '/' NO-GAP, NAME1.
 WRITE:/1(42) SY-ULINE.
 WRITE:/1 TEXT-004, 06 TEXT-012, 17 TEXT-013, 36 TEXT-008.
 WRITE:/2 TEXT-009 .
 WRITE:/1(42) SY-ULINE.

ENDCASE.

Interactive Lists Tid Bits
Features of Interactive Lists Not Covered:

System fields associated with interactive lists not used by you: SY-LILLI, SY-CUROW, •
SY-CUCOL, SY-CPAGE, SY-STARO, and SY-STACO.

DESCRIBE LIST..: With this statement, you can ascertain the number of pages, number of •
lines, LINE-SIZE, LINE-COUNT, etc., of a list.

ABAP statements to scroll in lists. •

Positioning on lists – SET CURSOR: Position the cursor on a page, line, and/or field of a list.•

MODIFY LIST FORMAT . . .: To modify or alter the output format of fields in lists after its generation. •

CHAPTER 10 ■ INTERACTIVE LISTS

573

Conclusion
In this chapter, we generated multiple lists in an ABAP program. This facility of generating multiple lists can be
deployed in situations where you want to provide summary information to the end user and detailed information of
specific summary information through end-user actions. These lists are called interactive lists. We used the list events
AT LINE-SELECTION and AT USER-COMMAND to generate the interactive lists.

When generating interactive lists using the event AT USER-COMMAND, you were introduced to creating custom
user interfaces in the menu painter using the transaction code SE41. The custom user interfaces consisted of statuses,
title lists, etc. You further learned to position the statuses, titles, etc., created in the custom user interface on a list.

Next, we coded a generic program. The generic program outputs data of runtime specified fields from a runtime
specified database table. The generic program uses the interactive lists feature and special constructs of open SQL,
field symbols, and dynamic data objects. The dynamic data objects are introduced on a preview basis in this chapter.
The dynamic data objects will be formally introduced in Chapter 11 entitled ‘ABAP OOP’ .

The chapter concluded with interactive lists located inside dialogue boxes. We produced interactive lists in this
chapter using the WRITE statement. In Chapters 12 and 13, we will produce interactive lists using ALV classes.

575

CHAPTER 11

ABAP OOP

Introduction
The incorporation of object orientation into the formerly procedure-oriented ABAP language is an extension of the
original. With the OOP extension in an ABAP program, you can work with or without the constructs of OOP.

This chapter proceeds on the premise that readers have an awareness of the fundamentals of object-oriented
programming: classes and interfaces; instances or objects; and the components of classes such as attributes, methods,
and events. Readers know about encapsulation, inheritance, polymorphism, and visibility. And readers understand
instance attributes, instance methods, and instance events; class attributes, class methods, and class events; and
special methods, event handler methods, etc.

In the ABAP environment, you can define and implement classes locally in an ABAP program. You can use these
classes only in the program where you have located them, analogous to the internal subroutines. You can define and
implement classes globally in the class builder – transaction code SE24. These classes can be used in multiple ABAP
programs (reusable) analogous to the function module library.

The scope of this chapter and of Chapters 12 and 13 is to enable you to use SAP supplied built-in classes,
especially the built-in classes pertaining to the generation of class based lists or reports (ALV reports.) These built-in
classes have events that you will trigger. The triggering entails execution of methods – event handler methods - in your
own defined classes. Since these event handler methods are specific to a scenario or context (not generic for the most
part), it makes sense to locate the classes containing the event handler methods in the ABAP program itself (local classes).
You can locate these event handler methods, if you so desire, in your own created global classes. This chapter exposes
you to the process of creating and maintaining global classes (i.e., the class builder) – transaction code SE24.

In this chapter, you will learn to create and maintain global class based exceptions and deploy these global class
based exceptions for error conditions in your programs, procedures, etc. You will also learn how to create and deploy
context menus that involve usage of a class.

Terminology Clarification: The term ‘data objects’, which you have been using since Chapter 2, will continue
to carry the same meaning. By data objects we mean (a) Whatever you declare in an ABAP program with reserved
words: DATA, TABLES, CONSTANTS, along with the literals; these constitute the internal data objects. (b) The DDIC
tables, views, and structures; the fields of DDIC tables, views, and structures; the data elements; the DDIC internal
table definitions (table types) – these constitute the external data objects. (c) The system fields constitute system
data objects. (d) The PARAMETERS variables and the SELECT-OPTIONS variables – these constitute the special
data objects.

You refer to the components of DDIC such as table definitions, data elements, and domains, etc., as DDIC objects.
The word ‘object’ is used here not in the context of OOP.

CHAPTER 11 ■ ABAP OOP

576

Local Class Syntaxes: Definition, Implementation, Declaration of
Methods, Calling Methods
First, there will be coverage of local classes and the connected syntaxes. The essentials of syntaxes are described.
For detailed syntaxes, you can refer to the online documentation.

Class Definition:
The syntax of a local class definition:

CLASS <class name> DEFINITION.

PUBLIC SECTION.
TYPE-POOLS:....
TYPES:.....
COMSTANTS:.....
DATA:....
CLASS-DATA:.....
METHODS: <method1> ...
CLASS-METHODS <class method1>...
EVENTS:...
CLASS-EVENTS.....
INTERFACES..

PROTECTED SECTION.
........
.....
PRIVATE SECTION.
......
.......
ENDCLASS.

An explanation of the different terms of the syntax follows.

Visibility of Components

PUBLIC SECTION: The components declared in this section are accessible to all the users of the class; to other
methods of the class; and inherited classes, if any.

PROTECTED SECTION: The components declared in this section are accessible to methods of the class and
inherited classes, if any.

PRIVATE SECTION: The components declared in this section are accessible only in methods of the class.
The prefix 'CLASS' is used to declare static components.
Syntactically, all of the above are optional. Practically, a class could contain attributes (DATA and/or CLASS-DATA),

methods (METHODS and/or CLASS-METHODS), and events (EVENTS and/or CLASS-EVENTS) in one or more of the
three sections: PUBLIC, PROTECTED, and PRIVATE. The class could contain other statements: TYPES, CONSTANTS,
etc., as mentioned in the syntax above.

CHAPTER 11 ■ ABAP OOP

577

Declaration of Methods
In the class or interface definition, methods are declared using the following syntax:

 METHODS <method name>

 [IMPORTING <ip1> TYPE <type> [OPTIONAL|DEFAULT <default value>].....]
 [EXPORTING <ep1> TYPE <type> [OPTIONAL|DEFAULT <default value>].....]
 [CHANGING <cp1> TYPE <type> [OPTIONAL|DEFAULT <default value>].....]
 [RETURNING <rp> TYPE <type> [OPTIONAL|DEFAULT <default value>]]

 [{RAISING|EXCEPTIONS} exc1 exc2 ...].

Parameters:

The sole RETURNING parameter is for the functional methods. The functional method can have any number of
IMPORTING parameters and one RETURNING parameter. A functional method will not have any EXPORTING and
CHANGING parameters.

An event handler method will have only IMPORTING parameter. A ‘CONSTRUCTOR’ method will have only
IMPORTING parameter. For the rest of methods, there can be any number of IMPORTING, EXPORTING, CHANGING
parameters. The parameters can be passed by the following:

Reference: REFERENCE(<ip1>) or <ip1>•

Value: VALUE(<ip1>)•

If EXPORTING, CHANGING, or RETURNING parameters are specified such as VALUE(<ep1>), VALUE(<cp1>),
and VALUE(<rp>), the parameters are passed by value and result.

Parameter TYPES:

All the parameters have to be assigned TYPES. The TYPES assigned will be matched with the respective TYPES of
actual parameters, and a mismatch will result in an error. The TYPES that can be assigned:

Generic ABAP Types – Refer to the table in the online documentation with the following path:•

ABAP - By Theme ➤ Built-In Types, Data Objects and Functions ➤ Built-In Data Types ➤
Generic ABAP Types

Locally declared, DDIC TYPES including data elements, DDIC data objects, and system fields.•

The OPTIONAL clause is to indicate that the parameter is optional, not mandatory. The DEFAULT clause is to
indicate a default value. Either of the OPTIONAL or DEFAULT clauses can be specified. If the DEFAULT clause is
given, the parameter is optional.

Exceptions:

The key word ‘RAISING’ is to be used for class based exceptions and the key word ‘EXCEPTIONS’ used for the error
conditions with the MESSAGE statement (non-class based). The parameters along with the exceptions are called the
signatures of the methods.

Having covered class definition syntax, we proceed to the syntax of class implementation.

CHAPTER 11 ■ ABAP OOP

578

Class Implementation
The syntax of a local class implementation:

CLASS <class name> IMPLEMENTATION.

METHOD <method1>.

ENDMETHOD.
METHOD: <method2>.

ENDMETHOD.
......
.....
ENDCLASS.

Calling Methods, Referring to Attributes
To use a class as an object – to create an instance of a class – you have to first declare a reference variable with the
DATA statement referring to the class:

DATA: CREF TYPE REF TO <class name>.

You create an instance of a class with the create statement (executes the CONSTRUCTOR method):

CREATE OBJECT CREF [IMPORTING <importing parameters>].

With this statement, the reference variable CREF contains a reference to an instance of the class.
The syntax for calling an instance method (similar to calling a function module):

CALL METHOD CREF-><method name>
 [IMPORTING <ifp1> = <iap1>...]
 [EXPORTING <efp1> = <eap1>...]
 [CHANGING <cfp1> = <cap1>...]

 [EXCEPTIONS
 <exception1> = 1
]
 .

 where
 <.fp.> - formal parameters
 <.ap.> - actual parameters

To refer to an attribute of an instance of a class:

CREF-><attribute name>

CHAPTER 11 ■ ABAP OOP

579

A static method will be called with the following syntax:

CALL METHOD <class name>=><method name>
 [IMPORTING <ifp1> = <iap1>...]
 [EXPORTING <efp1> = <eap1>...]
 [CHANGING <cfp1> = <cap1>...]

[EXCEPTIONS
 <exception1> = 1
....]
.

To refer to a static attribute of a class:

<class name>=><static attribute name>

-> For referring to an instance attribute, instance method, etc.
=> For referring to a static attribute, static method, etc.

Interface Declaration
The features of interface and inheritance are used to implement polymorphism. The syntax of an interface declaration
is as follows:

INTERFACE <interface name>.
......
ENDINTERFACE.

You can define the same components in an interface as in a class (i.e., attributes, methods, events, etc.). There
is no concept of visibility in the interface. The components of an interface belong to the public section of the classes
where the interface is implemented. To implement an interface in a class, you have to include the interface:

CLASS <class name> DEFINITION.
PUBLIC SECTION.
.....
INTERFACES: <interface name>..
.....

In a class with an included interface, the interface components can be referred to as <interface name>~
<component name>.

Interface methods will be implemented by more than one class, and they will be implemented differently in
different classes.

You can declare reference variables with references to interfaces:

DATA: IF_REF TYPE REF TO <interface name>.

Having been introduced to the essentials of the class syntax, you will now perform hands-on exercises.

CHAPTER 11 ■ ABAP OOP

580

Hands-on Exercise: Define and Implement a Simple Local Class
(Method to Concatenate a Text Array into a String)
This hands-on exercise is to expose you to basic syntaxes rather than implement intricate functionalities. The hands-on
exercise class has a single method. This method takes an import parameter, an internal table (elementary text array),
and concatenates the individual rows into one string, which is a returning parameter.

The exercise might seem a bit trivial, but the objective is to get the hang of the syntax.
You load the text array in the program with the name of the months from the database text table ‘T247’. You could

have loaded any text into the text array.
The program code:

REPORT YCL_CH11_01_BEAD_STRINGS_LCLAS.

* Local Class With One Method: **
* Concatenate rows Of An Array **

CLASS OWN_LOCAL_CLASS DEFINITION DEFERRED.
 " class not defined yet

DATA: CL_REF TYPE REF TO OWN_LOCAL_CLASS,
 RESULT TYPE STRING,
 STRING_TABL TYPE STRING_TABLE WITH HEADER LINE.
 " DDIC TABLE TYPE (array of TYPE STRING)

**************** class definition *************************
CLASS OWN_LOCAL_CLASS DEFINITION.

**
* class contains one method: BEAD_STRINGS **
* **
* the method takes two import parameters: **
* (1) an array of DDIC TYPE STRING_TABLE whose **
* line is TYPE STRING **
* (2) separator character between the words of **
* concatenated string. DEFAULT is ' ' **
* **
* concatenates all the rows of the array & **
* returns a single string of TYPE STRING **
* **
* the method has one exception. checks for no **
* data in the array STR_TAB - NO_DATA **
* **
* this is a functional method. can be used in **
* expressions though not in WRITE statement. **
* the WRITE statement does not support functions**
* in its usage **
**

CHAPTER 11 ■ ABAP OOP

581

 PUBLIC SECTION.

 METHODS BEAD_STRINGS IMPORTING
 VALUE(STR_TAB) TYPE STRING_TABLE
 VALUE(SEPARATOR) TYPE C DEFAULT ' '

 RETURNING
 VALUE(STRNG) TYPE STRING

 EXCEPTIONS NO_DATA.
PRIVATE SECTION.
 DATA: STR TYPE STRING.

ENDCLASS.

**************** class implementation *********************

CLASS OWN_LOCAL_CLASS IMPLEMENTATION.

METHOD BEAD_STRINGS.

 DESCRIBE TABLE STR_TAB..

 IF SY-TFILL = 0.
 MESSAGE S035(YCL_CH07_MCLASS01) RAISING
 NO_DATA.
 ENDIF.

 LOOP AT STR_TAB INTO STR.
 IF SY-TABIX > 1.
 CONCATENATE STRNG STR INTO STRNG SEPARATED
 BY SEPARATOR.
 ELSE.
 STRNG = STR.
 ENDIF.
 ENDLOOP.

ENDMETHOD.

ENDCLASS.

START-OF-SELECTION.

SELECT LTX FROM T247 INTO STRING_TABL
 WHERE SPRAS = SY-LANGU.

 APPEND STRING_TABL.
ENDSELECT.

CHAPTER 11 ■ ABAP OOP

582

CREATE OBJECT CL_REF.

**CALL METHOD CL_REF->BEAD_STRINGS
** EXPORTING
** STR_TAB = STRING_TABL[]
** SEPARATOR = '-'
** RECEIVING
** STRNG = RESULT.
**

RESULT = CL_REF->BEAD_STRINGS(STR_TAB = STRING_TABL[]
 SEPARATOR = '-').
IF SY-SUBRC <> 0.

 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4
 DISPLAY LIKE 'E'.
ELSE.

 WRITE:/5 RESULT.
ENDIF.

A function method can be used in an expression (like you are doing in the program) or can be invoked with the
CALL METHOD... statement. You can comment the expression and de-comment the CALL METHOD... statement in
the program and see the results.

The program output will look like Figure 11-1.

Figure 11-1. Program: YCL_CH11_01_BEAD_STRINGS_LCLAS – Output

This was an example of a simple method in a locally defined and implemented class.

Hands-on Exercise: Define and Implement a Simple Global Class
(Method to Concatenate a Text Array into a String)
You will implement a method of concatenating rows of a text array in a global class so that you are exposed to the
process of creating (i.e., defining and implementing a global class).

To maintain global classes, execute the transaction code SE24 to navigate to the class builder. Enter the name
of the class as YCL_CH11_CL_STRING_OPERATIONS. (The class name must start with ‘Y’/’Z’ and have a maximum
name space of thirty characters.) Press the create button or the function key F5. Figure 11-2 will appear.

CHAPTER 11 ■ ABAP OOP

583

Enter the description. Accept the defaults for other fields. Click the Save button. The system will prompt for a
package ($TMP). After the package is assigned, Figure 11-3 will appear.

Figure 11-2. Global Class: YCL_CH11_CL_STRING_OPERATIONS – Initial Screen

Figure 11-3. Global Class: YCL_ch11_CL_STRING_OPERATIONS – Methods Tab

There are eight tabs; the system by default takes you to the Methods tab. The information in the Properties tab,
like in any other ABAP workbench object, is maintained by the system (user, date created, package, etc.).

Corresponding to the data object you declared in the private section of the local class, you need to create an
attribute in the private section in the global class. So, click on the Attributes tab. Enter the name of the attribute as
‘STR’, the level as Instance Attribute (other options are Static Attribute and Constant); visibility as Private, and the
associated type as ‘STRING’. The screen with the entered values will look like Figure 11-4.

CHAPTER 11 ■ ABAP OOP

584

This was equivalent to declaring the data object ‘STR’ in the private section of the local class.
Now click on the Methods tab. Enter the name of the method as ‘BEAD_STRINGS’, level as Instance Method, and

visibility as Public. The screen with entered values will look like Figure 11-5.

Figure 11-4. Global Class: YCL_CH11_CL_STRING_OPERATIONS – Attributes Tab

Figure 11-5. Global Class: YCL_CH11_CL_STRING_OPERATIONS – Methods Tab

Next, you need to enter the method parameters. So click on the parameters button. The method ‘BEAD_STRINGS’
has two importing parameters and one returning parameter.

So enter the name of the first importing parameter as ‘STR_TAB’, type as Importing, and enable the Pass Value
checkbox for the parameter to be passed by value; enter the associated type as ‘STRING_TABLE”.

Enter the name of the second importing parameter as ‘SEPARATOR’, type as Importing; enable the Pass Value
checkbox for the parameter to be passed by value; enter the associated type as ‘C’; enter the default value as ‘ ‘.
The system automatically enables the parameter optional checkbox.

Enter the returning parameter as ‘STRNG’, type as Returning, and enable the Pass Value checkbox for the
parameter to be passed by value and result and the associated type as ‘STRING’.

The method parameters screen with the entered values looks like Figure 11-6.

CHAPTER 11 ■ ABAP OOP

585

You need to enter the exceptions. Click the Exceptions tab. The screen with the exception ‘NO_DATA’ entered will
look like Figure 11-7.

Figure 11-6. Method: BEAD_STRINGS – Method Parameters

Figure 11-7. Method: BEAD_STRINGS – Method Exceptions

Click on the Methods button to return to the methods screen. You have to enter the program code for the method.
So double click on the method name. The screen will prompt for saving. Click the Save button. The screen then will
present the template for the method:

method BEAD_STRINGS.
endmethod.

Copy the lines from the local class method between the lines method... and end method.

method BEAD_STRINGS.

DESCRIBE TABLE STR_TAB..

 IF SY-TFILL = 0.
 MESSAGE S035(YCL_CH07_MCLASS01) RAISING
 NO_DATA.
 ENDIF.

CHAPTER 11 ■ ABAP OOP

586

 LOOP AT STR_TAB INTO STR.
 IF SY-TABIX > 1.
 CONCATENATE STRNG STR INTO STRNG SEPARATED
 BY SEPARATOR.
 ELSE.
 STRNG = STR.
 ENDIF.
 ENDLOOP.

endmethod.

Perform a syntax check of the program code. Go back to the method screen. Check for consistency.
Activate the class. The class activation involves multiple components, and the screen will look like Figure 11-8.

Figure 11-8. Global Class: YCL_CH11_CL_STRING_OPERATIONS – Activation

The class is ready for use. The ABAP program code where the method BEAD_STRINGS of this class is being used:

REPORT YCL_CH11_02_BEAD_STRINGS_GCLAS.

* Use Method BEAD_STRINGS in Global Class: **
* YCL_CH10_CL_STRING_OPERATIONS **

DATA: CL_REF TYPE REF TO YCL_CH11_CL_STRING_OPERATIONS,
 RESULT TYPE STRING,
 STRING_TABL TYPE STRING_TABLE.

START-OF-SELECTION.

SELECT LTX FROM T247 INTO TABLE STRING_TABL
 WHERE SPRAS = SY-LANGU.

CREATE OBJECT CL_REF.

CHAPTER 11 ■ ABAP OOP

587

*CALL METHOD CL_REF->BEAD_STRINGS
* EXPORTING
* STR_TAB = STRING_TAB
* SEPARATOR = '-'
* RECEIVING
* STRNG = RESULT
* EXCEPTIONS
* NO_DATA = 1
* others = 2
* .
*IF SY-SUBRC <> 0.
* MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
* WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
*ENDIF.

RESULT = CL_REF->BEAD_STRINGS(STR_TAB = STRING_TABL[]
 SEPARATOR = '-').
IF SY-SUBRC <> 0.

 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4
 DISPLAY LIKE 'E'.
ELSE.

 WRITE:/5 RESULT.
ENDIF.

The output is the same as that obtained with the local class (Figure 11-9).

Figure 11-9. Program: YCL_CH11_02_BEAD_STRINGS_GCLAS – Output

You were generating the program code for calling a function module in Chapter 7 entitled ‘Modularization’
(inside the ABAP editor, the menu option: Edit ➤ Pattern etc.). The same facility can be availed to generate program
code for calling a method. The screen when you choose, inside the ABAP editor, the menu option Edit ➤ Pattern is
shown in Figure 11-10.

CHAPTER 11 ■ ABAP OOP

588

Click on the second radio button ABAP Objects Patterns. Press the continue button/<enter key>. The screen with
the entered values will appear like Figure 11-11.

Figure 11-10. Generate Code – ABAP Editor Option: Edit ➤ Pattern

CHAPTER 11 ■ ABAP OOP

589

You entered the name of the reference variable (instance or object), the global class name, and selected the
method of the class from the selection list.

In this dialogue box, you can generate program code for CREARE OBJECT..., RAISE EVENT..., and RAISE
EXCEPTION statements by selection of respective radio buttons.

You created a global class in the class builder and declared and implemented a method in this global class. Then
you invoked the method from an executable ABAP program.

Hands-on Exercise: Global Class (Method to Split a String without
Breaking a Word)
In Chapter 7, entitled ‘Modularization’, you created a function module that split a string into multiple strings of specified
length in characters without breaking a word. The name of this function module was YCL_CH07_SPLIT_STRING. You
will now implement the same functionality in a method using the global class you created in the previous exercise.

The function modules accept the type TABLES parameter. This type of parameter is not available for methods
of a class (only IMPORTING, EXPORTING, CHANGING, and RETURNING). With a TABLES parameter in a function
module, you were implicitly getting a work area of the same name (HEADER LINE) as the formal ‘TABLES’ parameter
name. In the present context, the work area is expected to be an elementary TYPE ‘C’ data object. You need the work
area to determine the length in characters of the output string as well needing it in the APPEND statement.

Figure 11-11. Generate Code – For Calling a Method

CHAPTER 11 ■ ABAP OOP

590

Within the global class, in the method to split a string, you are creating the work area at runtime using the
CREATE DATA... statement introduced in Chapter 8 entitled ‘Open SQL Data Retrieval’. The statement:

CREATE DATA SREF LIKE LINE OF STABLE.

You are then de-referencing the reference variable SREF and assigning it to a field symbol to be able to address
the runtime created data object:

ASSIGN SREF->* TO <WA>.

In the function module, you were checking the type of input parameter and raising an exception if the input
type is not ‘C’ or ‘STRING’. In the class, this is taken of care by the system. Since parameters have to be a compulsorily
assigned type, you have assigned the ABAP generic type ‘CSEQUENCE’ (‘C’ or’ STRING’). The system at runtime will
check the type of the actual parameter, and a mismatch will result in an error condition. So you are saved the effort of
checking the type of input parameter.

You have added an additional exception checking for no input data.
The rest of the method program code is the same as the program code of the function module

YCL_CH07_SPLIT_STRING.
You can navigate to the class builder (transaction code SE24); enter the class name as YCL_CH11_CL_STRING_

OPERATIONS and click on the change button.
Enter the method name ‘SPLIT_STRING’ under the first method you created in the previous hands-on exercise.

The screen will look like Figure 11-12.

Figure 11-13. Method SPLIT_STRING: Parameters

Figure 11-12. Class: YCL_CH11_CL_STRING_OPERATIONS – Method ‘SPLIT_STRING’

Position the cursor on the second row (i.e., method ‘SPLIT_STRING’). Click on the Parameters button. The
screen after entry of the parameters will look like Figure 11-13.

CHAPTER 11 ■ ABAP OOP

591

Click on the Exceptions button. The screen after entry of Exceptions will look like Figure 11-14.

Figure 11-14. Method SPLIT_STRING: Exceptions

Figure 11-15. Method SPLIT_STRING: Method Template

Click on the Method button. Then double click on the method ‘SPLIT_STRING’. The screen will present the
method template in Figure 11-15.

The program code of the method:

method SPLIT_STRING.

DATA: WORD TYPE STRING, " store extracted word
 TYP(1) TYPE C, " store variable TYPE
 LEN TYPE I, " store length of string
 CLEN TYPE I, " store available characters/columns
 WLEN TYPE I, " store extracted word length
 SREF TYPE REF TO DATA. " ref variable for line of STABLE

FIELD-SYMBOLS: <WA> TYPE ANY. " field symbol to address line of STABLE

CREATE DATA SREF LIKE LINE OF STABLE.
ASSIGN SREF->* TO <WA>.
DESCRIBE FIELD <WA> TYPE TYP. " <WA> reference to the elementary
 " data item i.e. line of STABLE
IF TYP <> 'C' .
 MESSAGE S007(YCL_CH07_MCLASS01) RAISING
 RETURN_TABLE_ELEMENT_NOT_TYPEC.
ENDIF.

CHAPTER 11 ■ ABAP OOP

592

IF STRING_TO_SPLIT IS INITIAL.
 MESSAGE S035(YCL_CH07_MCLASS01) RAISING
 EMPTY_STRING.
ENDIF.

REFRESH STABLE[]. " clear internal table of existing rows

DESCRIBE FIELD <WA> LENGTH LEN IN CHARACTER MODE.
 " get length of element

CLEN = LEN.

DO.

 IF STRING_TO_SPLIT IS INITIAL.
 EXIT.
 ENDIF.

 SEARCH STRING_TO_SPLIT FOR '. .'. " SEARCH for embedded blank

 IF SY-SUBRC <> 0. "last word in the text
 WORD = STRING_TO_SPLIT.
 STRING_TO_SPLIT = ''.
 ELSE.
 SPLIT STRING_TO_SPLIT AT ' ' INTO WORD STRING_TO_SPLIT.
 ENDIF.

 WLEN = STRLEN(WORD).

 IF SY-INDEX = 1.
 <WA> = WORD.
 ELSEIF WLEN <= CLEN.
 CONCATENATE <WA> WORD INTO <WA> SEPARATED BY ' '.
 ELSE.
 APPEND <WA> TO STABLE[].
 <WA> = WORD.
 CLEN = LEN.
 ENDIF.

 CLEN = CLEN - WLEN - 1.
ENDDO.

IF <WA> <> ' '.
 APPEND <WA> TO STABLE[].
ENDIF.
endmethod.

You have declared data inside the method. This is local to the method. In the previous method ‘BEAD_STRINGS’,
you were using an attribute ‘STR’ declared in the ‘PRIVATE’ section of the class. You could have as well declared this
inside the class. The idea was to create an attribute. An attribute in the ‘PRIVATE’ section of a class can be accessed by
the entire class, and data declared within a method can be accessed only within that method.

CHAPTER 11 ■ ABAP OOP

593

Save, perform a consistency check, and reactivate the class YCL_CH11_STRING_OPERATIONS again. The activating
screen is shown in Figure 11-16.

Figure 11-16. Class: YCL_CH11_CL_STRING_OPERATIONS – Reactivation

The source program using this method is, first, calling the function module SPELL_AMOUNT, which is converting
the input figure or amount into one line of text. Next, you are calling the method ‘SPLIT_STRING’ to split the one line
of text into multiple lines.

The source:

REPORT YCL_CH11_03_SPLIT_STRING_GCLAS.

**
* Call Method SPLIT_STRING In Class: **
* YCL_CH11_CL_STRING_OPERATIONS **
**

DATA: STRG(30) TYPE C,
 STRGA LIKE STANDARD TABLE OF STRG,
 ISTR TYPE STRING,
 SPELL TYPE SPELL,
 SPLIT_REF TYPE REF TO YCL_CH11_CL_STRING_OPERATIONS.

PARAMETERS: AMT(7) TYPE P DECIMALS 2 DEFAULT
 '987654321.50'.

START-OF-SELECTION.

CALL FUNCTION 'SPELL_AMOUNT'
 EXPORTING
 AMOUNT = AMT
 CURRENCY = 'INR'
 FILLER = ' '
 LANGUAGE = SY-LANGU
 IMPORTING
 IN_WORDS = SPELL
 EXCEPTIONS
 NOT_FOUND = 1
 TOO_LARGE = 2
 OTHERS = 3
 .

CHAPTER 11 ■ ABAP OOP

594

IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

CONCATENATE SPELL-WORD SPELL-DECWORD INTO ISTR
 SEPARATED BY ' '.

CREATE OBJECT SPLIT_REF.

CALL METHOD SPLIT_REF->SPLIT_STRING
 EXPORTING
 STRING_TO_SPLIT = ISTR
 IMPORTING
 STABLE = STRGA
 EXCEPTIONS
 RETURN_TABLE_ELEMENT_NOT_TYPEC = 1
 EMPTY_STRING = 2
 others = 3
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4
 DISPLAY LIKE 'E'.

ELSE.

 LOOP AT STRGA INTO STRG.
 WRITE:/5 STRG.
 ENDLOOP.

ENDIF.

The input and output screens will be like those in Figures 11-17 and 11-18.

Figure 11-17. Program: YCL_CH11_03_SPLIT_STRING_GCLAS – Input

CHAPTER 11 ■ ABAP OOP

595

You located another method in an existing global class created in the preceding hands-on exercise. The method
splits a line of string into multiple lines without breaking a word. The method implements functionality implemented
earlier with a function module in Chapter 7.

Hands-on Exercise: Define Local Interface, Implement Interface
Method in Local Classes (Method to Fetch Business Partner
Name & Address)
Scenario
Customers and vendors/suppliers are business partners. Given the code of the business partner, fetching the name
and address of customers involves retrieving data from the database table KNA1, and fetching this same information
of vendors involves retrieving data from the database table LFA1.

A local interface has been defined in which a method is declared. This method has an importing parameter as the
business partner code and exporting parameters as the name and address of the business partner.

Two different local classes implement this method. One class retrieves name and address data from the database
table KNA1, and the other class retrieves name and address data from the database table LFA1.

This could have been achieved with simple conditional statements without an interface and classes. The idea is
to illustrate the usage of interface and its basic syntaxes as they exist in ABAP.

The source code:

REPORT YCL_CH10_04_LOCAL_IF_CLASS.

* Demo local INTERFACE (polymorphism) and syntaxes **

* on the SELECTION-SCREEN input: **
* (1) business partner/partner type: customer or vendor **
* (2) customer/vendor code **
* **
* using the feature of INTERFACE declared method and this**
* method implemented in two different classes, the **
* address of customer/vendor is retrieved and output **
* **

Figure 11-18. Program: YCL_CH11_03_SPLIT_STRING_GCLAS – Output

CHAPTER 11 ■ ABAP OOP

596

* same method in different classes gets different info **
* **
* the method GET_ADDRESS in class GET_CUST_ADDR retrieves**
* the customer address from database table KNA1 **
* **
* the method GET_ADDRESS in class GET_VEND_ADDR retrieves**
* the vendor address from database table LFA1 **
* **
* the name, address fields: NAME1 STRAS ORT01 PSTLZ are **
* common/same in database tables KNA1 & LFA1 **
* **
* exception raised using MESSAGE statement. subsequently **
* class based exception is covered **

TYPES: TYP_BPCODE(10) TYPE C. " business partner code TYPE

CLASS: GET_CUST_ADDR DEFINITION DEFERRED, " CLASS yet to be defined
 GET_VEND_ADDR DEFINITION DEFERRED. " ditto

INTERFACE: IF_GET_PARTNER_ADDR DEFERRED.
 " INTERFACE yet to be declared

DATA: CUST_ADDR TYPE REF TO GET_CUST_ADDR,
 " customer address

 VEND_ADDR TYPE REF TO GET_VEND_ADDR,
 " vendor address

 IF_PARTNER_ADDR TYPE REF TO IF_GET_PARTNER_ADDR,

 PARTNER_TP(1) TYPE C VALUE 'C',
 BPCODE TYPE TYP_BPCODE,
 NAME1 TYPE NAME1_GP,
 STRAS TYPE STRAS_GP,
 ORT01 TYPE ORT01_GP,
 PSTLZ TYPE PSTLZ.

********************* INTERFACE *************************

INTERFACE IF_GET_PARTNER_ADDR.
 "convention: start interface names with IF_

 METHODS: GET_ADDRESS IMPORTING VALUE(BPCODE) TYPE TYP_BPCODE
 EXPORTING PNAME TYPE NAME1_GP
 PSTREET TYPE STRAS_GP
 PCITY TYPE ORT01_GP
 PPIN TYPE PSTLZ
 EXCEPTIONS INVALID_CODE.

CHAPTER 11 ■ ABAP OOP

597

ENDINTERFACE.

****** class definition, implementation for customer info ******

CLASS GET_CUST_ADDR DEFINITION. "custmer address

 PUBLIC SECTION.
 INTERFACES IF_GET_PARTNER_ADDR.
 "interfaces used by class specified

 PRIVATE SECTION.
 DATA: KNA1 TYPE KNA1.

ENDCLASS.

CLASS GET_CUST_ADDR IMPLEMENTATION.

 METHOD IF_GET_PARTNER_ADDR~GET_ADDRESS.
 "qualifying interface method in this way with ~ (tilde)

 SELECT SINGLE * FROM KNA1 INTO KNA1 WHERE KUNNR = BPCODE.

 IF SY-SUBRC <> 0.
 MESSAGE S036(YCL_CH07_MCLASS01) RAISING
 INVALID_CODE WITH BPCODE.
 ENDIF.

 PNAME = KNA1-NAME1.
 PSTREET = KNA1-STRAS.
 PCITY = KNA1-ORT01.
 PPIN = KNA1-PSTLZ.
 ENDMETHOD.

ENDCLASS.

****** class definition, implementation for vendor info ******

CLASS GET_VEND_ADDR DEFINITION.

 PUBLIC SECTION.
 INTERFACES IF_GET_PARTNER_ADDR.
 "interfaces used by class specified like this

 PRIVATE SECTION.
 DATA: LFA1 TYPE LFA1.

ENDCLASS.

CLASS GET_VEND_ADDR IMPLEMENTATION.

 METHOD IF_GET_PARTNER_ADDR~GET_ADDRESS.
 "qualifying interface method in this way with ~ (tilde)

CHAPTER 11 ■ ABAP OOP

598

 SELECT SINGLE * FROM LFA1 INTO LFA1 WHERE LIFNR = BPCODE.

 IF SY-SUBRC <> 0.
 MESSAGE S037(YCL_CH07_MCLASS01) RAISING
 INVALID_CODE WITH BPCODE.
 ENDIF.

 PNAME = LFA1-NAME1.
 PSTREET = LFA1-STRAS.
 PCITY = LFA1-ORT01.
 PPIN = LFA1-PSTLZ.
 ENDMETHOD.

ENDCLASS.

* SELECTION-SCREEN **

SELECTION-SCREEN SKIP 1.

SELECTION-SCREEN BEGIN OF BLOCK BL1 WITH FRAME TITLE
 COM1 NO INTERVALS.

SELECTION-SCREEN SKIP 1.

 SELECTION-SCREEN BEGIN OF LINE.
 PARAMETERS: CUST RADIOBUTTON GROUP GR1 USER-COMMAND
 PART_TYPE DEFAULT 'X'.
 SELECTION-SCREEN COMMENT 3(15) COM2.

 PARAMETERS: VEND RADIOBUTTON GROUP GR1.
 SELECTION-SCREEN COMMENT 21(15) COM3.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN SKIP 1.

 SELECTION-SCREEN BEGIN OF LINE.
 SELECTION-SCREEN COMMENT 1(14) COM4 FOR FIELD CUST_CD
 MODIF ID CG1.
 PARAMETERS: CUST_CD LIKE KNA1-KUNNR MODIF ID CG1.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN BEGIN OF LINE.
 SELECTION-SCREEN COMMENT 1(14) COM5 MODIF ID CG2
 FOR FIELD VEND_CD.
 PARAMETERS: VEND_CD LIKE LFA1-LIFNR VALUE CHECK
 MODIF ID CG2.
 SELECTION-SCREEN END OF LINE.

 SELECTION-SCREEN SKIP 1.

CHAPTER 11 ■ ABAP OOP

599

SELECTION-SCREEN END OF BLOCK BL1.

INITIALIZATION.
COM1 = '----- Select Business Partner Type -----'(001).
COM4 = 'Customer Code:'(004).
COM5 = 'Vendor Code:'(005).
COM2 = 'Customer'(002).
COM3 = 'Vendor'(003).

AT SELECTION-SCREEN OUTPUT.
IF CUST = 'X'.
 PARTNER_TP = 'C'.
ELSE.
 PARTNER_TP = 'V'.
ENDIF.

LOOP AT SCREEN .
 IF SCREEN-GROUP1 <> 'CG1' AND SCREEN-GROUP1 <> 'CG2'.
 CONTINUE.
 ENDIF.

 IF (SCREEN-GROUP1 = 'CG1' AND PARTNER_TP = 'C') OR
 (SCREEN-GROUP1 = 'CG2' AND PARTNER_TP = 'V').

 SCREEN-INPUT = 1.
 SCREEN-ACTIVE = 1.
 SCREEN-INVISIBLE = 0.

 ELSEIF (SCREEN-GROUP1 = 'CG1' AND PARTNER_TP <> 'C') OR
 (SCREEN-GROUP1 = 'CG2' AND PARTNER_TP <> 'V').

 SCREEN-INPUT = 0.
 SCREEN-ACTIVE = 0.
 SCREEN-INVISIBLE = 1.
 ENDIF.

 MODIFY SCREEN.

ENDLOOP.

**************** main processing **************

START-OF-SELECTION.

CREATE OBJECT CUST_ADDR.

CREATE OBJECT VEND_ADDR.

CHAPTER 11 ■ ABAP OOP

600

IF CUST = 'X'.

 BPCODE = CUST_CD.
 IF_PARTNER_ADDR = CUST_ADDR. " UP/WIDE CASTING

ELSE.

 BPCODE = VEND_CD.
 IF_PARTNER_ADDR = VEND_ADDR. " UP/WIDE CASTING
ENDIF.

CALL METHOD IF_PARTNER_ADDR->GET_ADDRESS
 EXPORTING
 BPCODE = BPCODE
 IMPORTING
 PNAME = NAME1
 PSTREET = STRAS
 PCITY = ORT01
 PPIN = PSTLZ
 EXCEPTIONS INVALID_CODE = 4.

IF SY-SUBRC <> 0.

 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4
 DISPLAY LIKE 'E'.

ELSE.

 WRITE /5: BPCODE USING NO EDIT MASK,
 NAME1, STRAS, ORT01, PSTLZ.
ENDIF.
**

The text symbol screen is shown in Figure 11-19.

Figure 11-19. Program: YCL_CH11_04_LOCAL_IF_CLASS – Text Symbols

CHAPTER 11 ■ ABAP OOP

601

The customer input screen is shown in Figure 11-20.

Figure 11-20. Program: YCL_CH11_04_LOCAL_IF_CLASS – Customer Input

The customer output screen:

Figure 11-21. Program: YCL_CH11_04_LOCAL_IF_CLASS – Customer Output

The vendor input screen:

CHAPTER 11 ■ ABAP OOP

602

The vendor output screen:

Figure 11-23. Program: YCL_CH11_04_LOCAL_IF_CLASS – Vendor Output

Figure 11-22. Program: YCL_CH11_04_LOCAL_IF_CLASS – Vendor Input

The screen for an error condition:

CHAPTER 11 ■ ABAP OOP

603

This was an illustration of generalization (business partner) and specialization (business partner: customers, and
business partner: vendors). Polymorphism was implemented using interfaces. A similar illustration of polymorphism
using inheritance is implemented in the program YCL_CH11_04A_LOCAL_INH_CLASS. The program is not listed
here. It is available in the E-Resource.

Hands-on Exercise: Use Methods of SAP Delivered Class
‘CL_GUI_FRONTEND_SERVICES’
Tour of Class CL_GUI_FRONTEND_SERVICES
The built-in class CL_GUI_FRONTEND_SERVICES offers functionalities-methods associated with the presentation
server or the front end.

You will use the following methods of this class in the current exercise:

FILE_OPEN_DIALOG – This method enables a selection of an operating system file located on •
the presentation server. The method presents a dialogue box with the folders/files list to enable
an end user to make file selections. There is a provision to make single or multiple file selection.

FILE_EXIST – This method checks for the existence of a given file on the presentation server. •
This is a function method, and it takes the file name as an input parameter and returns a value
‘X’ if the file exists and blank if the file is nonexistent.

GUI_DOWNLOAD - This method downloads the data of an internal table to a file on the •
presentation server. The main input parameters are the file name and file type (ASCII/BINARY),
etc. If a file already exists, there is provision to overwrite/append to the existing file.

Figure 11-24. Program: YCL_CH11_04_LOCAL_IF_CLASS – Input Error Condition

CHAPTER 11 ■ ABAP OOP

604

Let these methods be viewed in the class screens.
Navigate to the class builder (SE24), enter the class name, and click on the display button. Figure 11-25 will appear.

Figure 11-25. Built-in Class: CL_GUI_FRONTEND_SERVICES – Methods

Initial methods are appearing in blue, and they are the inherited methods of the super class: CL_GUI_OBJECT
(click on the Properties tab and confirm this). You can use only the methods, attributes, and events with visibility Public.

Ensure you are on the Methods tab. Click on the find method/item button (the button with the arrow mark
in Figure 11-25). Enter ‘FILE_OPEN_DIALOG’ in the find dialogue box and press continue button. The cursor will
position on the method: FILE_OPEN_DIALOG, and the screen will appear like Figure 11-26.

Figure 11-26. Class:CL_GUI_FRONTEND_SERVISES – Method FILE_OPEN_DIALOG

CHAPTER 11 ■ ABAP OOP

605

When you click on the parameters, you can view the parameters of this method. The screen for the parameters of
method FILE_OPEN_DIALOG will look like Figure 11-27.

Figure 11-27. Class: CL_GUI_FRONTEND_SERVISES – Parameters of Method FILE_OPEN_DIALOG

Navigate back to the Methods tab. Ensure that you vertically scrolled to the top, so that search for a method starts
at the beginning. Click on the find button (under the tabs). Enter the method name ‘FILE_EXIST’ in the dialogue box,
and press continue. The cursor will position on the method FILE_EXIST as shown in Figure 11-28.

Figure 11-28. Class: CL_GUI_FRONTEND_SERVISES – Method FILE_EXIST

When you click on the parameters, you can view the parameters of this method. The screen for the parameters of
method FILE_EXIST is shown in Figure 11-29.

CHAPTER 11 ■ ABAP OOP

606

A similar exercise can be done for location and viewing of the method GUI_DOWNLOAD. The screens for the
method and its parameters are shown in Figures 11-30 and 11-31.

Figure 11-29. Class: CL_GUI_FRONTEND_SERVISES – Parameters of Method FILE_EXIST

Figure 11-30. Class: CL_GUI_FRONTEND_SERVISES – Method GUI_DOWNLOAD

CHAPTER 11 ■ ABAP OOP

607

All of the three methods: FILE_OPEN_DIALOG, FILE_EXIST, and GUI_DOWNLOAD are static methods.

Exercise and ABAP Program Specifications
The functionalities of the Chapter 10 program YCL_CH10_ILISTS05 are being extended. To recapitulate, this program
was taking a database table/view as input and listing out the fields of the input database table/view with checkboxes
against the fields for making field selections. The program was retrieving the data of the selected fields from the
database table/view to output. The program was using the features of runtime data objects, field symbols, and Open
SQL special constructs and interactive lists.

You will add a button to the application toolbar of the output list of the selected fields of an input database
table/view (first secondary list). Clicking on this button will download the list to a file on the presentation server in
HTML format (in the event AT USER-COMMAND).

In the process of downloading the list to a file on the presentation server, you will be invoking the three methods
of the built-in class: CL_GUI_FRONTEND_SERVICES.

When the additional button on the application toolbar is clicked, you will first present the user with a Selection
Screen prompting for the file name. The event AT SELECTION-SCREEN ON VALUE-REQUEST... is triggered for this
prompt to enable the user to make a selection of an existing file on the presentation server. You are using the
method FILE_OPEN_DIALOG to present a file selection dialogue box in the event AT SELECTION-SCREEN ON
VALUE-REQUEST.... The user can, of course, make a manual entry for the file name.

After the entry of the file name, when the user presses the execute button/function key F8, you will check for the
existence of the file using the method FILE_EXIST. If a file is existent, you are popping a dialogue box for confirmation
of file overwriting using the function module POPUP_TO_CONFIRM.

If the file exists and overwriting is confirmed or the downloading file is nonexistent, the list (first secondary list) is
converted to HTML format using the function module: WWW_LIST_TO_HTML. This function module takes as input
the list number (0, 1 ...) and returns the HTML formatted list into an internal table.

This internal table containing the list in HTML format is downloaded to the presentation server file using the
method GUI_DOWNLOAD.

If the file exists and overwriting is not confirmed, a message is issued and the system remains on the first
secondary list.

Figure 11-31. Class: CL_GUI_FRONTEND_SERVISES – Parameters of Method GUI_DOWNLOAD

CHAPTER 11 ■ ABAP OOP

608

The facility of downloading a list to a file on the presentation server is provided by the system (see Figure 11-32).
From any list, the menu path is System ➤ List ➤ Save ➤ Local File. The system prompts for the file format (Figure 11-33)
in which the list is to be downloaded: unconverted, Spread sheet, Rich text format, HTML Format, and to the clipboard.

Figure 11-32. Menu Path for Saving/Downloading a List to a Presentation Server File

Figure 11-33. File Format Selection for Saving/Downloading a List to a Presentation Server File

CHAPTER 11 ■ ABAP OOP

609

The idea of providing the facility already available in the system through custom program coding would seem inane
and redundant. The objective here is to demonstrate the use of the methods of the class CL_GUI_FRONTEND_SERVICES.

The changes made to the original program YCL_CH10_ILISTS05’ are marked in the current program.
The source code:

REPORT YCL_CH11_05_USE_GCLASS_FES NO STANDARD PAGE HEADING.

* Use Methods FILE_OPEN_DIALOG, FILE_EXIST, GUI_DOWNLOAD **
* of Class CL_GUI_FRONTEND_SERVICES to Download First **
* Secondary List in HTML Format to a File on the **
* Presentation Server/Front-end **

DATA: BEGIN OF FIELDS_STRU,
 FIELDNAME TYPE DD03L-FIELDNAME," field name
 POSITION TYPE DD03L-POSITION, " field position in stru 1, 2..
 " line no. & field position map
 " one-to-one. helps in accessing
 " a field with line no.
 INTTYPE TYPE DD03L-INTTYPE, " ABAP TYPE: C,D,F,I,N,P etc.
 DATATYPE TYPE DD03L-DATATYPE, " DDIC TYPE: CHAR, NUMC etc.
 KEYFLAG TYPE DD03L-KEYFLAG, " flag for primary key field
 CBOX(1) TYPE C, " field enabled/disabled check box
 OBLEN TYPE I, " width of output
 END OF FIELDS_STRU,

 BEGIN OF SFIELDS_STRU,
 FIELDNAME TYPE DD03L-FIELDNAME,
 END OF SFIELDS_STRU,

 BEGIN OF ORDERBY_STRU,
 FIELDNAME TYPE DD03L-FIELDNAME,
 END OF ORDERBY_STRU,

 BEGIN OF OHEAD_STRU,
 FIELDNAME TYPE DD03L-FIELDNAME,
 OLEN TYPE I, " width of output
 OTEXT TYPE STRING,
 INTTYPE TYPE DD03L-INTTYPE,
 END OF OHEAD_STRU,

 FIELDS_TAB LIKE STANDARD TABLE OF FIELDS_STRU, " all fields of
 " selected table

 SFIELDS_TAB LIKE STANDARD TABLE OF SFIELDS_STRU," selected fields of
 " selected table. used
 " in SELECT statement

 ORDERBY_TAB LIKE STANDARD TABLE OF ORDERBY_STRU, " primary key fields
 " (in sort)

CHAPTER 11 ■ ABAP OOP

610

 CONDS_TAB TYPE STRING OCCURS 0 WITH HEADER LINE, " condition for
 " text tables
 OHEAD_TAB LIKE STANDARD TABLE OF OHEAD_STRU, " texts for
 " column headings
 CTR TYPE I, " outputted field number
 LINSZ TYPE I, " LINE-SIZE
 LCNT TYPE I, " temporary
 PAGE(3) TYPE C,
 CK_BOX(1) TYPE C, " READ..FIELDS_STRU-CBOX INTO..
 TABCLASS TYPE DD02L-TABCLASS, " destination field from table DD02L
 DSTRU TYPE REF TO DATA, " ref. variable of structure object

* addition in this program start *

 STR_TAB TYPE FILETABLE WITH HEADER LINE, " return selected file
 HTML_TAB TYPE STANDARD TABLE OF W3HTML, "HTML formatted list
 CNT TYPE I, " no of files selected in file open dialog
 ANS(1) TYPE C, " return value of popup dialogue box
 CANCEL(1) TYPE C. " cancel download

* addition in this program end *

FIELD-SYMBOLS: <DSTRU>, " field symbol to access structure
 <FLD>. " field symbol to access field

***********SELECTION-SCREEN***************************
PARAMETERS: TAB_NAME TYPE DD03L-TABNAME VALUE CHECK.

AT SELECTION-SCREEN.

 SELECT SINGLE TABCLASS FROM DD02L INTO TABCLASS WHERE TABNAME = TAB_NAME.

 IF TABCLASS <> 'TRANSP' AND TABCLASS <> 'CLUSTER' AND
 TABCLASS <> 'POOL' AND TABCLASS <> 'VIEW'.
 MESSAGE E022(YCL_CH07_MCLASS01) WITH TAB_NAME.
 ENDIF.

START-OF-SELECTION.

SELECT FIELDNAME POSITION INTTYPE DATATYPE KEYFLAG FROM DD03L
 INTO CORRESPONDING FIELDS OF TABLE FIELDS_TAB
 WHERE TABNAME = TAB_NAME AND FIELDNAME NOT LIKE '.%' AND
 FIELDNAME NOT LIKE '/%'.

SORT FIELDS_TAB BY POSITION.

CHAPTER 11 ■ ABAP OOP

611

SET PF-STATUS 'STAT1'.
SET TITLEBAR 'TITLE01' WITH TAB_NAME.

*********primary list - list of fields **********************

LOOP AT FIELDS_TAB INTO FIELDS_STRU.
 WRITE:/5 FIELDS_STRU-CBOX AS CHECKBOX, FIELDS_STRU-FIELDNAME.
ENDLOOP.

* AT USER-COMMAND event **

AT USER-COMMAND.

CASE SY-UCOMM.

 WHEN 'EXIT'.
 LEAVE SCREEN.

 WHEN 'BACK'.
 SY-LSIND = SY-LSIND - 2.

*****************select all**************
 WHEN 'SALL'.

 LOOP AT FIELDS_TAB INTO FIELDS_STRU .
 MODIFY LINE SY-TABIX FIELD VALUE FIELDS_STRU-CBOX FROM 'X'
 FIELDS_STRU-FIELDNAME FROM FIELDS_STRU-FIELDNAME.
 ENDLOOP.

 SY-LSIND = 0.

****************de-select all*************
 WHEN 'DSALL'.

 LOOP AT FIELDS_TAB INTO FIELDS_STRU .
 MODIFY LINE SY-TABIX FIELD VALUE FIELDS_STRU-CBOX FROM ' '
 FIELDS_STRU-FIELDNAME FROM FIELDS_STRU-FIELDNAME.
 ENDLOOP.

 SY-LSIND = 0.

********************output***************
 WHEN 'DDATA'.
 REFRESH: SFIELDS_TAB, ORDERBY_TAB, OHEAD_TAB, CONDS_TAB.
 " initialize internal tables
 LINSZ = 0.
 CREATE DATA DSTRU TYPE (TAB_NAME).
 ASSIGN DSTRU->* TO <DSTRU>.

CHAPTER 11 ■ ABAP OOP

612

******determine selected fields, build internal tables******
 DO.
 READ LINE SY-INDEX FIELD VALUE FIELDS_STRU-CBOX INTO CK_BOX.
 IF SY-SUBRC <> 0. " no more lines in the list
 EXIT.
 ENDIF.
 IF CK_BOX = 'X'.
 READ TABLE FIELDS_TAB INTO FIELDS_STRU INDEX SY-INDEX.
 FIELDS_STRU-CBOX = CK_BOX.
 SFIELDS_STRU-FIELDNAME = FIELDS_STRU-FIELDNAME.
 APPEND SFIELDS_STRU TO SFIELDS_TAB.

 ASSIGN COMPONENT SY-INDEX OF STRUCTURE <DSTRU> TO <FLD>.

 PERFORM FILL_OHEAD_TAB TABLES OHEAD_TAB USING TAB_NAME
 FIELDS_STRU <FLD>.

 MODIFY FIELDS_TAB FROM FIELDS_STRU INDEX SY-INDEX.

 IF FIELDS_STRU-KEYFLAG = 'X'.
 ORDERBY_STRU-FIELDNAME = FIELDS_STRU-FIELDNAME.
 APPEND ORDERBY_STRU TO ORDERBY_TAB.
 ENDIF.

 IF FIELDS_STRU-DATATYPE = 'LANG' AND FIELDS_STRU-KEYFLAG = 'X'.
 CONCATENATE FIELDS_STRU-FIELDNAME '= SY-LANGU' INTO
 CONDS_TAB SEPARATED BY ' '.
 APPEND CONDS_TAB TO CONDS_TAB.
 ENDIF.

 ELSE.

 READ TABLE FIELDS_TAB INTO FIELDS_STRU INDEX SY-INDEX.
 FIELDS_STRU-CBOX = CK_BOX.
 MODIFY FIELDS_TAB FROM FIELDS_STRU INDEX SY-INDEX.

 IF FIELDS_STRU-KEYFLAG = 'X'.
 ORDERBY_STRU-FIELDNAME = FIELDS_STRU-FIELDNAME.
 APPEND ORDERBY_STRU TO ORDERBY_TAB.
 ENDIF.

 IF FIELDS_STRU-DATATYPE = 'LANG' AND FIELDS_STRU-KEYFLAG = 'X'.
 CONCATENATE FIELDS_STRU-FIELDNAME '= SY-LANGU' INTO
 CONDS_TAB SEPARATED BY ' '.
 APPEND CONDS_TAB TO CONDS_TAB.
 ENDIF.

 ENDIF.
 ENDDO.

CHAPTER 11 ■ ABAP OOP

613

 DESCRIBE TABLE SFIELDS_TAB.

 IF SY-TFILL = 0. " no fields selected
 MESSAGE S023(YCL_CH07_MCLASS01) WITH
 TAB_NAME DISPLAY LIKE 'W'.
 SY-LSIND = SY-LSIND - 1.
 EXIT.
 ENDIF.

 LINSZ = LINSZ + 3.

 IF LINSZ > 1023. " SY-LINSZ CANNOT EXCEED 1023.
 MESSAGE S024(YCL_CH07_MCLASS01) WITH
 LINSZ DISPLAY LIKE 'W'.
 SY-LSIND = SY-LSIND - 1.
 EXIT.

 ENDIF.

 CREATE DATA DSTRU TYPE (TAB_NAME).
 ASSIGN DSTRU->* TO <DSTRU>.
 SET PF-STATUS 'STAT2'.

 NEW-PAGE LINE-SIZE LINSZ LINE-COUNT 60. " LINSZ as per total width
 " of all outputted columns

 SET TITLEBAR 'TITLE02' WITH TAB_NAME.

**************retrieve data & output***********************

 SELECT (SFIELDS_TAB) FROM (TAB_NAME) INTO CORRESPONDING FIELDS OF
 <DSTRU> WHERE (CONDS_TAB) ORDER BY (ORDERBY_TAB).
 CTR = 0.
 DO.
 ASSIGN COMPONENT SY-INDEX OF STRUCTURE <DSTRU> TO <FLD>.
 IF SY-SUBRC <> 0.
 EXIT.
 ENDIF.
 READ TABLE FIELDS_TAB INTO FIELDS_STRU INDEX SY-INDEX.
 IF FIELDS_STRU-CBOX <> 'X'.
 CONTINUE.
 ENDIF.
 CTR = CTR + 1.
 IF CTR = 1.
 WRITE AT :/5(FIELDS_STRU-OBLEN) <FLD>.
 ELSE.
 WRITE AT :(FIELDS_STRU-OBLEN) <FLD>.
 ENDIF.
 ENDDO.

 ENDSELECT.

CHAPTER 11 ■ ABAP OOP

614

* addition in this program start *

*********download HTML**********
 WHEN 'DOWNH'.

 SY-LSIND = SY-LSIND - 1.

 SELECTION-SCREEN BEGIN OF SCREEN 2000.
 PARAMETERS FILE TYPE STRING.
 SELECTION-SCREEN END OF SCREEN 2000.
 CALL SELECTION-SCREEN 2000 STARTING AT 3 2 ENDING AT 90 7.

 IF CANCEL = 'C'. " cancel download
 CANCEL = ' '.

 ELSE.
 ANS = ' '.
 IF CL_GUI_FRONTEND_SERVICES=>FILE_EXIST(FILE = FILE) = 'X'.

 CALL FUNCTION 'POPUP_TO_CONFIRM'
 EXPORTING
 TEXT_QUESTION = 'Confirm Overwriting'(001)
 TEXT_BUTTON_1 = 'Yes'(002)
 TEXT_BUTTON_2 = 'No'(003)
 DEFAULT_BUTTON = '2'
 DISPLAY_CANCEL_BUTTON = ' '
 START_COLUMN = 25
 START_ROW = 6
 IMPORTING
 ANSWER = ANS
 .

 ENDIF.

 IF ANS <> '2'.

 CALL FUNCTION 'WWW_LIST_TO_HTML'
 EXPORTING
 LIST_INDEX = 1
 TABLES
 HTML = HTML_TAB[].

 CALL METHOD CL_GUI_FRONTEND_SERVICES=>GUI_DOWNLOAD
 EXPORTING
 FILENAME = FILE "'D:\TMP\EEE.HTM'
 FILETYPE = 'BIN'
 WRITE_LF = 'X'
* CONFIRM_OVERWRITE = 'X'
 CHANGING

CHAPTER 11 ■ ABAP OOP

615

 DATA_TAB = HTML_TAB[]
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.
 ELSE.
 MESSAGE S038(YCL_CH07_MCLASS01)
 WITH FILE. " Overwriting Existing File:&1 Cancelled

 ENDIF.
 ENDIF.
ENDCASE.

AT SELECTION-SCREEN ON EXIT-COMMAND.

CANCEL = 'C'. " for cancel download

AT SELECTION-SCREEN ON VALUE-REQUEST FOR FILE.

CALL METHOD CL_GUI_FRONTEND_SERVICES=>FILE_OPEN_DIALOG
 EXPORTING
* WINDOW_TITLE =
 MULTISELECTION = ' '
 CHANGING
 FILE_TABLE = STR_TAB[]
 RC = CNT
 EXCEPTIONS
 FILE_OPEN_DIALOG_FAILED = 1
 CNTL_ERROR = 2
 ERROR_NO_GUI = 3
 NOT_SUPPORTED_BY_GUI = 4
 others = 5
 .
IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ELSE.

 READ TABLE STR_TAB INDEX 1.
 IF STR_TAB IS NOT INITIAL.
 FILE = STR_TAB.
 ENDIF.

ENDIF.

* addition in this program end *

CHAPTER 11 ■ ABAP OOP

616

**
* heading using event TOP-OF-PAGE DURING LINE-SELECTION **
**
TOP-OF-PAGE DURING LINE-SELECTION.

 LCNT = LINSZ - 2.
 PAGE = SY-PAGNO.
 WRITE AT /LCNT PAGE RIGHT-JUSTIFIED.

 LCNT = LINSZ - 4.

 WRITE AT /5(LCNT) SY-ULINE.

 LOOP AT OHEAD_TAB INTO OHEAD_STRU.

 IF SY-TABIX = 1.
 IF OHEAD_STRU-INTTYPE = 'F' OR OHEAD_STRU-INTTYPE = 'I'
 OR OHEAD_STRU-INTTYPE = 'P'.
 WRITE AT /5(OHEAD_STRU-OLEN) OHEAD_STRU-OTEXT RIGHT-JUSTIFIED.
 ELSE.
 WRITE AT /5(OHEAD_STRU-OLEN) OHEAD_STRU-OTEXT.
 ENDIF.
 ELSE.
 IF OHEAD_STRU-INTTYPE = 'F' OR OHEAD_STRU-INTTYPE = 'I'
 OR OHEAD_STRU-INTTYPE = 'P'.
 WRITE AT (OHEAD_STRU-OLEN) OHEAD_STRU-OTEXT RIGHT-JUSTIFIED.
 ELSE.
 WRITE AT (OHEAD_STRU-OLEN) OHEAD_STRU-OTEXT.
 ENDIF.
 ENDIF.
 ENDLOOP.

 WRITE AT /5(LCNT) SY-ULINE.
 SKIP 1.

**
* Get Column Heading Texts, **
* build column heading internal table **
**

FORM FILL_OHEAD_TAB
 TABLES
 OTAB LIKE OHEAD_TAB

 USING
 VALUE(TNAME)
 FSTRU LIKE FIELDS_STRU VALUE(FLD) .

 DATA: LNGT TYPE I,
 OSTRU LIKE LINE OF OTAB.

CHAPTER 11 ■ ABAP OOP

617

 CALL FUNCTION 'MG_FIELDNAME_TEXT'
 EXPORTING
 TABNAME = TNAME
 FIELDNAME = FSTRU-FIELDNAME
 IMPORTING
 REPTEXT = OSTRU-OTEXT
 .

 OSTRU-FIELDNAME = FSTRU-FIELDNAME.
 OSTRU-INTTYPE = FSTRU-INTTYPE.

 DESCRIBE FIELD FLD OUTPUT-LENGTH OSTRU-OLEN.

 LNGT = STRLEN(OSTRU-OTEXT).

 IF LNGT > OSTRU-OLEN.
 OSTRU-OLEN = LNGT.
 ENDIF.

 FSTRU-OBLEN = OSTRU-OLEN.
 APPEND OSTRU TO OTAB.
 LINSZ = LINSZ + OSTRU-OLEN + 1.

ENDFORM.

The Input screen will like that in Figure 11-34.

Figure 11-34. Program YCL_CH11_05_USE_GCLASS_FES: Input

The field list with field selections is shown in Figure 11-35.

CHAPTER 11 ■ ABAP OOP

618

The output screen is shown in Figure 11-36.

Figure 11-35. Program YCL_CH11_05_USE_GCLASS_FES: Selected Fields

Figure 11-36. Program YCL_CH11_05_USE_GCLASS_FES: Output

Clicking on the ‘Download HTML’ button will pop up the dialogue box in Figure 11-37.

CHAPTER 11 ■ ABAP OOP

619

Enter the file name or select an existing file (Function key F4, etc.). Press F8/Execute.
After the downloading process is over, the system displays a message with the number of bytes transferred:

Figure 11-37. Program YCL_CH11_05_USE_GCLASS_FES: Download in HTML Format

Figure 11-38. Program YCL_CH11_05_USE_GCLASS_FES: Download System Alert

When you open the downloaded HTML file in a web browser, it will look like Figure 11-39.

Figure 11-39. Program YCL_CH11_05_USE_GCLASS_FES: Contents of Downloaded File

CHAPTER 11 ■ ABAP OOP

620

You can download on the same file again and try or test out the dialogue box for overwriting files.
There are quite a few methods in this class CL_GUI_FRONTEND_SERVICES. You can try them as exercises.

Hands-on Exercise: Context Menus - Use Method of SAP
Supplied Class CL_CTMENU
Context Menus
You can create your own context menu (mouse right click/shift+F10 keys) using the menu painter and transaction
code SE41 (static context menu). You can also create context menus and manipulate static context menus at runtime
using the methods of the built-in class: CL_CTMENU (dynamic context menus). The current hands-on exercise
involves the creation of a static context menu and making it operative.

You are continuing with the program of the previous hands-on-exercise and adding the custom context menu
functionality to it in the current hands-on-exercise. You are deploying the custom context menu in the first secondary
list (i.e., list of the data of selected fields of a specific database table/view).

By default, a context menu is available to operate on every screen of a report program, including the Selection
Screens. Without a custom context menu in operation, if you click the mouse right button on the first secondary list
(i.e., list of the data of selected fields of a specific database table/view of program YCL_CH11_05_ USE_GCLASS_FES),
the menu options available are as shown in Figure 11-40.

Figure 11-40. Program YCL_CH11_05_USE_GCLASS_FES: Default Context Menu

In this default context menu, all the application toolbar function code entries appear. In the status ‘STAT2’, you
had incorporated two functions codes: ‘BACK’ and ‘DOWNH’. The function texts of these two buttons are appearing in
the context menu (‘Back’ and ‘Download HTML’). Two other options – ‘Help’ and ‘Possible Entries’ – are appearing in
the context menu. The context menu option ‘Possible Entries’ is not relevant in your first secondary list context.

Context menu options use function codes and function texts only.
If you are Copying the program YCL_CH11_05_USE_GCLASS_FES onto the program YCL_CH11_06_USE_CL_

CTMENU, ensure that you copy and activate the ‘User interface’. (Enable the ‘User interface’ checkbox in the copy
dialogue box.)

Create a Context Menu
You will create a custom static context menu with the two function codes ‘BACK’ and ‘DOWNH’ with their
corresponding function texts ‘Back’ and ‘Download HTML’.

CHAPTER 11 ■ ABAP OOP

621

To create a context menu, navigate to the menu painter with the transaction code SE41. Enter the name of the
program as YCL_CH10_06_USE_CL_CTMENU. Activate the interface.

Next, enter the context menu status name as ‘STAT3’. Click on the create button/function key F5. The screen
prompt for status type: Normal Screen, Dialogue Box, or Context Menu will appear. Enter the short text, select the
Context Menu radio button, and press the continue button as shown in Figure 11-41.

Figure 11-41. Program YCL_CH11_06_USE_CL_CTMENU: Create Context Menu

A screen will appear with the ’Context menu’ bar. Double click on this bar. Figure 11-42 will appear.

Figure 11-42. Program YCL_CH11_06_USE_CL_CTMENU: Create Context Menu

CHAPTER 11 ■ ABAP OOP

622

As decided earlier, you will enter the two function codes ‘BACK’ and ‘DOWNH’ under the column ‘Code’. Pressing
the <enter> key after entering the function code will fetch the respective function texts. The screen after the entry of
the function codes will look like the one in Figure 11-43.

Figure 11-43. Program YCL_CH11_06_USE_CL_CTMENU: Context Menu Entries

Save, perform a consistency check, and activate the status ‘STAT3’. The context menu is ready for deploying.

Adjust the Attributes of Function Key Settings (F Key Settings)

To deploy a context menu, you need to adjust the attributes of the function key settings of the screen (normal/dialogue)
status. In the present context, the screen status with which you want to deploy the context menu is ‘STAT2’. So in the
menu painter opening screen, enter the program/interface name as YCL_CH11_06_USE_CL_CTMENU and the status
name as ‘STAT2’. Click on the change button/function key F6. Expand the Function Keys node. The screen will look like
the one in Figure 11-42.

Figure 11-44. Program YCL_CH11_06_USE_CL_CTMENU: Status ‘STAT2’

CHAPTER 11 ■ ABAP OOP

623

At the bottom of the screen, there is the Reserved Function Keys area. In this area, position the cursor in the field
next to ‘Shift+F10’ and prior to Context menu. Next, select the following menu path: Goto ➤ Attributes ➤ F key setting
as shown in Figure 11-45.

Figure 11-46. Program YCL_CH11_06_USE_CL_CTMENU: Status ‘STAT2’ – Change Attributes of F Key Settings

Figure 11-45. Program YCL_CH11_06_USE_CL_CTMENU: Status ‘STAT2’ – Change Attributes of F Key Settings

Choosing the menu path will pop up the dialogue box in Figure 11-46.

In this dialogue box, enable the check box ‘List with Context Menu’ and press the continue button. This will take
you back to the function key settings node as shown in Figure 11-47.

CHAPTER 11 ■ ABAP OOP

624

The system has entered the function code ‘%CTX’. Change it to custom function code. You have entered
‘MY_CTMENU’. Though function code can be a maximum of twenty characters, there is a provision for ten characters
only. The screen with the function code entered:

Figure 11-47. Program YCL_CH11_06_USE_CL_CTMENU: Status ‘STAT2’ – Change Attributes of F Key Settings

Figure 11-48. Program YCL_CH11_06_USE_CL_CTMENU: Status ‘STAT2’ – Change Attributes of F Key Settings

Save and perform a consistency check and activate the status ‘STAT2’.
This changing of attributes of function key settings is to indicate the deployment of custom context menu instead

of the default context menu.
You have to write program code for the call back subroutine ‘ON_CTMENU_REQUEST’. Every time a user clicks

on the mouse’s right button or presses shift+F10, control will jump to this subroutine, and program code in this
subroutine will be executed.

Built-in Class CL_CTMENU – Method LOAD_GUI_STATUS
The built-in class CL_CTMENU has methods to load static context menus, manipulate them at runtime, and build a
whole context menu at runtime. You will be using the static method LOAD_GUI_STATUS to deploy your static context
menu ‘STAT3’ created in the menu painter. Figure 11-49 is a screenshot of the built-in class CL_CTMENU with the
method LOAD_GUI_STATUS selected.

Figure 11-49. Class CL_CTMENU: Method LOAD_GUI_STATUS

CHAPTER 11 ■ ABAP OOP

625

Figure 11-50 shows the parameters of the method LOAD_GUI_STATUS.

Figure 11-50. Class CL_CTMENU: Parameters of Method LOAD_GUI_STATUS

The method has four importing parameters. The first two importing parameters are the name of the program and
the name of the context menu. The optional third importing parameter provides the function codes to be disabled, if
any. The fourth importing parameter ‘MENU’ must be a reference variable referring to the built-in class CL_CTMENU.

Call Back Subroutine ON_CTMENU_REQEST
Every time the user clicks on the mouse’s right button, the control jumps to the call back subroutine ‘N_CTMENU_
REQUEST (i.e., the subroutine is executed). The subroutine takes one importing parameter: MENU. This parameter
should be typed as the class CL_CTMENU (i.e., TYPE REF TO CL_CTMENU).

The call back subroutine receives the reference to the instance the class created. Using this formal parameter
reference variable, you can use the instance methods, etc., of the built-in class CL_CT_MENU within the call back
subroutine.

You have to locate all the code of loading, manipulating static context menu statuses, and building runtime
context menus in the call back subroutine.

In the present scenario you need to load a static context menu status. You are using the static method
LOAD_GUI_STATUS, already described to deploy the context menu status ‘STAT3’.

The program code for the call back subroutine ON_CTMENU_REQUEST:

* call back routine for context menu **

FORM ON_CTMENU_REQUEST USING CT_MENU TYPE REF TO CL_CTMENU.

 CALL METHOD CL_CTMENU=>LOAD_GUI_STATUS
 EXPORTING
 PROGRAM = 'YCL_CH11_06_USE_CL_CTMENU' " program name
 STATUS = 'STAT3' " context menu status name
 MENU = CT_MENU " first/only formal parameter
 EXCEPTIONS
 READ_ERROR = 1
 others = 2
 .

CHAPTER 11 ■ ABAP OOP

626

 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

ENDFORM.

The rest of the code of program YCL_CH11_06_USE_CL_CTMENU is the same as the previous program
YCL_CH11_05_USE_GCLASS_FES. You are operating the context menu status ‘STAT3’ (shift+F10 keys) in the first
secondary list. Figure 11-51 shows this list with the context menu status ‘STAT3 in operation’.

Figure 11-51. Program YCL_CH11_06_USE_CL_CTMENU: Custom Context Menu

The program YCL_CH11_06_USE_CL_CTMENU has been copied to another program YCL_CH11_07_USE_CL_
CTMENU_V1 (copied with interface and the interface activated).

In the call back subroutine of this program, the instance method CLEAR is used to initialize the context menu. With
the execution of this method, no context menu (custom or default) will be operative. The clearing operation is followed by
the execution of instance method ADD FUNCTION, which can add function codes and texts to a runtime context menu.
In the call back subroutine of this program we are adding just one function code and function text (ADD_FUNCTION)
corresponding to the application toolbar ‘Back’ button. This is a demonstration of building a runtime context menu.

You can find the programs YCL_CH11_06_USE_CL_CTMENU and YCL_CH11_07_USE_CL_CTMENU_V1 in the
E-Resource. This concludes the context menu coverage.

Class Based Exceptions in ABAP
You have raised exceptions in function modules (Chapter 7) and methods of classes (this chapter) using a variation
of the MESSAGE... statement. The text for these messages is created and maintained in transaction code ‘SE91’ and
stored in database table ‘T100’.

You can raise exceptions using existing or custom-created exception classes. The class based exceptions are more
flexible, comprehensive, and powerful. You will create a custom exception class and use it to raise exceptions in an
ABAP report program, an internal subroutine, a function module, and a method in a class.

There are built-in exception classes relating to database operations, arithmetic operations, RFC operations et al.
If your exception raising requirements are fulfilled by these, you may as well use them. All the built-in exception
classes have names starting with ‘CX_SY’.

You create an exception class in the class builder (transaction code SE24). While creating a custom exception
class, you assign it one of the three built-in exception classes as a super class.

CHAPTER 11 ■ ABAP OOP

627

Create a Custom Exception Class (OTR Texts)
The following three super classes are used to create custom exception classes:

CX_NO_CHECK:-•

When using this as a super class for your custom exception class, you do not declare the exceptions with
procedure (subroutine, function module, method) interface. They are implicitly declared and propagated.

CX_STATIC_CHECK:•

When you create a custom exception subclass of this class, exceptions raised in a procedure (subroutine, function
module, method) with the RAISE... statement are either declared in the interface of the procedure or handled with the
CATCH... statement. There is a compile time check for this.

CX_DYNAMIC_CHECK•

With subclasses of this class, exceptions raised in a procedure (subroutine, function module, method) are
declared in the interface of the procedure. This is not checked at compile time, but at the time of its propagation.

Based on your scenario criterion, you choose one of the three built-in exception class as a super class.
These classes contain the interface to maintain message texts, attributes, and the required methods to retrieve the
error/message text, etc. These three classes are, in turn, subclasses of the super class CX_ROOT.

For your hands-on exercise, you are assigning the exception class CX_STATIC_CHECK as a super class to your
custom exception class YCX_YCL_CH11_EXCEPTIONS1.

Create Exception Class – Opening Screen

Navigate to the class builder. The name of a custom exception class must start with either ‘YCX’ or ‘ZCX’. Enter a name
for the exception class: YCX_YCL_CH11_EXCEPTIONS1.

Click the create button/function key F5. Figure 11-52 will appear.

Figure 11-52. Create Exeption Class YCX_YCL_CH11_EXCEPTIONS1

CHAPTER 11 ■ ABAP OOP

628

The radio button of Exception Class is enabled. You have assigned the super class CX_STATIC_CHECK. If you
enable the checkbox: With Message Class; you can use the message texts maintained in transaction code ‘SE91’
(database table T100). If you do not enable this checkbox, you can create/maintain the texts within the exception
class. This is OTR (Online Text Repository) text. Within an exception class, you can use either one of these: ‘SE91’
maintained texts or the OTR texts. In the present exception class, you will use the OTR texts.

Click the save button. The system will prompt for a package.

Create Exception Class – Attributes Tab

After the package assignment, the screen in Figure 11-53 will appear.

Figure 11-53. Exception Class YCX_YCL_CH11_EXCEPTIONS1: Attributes Tab

You can create and maintain attributes: static, instance, constants. An exception message text might contain runtime
information. Recall the placeholders in the message texts maintained in transaction code ‘SE91’. There was a limit of a
maximum of four placeholders of one message text maintained in the transaction code ‘SE91’. In the exception classes
using the OTR texts, there is no limit on the number of placeholders for runtime information in a single exception Id or
text Id. The runtime information to be part of the message texts is passed through the attributes of the exception class.

Create Exception Class – Texts Tab

Click on the text tab. The screen will look like Figure 11-54.

Figure 11-54. Exception Class YCX_YCL_CH11_EXCEPTIONS1: Texts Tab

CHAPTER 11 ■ ABAP OOP

629

Under the column Exception ID, you can enter the exception text identifiers. (Exception Id and Text Id are
synonymous.) The name space for these text identifiers is a maximum of thirty characters. Stick to the first character
as alphabet and the rest as alphanumeric with embedded underscores (_) convention. Under the column Text, you
can enter the text. There is an option to enter long text. (Button Long Text over the column Exception ID.)

The runtime information in the message text is indicated by enclosing the exception class’s attribute names
within ampersands (&).

For example, if you are reporting an invalid customer code, you can create an attribute of name ‘KUNNR’ and
assign it the data element type ‘KUNNR’. Within the message text, you will embed the following ‘Customer Code:
&KUNNR& Invalid’. Before issuing the message, you will assign or set the attribute ‘KUNNR’, the invalid customer
code you are reporting as error. You can embed any number of attributes in a message text (i.e., there is no limit to
the runtime information in an OTR message text). The attributes embedded in message texts must be defined in the
exception class.

Create Exception Class – Methods Tab

Now, click on the Methods tab. The screen will look like Figure 11-55.

Figure 11-55. Exception Class YCX_YCL_CH11_EXCEPTIONS1: Methods Tab

The methods IF_MESSAGE~GET_TEXT and IF_MESSAGE~GET_LONGTEXT will be used to retrieve the
respective texts.

Use Your Own Exception Class in the Event AT SELECTION-SCREEN of an
ABAP Program
Error Scenario: Let there be a scenario of raising an exception in an ABAP program. Let two fields ‘BUKRS’
(company code) and ‘KUNNR’ (customer code) input through the PARAMETERS... statement.

You will check for the presence of the combination of the values of these two input fields in the database table
KNB1 (SELECT SINGLE...). If the combination of values entered is not available in the database table KNB1, issue
message, etc., you will report the erroneous values of the company code and customer code as runtime information
with the message.

Create Attributes and Texts for Error Scenario: Let the requisite attributes and text be created in your exception
class for handling this scenario.

You will need two attributes for the two runtime information to be reported. Open the exception class YCX_YCL_
CH11_EXCEPTIONS1 in change/edit mode. Get to the Attributes tab. Enter the two attributes as shown in Figure 11-56.

CHAPTER 11 ■ ABAP OOP

630

The attributes ‘BUKRS’ and ‘KUNNR’ have been assigned the TYPES ‘BUKRS’ and ‘KUNNR’ (data elements),
respectively.

Click on the Texts tab, and enter the text as shown in Figure 11-57.

Figure 11-56. Class YCX_YCL_CH11_EXCEPTIONS1: Attributes –‘BUKRS’ & ‘KUNNR’

Figure 11-57. Class YCX_YCL_CH11_EXCEPTIONS1: Exception ID –INVALID_COMB_BUKRS_KUNNR

Figure 11-58. Class YCX_YCL_CH11_EXCEPTIONS1: Activation

Save and activate the class. The activation screen will look like Figure 11-58.

CHAPTER 11 ■ ABAP OOP

631

RAISE... Statement Syntax: An exception raising statement (using the class based exceptions) has the
following syntax:

RAISE EXCEPTION TYPE <exception name> EXPORTING
 TEXTID = <exception name>=><Exception ID name>
 [<attribute name1> = <run time value1>..].

The RAISE... statement should be included within the TRY & ENDTRY statement block. In your present program,
you will be issuing the SELECT SINGLE... statement to attempt to retrieve the row corresponding to the input values
of ‘BUKRS’ and ‘KUNNR’. Following the SELECT SINGLE... statement, you will check the value of the system field
SY-SUBRC and raise an exception if its value is non-zero.

Your code segment will be like this:

TRY.
 SELECT SINGLE <result> FROM KNB1 INTO <destination>
 WHERE BUKRS = BUKRS AND KUNNR = KEY_KUNNR.

 IF SY-SUBRC <> 0.
 RAISE EXCEPTION TYPE YCX_YCL_CH11_EXCEPTIONS1
 EXPORTING
 TEXTID = YCX_YCL_CH11_EXCEPTIONS1=>INVALID_COMB_BUKRS_KUNNR
 BUKRS = BUKRS
 KUNNR = KUNNR_KEY.
 ENDIF.
........
ENDTRY.

In a procedure (i.e., a subroutine/function module/method), this will be the end of the error-raising process.
If the RAISE... statement is executed, the procedure is exited, the error condition is propagated or transmitted to the
calling program and will be handled, and then reported in the calling program or propagated further.

In your current program, after trapping the error, you will have to report the error as well. So you have a CATCH...
statement block for handling and reporting. You will get a reference to your exception class in a reference variable
with the CATCH... statement. With this reference variable, you will retrieve the error message text and report the error
with a message statement.

For detailed explanation of TRYENDTRY and CATCH... statement blocks, refer to the online documentation.
Source Program:

REPORT YCL_CH11_08_TEST_CBE_ABAP_PG.

* Demo Class Based Exception Outside A Procedure **

DATA: KEY_KUNNR TYPE KUNNR,
 ER_REF TYPE REF TO YCX_YCL_CH11_EXCEPTIONS1,
 ETEXT TYPE STRING.

SELECTION-SCREEN SKIP 4.

SELECTION-SCREEN BEGIN OF BLOCK BLK1 WITH FRAME NO INTERVALS.

CHAPTER 11 ■ ABAP OOP

632

PARAMETERS: KUNNR TYPE RF02D-KUNNR, " combination of these two fields
 BUKRS TYPE RF02D-BUKRS. " checked for in the table KNB1

SELECTION-SCREEN END OF BLOCK BLK1.

AT SELECTION-SCREEN ON BLOCK BLK1.

IF KUNNR CO '0123456789' " check all numeric
 KEY_KUNNR = KUNNR+6(10). " adjust for KUNNR length being 16
 " in structure RF02D of all numeric data
 ELSE.
 KEY_KUNNR = KUNNR. " non numeric data
 ENDIF.

 TRY.

 SELECT SINGLE KUNNR BUKRS FROM KNB1 INTO (KUNNR, BUKRS)
 WHERE KUNNR = KEY_KUNNR AND BUKRS = BUKRS.

 IF SY-SUBRC <> 0.
 RAISE EXCEPTION TYPE YCX_YCL_CH11_EXCEPTIONS1 EXPORTING
 TEXTID = YCX_YCL_CH11_EXCEPTIONS1=>INVALID_COMB_BUKRS_KUNNR
 BUKRS = BUKRS KUNNR = KEY_KUNNR.

 ENDIF.

 CATCH YCX_YCL_CH11_EXCEPTIONS1 INTO ER_REF.
 ETEXT = ER_REF->IF_MESSAGE~GET_TEXT().
 MESSAGE ETEXT TYPE 'E'.

ENDTRY.

**
START-OF-SELECTION.

WRITE:/5 'Valid Combination:', BUKRS, KEY_KUNNR.

The combination of KUNNR = 486 and BUKRS = 3000 is invalid. The input of these values results in an exception.
The screen reporting the error will look like Figure 11-59.

CHAPTER 11 ■ ABAP OOP

633

Use a Custom Class Based Exception in the Function Module
Error Scenario: You had created a method ‘BEAD_STRINGS’ in the custom class YCL_CH11_CL_STRING_OPERATIONS.
You implemented this same logic in a function module. In the method of this class, you were raising an exception using
the MESSAGE... statement variation (non-classed based exception) if input internal table or textual array was empty.
In the function module, you will raise an exception using your exception class YCX_YCL_CH11_EXCEPTION1.

Navigate to the function builder (transaction code: SE37), create a new function group YCL_CH11_TO_DEMO_CBE,
and activate it. Create a new function module YCL_CH11_FM_TO_DEMO_CBE. It accepts the text array as ‘TABLEs’
parameter, returning a concatenated sting of individual rows of the text array separated by a space.

The parameters are as follows:

Figure 11-59. Program: CL_CH11_08_TEST_CBE_ABAP_PG Error Condition

Figure 11-60. Function Module: YCL_CH11_FM_TO_DEMO_CBE - Tables Parameter

CHAPTER 11 ■ ABAP OOP

634

You are using a class based exception. Click on the Exceptions tab. There is a checkbox with the legend
Exception Classes. This has to be enabled if you are using class based exceptions. In a function module, you can use
either non-classed or class based exceptions. When you are using a class based exception, the exception name you
enter should exist. The screen with the exception entered:

Figure 11-61. Function Module: YCL_CH11_FM_TO_DEMO_CBE - Export Parameter

Figure 11-62. Function Module: YCL_CH11_FM_TO_DEMO_CBE - Exception

The function module source code:

FUNCTION YCL_CH11_FM_DEMO_CBE.
*"--
""Local Interface:
*" EXPORTING
*" VALUE(RETURN_STR) TYPE STRING
*" TABLES
*" STR_TAB TYPE STRING_TABLE
*" RAISING
*" YCX_YCL_CH11_EXCEPTIONS1
*"--

DESCRIBE TABLE STR_TAB.

IF SY-TFILL = 0.
 RAISE EXCEPTION TYPE YCX_YCL_CH11_EXCEPTIONS1
 EXPORTING
 TEXTID = YCX_YCL_CH11_EXCEPTIONS1=>NO_DATA.
ENDIF.

LOOP AT STR_TAB.
 IF SY-TABIX = 1.
 RETURN_STR = STR_TAB.

CHAPTER 11 ■ ABAP OOP

635

 ELSE.
 CONCATENATE RETURN_STR STR_TAB INTO RETURN_STR
 SEPARATED BY ' '.
 ENDIF.
ENDLOOP.

ENDFUNCTION.

In the ABAP program calling this function module, it contains an option to load the array (or not) because your
main interest is in testing the exception, and not so much the concatenation process.

The source program calling the function module:

REPORT YCL_CH11_09_TEST_CBE_IN_FM.

**
* Demo Class Based Exception in Function Module **
**

DATA: TABA TYPE STRING_TABLE,
 RESULT TYPE STRING,
 EXCPT TYPE REF TO YCX_YCL_CH11_EXCEPTIONS1,
 ERR_TEXT TYPE STRING.

PARAMETERS: LOAD_DAT(1) TYPE C DEFAULT 'X'.

START-OF-SELECTION.

IF LOAD_DAT = 'X'.
 SELECT LTX FROM T247 INTO TABLE TABA WHERE SPRAS = SY-LANGU.
ENDIF.

TRY.

CALL FUNCTION 'YCL_CH11_FM_DEMO_CBE'
 IMPORTING
 RETURN_STR = RESULT
 TABLES
 STR_TAB = TABA
 .

WRITE:/5 'Result:', RESULT. " all non-error statements

CATCH YCX_YCL_CH11_EXCEPTIONS1 INTO EXCPT.

ERR_TEXT = EXCPT->IF_MESSAGE~GET_TEXT().

MESSAGE ERR_TEXT TYPE 'S' DISPLAY LIKE 'E'.

ENDTRY.

Testing with LOAD_DAT = ' ' will trigger the exception. The screen with an error message will look like
Figure 11-63.

CHAPTER 11 ■ ABAP OOP

636

This is the end of the demonstration of class based exception in a function module.
In a similar way, you can use class based exceptions inside methods of classes. Within a class, you can either use

class based exceptions or non-class based exceptions.
You created your exception class YCX_YCL_CH11_EXCEPTIONS1 with OTR text. Let another exception class

YCX_YCL_CH11_EXCEPTIONS2 be created that will take texts that are maintained in the transaction code SE91.

Create a Custom Exception Class (Message Class Text)
Navigate to the class builder opening screen (transaction code: SE24), enter the class name as YCX_YCL_CH11_
EXCEPTIONS2, and press create button/function key F5. In the opening dialogue box, enable the checkbox with the
legend ‘With Message Class’ as shown in Figure 11-64.

Figure 11-63. Program: YCL_CH11_09_TEST_CBE_IN_FM - Exception

CHAPTER 11 ■ ABAP OOP

637

Click the save button. The attribute screen is presented. You can enter attributes and fetch SE91 texts.

Use a Custom Exception Class in a Subroutine
Error Scenario: You will have a subroutine concatenating the rows of a text array – same as what you implemented
in the function module of the preceding example. You will raise an exception if an input internal table or text array is
empty. In the subroutine, you will raise an exception using your exception class YCX_YCL_CH11_EXCEPTIONS2.

You will display in the error message the name of the data object (i.e., the name of the text table as runtime
information). You are doing this so as to have, at the least, one runtime information in your message. You will pass the
runtime information through an attribute.

Attributes & Text in the Exception Class: To pass the runtime information of data object name, create an attribute
‘DATA_OBJECT’ as ‘Instance’, ‘Public’, and type as ‘STRING’ in the exception class YCX_YCL_CH11_EXCEPTIONS2.

Click on the Texts tab. Enter a name for the text (‘Exception ID’) as ‘REPORT_NO_DATA’. The screen will look
like this:

Figure 11-64. Exception Class: YCX_YCL_CH11_EXCEPTIONS2

CHAPTER 11 ■ ABAP OOP

638

Click on the button ‘Message Text’. Enter the message Class as YCL_CH07_MCLASS01 and the message number
as 21. You created and used this message in Chapter 10 (Interactive Lists). You can use this message for your present
purposes. Select ‘Attrib. 1’ as ’DATA_OBJECT’ from the drop-down list. The screen with these entered values will look
like Figure 11-66.

Figure 11-65. Exception Class: YCX_YCL_CH11_EXCEPTIONS2 – Text

Figure 11-66. Exception Class: YCX_YCL_CH11_EXCEPTIONS2 – Text from Message Class

Press on the Change/continue button. The screen after return to Texts tab will look like Figure 11-67.

CHAPTER 11 ■ ABAP OOP

639

Save, perform a consistency check, and activate the class.
The class is used to raise an exception in the subroutine concatenating the rows of a text table. The exception is

being raised if the text table is empty. The source program:

REPORT YCL_CH11_10_TEST_CBE_IN_SUBR.

* Test Class Based Exception In Subroutine **

DATA: TABA TYPE STRING_TABLE,
 RESULT TYPE STRING,
 ERR_REF TYPE REF TO YCX_YCL_CH11_EXCEPTIONS2,
 ETEXT TYPE STRING.

PARAMETERS: LOAD_DAT(1) TYPE C DEFAULT 'X'.

START-OF-SELECTION.

IF LOAD_DAT = 'X'.

 SELECT LTX FROM T247 INTO TABLE TABA
 WHERE SPRAS = SY-LANGU.
ENDIF.

TRY.

PERFORM CONCATENATER TABLES TABA USING RESULT.

WRITE:/5 RESULT. " non-error process

CATCH YCX_YCL_CH11_EXCEPTIONS2 INTO ERR_REF.
ETEXT = ERR_REF->IF_MESSAGE~GET_TEXT().

REPLACE ALL OCCURRENCES OF '&' IN ETEXT WITH ''.
 " removing the ampersands from message class text

Figure 11-67. Exception Class: YCX_YCL_CH11_EXCEPTIONS2 – Text from Message Class

CHAPTER 11 ■ ABAP OOP

640

MESSAGE ETEXT TYPE 'S' DISPLAY LIKE 'E'.

ENDTRY.

FORM CONCATENATER TABLES STR_TAB USING RESULT
 RAISING YCX_YCL_CH11_EXCEPTIONS2.
 " exception/s to be specified in subroutine interface

DATA: STR TYPE LINE OF STRING_TABLE.

 DESCRIBE TABLE STR_TAB.

 IF SY-TFILL = 0.
 RAISE EXCEPTION TYPE YCX_YCL_CH11_EXCEPTIONS2
 EXPORTING
 TEXTID = YCX_YCL_CH11_EXCEPTIONS2=>REPORT_NO_DATA
 DATA_OBJECT = 'TABA'.
 ENDIF.

 LOOP AT STR_TAB INTO STR.
 IF SY-TABIX = 1.
 RESULT = STR.
 ELSE.
 CONCATENATE RESULT STR INTO RESULT SEPARATED BY ' '.
 ENDIF.
 ENDLOOP.
ENDFORM.

Execute the program with LOAD_DAT equal to blank to simulate the error condition. The screen of the error
condition will look like Figure 11-68.

CHAPTER 11 ■ ABAP OOP

641

You demonstrated the class based exceptions in an executable ABAP program, in a function module, and in a
subroutine. The coverage of class based exceptions is over.

A Brief on the ABAP RTTS (Runtime Type Services)
The RTTS enables the creation of runtime data objects and the determination of attributes of data objects. It has two
components: (1) the RTTC (runtime type creation) and (2) the RTTI (runtime type identification). The RTTC enables
the creation of runtime data objects. And it enables the determination of attributes of data objects.

You have already used RTTC in Chapter 8 (Field Symbols) where you created a runtime data object using the
statement CREATE DATA.... You created a runtime structure based on the input database table/view. Similarly you
can create runtime elementary data objects, runtime structure data objects, and runtime internal table data objects.

You use the RTTI to ascertain the attributes of data objects instead of using the procedure statements: DESCRIBE
FIELD..., DESCRIBE TABLE..., etc., although ascertaining the number of rows in an internal table at any given point of
time is not possible with RTTI. This can be easily achieved by using the DESCRIBE TABLE... statement or the function
LINES(<itab>).

A hierarchy of the RTTS classes and their brief descriptions can be found in the online documentation: ABAP
System Classes and interfaces ➤ RTTS – Runtime Type Services.

Figure 11-68. Program: YCL_CH11_10_TEST_CBE_IN_SUBR – Error Message

CHAPTER 11 ■ ABAP OOP

642

Hands-on Exercise to Demonstrate RTTC & RTTI
You are using the following classes in the hands-on exercise:

CL_ABAP_TYPE_DESCR
CL_ABAP_TABLE_DESCR
CL_ABAP_STRUCT_DESCR

You input the name of a data object. This name is expected to be a name of a global or DDIC data object. It can
be a table/flat structure/view definition, a field of table/flat structure/view definition, a data element, or a table type
(an internal table type). Take care to input a valid name of the data object. You are not performing any check on this
name. An erroneous name will result in an X-dump error.

For an elementary data object, the program is ascertaining the attributes (a) by feeding the name of the data
object contained in ‘PARAMETERS’ variable (by name); (b) by feeding the field symbol assigned to the data object
(by data); and (c) by feeding the reference variable containing the reference to the data object (by reference). The
attributes of the elementary data object such as type, length, and decimals are output for each of the three cases.

For an internal table data object, the program outputs the table type (A – any, S –standard, etc.).
For a flat structure data object, the program outputs the list of fields or columns in the structure with their types,

lengths, and decimals. A DESCRIBE... statement cannot provide these attributes of a structure (power of RTTI.)
You can try out the following inputs with the program:

KNA1/LFA1/T001/VBRK/VBRP
KNA1-NAME!/T001-BUTXT/VBRK-NETWR/VBRP-FKIMG

The source program:

REPORT YCL_CH11_11_ABAP_TYPEDESCR NO STANDARD PAGE HEADING.

**
* Use CL_ABAP_TYPEDESCR to Determine TYPE, Length, Decimals etc.**
* Use CL_ABAP_STRUCTDESCR to Determine structure components **
* Use CL_ABAP_TABLEDESCR to Determine Internal Table Attributes **
**

TYPE-POOLS ABAP.

DATA: ABAP_REF TYPE REF TO CL_ABAP_TYPEDESCR,
 STRU_REF TYPE REF TO CL_ABAP_STRUCTDESCR,
 TAB_REF TYPE REF TO CL_ABAP_TABLEDESCR,
 DREF TYPE REF TO DATA,
 ABAP_TYPE TYPE ABAP_BOOL,
 FWA TYPE LINE OF ABAP_COMPDESCR_TAB,
 STR_TAB TYPE STRING_TABLE.

FIELD-SYMBOLS: <FS1>.
**
PARAMETERS: DATA_IT(30) TYPE C
 DEFAULT 'VBRP-NETWR'.
**
START-OF-SELECTION.

CHAPTER 11 ■ ABAP OOP

643

CREATE DATA DREF TYPE (DATA_IT). " RTTC - dynamic creation of
 " elementary data object
ASSIGN DREF->* TO <FS1>. "de-referencing

*********elementary: by data*********
ABAP_REF = CL_ABAP_TYPEDESCR=>DESCRIBE_BY_DATA(<FS1>).
" RTTI - call static method, get reference/instance getting created

IF ABAP_REF->KIND = 'E'.

 " elementary - not structure, internal table type

 WRITE: /5 'METHOD:DESCRIBE_BY_DATA'.
 WRITE: /5 'TYPE :', (1) ABAP_REF->TYPE_KIND, "attribute
 /5 'LENGTH :', (4) ABAP_REF->LENGTH LEFT-JUSTIFIED, "attribute
 /5 'DECIMALS :', (2) ABAP_REF->DECIMALS LEFT-JUSTIFIED. "attribute

 ABAP_TYPE = ABAP_REF->IS_DDIC_TYPE().
 WRITE:/5 'IS DDIC TYPE:', ABAP_TYPE.

********elementary: by name**************
 ABAP_REF = CL_ABAP_TYPEDESCR=>DESCRIBE_BY_NAME(DATA_IT).
 " RTTI - call static method, get reference/instance getting created

 SKIP 2.
 WRITE: /5 'METHOD:DESCRIBE_BY_NAME'.
 WRITE: /5 'TYPE :', (1) ABAP_REF->TYPE_KIND, "attribute
 /5 'LENGTH :', (4) ABAP_REF->LENGTH LEFT-JUSTIFIED, "attribute
 /5 'DECIMALS :', (2) ABAP_REF->DECIMALS LEFT-JUSTIFIED. "attribute

 ABAP_TYPE = ABAP_REF->IS_DDIC_TYPE().
 WRITE:/5 'IS DDIC TYPE:', ABAP_TYPE.

*******elementary: by data reference***************
 ABAP_REF = CL_ABAP_TYPEDESCR=>DESCRIBE_BY_DATA_REF(DREF).
 " RTTI - call static method, get reference/instance getting created

 SKIP 2.
 WRITE: /5 'METHOD:DESCRIBE_BY_DATA_REF '.
 WRITE: /5 'TYPE :', (1) ABAP_REF->TYPE_KIND, "attribute
 /5 'LENGTH :', (4) ABAP_REF->LENGTH LEFT-JUSTIFIED, "attribute
 /5 'DECIMALS :', (2) ABAP_REF->DECIMALS LEFT-JUSTIFIED. "attribute

 ABAP_TYPE = ABAP_REF->IS_DDIC_TYPE().
 SKIP 1.
 WRITE:/5 'IS DDIC TYPE:', ABAP_TYPE.

************flat structure: by data***************
ELSEIF ABAP_REF->TYPE_KIND = 'u'. "structure

 ABAP_REF = CL_ABAP_STRUCTDESCR=>DESCRIBE_BY_DATA(<FS1>).

CHAPTER 11 ■ ABAP OOP

644

 STRU_REF ?= ABAP_REF. " down/narrow casting with ?= operator

 LOOP AT STRU_REF->COMPONENTS INTO FWA.
 WRITE:/5(4) SY-TABIX, FWA-NAME, FWA-TYPE_KIND, FWA-LENGTH,
 FWA-DECIMALS.
 ENDLOOP.

ELSEIF ABAP_REF->TYPE_KIND = 'h'. " internal table

************internal table: by data***************
 ABAP_REF = CL_ABAP_TABLEDESCR=>DESCRIBE_BY_DATA(<FS1>).
 TAB_REF ?= ABAP_REF. " down/narrow casting with ?= operator
 WRITE: /5 'METHOD:DESCRIBE_BY_DATA_REF '.
 WRITE: /5 'TABLE KIND :', (1) TAB_REF->TABLE_KIND, "attribute
 /5 'KEY DEFINED :', (4) TAB_REF->KEY_DEFKIND, "attribute
 /5 'UNIQUE KEY :', (2) TAB_REF->HAS_UNIQUE_KEY. "attribute

ENDIF.

The output of lengths for character-oriented TYPES (‘C’, ‘D’, et al.) will be equivalent to the lengths derived with
the DESCRIBE FIELD... statement using the ‘IN BYTE MODE’ variation. You can view the outputs. The input and the
outputs for a sample data object are in the following screenshots:

Figure 11-69. Program: YCL_CH11_11_ABAP_TYPEDESCR – Input

CHAPTER 11 ■ ABAP OOP

645

Figure 11-70. Program: YCL_CH11_11_ABAP_TYPEDESCR – Outputs

Conclusion
In this chapter, you were introduced to the syntaxes of class definitions and implementations. You defined and
implemented a local class. And you created a global class and used methods of this global class.

You defined a method in a local interface and implemented the interface method in local classes – an illustration of
polymorphism using an interface. There is another program in the source program resource illustrating polymorphism
using inheritance.

You used methods of the built-in class CL_GUI_FRONTEND_SERVICES to enhance functionalities of a previously
performed hands-on exercise that listed data of runtime-specified fields of a database table/view. The database
table/view was also specified at runtime. As a further enhancement of functionality, you created a custom context
menu that you deployed in this program using the built-in class CL_CTMENU.

You created two custom exception classes using the built-in exception class CX_STATIC_CHECK. In one of these
classes, you used OTR texts, while in the other you used texts maintained in transaction code SE91. You used these
custom exception classes to handle error conditions in an executable ABAP program, a function module, and an
internal subroutine. The chapter concluded with an overview of RTTS.

The class concepts will be carried forward to the next two chapters (i.e., 12 and 13) to produce lists or outputs
using the built-in classes.

647

CHAPTER 12

ABAP List Viewer Outputs—Part 1

In all of the preceding eight chapters (Chapter 4 to Chapter 11), you produced output by using the WRITE statement.
You have learned about the features of the WRITE statement, including interactive lists. But the output generated by the
WRITE statement is static. The end user cannot manipulate that output any further.

In contrast, the output generated by the ABAP List Viewer (ALV) can be manipulated by end users. The ALV-
generated output, called an ALV report (or sometimes called an ALV grid report), is class based. In this chapter and the
next, you will use two ALV report classes: CL_GUI_ALV_GRID and CL_SALV_TABLE.

The end user can manipulate ALV reports in the following ways:

Reorder or shuffle the field positions of ALV reports.•

Omit or drop fields from ALV reports.•

Reorder, or sort and re-sort ALV reports.•

Filter data by using • SELECT-OPTIONS for any field in the ALV reports.

Generate totals and subtotals for numeric fields. The end user can obtain other aggregate •
values of fields such as count, maximum, minimum, and average (only for numeric fields).

Group fields.•

Generate graphs from ALV reports.•

Freeze fields.•

Perform ABC analysis.•

Save and maintain layouts of ALV reports.•

You will gain a better understanding of these listed features as you perform hands-on exercises in this chapter.
The ALV reports, like the output from WRITE statements, can be downloaded to files on the presentation server

in various file formats such as text, rich text, Excel spreadsheet, HTML, and XML. The ALV reports, like the output
from WRITE statements, can be downloaded to the reporting tree and SAP office folder. The ALV reports also can be
dispatched to a print spool.

ALV Output Architecture
A brief consideration of ALV architecture is required before you get to the nitty-gritty of ALV classes and their
application.

Generating ALV reports by using the built-in classes (especially the class CL_GUI_ALV_GRID) requires screen
programming. You will learn the details of screen programming in Chapter 14. But you will get a preview in this
chapter in order to understand ALV report generation.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

648

First, you will use the built-in class CL_GUI_ALV_GRID to generate ALV reports. These reports have to be located
inside container classes, and these container classes have to be positioned on screens. As mentioned in Chapter 9,
screens in the ABAP development environment are identified by four-digit numbers. As you may recall, the default
selection screen is identified as screen number 1000. During the declaration of user-defined selection screens, you
specified a number to define them (SELECTION-SCREEN BEGIN OF SCREEN...).

Some of the built-in container classes are as follows:

• CL_GUI_CUSTOM_CONTAINER

• CL_GUI_DIALOGBOX_CONTAINER

• CL_GUI_SPLIT_CONTAINER

• CL_GUI_DOCKING_CONTAINER

You will use the container class CL_GUI_CUSTOM_CONTAINER to locate your ALV report, which will use the class
CL_GUI_ALV_GRID.

The container class CL_GUI_CUSTOM_CONTAINER has to be placed inside a custom control. A custom control is a
screen element that can be dragged from the Element palette of the Screen Painter Layout Editor and dropped on the
screen surface. A custom control is a reserved physical area on the screen, which allows runtime objects to be located
inside it.

So, to start, you will have a custom control, which is a reserved physical area on the screen. In this custom
control, you will locate an instance of the built-in class CL_GUI_CUSTOM_CONTAINER. Inside the instance of the class
CL_GUI_CUSTOM_CONTAINER, you will locate an instance of the built-in class CL_GUI_ALV_GRID. Finally, you have to
populate this instance of the built-in class CL_GUI_ALV_GRID with data from an internal table by using the instance
method SET_TABLE_FOR_FIRST_DISPLAY. This layering is represented in Figure 12-1.

Figure 12-1. Architecture of ALV report using class CL_GUI_ALV_GRID

Normally, screen programming is employed to input data. But in the case of ALV reports, screen programming is
being employed to output data.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

649

Screen Programming Basics
The main constituent of screen programming is the Screen Painter. You access the ABAP Screen Painter by using the
transaction code SE51. Screens do not exist independent of ABAP programs; they are attached to ABAP programs
(just as statuses are attached in the Menu Painter). To create, display, or change a screen, you must enter an ABAP program
and a screen number on the opening screen of the Screen Painter. The Screen Painter has the following components:

Attributes•

Layout Editor•

Element List•

Flow Logic•

Attributes
In the Attributes section, you have to specify the following:

Short description of the screen•

Screen type (normal screen, subscreen, modal dialog box, or selection screen)•

Settings•

Other attributes•

These are attributes of the overall screen, which are different from attributes of particular screen elements. Other
information (for example, the date the screen was last changed) is maintained by the system.

 Figure 12-2 shows the Screen Painter’s Attributes tab.

Figure 12-2. Using the Screen Painter to set screen attributes

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

650

Layout Editor
Screen layout is maintained with a graphical or nongraphical Layout Editor. In this chapter and the next, only the
graphical editor is used.

You open the Layout Editor by clicking the button on the application toolbar of the Screen Painter.

Figure 12-3 shows the Layout Editor with a blank screen.

Figure 12-3. The Screen Painter’s Layout Editor

As long as the Layout Editor is open, you cannot use the main Screen Painter screen (that is, the screen with the
Flow Logic, Element List, and Attributes tabs).

You can, however, drag and drop elements from the Element palette onto the screen surface, and you can
position them onscreen and size and resize them.

Figure 12-4 shows a custom control that has been dragged and dropped for illustrative purposes. If you
double-click the dragged element, a dialog box appears, displaying that element’s attributes. The first attribute
indicates the element’s name.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

651

Element List
After saving your work in the Layout Editor and then closing it, you return to the Screen Painter You can then click the
Element List tab to see a nongraphical representation of the screen. All the elements that you positioned onscreen
in the Layout Editor now appear as a list, along with their properties. In our example, the custom control element
CUST_CONTT appears as the first entry in the element list. The various columns indicate the attributes of that element.
For instance, the Type column specifies the type of element (in this case, the type is CCtrl, indicating custom control).

Line and Col specify the starting position of the element in terms of the row and column. In this example, the
entries 2 and 3 represent the second row and third column, respectively. In the ABAP screen environment, you work
with rows and columns and not with physical dimensions such as millimeters, centimeters, or inches.

The Deflg entry (82, in this example) indicates the element’s defined length in columns. Vislg indicates visible
length in columns (82). Height indicates the element’s height, in terms of rows (18).

In this example, entries for other element attributes are blank. Figure 12-5 shows the element list.

Figure 12-4. Positioning and sizing a custom control in the Layout Editor

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

652

Though only one element was dragged and dropped on the screen, there are two rows in the element list.
The second row contains the element OK_CODE, with its Type listed as OK. Initially, this row name would appear blank,
and you can assign any name to an element. However, in this case, the name has been entered as OK_CODE because
that is the convention. This element is related to the system field SY-UCOMM. OK_CODE is not a normal screen element,
in that it does not occupy any screen space. It is a variable of type C and length 20, the same as the system field
SY-UCOMM. The OK_CODE entered in the element list is a variable on the presentation server.

As you may recall, when you are working with selection screens and interactive lists and you click a button or
make a menu selection, the system field SY-UCOMM is filled with the function code of the button or menu selection.
Within the program, you can then determine which button was pressed or which menu selection was made by
interrogating the contents of SY-UCOMM and taking the appropriate action. In the screen programming environment
(and especially in a multiple-screen programming environment), the convention is to not use the system field
SY-UCOMM directly. Instead, the runtime system of the screen processor automatically transfers the contents of the
system field SY-UCOMM into the variable you enter in the element list entry as an element of type OK. Corresponding to
the OK_CODE variable on the presentation server side, there should be an OK_CODE variable on the application server
side (that is, the ABAP program to which the screen is attached). So you need to declare in that ABAP program a
variable that is identical in name and of the type OK, as specified in the element list. By convention, this is OK_CODE.
In the PAI event, the contents of OK_CODE of the element list (presentation server) are transferred to the field OK_CODE
declared in the program (application server). Data transfers to and from the presentation server to the application
server are described in Chapter 14.

Flow Logic
In the screen programming environment, there are two main events: PROCESS AFTER INPUT (PAI) and PROCESS
BEFORE OUTPUT (PBO). These events can be viewed as analogous to the selection screen events AT SELECTION-SCREEN
and AT SELECTION-SCREEN OUTPUT.

Recall that the following actions trigger the selection screen event AT SELECTION-SCREEN:

Pressing the Enter key•

Clicking a selection screen push button•

Clicking a selection screen radio button (with a • USER-COMMAND clause for the radio button
group)

Clicking a selection screen check box with a • USER-COMMAND clause

Clicking a button on the application toolbar or standard toolbar, or making a menu selection•

The PAI event is also triggered under identical circumstances.

Figure 12-5. The Screen Painter’s element list

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

653

The selection screen event AT SELECTION-SCREEN OUTPUT is triggered in two situations:

Once, before the selection screen appears to the user for the first time—between the •
user pressing the execute button and the appearance of the screen, following the event
INITIALIZATION

Following the event • AT SELECTION-SCREEN

The PBO event is triggered in an identical manner. PBO is triggered in two situations:

Once, before the screen appears to the user for the first time.•

Every time the • PAI event is triggered, it is followed by the triggering of the event PBO.

You can change the elements’ attributes or properties in the PBO event by manipulating the internal table SCREEN,
in which the system maintains the attributes of the screen elements (LOOP AT SCREEN, and so forth). The Flow Logic
area of the Screen Painter supports only a few of the standard ABAP statements and some special statements of its
own. The Flow Logic tab is shown in Figure 12-6.

Figure 12-6. Screen Painter’s Flow Logic tab

In the Flow Logic area, the first two lines contain the key phrase PROCESS BEFORE OUTPUT (PBO) followed by a
comment. Next, the key phrase PROCESS AFTER INPUT (PAI), followed by a commented line, appear as the bottom
two lines.

Whenever the PBO event is triggered, control jumps to the statement following the key phrase PROCESS BEFORE
OUTPUT. In the PBO event, you would, for example, like to change some properties of some elements (that is, execute
the code for it). This is done through the ABAP statement MODULE. The MODULE statement of flow logic is not accepted
in the normal ABAP program. It is acceptable only in the Flow Logic area of the Screen Painter. It operates in a manner
similar to a subroutine invocation (PERFORM), except that there is no parameter or interface concept. The syntax of a
simple MODULE statement is as follows:

MODULE <module name>.

Such a statement will make the control jump to a statement following the statement MODULE <module name>
OUTPUT in the main ABAP program or an include program. The MODULE <module name> OUTPUT statement in an
ABAP program is similar to the subroutine FORM statement. Just as a subroutine is exited with an ENDFORM statement, a
MODULE <module name> OUTPUT statement in an ABAP program is exited with an ENDMODULE statement. Any code to be
executed must be located between the statements MODULE <module name> OUTPUT and ENDMODULE.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

654

To sum up, the MODULE <module name> statement is like a PERFORM statement and is allowed only in the Flow
Logic area of the Screen Painter. The statement makes the control jump to the module located in an ABAP program,
executes the code lines between MODULE <module name> OUTPUT and ENDMODULE statements in the ABAP program,
and then returns.

Similarly, when the PAI event is triggered, control jumps to the statement following the key phrase PROCESS
AFTER INPUT. In the PAI event, you check the contents of the system field SY-UCOMM (that is, the variable OK_CODE).
A basic function you will perform is exiting the program, as shown here:

CASE OK_CODE.
 WHEN 'EXIT'.
 LEAVE PROGRAM.
...
ENDCASE.

Again, this is implemented through the MODULE <module name> statement in PAI of the Flow Logic area. In the
ABAP program, you locate the preceding statements between the statements MODULE <module name> INPUT and
ENDMODULE.

Figure 12-7 shows the structure of code for PBO and PAI in the Flow Logic area.

Figure 12-7. PBO and PAI modules

The module statements following the key phrase PROCESS BEFORE OUTPUT are called PBO modules, and the
module statements following the key phrase PROCESS AFTER INPUT are called PAI modules.

You can execute any number of PBO and PAI modules with the statements MODULE <module name>, depending on
your requirements.

Now that you’ve had a brief introduction to screen programming, you’re ready to continue with this chapter’s
main topic of ALV output.

The Classes CL_GUI_CUSTOM_CONTAINER and
CL_GUI_ALV_GRID
You will be using the CL_GUI_CUSTOM_CONTAINER and CL_GUI_ALV_GRID classes in the hands-on-exercises later in this
chapter. So let’s view the relevant methods and parameters of these methods in the Class Builder.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

655

CL_GUI_CUSTOM_CONTAINER
Later in this chapter, you will use an instance of the CL_GUI_CUSTOM_CONTAINER class to locate your ALV report.
You will not be using any other method of this class other than CONSTRUCTOR to create an instance of this class.

Follow these steps to [do what?]:

 1. Navigate to the Class Builder opening screen (via transaction code SE24).

 2. Enter the name of the class, CL_GUI_CUSTOM_CONTAINER.

 3. Click the display button or press the function key F7. The screen in Figure 12-8 appears.

Figure 12-8. The class CL_GUI_CUSTOM_CONTAINER

Figure 12-9. Finding a method of the class CL_GUI_CUSTOM_CONTAINER

 4. You have to locate the CONSTRUCTOR method in the class, so click the Find button, as shown
in Figure 12-8. A pop-up dialog box appears, prompting you for the Find string.

 5. Enter the word CONSTRUCTOR, as shown in Figure 12-9.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

656

 6. If it does not locate the CONSTRUCTOR method, but stops at a location where the string
CONSTRUCTOR is occurring, click the Find Next button until the CONSTRUCTOR method is
located. When the method is located, the screen will look like Figure 12-10.

Figure 12-11. Parameters of the CONSTRUCTOR method

Figure 12-10. The CONSTRUCTOR method of the CL_GUI_CUSTOM_CONTAINER class

 7. Click the Parameters button, and Figure 12-11 appears.

 8. There is only one mandatory parameter: CONTAINER_NAME. To create an instance of this
class, CL_GUI_CUSTOM_CONTAINER, you need to provide the name of a custom control for
this parameter. The instance will be placed in the custom control specified.

That is all there is to the class CL_GUI_CUSTOM_CONTAINER.

CL_GUI_ALV_GRID
You need to look up two methods of this class: CONSTRUCTOR and SET_TABLE_FOR_FIRST_DISPLAY. Follow these steps:

 9. Navigate to the Class Builder opening screen and enter the name of the class:
CL_GUI_ALV_GRID.

 10. Click the display button or press F7 to access the screen shown in Figure 12-12. Locate the
CONSTRUCTOR method, as described for the preceding class.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

657

 11. Click the Parameters button to display the parameters of the CONSTRUCTOR method, shown
in Figure 12-13.

Figure 12-12. Locating the CONSTRUCTOR method of the CL_GUI_ALV_GRID class

Figure 12-13. Parameters of the CONSTRUCTOR method

Figure 12-14. Locating the method SET_TABLE_FOR_FIRST_DISPLAY

Only one parameter, I_PARENT, is mandatory. The object reference variable of the instance of
CL_GUI_CUSTOM_CONTAINER is to be provided to this I_PARENT parameter.

 12. Click the Methods button to return to the methods list. Scroll to the top of the list to find
the method SET_TABLE_FOR_FIRST_DISPLAY. This method will be used to populate the
instance of the class CL_GUI_ALV_GRID with data from an internal table. Figure 12-14 shows
the location of the method.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

658

 13. Click the Parameters button, and the screen shown in Figure 12-15 appears.

Figure 12-15. Parameters of the method SET_TABLE_FOR_FIRST_DISPLAY

This method has one mandatory parameter, IT_OUTTAB (a changing parameter), for providing the data to be
output through an internal table.

For the output to appear, the method, at the least, requires one more parameter. It could be either the importing
parameter I_STRUCTURE_NAME or the changing parameter IT_FIELDCATALOG.

If you provide the importing parameter I_STRUCTURE_NAME, you cannot manipulate the output field properties in
the program. If you provide the changing parameter IT_FIELDCATALOG, you can manipulate them.

For the first hands-on exercise later in this chapter, you will provide the importing parameter I_STRUCTURE_NAME.
The value provided to this importing parameter is commonly a DDIC structure. The output will be as per the fields in
the DDIC structure and not as per the fields in the structure of the internal table provided to the changing parameter
IT_OUTTAB. Ideally, these structures should be identical. The fields in the DDIC structure may be less than the fields in
the structure of the internal table provided to the changing parameter IT_OUTTAB. The field titles, output lengths, and
so forth, are derived (picked up) from data elements and domains associated with the fields of the DDIC structure.

You will provide the changing parameter FIELD_CATALOG in the subsequent hands-on exercises. This parameter
enables you to control the output field attributes in the program. When you perform the hands-on exercise providing
the changing parameter FIELD_CATALOG, there will be more detailed coverage.

You will use four more parameters of the method SET_TABLE_FOR_FIRST_DISPLAY in the following hands-on exercises.

ALV Miscellaneous Topics
You will be using the class CL_GUI_ALV_GRID all through this chapter and the class CL_SALV_TABLE in the next chapter
to produce ALV output.

An internal table passed to the formal parameter IT_OUTTAB is a changing parameter. Though the ALV is an
output, you can change the displayed data on the screen, which will change the data in the underlying internal table
passed to IT_OUTTAB. An ALV can act as output as well as input if you are using the class CL_GUI_ALV_GRID. If you are
using the class CL_SALV_TABLE, you cannot use the ALV to input.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

659

The field catalog parameter is also a changing parameter; as an ALV output layout can be changed, the field
catalog will change.

The input aspect of ALV when using the class CL_GUI_ALV_GRID is not covered. The drag-and-drop aspects of ALV
are not covered. The selection aspects (selection of ALV rows, columns, and cells) are also not covered. These are less
frequently used features of ALV.

More details about ALV documentation are presented in the resource section of this book.
The ALV output generated by the class CL_GUI_ALV_GRID has a three-dimensional visual effect and is often

referred to as an ALV grid. Loosely, ALV output is referred to as an ALV grid. When you use the class CL_SALV_TABLE,
there is an option to generate full-screen ALV output with two-dimensional visual effects, which is referred to as an
ALV list or ALV classical list.

Hands-on Exercise: Customer-wise Sales Summary of
a Specified Company Code as ALV Output: Use Class
CL_GUI_ALV_GRID
Parameters for the method SET_TABLE_FOR_FIRST_DISPLAY:

Importing parameter: I_STRUCTURE_NAME

Changing parameter: IT_OUTTAB

In this exercise, you will do the following:

 1. Decide the initial output layout and input (database view).

 2. Perform all the developmental tasks to create various objects i.e. DDIC structure, menu
painter interface, ABAP program, screen etc.

 3. Execute the program to produce the output.

 4. Change the ALV output layout in various ways as an end user will.

 5. Perform ABC analysis and produce graphics from the ALV output.

Initial Output Layout
This is the same report that you generated in Chapter 6 and extended in subsequent chapters. You will now generate it
by using the ALV class CL_GUI_ALV_GRID. You must locate an instance of this ALV class in an instance of the container
class CL_GUI_CUSTOM_CONTAINER. The instance of this container class has to be placed in a custom control on the
screen. This architecture was described earlier, in Figure 12-1.

Table 12-1 indicates the fields to appear in the report and their originating tables.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

660

You used the database view YCL_CH05_VBRKKNA to retrieve data. You used the COLLECT statement to generate
customer-wise summarized data in an internal table. With this internal table of summarized data, you set up a
LOOP...ENDLOOP construct to output with the WRITE statement. This last stage of LOOP...ENDLOOP has to change.
Now you want to output the summarized internal table data as an ALV report. A rough layout of the proposed ALV
report is shown in Figure 12-16.

Table 12-1. Fields to Appear in the ALV Report

Field Table Description

KUNNR KNA1 Customer code

NAME1 KNA1 Customer name

ORT01 KNA1 City

NETWR VBRK Total of converted NETWR for the customer

Figure 12-16. Rough layout of customer-wise sales of specified company code as an ALV report

The program will accept the company code for which a customer-wise sales summary is to be generated through
the selection screen PARAMETERS statement.

The window title of the output will carry the company code, company code text, and currency. You will impart
the window title through the Titles feature of the Menu Painter. The page header and footer for the ALV output are
not covered.

You will place a single button on the application toolbar for navigating from the ALV output back to the selection
screen and prompting for the company code for which the customer sales summary is to be output. You will create a
status in the Menu Painter.

The ALV output will have its own toolbar, distinct from the standard and application toolbars. The ALV output
toolbar enables the manipulation of the ALV output.

The field or column headings will automatically output, based on the Heading text from the field- or
column-associated data element.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

661

Performing Tasks for ALV Output
You have to perform the following tasks to generate ALV output:

 1. Create a new DDIC structure consisting only of fields that will appear in the ALV output.

If you have a DDIC data type CURR field in the structure of the internal table that you will pass to the changing
formal parameter IT_OUTTAB of the method SET_TABLE_FOR_FIRST_DISPLAY, it will insist that a DDIC data type CUKY
field be specified. In your scenario, you are converting individual billing document amounts in different currencies
to a single currency of the company code for which the sales summary is being generated. The currency code has to
appear in the window title, not in the report body. Besides, in the ALV output, when you generate totals and subtotals,
the ALV system automatically generates currency-wise totals and subtotals. To avoid these issues, the field NETWR
should not be DDIC data type CURR in the structure. So you copy the data element NETWR into YCL_CH12_NETWR, to
which you have assigned the preexisting domain DEC15_2, which is of DDIC data type DEC and length 15,2. You copied
from data element NETWR to get the texts.

Figure 12-17 shows the activated DDIC structure YCL_CH12_SALES_SUM_STRU.

Figure 12-17. DDIC structure YCL_CH12_SALES_SUM_STRU

This structure consists only of fields appearing in the output (that is, KUNNR, NAME1, ORT01, and NETWR).

 2. Create an ABAP program YCL_CH12_01_SIMPLE_ALV, into which you can copy lines from
your Chapter 6 program YCL_CH06_ITAB05, excluding the lines starting from
LOOP AT SALES_TAB INTO SALES_STRU. Save the ABAP program.

 3. In the Menu Painter (SE41), create a status STAT1 with just one Back button, as shown in
Figure 12-18.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

662

 4. In this interface, create a window title TITLE1 by navigating from the status, as shown in
Figure 12-19.

Figure 12-20. The title list for the interface YCL_CH12_01_SIMPLE_ALV

Figure 12-18. Interface of YCL_CH12_01_SIMPLE_ALV with status STAT1

Figure 12-19. Navigating to the title list

The screen shown in Figure 12-20 appears.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

663

 5. Click the Create button. Enter the name of the title as TITLE1. Enter the text as Customer
Wise Sales Summary – Company Code: &1/&2 Curr: &3. Save, perform a consistency
check, and activate the interface. The screen will look like that in Figure 12-21.

Figure 12-21. Adding TITLE1 to the title list

 6. You need two reference variables to refer to an instance of the custom container and an
instance of the ALV grid, respectively. You also need to declare the OK_CODE variable. In
your ABAP program, make the following data declarations:

DATA:

 OK_CODE TYPE SY-UCOMM,
 CCONTR TYPE REF TO CL_GUI_CUSTOM_CONTAINER,
 ALV_GRID TYPE REF TO CL_GUI_ALV_GRID.

 7. You have to create a screen, place a custom control on the screen, create PBO and
PAI modules, and so forth. Navigate to the Screen Painter (via transaction code SE51).
Enter the program name as YCL_CH12_01_SIMPLE_ALV and the screen number as 100,
as shown in Figure 12-22.

Figure 12-22. Creating program YCL_CH12_01_SIMPLE_ALV on screen 100

 8. Click the Create button or press F5. In the screen attributes, enter a short description, as
shown in Figure 12-23.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

664

Figure 12-23. Adding screen attributes

Figure 12-24. Dragging and dropping a custom control

 9. Click the Layout button. Drag the custom control element from the Element palette.
The screen looks like Figure 12-24.

 10. Stretch and size the custom control, and then double-click it to access the Element
Attributes dialog box. Enter the name of the custom control as CUST_CONTT. Save your
work. The screen looks like Figure 12-25.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

665

 11. Close the Layout Editor. Click the Element List tab. Enter OK_CODE in the row with type OK.
The screen in Figure 12-26 appears.

Figure 12-25. Naming the custom control in the Element Attributes dialog box

Figure 12-26. Adding to the element list

 12. Click the Flow Logic tab. You have to create the PBO and PAI modules. Remove the
comments of the PBO and PAI module-invoking statements. You can retain the module
names proposed by the system or change and specify your own. In this example, accept
the proposed names (that is, STATUS_0100 and USER_COMMAND_0100). The Flow Logic tab
after removing comments for the module-invoking statements is shown in Figure 12-27.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

666

In the PBO module, you will set the status. You also will set the window title, create an instance of the CL_GUI_
CUSTOM_CONTAINER and an instance of the CL_GUI_ALV_GRID, and call the method SET_TABLE_FOR_FIRST_DISPLAY.

You will locate the PBO and PAI modules in your program YCL_CH12_01_SIMPLE_ALV (main program). There is an
option to locate module/s in separate include programs. There are multiple ways to create the code for modules. You
will adopt the method of double-clicking the module invocation statements in the Flow Logic area. As the modules
do not exist, the system prompts with a message such as “PBO Module STATUS_0100 does not exist. Create Object?”
Click the Yes button. The system then prompts further, whether to locate the module in the main program or an
include program. Opt for the module to be located in the main program (YCL_CH12_01_SIMPLE_ALV). You should
ensure that this program is not open in edit or change mode.

Double-click the PBO module-invoking statement MODULE STATUS_0100. The successive screens are shown in
Figure 12-28 and Figure 12-29.

Figure 12-27. Removing statements from the Flow Logic tab

Figure 12-28. Creating the PBO module

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

667

You have to locate your code between the lines MODULE STATUS_0100 OUTPUT and ENDMODULE, as shown in
Figure 12-30.

Figure 12-29. Locating the module in the main program

Figure 12-30. Changing the module code

Remove the comments from the two lines, and change them as follows:

SET PF-STATUS 'STAT1'.
SET TITLEBAR 'TITLE1' WITH CCODE BUTXT WAERS.

Next, you have to create an instance of the class CL_GUI_CUSTOMER_CONTAINER. You could use the Pattern button
to generate template code for creating an instance. Figure 12-31 shows the dialog box with entered values for
generating template code to create an instance of a global class.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

668

The generated, refined code (all lines for optional parameters deleted) is as follows:

CREATE OBJECT CCONTR
 EXPORTING
 CONTAINER_NAME = 'CUST_CONTT'
 EXCEPTIONS
 CNTL_ERROR = 1
 CNTL_SYSTEM_ERROR = 2
 CREATE_ERROR = 3
 LIFETIME_ERROR = 4
 LIFETIME_DYNPRO_DYNPRO_LINK = 5
 others = 6
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

Similarly, to create an instance of the class CL_GUI_ALV_GRID, use the values shown in Figure 12-32.

Figure 12-31. Creating an instance of the class CL_GUI_CUSTOM_CONTAINER

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

669

The generated, refined code (all lines for optional parameters deleted) is as follows:

CREATE OBJECT ALV_GRID
 EXPORTING
 I_PARENT = CCONTR
 EXCEPTIONS
 ERROR_CNTL_CREATE = 1
 ERROR_CNTL_INIT = 2
 ERROR_CNTL_LINK = 3
 ERROR_DP_CREATE = 4
 others = 5
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

To call the instance method SET_TABLE_FOR_FIRST_DISPLAY, set the values shown in Figure 12-33.

Figure 12-32. Creating an instance of the class CL_GUI_ALV_GRID

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

670

The generated, refined code (all lines for optional parameters deleted) is as follows:

CALL METHOD ALV_GRID->SET_TABLE_FOR_FIRST_DISPLAY
 EXPORTING
 I_STRUCTURE_NAME = 'YCL_CH12_SALES_SUM_STRU'
 CHANGING
 IT_OUTTAB = SALES_TAB
 EXCEPTIONS
 INVALID_PARAMETER_COMBINATION = 1
 PROGRAM_ERROR = 2
 TOO_MANY_LINES = 3
 others = 4
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

Your coding in the PBO module is over. To summarize, you set up the status, set the window title, created an instance
of the custom container, created an instance of ALV grid, called the instance method SET_TABLE_FOR_FIRST_DISPLAY,
saved the program, and clicked the Back button to return to the Screen Painter’s Flow Logic area.

You have to create a PAI module. Double-click the PAI module-invoking statement, MODULE USER_
COMMAND_0100. The system will prompt with a message such as “PAI Module USER_COMMAND_0100 does not
exist. Create Object?” Click the Yes button. The system then prompts further, whether to locate the module in the
main program or an include program. Opt for the module to be located in main program. As you are locating the
modules in the program YCL_CH12_01_SIMPLE_ALV (the main program), you should ensure that this program is not
open in edit or change mode.

The successive screens look like Figure 12-34 and Figure 12-35.

Figure 12-33. Calling the method SET_TABLE_FOR_FIRST_DISPLAY

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

671

Enter the following code in the PAI module:

&---
*& Module USER_COMMAND_0100 INPUT
&---
* text
--
MODULE USER_COMMAND_0100 INPUT.

IF OK_CODE = 'BACK'.
 SET SCREEN 0.
 LEAVE SCREEN.
ENDIF.

ENDMODULE. " USER_COMMAND_0100 INPUT

The statements SET SCREEN 0 and LEAVE SCREEN will make the program exit screen 100 and display the prompt
for company code. Save the program and then return to the Screen Painter by clicking the Back button. You have
completed all tasks in the Screen Painter. Perform a consistency check and activate screen 100 in the Screen Painter.
The screen after activation should look like Figure 12-36.

Figure 12-34. Creating the PAI module

Figure 12-35. Locating the PAI module in the main screen

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

672

 13. Go back to the ABAP program YCL_CH12_01_SIMPLE_ALV and open it in edit mode. You
need to add a statement to load screen 100. You can position this statement as the last
statement in the event START-OF-SELECTION. In this event, you first retrieve the data from
the database table T001 – SELECT SINGLE. Next you have to set a SELECT...ENDSELECT
construct with a COLLECT statement. This produces the internal table with customer-wise
summarized data for the input company code. Following the ENDSELECT statement, you
code the SORT statement to order the data customer code-wise ascending. You are coding
the statement CALL SCREEN 100 after the SORT statement to load screen 100.

The program flow is as follows:
When the program is executed (via the function key F8), the prompt to input company code appears.

 1. Entering the company code and clicking the Execute button or pressing F8 starts execution
of the statements following the START-OF-SELECTION event. Data from database table T001
is retrieved. The customer-wise summarized sales internal table is created. The internal
table is sorted on KUNNR ascending. The statement CALL SCREEN 100 is executed.

 2. The CALL SCREEN 100 statement triggers the PBO event. The module STATUS_0100 is
executed. An instance of the customer container is created; an instance of the ALV grid is
created. The method SET_TABLE_FOR_FIRST_DISPLAY populates the instance of the ALV
grid with the customer-wise summarized sales data of the internal table, and the ALV
output appears on the screen.

 3. Clicking the Back button on the application toolbar triggers PAI, and the PAI module
USER_COMMAND_0100 executes. The code in the PAI module brings you back to the company
code prompt.

The entire code of the program YCL_CH12_01_SIMPLE_ALV is available in the source code resource. The output
looks like that in Figure 12-37.

Figure 12-36. The activated screen 100

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

673

Clicking the buttons of the ALV output toolbar does not trigger the PAI event. Clicking the ALV output toolbar
button triggers the class event USER_COMMAND. In complex programming, there could be a conflict between the
PAI event and the events triggered by classes. The Control Frame Work (CFW) provides guidelines to resolve
these conflicts.

The way you have configured this program, the PBO event is triggered only once after the Execute button is clicked
or the F8 key is pressed on the selection screen and before the screen number 100 appears with the ALV report. When
the ALV report appears, you have only one button on the application toolbar, which when clicked will take you back to
the selection screen.

Changing Layout
Click the Change Layout button on the ALV toolbar (the third button from the right). A dialog box with five tabs
appears, as shown in Figure 12-38.

Figure 12-37. Output of the program YCL_CH12_01_SIMPLE_ALV

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

674

You are on the first tab, Displayed Colu. Fields or columns you want to omit from the output can be shifted from
the left side to the right side. By shifting fields or columns to the right and then to the left, you can rearrange the order
of the fields or columns in the output. Figure 12-39 shows this shuffling completed.

Figure 12-38. Shuffling or omitting fields

Figure 12-39. Shuffled fields

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

675

Click the Change Layout button again. Then click the Sort Order tab. The fields you want to sort on should be
shifted from right to left. If you want the output to appear name-wise ascending, you shift the NAME1 field from right to
left and enable the radio button for ascending order. By default, the descending radio button is enabled. Figure 12-41
shows the Sort Order tab.

Figure 12-40. Output with shuffled fields

Figure 12-41. Setting up the sort criteria

Figure 12-40 shows the ALV output with the fields shuffled.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

676

The sorting has been performed on the NAME1 contents translated to uppercase. Hence Aircraft Products appears
before ALAN FAITH. That is how it is. If you use the Change Layout dialog box to set the sorting of fields, the sorting
for text fields is being performed on the text translated to uppercase. But if you select a field (single-field sorting) and
the sort buttons , the sorting is as per character (non-Unicode: ASCII) code order. An anomaly!

Click the Change Layout button again. Omit the field Customer (customer code or KUNNR). Figure 12-43 shows the
omitted field.

Figure 12-42. Ouput of program YCL_CH12_01_SIMPLE_ALV with fields shuffled and sort set up

Figure 12-43. Omitting the Customer field

Figure 12-42 shows the output with the sort setting.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

677

Change the original layout (the layout prevailing when you click the Execute button on the selection screen) per
the following specifications:

Field order:•

City (• ORT01)

Customer (• KUNNR)

Name 1 (• NAME1)

Net Value (• NETWR)

Total: Net Value•

Sorting:•

Sort: City (Ascending)•

Group: City (Subtotals)•

Filter fields/columns:•

Filter values for city: A*, B*, C*, M*, S*, T* (cities starting with A, B, C, M, S, and T)•

Net Value: >= 500•

Figure 12-44. Output of program YCL_CH12_01_SIMPLE_ALV, with fields Shuffled, sorted, and the Customer field
omitted

Figure 12-44 shows the output as per the settings.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

678

Figure 12-45. Changing layout of fields

Figure 12-46. Setting sort criteria

Figure 12-47. Filtering the fields

Figure 12-48. Program YCL_CH12_01_SIMPLE_ALV: Change Layout – Filter Fields SELECT-OPTIONS

Figures 12-45 through 12-50 depict the steps for carrying out these layout changes.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

679

The output of the preceding steps as per the layout settings is shown in Figure 12-51 and Figure 12-52.
Observe that the subtotals for each city and the grand total appear as separate rows.

Figure 12-49. Setting city values

Figure 12-50. Setting net value

Figure 12-51. Resulting output for program YCL_CH12_01_SIMPLE_ALV

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

680

Select the Net Value column by clicking the column heading. Click the fourth button from the right, and options
appear, as shown in Figure 12-53. Select the ABC Analysis option.

Figure 12-52. Program YCL_CH12_01_SIMPLE_ALV: Output as per Layout Settings including the Total

Figure 12-53. Selecting the ABC Analysis option

The ABC Analysis screen appears. You are going to do ABC analysis based on the customer. Accept the Analysis
Type as Key Figure Percentage (the default). For the A Segment option, type in 80%. Set the B Segment option to 15%,
and C Segment to 5%. You are indicating that the customers contributing 80% of total sales are A, the customers
contributing the next 15% of total sales are B, and the customers contributing to the residual 5% of total sales are C.

The ABC analysis list appears below these settings, as shown in Figure 12-54. The customers appear in
descending order of sales (field NETWR)—that is, the customer having the highest sales appears first, and the customer
having the lowest sales appears last. You can observe that 5 customers out of a total of 36 contribute to 80% of total
sales (that is, customers categorized as A), 1 customer contributes to the next 15% of total sales (the customer
categorized as B), and 30-odd customers contribute to next 5% of total sales (customers categorized as C).

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

681

The ABC analysis is employed typically in inventory or material cost control, when this phenomenon occurs that
a few number of materials contribute to a large proportion of the total inventory or material cost. Controlling these
few costly materials would substantially contribute to overall inventory cost control.

If you click the List button, a full-screen list of the ABC analysis appears, as shown in Figure 12-55 (with a
two-dimensional visual effect).

Figure 12-54. ABC analysis

Figure 12-55. The full-screen ABC analysis list

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

682

Now it’s time to produce the ALV graphics. You have to use the second button from the right on the ALV toolbar.
You will produce a pie chart of customer-wise sales. To generate the graphics, you have to output the ALV report

with company code R300 and the filter condition NETWR >= 5000. This is to ensure a fewer large sectors in the pie
chart. Select the Customer field, as shown in Figure 12-56.

Figure 12-56. Selecting the Customer field for the pie chart

Click the Graphics button. Then click the right mouse button (or Shift+F10) to select the Chart Type option,
as shown in Figure 12-57.

Figure 12-57. Selecting the chart type

Figure 12-58 shows the pie chart of customer-wise sales for the company code R300 and the filter setting of net
value >= 5000.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

683

Graph options have been used to give a title to the chart and to have the customer codes with the sales
percentages inside the pie chart sectors.

You can try out the various check box options in the display tab of the Change Layout ALV toolbar button. You
can try the option Optimize Columns. This will automatically adjust the ALV field output width to the maximum width
of output data. In other words, if the length of field NAME1 is 35 characters, but the maximum NAME1 content from the
output data is only 30 characters, the field NAME1 will adjust to 30 characters.

If you have an Excel spreadsheet template, you can display ALV output in an Excel spreadsheet from the View tab
by clicking the Change Layout ALV toolbar button.

You can try other ALV toolbar buttons and observe the results.
This was a demonstration of a simple ALV output, showing how end users can manipulate the output in various

ways, similar to the way you can in an Excel spreadsheet. In this exercise, you changed the ALV output layout a
number of times. But you could not save the layouts. In the next hands-on exercise, you will add more sophistication
to the ALV output.

Figure 12-58. Pie chart of customer-wise sales

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

684

Hands-on Exercise: Customer-wise Sales Summary of a
Specified Company Code as ALV Output, Version 2: Use Class
CL_GUI_ALV_GRID
Use the Field Catalog and Provide Save Layouts Facility, Etc.
Parameters for the method: SET_TABLE_FOR_FIRST_DISPLAY:

Importing parameters: IS_VARIANT, I_SAVE, IS_LAYOUT

Changing parameters: IT_OUTTAB, IT_FIELDCATALOG

You will create more-sophisticated functionality in the ALV report you generated in the previous hands-on
exercise by adding three enhancements:

The use of a field catalog. With the use of a field catalog, you can control the properties, •
formatting, or appearance of the individual fields of the ALV report.

Control over the overall appearance of the grid.•

The capability to save and maintain ALV report layouts.•

These three enhancements require passing extra parameters to the method SET_TABLE_FOR_FIRST_DISPLAY.

Creating a Field Catalog
When using the method SET_TABLE_FOR_FIRST_DISPLAY of the class CL_GUI_ALV_GRID, you can give either one of the
parameters:

• I_STRUCTURE_NAME

• IT_FIELDCATALOG

You have worked with the I_STRUCTURE_NAME parameter. The method automatically fetched the heading text
from the associated data element of the field, the output length, the format from the associated domain of the
field, and so forth. The customer code field KUNNR was output with the leading zeros suppressed (that is, the ALPHA
conversion routine was referred to in the domain of the field and is getting executed by default). If you want to
suppress the execution of the conversion routine ALPHA (as you were doing with the WRITE statement USING NO EDIT
MASK), you had no means of doing it in the preceding hands-on exercise. This is where the field catalog can be used.
Through the field catalog, you can control the appearance of each field appearing in the ALV report.

The field catalog is an internal table, containing one row for each field of the ALV report. The different fields of the
field catalog structure constitute the different properties of the ALV report field.

The field catalog DDIC internal table type definition is LVC_T_FCAT, and the DDIC structure of this internal table
is LVC_S_FCAT.

There are 96 fields in the field catalog structure LVC_S_FCAT. The third field in this structure is ‘FIELDNAME,
containing the name of the ALV report field. Table 12-2 provides a partial list of the fields of field catalog structure
LVC_S_FCAT.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

685

A detailed description of all the field catalog fields can be found in the manual ALV Grid Control (BC-SRV-ALV),
from page 129 onward.

You can directly manipulate the field catalog and then pass the manipulated field catalog internal table to
the method SET_TABLE_FOR_FIRST_DISPLAY, and the ALV output will appear as per the field catalog entries for the
different fields output by the ALV.

A field catalog internal table can be built from scratch, assigning all the myriad fields values and then appending
rows. But it is seldom done this way. Normally, the function module LVC_FIELDCATALOG_MERGE is invoked to generate
an initial default field catalog. This function module takes a DDIC structure as an importing parameter and returns
a field catalog in an internal table of DDIC type LVC_T_FCAT. In the preceding exercise, you passed a structure
directly to the method SET_TABLE_FOR_FIRST_DISPLAY. The method generated a field catalog internally to which
you had no access, over which you had no control, and ALV output appeared with the default formatting. In this

Table 12-2. A Few Fields of Field Catalog DDIC Structure LVC_S_FCAT

Field Name Description

FIELDNAME Name of the ALV output field (example: KUNNR).

TABNAME Name of the ALV output field structure (example: SALES_STRU).

CURRENCY Currency code.

QUANTITY Unit-of-measure code.

JUST Output justification (L—left, R—right, and

C—centered).

LZERO Output leading zeros for numeric fields.

NO_SIGN Suppress sign.

NO_ZERO Suppress output of zero.

NO_CONVEXT Value = X, suppress execution of conversion exit routine.

Value = space, execute conversion exit routine.

EDIT_MASK Edit mask including conversion exit routine to be executed.

EMPHASIZE Color control of output fields.

FIX_COLUMN Freeze column.

NO_SUM Disable totaling of the field (numeric fields).

NO_OUT Omit output of this field.

TECH Value = X, field is technical. The DDIC data type CLNT (client) is treated as a technical field.
Technical fields by default do not output. They do not appear in the field list of Change Layout
dialog boxes. If you want them to be output, set the value to ‘ ’.

OUTPUTLEN Output length.

CONVEXIT Name of conversion exit routine.

HOTSPOT Make the field hot spot.

COL_OPT Column width optimization.

REF_FIELD Name of the DDIC field to which this field is referring.

REF_TABLE Name of the DDIC table structure/structure to which this field is referring is residing.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

686

exercise, you will call the function module LVC_FIELDCATALOG_MERGE. You will pass to this function module the same
structure that you passed to the method SET_TABLE_FOR_FIRST_DISPLAY (that is, YCL_CH12_SALES_SUM_STRU in the
preceding exercise). The function module will generate and return a default field catalog in the internal table. You
will manipulate this internal table and pass it to the method SET_TABLE_FOR_FIRST_DISPLAY as the formal changing
parameter IT_FIELDCATALOG.

In this exercise, you will do the following:

Impart different colors to different fields of ALV output (by using the field catalog column •
name EMPHASIZE).

Suppress the execution of the conversion exit routine • ALPHA for the field KUNNR (by assigning
the value X to the field catalog column name NO_CONVEXT, and assigning the value SPACE to
CONVEXIT).

Optimize all column widths (by assigning the value • X to the field catalog column name
COL_OPT).

The field catalog field EMPHASIZE that is used to impart color to the ALV output columns is of type C and length 4.
The colors you can impart are the same as in the WRITE statement, with the same color codes. You can have color in
either the background (Inverse Off) or foreground (Inverse On). Color in the background can be sharp (Intensified
On) or faint (Intensified Off).

The color field EMPHASIZE operates as follows:

The first character has to be • C.

The second character signifies the color code (• 0–7).

The third character signifies Intensified On/Off (that is, a value of • 0 is Intensified Off,
and a value of 1 is Intensified On). Intensified On works for background colors only.

The fourth character signifies Inverse On/Off (that is, a value of • 0 is Inverse Off, and
a value of 1 is Inverse On).

You will define a color counter to contain the color code starting from 1, and increment it for every output field
(KUNNR, NAME1, ORT01, and NETWR). You will output in background color with Intensified Off. So your field EMPHASIZE
must assume the values C100, C200, C300, and C400.

The code related to the field catalog manipulation follows.
Data declarations:

DATA: FCAT TYPE LVC_T_FCAT " field catalogue
 WITH HEADER LINE,

 CLR(1) TYPE N VALUE 1, " for color code

Code before calling the method SET_TABLE_FOR_FIRST_DISPLAY:

CALL FUNCTION 'LVC_FIELDCATALOG_MERGE'
 EXPORTING
 I_STRUCTURE_NAME = 'YCL_CH12_SALES_SUM_STRU'
 CHANGING
 CT_FIELDCAT = FCAT[]
 EXCEPTIONS
 INCONSISTENT_INTERFACE = 1
 PROGRAM_ERROR = 2
 OTHERS = 3
 .

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

687

 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

 LOOP AT FCAT.
 CLR = CLR + 1. " color codes 1 2 3 4
 CONCATENATE 'C' CLR '00' INTO FCAT-EMPHASIZE.

 FCAT-COL_OPT = 'X'. " column width optimization

 IF FCAT-FIELDNAME = 'KUNNR'. " output leading zeroes
 FCAT-NO_CONVEXT = 'X'.
 FCAT-CONVEXIT = ' '.
 ENDIF.
 MODIFY FCAT.
 ENDLOOP.

Controlling Overall Appearance of ALV Output
You can establish control of the overall appearance of the ALV output by filling in appropriate fields of the structure
referring to the DDIC structure LVC_S_LAYO. The structure is to be passed to the formal exporting parameter
IS_LAYOUT. Table 12-3 provides a partial list of fields of this DDIC structure LVC_S_LAYO.

Table 12-3. A Few Fields of the DDIC Structure LVC_S_LAYO

Field Name Description

CWIDTH_OPT Optimize all column widths. (Optimization at the output level is distinct from optimization at the
field level in the field catalog.)

GRID_TITLE A title for the grid. In enlarged font, maximum of 70 columns.

NO_HEADERS Hide field or column headers.

NO_HGRIDLN Hide horizontal grid lines.

NO_VGRIDLN Hide vertical grid lines.

NO_TOOLBAR Hide ALV toolbar.

ZEBRA Alternating color for fields.

You can find a full list with explanations starting on page 157 of the manual ALV Grid Control (BC-SRV-ALV).
You are using the field GRID_TITLE of this structure to output an ALV report with a title.
The source code related to the control of grid appearance follows.
Data declaration:

 LAYOUT TYPE LVC_S_LAYO, " overall grid appearance

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

688

Code before calling the method SET_TABLE_FOR_FIRST_DISPLAY:

CONCATENATE TEXT-001 CCODE '/' BUTXT '--'
 TEXT-002 INTO LAYOUT-GRID_TITLE.

The values of the text symbols are as follows:

[TEXT-001: 'Sales Summary-Company Code:'
 TEXT-002: 'Curr.']

Save and Manage ALV Output Layouts
For saving and managing ALV output layouts, you need to pass values to two formal exporting parameters,
IS_VARIANT and I_SAVE, of the method SET_TABLE_FOR_FIRST_DISPLAY. The formal parameter IS_VARIANT is typed
to the DDIC structure DISVARIANT. You need only to assign the name of the ABAP program to the field REPORT of this
structure. The formal parameter I_SAVE (ABAP type C and length 1) is assigned values as follows:

• I_SAVE = U: User-defined layouts can be saved.

• I_SAVE = X: Global layouts can be saved.

• I_SAVE = A: User-defined and global layouts can be saved.

• I_SAVE = ‘ ’: Layouts cannot be saved. (This is the default.)

The source code related to providing the capability to save and retrieve layouts includes the following.
Data declaration:

DVARIANT TYPE DISVARIANT. " for saving layouts

Code before calling the method SET_TABLE_FOR_FIRST_DISPLAY:

DVARIANT-REPORT = 'YCL_CH12_02_ALV_FCAT_ETC'.

Calling method SET_TABLE_FOR_FIRST_DISPLAY with additional parameters:

CALL METHOD ALV_GRID->SET_TABLE_FOR_FIRST_DISPLAY
 EXPORTING
 IS_VARIANT = DVARIANT " change, save layouts
 I_SAVE = 'U' " change, save layouts
 IS_LAYOUT = LAYOUT " change, save layouts
* I_STRUCTURE_NAME = 'YCL_CH12_SALES_SUM_STRU'
 CHANGING
 IT_OUTTAB = SALES_TAB
 IT_FIELDCATALOG = FCAT[] " field catalogue
 EXCEPTIONS
 INVALID_PARAMETER_COMBINATION = 1
 PROGRAM_ERROR = 2
 TOO_MANY_LINES = 3
 others = 4
 .

The program is YCL_CH12_02_ALV_FCAT_ETC, and the full code can be found in the source code resource.
The output appears as shown in Figure 12-59.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

689

In the output:

Fields are output in different colors.•

Customer code is output with leading zeros.•

Column widths are optimized.•

A title appears in the ALV grid.•

When you click the third button from the right (earlier, the Change Layout button) on the ALV toolbar, a menu
appears with Select Layout, Change Layout, Save Layout, and Manage Layouts options.

Select the Save Layout option. The screen shown in Figure 12-60 appears.

Figure 12-59. Output of the program YCL_CH12_02_ALV_FCAT_ETC

Figure 12-60. Saving the layout for YCL_CH12_02_ALV_FCAT_ETC

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

690

Enter the layout name and short text, and then click the Continue button. You have created a layout of the output
as it appears originally, without any column shuffling, sorting, filtering, and so forth.

Now you will create one more layout with column shuffling, sorting, and filtering. Change the layout exactly as
you did in the preceding exercise:

Field order:•

City (• ORT01)

Customer (• KUNNR)

Name 1 (• NAME1)

Net Value (• NETWR)

Total: Net Value•

Sorting:•

Sort: City (Ascending)•

Group: City (Subtotals)•

Filter fields/columns:•

Filter values for city: A*, B*, C*, M*, S*, T* (cities starting with A, B, C, M, S, and T)•

Net Value: >= 500•

Save this layout, as shown in Figure 12-61.

Figure 12-61. Saving another layout, LAYOUT2

When you click the Select Layout menu option (the first option), the dialog box in Figure 12-62 appears, enabling
you to make a selection from the saved layouts. The ALV output will appear as per the selected layout.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

691

After saving layouts, if you choose a saved layout or load the program with a default layout, the customer code is
output without the leading zeros. This happens even though you suppressed the execution of the ALPHA routine when
manipulating the field catalog initially. You will fix this problem in the next hands-on exercise.

You can click the Maintain Layouts menu option to set a default layout, delete layouts, and so forth.

Hands-on Exercise: Customer-wise Sales Summary and
Detail of a Specified Company Code as ALV Output: Use Class
CL_GUI_ALV_GRID

Trigger CL_GUI_ALV_GRID Events: TOOLBAR, USER_COMMAND, AFTER_USER_•
COMMAND, DOUBLE_CLICK, and CL_GUI_DIALOGBOX_CONTAINER Event: CLOSE

You will start this exercise with the customer-wise sales summary of a specific company code as ALV output. You
will impart additional functionalities and features to this initial ALV output by triggering events of classes.

In this exercise, you are going to do the following:

Generate a detailed list of customer billing documents by double-clicking a line of the •
customer-wise sales summary of a specific company code.

Place a custom button on the ALV toolbar and make it operational.•

Output a serial number and then adjust it based on a change in the ALV layout (that is, •
regenerate the serial number every time a change occurs in the ALV layout). Recall the system
fields SY-DBCNT or SY-TABIX you were using most of the time to output the serial number via
the WRITE statement. The output of the serial number is being implemented for the first ALV
output only. The serial number in the ALV output has to be dynamic because the ALV output
can be manipulated. Regenerating the serial number again and again every time the ALV
output is changed makes the issue complex.

Figure 12-62. Choosing a layout

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

692

Generating a Detailed List of Customer Billing Documents
Event DOUBLE_CLICK of class CL_GUI_ALV_GRID, event CLOSE of class CL_GUI_DIALOGBOX_CONTAINER

In this exercise, you are re-creating the interactive lists in the ALV paradigm. To start with, you will have the
customer-wise sales summary for a specified company code in an instance of the class CL_GUI_ALV_GRID (a carry
forward from the preceding exercise). Double-clicking a customer in this output will beget a second ALV output,
listing all the billing documents of that customer. You were referring to this second ALV list as the first secondary list in
the interactive lists paradigm.

You will trigger the DOUBLE_CLICK event of the class CL_GUI_ALV_GRID. This event has two importing parameters
(events have only importing parameters): E_ROW and E_COL, the row and column number that were double-clicked.
Using E_ROW-INDEX, you can fetch the corresponding row from the internal table containing the sales summary data
(READ TABLE SALES_TAB INTO... INDEX E_ROW-INDEX). You can than know the customer code of the row that was
double-clicked. Using this customer code, you can fetch the billing documents belonging to this customer. You can
look up this event in the Class Builder by using transaction code SE24.

You will need a second instance of the class CL_GUI_ALV_GRID, in which you will output the billing documents
of a specific customer. You will locate this second instance of the class CL_GUI_ALV_GRID in a dialog box container
CL_GUI_DIALOGBOX_CONTAINER instead of the CL_GUI_CUSTOM_CONTAINER. The dialog box container, unlike a custom
container, is not placed inside a custom control. It can be located anywhere on the screen by specifying the screen
coordinates and the size at runtime. So you have to create an instance of this class CL_GUI_DIALOGBOX_CONTAINER;
then create a second instance of the class CL_GUI_ALV_GRID, call the method SET_TABLE_FOR_FIRST_DISPLAY for this
second instance, and pass it the data of billing documents of the specific customer. This is represented in Figure 12-63.

Figure 12-63. Interactive reports in the ALV paradigm

With an event of a class, when you trigger the event, a method in a class is executed. When you trigger the
event DOUBLE_CLICK for the first instance of the class CL_GUI_ALV_GRID, you want to create an instance of the class
CL_GUI_DIALOGBOX_CONTAINER, create a second instance of the class CL_GUI_ALV_GRID, create a default field catalog,
manipulate this default field catalog, and execute the method SET_TABLE_FOR_FIRST_DISPLAY for the second instance
of the class CL_GUI_ALV_GRID. All this code for the preceding described processes will have to reside in a method of
a class. So, you will define and implement a local class, in which you will locate the method to be executed when you
double-click a line of the customer-wise sales summary of a specific company code.

The methods that are executed when events of classes are triggered are called the event handler methods or
handler methods. Even as your second ALV output is presented on the screen, you must ensure that the first ALV
output is disabled. For this, you are using the ENABLE method of the class CL_GUI_ALV_GRID. When calling this method,

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

693

you have to pass an exporting parameter. When this parameter has a value X, the ALV output is enabled, and when
this parameter has a value ‘ ’, the ALV output is disabled. When an instance of the ALV output is disabled, it is
inaccessible to clicking and other actions.

When you are on the second ALV output located in the dialog box container, you would like to have the
capability to close that container and navigate back to the first ALV output. The closing of the dialog box container is
implemented through the event CLOSE of the class CL_GUI_DIALOGBOX_CONTAINER. You will trigger this event; locate
the method to be executed when this event is triggered in the same local class you are using to locate the method to be
executed for the event: DOUBLE_CLICK of the class CL_GUI_ALV_GRID. In fact, you are going to locate all the methods to
be executed when various events are triggered in this same local class—that is, all the event handler methods in this
program are being located in the local class named LCLASS.

In the method to be executed when event CLOSE is triggered for the class CL_GUI_DIA:OGBOX_CONTAINER, you
are going to use the destructor method FREE to close the dialog box container and its embedded second instance of
CL_GUI_ALV_GRID.

The event handler methods, when they are declared in the class (class definition) are related to the event and the
class. This is one part of co-relating an event handler method. The second part of co-relating an event handler method
is the registration of the event handler method. In the registration of the event handler method, the method is related
to the instance of the class.

For example, in this program, you have two instances of class CL_GUI_ALV_GRID. The first instance outputs the
customer-wise sales summary of a specific company. On double-clicking a line of this ALV output, you are creating
a second instance of the class and generating the billing documents of the double-clicked customer. In the current
exercise, you are supporting the DOUBLE_CLICK event of class CL_GUI_ALV_GRID only for the first instance, not the
second instance. If double-clicking is done on the billing documents of a customer, nothing should happen; the event
handler method in the local class for double-click should not get executed. This is managed through the concept of
the registration of the event. You will register the DOUBLE_CLICK event handler method only for the first instance of the
class CL_GUI_ALV_GRID.

The apt place of registration of an event handler method is just after creation of the instance of the class to which
you are co-relating the event handler method. For example:

CREATE OBJECT ALV_GRID1 EXPORTING...
SET HANDLER LREF->DB_CLICK FOR ALV_GRID1.

Peruse the source code with its comments.
The extra code is required to implement the handler methods for events DOUBLE_CLICK of class CL_GUI_ALV_GRID

and CLOSE of class CL_GUI_DIALOGBOX_CONTAINER.
Code in the declaration part:

CLASS LCLASS DEFINITION DEFERRED.

DATA: LREF TYPE REF TO LCLASS,
......

Code for the local class:

***** class definition *****

CLASS LCLASS DEFINITION.

PUBLIC SECTION.

METHODS: DB_CLICK FOR EVENT DOUBLE_CLICK OF CL_GUI_ALV_GRID
 IMPORTING E_ROW,

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

694

 CLOSE_DBOX FOR EVENT CLOSE OF CL_GUI_DIALOGBOX_CONTAINER,
....

PRIVATE SECTION.

DATA: BILLS_STRU TYPE YCL_CH12_BILLS_STRU,
 BILLS_TAB TYPE STANDARD TABLE OF YCL_CH12_BILLS_STRU,
 DCONT TYPE REF TO CL_GUI_DIALOGBOX_CONTAINER,
 ALV_GRID2 TYPE REF TO CL_GUI_ALV_GRID,
 CAPTON(70) TYPE C,
 FCAT2 TYPE LVC_T_FCAT,
 FSTRU TYPE LVC_S_FCAT,
......

ENDCLASS.

***** class implementation *****

CLASS LCLASS IMPLEMENTATION.

****** DB_CLICK *****

METHOD DB_CLICK.

CHECK E_ROW-ROWTYPE IS INITIAL. " double clicking is on a customer
 " line, not subtotal/total line

 READ TABLE SALES_TAB INTO SALES_STRU INDEX E_ROW-INDEX.

 SELECT VBELN FKDAT WAERK KURRF NETWR FROM VBRK
 INTO TABLE BILLS_TAB WHERE KUNAG = SALES_STRU-KUNNR
 AND BUKRS = CCODE.

 LOOP AT BILLS_TAB INTO BILLS_STRU.
 BILLS_STRU-NETWR = BILLS_STRU-NETWR * BILLS_STRU-KURRF.
 MODIFY BILLS_TAB FROM BILLS_STRU.
 ENDLOOP.

 CALL FUNCTION 'LVC_FIELDCATALOG_MERGE'
 EXPORTING
 I_STRUCTURE_NAME = 'YCL_CH12_BILLS_STRU'
 CHANGING
 CT_FIELDCAT = FCAT2
 EXCEPTIONS
 INCONSISTENT_INTERFACE = 1
 PROGRAM_ERROR = 2
 OTHERS = 3
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

695

 LOOP AT FCAT2 INTO FSTRU.
 FSTRU-COL_OPT = 'X'.
 IF FSTRU-FIELDNAME = 'KURRF'.
 FSTRU-NO_SUM = 'X'. " no sum for KURRF
 ENDIF.
 MODIFY FCAT2 FROM FSTRU.
 ENDLOOP.

 CONCATENATE TEXT-001 SALES_STRU-KUNNR '/' SALES_STRU-NAME1 INTO CAPTON.

 CREATE OBJECT DCONT
 EXPORTING
 WIDTH = 420 " dimension is points
 HEIGHT = 200 " " a point = 1/72 of inch
 TOP = 35
 LEFT = 550
 CAPTION = CAPTON
 EXCEPTIONS
 CNTL_ERROR = 1
 CNTL_SYSTEM_ERROR = 2
 CREATE_ERROR = 3
 LIFETIME_ERROR = 4
 LIFETIME_DYNPRO_DYNPRO_LINK = 5
 EVENT_ALREADY_REGISTERED = 6
 ERROR_REGIST_EVENT = 7
 others = 8
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

 SET HANDLER LREF->CLOSE_DBOX FOR DCONT.
 " registration of 'CLOSE_DBOX’ handler method for instance DCONT

 CREATE OBJECT ALV_GRID2
 EXPORTING
 I_PARENT = DCONT.

 CALL METHOD ALV_GRID2->SET_TABLE_FOR_FIRST_DISPLAY
 CHANGING
 IT_OUTTAB = BILLS_TAB
 IT_FIELDCATALOG = FCAT2.

 CALL METHOD ALV_GRID1->SET_ENABLE
 EXPORTING
 ENABLE = ' '.
ENDMETHOD.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

696

METHOD CLOSE_DBOX.

 CALL METHOD DCONT->FREE().

 CALL METHOD ALV_GRID1->SET_ENABLE
 EXPORTING
 ENABLE = 'X'.

ENDMETHOD.

DDIC structure YCL_CH12_BILLS_STRU has been created with the fields VBELN, FKDAT, WAERS, KURRF, and NETWR.
The value of the text symbol is as follows:

[TEXT-001: 'Bills of Customer:']

Code for registration of handler method DB_CLICK for instance ALV_GRID1:

CREATE OBJECT ALV_GRID1.....
.....
CREATE OBJECT LREF.
***** registration of handler methods ****
 SET HANDLER LREF->DB_CLICK FOR ALV_GRID1.
......

This code enables the generation of the detailed second ALV output: billing documents of a customer. It enables
closing of this second output and navigating back to the first ALV output: the customer-wise sales summary of a
specific company code.

To ensure that double-clicking a subtotal or total line does not generate the detailed ALV report, you check the
contents of the importing parameter E_ROW-ROWTYPE. If its value is blank or an initial value, double-clicking has been
done on a regular row. Otherwise, double-clicking has been done on a subtotal or total row.

Placing a Custom Button on the ALV Toolbar and Making It Operative
Events TOOLBAR and USER_COMMAND of class CL_GUI_ALV_GRID

In this part of the exercise, you will incorporate a custom button on the ALV toolbar and then react to the
clicking of that button. You will do this by shifting the Back button from the application toolbar (used in this chapter’s
preceding hands-on exercises) to the ALV toolbar. Then you do not have to code in the PAI event.

Having a custom button on the ALV toolbar requires two main steps:

Locating the custom button on the ALV toolbar•

Making the custom button operational•

You incorporate a custom button on the ALV toolbar by using the event TOOLBAR of the ALV class CL_GUI_ALV_
GRID. This event is triggered each time the toolbar of the control (ALV grid) needs to be regenerated. It is also triggered
by the method SET_TOOLBAR_INTERACTIVE of the class CL_GU_ALV_GRID.

The event TOOLBAR has two importing parameters (E_OBJECT of type CL_ALV_EVENT_TOOLBAR_SET and
E_INTERACTIVE). You will use the first importing parameter, E_OBJECT. If you look up the TOOLBAR event of the class
CL_GUI_ALV_GRID in the Class Builder, and then look up the class CL_ALV_EVENT_TOOLBAR_SET and click the attributes

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

697

of that class, the DDIC table has an attribute MT_TOOLBAR of type TTB_BUTTON. The structure of the DDIC table (internal
table) type is STB_BUTTON. You have to fill in the four fields (FUNCTION, ICON, QUICKINFO, and TEXT) of the structure
STB_BUTTON and then append these button particulars to the internal table E_OBJECT->MT_TOOLBAR for your button to
appear on the ALV toolbar. You can create a gap between buttons by assigning the field BUTN_TYPE of structure
STB_BUTTON a value of 3 and appending it to the internal table E_OBJECT->MT_TOOLBAR. You also can create menu and
menu entries. Refer to the single values of the domain TB_BTYPE associated with the field BUTN_TYPE of structure
STB_BUTTON. You are placing the extra custom button only on first instance of the class CL_GUI_ALV_GRID.

You can use the event USER_COMMAND to execute actions following the clicking of ALV toolbar buttons. You have
to locate the same program code that was in the PAI event of this chapter’s preceding exercises in the event handler
method of the event USER_COMMAND. Again, you want this method to be executed for the first instance of the class
CL_GUI_ALV_GRID, not the second instance. The event USER_COMMAND has one importing parameter, E_UCOMM,
containing the function code of the button pressed.

The extra code required to implement the handler methods for the events TOOLBAR and USER_COMMAND follows.
Peruse the code with its comments.
Source code in the local class:

PUBLIC SECTION.
......

METHODS: TOOL_BAR FOR EVENT TOOLBAR OF CL_GUI_ALV_GRID
 IMPORTING E_OBJECT E_INTERACTIVE,

 GO_BACK FOR EVENT USER_COMMAND OF CL_GUI_ALV_GRID
 IMPORTING E_UCOMM.
.........

PRIVATE SECTION.

DATA: TOOL_STRU TYPE STB_BUTTON, " stru for ALV tool bar
...

METHOD TOOL_BAR.

 CLEAR TOOL_STRU.
 TOOL_STRU-BUTN_TYPE = 3.
 " create gap - last existing button & own button

 APPEND TOOL_STRU TO E_OBJECT->MT_TOOLBAR.
 CLEAR TOOL_STRU.

 TOOL_STRU-FUNCTION = 'BACK'. " function code
 TOOL_STRU-ICON = '@CF@'. " icon code
 TOOL_STRU-QUICKINFO = 'Back'(002). " button tool tip
 TOOL_STRU-TEXT = 'Back'(002). " button text

 APPEND TOOL_STRU TO E_OBJECT->MT_TOOLBAR.

ENDMETHOD.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

698

METHOD GO_BACK.
 IF E_UCOMM = 'BACK'.

 SET SCREEN 0. " these two statements return
 LEAVE SCREEN. " control to PARAMETERS prompt

 ENDIF.
ENDMETHOD.

The values of text symbols:

[TEXT-002: 'Back']

Code for registration of handler methods TOOL_BAR AND GO_BACK for instance ALV_GRID1:

CREATE OBJECT ALV_GRID1.....
.....
CREATE OBJECT LREF.
......

SET HANDLER LREF->TOOL_BAR FOR ALV_GRID1.
SET HANDLER LREF->GO_BACK FOR ALV_GRID1.

Outputting a Serial Number and Adjusting It with the Change in ALV Layout
Event AFTER_USER_COMMAND of class CL_GUI_ALV_GRID

You are using the DDIC structure YCL_CH12_SALES_SUM_STRU1 to generate the default field catalog for the first
instance ALV grid. It is a modified version of the DDIC structure YCL_CH12_SALES_SUM_STRU you used for your earlier
ALV exercises. It contains the additional field SRL_NO as the first field of the structure.

The field SRL_NO (serial number) appearing in your ALV output has to be adjusted—regenerated every time the
user changes the output layout by either omitting rows or including previously omitted rows (that is, a change in filter
settings and/or every time the data is reordered via a change in sort settings).

In your previous exercise, you did not re-sort the customer-wise sales summary internal table in the program.
The filter and sort settings were applied to the copy of the summarized sales data internal table on the presentation
server. Now you need to re-sort the summarized sales data internal table in the program (application server) to be
able to regenerate the serial numbers.

You can regenerate the serial numbers in an event handler method of event AFTER_USER_COMMAND. This event is
triggered after the end user selects a function on the ALV toolbar and this function has been executed.

In case a default layout is operating (that is, a default layout has been set), when the ALV output is being
produced for the first time via the Execute/F8 button on the selection screen prompting for company code, the
serial numbers have to be generated as per filter and sort settings in the default layout. For the serial numbers to be
generated correctly for the default layout, you execute the event handler method for the event AFTER_USER_COMMAND
explicitly, just after calling the method SET_TABLE_FOR_FIRST_DISPLAY.

The filter and sort settings are maintained at the presentation server level. So you have to retrieve these
settings with the methods GET_FILTER_CRITERIA and GET_SORT_CRITERIA. These methods retrieve and return the
presentation server filter and sort settings to the program in the specific format of internal tables. There is another
method, GET_FILTERED_ENTRIES. This method returns in a hashed internal table, the row numbers of filtered-out
data. In the present exercise, you will use this method to retrieve the filtered-out or omitted rows returned in terms of
row numbers in a hashed internal table.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

699

The row numbers returned in a hashed internal table are the row numbers of the summarized sales data internal
table as it existed before new sort criterion was applied. Referring to this hashed internal table, you can mark the rows
in the summarized sales data internal table for which a serial number is to be generated. (For omitted row numbers,
no serial number is to be generated.)

The sort criterion is returned in an internal table whose structure (DDIC type LVC_S_SORT) is as follows:

SPOS: Indicates the sort sequence. If the field is first in the sort sequence, the value = 1; if it
is second, the value = 2.

FIELDNAME: Indicates the field name

UP: Value = X if ascending

DOWN: Value = X if descending

You need to sort the summarized sales data internal table as per new sort criterion to be able to generate the new
serial numbers.

An internal table can be sorted by providing the sort specifications in an internal table similar to the runtime sort
specification you provide in a SELECT statement. The syntax for this is as follows:

SORT <internal table> BY (<internal table with sort specifications>).

The <internal table with sort specifications> has the DDIC structure type ABAP_SORTORDER with the
following fields:

NAME Field name
DESCENDING = 'X', if descending
ASTEXT = 'X', if text sort

So you have to convert the sort criterion internal table returned as DDIC structure type LVC_S_SORT into an
internal table of DDIC structure type ABAP_SORTORDER.

To sum up, you have to perform the following to have serial numbers regenerated as per altered filter and/or sort
settings in the event handler method of AFTER_USER_COMMAND:

Reset/initialize serial numbers in the summarized sales data internal table.•

Retrieve the filtered-out or omitted rows at the presentation server/front-end.•

Using this information of filtered-out rows, mark in the summarized sales data internal table, •
the rows for which serial numbers are to be generated.

Retrieve the sort settings.•

Convert the sort settings.•

Sort the summarized sales data internal table with the converted sort settings.•

Generate the serial numbers for the marked rows of the sorted summarized sales data internal •
table.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

700

Whenever you are selecting saved layouts or operating the default layout, the field catalog at the front end or
presentation server is not in sync with the back-end field catalog. (The suppression of leading zeros occurring in
customer code output, and so forth.) To rectify this, you do the following:

Retrieve the front-end or presentation server field catalog.•

Manipulate this field catalog for the appearance of leading zeros in the customer code. •
Suppress the totaling of field SRL_NO (serial number). Determine the maximum widths of the
fields NAME1 and ORT01. Set the output lengths of these fields (field catalog field OUTPUTLEN) to
the determined widths.

Set the ALV output front-end field catalog with the manipulated field catalog.•

You make the leading zeros appear in the customer code by using the function module CONVERSION_EXIT_ALZSN_
OUTPUT in the field EDIT_MASK of the field catalog. You assign this field the value ==ALZSN. Note that the function
module CONVERSION_EXIT_ALPHA_OUTPUT suppresses zeros in the output.

To make function module CONVERSION_EXIT_ALZSN_OUTPUT operative, you have to insert a row in the database
table ADLZSN with the following code snippet:

TABLES ADLZSN.
ADLZSN-SETON = 'X'.
INSERT ADLZSN.

The optimizing of column widths with the field catalog field COL_WIDTH set to value X is not working with the
initial loading of the ALV output with a default layout, especially with the fields NAME1 and ORT01. That is why you are
determining the maximum widths for these fields while generating the serial numbers, by assigning the field catalog
field OUTPUTLEN with determined widths.

The method should be executed only if there is change in the sort and filter settings. But for now, you are
executing this method on operation of any of the ALV toolbar options. In the next version of this program using the
ALV class CL_SALV_TABLE, you will implement this.

The extra code required to implement the handler method for event AFTER_USER_COMMAND (to regenerate serial
number, and so forth) follows.

Peruse the source code with its comments.
Source code in the declaration part:

" internal table for sort run time spec
 SORT_TAB TYPE LVC_T_SORT WITH HEADER LINE, " ALV sort entries
BYS TYPE ABAP_SORTORDER_TAB WITH HEADER LINE.

Source code in the local class:

METHODS:

ADJUST_SRL_NO FOR EVENT AFTER_USER_COMMAND OF CL_GUI_ALV_GRID
 IMPORTING E_UCOMM E_SAVED E_NOT_PROCESSED.

PRIVATE SECTION.
DATA:
........
NAME1_LEN TYPE I, " max length NAME1
ORT01_LEN TYPE I, " max length ORT01
TFCAT TYPE LVC_T_FCAT,
FL_ENTS TYPE LVC_T_FIDX, " rows filtered out
INDEX TYPE YCL_CH12_SRL_NO. " to generate serial no.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

701

METHOD ADJUST_SRL_NO.
 REFRESH: FL_ENTS, SORT_TAB, BYS.
 ALV_GRID1->REFRESH_TABLE_DISPLAY().
***** rows to be filtered out *****
 CALL METHOD ALV_GRID1->GET_FILTERED_ENTRIES
 IMPORTING
 ET_FILTERED_ENTRIES = FL_ENTS
 .
***** rows to be filtered out over *****

 CALL METHOD ALV_GRID1->GET_SORT_CRITERIA
 IMPORTING
 ET_SORT = SORT_TAB[].

***** convert sort specs *****

 SORT SORT_TAB BY SPOS. " sort in order of sort sequence
 LOOP AT SORT_TAB INTO SORT_TAB.
 BYS-NAME = SORT_TAB-FIELDNAME.
 IF SORT_TAB-DOWN IS NOT INITIAL.
 BYS-DESCENDING = 'X'.
 ELSE.
 BYS-DESCENDING = ' '.

 ENDIF.
 APPEND BYS TO BYS.
 ENDLOOP.
***** convert sort specs over *****

***** mark rows for which serial numbers to be generated *****
** rows for which serial numbers to be generated assigned non-zero **

 INDEX = 0.

 CLEAR SALES_STRU-SRL_NO.
 MODIFY SALES_TAB FROM SALES_STRU TRANSPORTING SRL_NO
 WHERE SRL_NO <> 0.

 LOOP AT SALES_TAB INTO SALES_STRU.

 READ TABLE FL_ENTS FROM SY-TABIX TRANSPORTING NO FIELDS.
 IF SY-SUBRC = 0. " if row is in to-be-filtered-out internal
 CONTINUE. " table, bypass for serial number generation
 ENDIF.
 INDEX = INDEX + 1.
 SALES_STRU-SRL_NO = INDEX.
 MODIFY SALES_TAB FROM SALES_STRU TRANSPORTING SRL_NO.
 ENDLOOP.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

702

 SORT SALES_TAB BY (BYS). " BYS contains run time sort specs

 INDEX = 0.

***** generate serial numbers **
 NAME1_LEN = 0.
 ORT01_LEN = 0.

 LOOP AT SALES_TAB INTO SALES_STRU.

 IF SALES_STRU-SRL_NO = 0.
 CONTINUE.
 ENDIF.
 INDEX = INDEX + 1.
 SALES_STRU-SRL_NO = INDEX.
 MODIFY SALES_TAB FROM SALES_STRU.

 " obtaining the maximum width of output: NAME1 & ORT01

 IF STRLEN(SALES_STRU-NAME1) > NAME1_LEN.
 NAME1_LEN = STRLEN(SALES_STRU-NAME1).
 ENDIF.

 IF STRLEN(SALES_STRU-ORT01) > ORT01_LEN.
 ORT01_LEN = STRLEN(SALES_STRU-ORT01).
 ENDIF.

 ENDLOOP.

***** adjust front-end field catalogue *****

 ALV_GRID1->GET_FRONTEND_FIELDCATALOG(
 IMPORTING ET_FIELDCATALOG = TFCAT).
" get/retrieve front-end field catalogue
 LOOP AT TFCAT INTO FSTRU.

CASE FSTRU-FIELDNAME.

WHEN 'KUNNR'.

FSTRU-EDIT_MASK = '==ALZSN'.
FSTRU-CONVEXIT = ' '.
FSTRU-NO_CONVEXT = 'X'.
FSTRU-COL_OPT = 'X'.

WHEN 'NAME1'.
FSTRU-OUTPUTLEN = NAME1_LEN.
WHEN 'ORT01'.
FSTRU-OUTPUTLEN = ORT01_LEN.
WHEN OTHERS.
FSTRU-COL_OPT = 'X'.
ENDCASE.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

703

 IF FSTRU-FIELDNAME = 'SRL_NO'.
 FSTRU-NO_SUM = 'X'. " no totaling for serial nos.
 ENDIF.

 MODIFY TFCAT FROM FSTRU.

 ENDLOOP.

 ALV_GRID1->SET_FRONTEND_FIELDCATALOG(IT_FIELDCATALOG = TFCAT[]).
" set front-end field catalogue

ENDMETHOD.

Source code for registration of handler method ADJUST_SRL_NO for instance ALV_GRID1:

SET HANDLER LREF->ADJUST_SRL_NO FOR ALV_GRID1.
.....
LREF->ADJUST_SRL_NO().
ALV_GRID1->REFRESH_TABLE_DISPLAY().

The program is YCL_CH12_03_ALV_EVENTS, and the full code can be found in source code resource.
The output appears as shown in Figure 12-64.

Figure 12-64. Output of program YCL_CH12_03_ALV_EVENTS

In the output:

The serial numbers appear.•

The Back button appears on the ALV toolbar.•

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

704

Change the layout. In the changed layout, the order of fields is SRL_NO, NAME1, KUNNR, ORT01, and NETWR. Make the
sort setting as NAME1 ascending. The serial numbers have been regenerated for the changed layout. The output for this
changed layout looks like Figure 12-65.

Figure 12-66. Summary and detail output

Figure 12-65. Output showing the changed layout of YCL_CH12_03_ALV_EVENTS

Load the original layout with none of the filter and sort settings, and the data appearing in order of customer
code. Scroll down to the customer code 0000003271 (serial number 31). Double-click this customer line. This
produces the detailed ALV output, which looks like Figure 12-66.

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

705

The billing documents of a specified customer appear as detailed ALV output in the second instance of the
ALV grid, in a dialog box container. You can operate the Close option of the dialog box container and test the execution
of the event handler method. You can click the Back button on the ALV toolbar of the first instance of the ALV grid
and test the event handler method.

As in the preceding exercise, create and save a few layouts. One of these is LAYOUT2, the same layout used in the
preceding exercise. This layout is as follows:

Field order:•

Srl. No. (• SRL_NO)

City (• ORT01)

Customer (• KUNNR)

Name 1 (• NAME1)

Net Value (• NETWR)

Total: Net Value•

Sorting•

Sort: City (Ascending)•

Group: City (Subtotals)•

Filter fields/columns•

Filter values for city: A*, B*, C*, M*, S*, T* (cities starting with A, B, C, M, S, and T)•

Net Value: >= 500•

For this layout, the output appears as shown in Figure 12-67 and Figure 12-68.

Figure 12-67. Output with subtotals

CHAPTER 12 ■ ABAP LIST VIEWER OUTPUTS—PART 1

706

The output has tested the event handler methods of events DOUBLE_CLICK, CLOSE, and AFTER_USER_COMMAND.
The appearance of the Back button on the ALV toolbar and its operation has tested the event handler methods of
events TOOLBAR and USER_COMMAND. The power of events has been demonstrated in this exercise.

Conclusion
You have created ALV output by using the built-in class CL_GUI_ALV_GRID. You have manipulated this output as an
end user would—for instance, shuffling fields, omitting fields, sorting, filtering, performing ABC analysis, and [verb
here] graphics. You have controlled the ALV output field attributes and the overall appearance of the grid, and you
have enabled saving and managing of ALV layouts. You triggered events to add sophistication and enhance the
functionality of the ALV output.

In the next chapter, you will use a more modern built-in class, CL_SALV_TABLE, and implement the same
functionalities you implemented when using the built-in class CL_GUI_ALV_GRID.

Figure 12-68. Program YCL_CH12_03_ALV_EVENTS: Output with Subtotals

707

CHAPTER 13

ABAP List Viewer Output—Part 2

In this chapter, you will continue the generation of ALV output that you started in the preceding chapter. Whatever
ALV features you implemented by using the class CL_GUI_ALV_GRID will be implemented again in this chapter by using
the class CL_SALV_TABLE.

This chapter also presents two data browser programs: the first program uses the class CL_GUI_ALV_GRID, and the
second program uses the class CL_SALV_TABLE. These data browsers are like the transaction code SE16 data browser.
On the opening screen, you input a table or view name. The fields of that table or view are displayed with check boxes,
enabling you to select or deselect them. After field selection, you click the Output button on the application toolbar to
output the selected fields’ data in an ALV.

ALV Output Using the Class CL_SALV_TABLE
You have used various features of the class CL_GUI_ALV_GRID to produce ALV output. In this section, you’ll learn about
the deployment of the ALV class CL_SALV_TABLE.

You must have observed that the class CL_GUI_ALV_GRID is a mixture of class and procedure orientation. For
instance, the way you were using the field catalog internal table does not comply with the idea of encapsulation. What
data object the class is using should not be apparent to the user of the class. If that user wants to set the properties
of a subobject or component of a class, it should be in terms of GET and SET statements and not in terms of directly
accessing the data object used by the class and manipulating the data object as you were doing in the context of field
catalog manipulation.

Main ALV class: CL_SALV_TABLE
The class CL_SALV_TABLE is more class- or OOPS-oriented than the class CL_GUI_ALV_GRID, which, as I’ve pointed out,
is a mixture of class and procedure orientation. With the class CL_SALV_TABLE, you have the option to either locate the
ALV output in a container or have the output occupy the full screen without using a container.

If you opt for ALV output without a container and occupying the full screen, you don’t have to do any screen
programming. You don’t have to create a screen, give the statement CALL SCREEN, or provide PBO and PAI coding. That
makes things relatively simple.

To generate ALV output with the class CL_SALV_TABLE, you use the static method FACTORY and the instance
method DISPLAY.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

708

FACTORY has the following parameters:

LIST_DISPLAY (importing): The parameter is relevant only when ALV output is not in a
container (that is, full-screen output). The parameter can assume the value X or blank.
When the value X is passed to it, the output displays as a so-called classical list with a
two-dimensional visual effect. When the default value ' ' is passed, the output has a grid
or three-dimensional visual effect. You cannot pass this parameter the value X if the ALV
output is to be located inside a container. If X is passed and the ALV output is located inside
a container, a runtime error results.

R_CONTAINER (importing): This reference variable points to the instance of a container class.
You use this parameter if you are locating ALV output inside a container.

CONTAINER_NAME (importing): This is the container name as given in the Attributes
dialog box for the screen element. You use this parameter if you are locating ALV output
inside a container. You should provide one of the two parameters: either R_CONTAINER or
CONTAINER_NAME.

R_SALV_TABLE (exporting): This reference variable is declared with type ref to the same
class, CL_SALV_TABLE. The FACTORY method creates an instance of the class with the passed
variable. The execution of the CONSTRUCTOR method CREATE OBJECT is unnecessary.

T_TABLE (changing): This internal table contains the data to be output.

After executing the FACTORY method, you have to execute the DISPLAY method to create the ALV output.
The following source code illustrates the syntax:

DATA: CURRENCY_TAB TYPE STANDARD TABLE OF TCURT,
 ALV_GRID TYPE REF TO CL_SALV_TABLE.

START-OF-SELECTION.

SELECT * FROM TCURT INTO TABLE CURRENCY_TAB WHERE SPRAS = SY-LANGU.

CALL METHOD CL_SALV_TABLE=>FACTORY
 EXPORTING
 LIST_DISPLAY = 'X'
 IMPORTING
 R_SALV_TABLE = ALV_GRID
 CHANGING
 T_TABLE = CURRENCY_TAB.

ALV_GRID->DISPLAY().

You can test this source code.
This outputs the classical ALV list (full screen) with a two-dimensional visual effect. You don’t have to create a

screen and provide the associated screen programming. If you omit the LIST_DISPLAY parameter or pass as
LIST_DISPLAY = ' ', the output will have a three-dimensional visual effect (grid). For full-screen ALV output not
in a container, the ALV toolbar replaces the application toolbar.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

709

Subobjects of the Class CL_SALV_TABLE

You need the program to have more capabilities, so you can do the following: change the properties of the fields or
columns that are output (equivalent to the field catalog capabilities), control the overall appearance of the output
(for example, the grid title), and enable the end user to save and retrieve the ALV layouts.

And finally, you would like to trigger events to modify the default ALV toolbar, to create interactive lists
(via the DOUBLE_CLICK event), and to provide a serial number in the ALV output that you should be able to generate
dynamically as the end user changes layouts or loads saved layouts. In short, whatever you did with the ALV output
when using the class CL_GUI_ALV_GRID, you should be able to do when using the class CL_SALV_TABLE.

To provide these capabilities with the class CL_SALV_TABLE, you will use GET subobjects and SET
subobjects statements.

For example, the preceding code snippet to output ALV by default does not provide the full set of default buttons
on the ALV toolbar. To provide the full set, you have to get the subobject FUNCTIONS of the ALV object by using
the GET_FUNCTIONS method of the main class CL_SALV_TABLE. The method GET_FUNCTIONS will return a reference
to the instance of the subobject FUNCTIONS. Using this reference variable (refer to the parameters of the method
GET_FUNCTIONS of the class CL_SALV_TABLE in SE24), you will execute the method SET_ALL to place a full set of default
buttons on the ALV toolbar. The extra source code to place the full set of default buttons on the ALV toolbar follows.

Data declaration:

DATA: FUNCTIONS TYPE REF TO CL_SALV_FUNCTIONS_LIST.
....

Source code before the ALV_GRID->DISPLAY() statement:

FUNCTIONS = ALV_GRID->GET_FUNCTIONS().
FUNCTIONS->SET_ALL(VALUE = 'X').

You can add buttons to the ALV toolbar by using the ADD_FUNCTION method. You also can enable and delete
buttons. Refer to the method list of the classes CL_SALV_FUNCTIONS_LIST, CL_SALV_FUNCTIONS, CL_SALV_FUNCTION,
and CL_SALV_FUNCTIONAL_SETTINGS.

In a similar manner, if you want to manipulate the properties of the ALV output fields or columns, you have to get
the appropriate subobjects and set their properties. If you want to impart green color in an intensified background to
the field or column LTEXT, for example, you use the following source code:

Data declaration:

DATA: COLUMNS TYPE REF TO CL_SALV_COLUMNS_TABLE,
 COLUMN TYPE REF TO CL_SALV_COLUMN_TABLE,
 COL_STRU TYPE LVC_S_COLO. " DDIC structure

Source code before the ALV_GRID->DISPLAY() statement:

COLUMNS = ALV_GRID->GET_COLUMNS().
COLUMN ?= COLUMNS->GET_COLUMN(COLUMNNAME = 'LTEXT').
COL_STRU-COL = 5. " color code
COL_STRU-INT = 1. " intensified on
COL_STRU-INV = 0. " inverse off

COLUMN->SET_COLOR(VALUE = COL_STRU).

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

710

The method GET_COLUMNS gets instances of all the fields or columns of the ALV output. The method GET_COLUMN
gets an instance of a specified field or column. The method SET_COLOR sets the color of the specific field or column.

Some property settings operate on all fields or columns, and others operate on a single field or column. If you
want all the field or column widths optimized, you use COLUMNS->SET_OPTIMIZE(VALUE = 'X').

In this way with subobjects, you can have filter settings, sort settings, aggregations, selections, events, and so
forth. Table 13-1 lists classes used to access subobjects of the main class CL_SALV_TABLE.

Table 13-1. Classes Used to Access Subobjects of CL_SALV_TABLE

Serial Number Class Name

1 CL_SALV_AGGREGATIONS

2 CL_SALV_AGGREGATION

3 CL_SALV_COLUMNS_TABLE

4 CL_SALV_COLUMN_TABLE

5 CL_SALV_EVENTS_TABLE

6 CL_SALV_FUNCTIONS_LIST

7 CL_SALV_FILTERS

8 CL_SALV_FILTER

9 CL_SALV_LAYOUT

10 CL_SALV_SELECTIONS

11 CL_SALV_SELOPT

12 CL_SALV_SORTS

13 CL_SALV_SORT

You should spend some time familiarizing yourself with the class CL_SALV_TABLE and its associated classes and
subclasses. The upcoming exercises further illustrate the use of CL_SALV_TABLE.

Hands-on Exercise: Customer-wise Sales Summary of
a Specified Company Code as ALV Output: Use Class
CL_SALV_TABLE
Change Field or Column Properties Provide for Save Layouts Facility, Etc.
This hands-on exercise is equivalent to the prior program, YCL_CH12_02_ALV_FCAT_ETC that used the class
CL_GUI_ALV_GRID. In this program, YCL_CH13_01_USE_CL_SALV_TABLE, you control the output field properties, set up
aggregation for the NETWR field, control the overall appearance of the ALV output, and provide for the saving of layouts.

You will locate an instance of the ALV class CL_SALV_TABLE inside an instance of the container class
CL_GUI_CUSTOM_CONTAINER. You will place the instance of the container class CL_GUI_CUSTOM_CONTAINER in a custom
control. This part of the architecture is identical to the one you were using for the ALV class CL_GUI_ALV_GRID.

You can copy the screen, status, and title from the earlier program, YCL_CH12_02_ALV_FCAT_ETC.
As stated earlier, the field catalog concept in the class CL_GUI_ALV_GRID is implemented in the class

CL_SALV_TABLE with methods GET_COLUMNS, GET_COLUMN, and SET_COLUMN.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

711

The class-based error handling after calling the class method FACTORY is through TRY...ENDTRY and the CATCH
block. The error reporting is done inside a static method of a local class.

This error reporting uses the method GET_MESSAGE, which returns the values of the system fields SY-MSGID,
SY-MSGNO, SY-MSGV1, SY-MSGV2, SY-MSGV3, and SY-MSGV4 into the corresponding fields of a locally declared structure
referring to the DDIC structure BAL_S_MSG. You then issue the message by using the fields of this structure. The
message could be fetched and issued in the CATCH block itself. You will use a class method in a local class for this task.

You will use an internal table with the DDIC structure YCL_CH06_SALES_SUM_STRU (having the KURRF field) for
loading the data, fetching row by row, and calculating the amount. But you will use an internal table with the DDIC
structure YCL_CH12_SALES_SUM_STRU (not having the KURRF field) to generate the final data to be passed to the FACTORY
method. This is because the FACTORY method by default outputs all the fields of the internal table passed to it. You do
not want the Exchange Rate field (KURRF) to be output.

The following source program, which includes elaborate comments, should clarify the new methods and features
used in the program:

REPORT YCL_CH13_01_USE_CL_SALV_TABLE.

**
* ALV Report WITH class CL_SALV_TABLE: **
* For a Specific Company Code: Customer Wise Sales Summary**
**

**
* you can copy screen 100, status 'STAT1' and title 'TITLE1' from **
* program 'YCL_CH12_02_ALV_FCAT_ETC' **
* **
* declarations:- **
* ============== **
* local class definition deferred **
* **
* global data **
* ----------- **
* 1,2. internal table, stru for customer wise sales summary **
* (this contains the field KURRF to convert amounts. this is **
* used to generate the customer wise sales summary) **
* 3. internal table customer wise sales summary **
* (this does not contain the field KURRF. passed as parameter**
* to the 'FACTORY' method) **
* 4. reference variable - instance of 'CL_SALV_TABLE' **
* 5. instance of 'CL_GUI_CUSTOM_CONTAINER' **
* 6. instance of 'CX_SALV_MSG' exception **
* 7. instance of 'CL_SALV_FUNCTIONS_LIST' **
* 8. instance of 'CL_SALV_COLUMNS_TABLE' **
* 9. instance of 'CL_SALV_COLUMN_TABLE' **
* 10. instance of 'CL_SALV_AGGREGATIONS' **
* 11. instance of 'CL_SALV_AGGREGATION' **
* 12. instance of 'CL_SALV_LAYOUT' **
* 13. layout key equivalent to DISVARIANT in 'CL_GUI_ALV_GRID' **
* 14. structure to pass color specification to column **
* 15. OK_CODE **
* 16. company code description - from T001 **
* 17. currency code of company code - from T001 **
* **

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

712

* local class for exception reporting of 'CL_SALV_TABLE' **
* definition & implementation **
* **
* PARAMETERS prompt for company code **
* **
* START-OF-SELECTION **
* ================== **
* retrieve single row from T001 **
* set up SELECT.. COLLECT.. ENDSELECT for generating summary **
* sort customer wise sales summary internal table by KUNNR **
* CALL SCREEN 100. **
* **
* PBO code **
* ======== **
* set pf status, set title **
* create instance of custom container **
* call 'FACTORY' method **
* **
* <ALV instance>->GET_COLUNNS. **
* set column properties - KUNNR: EDIT_MASK.. **
* set column properties - all columns for color **
* **
* <ALV instance>->GET_AGGREGATIONS. set aggregation for NETWR **
* **
* <ALV instance>->GET_FUNCTIONS. set for all functions **
* set for functions - ..LAYOUT_CHANGE, ..LAYOUT_MAINTAIN and **
* ..LAYOUT_SAVE **
* **
* <ALV instance>->GET_LAYOUT. set for layout **
* **
* <ALV instance>->DISPLAY(). **
* **
* PAI code **
* ======== **
* check OK_CODE = 'BACK', if so SET SCREEN 0. LEAVE SCREEN. **
* **
**

CLASS LCLASS DEFINITION DEFERRED.

DATA:
 SALES_TAB TYPE STANDARD TABLE OF " data - summary
 YCL_CH12_SALES_SUM_STRU WITH HEADER LINE,
 SALES_STRU TYPE LINE OF YCL_CH06_SALES_SUM_TAB,

 ALV_GRID TYPE REF TO CL_SALV_TABLE,
 CCONT TYPE REF TO CL_GUI_CUSTOM_CONTAINER,
 ERROR TYPE REF TO CX_SALV_MSG, " SALV exception
 FUNCTIONS TYPE REF TO CL_SALV_FUNCTIONS_LIST, " functions
 COLUMNS TYPE REF TO CL_SALV_COLUMNS_TABLE, " get columns
 COLUMN TYPE REF TO CL_SALV_COLUMN_TABLE, " get column

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

713

 AGGS TYPE REF TO CL_SALV_AGGREGATIONS, " get aggregations
 AGG TYPE REF TO CL_SALV_AGGREGATION, " get aggregation
 LAYOUT_REF TYPE REF TO CL_SALV_LAYOUT, " for layout management

 LAYOUT_KEY TYPE SALV_S_LAYOUT_KEY, " for layout management
 COL_STRU TYPE LVC_S_COLO, " for color

 OK_CODE TYPE SY-UCOMM,
 BUTXT TYPE T001-BUTXT,
 WAERS TYPE T001-WAERS.

**
PARAMETERS: CCODE TYPE VBRK-BUKRS DEFAULT 3000.

CLASS LCLASS DEFINITION.
 PUBLIC SECTION.
 CLASS-METHODS:

 SALV_ERROR_MSG
 IMPORTING
 ERROR TYPE REF TO CX_SALV_MSG.

ENDCLASS.

CLASS LCLASS IMPLEMENTATION.

 METHOD SALV_ERROR_MSG. " report error in ALV
 DATA: MESSAG TYPE BAL_S_MSG,
 TYPE TYPE C VALUE 'E' .

 MESSAG = ERROR->GET_MESSAGE().

 MESSAGE ID MESSAG-MSGID
 TYPE TYPE "TYPE MESSAG-MSGTY
 NUMBER MESSAG-MSGNO
 WITH MESSAG-MSGV1
 MESSAG-MSGV2
 MESSAG-MSGV3
 MESSAG-MSGV4.

 ENDMETHOD.

ENDCLASS.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

714

START-OF-SELECTION.

SELECT SINGLE BUTXT WAERS FROM T001 INTO (BUTXT, WAERS) WHERE
 BUKRS = CCODE.

SELECT KUNNR NAME1 ORT01 NETWR KURRF FROM YCL_CH05_VBRKKNA INTO
 CORRESPONDING FIELDS OF SALES_STRU WHERE BUKRS = CCODE.

 SALES_STRU-NETWR = SALES_STRU-NETWR * SALES_STRU-KURRF.
 SALES_STRU-KURRF = 0. "to prevent overflow

 MOVE-CORRESPONDING SALES_STRU TO SALES_TAB.
 COLLECT SALES_TAB INTO SALES_TAB.

ENDSELECT.

SORT SALES_TAB BY KUNNR.

CALL SCREEN 100.

&---
*& Module STATUS_0100 OUTPUT
&---
MODULE STATUS_0100 OUTPUT.

SET PF-STATUS 'STAT1'.

SET TITLEBAR 'TITLE1' WITH CCODE BUTXT WAERS.

CREATE OBJECT CCONT
 EXPORTING
 CONTAINER_NAME = 'CONT'.

***** call static method FACTORY *****
TRY.

 CALL METHOD CL_SALV_TABLE=>FACTORY
 EXPORTING
 R_CONTAINER = CCONT " reference to container
* LIST_DISPLAY = ' ' " ' ' else run time error
 IMPORTING
 R_SALV_TABLE = ALV_GRID " get instance
 CHANGING
 T_TABLE = SALES_TAB[]. " data

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

715

 CATCH CX_SALV_MSG INTO ERROR.
 CALL METHOD LCLASS=>SALV_ERROR_MSG
 EXPORTING
 ERROR = ERROR.

ENDTRY.

******* optimize column width********

 COLUMNS = ALV_GRID->GET_COLUMNS().
 COLUMNS->SET_OPTIMIZE(VALUE = 'X').

**** color to columns

 COLUMN ?= COLUMNS->GET_COLUMN(COLUMNNAME = 'KUNNR').
 COLUMN->SET_EDIT_MASK(VALUE = ' ').

 COL_STRU-COL = 1.
 COLUMN->SET_COLOR(VALUE = COL_STRU).

 COLUMN ?= COLUMNS->GET_COLUMN(COLUMNNAME = 'NAME1').
 COL_STRU-COL = 2.
 COLUMN->SET_COLOR(VALUE = COL_STRU).
 COLUMN->SET_LOWERCASE().

 COLUMN ?= COLUMNS->GET_COLUMN(COLUMNNAME = 'ORT01').
 COL_STRU-COL = 3.
 COLUMN->SET_COLOR(VALUE = COL_STRU).
 COLUMN->SET_LOWERCASE().

 COLUMN ?= COLUMNS->GET_COLUMN(COLUMNNAME = 'NETWR').
 COL_STRU-COL = 4.
 COLUMN->SET_COLOR(VALUE = COL_STRU).

**** aggregation setting for NETWR *****

 AGGS = ALV_GRID->GET_AGGREGATIONS().

 AGG = AGGS->ADD_AGGREGATION(COLUMNNAME = 'NETWR' AGGREGATION = 1).

************ enable all(full) default functions *********

FUNCTIONS = ALV_GRID->GET_FUNCTIONS().
*FUNCTIONS->SET_DEFAULT().
FUNCTIONS->SET_ALL(). "DEFAULT().

***** set more functions *****

FUNCTIONS->SET_LAYOUT_CHANGE('X').
FUNCTIONS->SET_LAYOUT_MAINTAIN('X').
FUNCTIONS->SET_LAYOUT_SAVE('X').

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

716

***** for save, maintain layouts *****

LAYOUT_REF = ALV_GRID->GET_LAYOUT().
LAYOUT_KEY-REPORT = 'YCL_CH13_01_USE_CL_SALV_TABLE'.

LAYOUT_REF->SET_KEY(LAYOUT_KEY).
LAYOUT_REF->SET_SAVE_RESTRICTION('1').
 " equivalent to the I_SAVE parameter in
 " the method SET_TABLE_FOR_FIRST_DISPLAY

*
 ALV_GRID->DISPLAY().

ENDMODULE. " STATUS_0100 OUTPUT

&---
*& Module USER_COMMAND_0100 INPUT
&---

MODULE USER_COMMAND_0100 INPUT.
IF OK_CODE = 'BACK'.
 SET SCREEN 0.
 LEAVE SCREEN.
ENDIF.
ENDMODULE. " USER_COMMAND_0100 INPUT

Figure 13-1 and 13-2 show the initial output.

Figure 13-1. Initial output of the program YCL_CH13_01_USE_CL_SALV_TABLE

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

717

Figure 13-2. Output of YCL_CH13_01_USE_CL_SALV_TABLE

Change the layout in the following manner:

Field/column order:•

City (• ORT01)

Name (• NAME1)

Customer (• KUNNR)

Net Value (• NETWR)

Sort order:•

City (• ORT01), Ascending

Name (• NAME1), Ascending

Figure 13-3 shows the output after making these changes in the layout.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

718

Figure 13-3. Output after changes in layout

This class is sorting text data on the text data that is translated or converted to uppercase.
You can save and retrieve layouts as you did for ALV output when using the class CL_GUI_ALV_GRID. You can

generate graphics and perform ABC analysis as well.

Hands-on Exercise: Customer-wise Sales Summary and
Detail of a Specified Company Code as ALV Output: Use Class
CL_SALV_TABLE

Trigger CL_SALV_TABLE Events: USER_COMMAND, AFTER_USER_COMMAND,
DOUBLE_CLICK AND

CL_GUI_DIALOGBOX_CONTAINER Event: CLOSE

In this exercise, program YCL_CH13_02_SALV_EVENTS using the ALV class CL_SALV_TABLE. You will implement
all the features that you implemented earlier for YCL_CH12_03_ALV_EVENTS (which used the class CL_GUI_ALV_GRID
and demonstrated events). In this exercise, events are being demonstrated. Because this is a parallel of the earlier
exercise and an extension of the preceding exercise, only the additional features incorporated in this program are
described.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

719

Events DOUBLE_CLICK, CLOSE, Put Buttons on ALV Toolbar and
USER_COMMAND
Event DOUBLE_CLICK: The handling of event DOUBLE_CLICK, which you trigger for the first instance of the ALV
class here, is similar to the way you handled this event when using the class CL_GUI_ALV_GRID. The differences are
described here. The importing parameter ROW in the present class does not have a component through which you
can determine whether the double-clicked row is a regular row or a total or subtotal row. The importing parameter
E_ROW of the event DOUBLE_CLICK in the class CL_GUI_ALV_GRID had a component ROWTYPE. When ROWTYPE contains an
initial value, you know that a regular row was double-clicked, not a total or subtotal row. In the present usage of class
CL_SALV_TABLE, the method GET_SELECTIONS returns an instance reference to the class CL_SALV_SELECTIONS. This
class has a method, GET_CURRENT_CELL, which returns values in the DDIC structure SALV_S_CELL. This structure has a
field ROW, which contains the row number for regular rows, as well as negative values for subtotal or total rows. You will
check that the values of the field ROW are greater than zero in order to execute lines in the handler method of the event
DOUBLE_CLICK. When you double-click a subtotal or total line, nothing should happen. Only when you double-click a
regular row (containing customer code, name, amount, and so forth) should the billing documents of the customer be
output in the second instance of the ALV grid.

When you are on the second instance of ALV output in a dialog box container, you want the first instance of the
ALV output disabled. You did this by using the ENABLE instance method of the class CL_GUI_ALV_GRID in the previous
exercise program YCL_CH12_03_ALV_EVENTS. You passed an export parameter ' ' to the ENABLE method. There is no
ENABLE method available in the class CL_SALV_TABLE. So you will use the ENABLE instance method of the container
class CL_GUI_CUSTOM_CONTAINER to disable the first ALV output when you have produced the second ALV output. You
will pass an export parameter ' ' to the ENABLE method of the class CL_GUI_CUSTOM_CONTAINER.

Event CLOSE: The CLOSE event for the dialog box container is identical to the earlier exercises and needs no
elaboration here—except that you use the ENABLE method of the container class CL_GUI_CUSTOM_CONTAINER, as the
ALV grid class CL_SALV_TABLE does not have a similar method. After execution of the ENABLE method with an export
parameter X; you will be able to operate the first ALV output again after closing the second ALV output.

Place Buttons on ALV Toolbar: With the present class CL_SALV_TABLE, you do not need to trigger an event to
place your custom buttons on the ALV toolbar. When using the class CL_GUI_ALV_GRID, you needed to trigger the
event TOOLBAR to place your custom buttons. In this exercise, you will use the method ADD_FUNCTION of class
CL_SALV_FUNCTIONS_LIST to do the same. The ADD_FUNCTION method can be executed before executing the DISPLAY
method. You will place a custom button on the ALV toolbar with function code BACK to navigate back to the
selection screen.

Event USER_COMMAND: In the class CL_GUI_ALV_GRID, you used the event USER_COMMAND to react to your own
positioned buttons on the ALV toolbar. You used this event to react to the pressing of the BACK button to navigate back
to the selection screen. What you were doing in the PAI event for reacting to button on the application toolbar in the
last exercise has been shifted to the event handler method of event USER_COMMAND of the first instance of ALV output.

Event AFTER_USER_COMMAND: You will use the AFTER_USER_COMMAND event to adjust the serial number field
upon change of layout or loading of layout. When using the class CL_GUI_ALV_GRID, the method GET_FILTERED_ENTRIES
retrieved the filtered-out (omitted) rows at the front end. The availability of these filtered-out rows saved you the task
of retrieving filter settings; you retrieved only the sort settings. A similar method is not available in the present class
CL_SALV_TABLE. Therefore, you must retrieve filter settings for the variables, and convert the filter settings to range
values for the variables (internal table of SIGN, OPTION, LOW, and HIGH fields). You declare the range variables (for
example, KUNNR_SO) with the HEADER LINE clause in the program global area. They could have been declared in the
PRIVATE SECTION of the local class. In this case, the clause HEADER LINE would not have been used, and separately
named structures would have been declared and used.

Using the range values of the variables, you build another customer-wise sales summary internal table containing
only the data as per the filter settings. When building this second internal table, the range values of fields KUNNR,
NAME1, and ORT01 are applied in the SELECT statements WHERE condition when retrieving data from the database view.
The range values of the field NETWR are applied in an IF statement when generating the serial number. This is
because the range condition for NETWR has to be applied to the total, and not to individual rows retrieved from the
database view. This second customer-wise sales summary internal table is generated in the event handler method of

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

720

the event AFTER_USER_COMMAND. Using this second internal table as a reference, you are generating the serial number
field in your original internal table of the customer-wise sales summary. You have omitted the NAME1 and ORT01 fields
in the structure of the second internal table of customer wise sales summary.

The event should be executed only if the user has done one of the following:

Changed the layout•

Selected a layout•

Opened and operated the Filter dialog box•

Opened and operated the Sort Ascending dialog box•

Opened and operated the Sort Descending dialog box•

This is what you are doing with a CHECK statement at the beginning of the method.
Registration of Handler Methods of Class CL_SALV_TABLE:
When using the ALV class CL_SALV_TABLE for event handler method registration, you have to first execute the

GET_EVENT method of the main class CL_SALV_TABLE. This method returns an instance reference to the class
CL_SALV_EVENTS_TABLE. In the SET statement, instead of specifying the instance of the class after the key word FOR,
you specify the reference variable specified in the GET_EVENT method. For example:

DATA: EVENT_REF TYPE REF TO CL_SALV_EVENTS_TABLE,
 LCLASS_REF TYPE REF TO LCLASS,
.......

CALL METHOD CL_SALV_TABLE=>FACTORY
 EXPORTING
 R_CONTAINER = CCONT
 LIST_DISPLAY = '' " else run time error
 IMPORTING
 R_SALV_TABLE = ALV_GRID1
 CHANGING
 T_TABLE = SALES_TAB[].
.........

EVENT_REF = ALV_GRID1->GET_EVENT().

CREATE OBJECT LCLASS_REF.

SET HANDLER LCLASS_REF->DB_CLICK FOR EVENT_REF.
...

The program is YCL_CH13_02_SALV_EVENTS, and the full source code can be found in the source code resource.
When this program is checked for syntax, it issues a warning message:
The exception CX_SALV_NOT_FOUND is neither caught nor is it declared in the RAISING clause of “DB_CLICK”.

This warning arises because the TRY...ENDTRY block with the CATCH statement is inside the method DB_CLICK.
The method DB_CLICK is an event handler method. You cannot specify the RAISING clause in the signature of this
method.

You can ignore this warning, activate the program, and execute it. But if you are fastidious and want to eliminate
this message, you can locate all the source code relating to invocation of the class method FACTORY inside a subroutine
and specify the RAISING clause in the subroutine interface.

Figure 13-4 shows the output.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

721

Scroll down to serial number 31, customer code 3271. Double-click this customer, and the detailed ALV output
appears, as shown in Figure 13-5.

Figure 13-4. Output of YCL_CH13_02_SALV_EVENTS

Figure 13-5. The customer’s summary and detailed output

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

722

The Back button appears on the ALV toolbar. The DOUBLE_CLICK event for the first instance of the ALV is working.
You can test the execution of the other event handler methods for the following events:

• CLOSE

• USER_COMMAND

• AFTER_USER_COMMAND

You can create and save layouts as you did in the earlier exercises. Figure 13-6 shows the saved layouts.

Figure 13-7. Output for the layout /LAYOUT2

Figure 13-6. Saved layouts for YCL_CH13_02_SALV_EVENTS

When you select the layout /LAYOUT2 and scroll to the bottom, the screen in Figure 13-7 displays.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

723

So, you have used the class CL_SALV_TABLE and triggered the events DOUBLE_CLICK, USER_COMMAND, and
AFTER_USER_COMMAND to generate a detailed second ALV report, react to your positioned ALV toolbar button, and
adjust the serial number field in the first ALV report to be regenerated every time an ALV layout change occurs.

You have been able to produce almost identical output with the programs YCL_CH12_03_ALV_EVENTS and
YCL_CH13_02_SALV_EVENTS by using the classes CL_GUI_ALV_GRID and CL_SALV_TABLE, respectively.

A Note on Problems with the Class CL_SALV_TABLE
There are a couple of significant issues you need to know about when using the class CL_SALV_TABLE. We will discuss
those here.

Problem with Multiple Fields Sort
If you set the layout for multiple field sorting in the Change Layout dialog box—for example, City (ORT01) and
Name1 (NAME1), this creates a problem. When you set sort settings in this manner, you want the data to be sorted
alphabetically by city and within that city, by customer name: first, all the customer names starting with A, B, C.., in
Atlanta; next, all the customer names starting with A, B, C… in Berlin, and so on. In the sort settings, City is the major
field, and Name1 is the minor field.

But at the presentation server level, the order reverses every time you open the Change Layout dialog box. When
the sort settings are retrieved in the event handler method AF_FN generates serial numbers, it fetches the settings
properly, but at the front end it reverses the order every time you open the Change Layout dialog box. This has been
tackled with a bit of tweaked code. It is working okay except when you enter the Change Layout dialog box and use the
Cancel button. For saving and loading layouts, it works okay.

Methods of Class CL_SALV_SELOPT
In doing this exercise, while converting the filter values into range values, you had to use the methods GET_HIGH, GET_LOW,
GET_OPTION, and GET_SIGN of the class CL_SALV_SELOPT (referring to the method AF_FN in the source program). There
were problems with the methods GET_HIGH, GET_LOW, and GET_OPTION on our system, not running the latest patches.

Navigate to SE24 – Class Builder, enter the class name CL_SALV_SELOPT, and click the display button. Double-click
any method to see its source code.

These methods have just one line of assignment statement. For example, for GET_SIGN (which is okay), the
statements are as follows:

method get_sign.
 value = me->sign.
endmethod.

Here are the statements for GET_OPTION:

method get_option.
 me->option = value.
endmethod.

This is obviously erroneous, as the assignment is reversed. The assignment should have been as follows:

value = me->option.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

724

A similar error has been committed for the two other methods, GET_HIGH and GET_LOW. We have managed to
correct this erroneous situation by using the implicit enhancement option, by inserting source code before the SAP
source code for the methods. Figure 13-8 clarifies this.

Figure 13-8. Enhancement code for the method GET_HIGH

We have also done such an enhancement for the two other methods, GET_HIGH and GET_LOW.
If you are facing this problem, we hope you manage it with these enhancements.

Create Data Browsers Using the Classes CL_GUI_ALV_GRID
and CL_SALV_TABLE
As you may recall from Chapter 10, YCL_CH10_ILISTS05 is a generic program that accepts a database table or view
through a PARAMETERS statement. This program lists all the fields of the input database table (or view) along with
check boxes that enable field selections. After making field selections, you press the Output button on the application
toolbar to retrieve data for the selected fields from the database table or view and output it by employing the WRITE
statement. This program uses the features of dynamic creation of data objects, field symbols, and special constructs
of the Open SQL SELECT statement. Data was retrieved row by row (SELECT... ENDSELECT) into a dynamically created
structure and output from that structure. Field symbols were employed to address the dynamically created structure
and the fields of the structure.

The next two hands-on exercises are variations of this Chapter 10 program. Instead of using the WRITE statement
to output, you will output data as ALV reports. The two programs resemble the transaction code SE16 data browser.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

725

Hands-on Exercise: Output Specific Selected Fields of a Specific
Database Table or View in ALV: Use Class CL_GUI_ALV_GRID
The current YCL_CH13_03_ANY_TABLE_ALV uses the class CL_GUI_ALV_GRID to output data.

As the method SET_TABLE_FOR_FIRST_DISPLAY of class CL_GUI_ALV_GRID accepts data to populate the ALV from
an internal table, you will have to create a dynamic internal table, load this internal table with the data, and pass it to
the changing parameter IT_OUTTAB of the method SET_TABLE_FOR_FIRST_DISPLAY.

You have to have a screen with a custom control and an OK_CODE field in the element list.
In the AT USER_COMMAND area, when the fields are selected (there are buttons on the application toolbar to select

or deselect all the listed fields) and you click the Output button, the statement LEAVE TO SCREEN 100 is coded. This
loads screen 100 and triggers the PBO event for that screen. You are switching from list mode (displayed as a field list
with check boxes output from the WRITE statement) to screen mode.

In the PBO module, you set a status, set a title, create an internal table dynamically, load data from the database
table or view into the dynamically created internal table, create an instance of custom container, and create an
instance of an ALV grid. You will generate a default field catalog by using the database table or view with the function
module LVC_FIELDCATALOG_MERGE. You will retain in the field catalog, only the rows of the selected fields, deleting the
rows of unselected fields. Finally, you will call the method SET_TABLE_FOR_FIRST_DISPLAY.

In the PAI module, you will check for the function code of the Back button and if so, you will call the destructor
method for the custom container, ALV grid. You will have to switch from screen mode to list mode to return to the list
of fields of a database table or view. You are using the statement LEAVE TO LIST-PROCESSING to make this switch. This
is for navigating back to the list of fields with check boxes.

That is all. The extra program source code follows.
Copy the interface from the program YCL_CH10_ILISTS05 and activate it.
Peruse the source code with its comments.
Source code in declaration part:

DATA:
.....
****** extra code *****
 FCAT TYPE LVC_T_FCAT WITH HEADER LINE, " internal table-field ctlg.
 ITAB TYPE REF TO DATA, " reference variable-itab
 CONT TYPE REF TO CL_GUI_CUSTOM_CONTAINER,
 " reference variable-c cont.
 ALV_GRID TYPE REF TO CL_GUI_ALV_GRID, " reference variable-ALV grid
 OK_CODE TYPE SY-UCOMM, " OK CODE
 INDX TYPE I. " to access internal table row

FIELD-SYMBOLS:

 <iTAB> TYPE ANY TABLE. " field symbol to access itab
Code in event AT USER-COMMAND:
AT USER-COMMAND.
.............
***** switch from list to screen mode, load screen 100 *****
 LEAVE TO SCREEN 100.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

726

Source code in PBO module:

MODULE STATUS_0100 OUTPUT.

***** retrieve data & load internal table *****

 CREATE DATA ITAB TYPE STANDARD TABLE OF (TAB_NAME).
 ASSIGN ITAB->* TO <ITAB>.

 SELECT (SFIELDS_TAB) FROM (TAB_NAME) INTO CORRESPONDING FIELDS OF
 TABLE <ITAB> WHERE (CONDS_TAB) ORDER BY (ORDERBY_TAB).

***** create default field catalog *****
 CALL FUNCTION 'LVC_FIELDCATALOG_MERGE'
 EXPORTING
 I_STRUCTURE_NAME = TAB_NAME
 CHANGING
 CT_FIELDCAT = FCAT[]
 EXCEPTIONS
 INCONSISTENT_INTERFACE = 1
 PROGRAM_ERROR = 2
 OTHERS = 3
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

***** mark rows of unselected fields *****

 LOOP AT FCAT INTO FCAT.
 INDX = SY-TABIX.
 READ TABLE FIELDS_TAB INTO FIELDS_STRU INDEX INDX.
 IF FIELDS_STRU-CBOX = 'X'.
 FCAT-COL_OPT = 'X'.
 FCAT-TECH = ' '.
 MODIFY FCAT.
 CONTINUE.
 ENDIF.
 FCAT-FIELDNAME = ' '.
 MODIFY FCAT.
 ENDLOOP.

 DELETE FCAT WHERE FIELDNAME = ' '. " delete rows of unselected fields

***** set pf status, title *****

 SET PF-STATUS 'STAT_SCR'.
 SET TITLEBAR 'TITLE02' WITH TAB_NAME.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

727

**** create instances of custom container, ALV grid ****

 CREATE OBJECT CONT
 EXPORTING
 CONTAINER_NAME = 'CCONT'
 EXCEPTIONS
 CNTL_ERROR = 1
 CNTL_SYSTEM_ERROR = 2
 CREATE_ERROR = 3
 LIFETIME_ERROR = 4
 LIFETIME_DYNPRO_DYNPRO_LINK = 5
 others = 6
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

 CREATE OBJECT ALV_GRID
 EXPORTING
 I_PARENT = CONT
 EXCEPTIONS
 ERROR_CNTL_CREATE = 1
 ERROR_CNTL_INIT = 2
 ERROR_CNTL_LINK = 3
 ERROR_DP_CREATE = 4
 others = 5
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

***** call method SET_TABLE_FOR_FIRST_DISPLAY *****

CALL METHOD ALV_GRID->SET_TABLE_FOR_FIRST_DISPLAY
 CHANGING
 IT_OUTTAB = <ITAB>
 IT_FIELDCATALOG = FCAT[]

 EXCEPTIONS
 INVALID_PARAMETER_COMBINATION = 1
 PROGRAM_ERROR = 2
 TOO_MANY_LINES = 3
 others = 4
 .
 IF SY-SUBRC <> 0.
 MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
 WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
 ENDIF.

 OK_CODE = ' '.
ENDMODULE. " STATUS_0100 OUTPUT

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

728

Source code in PAI module:

MODULE USER_COMMAND_0100 INPUT.

 IF OK_CODE = 'BACK'. " check ok code

 CALL METHOD ALV_GRID->FREE. " destructor method
 CALL METHOD CONT->FREE. " destructor method

***** release ram - ref variables & internal tables used in PBO *****

 FREE CONT.
 FREE ALV_GRID.
 FREE FCAT.
 FREE ITAB.

 PERFORM LISTER.
 LEAVE TO LIST-PROCESSING. " get back to WRITE output mode

 ENDIF.
ENDMODULE.

The entire source code of the program YCL_CH13_03_ANY_TABLE_ALV is available in the source code resource.
Figures 13-9 through 13-14 show the inputs and respective outputs.

Figure 13-9. Input of T001

Figure 13-10. Selecting fields for table T001

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

729

Figure 13-11. Output of selected fields of table T001

Figure 13-12. Input of LFA1

Figure 13-13. Selecting all fields of table LFA1

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

730

Hands-on Exercise: Output Specific Selected Fields of a Specific
Database Table or View in ALV: Use Class CL_SALV_TABLE
The program in this exercise—YCL_CH13_04_ANY_TABLE_SALV—is a variation of the program CL_CH13_03_ANY_TABLE_ALV.
Instead of using the ALV class CL_GUI_ALV_GRID, it uses the ALV class CL_SALV_TABLE.

The program takes as input a database table or view. It lists the fields of this input table or view with check boxes
that enable you to select the fields to be output. After making the field selections, you can click the Output button on
the application toolbar to display the selected fields as an ALV report using the class YCL_SALV_TABLE.

Buttons on the application toolbar enable you to select or deselect all fields. The program displays an alert if no
fields are selected when the Output button is clicked. An alert also displays if more than 90 fields are selected, because
the class YCL_SALV_TABLE supports a maximum of 90 fields for output.

You do not locate the instance of the YCL_SALV_TABLE in a container. The ALV output in this exercise is full screen,
with a two-dimensional visual effect (the classical ALV list). You do not have to create a screen; you do not have to
code for the PBO and PAI modules.

In the version of this program using the ALV class CL_GUI_ALV_GRID, you deleted the rows in the field catalog’s
internal table corresponding to the unselected fields. That is how the ALV output appears for the selected fields.
A similar capability is not available in the ALV class CL_SALV_TABLE. To make the unselected fields not appear in the
output, you must set them as TECHNICAL:

COLUMN->SET_TECHNICAL(VALUE = 'X')

Copy the interface from the program YCL_CH10_ILISTS05 and activate it.
The extra source code in declarations:

DATA:
.........
 ITAB TYPE REF TO DATA,
 ALV_GRID TYPE REF TO CL_SALV_TABLE,
 COLUMNS TYPE REF TO CL_SALV_COLUMNS_TABLE,
 COLUMN TYPE REF TO CL_SALV_COLUMN,

Figure 13-14. Output of all fields of table LFA1

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

731

 LAYOUT_REF TYPE REF TO CL_SALV_LAYOUT, " for layout management
 LAYOUT_KEY TYPE SALV_S_LAYOUT_KEY, " for layout management

 FUNCTIONS TYPE REF TO CL_SALV_FUNCTIONS_LIST.

FIELD-SYMBOLS:
 <iTAB> TYPE ANY TABLE. " field symbol to access itab

The changed source code in the AT USER_COMMAND event area, the new source code using the class
CL_SALV_TABLE:

IF SY-TFILL > 90. " no of fields selected > 90
 MESSAGE S025(YCL_CH07_MCLASS01) WITH
 TAB_NAME DISPLAY LIKE 'W'.
 SY-LSIND = SY-LSIND - 1.
 EXIT.
 ENDIF.

****** no pf status, as ALV tool bar replaces application tool bar

 SET TITLEBAR 'TITLE02' WITH TAB_NAME.

**************retrieve data & output***********************

 CREATE DATA ITAB TYPE STANDARD TABLE OF (TAB_NAME).
 ASSIGN ITAB->* TO <ITAB>.
 SELECT (SFIELDS_TAB) FROM (TAB_NAME) INTO CORRESPONDING FIELDS OF
 TABLE <ITAB> WHERE (CONDS_TAB) ORDER BY (ORDERBY_TAB).

 CALL METHOD CL_SALV_TABLE=>FACTORY
 EXPORTING
 LIST_DISPLAY = IF_SALV_C_BOOL_SAP=>TRUE
* R_CONTAINER =
* CONTAINER_NAME =
 IMPORTING
 R_SALV_TABLE = ALV_GRID
 CHANGING
 T_TABLE = <ITAB>
 .

 COLUMNS = ALV_GRID->GET_COLUMNS().

 LOOP AT FIELDS_TAB INTO FIELDS_STRU.
 IF FIELDS_STRU-CBOX = 'X'.
 CONTINUE.
 ENDIF.

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

732

***** make unselected columns technical columns *****

 COLUMN = COLUMNS->GET_COLUMN(COLUMNNAME = FIELDS_STRU-FIELDNAME).
 COLUMN->SET_TECHNICAL(VALUE = 'X').
 ENDLOOP.

 LAYOUT_REF = ALV_GRID->GET_LAYOUT().
 LAYOUT_KEY-REPORT = 'YCL_CH13_04_ANY_TABLE_SALV'.

 LAYOUT_REF->SET_KEY(LAYOUT_KEY).
 LAYOUT_REF->SET_SAVE_RESTRICTION('2').

 FUNCTIONS = ALV_GRID->GET_FUNCTIONS().
 FUNCTIONS->SET_ALL(). "DEFAULT().
 FUNCTIONS->SET_LAYOUT_CHANGE('X').
 FUNCTIONS->SET_LAYOUT_MAINTAIN('X').
 FUNCTIONS->SET_LAYOUT_SAVE('X').

 COLUMNS->SET_OPTIMIZE(VALUE = 'X').

 ALV_GRID->DISPLAY().

 FREE ITAB.

The complete source code of the program YCL_CH13_04_ANY_TABLE_SALV is available in the source code resource.
Figure 13-15 through Figure 13-18 show the input and corresponding output.

Figure 13-15. Input

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

733

Figure 13-16. Error indicating the number of fields is greater than 90

Figure 13-17. Selecting fields

CHAPTER 13 ■ ABAP LIST VIEWER OUTPUT—PART 2

734

The ALV toolbar replaces the application toolbar.
The Back button of the standard toolbar can be used to navigate back to the list of fields for the table or view.
With a classical ALV list, you don’t have the capability to sort and filter in the Change Layout dialog box. You can

only shuffle or omit columns in the dialog box. You can perform filtering with the Filter button; clicking it pops up a
dialog box. You can sort with the Sort button. If you want to apply multiple field sorting, don’t select any column when
clicking the Sort button. The Sort dialog box will pop up.

The Single Layout button with menu options is replaced by three buttons: Change Layout, Select Layout, and
Save Layout. The Maintain Layout button is replaced by the menu option Settings ä Layout ä Administration.

Conclusion
You have used the major features of the ALV classes CL_GUI_ALV_GRID and CL_SALV_TABLE to produce output. There
are function modules available to produce ALV output. Refer to Chapter 7 (Table 7-3) for the list of these function
modules. You should try out a few with the scenarios you used to produce ALV output using classes. The function
modules do not provide for interactive events such as DOUBLE_CLICK, USER_COMMAND, and AFTER_USER_COMMAND.

Figure 13-18. Output of the selected fields

735

CHAPTER 14

Screen Programming

Basics of Screen Painter
You were introduced to the very basics of screen programming in Chapter 12 entitled ‘ALV (ABAP List Viewer
Outputs – Part 1’). Screen programming is for input of data. Inputs could involve multiple screens and complex screen
elements (custom controls, tab strip controls, table controls and so on are complex screen elements. This chapter will
recapitulate coverage of screen programming we covered earlier and add to it.

The core of screen programming is the screen painter. (Transaction code SE51). Screens are attached to programs
and are identified by four-digit numbers. Screens consist of:

• Attributes. (Like any other workbench objects).

• Flow Logic. On triggering of screen events, to execute a limited repertoire of ABAP statements,
most of these statements are permitted only in the flow logic area, notably the module
invoking statement MODULE <module name>. The module invoking statements jump to the
respective module (similar to jumping to a subroutine to execute normal ABAP code and
return). Refer to the topic ‘Screen Flow Logic‘ in the manual ABAP Programming (BC-ABA) for
a full list of flow logic statements.

• The Element List. This is a non-graphical representation of the screen elements with
their attributes.

• The Layout Editor. You can drag, drop, position, size, and statically adjust attributes of screen
elements in the layout editor. The screen element palette is shown in Figure 14-1.

Figure 14-1. Layout Editor - Screen ElementPalette

Though it is shown horizontally in Figure 14-1, it is laid out vertically in the layout editor.

• Main events. Two main events have already been described, including PROCESS BEFORE
OUTPUT, PBO, and PROCESS AFTER INPUT (PAI). The PBO event is triggered in two
situations: (i) just before the screen appears to the user for the first time, and (ii) if it succeeds
the PAI event. The PAI event is a reaction to a user interaction such as a user pressing a button,
a user making a menu selection, or a user pressing the <Enter> key, etc.

CHAPTER 14 ■ SCREEN PROGRAMMING

736

By default the PBO event succeeds the PAI event. But if an error condition (invalid input) arises during a PAI
event, the PBO event is suspended until the error condition is rectified.

There are two more events: PROCESS ON VALUE-REQUEST (POV) and PROCESS ON HELP-REQUEST (POH),
analogous to the Selection Screen events AT SELECTION-SCREEN ON VALUE-REQUEST and AT SELECTION-SCREEN
ON HELP-REQUEST, respectively.

• Data transfer. There is a continual exchange or transfer of data between the application
servers and the presentation servers. The ABAP programs get executed on the application
server; that is, all the data objects/variables declared with DATA and TABLES statements are
allocated memory on the application servers. These declared variables, allocated memory
on the application server, will be called as ABAP variables. Whatever variables you locate and
position on the screen in the screen painter get defined on the presentation servers when the
program executes. The variables positioned on screen will be called as screen variables. There
is a transfer of values between ABAP variables and screen variables during the PBO and PAI
events for identically named variables.

During the PBO event, data or values are transferred from the ABAP variables to the screen variables for
identically named variables.

During the PAI event, it is the reverse (i.e. data or values are transferred from the screen variables to the ABAP
variables for identically named variables). This is shown graphically in Figure 14-2.

Figure 14-2. Transfer of Data during PBO and PAI Events

The screen field names are ‘KUNNR’ and ‘KNA1-NAME1’. The ABAP variables names are ‘KUNNR’ and ‘NAME1’.
Therefore, data will get transferred between the screen field ‘KUNNR’ and ABAP variable ‘KUNNR’ only. (Screen

field name and ABAP variable name being identical). The screen field name ‘KNA1-NAME1’ is not identical to the
ABAP variable name ‘NAME1’.

As stated earlier, this transfer occurs only for identically named variables, as if the MOVE-CORRESPONDING . . .
statement is in operation.

By default the flow of data will occur for all identically named variables. With the flow logic statements FIELD and
CHAIN . . . ENDCHAIN, the flow can be restricted to specific field or fields. This will be demonstrated in the hands-on
exercises.

Hands-on Exercise. Operate on the Data of a Copy of Table ‘T005T’
Data to Be Operated Upon
You will create an ABAP program and related objects to operate on the data of a copy of the SAP delivered text
table T005T. The text table T005T stores the country-related texts. The table T005T has the fields shown in
Table 14-1.

CHAPTER 14 ■ SCREEN PROGRAMMING

737

Through an ABAP program, you will be able to:

Display the data of a specified language and country code.•

Change/edit the data of a specified language and country code.•

Add a new row in the table. (New language country codes with the related texts).•

Delete a row of a specified language and country code.•

You are making a copy of the table structure T005T into the structure YCL_CH14_T005T. The table T005T is a
text table and its primary table is T005. The new table YCL_CH14_T005T will also inherit T005 as its primary table.
But you will make the new table YCL_CH14_T005T independent of the primary table T005 by deleting the foreign
key relationship of the field ‘LAND1’. After deleting the foreign key relationship of field ‘LAND1’ in the table structure
YCL_CH14_T005T, you will activate the new table structure. With the foreign key relationship for the field ‘LAND1’
deleted, you will be able to insert/add new countries in the new table YCL_CH14_T005T as it is independent of the
table T005.

You will copy rows from the table T005T into the table YCL_CH14_T005T for rows corresponding to the logged in
language. (An arbitrary decision). The code for copying data from T005T into YCL_CH14_T005T.

TABLES T005T.
SELECT * FROM T005T WHERE SPRAS = SY-LANGU.
 INSERT INTO YCL_CH14_T005T VALUES T005T.
ENDSELECT.

WRITE./5 'Rows Transferred.', (4 SY-DBCNT.

Screens
You will have two screens for this exercise to demonstrate the navigation between the screens. The first screen will have
just the primary key fields ‘SPRAS’ and ‘LAND1’ to be input. Based on the input values and operation to be performed,
you will navigate to the second screen, which will have all the seven table fields. (Excluding the ‘MANDT’ field).
You will provide for navigation from the second screen back to the first screen.

The first screen must have application tool bar buttons to carry out operations of display, change, create, and
delete. And the application tool bar must contain a button to exit or quit the program.

Table 14-1. Fields in Table T005T

Field Name DDIC Type, Length Description

MANDT CLNT/3 Client Code

SPRAS LANG/1 Language Code

LAND1 CHAR/3 Country Code

LANDX CAHR/15 Country Text

NATIO CHAR/15 Nationality Text

LANDX50 CHAR/50 Country Text, 50 Characters

NATIO50 CHAR/50 Nationality Text, 50 Characters

PRO_SPREGT CHAR/50 Super Region Text

CHAPTER 14 ■ SCREEN PROGRAMMING

738

You will designate the first screen as screen number 500.
On pressing the exit button, it will quit the program.
The following will apply for the display, change, and delete buttons.

If invalid values are input for the language code and country code, an error condition is
created and reported. This is the case when the language and country code combination
input do not exist in the table YCL_CH14_T005T. The PBO is not triggered because of the
error condition.

The following will apply for the create button:

Invalid input values for language and country codes will create an error condition that is
reported. This is the case when language and country code combination input for creation
already exist in the table. The PBO is not triggered because of the error condition.

The inputs of language and country codes are validated together as a combination. This is implemented with the
FIELD and CHAIN . . . ENDCHAIN statements in the flow logic area of the screen number 500. This will be elaborated
upon when you code the PAI module of the first screen or screen number 500.

Once the inputs of language and country codes are valid, you are navigating to the second screen designated as
screen number 550. You are navigating to the second screen for the three operations: display, change, and create.

When the delete button is pressed, a confirmation dialog box will appear. The delete operation does not involve
navigation to the second screen.

Figure 14-3. Operate Data of YCL_CH14_T005T - First Screen

A rough layout of the first screen is shown in Figure 14-3.

CHAPTER 14 ■ SCREEN PROGRAMMING

739

The second screen, screen number 550 will have the following attributes as per the operations being carried out:

If the display button had been pressed on the opening screen, all the fields on the second •
screen will be in display mode. The application tool bar will contain only the back button to
navigate to the first screen (i.e., screen number 500).

If the change button had been pressed on the opening screen, the key fields • – language and
country codes – will be in display mode and the rest of the fields will be in change mode.
The application tool bar will contain two buttons. The back button to navigate to first screen
(i.e., screen number 500 and the save button to save the changes in the text fields to the
database table).

If the create button had been pressed on the opening screen, the key fields • – language and
country codes – will be in display mode and the rest of the fields will have initial values and
will be ready for input. The application tool bar will contain two buttons: the back button to
navigate to the first screen/screen number 500 and the save button to save the creation of new
language and country data.

After navigating to the second screen, before the screen appears to the user, you need to change the properties of
the input fields as per operations.

The application tool bar on the second screen needs to be adjusted as per the operations. The save button must
not appear when the display button is pressed on the first screen.

The preceding descriptions would make it amply clear what you are setting out to do.
The following are Object Creation and Test Tasks to be carried out to Operate on the Data of Table

YCL_CH14_T005T.

 1. Create an ABAP program that will be the main program.

 2. Create screen number 500, its layout, element, list and flow logic with the PBO module.

 3. Create the status and title bar for screen number 500.

 4. Create the screen number 500 PAI module.

 5. Create a search help to be attached to the field ‘LAND1’ of the table YCL_CH14_T005T.
The user can make a selection of a language country code combination from this list.

Figure 14-4. Operate Data of YCL_CH14_T005T - Second Screen

A rough layout of the second screen or screen number 550 is shown in Figure 14-4.

CHAPTER 14 ■ SCREEN PROGRAMMING

740

 6. Create screen number 550: its layout, element list, and flow logic with the PBO module.

 7. Create the status and title bar for screen number 550.

 8. Create the screen number 550 PAI module.

 9. Test the different operations provided in the program.

You are using the object navigator (i.e. transaction code SE80) to perform the tasks of object creation. With the
object navigator, you can create all objects from a single external session, instead of multiple external sessions that
you employed until now for creation of various objects such as programs, screens, interfaces, and DDIC objects et al.

Transaction Code SE80 – Object Navigator
Until now, you were using separate external sessions to create different workbench objects. You had an external
session for screen painter, an external session for menu painter, an external session for DDIC objects, an external
session for ABAP source program, and so on.

With the object navigator transaction code SE80 you can create and maintain all the workbench objects from a
single session. You can view all the related objects in the object navigator.

You will carry out the developmental tasks of the current exercise in the object navigator. So, enter /NSE80 in the
command box and navigate to the object navigator. The object navigator screen will look like Figure 14-5.

Figure 14-5. Object Navigator Screen

 1. ABAP program. As you want to start off by first creating a program, select the option
‘Program’ from the drop-down list as shown in Figure 14-5. Right under the field where
you entered the ‘Program’ option, enter the name of the new ABAP program:
YCL_CH14_01_YCL_CH14_T005TDATA. Press <Enter>. The following prompt will appear,
indicating that the program does not exist and asks if you want to create the new program.

CHAPTER 14 ■ SCREEN PROGRAMMING

741

The system appears with another prompt so that you can decide whether to create a top include. A top include
is an include program containing global data declarations, and a convention SAP follows in its programs. You do not
want a top include, so ensure the check box for top include is disabled. The screen will look like Figure 14-7.

Figure 14-7. Object Navigator. Create New Program - Top Include Option

Figure 14-8. Object Navigator. Create New Program – Program Attributes

Figure 14-6. Object Navigator. Create New Program

Next, the program attributes screen will appear as shown in Figure 14-8.

CHAPTER 14 ■ SCREEN PROGRAMMING

742

The ABAP source will appear like in Figure 14-9.

Figure 14-9. Object Navigator. Create New Program – Program Source

Figure 14-10. Object Navigator. Create Screen

As indicated, there is a button to operate with a full screen or a partial screen for the object navigator on the left.
You enter the following code.

TABLES. YCL_CH14_T005T.
DATA. OK_CODE TYPE SY-UCOMM.
START-OF-SELECTION.
CALL SCREEN 500.

More source code lines will be added when you create PBO and PAI modules.

 2. Screen number 500 - layout, element list, flow logic, and PBO module. You want to start
creating screen painter objects. To do this, select or click on the program name, click on
the mouse’s right button, and the context menu shown in Figure 14-10 will appear.

Select Create ➤ Screen as shown in Figure 14-10. A further prompt for a screen number will appear.

CHAPTER 14 ■ SCREEN PROGRAMMING

743

Entering the screen number as 500 and pressing the continue button will bring up the attribute screen. Enter
short text on the attribute screen and bring up the layout editor as shown in Figure 14-12.

Figure 14-12. Object Navigator. Create Screen – Layout Editor

Figure 14-11. Object Navigator. Create Screen – Prompt for Screen Number

You want to place the two fields YCL_CH14_T005T-SPRAS and YCL_CH14_T005T- LAND1 of the table structure
YCL_CH14_T005T on the screen with the respective field labels. The preferred way to do it is to use functionality of
the third button from the right of the application toll bar as shown in Figure 14-12. This button enables you to place
fields of DDIC structures or program structures on the screen. In the case of DDIC structure, it will automatically fetch
and position the related field labels from the assigned data elements. In the case of program structure, you have to
manually enter the labels. The preferred way is to get the fields from DDIC structures. This is what you will do
in the present context. Since, mostly, you will be positioning screen fields by fetching them from the DDIC structure,
the name of the screen fields will carry the structure name, hyphen, and the field name. If you desire that the
ABAP program fields have the identical field names as the screen field names, the easy way to do it is to declare the
structure in the ABAP program with the key word TABLES. This is what has been done here and this is a convention.

CHAPTER 14 ■ SCREEN PROGRAMMING

744

This ensures that screen field names are identical to ABAP program field names for transfer of data between screen
variables and ABAP program variables during the screen events PBO, PAI, etc. Click on the ‘Dictionary/Program
Fields Window’ button. This will bring up the prompt as shown in Figure 14-13.

Figure 14-14. Screen Painter Layout Editor. Getting Dictionary Fields on Screen

Figure 14-13. Screen Painter Layout Editor. Dictionary/Program Fields Window

You have entered the table structure name YCL_CH14_T005T and pressed on the ‘Get from Dictionary’ button.
All the fields of table structure YCL_CH14_T005T have been fetched. There are radio buttons to select the
Short/Medium/Long/Header labels from the data element. The default option is the Medium label that you are
accepting. At the extreme left there is a button for selecting/deselecting fields. (Row selectors). Since you want the
two fields ‘YCL_CH14_T005T-SPRAS’ and ‘YCL_CH14_T005T-LAND1’ with their labels to be placed on the screen,
you have selected these two fields. Next, press the continue button. The screen will appear like in Figure 14-14.

CHAPTER 14 ■ SCREEN PROGRAMMING

745

Position the fields with their labels at the desired position by releasing the left mouse button. All the screen
elements would have been selected. Click on the blank area of the screen to deselect the fields and labels. The screen
will look like the one in Figure 14-15.

Figure 14-15. Screen Painter Layout Editor. Placing Dictionary Fields on Screen

Figure 14-16. Create the PBO Module

Save and close the screen. You will be back on the screen painter screen with the Attribute, Element List, and
Flow Logic tabs. Click on the tab Element List, and enter the ‘OK_CODE’ in the element list. Save and navigate back to
the object navigator. You will create the PBO module, interface, and PAI module from the object navigator. You will
create the PBO module now. Select the program name, and click on the mouse right button to get the context menu as
shown in Figure 14-16.

The PBO in the flow Logic will be: MODULE STATUS_500.
Create the PBO module in the main program YCL_CH14_01_YCL_CH14_T005TDATA. The PBO module will be

like the following one.

MODULE STATUS_0500 OUTPUT.
 SET PF-STATUS 'STAT1'.
 SET TITLEBAR 'TITLE01'.
 OK_CODE = ' '.
ENDMODULE.

CHAPTER 14 ■ SCREEN PROGRAMMING

746

Save and navigate back to the object navigator.

 3. Screen number 500 - status and title bar. You have to create the status ‘STAT1’. So again,
select the program name, click on the mouse right button, and make the context menu
selection as shown in Figure 14-17.

Figure 14-18. Status ‘STAT1’. Application Tool Bar of Screen 500

Figure 14-17. Create Status

Create the five buttons in status ‘STAT1’ as per the rough layout of screen number 500 in Figure 14-3. The status
‘STAT1’ application tool bar will look similar to Figure 14-18.

In the application tool bar, for the ‘EXIT’ button, you assigned function type ‘E’. The significance of this will be
explained during the elaboration on the PAI module of the screen number 500.

Figure 14-19. Status ‘STAT1’. ‘EXIT’ Button – Assigning Function Type ‘E’

CHAPTER 14 ■ SCREEN PROGRAMMING

747

Save and return to object navigator.
You have to create the title bar ‘TITLE01’. Select the program name, click on the mouse right button, and make

the context menu selection as shown in Figure 14-21.

Figure 14-21. Create Title Bar

Figure 14-22. Title Bar Created – Screen 500

Figure 14-20. Status ‘STAT1’. ‘EXIT’ Button – Assigned Function Type ‘E’

Create a title bar as shown in Figure 14-22.

CHAPTER 14 ■ SCREEN PROGRAMMING

748

Activate the interface before navigating back to the object navigator.

 4. Screen number 500 PAI module. Now that the status has been created, you will tackle the
PAI of screen number 500. Your PAI will be more involved.

Your PAI in the flow logic is:

PROCESS AFTER INPUT.
 MODULE OVER_AND_OUT_500 AT EXIT-COMMAND.
 CHAIN.
 FIELD. YCL_CH14_T005T-SPRAS, YCL_CH14_T005T-LAND1.
 MODULE VALIDATE_INPUT_500.
 ENDCHAIN.

MODULE MAIN_PAI_500.

The PAI will be triggered by pressing one of the buttons on the application tool bar: ‘EXIT’, ‘DISPLAY’, ‘CHANGE’,
‘CREATE’, and ‘DELETE’. (Reference to the buttons is by their function codes). The discussion on the ‘EXIT’ button is
deferred for now. When any button other than the ‘EXIT’ is pressed, you will have to first validate the combination
of the fields ‘YCL_CH14_T005T-SPRAS’ and ‘YCL_CH14_T005T-LAND1’. The validation is carried out in the module
VALIDATE_INPUT_500.

The statements CHAIN and ENDCHAIN in the flow logic area of the screen painter are equivalent to the
declaration of a block in the Selection Screen environment. When executing the module statements for a chain, the
values of only the field in the chain are transferred from the screen to the ABAP variables. Refer to document ABAP
Programming (BC-ABA) for a detailed description of the FIELD . . . , CHAIN, and ENDCHAIN statements.

If the ‘CREATE’ button is pressed, you will have to check whether the values of the input fields ‘YCL_CH14_
T005T-SPRAS’ and ‘YCL_CH14_T005T-LAND1’ already exist in the database table YCL_CH14_T005T with a SELECT
SINGLE . . . statement in the PAI module. If the input values exist, issue an error message.

If any of the ‘DISPLAY’/’CHANGE’/’DELETE’ buttons are pressed, you will have to check whether the values of
the input fields ‘YCL_CH14_T005T-SPRAS’ and ‘YCL_CH14_T005T-LAND1’ exist in the database table YCL_CH14_
T005T with a SELECT SINGLE . . . statement in the PAI module. If the input values do not exist, issue an error message.

An error message in the PAI will withhold the triggering of a PBO event.
If the EXIT button is pressed, the validation of input values of fields ‘YCL_CH14_T005T-SPRAS’ and

‘YCL_CH14_T005T-LAND1’ is unnecessary. If you want to quit, it does not make sense to insist on valid values to
be input. For this reason, you categorized the ‘EXIT’ button as function type ‘E’ in the menu painter. And you are
executing the PAI module MODULE OVER_AND_OUT_500 AT EXIT-COMMAND. Though you are invoking this
module in the flow logic area as the first module, it can be invoked in any order, but it will be executed first before any
checks and validations. It will transfer only the ‘OK_CODE’ value from the screen variable to the ABAP variable.
The values of other variables are not transferred. A module ending with the phrase AT EXIT-COMMAND will be
executed for button(s) assigned the function type ‘E’ only.

When the values of input fields ‘YCL_CH14_T005T-SPRAS’ and ‘YCL_CH14_T005T-LAND1’ are found valid
vis-à-vis the operational button pressed, the values should exist for the display/change/delete operations, and the
values should not exist for the create operation when you execute the module MAIN_PAI_500.

In this module, you are saving the ‘OK_CODE’ contents into another variable ‘SAVE_OK_CODE’, initializing the
exclude button internal table. If a display/change/create button is pressed, you are navigating to screen number 550 with
the statement LEAVE TO SCREEN 550. In the case of the create button being pressed, you are initializing the five fields:
‘YCL_CH14_T005T-LANDX’, ‘YCL_CH14_T005T-NATIO’, ‘YCL_CH14_T005T-LANDX50’, ‘YCL_CH14_T005T-NATIO50’,
and ‘YCL_CH14_T005T-PRQ_SPREGT’. These fields must appear blank for input when creating a new country text.

If the display button is pressed, you are appending the exclude button internal table with the function code of the
save button. You do not want the save button to appear on the application tool bar of screen 550 when the screen 550
is in display mode.

CHAPTER 14 ■ SCREEN PROGRAMMING

749

If the delete button is pressed, you are issuing a pop-up dialog box for confirmation to delete country text row.
If the deletion is confirmed in the pop-up dialog box, you are deleting the row and confirming the deletion with a
message else issuing delete aborted message. You are using the open SQL statement DELETE YCL_CH14_T005T
(i.e., DELETE <table structure name>).

 5. Search help for attachment to field ‘LAND1’ of table structureYCL_CH14_T005T. You
have to create a search help and a DDIC object. In the object navigator, from the drop-down
list where you selected ‘Program’, select now Local Objects’. Select ‘Dictionary’, and invoke
the context menu by clicking on the mouse right button as shown in Figure 14-23.

Figure 14-24. Search Help. YCL_CH14_OWN_CNTRY_TEXTS_SH

Figure 14-23. Object Navigator. Create DDIC Search Help

The system will prompt for the name of the search help and search help type (i.e., elementary or collective). Accept
the default search help type (elementary), and enter the name of the search help as YCL_CH14_OWN_CNTRY_TEXTS_SH,
and press the continue button. The search help with entered values will look similar to Figure 14-24.

CHAPTER 14 ■ SCREEN PROGRAMMING

750

Save and activate the search help and navigate back to the object navigator. You have to attach this search help
to the field ‘LAND1’ of table structure YCL_CH14_T005T. Expand the ‘Dictionary’ node and the ‘Database Tables’
subnode in the object navigator as shown in Figure 14-25.

Figure 14-25. Object Navigator. Dictionary Objects – Database Tables

Scroll, and locate the database table YCL_CH14_T005T as shown in Figure 14-26.

Figure 14-26. Object Navigator. DDIC Database Table –YCL_CH14_T006T

When you have the database table structure in change mode, position the cursor on the field ‘LAND1’ and click
on the ‘Srch Help’ button. Enter the search help name YCL_CH14_OWN_CNTRY_TEXTS_SH in the dialog box and
press the continue key. The search help proposal will appear as shown in Figure 14-27.

CHAPTER 14 ■ SCREEN PROGRAMMING

751

Click on the copy button, save, and activate the database table YCL_CH14_T005T and return to the object navigator.

 6. Screen number 550 – layout, element list and flow logic PBO module. You have to
switch back to the program. Hence, select ‘Program’ from the drop-down list, and enter
the program name as YCL_CH14_01_YCL_CH14_T005TDATA if it is not appearing as the
default. Press the <Enter> key after the entry of the program name. You have the creation
of screen number 550 as the next task.

Select/click on the program, and invoke the context menu as shown in Figure 14-28.

Figure 14-28. Object Navigator. Create Screen 550

Figure 14-27. Attach Search Help. YCL_CH14_OWN_CNTRY_TEXTS_SH

CHAPTER 14 ■ SCREEN PROGRAMMING

752

Enter the screen number as 550 in the dialog box that appears, and click continue. Maximize the screen or click
on the full screen button. Enter short text on the attribute screen. Open the layout editor. Click on the ‘Dictionary/
Program Fields Window’ button on the application tool bar of the layout editor (third button from the right). Enter
the table structure name YCL_CH14_T005T in the dialog box field ‘Table/Field Name’, and click on the ‘Get from
Dictionary’ button. Select all the fields except ‘MANDT’ as shown in Figure 14-29.

Figure 14-29. Screen Painter Layout Editor. Dictionary/Program Fields Window

The selected fields, when dragged onto the screen before releasing the mouse button, will look like in Figure 14-30.

Figure 14-30. Screen Painter Layout Editor. Selected Fields Dragged to the Screen

CHAPTER 14 ■ SCREEN PROGRAMMING

753

Fetch the dialog box for screen element attributes for each of the input fields, and disable the ‘Input Field’
checkbox in the tab Program. All the input fields are in display mode to start with. The screen will look like the one in
Figure 14-31.

Figure 14-31. Screen Painter Layout Editor. Selected Fields Dragged, Dropped and Set to Display

Save and close the layout editor screen. Select the ‘element list’ tab, and enter the ‘OK_CODE’ field. Save and
select the flow logic tab.

You will create the PBO module for screen 550 now. Invoke the context menu as described earlier. Get the
template of the PBO module in the main program YCL_CH14_YCL_CH14_T005tDATA. In this PBO module, set the
status and title bar for screen 550. In the screen number 550, the properties of the five fields

YCL_CH14_T005T-LANDX

YCL_CH14_T005T-NATIO

YCL_CH14_T005T-LANDX50

YCL_CH14_T005T-NATIO50

YCL_CH14_T005T-PRQ_SPREGT

are to be adjusted as per the button pressed on the application toolbar of screen 500. If ‘DISPLAY’ button is pressed
on screen 500, all the fields on screen 550 have to appear in display mode. If the button pressed on screen 500 is either
‘CHANGE’ or ‘CREATE’, all the five fields on screen 550 have to appear in input mode. The two primary key fields–
YCL_CH14_T005T-SPRAS and YCL_CH14_T005T-LAND1 – on screen 550 are to appear in display mode only for all
operations. The properties of the five listed fields on screen 550 are adjusted as per the button pressed on screen 500
inside a subroutine, which is being invoked in the PBO module of screen 550. While setting status on screen 550, the
‘SAVE’ button is to be excluded when the operation is ‘DISPLAY’. This is being taken care of by checking contents of
‘SAVE_OK_CODE’ variable, etc. Here is the PBO module code:

MODULE STATUS_0550 OUTPUT.
 SET PF-STATUS 'STAT2' EXCLUDING EXCLUD_FC_TAB[].
 SET TITLEBAR 'TITLE02' WITH 'Table YCL_CH14_T005T'(001 STRNG.
 PERFORM CHANGE_SCR_550_PROP. " adjust screen properties
ENDMODULE. " STATUS_0550 OUTPUT

 7. Screen number 550 – status and title bar. Create the status and title bar for screen 550

from the object navigator as described earlier. The status will look like Figure 14-32.

CHAPTER 14 ■ SCREEN PROGRAMMING

754

The title bar will look like Figure 14-33.

Figure 14-32. Status ‘STAT2’. Application Toolbar of Screen 550

Figure 14-33. Title Bar ‘TITLE02’. Screen 550

 8. Screen number 550 – PAI module. Your PAI in the flow logic is the following:

PROCESS AFTER INPUT.
 CHAIN.
 FIELD. YCL_CH14_T005T-LANDX, YCL_CH14_T005T-NATIO,
 YCL_CH14_T005T-LANDX50, YCL_CH14_T005T-NATIO50,
 YCL_CH14_T005T-PRQ_SPREGT.

 MODULE SET_CHANGE_550 ON CHAIN-REQUEST.

 ENDCHAIN.

 MODULE USER_COMMAND_0550.

The module SET_CHANGE_550 is executed when the PAI is triggered and only if any of the fields included in the
CHAIN . . . ENDCHAIN has changed value. In this module, you are setting the variable DATA_CHG_550 to ‘X’. Refer to
the document ABAP Programming (BC-ABA) for a detailed description of these statements.

When the ‘BACK’ button is pressed, you are checking the value of variable DATA_CHG_550. If its value is equal
to ‘X’, you are producing a pop-up dialog box with a message to confirm whether to abort the changed data. You are
navigating back to the screen number 500 with the LEAVE TO SCREEN 500 statement.

When the ‘SAVE’ button is pressed, you are issuing the open SQL statement MODIFY YCL_CH14_T005T.
The open SQL statement MODIFY . . . is a two-in-one statement. Depending on the context, it operates as an INSERT
statement or an UPDATE statement. The MODIFY . . . statement checks whether the primary key values in the

CHAPTER 14 ■ SCREEN PROGRAMMING

755

fields of the ABAP structure variables exist in the database table. If the values exist in the database table, the
MODIFY . . . statement operates as an UPDATE statement, updating an existing row. If the values do not exist in the
database table, the MODIFY . . . statement operates as an INSERT statement, inserting a new row with values from
the ABAP structure.

So you have been saved the effort to code for checking whether ‘CHANGE’/’CREATE’ button was pressed on
screen 500 and issue separate UPDATE/INSERT statements appropriately.

There are variations of the open SQL statement MODIFY You can refer to the online help for this.
The full source code:

REPORT YCL_CH14_01_YCL_CH14_T005TDATA.

* Country Texts Custom Table - Data **

TABLES. YCL_CH14_T005T.

DATA. OK_CODE TYPE SY-UCOMM,
 SAVE_OK_CODE TYPE SY-UCOMM, " save OK_CODE to process in
 " screen 550
 STRNG TYPE STRING,
 ANSWER(1 TYPE C, " delete confirmation. 1 yes 2 no

 EXCLUD_FC_TAB TYPE STANDARD TABLE OF SY-UCOMM " exclude
 WITH HEADER LINE, " buttons table

 DATA_CHG_550(1 TYPE C. " data changed indicator

START-OF-SELECTION.

CALL SCREEN 500.

&---
*& Module STATUS_0500 OUTPUT
&---
* text
--

***** PBO screen 500 *****

MODULE STATUS_0500 OUTPUT.
 SET PF-STATUS 'STAT1'.
 SET TITLEBAR 'TITLE01'.
 OK_CODE = ' '.
ENDMODULE. " STATUS_0500 OUTPUT

&---
*& Module VALIDATE_INPUT_500 INPUT
&---
* text
--

CHAPTER 14 ■ SCREEN PROGRAMMING

756

***** PAI fields validation screen 500 *****

MODULE VALIDATE_INPUT_500 INPUT.

 SELECT SINGLE * FROM YCL_CH14_T005T WHERE
 SPRAS = YCL_CH14_T005T-SPRAS AND
 LAND1 = YCL_CH14_T005T-LAND1.

IF OK_CODE = 'CREATE' AND SY-SUBRC = 0.

 MESSAGE E041(YCL_CH07_MCLASS01 WITH
 YCL_CH14_T005T-SPRAS YCL_CH14_T005T-LAND1.
 " Language Code.&1 Country Code &2 Already Exists

ELSEIF OK_CODE <> 'CREATE' AND SY-SUBRC <> 0.

MESSAGE E042(YCL_CH07_MCLASS01 WITH
 YCL_CH14_T005T-SPRAS YCL_CH14_T005T-LAND1.
 " Language Code.&1 Country Code &2 Do Not Exist

ENDIF.

ENDMODULE. " VALIDATE_INPUT_500 INPUT

&---
*& Module OVER_AND_OUT_500 INPUT
&---
* text
--

***** PAI ON-EXIT screen 500 *****

MODULE OVER_AND_OUT_500 INPUT.

IF OK_CODE = 'EXIT'.
 LEAVE PROGRAM.
ENDIF.

ENDMODULE. " OVER_AND_OUT_500 INPUT

&---
*& Module MAIN_PAI_500 INPUT
&---
* text
--

***** PAI (main screen 500 *****

MODULE MAIN_PAI_500 INPUT.

SAVE_OK_CODE = OK_CODE. " save OK_CODE for processing in screen 550

CHAPTER 14 ■ SCREEN PROGRAMMING

757

REFRESH EXCLUD_FC_TAB. " initialize internal table for exclude buttons

DATA_CHG_550 = ' '. " initialize indicator for changed data on screen 550

CASE OK_CODE.

 WHEN 'DISPLAY'.
 EXCLUD_FC_TAB = 'SAVE'. " exclude save button when display
 APPEND EXCLUD_FC_TAB.
 STRNG = 'Display'(002 .
 LEAVE TO SCREEN 550.

 WHEN 'CHANGE'.
 STRNG = 'Change'(003 .
 LEAVE TO SCREEN 550.

 WHEN 'CREATE'.
 CLEAR YCL_CH14_T005T-LANDX. " initialize five fields when create
 CLEAR YCL_CH14_T005T-NATIO.
 CLEAR YCL_CH14_T005T-LANDX50.
 CLEAR YCL_CH14_T005T-NATIO50.
 CLEAR YCL_CH14_T005T-PRQ_SPREGT.
 STRNG = 'Create'(004 .
 LEAVE TO SCREEN 550.

 WHEN 'DELETE'.
 PERFORM DELETE_SR USING ANSWER YCL_CH14_T005T. " delete confirmation

 IF ANSWER = 1.
 DELETE YCL_CH14_T005T.
 MESSAGE S044(YCL_CH07_MCLASS01 WITH
 YCL_CH14_T005T-SPRAS YCL_CH14_T005T-LAND1
 DISPLAY LIKE 'W'.
 " Language Code.&1 Country Code &2 Deleted!
 ELSE.

 MESSAGE S045(YCL_CH07_MCLASS01 .
 " Deletion Aborted

 ENDIF.

ENDCASE.

CHAPTER 14 ■ SCREEN PROGRAMMING

758

ENDMODULE. " MAIN_PAI_500 INPUT

&---
*& Module STATUS_0550 OUTPUT
&---
* text
--

***** PBO screen 550 *****

MODULE STATUS_0550 OUTPUT.

 SET PF-STATUS 'STAT2' EXCLUDING EXCLUD_FC_TAB[].
 SET TITLEBAR 'TITLE02' WITH 'Table YCL_CH14_T005T'(001 STRNG.
 PERFORM CHANGE_SCR_550_PROP. " adjust screen properties

ENDMODULE. " STATUS_0550 OUTPUT

&---
*& Module USER_COMMAND_0550 INPUT
&---
* text
--

***** PAI screen 550 *****

MODULE USER_COMMAND_0550 INPUT.

CASE OK_CODE.

 WHEN 'BACK'.
 IF DATA_CHG_550 = 'X'.
 PERFORM ABORT_SR USING ANSWER YCL_CH14_T005T. " save data pop-up
 IF ANSWER = 1.
 LEAVE TO SCREEN 500.
 ENDIF.
 ELSE.
 LEAVE TO SCREEN 500.
 ENDIF.

WHEN 'SAVE'.
 MODIFY YCL_CH14_T005T.
 DATA_CHG_550 = ' '.
 MESSAGE S043(YCL_CH07_MCLASS01 WITH
 YCL_CH14_T005T-SPRAS YCL_CH14_T005T-LAND1.
 " Language Code.&1 Country Code &2 Saved!

ENDCASE.

CHAPTER 14 ■ SCREEN PROGRAMMING

759

ENDMODULE. " USER_COMMAND_0550 INPUT

&---
*& Module SET_CHANGE_550 INPUT
&---
* text
--

***** PAI (change in data screen 550 *****

MODULE SET_CHANGE_550 INPUT.

 DATA_CHG_550 = 'X'.

ENDMODULE. " SET_CHANGE_550 INPUT

**
***** sub routine to change screen 550 properties *****

FORM CHANGE_SCR_550_PROP.

LOOP AT SCREEN.
 CASE SAVE_OK_CODE.

 WHEN 'CHANGE'.
 IF SCREEN-GROUP1 = 'DIS'.
 SCREEN-INPUT = 0.
 ELSE.
 SCREEN-INPUT = 1.
 ENDIF.

 WHEN 'DISPLAY'.
 SCREEN-INPUT = 0.

 WHEN 'CREATE'.
 IF SCREEN-GROUP1 = 'DIS'.
 SCREEN-INPUT = 0.
 ELSE.
 SCREEN-INPUT = 1.
 ENDIF.

 ENDCASE.
 MODIFY SCREEN.
ENDLOOP.

CHAPTER 14 ■ SCREEN PROGRAMMING

760

ENDFORM.

***** sub routine - delete confirmation *****

FORM DELETE_SR USING ANSWR STRU TYPE YCL_CH14_T005T.

DATA. TXT TYPE STRING.

CONCATENATE
 'Confirm Deletion of Language Code'(005 STRU-SPRAS
 'Country Code'(006 STRU-LAND1
 INTO TXT SEPARATED BY ' '.

CALL FUNCTION 'POPUP_TO_CONFIRM'
 EXPORTING
 TITLEBAR = 'Confirm Deletion'(008
 TEXT_QUESTION = TXT
 TEXT_BUTTON_1 = 'Yes, Delete'(009
 TEXT_BUTTON_2 = 'No To Delete'(010
 DEFAULT_BUTTON = '2'
 DISPLAY_CANCEL_BUTTON = ' '
 START_COLUMN = 40
 START_ROW = 2
 IMPORTING
 ANSWER = ANSWR
 .

ENDFORM.

**
***** sub routine - abort changes in screen 550 confirmation *****

FORM ABORT_SR USING ANSWR STRU TYPE YCL_CH14_T005T.

DATA. TXT TYPE STRING.

CONCATENATE
 'Abort Changes of Language Code'(011 STRU-SPRAS
 'Country Code'(006 STRU-LAND1
 INTO TXT SEPARATED BY ' '.

CALL FUNCTION 'POPUP_TO_CONFIRM'
 EXPORTING
 TITLEBAR = 'Abort Changes'(012
 TEXT_QUESTION = TXT
 TEXT_BUTTON_1 = 'Yes, Abort'(013
 TEXT_BUTTON_2 = 'Do Not Abort'(014
 DEFAULT_BUTTON = '2'
 DISPLAY_CANCEL_BUTTON = ' '
 START_COLUMN = 60
 START_ROW = 2
 IMPORTING
 ANSWER = ANSWR
 .

ENDFORM.

CHAPTER 14 ■ SCREEN PROGRAMMING

761

The program with its components, etc., will appear in the object navigator like in Figure 14-34.

Figure 14-34. Program with Components in Object Navigator

In the ABAP program, the notation of specifying a literal with the text symbols has been used. [‘Display’ (002, etc].
This notation was introduced in Chapter 9. You can create text symbol ids: 001, 002, 003, 004, 005, 006, 008,009, 010,
011, 012, 013, and 014 (there is no text symbol id 007) by double clicking on the text symbol ids: 001, 002, etc., in the
statements. You also need to create message text numbers 041, 042, 043, 044, and 045:

041 Language Code.&1 Country Code &2 Already Exists
042 Language Code.&1 Country Code &2 Do Not Exist
043 Language Code.&1 Country Code &2 Saved!
044 Language Code.&1 Country Code &2 Deleted!
045 Deletion Aborted

These message texts are to be created in message class/id YCL_CH07_MCLASS01.
It now remains for us to carry out the testing of all proposed operations on the data of table YCL_CH14_T005T.

Test Operations
Select the program, and toggle to full screen in the object navigator. Execute the program. Press function key F4 on the
field ‘Country’. The search help list will appear like in Figure 14-35.

CHAPTER 14 ■ SCREEN PROGRAMMING

762

The screen after selection from the list will appear like in Figure 14-36.

Figure 14-35. Program YCL_CH14_YCL_CH14_T005TDATA. Select from List

Figure 14-36. Program YCL_CH14_YCL_CH14_T005TDATA. Screen after Selection

Press the ‘Display’ button to display the values of all the fields for the primary key values ‘EN’ and ‘IN’. The screen
as appear like in Figure 14-37.

Figure 14-37. Program YCL_CH14_YCL_CH14_T005TDATA. Display Data

You have entered the second screen in display mode and that is why the ‘Save’ button on the application tool bar
is excluded.

CHAPTER 14 ■ SCREEN PROGRAMMING

763

Press the back button to return to the first screen. On the first screen, press the ‘Change’ button for the same
primary key field values: ‘EN’ and ‘IN’. Enter a value in the field ‘Super region’, which is presently blank, and the screen
will look like Figure 14-38.

Figure 14-38. Program YCL_CH14_YCL_CH14_T005TDATA. Change Data

You have entered the second screen in change mode; that is why the ‘Save’ button on the application tool bar is
appearing. After entering the value in the field ‘Super region’, press the ‘Save’ button. The screen after pressing the
‘Save’ Button will appear like Figure 14-39.

Figure 14-39. Program YCL_CH14_YCL_CH14_T005TDATA. Data Changed, Saved

CHAPTER 14 ■ SCREEN PROGRAMMING

764

Press the ‘Back’ button. On the opening screen, enter values ‘EN’, ‘GBR’ in the opening screen fields. Press the
‘Create’ button. The second screen will contain blanks in all the input text fields waiting for input. The screen will
appear like in Figure 14-40.

Figure 14-40. Program YCL_CH14_YCL_CH14_T005TDATA. Create Data

Figure 14-41. Program YCL_CH14_YCL_CH14_T005TDATA. Data Created

The screen after entering values will appear like in Figure 14-41.

Press on the ‘Save’ button and you will get the message of data saved as earlier. Press the back button to return
to the first screen. Press function key F4 on the field ‘Country’. Scroll down the list until the newly created country text
appears like in Figure 14-42.

CHAPTER 14 ■ SCREEN PROGRAMMING

765

Let this country text be deleted. Select from list/enter values ‘EN’ and ‘GBR’. Press the delete button. A pop-up
dialog box for delete confirmation will appear like in Figure 14-43.

Figure 14-42. Program YCL_CH14_YCL_CH14_T005TDATA. List after New Data

Figure 14-43. Program YCL_CH14_YCL_CH14_T005TDATA. Confirm Delete

You can confirm or abort the deletion. Confirm the deletion. The deletion alert message will appear like in
Figure 14-44.

CHAPTER 14 ■ SCREEN PROGRAMMING

766

Enter values ‘EN’, ‘US’ in the ‘Language’ and ‘Country’ fields respectively. Press the change button to navigate to
the second screen. On the second screen, enter some value in the field – say, ‘Super region’. Now press the back button
without saving. The abort changes pop-up alert will appear as shown in Figure 14-45.

Figure 14-44. Program YCL_CH14_YCL_CH14_T005TDATA. Row Deleted

Figure 14-45. Program YCL_CH14_YCL_CH14_T005TDATA. Confirming Abort Changes

You have tested all the specifications that the program was set out to fulfill.
Recapitulation. A recapitulation of the hands-on exercise.

The hands-on exercise performs all the operations needed to maintain data in a table.•

The hands-on exercise has the look and feel of a SAP data creation of common entities: •
customers, vendors, materials et al. Accept primary key data on the opening screen and
further data on subsequent screens.

You have been introduced to the object navigator, which enables the maintenance of all •
workbench objects from a single point in a single external session.

CHAPTER 14 ■ SCREEN PROGRAMMING

767

In the layout editor of the screen painter, you were introduced to the procedure of placing •
fields of the DDIC structure on the screen with labels from their respective data elements. This
is the frequently used mode of placing fields on the screen.

You were introduced to two open SQL statements: DELETE . . . and MODIFY•

You were introduced to the variations of the module invoking statements in the • flow logic
area. The concept of conditional execution of a module has been introduced. Like: MODULE
SET_CHANGE_550 ON CHAIN-REQUEST. The module SET_CHANGE_550 gets executed only
if the screen has been modified.

You have used the combination of type ‘E’ button with the module ending with the phrase AT •
EXIT-COMMAND. This was used to skip input validation when quitting a program.

This concludes the hands-on exercise of maintaining a database table data with a screen program.

Hands-on Exercise. Demonstrate Search Help Import Parameters,
Screen Event PROCESS ON VALUE-REQUEST – POV, etc
The feature of import parameters in DDIC objects search help can be better demonstrated in a screen programming
environment.

There are business scenarios where you enter value/s in field/s on the screen. A search help attached to some
other field will filter out data based on the value/s entered in earlier fields. The search help then imports field value/s
from the screen.

Scenario
Let a specific scenario be considered. Suppose you have a screen with the following fields:

LIFNR Vendor Code

.

BUKRS Company Code

EBELN Purchasing Document

You attach a search help to the field ‘EBELN’. (Purchasing document). When you press function key F4 on the
‘EBELN’ field, you would like the list of purchasing documents to be filtered on the basis of values in the two other
fields ‘LIFNR’ and ‘BUKRS’ (i.e., purchasing documents belonging to a specific combination of values of vendor code
and company code). You will implement this with import parameters of the search help. The search help attached to
the field ‘EBELN’ should have two importing parameters: ‘LIFNR’ and ‘BUKRS’.

Each imported parameter can be in display mode; that is, the user cannot change the imported value in the
restrictive dialog box and can be in edit mode (i.e., the user can change the imported value in the restrictive dialog box).
A default value can also be assigned to the import parameter.

All this will work, provided all the participating fields (the fields of the present scenario): ‘LIFNR’, ‘BUKRS’, and
‘EBELN’ belong to the same structure as one entity.

CHAPTER 14 ■ SCREEN PROGRAMMING

768

Scenario Implementation
Let the described scenario be implemented with an exercise involving screen programming. You are not performing
any other task (like fetching data from a database table, etc.) other than demonstrating the import parameter feature
of search help.

Let there be a DDIC structure with the following fields:

LIFNR Vendor Code

NAME1 Vendor Name

STRAS Street

ORT01 City

BUKRS Company Code

EBELN Purchasing Document

BEDAT Purchasing Document Date

WAERS Document Currency

You have some extra fields just to make it feel like a real-life scenario.
The DDIC structure YCL_CH14_VENDOR_PD_STRU will look like Figure 14-46.

Figure 14-46. DDIC Structure. YCL_CH14_VENDOR_PD_STRU

This structure will be used to position fields on the screen.
As indicated in Figure 14-46, search helps are attached to the fields ‘LIFNR’ and ‘EBELN’. The search help

attached to the field ‘EBELN’ (YCL_CH14_PURCH_DOC_SH) is meant for demonstration. You have attached your
own search help to the field ‘LIFNR’ to enable the transfer of name and city to the screen fields ‘NAME1’ and ‘ORT01’
upon selection of vendor from the selection list of the search help. This search help is YCL_CH14_VENDOR_SH. The
default search help ‘KRED’ would not have performed this.

A screen shot of search help YCL_CH14_VENDOR_SH is shown in Figure 14-47.

CHAPTER 14 ■ SCREEN PROGRAMMING

769

Screen shots of the database view YCL_CH14_vendor used by the search help YCL_CH14_VENDOR_SH is shown
in Figures 14-48 and 14-49.

Figure 14-47. DDIC Search Help. YCL_CH14_VENDOR_SH

Figure 14-48. Database View YCL_CH14_VENDOR- Tables & Join Conditions

Figure 14-49. Database View YCL_CH14_VENDOR- Fields

CHAPTER 14 ■ SCREEN PROGRAMMING

770

A screen shot of search help YCL_CH14_PURCH_DOC_SH is shown in Figure 14-50.

Figure 14-50. DDIC Search Help. YCL_CH14_PURCH_DOC_SH

Figure 14-51. DDIC View. YCL_CH14_VN_PD – Tables & Join Conditions

The search help YCL_CH14_PURCH_DOC_SH uses the database view YCL_CH14_VN_PD.
Screen shots of the view YCL_CH14_VN_PD is shown in Figures 14-51 and 14-52.

CHAPTER 14 ■ SCREEN PROGRAMMING

771

Create an ABAP program YCL_CH14_02_DEMO_SH_IMPORT
Place the fields of structure YCL_CH14_VENDOR_PD_STRU on the screen as shown in Figure 14-53.

Figure 14-52. DDIC View. YCL_CH14_VN_PD – Fields

Figure 14-53. Program YCL_CH14_02_DEMO_SH_IMPORT – Screen Layout

The flow logic code:

PROCESS BEFORE OUTPUT.
 MODULE STATUS_0200.
*
PROCESS AFTER INPUT.
 MODULE USER_COMMAND_0200.

 PROCESS ON VALUE-REQUEST.
 FIELD YCL_CH14_VENDOR_PD_STRU-LIFNR MODULE POV_LIFNR.

CHAPTER 14 ■ SCREEN PROGRAMMING

772

The program source code:

REPORT YCL_CH14_02_DEMO_SH_IMPORT.

**
* Demonstrate Search Help Import Parameters **
**

TABLES. YCL_CH14_VENDOR_PD_STRU.

DATA. OK_CODE TYPE SY-UCOMM,

 DYN_TAB1 TYPE STANDARD TABLE OF DYNPREAD
 WITH HEADER LINE, " to output LIFNR BUKRS NAME1 ORT01

 DYN_TAB2 TYPE STANDARD TABLE OF DYNPREAD
 WITH HEADER LINE. " to output blank EBELN BEDAT WAERS

DATA. RTAB TYPE STANDARD TABLE OF DDSHRETVAL WITH HEADER LINE,
 PBUKRS TYPE BUKRS,
 PLIFNR TYPE LIFNR,
 CBUKRS TYPE BUKRS,
 CLIFNR TYPE LIFNR.
**

START-OF-SELECTION.

 CLEAR DYN_TAB2-FIELDVALUE.

 DYN_TAB2-FIELDNAME = 'YCL_CH14_VENDOR_PD_STRU-EBELN'.
 APPEND DYN_TAB2.

 DYN_TAB2-FIELDNAME = 'YCL_CH14_VENDOR_PD_STRU-BEDAT'.
 APPEND DYN_TAB2.

 DYN_TAB2-FIELDNAME = 'YCL_CH14_VENDOR_PD_STRU-WAERS'.
 APPEND DYN_TAB2.

 CALL SCREEN 200.
&---
*& Module STATUS_0200 OUTPUT
&---
* text
--
MODULE STATUS_0200 OUTPUT.

 SET PF-STATUS 'STAT1'.

CHAPTER 14 ■ SCREEN PROGRAMMING

773

ENDMODULE. " STATUS_0200 OUTPUT
&---
*& Module USER_COMMAND_0200 INPUT
&---
* text
--
MODULE USER_COMMAND_0200 INPUT.
IF OK_CODE = 'EXIT'.
 LEAVE PROGRAM.
ENDIF.
ENDMODULE. " USER_COMMAND_0200 INPUT
&---
*& Module POV_LIFNR INPUT
&---
* text
--
MODULE POV_LIFNR INPUT.

 CALL FUNCTION 'F4IF_FIELD_VALUE_REQUEST'
 EXPORTING
 TABNAME = 'YCL_CH14_VENDOR_PD_STRU'
 FIELDNAME = 'LIFNR'
 DYNPPROG = 'YCL_CH14_02_DEMO_SH_IMPORT'
 DYNPNR = '0200'
 DYNPROFIELD = 'LIFNR'
 TABLES
 RETURN_TAB = RTAB.

 REFRESH DYN_TAB1.

 IF LINES(RTAB > 0.

 READ TABLE RTAB WITH KEY FIELDNAME = 'BUKRS'.
 CBUKRS = RTAB-FIELDVAL.

 READ TABLE RTAB WITH KEY FIELDNAME = 'LIFNR'.
 CLIFNR = RTAB-FIELDVAL.

 LOOP AT RTAB.

 CONCATENATE 'YCL_CH14_VENDOR_PD_STRU-' RTAB-FIELDNAME
 INTO DYN_TAB1-FIELDNAME.
 DYN_TAB1-FIELDVALUE = RTAB-FIELDVAL.
 APPEND DYN_TAB1.

 ENDLOOP.

 IF CBUKRS <> PBUKRS OR CLIFNR <> PLIFNR.
 APPEND LINES OF DYN_TAB2[] TO DYN_TAB1.
 ENDIF.

CHAPTER 14 ■ SCREEN PROGRAMMING

774

 CALL FUNCTION 'DYNP_VALUES_UPDATE'
 EXPORTING
 DYNAME = 'YCL_CH14_02_DEMO_SH_IMPORT'
 DYNUMB = '0200'
 TABLES
 DYNPFIELDS = DYN_TAB1[]
 .

 PBUKRS = CBUKRS .
 PLIFNR = CLIFNR.
 ENDIF.

ENDMODULE. " POV_LIFNR INPUT

The detailed steps of each object creation have been skipped; the steps have been described several times.
You are triggering the event PROCESS ON VALUE-REQUEST (POV for short) for the field YCL_CH14_T005T-LIFNR.

(See the flow logic code above). This event is equivalent to the Selection Screen event AT SELECTION-SCREEN ON
VALUE-REQUEST. The event is triggered when the user presses the function key F4 on the field for which you are
triggering the event, and an ABAP developer can put custom code for a filter dialog box, selection list, etc., instead of
using search help. In the present context, you are triggering the event not for a custom coded selection list, etc., but to
get the control and custom code for some other purpose than just producing the selection list, etc.

You want to initialize the bottom three fields: ‘EBELN’, ‘BEDAT’, and ‘WAERS’ every time there is a change in
the values of two of the above fields ‘LIFNR’ and ‘BUKRS’. This makes sense and produces a sophisticated effect.
The invocation of the function module F4IF_FIELD_VALUE_REQUEST invokes the search help attached to the field
provided as a parameter to this function module. So ultimately you are using the search help. But you are getting the
control to locate the code that serves your purpose of initializing the bottom three fields on change of value of ‘LIFNR’
and ‘BUKRS’ fields. And simultaneously, the POV event is being demonstrated practically.

The parameters provided in this program to the function module F4IF_FIELD_VALUE_REQUEST are self-obvious
except for the TABLES parameter RETURN_TAB.

If you do not provide this parameter, the program code in the event module gets executed first, regardless of
the position of the program code, then the search help dialog boxes appears. After selection from the search help
selection list, the values are returned to the respective screen fields.

If you provide this parameter RETURN_TAB, the program code located after the CALL F4IF_FIELD_VALUE_REQUEST
statement in the event module does not get executed first. The search help dialog boxes appear first. After selection from
the search help selection list, the values are returned not to the screen fields but in the internal table specified with formal
TABLES parameter RETURN_TAB. The program code located after the CALL F4IF_FIELD_VALUE_REQUEST gets
executed next. The returned values from the search help can then be copied to the screen fields using the function module
DYNP_VALUES_UPDATE. This is what you are doing; you wanted control after the return of values from search help.

Let the program be tested. Switch to full screen mode in the object navigator.
Select the program and execute. Press function key F4 on the vendor field. Enter values in the restrictive dialog

box as shown in Figure 14-54.

CHAPTER 14 ■ SCREEN PROGRAMMING

775

Only the vendor codes starting with ‘39’ and company code equal to ‘3000’ will appear in the list as shown
in Figure 14-55.

Figure 14-54. Program YCL_CH14_02_DEMO_SH_IMPORT – F4 on ‘LIFNR’

Figure 14-55. Program YCL_CH14_02_DEMO_SH_IMPORT – F4 List on ‘LIFNR’

Make a selection on the list as shown in Figure 14-56.

Figure 14-56. Program YCL_CH14_02_DEMO_SH_IMPORT – Vendor Selection

CHAPTER 14 ■ SCREEN PROGRAMMING

776

Now press function key F4 on the field ‘EBELN’. The restrictive dialog box will pop up with the import parameters
as shown in Figure 14-57. For demonstrative purposes, one import parameter (company code) is in display mode, and
the other import parameter (vendor code) is in edit mode. In a real-life scenario, the requirements will decide this.

Figure 14-57. Program YCL_CH14_02_DEMO_SH_IMPORT – F4 on ‘EBELN’

Figure 14-58. Program YCL_CH14_02_DEMO_SH_IMPORT – F4 List on ‘EBELN’

When you press <Enter>, only the purchasing documents of vendor code equal with ‘3902’ and company code
equal to ‘3000’ will appear in the list. The selection list will appear as in Figure 14-58.

CHAPTER 14 ■ SCREEN PROGRAMMING

777

After making a selection of a purchasing document from the list, the screen will look like the one in Figure 14-59.

Figure 14-59. Program YCL_CH14_02_DEMO_SH_IMPORT – Vendor Code, Company Code & Purchasing Doc. Selection

Try with the values vendor code pattern ‘90*’ and company code equal to ‘1000’. on the restrictive dialog box.
Select the vendor code ‘90210’ from the filtered vendor list, etc.

You can verify the initialization of the bottom three fields: ‘EBELN’, ‘BEDAT’, and ‘WAERS’ on change of values
fields ‘LIFNR’ and/or ‘BUKRS’.

A Qualification. The program is not coded to take care of normal PAI triggering apart from the ‘EXIT’ button. If
the user presses the <Enter> key, you are not processing it in terms of validating the data, etc. The program assumes
that you will not manually enter values in the fields of vendor and company code and that values will be fetched
through a selection from the search help selection list. The program is only to demonstrate the import parameter
feature of search help and the POV event.

Hands-on Exercise. Simulate Tab Strip Element Using Sub Screen
Area, Sub Screens and Application Tool Bar Buttons
Tab Strip Element/Control
The tab strip element or tab strip control is a very common element in any Graphic User Interface (GUI). It enables
the same area of screen to contain related information or options. A commonplace example of tab strip is in the MS
Word software document maintenance screen as shown in Figure 14-60.

Figure 14-60. Example of Tab Strip – Word Document Screen

You will create an ABAP Screen program and related objects to illustrate the simulation of a tab strip control.

CHAPTER 14 ■ SCREEN PROGRAMMING

778

Scenario
Let a tab strip control be simulated with two buttons on the application toolbar and the same can be extended to any
number of buttons. Let there be a scenario. The customer information can be categorized. You have used part of one
category of customer information (i.e., address or contact). You will consider the following fields as customer contact
information (table, field, field descriptions).

You will have one more category of customer information: organizational. A customer is associated with different
organizational units. You have already been exposed to one prime organizational unit: the company code. You are
being introduced to three more organizational units with which a customer is associated from the perspective of the
functional module ‘Sales & distribution’. These organizational units are:

Sales Organization•

Distribution Channel•

Division•

The three together is called a sales group.
You will consider the following fields as customer organizational information.
There are eight database tables containing the contact and organizational information (Tables 14-2 and 14-3).

Table 14-2. Fields – Customer Contact Info

Table Field Description

KNA1 STRAS Street

KNA1 ORT01 City

KNA1 PSTLZ Postal Code

T005T LANDX Country Text

KNA1 TELF1 Telephone No.

KNA1 TELFX Telefax No.

Table 14-3. Fields – Customer Organizational Info

Table Field Description

KNB1 BUKRS Company Code

T001 BUTXT Company Code Text/Name

KNVV VKORG Sales Organization

KNVV VTWEG Distribution Channel

KNVV SPART Division

TVKOT VTEXT Sales Organization Text

TVTWT VTEXT Distribution Channel Text

TSPAT VTEXT Division Text

CHAPTER 14 ■ SCREEN PROGRAMMING

779

You can gather all the information – contact and organizational – in one database view using the eight database
tables: KNA1, KNB1, T001, T005T, KNVV, TVKOT, TVTWT, and TSPAT.

If you try to implement this with a single database view, it runs into problems. On our system (the author’s),
a database view with more than twenty lines of join conditions is having problems. So, to reduce the lines of join
conditions, the database table T005T is being excluded from the database view. A data model/ER diagram constituting
the remaining seven database tables is shown in Figure 14-61.

Data for the Scenario
You will create a database view for the data model in Figure 14-61. You will access the data in database table T005T
separately (outside the view).

It is a good idea to look up the structures and relationships of the database tables: KNB1, KNVV, TVKOT, TVTWT,
and TSPAT. Please do so as an additional exercise.

The database view is YCL_CH14_CUST_VW. The database tables and join conditions of the view are listed.

Figure 14-61. ER diagram for a Database View of Contact and Organizational Info

Table 14-4. View YCL_CH14_CUST_VW – Tables & Join Conditions

Tables Table Field name Table Field name

TSPAT KNA1 MANDT KNB1 MANDT

TVTWT KNA1 KUNNR KNB1 KUNNR

TVKOT KNA1 MANDT KNVV MANDT

T001 KNA1 KUNNR KNVV KUNNR

KNVV KNB1 MANDT T001 MANDT

KNB1 KNB1 BUKRS T001 BUKRS

(continued)

CHAPTER 14 ■ SCREEN PROGRAMMING

780

The list of fields in the database view YCL_CH14_CUST_VW.

Table 14-5. View YCL_CH14_CUST_VW – View Fields

View field Table Field Primary Key/Remarks

MANDT KNA1 MANDT X

KUNNR KNA1 KUNNR X

BUKRS KNB1 BUKRS X

VKORG KNVV VKORG X

VTWEG KNVV VTWEG X

SPART KNVV SPART X

SPRAS1 TVKOT SPRAS X

SPRAS2 TVTWT SPRAS X

SPRAS3 TSPAT SPRAS X

NAME1 KNA1 NAME1

STRAS KNA1 STRAS

ORT01 KNA1 ORT01

PSTLZ KNA1 PSTLZ

TELF1 KNA1 TELF1

TELFX KNA1 TELFX

Tables Table Field name Table Field name

KNA1 KNA1 MANDT TVKOT MANDT

KNA1 SPRAS TVKOT SPRAS

KNA1 MANDT TVTWT MANDT

KNA1 SPRAS TVTWT SPRAS

KNA1 MANDT TSPAT MANDT

KNA1 SPRAS TSPAT SPRAS

KNVV MANDT TVKOT MANDT

KNVV VKORG TVKOT VKORG

KNVV MANDT TVTWT MANDT

KNVV VTWEG TVTWT VTWEG

KNVV MANDT TSPAT MANDT

KNVV SPART TSPAT SPART

Table 14-4. (continued)

(continued)

CHAPTER 14 ■ SCREEN PROGRAMMING

781

A customer is associated with a language: a language with which to communicate with a customer. It is
represented by the field ‘SPRAS’ of DDIC type ‘LANG’ in the structure of database table KNA1. You are retrieving the
text of the sales organization,(‘VKORG’), distribution channel,(‘VTWEG’), and division,(‘SPART’), in the language
of the customer. Hence the join conditions between the database table KNA1 and the database text tables: TVKOT,
TVTWT, and TSPAT. The field name for the texts in the three database text tables TVKOT, TVTWT, and TSPAT is the
same (i.e., ‘VTEXT’). In the view, with the purpose of assigning unique field names, you have assigned the names
‘VTEXT1’ ‘VTEXT2’, and ‘VTEXT3’ respectively. Similar is the case when incorporating the field ‘SPRAS’ from these
three database text tables into the view (‘SPRAS1’, ‘SPRAS2’, and ‘SPRAS3’).

A customer can exist for more than one company code; that is, there can be more than one row for a value of
‘KUNNR’ in the database table KNB1. (The primary key of KNB1 is ‘KUNNR’ and ‘BUKRS’). Also, a customer can be
assigned to more than one sales group. (Combination of sales organization, distribution channel, and division).
In other words, multiple rows of a value of ‘KUNNR’ can exist in the database table KNVV. (The primary key of
database table KNVV is ‘KUNNR’, ‘VKORG’, ‘VTWEG’, and ‘SPART’). For these reasons, the number of rows getting
generated in the view YCL_CH14_CUST_VW is over fifty thousand. The number of rows in the database table KNA1 is
over seven thousand.

Having explicitly defined your data source, let the scenario description of simulating a tab strip to display related
information on the same screen area be resumed.

Screen, Sub Screens Layout
In the screen painter layout editor, there is a screen element Subscreen Area in the element palette. A Subscreen Area
is a reserved physical screen area into which you can load sub screens at runtime. The screens that you created in all
your previous exercises were normal screens. Normal screens can be loaded with the CALL SCREEN . . . statement. You
can create in screen painter sub screens by choosing the Subscreen radio button in the screen attributes instead of the
Normal radio button, which is the default and what you have been using until now.

The sub screens can be loaded into the Subscreen Area at runtime through the statement CALL SUBSCREEN . . . in
the flow logic area of the screen painter. With the statement CALL SUBSCREEN . . . , you specify the program name
and the sub screen number. Sub screen numbers are screen identifiers just like the normal screen identifiers – a
 four-digit number.

So you will create a normal screen in which you will place two fields: customer code and customer name. You will
place a ‘Subscreen Area’ element under these two fields on this normal screen.

You will create a first sub screen on which you will place the fields related to the customer’s contact information.
\ (‘STRAS’, ‘ORT01’ et al.).

You will create a second sub screen on which you will place the fields related to the customer’s organizational
information (‘BUKRS’, ‘BUTXT’, ‘VKORG’, ‘VTEXT1’ et al.).

You will position two buttons (in addition to the other buttons) on the application toolbar. You will designate
the first of these two buttons as the contact info button and the second of these two buttons as the organizational info
button.

View field Table Field Primary Key/Remarks

LAND1 KNA1 LAND1 For Connect to T005T outside of view

BUTXT T001 BUTXT

VTEXT1 TVKOT VTEXT

VTEXT2 TVTWT VTEXT

VTEXT3 TSPAT VTEXT

Table 14-5. (continued)

CHAPTER 14 ■ SCREEN PROGRAMMING

782

On pressing the contact info button, you will load the sub screen containing the customer contact info fields into
the Subscreen Area. On pressing the organizational info button, you will load the sub screen containing the customer
organizational info fields into the Subscreen Area.

In this manner the same screen area is being used to display either the customer’s contact info or the customer’s
organizational info.

In the present exercise, you are simulating the tab strip operations with buttons on the application toolbar to
induct you into the concepts of Subscreen Area and sub screens. The tab strip control is available as a screen element.
The tab strip control element is implemented using the Subscreen Area and sub screens. In the next exercise, you will
use the tab strip control.

A rough screen layout of the normal screen is shown. The normal screen will contain the two fields ‘KUNNR’ and
‘NAME1’ along with the Subscreen Area into which you load sub screens at runtime. This is shown in Figure 14-62.

Figure 14-62. Rough Layout. Main Screen for Customer Info with Subscreen Area

Figure 14-63. Rough Layout. Sub Screen for Customer Contact Info

A rough layout of the sub screen containing the customer contact info fields is shown in Figure 14-63.

CHAPTER 14 ■ SCREEN PROGRAMMING

783

Program and Other Objects
You will create an ABAP program YCL_CH14_03_SIMULATE_TABSTRIP.

Create a normal screen (Screen Number 100). Position the two fields ‘KUNNR’ and ‘NAME1’ from the database
view YCL_CH14_CUST_VW on the screen. Place the screen element Subscreen Area on the screen and name it as
‘SAREA ’. (The element Subscreen Area in the element palette is fifth from the bottom). The screen after placement of
Subscreen Area will look like that in Figure 14-65.

A rough layout of the sub screen containing the customer organizational info fields is shown in Figure 14-64.

Figure 14-64. Rough Layout. Sub Screen for Customer Organizational Info

Figure 14-65. Screen No. 100. Two Fields and Subscreen Area

In the Element list tab, enter the OK_CODE.

CHAPTER 14 ■ SCREEN PROGRAMMING

784

Create a sub screen 300. On this sub screen place the fields related to customer organizational info from the
database view YCL_CH14_CUST_VW. The screen shots of the attributes screen and layout editor will look like that in
Figures 14-68 and 14-69.

Figure 14-66. Sub Screen No. 200. Attributes

Figure 14-67. Sub Screen No. 200. Customer Contact Info Fields

Figure 14-68. Sub Screen No. 300. Attributes

Create a sub screen 200. On this sub screen place the fields related to customer contact info from the database
view YCL_CH14_CUST_VW. The screen shots of the attributes screen and layout editor will look like that in
Figures 14-66 and 14-67.

CHAPTER 14 ■ SCREEN PROGRAMMING

785

You are not bothering to enter ‘OK_CODE’ in the Element list tab for the sub screens. Since you are not handling
or editing data in the Subscreen Area, you are not triggering any PAI and consequently PBO events for the sub screens.
There are no PBO and PAI modules for the sub screens.

Set all the fields on the normal screen and sub screens in display mode.
The PAI and PBO events will be triggered for the main, normal screen (Screen Number 100).
The flow logic for the normal screen number 100:

PROCESS BEFORE OUTPUT.
MODULE STATUS_0100.
CALL SUBSCREEN SAREA INCLUDING PROG SCRN.
*
PROCESS AFTER INPUT.
MODULE USER_COMMAND_0100.

The statement CALL SUBSCREEN SAREA INCLUDING PROG SCRN will load a sub screen number contained
in the variable ‘SCRN’ into the Subscreen Area ‘SAREA’. The program name has to be supplied to the CALL
SUBSCREEN . . . statement. You are supplying this through the variable ‘PROG’. When the contact info button on the
application tool bar is pressed, in the PAI module, you are assigning the sub screen number 200 to the variable ‘SCRN’.
And when the organizational info button is pressed, in the PAI module, you are assigning the sub screen number 300
to the variable ‘SCRN’. As per these assignments, the appropriate sub screen number is loaded into the Subscreen Area
through the statement CALL SUBSCREEN . . . in the PBO flow logic area of the screen painter.

In the ABAP program, you are loading two internal tables with the data from the database view YCL_CH14_CUST_VW
and the database table T005T respectively. You have as usual declared structures using the keyword TABLES like TABLES.
YCL_CH14_CUST_VW, T005T. You placed the screen variables on the normal screen and sub screens using the same
structures of the database view and database table.

When the program is executed, you are first loading the first internal table (‘MAIN_TAB’, standard) from the
database view YCL_CH14_CUST_VW. You are loading the second internal table (T005T_TAB, sorted) from the
database table T005T. You are sorting the first internal table on ‘KUNNR’ . You are then loading the screen number 100
with CALL SCREEN 100. This will trigger the PBO event and execute the PBO module. In PBO module, you are setting
status (‘STAT1’) You are retrieving the first row from internal table ‘MAIN_TAB’ into the structure YCL_CH14_CUST_VW.
You are fetching the corresponding ‘LANDX’ field value from the internal table ‘T005T_TAB’. (Random access of
sorted table). Initially when declaring the data, you are assigning the sub screen number 200 (customer contact info)
to the variable ‘SCRN’. The values from the fields of structure YCL_CH14_CUST_VW and the ‘LANDX’ field from the
structure T005T will get transferred to corresponding screen variables. The customer contact info of the first row from
the internal tables fetched into the structures YCL_CH14_CUST_VW and T005T will be displayed on the screen on
execution of the program.

Figure 14-69. Sub Screen No. 300. Customer Organizational Info Fields

CHAPTER 14 ■ SCREEN PROGRAMMING

786

The setting of the status and fetching of the first row of internal table into the structure, etc., is required to be
done only once when the program is executed and need not be repeated subsequently every time the PBO is triggered.
You are managing this with the variable ‘ONCE’.

A screen shot of the status ‘STAT1’ is shown in Figure 14-70.

Figure 14-70. Status ‘STAT1’

In addition to the ‘EXIT’, ‘CONTACT’, and ‘ORGANZ’ buttons, there are four additional buttons: ‘FIRST’, ‘NEXT’,
‘PREVIOUS’, and ‘LAST’. The four buttons are for data navigation.

When the ‘FIRST’ button is pressed, data from the first row of ‘MAIN_TAB’ and the corresponding ‘LANDX’ from
‘T005T_TAB’ is fetched and displayed. When the ‘NEXT’ button is pressed, data from the next row, if any, is fetched
and displayed. When the ‘PREVIOUS’ button is pressed, data of the previous row, if any, is fetched and displayed.
When the ‘LAST’ button is pressed, data of the last row is fetched and displayed.

For the internal table ‘MAIN_TAB’, you are maintaining the total number of rows. (‘NO_OF_ROWS’). You are also
maintaining, for this table, the number of the current row being displayed (‘CURRENT_RW’). In the PAI module, you
are carrying out the task of navigating to the appropriate row by incrementing and decrementing the current row, etc.

The data navigation part has been added through the application toolbar buttons, just to put some additional
meaningful functionality to the tab strip simulation demonstrative program.

The source program:

REPORT YCL_CH14_03_SIMULATE_TABSTRIP.

* Simulate Tab Strip - Sub Screen Area & Sub Screens **

TABLES. YCL_CH14_CUST_VW, T005T.

DATA. OK_CODE TYPE SY-UCOMM,
 MAIN_TAB TYPE STANDARD TABLE OF YCL_CH14_CUST_VW,
 T005T_TAB TYPE SORTED TABLE OF T005T WITH
 UNIQUE KEY SPRAS LAND1,
 ONCE(1 TYPE C,
 CURRENT_RW TYPE SY-TABIX,
 NO_OF_ROWS TYPE SY-TABIX,
 PROG TYPE SY-REPID VALUE 'YCL_CH14_03_SIMULATE_TABSTRIP',
 SCRN TYPE SY-DYNNR VALUE '0200'.

CHAPTER 14 ■ SCREEN PROGRAMMING

787

START-OF-SELECTION.

SELECT * FROM YCL_CH14_CUST_VW INTO TABLE MAIN_TAB.
NO_OF_ROWS = SY-DBCNT.

SORT MAIN_TAB BY KUNNR.

SELECT * FROM T005T INTO TABLE T005T_TAB.

CALL SCREEN 100.
&---
*& Module STATUS_0100 OUTPUT
&---
* text
--
MODULE STATUS_0100 OUTPUT.

IF ONCE = ' '.
 ONCE = 'X'.
 SET PF-STATUS 'STAT1'.
 CURRENT_RW = 1.
 PERFORM READ_TABLE.

ENDIF.

ENDMODULE. " STATUS_0100 OUTPUT
&---
*& Module USER_COMMAND_0100 INPUT
&---
* text
--
MODULE USER_COMMAND_0100 INPUT.

CASE OK_CODE.

 WHEN 'EXIT'.
 LEAVE PROGRAM.

 WHEN 'FIRST'.
 CURRENT_RW = 1.
 PERFORM READ_TABLE.

 WHEN 'NEXT'.
 IF CURRENT_RW < NO_OF_ROWS.
 CURRENT_RW = CURRENT_RW + 1.
 PERFORM READ_TABLE.
 ENDIF.

CHAPTER 14 ■ SCREEN PROGRAMMING

788

 WHEN 'PREVIOUS'.
 IF CURRENT_RW > 1.
 CURRENT_RW = CURRENT_RW - 1.
 PERFORM READ_TABLE.
 ENDIF.

 WHEN 'LAST'.
 CURRENT_RW = NO_OF_ROWS.
 PERFORM READ_TABLE.

 WHEN 'CONTACT'.
 SCRN = '0200'.

 WHEN 'ORGANZ'.
 SCRN = '0300'.

ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

**
FORM READ_TABLE.

 READ TABLE MAIN_TAB INTO YCL_CH14_CUST_VW INDEX CURRENT_RW.
 READ TABLE T005T_TAB INTO T005T WITH KEY
 SPRAS = YCL_CH14_CUST_VW-SPRAS2 LAND1 = YCL_CH14_CUST_VW-LAND1.

ENDFORM.

The subroutine READ_TABLE is referring to global data objects (internal tables and structures directly).
Not good programming! It has been done for expediency. In a real-life development environment, you must supply
the parameters to pass the internal tables and structures.

The program, when executed, displaying screens for contact info and organizational info, will look like
Figures 14-71 and 14-72.

Figure 14-71. Program YCL_CH14_03_SIMULATE_TABSTRIP. Contact Info

CHAPTER 14 ■ SCREEN PROGRAMMING

789

To display the row shown here, navigate to the last row and click on the ‘Previous’ button a few times.
You should try out all the navigational buttons. This was a simulation of the tab strip element using Subscreen

Area, sub screens, and application toolbar buttons.

Hands-on Exercise. Tab Strip Element
You will perform the same exercise as the previous one, but with the tab strip screen element. You will omit the
application toolbar buttons ‘CONTACT’ and ‘ORGANZ’. The buttons to choose a particular tab will appear as part of
the tab strip element.

You are using the same data sources: database view YCL_CH14_CUST_VW and database table T005T. You are
loading data from these sources into internal tables and processing them the same way as in the previous exercise.

You create an ABAP program YCL_CH14_04_TABSTRIP. Copy the appropriate required lines from the previous
program.

In the screen painter environment, on the normal screen (screen number 500), position the two fields
YCL_CH14_CUST_VW-KUNNR and YCL_CH14_CUST_VW-NAME1. Then drag and drop the tab strip element on
the normal screen from the element palette. (The tab strip element is the seventh element from the top or the eighth
element from the bottom in the element palette). Assign a name to the tab strip element (CUST_INFO); insert tabs into
the tab strip element; (minimum or default of two) and assign texts, icons, and function codes to each of the two tabs.
Assign the following to the first tab:

Name. ‘CONTACT’

Text. ‘Contact’

Icon. ‘ICON_ADDRESS’

Function code. ‘CONTACT’

Assign the following to the second tab:

Name. ‘ORGANZ’

Text. ‘Organizational’

Icon. ‘ICON_NEW_ORG_UNIT’

Function code. ‘ORGANZ’

Select all the tabs. (Keep the ‘Ctrl’ key pressed and click on tabs successively to select all tabs). With all the tabs
selected, drag and drop the Subscreen Area element into the tabs. Assign the Subscreen Area a name of ‘SAREA’ .

Figure 14-72. Program YCL_CH14_03_SIMULATE_TABSTRIP. Organizational Info

CHAPTER 14 ■ SCREEN PROGRAMMING

790

The screen shots of Figures 14-73, 14-74, and 14-75 show these elements and their attributes.

Figure 14-73. Screen number 500. Tab Strip Element

Figure 14-74. Screen number 500. Tab ‘CONTACT’

CHAPTER 14 ■ SCREEN PROGRAMMING

791

Instead of selecting all tabs and then dragging and dropping Subscreen Area into the tabs, you can assign the
Subscreen Area name to each of the tabs in the attribute ‘Ref. Field’ as shown in Figure 14-74.

Create the ‘OK_CODE’ in the Element list tab of the normal screen 500. The flow logic of normal screen number 500
is similar to that of the previous program.

PROCESS BEFORE OUTPUT.
 MODULE STATUS_0500.
 CALL SUBSCREEN SAREA INCLUDING PROG SCRN.
*
PROCESS AFTER INPUT.
 MODULE USER_COMMAND_0500.

You can copy the sub screen numbers 200 and 300 of the previous exercise for the present program into screen
numbers 600 and 700 respectively. On screen number 600, you have the customer contact fields; and on the screen
number 700, you have the customer organizational fields. The layout of sub screen numbers 600 and 700 is shown in
Figures 14-76 and 14-77.

Figure 14-75. Screen number 500. Tab ‘ORGANZ’

CHAPTER 14 ■ SCREEN PROGRAMMING

792

A screen shot of the status ‘STAT1’ is shown in Figure 14-78.

Figure 14-76. Sub Screen No. 600. Customer Contact Info Fields

Figure 14-77. Sub Screen No. 700. Customer Organizational Info Fields

Figure 14-78. Status ‘STAT1’

This is a copy of the status of the previous program, with the last two buttons deleted.
The source program is the same as in the previous exercise except that you have to indicate to the system which

of the tabs in the tab strip element is currently active.
To indicate to the system which of the tabs in the tab strip element is currently active, you declare a structure with

the key word ‘CONTROLS’:

CONTROLS. <name of tab strip element> TYPE TABSTRIP.

This statement defines a structure of the same name as tab strip element name. (In the present case ‘CUST_INFO’).
You are concerned with only one field of this structure (i.e., ‘ACTIVETAB’). You have to assign the function code of the tab
to this field to indicate the tab you want to be active (Displayed).

CHAPTER 14 ■ SCREEN PROGRAMMING

793

In the ABAP program, you will have a declaration along with your global data declarations and the statement:

CONTROLS. CUST_INFO TYPE TABSTRIP.

In the PAI code segment, where you are assigning the sub screen number to the variable ‘SCRN’, you should also
assign the function code of the tab to the field ‘CUST_INFO-ACTIVETAB’ in the following manner:

..........
WHEN 'CONTACT'.
 SCRN = 600.
 CUST_INFO-ACTIVETAB = 'CONTACT'.

WHEN 'ORGANZ'.
 SCRN = 700.
 CUST_INFO-ACTIVETAB = 'ORGANZ'.
......

The source code of program YCL_CH14_04_TABSTRIP:

REPORT YCL_CH14_04_TABSTRIP.

* Demo Control Tab Strip **

CONTROLS. CUST_INFO TYPE TABSTRIP.

TABLES. YCL_CH14_CUST_VW, T005T.

DATA. OK_CODE TYPE SY-UCOMM,
 MAIN_TAB TYPE STANDARD TABLE OF YCL_CH14_CUST_VW,

 T005T_TAB TYPE SORTED TABLE OF T005T WITH
 UNIQUE KEY SPRAS LAND1,
 ONCE(1 TYPE C,
 CURRENT_RW TYPE SY-TABIX,
 NO_OF_ROWS TYPE SY-TABIX,
 PROG TYPE SY-REPID VALUE 'YCL_CH14_04_TABSTRIP',
 SCRN TYPE SY-DYNNR VALUE '0600'.

START-OF-SELECTION.

SELECT * FROM YCL_CH14_CUST_VW INTO TABLE MAIN_TAB.
NO_OF_ROWS = SY-DBCNT.

SORT MAIN_TAB BY KUNNR.

SELECT * FROM T005T INTO TABLE T005T_TAB.

CHAPTER 14 ■ SCREEN PROGRAMMING

794

CALL SCREEN 500.

&---
*& Module STATUS_0500 OUTPUT
&---
* text
--

MODULE STATUS_0500 OUTPUT.

IF ONCE = ' '.

 ONCE = 'X'.
 SET PF-STATUS 'STAT1'.
 CURRENT_RW = 1.
 PERFORM READ_TABLE.

ENDIF.

ENDMODULE. " STATUS_0500 OUTPUT

&---
*& Module USER_COMMAND_0500 INPUT
&---
* text
--
MODULE USER_COMMAND_0500 INPUT.

CASE OK_CODE.

 WHEN 'EXIT'.
 LEAVE PROGRAM.

 WHEN 'FIRST'.
 CURRENT_RW = 1.
 PERFORM READ_TABLE.

 WHEN 'NEXT'.
 IF CURRENT_RW < NO_OF_ROWS.
 CURRENT_RW = CURRENT_RW + 1.
 PERFORM READ_TABLE.
 ENDIF.

 WHEN 'PREVIOUS'.
 IF CURRENT_RW > 1.
 CURRENT_RW = CURRENT_RW - 1.
 PERFORM READ_TABLE.
 ENDIF.

CHAPTER 14 ■ SCREEN PROGRAMMING

795

 WHEN 'LAST'.
 CURRENT_RW = NO_OF_ROWS.
 PERFORM READ_TABLE.

 WHEN 'CONTACT'.
 SCRN = '0600'.
 CUST_INFO-ACTIVETAB = 'CONTACT'.
 WHEN 'ORGANZ'.
 SCRN = '0700'.
 CUST_INFO-ACTIVETAB = 'ORGANZ'.

ENDCASE.

ENDMODULE. " USER_COMMAND_0100 INPUT

**

FORM READ_TABLE.

 READ TABLE MAIN_TAB INTO YCL_CH14_CUST_VW INDEX CURRENT_RW.
 READ TABLE T005T_TAB INTO T005T WITH KEY
 SPRAS = YCL_CH14_CUST_VW-SPRAS2 LAND1 = YCL_CH14_CUST_VW-LAND1.

ENDFORM.

When the program is executed, the screens will look like Figures 14-79 and 14-80.

Figure 14-79. Program YCL_CH14_04_TABSTRIP. Contact Info

CHAPTER 14 ■ SCREEN PROGRAMMING

796

You can test the navigation buttons. This concludes the hands-on exercise of the tab strip.
In the present hands-on exercise, in the layout editor, you have positioned the tab strip element without using a

wizard. In the element palette of the screen painter, you have an option to position the tab strip element without using
a wizard, and you also have with using a wizard. When you position a tab strip using a wizard, you are saved of writing
the code related to the tab strip including the code to load sub screens in the flow logic. You can try, as an additional
hands-on exercise, the following: place the tab strip element using the wizard.

Hands-on Exercise. Use Table Element
Table Element/Control
The table element or table control is used to present multiple rows of data on the screen. You have encountered an
instance of multiple rows presentation on the screen. The message maintenance screen (transaction code SE91) is
where multiple message numbers with the corresponding message texts belonging to a message class are presented on
the screen. It has been implemented using the table element. Figure 14-81 shows the message maintenance screen.

Figure 14-80. Program YCL_CH14_04_TABSTRIP. Organizational Info

Figure 14-81. Message Maintenance. Multiple Row Data with Table Control

CHAPTER 14 ■ SCREEN PROGRAMMING

797

If you want to present, at one time, the data of one business document (billing document, purchasing document, etc).
having a header and item information on a screen, you will have to locate the multiple item information rows
belonging to one business document in a table element. A table element, like other screen elements, will occupy a
physical area. Multiple rows of data are loaded into the table element. Depending on the height of the table element,
a certain number of rows are visible at any time. If the number of loaded rows are greater than the number of rows
visible at a time, the scroll down as well as the scroll up facility is available.

The transfer of data of the fields of multiple rows from the screen to ABAP variables and the other way around are
handled through a special form of LOOP . . . ENDLOOP statements in the flow logic area of the screen painter.

Scenario
Let the billing document data be presented along with the related data: customer name & address and material
descriptions on the screen. At one time, the data related to one specific billing document will be presented on the
screen. You will place the header & related data on the normal area of the screen and place the item and related data
inside a table element. A rough layout of the screen is shown in Figure 14-82.

Figure 14-82. Billing Document & Related Data. Rough Screen Layout

Scenario Implementation
Data. Let the tables retrieve data for the screen layout of Figure 14-82. The following tables will have to be used to
retrieve the data:

VBRK Billing documents - header

KNA1 Customer primary

T005T Country texts

VBRP Billing documents – items

MAKT Material description texts

CHAPTER 14 ■ SCREEN PROGRAMMING

798

Create two database views: the first view containing fields related to header information and the second view
containing fields related to item information.

The particulars of database view containing fields related to header –YCL_CH14_KNVB.
View Tables and Join conditions.

Table 14-6. View YCL_CH14_KNVB – Tables & Join Conditions

Tables Table Field name Table Field name

T005T KNA1 MANDT VBRK MANDT

VBRK KNA1 KUNNR VBRK KUNAG

KNA1 KNA1 MANDT T005T MANDT

KNA1 LAND1 T005T LAND1

Table 14-7. View YCL_CH14_KNVB – View Fields

View field Table Field Key

MANDT KNA1 MANDT X

KUNNR KNA1 KUNNR X

VBELN VBRK VBELN X

SPRAS T005T SPRAS X

LAND1 KNA1 LAND1 X

NAME1 KNA1 NAME1

ORT01 KNA1 ORT01

PSTLZ KNA1 PSTLZ

STRAS KNA1 STRAS

WAERK VBRK WAERK

FKDAT VBRK FKDAT

KURRF VBRK KURRF

NETWR VBRK NETWR

BUKRS VBRK BUKRS

LANDX T005T LANDX

View Fields.

View SELECT Condition.

T005T SPRAS EQ ‘E’

The particulars of the database view containing fields related to items –YCL_CH14_VBP_MKT.

CHAPTER 14 ■ SCREEN PROGRAMMING

799

View Fields.

Table 14-8. View YCL_CH14_VBP_MKT – Tables & Join Conditions

Tables Table Fieldname Table Field name

MAKT VBRP MANDT MAKT MANDT

VBRP VBRP MATNR MAKT MATNR

Table 14-9. View YCL_CH14_VBP_MKT – View Fields

View field Table Field Key

MANDT VBRP MANDT X

VBELN VBRP VBELN X

POSNR VBRP POSNR X

SPRAS MAKT SPRAS X

FKIMG VBRP FKIMG

VRKME VBRP VRKME

NETWR VBRP NETWR

MATNR VBRP MATNR

MAKTX MAKT MAKTX

View SELECT Condition.

MAKT SPRAS EQ ‘E’

You are arbitrarily fetching the text in language code ‘E’ (English from the country and material text tables).
Create an ABAP program YCH_CH14_05_TABLE_CTRL. In this program, declare structures for the two views with

the TABLES statement. Also declare internal tables for these two structures.

Screens

Create a normal screen, screen number 300. On the layout editor, click the third button from the right of the
application toolbar to select fields from the DDIC object. Enter the database view name as YCL_CH14_KNVB in
the dialog box, click on the ‘Get from Dictionary’ button, and select the fields ‘VBELN’, ‘FKDAT’, ‘WAERK’, ‘KUNNR’,
‘NAME1’, ‘ORT01’, and ‘LANDX’. Click on the continue button to place on the screen number 300, the fields from the
database view containing fields related to header information as per the rough screen layout of Figure 14-82.
The screen after placement of the header fields will look like Figure 14-83.

View Tables and Join conditions.

CHAPTER 14 ■ SCREEN PROGRAMMING

800

Drag and drop the table element, the third element from the bottom in the element palette. You can drag and
drop the fourth element from the bottom in element palette. This also creates a table element using a wizard.
Creating a table element with a wizard will save the writing of code. For now, you are creating a table element without
using a wizard.

In the attributes screen of the table element, assign a name ‘ITEMS’ to the table element. Enable the check boxes
for horizontal and vertical dividers (i.e., each field will appear as a cell as in an Excel spreadsheet). You are retaining
the default options of other attributes: row selection, column selection and resizing by an end user, etc. The attributes
screen of the table element ‘ITEMS’ is shown in Figure 14-84.

Figure 14-84. Screen Number 300. Placement of Table Element

Figure 14-83. Screen Number 300. Placement of Fields related to Header

CHAPTER 14 ■ SCREEN PROGRAMMING

801

The next step is to place fields inside the table element. Again, open the dialog box for field selection.
(The third button from the right of the application toll bar, etc). Enter the view name as YCL_CH14_VBP_MKT for
fields related to item information. Select the fields ‘VBELN’, ‘POSNR’, ‘FKIMG’, ‘VRKME’, ‘NETWR’ (sourced from
database table ‘VBRP’), and ‘MAKTX’, sourced from database table ‘MAKT’. The screen after the field selections will
look like Figure 14-85.

Figure 14-85. Screen Number 300. Selection of Fields Related to Items

You do not need the field ‘VBELN’ as per the layout. You included it just to demonstrate that fields and labels can
be deleted after their placement in the table element. The screen after the fields are placed in the table element will
look like Figure 14-86.

CHAPTER 14 ■ SCREEN PROGRAMMING

802

The field labels appear as column headings in the table element. After placing the fields, all the fields would
have been selected. Unselect by clicking on a screen area different from the table element. Delete the field ‘VBELN’.
The fields have to be ordered as per the layout.

To position fields, simply drag and drop the field in the desired position. Order and resize the fields, and change
the attributes to display. Two of the fields ‘FKIMG’ (Billed Quantity) and ‘NETWR’ (Net Value of item) sourced from
database table ‘VBRP’ are numeric fields that must appear as right aligned or right justified. By default, all fields on
the screen appear left aligned or left justified. To make a field appear right justified, open the attribute dialog box of
the field, select the tab Program, and enable the check box ‘Right justified’. The screen after these operations will look
like Figure 14-87.

Figure 14-86. Screen Number 300. Initial Placement of Fields Related to Items

Figure 14-87. Screen Number 300. Final Placement of Fields Related to Items

CHAPTER 14 ■ SCREEN PROGRAMMING

803

Lastly, you have to place the fields ‘NETWR’ (sourced from the database table ‘VBRK’, net value of billing document)
at the bottom of the screen. Placing this field and the screen after field placement will look like Figure 14-88.

Figure 14-88. Screen Number 300. Final Placement of All Fields

Save the screen, and close the layout editor. In the element list, enter the ‘OK_CODE’ field. In the flow logic area,
de-comment the module statements. Create the PBO and PAI modules along the now familiar pattern. For the table
element, you enter the following code in the flow logic area:

PROCESS BEFORE OUTPUT.
MODULE STATUS_0300.

LOOP AT BILLSI_TAB INTO YCL_CH14_VBP_MKT WITH CONTROL ITEMS.

ENDLOOP.
*
PROCESS AFTER INPUT.
MODULE USER_COMMAND_0300.

LOOP AT BILLSI_TAB.

ENDLOOP.

The LOOP . . . ENDLOOP statements in the PBO event, in the present context, transfer the data from the internal
table to the work area (ABAP variables) into the screen variables in the table element.

The LOOP . . . ENDLOOP statements in the PAI event, in the present context, transfer the data from the screen
variables in the table element into the internal table (ABAP variables).

The syntax of the LOOP . . . ENDLOOP statement in the PBO event is different from that in the PAI event.
The step looping process (LOOP . . . ENDLOOP in flow logic area) can be perused in the document ABAP

Programming (BC-ABA).

CHAPTER 14 ■ SCREEN PROGRAMMING

804

Interface

Create a status ‘STAT1’ in the interface YCL_CH14_05_TABLE_CTRL as shown in Figure 14-89.

Figure 14-89. Interface. YCL_CH14_05_TABLE_CTRL – Status ‘STAT1’

Program. The Source Program

REPORT YCH_CH14_05_TABLE_CTRL.

* Demonstrate Table Control **

CONTROLS.ITEMS TYPE TABLEVIEW USING SCREEN 300.

TABLES. YCL_CH14_KNVB, YCL_CH14_VBP_MKT.

DATA. BILLSH_TAB TYPE STANDARD TABLE OF YCL_CH14_KNVB,
 BILLSI_TAB TYPE STANDARD TABLE OF YCL_CH14_VBP_MKT,
 OK_CODE TYPE SY-UCOMM,
 NO_ROWS TYPE SY-TABIX,
 CUR_ROW TYPE SY-TABIX,
 ONCE(1 TYPE C.
**

START-OF-SELECTION.
CALL SCREEN 300.

&---
*& Module STATUS_0300 OUTPUT
&---
* text
--
MODULE STATUS_0300 OUTPUT.

IF ONCE = ' '.

 ONCE = 'X'.
 SET PF-STATUS 'STAT1'.

CHAPTER 14 ■ SCREEN PROGRAMMING

805

 SELECT * FROM YCL_CH14_KNVB INTO TABLE BILLSH_TAB UP TO 100 ROWS
 WHERE VBELN >= '0090023219' .

 NO_ROWS = SY-DBCNT.
 SORT BILLSH_TAB BY VBELN.
 CUR_ROW = 1.
 PERFORM READ_ITEMS.

ENDIF.

OK_CODE = ' '.

ENDMODULE. " STATUS_0300 OUTPUT

&---
*& Module USER_COMMAND_0300 INPUT
&---
* text
--

MODULE USER_COMMAND_0300 INPUT.

CASE OK_CODE.

 WHEN 'EXIT'.
 LEAVE PROGRAM.

 WHEN 'FIRST'.
 CUR_ROW = 1.
 PERFORM READ_ITEMS.

 WHEN 'NEXT'.
 IF CUR_ROW < NO_ROWS.
 CUR_ROW = CUR_ROW + 1.
 PERFORM READ_ITEMS.
 ENDIF.

 WHEN 'PREV'.
 IF CUR_ROW > 1.
 CUR_ROW = CUR_ROW - 1.
 PERFORM READ_ITEMS.
 ENDIF.

 WHEN 'LAST'.
 IF CUR_ROW < NO_ROWS.
 CUR_ROW = NO_ROWS.
 PERFORM READ_ITEMS.

ENDIF.

ENDCASE.

ENDMODULE. " USER_COMMAND_0300 INPUT

CHAPTER 14 ■ SCREEN PROGRAMMING

806

FORM READ_ITEMS.

 READ TABLE BILLSH_TAB INTO YCL_CH14_KNVB INDEX CUR_ROW.

 SELECT * FROM YCL_CH14_VBP_MKT INTO TABLE BILLSI_TAB WHERE
 VBELN = YCL_CH14_KNVB-VBELN.

 ITEMS-LINES = SY-DBCNT.

ENDFORM.

The screen on program execution will look like the one in Figure 14-90.

Figure 14-90. Program YCL_CH14_05_TABLE_CTRL. Execution

Deliberately, the first row fetched and loaded into the internal table BILLH_TAB corresponds to billing
document number 0090023219. (WHERE VBELN >= ‘0090023219’). This billing document has the maximum number
of items of all the billing documents in the table VBRK (fifty-three). It serves the purpose of providing the scope for
demonstrating the vertical scrolling in the table control.

This was a demonstration of table control. It enables presentation of multiple rows of data. Data navigation
facility is provided as in the hands-on exercises on the tab strip control. All the data on the screen for this hands-on
exercise was in display mode. If you want to operate on the table control data; or insert, delete, and change rows, it
involves complex screen programming beyond the scope of this book.

CHAPTER 14 ■ SCREEN PROGRAMMING

807

Miscellanea
Create Custom Transaction Code
You can create custom transaction codes. The ABAP programs created by developers of an implementation team are not
executed by the end users – people who operate the SAP software – the way you have been testing and executing them by
navigating to transaction SE38, entering the program name, and clicking the execution button. Instead, you will create
custom transaction codes and assign the ABAP programs to these custom transaction codes. The end users will employ
these custom transaction codes to execute the ABAP programs delivered by the implementation team developers.

To create a custom transaction code, use the transaction code SE93 to navigate to the screen for maintaining
custom transaction codes.

Let a custom transaction code be created with the program you created for demonstrating the table control
(i.e., YCL_CH14_05_TABLE_CTRL). So on the custom transaction code maintenance screen, enter the transaction
code YCL_CH14_TC01. The screen will look like Figure 14-91.

Figure 14-91. Transaction Maintenance – SE93 Screen

A custom transaction code must start with ‘Y’/’Z’ and can contain alphanumeric characters with embedded
underscores (_ , a maximum name space of twenty characters). Click on the create button. The transaction attribute
dialog will appear like the one in Figure 14-92.

Figure 14-92. Create Transaction – Transaction Attributes

CHAPTER 14 ■ SCREEN PROGRAMMING

808

Enter a short bit of text. The five radio buttons specify the start object. The first three are self-explanatory.
For Transaction with variant, you can create a variation (a kind of version of an existing transaction code

including the SAP delivered transaction codes). In these variants, you can set attributes of screen fields (like hiding
preset values of screen fields and even hide entire screens).

For Transaction with parameter, you can pre-assign values to the fields on the opening screen.
In the present context, you are creating a transaction code for a screen/dialog program. Hence the first or the

default radio button is to be enabled. Click on the continue button. The screen will appear like Figure 14-93.

Figure 14-93. Create Transaction – YCL_CH14_TC01

Figure 14-94. Execute Custom Transaction Code. YCL_CH14_TC01

Enter the name of the program as YCL_CH14_05_TABLE_CTRL. Entering the screen number is not mandatory in
your present context as your program starts execution with the CALL SCREEN 300 statement.

Select the default Classification option. Professional User Transaction. By default it supports the SAPGUI for

Windows. You can enable other checkboxes under the GUI support if so desired. Save. Assign the ‘$TMP’ package
when prompted.

The custom transaction code YCL_CH14_TC01 is ready to be used. Enter it in the command box like in Figure 14-94.

The screen of Figure 14-90 will appear. This concludes the creation of custom transaction code.

CHAPTER 14 ■ SCREEN PROGRAMMING

809

A Brief Overview of DDIC Lock Objects
You have been exposed to a few of the SAP functional module database tables of the functional module ‘Sales and
Distribution’ – SD. For instance, the customer entity data is located in more than one database table: KNA1, KNB1 . . . ,
and the KN series of tables. The billing document data is located in two tables: VBRK and VBRP. Similarly, database tables
of the functional module are located in ‘Material Management’- MM. The vendor entity data is located in more than
one database table: LFA1, LFB1 . . . , and the LF series. The purchasing document data is located in two tables: EKKO
and EKPO.

Most of the SAP functional module data is located in multiple tables.
When an end user is editing the data of a specific customer – for example, customer code equal to ‘X001’ – the

row/s of this customer code ‘X001’ in all the customer database tables need to be locked to all other end users other
than the end user who is editing the data. This is to ensure data integrity.

All database software provides locking mechanisms for maintaining data integrity. But the database software
locking mechanisms operate on a single database table and cannot serve that purpose in a SAP environment where
most entity data is located in multiple tables.

To take care of this requirement of simultaneously locking rows in multiple tables, SAP offers its own locking
mechanism through the DDIC lock objects. All lock object names, including custom lock object names, must start
with the letter ‘E’.

A screen shot of the Tables tab of the SAP lock object ‘EXKNA1’ used for customer data is shown in Figure 14-95.

Figure 14-95. DDIC Lock Object EXKNA1 – Tables Tab

A lock object consists of a primary table. The lock object ‘EXKNA1’ has KNA1 as the primary table. You can
explicitly assign secondary tables to the lock object. (At the bottom of the screen of the Tables tab). If the secondary
tables are not explicitly assigned, there is implicit assignment through foreign key relationships of the primary table
with other tables.

CHAPTER 14 ■ SCREEN PROGRAMMING

810

The implicit assignment of secondary tables through foreign key relationships is with restrictions. To give a rough
example, if an end user is editing specific customer data, the row corresponding to this customer must be locked in all
the tables containing customer data not any other tables like sales orders or billing document data. The sales orders
and billing documents also have a foreign key relationship with customer data.

One prime rule of implicit assignment of secondary tables is that the foreign key fields in the secondary tables
must also be primary key fields in the secondary tables.

Consider the tables KNA1 and KNB1. They are related through the field ‘KUNNR’. The field ‘KUNNR’ is a primary
key field in the primary table KNA1. It is a foreign key field in the table KNB1 as well as a primary key field. Hence the
table KNB1 qualifies as an implicit secondary table in the lock object EXKNA.

Consider the tables KNA1 and VBRK. They are related through the field ‘KUNNR and ‘KUNAG’. The field ‘KUNNR’
is a primary key field in the primary table KNA1. The field ‘KUNAG’ is a foreign key field in the table VBRK and not a
primary key field. Hence the table VBRK does not qualify as an implicit secondary table in the lock object EXKNA.

You can assign lock mode as Exclusive, Shared, or Exclusive but cumulative.
A screen shot of Lock parameter tab of the same SAP lock object ‘EXKNA1’ used for customer data is shown in

Figure 14-96.

Figure 14-96. DDIC Lock Object EXKNA1 – Lock Parameter Tab

In this tab, you assign the lock parameter (i.e., the primary key fields of the primary table).
When you activate a DDIC lock object, two function modules are generated. These are the names of these

function modules:

ENQUEUE _<lock object name>

DEQUEUE_<lock object name>

ABAP update programs will use these function modules. The function module ENQUEUE _<lock object name> is
used to set a lock. The function module DEQUEUE _<lock object name> is used to release a lock.

You can refer to the document ABAP Dictionary (BCDWBDIC) for an elaborate description of lock objects.

Tab Strip on a SELECTION-SCREEN
You can place tab strip on selection screens. The location of tab strip on selection screen involves declaration of

 1. Sub screens with BEGIN OFSCREEN . . . END OF SCREEN statements.

 2. Tabbed Block with BEGIN OF TABBED . . . END OF BLOCK . . .

CHAPTER 14 ■ SCREEN PROGRAMMING

811

The following source program with the comments will make this clearer.

REPORT YCL_CH14_06_TABSTRIP_SL_SCREEN.

* Tab Strip in SELECTION-SCREEN **

* SELECTION-SCREEN SUBSCREENS declarations **

SELECTION-SCREEN BEGIN OF SCREEN 100 AS SUBSCREEN
 NO INTERVALS.

PARAMETERS. KUNNR TYPE KUNNR,
 VKORG TYPE VKORG,
 VTEXT TYPE VTEXT.

SELECTION-SCREEN END OF SCREEN 100.

SELECTION-SCREEN BEGIN OF SCREEN 200 AS SUBSCREEN
 NO INTERVALS.

PARAMETERS. LIFNR TYPE LIFNR,
 EKORG TYPE EKORG,
 EKOTX TYPE EKOTX.

SELECTION-SCREEN END OF SCREEN 200.

**
SELECTION-SCREEN. BEGIN OF BLOCK BLOCK1 WITH FRAME TITLE TL01
 NO INTERVALS,

 SKIP,
**
* TABBED BLOCK - special type of SELECTION-SCREEN BLOCK **
* TABBED BLOCKS accept only SELECTION-SCREEN TAB statements **
* inside them to create tab strip tabs **
**
 BEGIN OF TABBED BLOCK PART_TAB FOR 3 LINES
 NO INTERVALS,

 TAB (18 CUST_BT USER-COMMAND CUSTOMER
 DEFAULT SCREEN 100,

 TAB (18 VEND_BT USER-COMMAND VENDOR
 DEFAULT SCREEN 200,

 END OF BLOCK PART_TAB,
 END OF BLOCK BLOCK1.

CHAPTER 14 ■ SCREEN PROGRAMMING

812

**
INITIALIZATION.
 TL01 = 'Business Partner'(001 .
 CUST_BT = '@A0@ Customer'(002 .
 VEND_BT = '@AD@ Vendor'(003 .

Selection texts are created fetching the labels from the data elements.
When the program is executed, the screen will look like Figure 14-97.

Figure 14-97. Tab Strip in SELECTION-SCREEN

Maintenance Views and Table Maintenance Dialogs
Overview. Maintenance Views, Table Maintenance Generator, and Table
Maintenance Dialogs
Maintenance Views. You have been exposed to three DDIC types of views: database views, projection views, and
help views. You can create one more type of view in DDIC: the maintenance view. Maintenance view can only be
used in table maintenance dialogs. Table maintenance dialogs are mostly to be used for maintaining data in custom
or user-defined database tables. Maintaining data in custom or user-defined database tables means creation, change,
deletion, and display of data in these database tables.

You can create a maintenance view either with one or multiple database tables. In case of a maintenance view
consisting of multiple database tables, these tables must be linked with foreign key relationships. When you create
a maintenance view with multiple databases, the system automatically enters the table join conditions. You cannot
modify or manually enter the join conditions like you were doing when creating database views. The rows in the
maintenance view using multiple database tables is based on inner join like it is with database views.

To be able to insert, edit, and delete data in the underlying tables of a maintenance view, the following
prerequisites should be fulfilled:

 1. In each of the participating database tables of the maintenance view, in the tab
‘Delivery and Maintenance’, in the item ‘Data Browser/Table View Maint.’ , the option
‘Display/Maintenance Allowed’ should have been assigned.

 2. In the maintenance view, in the tab ‘Maint. Status’, the radio button ‘read, change, delete
and insert’ (default) should have been selected.

CHAPTER 14 ■ SCREEN PROGRAMMING

813

There are constraints of cardinality when creating a maintenance view with multiple database tables. You can
create a maintenance view with multiple database tables only when the cardinality between these tables is either
N.1 or N.C. (Refer to Chapter 2 for cardinality). This constraint is operative when you use the maintenance view in a
table maintenance dialog to create/edit/delete entries in all underlying tables of the maintenance view. If you employ
a table maintenance dialog using a maintenance view with multiple database tables to create/edit/delete entries only
in a single underlying database table at the bottom of the hierarchy of the maintenance view, you need not be bound
by this cardinality constraint.

Table Maintenance Dialogs Using Maintenance Views and Table Maintenance
Generator

When you created and activated custom database tables in Chapter 2, a default table maintenance dialog was created
enabling you to insert, edit, delete, and display data in the database table: that is, perform data operations on the
database tables. You used transaction code SE11 or SE16 to perform data operations on the database tables.

The process that generates the table maintenance dialog using the maintenance views is called the table

maintenance generator.
Table maintenance dialogs using maintenance views offers some advantages and additional features over the

default table maintenance dialogs generated when database tables are activated.
The additional advantages and features of table maintenance dialog using maintenance view over the default

maintenance dialog are as follows.

The maintenance dialog using maintenance view can be for multiple database tables subject •
to the cardinality constraints.

The maintenance dialog using maintenance view can be assigned an authorization group •
enabling access by specific user group: that is, an extra security facility. With the authorization
group and authorization object, access can be restricted to the level of any workbench object.
The authorization group and authorization object is not in the scope of this book.

With the maintenance dialog box assigned an authorization group and an authorization object, it will operate in
the following manner.

An end user envisaged to operate on the data of underlying table/s of a maintenance view will not have access to
the transactions codes SE11 and SE16. They will be given access to transaction code SM30. In the transaction code SM30,
you can access and operate only tables for which table maintenance dialog exists. With transaction code SM30, an end
user can only access and operate data of specific database tables for which table maintenance dialog exists and has been
authorized access to these through the authorization group and authorization object.

The maintenance dialog using maintenance view can be modified and customized.•

Once a maintenance view is created, a table maintenance dialog can be generated using this maintenance view
screen or the transaction code SE54 by the table maintenance generator.

The table maintenance generator automatically generates a function group, function module/s, interfaces, and
screens of a table maintenance dialog. This generated table maintenance dialog can then be used to maintain data in
the database table/s of the maintenance view.

A table maintenance dialog generated using a maintenance view has option to operate the maintenance dialog
with either one screen or with two screens.

When you choose the option of a maintenance dialog with two screens, the first screen presents an overview
of existing maintenance view data (multiple row display displaying data of the first four fields). This is called the
overview screen. To operate on existing rows, the rows to be operated upon have to be selected through the row
selectors in the overview screen and control then shifts to a second screen. To create new rows, you click on the create
button on the application tool bar and the control shifts to the second screen.

CHAPTER 14 ■ SCREEN PROGRAMMING

814

The second screen is to insert/edit/delete/display individual rows. This screen is called the single screen and
presents one row at a time of the maintenance view. To get a feel of two screens table maintenance dialog, see the
contents of SAP delivered maintenance view V_T001 using transaction code SE16 or SM30.

In a table maintenance dialog with a single screen, data from the maintenance view is presented in multiple row
form with field headings and can be operated upon on the same screen. To get a feel of single screen table maintenance

dialog, see the contents of SAP delivered maintenance view V_KNA1_CORE using transaction code SE16 or SM30.
When generating the table maintenance dialog, the table maintenance generator prompts for the function group.

It is a good practice to input a nonexistent function group name. When you input a nonexistent function group name,
the table maintenance generator creates a function group with that name and also generates function modules. All
programming including screen related programming (PBO and PAI modules, etc.), are located in the code of the
function group and the function modules. You can incorporate and execute your custom PBO and PAI modules and
subroutines. The custom PBO and PAI modules will be invoked from the flow logic area of the screens. The subroutines
are coded for events. There are more than thirty events supported in the maintenance dialog. The screen layouts can be
changed in terms of repositioning, resizing, and changing the properties of screen elements.

Now that an overview has been provided of table maintenance views and table maintenance dialog, you can
proceed to hands-on exercises.

Hands-on Exercise. Create and Operate Table Maintenance Dialog for the
Custom Database Table YCL_CH02_BILLI
Scenario

Using a table maintenance dialog, you want to be able to insert, edit, delete, and display data for the database table
YCL_CH02_BILLI. This table was created in Chapter 2 as part of your hands-on exercise on domains, data elements,
and tables. You operated the data of this table using the default table maintenance dialog in Chapter 2. This table
consists of items of bills. To recapitulate, the table consists of the following fields:

BILL_NO Bill Number

SRL_NO Serial Number

ITEM_CODE Item Code

QNTY Quantity

RATE Rate (Selling Price)

AMOUNT Amount for the Item

You had attached a search help to the field ‘ITEM_CODE’ of this table in Chapter 3. The search help had the
table YCL_CH02_ITEMM as its source of data. The attached search help enabled a selection list to appear on pressing
function key F4 in this field when entering data through the default table maintenance dialog. The selection list
displayed the following fields: ‘ITEM_CODE’, ‘ITEM_DESC’ (Item Description), and ‘RATE’. On making a selection in
the selection list, the values of fields ‘ITEM_CODE’ and ‘RATE’ were returned to the screen fields.

You will create a maintenance view with the tables YCL_CH02_BILLI and YCL_CH02_ITEMM related through the
field ‘ITEM_CODE’. These two tables do not have N.1 cardinality. Since you will operate (insert/edit/delete) data of
one table only (i.e., YCL_CH02_BILLI), this does not matter. The objective of including the table YCL_CH02_ITEMM
is to display the ‘ITEM_DESC’ (item description) field alongside the item code (‘ITEM_CODE’) field when a row is
presented. You will generate a table maintenance dialog using the maintenance view.

CHAPTER 14 ■ SCREEN PROGRAMMING

815

With this specification of maintenance view, you proceed to create the maintenance view.

Create Maintenance View

On the opening screen of transaction code SE11, click on the ‘View’ radio button. Enter the name of the maintenance
view to be created as YCL_CH14_BIIT_MV. Click the Create button or press the function key F5. The system will
prompt for the type of view to be created. Select the ‘Maintenance view’ radio button.

The maintenance view creation screen appears. Enter appropriate short text. Under the column ‘Tables’, enter
either name of the secondary table YCL_CH02_BILLI or select this table from the filtered (YCL_CH02*) selection list.
To select the primary table, click on the ‘Relationships’ button. Select the table relationship of YCL_CH02_ITEMM &
YCL_CH02_BILLI from the list. The screen after selection of table relationship is as shown in Figure 14-98.

Table 14-10.

Field Name Table Name Description

BILL_NO YCL_CH02_BILLI Bill Number

SRL_NO YCL_CH02_BILLI Serial Number

ITEM_CODE YCL_CH02_BILLI Item Code

ITEM_DESC YCL_CH02_ITEMM Item Description

QNTY YCL_CH02_BILLI Quantity

RATE YCL_CH02_BILLI Rate (Selling Price)

AMOUNT YCL_CH02_BILLI Amount for the Item

Figure 14-98. Create Maintenance View YCL_CH14_BIIT_MV, Tab – Table/Join Conditions

The participating fields with their originating tables in the maintenance view are shown in Table 14-10.

CHAPTER 14 ■ SCREEN PROGRAMMING

816

Save, perform a consistency check, and activate the maintenance view. Now you need to create the table maintenance

dialog. To generate the table maintenance dialog, make the following menu selection in the maintenance view screen:
Utilities (M ➤ Table Maintenance Generator). This is shown in Figure 14-100.

Figure 14-99. Create Maintenance View YCL_CH14_BIIT_MV, Tab – View Fields

Figure 14-100. Maintenance View YCL_CH14_BIIT_MV Screen – Navigate to Table Maintenance Generator

Click on the ‘View Flds’ tab. Select all the fields of the table YCL_CH02_BILLI. Select the field ‘ITEM_DESC’
from the table YCL_CH02_ITEMM. The screen after ordering the fields as per the specifications will look like those in
Figure 14-99.

CHAPTER 14 ■ SCREEN PROGRAMMING

817

Enter the ‘Authorization Group’ as ‘&NC&’ (no authorization) from the selection list. ‘Authorization object’ is
automatically assigned as ‘S_TABU_DIS’.

Enter the ‘Function group’ value as YCL_CH14_MV_FG. This function group should not exist. The table

maintenance generator will automatically create this function group and related function modules.
Select the ‘Maintenance Type’ as a ‘two step’. With this option, there will be an overview screen displaying

multiple rows. There will be a single screen in which all the fields of a selected row from the overview screen will
appear. In case you select ‘one step’, on a single screen, multiple rows will appear. Enter ‘Overview screen’ value as 100
and ‘Single screen’ value as 200.

For multiple maintenance views created with the same set of table/s, these screen numbers should be unique.
After the values have been entered, click on the create button on the application toolbar.

Generate Table Maintenance Dialog

The generate table maintenance dialog screen will appear like in Figure 14-101.

Figure 14-101. Maintenance View YCL_CH14_BIIT_MV Screen – Generate Table Maintenance Dialog Screen

CHAPTER 14 ■ SCREEN PROGRAMMING

818

Now that a table maintenance dialog has been created, you will use it to operate the data of table YCL_CH02_BILLI.

Operate Table YCL_CH02_BILLI Data Using Maintenance View Table
Maintenance Dialog

With the table maintenance dialog generated, go back to the maintenance view screen. Click on the contents button
of the application toolbar. The overview screen of the table maintenance dialog appears. It displays the first four
fields of the maintenance view. This data was created in Chapter 2. If you click on the toggle button change on the
application tool bar of the overview screen of the table maintenance dialog, an information alert appears as your table
is cross-client (Client independent). This is shown in Figure 14-103.

Figure 14-102. Generate Table Maintenance Dialog Screen – Values Filled & Table Maintenance Dialog Generated

The screen with the entered values and the table maintenance generated will appear as in Figure 14-102.

CHAPTER 14 ■ SCREEN PROGRAMMING

819

With the select all button on the application toolbar, select all the rows. The overview screen interface with all the
rows selected is shown in Figure 14-104.

Figure 14-103. Table Maintenance Dialog Overview Screen-Alert for Cross-Client

Figure 14-104. Table Maintenance Dialog – Overview Screen & Its Interface

CHAPTER 14 ■ SCREEN PROGRAMMING

820

There are buttons to create new rows and navigate to other rows (previous, next, etc.).
As an exercise, use the table maintenance dialog to create new rows, edit existing rows, and delete rows.
To recapitulate, you first defined a scenario for a maintenance view using tables YCL_CH02_BILLI and

YCL_CH02_ITEMM. The scenario envisaged usage of the maintenance view for data operation of the table
YCL_CH02_BILLI. You created a maintenance view as per the scenario. You used the maintenance view to generate
a table maintenance dialog. You deployed the table maintenance dialog to operate on the data of the table
YCL_CH02_BILLI.

In the next hands-on exercise, you will carry out modifications to the table maintenance dialog.

Hands-on Exercise. Modify Generated Table Maintenance Dialog
Scenario

In this hands-on exercise, you will perform modifications to the objects of preceding hands-on exercise in which you
created the table maintenance view with the tables YCL_CH02_BILLI and YCL_CH02_ITEMM and generate a table

maintenance dialog to operate the data of the table YCL_CH02_BILLI. The objective of including the second table
YCL_CH02_ITEMM was to have the item description field ‘ITEM_DESC’ from the second table appear alongside
the field ‘ITEM_CODE’ of the first table YCL_CH02_BILLI. You are not operating on the data of the second table
YCL_CH02_ITEMM. So you do not want the field ‘ITEM_DESC’ to appear in edit or change mode. This field must
appear in display mode. The field ‘AMOUNT’ is a derived field of rate multiplied by quantity. The field ‘AMOUNT’
should be set to display mode. It should be derived by multiplying the rate and quantity in a PAI module: that is, when
you click on the save button or press the <Enter> key, (triggering a PAI event) on the table maintenance dialog, the
field ‘AMOUNT’ should be derived by executing a PAI module.

To sum up, in the present hands-on exercise, you will perform the following:

Set the field ‘ITEM_DESC’ in display mode in both screens of the • table maintenance dialog:
the overview screen (screen no. 100) as well as the single screen (screen no. 200).

Set the ‘AMOUNT’ field to display mode in the single screen (screen no. 200) and derive the •
field ‘AMOUN’ by multiplying ‘RATE’ and ‘QNTY’ in a PAI module.

Figure 14-105. Table Maintenance Dialog – Single Screen with Data

If you click on the Details button, the screen will present each row’s contents as shown in Figure 14-105.

CHAPTER 14 ■ SCREEN PROGRAMMING

821

Modifications as per Scenario

To carry out these listed modifications in the table maintenance dialog, navigate to the generate table maintenance dialog
screen of the maintenance view YCL_CH14_BIIT_MV (Figure 14-102) Double click on screen 200. (Single screen), and
the system will navigate to the screen painter. Click on the layout editor button on the application tool bar. In the layout
editor of screen 200, double click on the screen element ‘YCL_CH14_BIIT_MV-ITEM_DESC’ to bring up the properties
dialog box of this screen element. On the property dialog box, click on the ‘Program’ tab, and disable the ‘Input Field’
checkbox. This is shown in Figure 14-106.

Figure 14-106. Table Maintenance Dialog. Single Screen – Change Properties

Carry out a similar procedure for the screen element ‘YCL_CH14_BIIT_MV-AMOUNT’. Save, activate
screen no. 200, and exit the layout editor. Return to the generate table maintenance dialog screen. This will ensure
that the fields ‘ITEM_DESC’ and ‘AMOUNT’ on the single screen or screen no. 200 will appear in display mode
when operating the table maintenance dialog.

To ensure that the field ‘ITEM_DESC’ on the overview screen or screen no. 100 appears in display mode, you have
to execute a PBO module (dynamic setting of properties from the flow logic area of screen no. 100). This is so because
the table maintenance dialog is manipulating the properties of this screen element in its PBO module. If you want
to set the properties of this screen element, it should override the setting by PBO module of the table maintenance

dialog. So your PBO module invocation should follow the table maintenance dialog invocation of PBO modules.
On the generate table maintenance dialog screen, double click on screen 100. The system will navigate to the flow

logic area of screen no. 100. Insert a module invoking a statement like MODULE OWN_PBO100. This statement is just
preceding the ENDLOOP statement in the PBO area. Perform syntax and activate the screen. The flow logic area with
invocation of your PBO module after activation is shown in Figure 14-107.

CHAPTER 14 ■ SCREEN PROGRAMMING

822

The next step is to incorporate the code for the invoked module OWN_PBO100. To incorporate the code
for invoked module, select the following menu option on the generate table maintenance dialog screen.
Environment ➤ Modification ➤ Source Code. When you make this menu selection, the screen as in
Figure 14-108 appears.

Figure 14-107. Table Maintenance Dialog. Overview Screen – PBO Module

Figure 14-108. Table Maintenance Dialog. Overview Screen – Incorporate Source

In Figure 14-108, at the bottom are commented INCLUDE source lines. They are a provision to create your
own PBO and PAI modules. There is provision to create your own subroutines or subprograms. The subroutines get
executed for events. There are over thirty events available in the table maintenance dialog. A list of these events can be
found in SAP documentation on maintenance views and table maintenance dialog.

In the present scenario, you have to code a PBO module that will set the property of the screen element
‘YCL_CH14_BIIT_MV-ITEM_DESC’ to display mode: that is, SCREEN-INPUT = 0. So, de-comment the line

* INCLUDE LYCL_CH14_MV_FGO...

as INCLUDE LYCL_CH14_MV_FGO01.

CHAPTER 14 ■ SCREEN PROGRAMMING

823

Save and then double click on the include program name ‘LYCL_CH14_MV_FGO01’. The system will alert that
the program does not exist, should the program be created? This alert appears on the status bar and not as a pop-up.
Press the <Enter> key. Then enter the following lines:

MODULE OWN_PBO100 OUTPUT.

LOOP AT SCREEN.
 IF SCREEN-NAME = 'YCL_CH14_BIIT_MV-ITEM_DESC'. "name of the screen element
 SCREEN-INPUT = 0.
 MODIFY SCREEN.
ENDIF.
ENDLOOP.

ENDMODULE.

Save, perform a syntax check, and activate the include program. Navigate to the previous screen in which the
include program is being invoked. Activate this main program. Navigate back to the generate table maintenance

dialog screen.
You have carried out the required modifications to make the field ‘ITEM_DESC’ appear in display mode in both the

overview screen and the single screen. Next, you will incorporate a PAI module for the single screen (screen no. 200),
which will calculate the field YCL_CH14_BIIT_MV-AMOUNT = YCL_CH14_BIIT_MV-QNTY * YCL_CH14_BIIT_MV-RATE.

To invoke its own PAI module and create code for its own PAI module for the single screen (screen no. 200),
follow the same procedure you followed for invoking and creating its own PBO module.

In the generate table maintenance dialog screen, double click on the single screen (screen no. 200). The system
will navigate to the flow logic area of screen no. 200. Scroll down the PAI area. The screen will look like Figure 14-109.

Figure 14-109. Table Maintenance Dialog. Single Screen – PAI Module

CHAPTER 14 ■ SCREEN PROGRAMMING

824

At the end of the existing PAI statements (after the statement ‘endchain’), incorporate the PAI module invoking
statement.

FIELD YCL_CH14_BIIT_MV-AMOUNT MODULE CALC_AMT.

Save, perform a syntax check, and activate the screen. Return to the generate table maintenance dialog screen.
You have to create the code of invoked PAI module CALC_AMT. To incorporate the code for invoked PAI module,
select the following menu option on the generate table maintenance dialog screen: Environment ➤ Modification ➤
Source Code. When you make this menu selection, the screen as in Figure 14-110 appears.

Figure 14-110. Table Maintenance Dialog. Single Screen – Incorporate PAI Module Source

You have to code a PAI module that will calculate the field ‘AMOUNT’. So, de-comment the line:

* INCLUDE LYCL_CH14_MV_FGI...

as INCLUDE LYCL_CH14_MV_FGI01.
Save and then double click on the include program name ‘LYCL_CH14_MV_FGI01’. The system will alert that

the program does not exist, should the program be created? This alert appears on the status bar and not as a pop-up.
Press the <Enter> key. Then enter the following lines:

MODULE CALC_AMT INPUT.
YCL_CH14_BIIT_MV-AMOUNT = YCL_CH14_BIIT_MV-QNTY * YCL_CH14_BIIT_MV-RATE.

ENDMODULE.

Save, perform a syntax check, and activate the include program. Navigate to the previous screen in which the
include program is being invoked. Activate this (main) program. Navigate back to the generate table maintenance

dialog screen.
On the generate table maintenance dialog screen, ensure that the field ‘Compare Flag’ is assigned the value

‘Automatically Adjustable’. Press the save button. You are now ready to operate the table YCL_CH02_BILLI through the
table maintenance dialog with the proposed changes incorporated in the table maintenance dialog with the proposed
changes.

The field ‘ITEM_DESC’ will appear in display mode both in overview screen and single screen.•

The field ‘AMOUNT’ will appear in display mode in the single screen.•

The field ‘AMOUNT’ is derived by multiplying the fields ‘RATE’ and ‘QNTY’.•

You will proceed to test these modifications to the original table maintenance dialog.

CHAPTER 14 ■ SCREEN PROGRAMMING

825

Operate Table YCL_CH02_BILLI after Modifications

Let the operation on the table YCL_CH02_BILLI with the modified table maintenance dialog be tested in transaction
code SE16. On the screen of transaction code SE16, enter the name of the maintenance view as YCL_CH14_BIIT_MV.
Click on the table contents button on the application tool bar. Switch to change the mode of the screen. The overview
screen will appear as shown in Figure 14-111.

Figure 14-112. Table Maintenance Dialog. Single Screen – With Modifications

Figure 14-111. Table Maintenance Dialog. Overview Screen – With Modifications

As per the modifications, the field ‘ITEM_DESC’ appears in display mode on the overview screen. Select one or
more rows on the overview screen and navigate to the single screen as shown in Figure 14-112.

You can observe that the fields ‘ITEM_DESC’ and ‘AMOUNT’ appear in display mode on the single screen.
To test whether the field ‘AMOUNT’ is derived by multiplying the fields ‘RATE’ and ‘QNTY’, you can either assign

another value to the field ‘ITEM_CODE’ and/or change the contents of the field ‘QNTY’ of an existing row. Or you can
create a new row and test the derivation of the field ‘AMOUNT’.

In the following screen, the testing of derivation of ‘AMOUNT’ is demonstrated by creating a new row. You can
create a new row by clicking the ‘New Entries’ button either on the overview screen or the single screen. When you
click on the ‘New Entries’ button, a blank single screen appears. Click on the field ‘ITEM_CODE’. Press function key F4
and make a selection from the selection list. Enter a value in the field ‘QNTY’. Press the <Enter> key. This will trigger
the PAI event, and a single screen will appear like in Figure 14-113.

CHAPTER 14 ■ SCREEN PROGRAMMING

826

You can observe that the value of the field ‘ITEM_DESC’ is fetched and appears in display mode. The field
‘AMOUNT’ is derived by multiplying the fields ‘RATE’ and ‘QNTY’. The field ‘AMOUNT’ appears in display mode.

All the proposed changes to the table maintenance dialog as per the described scenario have been carried out
and tested.

Maintenance View, Table Maintenance Dialog, Miscellanea
The following should be borne in mind when modifying the table maintenance dialog.

The different components of the table maintenance dialog can be accessed from the • generate

table maintenance dialog screen with the menu options.

Environment • ➤Modification ➤Maintenance Screens

Environment • ➤Modification ➤User Interface

Environment • ➤Modification ➤Events

Environment • ➤Modification ➤Source Code

The name of the main program of the automatically generated function group is as usual: •
SAPL<function group name>. In the function group, you can declare your global data if
required preferably through an include program.

In the main program, do not modify anything except the • User-Defined Include-files area. Refer
to Figure 14-110.

If you want to make modifications to the function group in transaction code SE37, ensure that •
you are not on the generate table maintenance dialog screen. After carrying out modification
to function group in transaction code SE37, activate all program components of the function
group before exiting. If the function group is not active, you cannot access it from generate

table maintenance dialog screen for modification.

You can modify the • table maintenance dialog screens in terms of layout, changing screen
element properties, and inserting statements in the flow logic area.

If things go wrong, delete the entire (all components) • table maintenance dialog. Re-create the
table maintenance dialog again.

This concludes maintenance views and table maintenance dialog.

Figure 14-113. Table Maintenance Dialog. Single Screen – Field ‘AMOUNT’ Derived

CHAPTER 14 ■ SCREEN PROGRAMMING

827

Conclusion
The chapter began with a recapitulation of the screen painter basics that you were introduced to in Chapter 12.
This was followed by the hands-on exercise that handles a database table data (i.e., display, change, create, and delete
a row making use of multiple screens with screen navigations.

While performing the hands-on exercise, you were introduced to the object navigator – transaction code SE80.
In the object navigator, you can create all workbench objects from a single point. With the object navigator, you can
view all the workbench objects used in the ABAP program in a hierarchical tree-like structure.

The second hands-on exercise demonstrated the import parameters of a DDIC search help. While demonstrating
the use of import parameters of a DDIC search help, you used the function modules: F4IF_FIELD_VALUE_REQUEST
and DYNP_VALUES_UPDATE.

The third hands-on exercise involved the screen elements Subscreen Area and Sub Screens to simulate a tab strip
element.

Having been exposed to the screen elements Subscreen Area and Sub Screens, you used a tab strip element in the
fourth hands-on exercise. The tab strip is implemented using the screen elements Subscreen Area and Sub Screens.

The screen presentation of data of most business documents requires multiple rows to be displayed. The table
screen element is used for presenting multiple rows data on the screen. The fifth hands-on exercise uses the table
screen element to present the billing document data on the screen.

Some miscellanea are covered: creating custom transaction codes, a brief overview of the DDIC lock objects,
and placing a tab strip on a selection screen.

The chapter concludes with a brief on maintenance views and table maintenance dialog.

829

APPENDIX A

Description of the SAP-Delivered Tables
Used in the Hands-On Exercises

SAP-Delivered Tables Used in the Hands-On Exercises of the
Book – Categories and Subcategories
This appendix contains descriptions of SAP-delivered tables, which you will use in the hands-on exercises of the
book. Using an SAP-delivered table means that (i) some feature of the table is being highlighted in the book; (ii) the
table is being used in the creation of ABAP dictionary objects such as views or search helps, etc., as part of hands-on
exercise/s; and (iii) the table is used to access data in hands-on exercises on ABAP program/s (SELECT…).

You will relate better to the SAP-delivered table descriptions in this appendix after studying the two chapters on
the ABAP dictionary — Chapters 2 and 3.

The phrase “SAP delivered” is being dropped from the subsequent text in the appendix because it is implicit.
The tables described in this appendix are SAP-delivered tables only.

You will be using the following categories and subcategories of tables:

The “T” series tables. The table names start with the letter “T.” The “T” series tables contain:•

1. Universal nature of data such as country codes, country texts, currency codes,
currency texts, etc. When SAP is installed, these tables are automatically populated
with the universal data.

2. Configuring data. In a real-life scenario, the configuring data tables get populated when
configurations are performed by functional consultants. A simple example of configuring
a table is the table T001 storing company codes. When company codes are created,
typically by a finance functional module consultant, the table T001 gets populated.

The “T” series tables containing universal data or configuring data are client dependent. That is, the first field in
these tables is of DDIC data type CLNT.

3. There are tables whose names start with the letter “T,” containing other than universal
or configuring information. These tables are cross client or client independent. An
example of this table subcategory: TRDIRT storing ABAP source program title.

The • master data tables: These tables contain customer, vendor, material, and other
information. Each of the master data information resides mostly in multiple tables. The
customer, vendor, and material tables contain many fields; you will confine yourself to using a
few essential fields.

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

830

The master data tables are client dependent. That is, the first field in these tables is of DDIC data type CLNT.

The • transaction data tables: The transaction data tables contain business document
information. You will use these in most hands-on exercises — in the four business document
tables relating to sales. You will use, for the most part, the tables related to billing. Only once
will you will use tables related to the sales document (sales order). The transaction data tables
also contain many fields; however, you will be confined to using a few essential ones.

The transaction data information of each business document is typically stored in two tables: the header table
containing the header information and the item table containing item information.

The transaction data tables are also client dependent. That is, the first field in these tables is of DDIC data
type CLNT.

Cross client (client independent) tables. Examples of this table subcategory: DD02L storing •
table names, DD03l storing table field names, etc.

The master data and transaction data table categories are mentioned in any business application software
context. The other categories and subcategories (“T” series and cross client, etc.) are specific to our present context
and only for making the present context of table descriptions clearer. A diagrammatic representation of the categories
and subcategories of tables used in the hands-on exercises of the book is shown in Figure A-1:

Figure A-1. Tables used in hands-on exercises - categories and subcategories

The table subcategories are numbered as I, II … IX in Figure A-1.
One of the tables BUT000_TD does not fit into any of the neatly defined nine subcategories!
Out of the very large number of tables in the SAP application, very few – 29 – are being used in the hands-on

exercises of the book.
If you are logged into the SAP IDES server, it is already configured for multiple dummy company codes and

contains substantial dummy data in the configuring, master data, and transaction data tables. The IDES server is
ideal to perform the hands-on exercises of the book. The hands-on exercises in the book produced results using the
IDES server.

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

831

When describing tables, the fields are marked as PK for primary key fields and FK for foreign key fields.
The table descriptions follow:

“T” Series - Universal Data Tables

Table A-1. T005T (Country names)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK, FK) CLNT 3 Client

SPRAS (PK, FK) LANG 1 Language key

LAND1 (PK, FK) CHAR 3 Country key

LANDX CHAR 15 Country name

NATIO CHAR 15 Nationality

LNADX50 CHAR 50 Country name (Max 50 characters)

NATIO50 CHAR 50 Nationality (Max 50 characters)

PRQ_SPREGT CHAR 30 Super region per country text

Table A-2. T005U (Taxes: Region key texts)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

SPRAS (PK,FK) LANG 1 Language key

LAND1 (PK,FK) CHAR 3 Country key

BLAND (PK,FK) CHAR 3 Region (State, Province, County)

BEZEI CHAR 20 Description

Table A-3. TCURT (Currency code names)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

SPRAS (PK,FK) LANG 1 Language key

WAERS (PK,FK) CUKY 5 Currency key

LTEXT CHAR 40 Long text

KTEXT CHAR 15 Short text

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

832

“T” Series - Configuring Data Tables

Note ■ For brevity, other fields of this table are not mentioned.

Table A-4. T000 (Clients installed on the system)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK) CLNT 3 Client

MTEXT CHAR 25 Client name

ORT01 CHAR 25 City

Note ■ For brevity, other fields in this table are not mentioned.

Table A-5. T001 (Company codes)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK, FK) CLNT 3 Client

BUKRS (PK) CHAR 4 Company code

BUTXT CHAR 25 Name of company code

ORT01 CHAR 25 City

LAND1 (FK) CHAR 3 Country key

WAERS (FK) CUKY 5 Currency key

SPRAS (FK) LANG 1 Language key

A company code – BUKRS - is associated with a country, currency, and language.

Table A-6. TVKO (Organization unit: Sales organizations)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

VKORG (PK) CHAR 4 Sales organization

WAERS (FK) CUKY 5 Statistics currency

BUKRS (FK) CHAR 4 Company code of the sales organization

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

833

Table A-7. TVKOT (Organization unit: Sales organization texts)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

SPRAS (PK,FK) LANG 1 Language key

VKORG (PK,FK) CHAR 4 Sales organization

VTEXT CHAR 20 Name

Table A-8. TVTW (Organization unit: Distribution channels)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

VTWEG (PK) CHAR 2 Distribution channel

Table A-9. TVTWT (Organization unit: Distribution channel texts)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

SPRAS (PK,FK) LANG 1 Language key

VTWEG (PK,FK) CHAR 2 Distribution channel

VTEXT CHAR 20 Name

Table A-10. TSPA (Organization unit: Sales divisions)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

SPART (PK) CHAR 2 Division

Table A-11. TSPAT (Organization unit: Sales division texts)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

SPRAS (PK,FK) LANG 1 Language key

SPART (PK,FK) CHAR 2 Division

VTEXT CHAR 20 Name

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

834

‘T’ Series - Cross Client Tables

Table A-12. TRDIRT (Title texts for programs in TRDIR)

Field Name DDIC Data Type Length, Decimals Description

NAME (PK) CHAR 40 ABAP Program Name

SPRSL (PK, FK) CHAR 1 Language key

TEXT CHAR 40 Report Title

Table A-13. T247 (Month name and short text)

Field Name DDIC Data Type Length, Decimals Description

SPRAS (PK, FK) LANG 1 Language key

MNR (PK) NUMC 2 Month number

KTX CHAR 3 Month short text

LTX CHAR 10 Month long text

Master Data Tables - Customers

Table A-14. KNA1 (General data in customer master)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

KUNNR (PK) CHAR 10 Customer number/code

NAME1 CHAR 35 Name

STRAS CHAR 35 Street

ORT01 CHAR 35 City

PSTLZ CHAR 10 Postal code

LAND1 (FK) CHAR 3 Country code

ANRED CHAR 10 Title

TELF1 CHAR 16 Telephone

SPRAS (FK) CHAR 1 Language key

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

835

Table A-15. KNB1 (Customer master - company code)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

KUNNR (PK,FK) CHAR 10 Customer number/code

BUKRS (PK,FK) CHAR 4 Company code

AKONT (FK) CHAR 10 Reconciliation account

Table A-16. KNVV (Customer master sales data)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

KUNNR (PK,FK) CHAR 10 Customer number/code

VKORG (PK,FK) CHAR 4 Sales organization

VTWEG (PK,FK) CHAR 2 Distribution channel

SPART (PK,FK) CHAR 2 Division

Master Data Tables - Vendors

Table A-17. LFA1 (Vendor master – general section)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

LIFNR (PK) CHAR 10 Vendor number/code

NAME1 CHAR 35 Name

STRAS CHAR 35 Street

ORT01 CHAR 35 City

PSTLZ CHAR 10 Postal Code

LAND1 (FK) CHAR 3 Country code

ANRED CHAR 10 Title

TELF1 CHAR 16 Telephone

SPRAS (FK) CHAR 1 Language key

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

836

Table A-18. LFB1 (Vendor master - company code)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

LIFNR (PK,FK) CHAR 10 Vendor number/code

BUKRS (PK,FK) CHAR 4 Company code

AKONT (FK) CHAR 10 Reconciliation account

Master Data Tables – Material

Table A-19. MAKT (Material descriptions)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

MATNR (PK,FK) CHAR 18 Material number/code

SPRAS (PK,FK) CHAR 1 Language key

MAKTX CHAR 40 Material description

MAKTG CHAR 40 Material description in upper case
for matchcodes

Material descriptions or texts (field MAKTX) are maintained in multiple languages.
The material master table is MARA. The hands-on exercises in this book are not using any fields of this table.

Hence, for simplicity and expediency, the table MARA is being bypassed. Normally, you will access material
description table MAKT through the material master table MARA.

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

837

Table A-21. VBAP (Sales document: Item data)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK, FK) CLNT 3 Client

VBELN (PK, FK) CHAR 10 SD document number

POSNR (PK) NUMC 6 Sales document Item

MATNR (FK) CHAR 18 Material number/code

ZMENG QUAN 13,3 Target quantity in sales units

ZIEME (FK) UNIT 3 Target quantity UOM (unit of measure)

NETWR CURR 15,2 Net value of the order item in document currency

WAERK (FK) CUKY 5 Sales document currency

Table A-20. VBAK (Sales document: Header data)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK,FK) CLNT 3 Client

VBELN (PK, FK) CHAR 10 SD document number

AUDAT DATS 8 Document date

VBTYP CHAR 1 SD document category

KUNNR (FK) CHAR 10 Sold-to party

NETWR CURR 15,2 Net value of sales order in document currency

WAERK (FK) CUKY 5 SD document currency

BUKRS_VF (FK) CHAR 4 Company code to be billed

VKORG (FK) CHAR 4 Sales organization

VTWEG (FK) CHAR 2 Distribution channel

SPART (FK) CHAR 2 Division

Transaction Data Tables - Sales

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

838

Table A-22. VBRK (Billing document: Header data)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK, FK) CLNT 3 Client

VBELN (PK, FK) CHAR 10 Billing document number

FKDAT DATS 8 Billing date

VBTYP CHAR 1 SD document category

KUNAG (FK) CHAR 10 Sold-to party

NETWR CURR 15,2 Net value- in document currency

WAERK (FK) CUKY 5 Document currency

BUKRS (FK) CHAR 4 Company code

KURRF DEC 9,5 Exchange rate

VKORG (FK) CHAR 4 Sales organization

VTWEG (FK) CHAR 2 Distribution channel

SPART (FK) CHAR 2 Division

The table VBRK is linked to the header status and administrative data table VBUK. For this reason the field
VBELN is marked as FK or foreign key. For simplicity and expediency, this relationship is being ignored. The table
VBUK is not featuring in the sales functionality ER diagram in Figure A-2.

Fields Requiring Further Explanation

WAERK

A billing document can be generated in any currency. This field contains the currency code of the billing document.

KUNAG

 The field KUNAG is a categorization of the customer. In an enterprise, you will ship the material to a particular
customer authority and address; send the billing document to a different customer authority and address. Authority
in an enterprise is distributed. For your purposes, you can treat the field KUNNR in tables KNA1, KNB1, and the field
KUNAG in table VBRK as equivalent.

NETWR

This field contains the amount for all the items of a billing document. A billing document can contain zero or n
number of items.

Each billing document amount value can be of a different currency. The billing document amount values can be
converted to a single currency, the currency of the company code by multiplying the field NETWR with the exchange
rate field KURRF.

The field NETWR can contain negative values. The following scenario will elucidate why a billing document can
contain a negative value.

Suppose an enterprise sells 1,000 bolts at $ 1 apiece to a customer. The 1,000 bolts are dispatched to the customer
along with a billing document of value $ 1,000. This billing document is categorized as a bill or an invoice. At the
customer site, it is discovered that 5 bolts are defective or broken or short. In this situation, the customer must be
charged only for 995 bolts. The typical accounting procedure that is followed to ensure that the customer is charged

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

839

Table A-23. VBRP (Billing document: Item data)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK, FK) CLNT 3 Client

VBELN (PK, FK) CHAR 10 Billing document number

POSNR (PK) NUMC 6 Billing document Item

MATNR (FK) CHAR 18 Material number

FKIMG QUAN 13,3 Sold quantity in sales units

VRKME (FK) UNIT 3 Sales unit of measure

NETWR CURR 15,2 Net value of item in document currency

for 995 bolts only does not involve cancellation of the original billing document of $ 1,000 and reissuing of a new
billing document of $ 995. A document category Credit Memo is generated with an amount value of $ -5. The net of
these two billing documents will charge the customer $995. Since credit is to be given to the customer for $ 5, the
document category is called a Credit Memo. You can have a scenario of customer receiving excess of quantity over the
billing document say 1005 bolts. Then the customer needs to be charged for the extra 5 bolts. The extra charge of 5
bolts worth $ 5 will be adjusted through another document category: the Debit Memo.

To take care of minor adjustments to a generated billing document such as described in the previous paragraph,
a debit or a credit memo is generated. Consider a scenario where all the dispatched goods get damaged during
transportation. In such a situation, a complete cancellation of the invoice/bill is warranted. This kind of major adjustment
is taken care by a document category Invoice cancellation. The document category (called the SD document category) is
stored in the field VBTYP. Look up Value Range tab of the domain VBTYP for viewing all the SD document categories.

While accumulating the converted values of the field NETWR to obtain total sales of customers, materials, etc., it is to
be ensured that only the document categories that contribute to the actual sales are retrieved. (WHERE VBTYP = … etc.)
Document categories such as Performa Invoice do not generate actual sales. Such document categories should be
omitted when accumulating sales for customers, materials, etc. This has not been done in the hands-on exercises in
the book. In the training and teaching paradigm, this can be overlooked, but you must still be aware of this issue.

Since the billing tables can contain not just the invoices/bills but multiple document categories, the tables are
called billing document tables.

The table VBRP is not directly linked to the table VBRK. The table VBRP linked to the table VBRK through the
header status and administrative data table VBUK. You can check this out by opening the foreign key dialog box for
the field VBELN of table VBRP. For simplicity and expediency, the two tables VBRK and VBRP are linked directly for
the hands-on exercises in the book. The sales functionality ER diagram in Figure A-2 reflects the direct linkage.

Fields Requiring Further Explanation

VRKME

sales unit of measure. For the same material, different units of measure can be used in different situations.
A simple example: an enterprise may purchase a material in dozens and sell the same material in numbers/units.

NETWR

If you want to accumulate sales material wise, you will use the field NETWR of this table – that is, VBRP: multiply it with
the corresponding exchange rate field KURRF of the table VBRK. For a billing document, you might end up with the
total of individual amounts (NETWR) from the table VBRP multiplied by the exchange rate not exactly equal to that of
the field NETWR of table VBRK multiplied by the exchange rate. There could be a slight difference between the two.

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

840

Tables of Sales Functionality - ER Diagram
An ER diagram of tables of sales functionality used in the hands-on exercises in the book is shown in Figure A-2:

Figure A-2. Sales functionality tables - ER diagram

The ER diagram shown in Figure A-2 is not a comprehensive ER diagram as such, depicts and shows only the
table relationships used in the hands-on exercises in the book.

Contextual ER diagrams are available in the chapters.

Transaction Data Tables - Purchase
For most programming hands-on exercises in the book, we have used the tables from the sales functionality. If you
want to perform independently programming hands-on exercises on a parallel basis, you can use the tables from the
purchase functionality.

While using the tables from the purchase functionality, you must bear in mind the following:

The purchasing document tables contain data for different categories of purchasing •
documents such as purchase orders (POs) and request for quotation (RFQs), etc. This is
similar to the billing documents tables containing different categories of billing documents
such as invoices/bills, credit memos, debit memos, etc. You are summing the NETWR
converted values for the different categories of billing documents. This made sense as
described in the scenario of field NETWR of table VBRK. With the purchasing document
tables, it does not make sense to sum converted amounts of different categories of purchasing
documents such as purchase orders, request for quotation, etc. So while retrieving data from
the purchasing document table; filter out the purchase orders data from the header table. The
purchasing document category is contained in the field BSTYP. Refer to the Single Values tab
of domain of this name for values of categories for purchasing documents.

Unlike in the billing document tables, the total amount for a document is not available in the •
purchasing document header table. That is, the field NETWR is not available in the purchasing
document header table EKKO. This field is available only in the purchasing document item
table EKPO.

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

841

Table A-24. EKKO (Purchasing document header)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK, FK) CLNT 3 Client

EBELN (PK,) CHAR 10 Purchasing document number

BEDAT DATS 8 Purchasing document date

BSTYP CHAR 1 Purchasing document category

LIFNR (FK) CHAR 10 Vendor number/code

WAERS (FK) CUKY 5 Currency key

WKURS DEC 9,5 Exchange rate

BUKRS (FK) CHAR 4 Company code

EKORG (FK) CHAR 4 Purchasing organization

Table A-25. EKPO (Purchasing document item)

Field Name DDIC Data Type Length, Decimals Description

MANDT (PK, FK) CLNT 3 Client

EBELN (PK, FK) CHAR 10 Purchasing document number

EBELP (PK) NUMC 5 Item number of purchasing document

MATNR (FK) CHAR 18 Material number/code

BUKRS (FK) CHAR 4 Company code

MENGE QUAN 13,3 Purchase order quantity

MEINS (FK) UNIT 3 Purchase order UOM

NETWR CURR 13,2 Net order value in document currency

ER Diagram of Tables of Purchase Functionality
An ER diagram of tables of purchase functionality is shown in Figure A-3:

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

842

The ER diagram shown in Figure A-3 is not a comprehensive ER diagram as such; it depicts and shows only the
table relationships to be used in the independent hands-on exercises by the reader.

X. Cross client (Client independent) tables
A few non - ‘T’ series cross client (client independent) tables have been used in hands-on exercises in the book. The
description of these tables follows:

Figure A-3. Purchase functionality tables - ER diagram

Table A-26. ICON (Icons table)

Field Name DDIC Data Type Length, Decimals Description

ID (PK) CHAR 4 Icon in text fields (Icon Code)

NAME CHAR 30 Name of an Icon

Table A-27. DD02L (SAP tables)

Field Name DDIC Data Type Length, Decimals Description

TABNAME (PK) CHAR 30 Table name

TABCLASS (PK) CHAR 8 Table class

Table A-28. DD03L (Table fields)

Field Name DDIC Data Type Length, Decimals Description

TABNAME (PK, FK) CHAR 30 Table name

FIELDNAME (PK) CHAR 30 Field name

POSITION (PK) NUMC 4 Position of the field in the table

APPENDIX A ■ DESCRIPTION OF THE SAP-DELIVERED TABLES USED IN THE HANDS-ON EXERCISES

843

Non-categorized Table
The client dependent table BUT000_TD does not fit into any of our subcategories. This table was introduced in
Chapter 2 to highlight in the foreign key field dialog box, the column generic key field. That is all. This table has not
been referred to or used in any other place in the book. The table’s fields are not listed since this table is not being
processed in any of the hands-on exercises in the book.

Conclusion
This appendix was a description of all the tables used in the hands-on exercises in the book. Instead of using
hypothetical tables, real-life application tables have been used to perform the hands-on exercises. The table
descriptions give you technical as well as functional insights. And they also give you a fair perspective of the
complexities of the real-life SAP application tables.

A, B���������
ABAP debugger

break points
buttons, 440–441
deinition, 437
dialog box, 440
dynamic, 438–439
FLAG variable, 442
program execution, 443
SALES_TAB, 444
static, 438

program execution, 439
types, 437–438
watch points, 442

deinition, 437
Dialog Box, 445

ABAP ield symbols
ASSIGN statement, 422
data objects, 419, 422
declaration, 419–421
dynamic assignment, 427
dynamic data objects, 428
LOOP ENDLOOP, 423
source program, 429–433
SQL SELECT statement, 428
system ield SY-SUBRC, 421
TYPE and LIKE keyword, 420–421
YCL_CH08_14_CUST_LIST_WOUTSTRU, 423–426

ABAP language, 575
built-in class method

(see CL_GUI_FRONTEND_SERVICES)
context menu

built-in-class method, 624
call back subroutine, 625
creation, 620
description, 620
function key settings (F Key Settings), 622

description, 575
exception class (see Exception class)
global class (see Global class)
local class (see Local class)
runtime type services (RTTS), 641–642

ABAP List Viewer (ALV), 647
Advanced Business Application

Programming (ABAP), 16, 141
arithmetic operations/operators, 176

order/precedence of, 177
structures, 178

components
attributes, 146–147
subobjects, 145

data types
complex, 144
elementary, 142
reference, 144

date arithmetic, 174–176
DESCRIBE FIELD statement

coding implementation, 191
Key phrase, 190
return type values, 191
syntax of, 190

editors
Back-End Editor (see Line based mode)
features, 149
front-end editor(New) (see Source code mode)
front-end editor(Old) (see Plain text mode)
types, 148
user-speciic settings, 148

elementary data objects (see Elementary
data objects)

external data objects (see External data objects)
loating point functions, 177
interactive lists (see Interactive lists)
internal data objects (see Internal data objects)
internal low control

Index

845

CASE statement, 187
categories of, 185
conditional loop statement, 188
conditional operator, 185–186
IF condition statement, 186
logical operators, 186
unconditional loop statement, 187–188

numeric functions, 177
predeined elementary types, 242
special data object, 145
statement structure

call, 153
comments, 151
control, 153
database interface, 154
declarative, 152
and keywords, 152
modularization, 153
multiple lines, 152
operational, 153

string operations (see String operations)
structure, 150
structured data object (see Structured data object)
system ields

coding implementation, 158–159
deinition, 156
icon lags, 157
usage, 157

text symbols, 154–156
user-deined data object, 145
WRITE statement, 154–155

Aggregate functions
database view, 403–404
source program, 404–407
syntax, 402
usage, 402

ALV reports
architecture, 647–648
built-in container classes, 648
CL_GUI_ALV_GRID (see CL_GUI_ALV_GRID class)
CL_GUI_CUSTOM_CONTAINER class, 655
CL_SALV_TABLE (see CL_SALV_TABLE)
IT_OUTTAB, 658
saving layouts, 688
Screen Painter

attributes, 649
Element List, 651
Flow Logic, 653
Layout Editor, 650
PAI event, 652
PBO event, 653

AT LINE-SELECTION event, 514
coding, 527
system ield SY-LSIND, 515–516
three level sales report

billing documents, 524
coding, 529
customer wise sales, 524
data declaration, 526
GET CURSOR statement, 528
HIDE statement, 524
Layout, 524
LOOP…ENDLOOP coding, 527
No Data Checking, 527
primary list, 528
system ield SY-LISEL, 527

two level sales report, 516
Billing Docs, 517, 523
coding, 518
Customer Wise Sales, 517, 523
data declarations, 518
system ield SY-LISEL, 518

AT USER-COMMAND event, 514
CASE…ENDCASE statement, 554
data declarations, 552
navigation process, 554
SET PF-STATUS statement, 553
START-OF-SELECTION event, 552
three level sales reports

billing documents, 536–537
custom application toolbar (see Custom

application toolbar)
customer wise sales, 536

WHEN EXIT statement, 554
YCL_CH10_ILISTS04 program, 554–555

AVG () function, 403

C���������
Classical debugger, 438
CL_GUI_ALV_GRID class, 656, 659, 725

attributes, 664
Change Layout, 673, 678, 680

analysis screen, 680
Chart type, 682
ilter ields, 678
Omitted ield, 676
setting values, 679
shuled ields, 674
Sort Order tab, 675

COLLECT statement, 660
consistency check, 663
container class, 659
controls, 687

■INDEX

846

Advanced Business Application
Programming (ABAP) (cont.)

custom control, 664
DDIC structure, 661
DOUBLE_CLICK event

CL_GUI_CUSTOM_CONTAINER, 692
CL_GUI_DIALOGBOX_CONTAINER, 693
code implementation, 693
E_COL-INDEX, 692
E_ROW-INDEX, 692

element list, 665
EMPHASIZE operators, 686
event AFTER_USER_COMMAND

ABAP_SORTORDER, 699
changed layout, 704
Close option, 705
code implementation, 700
DDIC structure, 698
event handler methods, 706
function module, 700
GET_FILTER_CRITERIA, 698
GET_SORT_CRITERIA, 698

event TOOLBAR, 696
event USER_COMMAND, 697
ield catalog, 684
Flow Logic tab, 666
I_STRUCTURE_NAME parameter, 684
LVC_S_LAYO, 687
Menu Painter, 662
PAI module, 671, 728
PARAMETERS statement, 660
PBO module, 666, 726
Screen Painter, 663
title list, 662
WRITE statement, 660

CL_GUI_FRONTEND_SERVICES
class builder, 604
FILE_EXIST method, 603, 605–606
FILE_OPEN_DIALOG method, 603–605
GUI_DOWNLOAD method, 603, 606–607
program speciications

application toolbar, 607
code implementation, 609
ile format selection, 608
menu path, 608

CL_SALV_TABLE, 707, 730
AFTER_USER_COMMAND event, 719
ALV toolbar, 719, 734
AT USER_COMMAND event, 731
CATCH statement, 720
CLOSE event, 719
CL_SALV_SELOPT, 723
code implementation, 711
DISPLAY method, 708
error indication, 733
event DOUBLE_CLICK, 719
event USER_COMMAND, 719

FACTORY method, 708
GET_COLUMNS method, 710
GET_EVENT method, 720
multiple ield sorting, 723
selected ields, 733
subobjects statements, 709

Clustered tables, 35
Collective search help, 126

ABAP program, 132
DEBI attached, 138
initial prompt, 132
restrictive dialogue box, 133, 135–136
selection list, 133, 136

deinition tab, 129–130
elementary search, 127, 130
parameter assignment, 131
search help tab, 129

COUNT () function, 403
Custom application toolbar

GUI Statuses, 537
Interface, 538
menu painter features, 551
primary list status creation

application toolbar bar node, 539
function keys, 543
menu bar, 544
types, 538
YCL_CH10_ILISTS04 program, 538

secondary list I status creation
BACK_TXT ield, 548
buttons, 545
DDIC structure, 546
dialogue box, 547
function key assignment, 549
menu bar node, 550
text symbols, 546
usage, 547

D���������
Database views, DDIC, 407

creation
attributes tab, 84
consistency check, 90
join condition, 86
maintenance tab, 90
primary key, 89
selected ields, 88
selection conditions tab, 89
table contents, 91
Table ields selection, 86
table/join conditions tab, 84
table relationships, 85
View Flds tab, 86
view type, 83

■INDEX

847

inner join, custom tables, 82
multiple tables, 81
SAP delivered tables creation

button relationships, 93
client independent, 99
exercise, 101
join conditions, 94
primary keys, 95
selected ields, 95
selection condition tab, 96
speciication, 92
view audit, 96

Data class, 41
Data Control Language (DCL), 25
Data Deinition Language (DDL), 25
Data dictionary (DDIC), 21

data elements (see Data elements)
data types, 26–27

CURR, 27
DEC, 27
QUAN and UNIT, 28
VBRK table, 28
VBRP table, 28

DCL, 25
DDL, 25
domain creation, 28, 34

activation, 56
convention, 49
editing/changing, 59
ield data type, 52
Initial SE11 Screen, 52
multiple row manipulation, 58
overview of, 58–59
package, 54
status bar, 54, 56
TITLE ield, 57
$TMP package, 55
Value Range tab, 53
YCL_CH02_CHAR10, 57

Foreign Key, 79
global area object, 25
Help pop-up list, 26
Initial screen, 21–22
metadata, 24
naming convention, 48
standardization, 24
table creation (see Table creation, DDIC)
uniformity, 24
VBRK and VBRP tables, 22–23

Data elements
activation, 62
attributes tab, 31
data type selection, 62
Data Type tab, 32–33, 60

editing/changing, 63
Field Label tab, 33–34, 61
Initial Screen, 59–60
naming convention, 49
review list, 63
view/examine, 31

Data types
complex, 144
elementary, 142
reference, 144

DDIC objects, 81
database views (see Database views, DDIC)
projection views

consistency check, 106
contents, 107
ield selection, 105
information message, 104
maintenance status tab, 106
selected ields, 105
selection screen, 107
speciication, 103
view type, 104

search help (see Search helps)
DESCRIBE FIELD statement

coding implementation, 191
Key phrase, 190
return type values, 191
syntax of, 190

Domain vs. data element, 34
Dynamic break points, 438

E���������
Editors

Back-End Editor (see Line based mode)
features, 149
front-end editor(New) (see Source code mode)
front-end editor(Old) (see Plain text mode)
types, 148
user-speciic settings, 148

Elementary data objects
coding implementation, 165–166
MOVE statement, 163
source and destination ofsets, 164

Enterprise Resource Planning (ERP)
attributes

centralized database, 4
consolidation, 5
integration, 4
multiple currency handling, 5
multiple lingual support, 7
technology advances, 6

business activities, 3
business application software scenario, 3
business enterprise

■INDEX

848

Database views, DDIC (cont.)

legal entities, 1
Manufacturing category, 2
Trading category, 2
Utilities & Services category, 2

tailor-made software, 3
technology scenario, 3

Exception class, 626
attributes, 629

activation screen, 630
BUKRS and KUNNR, 630
catch statement, 631
code implementation, 631
error raising process, 631
raising statement, 631

creation
attributes tab, 628
class builder, 627, 636
method tab, 629
super classes, 627
text tab, 628

function module
code implementation, 634
exception tab, 634
export parameter, 634
table parameter, 633

subroutine
code implementation, 639
error message, 637, 641
message class, 638
text tab, 638–639

External data objects, 144

F���������
Foreign Key, 43, 69, 76, 79
Function modules

attributes tab, 351
calling function modules, 358

code implementation, 378
function group, 362
string splitting, 367

changing tab, 354
conversion routine

assignment, 381
attributes, 382
background, 381
code implementation, 383
comma character, 385

dynamic calls, 386
exceptions tab, 355
export tab, 353
function group, 386
import tab, 352
MESSAGE statement, 357
proposed function modules, 369

code implementation, 373
function group, 370
message creation, 372

SAP delivered function module, 350
SAP supplied function modules, 387
source code tab, 356
tables tab, 355

G, H���������
Global class

function module, 589, 595
calling method, 593
class builder, 590
code implementation, 591
exceptions button, 591
input parameter, 590
parameters button, 590
reactivation screen, 593
TABLES parameter, 589
template method, 591

text array, string, 582
activation class, 586
attributes tab, 584
calling methods, 589
class builder, 583
code implementation, 586
editor pattern, 588
exceptions tab, 585
instance method, 584
method parameters, 585
methods screen, 585
methods tab, 583

I, J, K���������
Inner join, 407–408
Interactive lists, 513

AT LINE-SELECTION event
(see AT LINE-SELECTION event)

AT USER-COMMAND event
(see AT USER-COMMAND event)

billing document, 514
company code, 514
considerations, 514–515
database table/view, 555
features of, 572
program features, considerations

data retrieval, 559
dialogue box, 558
MG_FIELDNAME_TEXT function module, 560
MODIFY LINE statement, 559
NEW-PAGE statement, 560
READ LINE statement, 559
statuses, 557

■INDEX

849

window titles, 557
YCL_CH10_ILISTS05 program, 558, 560

SET USER-COMMAND statement
application toolbar buttons, 568
AT USER-COMMAND event, 568
dialogue boxes, 567
syntax of, 567
YCL_CH10_ILISTS06 program, 568–569

standard toolbar, 514
Internal data objects, 144

CONSTANTS statement, 162–163
hierarchical levels of, 159
literals, 163
variable, 159

Internal low control
CASE statement, 187
categories of, 185
conditional loop statement, 188
conditional operator, 185–186
IF condition statement, 186
logical operators, 186
unconditional loop statement, 187–188

Internal tables declarations
APPEND statement, 273
billing documents list

body layout, 252
code implementation, 253
customer wise report, 256
ENDLOOP statement, 253
LOOP AT statement, 253
SELECT statement, 251
WRITE statement, 251

CLEAR statement, 319
COLLECT statement, 276–277, 307

code implementation, 314
control level statements, 311
database view, 309
data identiication, 308
issues, 313
mapping applications, 312
output layout, 310
summary list, 307
SUM statement, 313

DDIC structure, 245, 267
customer data ields, 246
deinition, 246

DELETE ADJACENT DUPLICATES statement, 295
DELETE statement, 294
DESCRIBE TABLE statement, 305
FREE statement, 319
INSERT statement, 291
MODIFY statement, 297

multiple rows, 302
single row, 299

MOVE statement, 321
READ with Index statement, 283
READ…WITHKEY statements, 286
REFRESH statement, 319
SORT statement, 272
SPLIT statement, 271
3.X mode, 247

data objects, 247
nonstructured data, 250
OCCURS keyword, 247
structured data, 251
TYPE keyword, 248

4.X mode, 262
DDIC table type, 270
features, 264
hash table, 263
indexed access, 264
INDEX statement, 263
nonstructured, 271
READ statement, 263
referring structure, 271
search method, 263
sorted table, 263
standard tables, 263
TYPES keyword, 265

L���������
Local class

business partner, fetching
code implementation, 595
local interface, 595

calling methods
instance methods, 578
static methods, 579

class deinition, 576
class implementation, 578
code implementation, 580
interface declaration, 579
method declaration

event handler method, 577
exceptions, 577
functional method, 577
parameter types, 577

visible components, 576
Logical database, 147

M���������
MAX () function, 403
MIN () function, 403
Modularization

calling function modules, 358
code implementation, 378
function group, 362
string splitting, 367

■INDEX

850

Interactive lists (cont.)

conversion routine
assignment, 381
attributes, 382
background, 381
code implementation, 383
comma character, 385

function modules
attributes tab, 351
changing tab, 354
dynamic calls, 386
exceptions tab, 355
export tab, 353
function group, 386
import tab, 352
MESSAGE statement, 357
SAP delivered function module, 350
SAP supplied function modules, 387
source code tab, 356
tables tab, 355

Include programs, 386
macros, 324
macros and subroutines

DESCRIBE FIELD statement, 328
SAP GUI environment, 340

message issuance, 347
message text maintenance, 345
processing blocks, 323
proposed function module, 369

code implementation, 373
function group, 370
message creation, 372

source code level, 323
subroutines, 324

by reference, 326
by value and result, 326
data declarations, 327
deinition, 325
DESCRIBE FIELD program, 333
EXIT statement, 328
interface, 325
internal tables, 327, 336
local data objects, 327
parameters, 325
STATIC keyword, 327
structure parameter, 327, 338

N���������
NetWeaver Application Server (SAP NW AS), 8
New debugger, 438
Nonstandard page header

footer
code implementation, 213
END-OF-PAGE event, 213
ENDSELECT statement, 216

latent program, 216
SELECT command, 215
text symbols, 214

text elements component
ABAP processor, 212
code implementation, 210
CONCATENATE statement, 211
program editor, 209
REPORT statement, 211
SKIP statement, 211

O���������
ORDER BY keyword, 393, 433
Outer join, 407, 411

P, Q���������
Package, 146
Pooled table, 35
Primary key, 76
PROCESS AFTER INPUT (PAI), 735
PROCESS BEFORE OUTPUT (PBO), 735
PROCESS ON HELP-REQUEST (POH), 736
PROCESS ON VALUE-REQUEST (POV), 736

R���������
Runtime type creation (RTTC), 642
Runtime type identiication (RTTI), 642
Runtime type services (RTTS), 428, 641–642

S���������
SAP

ABAP, 16
client code perspectives

CLNT data type, 17
early watch system, 19
Table KNA structure, 17
Table TADIR structure, 18
template clients, 18

client server architecture, 8
components, 8
ERP, functional modules, 8
external sessions, 16
function modules, 20
GUI, 12

function keys, 14
icons or buttons, 15

IDES server, 19
implementation

coniguration activity, 9
cost of, 9
customization activity, 9

■INDEX

851

development environment, 10
enhancement activity, 9
modiication activity, 9
segregation, 10
team composition, 9
testing and quality assurance environment, 10
three-system landscape, 10

login, 11
SAP Easy Access

Application Tool Bar, 13
command ield, 13
Menu options, 12
Menu Tree, 13
Standard Tool Bar, 13
status bar, 14
Window Title, 13

SAP NetWeaver, 8
SAP R/1 product, 7
SAP R/2 multiuser product, 7
SAP R/3 product, 7

SAP-delivered tables
billing document, 838
customer data, 834
master data tables, 829
material data, 836
purchase functionality, 841
sales functionality, 840
transaction data, 837, 840
transaction data tables, 830
T series tables, 829

coniguration data, 832
cross client, 834, 842
universal data, 831

vendor data, 835
SAP IDES Server, 10
Screen programming

attributes, 735
custom transaction code, 807
database view, 779
data transfer, 736
DDIC lock objects

lock parameter tab, 810
SAP functional module, 809
tables tab, 809
tab strip, selection screen, 810

DDIC objects, 767
BUKRS ield, 774
code implementation, 772
EBELN ield, 774, 776
ields, 769, 771
low logic code, 771
LIFNR ield, 774–775
POV event, 774
RETURN_TAB parameter, 774

screen layout, 771
search help, 769–770
structure, 768
TABALES parameter, 774
tables & join conditions, 769–770

element list, 735
events, 735
low logic, 735
layout editor, 735
maintenance views

custom database table, 814
prerequisites, 812
table maintenance dialog, 813
table maintenance generator, 813

object navigator, 740
application tool bar, 746, 754
assigned function, 746
code implementation, 755
context menu, 751
database table, 750
DDIC search, 749
DDIC structures, 743
delete button, 749
dictionary objects, 750
dictionary/program ields, 744, 752
display button, 748
drop-down list, 741
exclude button, 748
low logic area, 748
layout editor, 743
operational button, 748
PAI module, 748, 754
PBO module, 742, 745, 753
program attributes, 741
prompt screen number, 743
save button, 755
screen, 740
search help, 749, 751
selected ields, 752
source program, 742
status bar, 746
title bar, 747, 754
top include option, 741

operate data, 736
ABAP program, 737
screens, 737
table T005T, 737

PAI event, 736
PBO event, 736
POH event, 736
POV event, 736
recapitulation, 766
Subscreen Area

application toolbar, 782
attributes, 784

■INDEX

852

SAP (cont.)

code implementation, 786
deinition, 781
ields, 783
low logic code, 785
layout editor, 784–785
rough layout, 782
screen display, 789
status screen shot, 786
tab strip control, 782

table element/table control
attributes screen, 800
billing document data, 797
code implementation, 804
ield selections, 801
low logic area, 803
header ields, 800
interface, 804
LOOP… ENDLOOP statements, 803
message maintenance, 796
program execution screen, 806
tables & join conditions, 798–799
view ields, 798–799

table maintenance dialog, 820
components, 826
modiications, 821
table operations, 825

tab strip element
code implementation, 793
irst tab, 789
navigation buttons, 796
PAI code segment, 793
screen shots, 791
second tab, 789
status screen shot, 792
sub screen layout, 792

tab strip element/control
database tables, 779
document screen, 777
ER diagram, 779
ields, 778
organizational units, 778

test operations, 761
abort changes pop up, 766
back button, 764
change data, 763
data creation, 764
deletion alert message, 766
display data, 762
save button, 763
screen selection, 762
search help, 762

Search helps
attachments, 139
collective search help, 108
custom table creation, 108, 113

attach search help, 114
dialog type, 111
elementary search, 110
object speciication, 109
parameter area, 112
primary key ield, 108
selection method, 110
test search help, 116

elementary search help, 108
help view, 139
SAP delivered table creation, 117

ABAP program, 121
collective search help (see Collective

search help)
elementary search, 118
PARAMETERS variable, 124
speciication, 117
testing, 119

Selection screens, 447
ABAP program variants, 491
background job

code implementation, 498
data declarative statement, 496
RSPARMS Fields, 498
user interaction, 496

check box variable, 508
creation and positioning

ABAP Editor opening screen, 449
BEGIN OF BLOCK, 453
code implementation, 456
END OF BLOCK, 456
generate blank lines, 450
input ield value, 451
label/text, 451
message class, 459
multiple screen elements, 450
push buttons, 452, 455, 460
radio button, 454
selection list, 461
text symbols, 459
USER-COMMAND clause, 456

data objects, 447
events

AT SELECTION-SCREEN ON
BLOCK <block name>, 477

AT SELECTION SCREEN On <ield name>, 475
AT SELECTION-SCRREN ON HELP REQUEST

FOR <ield>, 474
AT SELECTION-SCREEN ON VALUE-REQUEST

FOR <ield>, 470
AT SELECTION-SCREEN OUTPUT, 464
INITIALIZATION, 461
SELECT-OPTIONS statement, 503

EXIT command, 510
horizontal line, 509

■INDEX

853

label/text, 505
mode of payment, 464
MODIF ID, 509
PARAMETERS statement, 447–448
Performance Assistant, 472
screen elements, 447
SELECT-OPTIONS statement, 447, 481

code implementation, 489
data objects, 483
DEFAULT clause, 504
INITIAL value, 482
key phrase, 481
multiple selection dialog box, 483
NO INTERVALS and NO-EXTENSION, 494
NON-INITIAL value, 482
Open SQL statement, 487
SELECT statement, 486

user deined, 511
SET USER-COMMAND statement

application toolbar buttons, 568
AT USER-COMMAND event, 568
dialogue boxes, 567
syntax of, 567
YCL_CH10_ILISTS06 program, 568–569

SQL data retrieval (see SQL SELECT statement)
SQL SELECT DISTINCT statement

YCL_CH06_ITAB10 program, 400–401
syntax, 399

SQL SELECT statement, 433
ABAP ield symbols (see ABAP ield symbols)
aggregate functions

database view, 403–404
source program, 404–407
syntax, 402
usage, 402

APPENDING table, 397
BYPASSING BUFFER, 436
CURSORS, 436
destination structure, 392
inner join, 407–408
INTO table, 394
myriad options, 392
Native SQL, 391
operators in, 393
ORDER BY keyword, 393, 433
outer join, 407, 411
subqueries, 413

program source code, 414–415
syntax, 414

WHERE condition, 393–394, 416, 433
Static break points, 438
String operations

CONCATENATE statement, 180
CONDENSE statement, 183–184
STRLEN() function, 183
UPPER CASE/LOWER CASE, 178–180

Structured data object
complete structure, 167
DDIC Type Group, 171–172
individual ields, 166–167
MOVE statement, 172
syntax, 166
user deined type, DDIC, 169–170

SUM() function, 402

T, U, V���������
Table creation, DDIC, 50–51

Currency/Quantity Fields tab, 67
custom table creation, 45
data creation

Data Type DATS, 75–76
Field Label, 73
foreign key, 76
primary key, 76
view and manipulation, 74
YCL_CH02_BILLH, 75, 77
YCL_CH02_BILLI, 77–78
YCL_CH02_WAITM, 73–74

data elements, 65
data types and lengths, 47–48
Delivery and Maintenance tab, 64
enhancements, 67–68
Entry help check tab, 66
ER diagram, 46
and ields, 46
Fields tab, 64–65
Foreign Key, 69
metadata, 68
primary key, 64
technical settings, 67
text tables, 80
transparent tables (see Transparent tables)

Text tables, 80
Transparent tables

deinition, 35
view

attributes tab, 36
currency/quantity ields tab, 40
delivery and maintenance tab, 37
entry help/check tab, 39
ield tab, 38
Foreign Key, 43
technical settings, 40–42

vs. domain vs. data element, 35

■INDEX

854

Selection screens (cont.)

W, X, Y, Z���������
WHERE condition, 393, 416, 433
WRITE statement, 197

ABAP programs, 208
billing documents, 224

body layout, 226
code implementation, 227
database view creation, 226
DATA statement, 230
END-OF-SELECTION event, 231
list of ields, 225
PARAMETERS statement, 230
program execution, 231
rough layout, 224
TABLES statement, 229–230
text symbols, 229

box enclosed, 221
color options, 218
database view creation, 233
List headings/headers

column heading, 205
CONCATENATE statement, 205
screen, 203

Selection texts, 203
Text symbols, 203

miscellaneous features
ABAP predeined elementary types, 242
checkbox, 239
code implementation, 240
HOTSPOTS, 239
icons, 239
program execution, 241
symbols, 239
ULINE statement, 241

nonstandard page header
custom list, 209
footer, 213
text elements component, 209

partial syntax, 197
REPORT statement, 200
SAP terminology, 198
SELECT statement, 199

code implementation, 201
graphical representation, 199
KNA1 table, 200
output layout, 200

SET LEFT SCROLL-BOUNDARY, 236

■INDEX

855

SAP ABAP

Hands-On Test Projects

with Business Scenarios

Sushil Markandeya

Kaushik Roy

SAP ABAP: Hands-On Test Projects with Business Scenarios

Copyright © 2014 by Sushil Markandeya and Kaushik Roy

his work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material
is concerned, speciically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microilms or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material
supplied speciically for the purpose of being entered and executed on a computer system, for exclusive use by the
purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are
liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-4803-3

ISBN-13 (electronic): 978-1-4302-4804-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial fashion
and to the beneit of the trademark owner, with no intention of infringement of the trademark.

he use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identiied
as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither
the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may
be made. he publisher makes no warranty, express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Robert Hutchinson
Technical Reviewer: Alistair Rooney
Editorial Board: Steve Anglin, Gary Cornell, Louise Corrigan, Jonathan Gennick, Robert Hutchinson,

Michelle Lowman, James Markham, Matthew Moodie, Jef Olson, Jefrey Pepper, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–eBook
Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to readers
at www.apress.com/9781430248033. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

http://orders-ny@springer-sbm.com
www.springeronline.com
http://rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com/9781430248033
www.apress.com/source-code/

To all of my trainees from whom I have learned.

vii

Contents

About the Authors ... xxv

About the Technical Reviewer .. xxvii

Acknowledgments ... xxix

Introduction ... xxxi

Chapter 1: ERP and SAP Overview ■ ...1

ERP Overview ..1

Business Enterprises ... 1

Business Activities ... 3

ERP Concept, Its Evolution ... 3

Major Attributes of ERP Software .. 4

SAP Overview ..7

Client Server Architecture .. 8

SAP NetWeaver .. 8

SAP Functionalities .. 8

SAP Implementation Overview .. 9

Overview of SAP Login, SAP GUI, ABAP Workbench ... 10

Client Code Perspectives ... 17

SAP IDES (Internet Demonstration & Evaluation System) Server and Usage of IDES Server for Trainings 19

Terminology Clarification ... 20

Conclusion ...20

■ CONTENTS

viii

Chapter 2: ABAP Dictionary/Data Dictionary/DDIC – 1 ■ ..21

ABAP Dictionary: Initial Screen ..21

View Table Structure Definitions of the SAP Delivered VBRK and VBRP Tables22

DDIC Attributes ..23

Metadata ... 24

Standardization and Uniformity ... 24

Open SQL and the Data Definition Language ... 25

DDIC Object References in ABAP Programs ... 25

Data Control Language .. 25

Search Helps/Pop-up Selection Lists .. 25

Data Types in the DDIC ..26

Data Type DEC .. 27

Data Types CURR, QUAN .. 27

DDIC Object Domain ..28

View or Examine an SAP Delivered Domain .. 28

DDIC Object Data Element ...31

View or Examine an SAP Delivered Data Element ... 31

Domain and Data Element Relationship ..34

DDIC Object Table ..35

Transparent Tables ..35

Domain, Data Element, and Table Relationship ... 35

View, Examine an SAP Delivered Table .. 36

Scenario for Hands-on Exercise on Domain, Data Element, and Table..45

Table and Table Fields ... 46

Entity Relationship Diagram – Restaurant Billing System ... 46

Assigning DDIC Data Types and Lengths to Table Fields ... 47

Summary of Data Types, Lengths, and List of Tables’ Entities and Attributes ... 47

Creation of Domains, Data Elements, and Tables ..48

Objects Naming Convention, Listing of Objects ... 48

Create Domains ... 51

■ CONTENTS

ix

Create Data Elements .. 59

Create Tables ... 63

Create Data in Tables ...72

Data in Table YCL_CH02_WAITM.. 72

Foreign Key Relationship Dialog Box Again ...78

Text Tables ...80

Recapitulation: Domains, Data Elements, and Tables .. 80

Chapter 3: ABAP Dictionary/Data Dictionary/DDIC – 2 ■ ..81

DDIC Objects Views ...81

Database Views ... 81

Projection View .. 103

DDIC Objects Search Helps ...107

Search Help with Custom Tables ... 108

Search Helps with SAP delivered Tables ... 117

Collective Search Help with SAP delivered Table .. 126

Search Help Attachments .. 139

Search Help with Help View ... 139

DDIC Tit Bits ...139

Conclusion ...139

Chapter 4: ABAP Language Basics ■ ..141

Introduction ...141

ABAP Data Types ...142

Elementary Types .. 142

Complex Types ... 144

Reference Types (Discussion Is in OOP Context) ... 144

Data Objects in ABAP Programs ..144

Internal Data Objects ... 144

External Data Objects .. 144

System-defined Data Objects .. 145

Special Data Objects.. 145

■ CONTENTS

x

ABAP Program Components ..145

ABAP Editors ...148

Front-End Editor (New, also Called ‘Source Code Mode’) .. 148

Front-End Editor (Old, also Called ‘Plain Text Mode’) ... 148

Back-End Editor (also Called ‘Line Based Mode’) .. 149

Common Features of the Three ABAP Editor Modes .. 149

ABAP Program Structure ...150

Declaration Part- Global Data, Selection Screens, and Local Classes ... 150

Container for Processing Blocks .. 151

Calling Processing Blocks ... 151

ABAP Statement Structure ..151

Comments ... 151

ABAP Statements ... 152

ABAP Statements and Keywords ... 152

First ABAP Program ...154

ABAP Program – Output a Few System Fields ..156

System Fields .. 156

Internal Data Objects (Elementary) Declarations ..159

Variables .. 159

ABAP Program: Declare Internal Data Objects – Variables (with VALUE) - Output ... 159

ABAP Program: Declare Internal Data Objects – Constants - Output ... 162

Literals ... 163

Elementary Data Objects - Assigning Values or Data Movement ..163

Elementary Data Objects – Assignment or Movement with Offsets and Lengths (Types C, D, N and T) 164

Structured Data Objects, Own Data Types ...166

Structured Data Object–ABAP Program: Access Individual Fields ... 166

Structured Data Object: Access Complete Structure ... 167

Structured Data Object in an ABAP Program: User Defined Type in ABAP Program,

Access Complete Structure ... 168

User Defined Type in DDIC ... 169

■ CONTENTS

xi

Structured Data Object in an ABAP Program Referring to DDIC Type Group .. 171

Structured Data Objects: MOVE Statement – Source, Destination Not Identical .. 172

Date, Time Arithmetic ..174

Date Arithmetic – ABAP Program ... 174

Arithmetic - Numerical Operations ..176

Basic Arithmetic Operations/Operators ... 176

Functions Common to All Numeric Data Types .. 177

Floating Point Functions .. 177

Arithmetic Operations on Structures ... 178

String Operations ..178

An ABAP Program Demonstrating TRANSLATE. UPPER CASE/LOWER CASE is Coded 178

An ABAP Program Demonstrating CONCATENATE is Coded ... 180

An ABAP Program Demonstrating SPLIT, the Reverse of CONCATENATE is Coded .. 181

An ABAP Program Demonstrating the Function STRLEN() is Coded .. 183

An ABAP Program Demonstrating the Statement CONDENSE is Coded ... 183

Program Internal Flow Control ..184

Conditions, Conditional Operators ... 185

The IF Condition Statement ... 186

Conditional Branching with CASE .. 187

The Unconditional Loops: DO - ENDDO .. 187

The Conditional Loops: - WHILE - ENDWHILE ... 188

Determine Attributes of Data Objects ..190

Conclusion ...195

Chapter 5: WRITE Statement (Classical Reporting) ■ ...197

WRITE Statement ...197

WRITE Statement: Hands-on Exercise - A Simple Customer List ..199

WRITE Statement: Hands-on Exercise - A Simple Customer List with
Standard Page Header or List Headers ...203

An Introduction to Events in ABAP Programs ..208

Event - START-OF-SELECTION ... 208

■ CONTENTS

xii

WRITE Statement: Hands-on Exercise - Simple Customer List with the Nonstandard

Page Header ..209

TOP-OF-PAGE Event ... 209

Text Element Component Text Symbols ... 209

Source Program, the Program Flow... 211

WRITE Statement: Hands-on Exercise - Simple Customer List with the NonStandard

Page Header, Footer ..213

WRITE Statement: Hands-on Exercise - Simple Customer List Using COLOR Options218

WRITE Statement: Hands-on Exercise - Simple Customer List with Fields Enclosed
in Boxes ...221

WRITE Statement: Hands-on Exercise - List of Billing Documents of a Specified
Company Code ..224

Text Symbols ... 229

WRITE Statement: Hands-on Exercise - Getting Part of Output on a Single Page,
Not Splitting between Pages ...232

Scenario: .. 232

WRITE Statement: Hands-on Exercise - Freeze Columns on the Left:
SET LEFT SCROLL-BOUNDARY ...236

WRITE Statement: Miscellaneous Features, Statements ...239

WRITE Statement - Features ... 239

WRITE Statement – Associated Statements .. 241

Output Formatting Options .. 242

Conclusion ...244

Chapter 6: Internal Tables ■ ...245

DDIC Object: Structure ...245

Internal Tables Declarations ..247

Internal Tables – 3.X Mode of Declarations ... 247

Hands-On Exercise: List of Billing Documents of a Specified Company Code251

Hands-On Exercise: Customer Code Wise List of Billing Documents of a Specified
Company Code with Totals for Every Customer and a Grand Total ..256

■ CONTENTS

xiii

Internal Table Declarations – Continued ..262

Internal Tables – 4.X Mode of Declarations ... 262

Create DDIC Internal Table Type ... 267

Internal Tables – 4.X Mode of Declarations – Continued ... 270

Hands-On Exercise: Split a String, Get Output in Nonstructured Internal Table271

SORT Statement ..272

APPEND Statement ..273

Hands-On Exercise: Internal Table Text Sort (Use APPEND to Populate Internal Table)273

Hands-On Exercise: Customer Wise Sales Summary of a Specified Company Code
Using the COLLECT Internal Table Statement on a Standard Table ...276

Output .. 276

Inputs ... 276

COLLECT Statement ... 277

COLLECT Statement Operation .. 277

Hands-On Exercise: Customer Wise Sales of a Specified Company Code Using
COLLECT Internal Table Statement on a Sorted Table ...282

Hands-On Exercise: READ with Index (Retrieve a Row Given a Row Number)283

Hands-On Exercise: READ...WITHKEY... (Retrieve a Row Given Key Field Values)......................286

Hands-On Exercise: INSERT...INDEX... (Insert a Row at a Specified Row Position)291

Non-Index INSERT Statement ..294

Delete Data from Internal Tables ...294

DELETE Single Rows .. 294

DELETE Multiple Rows ... 294

Hands-On Exercise: Delete Adjacent Duplicates ...295

Scenario .. 295

MODIFY Statement – Update/Change Existing Rows in Internal Tables297

MODIFY Statement – Update or Change a Single Row .. 298

MODIFY Statement – Update or Change Multiple Rows .. 298

Hands-On Exercise: MODIFY Single Row ...299

Hands-On Exercise: MODIFY Multiple Rows ..302

■ CONTENTS

xiv

Hands-On Exercise: DESCRIBE TABLE Statement, Function: LINES() ..305

Hands-On Exercise: Produce Multilevel Summary Using Internal Table Control
Level Processing ...307

Scenario .. 307

Input Data Identification .. 308

Database View ... 309

Output Main Body Layout .. 310

Control Levels .. 311

Mapping Application of Control Levels to Scenario ... 312

SUM statement .. 313

Extra Processing .. 313

A Note on the Data Sources – Program YCL_CH06_ITAB14 vis-à-vis the Program YCL_CH06_ITAB05 318

Hands-On Exercise: Initialize Internal Tables Rows or Complete Data319

Clear .. 319

Refresh .. 319

Free ... 319

MOVE, Assign, Copy, Internal Tables ..321

Conclusion ...321

Chapter 7: Modularization ■ ...323

Introduction ...323

Macros ... 324

Subroutines ... 324

Hands-On Exercise: Modify Chapter 44 Program on DESCRIBE FIELD – Use Macro
and Subroutine to Make It an Efficient Program ...328

Hands-On Exercise: Modify Chapter 44 Program on DESCRIBE FIELD – Use Subroutine Only333

Hands-On Exercise: Subroutine with an Internal Table as Parameter336

Hands-On Exercise: Subroutine with a Structure as Parameter ..338

Hands-On Exercise: List of Icons in SAP GUI Environment – Fields Enclosed in
Boxes Using Macro and Subroutine ..340

■ CONTENTS

xv

Messages Maintenance and Issuing in ABAP Workbench ...345

Message Text Maintenance ... 345

Message Issuance ... 347

Message Statement Syntaxes ... 348

Message Statement Additional Options ... 349

Hands-On Exercise: Message Issuance ... 349

Function Modules, INCLUDE Programs ..350

Function Modules Introduction .. 350

Examine or View an SAP Delivered Function Module: SPELL_AMOUNT .. 350

Hands-On Exercise: CALL Function Module SPELL_AMOUNT ...358

Link, Relationship between Function Group & Function Module Source Code
(Examine/View Function Module SPELL_AMOUNT – Continued) ...362

Hands-On Exercise: Create a Function Module to Split a String without breaking a Word367

Proposed Function Module Interface: .. 369

Tasks to Create, CALL, and Test the Proposed Function Module.. 369

Create a Function Group .. 370

Special Function Modules - Conversion Routines ...381

Conversion Routines Background .. 381

Conversion Routines Assignment .. 381

Conversion Routine Attributes ... 382

Conversion Routine – Hands-On Exercise: 1 ...383

Conversion Routine – Hands-On Exercise: 2 and 3 ...385

INCLUDE Programs ..386

Function Modules Tidbits ..386

List of a Few Function Modules ..387

Conclusion ...389

■ CONTENTS

xvi

Chapter 8: Open SQL Data Retrieval ■ ..391

Introduction ...391

Open SQL SELECT Statement ..392

SELECT… ENDSELECT with WHERE Condition, ORDER BY and UP TO Clauses ... 392

SELECT SINGLE with/without WHERE condition .. 393

SELECT… INTO TABLE ... 394

Hands-On Exercise – INTO TABLE… PACKAGE SIZE… ...394

Hands-On Exercise – APPENDING TABLE… PACKAGE SIZE… ..397

Hands-On Exercise – SELECT DISTINCT… ..399

Hands-On Exercise – Aggregate Functions ...402

SUM ... 402

COUNT.. 403

MAX ... 403

MIN .. 403

AVG .. 403

SELECT Statement Using More Than One Table or View – Joins ...407

Hands-On Exercise – Inner Join ..408

Hands-On Exercise – Outer Join ...411

Hands-On Exercise – Subquery ...413

Tabular WHERE Condition ..416

ABAP FIELD-SYMBOLS ..419

Field Symbol Declarations ... 419

Field Symbol Static Assignments .. 421

Field Symbol Hands-On Exercise ... 422

Field Symbol Dynamic Assignments, UNASSIGN, Check If Assigned ... 427

Specify the <source> In Open SQL SELECT Statement at Runtime .. 428

Create Dynamic Data Objects .. 428

Run Time <source> Specification in SELECT Statement – Hands-on ... 429

■ CONTENTS

xvii

Specify in the Open SQL SELECT Statement Run Time <result>, <where condition>,
and <order by> ...433

BYPASSING BUFFER, CLIENT SPECIFIED, CURSORS ...436

BYPASSING BUFFER ... 436

CLIENT SPECIFIED .. 436

CURSORS ... 436

Performance Notes .. 436

A Brief on ABAP Debugger ...437

Break Points, Watch Points, and Executing Programs in Debugging Mode ... 437

Debugger Types ... 437

Break Point Types .. 438

Execute Programs in Debugging Mode ... 439

Hands-On Exercise I - ABAP Debugger .. 439

Hands-on Exercise II - ABAP Debugger ... 443

Conclusion - ABAP Debugger ... 446

Conclusion ...446

Chapter 9: SELECTION-SCREENS ■ ..447

Recapitulation – PARAMETERS Statement ..448

Selection Screen: Layout and Positioning of Screen Elements ...449

Generate Blank Lines ... 450

Multiple Elements on a Single Line ... 450

Create Label or Text ... 451

Input Field .. 451

Create a Push Button with Icon and Text ... 452

Generate a blank line through the already covered statement .. 453

Selection Screen Block, BEGIN OF BLOCK ... 453

Selection screen radio buttons .. 454

Two Push Buttons on a Line .. 455

Generate a blank line through the already covered statement .. 455

END OF BLOCK ... 456

AT SELECTION-SCREEN event .. 456

■ CONTENTS

xviii

Event INITIALIZATION, Selection Screen Event – AT SELECTION-SCREEN OUTPUT461

Changing Screen Properties - Events .. 461

Changing Screen Properties – Data Objects SCREEN .. 462

Changing Screen Properties – Operations on Data Objects SCREEN .. 462

Changing Screen Properties Using Event AT SELECTION-SCREEN OUTPUT
(A Simple Payment Mode Scenario) ..464

Scenario .. 464

Selection Screen Event – AT SELECTION-SCREEN ON VALUE-REQUEST FOR <field>469

Selection Screen Event – AT SELECTION-SCREEN ON HELP REQUEST FOR <field>472

The Origins of F1 Help on a Screen Field .. 472

Situation for the Event: AT SELECTION-SCREEN ON HELP REQUEST FOR <field> ... 474

Selection Screen Event – AT SELECTION-SCREEN ON <field> ..475

Selection Screen Event – AT SELECTION-SCREEN ON BLOCK <block name>477

SELECTION-SCREEN Complex and Multiple Selections – SELECT-OPTIONS481

SELECT-OPTIONS – Syntax .. 481

SELECT-OPTIONS – Data objects ... 481

SELECT-OPTIONS – Screens, Prompts And Dialog Boxes .. 483

SELECT-OPTIONS –Selection Table In WHERE Condition of SELECT Statement ... 486

ABAP Program Variants ...491

SELECT-OPTIONS – Additions NO INTERVALS, NO-EXTENSION ..494

Coding an ABAP Program to Be Able to Run It in Background ..496

Background Jobs ... 496

A New Version of the Program YCL_CH09_SELECTION_SCREEN08 Enabling it to Run in the Background 496

SELECT-OPTIONS - Miscellanea ..503

SELECT-OPTIONS Events ... 503

SELECT-OPTIONS with DEFAULT Addition ..504

SELECT-OPTIONS Other Additions .. 505

Selection Texts ..505

■ CONTENTS

xix

SELECTION-SCREEN - Miscellanea ...508

Check Box on a Selection Screen .. 508

Horizontal Line on a Selection Screen ... 509

Addition MODIF ID with Selection Screen Elements .. 509

Event AT SELECTION SCREEN ON EXIT-COMMAND .. 510

Define and Call User Defined SELECTION-SCREEN .. 510

Conclusion ...512

Chapter 10: Interactive Lists ■ ...513

Multiple Lists Generation by an ABAP Program ...513

Interactive Lists: Events and Considerations ...514

Hands-on Exercise to Highlight Event AT LINE-SELECTION and the Operation of the
System Field SY-LSIND ..515

Hands-on Exercise: Produce Two Level Sales Report Using the AT LINE-SELECTION
Event (1 Primary and 1 Secondary) ...517

Data Declarations .. 518

Coding in the Event Block AT LINE-SELECTION .. 518

Hands-on Exercise: Produce Three Level Sales Report Using the AT LINE-SELECTION
Event (1 Primary and 2 Secondary) ...524

Layout: ... 524

Information Passing: From One List to Another – the HIDE Statement .. 524

Create the Text in Text Symbols for the Header of a Secondary List II .. 526

Hands-on Exercise: Produce Three Level Sales Reports Using the AT USER-COMMAND
Event (1 Primary and 2 Secondary) ...536

Trigger AT USER-COMMAND Event by Clicking Custom Buttons on the Custom Application Toolbar: 536

Create a Custom Application Toolbar in the Menu Painter ... 537

Create Text in Text Symbols for Providing Dynamic Texts to Status ‘STAT2f’ ... 552

Hands-on Exercise: Output Data of Runtime Specified Fields of a Runtime Specified
Database Table or View with Column Heading from Corresponding Data Elements 555

Lists or Outputs ... 555

Program Features, Considerations .. 557

■ CONTENTS

xx

Hands-on Exercise: Demonstration of SET USER-COMMAND and Lists in Dialogue Boxes567

Interactive Lists Tid Bits ..572

Features of Interactive Lists Not Covered: ... 572

Conclusion ...573

Chapter 11: ABAP OOP ■ ...575

Introduction ...575

Local Class Syntaxes: Definition, Implementation, Declaration of Methods, Calling Methods576

Class Definition: ... 576

Declaration of Methods ... 577

Class Implementation .. 578

Calling Methods, Referring to Attributes .. 578

Interface Declaration ...579

Hands-on Exercise: Define and Implement a Simple Local Class ...580

(Method to Concatenate a Text Array into a String) ... 580

Hands-on Exercise: Define and Implement a Simple Global Class ..582

(Method to Concatenate a Text Array into a String) ... 582

Hands-on Exercise: Global Class (Method to Split a String without Breaking a Word)589

Hands-on Exercise: Define Local Interface, Implement Interface Method in Local
Classes (Method to Fetch Business Partner Name & Address) ...595

Scenario .. 595

Hands-on Exercise: Use Methods of SAP Delivered Class ‘CL_GUI_FRONTEND_SERVICES’603

Tour of Class CL_GUI_FRONTEND_SERVICES .. 603

Exercise and ABAP Program Specifications .. 607

Hands-on Exercise: Context Menus - Use Method of SAP Supplied Class CL_CTMENU620

Context Menus ... 620

Create a Context Menu .. 620

Built-in Class CL_CTMENU – Method LOAD_GUI_STATUS ... 624

Call Back Subroutine ON_CTMENU_REQEST ... 625

■ CONTENTS

xxi

Class Based Exceptions in ABAP ...626

Create a Custom Exception Class (OTR Texts) ... 627

Use Your Own Exception Class in the Event AT SELECTION-SCREEN of an ABAP Program 629

Use a Custom Class Based Exception in the Function Module .. 633

Create a Custom Exception Class (Message Class Text) .. 636

Use a Custom Exception Class in a Subroutine ... 637

A Brief on the ABAP RTTS (Runtime Type Services) ..641

Hands-on Exercise to Demonstrate RTTC & RTTI ..642

Conclusion ...645

Chapter 12: ABAP List Viewer Outputs—Part 1 ■ ...647

ALV Output Architecture...647

Screen Programming Basics ...649

Attributes ... 649

Layout Editor .. 650

Element List ... 651

Flow Logic ... 652

The Classes CL_GUI_CUSTOM_CONTAINER and CL_GUI_ALV_GRID ...654

CL_GUI_CUSTOM_CONTAINER ... 655

CL_GUI_ALV_GRID ... 656

ALV Miscellaneous Topics ..658

Hands-on Exercise: Customer-wise Sales Summary of a Specified Company Code as
ALV Output: Use Class CL_GUI_ALV_GRID ...659

Initial Output Layout .. 659

Performing Tasks for ALV Output ... 661

Changing Layout .. 673

■ CONTENTS

xxii

Hands-on Exercise: Customer-wise Sales Summary of a Specified Company Code as
ALV Output, Version 2: Use Class CL_GUI_ALV_GRID ...684

Use the Field Catalog and Provide Save Layouts Facility, Etc. ... 684

Creating a Field Catalog .. 684

Controlling Overall Appearance of ALV Output ... 687

Save and Manage ALV Output Layouts ..688

Hands-on Exercise: Customer-wise Sales Summary and Detail of a Specified Company
Code as ALV Output: Use Class CL_GUI_ALV_GRID ..691

Generating a Detailed List of Customer Billing Documents ... 692

Placing a Custom Button on the ALV Toolbar and Making It Operative .. 696

Outputting a Serial Number and Adjusting It with the Change in ALV Layout .. 698

Conclusion ...706

Chapter 13: ABAP List Viewer Output—Part 2 ■ ..707

ALV Output Using the Class CL_SALV_TABLE ..707

Main ALV class: CL_SALV_TABLE ... 707

Hands-on Exercise: Customer-wise Sales Summary of a Specified Company
Code as ALV Output: Use Class CL_SALV_TABLE ...710

Change Field or Column Properties Provide for Save Layouts Facility, Etc. ... 710

Hands-on Exercise: Customer-wise Sales Summary and Detail of a Specified
Company Code as ALV Output: Use Class CL_SALV_TABLE ...718

Events DOUBLE_CLICK, CLOSE, Put Buttons on ALV Toolbar and USER_COMMAND .. 719

A Note on Problems with the Class CL_SALV_TABLE ..723

Problem with Multiple Fields Sort ... 723

Methods of Class CL_SALV_SELOPT .. 723

Create Data Browsers Using the Classes CL_GUI_ALV_GRID and CL_SALV_TABLE724

Hands-on Exercise: Output Specific Selected Fields of a Specific Database Table or
View in ALV: Use Class CL_GUI_ALV_GRID ...725

Hands-on Exercise: Output Specific Selected Fields of a Specific Database Table
or View in ALV: Use Class CL_SALV_TABLE ..730

Conclusion ...734

■ CONTENTS

xxiii

Chapter 14: Screen Programming ■ ...735

Basics of Screen Painter ...735

Hands-on Exercise. Operate on the Data of a Copy of Table ‘T005T’ ...736

Data to Be Operated Upon ... 736

Screens .. 737

Transaction Code SE80 – Object Navigator ... 740

Test Operations .. 761

Hands-on Exercise. Demonstrate Search Help Import Parameters, Screen Event
PROCESS ON VALUE-REQUEST – POV, etc ...767

Scenario .. 767

Scenario Implementation... 768

Hands-on Exercise. Simulate Tab Strip Element Using Sub Screen Area, Sub Screens
and Application Tool Bar Buttons ...777

Tab Strip Element/Control .. 777

Scenario .. 778

Data for the Scenario ... 779

Screen, Sub Screens Layout .. 781

Program and Other Objects ... 783

Hands-on Exercise. Tab Strip Element ..789

Hands-on Exercise. Use Table Element ...796

Table Element/Control ... 796

Scenario .. 797

Scenario Implementation... 797

Miscellanea ...807

Create Custom Transaction Code ... 807

A Brief Overview of DDIC Lock Objects .. 809

Tab Strip on a SELECTION-SCREEN ... 810

Maintenance Views and Table Maintenance Dialogs ...812

Overview. Maintenance Views, Table Maintenance Generator, and Table Maintenance Dialogs 812

Hands-on Exercise. Create and Operate Table Maintenance Dialog for the Custom Database

Table YCL_CH02_BILLI ... 814

■ CONTENTS

xxiv

Hands-on Exercise. Modify Generated Table Maintenance Dialog ... 820

Maintenance View, Table Maintenance Dialog, Miscellanea .. 826

Conclusion ...827

Appendix A: Description of the SAP-Delivered Tables Used in the Hands-On Exercises ■ 829

SAP-Delivered Tables Used in the Hands-On Exercises of the Book – Categories
and Subcategories ..829

“T” Series - Universal Data Tables ..831

“T” Series - Configuring Data Tables ...832

‘T’ Series - Cross Client Tables ..834

Master Data Tables - Customers ...834

Master Data Tables - Vendors ..835

Master Data Tables – Material ...836

Transaction Data Tables - Sales ..837

Fields Requiring Further Explanation .. 838

Fields Requiring Further Explanation .. 839

Tables of Sales Functionality - ER Diagram...840

Transaction Data Tables - Purchase ..840

ER Diagram of Tables of Purchase Functionality ...841

X. Cross client (Client independent) tables..842

Non-categorized Table...843

Conclusion ...843

Index ...845

xxv

About the Authors

Sushil Markandeya is a B.E. from Osmania University (1973) and a
M.E. (Electrical Engineering) from B.I.T.S., Pilani (1975). In 1977 he shifted to I.T.
He was always involved in business application software on various platforms.

Since 1999, he has been associated with training on ERP software. On SAP, on
ABAP; on ‘Oracle Applications’ on the functional side (inancial modules: General
Ledger, Fixed Assets Management, Accounts Receivable, Accounts Payable, and
Cash Management). Since July 2006, he has been doing corporate training in SAP
ABAP for people just out of college. he corporate clients he has trained for are:
Accenture India Pvt. Ltd, Wipro Group (Wipro Technologies Ltd., Wipro Infotech.
Ltd), Sony India Pvt. Ltd. Mphasis Pvt. Ltd. (part of HP), ITC Infotech Ltd,
ITM – Saudi Arabia, Hyundai Motor India Ltd, and Godrej Info Tech. Ltd. To date,
he has trained more than 1000 people in these corporations.

Kaushik Roy is involved in requirement deinition, design and development of business components, testing,
performance tuning and QA related activities. He is a Technical Consultant and is part of a team of highly eicient
software professionals. He has solid experience in object oriented analysis and design, UML, user interface design
using ABAP, HANA, data modeling and performance tools like HP diagnostics and TPTP. He also has advanced
knowledge of the Business Objects tool which is used to develop secured applications.

He has been part of the core team that developed the applications for several clients. He understands the
implementation processes very well and has the knowledge to successfully design, develop and implement. He
possesses a sound understanding of the end customer’s business processes. He has been awarded a Bachelors
of Engineering in Computer Science from Uttar Pradesh Technical University in India. He is based out of Detroit,
Michigan, USA.

xxvii

About the Technical Reviewer

Alistair Rooney has over 30 years development experience. After a short military
career in the Air Force, he started as an operator while studying and moved into
programming in the early 80’s. Alistair has been a programmer, analyst, project
manager, architect and IT manager, but still keeps diving into code. Alistair has been
working for SAP since 2002 as both a contract and permanent employee. In 2010 he
worked for SAP Research developing leading edge mobile apps. He currently heads
up the Data team for a large implementation at a major bank and is, once again, an
SAP contract employee. He is married with two teenage children and is based near
Durban, South Africa. He is the author of Foundations of Java for ABAP programmers,
another Apress publication.

xxix

Acknowledgments

Author Sushil Markandeya acknowledges that but for his co-author, Kaushik Roy’s initiative and zeal; this book would
not have progressed beyond just an idea and a notion.

Acknowledgements are due to the technical reviewers: Shreekant Shiralkar and Alistair Rooney.
Acknowledgements are also due the Apress editorial personnel: Jefrey Pepper (editorial director), Robert

Hutchinson and Mark Powers (coordinating editor).We have had interaction with the above mentioned Apress
personnel through internet and email. Our regular face-to-face interaction was with Saswata Mishra (acquisitions
editor). Saswata Mishra has been very collaborative and has put up with all of our eccentricities and idiosyncrasies.
he technical reviewers and the Apress editorial personnel have put in tremendous eforts and have imparted form
to the amorphous manuscripts submitted to them. Finally, acknowledgement is due to the Springer and Apress
personnel who worked behind the scenes to produce this book.

—Sushil Markandeya

Writing a book of this sort requires a sustained obsession over a single topic. I owe a great deal of thanks to all those
who not only tolerated but indulged my obsession. It would be impossible to mention everyone who contributed to
the work related to this book. Some who deserve special mention, are greatest strengths my loving Mom and Dad.

Above all I want to thank my lovely wife, Poonam and the heartbeat of my entire family, Kinshuk, Rahul, Rupsi,
Rishan, Rusheel, Achintya, and Rachit who supported and encouraged me in spite of all the time it took me away
from them.

Special thanks to the consulting clients from whom I’ve learned so much about how to crystallize the challenge
& then implement it. his Book really “belongs” to all those friends, believers, enthusiasts, and supporters. I beg
forgiveness of all those who have been with me over the course of the years and whose names I have failed to mention.

—Kaushik Roy

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction

