
www.allitebooks.com

http://www.allitebooks.org

SharePoint 2013 WCM

Advanced Cookbook

Over 110 recipes to engineer web content and master

SharePoint 2013

John Chapman

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

SharePoint 2013 WCM Advanced Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the

information presented. However, the information contained in this book is sold without

warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers

and distributors will be held liable for any damages caused or alleged to be caused directly or

indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies

and products mentioned in this book by the appropriate use of capitals. However, Packt

Publishing cannot guarantee the accuracy of this information.

First published: January 2014

Production Reference: 1160114

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-658-7

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

John Chapman

Reviewers

Gary Arora

Zoltán Fiala

Moe Kahiel

Jiri Pik

Acquisition Editor

Sam Wood

Lead Technical Editor

Priya Singh

Technical Editors

Sharvari H. Baet

Mrunal Chavan

Pankaj Kadam

Copy Editors

Janbal Dharmaraj

Laxmi Subramanian

Project Coordinator

Joel Goveya

Proofreaders

Denise Dresner

Linda Morris

Indexer

Mariammal Chettiyar

Graphics

Yuvraj Mannari

Production Coordinator

Alwin Roy

Cover Work

Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

John Chapman is a software developer and designer, living in the Denver area,

who specializes in SharePoint and .NET. Having worked in the higher education and

telecommunications industries, he is now working as a software engineer for Sitrion, formerly

NewsGator. He is working on the Social Sites product. Social Sites is the premier enterprise

social software for Microsoft SharePoint.

John holds a B.S. and M.S. in Graphic Information Technology from Arizona State University.

For more information about John Chapman, visit http://www.sharepointjohn.com.

I would like to thank my wife, Simone. Her support and patience have made

everything I have accomplished in my life possible.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Gary Arora is a diehard technologist (read: Geek) and a seasoned consultant with over 10

years' experience. With a professional focus on SharePoint and the overall Microsoft stack, he

has led and/or contributed to projects across industries in the United States and Europe.

Zoltán Fiala leads the Competence Center Microsoft of Adesso AG in Hamburg, Germany.

He holds a PhD in web engineering from Dresden University of Technology and has worked

as a SharePoint architect and project manager for several IT consultancy irms in the past.
He has signiicant experience in the design and development of Web Content Management
and portal solutions based on Microsoft technologies. For more information about Zoltán visit

http://www.z-fiala.net.

Moe Kahiel is a senior SharePoint Enterprise architect with over 20 years of experience in

a wide range of IT technologies. He has worked in the past with enterprise organizations such

as EDS now HP and other Microsoft partners.

He is now an independent consultant focusing on Enterprise Content Management. He holds

certiications of SharePoint (MCTS) and Microsoft (MCP), and is also a Certiied Document
Imaging Architect (CDIA).

I would like to thank the staff at Packt Publishing for giving me this

opportunity and many thanks to my family for their help, support, and

patience.

www.allitebooks.com

http://www.allitebooks.org

Jiri Pik is a inance and business intelligence consultant working with major investment
banks, hedge funds, and other inancial players. He has architected and delivered
breakthrough trading, portfolio and risk management systems, and decision-support systems

across industries.

His consulting irm WIXESYS provides their clients with certiied expertise, judgment, and
execution at the speed of light. WIXESYS's power tools include revolutionary Excel and Outlook
add-ons available at http://spearian.com.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support iles, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support iles and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub iles
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book

customer, you are entitled to a discount on the eBook copy. Get in touch with us at

service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range

of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.

Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib

today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notiied! Find out when new books are published by following @PacktEnterprise on Twitter,

or the Packt Enterprise Facebook page.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1

Chapter 1: Branding SharePoint with Composed Looks 7
Introduction 7

Applying a composed look 8

Changing the site master pages 15

Changing the site logo 19

Uploading a custom color palette 23

Uploading a custom font scheme 28

Creating a custom composed look 31

Using PowerShell to apply a composed look to all sites in a site collection 34

Using PowerShell to apply master page and logo settings to all sites in a farm 36

Chapter 2: Branding SharePoint with Device Channels and

Design Packages 41
Introduction 41

Creating a device channel for mobile devices 42

Applying a master page to a device channel 48

Creating and exporting a design package 53

Importing and applying a design package 57

Importing a design package to all site collections with PowerShell 60

Listing the device channel master pages 64

Chapter 3: Branding SharePoint with Custom Master Pages and

Page Layouts 71
Introduction 72

Editing a master page in SharePoint Designer 73

Changing the site master pages in SharePoint Designer 77

Hiding unwanted master page controls 78

Restoring the Navigate Up button using a master page 82

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Adding JavaScript and cascading stylesheet references to a master page 84

Creating a ixed width master page 86
Creating an expanding width master page with content padding 89

Creating a minimalistic master page 92

Creating a responsive mobile master page 94

Customizing the Windows 8 Start menu tile for pinning sites

using a master page 98

Customizing the shortcut icon (favicon) using a master page 100

Creating a page layout with three columns of web part zones 102

Creating a page layout with web parts added to the page 106

Creating a page layout with a picture-library-based image

carousel using JavaScript 110

Displaying speciic content only to authenticated users 115
Displaying speciic content only to anonymous users 116
Displaying speciic content only to site administrators 118
Creating a master page with editing controls only available to editors 119

Chapter 4: Packaging Branding Elements in a SharePoint

Solution with Visual Studio 123
Introduction 124

Creating a Visual Studio SharePoint solution 124

Including images, cascading stylesheets, and JavaScript

resources in a SharePoint solution 128

Including master pages in a SharePoint solution 132

Including page layouts in a SharePoint solution 135

Adding localization to a SharePoint solution 137

Creating a site feature to apply branding 142

Creating the site collection feature to apply the feature to new and

existing sites 146

Creating a timer job to ensure the site branding feature is activated 152

Packaging and deploying the SharePoint solution 156

Activating the site collection feature on all site collections

with PowerShell 158

Chapter 5: Enhancing the Content Creation Process with the

SharePoint Publishing Architecture 161
Introduction 162

Setting up a new publishing site 162

Enabling the publishing features on an existing site 165

Setting up contributor and approver access for publishing content 167

Coniguring the versioning settings of the Pages library 175
Creating a publishing web part page 178

iii

Table of Contents

Checking out publishing content for editing 181

Checking in edited publishing content 183

Publishing checked-in publishing content 186

Approving publishing content 188

Reverting publishing content to a previous version 190

Setting up a publishing site with worklow 193
Creating a web part page and adding web parts with PowerShell 194

Identifying all checked-out publishing pages in a site with PowerShell 197

Creating an image rendition 200

Inserting an image rendition into page content 201

Chapter 6: Centralizing and Structuring Content with Cross-site

Publishing and Managed Metadata 205
Introduction 206

Creating a new managed metadata service application 206

Creating a categories term set for product catalog navigation 214

Creating a product catalog authoring site collection 219

Coniguring the products list 221
Creating a catalog document library 232

Setting up a consuming site collection and connecting to the

product catalog list 237

Setting up a consuming site collection with separate branding 244

Chapter 7: Customizing the SharePoint Experience with

Delegate Controls 247
Introduction 248

Creating a Visual Studio solution for custom delegate controls 249

Adding JavaScript and stylesheets with an AdditionalPageHead

delegate control 254

Customizing the suite bar branding with a SuiteBarBrandingDelegate

delegate control 261

Customizing the suite bar links with a SuiteLinksDelegate delegate control 264

Adding Ofice 365-style drop-down menus to suite bar links 270
Adding promoted action links with the PromotedActions delegate control 276

Customizing header navigation with a TopNavigationDataSource

delegate control 280

Customizing quick launch navigation with a QuickLaunchDataSource

delegate control 286

Restoring the Navigate Up button with an AdditionalPageHead

delegate control 288

Adding meta tags to pages from custom 290

library ields with an AdditionalPageHead delegate control 290

iv

Table of Contents

Storing analytics tracking code with a site collection settings page 293

Adding stored analytics tracking code to 299

pages with an AdditionalPageHead delegate control 299

Chapter 8: Enhancing User Input with InfoPath Forms 301
Introduction 302

Customizing the SharePoint list entry form templates with InfoPath 302

Creating InfoPath forms that are submitted to the SharePoint form libraries 305

Creating a SharePoint list to provide a drop-down menu data to InfoPath 311

Adding a drop-down menu to InfoPath using SharePoint list data 312

Paginating InfoPath forms with views 315

Validating data in InfoPath forms 317

Calculating ield values in InfoPath based on the values of other ields 319
Adding custom .NET code to an InfoPath form 322

Preparing InfoPath forms for approval by SharePoint administrators 324

Approving submitted InfoPath forms in SharePoint 326

Creating libraries using approved InfoPath forms in SharePoint 327

Creating a survey InfoPath form that gets locked after submission and

populates the SharePoint ields 328

Chapter 9: Coniguring Search 333
Introduction 333

Provisioning a search service application 334

Coniguring a search content source 337
Creating a search center site 341

Connecting a site collection to a search center 342

Creating a search scope 345

Using a search query rule to promote an item in search results 350

Coniguring search engine optimization settings 352

Chapter 10: Creating Multilingual Sites with SharePoint Variations 357
Introduction 358

Installing SharePoint language packs 358

Coniguring SharePoint with installed language packs 361
Provisioning a machine translation service application 362

Coniguring machine translation timer jobs 366
Coniguring site collection variation settings 368
Creating the primary language variation label 371

Creating the secondary language variation labels 372

Checking the status of the variation hierarchy 374

Creating, publishing, and updating targets with a new publishing page 376

v

Table of Contents

Creating translation packages for human translation 378

Uploading translation packages 379

Translating content with the machine translation service 380

Chapter 11: Coniguring Content Deployment 383
Introduction 383

Coniguring the source site collection for content deployment 384
Coniguring the farm content deployment settings 386
Creating the content deployment path 389

Creating the content deployment job 393

Performing the content deployment 396

Chapter 12: Coniguring Anonymous Access 399
Introduction 399

Coniguring anonymous access for web applications 400
Coniguring anonymous access for site content 403
Limiting access to application pages 405

Identifying anonymously accessible content with PowerShell 406

Verifying anonymous access to content with PowerShell 408

Index 411

Preface
Microsoft SharePoint Server 2013 is the latest release of the SharePoint Server product line

that provides organizations with a full arsenal of tools to create a highly scalable and feature-

rich web content management (WCM) system. This book is designed to provide a task-based

approach for exploring the key WCM capabilities of SharePoint Server 2013. These include:

 f Branding SharePoint

 f Publishing content with SharePoint

 f Managing content and navigation with taxonomy

 f Customizing the SharePoint experience with code

 f Translating content in SharePoint

 f Staging SharePoint content

The recipes in this book cover each of the key areas for creating a full-ledged content
management system that can be used for intranet, extranet, and Internet sites.

What this book covers
Chapter 1, Branding SharePoint with Composed Looks, covers how to brand SharePoint using

composed looks, color palettes, and font schemes.

Chapter 2, Branding SharePoint with Device Channels and Design Packages, explains how to

target SharePoint branding for speciic devices and package branding customizations.

Chapter 3, Branding SharePoint with Custom Master Pages and Page Layouts, covers how to

brand SharePoint with custom master pages and creating custom page layouts.

Chapter 4, Packaging Branding Elements in a SharePoint Solution with Visual Studio,

explains how to create custom SharePoint solutions in Visual Studio to package and

apply branding resources.

Preface

[2]

Chapter 5, Enhancing the Content Creation Process with the SharePoint Publishing

Architecture, covers how to use the publishing features of SharePoint to manage

web content.

Chapter 6, Centralizing and Structuring Content with Cross-site Publishing and Managed

Metadata, explains how to use the cross-site publishing and managed metadata features of

SharePoint to centrally structure and control content.

Chapter 7, Customizing the SharePoint Experience with Delegate Controls, covers how to

create custom delegate user controls with Visual Studio.

Chapter 8, Enhancing User Input with InfoPath Forms, explains the basics of how to use

InfoPath forms to customize the user input experience.

Chapter 9, Coniguring Search, covers how to conigure and manage search in SharePoint.

Chapter 10, Creating Multilingual Sites with SharePoint Variations, explains how to use

SharePoint variations to create multilingual sites and manage content translation.

Chapter 11, Coniguring Content Deployment, covers how to conigure and perform
deployment of SharePoint content from one site collection to another.

Chapter 12, Coniguring Anonymous Access, explains how to make SharePoint sites available

to end users without requiring them to login.

Who this book is for
This book is written for those who would like to expand their knowledge and abilities to

conigure, design, and develop for SharePoint web content management. They should be
familiar with the SharePoint and web markup languages, such as HTML and CSS. In addition,

knowledge of Windows PowerShell and programming .NET using C# is recommended, but

not required.

What you need for this book
The recipes in this book utilize the Microsoft SharePoint Server 2013 web interface, Microsoft

SharePoint Designer 2013, Microsoft InfoPath 2013, Windows PowerShell, and Microsoft C#

.NET code. Most of the recipes that use the SharePoint web interface or SharePoint Designer

can be used with SharePoint 2013 hosted on Ofice 365 as well as with a local SharePoint
2013 server. Recipes that use PowerShell or .NET code will require access to a local

SharePoint 2013 server.

In order to make full use of all recipes in this book, it is highly recommended that you have a

testing and development machine with the following software. These software applications

can be obtained from the links provided or, in most cases, from MSDN with an active

MSDN Subscription.

Preface

[3]

 f Microsoft Windows Server 2012 available at http://technet.microsoft.com/
en-us/evalcenter/hh670538.aspx

The initial release of SharePoint Server 2013 does not support

Windows Server 2012 R2. Service Pack 1 for SharePoint 2013

provides support for Windows Server 2012 R2.

 f Microsoft SQL Server 2012 available at http://www.microsoft.com/en-us/
sqlserver/get-sql-server/try-it.aspx

 f Microsoft SharePoint Server 2013 Enterprise Edition available at http://technet.
microsoft.com/en-us/evalcenter/hh973397.aspx

Many of the publishing features we will explore in this book are only

available in the enterprise edition of SharePoint Server 2013.

 f Microsoft Visual Studio 2012 or 2013 (not the Express edition) available at http://
www.microsoft.com/visualstudio/eng/downloads

 f Microsoft Ofice Developer Tools for Visual Studio 2012 (not required for Visual
Studio 2013) available at http://msdn.microsoft.com/en-us/office/apps/
fp123627.aspx

 f Microsoft InfoPath 2013 (part of Microsoft Ofice Professional Plus 2013) available at
http://technet.microsoft.com/en-us/evalcenter/jj192782.aspx

It is not recommended to install the InfoPath client software on

the same computer as SharePoint Server. The assemblies from

the InfoPath client software will conflict with the InfoPath server

assemblies included with SharePoint Server.

 f Microsoft SharePoint Designer 2013 available at http://www.microsoft.com/
en-ie/download/details.aspx?id=35491

This book does not cover the installation or coniguration of these
software applications. Most of the trial downloads, as well as

TechNet (http://technet.microsoft.com) and MSDN

(http://msdn.microsoft.com), provide documentation on

installing and coniguring these software products.

Preface

[4]

Conventions
In this book, you will ind a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, ilenames, ile extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Composed

looks are stored as list items in the _catalogs/design list of each SharePoint site."

A block of code is set as follows:

<s:latin typeface="Bodoni Book"
 eotsrc="/_layouts/15/fonts/BodoniBook.eot"
 woffsrc="/_layouts/15/fonts/BodoniBook.woff"
 ttfsrc="/_layouts/15/fonts/BodoniBook.ttf"
 svgsrc="/_layouts/15/fonts/BodoniBook.svg" />

Any command-line input or output is written as follows:

$web = Get-SPWeb http://sharepoint/site

New terms and important words are shown in bold. Words that you see on the screen, in

menus or dialog boxes for example, appear in the text like this: "Select Change the look from

the Settings menu."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—

what you liked or may have disliked. Reader feedback is important for us to develop titles that

you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and

mention the book title via the subject of your message. If there is a topic that you have

expertise in and you are interested in either writing or contributing to a book, see our author

guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to

get the most from your purchase.

Downloading the example code
You can download the example code iles for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can

visit http://www.packtpub.com/support and register to have the iles e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.

If you ind a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration

and help us improve subsequent versions of this book. If you ind any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on

the errata submission form link, and entering the details of your errata. Once your errata are

veriied, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can

be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,

we take the protection of our copyright and licenses very seriously. If you come across any

illegal copies of our works, in any form, on the Internet, please provide us with the location

address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected

pirated material.

We appreciate your help in protecting our authors, and our ability to bring you

valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any

aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

1
Branding SharePoint

with Composed Looks

In this chapter, we will cover the basics of branding SharePoint 2013 sites using
composed looks, color palettes, and font schemes. We will discuss the following recipes:

 f Applying a composed look

 f Changing the site master pages

 f Changing the site logo

 f Uploading a custom color palette

 f Uploading a custom font scheme

 f Creating a custom composed look

 f Using PowerShell to apply a composed look to all sites in a site collection

 f Using PowerShell to apply master page and logo settings to all sites in a farm

Introduction

Microsoft SharePoint Server 2013 offers a variety of methods to apply styles and branding

elements that range from simple coniguration settings to custom code-based solutions.
Before we explore the more advanced branding capabilities of SharePoint Server 2013, we

will cover the basic branding offerings.

At the most basic level, branding and styling SharePoint includes applying one of the included

master pages, setting the site logo, applying a color palette, and applying a font scheme.

These elements, when combined, comprise a composed look.

Branding SharePoint with Composed Looks

8

Master pages are a feature of the ASP.NET web application framework that SharePoint

leverages to provide a consistent look and feel for all pages within a SharePoint site.

Composed looks are stored as list items in the _catalogs/design list of each SharePoint

site. Each composed look item contains the master page URL, color palette URL, font scheme

URL, background image URL, and display order in relation to other composed looks.

SharePoint 2007 and 2010 each included theming capabilities. However, the theming

capabilities in SharePoint 2013 are completely new in how they work and the level of

customization they provide.

Microsoft SharePoint has a number of online forums and communities that

you can join and participate in. You can use the following communities to
help you with all of your SharePoint endeavors:

 f Twitter #SharePoint: http://twitter.com/#sharepoint

 f SharePoint StackExchange: http://sharepoint.
stackexchange.com

 f MSDN SharePoint forum: http://social.msdn.microsoft.
com/Forums/en-US/category/sharepoint

 f TechNet SharePoint forum: http://social.technet.
microsoft.com/Forums/en-US/category/sharepoint

Applying a composed look
When applying an existing composed look to an existing SharePoint site, it is important to note

that the only method available for applying the composed look as it exists in the _catalogs/
design list is with the SharePoint web interface. To apply the components of a composed

look with PowerShell or .NET code, each property must be speciied individually. In this recipe,
we will use the SharePoint web interface to apply a composed look as well as use PowerShell

and .NET code to apply the components of a composed look.

From PowerShell or .NET code, the individual properties of the list item

representing the composed look could be used when applying the

individual components.

Chapter 1

9

How to do it...

Follow these steps to apply the composed look:

1. Navigate to the site in your preferred web browser.

2. Navigate to the Change the look page. We can do this in two ways:

 � Select Change the look from the Settings menu.

Branding SharePoint with Composed Looks

10

 � Select Site settings from the Settings menu. Then select Change the look

from the Look and Feel section.

3. From the available composed looks, click on the preview image to select a

composed look.

4. Before trying out the selected composed look, we can change the background image,

color palette, site layout (master page), and font scheme.

Changing the various options will update the live

preview automatically.

Chapter 1

11

5. Select Try it out to preview the composed look and your conigured options live on
your SharePoint site.

6. If you are satisied with the design changes, select Yes, keep it to apply the styling.

Otherwise, select No, not quite there to return to the previous screen.

Branding SharePoint with Composed Looks

12

How it works...

An SPWeb object represents a SharePoint site in the SharePoint database and server-

side object model. When we apply a composed look, the color palette, font scheme, and

background image are used to create a new SPTheme object and it is assigned to the

ThemeInfo property of the SPWeb object. The site layout, which is a reference to the URL

of a master page, is assigned to the MasterUrl (used for system and settings pages) and

CustomMasterUrl (used for content pages) properties of the SPWeb object. The SPWeb

object is then saved to the SharePoint database.

When previewing the design changes live on your SharePoint site, SharePoint appends query

strings to the home page of the site to instruct the site to use the provided theme information

instead of what is currently conigured. This is displayed within IFRAME on the page to allow

us to preview the SharePoint site, but not interact with it.

There's more...

A composed look may also be applied with PowerShell or code using the server-side

object model.

Applying a composed look using PowerShell
To launch PowerShell with the SharePoint snap-in loaded, you can select SharePoint 2013

Management Shell from the Start menu. You can also launch Windows PowerShell from the

Start menu and manually load the SharePoint snap-in with the following command:

Add-PSSnapin Microsoft.SharePoint.PowerShell

You will see the SharePoint 2013 Management Shell command prompt as shown in the

following screenshot:

In addition, the Windows PowerShell ISE application provides the PowerShell command

prompt with a user interface to simply create and execute PowerShell scripts.

Chapter 1

13

PowerShell scripts are plain text iles with a .ps1 ile extension. You
can create and edit them with Notepad, however applications such

as PowerShell ISE provide additional editing capabilities that assist in

writing PowerShell scripts.

Follow these steps to apply a composed look with PowerShell:

1. Use the Get-SPWeb Cmdlet to get the SharePoint site:

$web = Get-SPWeb http://sharepoint/site

2. Use the ApplyTheme method to apply the color palette, font scheme, and

background image by their URLs. Specify false for the last parameter to instruct

SharePoint to place the iles generated for this theme within the current site:
$web.ApplyTheme("/_catalogs/theme/15/Palette015.spcolor",
 "/_catalogs/theme/15/fontscheme001.spfont",
 "/images/background.png", $false))

3. Use the Update method to apply the changes:

$web.Update()

Branding SharePoint with Composed Looks

14

4. Use the Dispose method to discard the SPWeb object:

$web.Dispose()

You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you

purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you.

Applying a composed look with code using the server-side
object model
Interacting with the server-side object model in C# requires a reference to the Microsoft.
SharePoint.dll assembly found at C:\Program Files\Common Files\Microsoft
Shared\Web Server Extensions\15\ISAPI. In addition, the code must be running in a

.NET context on the SharePoint server. This includes, but is not limited to, Windows services,

Windows applications, PowerShell Cmdlets, SharePoint timer jobs, SharePoint web parts, and

SharePoint application pages.

Follow these steps to apply a composed look with code using the server-side object model:

1. Open the site collection containing the site in a using statement:

using (var site = new SPSite("http://sharepoint/site"))

If opening the SPSite or SPWeb objects from code without the using statement,

dispose of the objects when you are done with them. This ensures that the objects

are removed from memory and clears up connection resources for SharePoint.

2. Open the site in a using statement:

using (var web = site.OpenWeb())

In the SharePoint databases and server-side object model, the SPSite object

represents a site collection and the SPWeb object represents a site.

3. Use the ApplyTheme method to apply the color palette, font scheme, and

background image by their URLs. Specify false for the last parameter to instruct

SharePoint to place the iles generated for this theme within the current site:
web.ApplyTheme("/_catalogs/theme/15/Palette015.spcolor",
 "/_catalogs/theme/15/fontscheme001.spfont",
 "/images/background.png", false);

4. Use the Update method to apply the changes:

web.Update();

Chapter 1

15

See also
 f The Themes overview for SharePoint 2013 article on MSDN at http://msdn.

microsoft.com/en-us/library/jj927174.aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWeb topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607807.aspx

Changing the site master pages
Master pages are a feature of the ASP.NET web application framework that SharePoint

leverages to provide a consistent look and feel for all pages within a SharePoint site. These

can be used to provide various styling and branding conigurations. SharePoint Server 2013
ships with two master pages that can be applied to SharePoint 2013 sites: seattle and oslo.

The seattle master page is the default used when creating new SharePoint sites.

Each SharePoint site uses two conigured master pages: the site master page and the

system master page. The site master page is used when displaying content pages, libraries,

lists, and so on, whereas the system master page is used when displaying settings and

administrative pages.

SharePoint 2013 allows site collections to be conigured to run in SharePoint 2010 or
SharePoint 2013 compatibility modes. Master pages are only made available to the

compatibility mode they are designed for. Thus, SharePoint 2010 master pages cannot be

applied to a SharePoint 2013 site and vice versa.

Getting ready
In order to change the master page settings for a SharePoint site, the SharePoint Server

Publishing Infrastructure site collection feature and SharePoint Server Publishing site

feature must be activated.

Downloading the example code

You can download the example code iles for all Packt books you have
purchased from your account at http://www.packtpub.com. If you

purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the iles e-mailed directly to you

www.allitebooks.com

http://www.allitebooks.org

Branding SharePoint with Composed Looks

16

How to do it...

Follow these steps to change the site master pages:

1. Navigate to the site in your preferred web browser. It should look like the

following screenshot:

2. Select Site settings from the Settings menu.

3. Select Master page from the Look and Feel section, as shown in the

following screenshot:

Chapter 1

17

4. Select the site master page and the system master page to use. In this example, we

will use the oslo master page:

5. Click on OK to save the changes. Now, the site will look like the following screenshot:

Branding SharePoint with Composed Looks

18

How it works...

The site relative URL for the selected site master page is assigned to the MasterUrl property

of the SPWeb object representing the current site and the site relative URL for the system

master page is set to the CustomMasterUrl property. The SPWeb object is then updated

and saved to the SharePoint database.

There's more...

Site master pages may also be applied with PowerShell or code using the server-side

object model.

Changing the site master pages using PowerShell
Follow these steps to change the site master pages using PowerShell:

1. Use the Get-SPWeb Cmdlet to get the SharePoint site:

$web = Get-SPWeb http://sharepoint/site

2. Set the MasterUrl and CustomMasterUrl properties to conigure the master
pages by their URLs:

$web.MasterUrl = "/_catalogs/masterpages/seattle.master"

$web.CustomMasterUrl = "/_catalogs/masterpages/seattle.master"

3. Use the Update method to apply the changes:

$web.Update()

4. Use the Dispose method to discard the SPWeb object:

$web.Dispose()

Changing the site master pages with code using the server-side
object model
Follow these steps to change the site master pages with code using the server-side object model:

1. Open the site collection containing the site in a using statement:

using (var site = new SPSite("http://sharepoint/site"))

2. Open the site in a using statement:

using (var web = site.OpenWeb())

3. Set the MasterUrl and CustomMasterUrl properties to conigure the master
pages by their URLs:

web.MasterUrl = "/_catalogs/masterpages/seattle.master";

Chapter 1

19

web.CustomMasterUrl =
 "/_catalogs/masterpages/seattle.master";

4. Use the Update method to apply the changes:

web.Update();

See also
 f The How to: Apply a master page to a site in SharePoint 2013 article on MSDN at

http://msdn.microsoft.com/en-us/library/jj862339.aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWeb topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607807.aspx

Changing the site logo
The logo is the image displayed, usually in the upper-left corner, on each page in a SharePoint

site. Clicking on the logo returns the user to the root home page of the SharePoint site, as

shown in the following screenshot:

Branding SharePoint with Composed Looks

20

Getting ready
To complete this recipe you will need an image uploaded or available to upload to the

SharePoint site.

How to do it...

Follow these steps to change the site logo:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Title, description, and logo from the Look and Feel section.

4. Under Insert Logo, select the logo by clicking on FROM COMPUTER to upload a new

image or by clicking on FROM SHAREPOINT to use an image already existing in the

SharePoint site.

5. Add a simple and short description for the logo in the Enter a description textbox as

shown in the following screenshot:

Chapter 1

21

6. Click on OK to save the changes. The logo should appear as shown in the

following screenshot:

How it works...

The site relative URL for the logo image is assigned to the SiteLogoUrl property

of the SPWeb object representing the site, and the logo description is set to the

SiteLogoDescription property. The SPWeb object is then saved to the SharePoint

database. The logo description will be used as the alternative text for the logo that will be

displayed when hovering over the image with a mouse, as well as used by non-standard

browsers such as screen readers.

Branding SharePoint with Composed Looks

22

There's more...

The site logo and description may also be applied with PowerShell or code using the server-

side object model.

Changing the site logo using PowerShell
Follow these steps to change the site logo using PowerShell:

1. Get the SharePoint site using the Get-SPWeb Cmdlet:

$web = Get-SPWeb http://sharepoint/site

2. Set the SiteLogoUrl property to specify the URL of the image logo and the

SiteLogoDescription property to specify the alternative text for the logo:

$web.SiteLogoUrl = "/SiteAssets/logo.png"

$web.SiteLogoDescription = "My PowerShell Site"

Setting the SiteLogoUrl property assumes that the referenced

image has already been uploaded to the site.

3. Use the Update method to apply the changes:

$web.Update()

4. Use the Dispose method to discard the SPWeb object:

$web.Dispose()

Changing the site logo with code using the server-side
object model
Follow these steps to change the site logo with code using the server-side object model:

1. Open the site collection containing the site in a using statement:

using (var site = new SPSite("http://sharepoint/site"))

2. Open the site in a using statement:

using (var web = site.OpenWeb())

3. Set the SiteLogoUrl property to specify the URL of the image logo and the

SiteLogoDescription property to specify the alternative text for the logo:

web.SiteLogoUrl = "/SiteAssets/logo.png";

web.SiteLogoDescription = "My PowerShell Site";

4. Use the Update method to apply the changes:

web.Update();

Chapter 1

23

See also
 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/

library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWeb topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607807.aspx

Uploading a custom color palette
SharePoint 2013 comes with 32 color palettes. If you are incorporating the branding of an

organization you will likely need to customize the colors to match. Color palettes are simple

XML iles; however, they contain over 90 conigured values. Identifying the appropriate values
to update manually can be tedious. To simplify the process of creating new color palettes,

Microsoft has made available the SharePoint Color Palette Tool for download. This tool can

be downloaded from http://www.microsoft.com/en-us/download/details.
aspx?id=38182.

The SharePoint Color Palette Tool provides:

 f A live preview using the same layout as the live preview when coniguring and
applying a composed look, which we covered previously

 f The coniguration of each color element

 f The coniguration of which colors to use, when displaying in the color palette's drop-
down list in the web interface

 f The option to preview with a background image

 f A preview utilizing various layouts in order to ensure the color palette applies well to

the various page layouts and provides proper contrast between elements

We won't go into all of the details of using the tool to create color palettes. We will, however,

cover how to upload the color palettes once created by the SharePoint Color Palette Tool.

Getting ready
To complete this recipe you will need a custom color palette created and ready to upload.

Branding SharePoint with Composed Looks

24

How to do it...

Follow these steps to upload a custom color palette:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Themes from the Web Designer Galleries section.

4. Select the folder named 15.

5. Select New Document to upload and save the color palette ile.

Alternatively, SharePoint 2013 also supports dragging-and-dropping

files from Windows Explorer to the web interface in most browsers.

How it works...

The SharePoint color palettes are simply stored as iles in a folder in a document library found

at /_catalogs/theme/15. In this recipe, we uploaded our custom color palette to this

document library and made it available for use when applying composed looks. The following

screenshot shows our custom color palette in the folder named 15 which is inside the Theme

Gallery library:

Chapter 1

25

There's more...

A color palette may also be uploaded with SharePoint Designer 2013, PowerShell, or code

using the server-side object model.

Uploading a custom color palette using SharePoint Designer
SharePoint Designer 2013 can be used to browse and manage document libraries in

SharePoint 2013. Follow these steps to upload a custom color palette using SharePoint

Designer 2013:

1. Open the site in SharePoint Designer.

www.allitebooks.com

http://www.allitebooks.org

Branding SharePoint with Composed Looks

26

2. In the Site Objects pane on the left-hand side, select All Files.

3. In the All Files list, navigate to _catalogs | theme | 15.

4. In the ribbon, click on Import Files.

5. Select Add File to browse and select the color palette ile.

6. Click on OK to import the color palette ile.

Uploading a custom color palette using PowerShell
Follow these steps required to upload a custom color palette using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet:

$web = Get-SPWeb http://sharepoint/site

2. Assign the path of the color palette ile to a variable:
$filePath = "C:\mypalette.spcolor"

Chapter 1

27

3. Get the /_catalogs/theme/15 folder from the SPWeb object:

$themeFolder =
$web.Folders["_catalogs"].Subfolders["theme"].Subfolders["15"]

4. Get the ilename from the ile path using the GetFileName method of the System.
IO.Path class:

$fileName = [System.IO.Path]::GetFileName($filePath)

5. Get the contents of the ile using the OpenRead method of the System.IO.File

class:

$fileStream = [System.IO.File]::OpenRead($filePath)

6. Add the ile to the Files collection of the folder using the name of the ile and ile
contents. We are setting the third parameter to true to specify that this should

override an existing ile if it already exists by the same name:
$themeFolder.Files.Add($fileName, $fileStream, $true)

7. Call the Update method on the folder to update the Files collection:

$themeFolder.Update()

8. Use the Dispose method to discard the SPWeb object:

$web.Dispose()

Uploading a custom color palette with code using the server-side
object model
Follow these steps to upload a custom color palette with code using the server-side

object model:

1. Open the site collection containing the site in a using statement:

using (var site = new SPSite("http://sharepoint/site"))

2. Open the site in a using statement:

using (var web = site.OpenWeb())

3. Assign the path of the color palette ile to a variable:
var filePath = "C:\mypalette.spcolor";

4. Get the /_catalogs/theme/15 folder from the SPWeb object:

var themeFolder =
 web.Folders["_catalogs"].SubFolders["theme"].SubFolders
 ["15"];

5. Get the ilename using the GetFileName method of the System.IO.Path class:

var fileName = Path.GetFileName(filePath);

Branding SharePoint with Composed Looks

28

6. Get the contents of the ile using the OpenRead method of the System.IO.File

class:

var fileStream = File.OpenRead(filePath);

7. Add the ile to the Files collection of the folder using the name of the ile and ile
contents. We are setting the third parameter to true to specify that this should

override an existing ile if it already exists by the same name:
themeFolder.Files.Add(fileName, fileStream, true);

8. Call the Update method on the folder to update the Files collection:

themeFolder.Update();

See also
 f The Color palettes and fonts in SharePoint 2013 article on MSDN at http://msdn.

microsoft.com/en-us/library/jj945889.aspx

 f The How to: Upload a ile to a SharePoint Site from a Local Folder article on MSDN at
http://msdn.microsoft.com/en-us/library/ms454491(v=office.14).
aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWeb topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607807.aspx

Uploading a custom font scheme
Similar to color palettes, font schemes are XML iles that deine which fonts to use for

displaying various texts in the web interface. Unlike color palettes, however, Microsoft has not

released any tools to simplify the font scheme creation process. Font schemes are stored in

the same location as that of color palettes in the /_catalogs/theme/15 folder. SharePoint

2013 ships with eight font schemes with SharePointPersonality.spfont as the default.

When creating a new font scheme it is simplest to start with an existing one. If we download

the SharePointPersonality.spfont font scheme ile, we can use that as the basis for
creating our own font scheme in any text editor.

There are three properties to deine for our custom font scheme: name, previewSlot1, and

previewSlot2. The preview slots use the fonts speciied for those font slots when displaying
the font scheme in the list of available font schemes to use in the web interface. There are

seven font slots that can be conigured:

Chapter 1

29

 f Title

 f Navigation

 f Large-heading

 f Heading

 f Small-heading

 f Large-body

 f Body

In the default font scheme, each font slot includes the following tags:

 f Latin typeface (for example, <s:latin typeface="Segoe UI Light" />) that

is used by languages that use Latin script

 f East Asian typeface (for example, <s:ea typeface="" />) that is used by

languages that use East Asian script

 f Complex script typeface (for example, <s:cs typeface="Segoe UI Light" />)

that is used by languages, which use complex scripts (languages whose characters

require ligation or shaping)

 f Fonts that target a speciic script with a typeface (for example, <s:font
script="Arab" typeface="Segoe UI Light" />, <s:font
script="Deva" typeface="Nirmala UI" />, and so on)

In order to be compatible with SharePoint, each font slot requires the Latin typeface, East

Asian typeface, and complex script typeface tags. The additional fonts included for speciic
scripts are optional and may be removed if you do not require support for those scripts.

In addition to system fonts that will be broadly available, we can use fonts that will be

downloaded by the browser if they do not exist on the local system. Using the example from

fontscheme001.spfont, we can specify the source locations for the various font formats:

<s:latin typeface="Bodoni Book"
 eotsrc="/_layouts/15/fonts/BodoniBook.eot"
 woffsrc="/_layouts/15/fonts/BodoniBook.woff"
 ttfsrc="/_layouts/15/fonts/BodoniBook.ttf"
 svgsrc="/_layouts/15/fonts/BodoniBook.svg" />

When using custom fonts, it is important to include all four formats for maximum compatibility

with web browsers. In addition, it is important to ensure that you have rights to use a font

before distributing it via your SharePoint site. There are a number of Internet sites that can

convert a font into these four formats for you. One such site is http://www.web-font-

generator.com/.

Branding SharePoint with Composed Looks

30

Getting ready
To complete this recipe you will need a custom font scheme created and ready to upload.

How to do it...

Follow these steps to upload a custom font scheme:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Themes in the Web Designer Galleries section.

4. Select the folder named 15.

5. Select New Document to upload and save the font scheme ile.

How it works...

SharePoint font schemes are simply stored as iles in a folder in a document library found
at /_catalogs/theme/15. In this recipe, we uploaded our custom font scheme to this

document library and made it available for use when applying composed looks.

There's more...

A font scheme may also be uploaded with SharePoint Designer 2013, PowerShell, or code

using the server-side object model. We covered how to do this in the previous recipe,

Uploading a custom color palette.

See also
 f The Color palettes and fonts in SharePoint 2013 article on MSDN at http://msdn.

microsoft.com/en-us/library/jj945889.aspx

 f The How to: Upload a File to a SharePoint Site from a Local Folder article on MSDN at
http://msdn.microsoft.com/en-us/library/ms454491(v=office.14).
aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWeb topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607807.aspx

Chapter 1

31

Creating a custom composed look
Composed looks are stored as items in the _catalogs/design list within each SharePoint

site. They can specify the master page, color palette, font scheme, background image, and

display order in relation to other composed looks.

How to do it...

Follow these steps to create a custom composed look:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Composed looks in the Web Designer Galleries section.

4. Click on New Item to create a new composed look item in the list.

5. Enter the name for the composed look in both the Title and Name ields.

6. Enter the URLs to the master page, color palette, background image, and font

scheme iles in both the Web Address and Description ields for each section.

7. Enter the Display Order.

8. Click on Save.

How it works...

Composed looks are simply stored as items in the _catalogs/design list. When a

composed look is applied to a site the items speciied in the composed look are used to
create a SPTheme object that then gets applied to the SPWeb object representing the site. If

no background image is speciied, none will be applied when using this composed look. If no
font scheme is speciied, the default SharePointPersonality.spfont font scheme will

be applied when using this composed look.

Branding SharePoint with Composed Looks

32

Lastly, the Display Order option is used to sort the available composed looks when choosing

which composed look to apply to a site. Have a look at the following screenshot:

There's more...

A composed look can be created with PowerShell or code using the server-side object model.

Creating a custom composed look using PowerShell
Follow these steps to create a custom composed look using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet:

$web = Get-SPWeb http://sharepoint/site

2. Get the SPList object representing the _catalogs/design list from the SPWeb

object:

$list = $web.Lists["Composed Looks"]

3. Add a new SPListItem to the Items collection of the SPList object:

$item = $list.Items.Add()

4. Assign the values to each of the properties of the SPListItem object:

$item["Title"] = "PowerShell"

$item["Name"] = "PowerShell"

$item["Master Page URL"] =

Chapter 1

33

"/_catalogs/masterpages/seattle.master"

$item["Theme URL"] = "/_catalogs/theme/15/palette005.spcolor"

$item["Image URL"] = "/_layouts/15/images/image_bg005.jpg"

$item["Font Scheme URL"] =
"/_catalogs/theme/15/fontscheme003.spfont"

$item["Display Order"] = "200"

5. Use the Update method on SPList to update the Items collection:

$item.Update()

6. Use the Dispose method to discard the SPWeb object:

$web.Dispose()

Creating a custom composed look with code using the
server-side object model
Follow these steps to create a custom composed look with code using the server-side

object model:

1. Open the site collection containing the site in a using statement:

using (var site = new SPSite("http://sharepoint/site"))

2. Open the site in a using statement:

using (var web = site.OpenWeb())

3. Get the SPList object representing the _catalogs/design list from the SPWeb

object:

var list = web.Lists["Composed Looks"];

4. Add a new SPListItem to the Items collection of the SPList object:

var item = list.Items.Add();

5. Assign the values to each of the properties of the SPListItem object:

item["Title"] = "PowerShell";

item["Name"] = "PowerShell";

item["Master Page URL"] =
 "/_catalogs/masterpages/seattle.master";

item["Theme URL"] =
 "/_catalogs/theme/15/palette005.spcolor";

item["Image URL"] = "/_layouts/15/images/image_bg005.jpg";

Branding SharePoint with Composed Looks

34

item["Font Scheme URL"] =
 "/_catalogs/theme/15/fontscheme003.spfont";

item["Display Order"] = "200";

6. Use the Update method on the SPList object to update the Items collection:

item.Update();

See also
 f The Themes overview for SharePoint 2013 article on MSDN at http://msdn.

microsoft.com/en-us/library/jj927174.aspx

 f The How to: Add or Delete List Items article on MSDN at http://msdn.
microsoft.com/en-us/library/ms467435(v=office.14).aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWeb topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607807.aspx

Using PowerShell to apply a composed look
to all sites in a site collection

Windows PowerShell provides administrators with the ability to create complex scripts that

utilize Cmdlets and .NET code. The Microsoft SharePoint PowerShell snap-in exposes many of

the common administrative functions of SharePoint as Cmdlets. For the rest, we can use the

server-side object model.

Since composed looks are applied at the site level, it can be cumbersome to apply them to a

large number of sites. In this recipe, we are going to use PowerShell to iterate through all of

the SharePoint sites in a site collection to apply a composed look.

When using complex PowerShell, it is ideal to write the commands in

a text ile with a .ps1 extension and then execute the script from the

PowerShell session. This allows us to easily use the foreach loops

and other techniques that are common to programming.

Chapter 1

35

How to do it...

Follow these steps to apply a composed look to all sites in a site collection using PowerShell:

1. Open your preferred text editor to create the .ps1 script ile.

2. Get the site collection with the Get-SPSite Cmdlet:

$site = Get-SPSite http://sharepoint/site

3. Use a foreach loop to iterate through each SPWeb in the AllWebs property of the

SPSite object:

foreach ($web in $site.AllWebs)

4. Check if SPWeb exists:

if ($web.Exists)

5. Apply the composed look using the ApplyTheme method:

$web.ApplyTheme("/_catalogs/theme/15/Palette015.spcolor",
"/_catalogs/theme/15/SharePointPersonality.spfont",
"/_layouts/15/images/image_bg011.jpg", $false)

6. Use the Dispose method to discard the SPWeb object:

$web.Dispose()

7. Use the Dispose method to discard the SPSite object:

$site.Dispose()

8. Save the ile as a PS1 ile, for example, applycomposedlook.ps1.

9. Execute the script in the PowerShell session:

./applycomposedlook.ps1

How it works...

Using PowerShell we can easily create scripts to perform tasks that would normally require a

tedious amount of manual work. In this recipe, we iterated through each site in the AllWebs

property of the site collection that we obtained using the Get-SPSite Cmdlet. For each

SharePoint site, we used the ApplyTheme method to apply our composed look.

www.allitebooks.com

http://www.allitebooks.org

Branding SharePoint with Composed Looks

36

There's more...

The steps performed in PowerShell may also be completed with code using the server-side

object model. Follow these steps to apply a composed look to all sites in a site collection with

code using the server-side object model:

1. Open the site collection in a using statement:

using (var site = new SPSite("http://sharepoint/site")

2. Use a foreach loop to iterate through each SPWeb in the AllWebs property of the

SPSite object:

foreach (var web in site.AllWebs)

3. Check if the SPWeb exists:

if (web.Exists)

4. Apply the composed look using the ApplyTheme method:

web.ApplyTheme("/_catalogs/theme/15/Palette015.spcolor",
 "/_catalogs/theme/15/SharePointPersonality.spfont",
 "/_layouts/15/images/image_bg011.jpg", false);

5. Use the Dispose method to discard the SPWeb object:

web.Dispose();

See also
 f The Themes overview for SharePoint 2013 article on MSDN at http://msdn.

microsoft.com/en-us/library/jj927174.aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPSite topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607950.aspx

Using PowerShell to apply master page and
logo settings to all sites in a farm

For this recipe, we are using a PowerShell script to apply master page and logo settings

to each SharePoint site in every site collection of each web application on the local

SharePoint farm.

Chapter 1

37

How to do it...

Follow these steps to apply master page and logo settings to all sites in the local SharePoint

farm using PowerShell:

1. Open your preferred text editor to create the .ps1 script ile.

2. Use a foreach loop to iterate through each content of SPWebApplication on the

local SharePoint farm using the Get-SPWebApplication Cmdlet:

foreach($webApp in (Get-SPWebApplication))

3. Use a foreach loop to iterate through each SPSite in the Sites property of the

SPWebApplication object:

foreach($site in $webApp.Sites)

4. Verify the CompatibilityLevel property of SPSite to ensure it is in SharePoint

2013 (Version 15) mode and not in SharePoint 2010 (Version 14) mode.

if ($site.CompatibilityLevel –eq 15)

5. Use a foreach loop to iterate through each SPWeb in the AllWebs property of the

SPSite object:

foreach ($web in $site.AllWebs)

6. Check if the SPWeb object exists:

if ($web.Exists)

7. Set the master page and logo properties for the SPWeb object:

$web.SiteLogoUrl = "/SiteAssets/logo.png"

$web.SiteLogoDescription = "My PowerShell Site"

$web.MasterUrl = "/_catalogs/masterpages/seattle.master"

$web.CustomMasterUrl = "/_catalogs/masterpages/seattle.master"

8. Use the Update method on the SPWeb object to save the changes:

$web.Update()

9. Use the Dispose method to discard the SPWeb object:

$web.Dispose()

10. Use the Dispose method to discard the SPSite object:

$site.Dispose()

11. Save the ile as a PS1 ile, for example, applymasterpageandlogo.ps1.

Branding SharePoint with Composed Looks

38

12. Execute the script in the PowerShell session:

./applymasterpageandlogo.ps1

How it works...

In this recipe, we retrieved all of the content web applications using the Get-
SPWebApplication Cmdlet. We then iterated through each site collection in the Sites

property of each web application and then iterated through each site in the AllWebs

property of each site collection. For each site, we updated the properties for the logo and

master pages.

There's more...

The steps performed in PowerShell may also be completed in code using the server-side

object model. Follow these steps to apply master page and logo settings to all sites on the

local SharePoint farm with code using the server-side object model:

1. Use a foreach loop to iterate through each content SPWebApplication on the

local SharePoint farm:

foreach (var webApp in
 SPWebService.ContentService.WebApplications)

2. Use a foreach loop to iterate through each SPSite in the Sites property of the

SPWebApplication object:

foreach (var site in webApp.Sites)

3. Verify the CompatibilityLevel property of SPSite to ensure it is in SharePoint

2013 (Version 15) mode and not in SharePoint 2010 (Version 14) mode:

if (site.CompatibilityLevel == 15)

4. Use a foreach loop for iterating through each SPWeb in the AllWebs property of the

SPSite object:

foreach (var web in site.AllWebs)

5. Check if the SPWeb exists:

if (web.Exists)

6. Set the master page and logo properties on the SPWeb object:

web.SiteLogoUrl = "/SiteAssets/logo.png";

web.SiteLogoDescription = "My Code Site";

web.MasterUrl = "/_catalogs/masterpages/seattle.master";

Chapter 1

39

web.CustomMasterUrl =
 "/_catalogs/masterpages/seattle.master";

7. Use the Update method on the SPWeb object to save the changes:

web.Update();

8. Use the Dispose method to discard the SPSite and SPWeb objects:

web.Dispose();

site.Dispose();

See also
 f The SPWebApplication class topic on MSDN at http://msdn.microsoft.

com/en-us/library/microsoft.sharepoint.administration.
spwebapplication.aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWebApplication topic on TechNet at http://technet.microsoft.
com/en-us/library/ff607562.aspx

2
Branding SharePoint

with Device Channels
and Design Packages

In this chapter, we will cover packaging out-of-the-box branding elements and targeting the

branding for speciic devices. We will cover the following recipes:

 f Creating a device channel for mobile devices

 f Applying a master page to a device channel

 f Creating and exporting a design package

 f Importing and applying a design package

 f Importing a design package to all site collections with PowerShell

 f Listing the device channel master pages

Introduction

With the 2013 release of SharePoint, Microsoft has added two new capabilities that assist

with full-scale branding of SharePoint sites: device channels and design packages. A

device channel uses the user agent of the web browser sending the incoming web request to

determine which master page to render the content pages with. A common use of the device

channels is to detect tablets and smartphones to use a more touch-friendly interface design.

For instance, a device channel can be conigured to look for an iPad in the following user

agent to identify the iPad devices:

Mozilla/5.0 (iPad; CPU OS 7_0_4 like Mac OS X)
 AppleWebKit/537.51.1 (KHTML, like Gecko) Version/7.0
 Mobile/11B554a Safari/9537.53

Branding SharePoint with Device Channels and Design Packages

42

Any portion of the user agent can be used for a device channel. It is

important to be speciic, but not too speciic. Using iPad would apply to all

the devices that specify iPad in their user agent, whereas iPad; U; CPU
OS 7_0 would only apply to iPads running on iOS Version 7.0.

A design package is a SharePoint solution, packaged as a WSP ile containing branding
customizations, such as master pages and cascading style sheets. This provides a simple

method of exporting a site design from one site and applying it to another. A design package

will only contain items that are not default to SharePoint. Default items, such as the included

master pages, will be referenced, but are not included as part of the package.

Prior to SharePoint 2013, packaged design solutions could only be created manually or with

Visual Studio. Design packages allow any site collection administrator to create and apply

packaged designs. This allows the site collection administrators to obtain packaged designs

(from third parties, and so on) and apply them, without having to manually upload and

conigure each piece of the design.

Creating a device channel for mobile
devices

One of the most common scenarios for using device channels is to identify the tablet and

smartphone browsers. Applying a mobile-speciic master page, when appropriate, can provide
the users with a design that is more touch friendly and is laid out in a speciic manner for
smaller screens. In this recipe, we are going to create a device channel that will identify

Android, iOS, BlackBerry, WebOS, and Windows mobile devices. There are hundreds of mobile-

speciic browsers that we can detect with the user agent. However, for this recipe we are going
to keep it simple.

Getting ready
In order to view and modify the device channels for a SharePoint site, the SharePoint Server

Publishing Infrastructure site collection feature and SharePoint Server Publishing site

feature must be activated.

How to do it...

Follow these steps to create a device channel for mobile devices:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Device Channels from the Look and Feel section.

Chapter 2

43

You can also navigate to the Device Channels page from the Design Manager page.

4. Select New Item.

5. Provide a Name, Description, and Alias for the device channel.

The Alias field specified will be used when specifying which master

page to use with the device channel in the device channel mappings

file. We will learn about this in the next recipe, Applying a master

page to a device channel.

6. Specify the Device Inclusion Rules to be included in the device channel.

Android

iPad

iPod

iPhone

BlackBerry

IEMobile

WebOS

Branding SharePoint with Device Channels and Design Packages

44

7. When using multiple device inclusion rules, place each string on a new line to match

the user agent. Device Inclusion Rules are simply strings that are looked for in the

user agent of incoming web requests.

8. Mark the Active checkbox and click on Save.

How it works...

Device channels are created and stored in the /DeviceChannels SharePoint list in the root

site of a site collection. When an incoming browser request is received, SharePoint checks

whether the incoming user agent matches any of the Device Inclusion Rules before selecting

the master page to use.

Chapter 2

45

Many web browsers have developer tools that allow changing the user agent reported by

the browser. Switching the user agent is one way in which we can test to ensure our device

channels are working correctly. Internet Explorer 11, for instance, includes this option in the

Emulation section of the F12 Developer Tools.

There's more...

A device channel may also be created with PowerShell or with code using the server-side

object model.

www.allitebooks.com

http://www.allitebooks.org

Branding SharePoint with Device Channels and Design Packages

46

Creating a device channel for mobile devices using PowerShell
Follow these steps to create a device channel for mobile devices using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet.

$web = Get-SPWeb http://sharepoint/site

2. Get the DeviceChannels list.

$list = $web.Lists["Device Channels"]

3. Add a new SPListItem item to the Items collection of the list.

$item = $list.Items.Add()

4. Assign the values to each of the properties on the SPListItem item.

$item["Name"] = "PowerShell"

$item["Alias"] = "PowerShell"

$item["Description"] = "PowerShell Channel"

$item["Device Inclusion Rules"] =
 "Android`niPad`niPod`niPhone`nBlackBerry`nIEMobile`nWebOS"

$item["Active"] = $true

When a line break is required within a string, in PowerShell,

an escape character can be used. Escape characters in

PowerShell use the tilde character. For example, a new line is

represented by `n.

5. Call the Update method on the list to update the Items collection.

$item.Update()

6. Use the Dispose method to discard the SPWeb object.

$web.Dispose()

Creating a device channel for mobile devices with code using the
server-side object model
Follow these steps to create a device channel for mobile devices with code using the

server-side object model:

1. Open the site collection containing the site in a using statement.

using (var site = new SPSite("http://sharepoint/site"))

Chapter 2

47

2. Open the site in a using statement.

using (var web = site.OpenWeb())

3. Get the DeviceChannels list.

var list = web.Lists["Device Channels"];

4. Add a new SPListItem item to the Items collection of the list.

var item = list.Items.Add();

5. Assign the values to each of the properties on the SPListItem item.

item["Name"] = "Code";

item["Alias"] = "Code ";

item["Description"] = "Code Channel";

item["Device Inclusion Rules"] =
 "Android\niPad\niPod\niPhone\nBlackBerry\nIEMobile\nWebOS";

item["Active"] = true;

When a line break is required within a string in C#, an

escape character can be used. Escape characters in C#

use the backslash character. For example, a new line is

represented by \n.

6. Call the Update method on the list to update the Items collection.

item.Update();

See also
 f The SharePoint 2013 Design Manager device channels article on MSDN at http://

msdn.microsoft.com/en-us/library/jj862343.aspx

 f The How to: Add or Delete List Items topic on MSDN at http://msdn.microsoft.
com/en-us/library/ms467435(v=office.14).aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWeb article on TechNet at http://technet.microsoft.com/en-us/
library/ff607807.aspx

Branding SharePoint with Device Channels and Design Packages

48

Applying a master page to a device channel
Once a device channel has been created, it can be conigured to use as a different site
master page rather than the default site master page. For instance, browsers targeted by a

mobile device channel could display the content using the oslo master page whereas all other

browsers could display the same content using the seattle master page.

The System Master Page is conigured for all device channels and cannot be conigured for
individual device channels.

How to do it...

Follow these steps to apply a master page to a device channel:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Master page from the Look and Feel section.

4. Specify which Site Master Page to use for each device channel.

5. Click on Save.

How it works...

The master page to device channel mappings are stored in the _catalogs/
masterpages/__DeviceChannelMappings.aspx ile as XML within the root site of a
site collection. For each incoming browser web request, this ile is used by SharePoint to
determine which master page to use with the content returned to the browser.

Chapter 2

49

There's more...

A device channel mapping may also be conigured with PowerShell or with code using the

server-side object model. In this recipe, these two methods are similar. However, the .NET

relection methods used are slightly different. When an object is instantiated with relection
in PowerShell, its public properties and methods become available to the command line.

However, when an object is instantiated with relection in the .NET code, each property and
method needs to be searched for before being able to access them.

The methods that provide the functionality to conigure the device
channel mappings are not publicly exposed in the SharePoint

assemblies. As a result, we will use the .NET relection to instantiate
the objects required. It is important to note that non-public classes in

the SharePoint assemblies can change between SharePoint versions

and updates without notice. Using relection tools, such as .NET
Relector (http://www.red-gate.com/products/dotnet-
development/reflector/) and dotPeek (http://www.
jetbrains.com/decompiler/), we can browse the assemblies to

adjust the references accordingly.

Applying a master page to a device channel using PowerShell
Follow these steps to apply a master page to a device channel using PowerShell:

1. Load the Microsoft.SharePoint.dll and Microsoft.SharePoint.
Publishing.dll assemblies into the PowerShell session.

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.Publishing.dll")

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.dll")

Branding SharePoint with Device Channels and Design Packages

50

2. Get the object types for the parameters that will be used when getting the class

constructor for the MasterPageMappingsFile object and later instantiating the

object.

$typeWeb = [Microsoft.SharePoint.SPWeb]

$typeBool = [System.Boolean]

$typeMappingFile =
[System.Type]::GetType("Microsoft.SharePoint.Publishing.Mobile.
MasterPageMappingsFile, Microsoft.SharePoint.Publishing,
Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e942
9c")

3. Create an array of the object types.

$consMappingFileParams = ($typeWeb, $typeBool, $typeWeb)

4. Get the class constructor for the MasterPageMappingsFile object.

$consMappingFile =
$typeMappingFile.GetConstructor($consMappingFileParams)

5. Create an array of the parameters required to instantiate the

MasterPageMappingsFile object.

$mappingFileParams =
[System.Array]::CreateInstance([System.Object], 3)

$mappingFileParams[0] = (Get-SPSite
http://sharepoint/sitecollection).RootWeb

$mappingFileParams[1] = $false

$mappingFileParams[2] = $null

When invoking a constructor to create an instance of a .NET object in

PowerShell, we have to create a System.Object array rather than using

a PowerShell array. Even though the base class for a PowerShell array

is System.Object[], when calling the Invoke method on the class

constructor, it will see it as a PSObject object instead. The same goes for

the SPWeb object we are passing as the first parameter. .NET will see the

object as a PSObject object instead of a SPWeb object if we use Get-
SPWeb. However, if we get the SPWeb object from the SPSite object, it will

not get treated as a PSObject object.

Chapter 2

51

6. Invoke the class constructor to create an instance of the

MasterPageMappingsFile object.

$mappingFile = $consMappingFile.Invoke($mappingFileParams)

7. Set the MasterPageUrl property for the device channel on the

MasterPageMappingsFile object.

$mappingFile["PowerShell"].MasterPageUrl =
"/_catalogs/masterpage/oslo.master"

8. Save the changes using the UpdateSingleChannel method.

$mappingFile.UpdateSingleChannel("PowerShell")

Applying a master page to a device channel with code using the
server-side object model
Follow these steps to apply a master page to a device channel with code using the server-side

object model:

A reference to the Microsoft.SharePoint.Publishing.dll

assembly is required for this recipe.

1. Get the site collection in a using statement.

using (var site = new SPSite("http://sharepoint/sitecollection"))

2. Get the root site of the site collection in a using statement.

using (var web = site.RootWeb)

3. Get the object type that will be used when getting the class constructor for the

MasterPageMappingsFile object and later instantiating the object.

var typeMappingFile =
 Type.GetType("Microsoft.SharePoint.Publishing.Mobile.
MasterPageMappingsFile, Microsoft.SharePoint.Publishing,
Version=15.0.0.0, Culture=neutral, PublicKeyToken=71e9bce111e942
9c");

4. Get the class constructor for the MasterPageMappingsFile object.

var consMappingFile =
 typeMappingFile.GetConstructor(new Type[] { typeof(SPWeb),
 typeof(bool), typeof(SPWeb) });

Branding SharePoint with Device Channels and Design Packages

52

5. Invoke the constructor to create an instance of the MasterPageMappingsFile

object.

var mappingFile = consMappingFile.Invoke(new object[]
 { web, false, null });

6. Get the mappings ield of the MasterPageMappingsFile object, and cast the ield
as an IDictionary.

var mappings = (IDictionary)typeMappingFile.GetField("mappings",
 BindingFlags.Instance | BindingFlags.NonPublic).
GetValue(mappingFile);

7. Set the MasterPageUrl property for the device channel on the mappings ield.
mappings["PowerShell"].GetType().GetProperty("MasterPageUrl",
 BindingFlags.Instance |
 BindingFlags.Public).SetValue(mappings["PowerShell"],
 "/_catalogs/masterpage/seattle.master", null);

8. Set the mappings ield of the MasterPageMappingsFile object.

typeMappingFile.GetField("mappings", BindingFlags.Instance |
 BindingFlags.NonPublic).SetValue(mappingFile, mappings);

9. Get the UpdateSingleChannel method from the type of the

MasterPageMappingsFile object.

var updateMethod = typeMappingFile.GetMethod("UpdateSingleChann
el",
 BindingFlags.Instance | BindingFlags.Public, null, new Type[]
 { typeof(string) }, null);

10. Save the changes by invoking the UpdateSingleChannel method.

updateMethod.Invoke(mappingFile, new object[] { "Code" });

See also
 f The SharePoint 2013 Design Manager device channels article on MSDN at http://

msdn.microsoft.com/en-us/library/jj862343.aspx

 f The Relection in the .NET Framework article on MSDN at http://msdn.
microsoft.com/en-us/library/f7ykdhsy.aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPSite topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607950.aspx

Chapter 2

53

Creating and exporting a design package
Design packages in SharePoint 2013 allow us to package our customized branding from one

SharePoint site and apply it to another. Design packages can include:

 f Device channels

 f Design iles stored in _catalogs/masterpage/

 f Master pages

 f Display templates

 f Page layouts

When a design package is created, it will only include the preceding elements that were

customized or added. It will not include the items that come by default with SharePoint. In this

recipe, we will cover how to create a design package from a site that is already customized.

How to do it...

Follow these steps to create and export a design package:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Design Manager from the Look and Feel section.

Branding SharePoint with Device Channels and Design Packages

54

4. There are eight steps present on the left-hand side of the page to manage every

aspect of the SharePoint site design customizations that will be included in the

design package. Perform each step to verify that the elements are being included in

the site design package.

5. Select the inal step 8. Create Design Package as shown in the previous screenshot.

6. Provide a Design Name.

7. Select Create. Creating the design package may take some time depending on the

amount of customizations being included and the server resources.

8. Once complete, click on the link to download the design package.

How it works...

When creating a design package, each site design customization is reviewed in the wizard

steps. These design customizations include master pages, page layouts, device channels,

and design iles (cascading style sheets, images, JavaScript, and so on). The design
customizations are then packaged in a SharePoint solution ile (WSP). These SharePoint
solutions are sandboxed solutions that allow the site collection administrators to upload and

deploy them rather than requiring a farm administrator.

There's more...

A design package may also be exported with PowerShell or with code using the server-side

object model.

Creating and exporting a design package using PowerShell
Follow these steps to create and export a design package using PowerShell:

1. Load the Microsoft.SharePoint.dll and Microsoft.SharePoint.
Publishing.dll assemblies into the PowerShell session.

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server

Chapter 2

55

Extensions\15\ISAPI\Microsoft.SharePoint.Publishing.dll")

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.dll")

2. Get the site collection using the Get-SPSite Cmdlet.

$site = Get-SPSite http://sharepoint/sitecollection

3. Create the design package using the Export method of Microsoft.SharePoint.
Publishing.DesignPackage.

$package =
[Microsoft.SharePoint.Publishing.DesignPackage]::Export($site,
"My PowerShell Design", $false)

4. Get the ilename using the speciied format and design the package details.

$fileName = "{0}-{1}.{2}.wsp" –f ($package.PackageName,
$package.MajorVersion, $package.MinorVersion)

5. Get the SPFile object representing the design package WSP ile from the RootWeb

property of the SPSite object.

fileBinary = $site.RootWeb.GetFile("/_catalogs/solutions/" +
$fileName).OpenBinary()

6. Use System.IO.FileStream to save the contents of the SPFile object to the

local ilesystem.
$fileStream = New-Object System.IO.FileStream("C:\" +
$fileName, [System.IO.FileMode]::OpenOrCreate,
[System.IO.FileAccess]::Write)

$fileStream.Write($fileBinary, 0, $fileBinary.Length)

$fileStream.Close()

7. Use the Dispose method to discard the SPSite object.

$site.Dispose()

Creating and exporting a design package with code using the
server-side object model
Follow these steps to create and export a design package with code using the server-side

object model:

A reference to the Microsoft.SharePoint.Publishing.dll

assembly is required for this recipe.

www.allitebooks.com

http://www.allitebooks.org

Branding SharePoint with Device Channels and Design Packages

56

1. Get the site collection in a using statement.

using (var site = new SPSite("http://sharepoint/sitecollection"))

2. Get the root site of the site collection in a using statement.

using (var web = site.RootWeb)

3. Create the design package using the Export method of Microsoft.SharePoint.
Publishing.DesignPackage.

var package = DesignPackage.Export(site, "My Code Design", false);

4. Get the ilename using the speciied format and design the package details.
var fileName = string.Format(CultureInfo.InvariantCulture,
 "{0}-{1}.{2}.wsp", package.PackageName, package.MajorVersion,
 package.MinorVersion);

5. Get the SPFile object representing the design package WSP ile from the RootWeb

property of the SPSite object.

var fileBinary = web.GetFile("/_catalogs/solutions" +
 filename).OpenBinary();

6. Use System.IO.FileStream to save the contents of the SPFile object to the

local ilesystem.
var fileStream = new FileStream("C:\\" + fileName,
 FileMode.OpenOrCreate, FileAccess.Write);

fileStream.Write(fileBinary, 0, fileBinary.Length);

fileStream.Close();

See also
 f The SharePoint 2013 Design Manager design packages article on MSDN at http://

msdn.microsoft.com/en-us/library/jj862342.aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPSite topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607950.aspx

Chapter 2

57

Importing and applying a design package
With SharePoint 2013, a user only needs to be a site collection administrator to apply a

packaged design rather than be a farm administrator. This ofloads the burden of applying

site collection level designs from farm administrators and makes it simpler for site collection

administrators to obtain packaged designs from third parties and apply them.

How to do it...

Follow these steps to import and apply a design package:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Import Design Package from the Look and Feel section.

4. Select the design package to import.

5. Select Import.

How it works...

Importing a design package adds the SharePoint solution ile (WSP) to the Solutions Gallery

of the site collection and applies the customizations it contains. These SharePoint solutions

are sandboxed solutions that allow the site collection administrators to upload and deploy

them rather than requiring a farm administrator.

There's more...

A design package may also be imported and applied with PowerShell or with code using the

server-side object model.

Branding SharePoint with Device Channels and Design Packages

58

Importing and applying a design package using PowerShell
Follow these steps to import and apply a design package using PowerShell:

1. Load the Microsoft.SharePoint.dll and Microsoft.SharePoint.
Publishing.dll assemblies into the PowerShell session.

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.Publishing.dll")

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server Extensions\15\ISAPI\Microsoft.
SharePoint.dll")

2. Get the site collection using the Get-SPSite Cmdlet.

$site = Get-SPSite http://sharepoint/sitecollection

3. Specify the path to the design package WSP ile and get the ile name from the path.
$filePath = "C:\My PowerShell Design-1.0.wsp"

$fileName = [System.IO.Path]::GetFileName($filePath)

4. Create a DesignPackageInfo object to represent the design package we are

about to upload. In the constructor, specify the major and minor version of the design

package.

$package = New-Object
Microsoft.SharePoint.Publishing.DesignPackageInfo($fileName,
[Guid]::Empty, 1, 0)

5. Create a temporary folder in the RootWeb site to upload the design package to:

$tempFolderName = "temp_designupload_" +
([Guid]::NewGuid).ToString()

$tempFolder =
$site.RootWeb.RootFolder.SubFolders.Add($tempFolderName)

6. Use the OpenRead method of System.IO.File to read the contents of the design

package WSP ile and add the ile to the Files collection of the temporary folder.

$fileBinary = [System.IO.File]::OpenRead($filePath)

$file = $tempFolder.Files.Add($fileName, $fileBinary, $true)

$fileBinary.Close()

Chapter 2

59

7. Use the Install method of Microsoft.SharePoint.Publishing.
DesignPackage to add the design package to the Solutions Gallery and apply the

customizations in the design package to the site collection.

[Microsoft.SharePoint.Publishing.DesignPackage]::Install($site,
$package, $file.Url)

8. Delete the temporary folder.

$tempFolder.Delete()

9. Use the Dispose method to discard the SPSite object.

$site.Dispose()

Importing and applying a design package with code using the
server-side object model
Follow these steps to import and apply a design package with code using the server-side

object model:

A reference to the Microsoft.SharePoint.
Publishing.dll assembly is required for this recipe.

1. Get the site collection in a using statement.

using (var site = new SPSite("http://sharepoint/sitecollection"))

2. Get the root site of the site collection in a using statement.

using (var web = site.RootWeb)

3. Specify the path to the design package WSP ile and get the ile name from the path.
var filePath = "C:\My Code Design-1.0.wsp";

var fileName = Path.GetFileName(filePath);

4. Create a DesignPackageInfo object to represent the design package we are about

to upload. In the constructor, specify the major and minor versions of the design

package.

var package = new DesignPackageInfo(fileName, Guid.Empty, 1, 0);

5. Create a temporary folder in the RootWeb site to upload the design package to.

var tempFolderName = "temp_designupload_" +
 Guid.NewGuid().ToString();

var tempFolder = web.RootFolder.SubFolders.Add(tempFolderName);

Branding SharePoint with Device Channels and Design Packages

60

6. Use the OpenRead method of System.IO.File to read the contents of the design

package WSP ile and add the ile to the Files collection of the temporary folder.

var fileBinary = File.OpenRead(filePath);

var file = tempFolder.Files.Add(fileName, fileBinary, true);

var fileBinary.Close();

7. Use the Install method of Microsoft.SharePoint.Publishing.
DesignPackage to add the design package to the Solutions Gallery and apply the

customizations in the design package to the site collection.

DesignPackage.Install(site, package, file.Url);

8. Delete the temporary folder.

tempFolder.Delete();

See also
 f The SharePoint 2013 Design Manager design packages article on MSDN at http://

msdn.microsoft.com/en-us/library/jj862342.aspx

 f The How to: Upload a File to a SharePoint Site from a Local Folder article on MSDN at
http://msdn.microsoft.com/en-us/library/ms454491(v=office.14).
aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPSite topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607950.aspx

Importing a design package to all site
collections with PowerShell

Applying a design package to a large number of site collections can be a tedious task. To

expedite the process, we can use PowerShell. In this recipe, we are going to use a PowerShell

script (PS1) to upload and apply a design package to each content site collection in each web

application on the local SharePoint farm.

Chapter 2

61

How to do it...

Follow these steps to import a design package to all site collections with PowerShell:

1. Open your preferred text editor to create the PS1 script ile.

2. Load the Microsoft.SharePoint.dll and Microsoft.SharePoint.
Publishing.dll assemblies into the PowerShell session.

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.Publishing.dll")

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.dll")

3. Specify the path to the design package WSP ile and get the ilename from the path.
$filePath = "C:\My PowerShell Design-1.0.wsp"

$fileName = [System.IO.Path]::GetFileName($filePath)

4. Create a DesignPackageInfo object to represent the design package we are about

to upload. In the constructor, specify the major and minor versions of the design

package.

$package = New-Object
Microsoft.SharePoint.Publishing.DesignPackageInfo($fileName,
[Guid]::Empty, 1, 0)

5. Create a temporary folder name to upload the design package in each site collection.

$tempFolderName = "temp_designupload_" +
([Guid]::NewGuid).ToString()

6. Use the OpenRead method of System.IO.File to read the contents of the design

package WSP ile and add the ile to the Files collection of the temporary folder.

$fileBinary = [System.IO.File]::OpenRead($filePath)

7. Use a foreach loop to iterate through each content SPWebApplication on the

local SharePoint farm using the Get-SPWebApplication Cmdlet.

foreach($webApp in (Get-SPWebApplication))

8. Use a foreach loop to iterate through each SPSite Cmdlet in the Sites property of

the SPWebApplication object.

foreach($site in $webApp.Sites)

Branding SharePoint with Device Channels and Design Packages

62

9. Verify the CompatibilityLevel property of the SPSite object to ensure it is in

SharePoint 2013 (Version 15) mode and not in SharePoint 2010 (Version 14) mode.

if ($site.CompatibilityLevel –eq 15)

10. Using the following command, create a temporary folder in the RootWeb site to

upload the design package:

$tempFolder =
$site.RootWeb.RootFolder.SubFolders.Add($tempFolderName)

11. Add the ile to the Files collection of the temporary folder.

$file = $tempFolder.Files.Add($fileName, $fileBinary, $true)

12. Use the Install method of Microsoft.SharePoint.Publishing.
DesignPackage to add the design package to the Solutions Gallery and apply the

customizations in the design package to the site collection.

[Microsoft.SharePoint.Publishing.DesignPackage]::Install($site,
$package, $file.Url)

13. Delete the temporary folder.

$tempFolder.Delete()

14. After the foreach loops are completed, close the design package WSP ile.
$fileBinary.Close()

15. Use the Dispose method to discard the SPSite object.

$site.Dispose()

16. Save the ile as a PS1 ile, for example, importdesignpackage.ps1.

17. Execute the script in the PowerShell session.

./importdesignpackage.ps1

How it works...

PowerShell provides a scripting environment that can simplify repetitive administrative tasks.

Using PowerShell, we are able to use a combination of the Cmdlets provided and the .NET

code to iterate through each site collection in each web application to import and apply our

design package.

In this recipe, we used the Get-SPWebApplication Cmdlet to retrieve all of the content

web applications on the local SharePoint farm. We then iterated through each site collection

in the Sites property of each web application. For each site collection, we uploaded the

design package to a temporary folder. Lastly, we installed the design package to each site

collection from the temporary folder.

Chapter 2

63

There's more...

This recipe may also be accomplished with code using the server-side object model.

A reference to the Microsoft.SharePoint.Publishing.dll

assembly is required for this recipe.

Follow these steps to import and apply a design package to all site collections using the

server-side object model:

1. Specify the path to the design package WSP ile and get the ilename from the path.
var filePath = "C:\My Code Design-1.0.wsp";

var fileName = Path.GetFileName(filePath);

2. Create a DesignPackageInfo object to represent the design package we are about

to upload. In the constructor, specify the major and minor versions of the design

package.

var package = new DesignPackageInfo(fileName, Guid.Empty, 1, 0);

3. Create a temporary folder name to upload the design package in each site collection.

var tempFolderName = "temp_designupload_" +
 Guid.NewGuid().ToString();

4. Use the OpenRead method of System.IO.File to read the contents of the design

package WSP ile and add the ile to the Files collection of the temporary folder.

var fileBinary = File.OpenRead(filePath);

5. Use a foreach loop to iterate through each content SPWebApplication on the

local SharePoint farm.

foreach(var webApp in SPWebService.ContentService.WebApplications)

6. Use a foreach loop to iterate through each SPSite in the Sites property of the

SPWebApplication object.

foreach(SPSite site in webApp.Sites)

7. Verify the CompatibilityLevel property of the SPSite object to ensure it is in

SharePoint 2013 (Version 15) mode and not in SharePoint 2010 (Version 14) mode.

if (site.CompatibilityLevel == 15)

8. Create a temporary folder in the RootWeb site to upload the design package to.

var tempFolder =
 site.RootWeb.RootFolder.SubFolders.Add(tempFolderName);

Branding SharePoint with Device Channels and Design Packages

64

9. Add the ile to the Files collection of the temporary folder.

var file = tempFolder.Files.Add(fileName, fileBinary, true);

10. Use the Install method of DesignPackage to add the design package to the

Solutions Gallery and apply the customizations in the design package to the site

collection.

DesignPackage.Install(site, package, file.Url);

11. Delete the temporary folder.

tempFolder.Delete();

12. Discard the SPSite object using the Dispose method.

site.Dispose();

13. After the foreach loops are completed, close the design package WSP ile.

fileBinary.Close();

See also
 f The SharePoint 2013 Design Manager design packages article on MSDN at http://

msdn.microsoft.com/en-us/library/jj862342.aspx

 f The How to: Upload a File to a SharePoint Site from a Local Folder article on MSDN at
http://msdn.microsoft.com/en-us/library/ms454491(v=office.14).
aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPWebApplication topic on TechNet at http://technet.microsoft.
com/en-us/library/ff607562.aspx

Listing the device channel master pages
Identifying the master pages used by each device channel for each site in a SharePoint farm can

be cumbersome. Using PowerShell, the administrators are able to quickly iterate through each

site to accomplish this. In this recipe, we are going to use a PowerShell script (PS1) to output the

device channels and master pages conigured for each site in a site collection.

Chapter 2

65

How to do it...

Follow these steps to list the device channel master page conigurations for each site in a site
collection with PowerShell:

1. Open your preferred text editor to create the PS1 script ile.

2. Load the Microsoft.SharePoint.dll and Microsoft.SharePoint.
Publishing.dll assemblies into the PowerShell session.

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.Publishing.dll")

[Reflection.Assembly]::LoadFrom("C:\Program Files\Common
Files\microsoft shared\Web Server
Extensions\15\ISAPI\Microsoft.SharePoint.dll")

3. Get the site collection using the Get-SPSite Cmdlet.

$site = Get-SPSite http://sharepoint/sitecollection

4. Get the object types for the parameters that will be used when getting the class

constructor for the MasterPageMappingsFile object and later instantiating the

object.

$typeWeb = [Microsoft.SharePoint.SPWeb]

$typeBool = [System.Boolean]

$typeMappingFile =
[System.Type]::GetType("Microsoft.SharePoint.Publishing.Mobile.
MasterPageMappingsFile,
Microsoft.SharePoint.Publishing, Version=15.0.0.0,
Culture=neutral,
PublicKeyToken=71e9bce111e9429c")

5. Create an array of the object types.

$consMappingFileParams = ($typeWeb, $typeBool, $typeWeb)

6. Get the class constructor for the MasterPageMappingsFile object.

$consMappingFile =
$typeMappingFile.GetConstructor($consMappingFileParams)

7. Create an array of the default parameters required to instantiate the

MasterPageMappingsFile object.

$mappingFileParams =
[System.Array]::CreateInstance([System.Object], 3)

$mappingFileParams[1] = $false

$mappingFileParams[2] = $null

Branding SharePoint with Device Channels and Design Packages

66

8. Use a foreach loop to iterate through each SPWeb in the AllWebs property of the

SPSite object.

foreach ($web in $site.AllWebs)

9. Add the SPWeb object to the parameters array and invoke the constructor to create

an instance of the MasterPageMappingsFile object.

$mappingFileParams[0] = [Microsoft.SharePoint.SPWeb] $web

$mappingFile = $consMappingFile.Invoke($mappingFileParams)

10. Output the master page settings for the default channel.

Write-Host ""

Write-Host "Site: " $web.Url

Write-Host "Device Channel: Default"

Write-Host "Master Page: " $web.CustomMasterUrl

11. Use a foreach loop for each device channel key in the Keys collection of the

mapping ile.
foreach ($key in $mappingFile.Keys)

12. Output the master page settings for the device channel.

Write-Host ""

Write-Host "Site: " $web.Url

Write-Host "Device Channel: " $key

Write-Host "Master Page: " $mappingFile[$key].MasterPageUrl

13. Use the Dispose method to discard the SPWeb object.

$web.Dispose()

14. Use the Dispose method to discard the SPSite object.

$site.Dispose()

15. Save the ile as a PS1 ile, for example, getdevicechannels.ps1.

16. Execute the script in the PowerShell session.

./getdevicechannels.ps1

Chapter 2

67

How it works...

Using .NET relection we are able to interact with the private methods and classes in the
SharePoint assemblies that provide the mapping information of the device channel. In this

recipe, we used .NET relection to instantiate the MasterPageMappingsFile object for

each site in the AllWebs property of the site collection we obtained with the Get-SPSite

Cmdlet. From the MasterPageMappingsFile object, we were able to output the master

page conigured for each device channel. In addition, we output the default master page
conigured for each site.

There's more...

This recipe may also be accomplished with code using the server-side object model.

A reference to the Microsoft.SharePoint.Publishing.dll

assembly is required for this recipe.

Follow these steps to list the device channel master page conigurations for each site in a site
collection using the server-side object model:

1. Get the site collection with a using statement.

using (var site = new SPSite("http://sharepoint/sitecollection"))

Branding SharePoint with Device Channels and Design Packages

68

2. Get the object type that will be used when getting the class constructor for the

MasterPageMappingsFile object and later instantiating the object.

var typeMappingFile =
 Type.GetType("Microsoft.SharePoint.Publishing.Mobile.
MasterPageMappingsFile,
 Microsoft.SharePoint.Publishing, Version=15.0.0.0,
 Culture=neutral, PublicKeyToken=71e9bce111e9429c");

3. Get the class constructor for the MasterPageMappingsFile object.

var consMappingFile = typeMappingFile.GetConstructor(new Type[]
 {typeof(SPWeb), typeof(bool), typeof(SPWeb)});

4. Use a foreach loop to iterate through each site in the AllWebs property of the site

collection.

foreach (var web in site.AllWebs)

5. Ensure that the site exists.

if (web.Exists)

6. Invoke the constructor to create an instance of the MasterPageMappingsFile

object.

var mappingFile = consMappingFile.Invoke(new object[]
 { web, false, null });

7. Output the master page settings for the default channel.

Console.WriteLine("");

Console.WriteLine("Site: " + web.Url);

Console.WriteLine("Device Channel: Default");

Console.WriteLine("Master Page: " + web.CustomMasterUrl);

8. Get the mappings ield from the mapping ile and cast the object as an
IDictionary.

var mappings =
 (IDictionary)typeMappingFile.GetField("mappings",
 BindingFlags.Instance |
 BindingFlags.NonPublic).GetValue(mappingFile);

9. Use a foreach loop for each device channel key in the Keys collection of the

mappings dictionary.

foreach (var key in mappings.Keys)

10. Get the master page URL from the mappings dictionary.

var mappingObject = mappings[key];

Chapter 2

69

var masterUrl =
 (string)mappingObject.GetType().GetProperty("MasterPageUrl",
 BindingFlags.Instance |
 BindingFlags.Public).GetValue(mappingObject, null);

11. Output the master page settings for the device channel.

Console.WriteLine("");

Console.WriteLine("Site: " + web.Url);

Console.WriteLine("Device Channel: " + key);

Console.WriteLine("Master Page: " + masterUrl);

12. Use the Dispose method to discard the SPWeb object.

web.Dispose();

See also
 f The SharePoint 2013 Design Manager device channels article on MSDN at http://

msdn.microsoft.com/en-us/library/jj862343.aspx

 f The Relection in the .NET Framework article on MSDN at http://msdn.
microsoft.com/en-us/library/f7ykdhsy.aspx

 f The SPWeb class topic on MSDN at http://msdn.microsoft.com/en-us/
library/Microsoft.SharePoint.SPWeb.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The Get-SPSite topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607950.aspx

3
Branding SharePoint
with Custom Master

Pages and Page Layouts

In this chapter, we will use SharePoint Designer 2013 to create and customize master

pages and page layouts. We will cover the following recipes:

 f Editing a master page in SharePoint Designer

 f Changing the site master pages in SharePoint Designer

 f Hiding unwanted master page controls

 f Restoring the Navigate Up button using a master page

 f Adding JavaScript and cascading stylesheet references to a master page

 f Creating a ixed width master page

 f Creating an expanding width master page with content padding

 f Creating a minimalistic master page

 f Creating a responsive mobile master page

 f Customizing the Windows 8 Start menu tile for pinning sites using a master page

 f Customizing the shortcut icon (favicon) using a master page

 f Creating a page layout with three columns of web part zones

 f Creating a page layout with web parts added to the page

Branding SharePoint with Custom Master Pages and Page Layouts

72

 f Creating a page layout with a picture-library-based image carousel using

JavaScript

 f Displaying speciic content only to authenticated users

 f Displaying speciic content only to anonymous users

 f Displaying speciic content only to site administrators

 f Creating a master page with editing controls only available to editors

Introduction

With the 2.0 release of ASP.NET (.NET Framework 2.0), Microsoft added the concept

of master pages. Master pages are used by ASP.NET web applications to provide a

template, which the content pages use when rendering content. These master pages

can also be nested, allowing for a main template with subtemplates used in different

contexts. In addition, there is no limit to the number of master pages an ASP.NET web

application can use. Being built on ASP.NET, SharePoint utilizes master pages for nearly

every page rendered.

In addition to master pages, SharePoint uses page layouts to provide templates for

creating content pages. Page layouts provide the content layout for a SharePoint page

within the conines of the master page. The following diagram shows the SharePoint
content page structure:

Master Page

SharePoint Content Page Structure

Page Layout

Content

Chapter 3

73

Editing a master page in SharePoint
Designer

Since SharePoint 2007, Microsoft has released a companion application called

SharePoint Designer with each version of SharePoint. Originally the successor to

Microsoft FrontPage, SharePoint Designer provides users the ability to customize

SharePoint sites based on their permissions. This includes master pages, page layouts,

worklows, lists, libraries, and so on.

The design view for editing master pages that was available in the

previous versions has been removed from the 2013 version of

SharePoint Designer.

SharePoint Designer uses the SharePoint web service APIs and remote procedure calls

(RPC) to interact with the SharePoint server. This allows connecting to SharePoint from

remote computers rather than requiring the software be run on the SharePoint server itself.

This also allows SharePoint Designer to be used with hosted SharePoint implementations,

such as the SharePoint Online service of Microsoft Ofice 365. In addition, any user with
access to a SharePoint site can connect with SharePoint Designer (when not disabled by

a site collection or farm administrator). Users will only be able to see and interact with the

SharePoint site based on the permissions they have.

How to do it...

Follow these steps to edit a master page in SharePoint Designer:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

Branding SharePoint with Custom Master Pages and Page Layouts

74

3. From the Navigation pane, select Master Pages as shown in the following

screenshot:

4. From the list of iles in the Master Pages library, select seattle.master.

5. From the ribbon, select Check Out.

6. Under Customization, select Edit ile as shown in the following screenshot:

Chapter 3

75

7. Once the ile has been edited and saved, select the back icon to return to the
Properties page for seattle.master:

8. Select the back icon again to return to the Master Pages library.

9. Right-click on the seattle.master ile.

10. Select Check In as shown in the following screenshot:

Using the Check In option from the ribbon where we used the Check

Out option will allow you to check in the ile using the Check In option.

However, it does not allow you to Check In and Publish the ile at the
same time. Right-clicking on the ile and selecting the Check In option will

allow you to do both at the same time.

Branding SharePoint with Custom Master Pages and Page Layouts

76

11. Select Publish a major version as shown in the following screenshot:

12. Click on OK.

How it works...

Using the SharePoint web services API and remote procedure calls, SharePoint Designer

allows us to modify iles in a SharePoint site. Using the versioning and publishing features
of SharePoint, we can Check Out and Check In content to ensure only one person is editing

the content at a time. In addition, this allows for that content to have published versions that

noneditors can view. These features allow multiple content editors to work with content and

only have published versions visible to everyone else.

SharePoint Designer 2013 allows us to edit the code of the master pages, but does not

provide a WYSIWYG (design view) editor.

See also
 f The SharePoint Designer for Developers article on MSDN at http://msdn.

microsoft.com/en-us/sharepoint/hh850380.aspx

Chapter 3

77

Changing the site master pages in
SharePoint Designer

In addition to creating and editing master pages, SharePoint Designer allows us to conigure
the master pages used by the SharePoint site. Each site has two assigned master pages,

the Site Master Page and the System Master Page. The Site Master Page is used when

displaying content pages, such as publishing pages, whereas the System Master Page is

used when displaying administrative pages, such as the Site settings page.

This is the only method available to set the master page settings if the SharePoint publishing

features are not activated on the SharePoint site or access to PowerShell on the SharePoint

servers is not available.

How to do it...

Follow these steps to change the site master pages in SharePoint Designer:

1. Open SharePoint Designer and select Open Site. Enter the complete URL to the

SharePoint site and select Open.

2. From the Navigation pane, select Master Pages.

3. In the list of iles in the Master Pages library, right-click on the master page you

wish to set.

Branding SharePoint with Custom Master Pages and Page Layouts

78

4. Select Set as Default Master Page to set the System Master Page.

5. Select Set as Custom Master Page to set the Site Master Page.

How it works...

Using the SharePoint web services API and remote procedure calls, SharePoint Designer

allows us to set the master page settings for a SharePoint site. The master pages conigured
will only apply to the default device channel. Any additional device channels would need to be

conigured through the web interface, PowerShell, or code using the server-side object model.

See also
 f The SharePoint Designer for Developers article on MSDN at http://msdn.

microsoft.com/en-us/sharepoint/hh850380.aspx

Hiding unwanted master page controls
By default, SharePoint has a large number of SharePoint-speciic controls and content zones
added to each master page. SharePoint requires most of these controls in order to work

correctly. When removing an undesirable control from the master page, we generally hide the

control rather than removing it completely. This ensures SharePoint has access to the control,

but does not render it to the end user.

Many of the controls included on the SharePoint master pages are required for the page to

render correctly. When removing a control we can test whether it can be removed completely.

If the page generates errors about the missing control, we know we need to hide it instead of

removing it completely.

In this recipe, we will hide the suite bar branding (SharePoint or Ofice 365) and suite bar

links (Newsfeed, SkyDrive, and Sites) using our customized master page.

How to do it...

Follow these steps to hide unwanted master page controls:

Chapter 3

79

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (in

our example, we have renamed it Seattle_HideControls.master).

When modifying master pages included with SharePoint, do not modify the included

master page. Make a copy of the master page and make your changes to the copy

and then check out the new Seattle_HideControls.master master page.

5. Open the Seattle_HideControls.master master page.

6. Locate the </SharePoint:SharePointForm> closing tag for the

SharePointForm element as shown in the following screenshot:

The <SharePoint:SharePointForm> tag results in the <form> tag

when rendered in the browser. It is important to ensure our SharePoint

controls remain inside the <SharePoint:SharePointForm> tag to

prevent errors on the page.

7. Add a <div> container to hide our controls before the </
SharePoint:SharePointForm> element as shown in the following code:

<div style="display: none;">

</div>

The following screenshot shows these elements:

Branding SharePoint with Custom Master Pages and Page Layouts

80

8. Locate the <div id="suiteBarLeft"> element.

9. Cut the contents of the <div id="suiteBarLeft"> element to remove them from

this location and allow us to paste them later. The following screenshot shows this

<div> element:

10. Paste the following contents into the <div> tag that we created earlier to hide the

elements:

<div style="display: none;">

<SharePoint:DelegateControl id="ID_SuiteBarBrandingDelegate" Contr
olId="SuiteBarBrandingDelegate" runat="server"/>

<SharePoint:AjaxDelta runat="server" id="DeltaSuiteLinks"
BlockElement="true" CssClass="ms-core-deltaSuiteLinks">

 <div id="suiteLinksBox">

 <SharePoint:DelegateControl
 id="ID_SuiteLinksDelegate"
 ControlId="SuiteLinksDelegate" runat="server" />

 </div>

</SharePoint:AjaxDelta>

</div>

We can remove the <div> elements we pasted, which surround the SharePoint

controls. All we need to ensure is that the controls are on the page.

Chapter 3

81

11. Save the master page.

12. Check in and publish the master page using the Check In and Publish options.

13. Set the master page as the Site Master Page.

14. Navigate to the site in your preferred web browser to observe the results. You will see
a screen similar to the following screenshot:

How it works...

In order for SharePoint pages to render correctly, most of the server controls included on the

default master pages are required. Using CSS to hide server controls allows for SharePoint

to render the control while the browser hides it for the end user. Rendering the control, even

though hidden, still requires server and browser resources. It will still impact the page

load performance.

See also
 f The CSS Display and Visibility article on W3 Schools at http://www.w3schools.

com/css/css_display_visibility.asp

 f The Overview of the SharePoint 2013 Page Model topic on MSDN at http://msdn.
microsoft.com/en-us/library/jj191506.aspx

Branding SharePoint with Custom Master Pages and Page Layouts

82

Restoring the Navigate Up button using a
master page

In the default SharePoint 2010 interface, there was a button to navigate up the breadcrumb

structure, which looked like a Windows Explorer folder (see the following screenshot for

reference). In SharePoint 2013, this control still exists, but has been hidden. In this recipe, we

will restore it using our customized master page.

How to do it...

Follow these steps to restore the Navigate Up breadcrumb control using a master page:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it as Seattle_RestoreNavigateUp.master).

5. Check out the new Seattle_RestoreNavigateUp.master master page.

6. Open the Seattle_RestoreNavigateUp.master master page.

7. Locate the <div class="ms-breadcrumb-dropdownBox" element. The following

code shows the content inside this element:

<div class="ms-breadcrumb-dropdownBox" style="display:none;">

<SharePoint:AjaxDelta id="DeltaBreadcrumbDropdown" runat="server">

 <SharePoint:PopoutMenu

 Visible="false"

 runat="server"

 ID="GlobalBreadCrumbNavPopout"

 IconUrl="/_layouts/15/images/spcommon.png?rev=23"

 IconAlt="<%$Resources:wss,master_breadcrumbIconAlt%>"

 ThemeKey="v15breadcrumb"

Chapter 3

83

 IconOffsetX="215"

 IconOffsetY="120"

 IconWidth="16"

 IconHeight="16"

 AnchorCss="ms-breadcrumb-anchor"

 AnchorOpenCss="ms-breadcrumb-anchor-open"

 MenuCss="ms-breadcrumb-menu ms-noList">

8. Remove style="display:none;" from the <div> element.

9. Set the Visible attribute to true.

10. Set the ThemeKey attribute to spcommon.

11. Set the IconUrl attribute to /_layouts/15/images/spcommon.png.

<div class="ms-breadcrumb-dropdownBox">

<SharePoint:AjaxDelta id="DeltaBreadcrumbDropdown" runat="server">

 <SharePoint:PopoutMenu

 Visible="true"

 runat="server"

 ID="GlobalBreadCrumbNavPopout"

 IconUrl="/_layouts/15/images/spcommon.png"

 IconAlt="<%$Resources:wss,master_breadcrumbIconAlt%>"

 ThemeKey="spcommon"

 IconOffsetX="215"

 IconOffsetY="120"

 IconWidth="16"

 IconHeight="16"

 AnchorCss="ms-breadcrumb-anchor"

 AnchorOpenCss="ms-breadcrumb-anchor-open"

 MenuCss="ms-breadcrumb-menu ms-noList">

12. Save the master page.

13. Check in and publish the master page using the Check In and Publish options.

14. Set the master page as the Site Master Page.

15. Navigate to the site in your preferred web browser to observe the results.

How it works...

The default SharePoint 2013 master pages already include the server control to create

and render the breadcrumb navigation. By default, however, it is hidden. By modifying the

properties of the control on the master page, we are instructing SharePoint to display

the control.

Branding SharePoint with Custom Master Pages and Page Layouts

84

See also
 f The PopoutMenu class topic on MSDN at http://msdn.microsoft.com/en-us/

library/microsoft.sharepoint.webcontrols.popoutmenu.aspx

Adding JavaScript and cascading stylesheet
references to a master page

Most of our customizations to the master pages require some CSS or JavaScript (JS)

references. CSS and JS iles should be located in one of the following places:

 f In the SharePoint site inside the _catalogs/masterpage folder. This allows for the

iles to be included when exporting a design package.

 f In the _layouts folder on the ilesystems of the SharePoint servers. This is primarily
accomplished with custom SharePoint solutions created with Visual Studio.

 f On an external content source, such as a content delivery network.

If you are using an external content source, ensure that all users accessing

the SharePoint site have access to the external content source. The

external content source may not be available to some users if their network

coniguration does not permit it.

When referencing iles in the SharePoint site or in the _layouts folder, relative URLs should

be used to allow alternate access maps to work. When referencing iles on an external site,
the exact, complete URL should be used.

Alternate access mapping in SharePoint allows access to SharePoint web

applications using multiple URLs. For instance, http://sharepoint/

and http://sharepoint.local/ could be the same SharePoint web

application. A relative URL does not specify the protocol or domain in the

URL. For instance, /_layouts/mystyles.css is a relative URL, while

http://sharepoint/_layouts/mystyles.css is an absolute URL.

How to do it...

Follow these steps to add JavaScript and CSS references to a master page:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

Chapter 3

85

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it Seattle_AddJavaScriptAndCSS.master).

5. Check out the new Seattle_AddJavaScriptAndCSS.master master page using

the Check Out feature.

6. Open the Seattle_AddJavaScriptAndCSS.master master page.

7. Locate the <head> element. The following screenshot shows the <head> element

highlighted in the code:

8. Add the following JavaScript reference:

<SharePoint:ScriptLink ID="customJavaScript" Name="<%
$SPUrl:~Site/_catalogs/masterpage/resources/SampleJavaScript.js
%>" runat="server"></SharePoint:ScriptLink>

In our JavaScript reference, we are using the ~Site variable to get the

URL of the file relative to the SharePoint site. The ~SiteCollection

variable can be used if the URL is relative to the SharePoint site

collection instead.

9. Add the following CSS reference:

<SharePoint:CssRegistration ID="customCssRegistration" Name="<%
$SPUrl:~Site/_catalogs/masterpage/resources/SampleStyleSheet.css
%>" runat="server"></SharePoint:CssRegistration>

10. Save the master page.

11. Check in and publish the master page using the Check In and Publish options.

12. Set the master page as the Site Master Page.

Branding SharePoint with Custom Master Pages and Page Layouts

86

How it works...

For traditional websites, the <link> and <script> tags are used to reference CSS and

JavaScript iles on a web page. While we can still use those in our SharePoint master
pages, SharePoint provides server controls to reference CSS and JavaScript iles. Using the
ScriptLink and CssRegistration server controls will ultimately result in the <link>

and <script> tags being added to the page when rendered. However, these server controls

provide additional management by SharePoint to prevent duplication and allow for scripts to

be loaded on demand rather than on every page load. In addition, these server controls allow

variables, such as the site or site collection URLs, to be used in the path to the resource.

See also
 f The ScriptLink class topic on MSDN at http://msdn.microsoft.com/en-us/

library/microsoft.sharepoint.webcontrols.scriptlink.aspx

 f The CssRegistration class topic on MSDN at http://msdn.microsoft.com/en-
us/library/microsoft.sharepoint.webcontrols.cssregistration.
aspx

Creating a ixed width master page
The default SharePoint 2013 master page, seattle.master, expands to ill the browser
window. In this recipe, we will modify the seattle.master master page to have a ixed
width using CSS.

Chapter 3

87

How to do it...

Follow these steps to create a ixed width master page:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it Seattle_FixedWidth.master).

5. Check out the new Seattle_FixedWidth.master master page.

6. Open the Seattle_FixedWidth.master master page.

7. Locate the <head> element.

8. Add the CSS reference to the FixedWidth.css ile we will create.
<SharePoint:CssRegistration ID="customCssRegistration" Name="<%
$SPUrl:~Site/_catalogs/masterpage/resources/FixedWidth.css %>"
runat="server"></SharePoint:CssRegistration>

9. Save the master page.

10. Check in and publish the master page using the Check In and Publish options.

11. Set the master page as Site Master Page.

12. From the Navigation pane, select All Files.

13. In the All Files content pane, navigate to _catalogs | masterpage | resources.

If the resources folder in _catalogs/masterpage has not

been created yet, select Folder from the New section on the ribbon.

14. From the New section on the ribbon, navigate to File | CSS as shown in the

following screenshot:

Branding SharePoint with Custom Master Pages and Page Layouts

88

15. Name the new CSS ile as FixedWidth.css.

16. Check out the new FixedWidth.css ile using the Check Out option.

17. Open the FixedWidth.css ile.

18. Specify a background color for the #s4-workspace element using the following

lines of code:

#s4-workspace {

 background: #999999;

}

19. Give the #s4-titlerow and #contentRow elements a white background, a

ixed width of 1024px, and set the left-hand side and right-hand side margins to

automatically center align the elements.

#s4-titlerow, #contentRow {

 background: #FFFFFF;

 width: 1024px;

 margin-left: auto;

 margin-right: auto;

}

20. Add a top margin to the #s4-titlerow element to separate it from the header

controls on the page:

#s4-titlerow {

 margin-top: 50px;

}

21. Save the CSS ile.

22. Check in and publish the CSS ile using the Check In and Publish options.

23. Navigate to the site in your preferred web browser to observe the results. The result

will be similar to the following screenshot:

Chapter 3

89

How it works...

The page content for SharePoint pages is rendered within the s4-workspace DIV element.

In our recipe, we used CSS to provide a grey background color for s4-workspace. We then

used CSS to center align the content of the s4-workspace element in a white box with a

ixed width. An HTML element that has its left and right margins set to auto will be centered

in the element that contains it.

The #s4-workspace DIV element is used by SharePoint to contain the majority of the page

content. The #s4-titlerow DIV element is used to contain the site logo, navigation, and

search box in default conigurations. The #contentRow DIV element is used to contain the

quick launch navigation and page content.

See also
 f The CssRegistration class topic on MSDN at http://msdn.microsoft.com/en-

us/library/microsoft.sharepoint.webcontrols.cssregistration.
aspx

Creating an expanding width master page
with content padding

In this recipe, we will modify the seattle.master master page to have padding added

around the expanding width content for a contained look that still expands with the browser

window using CSS.

Branding SharePoint with Custom Master Pages and Page Layouts

90

How to do it...

Follow these steps to create an expanding width master page with content padding:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master

(for our example, we have renamed it Seattle_ExpandingWidthWithPadding.
master).

5. Check out the new Seattle_ExpandingWidthWithPadding.master master

page using the Check Out feature.

6. Open the Seattle_ExpandingWidthWithPadding.master master page.

7. Locate the <head> element.

8. Add the following CSS reference to the ExpandingWidthWithPadding.css ile we
created:

<SharePoint:CssRegistration ID="customCssRegistration"
Name="<% $SPUrl:~Site/_catalogs/masterpage/resources/
ExpandingWidthWithPadding.css %>" runat="server"></
SharePoint:CssRegistration>

9. Save the master page.

10. Check in and publish the master page using the Check In and Publish options.

11. Set the master page as Site Master Page.

12. From the Navigation pane, select All Files.

13. In the All Files content pane, navigate to _catalogs | masterpage | resources.

14. From the New section on the ribbon, navigate to File | CSS.

15. Name the new CSS ile ExpandingWidthWithPadding.css.

16. Check out the new ExpandingWidthWithPadding.css ile.

17. Open the ExpandingWidthWithPadding.css ile.

18. Specify a background color for the #s4-workspace element.

#s4-workspace {

 background: #999999;

}

Chapter 3

91

19. Give the #s4-titlerow and #contentRow elements a white background and set

the left-hand side and right-hand side margins to 100px.

#s4-titlerow, #contentRow {

 background: #FFFFFF;

 margin-left: 100px;

 margin-right: 100px;

}

20. Add a top margin to the #s4-titlerow element to separate it from the header

controls on the page as shown in the following code:

#s4-titlerow {

 margin-top: 50px;

}

21. Save the CSS ile.

22. Check in and publish the CSS ile using the Check In and Publish options.

23. Navigate to the site in your preferred web browser. Resize the browser window to

observe the results. Compare the behavior to the results of the previous recipe,

Creating a ixed width master page.

Branding SharePoint with Custom Master Pages and Page Layouts

92

How it works...

The page content for SharePoint pages is rendered within the s4-workspace DIV element.

In our recipe, we used CSS to provide a grey background color for the s4-workspace

element. We then used CSS to center the content of the s4-workspace element in a white

box that expands with the size of the browser window. An HTML element that has its left and

right margins set to the same size will be centered in the element that contains it and will

expand in size as the element containing it expands in size.

See also
 f The CssRegistration class topic on MSDN at http://msdn.microsoft.com/en-

us/library/microsoft.sharepoint.webcontrols.cssregistration.
aspx

Creating a minimalistic master page
SharePoint 2013 comes with an out of the box fairly minimalistic design. In this recipe, we

will modify the seattle.master master page to hide many of the SharePoint controls to

create an even more minimalistic look. A minimalistic-design approach usually provides more

emphasis on the page content and less emphasis on gratuitous design elements.

How to do it...

Follow these steps to create a minimalistic master page:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (in

our example, we have renamed it Seattle_Minimalistic.master).

5. Check out the new Seattle_Minimalistic.master master page.

6. Open the Seattle_Minimalistic.master master page.

7. Locate the following closing tag for the SharePointForm element:

</SharePoint:SharePointForm>

8. Add the following <div> container to hide our controls before the

</SharePoint:SharePointForm> element:

<div style="display: none;">

</div>

Chapter 3

93

9. Locate the <div id="suiteBarLeft"> element.

10. Cut the contents of the <div id="suiteBarLeft"> element (not the opening and

closing DIV tags of the element) and paste them into our hidden <div> tag.

11. Locate the <SharePoint:SPRibbonPeripheralContent> element with the ID

RibbonTabRowRight.

12. Cut the <SharePoint:SPRibbonPeripheralContent> element with its contents

and paste it into our hidden <div> tag.

13. Locate the <div id="s4-titlerow"> element.

14. Cut the <div id="s4-titlerow"> element with its contents and paste it into our

hidden <div> tag.

15. Locate the <div id="sideNavBox"> element.

16. Cut the <div id="sideNavBox"> element with its contents and paste it into our

hidden <div> tag.

17. Locate the <div id="contentBox"> element.

18. Add the following style attribute to the <div id="contentBox"> element to

override its left margin to 20px:

<div id="contentBox" style="margin-left: 20px;"

19. Save the master page.

20. Check in and publish the master page using the Check In and Publish options.

21. Set the master page as the Site Master Page.

22. Navigate to the site in your preferred web browser to observe the results. The result

will be similar to the following screenshot:

Branding SharePoint with Custom Master Pages and Page Layouts

94

How it works...

In order for SharePoint pages to render correctly, most of the server controls included in the

default master pages are required. Using CSS to hide server controls allows SharePoint to

render the control while the browser hides it for the end user. In our recipe, we have hidden

controls to provide the default SharePoint master page with a more minimalistic look.

See also
 f The CSS Display and Visibility article on W3 Schools at http://www.w3schools.

com/css/css_display_visibility.asp

Creating a responsive mobile master page
In this recipe, we will modify the seattle.master master page to hide the header controls

and loat all of the page elements to make them appear vertically stacked. This will allow
users to view the site on mobile devices and only require the user to scroll vertically rather

than both vertically and horizontally.

This recipe will only cover the basic aspects of making a responsive design master page

friendlier to mobile devices. Additional styling and design would be required to provide a more

complete mobile user experience.

Chapter 3

95

Responsive designs are usually lexible, allowing pages to render well in various web browsers
and are not limited to mobile browsers. Creating responsive designs is a good practice for all

web browsers. In this recipe, however, we will focus on a responsive design geared at

mobile browsers.

Getting ready
For this recipe, we should have a device channel created to target our mobile browsers.

How to do it...

Follow these steps to create a responsive mobile master page:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it Seattle_Responsive.master).

5. Check out the new Seattle_Responsive.master master page.

6. Open the Seattle_Responsive.master master page.

7. Locate the <head> element.

8. Add the following CSS reference to the Responsive.css ile that we created:
<SharePoint:CssRegistration ID="customCssRegistration" Name="<%
$SPUrl:~Site/_catalogs/masterpage/resources/Responsive.css %>"
runat="server"></SharePoint:CssRegistration>

9. Save the master page.

10. Check in and publish the master page using the Check In and Publish options.

11. Set the master page as the Site Master Page or assign the master page to the

device channel that targets your mobile device.

12. From the Navigation pane, select All Files.

13. In the All Files content pane, navigate to _catalogs | masterpage | resources.

14. From the New section on the ribbon, navigate to File | CSS.

15. Name the new CSS ile Responsive.css.

16. Check out the new Responsive.css ile.

17. Open the Responsive.css ile.

Branding SharePoint with Custom Master Pages and Page Layouts

96

18. Hide the header controls using the following code:

#suiteBar, #s4-ribbonrow {

 display: none;

}

19. Set the title area to have an automatic width using the following code:

#titleAreaRow, #s4-titlerow {

 height: auto;

 width: auto;

}

20. Set the content of the title and content areas to loat using the following code:
#titleAreaRow > div, #contentRow > div, #layoutsTable td {

 float: left;

 display: inline-block;

}

21. Set the page content to have a minimum width and set its left-hand side margin to

override the default margin using the following code:

#contentBox {

 min-width: 100px;

 margin-left: 20px;

}

22. Set the workspace container to have a forced automatic width using the following

code:

#s4-workspace {

 width: auto !important;

}

23. Save the CSS ile.

24. Check in and publish the CSS ile using the Check In and Publish options.

Chapter 3

97

25. Navigate to the site in your preferred web browser or your mobile device to observe

the results. The results will be similar to the following screenshot:

How it works...

In this recipe, we have used CSS to hide controls and to make the remaining controls loat
and use automatic widths. By making these controls loat and use automatic widths, we are
making them appear stacked vertically to provide smaller screens with better visibility of the

content. The content on the screen will be adjusted based on the width of the screen and

so on.

Branding SharePoint with Custom Master Pages and Page Layouts

98

See also
 f The CssRegistration class topic on MSDN at http://msdn.microsoft.com/en-

us/library/microsoft.sharepoint.webcontrols.cssregistration.
aspx

Customizing the Windows 8 Start menu tile
for pinning sites using a master page

The Windows 8 Start menu allows users to pin sites from Internet Explorer as tiles. SharePoint

2013 provides a simple control to manage how the tile looks and what icon to use. In this

recipe, we will customize the tile settings with our customized master page.

How to do it...

Follow these steps to customize the Windows 8 Start menu tile for pinning sites using a

master page:

1. Open SharePoint Designer.

2. Select Open Site. Enter the full URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it Seattle_Windows8Tile.master).

5. Check out the new Seattle_Windows8Tile.master master page.

Chapter 3

99

6. Open the Seattle_Windows8Tile.master master page.

7. Locate the <SharePoint:SPPinnedSiteTile> element.

8. Provide a custom image URL and hex color using the following code:

<SharePoint:SPPinnedSiteTile runat="server" TileUrl="/_catalogs/
masterpage/resources/SimpleSmiley.png" TileColor="#d17601" />

Images used for the pin style should be a 144 px by 144 px

transparent PNG file.

9. Save the master page.

10. Check in and publish the master page using the Check In and Publish option.

11. Set the master page as the Site Master Page.

12. Navigate to the site in Internet Explorer on Windows 8.

13. Pin the site to the Windows 8 Start menu to observe the results. The following

screenshot shows the option that allows us to pin the page to the Start menu:

Branding SharePoint with Custom Master Pages and Page Layouts

100

How it works...

The SPPinnedSiteTile server control outputs <meta> tags to the <head> element of the

SharePoint page when rendered. When Internet Explorer on Windows 8 pins a site, it will look

for these <meta> tags when creating the pin. In this recipe, we provided a custom image and

color to be used when adding these tags. This replaces the default SharePoint logo and the

blue color.

See also
 f The SPPinnedSiteTile class topic on MSDN at http://msdn.microsoft.com/en-

us/library/microsoft.sharepoint.webcontrols.sppinnedsitetile.
aspx

Customizing the shortcut icon (favicon)
using a master page

The shortcut icon, or favicon, is a 16 px by 16 px image that most browsers will display as part

of the title bar when viewing a web page as well as when bookmarking the web part. In this

recipe, we will change the shortcut icon with our customized master page.

How to do it...

Follow these steps to customize the shortcut icon using the master page:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it Seattle_ShortcutIcon.master).

5. Check out the new Seattle_ShortcutIcon.master master page.

6. Open the Seattle_ShortcutIcon.master master page.

7. Locate the <SharePoint:SPShortcutIcon> element.

Chapter 3

101

8. Provide a custom image URL using the following code:

<SharePoint:SPShortcutIcon runat="server" IconUrl="/_catalogs/
masterpage/resources/favicon.png" />v

Images used for the shortcut icon should be a 16 px by 16 px

transparent .png or .ico file.

9. Save the master page.

10. Check in and publish the master page using the Check In and Publish options.

11. Set the master page as the Site Master Page.

12. Navigate to the site in your preferred web browser to observe the results. The result

will be similar to the following screenshot:

How it works...

The SPShortCutIcon server control outputs a <link> tag for the shortcut icon (or favicon)

to the <head> element of the SharePoint page when rendered. When most web browsers

render the page, they will use this image in the title bar or bookmark for the page. In this

recipe, we provided a custom image that replaces the default SharePoint logo when

adding the tag.

There's more...

Apple devices, such as iPhones and iPads, look for speciic images when determining what to
display as the icon for a site when pinning it to the home screen. We can add <link> tags to

instruct these devices to use images we have provided. For instance, let's look at the following

link tags:

<!-- Standard iPhone -->

<link rel="apple-touch-icon" sizes="57x57" href="apple-touch-icon-57.
png" />

<!-- Retina iPhone -->

<link rel="apple-touch-icon" sizes="114x114" href="t apple-touch-
icon-114.png" />

<!-- Standard iPad -->

<link rel="apple-touch-icon" sizes="72x72" href=" apple-touch-icon-72.
png" />

<!-- Retina iPad -->

<link rel="apple-touch-icon" sizes="144x144" href=" apple-touch-
icon-144.png" />

Branding SharePoint with Custom Master Pages and Page Layouts

102

See also
 f The Coniguring Web Applications article in the Safari Web Content Guide

at https://developer.apple.com/library/ios/documentation/
AppleApplications/Reference/SafariWebContent/
ConfiguringWebApplications/ConfiguringWebApplications.html

 f The SPShortCutIcon class topic on MSDN at http://msdn.microsoft.com/en-
us/library/microsoft.sharepoint.webcontrols.spshortcuticon.aspx

Creating a page layout with three columns
of web part zones

A page layout is a template used when creating new content pages in SharePoint. There are

a number of page layouts included with SharePoint out of the box. When one of those doesn't

sufice, we can easily create our own. In this recipe, we will modify the BlankWebPartPage.
aspx page layout to have three columns, each with a web part zone. A web part zone is an

area of the page where users can add web parts. A web part is an ASP.NET user control under

the covers.

How to do it...

Follow these steps to create a page layout with three columns of web part zones:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Page Layouts.

4. In the list of iles in the Page Layouts library, make a copy of BlankWebPartPage.
aspx (for our example, we have renamed it PageLayout_ThreeColumn.aspx).

The Page Layouts view is a view of the _catalogs/masterpage

library that is limited to show Page Layouts only.

5. Check out the new PageLayout_ThreeColumn.aspx page layout.

6. Open the PageLayout_ThreeColumn.aspx page layout.

7. Locate the irst <div class="ms-table ms-fullWidth"> element.

8. Remove the following <div> elements it contains:

<div class="ms-table ms-fullWidth">

<SharePointWebControls:ScriptBlock runat="server">

Chapter 3

103

if(typeof(MSOLayout_MakeInvisibleIfEmpty) == "function")

{MSOLayout_MakeInvisibleIfEmpty();}</SharePointWebControls:ScriptB
lock>

</div>

9. Using the SharePoint table layout styles, add three <div> column containers as

shown in the following code:

<div class="ms-table ms-fullWidth">

<div class="ms-table ms-fullWidth">

<div class="cell-margin tableCol-33">

</div>

<div class="cell-margin tableCol-33">

</div>

<div class="cell-margin tableCol-33">

</div>

</div>

<SharePointWebControls:ScriptBlock runat="server">

if(typeof(MSOLayout_MakeInvisibleIfEmpty) == "function")

{MSOLayout_MakeInvisibleIfEmpty();}</SharePointWebControls:ScriptB
lock>

</div>

10. In each <div> column container, add a WebPartZone element as shown in the

following code:

<div class="cell-margin tableCol-33">

<WebPartPages:WebPartZone runat="server" Title="<%$Resources:cms
,WebPartZoneTitle_Left%>" ID="CenterLeftColumn"><ZoneTemplate></
ZoneTemplate></WebPartPages:WebPartZone>

</div>

<div class="cell-margin tableCol-33">

<WebPartPages:WebPartZone runat="server" Title="<%$Resources:cm
s,WebPartZoneTitle_Center%>" ID="CenterColumn"><ZoneTemplate></
ZoneTemplate></WebPartPages:WebPartZone>

</div>

<div class="cell-margin tableCol-33">

<WebPartPages:WebPartZone runat="server" Title="<%$Resources:cms,
WebPartZoneTitle_Right%>" ID="CenterRightColumn"><ZoneTemplate></
ZoneTemplate></WebPartPages:WebPartZone>

</div>

11. Save the page layout.

12. Navigate back to the Properties page for the page layout.

Branding SharePoint with Custom Master Pages and Page Layouts

104

13. Select Manage all ile properties in the browser from the Customization section as

shown in the following screenshot:

14. From the ribbon, select Edit Item as shown in the following screenshot:

15. Ensure the Content Type option is set to Page Layout as shown in the

following screenshot:

16. Provide a new title in the Title ield for the page layout (for example, Three Column).

Chapter 3

105

17. In the Associated Content Type ield, set Content Type Group to Page Layout

Content Types and Content Type Name to Article Page, as shown in the

following screenshot:

18. Save the item.

19. Check in and publish the page layout using the Check In and Publish options.

20. Navigate to the Pages library of the SharePoint site using your preferred web browser.

If the Pages library is not on the quick launch, it can be accessed from the

Settings menu under Site Content.

21. Select New Document from the FILES tab on the ribbon.

22. Provide a title and URL for the new page in the Title and URL ields.

23. Select the newly created page layout as shown in the following screenshot:

24. Click on Create.

Branding SharePoint with Custom Master Pages and Page Layouts

106

25. Edit the new page to observe our new layout and web part zones. The following

screenshot shows the editing window of the page:

How it works...

For content pages, SharePoint uses the master page and the page layout to provide the

content structure of the pages. This allows the master page to provide the overall design of

the SharePoint site and the page layout to provide the structure within the master page for

speciic pages. When a content page is rendered, the page content is rendered in the areas
provided by the page layout. Then the content and page layout are rendered in the content

area of the master page.

See also
 f The WebPartZone class topic on MSDN at http://msdn.microsoft.com/en-

us/library/system.web.ui.webcontrols.webparts.webpartzone.aspx

Creating a page layout with web parts
added to the page

In our custom page layouts, we can add web parts to the templates in two ways. First, we can

add them to a web part zone template. This adds the web part to the web part zone when a

page is created with the page layout and they can be modiied or removed after the page has
been created.

Chapter 3

107

Secondly, we can reference the web part directly on the page outside of web part zones. This

will insert the web part onto the page, but it cannot be modiied or removed from the page
when editing the page in the SharePoint web interface.

Web parts added directly to the page layout are added to the page when

a page is created. Adding additional web parts to a page layout will not

update content pages already created with the page layout.

In this recipe, we will add two web parts to our page layout (one inside a web part zone

template and one outside a web part zone). We will use the page layout we created previously

with the three web part zone columns as a starting point.

How to do it...

Follow these steps to create a page layout with web parts added to the page:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Page Layouts.

4. In the list of iles in the Page Layouts library, make a copy of PageLayout_
ThreeColumn.aspx (for our example, we have renamed it PageLayout_
WebPartsAdded.aspx).

5. Check out the new PageLayout_WebPartsAdded.aspx page layout.

6. Open the PageLayout_WebPartsAdded.aspx page layout.

7. Locate the irst <div class="ms-table ms-fullWidth"> element.

8. Before the <div> elements, add a TableOfContentsWebPart element.

<PublishingWebControls:TableOfContentsWebPart
ID="TableOfContentsWebPart" Title="Table of Contents"
runat="server" />

Web parts added outside of a WebPartZone ZoneTemplate are added

to the page, but are not editable from the SharePoint web interface.

9. Using the SharePoint table layout styles, add three <div> column containers as

shown in the following code:

<div class="ms-table ms-fullWidth">

<div class="ms-table ms-fullWidth">

<div class="cell-margin tableCol-33">

</div>

Branding SharePoint with Custom Master Pages and Page Layouts

108

<div class="cell-margin tableCol-33">

</div>

<div class="cell-margin tableCol-33">

</div>

</div>

<SharePointWebControls:ScriptBlock runat="server">

if(typeof(MSOLayout_MakeInvisibleIfEmpty) == "function")

{MSOLayout_MakeInvisibleIfEmpty();}</SharePointWebControls:ScriptB
lock>

</div>

10. In ZoneTemplate of one of the WebPartZone elements, add a MediaWebPart as

shown in the following code:

<WebPartPages:WebPartZone runat="server" Title="<%$Resources:cms,W
ebPartZoneTitle_Center%>" ID="CenterColumn">

<ZoneTemplate>

<PublishingWebControls:MediaWebPart ID="MediaWebPart" Title="Media
Web Part" runat="server" />

</ZoneTemplate>

</WebPartPages:WebPartZone>

Web parts added in a WebPartZone ZoneTemplate are added

to the page when created and are editable from the SharePoint

web interface.

11. Save the page layout.

12. Navigate back to the Properties page for the page layout.

13. Under Customization, select Manage all ile properties in the browser.

14. Select Edit Item from the ribbon.

15. Ensure that the Content Type option is set to Page Layout.

16. Provide a new title for the page layout (for example, Web Parts Added).

17. In the Associated Content Type option, set Content Type Group to Page Layout

Content Types and Content Type Name to Article Page.

18. Save the item.

19. Check in and publish the page layout using the Check In and Publish options.

20. Navigate to the Pages library of the site using your preferred web browser.

21. Select New Document from the FILES tab on the ribbon.

22. Provide a title and URL for the new page in the Title and URL ields.

23. Select the newly created page layout.

24. Select Create.

Chapter 3

109

25. Edit the new page to observe our new layout and web parts. The following screenshot

shows the page where we can edit our web parts:

How it works...

Web parts are ultimately ASP.NET server controls at their core. As such, they can be added

directly to a page layout like any other server control. Doing so puts them on the page, but

does not let users edit them in the web interface.

Web part zones are server controls that provide a section of the page that users can add web

parts to in the web interface. They also have a template that allows a page layout to include

web parts in the zone by default when the content page is created. These web parts can be

edited in the web interface after the content page is created.

See also
 f The WebPartZone class topic on MSDN at http://msdn.microsoft.com/en-

us/library/system.web.ui.webcontrols.webparts.webpartzone.aspx

Branding SharePoint with Custom Master Pages and Page Layouts

110

Creating a page layout with a picture-library-
based image carousel using JavaScript

Page layouts provide easy-to-use templates for content creators to use when creating

SharePoint site content. In scenarios where a certain page design is used repetitively, a page

layout is ideal. One example of this is an image carousel used by landing pages. In this recipe,

we will create a JavaScript-based image carousel that displays images from a picture library in

the SharePoint site.

To simplify the process of creating the JavaScript image carousel, we will use the jQuery

framework (http://www.jquery.com) and jQuery bxSlider plugin (http://www.
bxslider.com).

This recipe will look for images in the Images picture library in the

SharePoint site. Upload a few 750 px wide images (each with a constant

height) for the image carousel to use.

Getting ready
For this recipe, we will use the page layout we previously created in the Creating a page layout

with three columns of web part zones recipe.

How to do it...

Follow these steps to create a page layout with an image carousel:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Page Layouts.

4. In the list of iles in the Page Layouts library, make a copy of PageLayout_
ThreeColumn.aspx (for our example, we have renamed it PageLayout_
ImageCarousel.aspx).

5. Check out the new PageLayout_ImageCarousel.aspx page layout.

6. Open the PageLayout_ImageCarousel.aspx page layout.

7. Add an ImageCarousel.css stylesheet ile and an ImageCarousel.js

JavaScript ile to the resources folder located at _catalogs/masterpage/
resources.

8. Add references to our custom stylesheet, the jQuery bxSlider stylesheet, the jQuery

JavaScript, and the jQuery bxSlider plugin JavaScript to the page. In addition,

reference the SharePoint JavaScript iles to ensure they are loaded on the page.

Chapter 3

111

<SharePointWebControls:CssRegistration ID="customCss" name="<%
$SPUrl:~Site/_catalogs/masterpage/resources/imagecarousel.css %>"
runat="server"/>

<SharePointWebControls:CssRegistration ID="bxSliderCss" name="<%
$SPUrl:~Site/_catalogs/masterpage/resources/jquery.bxslider.css
%>" runat="server"/>

<SharePointWebControls:ScriptLink ID="jQuery" Name="~site/_
catalogs/masterpage/resources/jquery-2.0.2.min.js"
runat="server"></SharePointWebControls:ScriptLink>

<SharePointWebControls:ScriptLink ID="bxSliderJs"
Name="~site/_catalogs/masterpage/resources/jquery.bxslider.js"
runat="server"></SharePointWebControls:ScriptLink>

<SharePointWebControls:ScriptLink ID="customJavaScript"
Name="~site/_catalogs/masterpage/resources/imagecarousel.js"
runat="server"></SharePointWebControls:ScriptLink>

<SharePointWebControls:ScriptLink Name="sp.js" runat="server"
Localizable="false" LoadAfterUI="true" />

<SharePointWebControls:ScriptLink Name="sp.runtime.js"
runat="server" Localizable="false" LoadAfterUI="true" />

<SharePointWebControls:ScriptLink Name="sp.core.js" runat="server"
Localizable="false" LoadAfterUI="true" />

9. Locate the irst <div class="ms-table ms-fullWidth"> element.

10. Before the <div> elements it contains, add the following <div> tag to contain the

image carousel:

<div class="ImageCarousel"></div>

11. In our ImageCarousel.css stylesheet, provide a default height, width, and display

for the image carousel as follows:

.ImageCarousel {

 height: 400px;

 width: 800px;

 display: block;

}

12. In our ImageCarousel.js JavaScript ile, create a function to initialize the carousel
and use the ExecuteOrDelayUntilScriptLoaded function to execute the

function after the SharePoint JavaScript iles load as shown in the following code:
function InitializeImageCarousel() {

}

ExecuteOrDelayUntilScriptLoaded(InitializeImageCarousel, "sp.js");

Branding SharePoint with Custom Master Pages and Page Layouts

112

The ExecuteOrDelayUntilScriptLoaded function is provided by

SharePoint to allow us to instruct SharePoint to load the required core

JavaScript and then execute our function.

13. In our initialization function, get the current SharePoint context:

var context = new SP.ClientContext.get_current();

14. From the context, get the current SharePoint site:

var web = context.get_web();

15. Get the Images picture library from the SharePoint site as follows:

var list = web.get_lists().getByTitle('Images');

16. Use a CAML query to limit the number of returned items to ive:
var camlQuery = new SP.CamlQuery();

camlQuery.set_viewXml('<View><RowLimit>5</RowLimit></View>');

CAML is an XML-based query schema used by SharePoint to query
SharePoint lists.

17. Get the items from the list with the CAML query as follows:

var items = list.getItems(camlQuery);

18. Instruct the context to load the items with the Id, Title, and FileRef properties

as follows:

context.load(items, 'Include(Id, Title, FileRef)');

19. Call the executeQueryAsync method on the context to execute the query and

provide delegate functions to execute on success or failure of the request, as shown

in the following code:

context.executeQueryAsync(

Function.createDelegate(this, function (sender, args) {

 // Success

}),

Function.createDelegate(this, function (sender, args) {

 // Failed

}));

20. In the failure delegate function (the second function), use the SharePoint debug trace

function to write the error to the browser console as follows:

Sys.Debug.trace('Request failed. ' + args.get_message() + '\n' +
args.get_stackTrace());

Chapter 3

113

21. In the success delegate function (this irst function), create the container object

for the image carousel using the following line of code:

var slider = $('<ul class="bxslider">');

22. Iterate through each item and add the element representing the image using

the following code:

var listItemEnumerator = items.getEnumerator();

while (listItemEnumerator.moveNext()) {

var oListItem = listItemEnumerator.get_current();

var itemHtml = $('<img title="' + oListItem.get_item("Title")
+ '" src="' + oListItem.get_item("FileRef") + '" />');

itemHtml.appendTo(slider);

}

23. Add the image carousel container to the following image carousel <div> we

have on the page:

var imageCarousel = $('.ImageCarousel');

slider.appendTo(imageCarousel);

24. Initialize the jQuery bxSlider plugin using the following line of code:

$('.bxslider').bxSlider({ captions: true, slideWidth: 750 });

25. Set the height of the image carousel <div> to match the bxSlider height to ensure

there is no overlapping content:

$('.ImageCarousel').height($('.bx-wrapper', $('.ImageCarousel')).
height());

26. Save the page layout.

27. Navigate back to the Properties page for the page layout.

28. Select Manage all ile properties in the browser from the Customization section.

29. Select Edit Item from the ribbon and ensure that the Content Type is set to Page

Layout.

30. Provide a new title for the page layout (for example, Image Carousel).

31. For the Associated Content Type option, set Content Type Group to Page Layout

Content Types and Content Type Name to Article Page.

32. Save the item.

33. Check in and publish the page layout using the Check In and Publish options.

34. Navigate to the Pages library of the SharePoint site using your preferred web browser.

35. Select New Document from the Files tab on the ribbon.

36. Provide a title and URL for the new page in the Title and URL ields.

Branding SharePoint with Custom Master Pages and Page Layouts

114

37. Select the newly created page layout.

38. Click on Create.

39. View the page to observe our image carousel. The following screenshot shows the

Image Carousel window:

How it works...

In addition to the server-side object model, SharePoint provides additional object models

to interact with SharePoint content. In this recipe, we used the JavaScript object model

(JSOM). Using JSOM, we retrieved the current site from the current SharePoint context. We

used a CAML query to retrieve the Images picture library in the current site. We then created

an unordered list with the images and used our JavaScript libraries and plugins (jQuery and

bxSlider) to create our image carousel. Once we had our page layout created, we created a

page with it to observe our image carousel.

See also
 f The JavaScript API Reference for SharePoint 2013 topic on MSDN at http://msdn.

microsoft.com/en-us/library/jj193034.aspx

 f The ScriptLink class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.webcontrols.scriptlink.aspx

 f The CssRegistration class topic on MSDN at http://msdn.microsoft.com/en-
us/library/microsoft.sharepoint.webcontrols.cssregistration.
aspx

 f The Overview of the SharePoint 2013 Page Model article on MSDN at http://
msdn.microsoft.com/en-us/library/jj191506.aspx

 f The SharePoint Designer for Developers article on MSDN at http://msdn.
microsoft.com/en-us/sharepoint/hh850380.aspx

Chapter 3

115

Displaying speciic content only to
authenticated users

When working with public-facing SharePoint sites, it is common to display content only to

users who have logged in. In this recipe, we will add some content to our customized master

page that only authenticated users can see.

To see the results of this recipe, you will need to be able to access the SharePoint site both

anonymously and logged in.

How to do it...

Follow these steps to display speciic content only to authenticated users:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it Seattle_DisplayAuthenticatedContent.
master).

5. Check out the new Seattle_DisplayAuthenticatedContent.master master

page.

6. Open the Seattle_DisplayAuthenticatedContent.master master page.

7. Locate the element with the ID_SuiteBarBrandingDelegate ID.

8. After the delegate control, add the following <asp:LoginView> control with content

in the LoggedInTemplate:

<asp:LoginView ID="customLoginView" runat="server">

<LoggedInTemplate>

Only Authenticated
Users Can See This

</LoggedInTemplate>

</asp:LoginView>

9. Save the master page.

10. Check in and publish the master page using the Check In and Publish options.

11. Set the master page as the Site Master Page.

Branding SharePoint with Custom Master Pages and Page Layouts

116

12. Navigate to the site in your preferred web browser as an anonymous user to observe

the results.

13. Navigate to the site in your preferred web browser as an authenticated user to

observe the results.

How it works...

The ASP.NET LoginView control is a simple server control that can have a template

for logged in users and a template for anonymous users. The LoggedInTemplate

content only renders when a user is logged in. In this recipe, we added some text to the

LoggedInTemplate that only authenticated users should see.

See also
 f Chapter 12, Coniguring Anonymous Access

 f The LoginView class topic on MSDN at http://msdn.microsoft.com/en-us/
library/system.web.ui.webcontrols.loginview.aspx

Displaying speciic content only to
anonymous users

Similar to the previous recipe, it is common to display certain content on a page only to users

who have not logged in. In this recipe, we will add some content to our customized master

page that only anonymous users can see.

Chapter 3

117

To see the results of this recipe, you will need to be able to access the SharePoint site both

anonymously and logged in.

How to do it...

To display speciic content only to anonymous users, we will use the following steps:

1. Open SharePoint Designer.

2. Select Open Site. Enter the full URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master

(for our example, we have renamed it Seattle_DisplayAnonymousContent.
master).

5. Check out the new Seattle_DisplayAnonymousContent.master master page.

6. Open the Seattle_DisplayAnonymousContent.master master page.

7. Locate the element with the ID_SuiteBarBrandingDelegate ID.

8. After the delegate control, add an <asp:LoginView> control with content in the

AnonymousTemplate.

<asp:LoginView ID="customLoginView" runat="server">

<AnonymousTemplate>

Only Anonymous Users
Can See This

</AnonymousTemplate>

</asp:LoginView>

9. Save the master page.

10. Check in and publish the master page using the Check In and Publish options.

11. Set the master page as the Site Master Page.

12. Navigate to the site in your preferred web browser as an anonymous user and as an

authenticated user to observe the results.

How it works...

The ASP.NET LoginView control is a simple server control that can have a template

for logged in users and a template for anonymous users. The AnonymousTemplate

content only renders when a user is not logged in. In this recipe, we added text to the

AnonymousTemplate that only users who are not logged in should see.

Branding SharePoint with Custom Master Pages and Page Layouts

118

See also
 f Chapter 12, Coniguring Anonymous Access

 f The LoginView class topic on MSDN at http://msdn.microsoft.com/en-us/
library/system.web.ui.webcontrols.loginview.aspx

Displaying speciic content only to site
administrators

When working with intranet or extranet sites, as well as public-facing sites that allow users to

log in, it is common to only allow administrators of the SharePoint site to see certain content.

In this recipe, we will use our customized master page to hide content from users who are not

site administrators.

How to do it...

Follow these steps to display speciic content only to site:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. From the Navigation pane, select Master Pages.

4. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it as Seattle_DisplayAdministratorContent.
master).

5. Check out the new Seattle_DisplayAdministratorContent.master master

page.

6. Open the Seattle_DisplayAdministratorContent.master master page.

7. Locate the element with the ID_SuiteBarBrandingDelegate ID.

8. After the delegate control, add a <SharePoint:SPSecurityTrimmedControl>

control with the following content:

<SharePoint:SPSecurityTrimmedControl ID="customSecurityTrimmedCont
rol" PermissionContext="CurrentSite" PermissionsString="ManageWeb"
runat="server">

Only Admins Can See
This

</SharePoint:SPSecurityTrimmedControl>

Chapter 3

119

9. Save the master page.

10. Check in and publish the master page using the Check In and Publish options.

11. Set the master page as the Site Master Page.

12. Navigate to the site in your preferred web browser as an administrator user and as a

nonadministrator user to observe the results.

How it works...

The SPSecurityTrimmedControl is a simple server control that displays its content based

on the permission levels of the current user. When this control renders, it simply looks to the

current SharePoint context to determine if the current user has the permission level required.

See also
 f The SPSecurityTrimmedControl class topic on MSDN http://msdn.

microsoft.com/en-us/library/microsoft.sharepoint.webcontrols.
spsecuritytrimmedcontrol.aspx

Creating a master page with editing controls
only available to editors

In this recipe, we will create a custom master page that is branded for a public-facing

SharePoint site. In addition, this master page will only show the page editing controls to those

with contribute access to the SharePoint site.

To see the results of this recipe, you will need to be able to access the SharePoint site both

anonymously and logged in.

How to do it...

Follow these steps to create a master page with editing controls only available to editors:

1. Open SharePoint Designer.

2. Select Open Site. Enter the complete URL to the SharePoint site and select Open.

3. Add a PublicMasterPage.css stylesheet ile to the resources folder located

at_catalogs/masterpage/resources.

4. From the Navigation pane, select Master Pages.

5. In the list of iles in the Master Pages library, make a copy of seattle.master (for

our example, we have renamed it Seattle_PublicWebsite.master).

Branding SharePoint with Custom Master Pages and Page Layouts

120

6. Check out the new Seattle_PublicWebsite.master master page.

7. Open the Seattle_PublicWebsite.master master page.

8. Add a reference to our PublicMasterPage.css stylesheet ile.
<SharePoint:CssRegistration ID="customCssRegistration" Name="<%
$SPUrl:~Site/_catalogs/masterpage/resources/PublicMasterPage.css
%>" runat="server"></SharePoint:CssRegistration>

9. In our stylesheet ile, add the following content padding to the workspace and a
background color for the body:

#s4-workspace {

 background: #FFFFFF;

 margin: 50px 100px 50px 100px;

}

body {

 background: #999999;

}

#s4-ribbonrow, #suiteBar {

 background: #FFFFFF;

}

10. In our custom master page, locate the element with the suiteBar ID as follows:

11. Before the suiteBar element, add the beginning tag for a <SharePoint:SPSec
urityTrimmedControl> control with the permissions set to EditListItems as

shown in the following line of code:

<SharePoint:SPSecurityTrimmedControl ID="customSecurityTrimmedCont
rol" PermissionContext="CurrentSite" PermissionsString="EditListIt
ems" runat="server">

The EditListItems permission level will require the user

to have contribute access to the site in order to see the items

in the control.

12. In our custom master page, locate the element with the s4-workspace ID.

13. Before the s4-workspace element, add the following end tag for the <SharePoint
:SPSecurityTrimmedControl> control:

</SharePoint:SPSecurityTrimmedControl>

14. Save the master page.

Chapter 3

121

15. Check in and publish the master page using the Check In and Publish options.

16. Set the master page as the Site Master Page.

17. Navigate to the site in your preferred web browser anonymously and log in to observe

the results.

How it works...

In this recipe, we used CSS to provide padding around the content of the page and used an

SPSecurityTrimmedControl control to hide the page editing controls to users who do not

have access to edit the pages.

See also
 f Chapter 12, Coniguring Anonymous Access

 f The SPSecurityTrimmedControl class topic on MSDN at http://msdn.
microsoft.com/en-us/library/microsoft.sharepoint.webcontrols.
spsecuritytrimmedcontrol.aspx

 f The ScriptLink class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.webcontrols.scriptlink.aspx

 f The CssRegistration class topic on MSDN at http://msdn.microsoft.com/en-
us/library/microsoft.sharepoint.webcontrols.cssregistration.
aspx

4
Packaging Branding

Elements in a
SharePoint Solution

with Visual Studio

In this chapter, we will use Visual Studio to create a custom SharePoint solution project

that will package our branding elements. We will cover the following recipes:

 f Creating a Visual Studio SharePoint solution

 f Including image, cascading stylesheets, and JavaScript resources in a

SharePoint solution

 f Including master pages in a SharePoint solution

 f Including page layouts in a SharePoint solution

 f Adding localization to a SharePoint solution

 f Creating site feature to apply branding

 f Creating the site collection feature to apply the feature to new and existing sites

 f Creating a timer job to ensure the site branding feature is activated

 f Packaging and deploying the SharePoint solution

 f Activating the site collection feature on all site collections with PowerShell

Packaging Branding Elements in a SharePoint Solution with Visual Studio

124

Introduction

To package, distribute, and deploy custom solutions in SharePoint, Microsoft has

provided the SharePoint solution concept. A SharePoint solution is a compressed

Microsoft Cabinet ile with the .wsp ile extension. This ile contains an XML manifest
deining the solution with all the iles and assemblies required for the solution.

In this chapter, we will create a SharePoint solution with Visual Studio to package our

branding elements.

Creating a Visual Studio SharePoint solution
In this recipe, we will be creating a SharePoint 2013 farm solution. Farm solutions allow us to

deploy content to the ilesystem of the SharePoint servers and interact with SharePoint farm
elements outside of a site collection, such as the web application.

How to do it...

Follow these steps to create a SharePoint solution:

1. Open Visual Studio and select New Project from the FILE menu as shown in the

following screenshot:

2. Navigate to Visual C# | Ofice/SharePoint | SharePoint Solution and select

SharePoint 2013 - Empty Project as shown in the following screenshot:

Chapter 4

125

3. Provide a name and location for the project.

4. Click on OK.

5. Provide the URL to the local SharePoint site.

6. Select the Deploy as a farm solution option.

7. Click on OK.

Packaging Branding Elements in a SharePoint Solution with Visual Studio

126

How it works...

A Visual Studio SharePoint project builds a class library (an assembly) when compiled. In

addition to building the assembly, Visual Studio provides a publishing function that packages

the assembly, the manifest, and all the included iles into a SharePoint solution (.wsp) ile.

When creating a new SharePoint solution, it will default to a sandboxed solution. With any

programming, it is a good idea to only have access to what is required for your solution. If your

SharePoint project does not require access to elements not allowed in a sandboxed solution,

use a sandboxed solution.

There's more...

With SharePoint 2010 and Visual Studio 2010, Microsoft introduced project templates to

create, package, deploy, and debug custom SharePoint solutions. SharePoint 2010 and

Visual Studio 2010 provided two types of SharePoint solutions: farm solutions and

sandboxed solutions.

Farm solutions are deployed at the SharePoint farm level and require a farm administrator

access to install them to the farm. Sandboxed solutions are deployed at the site collection

level and only require a site collection administrator access to install them to the site

collection. Farm solutions are provided full access to the SharePoint farm, whereas sandboxed

solutions are only provided access to elements within the site collection.

Farm solutions can only be added with PowerShell Cmdlets or the stsadm.exe command.

They cannot be added or updated with the web interface. They can, however, be deployed and

retracted with the web interface.

Sandboxed solutions can be added, deployed, updated, and retracted with the web interface

or PowerShell Cmdlets. They cannot be managed with the stsadm.exe command.

The primary differences between farm and sandboxed solutions are illustrated in the following

table (note that this is not a comprehensive list):

Type Farm solution Sandboxed solution

Deploys to Farm solutions store Site collection

solutions gallery

Installation methods PowerShell Cmdlets and the
stsadm.exe command

PowerShell Cmdlets

and web interface

Farm features Yes No

Web application features Yes No

Site collection features Yes Yes
Site features Yes Yes
Application pages (/_layouts) Yes No

Chapter 4

127

Type Farm solution Sandboxed solution

Custom action groups Yes No

Code-based workflows Yes No

Content types and fields Yes Yes
Custom actions Yes Yes
Declarative workflows Yes Yes
Event receivers Yes Yes
List definitions and instances Yes Yes
Modules Yes Yes
Web parts Yes Yes
Timer jobs Yes No

The IIS worker processes (w3wp.exe) executes the farm solution code, whereas the user

code solution worker processes (spucworkerprocess.exe) executes the sandboxed

solution code.

With SharePoint 2013 and Visual Studio 2012, Microsoft has added a third type of SharePoint

solution, the SharePoint app. A SharePoint app solution runs isolated from the SharePoint

stack, only allows for the client-side and JavaScript object models to be used to interact with

SharePoint, and provides a framework to publish apps to and install apps from the

SharePoint app store.

Using the SharePoint version as reference, the tools and solutions available in SharePoint are

illustrated in the following table:

SharePoint version 2007 2010 2013

Tools available f The

assemblies are

created with

Visual Studio

 f The solutions

are packaged

manually or

with third-party

tools

 f Deployment

and debugging

during

development is

done manually

 f The

assemblies

and

solutions are

created in

Visual Studio

 f One-click

deployment

and

debugging is

available in

Visual Studio

 f The

assemblies

and

solutions

are created

in Visual

Studio

 f One-click

deployment

and

debugging

is available

in Visual

Studio

Packaging Branding Elements in a SharePoint Solution with Visual Studio

128

SharePoint version 2007 2010 2013

Farm solutions Yes Yes Yes
Sandboxed

solutions
No Yes Yes

Apps No No Yes

Packaging branding elements, such as master pages and page layouts, can be accomplished

with a sandboxed solution. However, since we will be interacting with the web application and

a custom timer job in this chapter, we will work with a farm solution throughout this chapter.

See also
 f The Solution Schema topic on MSDN at http://msdn.microsoft.com/en-us/

library/office/ms442108.aspx

 f The Apps for SharePoint Overview article on MSDN at http://msdn.microsoft.
com/en-us/library/office/fp179930.aspx

 f The Sandboxed Solution Considerations article on MSDN at http://msdn.
microsoft.com/en-us/library/ee231562.aspx

 f The SharePoint for Developers article on MSDN at http://msdn.microsoft.
com/en-us/office/dn448478

Including images, cascading stylesheets,
and JavaScript resources in a SharePoint
solution

Within a Visual Studio SharePoint solution, we can map project folders to folders on the

SharePoint server ilesystem. For static content resources, such as images and style sheets,
it is ideal to store them on the ilesystem of the SharePoint server rather than in the content
database of the SharePoint web applications. This allows Internet Information Services (IIS)

to serve up content directly from the ilesystem rather than having to request the ile from the
SQL database before serving it to the client.

There are a number of folders that we can map to, however, the most commonly mapped

folders are the Layouts and Images folders. Files in our project mapped to the Layouts

folder will be served to the client from the _layouts/15 URL and iles mapped to the
Images folder will be served from the _layouts/15/images URL.

Chapter 4

129

SharePoint 2013 allows SharePoint 2010 solutions to be installed. To accommodate the

possibility of two compatibility levels for solutions to be installed, 2013 solution iles are
served from the _layouts/15 URL, whereas iles from the 2010 solution are served from the
_layouts URL. This applies to the Layouts and Images folder mappings. Most other folder

mapping options do not have two version-speciic locations.

In this recipe, we will map the Layouts and Images folders. We will then add content

to both.

How to do it...

Follow these steps to map folders and include static resources:

1. From the Solution Explorer pane in Visual Studio, right-click on the project name.

2. Select Add and then select SharePoint "Images" Mapped Folder, as shown in the

following screenshot:

3. From the Solution Explorer pane, right-click on the project name.

Packaging Branding Elements in a SharePoint Solution with Visual Studio

130

4. Select Add and then select SharePoint "Layouts" Mapped Folder.

5. Right-click on the folder created under Images.

6. Select Add and then select Existing Item.

7. Select an image from your ilesystem to be included in the folder.

8. Right-click on the folder created under Layouts.

9. Select Add and then select New Item.

10. Navigate to Visual C# Items | Web and select JavaScript File, as shown in the

following screenshot:

Chapter 4

131

11. Give the new ile a name (for example, Custom.js).

12. Click on Add.

13. Right-click on the folder created under Layouts.

14. Click on Add and then select New Item.

15. Navigate to Visual C# Items | Web and select Style Sheet.

16. Give the new ile a name (for example, Custom.css).

17. Click on Add.

How it works...

Contents of a mapped folder in a SharePoint solution are added directly to the ilesystem of
each SharePoint server in the farm when the solution is deployed. The Layouts mapped

folder, which serves content from the _layouts/15 URL, is mapped to C:\Program
Files\Common Files\Microsoft Shared\Web Server Extensions\15\
Template\Layouts on the ilesystem of the SharePoint servers. The Images mapped

folder, which serves content from the _layouts/15/images URL, is mapped to C:\
Program Files\Common Files\Microsoft Shared\Web Server Extensions\15\
Template\Layouts\Images on the ilesystem of the SharePoint servers.

When adding most mapped folders to a SharePoint project, Visual Studio will create

subfolders matching the name of the project within the mapped folders. It is important to

ensure the iles and folders we add to a mapped folder do not conlict with the iles and
folders included with SharePoint.

See also
 f The How to: Add and Remove Mapped Folders article on MSDN at http://msdn.

microsoft.com/en-us/library/ee231521.aspx

Packaging Branding Elements in a SharePoint Solution with Visual Studio

132

Including master pages in a
SharePoint solution

Certain types of content must exist in a list or library within the SharePoint site to be usable

by SharePoint. Master pages are one type of content that has this requirement. In order to

reduce calls to the SQL content database, these can be ghosted in the SharePoint library.

Ghosting allows for the ile to be on the ilesystem of the SharePoint servers and referenced
by a placeholder in the library rather than being stored in the content database.

If a ghosted ile is edited (in SharePoint Designer, for instance), a copy will be placed in the
content database and served up instead of the original ile on the ilesystem. In addition, the
ile can be reverted back to being served up by the ilesystem.

In this recipe, we will include a copy of the Seattle.master master page that we have

renamed Tacoma.master. You can download a copy of Seattle.master from the web

interface or with SharePoint Designer.

How to do it...

Follow these steps to include a master page in the solution:

1. From the Solution Explorer pane in Visual Studio, right-click on the project name.

2. Click on Add and select New Item.

3. Navigate to Visual C# Items | Ofice/SharePoint and select Module, as shown in the

following screenshot:

Chapter 4

133

4. Give the module a name (for example, MasterPages).

5. Click on Add.

When adding a new module, Visual Studio will add a Sample.txt

example file. In addition, if a feature already exists in the project, it will

add the module to it. Otherwise, it will add a new feature to the project.

6. Delete the Sample.txt ile in the MasterPages module.

7. Right-click on the MasterPages module.

8. Click on Add and select Existing Item.

9. Select the Tacoma.master master page from your ilesystem.

10. In the MasterPages module, open the Elements.xml ile.

11. On the <Module> element, set the Url property to _catalogs/masterpage, the

Path property to null, and the RootWebOnly property to FALSE, as shown in the

following line of code:

<Module Name="MasterPages" Url="_catalogs/masterpage" Path=""
RootWebOnly="FALSE">

12. On the <File> element, set the Type property to GhostableInLibrary, the

IgnoreIfAlreadyExists property to TRUE and the Url property to Tacoma.
master, as shown in the following line of code:

<File Path="MasterPages\Tacoma.master" Type="GhostableInLibrary"
IgnoreIfAlreadyExists="TRUE" Url="Tacoma.master" />

Packaging Branding Elements in a SharePoint Solution with Visual Studio

134

The following screenshot shows the <Module> and <File> elements:

13. Save the Elements.xml ile.

14. Right-click on the Feature1 folder in the Features folder.

15. Select Rename.

16. Rename Feature1 to SiteBranding.

17. Open the SiteBranding feature.

18. Set the Scope to Web.

19. Set the Title to $Resources:Code6587ENCh04,Feature_SiteBranding_
Title; and the Description to $Resources:Code6587ENCh04,Feature_
SiteBranding_Description;.

20. Save the SiteBranding feature.

How it works...

Adding features to a SharePoint solution creates a feature deinition that is deployed
to the ilesystem of the SharePoint servers. They can be scoped to web (site), site (site
collection), web application, or farm. The values entered for the Title and Description ields
are references to string resources that we will create later in the Adding localization to a

SharePoint solution recipe.

Chapter 4

135

The content that SharePoint needs to refer to in libraries rather than from the Layouts folder,

such as master pages and page layouts, can be ghosted. Ghosting a ile places it in the folder
of the feature deinition on the ilesystem of the SharePoint servers. A placeholder is added to
the library to allow access to the ile from the library as if it were in the library.

Ghosted iles are added to the SharePoint project in a SharePoint module. A SharePoint
module can be used to add iles to a site. The Elements.xml ile in a module deines what
iles are included in the module and the options for adding each ile to the site. The Url

property provides the location of the iles in the module that will be added to in the site. With
the Type property set to GhostableInLibrary, the ile will be ghosted from the ilesystem
into the library.

See also
 f The Using Modules to Include Files in the Solution article on MSDN at http://

msdn.microsoft.com/en-us/library/ee231567.aspx

 f The File Element (Module) topic on MSDN http://msdn.microsoft.com/en-
us/library/ms459213.aspx

Including page layouts in a SharePoint
solution

Page layouts included in a SharePoint solution require additional data to be added to their

library properties to associate them with the page layout content type. In this recipe, we

will include a copy of the BlankWebPartPage.aspx page layout that we have renamed

Tacoma_BlankWebPartPage.aspx with the appropriate properties. You can download a
copy of BlankWebPartPage.aspx from the web interface or with SharePoint Designer.

How to do it...

Follow these steps to include a page layout in the solution:

1. From the Solution Explorer pane in Visual Studio, right-click on the project name.

2. Click on Add and then select New Item.

3. Navigate to Visual C# Items | Ofice/SharePoint and select Module.

4. Give a name to the Module (for example, PageLayouts).

5. Click on Add.

Packaging Branding Elements in a SharePoint Solution with Visual Studio

136

Since both master pages and page layouts are added to the

same SharePoint library, they could both exist in the

same module.

6. Delete the Sample.txt ile in the PageLayouts module.

7. Right-click on the PageLayouts module.

8. Select Add and then select Existing Item.

9. Select the Tacoma_BlankWebPartPage.aspx page layout from your ilesystem.

10. In the PageLayouts module, open the Elements.xml ile.

11. On the <Module> element, set the Url property to _catalogs/masterpage, the

Path property to null, and the RootWebOnly property to FALSE.

<Module Name="PageLayouts" Url="_catalogs/masterpage" Path=""
RootWebOnly="FALSE">

12. On the <File> element, set the Type property to GhostableInLibrary, the

IgnoreIfAlreadyExists property to TRUE, and the Url property to Tacoma_
BlankWebPartPage.aspx.

13. In the <File> element, add the properties that will be assigned to the ile in the
SharePoint library.

<File Path="PageLayouts\Tacoma_BlankWebPartPage.aspx"
Type="GhostableInLibrary" IgnoreIfAlreadyExists="TRUE"
Url="Tacoma_BlankWebPartPage.aspx">

<Property Name="Title" Value="$Resources:Code6587ENCh04,Tacoma_
PageLayout_Name;" />

<Property Name="Description" Value="$Resources:Code6587ENCh04,Taco
ma_PageLayout_Description;" />

<Property Name="ContentType" Value="$Resources:cmscore,contentty
pe_pagelayout_name;" />

<Property Name="PublishingAssociatedContentType" Value=";#$Resourc
es:cmscore,contenttype_articlepage_name;;#0x010100C568DB52D9D0A14D
9B2FDCC96666E9F2007948130EC3DB064584E219954237AF3900242457EFB8B242
47815D688C526CD44D;#"/>

</File>

14. Save the Elements.xml ile. The following screenshot shows the contents of the
Elements.xml ile:

Chapter 4

137

How it works...

In addition to adding iles to a SharePoint library, a module can also set the properties of
the ile in the library. In this recipe, we added a custom page layout to a module and set the
properties of the ile to provide it with a page layout title and associate it with the page layout
content type.

The values of the Title and Description properties are resource strings that we will

create in the Adding localization to a SharePoint solution recipe. The ContentType property

uses a resource string from SharePoint and the PublishingAssociatedContentType

property instructs SharePoint to make this ile a page layout.

The /_catalog/masterpage library, where master pages and page layouts are stored,

contains multiple content types. If a page layout ile is not associated with the page layout
content type, it will not be available in the web interface when creating a new content page.

See also
 f The Using Modules to Include Files in the Solution article on MSDN at http://

msdn.microsoft.com/en-us/library/ee231567.aspx

 f The File Element (Module) topic on MSDN at http://msdn.microsoft.com/en-
us/library/ms459213.aspx

Adding localization to a SharePoint solution
To localize the names and descriptions of user interface elements, such as features and web

parts, externalized resource iles need to be added to the Resources mapped folder. In this

recipe, we will create English and French language resource iles that include resource strings
for the names and descriptions of the features we will create in the subsequent recipes.

How to do it...

Follow these steps to add localization resources to the solution:

1. Right-click on the project name in the Solution Explorer pane.

Packaging Branding Elements in a SharePoint Solution with Visual Studio

138

2. Click on Add and then select SharePoint Mapped Folder. The SharePoint Mapped

Folder dialog will display all of the available folders to map in a tree view as shown in

the following screenshot:

3. Select Resources and click on OK.

4. Right-click on the Resources folder.

5. Click on Add and then select New Item.

6. Navigate to Visual C# Items | General and select Resource File, as shown in the

following screenshot:

7. Provide a name for the resource ile (for example, Code6587ENCh04.resx).

8. Click on Add.

Chapter 4

139

9. Repeat steps 5 through 9 to create two additional resource iles with the language
codes appended to the ilename (for example, Code6587ENCh04.en-US.resx and

Code6587ENCh04.fr-FR.resx).

For resource iles, SharePoint requires a default ile without the language code added
and a resource ile for each language code supported. In our example, both the
Code6587ENCh04.resx and Code6587ENCh04.en-US.resx resource iles will
contain our strings in U.S. English and Code6587ENCh04.fr-FR.resx will contain

our strings in French.

10. Open each resource ile and set Access Modiier to No Code Generation. Since we

are not referencing the resource strings in our C# code, we do not need any code

generated for the resource iles.

11. In both the default and en-US resource iles, add the following English
resource strings:

Name Value

Feature_SiteBranding_
Description

Apply our custom branding solution
to this SharePoint site

Feature_SiteBranding_Title Custom branding: Apply to SharePoint
site

Feature_
SiteCollectionBranding_
Description

Apply our custom branding site
feature to all sites in this site
collection

Feature_
SiteCollectionBranding_
Title

Custom branding: Apply to all sites
in site collection

Tacoma_PageLayout_
Description

Demo blank web part page for our
custom branding solution

Tacoma_PageLayout_Name Tacoma blank web part page

Packaging Branding Elements in a SharePoint Solution with Visual Studio

140

The following screenshot shows the English resource strings added to the

Code6587ENCh04.resx ile:

12. In the fr-FR resource ile, add the following French resource strings:

Name Value

Feature_SiteBranding_De-
scription

Appliquer notre solution de person-
nalisation de SharePoint site

Feature_SiteBranding_Title Branding personnalisé: Appliquer au
site SharePoint

Feature_SiteCollection-
Branding_Description

Appliquer notre image de marque
fonctionnalités de site personnalisé
à tous les sites dans cette collec-
tion de sites

Feature_SiteCollection-
Branding_Title

Branding personnalisé: S'applique à
tous les sites dans la collection de
sites

Tacoma_PageLayout_Descrip-
tion

Démo vide page WebPart pour notre
solution de personnalisation

Tacoma_PageLayout_Name Tacoma page web part vierge

The following screenshot shows the French resource strings added to the

Code6587ENCh04.fr-FR.resx ile:

Chapter 4

141

13. Save the resource iles.

How it works...

Localization strings for feature names, web part titles, and other interface elements are stored

as resource iles (.resx) in the Resources folder of the 15 HIVE (C:\Program Files\
Common Files\Microsoft Shared\Web Server Extensions\15\Resources).

These are standard .NET resource iles with no code generation and are stored in XML format.

When IIS is started or restarted, all of the resources in this folder are loaded into memory. If a

resource was recently added, but is not being displayed, restarting IIS will force the resources

to load.

The French language resource strings were translated from English using the Bing Translator

for demonstration purposes. When translating resource strings, a human translator will

provide a more accurate translation. Displaying sites in other languages requires the

installation of language packs.

See also
 f Chapter 10, Creating Multilingual Sites with SharePoint Variations

 f The Resources in .Resx File Format article on MSDN at http://msdn.microsoft.
com/en-us/library/ekyft91f(v=vs.90).aspx

 f The Localizing SharePoint Solutions article on MSDN at http://msdn.
microsoft.com/en-us/library/vstudio/ee696750.aspx

Packaging Branding Elements in a SharePoint Solution with Visual Studio

142

Creating a site feature to apply branding
SharePoint features provide a mechanism to add our custom branding elements to the

SharePoint farm at four different scopes. Features can be scoped to the farm level, web

application level, site collection level, or site (web) level. In addition to adding content, they

can run custom code when activated, upgraded, deactivated, and so on in feature

event receivers.

In this recipe, we will create a site (web) scoped feature that adds and conigures our branding
elements on the site.

How to do it...

Follow these steps to create a feature event receiver:

1. Open the SiteBranding feature that was created when creating for our

MasterPages and PageLayouts modules.

2. Verify that both the modules are listed in the Items in the feature section.

3. Right-click on SiteBranding.feature in the Features folder.

4. Select Add Event Receiver as shown in the following screenshot:

Chapter 4

143

5. In our new SiteBrandingEventReceiver class, add the following constant strings

that we will use for property names and master page URLs:

public class SiteBrandingEventReceiver : SPFeatureReceiver

{

private const string PropertyOldMasterUrl =
"CustomProp::OldMasterUrl";

private const string PropertyOldCustomMasterUrl = "CustomProp::Old
CustomMasterUrl";

private const string TacomaMasterUrl = "_catalogs/masterpage/
Tacoma.master";

private const string SeattleMasterUrl = "_catalogs/masterpage/
Seattle.master";

6. Uncomment the FeatureActivated and FeatureDeactivating methods as

shown in the following code:

public override void FeatureActivated(SPFeatureReceiverProperties
properties)

{

}

public override void FeatureDeactivating(SPFeatureReceiverProperti
es properties)

{

}

7. In the FeatureActivated method, get the site in a using statement as follows:

using (var web = properties.Feature.Parent as SPWeb)

8. Ensure the site is not null using the following line of code:

if (web != null)

9. Get the current value for the AllowUnsafeUpdates property on the site and set the

value to true as follows:

var allowUnsafeUpdates = web.AllowUnsafeUpdates;

web.AllowUnsafeUpdates = true;

web.Update();

Packaging Branding Elements in a SharePoint Solution with Visual Studio

144

10. Using the following code, remove our custom master page properties if they already

exist on the site:

if (web.AllProperties.ContainsKey(PropertyOldMasterUrl))

web.AllProperties.Remove(PropertyOldMasterUrl);

if (web.AllProperties.ContainsKey(PropertyOldCustomMasterUrl))

web.AllProperties.Remove(PropertyOldCustomMasterUrl);

11. Get the current master page settings for the site using the following code:

var masterUrl = web.MasterUrl;

var customMasterUrl = web.CustomMasterUrl;

12. Set the current master page settings as the values to our custom master page

properties.

web.AllProperties.Add(PropertyOldMasterUrl, masterUrl);

web.AllProperties.Add(PropertyOldCustomMasterUrl,
customMasterUrl);

13. Set the Tacoma.master master page as the master page for the site and system

master pages using the following code:

web.MasterUrl = TacomaMasterUrl;

web.CustomMasterUrl = TacomaMasterUrl;

web.Update();

14. Set the AllowUnsafeUpdates property of the site back to its original value.

web.AllowUnsafeUpdates = allowUnsafeUpdates;

web.Update();

15. In the FeatureDeactivating method, get the site in a using statement.

using (var web = properties.Feature.Parent as SPWeb)

16. Ensure the site is not null, using the following code:

if (web != null)

17. Get the current value for the AllowUnsafeUpdates property on the site and set the

value to true.

var allowUnsafeUpdates = web.AllowUnsafeUpdates;

web.AllowUnsafeUpdates = true;

web.Update();

Chapter 4

145

18. Get the default Seattle.master master page URL using the following code:

var masterUrl = SeattleMasterUrl;

var customMasterUrl = SeattleMasterUrl;

19. Using the following code, check the site properties for the original master page

settings we added in the FeatureActivating method:

if (web.AllProperties.ContainsKey(PropertyOldMasterUrl))

{

var propertyValue = web.AllProperties[PropertyOldMasterUrl] as
string;

if (!string.IsNullOrEmpty(propertyValue))

masterUrl = propertyValue;

web.AllProperties.Remove(PropertyOldMasterUrl);

}

if (web.AllProperties.ContainsKey(PropertyOldCustomMasterUrl))

{

var propertyValue = web.AllProperties[PropertyOldCustomMasterUrl]
as string;

if (!string.IsNullOrEmpty(propertyValue))

customMasterUrl = propertyValue;

web.AllProperties.Remove(PropertyOldCustomMasterUrl);

}

20. Set the original master page as the master page for the site and system master

pages.

web.MasterUrl = masterUrl;

web.CustomMasterUrl = customMasterUrl;

web.Update();

Packaging Branding Elements in a SharePoint Solution with Visual Studio

146

21. Set the AllowUnsafeUpdates property of the site back to its original value, using

the following code:

web.AllowUnsafeUpdates = allowUnsafeUpdates;

web.Update();

How it works...

SharePoint features may include event receivers that execute at different points in

the life cycle of the feature. In our example, we created FeatureActivated and

FeatureDeactivating event receivers to conigure the master page settings when
activated or deactivated. In addition, we stored the old master page settings as properties on

the site to allow us to restore the settings when the feature is deactivated.

See also
 f The Creating SharePoint Features article on MSDN at http://msdn.microsoft.

com/en-us/library/vstudio/ee231541(v=vs.110).aspx

 f The How to: Create an Event Receiver article on MSDN at http://msdn.
microsoft.com/en-us/library/vstudio/ee231563.aspx

 f The SPFeatureReceiver.FeatureActivated method topic on MSDN at http://
msdn.microsoft.com/en-us/library/microsoft.sharepoint.
spfeaturereceiver.featureactivated.aspx

 f The SPFeatureReceiver.FeatureDeactivating method topic on MSDN at http://
msdn.microsoft.com/en-us/library/microsoft.sharepoint.
spfeaturereceiver.featuredeactivating.aspx

 f The Walkthough: Add Feature Event Receivers article on MSDN at http://msdn.
microsoft.com/en-us/library/vstudio/ee231604.aspx

Creating the site collection feature to apply
the feature to new and existing sites

In this recipe, we will create a site collection scoped feature that will activate the site scoped

branding feature to all sites in the site collection. In addition, we will add an event receiver to

activate the site branding feature on all newly created sites.

Chapter 4

147

How to do it...

Follow these steps to create a site collection feature and the event receivers:

1. Right-click on the Features folder.

2. Click on Add Feature as shown in the following screenshot:

3. Rename the new feature SiteCollectionBranding.

4. Open the new SiteCollectionBranding feature.

5. Set Scope to Site.

6. Set Title to $Resources:Code6587ENCh04,Feature_
SiteCollectionBranding_Title; and Description to $Resources:Code6587
ENCh04,Feature_SiteCollectionBranding_Description;.

7. Save the SiteCollectionBranding feature.

8. Right-click on the project name.

9. Click on Add and then select New Item.

Packaging Branding Elements in a SharePoint Solution with Visual Studio

148

10. Navigate to Visual C# Items | Ofice/SharePoint and select Event Receiver, as

shown in the following screenshot:

11. Give the event receiver a name (for instance, ApplySiteBranding).

12. Click on Add.

13. Select Web Events for What type of event receiver do you want? as shown in the

following screenshot:

Chapter 4

149

14. Select A site was provisioned under Handle the following events as shown in the

following screenshot:

15. Click on Finish.

16. Open the SiteBranding feature.

17. Ensure that the ApplySiteBranding event receiver is not listed under Items in

the feature.

18. In the Properties pane, make a note of the Feature Id. We will use this later.

19. Open the SiteCollectionBranding feature.

Packaging Branding Elements in a SharePoint Solution with Visual Studio

150

20. Ensure the ApplySiteBranding event receiver is listed under Items in the feature as

shown in the following screenshot:

21. In the Properties pane, make a note of the feature ID. We will use this later.

22. In the ApplySiteBranding event receiver, open the ApplySiteBranding.cs ile.

23. In the ApplySiteBranding class, add a static GUID for our SiteBranding feature

ID. Replace the sample feature ID with the feature ID from your SiteBranding feature.

public class ApplySiteBranding : SPWebEventReceiver

{

private static Guid BrandingFeatureId = new Guid("1150dec7-4af6-
44d8-b241-d976d26b723c");

24. In the WebProvisioned method, get the site in a using statement as follows:

using (var web = properties.Web)

25. Ensure the site is not null.

if (web != null)

26. Verify the feature is in the collection of features activated on the site. If it is not

activated, add the feature to the collection as follows:

if (web.Features[BrandingFeatureId] == null)

web.Features.Add(BrandingFeatureId);

27. Save the ApplySiteBranding.cs ile.

28. Add an event receiver to the SiteCollectionBranding feature.

29. In the SiteCollectionBrandingEventReceiver class, add a static GUID for our

SiteBranding feature ID. Replace the sample feature ID with the feature ID from your

SiteBranding feature.

public class SiteCollectionBrandingEventReceiver :
SPFeatureReceiver

{

Chapter 4

151

private static Guid BrandingFeatureId = new Guid("1150dec7-4af6-
44d8-b241-d976d26b723c");

30. Uncomment the FeatureActivated method.

31. Get the site collection in a using statement as follows:

using (var site = properties.Feature.Parent as SPSite)

32. Ensure the site collection is not null.

if (site != null)

33. Iterate through each site in the site collection.

foreach (SPWeb web in site.AllWebs)

34. Ensure the site is not null and that it exists.

if (web != null && web.Exists)

35. Verify the feature is in the collection of features activated on the site. If it is not

activated, add the feature to the collection using the following code:

if (web.Features[BrandingFeatureId] == null)

web.Features.Add(BrandingFeatureId);

36. Save the event receiver.

How it works...

In this recipe, we irst created a new feature deinition for our site collection feature. We then
added an event receiver that is triggered any time a new site is created in the site collection.

In this event receiver, we are ensuring the site branding feature is activated on newly created

sites.

Next, we added an event receiver that is triggered when our new site collection feature is

activated. In this event receiver, we are iterating through each site in the site collection to

ensure the site branding feature is activated on all existing sites.

The most unique identiiers for SharePoint elements created in Visual Studio, such as the
Feature Id, will be automatically generated when the item is created.

See also
 f The Creating SharePoint Features article on MSDN at http://msdn.microsoft.

com/en-us/library/vstudio/ee231541(v=vs.110).aspx

 f The How to Create an Event Receiver article on MSDN at http://msdn.
microsoft.com/en-us/library/vstudio/ee231563.aspx

Packaging Branding Elements in a SharePoint Solution with Visual Studio

152

 f The SPFeatureReceiver.FeatureActivated method topic on MSDN at http://
msdn.microsoft.com/en-us/library/microsoft.sharepoint.
spfeaturereceiver.featureactivated.aspx

 f The SPWebEventReceiver.WebProvisioned method topic on MSDN at http://
msdn.microsoft.com/en-us/library/microsoft.sharepoint.
spwebeventreceiver.webprovisioned.aspx

Creating a timer job to ensure the site
branding feature is activated

SharePoint provides a framework for tasks that can be executed at scheduled intervals called

SharePoint timer jobs. These timer jobs, when conigured, are executed by the SharePoint

Timer Windows service. In a large site with a lot of contributors, there may be the need to

enforce some rules in the environment in a more automated fashion, such as using consistent

branding. In this recipe, we will create a timer job that ensures the site branding feature is

activated on all sites in the site collection.

How to do it...

Follow these steps to create a timer job:

1. From the Solution Explorer pane, right-click on the project name.

2. Select Add and then select Class.

3. Provide a name for the class (for instance, BrandingTimerJob).

4. Give the class a public access modiier and inherit from the SPJobDefinition

base class as follows:

public class BrandingTimerJob : SPJobDefinition

5. In the BrandingTimerJob class, add a static GUID for our SiteBranding feature ID.

Replace the sample feature ID with the feature ID from your SiteBranding feature

as follows:

private static Guid BrandingFeatureId = new Guid("1150dec7-4af6-
44d8-b241-d976d26b723c");

6. Create the constructors for the BrandingTimerJob class using the following code:

public BrandingTimerJob(SPWebApplication webApplication, string
title) :

base("Custom Branding Job", webApplication, null, SPJobLockType.
ContentDatabase)

{

this.Title = title;

Chapter 4

153

}

public BrandingTimerJob() : base() { }

7. Create an override for the Execute method as follows:

public override void Execute(Guid targetInstanceId)

8. In the Execute method, attempt to get the site collection ID associated with the

timer job instance using the following code:

Guid? siteId = null;

if (this.Properties.ContainsKey("SiteId"))

siteId = this.Properties["SiteId"] as Guid?;

9. Get the site collection in a using statement as follows:

using (var site = new SPSite(siteId.Value))

10. Ensure the site collection is not null as follows:

if (site != null)

11. Iterate through each site in the site collection as follows:

foreach (SPWeb web in site.AllWebs)

12. Ensure the site is not null and that it exists as follows:

if (web != null && web.Exists)

13. Verify that the feature is in the collection of features activated on the site. If it is not

activated, add the feature to the collection as follows:

if (web.Features[BrandingFeatureId] == null)

web.Features.Add(BrandingFeatureId);

14. Save the BrandingTimerJob.cs ile.

15. Open the SiteCollectionBranding.EventReceiver.cs ile.

16. Add a static string to the class for formatting the name of our timer jobs as follows:

private static string FormatJobName = "Custom Branding Job_{0}";

17. In the FeatureActivated method, after the foreach loop iterates through each

site in the site collection, create the timer job name, get the web application ID, and

then get the site collection ID as follows:

var jobName = string.Format(CultureInfo.InvariantCulture,
FormatJobName, site.ID.ToString());

var webAppId = site.WebApplication.Id;

var siteId = site.ID;

Packaging Branding Elements in a SharePoint Solution with Visual Studio

154

18. Add a delegate method to be executed by the SPSecurity.
RunWithElevatedPrivleges method as follows:

SPSecurity.RunWithElevatedPrivileges(delegate()

{

});

19. In the delegate method, get the web application as follows:

var webApplication = SPWebService.ContentService.
WebApplications[webAppId];

20. Using the following code, delete any timer jobs that already exist on the web

application with the same name as the timer job we are about to instantiate:

foreach (SPJobDefinition job in webApplication.JobDefinitions.
Where(p => p.Name == jobName))

job.Delete();

21. Instantiate BrandingTimerJob and give it a daily schedule.

var brandingJob = new BrandingTimerJob(webApplication, jobName);

brandingJob.Properties.Add("SiteId", siteId);

brandingJob.Schedule = new SPDailySchedule() { BeginHour = 1 };

brandingJob.Update();

22. Uncomment the FeatureDeactivating method.

23. In the FeatureDeactivating method, get the site collection in a using

statement as follows:

using (var site = properties.Feature.Parent as SPSite)

24. Ensure the site collection is not null as follows:

if (site != null)

25. Create the job name and get the web application ID as follows:

var jobName = string.Format(CultureInfo.InvariantCulture,
FormatJobName, site.ID.ToString());

var webAppId = site.WebApplication.Id;

26. Using the following code, add a delegate method to be executed by the

SPSecurity.RunWithElevatedPrivleges method:

SPSecurity.RunWithElevatedPrivileges(delegate()

{

});

Chapter 4

155

27. In the delegate method, get the web application as follows:

var webApplication = SPWebService.ContentService.
WebApplications[webAppId];

28. Delete all timer jobs on the web application that match the job name as follows:

foreach (SPJobDefinition job in webApplication.JobDefinitions.
Where(p => p.Name == jobName))

job.Delete();

29. Save the event receiver.

How it works...

A SharePoint timer job can be created for various scopes in the SharePoint farm. These

scopes include the farm, a web application, a service application, and so on. In our example,

we created a timer job at the web application level with the ID of the site collection. This

allows for us to have multiple timer jobs in the web application for various site collections.

Our timer job runs daily to ensure all sites in the site collection have the site branding

feature enabled.

Using the RunWithElevatedPrivileges method, we can run the code as the SharePoint

farm account. This essentially provides full administrator access to the SharePoint farm. As

such, this technique should be used sparingly and in limited scopes. When passing variables

into the delegate method, it is important to use simple types, such as strings, integers, and

GUIDs. Passing complex objects, such as a site collection (SPSite), can result in the objects

referencing the wrong SharePoint content.

See also
 f The SPJobDeinition class topic on MSDN at http://msdn.microsoft.com/

en-us/library/office/microsoft.sharepoint.administration.
spjobdefinition.aspx

 f The Creating Timer Jobs in SharePoint 2010 That Target Speciic Web Applications

article on MSDN at http://msdn.microsoft.com/EN-US/library/
hh528518(v=office.14).aspx

Packaging Branding Elements in a SharePoint Solution with Visual Studio

156

Packaging and deploying the SharePoint
solution

Visual Studio provides a simple one-click method to package a SharePoint project as a

SharePoint solution. Once packaged, solutions can be deployed from the Visual Studio

interface. In addition, packaged solutions can be deployed with PowerShell and .NET code.

How to do it...

Follow these steps to package and deploy the solution:

1. From the Solution Explorer pane, right-click on the project name.

2. Select Publish as shown in the following screenshot:

3. Provide a location to output the SharePoint solution ile.

4. Click on Publish.

Chapter 4

157

5. From the BUILD menu, select Deploy Solution as shown in the following screenshot:

How it works...

When Visual Studio publishes (or packages) a SharePoint project, it creates a SharePoint

solution ile (wsp) that contains a manifest, the assemblies, and any other iles that are
included. The SharePoint solution is then outputted to the folder speciied.

In addition, Visual Studio has the ability to deploy the solution to the local SharePoint server

from the Visual Studio interface. Using this method, we will retract the solution if it already

exists, and then add and deploy the solution.

There's more...

Deploying SharePoint solutions can also be accomplished with PowerShell or code using the

server-side object model.

Deploying a solution using PowerShell
Follow these steps to deploy a solution using PowerShell:

1. Use the Add-SPSolution Cmdlet to add the solution to the SharePoint farm using

the following code:

Add-SPSolution -LiteralPath "C:\Packages\Code6587EN.Ch04.wsp"

2. Use the Install-SPSolution Cmdlet to deploy the solution to the

SharePoint farm.

Certain code, such as our custom timer job, requires the assembly to be in the Global

Assembly Cache on the SharePoint servers so that the SharePoint Timer service can

access it. To ensure our assembly gets added to the Global Assembly Cache, we will

use the –GACDeployment parameter as follows:

Install-SPSolution Code6587EN.Ch04.wsp -GACDeployment

Packaging Branding Elements in a SharePoint Solution with Visual Studio

158

When deploying SharePoint solutions on a large scale, it is prudent to

check if the solution already exists on the farm in order to upgrade the

solution rather than installing it. In addition, if the solution contains

web application resources, such as safe control entries, the Install-
SPSolution Cmdlet will need to target web applications.

The code sample included with this book for this recipe illustrates

an example of identifying these parameters before performing the

appropriate action.

Deploying a solution with code using the server-side object
model
Follow these steps to deploy a solution with code using the server-side object model:

1. Add the following SharePoint solution to the solutions' collection on the local

SharePoint farm:

var farmSolution = SPFarm.Local.Solutions.Add("C:\\Packages\\
Code6587EN.Ch04.wsp");

2. Deploy the SharePoint solution globally using the following command:

farmSolution.Deploy(DateTime.Now, true, false);

See also
 f The Deploying, Publishing, and Upgrading SharePoint Solution Packages article on

MSDN at http://msdn.microsoft.com/en-us/library/ee231559.aspx

 f The How to Deploy and Publish a SharePoint Solution to a Local SharePoint Site article

on MSDN at http://msdn.microsoft.com/en-us/library/ee231565.aspx

Activating the site collection feature on all
site collections with PowerShell

With our custom branding solution deployed to the SharePoint farm, we need to activate the

site collection feature. The simplest method to activate the site collection feature on all site

collections is using PowerShell.

Chapter 4

159

How to do it...

Follow these steps to activate the feature on each site collection in the farm:

1. Assign the SiteCollectionBranding feature ID to a PowerShell variable, using

the following command:

$brandingFeatureId = [GUID]"19e46226-efb9-4761-b09a-cb8711fd503a"

2. Use the Get-SPWebApplication Cmdlet to get the content web applications and

iterate through them as follows:

foreach ($webApp in (Get-SPWebApplication))

3. Iterate through each site collection in the web application using the following code:

foreach ($site in $webApp.Sites)

4. Ensure the site collection is in 2013 mode.

if ($site.CompatibilityLevel –eq 15)

5. Verify that the SiteCollectionBranding feature is in the collection of activated

features on the site collection. If the feature is not activated, add it to the collection

as follows:

if ($site.Features[$brandingFeatureId] -eq $null)

{

$site.Features.Add($brandingFeatureId)

}

6. Use the Dispose method to discard the SPSite object.

$site.Dispose()

How it works...

In this recipe, we retrieved all of the content web applications with the Get-
SPWebApplication Cmdlet. For each web application we then iterated through each site

collection in the Sites property. Lastly, we checked to ensure the site collection feature was

activated on each site collection.

Adding or removing features is accomplished by adding or removing them from the collection

of features exposed with the Features property of the web application, site collection,

or site.

Packaging Branding Elements in a SharePoint Solution with Visual Studio

160

There's more...

Activating the site collection feature on all site collections can also be done with code using

the server-side object model. Follow these steps to activate the site collection feature with

code using the server-side object model:

1. Assign the SiteCollectionBranding feature ID to a variable as follows:

var featureBrandingSiteCollectionId = new Guid("19e46226-efb9-
4761-b09a-cb8711fd503a");

2. Iterate through each content web application.

foreach (SPWebApplication webApp in SPWebService.ContentService.
WebApplications)

3. Iterate through each site collection in the web application.

foreach (SPSite site in webApp.Sites)

4. Ensure the site collection is in 2013 mode.

if (site.CompatibilityLevel == 15)

5. Verify if the SiteCollectionBranding feature is in the collection of activated

features on the site collection. If not, add the feature to the collection as follows:

if (site.Features[featureBrandingSiteCollectionId] == null)

site.Features.Add(featureBrandingSiteCollectionId);

See also
 f The Get-SPWebApplication topic on Technet http://technet.microsoft.com/

en-us/library/ff607562.aspx

5
Enhancing the Content

Creation Process

with the SharePoint

Publishing Architecture

In this chapter, we will explore the publishing features of SharePoint 2013. We will cover the

following recipes:

 f Setting up a new publishing site

 f Enabling the publishing features on an existing site

 f Setting up contributor and approver access for publishing content

 f Coniguring the versioning settings of the Pages library
 f Creating a publishing web part page

 f Checking out publishing content for editing

 f Checking in edited publishing content

 f Publishing checked in publishing content

 f Approving publishing content

 f Reverting publishing content to a previous version

 f Setting up a publishing site with worklow
 f Creating a web part page and adding web parts with PowerShell

 f Identifying all checked-out publishing pages in a site with PowerShell

 f Creating an image rendition

 f Inserting an image rendition into page content

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

162

Introduction

The publishing features provide the core functionality of web content management for

SharePoint. At its lowest level, the publishing features are provided for a group of content

authors to provide web content to a larger audience. This can include public-facing websites

for customers, extranets for partners and vendors, and intranets for employees.

In a public-facing website scenario, a marketing team may collaborate on sales and product

information to be viewed by customers. In an intranet scenario, a corporate communications

team and a human resources team may collaborate on corporate announcements and

beneits information to be viewed by employees.

Though the publishing features of SharePoint were designed with web content management

in mind, they can be used for a variety of other purposes. For instance, the publishing features

can be used for authoring, publishing, and approving Microsoft Word documents. A sales

department might use these features when creating customer contracts that require approval

from the legal department.

Setting up a new publishing site
SharePoint publishing capabilities are enabled with two SharePoint features, one at the

site collection level and the other at the site level. With the site collection feature activated,

the publishing site templates are made available to use when creating new sites in the site

collection. These site templates automatically activate the required publishing feature at the

site level. In this recipe, we will create a new publishing site in an existing site collection.

The SharePoint publishing site templates will only be available for use when the SharePoint

Server Publishing Infrastructure site collection feature is activated.

How to do it...

Follow these steps to set up a new publishing site:

1. Navigate to the site in your preferred web browser.

2. Select Site contents from the Settings menu.

3. Select new subsite from the Subsites section as shown in the following screenshot:

Chapter 5

163

4. On the New SharePoint Site page, provide a title, description, and URL for the new

site in the Title, Description, and URL ields.

5. Select the Publishing Site template from the Publishing tab as shown in the

following screenshot:

6. Click on Create.

How it works...

Site templates in SharePoint provide instructions on how a new site is provisioned. This

includes pages, features, lists, libraries, and custom provisioning handlers. The Publishing

Site template activates the site scoped publishing feature and creates the libraries for a

publishing site.

SharePoint provides two publishing site templates: Publishing

Site and Publishing Site with Worklow. A Publishing Site with

Worklow template provides built-in worklows to schedule the
publishing of content.

There's more...

SharePoint sites may also be created with PowerShell and code using the server-side object

model. In PowerShell, the New-SPWeb Cmdlet has been provided for creating new SharePoint

sites. In code, we add it to the collection of sites in the site collection object.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

164

Setting up a new publishing site using PowerShell
To set up a new publishing site using PowerShell, use the New-SPWeb Cmdlet to create the

site with the complete URL to the new site, the site template, a name, and a description. In

addition, indicate that the site will be added to the navigation section (quick launch and top

navigation) of the parent site and that the site will not inherit permissions from the parent site.

New-SPWeb -Url "http://sharepoint/publishing" -Template "CMSPUBLISHING#0"
-Name "Publishing Site" -Description "A publishing site. "
-AddToQuickLaunch -AddToTopNav -UniquePermissions

Use the Get-SPWebTemplate Cmdlet to get a full list of

available templates. CMSPUBLISHING#0 is the identiier for the
Publishing Site template.

Setting up a new publishing site with code using the server-side
object model
Follow these steps to set up a new publishing site with code using the server-side

object model:

1. Open the site collection in a using statement. For example:

using (var site = new SPSite("http://sharepoint/"))

2. Add a new site to the site collection with the relative URL, a name, a description, a

language, and the template.

site.AllWebs.Add("publishing", "Publishing Site", "A site about
publishing.", (uint) site.RootWeb.Locale.LCID, "CMSPUBLISHING#0",
true, false);

For the language, we are simply using the language of the root site

in the site collection. Any language that has been installed on the

SharePoint farm may be used.

See also
 f The New-SPWeb topic on MSDN at http://technet.microsoft.com/en-us/

library/ff607579.aspx

 f The SPSite class topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spsite.aspx

 f The SPWebCollection.Add method topic on MSDN at http://msdn.microsoft.
com/en-us/library/ms473439.aspx

Chapter 5

165

Enabling the publishing features on an
existing site

In addition to using the SharePoint publishing site templates, publishing capabilities may

be enabled on an existing site by activating the SharePoint Server Publishing feature. In this

recipe, we will activate the SharePoint Server Publishing feature on an existing site.

How to do it...

Follow these steps to enable publishing features on an existing site:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Manage site features from the Site Actions section as shown in the

following screenshot:

4. Activate the SharePoint Server Publishing feature.

How it works...

The SharePoint Server Publishing feature creates the SharePoint libraries used for a

publishing site. These include the Pages and Images libraries.

There's more...

SharePoint features may also be managed with PowerShell and code using the server-side

object model. The feature identiier for the SharePoint Server Publishing Infrastructure

site collection feature is f6924d36-2fa8-4f0b-b16d-06b7250180fa and the feature

identiier for the SharePoint Server Publishing feature is 94c94ca6-b32f-4da9-a9e3-
1f3d343d7ecb.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

166

Enabling the publishing features on an existing site using
PowerShell
Follow these steps to enable publishing features on an existing site using PowerShell:

1. Assign the feature identiiers to variables as follows:
$featureSiteCollection = [GUID]"f6924d36-2fa8-4f0b-b16d-
06b7250180fa"

$featureSite = [GUID]"94c94ca6-b32f-4da9-a9e3-1f3d343d7ecb"

2. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb http://sharepoint/publishing

3. Ensure the site collection features collection contains the site collection feature as

follows:

if ($web.Site.Features[$featureSiteCollection] -eq $null)

{

$web.Site.Features.Add($featureSiteCollection)

}

4. Ensure the site features collection contains the site feature as follows:

if ($web.Features[$featureSite] -eq $null)

{

$web.Features.Add($featureSite)

}

5. Use the following Dispose method to discard the SPWeb object:

$web.Dispose()

Enabling the publishing features on an existing site with code
using the server-side object model
Follow these steps to enable publishing features on an existing site with code using the

server-side object model:

1. Assign the feature identiiers to variables as follows:
var FeatureSiteCollection = new Guid("f6924d36-2fa8-4f0b-b16d-
06b7250180fa");

var FeatureSite = new Guid("94c94ca6-b32f-4da9-a9e3-
1f3d343d7ecb");

2. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

Chapter 5

167

3. Using the following code, ensure the site features' collection contains the site

collection feature:

if (site.Features[FeatureSiteCollection] == null)

site.Features.Add(FeatureSiteCollection);

4. Open the site in a using statement as follows:

using (var web = site.OpenWeb())

5. Using the following code, ensure the site features collection contains the site feature:

if (web.Features[FeatureSite] == null)

{

web.Features.Add(FeatureSite);

}

See also
 f The SPFeatureCollection.Add method topic on MSDN at http://msdn.

microsoft.com/en-us/library/ms456927.aspx

Setting up contributor and approver access
for publishing content

Using the content approval capabilities of SharePoint, we can allow for certain users to

collaborate on an item and then submit it for approval before it becomes available to other

users. In this recipe, we will conigure content approval on the Pages library and set up the

contributor and approver groups.

With the content approval features, we can also use SharePoint worklows to streamline
the approval process. SharePoint comes with the Publishing Approval Worklow feature

that provides a basic approval worklow. Customized worklows may also be created with
SharePoint Designer and Visual Studio. For more information on worklows refer to http://
msdn.microsoft.com/en-us/library/office/jj163917.aspx.

How to do it...

Follow these steps to set up a contributor and approver access:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

168

3. Select Site permissions from the Users and Permissions section.

If the site is inheriting permissions from the parent site,

select Stop Inheriting Permissions from the ribbon.

4. Select Create Group from the ribbon.

5. Name the group Pages Contributors and click on Create Group.

6. Repeat the previous step to create a group named Pages Approvers.

7. Select Site contents from the Settings menu.

8. Select the Pages library.

9. Select Library Settings from the Library tab on the ribbon.

10. Select Versioning settings from the General Settings section as shown in the

following screenshot:

Chapter 5

169

11. Set the Require content approval for submitted items checkbox to Yes as shown in

the following screenshot:

12. Click on OK.

13. Select Permissions for this document library from the Permissions and

Management section as shown in the following screenshot:

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

170

14. Select Stop Inheriting Permissions from the PERMISSIONS tab on the ribbon as

shown in the following screenshot:

15. Select Grant Permissions from the PERMISSIONS tab on the ribbon as shown in the

following screenshot:

16. Enter Pages Contributors.

17. Select Show Options.

18. Select Contribute for the Select a permission level option as shown in the

following screenshot:

Chapter 5

171

19. Select Share.

20. Repeat steps 15 to 19 to provide the Approve permission level to the Pages

Approvers group.

How it works...

Permissions in SharePoint are granted to a user based on the roles assigned to the user or a

group the user belongs to. User and group roles, such as Contribute, may be assigned at the

site collection, site, list, library, or individual item level. In this recipe, we provided Approve

and Contribute roles to two groups at the library level.

There's more...

Managing library settings, creating SharePoint groups, and assigning SharePoint roles may

also be accomplished with PowerShell or code using the server-side object model.

Setting up contributor and approver access using PowerShell
Follow these steps to set up contributor and approver access using PowerShell:

1. Assign the default username to a variable. We will use this user as the owner and irst
member of the SharePoint groups we are about to create.

$defaultUserName = "domain\user"

2. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb "http://sharepoint/publishing"

3. Get the Pages library from the site as follows:

$pages = $web.Lists["Pages"]

4. If the Pages library is inheriting permissions from the site, break the inheritance.

Set the parameter to false to indicate that we do not want to copy the existing

permissions from the parent site.

if ($pages.HasUniqueRoleAssignments -eq $false) { $pages.
BreakRoleInheritance($false) }

5. Set the EnableModeration property of the Pages library to turn on content

approval for the library.

$pages.EnableModeration = $true

6. Update the Pages library using the following command:

$pages.Update()

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

172

7. Get the default user from the site as a Microsoft.SharePoint.SPMember object.

$member = [Microsoft.SharePoint.SPMember] $web.
Users[$defaultUserName]

8. Get the default user from the site as a Microsoft.SharePoint.SPUser object

as follows:

$user = [Microsoft.SharePoint.SPUser] $web.Users[$defaultUserName]

9. Create the Pages Approvers group as follows:

$web.SiteGroups.Add("Pages Approvers", $member, $user, "These
users can approve submissions in the Pages Library")

10. Create the Pages Contributors group as follows:

$web.SiteGroups.Add("Pages Contributors", $member, $user, "These
users can edit content in the Pages Library")

11. Get the newly created groups.

$approvers = $web.SiteGroups["Pages Approvers"]

$contributors = $web.SiteGroups["Pages Contributors"]

12. Get the Approve and Contribute roles from the site as follows:

$roleApprover = $web.RoleDefinitions["Approve"]

$roleContribute = $web.RoleDefinitions["Contribute"]

13. Assign the roles to the groups as follows:

$assignmentApprove = New-Object Microsoft.SharePoint.
SPRoleAssignment($approvers)

$assignmentApprove.RoleDefinitionBindings.Add($roleApprover)

$pages.RoleAssignments.Add($assignmentApprove)

$assignmentContribute = New-Object Microsoft.SharePoint.
SPRoleAssignment($contributors)

$assignmentContribute.RoleDefinitionBindings.Add($roleContribute)

$pages.RoleAssignments.Add($assignmentContribute)

Chapter 5

173

14. Update the Pages library using the following command:

$pages.Update()

15. Use the Dispose method to discard the SPWeb object as follows:

$web.Dispose()

Setting up contributor and approver access with code using the
server-side object model
Follow these steps to setup contributor and approver access with code using the server-side

object model:

1. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in a using statement as follows:

using (var web = site.OpenWeb())

3. Get the Pages library from the site as follows:

var pages = web.Lists["Pages"];

4. If the Pages library is inheriting permissions from the site, break the inheritance.

Specify false for the parameter to indicate we do not want to copy the existing

permissions from the parent site.

if (!pages.HasUniqueRoleAssignments)

pages.BreakRoleInheritance(false);

5. Set the EnableModeration property of the Pages library to turn on content

approval as follows:

pages.EnableModeration = true;

6. Update the Pages library using the following line of code:

pages.Update();

7. Get the default user as a Microsoft.SharePoint.SPMember object as follows:

var member = web.Users["USERNAME"] as SPMember;

8. Get the default user as a Microsoft.SharePoint.SPUser object as follows:

var user = web.Users["USERNAME"] as SPUser;

9. Create the Pages Approvers group using the following code:

web.SiteGroups.Add("Pages Approvers", member, user, "These users
can approve submissions in the Pages Library");

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

174

10. Create the Pages Contributors group using the following code:

web.SiteGroups.Add("Pages Contributors", member, user, "These
users can edit content in the Pages Library");

11. Get the newly created groups as follows:

var approvers = web.SiteGroups["Pages Approvers"];

var contributors = web.SiteGroups["Pages Contributors"];

12. Get the Approve and Contribute roles from the site using the following code:

var roleApprover = web.RoleDefinitions["Approve"];

var roleContribute = web.RoleDefinitions["Contribute"];

13. Using the following code, assign the roles to the groups:

var assignmentApprove = new SPRoleAssignment(approvers);

assignmentApprove.RoleDefinitionBindings.Add(roleApprover);

pages.RoleAssignments.Add(assignmentApprove);

var assignmentContribute = new SPRoleAssignment(contributors);

assignmentContribute.RoleDefinitionBindings.Add(roleContribute);

pages.RoleAssignments.Add(assignmentContribute);

14. Update the Pages library using the following line of code:

pages.Update();

See also
 f The Getting Started with Worklows in SharePoint 2013 article on MSDN at http://

msdn.microsoft.com/en-us/library/office/jj163917.aspx

 f The Worklow Development in SharePoint Designer 2013 and Visio 2013 article on

MSDN at http://msdn.microsoft.com/en-us/library/office/jj163272.
aspx

 f The SPRoleAssignment class topic on MSDN at http://msdn.microsoft.com/
en-us/library/microsoft.sharepoint.sproleassignment.aspx

 f The SPGroupCollection class topic on MSDN at http://msdn.microsoft.com/
en-us/library/microsoft.sharepoint.spgroupcollection.aspx

Chapter 5

175

Coniguring the versioning settings of the
Pages library

The versioning features of SharePoint allow us to create published and draft versions of items

in lists and libraries. We can conigure how many published and draft versions to keep as well
as who can see items when they are in a draft state. In this recipe, we will be coniguring the
versioning settings of the Pages library.

How to do it...

Follow these steps to conigure the versioning settings of the Pages library:

1. Navigate to the site in your preferred web browser.

2. Select Site contents from the Settings menu.

3. Select the Pages library.

4. Select Library Settings from the Library tab in the ribbon.

5. Select Versioning Settings from the General Settings section.

6. Set the Document Version History setting to Create major and minor (draft)

versions as shown in the following screenshot:

7. Select both checkboxes for limiting the number of versions and set the limit to 25

for each.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

176

8. Set the Draft Item Security setting to Only users who can edit items as shown in the

following screenshot:

9. Set the Require Check Out setting to Yes as shown in the following screenshot:

10. Click on OK.

How it works...

When versioning is enabled on a SharePoint list or library, a copy of the item is saved in the

content database each time the item is edited. When the version limits are conigured, the
oldest version of the item will be deleted when the limit has been reached and a new version

is being saved.

By default, versioning is conigured to allow an unlimited number of
versions to be saved. For increased performance and limiting the

amount of space used, it is recommended to set a limit to the number

of versions saved.

In addition, when check out is required, users will not be able to modify the item until they

check out the item.

There's more...

Managing the versioning settings of a SharePoint library may also be accomplished with

PowerShell or code using the server-side object model.

Chapter 5

177

Coniguring the versioning settings of the Pages library using
PowerShell
Follow these steps to conigure the versioning settings of the Pages library using PowerShell:

1. Get the site using the following Get-SPWeb Cmdlet:

$web = Get-SPWeb "http://sharepoint/publishing"

2. Get the Pages library from the site as follows:

$pages = $web.Lists["Pages"]

3. Enable versioning on the library as follows:

$pages.EnableVersioning = $true

$pages.EnableMinorVersions = $true

4. Set the versioning limits on the library.

$pages.MajorWithMinorVersionsLimit = 25

$pages.MajorVersionLimit = 25

5. Set the visibility of draft items using the following code:

$pages.DraftVersionVisibility = [Microsoft.SharePoint.
DraftVisibilityType]::Author

6. Conigure the items that require to be checked out before editing.
$pages.ForceCheckout = $true

7. Update the Pages library as follows:

$pages.Update()

8. Use the following Dispose method to discard the SPWeb object:

$web.Dispose()

Coniguring the versioning settings of the Pages library with code
using the server-side object model
Follow these steps to conigure the versioning settings of the Pages library with code using

the server-side object model:

1. Open the site collection containing the site in a using statement as shown in the

following line of code:

using (var site = new SPSite("http://sharepoint/publishing"))

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

178

2. Open the site in a using statement as follows:

using (var web = site.OpenWeb())

3. Get the Pages library from the site using the following code:

var pages = web.Lists["Pages"];

4. Enable versioning on the library as follows:

pages.EnableVersioning = true;

pages.EnableMinorVersions = true;

5. Set the versioning limits on the library as follows:

pages.MajorWithMinorVersionsLimit = 25;

pages.MajorVersionLimit = 25;

6. Set the visibility of draft items as follows:

pages.DraftVersionVisibility = DraftVisibilityType.Author;

7. Conigure the items that require to be checked out before editing.
pages.ForceCheckout = true;

8. Update the Pages library using the following line of code:

pages.Update();

See also
 f The SPList properties topic on MSDN at http://msdn.microsoft.com/en-us/

library/Microsoft.SharePoint.SPList_properties.aspx

Creating a publishing web part page
SharePoint provides many page layouts that serve as templates when creating content pages.

In this recipe, we will use the Blank Web Part page template to create a new content page.

How to do it...

Follow these steps to create a publishing web part page:

1. Navigate to the site in your preferred web browser.

2. Select Site contents from the Settings menu.

3. Select the Pages library.

Chapter 5

179

4. Select New Document from the FILES tab in the ribbon as shown in the

following screenshot:

5. Provide a title, description, and URL for the new page in the Title, Description, and

URL ields.

6. Select the (Welcome Page) Blank Web Part page template as shown in the following

screenshot:

7. Click on Create.

How it works...

Pages in a SharePoint library are created with a page layout template. This template provides

the general layout of the content within the conines of the master page.

There's more...

Publishing pages may also be created using PowerShell or code using the server-side

object model.

Creating a publishing web part page using PowerShell
Follow these steps to create a publishing web part page using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb "http://sharepoint/publishing"

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

180

2. Get the publishing site from the SharePoint site as follows:

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]::GetPubl
ishingWeb($web)

3. Get the page layout template from the publishing site using the following command:

$layout = $pubWeb.GetAvailablePageLayouts() | Where-Object {
$_.Title -eq "Blank Web Part Page" }

4. Create a new publishing page as follows:

$page = $pubWeb.AddPublishingPage("PowerShellPage.aspx", $layout)

5. Update the publishing page object as follows:

$page.Update()

6. Set the Title property of the publishing page using the following commands:

$page.ListItem["Title"] = "PowerShell Page"

$page.ListItem.Update()

7. Use the Dispose method to discard the SPWeb object as follows:

$web.Dispose()

Creating a publishing web part page with code using the server-
side object model
Follow these steps to create a publishing web part page with code using the server-side

object model:

1. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in a using statement as follows:

using (var web = site.OpenWeb())

3. Get the publishing site from the SharePoint site as follows:

var pubWeb = PublishingWeb.GetPublishingWeb(web);

4. Get the page layout template from the publishing site using the following

code:

var layout = pubWeb.GetAvailablePageLayouts().Where(p => p.Title
== "Blank Web Part Page").First();

Chapter 5

181

5. Create a new publishing page as follows:

var page = pubWeb.AddPublishingPage("CodePage.aspx", layout);

6. Update the publishing page object as follows:

page.Update();

7. Set the Title property of the publishing page using the following code:

page.ListItem["Title"] = "Code Page";

page.ListItem.Update();

See also
 f The GetPublishingWeb method topic on MSDN at http://msdn.microsoft.com/

en-us/library/ms497306.aspx

 f The AddPublishingPage method topic on MSDN at http://msdn.microsoft.
com/en-us/library/ee562149.aspx

Checking out publishing content for editing
Checking out an item in SharePoint provides the user with an exclusive lock to prevent the

editing of that item. This prevents multiple users from making modiications at the same time.
In this recipe, we will check out the publishing page we created in the Creating a publishing

web part page recipe.

How to do it...

Follow these steps to check out a publishing page:

1. Navigate to the SharePoint list or library that contains the item to be checked out in

your preferred web browser.

In our example, we will be using the Pages library and the

publishing page we created in the Creating a publishing web

part page recipe.

2. Select the item by clicking on the checkmark on the item.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

182

3. Select Check Out from the FILES tab in the ribbon as shown in the

following screenshot:

How it works...

Checking out an item in a SharePoint list or library lags it with a checked out status. This
prevents other users from modifying the item. A user with a manage lists or higher role may

override the check out.

There's more...

SharePoint list and library items may also be checked out with PowerShell or code using the

server-side object model. There are a number of ways we could get the item to check out. In

our example, we are using a CAML query to get the publishing page from the publishing site by

its title. CAML is an XML-based markup language used to query SharePoint content.

Checking out publishing content using PowerShell
Follow these steps to check out a publishing content using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb "http://sharepoint/publishing"

2. Get the publishing site from the SharePoint site as follows:

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]::GetPubl
ishingWeb($web)

3. Get the publishing page using the following CAML query:

$camlQuery = "<Where><Eq><FieldRef Name='Title'></FieldRef><Value
Type='Text'>PowerShell Page</Value></Eq></Where>"

$page = $pubWeb.GetPublishingPages($camlQuery)

4. Check out the publishing page using the following command:

$page.ListItem.File.CheckOut()

Chapter 5

183

5. Use the Dispose method to discard the SPWeb object as follows:

$web.Dispose()

Checking out publishing content with code using the server-side
object model
Follow these steps to check out a publishing content with code using the server-side

object model:

1. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in a using statement as follows:

using (var web = site.OpenWeb())

3. Get the publishing site from the SharePoint site.

var pubWeb = PublishingWeb.GetPublishingWeb(web);

4. Get the publishing page with the following CAML query:

var camlQuery = "<Where><Eq><FieldRef Name='Title'></
FieldRef><Value Type='Text'>Code Page</Value></Eq></Where>";

var page = pubWeb.GetPublishingPages(camlQuery).First();

5. Check out the publishing page as follows:

page.ListItem.File.CheckOut();

See also
 f The Introduction to Collaborative Application Markup Language (CAML) article on

MSDN at http://msdn.microsoft.com/en-us/library/office/ms426449.
aspx

 f The SPFile methods topic on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.spfile_methods.aspx

Checking in edited publishing content
Checking in an item in SharePoint releases the exclusive lock on the item and allows other

users, who have access, to view or edit the item. In this recipe, we will check in the publishing

page we created in the Creating a publishing web part page recipe.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

184

How to do it...

Follow these steps to check in a publishing page:

1. Navigate to the SharePoint list or library that contains the item to check in with your

preferred web browser.

2. Select the item by clicking on the checkmark on the item.

3. Select Check In from the FILES tab in the ribbon as shown in the

following screenshot:

4. Provide any applicable Check In notes.

5. Click on OK.

How it works...

Checking in a SharePoint list or library item makes the modiications made by the user
available to other users with the appropriate access. In addition, the item becomes available

for other users with appropriate access to check out and modify the item.

There's more...

SharePoint list and library items may also be checked in with PowerShell or code using the

server-side object model.

Checking in publishing content using PowerShell
Follow these steps to check in a publishing page using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb "http://sharepoint/publishing"

2. Get the publishing site from the SharePoint site using the following command:

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]::GetPubl
ishingWeb($web)

Chapter 5

185

3. Get the publishing page using the following CAML query:

$camlQuery = "<Where><Eq><FieldRef Name='Title'></FieldRef><Value
Type='Text'>PowerShell Page</Value></Eq></Where>"

$page = $pubWeb.GetPublishingPages($camlQuery)

4. Check in the publishing page as follows:

$page.ListItem.File.CheckIn("My Notes")

5. Use the following Dispose method to discard the SPWeb object:

$web.Dispose()

Checking in publishing content with code using the server-side
object model
Follow these steps to check in a publishing page with code using the server-side object model:

1. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in the following using statement:

using (var web = site.OpenWeb())

3. Get the publishing site from the SharePoint site.

var pubWeb = PublishingWeb.GetPublishingWeb(web);

4. Get the publishing page with the following CAML query:

var camlQuery = "<Where><Eq><FieldRef Name='Title'></
FieldRef><Value Type='Text'>Code Page</Value></Eq></Where>";

var page = pubWeb.GetPublishingPages(camlQuery).First();

5. Check in the publishing page using the following code:

page.ListItem.File.CheckIn("My Notes");

See also
 f The SPFile methods topic on MSDN at http://msdn.microsoft.com/en-us/

library/microsoft.sharepoint.spfile_methods.aspx

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

186

Publishing checked-in publishing content
Publishing an item in SharePoint makes it available to consume by users who do not have

contribution rights to the item. If content approval is required, it will mark the item as Pending

Approval. In this recipe, we will publish the publishing page we created in the Creating a

publishing web part page recipe.

When content approval is required, a published item will

not be available to noncontributing users until it is marked

as Approved.

How to do it...

Follow these steps to publish a publishing page:

1. Navigate to the SharePoint list or library that contains the item to be published in

your preferred web browser.

2. Select the item by clicking on the checkmark on the item.

3. Select Publish from the FILES tab on the ribbon.

4. Provide any applicable publishing notes.

5. Click on OK.

How it works...

Published SharePoint list or library items are available to users with read access to the items.

An item may go through multiple revisions before being published. Only the published version

is made available to the users with read access. When content approval is required, only the

approved and published version is made available to users with read access.

There's more...

SharePoint list and library items may also be published with PowerShell or code using the

server-side object model.

Chapter 5

187

Publishing a checked in publishing content using PowerShell
Follow these steps to publish a checked in publishing page using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb "http://sharepoint/publishing"

2. Get the publishing site from the SharePoint site.

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]::GetPubl
ishingWeb($web)

3. Get the publishing page using the following CAML query:

$camlQuery = "<Where><Eq><FieldRef Name='Title'></FieldRef><Value
Type='Text'>PowerShell Page</Value></Eq></Where>"

$page = $pubWeb.GetPublishingPages($camlQuery)

4. Publish the publishing page as follows:

$page.ListItem.File.Publish("My Notes")

5. Use the Dispose method to discard the SPWeb object as follows:

$web.Dispose()

Publishing a checked in publishing content with code using the
server-side object model
Follow these steps to publish a checked in publishing page with code using the server-side

object model:

1. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in a using statement.

using (var web = site.OpenWeb())

3. Get the publishing site from the SharePoint site as follows:

var pubWeb = PublishingWeb.GetPublishingWeb(web);

4. Get the publishing page with the following CAML query:

var camlQuery = "<Where><Eq><FieldRef Name='Title'></
FieldRef><Value Type='Text'>Code Page</Value></Eq></Where>";

var page = pubWeb.GetPublishingPages(camlQuery).First();

5. Publish the publishing page using the following code:

page.ListItem.File.Publish("My Notes");

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

188

See also
 f The SPFile methods topic on MSDN at http://msdn.microsoft.com/en-us/

library/microsoft.sharepoint.spfile_methods.aspx

Approving publishing content
Approving a published item in SharePoint makes it available to be viewed by users who have

read access but do not have contribute access to the item. In this recipe, we will approve the

publishing page we created in the Creating a publishing web part page recipe.

How to do it...

Follow these steps to approve a publishing page:

1. Navigate to the SharePoint list or library that contains the item to be approved in your

preferred web browser.

2. Select the item by clicking on the checkmark on the item.

3. Select Approve/Reject from the FILES tab on the ribbon.

4. Select Approved.

5. Provide any applicable approval notes.

6. Click on OK.

How it works...

When content approval is required, approving a published item makes it available for the

users with read access to view the item.

In addition to approving content, content may also be rejected. Rejecting

results in the version awaiting approval not being published. An item may

also be unpublished.

Chapter 5

189

There's more...

SharePoint list and library items may also be approved with PowerShell or code using the

server-side object model.

Approving publishing content using PowerShell
Follow these steps to approve a publishing page using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb "http://sharepoint/publishing"

2. Get the publishing site from the SharePoint site.

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]::GetPubl
ishingWeb($web)

3. Get the publishing page using the following CAML query:

$camlQuery = "<Where><Eq><FieldRef Name='Title'></FieldRef><Value
Type='Text'>PowerShell Page</Value></Eq></Where>"

$page = $pubWeb.GetPublishingPages($camlQuery)

4. Approve the publishing page as follows:

$page.ListItem.File.Approve("My Notes")

5. Use the Dispose method to discard the SPWeb object as follows:

$web.Dispose()

Approving publishing content with code using the server-side
object model
Follow these steps to approve a publishing page with code using the server-side object model:

1. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in the following using statement:

using (var web = site.OpenWeb())

3. Get the publishing site from the SharePoint site.

var pubWeb = PublishingWeb.GetPublishingWeb(web);

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

190

4. Get the publishing page with the following CAML query:

var camlQuery = "<Where><Eq><FieldRef Name='Title'></
FieldRef><Value Type='Text'>Code Page</Value></Eq></Where>";

var page = pubWeb.GetPublishingPages(camlQuery).First();

5. Approve the publishing page as follows:

page.ListItem.File.Approve("My Notes");

See also
 f The SPFile methods topic on MSDN at http://msdn.microsoft.com/en-us/

library/microsoft.sharepoint.spfile_methods.aspx

Reverting publishing content to a previous
version

Versioned items in SharePoint allow us to revert back to a previous version when desired. In

this recipe, we will revert the publishing page we created in the Creating a publishing web part

page recipe.

How to do it...

Follow these steps to revert a publishing page:

1. Navigate to the SharePoint list or library that contains the item to be approved in your

preferred web browser.

2. Select the item by clicking on the checkmark on the item.

3. Select Check Out from the FILES tab on the ribbon.

4. Select the item by clicking on the checkmark of the item.

5. Select Version History from the FILES tab on the ribbon.

6. Select the drop-down menu from the Modiied Date option to select the version you

want to revert.

Chapter 5

191

7. Select Restore as shown in the following screenshot:

8. Click on OK.

9. Check in the item to complete the process using the Check In option.

How it works...

When a previous version of an item is restored, it copies that version and makes it the newest

version. The version prior to the current one will be saved as an old version.

There's more...

SharePoint list and library items may also be reverted with PowerShell or code using the

server-side object model.

Reverting publishing content using PowerShell
Follow these steps to revert a publishing page using PowerShell:

1. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb "http://sharepoint/publishing"

2. Get the publishing site from the SharePoint site.

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]::GetPubl
ishingWeb($web)

3. Get the publishing page using the following CAML query:

$camlQuery = "<Where><Eq><FieldRef Name='Title'></FieldRef><Value
Type='Text'>PowerShell Page</Value></Eq></Where>"

$page = $pubWeb.GetPublishingPages($camlQuery)

4. Check out the publishing page as follows:

$page.ListItem.File.CheckOut()

5. Restore the item to the speciied version.
$page.ListItem.Versions.RestoreByLabel("1.0")

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

192

6. Check in the publishing page as follows:

$page.ListItem.File.CheckIn("Reverted to 1.0")

7. Use the Dispose method to discard the SPWeb object as follows:

$web.Dispose()

Reverting publishing content with code using the server-side
object model
Follow these steps to revert a publishing page with code using the server-side object model:

1. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in a using statement.

using (var web = site.OpenWeb())

3. Get the publishing site from the SharePoint site.

var pubWeb = PublishingWeb.GetPublishingWeb(web);

4. Get the publishing page with the following CAML query:

var camlQuery = "<Where><Eq><FieldRef Name='Title'></
FieldRef><Value Type='Text'>Code Page</Value></Eq></Where>";

var page = pubWeb.GetPublishingPages(camlQuery).First();

5. Check out the publishing page using the following line of code:

page.ListItem.File.CheckOut();

6. Restore the item to the speciied version.
page.ListItem.Versions.RestoreByLabel("1.0");

7. Check in the publishing page using the following line of code:

page.ListItem.File.CheckIn("Reverted to 1.0");

See also
 f The SPFile methods topic on MSDN at http://msdn.microsoft.com/en-us/

library/microsoft.sharepoint.spfile_methods.aspx

Chapter 5

193

Setting up a publishing site with worklow
SharePoint provides a very robust worklow engine that can be incorporated into publishing

sites or any other site. Built-in SharePoint worklows can be added from the web interface.
Custom SharePoint worklows can be created with SharePoint Designer or Visual Studio.

In this recipe, we will create a publishing site that has a worklow for scheduling the publishing
of content using a built-in site template. In addition, we will create a publishing page with a

publishing schedule.

How to do it...

Follow these steps to set up a publishing site with worklow:

1. Navigate to the site in your preferred web browser.

2. Select Site contents from the Settings menu.

3. Select new subsite from the Subsites section.

4. On the New SharePoint Site page, provide a title, description, and URL for

the new SharePoint site in the Title, Description, and URL ields.

5. Select the Publishing Site with Worklow template from the Publishing tab.

6. Click on Create.

7. In the new site, select Site contents from the Settings menu.

8. Select the Pages library.

9. Select New Document from the FILES tab in the ribbon and create a new

publishing page.

10. Select the checkmark to select the new page in the Pages library.

11. Select Edit Properties from the FILES tab in the ribbon.

12. Select Scheduling Start Date and Scheduling End Date as shown in the following

screenshot:

13. Click on Save.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

194

How it works...

The Publishing with Worklow site template provides the ability to schedule publishing

of content. When an item with a schedule is published and approved, it sets the approval

status to Scheduled. Once the Scheduling Start Date is reached, SharePoint sets the

Approval Status to Approved and becomes available to be viewed by the end users. Once the

Scheduling End Date is reached, SharePoint sets the Approval Status back to Draft and is no

longer available to be viewed by the end users.

See also
 f The Getting Started with Worklows in SharePoint 2013 article on MSDN at http://

msdn.microsoft.com/en-us/library/office/jj163917.aspx

 f The Worklow Development in SharePoint Designer 2013 and Visio 2013 article on

MSDN at http://msdn.microsoft.com/en-us/library/office/jj163272.
aspx

 f The SharePoint 2013 Worklow Fundamentals article on MSDN at http://msdn.
microsoft.com/en-us/library/jj163181.aspx

Creating a web part page and adding web
parts with PowerShell

In this recipe, we will use PowerShell to create a new publishing page and add web parts to it.

This is useful in instances where a large number of these publishing pages need to be created

and doing so one-by-one in the web interface would be a long and tedious process.

How to do it...

Follow these steps to create a web part page and add web parts using PowerShell:

1. Get the site with the Get-SPWeb Cmdlet.

$web = Get-SPWeb "http://sharepoint/publishing"

2. Get the publishing site from the SharePoint site.

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]::GetPubl
ishingWeb($web)

3. Get the page layout from the publishing site as follows:

$layout = $pubWeb.GetAvailablePageLayouts() | Where-Object {
$_.Title -eq "Blank Web Part Page" }

Chapter 5

195

4. Create the publishing page.

$page = $pubWeb.AddPublishingPage("PowerShellPageWithWebPart.
aspx", $layout)

5. Update the publishing page object using the following command:

$page.Update()

6. Set the Title property of the publishing page as follows:

$page.ListItem["Title"] = "PowerShell Page with Web Part"

$page.ListItem.Update()

7. Get the web part manager for the publishing page.

$wpm = $web.GetLimitedWebPartManager($page.Url, [System.Web.
UI.WebControls.WebParts.PersonalizationScope]::Shared)

8. Create a new content editor web part page.

$cewp = New-Object Microsoft.SharePoint.WebPartPages.
ContentEditorWebPart

$cewp.Title = "PowerShell Web Part"

$cewp.ChromeType = [System.Web.UI.WebControls.WebParts.
PartChromeType]::TitleOnly

9. Set the Content property of the new web part using an XmlDocument object as

follows:

$xml = New-Object System.Xml.XmlDocument

$xml.LoadXml("<Content>PowerShell Page Content</Content>")

$cewp.Content = $xml.FirstChild

10. Add the web part to the Header web part zone at index 0.

$wpm.AddWebPart($cewp, "Header", 0)

11. Use the Dispose method to discard the SPWeb object as follows:

$web.Dispose()

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

196

How it works...

PowerShell allows us to use .NET code to script interactions with the SharePoint object model.

In this recipe, we used the publishing methods to create a new publishing page and the web

part manager object to add a new web part to the page.

There's more...

Creating publishing pages and managing page web parts may also be accomplished with code

using the server-side object model. Follow these steps to create a publishing page and add a

web part with code using the server-side object model:

1. Get the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in a using statement as follows:

using (var web = site.OpenWeb())

3. Get the publishing site from the SharePoint site.

var pubWeb = PublishingWeb.GetPublishingWeb(web);

4. Get the page layout from the publishing site.

var layout = pubWeb.GetAvailablePageLayouts().Where(p => p.Title
== "Blank Web Part Page").First();

5. Create the publishing page using the following code:

var page = pubWeb.AddPublishingPage("CodePageWithWebPart.aspx",
layout);

6. Update the publishing page object using the following code:

page.Update();

7. Set the Title property of the publishing page as follows:

page.ListItem["Title"] = "Code Page With Web Part";

page.ListItem.Update();

8. Get the web part manager for the publishing page.

var wpm = web.GetLimitedWebPartManager(page.Url,
PersonalizationScope.Shared);

Chapter 5

197

9. Create a new content editor web part page as follows:

var cewp = new ContentEditorWebPart();

cewp.Title = "Code Web Part Title";

cewp.ChromeType = PartChromeType.TitleOnly;

10. Set the Content property of the web part using an XmlDocument object as

follows:

var xml = new XmlDocument();

xml.LoadXml("<Content>Code Web Part Content</Content>");

cewp.Content = xml.FirstChild as XmlElement;

11. Add the web part to the Header web part zone at index 0 as follows:

wpm.AddWebPart(cewp, "Header", 0);

See also
 f The SPWeb.GetLimitedWebPartManager method topic on MSDN at http://

msdn.microsoft.com/en-us/library/microsoft.sharepoint.spweb.
getlimitedwebpartmanager.aspx

Identifying all checked-out publishing pages
in a site with PowerShell

Using the publishing features, SharePoint provides a great methodology for content editors

to use when collaborating on items. In many cases, there is one law in this methodology, the
users. It is very common for users to check out content and then forget to check in again.

In this recipe, we will use PowerShell to identify all the publishing pages in a site that are

currently checked out.

Users with the permissions to manage the list or library, such as site

administrators, have the ability to override a check out. This can be useful if

the user who checked out the item is not available to check in the item.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

198

How to do it...

Follow these steps to identify checked-out publishing pages using PowerShell:

1. Open your preferred text editor to create the ps1 script ile.

2. Get the site using the Get-SPWeb Cmdlet as follows:

$web = Get-SPWeb "http://sharepoint/publishing"

3. Get the publishing site from the SharePoint site.

$pubWeb = [Microsoft.SharePoint.Publishing.PublishingWeb]::GetPubl
ishingWeb($web)

4. Get the publishing pages from the publishing site.

$pages = $pubWeb.GetPublishingPages()

5. Iterate through each page in the collection of publishing pages using the following

command:

foreach ($page in $pages)

6. Check the Level property of the publishing page ile to see if the item is checked
out.

if ($page.ListItem.File.Level -eq [Microsoft.SharePoint.
SPFileLevel]::Checkout)

7. If the publishing page is checked out, output the details.

Write-Host $page.Url

Write-Host "By: " $page.ListItem.File.CheckedOutByUser.LoginName

Write-Host "Since: " $page.ListItem.File.CheckedOutDate.ToString()

Write-Host ""

8. Use the Dispose method to discard the SPWeb object as follows:

$web.Dispose()

9. Save the ile as a ps1 ile, for example, getcheckedoutpages.ps1

10. Execute the script in the PowerShell session using the following command:

./getcheckedoutpages.ps1

Chapter 5

199

How it works...

Obtaining the SharePoint list item object associated with a publishing page provides the

details necessary to identify whether a page is checked out and who has checked it out.

There's more...

Identifying checked out publishing pages may also be accomplished with code using the

server-side object model. Follow these steps to identify checked-out publishing pages with

code using the server-side object model:

1. Open the site collection containing the site in a using statement as follows:

using (var site = new SPSite("http://sharepoint/publishing"))

2. Open the site in a using statement as follows:

using (var web = site.OpenWeb())

3. Get the publishing site from the SharePoint site.

var pubWeb = PublishingWeb.GetPublishingWeb(web);

4. Get the publishing pages from the publishing site.

var pages = pubWeb.GetPublishingPages();

5. Iterate through each page in the collection of publishing pages using the

following line of code:

foreach (var page in pages)

6. Check the Level property of the publishing page to see if the item is

checked out.

if (page.ListItem.File.Level == SPFileLevel.Checkout)

7. If the publishing page is checked out, output the details.

Console.WriteLine(page.Url);

Console.WriteLine("By: " + page.ListItem.File.CheckedOutByUser.
LoginName);

Console.WriteLine("Since: " + page.ListItem.File.CheckedOutDate.
ToString());

Console.WriteLine("");

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

200

See also
 f The SPFile properties topic on MSDN at http://msdn.microsoft.com/en-us/

library/microsoft.sharepoint.spfile_properties.aspx

Creating an image rendition
Image renditions are a new feature of SharePoint 2013 that let you insert multiple sizes of the

same image using the same source image. Image renditions specify the height and width to

use when adding an image to a page.

Using image renditions requires BLOB cache to be enabled for the SharePoint web

application. See http://technet.microsoft.com/en-us/library/cc770229.aspx

for more information.

How to do it...

Follow these steps to create an image rendition:

1. Navigate to the site in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Image Renditions from the Look and Feel section as shown in the following

screenshot:

4. On the Image Renditions page, select Add New Item.

5. Provide a name for the image rendition in the Name ield.

6. Provide the height and width for the image rendition in the Height and Width ields
as shown in the following screenshot:

Chapter 5

201

7. Click on Save.

How it works...

Image rendition conigurations are stored as SharePoint list items. When an image rendition is
applied to an image, SharePoint creates cached versions of the image in the formats dictated

by the image renditions.

See also
 f The SharePoint 2013 Design Manager Image Renditions article on MSDN at

http://msdn.microsoft.com/en-us/library/jj720398.aspx

 f The Conigure Cache Settings for a Web Application in SharePoint 2013 article on

TechNet at http://technet.microsoft.com/en-us/library/cc770229.
aspx

Inserting an image rendition into page
content

Image renditions are applied to images inserted into SharePoint page content. In this recipe,

we will insert an image into a page and apply an image rendition to it.

How to do it...

Follow these steps to apply an image rendition to an image in page content:

1. In your preferred web browser, navigate to the publishing page and open it for editing.

2. Place your mouse cursor in a content zone on the publishing page.

If the publishing page does not have a content

zone, a Content Editor Web Part may be added

to a web part zone.

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

202

3. Navigate to Picture | From SharePoint on the INSERT tab in the ribbon as shown in

the following screenshot:

We can also select From Computer to upload an image from

the local filesystem to the site.

4. Select the image you want to insert.

5. Click on Insert.

6. Select Pick Rendition from the IMAGE tab in the ribbon.

7. Select the image rendition to be applied.

Chapter 5

203

8. Save the publishing page.

How it works...

Applying an image rendition to an image will create a cached version of the image based on

the image rendition deinition. When a web browser requests the image, the cached version
will be returned instead of the original image. In addition, any changes to the image rendition

will automatically update the cached images.

See also
 f The SharePoint 2013 Design Manager Image Renditions article on MSDN at

http://msdn.microsoft.com/en-us/library/jj720398.aspx

 f The Conigure Cache Settings for a web application in SharePoint 2013 article on

TechNet at http://technet.microsoft.com/en-us/library/cc770229.
aspx

6
Centralizing and

Structuring Content
with Cross-site
Publishing and

Managed Metadata

In this chapter, we will explore the cross-site publishing and managed metadata features

of SharePoint 2013. We will cover the following recipes:

 f Creating a new managed metadata service application

 f Creating a categories term set for product catalog navigation

 f Creating a product catalog authoring site collection

 f Coniguring the products list

 f Creating a catalog document library

 f Setting up a consuming site collection and connecting to the product catalog list

 f Setting up a consuming site collection with separate branding

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

206

Introduction

The managed metadata features of SharePoint 2013 provide a robust set of tools for

structuring taxonomy data used throughout SharePoint. Terms and term sets provided

by the managed metadata services can be used for a variety of uses, including

categorization of list and library items, standardized input for user proile properties,
and structuring navigation. In this chapter, we will explore managed metadata from a

navigation perspective.

For more information on the other uses for the managed

metadata features see http://technet.microsoft.com/
en-us/library/ee424402.aspx.

New to the 2013 release of SharePoint, the cross-site publishing feature allows lists and

libraries to be conigured as catalog lists and catalog libraries. This allows these lists and
libraries to be published and used within other site collections. Using these features, a list or

library may be managed in a single location, yet provide functionality and content to a large

number of other site collections.

The cross-site publishing feature in SharePoint relies on the search service

application. Before cross-site publishing can be implemented, the search

service application must be conigured and crawling the SharePoint sites.
We will cover this in Chapter 9, Coniguring Search.

Creating a new managed metadata service
application

The managed metadata service application provides the core backend functionality for

the managed metadata features in SharePoint. A SharePoint farm may contain one or more

managed metadata service applications. Using multiple service applications provides the

ability to isolate metadata content between web applications and also provides

differing permissions.

In addition to the methods outlined in this recipe, the managed metadata service application

can also be provisioned with the Farm Coniguration Wizard in Central Administration when

coniguring the SharePoint farm for the irst time.

Chapter 6

207

How to do it...

Follow these steps to create a new managed metadata service application:

1. Navigate to Central Administration in your preferred web browser.

If you are accessing Central Administration on the SharePoint

server, you will need to run SharePoint 2013 Central

Administration from the Start menu as an administrator.

2. In the Application Management section, select Manage service applications as

shown in the following screenshot:

3. From the SERVICE APPLICATIONS tab on the ribbon, navigate to New | Managed

Metadata Service:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

208

4. Provide a name, database server, and a database name.

5. Create a new or select an existing Application Pool for the service application to

run under.

6. Click on OK.

7. On the Manage service applications page, select the row for the new service

application (do not click on the link to the service application).

8. Select Administrators from the SERVICE APPLICATIONS tab on the ribbon:

9. Enter your username and click on Add.

10. Mark the checkbox named Full Control:

Chapter 6

209

11. Click on OK.

12. Select System Settings from the quick launch:

13. Select Manage services on server from the Servers section:

14. Click on Start for the Managed Metadata Web Service if it is not already started. If

you have more than one SharePoint server in the SharePoint farm, you can select the

server in the drop-down list at the top of the page for which to manage the services.

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

210

How it works...

Service applications in SharePoint provide the backend web services and access to data

storage used by many of the features throughout SharePoint. Multiple service applications of

the same type may be used to isolate data between different web applications.

The managed metadata service application provides the web services and access to SQL data

storage used by the managed metadata features on the frontend.

Granting yourself full control (administrator) access to the service application

provides you with full control over managing the term sets within the service

application. Some functionality in the management page for the managed

metadata service application will be unavailable if you do not grant full

control to yourself. In addition, other users may be added who aren't

necessarily farm administrators. If a user who is not a farm administrator is

granted access, they will only be able to navigate to the service applications

they have access to when they browse to Central Administration.

There's more...

Service applications may also be created with PowerShell or code using the server-side

object model.

Creating a new managed metadata service application using
PowerShell
Follow these steps to create a new managed metadata service application using PowerShell:

1. Use the New-SPServiceApplicationPool Cmdlet to create a new application

pool to run our new service application and assign it to a variable. Use an existing

managed account.

$pool = New-SPServiceApplicationPool "Managed Metadata Service
Application Pool" -Account "domain\user"

Alternatively, the Get-SPServiceApplicationPool Cmdlet may be

used to retrieve an existing service application pool rather than creating a

new one. In addition, to use a new service account rather than an existing

one. The New-SPManagedAccount Cmdlet can be used to create it.

The account specified must already be registered as a managed account

with SharePoint before creating the application pool.

Chapter 6

211

2. Use the New-SPMetadataServiceApplication Cmdlet to create our new service

application:

$mms = New-SPMetadataServiceApplication -Name "Managed
Metadata Service" -ApplicationPool $pool -DatabaseName
"ManagedMetadata"

3. Use the New-SPMetadataServiceApplicationProxy Cmdlet to create the proxy

to our new service application and add it to the default proxy group:

New-SPMetadataServiceApplicationProxy –Name "Managed Metadata
Service Proxy" -ServiceApplication $mms –DefaultProxyGroup

4. Start the Managed Metadata Web Service by getting the service instances from the

SharePoint server with the Get-SPServer Cmdlet:

(Get-SPServer servername).ServiceInstances | Where-Object {
$_.TypeName -eq "Managed Metadata Web Service" } | ForEach-
Object { $_.Provision() }

Creating a new managed metadata service application with code
using the server-side object model
Portions of the server-side object model are not publicly exposed from the SharePoint

assemblies. As such, we will use .NET relection to invoke the methods necessary to create
the service application, proxy, and application pool. Follow these steps to create a new

managed metadata service application with code using the server-side object model:

1. Get the NTAccount object for the user account the application pool will run under:

var account = new NTAccount("domain\\user");

2. Get the SharePoint managed account for the user account:

var processAccount =
SPProcessAccount.LookupManagedAccount((SecurityIdentifier)
account.Translate(typeof(SecurityIdentifier)));

3. Get the types required to instantiate a new application pool:

var appPoolType =
Type.GetType("Microsoft.SharePoint.Administration.
SPIisWebServiceApplicationPool, Microsoft.SharePoint,
Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c");

var appPoolOptionsType =
Type.GetType("Microsoft.SharePoint.Administration.
SPIisWebServiceApplicationPoolProvisioningOptions,
Microsoft.SharePoint, Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c");

var noneOption =
appPoolOptionsType.GetField("None").GetValue(appPoolOptionsType);

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

212

4. Use the Create and BeginProvision methods of the application pool type to

create the new application pool:

var name = "Managed Metadata Service Application Pool";

var createMethod = appPoolType.GetMethod("Create",
BindingFlags.Instance | BindingFlags.NonPublic |
BindingFlags.Static, null, new Type[] { typeof(SPFarm),
typeof(string), typeof(SPProcessAccount) }, null);

var applicationPool =
(SPIisWebServiceApplicationPool)createMethod.Invoke
(null, new object[] { SPFarm.Local, name, processAccount
});

applicationPool.Update();

var beginProvision =
appPoolType.GetMethod("BeginProvision",
BindingFlags.Instance | BindingFlags.NonPublic);

beginProvision.Invoke(applicationPool, new object[]
{ noneOption });

5. Get the type required to instantiate the managed metadata service application:

var metadataAppType =
Type.GetType("Microsoft.SharePoint.Taxonomy.
MetadataWebServiceApplication,
Microsoft.SharePoint.Taxonomy, Version=15.0.0.0,
Culture=neutral, PublicKeyToken=71e9bce111e9429c");

6. Use the Create method on the service application type to create the new service

application:

var createAppMethod = metadataAppType.GetMethod("Create",
BindingFlags.Instance | BindingFlags.NonPublic |
BindingFlags.Static, null, new Type[] { typeof(String),
typeof(String), typeof(String), typeof(String),
typeof(String), typeof(String),
typeof(SPIisWebServiceApplicationPool), typeof(String),
typeof(bool), typeof(bool), typeof(bool), typeof(int),
typeof(int), typeof(bool) }, null);

var mms = createAppMethod.Invoke(null, new object[] {
"Managed Metadata Service", "ManagedMetadataDatabase",
null, null, null, null, applicationPool, null, false,
false, false, 0, 0, false });

7. Get the Uri property for the newly created service application:

var mmsUri = (Uri)metadataAppType.GetProperty("Uri",
BindingFlags.Instance | BindingFlags.Public).GetValue(mms);

Chapter 6

213

8. Get the type required to instantiate the service application proxy:

var metadataProxyAppType =
Type.GetType("Microsoft.SharePoint.Taxonomy.MetadataWebServ
iceApplicationProxy, Microsoft.SharePoint.Taxonomy,
Version=15.0.0.0, Culture=neutral,
PublicKeyToken=71e9bce111e9429c");

9. Use the CreateProxy method to create the service application proxy:

var createProxyMethod =
metadataProxyAppType.GetMethod("CreateProxy",
BindingFlags.Instance | BindingFlags.NonPublic |
BindingFlags.Static, null, new Type[] { typeof(Uri),
typeof(string), typeof(bool), typeof(bool), typeof(bool),
typeof(Uri), typeof(bool), typeof(bool), typeof(bool) },
null);

createProxyMethod.Invoke(null, new object[] { mmsUri,
"Managed Metadata Service Proxy", false, false, false,
null, false, true, false });

10. Start the Managed Metadata Web Service on the local SharePoint server:

((SPServiceInstance)SPServer.Local.ServiceInstances.Where
(p => p.TypeName.Equals("Managed Metadata Web Service",
StringComparison.OrdinalIgnoreCase)).First()).Provision();

See also
 f The Overview of managed metadata service applications in SharePoint Server 2013

article on TechNet at http://technet.microsoft.com/en-us/library/
ee424403.aspx

 f The Create, update, publish, or delete a managed metadata service application

article on TechNet at http://technet.microsoft.com/en-us/library/
ee530392(v=office.14).aspx

 f The New-SPServiceApplicationPool topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607595.aspx

 f The New-SPMetadataServiceApplication topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607557.aspx

 f The New-SPMetadataServiceApplicationProxy topic on TechNet at http://
technet.microsoft.com/en-us/library/ff608097.aspx

 f The Get-SPServer topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607694.aspx

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

214

Creating a categories term set for product
catalog navigation

The cross-site publishing catalog lists and libraries rely on managed metadata to organize and

reference content in the lists and libraries. In this recipe, we will create a term set to use for

product catalog navigation.

Managed metadata term sets may be created and managed at both the

farm (service application) and the site collection level. Term sets at the

site collection level are only available for that site collection. In order for a

term set to be usable with cross-site publishing between site collections,

it needs to be at the farm level. In our example, we will create our term

set at the farm level.

How to do it...

Follow these steps to create a categories term set:

1. Navigate to Central Administration in your preferred web browser.

2. Select Manage service applications from the Application Management section.

3. Select the link to the managed metadata service application, Managed Metadata

for instance:

4. Right-click on the Managed Metadata Service in the tree view and then select

New Group:

5. Enter Product Categories as the group name.

Chapter 6

215

6. Right-click on the drop-down menu of the Product Categories group and select New

Term Set, as shown in the following screenshot:

7. Enter Products as the term set name.

8. Select the Products term set.

9. In the right-hand side pane, click on the INTENDED USE tab.

10. Check the Use this Term Set for Site Navigation checkbox. This option is required

to make this term set available for use in the quick launch or header navigation of

a site.

11. Click on Save.

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

216

12. Right-click on the drop-down menu of the Products term set and select

Create Term.

13. Enter Widgets as the term name.

14. Right-click on the drop-down menu of the Widgets term and select Create Term.

15. Enter Red as the term name.

16. Press the Enter key to save the term and create a new one.

17. Create two more terms under the Widgets term, Green and Blue:

How it works...

Term sets in SharePoint provide a method for creating hierarchical structures to tag content

with. In this recipe, we created a Products term set with a Widgets term that contains three

subterms. We will use these to categorize our products in our product catalog later in the

Coniguring the products list recipe of this chapter.

Managed metadata taxonomy in a managed metadata service application is structured in

SharePoint as follows:

 f Term store: A term store is the root storage unit for taxonomy data per language.

Term stores can only contain groups.

 f Group: The groups are containers for term sets within term stores. Groups can only

contain term sets. The group in our example was Product Categories.

 f Term set: The term sets are the containers for terms within groups. Term sets can

only contain terms and are usually the level of the taxonomy structure that gets

attached to list columns, site navigation, and so on. The term set in our example

was Products.

 f Term: A term is a taxonomy item used for tagging content and many more. Terms can

contain other terms in the taxonomy structure. The terms in our example included

Widgets, Red, Green, and Blue.

Chapter 6

217

There's more...

Managed metadata groups, term sets, and terms may also be created with PowerShell or

code using the server-side object model.

Creating a categories term set for product catalog navigation
using PowerShell
Follow these steps to create a categories term set using PowerShell:

1. Get the site collection with the Get-SPSite Cmdlet:

$site = Get-SPSite http://sharepoint/sitecollection

2. Open a new taxonomy session with the Get-SPTaxonomySession Cmdlet:

$session = Get-SPTaxonomySession –Site $site

3. Get the irst term store from the taxonomy session. A term store may also be retrieved
by its name; however, for simplicity we are just getting the irst one:
$termStore = $session.TermStores[0]

4. Create a new group in the term store named PowerShell Product Categories:

$group = $termStore.CreateGroup("PowerShell Product
Categories")

5. Create a new term set in the group named Products:

$termSet = $group.CreateTermSet("Products")

6. Create a new term named Widgets in the group:

$widgets = $termSet.CreateTerm("Widgets", 1033)

When creating new term sets or terms in PowerShell or in code, the

locale identifier (LCID) specifying the language of the item is required.

We are using 1033 for U.S. English. A full list of Microsoft assigned LCIDs

can be found on MSDN at http://msdn.microsoft.com/en-us/
library/microsoft.sharepoint.splocale.lcid.aspx.

7. Create three new terms in the Widgets term named Red, Green, and Blue:

$widgets.CreateTerm("Red", 1033)

$widgets.CreateTerm("Green", 1033)

$widgets.CreateTerm("Blue", 1033)

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

218

8. Commit the changes to the term store:

$termStore.CommitAll()

9. Use the Dispose method to discard the SPSite object:

$site.Dispose()

Creating a categories term set for product catalog navigation
with code using the server-side object model
Follow these steps to create a categories term set with code using the server-side

object model:

1. Get the site collection in a using statement:

using (var site = new
SPSite("http://sharepoint/publishing"))

2. Create a new taxonomy session from the site collection:

var session = new TaxonomySession(site);

3. Get the irst term store in the session:
var termStore = session.TermStores[0];

4. Create a group named Code Product Categories:

var group = termStore.CreateGroup("Code Product
Categories");

5. Create a term set in the group named Products:

var termSet = group.CreateTermSet("Products");

6. Create a Widgets term in the Products term set:

var widgets = termSet.CreateTerm("Widgets", 1033);

7. Create Red, Green, and Blue terms in the Widgets term:

widgets.CreateTerm("Red", 1033);

widgets.CreateTerm("Green", 1033);

widgets.CreateTerm("Blue", 1033);

8. Commit the changes to the term store:

termStore.CommitAll();

Chapter 6

219

See also
 f The Get-SPTaxonomySession topic on TechNet at http://technet.microsoft.

com/en-us/library/ff608087.aspx

 f The Microsoft.SharePoint.Taxonomy namespace topic on MSDN at http://
msdn.microsoft.com/library/office/microsoft.sharepoint.
taxonomy(v=office.15).aspx

 f The SPLocale.LCID property topic on MSDN at http://msdn.microsoft.com/
en-us/library/microsoft.sharepoint.splocale.lcid.aspx

 f The Create and manage terms within term sets article on the Microsoft Ofice help
site at http://office.microsoft.com/en-us/sharepoint-server-help/
create-and-manage-terms-within-term-sets-HA101631581.aspx

Creating a product catalog authoring site
collection

In this recipe, we will create a product catalog site. The product catalog site collection will

provide the source location for the products list we will use to create catalog connections with.

How to do it...

Follow these steps to create a product catalog authoring site collection:

1. Navigate to Central Administration in your preferred web browser.

2. Select Create site collections from the Application Management section:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

220

3. Provide values for Title, Description, and URL for the new site collection:

4. Select the Product Catalog template from the Publishing tab:

5. Enter your username for Primary Site Collection Administrator:

6. Click on OK.

How it works...

Cross-site publishing requires a SharePoint site with publishing features as well as the cross-

site publishing features enabled. The Product Catalog site collection template enables these

features and creates the Products list.

Chapter 6

221

See also
 f The Conigure cross-site publishing in SharePoint 2013 article on TechNet at

http://technet.microsoft.com/en-us/library/jj656774.aspx

Coniguring the products list
In this recipe, we will add a managed metadata column and data to the Products list created

as part of the product catalog site created in the previous recipe, Creating a product catalog

authoring site collection. In addition, we will publish the Products list as a catalog list.

How to do it...

Follow these steps to conigure the products list:

1. Navigate to the product catalog site we created in the Creating a product catalog

authoring site collection recipe.

2. Select the Products list from the quick launch navigation:

3. From the List tab on the ribbon, select List Settings:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

222

4. Select Create column from the Columns section:

5. Enter Category as the column name.

6. Select Managed Metadata for the type of information:

7. Set Require that this column contains information to Yes:

Chapter 6

223

8. Under Term Set Settings, navigate to and select our Widgets term:

9. Click on OK.

10. Navigate to the Products list.

11. Click on New Item.

12. Create six new list items (two for each category we created in our term set) with the

following details:

Title Item Number Category

Widget A 001 Blue

Widget B 002 Blue

Widget C 003 Red

Widget D 004 Red

Widget E 005 Green

Widget F 006 Green

13. Select all of the list items in the Products list (by selecting the checkmarks to the left

of each item):

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

224

14. Click on Approve/Reject from the Items tab on the ribbon:

15. Select Approved. The selected items will become visible to all users:

16. Click on OK.

17. Select List Settings from the List tab on the ribbon.

18. Select Catalog Settings from the General Settings section:

Chapter 6

225

19. Check the Enable this library as a catalog checkbox:

20. Select Enable anonymous access:

21. Select Make Anonymous.

22. Add Category and Item Number to the Selected Fields list for Catalog Item

URL Fields:

23. Select Category as the column to categorize items for navigation:

24. Click on OK.

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

226

How it works...

The content provided by catalog lists and libraries is indexed and cached by the SharePoint

search crawler. Once indexed, the content becomes available for consumption by other site

collections. In this recipe, we have created a simple list of products categorized by a simple

term set. Once consumed, the term set will provide the basis for the friendly URLs created for

each item.

Making the catalog list anonymously accessible allows the catalog list to be used on sites

where anonymous access is available. This is a common scenario for public-facing websites.

The ields selected for Catalog Item URL Fields will be used when creating the friendly URLs

for the list items. We will see this later on in the chapter in the Setting up a consuming site

collection and connecting to the product catalog list recipe.

There's more...

Adding ields to lists, adding items to lists, and publishing lists as catalogs may also be
accomplished with PowerShell or code using the server-side object model.

Coniguring the products list using PowerShell
Follow these steps to conigure the products list using PowerShell:

1. Get the site collection using the Get-SPSite Cmdlet:

$site = Get-SPSite http://sharepoint/sitecollection

2. Open a new taxonomy session using the site collection with the Get-
SPTaxonomySession Cmdlet:

$session = Get-SPTaxonomySession -Site $site

3. Get the irst term store in the taxonomy session:
$termStore = $session.TermStores[0]

4. Get the PowerShell Product Categories group from the term store:

$group = $termStore.Groups["PowerShell Product Categories"]

5. Get the Products term set from the group:

$termSet = $group.TermSets["Products"]

6. Get the Products list from the root site of the site collection:

$list = $site.RootWeb.Lists["Products"]

7. Create a new taxonomy (managed metadata) ield named PowerShell Category:

$field = [Microsoft.SharePoint.Taxonomy.TaxonomyField]
$list.Fields.CreateNewField("TaxonomyFieldType", "PowerShell
Category")

Chapter 6

227

8. Set the anchor term ID to an empty GUID.

When configuring a managed metadata field, a root term

may be selected to limit which terms may be used in the

field. This is the anchor term.

$field.AnchorId = [System.Guid]::Empty

9. Set the term store ID, group name, and term set ID on the ield:
$field.SspId = $termStore.Id

$field.Group = "PowerShell Product Categories"

$field.TermSetId = $termSet.Id

10. Conigure the ield to only allow a single value:
$field.AllowMultipleValues = $false

11. Add the ield to the collection of ields on the Products list:

$list.Fields.Add($field)

12. Update the Products list:

$list.Update()

13. Get the Widgets term from the term set:

$termWidgets = $termSet.Terms["Widgets"]

14. Get the Red, Green, and Blue terms from the Widgets term:

$termRed = $termWidgets.Terms["Red"]

$termGreen = $termWidgets.Terms["Green"]

$termBlue = $termWidgets.Terms["Blue"]

15. Get the PowerShell Category ield from the Products list:

$field = [Microsoft.SharePoint.Taxonomy.TaxonomyField]
$list.Fields["PowerShell Category"]

16. Create a taxonomy value for the Red, Green, and Blue terms. Repeat this code for

each term:

$valueRed = New-Object
Microsoft.SharePoint.Taxonomy.TaxonomyFieldValue -ArgumentList
$field

$valueRed.TermGuid = $termRed.Id.ToString()

$valueRed.Label = $termRed.Name

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

228

17. Add list items to the Products list using the Red, Green, and Blue taxonomy values.

Repeat this code to create six items, two for each term:

$item001 = $list.Items.Add()

$item001["Title"] = "PowerShell Widget A"

$item001["Item Number"] = "P001"

$item001["PowerShell Category"] = $valueBlue

$item001.Update()

18. Update the Products list:

$list.Update()

19. Set the moderation status of each item to Approved. Repeat this code for each of

the items created in step 17:

$item001.ModerationInformation.Status = "Approved"

$item001.Update()

20. Create a generic list of ield names to use as the URL ields for the catalog list:
$urlFields = New-Object -TypeName System.Collections.Generic.
List[System.String]

$urlFields.Add("Title")

$urlFields.Add("Item Number")

21. Create a new CatalogTaxonomyFieldSettings object to conigure the term set
used for the navigation hierarchy of the catalog:

$taxFieldSetting = New-Object -TypeName
Microsoft.SharePoint.Publishing.CatalogTaxonomyFieldSettings

$field = $list.Fields["PowerShell Category"]

$taxFieldSetting.TermId = $field.AnchorId

$taxFieldSetting.TermSetId = $termSet.Id

$taxFieldSetting.TermStoreId = $termStore.Id

$taxFieldSetting.FieldId = $field.Id

$taxFieldSetting.FieldManagedPropertyName = "owstaxid" +
$field.InternalName

Chapter 6

229

$taxFieldSetting.IsSelected = $true

$taxFieldSetting.FieldDisplayName = $field.StaticName

22. Use the PublishCatalog method of the PublishingCatalogUtility class to

publish the Products list as a catalog list:

[Microsoft.SharePoint.Publishing.PublishingCatalogUtility]::
PublishCatalog($site.RootWeb, $list, $true, $urlFields,
$taxFieldSetting)

Coniguring the products list with code using the server-side
object model
Follow these steps to conigure the products list with code using the server-side object model:

1. Get the site collection in a using statement:

using (var site = new
SPSite("http://sharepoint/publishing"))

2. Create a new taxonomy session from the site collection:

var session = new TaxonomySession(site);

3. Get the Products term set using the following code:

var termStore = session.TermStores[0];

var group = termStore.Groups["Code Product Categories"];

var termSet = group.TermSets["Products"];

4. Get the Products list:

var list = site.RootWeb.Lists["Products"];

5. Add a new managed metadata ield to the Products list using the following code

snippet:

var field = list.Fields.CreateNewField("TaxonomyFieldType", "Code
Category") as TaxonomyField;

field.AnchorId = Guid.Empty;

field.SspId = termStore.Id;

field.Group = "Code Product Categories";

field.TermSetId = termSet.Id;

field.AllowMultipleValues = false;

list.Fields.Add(field);

list.Update();

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

230

6. Get the Red, Green, and Blue terms from the Widgets term as follows:

var termWidgets = termSet.Terms["Widgets"];

var termRed = termWidgets.Terms["Red"];

var termGreen = termWidgets.Terms["Green"];

var termBlue = termWidgets.Terms["Blue"];

7. Get the managed metadata ield from the list:
field = list.Fields["Code Category"] as TaxonomyField;

8. Using the following code, create taxonomy values for the Red, Green, and Blue terms.

Repeat this code for each term.

var valueRed = new TaxonomyFieldValue(field);

valueRed.TermGuid = termRed.Id.ToString();

valueRed.Label = termRed.Name;

9. With the help of the following code, add items to the Products list with the term

values. Repeat this code to add six items to the list, two for each term.

var item001 = list.Items.Add();

item001["Title"] = "Code Widget A";

item001["Item Number"] = "C001";

item001["Code Category"] = valueBlue;

item001.Update();

10. Update the list:

list.Update();

11. Set the moderation status of each item to Approved. Repeat this code for each item

created in step 9.

item001.ModerationInformation.Status = SPModerationStatusType.
Approved;

item001.Update();

Chapter 6

231

12. Create a generic list of ield names for the URL ields of the catalog list as follows:
var urlFields = new List<string>();

urlFields.Add("Title");

urlFields.Add("Item Number");

13. Create a CatalogTaxonomyFieldSettings object to conigure the navigation
hierarchy of the catalog list using the following code snippet:

var taxFieldSetting = new CatalogTaxonomyFieldSettings();

field = list.Fields["Code Category"] as TaxonomyField;

taxFieldSetting.TermId = field.AnchorId;

taxFieldSetting.TermSetId = termSet.Id;

taxFieldSetting.TermStoreId = termStore.Id;

taxFieldSetting.FieldId = field.Id;

taxFieldSetting.FieldManagedPropertyName = "owstaxid" +
field.InternalName;

taxFieldSetting.IsSelected = true;

taxFieldSetting.FieldDisplayName = field.StaticName;

14. Publish the catalog list with the PublishingCatalogUtility class as follows:

PublishingCatalogUtility.PublishCatalog(site.RootWeb, list,
true, urlFields, new List<CatalogTaxonomyFieldSettings>()
{ taxFieldSetting });

See also
 f The Microsoft.SharePoint.Taxonomy Namespace topic on MSDN at http://

msdn.microsoft.com/en-us/library/microsoft.sharepoint.
taxonomy(v=office.14).aspx

 f The PublishingCatalogUtility class topic on MSDN at http://msdn.
microsoft.com/en-us/library/microsoft.sharepoint.publishing.
publishingcatalogutility.aspx

 f The Conigure cross-site publishing in SharePoint Server 2013 article on TechNet at
http://technet.microsoft.com/en-us/library/jj656774.aspx

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

232

Creating a catalog document library
The cross-site publishing features work ideally with list content. However, it is possible to

create catalog libraries. In this recipe, we will add a new pages library to our product catalog

site created in the Creating a product catalog authoring site collection recipe. In addition, we

will publish the pages library as a catalog library.

The product catalog site template does not provide the pages library template in the list of

items that can be added to the site. As such, we will create a document library and turn it into

a pages library.

How to do it...

Follow these steps to create a catalog library:

1. Navigate to the product catalog site in your preferred web browser.

2. Select Site contents from the Settings menu.

3. Click on add an app as shown in the following screenshot:

4. Select Document Library as shown in the following screenshot:

Chapter 6

233

5. Provide a name for the library, Product Documents, for example, as shown in the

following screenshot:

6. Click on the Create button.

7. Navigate to the new document library.

8. From the Library tab on the ribbon, select Library Settings.

9. Select Advanced settings from the General Settings section as shown in the

following screenshot:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

234

10. Set Allow management of content types? to Yes. Have a look at the

following screenshot:

11. Click on OK.

12. Select Add from existing site content types from the Content Types section:

13. Add the Basic Page content type as shown in the following screenshot:

14. Click on OK.

Chapter 6

235

15. Select the Document content type from the Content Types section:

16. Select Delete this content type from the Settings section:

17. Select Create Column from the Columns section.

18. Enter category for the Column Name.

19. Select Managed Metadata for the type.

20. Set Require that this column contains information to Yes.

21. Under Term Set Settings, navigate to and select our Widgets term set.

22. Click on OK.

23. Navigate to the document library and select New Document from the Files tab on

the ribbon.

24. Enter WidgetASpecs as the Name and then click on Create:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

236

25. Edit the page and provide some text.

26. From the PAGE tab on the ribbon, select Edit Properties as shown in the

following screenshot:

27. Select a term for the category:

28. Click on Save.

29. Navigate to the document library.

30. Check-in the newly created page.

31. Select Library Settings from the Library tab on the ribbon.

32. Under General Settings, select Catalog Settings.

33. Check the Enable this library as a catalog checkbox.

34. Click on Enable anonymous access and then click on Make Anonymous.

35. Add Category and Title to the Selected Fields list for Catalog Item URL Fields.

36. Select Category as the column to categorize items for navigation and click on OK.

How it works...

In a similar fashion to our Products list, the document library will be made available as

a catalog library through the search services once it has been crawled. Using a catalog

library may not prove as useful as a catalog list. By default, the properties of a catalog

library item will be displayed in the consuming site, not the document itself. Additional

customization would be required in order to retrieve the documents themselves through a

catalog connection. For more information on catalog libraries, refer to http://technet.
microsoft.com/en-us/library/jj656774.aspx.

Chapter 6

237

Setting up a consuming site collection and
connecting to the product catalog list

Using the cross-site publishing features provides a number of possibilities in which the

content may be utilized. In this recipe, we will create a simple consuming site collection with

product catalog navigation that consumes the list published from the site created in the

Creating a product catalog authoring site collection recipe. The following is the diagram of

cross-site publishing architecture:

Cross-Site Publishing Architecture

Catalog List or Library

Search Service Application

Authoring Site Collection

Consuming

Site Collection

Consuming

Site Collection

How to do it...

Follow these steps to create a consuming site collection:

1. Navigate to Central Administration in your preferred web browser.

2. Select Create site collections from the Application Management section.

3. Provide values for Title, Description, and URL for the new site collection as shown in

the following screenshot:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

238

4. Select the Publishing Portal template from the Publishing tab as shown in the

following screenshot:

5. Enter your username for Primary Site Collection Administrator.

6. Click on OK.

7. Navigate to the consuming site collection in your preferred web browser.

8. Select Site settings from the Settings menu.

9. Select Term store management from the Site Administration section as shown in

the following screenshot:

10. Create a new group named Navigation and then a term set named Site
Navigation in that group.

Chapter 6

239

11. In the INTENDED USE tab for the Site Navigation term set, check the Use this Term

Set for Site Navigation checkbox and uncheck the Available for Tagging checkbox,

as shown in the following screenshot:

12. Click on Save.

When we create our catalog connection, this newly created term set will

be used to store the terms used by the site navigation. Attempting to use

the product categories term set as the navigation term set will result in

errors when creating the catalog connection.

13. Select Site settings from the Settings menu.

14. Select Navigation from the Look and Feel section as shown in the

following screenshot:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

240

15. For both Current Navigation and Global Navigation, select Managed Navigation as

shown in the following screenshot:

16. Select our Site Navigation term set from the Managed Navigation: Term Set section

as shown in the following screenshot:

17. Click on OK.

18. Select Manage catalog connections from the Site Administration section:

Chapter 6

241

19. Click on Connect to catalog and then click on Connect for the Products list:

If our recently created Products catalog list is not available to choose from, it is most

likely because the search crawler has not indexed the content yet.

20. Leave the default connection coniguration options and click on OK.

21. Select Site contents from the Settings menu.

22. Select the Pages library.

23. Check-in and publish the newly created category and item pages:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

242

24. Select one of the categories from the header or quick launch navigation to observe

the newly created category page. Notice the friendly URL used when navigating to a

category page, marked with a red rectangle in the following screenshot:

25. Select an item from the category page to observe the newly created item page. Notice

the friendly URL used when navigating to the item page:

Chapter 6

243

How it works...

Consuming site collections create a connection to the authoring site collection, in order to

access the catalog content provided by the authoring site collection. When the SharePoint

search crawler indexes the consuming site collection, it includes the catalog content as part

of its content. In addition, creating the catalog connection results in category and item pages

being created that are used while navigating to the categories and items.

This recipe demonstrated the basics for creating the connection to the catalog list, which

resulted in pages being created to display the categories and items. These are web part pages

that can be conigured to display the information in whichever way it is most appropriate for
the implementation.

There's more...

Creating connections to catalog lists may also be accomplished with PowerShell or code using

the server-side object model.

Setting up a consuming site collection and connecting to the
product catalog list using PowerShell
Follow these steps to create a consuming site collection using PowerShell:

1. Get the consuming site collection with the Get-SPSite Cmdlet as follows:

$site = Get-SPSite http://sharepoint/sitecollection

2. Create a new CatalogConnectionManager object from the site collection using

the following code:

$catalogManager = New-Object
Microsoft.SharePoint.Publishing.CatalogConnectionManager -
ArgumentList $site, $true

3. Get the published catalog list using its full URL:

$settings =
[Microsoft.SharePoint.Publishing.PublishingCatalogUtility]::
GetPublishingCatalog($site,
"http://sharepoint/sites/catalog/Lists/Products")

4. Add the published catalog to the catalog connection manager as follows:

$catalogManager.AddCatalogConnection($settings)

5. Update the connection manager as follows:

$catalogManager.Update()

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

244

Setting up a consuming site collection and connecting to the
product catalog list with code using the server-side object model
Follow these steps to create a consuming site collection with code using the server-side

object model:

1. Get the site collection in a using statement:

using (var site = new
SPSite("http://sharepoint/publishing"))

2. Create a new CatalogConnectionManager object for the site collection.

var manager = new CatalogConnectionManager(site, true);

3. Get the catalog list by its URL using the following code:

var settings =
PublishingCatalogUtility.GetPublishingCatalog(site,
"http://sharepoint/sites/catalog/Lists/Products");

4. Add the catalog list to the connection manager and update as follows:

manager.AddCatalogConnection(settings);

manager.Update();

See also
 f The CatalogConnectionManager class topic on MSDN at http://msdn.

microsoft.com/en-us/library/microsoft.sharepoint.publishing.
catalogconnectionmanager.aspx

 f The Conigure cross-site publishing in SharePoint Server 2013 article on TechNet at

http://technet.microsoft.com/en-us/library/jj656774.aspx

Setting up a consuming site collection with
separate branding

Catalog lists and libraries may be consumed by multiple site collections. This is particularly

useful when the same catalog data is used in sites with different branding or sites used for

testing. In this recipe, we will create a second consuming site collection using a different

master page to illustrate the concept.

Chapter 6

245

How to do it...

Follow these steps to create a consuming site collection with separate branding:

1. Create a new site collection using the Publishing Portal template.

2. Navigate to the consuming site collection in your preferred web browser.

3. Select Site settings from the Settings menu.

4. Select Master page from the Look and Feel section.

5. Set the Site Master Page and System Master Page to oslo.

6. Click on OK.

7. Repeat steps 8 through 24 of the Setting up a consuming site collection and

connecting to the product catalog list recipe to create the connection to the

Products list.

Create a new group in the term store for the navigation of this site. Do

not reuse the Site Navigation group from the Setting up a consuming

site collection and connecting to the product catalog list recipe.

8. Navigate to a category page to observe the results:

Centralizing and Structuring Content with Cross-site Publishing and Managed Metadata

246

How it works...

Catalog lists and libraries may be connected to from multiple site collections. Like our irst
consuming site collection, the content is made available through this consuming site by the

search service. This is particularly useful when multiple sites in the farm require the same

information. In this recipe, we created a catalog connection from a site collection using the

oslo master page.

7
Customizing the

SharePoint Experience
with Delegate Controls

In this chapter, we will delve into the custom-delegate control model for adding custom code

to SharePoint 2013. We will cover the following recipes:

 f Creating a Visual Studio solution for custom delegate controls

 f Adding JavaScript and stylesheets with an AdditionalPageHead delegate control

 f Customizing the suite bar branding with a SuiteBarBrandingDelegate

delegate control

 f Customizing the suite bar links with a SuiteLinksDelegate delegate control

 f Adding Ofice 365-style drop-down menus to suite bar links

 f Adding promoted action links with the PromotedActions delegate control

 f Customizing header navigation with a TopNavigationDataSource delegate control

 f Customizing quick launch navigation with a QuickLaunchDataSource

delegate control

 f Restoring the Navigate Up button with an AdditionalPageHead delegate control

 f Adding meta tags to pages from custom library ields with an AdditionalPageHead
delegate control

 f Storing analytics tracking code with a site collection settings page

 f Adding stored analytics tracking code to pages with an AdditionalPageHead

delegate control

Customizing the SharePoint Experience with Delegate Controls

248

Introduction

Microsoft SharePoint provides a variety of ways to add custom code to enhance or customize

the SharePoint experience. These include web parts, timer jobs, application pages, delegate

controls, custom actions, and so on. Delegate controls provide numerous locations on each

SharePoint master page where default controls may be replaced with speciied custom
controls. This allows for SharePoint to place different controls on the page based on the

features that are activated. For instance, when publishing features are enabled, SharePoint

will use the delegate controls to add the publishing controls to the page.

In addition to the delegate controls provided (and required) on each SharePoint master page,

additional delegate controls can be added to custom master pages. In this chapter, however,

we will stick to the ones provided by SharePoint. The commonly used delegate controls

provided by SharePoint are listed in the following table:

Control ID Purpose

AdditionalPageHead It adds controls to the <head> element of the page.

SuiteBarBrandingDelegate It adds branding text to the top-left corner in the suite

bar. Displays SharePoint by default.

SuiteLinksDelegate It adds the suite links to the suite bar. Displays

Newsfeed, SkyDrive, and Sites by default.

PromotedActions It adds additional actions to the promoted actions on

the top-right corner of the page. Using this delegate

control does not remove the existing promoted actions.

TopNavigationDataSource It adds the site map provider used by the horizontal

navigation at the top of the page.

QuickLaunchDataSource It adds the site map provider used by the vertical

navigation on the left-hand side of the page.

TreeViewAndDataSource It adds the tree view control and its site map provider

when enabled.

GlobalNavigation It adds a shared navigation control that renders above

all other content on the page.

SmallSearchInputBox It adds the search box to the page.

Chapter 7

249

Creating a Visual Studio solution for
custom delegate controls

Delegate controls provide a mechanism for adding ASP.NET user controls. As such, to create,

compile, and package custom controls, we will use a Visual Studio solution. In this recipe, we

will create the Visual Studio SharePoint project that we will use for this chapter. For simplicity,

we will add each subsequent recipe to this single project.

Since the recipes in this chapter include items that will make

changes to the web.config ile of the SharePoint web
application in IIS, we will be creating a farm solution.

Getting ready
In order to create a custom SharePoint solution with Visual Studio, we will need to have Visual

Studio 2012 with the Ofice Developer Tools or Visual Studio 2013 applications installed
on a computer running SharePoint Server 2013. In addition, we will need local computer

administrator and SharePoint farm administrator access.

If using PowerShell to deploy the custom SharePoint solution,

SharePoint shell access to the SharePoint coniguration database in
SQL will also be required. Refer to http://technet.microsoft.
com/en-us/library/ff607596.aspx for more information on

adding a SharePoint shell administrator.

How to do it...

Follow these steps to create a Visual Studio solution for custom-delegate controls:

1. Open Visual Studio running as administrator.

2. From the File menu, select New Project.

Customizing the SharePoint Experience with Delegate Controls

250

3. Select the SharePoint 2013 – Empty Project template by navigating to Templates |

Visual C# | Ofice/SharePoint | SharePoint Solutions as shown in the

following screenshot:

4. Provide values in the Name and Location textboxes for the project and click on OK.

5. Provide the URL to the local SharePoint site you will be testing with:

Chapter 7

251

6. Select Deploy as a farm solution and click on Finish.

7. Add project references to System.Configuration and Microsoft.
SharePoint.Publishing. The Microsoft.SharePoint.Publishing

assembly can be found at C:\Program Files\Common Files\Web Server
Extensions\15\ISAPI.

8. Right-click on the project name in the Solution Explorer pane.

9. Navigate to Add | New Folder as shown in the following screenshot:

10. Create a folder named Controls. We will use the Controls folder later in the

chapter to store all of our code-only user controls.

11. Right-click on the project name.

Customizing the SharePoint Experience with Delegate Controls

252

12. Navigate to Add | SharePoint Mapped Folder… as shown in the

following screenshot:

13. Select the CONTROLTEMPLATES folder under the TEMPLATE folder. We will use the

CONTROLTEMPLATES mapped folder to store all of our ASCX user controls later in

the chapter.

14. Click on OK.

15. Add a folder in the CONTROLTEMPLATES mapped folder with the same name as

the project. When working with mapped folders, it is important to place items in a

subfolder that is unique. This will alleviate any collisions with iles of the same names
included with SharePoint or provided by other custom solutions.

Chapter 7

253

16. Click on the SharePoint "Layouts" Mapped Folder option to add the Layouts

mapped folder, which we will use later in the chapter to store our application page,

stylesheets, and JavaScript:

17. Click on Save All from the toolbar or File menu.

How it works...

Our Controls folder will act like a folder does in a standard .NET class library to provide

organization and namespaces. The CONTROLTEMPLATES mapped folder will instruct

SharePoint to deploy the ASCX iles for our user controls to the appropriate place on the
ilesystem (C:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\15\TEMPLATE\CONTROLTEMPLATES). The Layouts mapped folder will

instruct SharePoint to deploy our application page, stylesheets, and JavaScript to the

appropriate place on the ilesystem to allow them to be accessed from the client web
browsers (C:\Program Files\Common Files\Microsoft Shared\Web Server
Extensions\15\TEMPLATE\LAYOUTS).

See also
 f The Add-SPShellAdmin topic on TechNet at http://technet.microsoft.com/

en-us/library/ff607596.aspx

 f The Developing SharePoint Solutions article on MSDN at http://msdn.
microsoft.com/en-us/library/vstudio/ee231517.aspx

 f The How To: Add and Remove Mapped Folders article on MSDN at http://msdn.
microsoft.com/en-us/library/vstudio/ee231521(v=vs.110).aspx

Customizing the SharePoint Experience with Delegate Controls

254

Adding JavaScript and stylesheets with an
AdditionalPageHead delegate control

The AdditionalPageHead control is one of the most commonly used delegate

controls by developers to add custom code to the page. Controls registered to the

AdditionalPageHead control are added to the <head> element of each page and multiple

controls may be added, unlike most other delegate controls that only allow one user control.

In this recipe, we will create an ASCX user control that will add references to a custom

stylesheet and custom JavaScript. We will then register the control to be added to the

AdditionalPageHead delegate control. Using an AdditionalPageHead delegate control

allows us to add our custom stylesheet and custom JavaScript to every SharePoint page,

regardless of which master page is being used. This is particularly useful when a custom

master page is not required and when managing the master pages for sites on a large scale

becomes impractical.

Getting ready
We should have already created our Visual Studio project in the Creating a Visual Studio

solution for custom delegate controls recipe of this chapter before starting this recipe.

How to do it...

Follow these steps to create a delegate control to add JavaScript and stylesheet references to

each page:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Right-click on the folder that was created under the Layouts mapped folder.

3. Navigate to Add | New Item... as shown in the following screenshot:

4. Select Style Sheet by navigating to Visual C# Items | Web:

Chapter 7

255

5. Provide the item a name, CustomCSS.css, for example.

6. Add some content to the stylesheet, at least a CSS comment:

/* CSS Comment */

As of this writing, there is an unusual behavior between

SharePoint and Google Chrome that causes the file to be

repeatedly requested by the browser if the file has no content.

7. Right-click on the folder again and navigate to Add | New Item.

8. Select JavaScript File by navigating to Visual C# Items | Web as shown in the

following screenshot:

Customizing the SharePoint Experience with Delegate Controls

256

9. Provide the item a name, CustomJS.js, for example.

10. Add some content to the JavaScript ile, at least a JavaScript comment:
// JavaScript Comment

11. Right-click on the folder we created in the CONTROLTEMPLATES mapped folder.

12. Navigate to Add | New Item.

13. Select User Control (Farm Solution Only) by navigating to Visual C# Items | Ofice/
SharePoint:

14. Provide the item a name, CustomJavaScriptAndStyleSheets.ascx,

for example.

15. Click on Add.

16. Open the code-behind ile for the user control,
CustomJavaScriptAndStyleSheets.ascx.cs, for example.

17. In the CustomJavaScriptAndStyleSheets class, override the

CreateChildControls method as follows:

protected override void CreateChildControls()

{

}

18. In the CreateChildControls method, add a new SPMonitoredScope object:

using (new
SPMonitoredScope("Code6587EN.Ch07.CONTROLTEMPLATES.Code6587
EN.Ch07.CustomJavaScriptAndStyleSheets::CreateChildControls
"))

{

}

Chapter 7

257

19. Get the URL to our custom JavaScript ile with the relative URL of the current site:
var url =
SPContext.Current.Web.ServerRelativeUrl.TrimEnd('/') +
"/_layouts/15/Code6587EN.Ch07/CustomJS.js";

20. Register the JavaScript ile with the ClientScriptManager object of the current

page:

this.Page.ClientScript.RegisterClientScriptInclude("CustomJ
S", url);

21. Open the ASCX user control, CustomJavaScriptAndStyleSheets.ascx for

example.

22. Add a reference to our custom CSS ile using a SharePoint CssRegistration

control:

<SharePoint:CssRegistration ID="customCssRegistration"
Name="<%
$SPUrl:~Site/_layouts/15/Code6587EN.Ch07/CustomCSS.css %>"
runat="server"></SharePoint:CssRegistration>

Stylesheet references may also be added using C# code in the

code-behind file. We are adding it in the ASCX file to demonstrate

the use of the ASCX user controls.

23. Right-click on the project name in the Solution Explorer pane.

24. Navigate to Add | New Item.

25. Select Empty Element by navigating to Visual C# Items | Ofice/SharePoint as

shown in the following screenshot:

Customizing the SharePoint Experience with Delegate Controls

258

26. Provide the item a name, CustomJavaScriptAndStyleSheets, for example.

27. Click on Add.

28. In the Elements.xml ile of the new element, register our custom control with the

AdditionalPageHead control using the following code:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Control Id="AdditionalPageHead" Sequence="10"
 ControlSrc="~/_controltemplates/15/Code6587EN.Ch07/
 CustomJavaScriptAndStyleSheets.ascx">

 </Control>

</Elements>

In similar fashion to the Layouts mapped folder, items in a SharePoint 2013

solution within the CONTROLTEMPLATES mapped folder will be located under

/_CONTROLTEMPLATES/15/.

29. Select the new element (not the Elements.xml ile within it) in the Solution

Explorer pane.

30. In the Properties pane, click on the ellipsis for the Safe Control Entries option as

shown in the following screenshot:

31. Add a new safe control entry with the following details:

 � (Name): CustomJavaScriptAndStyleSheets (the name of the user

control we created without the .ascx extension)

 � Assembly: $SharePoint.Project.AssemblyFullName$

 � Namespace: Code6587EN.Ch07.CONTROLTEMPLATES.Code6587EN.
Ch07 (the full namespace for the user control, without the name of the

class itself)

 � Safe: True

Chapter 7

259

 � Safe Against Script: True

 � Type Name: CustomJavaScriptAndStyleSheets (the name of the class

for the user control)

32. Click on OK.

33. When the Empty Element item was added, it also added a new feature in the

Features folder. Rename the feature to the project name. Each of the elements we

add in the recipes for this chapter will automatically be added to this feature:

34. Open the feature and provide it an appropriate name, Code6587EN.Ch07
Delegate Controls, for example as shown in the following screenshot:

Customizing the SharePoint Experience with Delegate Controls

260

35. Set the scope to Site.

36. Click on Start from the toolbar to package the solution, deploy it to the local

SharePoint server, activate the feature, and attach the debugger to the IIS process:

37. Once the SharePoint site is loaded in the web browser (after clicking on Start), view

the source of the page to observe the references to our custom stylesheet and

JavaScript iles.

How it works...

The Elements.xml ile of our Empty Element instructs SharePoint to add our referenced

user control to the delegate control with the Id of AdditionalPageHead. The sequence

provides SharePoint the order in which to add controls referencing the same Id to the page.

For delegate controls that accept just one control, only the registered control with the lowest

sequence will be added.

An SPMonitoredScope object allows developers to designate portions of code to be

monitored for usage statistics in the Uniied Logging Service (ULS) logging and the developer

dashboard. Using them is not a requirement; however, they do make it easier to identify
bottlenecks and other potential issues in custom code. As a matter of best practice, I ind it is
valuable to use SPMonitoredScopes whenever a block of code affects what is rendered on

a page. They do not provide a whole lot of value for backend code that doesn't affect the user

interface. The name provided for the scope is a bit arbitrary. You can use whatever you want.
However, I ind it helpful to use a standard pattern. The pattern used in the examples for this
book is Namespace.ClassName::Method. This pattern provides the information required to

know exactly where the code is in our project.

Adding our safe control entry to Safe Control Entries of the Empty Element item will add the

safe control entry to the SharePoint web application's web.config coniguration ile. Without
this registration, SharePoint will throw an exception indicating the control is not safe when

attempting to load it.

Once loaded, our user control will add references to our custom stylesheet and JavaScript iles
to the page.

Using the ClientScriptManager object to register our custom

JavaScript allows it to be registered with multiple controls, but only

added to the page once. It also adds the script references in one

group, which is a best practice for web applications in general.

Chapter 7

261

See also
 f The Using SPMonitoredScope article on MSDN at http://msdn.microsoft.com/

en-us/library/ff512758(v=office.14).aspx

 f The Delegate Controls article on MSDN at http://msdn.microsoft.com/en-us/
library/sharepoint/ms478826.aspx

 f The Control Element (Delegate Control) topic on MSDN at http://msdn.
microsoft.com/en-us/library/sharepoint/ms469179.aspx

 f The ClientScriptManager.RegisterClientScriptInclude Method topic on MSDN

at http://msdn.microsoft.com/en-us/library/system.web.
ui.clientscriptmanager.registerclientscriptinclude.aspx

 f The CssRegistration class topic on MSDN at http://msdn.microsoft.com/en-
us/library/microsoft.sharepoint.webcontrols.cssregistration.
aspx

Customizing the suite bar branding with a
SuiteBarBrandingDelegate delegate control

The out-of-the-box master pages included with SharePoint 2013 provide a delegate control to

place branding text in the top-left corner of the page. For standard SharePoint instances, the

text SharePoint is displayed. For SharePoint on Ofice 365, Ofice 365 is displayed instead.

In this recipe, we will simply replace the control with a custom control that displays our

own text. The text could also be replaced by editing the master page or by modifying the

SuiteBarBrandingElementHtml property on the SharePoint web application. Using the

custom control provides us the ability to add additional functionality if desired. For instance,

the control could be used to add additional links, a menu, or other interactive content.

Getting ready
We should have already created our Visual Studio project in the Creating a Visual Studio

solution for custom delegate controls recipe of this chapter before starting this recipe.

Customizing the SharePoint Experience with Delegate Controls

262

How to do it...

Follow these steps to replace the suite bar branding text using a delegate control:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Right-click on the subfolder we previously created in the CONTROLTEMPLATES

mapped folder.

3. Navigate to Add | New Item.

4. Select User Control by navigating to Visual C# Items | Ofice/SharePoint.

5. Provide the item a name, CustomSuiteBarBranding.ascx for example and then

click on Add.

6. Open the newly created ASCX ile if it is not already open.

7. In the body of the user control, add our custom branding text as follows:

<div class="ms-core-brandingText">
Custom SharePoint Branding Text</div>

8. Right-click on the project name in the Solution Explorer pane.

9. Navigate to Add | New Item.

10. Select Empty Element by navigating to Visual C# Items | Ofice/SharePoint.

11. Provide the new item a name, CustomSuiteBarBranding for example.

12. Click on Add.

13. In the newly created Elements.xml ile from the new element, register our custom
control with the SuiteBarBrandingDelegate control as follows:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Control Id="SuiteBarBrandingDelegate"

 Sequence="10"

 ControlSrc="~/_controltemplates/15/Code6587EN.Ch07/
 CustomSuiteBarBranding.ascx">

 </Control>

</Elements>

14. Add a new safe control entry to the new element with the following details:

 � (Name): CustomSuiteBarBranding (the name of the user control we

created without the .ascx extension)

 � Assembly: $SharePoint.Project.AssemblyFullName$

 � Namespace: Code6587EN.Ch07.CONTROLTEMPLATES.Code6587EN.
Ch07 (the full namespace for the user control, without the name of the

class itself)

Chapter 7

263

 � Safe: True

 � Safe Against Script: True

 � Type Name: CustomSuiteBarBranding (the name of the class for the

user control)

15. Open the feature created previously. Ensure that the new element is included in

the feature:

16. Click on Start from the toolbar to deploy the solution and attach the debugger.

17. Once the SharePoint site is loaded in the web browser (after clicking on Start),

observe the new branding text as shown in the following screenshot:

Customizing the SharePoint Experience with Delegate Controls

264

How it works...

The out-of-the-box control used by the SuiteBarBrandingDelegate delegate control

displays the HTML snippet stored in the SuiteBarBrandingElementHtml property of the

current SharePoint web application. In this recipe, we replaced the default control with our

own delegate control that adds our text to the page.

We are using the same CSS class that the out-of-the-box text uses to allow the content to

display with the standard style. Relying on the SharePoint classes allows the content to inherit

the styles provided by the current SharePoint theme.

See also
 f The SPWebApplication.SuiteBarBrandingElementHtml property topic on MSDN at

http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.
administration.spwebapplication.suitebarbrandingelementhtml.
aspx

 f The Delegate Controls article on MSDN at http://msdn.microsoft.com/en-us/
library/sharepoint/ms478826.aspx

 f The Control Element (Delegate Control) topic on MSDN at http://msdn.
microsoft.com/en-us/library/sharepoint/ms469179.aspx

Customizing the suite bar links with a
SuiteLinksDelegate delegate control

In addition to the branding text, out-of-the-box SharePoint master pages include a delegate

control to display a series of links in the suite bar. These links include Newsfeed, SkyDrive,

and Sites by default. Since SharePoint provides no coniguration options to add or modify
the links in the suite bar, we will use a delegate control in this recipe and in the next recipe to

customize the links displayed.

Getting ready
We should have already created our Visual Studio project in the Creating a Visual Studio

solution for custom delegate controls recipe of this chapter before starting this recipe.

Chapter 7

265

How to do it...

Follow these steps to customize the suite bar links with a delegate control:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Right-click on the Controls folder we created previously.

3. Navigate to Add | Class.

4. Provide a name for the item, CustomSuiteBarLinks.cs for example.

5. Click on Add.

6. Set the access modiier for the CustomSuiteBarLinks class to public,

set the class to inherit from the UserControl base class, and implement the

IDesignTimeHtmlProvider interface:

public class CustomSuiteBarLinks : UserControl,
IDesignTimeHtmlProvider

7. Override the CreateChildControls method and in a monitored scope instruct the

script manager to load the applicable SharePoint JavaScript iles using the following
code:

protected override void CreateChildControls()

{

 using (new SPMonitoredScope("Code6587EN.Ch07.Controls.
 CustomSuiteBarLinks::CreateChildControls"))

 {

 ScriptLink.RegisterScriptAfterUI(this, this.Page,
 "sp.js", false);

 ScriptLink.RegisterScriptAfterUI(this, this.Page,
 "SP.UI.MySiteNavigation.js", false);

 ScriptLink.RegisterScriptAfterUI(this, this.Page,
 "suitelinks.js", false);

 ScriptLink.RegisterScriptAfterUI(this, this.Page,
 "MyLinks.js", false);

 }

}

8. Implement the GetDesignTimeHtml method from the

IDesignTimeHtmlProvider interface and in a monitored scope return the HTML

output from the Render method using HtmlTextWriter as follows:

public string GetDesignTimeHtml()

{

 using (new SPMonitoredScope("Code6587EN.Ch07.Controls.
 CustomSuiteBarLinks::GetDesignTimeHtml"))

 {

Customizing the SharePoint Experience with Delegate Controls

266

 StringWriter writer = new
 StringWriter(CultureInfo.CurrentCulture);

 HtmlTextWriter writer2 = new HtmlTextWriter(writer);

 this.Render(writer2);

 writer2.Close();

 return writer.ToString();

 }

}

9. Add a private method named RenderSuiteLink that we will use to render the

HTML for each individual suite bar link and add a monitored scope using the following

code:

private static void RenderSuiteLink(HtmlTextWriter writer,
string url, string name, string linkId, bool isActiveLink)

{

 using (new SPMonitoredScope("Code6587EN.Ch07.Controls.
 CustomSuiteBarLinks::GetDesignTimeHtml"))

 {

 }

}

When rendering each suite bar link, we will use HtmlTextWriter instantiated in the

GetDesignTimeHtml method to append the HTML code for the link.

10. In the monitored scope of our RenderSuiteLink method, add an HTML list item

element with ms-core-SuiteLink as its CSS class:

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-core-suiteLink");

writer.RenderBeginTag(HtmlTextWriterTag.Li);

When we use an HtmlTextWriter to construct HTML, we use the AddAttribute

method to add HTML attributes to an HTML element prior to rendering its beginning

tag.

11. Add an HTML link element with ms-core-suiteLink-a as the CSS class, the

provided URL as the HREF attribute, and the provided link ID for the ID attribute:

writer.AddAttribute(HtmlTextWriterAttribute.Class, "ms-
core-suiteLink-a");

writer.AddAttribute(HtmlTextWriterAttribute.Href, url);

writer.AddAttribute(HtmlTextWriterAttribute.Id, linkId);

writer.RenderBeginTag(HtmlTextWriterTag.A);

12. Add an HTML SPAN element that will contain the text to display in the suite link bar:

writer.RenderBeginTag(HtmlTextWriterTag.Span);

Chapter 7

267

13. Add the text to display in the SPAN element:

writer.Write(name);

14. If the link is the active link, add a SPAN element with the carat image that SharePoint

uses to indicate an active link:

if (isActiveLink)

{

 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 "Suite_ActiveLinkIndicator_Clip");

 writer.AddAttribute(HtmlTextWriterAttribute.Class,
 "ms-suitenav-caratBox");

 writer.RenderBeginTag(HtmlTextWriterTag.Span);

 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 "Suite_ActiveLinkIndicator");

 writer.AddAttribute(HtmlTextWriterAttribute.Class,
 "ms-suitenav-caratIcon");

 writer.AddAttribute(HtmlTextWriterAttribute.Src,
 SPUtility.GetThemedImageUrl(SPUrlUtility.CombineUrl
 (SPUtility.ContextImagesRoot, "spcommon.png"),
 "spcommon"));

 writer.RenderBeginTag(HtmlTextWriterTag.Img);

 writer.RenderEndTag();

 writer.RenderEndTag();

}

15. Using the following code add the end tags for the SPAN, link, and list item elements:

writer.RenderEndTag();

writer.RenderEndTag();

writer.RenderEndTag();

16. Override the Render method and add a monitored scope as follows:

protected override void Render(HtmlTextWriter writer)

{

 using (new SPMonitoredScope("Code6587EN.Ch07.
 Controls.CustomSuiteBarLinks::GetDesignTimeHtml"))

 {

 }

}

17. In the monitored scope, add the HTML DIV element to contain our suite bar links

with Suite_NavBar as the ID attribute:

writer.AddAttribute(HtmlTextWriterAttribute.Id,
"Suite_NavBar");

writer.RenderBeginTag(HtmlTextWriterTag.Div);

Customizing the SharePoint Experience with Delegate Controls

268

18. Add the unordered list element to contain the list items created in the

RenderSuiteLink method with ms-core-SuiteLinkList as the CSS class and

Suite_TopMenu as the ID attribute using the following code:

writer.AddAttribute(HtmlTextWriterAttribute.Id,
"Suite_TopMenu");

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-core-suiteLinkList");

writer.RenderBeginTag(HtmlTextWriterTag.Ul);

19. Add two or more suite links with the RenderSuiteLink method:

RenderSuiteLink(writer, "/", "Home", "suiteLinkHome",
true);

RenderSuiteLink(writer, "http://www.bing.com", "Bing",
"suiteLinkBing", false);

In our example, we are simply setting the Home link as the active link. It would be

prudent to add your own method for determining which link is active by the current

page URL or by some other appropriate method.

20. Add the end tags for the unordered list and DIV elements as follows:

writer.RenderEndTag();

writer.RenderEndTag();

21. Add a new Empty Element item to the project to register our custom suite link's bar

control.

22. In the Elements.xml ile of our new element, register our custom suite bar links
control with the SuiteLinksDelegate delegate control using the following code:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Control Id="SuiteLinksDelegate"
Sequence="1"
 ControlClass="Code6587EN.Ch07.Controls.
 CustomSuiteBarLinks"
 ControlAssembly="$SharePoint.Project.AssemblyFullName$">

 </Control>

</Elements>

23. Add a new safe control entry to the new element with the following details:

 � (Name): CustomSuiteBarLinks (the name of the class for our

custom control)

 � Assembly: $SharePoint.Project.AssemblyFullName$

 � Namespace: Code6587EN.Ch07.Controls (the full namespace for the

class, without the name of the class itself)

 � Safe: True

Chapter 7

269

 � Safe Against Script: True

 � Type Name: CustomSuiteBarLinks (the name of the class)

24. Open the feature created previously. Ensure that the new element is included in

the feature.

25. Click on Start from the toolbar to deploy the solution and attach the debugger.

26. Once the SharePoint site is loaded in the web browser (after clicking on Start),

observe the new suite bar links as shown in the following screenshot:

How it works...

Our custom suite bar links control implements the SharePoint IDesignTimeHtmlProvider

interface. When our control is rendered, SharePoint calls the GetDesignTimeHtml method

that we implemented to get the HTML markup to add to the page. Our code composes the

HTML markup to render our custom suite links bar using the same styles and structure as the

out-of-the-box suite links bar control. This ensures that our custom suite links work well with

SharePoint themes and other customized styles.

In this recipe, we are using an HtmlTextWriter to compose the HTML content of the suite

bar links control. This HTML content is output to a string using a StringWriter object. There

are a variety of ways HTML code may be composed and added to the page. The out-of-the-box

control for the suite links uses the HtmlTextWriter methodology. In your own suite links

control, you could use any applicable method you like for composing HTML. For instance, you

could add the HTML markup to an ASCX control rather than creating it programmatically.

See also
 f The IDesignTimeHtmlProvider interface topic on MSDN at http://msdn.

microsoft.com/en-us/library/microsoft.sharepoint.webcontrols.
idesigntimehtmlprovider.aspx

 f The IDesignTimeHtmlProvider.GetDesignTimeHtml method topic on MSDN at
http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.
webcontrols.idesigntimehtmlprovider.getdesigntimehtml.aspx

 f The HtmlTextWriter Class topic on MSDN at http://msdn.microsoft.com/en-
us/library/system.web.ui.htmltextwriter.aspx

Customizing the SharePoint Experience with Delegate Controls

270

Adding Ofice 365-style drop-down menus to
suite bar links

SharePoint on Ofice 365 includes additional links related to Ofice 365 services in the suite
bar, including a drop-down menu of links. Standard installations of SharePoint include the

CSS styles and basic JavaScript required to handle these Ofice 365 drop-down menus. They
do not, however, include a way to utilize the styles and JavaScript. The following screenshot

illustrates how the drop-down menu looks on Ofice 365:

In this recipe, we will add a drop-down menu using the provided CSS styles and a bit of

custom JavaScript of our own using the delegate control we created in the previous recipe.

The JavaScript code provided out-of-the-box is designed to only work with Ofice 365. We will
use a modiied version of the methods from the out-of-the-box JavaScript to work with our
custom drop-down menu.

Getting ready
For this recipe, we should already have the delegate control created in the Customizing the

suite bar links with a SuiteLinksDelegate delegate control recipe.

How to do it...

Follow these steps to add a drop-down menu to our suite links delegate control:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Add a new JavaScript ile to the subfolder we created in the Layouts mapped folder.

3. In our new JavaScript ile, add a function to hide the suite bar menu by setting its CSS
style and removing the active CSS class from its parent container

as follows:

function CustomSuiteBarMenu_Hide (menuDivID, popupOwnerID) {

 var menuDiv = document.getElementById(menuDivID);

 if (menuDiv)

 {

Chapter 7

271

 menuDiv.style.display = "none";

 menuDiv.style.top = "-10000px";

 var popupOwner = document.getElementById(popupOwnerID);

 RemoveCssClassFromElement(popupOwner,
 "ms-core-suiteLink-active");

 }

}

4. Add a function to get the location of the element provided using the

following code:

function CustomSuiteBarMenu_GetRectangle (elem) {

 var rWin = elem.getBoundingClientRect();

 var xOff = Boolean(window.pageXOffset) ?
 window.pageXOffset : document.documentElement.scrollLeft;

 var yOff = Boolean(window.pageYOffset) ?
 window.pageYOffset : document.documentElement.scrollTop;

 var rDoc = {};

 rDoc.left = rWin.left + xOff;

 rDoc.right = rWin.right + xOff;

 rDoc.top = rWin.top + yOff;

 rDoc.bottom = rWin.bottom + yOff;

 return rDoc;

}

5. Add a function to show the suite bar menu as follows:

function CustomSuiteBarMenu_ShowMenu(popupOwnerID,
menuDivID, navBarID)

6. In our new function to show the suite bar menu, determine if the current

page is displaying text left-to-right or right-to-left:

var IsRtl = window.document.documentElement.
getAttribute("dir") == "rtl";

7. Get the menu element, the suite link element containing the menu, and the

suite links bar element:

var menuDiv = document.getElementById(menuDivID);

var popupOwner = document.getElementById(popupOwnerID);

var navBar = document.getElementById(navBarID);

8. Call our function to hide the menu that will ensure we are not applying the

styles to display the menu multiple times:

CustomSuiteBarMenu_Hide(menuDivID, popupOwnerID);

Customizing the SharePoint Experience with Delegate Controls

272

9. Add the ms-core-suiteLink-active CSS class to the suite link element

containing the suite bar menu as follows:

AddCssClassToElement(popupOwner,
"ms-core-suiteLink-active");

10. Get the location of the suite link element containing the menu:

var currentMenuOwnerBoundingRect =
CustomSuiteBarMenu_GetRectangle(popupOwner);

11. Get the location of the suite links bar:

var navBarBoundingRect =
CustomSuiteBarMenu_GetRectangle(navBar);

12. Using the following code set the display style of the suite bar menu to

inline-block:

menuDiv.style.display = "inline-block";

13. Set the location of the suite bar menu based on the location of the suite link

containing the menu, the location of the suite links bar, and the direction of the text

on the page, with the help of the following code snippet:

var menuLeft;

var menuWidth = menuDiv.offsetWidth;

if (IsRtl) {

 menuLeft = currentMenuOwnerBoundingRect.
 right - menuWidth;

}

else {

 menuLeft = currentMenuOwnerBoundingRect.left;

}

var winWidth = document.documentElement.clientWidth;

var winLeft =
Boolean(window.pageXOffset) ? window.pageXOffset :
document.documentElement.scrollLeft;

var winRight = winLeft + winWidth;

if (menuLeft < winLeft) {

 menuLeft = winLeft;

}

else if (menuLeft + menuWidth > winRight) {

 menuLeft = winRight - menuWidth;

}

menuDiv.style.left =
String(Math.max(winLeft, menuLeft)) + "px";

menuDiv.style.top =
String(navBarBoundingRect.bottom) + "px";

Chapter 7

273

14. In our monitored scope within the CreateChildControls method of our

CustomSuiteBarLinks class, instruct the script manager to add a reference to our

custom JavaScript ile to the page as follows:
this.Page.ClientScript.RegisterClientScriptInclude
("CustomSuiteBarLinks
", SPContext.Current.Web.ServerRelativeUrl.TrimEnd('/') + "/_
layouts/15/Code6587EN.Ch07/CustomSuiteBarLinks.js");

15. In our CustomSuiteBarLinks class, add a new method to render our suite

bar menu with a monitored scope using the following code:

private static void RenderSuiteLinkMenu(HtmlTextWriter writer,
string name, string menuId, List<Tuple<string, string, string>>
subItems)

{

 using (new
 SPMonitoredScope("Code6587EN.Ch07.Controls.
 CustomSuiteBarLinks::GetDesignTimeHtml"))

 {

 }

}

To contain the list of links that we will render in the menu, we are using a list of

tuples. Tuples are a simple way to instantiate anonymous objects. You could also use
a collection of custom class objects or whatever other method of passing a collection

of links that suit your needs.

16. Add the HTML list item element to contain the suite bar menu with ms-
core-suiteLink for the CSS class:

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-core-suiteLink");

writer.RenderBeginTag(HtmlTextWriterTag.Li);

17. Using the following code add the HTML link element to contain the suite bar

menu and add the JavaScript handlers to show or hide the suite bar menu:

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-core-suiteLink-a");

writer.AddAttribute(HtmlTextWriterAttribute.Href, "#");

writer.AddAttribute(HtmlTextWriterAttribute.Id,
"Suite_MainLink_" + menuId);

writer.AddAttribute("onfocus",
"CustomSuiteBarMenu_ShowMenu('Suite_MainLink_" + menuId +
"', 'Suite_PopupMenu_" + menuId + "', 'Suite_NavBar');");

writer.AddAttribute("onclick",
"CustomSuiteBarMenu_ShowMenu('Suite_MainLink_" + menuId +
"', 'Suite_PopupMenu_" + menuId + "', 'Suite_NavBar');");

Customizing the SharePoint Experience with Delegate Controls

274

writer.AddAttribute("onblur",
"CustomSuiteBarMenu_Hide('Suite_PopupMenu_" + menuId + "',
'Suite_MainLink_" + menuId + "');");

writer.RenderBeginTag(HtmlTextWriterTag.A);

18. Add the HTML SPAN element to contain the display text for the menu and

add the JavaScript handler to hide the suite bar menu as follows:

writer.AddAttribute("onblur",
"CustomSuiteBarMenu_Hide('Suite_PopupMenu_" + menuId + "',
'Suite_MainLink_" + menuId + "');");

writer.RenderBeginTag(HtmlTextWriterTag.Span);

19. Add the display text for the suite bar menu name:

writer.Write(name);

20. Add the HTML SPAN element and image to display the drop-down menu icon

with the use of the following code:

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-suitenav-downarrowBox");

writer.AddAttribute("onblur",
"CustomSuiteBarMenu_Hide('Suite_PopupMenu_" + menuId + "',
'Suite_MainLink_" + menuId + "');");

writer.RenderBeginTag(HtmlTextWriterTag.Span);

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-suitenav-downarrowIcon");

writer.AddAttribute(HtmlTextWriterAttribute.Src,
SPUtility.GetThemedImageUrl(SPUrlUtility.CombineUrl
(SPUtility.ContextImagesRoot, "spcommon.png"),
"spcommon"));

writer.RenderBeginTag(HtmlTextWriterTag.Img);

21. Add the end tags for the image, image SPAN, display text SPAN, and link

elements:

writer.RenderEndTag();

writer.RenderEndTag();

writer.RenderEndTag();

writer.RenderEndTag();

22. Add the HTML DIV element to contain the suite bar menu items with ms-
core-menu-box ms-core-suitemenu for the CSS class using the following code:

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-core-menu-box ms-core-suitemenu");

writer.AddAttribute(HtmlTextWriterAttribute.Id,
"Suite_PopupMenu_" + menuId);

writer.RenderBeginTag(HtmlTextWriterTag.Div);

Chapter 7

275

23. Add the HTML unordered list element to contain the list of menu items with ms-
core-menu-list as the CSS class as follows:

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-core-menu-list");

writer.RenderBeginTag(HtmlTextWriterTag.Ul);

24. For each link in our collection of links, add the HTML elements to render the

menu item using the following code listing:

foreach (var subItem in subItems)

{

 writer.AddAttribute(HtmlTextWriterAttribute.Class,
 "ms-core-menu-item");

 writer.RenderBeginTag(HtmlTextWriterTag.Li);

 writer.AddAttribute(HtmlTextWriterAttribute.Class,
 "ms-core-menu-link");

 writer.AddAttribute(HtmlTextWriterAttribute.Href,
 subItem.Item3);

 writer.AddAttribute(HtmlTextWriterAttribute.Id,
 "Suite_SubLink_" + subItem.Item2);

 writer.RenderBeginTag(HtmlTextWriterTag.A);

 writer.AddAttribute(HtmlTextWriterAttribute.Class,
 "ms-core-menu-label");

 writer.RenderBeginTag(HtmlTextWriterTag.Div);

 writer.AddAttribute(HtmlTextWriterAttribute.Class,
 "ms-core-menu-title");

 writer.RenderBeginTag(HtmlTextWriterTag.Span);

 writer.Write(subItem.Item1);

 writer.RenderEndTag();

 writer.RenderEndTag();

 writer.RenderEndTag();

 writer.RenderEndTag();

}

25. Add the end tags for the unordered list, suite bar menu container DIV, and

the list item element containing the menu.

26. Click on Start from the toolbar to deploy the solution and attach

the debugger.

Customizing the SharePoint Experience with Delegate Controls

276

27. Once the SharePoint site is loaded in the web browser (after clicking on Start),

observe the new suite bar links drop-down menu. The following screenshot shows

how it will look:

How it works...

The JavaScript and CSS styles provided by SharePoint out-of-the-box include the functionality

to render a drop-down menu in the suite links bar for Ofice 365. In this recipe, we added a
modiied copy of the applicable JavaScript to allow us to render our own drop-down menu
using the same styles. We could use other JavaScript-based method for displaying a custom

drop-down menu. However, for this recipe, we used the Ofice 365 methodology to keep the
example simple.

See also
 f The Tuple Class topic on MSDN at http://msdn.microsoft.com/en-us/

library/system.tuple.aspx

Adding promoted action links with the
PromotedActions delegate control

The out-of-the-box master pages included with SharePoint contain a series of promoted

actions on the top-right corner of the page. These JavaScript-based actions are displayed

as links and include functions such as FOLLOW and SHARE as shown in the following

screenshot. The PromotedActions delegate control allows us to add additional actions, but

does not replace the existing actions.

Chapter 7

277

In this recipe, we will add a custom promoted action that ires a JavaScript alert. Promoted
actions could be used for a variety of purposes related to the page or site the user is currently

viewing. For instance, a promoted action could be created to post a link to the page on social

network sites.

Getting ready
We should have already created our Visual Studio project in the Creating a Visual Studio

solution for custom delegate controls recipe of this chapter before starting this recipe.

How to do it...

Follow these steps to add a promoted action with a delegate control:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Add a new class to our Controls folder.

3. Set the access modiier of the class to public, inherit from the

UserControl base class, and implement the IDesignTimeHtmlProvider

interface:

public class CustomPromotedAction : UserControl,
IDesignTimeHtmlProvider

4. Implement the GetDesignTimeHtml method and return the HTML provided

by the Render method in a monitored scope using the following code:

public string GetDesignTimeHtml()

{

 using (new SPMonitoredScope("Code6587EN.Ch07.Controls.
 CustomPromotedAction::GetDesignTimeHtml"))

 {

 StringWriter writer = new StringWriter
 (CultureInfo.CurrentCulture);

 HtmlTextWriter writer2 = new HtmlTextWriter(writer);

 this.Render(writer2);

 writer2.Close();

 return writer.ToString();

 }

}

5. Override the Render method and add a monitored scope as follows:

protected override void Render(HtmlTextWriter writer)

{

Customizing the SharePoint Experience with Delegate Controls

278

 using (new SPMonitoredScope("Code6587EN.Ch07.
 Controls.CustomPromotedAction::Render"))

 {

 }

}

6. Get the URL to the common SharePoint image sprite for the currently applied

theme:

var iconUrl = SPUtility.GetThemedImageUrl
("/_layouts/15/images/spcommon.png", "spcommon");

We will use this image to display an icon for our promoted action. You can use a
different image and modify the CSS accordingly for positioning.

7. Add a STYLE element to provide the CSS styles that we will use to render our

custom action as follows:

writer.AddAttribute(HtmlTextWriterAttribute.Type,
"text/css");

writer.RenderBeginTag(HtmlTextWriterTag.Style);

writer.Write("#customPromotedActionIcon { height:16px;
width:16px; position:relative; display:inline-block;
overflow:hidden; background-image: url('" + iconUrl + "');
background-position: -218px -48px; }");

writer.RenderEndTag();

8. Add the HTML link element to display our custom promoted action with its

JavaScript handler to ire when clicked:
writer.AddAttribute(HtmlTextWriterAttribute.Id,
"customPromotedAction");

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-promotedActionButton");

writer.AddAttribute(HtmlTextWriterAttribute.Href, "#");

writer.AddAttribute("onclick",
"alert('You clicked the promoted action.');");

writer.RenderBeginTag(HtmlTextWriterTag.A);

9. Add the HTML SPAN element to display our custom promoted action image:

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"s4-clust ms-promotedActionButton-icon");

writer.AddAttribute(HtmlTextWriterAttribute.Id,
"customPromotedActionIcon");

writer.RenderBeginTag(HtmlTextWriterTag.Span);

writer.Write(" ");

writer.RenderEndTag();

Chapter 7

279

10. Add the HTML SPAN element to contain the display text for our custom promoted

action:

writer.AddAttribute(HtmlTextWriterAttribute.Class,
"ms-promotedActionButton-text");

writer.RenderBeginTag(HtmlTextWriterTag.Span);

writer.Write("Custom Action");

writer.RenderEndTag();

11. Add the end tag for our HTML link element:

writer.RenderEndTag();

12. Add a new Empty Element item to our project.

13. In the Elements.xml ile of our new element, register our custom promoted
action control with the PromotedActions delegate control:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Control Id="PromotedActions" Sequence="90"
 ControlClass="Code6587EN.Ch07.Controls.
 CustomPromotedAction" ControlAssembly=
 "$SharePoint.Project.AssemblyFullName$">

 </Control>

</Elements>

14. Add a new safe control entry to the new element with the following details:

 � (Name): CustomPromotedAction (the name of the class for our

custom control)

 � Assembly: $SharePoint.Project.AssemblyFullName$

 � Namespace: Code6587EN.Ch07.Controls (the full namespace for the

class, without the name of the class itself)

 � Safe: True

 � Safe Against Script: True

 � Type Name: CustomPromotedAction (the name of the class)

15. Open the feature created previously. Ensure that the new element is

included in the feature.

16. Click on Start from the toolbar to deploy the solution and attach the debugger.

Customizing the SharePoint Experience with Delegate Controls

280

17. Once the SharePoint site is loaded in the web browser (after clicking on Start),

observe the promoted action. The following screenshot shows how it will look:

How it works...

Promoted actions in SharePoint provide a series of JavaScript-based actions for end users.

The default actions include FOLLOW and SHARE. Adding a custom promoted action adds

actions rather than replacing the existing ones. The promoted action in our recipe simply ires
the JavaScript alert function to display a message to the user.

See also
 f The SPUtility.GetThemedImageUrl method topic on MSDN at http://msdn.

microsoft.com/en-us/library/microsoft.sharepoint.utilities.
sputility.getthemedimageurl.aspx

Customizing header navigation with a
TopNavigationDataSource delegate control

SharePoint provides two primary navigation structures by default: the quick launch displayed

vertically on the left-hand side of the page and the top navigation displayed horizontally at the

top of the page. The items displayed in these navigation structures may be customized in a

variety of methods, including manually per site, using managed metadata, and using custom

site map providers. The following screenshot shows the horizontal navigation provided by

SharePoint at the top of the page:

In this recipe, we will create a custom site map provider and register it with the

TopNavigationDataSource delegate control. There are a variety of techniques to create

custom site map providers from code. The site map providers used by SharePoint are derived

from the SiteMapProvider class provided by the .NET framework in the System.Web

assembly. For the purpose of this recipe, we will create a very simple class derived from the

PortalSiteMapProvider class.

Chapter 7

281

Getting ready
We should have already created our Visual Studio project in the Creating a Visual Studio

solution for custom delegate controls recipe of this chapter before starting this recipe.

How to do it...

Follow these steps to customize the top navigation with a delegate control:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Add a new class to our Controls folder.

3. Set the access modiier for our new class to public and inherit from the

PortalSiteMapProvider base class:

public class CustomSiteMapProvider : PortalSiteMapProvider

4. Add a ield to the class containing the list of links to return from the custom
site map provider using the following code:

private Dictionary<string, string> links = new Dictionary<string,
string>() {

 { "Bing", "http://www.bing.com" },

 { "Google", "http://www.google.com" },

 { "Yahoo", "http://www.yahoo.com" }

};

If you were always using a constant list of links, this would be suficient. However,
if you had a dynamic source for the link data, you could replace this with your own

method for getting links.

5. Add a bool ield to the class to determine whether or not we should include the
SharePoint conigured navigation data in the list of links we will return. In our method
to return the collection of links, we will use this to indicate whether or not we should

include the SharePoint-provided links, along with our own links. You could remove this
or make it conigurable depending upon your circumstances.
private bool renderSharePointLinks = false;

6. Override the GetChildNodes method and add a monitored scope as

follows:

public override SiteMapNodeCollection GetChildNodes(SiteMapNode
node)

{

 using (new SPMonitoredScope("Code6587EN.Ch07.Controls.
 CustomSiteMapProvider::GetChildNodes"))

Customizing the SharePoint Experience with Delegate Controls

282

 {

 }

}

The GetChildNodes method will be called by SharePoint when looking for the links

to render for each navigation node. We will return our links when the node provided is

for the current SharePoint site.

7. In our monitored scope, instantiate a new SiteMapNodeCollection object:

var nodes = new SiteMapNodeCollection();

8. Cast the provided node as PortalSiteMapNode:

PortalSiteMapNode portalNode = node as PortalSiteMapNode;

9. Ensure the casted node is not null:

if (portalNode != null)

10. Ensure the node is for the current SharePoint site with the help of the following code:

if (portalNode.Type == NodeTypes.Area && portalNode.WebId
== SPContext.Current.Site.RootWeb.ID)

11. For each link in our collection of links, add a new node to the nodes collection:

foreach (var link in links)

nodes.Add(new SiteMapNode(this, link.Key, link.Value,
link.Key));

12. If we are adding the SharePoint conigured links, add the nodes from the
GetChildNodes method of the PortalSiteMapProvider base class:

if (renderSharePointLinks)

nodes.AddRange(base.GetChildNodes(portalNode));

13. Return our collection of nodes:

return nodes;

14. Add a new Empty Element item to our project.

15. In the Elements.xml ile of our new element, register the
SiteMapDataSource class from the System.Web assembly with the

TopNavigationDataSource delegate control. Add our custom site map provider

as the value for the SiteMapProvider property of the control using the following

code snippet:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Control Sequence="1" Id="TopNavigationDataSource"
 ControlClass=
 "System.Web.UI.WebControls.SiteMapDataSource"

Chapter 7

283

 ControlAssembly="System.Web, Version=2.0.0.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a">

 <Property Name="ID">topSiteMap</Property>

 <Property Name="SiteMapProvider">
 CustomSiteMapProvider</Property>

 <Property Name="EnableViewState">false</Property>

 <Property Name="ShowStartingNode">true</Property>

 </Control>

</Elements>

16. Open the feature created previously, Code6587EN.Ch07 for instance.

Ensure that the new element is included in the feature.

17. Right-click on the feature in the Solution Explorer pane and select Add Event

Receiver as shown in the following screenshot:

18. Uncomment the FeatureActivated and FeatureDeactivating event receiver

override methods.

19. In our FeatureActivated override method, add a scope to run with

elevated privileges:

SPSecurity.RunWithElevatedPrivileges(() =>

{

});

Executing our code with elevated privileges runs the code as the farm

account rather than as the current user. This helps to prevent access

denied errors if the current user does not have direct access to perform

the current action. It is only recommended to use this methodology

when performing actions that affect a SharePoint web application or the

farm itself. Allowing code to run with full control over the farm can open

potential security risks if we are allowing users who do not have farm

administrator access to make farm-level changes.

If elevated permissions only to the current site or site collection are

required, open the site collection with the user token of the system

account instead. See http://msdn.microsoft.com/en-us/
library/office/microsoft.sharepoint.spusertoken.
systemaccount.aspx for more information on retrieving the system

account user token.

Customizing the SharePoint Experience with Delegate Controls

284

20. In our elevated scope, get the current content web service:

SPWebService service = SPWebService.ContentService;

21. With the help of the following code, create a new web.config modiication
record to add our custom site map provider to the conigured site map providers:

SPWebConfigModification myModification = new
SPWebConfigModification();

myModification.Path =
"configuration/system.web/siteMap/providers";

myModification.Name = "add[@name='CustomSiteMapProvider']";

myModification.Sequence = 0;

myModification.Owner = "Code6587ENCustomSiteMapProvider";

myModification.Type =
SPWebConfigModification.SPWebConfigModificationType.
EnsureChildNode;

var typeName = typeof(CustomSiteMapProvider).FullName + ",
" + typeof(CustomSiteMapProvider).Assembly.FullName;

myModification.Value = "<add name=\"CustomSiteMapProvider\"
type=\"" + typeName + "\" NavigationType=\"Global\" />";

22. Add our new modiication to the collection of modiications:
service.WebConfigModifications.Add(myModification);

23. Update the content web service and apply the web.config modiications:
service.Update();

service.ApplyWebConfigModifications();

24. In our FeatureDeactivating override method, add a scope to run with

elevated privileges:

SPSecurity.RunWithElevatedPrivileges(() =>

{

});

25. In our elevated scope, get the content web service:

SPWebService service = SPWebService.ContentService;

26. Get the collection of web.config modiications from the content web
service:

Collection<SPWebConfigModification> modsCollection =
service.WebConfigModifications;

27. Iterate through each coniguration. If you have added the modiication,
remove it using the following code:

int modsCount1 = modsCollection.Count;

for (int i = modsCount1 - 1; i > -1; i--)

Chapter 7

285

{

 if (modsCollection[i].Owner.Equals
 ("Code6587ENCustomSiteMapProvider"))

 {

 modsCollection.Remove(modsCollection[i]);

 }

}

28. Update the content web service and apply the web.config modiications:
service.Update();

service.ApplyWebConfigModifications();

29. Click on Start from the toolbar to deploy the solution and attach the

debugger.

30. Once the SharePoint site is loaded in the web browser (after clicking on Start),

observe the links displayed in the top navigation.

How it works...

A SiteMapProvider class provides the data for the top navigation control

in SharePoint. In our recipe, we created a custom SiteMapProvider class

based on the PortalSiteMapProvider base class. Rather than replacing the

TopNavigationDataSource delegate control with a custom control, we registered the

default SiteMapProvider control and conigured it to use our custom site map provider.
In addition, we registered our custom site map provider in the web.config ile of the
SharePoint web application programmatically.

See also
 f The SiteMapProvider Class topic on MSDN at http://msdn.microsoft.com/en-

us/library/system.web.sitemapprovider.aspx

 f The PortalSiteMapProvider class topic on MSDN at http://msdn.microsoft.
com/en-us/library/sharepoint/microsoft.sharepoint.publishing.
navigation.portalsitemapprovider.aspx

 f The How To: Add and Remove Web.Conig Settings Programmatically

article on MSDN at http://msdn.microsoft.com/en-us/library/
bb861909(v=office.14).aspx

 f The SPWebConigurationModiication class topic on MSDN at http://
msdn.microsoft.com/en-us/library/microsoft.sharepoint.
administration.SPWebConfigModification.aspx

 f The SPSecurity.RunWithElevatedPriviliges method topic on MSDN at http://msdn.
microsoft.com/en-us/library/microsoft.sharepoint.spsecurity.
runwithelevatedprivileges.aspx

Customizing the SharePoint Experience with Delegate Controls

286

 f The SPSite constructor (String, SPUserToken) topic on MSDN at http://msdn.
microsoft.com/en-us/library/ms469253.aspx

 f The SPUserToken.SystemAccount property topic on MSDN at http://msdn.
microsoft.com/en-us/library/microsoft.sharepoint.spusertoken.
systemaccount.aspx

Customizing quick launch navigation with a
QuickLaunchDataSource delegate control

In this recipe, we will register the custom site map provider, which we created in the previous

recipe, Customizing header navigation with a TopNavigationDataSource delegate control,
with the QuickLaunchDataSource delegate control. Since we have already created our

custom site map provider and registered it in the web.config modiications, we will simply
conigure the QuickLaunchDataSource delegate control to use this site map provider. The

QuickLaunchDataSource delegate control provides the data for the navigation illustrated

in the following screenshot:

Getting ready
For this recipe, we should already have the custom site map provider created from the

Customizing header navigation with a TopNavigationDataSource delegate control recipe.

How to do it...

Follow these steps to register our custom site map provider with the quick launch navigation:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

Chapter 7

287

2. In the Elements.xml ile from the Empty Element item created in the previous

recipe, add another control registration for the QuickLaunchDataSource delegate

control using the following code:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Control Sequence="1" Id="TopNavigationDataSource"
 ControlClass="System.Web.UI.WebControls.
 SiteMapDataSource" ControlAssembly="System.Web,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a">

 <Property Name="ID">topSiteMap</Property>

 <Property Name="SiteMapProvider">
 CustomSiteMapProvider</Property>

 <Property Name="EnableViewState">false</Property>

 <Property Name="ShowStartingNode">true</Property>

 </Control>

 <Control Sequence="1" Id="QuickLaunchDataSource"
 ControlClass="System.Web.UI.WebControls.
 SiteMapDataSource" ControlAssembly="System.Web,
 Version=2.0.0.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a">

 <Property Name="ID">QuickLaunchSiteMap</Property>

 <Property Name="SiteMapProvider">
 CustomSiteMapProvider</Property>

 <Property Name="EnableViewState">false</Property>

 <Property Name="ShowStartingNode">true</Property>

 </Control>

</Elements>

3. Click on Start from the toolbar to deploy the solution and attach the debugger.

4. Once the SharePoint site is loaded in the web browser (after clicking on Start),

observe the links displayed in the quick launch.

How it works...

Site map providers registered in the web.config modiications of an ASP.NET web
application, including SharePoint, can be utilized by any navigation control in the web

application. This enables us to use the same provider for both the top navigation and quick

launch navigation controls. In this recipe, we registered the custom site map provider, created

in the previous Customizing header navigation with a TopNavigationDataSource delegate
control recipe, as the data source for the QuickLaunchDataSource control. This resulted in

the data from our custom provider being used when rendering the links for the quick

launch navigation.

Customizing the SharePoint Experience with Delegate Controls

288

Restoring the Navigate Up button with an
AdditionalPageHead delegate control

The out-of-the-box master pages from SharePoint 2010 included a breadcrumb control that

would allow a user to easily navigate up the current site hierarchy. The out-of-the-box master

pages in SharePoint 2013 have hidden this control. We previously accomplished this in a

master page in Chapter 3, Branding SharePoint with Custom Master Pages and Page Layouts.

In this recipe, however, we will accomplish this with an AdditionalPageHead delegate

control. This allows us to restore the button regardless of which master page is being used.

The following screenshot illustrates the restored breadcrumb control:

Getting ready
We should have already created our Visual Studio project with the help of the Creating a

Visual Studio solution for custom delegate controls recipe of this chapter before starting

this recipe.

How to do it...

Follow these steps to restore the navigate up button with a delegate control:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Add a new class to our Controls folder.

3. Set the access modiier of our new class to public and inherit from the

UserControl base class:

public class RestoreBreadcrumb : UserControl

4. Override the CreateChildControls method and add a monitored scope

as follows:

protected override void CreateChildControls()

{

 using (new
 SPMonitoredScope("Code6587EN.Ch07.Controls.

Chapter 7

289

 RestoreBreadcrumb::CreateChildControls"))

 {

 }

}

5. Get the master page from the current page:

var masterPage = this.Page.Master;

6. Get the AjaxDelta control that contains the breadcrumb control:

var delta =
masterPage.FindControl("DeltaBreadcrumbDropdown") as
AjaxDelta;

7. Ensure the AjaxDelta control is not null:

if (delta != null)

8. Get the breadcrumb control from the AjaxDelta control:

var breadcrumb =
delta.FindControl("GlobalBreadCrumbNavPopout") as
PopoutMenu;

9. Ensure the breadcrumb control is not null:

if (breadcrumb != null)

10. Set the breadcrumb control to be visible, set the ThemeKey property, and

set the IconUrl property using the following code:

breadcrumb.Visible = true;

breadcrumb.ThemeKey = "spcommon";

breadcrumb.IconUrl = "/_layouts/15/images/spcommon.png";

11. Add a STYLE element to set the display style of the breadcrumb container

to inline-block.

12. Add a new Empty Element item.

13. In the Elements.xml ile of the new element, register our control with the
AdditionalPageHead delegate control using the following code:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Control Id="AdditionalPageHead" Sequence="11"
 ControlClass="Code6587EN.Ch07.Controls.RestoreBreadcrumb"
 ControlAssembly="$SharePoint.Project.AssemblyFullName$">
 </Control>

</Elements>

Customizing the SharePoint Experience with Delegate Controls

290

14. Add a new safe control entry to the new element with the following details:

 � (Name): RestoreBreadcrumb (the name of the class for our

custom control)

 � Assembly: $SharePoint.Project.AssemblyFullName$

 � Namespace: Code6587EN.Ch07.Controls (the full namespace for the

class, without the name of the class itself)

 � Safe: True

 � Safe Against Script: True

 � Type Name: RestoreBreadcrumb (the name of the class)

15. Open the feature created previously. Ensure that the new element is included in

the feature.

16. Click on Start from the toolbar to deploy the solution and attach the debugger.

17. Once the SharePoint site is loaded in the web browser (after clicking on Start),

observe the restored breadcrumb control.

How it works...

The out-of-the-box master pages included with SharePoint 2013 already include the required

controls on the page to render the breadcrumb control. However, they are hidden. In our

AdditionalPageHead delegate control, we are locating the control, instructing it to display,

and coniguring the icon to be correctly inherited from the currently applied SharePoint theme.

See also
 f The PopoutMenu class topic on MSDN at http://msdn.microsoft.com/en-us/

library/office/microsoft.sharepoint.webcontrols.popoutmenu.aspx

Adding meta tags to pages from custom
library ields with an AdditionalPageHead
delegate control

One of the common search engine optimization techniques used is adding the META tags to

the HEAD element of a page to include additional information about the page. These META

tags can include author information, keywords, a description, copyright information, and so

on. For sites where this information is the same for every page, we can simply add the META

tags to the master page. However, for sites that require different information for each page,

we can use an AdditionalPageHead control to dynamically add the META tags.

In this recipe, we will add the META tags to the HEAD element of pages that have speciic list
item ields.

Chapter 7

291

Getting ready
We should have already created our Visual Studio project in the Creating a Visual Studio

solution for custom delegate controls recipe of this chapter before starting this recipe. In

addition, on the Pages library we are testing this recipe with, we should have added two

custom columns: Meta Keywords and Meta Description. For one or more of the pages in the

library, we should have set the value for these ields on the properties of the pages.

How to do it...

Follow these steps to add the META tags with a delegate control:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Add a new class to our Controls folder.

3. Set the access modiier of our new class to public and inherit from the

UserControl base class:

public class CustomMetaTags : UserControl

4. Set constant values for the names of the ields to look for and the formats of
the <meta> elements as follows:

private const string FieldNameKeywords = "Meta Keywords";

private const string FieldNameDescription =
"Meta Description";

private const string FormatMetaTagKeywords =
"<meta name=\"keywords\" content=\"{0}\" />";

private const string FormatMetaTagDescription =
"<meta name=\"description\" content=\"{0}\" />";

5. Override the CreateChildControls method and add a monitored scope:

protected override void CreateChildControls()

{

 using (new SPMonitoredScope("Code6587EN.Ch07.Controls.
 CustomMetaTags::CreateChildControls"))

 {

 }

}

6. Ensure the current SharePoint context is not null, it has a ile, and that the
ile has a list item:
if (SPContext.Current != null
&& SPContext.Current.File !=
null
&& SPContext.Current.File.Item != null)

Customizing the SharePoint Experience with Delegate Controls

292

7. Get the list item associated with the current ile as follows:
var item = SPContext.Current.File.Item;

8. Ensure the list has the Meta Keywords column and that the current item has

a value assigned:

if (item.Fields.ContainsField(FieldNameKeywords) &&
item[FieldNameKeywords] != null
&&
!string.IsNullOrEmpty(item[FieldNameKeywords].ToString()))

9. Add a <meta> element to the page using the format for the keywords tag

and the value of the list item ield:
this.Controls.Add(new LiteralControl
(string.Format(CultureInfo.InvariantCulture,
FormatMetaTagKeywords,
item[FieldNameKeywords].ToString())));

10. Ensure the list has a Meta Description column and that the current item has

a value assigned:

if (item.Fields.ContainsField(FieldNameDescription)
&&
item[FieldNameDescription] != null
&&
!string.IsNullOrEmpty(item[FieldNameDescription].ToString()
))

11. Add a <meta> element to the page using the format for the description tag

and the value of the list item ield:
this.Controls.Add(new LiteralControl
(string.Format(CultureInfo.InvariantCulture,
FormatMetaTagDescription,
item[FieldNameDescription].ToString())));

12. Add a new Empty Element item to the project.

13. In the Elements.xml ile of the new element, register our custom control
with the AdditionalPageHead delegate control using the following code:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

 <Control Id="AdditionalPageHead" Sequence="12"
 ControlClass="Code6587EN.Ch07.Controls.CustomMetaTags"
 ControlAssembly="$SharePoint.Project.
 AssemblyFullName$"></Control>

</Elements>

Chapter 7

293

14. Add a new safe control entry to the new element with the following details:

 � (Name): CustomMetaTags (the name of the class for our custom control)

 � Assembly: $SharePoint.Project.AssemblyFullName$

 � Namespace: Code6587EN.Ch07.Controls (the full namespace for the

class, without the name of the class itself)

 � Safe: True

 � Safe Against Script: True

 � Type Name: CustomMetaTags (the name of the class)

15. Open the feature created previously. Ensure that the new element is

included in the feature.

16. Click on Start from the toolbar to deploy the solution and attach the debugger.

17. Once the SharePoint site is loaded in the web browser (after clicking on Start),

navigate to a page with either the Meta Keywords ield or the Meta Description

ield populated. View the source of the page to observe the addition of the <meta>

elements.

How it works...

In this recipe, if the current SharePoint content has a ile associated with it, such as a web
page, our control is looking at the list item for the ile. If the list item has a Meta Keywords

ield or a Meta Description ield, we are adding <meta> tags to the page with the content of

the ields.

See also
 f The HTML <meta> Tag article on W3 Schools at http://www.w3schools.com/

tags/tag_meta.asp

Storing analytics tracking code with a site
collection settings page

Though SharePoint includes some analytic features, many still prefer to use third-party web

analytics providers such as Google Analytics. These analytics providers use a snippet of

JavaScript code that is added to each page in most cases.

In this recipe, we will create a settings page to allow site collection administrators to store the

JavaScript code on a per site collection basis.

Customizing the SharePoint Experience with Delegate Controls

294

Getting ready
We should have already created our Visual Studio project in the Creating a Visual Studio

solution for custom delegate controls recipe of this chapter before starting this recipe.

How to do it...

Follow these steps to create a settings page for our tracking code:

1. Open the project created in the Creating a Visual Studio solution for custom-delegate

controls recipe of this chapter in Visual Studio.

2. Add a new Application Page item to the subfolder we created in the Layouts

mapped folder as shown in the following screenshot:

3. In the ASPX page, register the settings page user controls as follows:

<%@ Register TagPrefix="wssuc" TagName="InputFormSection"
src="/_controltemplates/InputFormSection.ascx" %>

<%@ Register TagPrefix="wssuc" TagName="InputFormControl"
src="/_controltemplates/InputFormControl.ascx" %>

<%@ Register TagPrefix="wssuc" TagName="ButtonSection"
src="~/_controltemplates/ButtonSection.ascx" %>

4. In the title content placeholders, add the title for our settings page as follows:

<asp:Content ID="PageTitle"
ContentPlaceHolderID="PlaceHolderPageTitle" runat="server">

Configure Analytics Tracking Code

</asp:Content>

Chapter 7

295

<asp:Content ID="PageTitleInTitleArea"
ContentPlaceHolderID="PlaceHolderPageTitleInTitleArea"
runat="server" >

Configure Analytics Tracking Code

</asp:Content>

5. In the main content placeholder, add a <table> element to contain our

settings page sections:

<asp:Content ID="Main"
ContentPlaceHolderID="PlaceHolderMain" runat="server">

 <table width="100%">

 <tr>

 <td>

 </td>

 </tr>

 </table>

</asp:Content>

The settings page user controls were designed to be placed inside a <table>

element.

6. In our <table> element, add an InputFormSection control with a

TextBox control to input our analytics tracking code as follows:

<wssuc:InputFormSection Title="Analytics Tracking Code"
id="trackingCodeSection" runat="server" Description="The
script block entered here will be rendered on each page in
this SharePoint site.">

<template_inputformcontrols>

 <wssuc:InputFormControl LabelText="Analytics Tracking
 Code Script Block" runat="server"
 LabelAssociatedControlId="txtScriptBlock">

 <Template_control>

 <asp:TextBox runat="server" Width="100%"
 ID="txtScriptBlock" TextMode="MultiLine"
 Height="300px" />

 </Template_control>

 </wssuc:InputFormControl>

</template_inputformcontrols>

</wssuc:InputFormSection>

7. Add a ButtonSection control with a Button control to submit our

analytics tracking code:

<wssuc:ButtonSection runat="server">

<Template_Buttons>

Customizing the SharePoint Experience with Delegate Controls

296

 <asp:Button UseSubmitBehavior="false" runat="server"
 class="ms-ButtonHeightWidth" OnClick="BtnSubmit_Click"
 Text="OK" id="BtnSaveChanges"
 accesskey="<%$Resources:wss,okbutton_accesskey%>"/>

</Template_Buttons>

</wssuc:ButtonSection>

8. In the code-behind ile of our application page, add a constant string for the name of
the property we will save our analytics code within:

private const string PropertyName = "CustomAnalyticsCode";

9. In a monitored scope within the Page_Load method, set the TextBox

content to the existing value of the analytics property:

protected void Page_Load(object sender, EventArgs e)

{

 using (new SPMonitoredScope
 ("Code6587EN.Ch07.Layouts.Code6587EN.Ch07.
 ConfigureTrackingCode::Page_Load"))

 {

 if (!IsPostBack)

 if
 (SPContext.Current.Site.RootWeb.AllProperties.
 ContainsKey(PropertyName))

 txtScriptBlock.Text =
 SPContext.Current.Site.RootWeb.
 AllProperties[PropertyName].ToString();

 }

}

10. Add the BtnSubmit_Click method with a monitored scope to execute

when the Submit button is clicked:

protected void BtnSubmit_Click(object sender, EventArgs e)

{

 using (new
 SPMonitoredScope("Code6587EN.Ch07.Layouts.
 Code6587EN.Ch07.ConfigureTrackingCode::BtnSubmit_Click"))

 {

 }

}

11. If the root site of the site collection already contains the analytics property,

set its value as follows:

if
(SPContext.Current.Site.RootWeb.AllProperties.ContainsKey
(PropertyName))

Chapter 7

297

 SPContext.Current.Site.RootWeb.
 AllProperties[PropertyName] = txtScriptBlock.Text;

12. If the root site of the site collection does not already contain the analytics

property, add it and set its value as follows:

else

 SPContext.Current.Site.RootWeb.AllProperties.
 Add(PropertyName, txtScriptBlock.Text);

13. Update the root site of the site collection and redirect to the Site settings page:

SPContext.Current.Site.RootWeb.Update();

SPUtility.Redirect(SPContext.Current.Web.ServerRelativeUrl.
TrimEnd('/') + "/_layouts/15/Settings.aspx",
SPRedirectFlags.Default, HttpContext.Current);

14. Add an Empty Element item to the project.

15. In the Elements.xml ile of the new element, register our custom action
with the URL to our application page:

<?xml version="1.0" encoding="utf-8"?>

<Elements xmlns="http://schemas.microsoft.com/sharepoint/">

<CustomAction Id="AnalyticsCode"
GroupId="SiteCollectionAdmin"
Location="Microsoft.SharePoint.SiteSettings"
Sequence="1000" Title="Configure Analytics Code">

<UrlAction
Url="~sitecollection/_layouts/15/Code6587EN.Ch07/
ConfigureTrackingCode.aspx"/>

</CustomAction>

</Elements>

16. Open the feature created previously. Ensure that the new element is

included in the feature.

17. Click on Start from the toolbar to deploy the solution and attach the debugger.

18. Once the SharePoint site is loaded in the web browser (after clicking on Start),

navigate to the Site settings page, and select the Conigure Analytics Code link

under Site Collection Administration, as shown in the following screenshot:

Customizing the SharePoint Experience with Delegate Controls

298

19. Add your analytics tracking code including the <script> tags and submit by

clicking on OK:

How it works...

In this recipe, we have created a basic settings page that allows us to store our analytics

tracking code as a property of the root site in the current site collection. This page uses the

settings page user controls used by the majority of SharePoint settings pages. In addition,

we used a custom action registration to add our settings page to the list of links on the Site

settings page in the Site Collection Administration section.

See also
 f The Custom Action topic on MSDN at http://msdn.microsoft.com/en-us/

library/ms458635(v=office.14).aspx

 f The SPWeb.AllProperties property topic on MSDN at http://msdn.microsoft.
com/en-us/library/microsoft.sharepoint.spweb.allproperties.aspx

Chapter 7

299

Adding stored analytics tracking code to
pages with an AdditionalPageHead
delegate control

With the analytics tracking code being stored from the previous recipe, we will use an

AdditionalPageHead delegate control to insert the snippet of analytics tracking code on

each page.

Getting ready
For this recipe, we should already have the settings page created in the Storing analytics

tracking code with a site collection settings page recipe.

How to do it...

Follow these steps to add the stored analytics tracking code with a delegate control:

1. Open the project created in the Creating a Visual Studio solution for custom delegate

controls recipe of this chapter in Visual Studio.

2. Add a new class to our Controls folder.

3. Set the access modiier of our new class to public and inherit from the

UserControl base class:

public class CustomAnalyticsCode : UserControl

4. Add a constant string with the name of the property we are storing the

analytics code with as follows:

private const string PropertyName = "CustomAnalyticsCode";

5. Override the CreateChildControls method and add a monitored scope

using the following code:

protected override void CreateChildControls()

{

 using (new SPMonitoredScope("Code6587EN.Ch07.Controls.
 CustomAnalyticsCode::CreateChildControls"))

 {

 }

}

Customizing the SharePoint Experience with Delegate Controls

300

6. If the root site of the site collection contains the analytics property and it has a value,

add it to the controls collection of the current page form:

if (SPContext.Current.Site.RootWeb.AllProperties.
ContainsKey(PropertyName)

&& !string.IsNullOrEmpty(SPContext.Current.Site.RootWeb.
AllProperties[PropertyName].ToString()))

 this.Page.Form.Controls.Add(new LiteralControl
 (SPContext.Current.Site.RootWeb.
 AllProperties[PropertyName].ToString()));

7. In the Elements.xml ile of the Empty Element item we created

in the previous recipe, add the registration for our custom control with the

AdditionalPageHead delegate control:

<Control Id="AdditionalPageHead" Sequence="13"
ControlClass="Code6587EN.Ch07.Controls.CustomAnalyticsCode"
ControlAssembly="$SharePoint.Project.AssemblyFullName$">
</Control>

8. Click on Start from the toolbar to deploy the solution and attach the debugger.

9. Once the SharePoint site is loaded in the web browser (after clicking on Start), view

the source of the page to observe the added analytics code.

How it works...

In this recipe, we are retrieving the analytics code we stored as a property of the root site

in the current site collection from the previous recipe. We are then adding the script to the

collection of controls on the current page form in our AdditionalPageHead control using a

LiteralControl. A LiteralControl renders the provided content directly on the page.

See also
 f The SPWeb.AllProperties property topic on MSDN at http://msdn.microsoft.

com/en-us/library/microsoft.sharepoint.spweb.allproperties.aspx

8
Enhancing User Input

with InfoPath Forms

In this chapter, we will explore the abilities of Microsoft InfoPath to customize the end user's

input experience in SharePoint. We will cover the following recipes:

 f Customizing the SharePoint list entry form templates with InfoPath

 f Creating InfoPath forms that are submitted to the SharePoint form libraries

 f Creating a SharePoint list to provide a drop-down menu data to InfoPath

 f Adding a drop-down menu to InfoPath using SharePoint list data

 f Paginating InfoPath forms with views

 f Validating data in InfoPath forms

 f Calculating ield values in InfoPath based on the values of other ields

 f Adding custom .NET code to an InfoPath form

 f Preparing InfoPath forms for approval by SharePoint administrators

 f Approving submitted InfoPath forms in SharePoint

 f Creating libraries using approved InfoPath forms in SharePoint

 f Creating a survey InfoPath form that gets locked after submission and populates the

SharePoint ields

Enhancing User Input with InfoPath Forms

302

Introduction

In the collection of tools available to enhance and customize the SharePoint experience,

Microsoft InfoPath is often overlooked. Microsoft InfoPath is a powerful tool to create

interactive form templates. These form templates can be used in the InfoPath Filler

application that is available on the users' desktops or can be used in SharePoint as web-

based forms.

Microsoft InfoPath is designed like the rest of the Microsoft Ofice applications and can be
easily used by power users and developers alike. It comes as a part of the Professional Plus

edition of Microsoft Ofice 2013.

Using InfoPath in web content management applications allows us to provide a robust user

input experience without involving custom code. This is particularly useful for content authors

who need to create forms but do not have development experience. An entire cookbook could

be dedicated to InfoPath. In this chapter, however, we will only cover the basics of how to use

InfoPath to customize the way users input information in SharePoint.

For most InfoPath forms, the InfoPath Designer application is all that is required. However,

in order to add custom .NET code to an InfoPath form, the Microsoft Visual Studio Tools for

Applications are required in addition to Microsoft Visual Studio. They can be obtained from

http://www.microsoft.com/en-us/download/details.aspx?id=38807.

Do not install Microsoft InfoPath on the same computer as Microsoft

SharePoint Server. The assemblies included with the InfoPath client

applications often conlict with the assemblies included with SharePoint. You
may receive exceptions in SharePoint, in both the web interface and the logs,

if the InfoPath client applications are installed on the SharePoint server.

Customizing the SharePoint list entry form
templates with InfoPath

With SharePoint Server 2010, Microsoft added the ability to use Microsoft InfoPath form

templates to replace the default entry form pages illustrated in the following screenshot.

The default entry form pages use a basic layout and offer only a few validation and

calculation options.

Chapter 8

303

Though entry forms may also be customized in SharePoint Designer and Visual Studio,

using InfoPath is a much simpler approach, particularly for power users who do not have

development experience. In this recipe, we will create a SharePoint list and customize the

entry form template with InfoPath.

How to do it...

Follow these steps to customize the input form for SharePoint:

1. Navigate to the SharePoint site using Internet Explorer.

Launching InfoPath Designer to customize list forms is only

available with Internet Explorer. It is not available from other web

browsers such as Google Chrome or Mozilla Firefox.

2. Select Site contents from the Settings menu.

3. Click on Add an app.

4. Click on Custom List.

5. Provide a name for the list in the Name ield and click on Create.

6. On the Site contents page, select the newly created list.

7. Select Customize Form from the LIST tab in the ribbon as shown in the

following screenshot:.

Internet Explorer may ask for your permission to open the form template in InfoPath.

Enhancing User Input with InfoPath Forms

304

8. Add some text to the form template.

9. Select Quick Publish from the Info menu as shown in the following screenshot:

10. Once the form has been published, select Open the SharePoint list in the browser

and click on OK, as shown in the following screenshot:

11. From the ITEMS tab in the ribbon, select New Item to observe the results of the

newly customized InfoPath form template:

Chapter 8

305

How it works...

By default, SharePoint lists use automatically generated forms within web part pages to

create, view, and edit list item data. These web part pages can be customized with tools

such as Microsoft SharePoint Designer or Microsoft Visual Studio. They may also be replaced

with an InfoPath form template. When selecting Customize Form on the ribbon, SharePoint

automatically creates the InfoPath form template based on the list columns, conigures the
list to use the InfoPath form template in place of the web part pages, and opens the form

template in InfoPath Designer for editing.

The Quick Publish option is only available for a form template that has already been

published. When customizing a list entry form template, SharePoint has already published it.

We will cover the initial publishing of a new form template later in the Creating InfoPath forms

that are submitted to the SharePoint form libraries recipe of this chapter.

Using InfoPath form templates in SharePoint requires a state service

application to be conigured. If this has not been conigured, you may
receive the following error message:

The form cannot be rendered. This may be due to a
misconfiguration of the Microsoft SharePoint Server
State Service. For more information, contact your
server administrator.

A new state service application can be conigured with the New-
SPStateServiceApplication Cmdlet in PowerShell.

See also
 f The New-SPStateServiceApplication topic on TechNet at http://technet.

microsoft.com/en-us/library/ff608084.aspx

 f The Customize a SharePoint List Form article on Microsoft Ofice at http://
office.microsoft.com/en-us/infopath-help/customize-a-
sharepoint-list-form-HA101821257.aspx

Creating InfoPath forms that are submitted
to the SharePoint form libraries

Customizing list item entry form templates is one of the two common types of InfoPath form

templates. The second common type is a self-contained form that is submitted to a SharePoint

form library as a document. These types of forms are particularly useful in place of paper

documents. For instance, this type of form could be used for creating web-based tests or

quizzes. In this recipe, we will create a simple InfoPath form template and publish it to a library.

Enhancing User Input with InfoPath Forms

306

How to do it...

Follow these steps to create a form template that submits to a SharePoint form:

1. Open Microsoft InfoPath Designer 2013.

2. From the New section of the File menu, select SharePoint Form Library as shown in

the following screenshot:

3. Click on Design Form.

4. In the newly created form template, populate the title and two headings, as shown in

the following screenshot:

Newly created form templates include a default table layout. You can modify the
provided layout or replace it with a different one. New table layouts may be added

from the INSERT tab in the ribbon. Modifying table layouts in InfoPath is nearly

identical to using tables in Microsoft Word. In addition, predeined page layouts can
be accessed from the PAGE DESIGN tab in the ribbon.

Chapter 8

307

5. In the irst column with the Add label watermark, click inside the table cell to place

your mouse cursor and enter a label for the irst ield, such as Customer Name.

6. In the corresponding column with the Add control watermark, click inside the table

cell to place your mouse cursor.

7. From the HOME tab in the ribbon, select Text Box in the Controls section as shown in

the following screenshot:

8. With the newly created ield selected, in the ribbon, navigate to CONTROL TOOLS |

PROPERTIES.

9. Provide a more meaningful name for the control, customerName, for instance:

10. Repeat steps 5 through 9 to add a label and control for each place provided. Add

textboxes, checkboxes, and person/group pickers for the control types.

Enhancing User Input with InfoPath Forms

308

11. Click on Save from the File menu to save the form template to your local computer.

When working with form templates created in InfoPath Designer, keeping a

saved copy will make it easier to edit and publish updated versions in the

future. They can also be saved as documents in a SharePoint document

library to allow collaboration and versioning on the form templates.

12. From the Publish section of the File menu, select SharePoint Server as shown in the

following screenshot:

13. Provide the complete URL to the SharePoint site we are publishing the form to and

click on Next.

14. Ensure Enable this form to be illed out by using a browser is selected and select

Form Library for What do you want to create or modify.

15. Click on Next.

16. Select Create a new form library and click on Next. Publishing a form template may

also be used to update an existing document library.

17. In the Name and Description ields, provide a name and description for the form
library and click on Next.

Chapter 8

309

18. For the ields that will be available as columns in SharePoint, click on Add.

19. Select the irst ield we created, verify that the column name matches the name of
the ield, and click on OK as shown in the following screenshot:

20. Repeat steps 19 and 20 for each of the ields we added to the form template. For
each of the ields made available as columns, data entered in those ields will be
populated as column data on the document in the form library when submitted. The

People/Group Picker ields create groups of ields with the Display Name, Account

Id, and Account Type attributes of the user or group selected. When adding a

People/Group Picker ield as a column, you will need to select one of those values.

Enhancing User Input with InfoPath Forms

310

21. Click on Next and then on Publish.

22. Select Open this Form in the Browser.

23. Fill out the form and click on Save.

The default save action requires the user to provide a filename. In the

Creating a survey InfoPath form that gets locked after submission and

populates the SharePoint fields recipe of this chapter, we will cover using

submit buttons to automatically generate the filename that does not

require the user to specify it.

24. Navigate to the form library to view the newly created document and its properties.

How it works...

Publishing an InfoPath form template that submits to a SharePoint form library creates a new

content type in the SharePoint site with the form template as the document template for the

content type. A content type is a reusable set of columns and other settings for a category

of list items or documents. The form library is then conigured to use this newly created
content type. When a user saves a completed form, it is added to the form library as an

XML document.

See also
 f The Introduction to Content Types article on MSDN at http://msdn.microsoft.

com/en-us/library/office/ms472236(v=office.14).aspx

 f The Publish a form article on Microsoft Ofice at http://office.microsoft.
com/en-us/infopath-help/publish-a-form-HA101783381.aspx

Chapter 8

311

Creating a SharePoint list to provide a drop-
down menu data to InfoPath

InfoPath can use data from SharePoint and other sources, such as web services, to populate

choices in data-driven controls such as drop-down menus. In this recipe, we will create a

simple SharePoint list to provide data to InfoPath for the next recipe, adding a drop-down

menu to InfoPath using SharePoint list data.

How to do it...

Follow these steps to create our SharePoint list:

1. Navigate to the SharePoint site in your preferred web browser.

2. From the Settings menu, select Site contents.

3. Select Add an app and then click on Custom List.

4. Provide a name such as Categories for the custom list in the Name ield.

5. Select the newly created list on the Site contents page.

6. Add new items to the list such as Customer Request, Internal Request, and

Automated Request.

How it works...

InfoPath form templates have the ability to communicate with SharePoint to retrieve list data.

Like SharePoint Designer, InfoPath communicates with SharePoint using web services. This

allows form templates to be published and connections to lists from remote computers.

Enhancing User Input with InfoPath Forms

312

Adding a drop-down menu to InfoPath using
SharePoint list data

In this recipe, we will add a drop-down menu that uses data provided by the custom list

we created previously in the Creating a SharePoint list to provide drop-down menu data to

InfoPath recipe.

Getting ready
For this recipe, we should have a SharePoint list created to retrieve data from.

How to do it...

Follow these steps to create a drop-down menu that uses SharePoint list data:

1. Create a new form template or open an existing one in Microsoft InfoPath

Designer 2013.

2. Select From SharePoint List from the DATA tab present in the ribbon as shown in

the following screenshot:

3. Provide the URL to the SharePoint site that contains the list and click on Next.

4. Select the list and click on Next.

Chapter 8

313

5. Select the ield you want to display in the drop-down menu. In the case of our

Categories list, select Title as shown in the following screenshot:

6. In the Sort By ield, select Title to sort the ields according to their title.

7. Click on Next, then again on Next, and then click on Finish.

8. Add a Combo Box control to the form template and provide the control an appropriate

name, such as category.

9. Select the control.

10. Navigate to CONTROL TOOLS | PROPERTIES and select Edit Choices as shown in

the following screenshot:

Enhancing User Input with InfoPath Forms

314

11. Select Get choices from an external data source as shown in the following

screenshot:

12. Set Categories for Data source, ID for Value, and Title for the Display name and

then click on OK.

13. From the HOME tab, select Preview to observe the newly created drop-down menu.

When testing your InfoPath form, you can use the Preview function. This allows you to

test your form without publishing it to SharePoint. Observe the drop-down list for the

Category ield as shown in the following screenshot:

How it works...

When creating a connection to SharePoint list data, InfoPath uses the SharePoint web

services to connect to, and retrieve information about, the SharePoint list. SharePoint

uses this connection information to retrieve the list data when rendering the form in the

web browser. List data can be retrieved when the form is opened or can be retrieved when

triggered by a user action.

Chapter 8

315

See also
 f The SharePoint List Data Connections in InfoPath article on MSDN at http://

blogs.msdn.com/b/infopath/archive/2010/05/06/sharepoint-list-
data-connections-in-infopath-2010.aspx

Paginating InfoPath forms with views
Forms with a lot of input ields and information can be cumbersome to the user if everything
is displayed all at once. With InfoPath, we can organize content into separate views. In this

recipe, we will create a form with two views and buttons to toggle between.

How to do it...

Follow these steps to create pages in a form using views:

1. Create a new form template or open an existing one in Microsoft InfoPath

Designer 2013.

2. Select New View from the PAGE DESIGN tab in the ribbon as shown in the

following screenshot:

3. Provide the view (or page) with a name and select OK. To toggle between views when

designing a form template, select the view from the drop-down list on the PAGE

DESIGN tab in the ribbon:

Enhancing User Input with InfoPath Forms

316

4. Add a Button control to each view.

5. Select the Button control in the irst view.

6. Navigate to CONTROL TOOLS | PROPERTIES and provide the Button control with an

appropriate label, such as Next.

7. Navigate to CONTROL TOOLS | PROPERTIES and select Rules in the Button section

as shown in the following screenshot:

8. In the Rules pane (on the right-hand side of the window), select Action from the

New menu.

9. Provide the Action with a name, such as Switch to View 2.

10. Under Run these actions, select Switch views from the Add menu as shown in the

following screenshot:

11. Select the second view and click on OK.

12. Select the Button control created on the second view.

13. Provide an appropriate label for it, such as Previous.

14. Repeat steps 7 to 11 to provide an Action Rule to change the view back to the

irst view.

15. Using the Preview button, preview the form template to observe the results of clicking

on each button.

How it works...

A view in InfoPath acts like a page with its own layout and ield references. Each view may
have a unique layout independent of other views. In this recipe, we added a secondary view

in addition to a button on each view. We then used actions triggered by button clicks to

switch between our views. Actions allow us to perform various operations in the form, such as

switching views or manipulating data.

Chapter 8

317

InfoPath views can be used for a variety of purposes beyond paging. Examples include using

a read-only view to display the data entered after a form has been submitted, using views to

display the form in different languages, and hiding or showing areas of the form based on the

previous input.

See also
 f The Add, delete, and switch views (pages) in a form article on Microsoft Ofice at

http://office.microsoft.com/en-us/infopath-help/add-delete-and-
switch-views-pages-in-a-form-HA101732801.aspx

Validating data in InfoPath forms
When it comes to forms, it is usually important to ensure that the correct type of information

is collected in each form ield. In InfoPath, ields can be conigured to be required or to only
allow certain types of information, such as numbers. In addition, we can use validation rules

to ensure the data entered meets the speciied requirements, such as being a number greater
than the number entered into the previous ield.

In this recipe, we will create a required ield that only allows whole numbers between 10
and 20.

How to do it...

Follow these steps to create a required ield with a validation rule:

1. Create a new form template or open an existing one in Microsoft InfoPath Designer

2013.

2. Add a Text Box control to the form.

3. Navigate to CONTROL TOOLS | PROPERTIES and with the Text Box control selected,

change Data Type to Whole Number (Integer) as shown in the following screenshot:

Enhancing User Input with InfoPath Forms

318

4. Select Field Properties from the Properties section of the ribbon.

5. Select the Cannot be blank option as shown in the following screenshot:

6. Click on OK.

7. If the Rules pane is not currently displayed, select Manage Rules from the ribbon to

display it.

8. Select Validation from the New menu in the Rules pane.

9. Provide a name for the rule, such as Between 10 and 20.

10. Under Condition, select the None link.

11. Set the conditions to check if the value of the textbox is less than 10 or greater than

20 as shown in the following screenshot:

12. Click on OK.

13. Enter a ScreenTip to be displayed to the user, such as Value Must be
Between 10 and 20.

Chapter 8

319

14. Using the Preview option, preview the form template to observe the behavior of the

ield when entering non-numeric values, numbers greater than 20 or less than 10,
and numbers between 10 and 20.

How it works...

When data in a ield does not meet the requirements speciied, we can prevent the form from
being submitted. This allows the user to correct the information before submitting it again.

These requirements are enforced using validation rules in the InfoPath engine. The Cannot

be blank option makes the ield required. The Condition for a validation rule may be quite

complex. Custom formulas can be used, the conditions can vary depending upon the values of

other ields, and so on. In this recipe, we simply ensured that our ield is not empty and that it
has a value between 10 and 20.

See also
 f The Add rules for validation article on Microsoft Ofice at http://office.

microsoft.com/en-us/infopath-help/add-rules-for-validation-
HA101783369.aspx

Calculating ield values in InfoPath based on
the values of other ields

With InfoPath, we can perform calculations automatically when users input information. For

instance, in an expense report form, we can automatically calculate the sum of the items as

each one is entered. In addition, we can calculate information with non-numeric information.

For instance, we can create a quiz that automatically calculates the score when the user

submits the form.

In this recipe, we will create a ield that automatically calculates the sum of two other ields.

How to do it...

Follow these steps to create a ield that automatically calculates the sum of two other ields:

1. Create a new form template or open an existing one in Microsoft InfoPath

Designer 2013.

Enhancing User Input with InfoPath Forms

320

2. Add three Text Box controls to the form template as shown in the

following screenshot:

3. In the Data Type ield, set the data type for each Text Box control to Whole Number

(Integer).

4. Select the third Text Box control.

5. Select Control Properties from the Properties section by navigating to CONTROL

TEMPLATES | PROPERTIES.

6. Select the Display tab.

7. Select Read-only and click on OK, as shown in the following screenshot:

8. Select the irst Text Box ield.

9. Add a new action rule with an appropriate name, such as Calculate Sum.

Chapter 8

321

10. Under Run these actions, select Set a ield's value from the Add menu as shown in

the following screenshot:

11. Select the third Text Box ield for the ield to set the value for.

12. Select the function button for the Value ield.

13. In the Formula ield, select Insert Field or Group.

14. Select the irst Text Box control and click on OK.

15. Add a plus symbol to the formula.

16. Insert the second Text Box ield. The formula should look something similar to the
one seen in the following screenshot:

Enhancing User Input with InfoPath Forms

322

17. Click on OK to save the formula.

18. Click on OK again to save the rule details.

19. Select the second Text Box and repeat steps 9 to 18 to create the same

Action Rule for the second Text Box.

20. Using the Preview feature, preview the form template to observe the value of the

third Text Box when entering numbers into the other ields.

How it works...

When a user performs an action in a form, such as entering information or clicking a button, a

series of actions can be performed automatically. These are called action rules. The InfoPath

engine executes action rules automatically when the action that triggers them occurs. In

addition, setting a control to be read-only prevents the user from entering information directly

into the control. In this recipe, we created a simple action rule that sets the value of a ield by
calculating the sum of the values in the irst two ields in the form.

See also
 f The Add rules for performing other actions article on Microsoft Ofice at http://

office.microsoft.com/en-us/infopath-help/add-rules-for-
performing-other-actions-HA101783373.aspx

Adding custom .NET code to an InfoPath
form

The Microsoft Visual Studio Tools for Applications allows code-based customization of

documents in Microsoft Ofice. This has replaced the older Visual Basic for Applications

(VBA) methodology for using custom code in Microsoft Ofice.

In this recipe, we will add custom code that sets the value of a ield when a button is clicked.

Chapter 8

323

How to do it...

Follow these steps to add custom .NET code to an InfoPath form:

1. Create a new form template or open an existing one in Microsoft InfoPath

Designer 2013.

2. Add a Text Box control to the form template and give it an appropriate name, such as

currentDate.

3. Add a Button control to the form template and give it an appropriate label,

such as Get Date.

4. Save the form template.

5. With the Button control selected, click on Custom Code by navigating to

CONTROL TOOLS | PROPERTIES in the Properties section. Selecting Custom Code

will automatically start Visual Studio and create the project for the InfoPath form

template. It will then create the method to be executed when the button is clicked

and add the appropriate event handler. In addition, it will add a comment to the

method to indicate where to add your custom code.

6. In the newly created method, where it says // Write your code here, get

the XPathNavigator object from the XML data source representing the
form template.

var navigator = this.MainDataSource.CreateNavigator();

7. Get the XML node representing the Text Box control using its XML path.
var node = navigator. SelectSingleNode("//my:currentDate", this.
NamespaceManager);

8. Set the value of the node to the current date using the following line of code:

node.SetValue(DateTime.Now.ToString());

9. Build the Visual Studio solution by right-clicking on the project name in the

Solution Explorer and selecting Build.

10. Return to the InfoPath form template in the InfoPath Designer.

11. Preview the form template to observe the action taken when clicking the button.

How it works...

InfoPath form templates are XML based. When interacting with form content from our custom
code, we are using an XML XPathNavigator object to ind the ield by its XML path. Once
located, we are setting the value of the ield by setting the value of its XML node within the
XML of the form document.

Enhancing User Input with InfoPath Forms

324

See also
 f The Getting Started Developing Form Templates with Code article on MSDN at

http://msdn.microsoft.com/en-us/library/office/aa944896.aspx

Preparing InfoPath forms for approval by
SharePoint administrators

A farm administrator must approve InfoPath form templates that contain custom .NET code

before they can be used in SharePoint. Form templates are prepared for approval in the

InfoPath Designer and then sent to the farm administrator for approval.

In this recipe, we will prepare the form we created in the previous recipe Adding custom .NET
code to an InfoPath form for approval.

Getting ready
For this recipe, we will need the InfoPath form created in the previous recipe Adding custom

.NET code to an InfoPath form.

How to do it...

Follow these steps to prepare our InfoPath form for approval:

1. With our form template containing .NET code open, select SharePoint Server from

the Publish section of the File menu.

2. Provide the URL to the site collection we will publish the form to in the end and click

on Next.

The URL provided here should be a URL from the farm we

are publishing to. It does not necessarily have to be the

site collection URL.

3. Select Administrator-approved form template (advanced) and click on Next, as

shown in the following screenshot:

Chapter 8

325

4. Specify a location to save the prepared form and click on Next. Since we will be

uploading the form, we can save it to our local hard drive. When providing the form

to a farm administrator, we could save the form to a SharePoint library, a network ile
share, and so on.

5. Provide any applicable SharePoint columns for the form template to populate

and click on Next.

6. Click on Publish.

How it works...

InfoPath form templates with custom .NET code must run with full trust in SharePoint. In

order for a template to be approved, it must be uploaded by a farm administrator in Central

Administration. Publishing an administrator-approved form template prepares the form

template to be uploaded. Alternatively, InfoPath forms may be included as part of a custom

SharePoint solution in Visual Studio.

See also
 f The Publish a form article on Microsoft Ofice at http://office.microsoft.

com/en-us/infopath-help/publish-a-form-HA101783381.aspx

 f The Manage administrator-approved form templates article on TechNet at http://
technet.microsoft.com/en-us/library/cc262921.aspx

Enhancing User Input with InfoPath Forms

326

Approving submitted InfoPath forms in
SharePoint

In order to approve an InfoPath form template, an administrator must upload the form

template in Central Administration. In this recipe, we will upload the form template prepared

in the previous recipe, Preparing InfoPath forms for approval by SharePoint administrators, as

an administrator-approved form template.

Getting ready
For this recipe, we will need the InfoPath form created in the Adding custom .NET code to an
InfoPath form and Preparing InfoPath forms for approval by SharePoint administrators recipes.

How to do it...

Follow these steps to approve our InfoPath form template:

1. Navigate to Central Administration in your preferred web browser.

2. Select General Application Settings.

3. Select Upload form template under InfoPath Forms Services as shown in the

following screenshot:

4. Select the ile we prepared in the Preparing InfoPath forms for approval by

SharePoint administrators recipe.

5. Select Verify to ensure there are no issues with the form template.

6. Select Upload. Once the status on the Manage Form Templates page shows

Ready, we can continue to the Creating libraries using approved InfoPath forms in

SharePoint recipe.

Chapter 8

327

How it works...

Uploading an administrator-approved InfoPath form template creates a site-collection-scoped

feature for the form template. Activating the site collection feature adds the form template to

the Form Templates library within the root site of the site collection and adds a new content

type for the form template.

See also
 f The Manage administrator-approved form templates article on TechNet at http://

technet.microsoft.com/en-us/library/cc262921.aspx

Creating libraries using approved InfoPath
forms in SharePoint

In this recipe, we will activate the site collection feature for our form template and add our

form template content type to a form library.

Getting ready
For this recipe, we will need the administrator-approved form uploaded in the previous recipe,

Approving submitted InfoPath forms in SharePoint.

How to do it...

Follow these steps to add our form template to a form:

1. Navigate to the SharePoint site collection in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Site Collection Features from the Site Collection Administration

section.

4. Activate the feature for our form template. The name of the feature will

match the name of the form.

5. Navigate to a form library in the site collection. You can create a new one or
use an existing one.

6. Select Library Settings from the Library tab in the ribbon.

7. Select Advanced Settings from the General Settings section.

8. Set Allow Management of Content Types to Yes.

9. Click on OK.

Enhancing User Input with InfoPath Forms

328

10. Select Add from Existing Site Content Types from the Content Types section.

11. Add our form template and click on OK. Our form template will be listed in

the Microsoft InfoPath group.

12. Navigate back to the document library.

13. From the Files tab in the ribbon, select the drop-down menu for New Document.

14. Select our form template to observe the results.

How it works...

Activating the site collection feature for the form template adds our form template to the root

site of the site collection. In addition, a content type for the form template is created. With the

content type, we are able to add our form template to any library in the site collection.

Creating a survey InfoPath form that gets
locked after submission and populates the
SharePoint ields

In this recipe, we will create a simple survey form template that switches to a read-only view of

the form data when it is opened again.

How to do it...

Follow these steps to create a survey form template:

1. Create a new SharePoint Form Library form template in InfoPath Designer.

2. Add a few labels and controls for the survey input.

Chapter 8

329

3. Select the whole table, including the labels and ields.

4. Copy the selection to the clipboard.

5. Add a new view to the form template named Submitted.

6. Paste the selection to the new view.

7. For each control in the Submitted view, set the ield to be Read-Only in the

Display tab of the Control Properties tab.

8. For each control in the Submitted view that are not Text Box controls, select Change

Control by navigating to CONTROL TOOLS | PROPERTIES and select Text Box.

9. Return to the irst view in the form template and add a Button control with Submit

as the label.

10. Publish the form to a SharePoint form library. Before we can create our Submit

action, we need the document library to be already created. We will publish the form

again, once we set up the Submit action.

11. From the DATA tab in the ribbon, select To SharePoint Library in the Submit

Form section.

12. Enter the URL to the document library we created when publishing the form

in step 11.

13. Provide a formula for the name of the submitted documents, for example,
concat(now(), " - ", userName()). Formulas in InfoPath work very similar

to formulas in Microsoft Excel and SharePoint- calculated columns.

14. Click on Next and then on Finish.

Enhancing User Input with InfoPath Forms

330

15. In the Fields pane, select Add from the drop-down menu for myFields as shown in

the following screenshot:

16. Enter Completed for the Name and select True/False (Boolean) for the Data Type.

We will use this ield to indicate that the form is complete when we open the form

to view it.

17. Click on OK.

18. Select Form Load from the Rules section of the DATA tab. The Form Load rules run

when the form template irst loads, before the user can interact with the form.

19. Add a new Action Rule.

20. For Condition, check whether the value of the Completed ield we created is TRUE.

21. Under Run These Actions, add an action to switch the view to the Submitted view.

22. Select the Submit button in the irst view and add an Action Rule.

23. Under Run These Actions, add an action to set the value of the Completed

ield to true (lowercase).

24. Under Run These Actions, add a Submit Data action. Leave the options set

to the defaults and click on OK.

25. Under Run These Actions, add an action to Close the Form.

26. From the Info section of the File menu, select Form Options.

27. In the Web Browser category, uncheck the Show InfoPath Commands in Ribbon

or Toolbar option. The options in this category control what options are displayed in

the ribbon when displaying the form template in SharePoint. We are choosing not to

display the ribbon at all.

28. Click on OK.

29. From the Info section of the File menu, select Quick Publish. The Quick Publish

feature will republish the form template with the same coniguration used during the
previous publish.

Chapter 8

331

30. Navigate to the form library in SharePoint and select New Document from the Files

tab in the ribbon. Fill out the form and submit.

31. Navigate to the form library to observe the newly created document and open the

newly created document to observe the read-only version of the submitted form.

How it works...

When a control is added to a form template, a corresponding ield is created automatically.
The ield may be attached to additional controls allowing multiple places to display or interact
with the same ield content. In this recipe, we created a second view containing read-only
versions of the controls we added to the irst view. Doing so allowed us to create a locked, or
read-only, view of the form data.

In this recipe, we also created a button for the user to submit the form. This allowed us to take

control over the submit process to automatically provide a document name without having the

user to provide it.

9
Coniguring Search

In this chapter, we will cover coniguring the search features of SharePoint 2013. We will cover
the following recipes:

 f Provisioning a search service application

 f Coniguring a search content source

 f Creating a search center site

 f Connecting a site collection to a search center

 f Creating a search scope

 f Using a search query rule to promote an item in search results

 f Coniguring search engine optimization settings

Introduction

Search is often one of the key components of a successful web content management system.

Without the ability to search, users may have dificulty locating the content they are looking
for. Since the very irst iteration of SharePoint, SharePoint Portal Server 2001, search has
been an integral part of the SharePoint experience. For SharePoint Server 2010, Microsoft

made available FAST Search for SharePoint as a separate product that would integrate with

the SharePoint 2010 farm. The combination of SharePoint 2010 and FAST Search provided

all of the functionality of a search appliance, rivaling and even surpassing some abilities of a

Google search appliance, such as indexing line-of-business data.

With SharePoint 2013, Microsoft has incorporated most of the FAST Search product

features into the SharePoint Server 2013 product. This provides, out of the box, one of the

most powerful search appliances available in the market today. SharePoint search can be

conigured to index SharePoint content, web content, ile shares, Microsoft Exchange public
folders, and line-of-business data.

Coniguring Search

334

Using the SharePoint search capabilities out of the box works well for smaller sites. However,

for larger content-heavy sites, coniguring the search behavior can greatly enhance the
experience for the end user. In this chapter, we will cover the basic coniguration of the search
capabilities of SharePoint 2013.

Provisioning a search service application
The search service application handles the core functionality of search in SharePoint. In this

recipe, we will provision a new search service application.

You can create multiple search service applications for a farm. This can
be useful to segment indexed content for different web applications.

For instance, the search service application used by a public-facing web

application may be conigured to index the content of the public-facing
sites only, whereas a separate search service application used by an

internal-facing web application may be conigured to index all of the
content on the farm.

How to do it…

Follow these steps to provision a search service application:

1. Navigate to Central Administration in your preferred web browser.

2. Click on Manage service applications from the Application Management section as

shown in the following screenshot:

Chapter 9

335

3. Click on Search Service Application in the New menu from the SERVICE

APPLICATIONS tab in the ribbon as shown in the following screenshot:

4. Provide a name, such as Search Service Application, in the Name ield for
the service application.

5. Select a managed account to use for the Search Service Account. The Search

Service Account is used when indexing content. Any content that requires

authentication should provide read access to this account.

Coniguring Search

336

6. Provide a name and select a managed account for the Application Pool for Search

Admin Web Service. The managed account selected does not have to be the same

account used for the Search Service Account.

7. Provide a name and select a managed account for the Application Pool for Search

Query and Site Settings Web Service options.

8. Click on OK. The operation will take a few minutes to complete.

How it works…

The search service application handles all of the core functionality of the SharePoint search.

This includes indexing content, accessing the search databases, processing search queries,

and so on. When a user searches in a SharePoint site, the query is processed by the search

service application that is associated with the SharePoint web application in which the site

is contained.

Service applications in SharePoint use application pools in Internet Information Services

(IIS) to run their web services. The search service application uses two application pools, one

for the administrative components and the other for the query and site-level components.

There's more…

Search service applications may also be provisioned with PowerShell.

Chapter 9

337

Provisioning a search service application using PowerShell
Follow these steps to provision a search service application using PowerShell:

1. Create a new application pool for the search service and assign it to a variable using

the New-SPServiceApplicationPool Cmdlet as follows:

$appPool = New-SPServiceApplicationPool -Name "Search Service
Application Pool" -Account domain\searchuser

To use an existing application pool, the Get-
SPServiceApplicationPool Cmdlet may be used instead.

2. Create a new search service application using the New-SPEnterpriseSearchServ
iceApplication Cmdlet and assign it to a variable as follows:

$ssa = New-SPEnterpriseSearchServiceApplication -Name "Search
Service Application" -ApplicationPool $appPool

3. Create a new proxy for the search service application using the New-SPEnterprise
SearchServiceApplicationProxy Cmdlet as follows:

New-SPEnterpriseSearchServiceApplicationProxy -Name "Search
Service Application Proxy" -SearchApplication $ssa

See also
 f The Create and conigure a Search service application in SharePoint Server 2013

article on TechNet at http://technet.microsoft.com/en-us/library/
gg502597.aspx

 f The New-SPServiceApplicationPool topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607595.aspx

 f The Get-SPServiceApplicationPool topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607544.aspx

 f The New-SPEnterpriseSearchServiceApplication topic on TechNet at http://
technet.microsoft.com/en-us/library/ff607751.aspx

 f The New-SPEnterpriseSearchServiceApplicationProxy topic on TechNet at http://
technet.microsoft.com/en-us/library/ff607722.aspx

Coniguring a search content source
Once a search service application is conigured, it needs data for indexing. In this recipe, we
will add a new content source for our search service application.

Coniguring Search

338

Getting ready
For this recipe, we should have a search service application created in the Provisioning a

search service application recipe.

How to do it…

Follow these steps to add a new content source to our search service application:

1. Navigate to Central Administration in your preferred web browser.

2. Click on Manage service applications from the Application Management section.

3. Click on the Search Service Application link we created in the previous recipe.

4. In the quick launch, click on Content Sources from the Crawling section as shown in

the following screenshot:

5. Click on New Content Source.

6. Provide a name, such as Local SharePoint Sites, for the content source in the

Name ield.

7. Select SharePoint Sites for the Content Source Type as shown in the following

screenshot:

Chapter 9

339

8. Add the URL to the root SharePoint site to index to the Start Addresses section,

http://sharepoint/ for instance. Multiple SharePoint sites may be indexed as a

single content source. To add more SharePoint sites, add them on a new line in the

Start Addresses ield.

9. Select Crawl Everything Under the Hostname for Each Start Address in the

Crawl Settings.

The content source can be configured to index only the site collection

that matches the URL provided or to index everything under that URL. For

instance, when enabled, http://sharepoint/site will be indexed

when http://sharepoint/ is added to the Start Addresses field.

10. Select Enable Continuous Crawl in the Crawl Schedules.

Continuous Crawl is a new feature of SharePoint 2013 that crawls content

as it is modified or added to the sites. This can be resource intensive on large

SharePoint sites. Alternatively, crawls can be scheduled for specific times.

11. Click on OK.

Coniguring Search

340

How it works…

Search crawls in SharePoint are conducted on a per content source basis. Content sources

deine what is being crawled and how often. They can include SharePoint sites, websites,

ile shares, Microsoft Exchange public folders, line-of-business data from business data
connectivity services connections, and custom repositories. Each content source deined
can use multiple content sources of the same content type. For instance, a content source

could include multiple, different websites. A content source, however, could not include both a

website and a line-of-business data connection.

There's more…

Content sources can also be created and conigured with PowerShell.

Coniguring a search content source using PowerShell
Follow these steps to conigure a content source using PowerShell:

1. Assign our search service application to a variable using the Get-SPEnterpriseSe
archServiceApplication Cmdlet:

$ssa = Get-SPEnterpriseSearchServiceApplication "Search Service
Application"

2. Create a new content source with the New-SPEnterpriseSearchCrawlContentS
ource Cmdlet and assign it to a variable:

$cs = New-SPEnterpriseSearchCrawlContentSource -Name
"SharePoint Sites" -SearchApplication $ssa -Type SharePoint
-SharePointCrawlBehavior CrawlVirtualServers -StartAddresses
"http://sharepoint/"

The SharePointCrawlBehavior parameter is the equivalent of the Crawl

Settings section in the web interface. CrawlVirtualServers instructs the indexer

to index all content under the URL provided and CrawlSites instructs the indexer to

only index the site collection at the URL provided.

3. Enable Continuous Crawl and then update the content source using the following

commands:

$cs.EnableContinuousCrawls = $true

$cs.Update()

Chapter 9

341

See also
 f The Add, Edit, or Delete a content source in SharePoint 2013 article on TechNet at

http://technet.microsoft.com/en-us/library/jj219808.aspx

 f The Get-SPEnterpriseSearchServiceApplication topic on TechNet at http://
technet.microsoft.com/en-us/library/ff608050.aspx

 f The New-SPEnterpriseSearchCrawlContentSource topic on TechNet at http://
technet.microsoft.com/en-us/library/ff607867.aspx

Creating a search center site
Search queries can be conducted in a variety of different ways. The two common methods

are searching within a SharePoint site and searching in a search center site. Searching within

a SharePoint site typically uses the default search results page located in the /_layouts/

folder. These search queries are limited to only return results from the current SharePoint site.

Searching in a search center site uses web parts on customizable web part pages to submit

and display the results of search queries. The results can include all of the content indexed by

the search service application, regardless of where the content is located. In this recipe, we

will create a new SharePoint site with a search center template. A search center site may be

created as the root site of a new site collection from Central Administration or as a subsite

of an existing site collection. In this recipe, we are adding the search center as a subsite to an

existing site collection.

How to do it…

Follow these steps to create a new search center site:

1. In your preferred web browser, navigate to the site collection to which we added our

search site.

2. Click on Site contents from the Settings menu.

3. Click on new subsite from the Subsites section as shown in the following screenshot:

4. Provide a title, description, and URL for the new site in the Title, Description, and

URL ields.

Coniguring Search

342

5. Under Template Selection, select Enterprise Search Center from the Enterprise tab

as shown in the following screenshot:

6. Click on Create.

How it works…

The search center site templates create sites with the intended purpose of searching. These

templates include the required components, such as the search web parts for searching

and displaying results. These templates use a minimalistic master page that is conducive to

display search results in a user-friendly manner. In addition, unlike the search result page

used when searching individual sites, the web part pages used in the search center sites can

be easily customized.

There's more…

SharePoint sites may also be created with PowerShell or with code using the server-side

object model. We covered this previously in the Setting up a new publishing site recipe

in Chapter 5, Enhancing the Content Creation Process with the SharePoint Publishing

Architecture; however, the site template to use when creating an Enterprise Search Center

site is SRCHCEN#0.

Connecting a site collection to a search
center

In order for SharePoint site collections to forward search queries to a search center, the

connection to the search center must be conigured. In this recipe, we will conigure our site
collection to forward search queries to the search center we created in the Creating a search

center site recipe.

Chapter 9

343

How to do it…

Follow these steps to connect a site collection to a search center:

1. In your preferred web browser, navigate to the site collection to which we are

connecting the search center.

2. Click on Site settings from the Settings menu.

3. Select Search Settings under Site Collection Administration as shown in the

following screenshot:

4. Enter the URL to the Pages library in the search center. For instance, if the search

center is at http://sharepoint/sites/search, enter http://sharepoint/
sites/search/pages for the URL as shown in the following screenshot:

If the search center is on the same web application host as the site

collection, a relative URL may be used instead. For instance, /sites/
search/pages may be used instead of http://sharepoint/
sites/search/pages.

5. Click on OK.

Coniguring Search

344

How it works…

Site collections not conigured to forward search queries to a search center are limited to only
searching within the current site. These searches use the basic search results page found in

the /_layouts/ folder of each site. When search queries are forwarded to a search center,

the results include all indexed content the user has access to.

The URL to the search center is stored as a property on the root site

of the site collection.

There's more…

The search center URL conigured for a site collection may also be conigured with PowerShell
or code using the server-side object model.

Connecting a site collection to a search center using PowerShell
Follow these steps to connect a site collection to a search center using PowerShell:

1. Assign the site collection to a variable with the Get-SPSite Cmdlet:

$site = Get-SPSite http://sharepoint

2. Set the SRCH_ENH_FTR_URL_SITE property of the root site to the URL of the Pages

library in the search center:

$site.RootWeb.AllProperties["SRCH_ENH_FTR_URL_SITE"] = "/sites/
search/pages"

3. Update the root site of the site collection:

$site.RootWeb.Update()

Connecting a site collection to a search center with code using
the server-side object model
Follow these steps to connect a site collection to a search center with code using the server-

side object model:

Chapter 9

345

1. Open the site collection in a using statement:

using (var site = new SPSite("http://sharepoint"))

2. Set the SRCH_ENH_FTR_URL_SITE property of the root site to the URL of the Pages

library in the search center:

site.RootWeb.AllProperties["SRCH_ENH_FTR_URL_SITE"] = "/sites/
search/pages";

3. Update the root site of the site collection:

site.RootWeb.Update();

Creating a search scope
SharePoint 2007 and 2010 included the option to add scopes to a drop-down list next to

search boxes in the sites. This would allow site administrators to create narrowed down search

results for speciic uses. For instance, a scope could be created to only return items from a
speciic library.

With SharePoint 2013, Microsoft has removed the concept of search scopes. Instead, we will

need to create a new search results page with a limited search query. In this recipe, we will

add a new search results page to our search center to return only images.

How to do it…

Follow these steps to create a new search results page for images:

1. Navigate to our search center in your preferred web browser.

2. Click on Site contents from the Settings menu.

3. Select the Pages library.

Coniguring Search

346

4. From the FILES tab in the ribbon, click on Welcome Page from the New Document

drop-down menu as shown in the following screenshot:

5. Provide a title and URL for the page, for instance, Images in the Title and URL ields.

6. Select (Welcome Page) Search results for the Page Layout feature in the

following screenshot:

Chapter 9

347

7. Click on Create.

8. Click on the Images page in the Pages library to navigate to it.

9. Click on Edit page from the Settings menu.

10. Click on Edit Web Part from the drop-down menu on the Search Results web part as

shown in the following screenshot:

11. Click on Change query in the web part edit pane as shown in the

following screenshot:

Coniguring Search

348

12. Set the Property Filter to ContentType Contains Image as shown in the

following screenshot:

13. Click on the Add property ilter.

14. Click on OK.

15. In the web part edit pane, click on OK.

16. Click on Publish from the PUBLISH tab in the ribbon. Click on Continue to publish

the page.

17. Click on Site settings from the Settings menu.

18. Click on Search Settings from the Search section as shown in the

following screenshot:

19. In the Conigure Search Navigation section, add a link to the newly created page.

For instance, Images with /sites/search/pages/Images.aspx as the URL as

shown in the following screenshot:

Chapter 9

349

20. Click on OK.

21. Navigate to the search center home page.

22. Enter a keyword to search for and press the Enter key.

23. Click on the newly added Images navigation option to observe the iltered results.

How it works…

The search results web parts on search results pages use search-speciic queries to
determine which results to show for a particular search. For instance, the Conversations

search results page uses a search query that returns only the Newsfeed items. In this recipe,

we created a new search results page that queried only for the Image items by their

content type.

See also
 f The Conigure search web parts in SharePoint Server 2013 article on TechNet at

http://technet.microsoft.com/en-us/library/jj679900.aspx

Coniguring Search

350

Using a search query rule to promote an
item in search results

Search indexers use complex algorithms to determine the order in which items should return

in a search query. The factors include the number of times an item is linked to by other pages

or items, the frequency of a keyword in the item, and the author of the item. As a result, it is

not uncommon for items that are very important, but only use a particular keyword once or

twice, to not appear at the top of the search results. For instance, a human resources site may

have a number of blog posts and announcements related to retirement accounts. In addition,

the site may have a document simply named Retirement Account Enrollment. When searching

for information about retirement accounts, users may see results for the announcements and

blog posts ahead of the enrollment document.

When the most important item, the enrollment document, doesn't return at the top of the

search results, users may never ind the item. To alleviate this, we can manually instruct
SharePoint to display certain results irst using query rules. This allows the site administrators
of the human resources site to ensure users can easily ind the enrollment document.

How to do it…

Follow these steps to create a search query rule:

1. Navigate to our search center in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Query Rules from the Search section as shown in the following screenshot:

4. Select the Documents (System) results source from the drop-down menu as shown

in the following screenshot:

Chapter 9

351

5. Select New Query Rule as shown in the following screenshot:

6. Provide a name for the query rule.

7. In the Query Conditions section, select Query Matches Keyword Exactly and enter

the keywords to match the query. The keywords are separated with semicolons.

8. Under Actions, click on Add Promoted Result.

Coniguring Search

352

9. Enter a title, URL, and description for the promoted result in the Title, URL, and

Description ields. This information will be displayed in the search results.

10. Click on Save to add the promoted result.

11. Click on Save to save the query rule.

How it works…

Search query rules are used as a factor in the complex algorithms used by the SharePoint

search service. Using query rules allows the site administrator to modify the positioning or

importance of certain content that might otherwise be considered as less important by the

search algorithm.

See also
 f The Manage query rules in SharePoint 2013 article on TechNet at http://

technet.microsoft.com/en-us/library/jj871676.aspx

Coniguring search engine optimization
settings

SharePoint 2013 provides a few basic but important features for optimizing sites for external

search engines, such as Bing. These features include generating site maps and adding META

tags to each page. In this recipe, we will enable and conigure the site map and the META

tag options.

Chapter 9

353

In order for site maps to be accessible by external search engines, anonymous access to the

site should be conigured. This is covered in Chapter 12, Coniguring Anonymous Access.

How to do it…

Follow these steps to conigure the search engine optimization settings:

1. In your preferred web browser, navigate to the site collection for which we are

coniguring search engine optimization settings.

2. Click on Site settings from the Settings menu.

3. Select Site collection features from the Site Collection Administration section as

shown in the following screenshot:

4. Activate the Search Engine Sitemap feature.

5. Select Site settings from the Settings menu.

Coniguring Search

354

6. Select Search engine optimization settings from the Site Collection Administration

section as shown in the following screenshot:

7. Select Include these meta tags in pages.

8. Add a META tag as follows:

<meta name="author" content="John Chapman" />

9. Click on OK.

Chapter 9

355

How it works...

Site maps are simple XML iles, usually stored at the root of a website, which provide a list of
the pages the website includes. This makes it simpler for search engines to locate all of the

pages on the site that may or may not have direct links to them from elsewhere on the site.

When enabled, SharePoint will generate these XML iles automatically based on the content of
the site. In addition, exclusions can be conigured that will also generate a robots.txt ile.
The robots.txt ile, also usually stored at the root of a website, instructs search engines as
to which content should be excluded from being indexed.

Adding META tags to pages in a site provides additional information about the page or site

when being crawled by a search engine. This allows for additional information to be included

about the page that is not part of the content of the page, such as the author. The META tags

are stored in the seocustommetatagpropertyname property of the root site of the

site collection.

There's more…

Activating the Search Engine Sitemap feature and coniguring the META tags can both
be accomplished with PowerShell and code using the server-side object model. We have

activated site collection features previously in the Enabling the publishing features on an

existing site recipe in Chapter 5, Enhancing the Content Creation Process with the SharePoint

Publishing Architecture. We have also previously updated site properties in the Connecting a

site collection to a search center recipe in this chapter. The property name for the META tags

is seocustommetatagpropertyname and the feature ID for the search engine sitemap

feature is 77fc9e13-e99a-4bd3-9438-a3f69670ed97.

See also
 f The Enabling the publishing features on an existing site recipe in Chapter 5,

Enhancing the Content Creation Process with the SharePoint Publishing Architecture

 f The HTML <meta> tag topic on W3 Schools at http://www.w3schools.com/
tags/tag_meta.asp

 f The Site map article on Wikipedia at http://en.wikipedia.org/wiki/Site_
map

10
Creating Multilingual

Sites with

SharePoint Variations

In this chapter, we will explore the translation and multilingual site features of SharePoint

2013. We will cover the following recipes:

 f Installing SharePoint language packs

 f Coniguring SharePoint with installed language packs

 f Provisioning a machine translation service application

 f Coniguring machine translation timer jobs

 f Coniguring site collection variation settings

 f Creating the primary language variation label

 f Creating the secondary language variation labels

 f Checking the status of the variation hierarchy

 f Creating, publishing, and updating targets with a new publishing page

 f Creating translation packages for human translation

 f Uploading translation packages

 f Translating content with the machine translation service

Creating Multilingual Sites with SharePoint Variations

358

Introduction

Microsoft SharePoint provides one of the most comprehensive sets of tools for creating

multilingual sites. In conjunction with the publishing features, the multilingual features provide

an end-to-end solution for creating, publishing, and translating web content. Introduced in

SharePoint Server 2013, the machine translation service uses the Microsoft Translator service,

formerly the Bing Translation service, to provide automated machine translations of content.

The Microsoft Translator service is one of the web services offered through the Microsoft

Windows Azure Marketplace. Refer to https://datamarket.azure.com/dataset/bing/
microsofttranslator for more details about the Microsoft Translator service.

In this chapter, we will conigure the machine translation service and create a multilingual site
using SharePoint variations. We will create site variations for multiple languages.

Installing SharePoint language packs
Language packs for SharePoint allow administrators to conigure sites of different languages

without separate SharePoint installations. Installing language packs adds the resources

necessary to support languages other than the language of the SharePoint installation. This

includes resource strings, XML iles for site deinitions and features, and so on. The following
table contains the 44 language packs currently available for SharePoint Server 2013:

Language ID

Arabic 1025

Basque 1069

Bulgarian 1026

Catalan 1027

Chinese (Simplified) 2052

Chinese (Traditional) 1028

Croatian 1050

Czech 1029

Danish 1030

Dutch 1043

English 1033

Estonian 1061

Finnish 1035

French 1036

Galician 1110

German 1031

Chapter 10

359

Language ID

Greek 1032

Hebrew 1037

Hindi 1081

Hungarian 1038

Indonesian 1057

Italian 1040

Japanese 1041

Kazakh 1087

Korean 1042

Latvian 1062

Lithuanian 1063

Malay (Malaysia) 1086

Norwegian (Bokmål) 1044

Polish 1045

Portuguese (Brazil) 1046

Portuguese (Portugal) 2070

Romanian 1048

Russian 1049

Serbian (Cyrillic) 3098

Serbian (Latin) 2074

Slovak 1051

Slovenian 1060

Spanish 3082

Swedish 1053

Thai 1054

Turkish 1055

Ukrainian 1058

Vietnamese 1066

When downloading and installing language packs, there is a separate download for each

service pack in addition to the language pack. Installing a language pack requires the

language pack in addition to any service packs, to match the service pack level of SharePoint.

For example, if SP1 is installed on SharePoint, both the language pack and SP1 for the

language pack will need to be installed.

Creating Multilingual Sites with SharePoint Variations

360

In this recipe, we will download and install the SharePoint 2013 language pack for the French

language. We will use the French language later on in the Creating the secondary language

variation labels recipe. You can use whichever available language you desire, simply replace
the language used in the Creating the secondary language variation labels recipe with the

one of your choosing.

How to do it…

Follow these steps to install the French language pack for SharePoint:

1. Navigate to the Language Packs for SharePoint 2013 download page (http://
www.microsoft.com/en-us/download/details.aspx?id=37140). If one or

more service packs are installed on SharePoint, we will need to repeat this process to

obtain the language pack for each service pack installed.

2. Select the language name for the language pack that you want to download, French

for example.

3. Click on the Download button and save the ile on the local ilesystem. When
selecting a different language, the page will redirect to the download page in that

language. Pay attention to the styling of the download button so that you know which

button to click on the page in that language. For instance, if you select Spanish,

the download page itself will display in Spanish. Alternatively, if you have an MSDN

subscription, you can download the language packs from MSDN.

4. Run the downloaded executable to install the language pack. Language packs

must be installed on every SharePoint server in the SharePoint farm. The install

application for each language pack will display in the language of the language pack

as illustrated for the French language pack in the following screenshot:

Chapter 10

361

How it works…

Language packs include the resources, XML iles, and images required to support the
language in all display elements of SharePoint. Installing the language pack adds the iles
to the local ilesystem, but does not conigure SharePoint to use them. We will conigure
SharePoint to recognize the installed language packs in the next recipe, Coniguring
SharePoint with installed language packs.

See also
 f The Language packs in SharePoint 2013 article on TechNet at http://technet.

microsoft.com/en-us/library/ff463597.aspx

 f The Language packs for SharePoint 2013 download page on Microsoft at http://
www.microsoft.com/en-us/download/details.aspx?id=37140

Coniguring SharePoint with installed
language packs

Installing service packs, cumulative updates, and language packs for SharePoint each require

running the SharePoint Products Coniguration Wizard to conigure SharePoint to use the
newly installed software. In this recipe, we will run the wizard to complete the installation of

our language packs.

How to do it…

Follow these steps to run the SharePoint Products Coniguration Wizard:

1. Select the SharePoint 2013 Products Coniguration Wizard from the Microsoft

SharePoint 2013 Products folder in the Start menu.

Creating Multilingual Sites with SharePoint Variations

362

2. Complete the wizard with the default options to conigure the language pack on the
local SharePoint server. The SharePoint Products Coniguration Wizard must be

run on each SharePoint server, one at a time. Since the wizard makes changes to

the SharePoint coniguration database, running the wizard on multiple servers at the
same time is not supported.

How it works…

When language packs are installed on a SharePoint farm, they are not available to SharePoint

until the SharePoint Products Coniguration Wizard has been run. The SharePoint Products

Coniguration Wizard registers the language pack with the SharePoint farm and makes it

available for use.

See also
 f The Install or uninstall language packs for SharePoint 2013 article on TechNet at

http://technet.microsoft.com/en-us/library/cc262108.aspx

Provisioning a machine translation service
application

The machine translation service application is a new feature of SharePoint Server 2013

that provides an API for SharePoint and developers to translate content with the Microsoft

Translator service at no additional cost. Using the Microsoft Translator service in custom code

without the SharePoint 2013 machine translation service would incur additional costs after a

certain number of characters are translated.

Chapter 10

363

The machine translation service requires access to the Microsoft

Translator service via the Internet from the SharePoint server.

In this recipe, we will provision a new machine translation service application.

How to do it…

Follow these steps to provision a machine translation service application:

1. Navigate to Central Administration in your preferred web browser.

2. Select Manage service applications from the Application Management section as

shown in the following screenshot:

3. Click on Machine Translation Service under the New menu from the SERVICE

APPLICATIONS tab on the ribbon:

Creating Multilingual Sites with SharePoint Variations

364

4. Provide a name and choose an application pool for the service application:

5. Check the Add this service application's proxy to the farm's default proxy list
checkbox under Add to Default Proxy List. Adding a service application to the

default proxy group will make it available to all web applications using the default

proxy group.

6. Click on OK.

How it works…

The machine translation service application provides the web service endpoints for the

translation API used by SharePoint. It creates a service application, instantiates the endpoints

in Internet Information Services (IIS), and makes the API available to SharePoint and custom

code deployed to SharePoint.

Chapter 10

365

There's more…

Machine translation service applications may also be provisioned with PowerShell. Follow

these steps to provision a machine translation service application using PowerShell:

1. Create a new application pool with the New-SPServiceApplicationPool Cmdlet,

or get an existing application pool with the Get-SPServiceApplicationPool

Cmdlet, and assign it to a variable:

$appPool = Get-SPServiceApplicationPool "SharePoint Web
Services Default"

2. Create a new machine translation service application using the New-
SPTranslationServiceApplication Cmdlet and assign it to a variable:

$mts = New-SPTranslationServiceApplication –Name
"Machine Translation Service" –ApplicationPool $appPool

3. Create a proxy for the new machine translation service application and assign it to

the default proxy group with the New-SPTranslationServiceApplicationPro
xy Cmdlet:

New-SPTranslationServiceApplicationProxy –Name
"Machine Translation Service Proxy" –ServiceApplication $mts -
DefaultProxyGroup

See also
 f The Turn on automated translation of documents in SharePoint Server 2013

article on TechNet at http://technet.microsoft.com/en-us/library/
jj553772(v=office.15).aspx

 f The New-SPServiceApplicationPool topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607595.aspx

 f The Get-SPServiceApplicationPool topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607544.aspx

 f The New-SPTranslationServiceApplicationProxy topic on TechNet at http://
technet.microsoft.com/en-us/library/jj219763.aspx

 f The New-SPTranslationServiceApplication topic on TechNet at http://technet.
microsoft.com/en-us/library/jj219712.aspx

Creating Multilingual Sites with SharePoint Variations

366

Coniguring machine translation timer jobs
The machine translation service receives translation jobs from SharePoint content and other

sources that get translated in batches. The frequency of translating these batches as well as

other coniguration options, such as connecting through a web proxy, may be conigured for
the machine translation service.

There are many coniguration options for the machine translation service. In this recipe, we
will only focus on the interval at which the queued translation jobs are processed.

How to do it…

Follow these steps to conigure the machine translation timer jobs:

1. Navigate to Central Administration in your preferred web browser.

2. Select Manage service applications from the Application Management section.

3. Select the link to the newly created machine translation service:

4. In the Translation Throughput section, set the Frequency with which to start

translations (minutes) to 15:

5. Click on OK to save the change.

How it works…

The machine translation service uses a SharePoint timer job to process queued translation

requests. The default interval at which this job runs is 15 minutes. This can be conigured to
run more or less frequently. The machine translation service can use a considerable amount

of resources on the server. These settings allow us to adjust the translation service based on

the needs of the implementation.

Chapter 10

367

There's more…

The machine translation service coniguration options may also be set using PowerShell.
Follow these steps to conigure the machine translation timer job using PowerShell:

1. Use the Get-SPServiceApplication Cmdlet to obtain the unique identiier for
the machine translation service application on the local farm:

Get-SPServiceApplication

You will see a screen similar to the one shown in the following screenshot after
issuing the preceding command:

2. Use the Set-SPTranslationServiceApplication Cmdlet to set the timer job

frequency, replace Identity with the unique identity from the previous step:

Set-SPTranslationServiceApplication –Identity bc6a1336-3e12-
49e0-bb4b-4d159b7670c8 –TimerJobFrequency 15

Creating Multilingual Sites with SharePoint Variations

368

See also
 f The Turn on automated translation of documents in SharePoint Server 2013

article on TechNet at http://technet.microsoft.com/en-us/library/
jj553772(v=office.15).aspx

 f The Get-SPServiceApplication topic on TechNet at http://technet.microsoft.
com/en-us/library/ff607714.aspx

 f The Set-SPTranslationServiceApplication topic on TechNet at http://technet.
microsoft.com/en-us/library/jj219583.aspx

Coniguring site collection variation settings
Variations in SharePoint allow site administrators to create multiple versions of the same

site in various languages. This provides a simple yet powerful tool for creating multilingual

websites. In a site collection with variations, a source variation site (or label) is conigured as
the primary location for content to be authored. For each variation (or language), a target site

(or label) is created that receives its content from the source site.

In this recipe, we will cover the basic settings for site collection variations that we will use

when we create our source and target labels in the Creating the primary language variation

label and Creating the secondary language variation labels recipes.

The site containing the variations must be a publishing site. The root site

of the site collection does not need to be a publishing site, just the site

that will contain the variations. Trying to conigure variations in a site that
is not a publishing site will generate error messages.

How to do it…

Follow these steps to conigure the site collection variation settings:

1. Navigate to the site collection that will contain the source and target variations in

your preferred web browser.

2. Click on Site settings from the Settings menu.

3. Select Variations Settings from the Site Collection Administration section as shown

in the following screenshot:

Chapter 10

369

4. Under Site, List, and Page Creation Behavior, select Create Everywhere.

Alternatively, Create Selectively may be selected in case you want to choose if a new

piece of content should be published manually rather than automatically publishing

all new content to the target sites:

Creating Multilingual Sites with SharePoint Variations

370

5. Under Recreate Deleted Target Page, select Recreate a new target page when the

source page is republished. If a page is deleted in one of the target sites, this option

will recreate the page if the source site publishes it again.

6. Under Update Target Page Web Parts, select Update Web Part changes to target

pages when variation source page update is propagated. If the web parts on a

target page have been personalized, this will revert them to the state of the web parts

in the source page.

7. Click on OK.

How it works…

The site collection variation settings control how the variations of the site collection should

behave when content is created or updated. These settings allow us to choose whether or not

content should automatically be published to target sites, whether or not pages in target sites

that have been deleted should be recreated if the page is published again, and whether or

not web parts customized in the target sites should be overwritten when a page is

published again.

Determining which options to select depends upon the implementation. If very little is

customized directly on the target sites, the default options to automatically publish new

content, recreate deleted pages, and overwrite web part customizations are ideal. However,

if customizations are made to pages in the target sites, coniguring the options to not publish
content automatically, not recreate deleted pages, and not overwrite web part customizations

may be appropriate.

See also
 f The Variations overview in SharePoint 2013 article on TechNet at http://

technet.microsoft.com/en-us/library/ff628966.aspx

 f The Create a multi-language website article on the Microsoft Ofice help website
at http://office.microsoft.com/en-us/sharepoint-server-help/
create-a-multi-language-website-HA102886546.aspx

Chapter 10

371

Creating the primary language variation
label

In SharePoint 2013, a variation is a version of a site in a different language than the original.

A variation label deines each site variation. The irst variation label created deines the source
site for the target sites to receive the published content from. In this recipe, we will create the

primary language variation label.

How to do it…

Follow these steps to create the primary language variation label:

1. Navigate to the site collection that will contain the source and target variations in

your preferred web browser.

2. Click on Site settings from the Settings menu.

3. Click on Variation labels from the Site Collection Administration section as shown

in the following screenshot:

4. Select New Label and set the language and locale of the source site:

5. Set the location where the source and target sites will be contained. For instance,

entering / will contain the sites in the root of the current site collection.

6. Click on OK.

Creating Multilingual Sites with SharePoint Variations

372

How it works…

The primary variation label deines the source language and the source site variations for the
site collection. Subsequent variation labels will rollup to receive their content from the content

published in the primary variation label based on the settings conigured in the Coniguring
site collection variation settings recipe. The sites created for each label will be added to the

site speciied in the Location ield for the Variations Home option.

See also
 f The Variations overview in SharePoint 2013 article on TechNet at http://

technet.microsoft.com/en-us/library/ff628966.aspx

 f The Create a multi-language website article on the Microsoft Ofice help website
at http://office.microsoft.com/en-us/sharepoint-server-help/
create-a-multi-language-website-HA102886546.aspx

Creating the secondary language
variation labels

With our primary variation label created in the Creating the primary language variation label

recipe, we will create a secondary variation label to serve as the target site for the content

published in our primary variation label site. When creating variation labels, the label name is

used in the URL for the sites. For instance, a label name of fr-fr results in the site URL of /
fr-fr/. In this recipe, we will be using the French language for our target label. If you chose

to install the language pack for a different language, use that language instead.

How to do it…

Follow these steps to create a secondary language variation label:

1. Navigate to the site collection that will contain the source and target variations in

your preferred web browser.

2. Click on Site settings from the Settings menu.

3. Select Variation labels from the Site Collection Administration section.

4. Click on New Label.

5. Select a language and locale for the new variation label as shown in the

following screenshot:

Chapter 10

373

6. Click on Continue.

7. Select Publishing Sites, Lists with Variations, and All Pages under the

Hierarchy Creation:

8. Click on Continue.

9. Select Allow human translation on this target label and Allow Machine Translation

on this target label:

10. Click on Continue.

11. Select Automatically update target variation pages.

12. Click on Continue.

13. Review the details of the new variation label and click on Finish.

Creating Multilingual Sites with SharePoint Variations

374

How it works…

Creating the secondary variation label adds a new target site in the site collection. When

content is published in the primary variation label site, it will be published to the target site

based on the settings conigured in the Coniguring site collection variation settings recipe.

Once content has been published to a target variation label site, it can then be translated into

that language using human or machine translation.

When a variation label is created, a job to create the variation hierarchy will be automatically

queued. A timer job will process the queue the next time it runs, which is once per hour by

default. We will check the status of our variation hierarchy in the next recipe, Checking the

status of the variation hierarchy.

See also
 f The Variations overview in SharePoint 2013 article on TechNet at http://

technet.microsoft.com/en-us/library/ff628966.aspx

 f The Create a multi-language website article on the Microsoft Ofice help website
at http://office.microsoft.com/en-us/sharepoint-server-help/
create-a-multi-language-website-HA102886546.aspx

Checking the status of the variation
hierarchy

Once variation labels have been created, a job to create the variation hierarchy is queued. The

variation hierarchy deines the low of content from the source variation labels to the target

variation labels. In our example, our content simply lows from the source label to both the
target labels. In more complex scenarios, the content could low through multiple levels of
target labels. For this recipe, we will check the status of the hierarchy for the variation labels

we created in the Creating the secondary language variation labels recipe.

Chapter 10

375

Source Label

Target Label Target Label

Source Label

Complex Variation Hierarchy

Target Label Target Label

Target Label Target Label

Simple Variation Hierarchy

How to do it…

Follow these steps to check the status of the variation hierarchy:

1. Navigate to the site collection that contains the source and target variations in your

preferred web browser.

2. Click on Site settings from the Settings menu.

3. Click on Variation labels from the Site Collection Administration section.

4. The status of the hierarchy is displayed under Hierarchy Is Created as illustrated in

the following screenshot. In addition, more detailed logging information is available by

clicking on the Variation Logs link.

How it works…

The hierarchy of variation labels determines how and what content is published from the

source site to the target sites. Content will not be published to a target variation label site until

the hierarchy is created.

See also
 f The Variations overview in SharePoint 2013 article on TechNet at http://

technet.microsoft.com/en-us/library/ff628966.aspx

 f The Create a multi-language website article on the Microsoft Ofice help website
at http://office.microsoft.com/en-us/sharepoint-server-help/
create-a-multi-language-website-HA102886546.aspx

Creating Multilingual Sites with SharePoint Variations

376

Creating, publishing, and updating targets
with a new publishing page

With our variation labels and variation hierarchy created, we will now create a new publishing

page in the source site and publish it to the target site.

How to do it…

Follow these steps to create a new page and publish it to the target variation label site:

1. Navigate to the site collection that contains the source and target variations in your

preferred web browser.

2. Click on Site settings from the Settings menu.

3. Select Variation labels from the Site Collection Administration section.

4. Click on the display name for the source variation label, such as English (United

States), to navigate to the source site as shown in the following screenshot:

5. Click on Site contents from the Settings menu and select the Pages library.

6. Select New Document from the FILES tab on the ribbon.

7. Provide the page a name and URL and click on Create.

8. Edit the page and add some content.

Chapter 10

377

9. Select Publish from the PUBLISH ribbon tab and click on Continue.

10. Navigate to the site collection that contains the source and target variations in your

preferred web browser.

11. From the Settings menu, select Site settings.

12. Select Variation labels from the Site Collection Administration section.

13. Select the display name for the target variation label to navigate to the target site as

shown in the following screenshot:

14. Click on Site contents from the Settings menu. These options will be displayed in the

language of the target label site. In our French site, Site contents will be displayed as

Contenu du site.

15. Select the Pages library.

16. Observe the page published from the source site. If the page is not yet there, the

timer job to publish the source site content has not yet completed. This job runs

every ifteen minutes by default. Once it is done, the page will appear similar to the
following screenshot:

Creating Multilingual Sites with SharePoint Variations

378

How it works…

When conigured, changes to content in the source site will automatically be published to

the target site. Automatic publishing of content happens in timer jobs that run every ifteen
minutes by default. Once published to the target site, content can then be human or

machine translated.

The three timer jobs to publish content to target sites are instantiated per web application.

These timer jobs include Variations Propagate List Items Job Deinition, Variations

Propagate Page Job Deinition, and Variations Propagate Page Job Deinition. The

frequency of these timer jobs can be conigured individually per job, per web application.

See also
 f The Variations overview in SharePoint 2013 article on TechNet at http://

technet.microsoft.com/en-us/library/ff628966.aspx

 f The Create a multi-language website article on the Microsoft Ofice help website
at http://office.microsoft.com/en-us/sharepoint-server-help/
create-a-multi-language-website-HA102886546.aspx

Creating translation packages for human
translation

Content published from a source site will retain the original text in the target site until it has

been translated. In this recipe, we will create a translation package for human translation.

The target site will display elements in the language of the variation label. The instructions

in this recipe refer to the items in English; however, they will be actually displayed in the
language of the variation label.

How to do it…

Follow these steps to create a translation package:

1. Navigate to the newly published page from the Creating, publishing, and updating

targets with a new publishing page recipe in the target site.

2. Click on Create Translation Package from the VARIATIONS tab on the ribbon. In

our French target site, these will display as VARIANTES and Créer un package de

traduction as shown in the following screenshot:

Chapter 10

379

3. Click on OK.

How it works…

When requested, a job will be added to the translation queue to create a translation package

for download. This translation package contains the items to be translated in the standard

XML Localisation Interchange File Format (XLIFF) format. In most circumstances, this

package is provided to an external company to perform the translation. Once the job to create

the package is complete, you will be e-mailed with a link to download the package.

See also
 f The XLIFF article on Wikipedia at http://en.wikipedia.org/wiki/XLIFF

 f The Variations overview in SharePoint 2013 article on TechNet at http://
technet.microsoft.com/en-us/library/ff628966.aspx

 f The Create a multi-language website article on the Microsoft Ofice help website
at http://office.microsoft.com/en-us/sharepoint-server-help/
create-a-multi-language-website-HA102886546.aspx

Uploading translation packages
In this recipe, we will upload the translation package we created in the Creating translation

packages for human translation recipe.

Since we have not actually done any translation in the package, it will process the ile without
actually saving any translation. You can modify the translation package to add your own
translation for demonstration purposes.

How to do it…

Follow these steps to upload a translation package:

1. Navigate to the newly published page from the Creating, publishing, and updating

targets with a new publishing page recipe in the target site.

Creating Multilingual Sites with SharePoint Variations

380

2. Select Upload Translation Package from the Variations tab on the ribbon. In our

French target site, these will display as VARIANTES and Télécharger la traduction as

shown in the following screenshot:

3. Select the translation package on the local ilesystem.

4. Provide a name for the translator. This is just for record keeping.

5. Click on OK.

How it works…

Uploading a translation package creates a new queued job to process the package. Once

processed, the items translated will be updated in the site.

See also
 f The Variations overview in SharePoint 2013 article on TechNet at http://

technet.microsoft.com/en-us/library/ff628966.aspx

 f The Create a multi-language website article on the Microsoft Ofice help website
at http://office.microsoft.com/en-us/sharepoint-server-help/
create-a-multi-language-website-HA102886546.aspx

Translating content with the machine
translation service

In this recipe, we will translate our publishing page from the Creating, publishing, and

updating targets with a new publishing page recipe in the target site using the machine

translation service.

How to do it…

1. Navigate to the newly published page from the Creating, publishing, and updating

targets with a new publishing page recipe in the target site.

Chapter 10

381

2. Select Machine Translation from the Variations tab on the ribbon. In our French

target site, these will display as VARIANTES and Traduire automatiquement as

shown in the following screenshot:

3. Click on OK. A new translation job will be added to the machine translation job queue.

4. Once the translation job has been completed, navigate to the publishing page in the

target site to observe the results. It will look similar to the following screenshot:

How it works…

When requested, a new translation job will be queued for the page content. The machine

translation service will process the translation job using the Microsoft Translator API and

update the page content accordingly.

See also
 f The Variations overview in SharePoint 2013 article on TechNet at http://

technet.microsoft.com/en-us/library/ff628966.aspx

 f The Create a multi-language website article on the Microsoft Ofice help website
at http://office.microsoft.com/en-us/sharepoint-server-help/
create-a-multi-language-website-HA102886546.aspx

11
Coniguring

Content Deployment

In this chapter, we will look at the content deployment features of SharePoint 2013. We will

cover the following recipes:

 f Coniguring the source site collection for content deployment

 f Coniguring the farm content deployment settings

 f Creating the content deployment path

 f Creating the content deployment job

 f Performing content deployment

Introduction

With public facing or large intranet sites it is common for organizations to stage content

before it is made available to the end users. This allows for collaboration and testing of

content before it is made available in the production sites. For instance, an e-commerce site

might perform weeks of testing site changes before making those changes available to

public users.

Introduced in Microsoft Ofice SharePoint Server 2007, the content deployment features allow

authoring content in one site collection and then deploying the content of the site collection to

another. The target site collection can be on the same SharePoint farm or an entirely different

SharePoint farm. SharePoint also allows chains of content deployment. For instance, the

content could be authored in a site collection that is deployed to a staging environment. Once

the content has been tested and approved, it is then deployed from the staging environment

to the production environment.

Coniguring Content Deployment

384

In this chapter, we will set up a source site collection, a target site collection, and the content

deployment connection. In addition, we will schedule the content deployment operation to

occur on a scheduled interval.

Coniguring the source site collection for
content deployment

Content deployment in SharePoint 2013 is handled at the site collection level. New to

SharePoint 2013, we must irst activate the Content Deployment Source Feature. This

new feature provides a report containing a list of features currently activated that are not

supported by content deployment. In addition, this feature makes the site collection available

in the list of site collections to use as the source when creating our content deployment

connection in the Creating the content deployment path recipe.

Getting ready
For this recipe, we should have a source site collection and a target site collection created. They

should both be created with the same site template, such as the Publishing Site template.

The source and target site collections must be in separate content

databases. They can be in the same web application as long as they

are in separate content databases.

How to do it…

Follow these steps to conigure the source site collection for content deployment:

1. Navigate to the source site collection in your preferred web browser.

2. Click on Site settings from the Settings menu.

3. Click on Site Collection Features from the Site Collection Administration section.

4. Activate the Content Deployment Source Feature.

5. Click on Site settings from the Settings menu.

6. Click on Content Deployment Source Status from the Site Collection

Administration section. The Content Deployment Source Status page displays a

list of features and other content that would result in a failed content deployment

operation as shown in the following screenshot:

Chapter 11

385

7. Deactivate any features and delete any content listed on the Content Deployment

Source Status page. For any features listed as hidden, they can be deactivated using

PowerShell. For instance, the Ratings feature can be deactivated by removing the

feature identiier that matches the feature from the collection of features activated on
the site collection:

$site = Get-SPSite http://sharepoint/sitecollection

$site.Features | Where-Object { $_.Definition.DisplayName –
eq "Ratings" } | ForEach-Object { $site.Features.Remove($_.
DefinitionId) }

8. Once each item has been addressed, the Content Deployment Source Status page

will indicate that the site collection is ready for content deployment as shown in the

following screenshot:

How it works…

SharePoint 2013 uses the Content Deployment Source Feature to identify which site

collections to make available when coniguring a content deployment path. A content
deployment path deines the source and the target for deploying content. In addition, this
feature makes available the Content Deployment Source Status page that displays features

from the source site collection known not to be compatible with content deployment.

The Content Deployment Source Status page will only list incompatible features that are

included with SharePoint. If you have third-party or custom solutions, you should test them in

a nonproduction environment to ensure they work with content deployment operations.

There's more…

Activating a site collection feature may also be accomplished with PowerShell or code using

the server-site object model. When doing so the feature identiier for the Content Deployment

Source Feature is cd1a49b0-c067-4fdd-adfe-69e6f5022c1a.

Coniguring Content Deployment

386

Coniguring the source site collection for content deployment
using PowerShell
Follow these steps to activate the site collection feature using PowerShell:

1. Get the source site collection with the Get-SPSite Cmdlet as follows:

$site = Get-SPSite http://sharepoint/sitecollection

2. Ensure the feature is not already activated on the site collection. If the following

command returns a value, it is already activated:

$site.Features[[GUID]"cd1a49b0-c067-4fdd-adfe-69e6f5022c1a"]

3. Activate the feature by adding the feature identiier to the features collection on the
site collection as follows:

$site.Features.Add([GUID]"cd1a49b0-c067-4fdd-adfe-69e6f5022c1a")

Coniguring the source site collection for content deployment
with code using the server-side object model
Follow these steps to activate the site collection feature with code using the server-side

object model:

1. Get the source site collection in a using statement as follows:

using (var site = new SPSite("http://sharepoint/sitecollection"))

2. Ensure the feature is not already activated on the site collection. If the following

command returns a value, it is already activated:

if (site.Features[new Guid("cd1a49b0-c067-4fdd-adfe-
69e6f5022c1a")] == null)

3. Activate the feature by adding the feature identiier to the features collection on the

site collection as follows:

site.Features.Add(new Guid("cd1a49b0-c067-4fdd-adfe-
69e6f5022c1a"));

Coniguring the farm content deployment
settings

Before we can conigure a content deployment connection, we need to enable incoming

content deployment jobs on the SharePoint farm to which we are deploying our content. Even

if we are deploying to the same SharePoint farm the content is being deployed from, we still

need to enable the incoming jobs. In this recipe, we will enable incoming content deployment

jobs for our SharePoint farm.

Chapter 11

387

How to do it…

Follow these steps to conigure incoming content deployment jobs:

1. Navigate to Central Administration on the target SharePoint farm in your preferred

web browser.

2. Click on General Application Settings as shown in the following screenshot:

3. Click on Conigure content deployment from the Content Deployment section as

shown in the following screenshot:

4. Select Accept incoming content deployment jobs as shown in the

following screenshot:

5. If SSL is not conigured for the Central Administration web application (it is not

conigured by default) set the Connection Security setting to Do not require

encryption as shown in the following screenshot:

6. Click on OK.

Coniguring Content Deployment

388

How it works…

The target SharePoint farm will only allow content deployment connections if it has been

conigured to do so. In addition, requiring encryption will only allow connections using the
Central Administration URL over SSL.

There's more…

The farm content deployment coniguration options may also be set with PowerShell or code
using the server-side object model.

Coniguring the farm content deployment settings using
PowerShell
Follow these steps to conigure the farm content deployment settings using PowerShell:

1. Get the content deployment coniguration instance for the local SharePoint farm as
follows:

$cd = [Microsoft.SharePoint.Publishing.Administration.ContentDeplo
ymentConfiguration]::GetInstance()

2. Set the AcceptIncomingJobs property to true and

RequiresSecureConnection property to false as follows:

$cd.AcceptIncomingJobs = $true

$cd.RequiresSecureConnection = $false

3. Update the coniguration instance using the following command:

$cd.Update()

Coniguring the farm content deployment settings with code
using the server-side object model
Follow these steps to conigure the farm content deployment settings with code using the
server-side object model:

1. Get the content deployment coniguration instance for the local SharePoint farm as
follows:

var cd = Microsoft.SharePoint.Publishing.Administration.
ContentDeploymentConfiguration.GetInstance();

2. Set the AcceptIncomingJobs property to true and

RequiresSecureConnection property to false as follows:

cd.AcceptIncomingJobs = true;

cd.RequiresSecureConnection = false;

Chapter 11

389

3. Update the coniguration instance using the following line of code:

cd.Update();

See also
 f The ContentDeployementConiguration class topic on MSDN at http://msdn.

microsoft.com/en-us/library/Microsoft.SharePoint.Publishing.
Administration.ContentDeploymentConfiguration(v=office.14).aspx

Creating the content deployment path
Content deployment connections are managed in two parts: a path and a job. The content

deployment path deines where the content is coming from and where it is going. The content

deployment job deines when and how often the content should be deployed. In this recipe,
we will create the content deployment path. We will create the content deployment job in the

Creating the content deployment job recipe.

How to do it…

Follow these steps to create a content deployment path:

1. Navigate to Central Administration on the source SharePoint farm in your preferred

web browser.

2. Click on General Application Settings.

3. Click on Conigure content deployment paths and jobs from the Content

Deployment section as shown in the following screenshot:

4. Click on New Path.

Coniguring Content Deployment

390

5. Provide a name and description for the new path as shown in the

following screenshot:

6. Select the values for Source web application and Source site collection as shown in

the following screenshot:

7. Enter the Central Administration URL for the target SharePoint farm in the Type the

URL of the destination Central Administration Server textbox:

8. Enter the credentials to use when connecting to the target SharePoint farm.

9. Click on Connect.

10. Select the Destination web application and Destination Site Collection as shown in

the following screenshot:

Chapter 11

391

11. Click on OK. Observe the newly created content deployment path.

How it works…

The content deployment path deines where the content is coming from and where it is going.

The target SharePoint farm is communicated with through the Central Administration site.

If you receive an access denied error when attempting to create the content

deployment path, try accessing Central Administration from a different

computer and retry the operation. There is a bug in the initial release of

SharePoint Server 2013 that occasionally throws an access denied error

when trying to verify the status of the source site collection when accessing

Central Administration from the server hosting Central Administration.

There's more…

Content deployment paths may also be created with PowerShell or code using the server-side

object model.

Creating the content deployment path using PowerShell
Follow these steps to create the content deployment path using PowerShell:

1. Get the source site collection using the Get-SPSite Cmdlet as follows:

$source = Get-SPSite http://sharepoint/source

2. Get the credentials to use for the connection. Simply using the Get-Credential

Cmdlet will prompt you to enter the user credentials.

$credentials = Get-Credential

Coniguring Content Deployment

392

3. Create the content deployment path with the New-SPContentDeploymentPath

Cmdlet.

New-SPContentDeploymentPath –Name "Test Deployment" –
SourceSPWebApplication $source.WebApplication –SourceSPSite
$source –DestinationCentralAdministrationURL "http://
sharepointcentraladmin" –DestinationSPWebApplication
"http://sharepointdestination" –DestinationSPSite "http://
sharepointdestination/site" –PathAccount $credentials

Creating the content deployment path with code using the
server-side object model
Follow these steps to create the content deployment path with code using the server-side

object model:

1. Create a new ContentDeploymentPath object as follows:

var path = Microsoft.SharePoint.Publishing.Administration.
ContentDeploymentPath.GetAllPaths().Add();

2. Set the properties for the content deployment path as follows:

path.Name = "Deployment Path";

path.IncludeSecurity = Microsoft.SharePoint.Deployment.
SPIncludeSecurity.All;

path.EnableEventReceivers = true;

path.EnableCompression = true;

path.IsPathEnabled = true;

path.AuthenticationType = "NTLM";

path.UserId = "domain\\username";

path.Password = "password";

path.SourceServerUri = new Uri("http://sharepoint");

path.SourceSiteCollection = "/source";

path.DestinationAdminServerUri = new Uri("http://
destinationcentraladmin");

path.DestinationServerUri = new Uri("http://
sharepointdestination");

path.DestinationSiteCollection = "/target";

3. Update the content deployment path.

path.Update();

See also
 f The Get-Credential topic on TechNet at http://technet.microsoft.com/en-

us/library/hh849815.aspx

Chapter 11

393

 f The New-SPContentDeploymentPath topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607765.aspx

Creating the content deployment job
In this recipe, we will create the second portion of the content deployment connection, the

content deployment job. We will use the content deployment path created in the Creating the

content deployment path recipe.

How to do it…

Follow these steps to create the content deployment job:

1. Navigate to Central Administration in your preferred web browser.

2. Click on General Application Settings.

3. Click on Conigure content deployment paths and jobs from the Content

Deployment section.

4. Select Create Job from the drop-down menu for the content deployment path created

in the Creating the content deployment path recipe:

5. Provide a name and description for the content deployment job in the Name and

Description ields as shown in the following screenshot:

Coniguring Content Deployment

394

6. Select the content deployment path we created in the Creating the content

deployment path recipe if it is not already selected.

7. Select Run this job on the following schedule for Frequency. The default schedule is

once per day. You can conigure the schedule to suit your needs.

8. Click on OK.

How it works…

The content deployment job deines when and how the content deined in a content
deployment path should be deployed. For content deployment jobs with a repeating schedule,

a SharePoint timer job will execute the job at the speciic interval.

Chapter 11

395

There's more…

A content deployment job may also be created with PowerShell or code using the server-side

object model.

Creating the content deployment job using PowerShell
Follow these steps to create the content deployment job using PowerShell:

1. Get the content deployment path with the Get-SPContentDeploymentPath

Cmdlet as follows:

$path = Get-SPContentDeploymentPath "Staging Deployment Path"

2. Create a new SPDailySchedule object as follows:

$schedule = New-Object Microsoft.SharePoint.SPDailySchedule

$schedule.BeginHour = 3

Any SPSchedule object may be used for the job schedule. This includes

SPDailySchedule, SPHourlySchedule, and SPMinuteSchedule.

3. Create the content deployment job using the New-SPContentDeploymentJob

Cmdlet as follows:

New-SPContentDeploymentJob –Name "Staging Deployment Job" –
SPContentDeploymentPath $path –Schedule $schedule –ScheduleEnabled
$true

Creating the content deployment job with code using the server-
side object model
Follow these steps to create the content deployment job with code using the server-side

object model:

1. Get the content deployment path as follows:

var path = Microsoft.SharePoint.Publishing.Administration.
ContentDeploymentPath.GetInstance("Staging Deployment Path");

2. Create a new content deployment job as follows:

var job = Microsoft.SharePoint.Publishing.Administration.
ContentDeploymentJob.GetAllJobs().Add();

3. Set the properties of the content deployment job as follows:

job.Name = "Staging Deployment Job";

job.IsEnabled = true;

job.Path = path;

Coniguring Content Deployment

396

4. Update the content deployment job using the following line of code:

job.Update();

5. Create an SPDailySchedule object as follows:

var schedule = new SPDailySchedule();

schedule.BeginHour = 3;

6. Assign the schedule to the TimerJobDefintion object of the content deployment

job as follows:

job.TimerJobDefinition.Schedule = schedule;

7. Update the content deployment job using the following line of code:

job.Update();

See also
 f The ContentDeploymentPath class topic on MSDN at http://msdn.

microsoft.com/en-us/library/Microsoft.SharePoint.Publishing.
Administration.ContentDeploymentPath(v=office.14).aspx

 f The ContentDeploymentJob class topic on MSDN at http://msdn.
microsoft.com/en-us/library/microsoft.sharepoint.publishing.
administration.contentdeploymentjob(v=office.14).aspx

 f The New-SPContentDeploymentJob topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607805.aspx

 f The Get-SPContentDeploymentPath topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607782.aspx

Performing the content deployment
Content deployment jobs can be conigured to run on a speciic schedule or to only run when
instructed to manually. In either case, we can manually start the content deployment job.

In this recipe, we will manually start the deployment job created in the Creating the content

deployment job recipe.

How to do it…

Follow these steps to start the content deployment job:

1. Navigate to Central Administration in your preferred web browser.

2. Click on General Application Settings.

Chapter 11

397

3. Click on Conigure content deployment paths and jobs from the Content

Deployment section.

4. Select Run Now from the drop-down menu for the content deployment job as shown

in the following screenshot:

How it works…

Manually starting the content deployment job instructs the SharePoint timer job associated

with the content deployment job to execute at the current date and time. Once the timer job

runs, it will start the deployment job.

There's more…

Starting a content deployment job may also be accomplished with PowerShell or code using

the server-side object model.

Performing content deployment using PowerShell
Follow these steps to start the content deployment job using PowerShell:

1. Get the name of the content deployment job using the Get-
SPContentDeploymentJob Cmdlet as follows:

Get-SPContentDeploymentJob

2. Start the content deployment job using the Start-SPContentDeploymentJob

Cmdlet:

Start-SPContentDeploymentJob "Staging Deployment Job"

Coniguring Content Deployment

398

Performing content deployment with code using the server-side
object model
Follow these steps to start the content deployment job with code using the server-side

object model:

1. Get the content deployment job as follows:

var job = Microsoft.SharePoint.Publishing.Administration.
ContentDeploymentJob.GetInstance("Job Name");

2. Start the content deployment job using the following line of code:

job.Run();

See also
 f The ContentDeploymentJob class topic on MSDN at http://msdn.

microsoft.com/en-us/library/microsoft.sharepoint.publishing.
administration.contentdeploymentjob(v=office.14).aspx

 f The Get-SPContentDeploymentJob topic on TechNet at http://technet.
microsoft.com/en-us/library/ff607681.aspx

 f The Start-SPContentDeploymentJob topic on TechNet at http://technet.
microsoft.com/en-us/library/ff608077.aspx

12
Coniguring

Anonymous Access

In this chapter, we will cover coniguring a SharePoint 2013 site with anonymous access. We
will cover the following recipes:

 f Coniguring anonymous access for web applications

 f Coniguring anonymous access for site content

 f Limiting access to application pages

 f Identifying anonymously accessible content with PowerShell

 f Verifying anonymous access to content with PowerShell

Introduction

Hosting public-facing websites on SharePoint usually requires anonymous access to the

SharePoint content. Anonymous access allows users to view content on a site without logging

in. SharePoint 2013 provides the necessary functionality to conigure anonymous access to
SharePoint web applications and content. In addition, it provides a few security mechanisms

to prevent anonymous users from accessing pages and other content they aren't supposed to.

In this chapter, we will cover the basics of coniguring anonymous access for a web application
and a site collection.

Coniguring Anonymous Access

400

Coniguring anonymous access for web
applications

Allowing anonymous access to SharePoint content is conigured in two parts, at the web
application level and at the content level. In this recipe, we will enable anonymous access to

our SharePoint web application.

How to do it…

Follow these steps to conigure anonymous access at the web application level:

1. Navigate to Central Administration in your preferred web browser.

2. Click on Manage web applications in the Application Management section as

shown in the following screenshot:

3. Select the web application that we are enabling anonymous access for.

4. Click on Authentication Providers in the WEB APPLICATIONS tab on the ribbon as

shown in the following screenshot:

5. Click on the Default zone.

Chapter 12

401

6. Select Enable anonymous access as shown in the following screenshot:

7. Click on Save.

How it works...

Authentication for SharePoint is handled at the web application level. A SharePoint web

application represents a site in Internet Information Services (IIS). Authentication

coniguration for the SharePoint web application conigures the IIS site accordingly to allow
anonymous, unauthenticated users to access the web application.

There's more…

Coniguring anonymous access at the SharePoint web application level can also be
accomplished with PowerShell or code using the server-side object model.

Coniguring Anonymous Access

402

Coniguring anonymous access for web applications using
PowerShell
Follow these steps to conigure anonymous access for a web application using PowerShell:

1. Get the SharePoint web application with the following Get-SPWebApplication

Cmdlet:

$webApp = Get-SPWebApplication http://sharepoint

2. Set the AllowAnonymous property for the IIS settings of the Default zone to true:

$webApp.IisSettings[[Microsoft.SharePoint.Administration.
SPUrlZone]::Default].AllowAnonymous = $true

3. Update the web application using the following command:

$webApp.Update()

Coniguring anonymous access for web applications with code
using the server-side object model
Follow these steps to conigure anonymous access for a web application with code using the
server-side object model:

1. Get the SharePoint web application by its URL:

var webApp = SPWebApplication.Lookup(new Uri("http://
sharepoint"));

2. Set the AllowAnonymous property for the IIS settings of the Default zone to true:

webApp.IisSettings[SPUrlZone.Default].AllowAnonymous = true;

3. Update the web application using the following line of code:

webApp.Update();

See also
 f The Get-SPWebApplication topic on TechNet at http://technet.microsoft.

com/en-us/library/ff607562.aspx

Chapter 12

403

Coniguring anonymous access for site
content

With anonymous access conigured for the SharePoint web application in the Coniguring
anonymous access for web applications recipe, anonymous users are now able to access

the SharePoint web application. Without granting anonymous users access to the content

itself, SharePoint will display the generic Access Denied error page when trying to access the

content. In this recipe, we will conigure anonymous access for the site content.

How to do it…

Follow these steps to conigure anonymous access to the site content:

1. Navigate to the site collection we are enabling anonymous access for in your

preferred web browser.

2. Click on Site settings from the Settings menu.

3. Click on Site permissions from the Users and Permissions section as shown in the

following screenshot:

4. Click on Anonymous Access from the PERMISSIONS tab in the ribbon as shown in

the following screenshot:

Coniguring Anonymous Access

404

5. Select Entire Web site. Selecting Lists and libraries allows you to specify which

content to allow anonymous access to on a more granular level.

6. Click on OK.

How it works…

Content in SharePoint is only made available to users who have the appropriate access to

the content. Coniguring anonymous access at the site level provides anonymous users with
appropriate access to the content. Without access to the content, anonymous users would

receive the generic SharePoint Access Denied error page.

There's more…

Coniguring anonymous access at the site level may also be accomplished with PowerShell or
code using the server-side object model.

Coniguring anonymous access for site content using PowerShell
Follow these steps to conigure anonymous access to site content using PowerShell:

1. Get the SharePoint site using the Get-SPWeb Cmdlet:

$web = Get-SPWeb http://sharepoint

2. Set the AnonymousState property to On as follows:

$web.AnonymousState = [Microsoft.SharePoint.SPWeb.
WebAnonymousState]::On

Chapter 12

405

For the AnonymousState property Disabled is equivalent to

Nothing, Enabled is equivalent to Lists and libraries, and On is

equivalent to Entire Web site.

3. Update the SharePoint site using the following command:

$web.Update()

Coniguring anonymous access for site content with code using
the server-side object model
Follow these steps to conigure anonymous access to site content with code using the server-
side object model:

1. Get the SharePoint site collection containing the site in a using statement as

follows:

using (var site = new SPSite("http://sharepoint"))

2. Open the SharePoint site in a using statement as follows:

using (var web = site.OpenWeb())

3. Set the AnonymousState property to On as follows:

web.AnonymousState = SPWeb.WebAnonymousState.On;

4. Update the SharePoint site using the following line of code:

web.Update();

See also
 f The SPWeb.WebAnonymousState enumeration topic on MSDN at http://msdn.

microsoft.com/en-us/library/office/microsoft.sharepoint.spweb.
webanonymousstate.aspx

 f The Get-SPWeb topic on TechNet at http://technet.microsoft.com/en-us/
library/ff607807.aspx

Limiting access to application pages
In previous versions of SharePoint, enabling anonymous access allowed users to access

application pages such as the Site contents page. Preventing access to the application pages

(/_layouts) previously required some manual coniguration. In SharePoint 2013, access to
application pages can be restricted using the new Limited-access user permission lockdown

mode feature. In this recipe, we will activate this feature on our site collection.

Coniguring Anonymous Access

406

How to do it…

Follow these steps to enable the site collection feature to limit access to application pages:

1. Navigate to the site collection in your preferred web browser.

2. Select Site settings from the Settings menu.

3. Select Site collection features from the Site Collection Administration section.

4. Activate the Limited-access user permission lockdown mode feature.

How it works…

With the Limited-access user permission lockdown mode feature enabled anonymous users

will no longer be able to access pages within the /_layouts folder. This prevents these

users from accessing pages such as the Site contents page and reduces the surface area for

anonymous users to identify or exploit content in the site.

Using the Site contents page is one way hackers attempt to identify content on SharePoint

sites in an attempt to exploit the site. Using this feature helps to eliminate that option for

anonymous users.

There's more…

The Limited-access user permission lockdown mode site collection feature may also be

activated with PowerShell or code using the server-side object model. We have covered how

to activate site collection features in the Enabling the publishing features on an existing site

recipe of Chapter 5, Enhancing the Content Creation Process with the SharePoint Publishing

Architecture. The feature identiier to use when activating the feature is 7c637b23-06c4-
472d-9a9a-7c175762c5c4.

Identifying anonymously accessible content
with PowerShell

Granular permissions, such as permissions on individual documents or list items, in

SharePoint can be dificult to manage and identify. We can identify permissions given to
content in PowerShell. In this recipe, we will check the anonymous status of a SharePoint site,

which content in the site provides permissions to anonymous users, and which content

does not.

Chapter 12

407

How to do it…

Follow these steps to identify anonymous access to content using PowerShell:

1. Get the SharePoint site with the Get-SPWeb Cmdlet:

$web = Get-SPSite http://sharepoint

2. Output the anonymous access coniguration for the site from the AnonymousState

property as follows:

$web.AnonymousState

3. Output the lists in the site that provide permissions to anonymous users by iltering
the site lists on the AnonymousPermMask64 property. The AnonymousPermMask64

property contains the permissions granted to anonymous users. The EmptyMask

value indicates that no permissions have been granted.

$web.Lists | Where-Object { $_.AnonymousPermMask64 –ne "EmptyMask"
} | Format-Table –Property Title

4. Output the lists in the site that do not provide permissions to anonymous users by

iltering the site lists on the AnonymousPermMask64 property as follows:

$web.Lists | Where-Object { $_.AnonymousPermMask64 –eq "EmptyMask"
} | Format-Table –Property Title

How it works…

Permissions are assigned to content in SharePoint using permission masks. A permission

mask is an enumeration of speciic permission-level items, such as viewing versions. When no
permissions are assigned an empty permissions mask will be returned. The permission mask

for anonymous users on a SharePoint list is accessed with the AnonymousPermMask64

property.

The AnonymousPermMask property has been deprecated

from previous versions of SharePoint.

There's more…

Identifying the SharePoint sites that are conigured for anonymous access and the
permissions assigned to the SharePoint lists may also be accomplished with code using the

server-side object model.

Coniguring Anonymous Access

408

Follow these steps to identify anonymously accessible content with code using the server-side

object model:

1. Get the SharePoint site collection containing the site in a using statement as

follows:

using (var site = new SPSite("http://sharepoint"))

2. Open the SharePoint site in a using statement as follows:

using (var web = site.OpenWeb())

3. Output the anonymous coniguration for the site.
Console.WriteLine(web.AnonymousState);

4. Output the lists in the site that provide permissions to anonymous users by iltering
the site lists on the AnonymousPermMask64 property as follows:

foreach (SPList list in web.Lists)

if (list.AnonymousPermMask64 != SPBasePermissions.EmptyMask)

Console.WriteLine(list.Title);

5. Output the lists in the site that do not provide permissions to anonymous users by

iltering the site lists on the AnonymousPermMask64 property as follows:

foreach (SPList list in web.Lists)

if (list.AnonymousPermMask64 == SPBasePermissions.EmptyMask)

Console.WriteLine(list.Title);

See also
 f The SPList.AnonymousPermMask64 property topic on MSDN at http://msdn.

microsoft.com/en-us/library/microsoft.sharepoint.splist.
anonymouspermmask64.aspx

 f The SPBasePermissions enumeration topic on MSDN at http://msdn.
microsoft.com/en-us/library/microsoft.sharepoint.
spbasepermissions.aspx

Verifying anonymous access to content with
PowerShell

In this recipe, we will use PowerShell to ensure that anonymous users can access the home

page of our SharePoint site but cannot access the Site contents page.

Chapter 12

409

How to do it…

Follow these steps to verify the anonymous access to content with PowerShell:

1. Create a new WebClient object. We are using the WebClient object to make

simple, unauthenticated web requests against our SharePoint site.

$client = New-Object System.Net.WebClient

2. Use the DownloadString method to make a request for the home page of our site

as follows:

$client.DownloadString("http://sharepoint")

If we receive the HTML content for our page, our request was successful. However,

if we receive an exception with a 401 or 403 HTTP response, anonymous access is

most likely not available for that page.

3. Use the DownloadString method to make a request for the Site contents page on

our site:

$client.DownloadString("http://sharepoint/_layouts/viewlsts.aspx")

If the page is correctly blocked for anonymous users, an exception should be thrown

with a 401 or 403 HTTP response. If we receive the HTML content for the page, it

indicates that the page request was successful and our page is not being blocked for

anonymous users.

How it works…

Using the DownloadString method of the WebClient object, we are making simple HTTP

requests in the same manner that a web browser would request the content. When the

request is successful, it returns the content of the page as a plain text string object. When

the request fails, an exception is thrown with the HTTP response code returned by the

web server.

There's more…

Using the WebClient object to make HTTP requests against our SharePoint site may also

be accomplished with code using the server-side object model. Follow these steps to verify

anonymous access to content with code using the server-side object model:

1. Create a new WebClient object as follows:

var client = new WebClient();

Coniguring Anonymous Access

410

2. Use the DownloadString method to make a request for the home page of our site.

var homePageContent = client.DownloadString("http://sharepoint");

If we receive the HTML content for our page, our request was successful. However,

if we receive an exception with a 401 or 403 HTTP response, anonymous access is

most likely not available for that page.

3. Use the following DownloadString method to make a request for the Site contents

page on our site:

var viewAllContent = client.DownloadString("http://sharepoint/_
layouts/viewlsts.aspx");

If the page is correctly blocked for anonymous users, an exception should be thrown

with a 401 or 403 HTTP response. If we receive the HTML content for the page, it

indicates that the page request was successful and our page is not being blocked for

anonymous users.

See also
 f The WebClient class topic on MSDN at http://msdn.microsoft.com/en-us/

library/system.net.webclient(v=vs.100).aspx

Index
Symbols

.NET Relector
URL 49

A

AdditionalPageHead delegate control

about 248

used, for adding analytics tracking code 299,

300

used, for adding CSS 254-260

used, for adding JavaScript 254-260

used, for adding meta tags 290-293

used, for restoring navigate up button 288-

290

analytics tracking code

adding, AdditionalPageHead delegate control

used 299, 300

storing 293-298

anonymous access

about 399

coniguring, for site content 403, 404

coniguring for site content, PowerShell used
404, 405

coniguring for site content, server-side object
model used 405

coniguring, for web application 400, 401

coniguring for web application, PowerShell
used 402

coniguring, server-side object model used
402

identifying for content, PowerShell used 407

limiting, to web application pages 405, 406

verifying to content, PowerShell used 409,

410

ASP.NET 72

C

cascading stylesheet. See CSS

catalog document library

creating 232-236

categories term set

creating 214-217

creating, PowerShell used 217

creating, server-side object model used 218

checked-out publishing content

identifying, PowerShell used 197-199

class library 126

color palette

about 7, 23

features 23

uploading 23-25

uploading, PowerShell used 26, 27

uploading, server-side object model used 28

uploading, SharePoint Designer used 25, 26

URL, for downloading 23

composed look

about 7

applying, PowerShell used 12, 13

applying, server-side object model used 14

applying, to multiple SharePoint sites 34, 35

applying, to SharePoint site 8-12

creating 31, 32

creating, PowerShell used 32, 33

creating, server-side object model used 33,

34

consuming site collection

connecting, to product catalog list 237-243

setting up 237-243

setting up, PowerShell used 243

setting up, server-side object model used 244

setting up, with separate branding 244-246

412

content

displaying, to anonymous users 116

displaying, to authenticated users 115, 116

displaying, to site administrators 118, 119

content deployment

about 383, 384

job, creating 393, 394

path, creating 389-391

performing 396, 397

performing, PowerShell used 397

performing, server-side object model used 398

settings, coniguring 386, 387

settings, coniguring with PowerShell 388

settings, coniguring with server-side object
model 388

content deployment job

creating 393, 394

creating, PowerShell used 395

creating, server-side object model used 395,

396

content deployment path

creating 389-391

creating, PowerShell used 391

creating, server-side object model used 392

Continuous Crawl 339

CSS

adding, AdditionalPageHead delegate control

used 254-260

CSS references

adding, to master pages 84, 85

custom .NET code

adding, to InfoPath forms 322, 323

D

data

validating, in InfoPath forms 317, 318

delegate controls

about 248

AdditionalPageHead 248

GlobalNavigation 248

PromotedActions 248

QuickLaunchDataSource 248

SmallSearchInputBox 248

SuiteBarBrandingDelegate 248

SuiteLinksDelegate 248

TopNavigationDataSource 248

TreeViewAndDataSource 248

design package

about 41, 42

applying 57

applying, PowerShell used 58

applying, server-side object model used 59, 60

creating 53, 54

creating, PowerShell used 54, 55

creating, server-side object model used 56

exporting 53, 54

exporting, PowerShell used 54, 55

exporting, server-side object model used 56

importing 57

importing, PowerShell used 58

importing, server-side object model used 59,

60

importing, to multiple SharePoint sites 60-63

device channel

about 41, 42

creating 42-45

creating, PowerShell used 46

creating, server-side object model used 46, 47

master pages, applying 48, 49

device channel master pages

listing 64-68

Dispose method 14

dotPeek

URL 49

drop-down menu

adding, to InfoPath forms 312-314

adding, to suite bar links 270-276

E

edited publishing content

checking 183, 184

checking, PowerShell used 184, 185

checking, server-side object model used 185

entry form

customizing, with InfoPath 302-305

expanding width master page

creating, with content padding 89-92

F

Farm solutions

about 126

413

Sandboxed solutions 126

FAST Search 333

favicon. See shortcut icon

ield values
calculating, in InfoPath forms 319-322

font scheme

about 7, 28

font slots 28

font slots, tags 29

name property 28

previewSlot1property 28

previewSlot2 property 28

uploading 28-30

G

GlobalNavigation delegate control 248

H

header navigation

customizing, TopNavigationDataSource del-

egate control used 280-285

I

image rendition

creating 200

inserting, into publishing content 201-203

InfoPath

about 302

entry form, customizing 302-305

InfoPath Designer application 302

InfoPath forms

approving, in SharePoint 326, 327

creating 305-310

custom .NET code, adding 322, 323

data, validating 317, 318

drop-down menu, adding 312-314

ield values, calculating 319-322

paginating, with view 315, 316

preparing, for approval 324, 325

used, for creating library 327, 328

installation, SharePoint language packs

358-360

Internet Information Services (IIS) 128, 336,

364, 401

J

JavaScript

adding, AdditionalPageHead delegate control

used 254-260

adding, to master pages 84, 85

used, for creating page layout with image

carousel 110-114

JavaScript object model (JSOM) 114

jQuery

URL 110

jQuery bxSlider

URL 110

L

language packs, SharePoint 2013

installing 358, 359

library

creating, InfoPath forms used 327, 328

locale identiier (LCID) 217

logo, SharePoint site

applying, PowerShell used 36-39

modifying 19-21

modifying, PowerShell used 22

modifying, server-side object model used 22

M

machine translation service application

content, translating 380, 381

provisioning 362-364

timer jobs, coniguring 366, 368

managed metadata

about 206

groups 216

term 216

term sets 216

term store 216

managed metadata service application

creating 206-210

creating, PowerShell used 210, 211

creating, server-side object model used 211-

213

master pages

about 7, 15, 72

applying, server-side object model used

51, 52

414

applying, to device channel 48, 49

applying to device channel, PowerShell used

49-51

content, displaying to anonymous users

116, 117

content, displaying to authenticated users

115, 116

content, displaying to site administrators

118, 119

creating, with editing controls 119-121

creating, with ixed width 86-88

CSS references, adding 84, 85

editing, in SharePoint Designer 73-76

JavaScript, adding 84, 85

site master page 15

system master page 15

unwanted controls, hiding 78-81

used, for customizing shortcut icon 100, 101

used, for customizing Start menu tile 98, 100

used, for restoring Navigate Up button 82, 83

meta tags

adding, AdditionalPageHead delegate control

used 290-293

Microsoft Translator

about 358

URL 358

minimalistic master page

creating 92, 93

MSDN

URL 15

MSDN SharePoint forum

URL 8

multiple SharePoint sites

composed look, applying 34, 35

design package, importing 60-63

N

Navigate Up button

restoring, AdditionalPageHead delegate con-

trol used 288-290

restoring, master pages used 82, 83

P

page layout

about 72, 102

creating, with image carousel 110-114

creating, with web parts added to page 106-

109

creating, with web part zone 102-106

pages

creating, in InfoPath forms 315, 316

Pages library

versioning settings, coniguring 175, 176

Pages library, versioning settings

coniguring, PowerShell used 177

coniguring, server-side object model used
177

PowerShell

used, for activating SharePoint site collection

feature 158-160

used, for applying composed look 12, 13, 34,

35

used, for applying design package 58

used, for applying logo settings 36-38

used, for applying master page 36-38

used, for applying master pages to device

channel 49-51

used, for approving publishing content 189

used, for coniguring anonymous access 402

used for coniguring anonymous access, for
site content 404, 405

used, for coniguring content deployment set-
tings 388

used, for coniguring products list 226-229

used, for coniguring publishing site for con-

tent deployment 386

used, for coniguring search content source
340

used, for connecting SharePoint site collection

344

used, for creating categories term set 217

used, for creating composed look 32, 33

used, for creating content deployment job

395

used, for creating content deployment path

391

used, for creating design package 54, 55

used, for creating device channel 46

used, for creating managed metadata service

application 210, 211

used, for deploying Visual Studio Sharepoint

solution 157

used, for enabling publishing features 166

415

used, for exporting design package 54, 55

used, for identifying anonymous access to

content 407

used, for identifying checked-out publishing

content 197-199

used, for importing design package 58

used, for modifying SharePoint site logo 22

used, for modifying site master page 18

used, for performing content deployment 397

used, for provisioning search service applica-

tion 337

used, for reverting publishing content 191

used, for setting up consuming site collection

243

used, for setting up publishing site 164

used, for uploading color palette 27

used, for verifying anonymous access to con-

tent 409, 410

primary language variation label

creating 371, 372

product catalog authoring site collection

creating 219, 220

products list

coniguring 221-226

coniguring, PowerShell used 226-229

coniguring, server-side object model used
229-231

promoted action links

adding, PromotedActions delegate control

used 276-280

PromotedActions delegate control

about 248

used, for adding promoted action links 276-

280

publishing content

approving 188

approving, PowerShell used 189

approving, server-side object model used 189

checking 181, 182

checking, PowerShell used 182

checking, server-side object model used 183

image rendition, inserting into 201-203

publishing 186

publishing, PowerShell used 187

publishing, server-side object model used

187

reverting 190, 191

reverting, PowerShell used 191

reverting, server-side object model used 192

publishing site

approver access, setting up 167-171

checked-out publishing content, identifying

197-199

coniguring, for content deployment 384, 385

coniguring, for content deployment using
PowerShell 386

coniguring, server-side object model used
386

contributor, setting up 167-170

edited publishing content, checking 183, 184

publishing content, approving 188

publishing content, checking 181, 182

publishing content, publishing 186

publishing content, reverting 191

publishing features, enabling 165

publishing features enabling, PowerShell used

166

publishing features enabling, server-side

object model used 166

setting up 162, 163

setting up, PowerShell used 164

setting up, server-side object model used 164

setting up, with worklow 193, 194

web part page, creating 178, 179

publishing site, approver access

setting up, PowerShell used 171, 172

setting up, server-side object model used

173, 174

publishing site, contributor

setting up, PowerShell used 171, 172

setting up, server-side object model used

173, 174

Q

QuickLaunchDataSource delegate control

about 248

used, for customizing quick launch navigation

286, 287

quick launch navigation

customizing 286, 287

416

R

remote procedure calls (RPC) 73

responsive mobile master page

creating 94-97

S

Sandboxed solutions

about 126

vs, Farm solutions 126

search center site

creating 341, 342

search content source

coniguring 337-340

coniguring, PowerShell used 340

search engine optimization settings

coniguring 353-355

search service application

about 206

content source, coniguring 337-340

provisioning 334-336

provisioning, PowerShell used 337

search center site, creating 341, 342

search engine optimization settings,

coniguring 353-355

search query rule, creating 350-352

search scope, creating 345-349

secondary language variation label

creating 372-374

server-side object model

used, for applying composed look 14

used, for applying design package 59

used, for applying master pages 51, 52

used, for approving publishing content 189

used, for coniguring anonymous access 402

used for coniguring anonymous access, for
site content 405

used, for coniguring content deployment
settings 388

used, for coniguring products list 229-231

used, for coniguring publishing site for
content deployment 386

used, for connecting SharePoint site collection

344

used, for creating categories term set 218

used, for creating composed look 33, 34

used, for creating content deployment job

395, 396

used, for creating content deployment path

392

used, for creating design package 56

used, for creating device channel 46, 47

used, for creating managed metadata service

application 211-213

used, for deploying Visual Studio Sharepoint

solution 158

used, for enabling publishing features 166

used, for exporting design package 56

used, for importing design package 59, 60

used, for modifying SharePoint site logo 22

used, for modifying site master page 18

used, for performing content deployment 398

used, for reverting publishing content 192

used, for setting up consuming site collection

244

used, for setting up publishing site 164

used, for uploading color palette 28

SharePoint 2013

about 7, 8

color palette 23-25

coniguring, with installed language packs
361, 362

content deployment 383, 384

delegate controls 248

font scheme, uploading 28-30

French language pack, installing 360, 361

language packs, installing 358, 359

publishing site, setting up 162, 163

search service application, provisioning

334-336

SharePoint Designer

about 73

master pages, editing in 73-76

site master page, modifying 77, 78

URL 76, 78

used, for uploading color palette 25, 26

SharePoint farm

content deployment settings, coniguring
386, 387

logo settings, applying 36-39

site master page, applying 36-39

SharePoint list

creating 311

417

used, for adding drop-down menu to InfoPath

forms 312-314

SharePoint Products Coniguration Wizard
executing 361

SharePoint Server 2010 333

SharePoint site

branding 7, 8

branding, with design package 41, 42

branding, with device channel 41, 42

composed look, applying to 8-12

composed look, creating 31, 32

creating, to apply branding 142-145

logo, modifying 19-21

master pages 15

SharePoint site collection

activating, PowerShell used 158-160

connecting, to search center 342-344

connecting to search center, PowerShell used

344

connecting to search center, server-side

object model used 344

creating 146-151

SharePoint StackExchange

URL 8

SharePoint version

features 127

shortcut icon

customizing, master pages used 100, 101

site collection variation settings

coniguring 368-370

site master page

about 15

applying, PowerShell used 36-38

modifying 15-18

modifying, in SharePoint Designer 77, 78

modifying, PowerShell used 18

modifying, server-side object model used 18

SmallSearchInputBox delegate control 248

SPSite class

URL 15

SPWeb class

URL 15

SPWeb object 12

Start menu tile

customizing, master pages used 98-100

suite bar branding

customizing 261-264

SuiteBarBrandingDelegate delegate control

about 248

used, for customizing suite bar branding 261-

264

suite bar links

customizing 264-269

drop-down menus, adding 270-276

SuiteLinksDelegate delegate control

about 248

used, for customizing suite bar links 264-269

survey InfoPath form

creating 328-331

system master page 15

T

target variation label site

publishing page, creating 376-378

publishing page, publishing 376-378

publishing page, updating 376-378

TechNet

URL 15

TechNet SharePoint forum

URL 8

timer job

about 152, 155

creating 152-154

TopNavigationDataSource delegate control

about 248

used, for customizing header navigation 280-

285

translation packages

creating 378, 379

uploading 379, 380

TreeViewAndDataSource delegate control

248

Twitter #SharePoint

URL 8

U

Uniied Logging Service (ULS) 260

Update method 13

V

variation hierarchy

checking 374, 375

418

variation label

about 371

hierarchy, checking 374, 375

primary language variation label, creating

371, 372

secondary language variation label 372-374

variations 368

view 316

Visual Basic for Applications (VBA) 322

Visual Studio SharePoint solution

about 124

creating 124-127

creating, for delegate controls 249-253

CSS, including 128-131

deploying 156, 157

images, including 128-131

JavaScript resources, including 128-131

localization, adding 137-141

master pages, including 132-134

packaging 156, 157

page layouts, including 135-137

W

web application

anonymous access, coniguring 400, 401

web part page

creating 178, 179

creating, PowerShell used 179, 180

creating, server-side object model used 180

web parts, adding 194-197

web parts

about 102

adding, to page layout 106-109

web part zone 102

worklow
used, for setting up publishing site 193, 194

X

XML Localisation Interchange File Format

(XLIFF) 379

Thank you for buying
SharePoint 2013 WCM Advanced Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its irst book "Mastering phpMyAdmin for Effective MySQL

Management" in April 2004 and subsequently continued to specialize in publishing highly focused

books on speciic technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and

customizing today's systems, applications, and frameworks. Our solution-based books give you the

knowledge and power to customize the software and technologies you're using to get the job done.

Packt books are more speciic and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what

you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,

cutting-edge books for communities of developers, administrators, and newbies alike.

For more information, please visit our website: www.PacktPub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order

to continue its focus on specialization. This book is part of the Packt Enterprise brand, home

to books published on enterprise software – software created by major vendors, including (but

not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer

information relevant to a range of users of this software, including administrators, developers,

architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be

sent to author@packtpub.com. If your book idea is still at an early stage and you would like to

discuss it irst before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some

additional reward for your expertise.

Microsoft SharePoint for
Business Executives: Q&A
Handbook
ISBN: 978-1-84968-610-5 Paperback: 236 pages

100 Essential Questions and Answers about SharePoint

2010 for Executives considering SharePoint deployments

1. Forget lengthy technical SharePoint guides more

suited for hands-on technical staff; get equipped
with the knowledge of SharePoint's business

potential before deployment

2. Get to grips with SharePoint governance, the Cloud,

stafing, development, and much more from a
business perspective in this book and e-book

Microsoft SharePoint 2010
Developer's Compendium:
The Best of Packt for
Extending SharePoint
ISBN: 978-1-84968-680-8 Paperback: 392 pages

Build an engaging SharePoint site with Visual Studio,

Silverlight, PowerShell, and Windows Phone 7

1. Get to grips with extending SharePoint with a

range of different tools in this comprehensive

guide which draws on the value of ive separate
Packt SharePoint titles

2. Learn about developing and extending SharePoint

through both step-by-step tutorial and cookbook

chapters in this book and e-book

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1:
Branding SharePoint with Composed Looks
	Introduction
	Applying a composed look
	Changing the site master pages
	Changing the site logo
	Uploading a custom color palette
	Uploading a custom font scheme
	Creating a custom composed look
	Using PowerShell to apply a composed look to all sites in a site collection
	Using PowerShell to apply master page and logo settings to all sites in a farm

	Chapter 2: Branding SharePoint with Device Channels and Design Packages
	Introduction
	Creating a device channel for mobile devices
	Applying a master page to a device channel
	Creating and exporting a design package
	Importing and applying a design package
	Importing a design package to all site collections with PowerShell
	Listing the device channel master pages

	Chapter 3: Branding SharePoint with Custom Master Pages and Page Layouts
	Introduction
	Editing a master page in SharePoint Designer
	Changing the site master pages in SharePoint Designer
	Hiding unwanted master page controls
	Restoring the Navigate Up button using a master page
	Adding JavaScript and cascading stylesheet references to a master page
	Creating a fixed width master page
	Creating an expanding width master page with content padding
	Creating a minimalistic master page
	Creating a responsive mobile master page
	Customizing the Windows 8 Start menu tile for pinning sites using a master page
	Customizing the shortcut icon (favicon) using a master page
	Creating a page layout with three columns of web part zones
	Creating a page layout with web parts added to the page
	Creating a page layout with a picture-library-based image carousel using JavaScript
	Displaying specific content only to authenticated users
	Displaying specific content only to anonymous users
	Displaying specific content only to site administrators
	Creating a master page with editing controls only available to editors

	Chapter 4: Packaging Branding Elements in a SharePoint Solution with Visual Studio
	Introduction
	Creating a Visual Studio SharePoint solution
	Including images, cascading stylesheets,
	and JavaScript resources in a SharePoint solution
	Including master pages in a
SharePoint solution
	Including page layouts in a SharePoint solution
	Adding localization to a SharePoint solution
	Creating a site feature to apply branding
	Creating the site collection feature to apply the feature to new and existing sites
	Creating a timer job to ensure the site branding feature is activated
	Packaging and deploying the SharePoint solution
	Activating the site collection feature on all site collections with PowerShell

	Chapter 5: Enhancing the Content Creation Process with the SharePoint Publishing Architecture
	Introduction
	Setting up a new publishing site
	Enabling the publishing features on an existing site
	Setting up contributor and approver access for publishing content
	Configuring the versioning settings of the Pages library
	Creating a publishing web part page
	Checking out publishing content for editing
	Checking in edited publishing content
	Publishing checked in publishing content
	Approving publishing content
	Reverting publishing content to a previous version
	Setting up a publishing site with workflow
	Creating a web part page and adding web parts with PowerShell
	Identifying all checked-out publishing pages in a site with PowerShell
	Creating an image rendition
	Inserting an image rendition into page content

	Chapter 6: Centralizing and Structuring Content with Cross-Site Publishing and
Managed Metadata
	Introduction
	Creating a new managed metadata service application
	Creating a categories term set for product catalog navigation
	Creating a product catalog authoring site collection
	Configuring the products list
	Creating a catalog document library
	Setting up a consuming site collection and connecting to the product catalog list
	Setting up a consuming site collection with separate branding

	Chapter 7: Customizing the SharePoint Experience with Delegate Controls
	Introduction
	Creating a Visual Studio solution for
custom delegate controls
	Adding JavaScript and stylesheets with an AdditionalPageHead delegate control
	Customizing the suite bar branding with a SuiteBarBrandingDelegate delegate control
	Customizing the suite bar links with a SuiteLinksDelegate delegate control
	Adding Office 365-style drop-down menus to suite bar links
	Adding promoted action links with the PromotedActions delegate control
	Customizing header navigation with a TopNavigationDataSource delegate control
	Customizing quick launch navigation with a QuickLaunchDataSource delegate control
	Restoring the Navigate Up button with an AdditionalPageHead delegate control
	Adding meta tags to pages from custom
	library fields with an AdditionalPageHead delegate control
	Storing analytics tracking code with a site collection settings page
	Adding stored analytics tracking code to
	pages with an AdditionalPageHead
delegate control

	Chapter 8: Enhancing User Input with InfoPath Forms
	Introduction
	Customizing the SharePoint list entry form templates with InfoPath
	Creating InfoPath forms that are submitted to the SharePoint form libraries
	Creating a SharePoint list to provide a drop-down menu data to InfoPath
	Adding a drop-down menu to InfoPath using SharePoint list data
	Paginating InfoPath forms with views
	Validating data in InfoPath forms
	Calculating field values in InfoPath based on the values of other fields
	Adding custom .NET code to an InfoPath form
	Preparing InfoPath forms for approval by SharePoint administrators
	Approving submitted InfoPath forms in SharePoint
	Creating libraries using approved InfoPath forms in SharePoint
	Creating a survey InfoPath form that gets
	locked after submission and populates the SharePoint fields

	Chapter 9: Configuring Search
	Introduction
	Provisioning a search service application
	Configuring a search content source
	Creating a search center site
	Connecting a site collection to a search center
	Creating a search scope
	Using a search query rule to promote an item in search results
	Configuring search engine optimization settings

	Chapter 10: Creating Multilingual Sites with
SharePoint Variations
	Introduction
	Installing SharePoint language packs
	Configuring SharePoint with installed language packs
	Provisioning a machine translation service application
	Configuring machine translation timer jobs
	Configuring site collection variation settings
	Creating the primary language variation label
	Creating the secondary language
variation labels
	Checking the status of the variation hierarchy
	Creating, publishing, and updating targets with a new publishing page
	Creating translation packages for human translation
	Uploading translation packages
	Translating content with the machine translation service

	Chapter 11: Configuring
Content Deployment
	Introduction
	Configuring the source site collection for content deployment
	Configuring the farm content deployment settings
	Creating the content deployment path
	Creating the content deployment job
	Performing the content deployment

	Chapter 12: Configuring
Anonymous Access
	Introduction
	Configuring anonymous access for web applications
	Configuring anonymous access for site content
	Limiting access to application pages
	Identifying anonymously accessible content with PowerShell
	Verifying anonymous access to content with PowerShell

	Index

