
www.allitebooks.com

http://www.allitebooks.org

Shopify Application
Development

Build highly effective Shopify apps using the powerful
Ruby on Rails framework

Michael Larkin

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Shopify Application Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014

Production Reference: 1210514

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-105-3

www.packtpub.com

Cover Image by Benoit Benedetti (benoit.benedetti@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Michael Larkin

Reviewers
Joey deVilla

Christophe Favresse

M. Scott Ford

Will Rossiter

Zac Williams

Acquisition Editor
Meeta Rajani

Content Development Editor
Athira Laji

Technical Editors
Ankita Jha

Sebastian Rodrigues

Copy Editors
Tanvi Gaitonde

Insiya Morbiwala

Shambhavi Pai

Laxmi Subramanian

Project Coordinators
Melita Lobo

Jomin Varghese

Proofreader
Simran Bhogal

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Production Coordinator
Saiprasad Kadam

Cover Work
Saiprasad Kadam

www.allitebooks.com

http://www.allitebooks.org

About the Author

Michael Larkin has been building software professionally for over a decade and
has worked on large and small projects for companies across the globe. He has been
working with Shopify for over five years and has co-created the first ever Shopify
app, available at http://fetchapp.com. He has also worked on dozens of Shopify
stores for which he built custom applications, modified existing themes, and added
complex JavaScript to enhance the shopper's experience.

I would like to thank my wife, Sarah, for her help and patience
while I was writing this book. I'd also like to thank my colleagues
and friends who offered their professional and technical expertise
as reviewers. Additionally, I'd like to thank the folks over at Jaded
Pixel for creating such an excellent platform. Finally, I'd like to thank
Packt Publishing for making all of this possible.

www.allitebooks.com

http://fetchapp.com
http://www.allitebooks.org

About the Reviewers

Joey deVilla has worked on all sorts of projects, such as creating Olympic athlete
training software, CD-ROM directories for every mall in America with Visual
Basic, Python-powered gift certificates, travel agency websites, the frontend for the
censorship-thwarting project Peekabooty in C++, Duke of URL in PHP that suggests
domain names, and a failed social networking app for frat dudes and dudettes in Ruby
on Rails. He's also done some technical evangelism for OpenCola, Tucows, Microsoft,
and Shopify. He's currently stirring up trouble in the mobile industry, and when he's
not doing that, he's stirring up trouble playing Nine Inch Nails, AC/DC, and Britney
Spears on his accordion.

I'd like to thank my family and Anitra for helping me during some
really crazy times.

Christophe Favresse developed a passion for e-commerce technologies, and
in early 2013, launched his wife's online retail business (www.favresse.com)
powered by Shopify and Amazon fulfillment services. In less than one year, this
website attracted customers from eight EU countries and the U.S. Christophe, an
international sales executive in the software industry, has spent the last 15 years
prospecting telecom operators and providing CRM, marketing, and risk assurance
solutions to optimize their customer lifetime value and revenues. He has spent two
years in Thailand and 15 years in the UK. He currently lives near Nice (France) with
his wife and four children. He holds a master's degree in International Marketing
from Michael Smurfit School of Business (Ireland) and a bachelor's degree in
Economics from Solvay Brussels School (Belgium).

www.allitebooks.com

http://www.favresse.com
http://www.allitebooks.org

M. Scott Ford has been developing software for the last 15 years. He's worked
in many industries, from aerospace to e-commerce. His goal is to stay a polyglot
developer. He's worked with many different languages and frameworks over the
years, but his favorites are Ruby, JavaScript, and Objective-C.

Scott is the founder of corgibytes (http://corgibytes.com), a consulting company
with a focus on legacy applications. This is where he applies a pragmatic, test-focused
approach to working with existing code. This results in a new life for apps that would
otherwise have to be rewritten or abandoned.

Will Rossiter is a Senior Web Developer for DNA Design in New Zealand;
he oversees the architecture, development, and maintenance of large-scale web
applications across a range of platforms and technologies, including Shopify,
WordPress, SilverStripe, Node.js, and Ruby on Rails. He is the creator and
maintainer of the grunt-shopify plugin for publishing Shopify themes.

Zac Williams is a Full Stack Web Developer from Birmingham, Alabama with over
10 years of experience. Although he has experience with a variety of frameworks
and languages, his specialties are Ruby on Rails and JavaScript. He has experience
working on high-traffic web applications across multiple industries, such as
e-commerce, healthcare, and higher education.

www.allitebooks.com

http://corgibytes.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Shopify	 7

Revealing Shopify's power	 8
Deciding which type of app to build	 9
Discovering the API	 10
Exploring webhooks	 10

Orders	 11
Products	 11
Shop/Application	 11

Getting ready to build an app	 12
Summary	 13

Chapter 2: Setting Up	 15
Choosing a development tool	 16
Setting up our development environment	 17

Installing a Ruby management tool	 17
Installing Ruby	 18
Creating the application directory	 18

Installing Rails	 18
Generating a Rails app	 19

Installing Twitter Bootstrap	 20
Setting up source control	 21
Deploying to Heroku	 22
Summary	 24

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Building a Private App	 25
Signing up for Shopify	 25
Understanding our workflow	 26
Building the application	 26

High-level requirements	 27
Installing a few necessary gems	 27
Storing Shopify API credentials	 29
Connecting to Shopify	 31
Retrieving product information from Shopify	 33
Retrieving order information from Shopify	 37
Cleaning up the UI	 39
Picking a winner from a list	 41
Creating contests	 44

Summary	 50
Chapter 4: Going Public	 51

High-level requirements	 51
Supporting multiple accounts	 52
Authorizing user access to data	 57
Verifying Shopify requests	 63

Verifying HTTP GET/POST requests	 64
Verifying webhook requests	 65

Installing from the Shopify App Store	 67
Subscribing to and processing Shopify Webhooks	 73

Summary	 75
Chapter 5: App Billing and Publication	 77

High-level requirements	 78
Adding free and paid plans	 78
Integrating with the Shopify Billing API	 82

Supporting recurring charges	 85
Publishing in the Shopify App Store	 85

Summary	 87
Index	 89

Preface
Shopify has grown by leaps and bounds over the last few years and their ever
expanding client list means that now is the perfect time to build a killer app to
meet the needs of storeowners across the globe. With the release of the App Store,
customers can read reviews, see screenshots, and install apps with a few clicks.

There has been a lot of effort from Shopify to make the developer experience
as simple as possible. Free software libraries, extensive documentation, and a
comprehensive API makes building and launching an app an enjoyable and
lucrative process.

This book will teach you how to build an app starting with the setup of your local
development environment, installing Ruby, and generating a basic Rails application.

Next, we'll go through several iterations as we build, refactor, and enhance our app,
so that you get a feel of development best practices that are currently being used by
software companies around the world. We'll wrap up monetizing the app using the
Shopify Billing API, which is a simple and PCI-compliant way for us to charge users
when they upgrade.

What this book covers
Chapter 1, Getting Started with Shopify, covers the basic functionality of Shopify and then
explains the difference between private and public apps. A brief overview of the API
and webhook systems is provided. The chapter then wraps up with a few thoughts
on how to get started with building an app.

Preface

[2]

Chapter 2, Setting Up, focuses on setting up the reader's development environment,
installing Ruby, Rails, and a few other requisite Gems. It shows us how to create a
standard Rails site, update it with Twitter Bootstrap, and check it with source control.
The chapter wraps up with instructions on how to deploy to Heroku for scalable
web hosting.

Chapter 3, Building a Private App, covers the integration with Shopify's API in order to
retrieve product and order information from the shop. The UI is then streamlined a
bit before the logic to create a contest is created.

Chapter 4, Going Public, shows us how to refactor the existing app to support multiple
Shopify accounts simultaneously. It then shows us how to hook into the installation
process as well as how to subscribe and process webhooks.

Chapter 5, App Billing and Publication, completes the app by adding a free and paid
plan and demonstrates how to setup a recurring charge via the Shopify Billing API.
The chapter wraps up by explaining the process for publishing the app in the App
Store so that the storeowners can install it automatically.

What you need for this book
You will need a computer capable of running Ruby and a text editor/IDE suitable for
developing Rails. A Shopify and a Heroku account are required. It's recommended that
an account with a source control service such as GitHub or Bitbucket be used for code
management and back up.

Who this book is for
This book is highly suited for Ruby developers who are interested in creating apps
for fun and profit. Familiarity with Shopify is helpful but not required. Developers
familiar with other web languages should be able to follow but would benefit from
a Ruby Primer before reading this book.

Basic command line skills (Windows or Linux) are required as well, but these will be
given in a format that can be copied and pasted as needed.

Preface

[3]

Conventions
In this book, you will find a number of styles of text that distinguish between different
kinds of information. Here are some examples of these styles, and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"To use Rails 4.0.0 with Heroku, we need to add the rails_12factor gem to the
Gemfile so that we can precompile our assets."

A block of code is set as follows:

 def obscure_string(string, count)
 return string if count.blank?
 substring = string.slice(0..(-1 * count - 1))
 return string.gsub(substring, "*" * substring.length)
 end

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

resources :products do
 collection do
 get 'import'
 end
 resources :variants
end

Commands that need to be entered at the terminal / shell window are set as follows:

gem install rails -v 4.0.0 --no-ri --no-rdoc

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "You should see a
Welcome aboard page that lists out some helpful tips as well as information about
the application's configuration as shown in the following screenshot:".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[4]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you. Additionally, the complete source code for the
application is available online at http://github.com/mikelarkin/contestapp.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://github.com/mikelarkin/contestapp
http://www.packtpub.com/support

Preface

[5]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Getting Started with Shopify
Shopify is a Software as a Service (SaaS) e-commerce platform built to meet the needs
of the typical storeowner. It offers hosting, shopping cart, payment processing, order
management, product catalogs, blogging, and much more. A storeowner can sign up
for Shopify, pick out a design, create a product catalog, set up a payment gateway, and
make a sale on the same day—all without any programming or technical expertise.

Shopify gives you the ability to completely modify the HTML, CSS, and JavaScript
of the storefront theme. Designers are able to add features such as visual effects,
responsive designs, bundled products, shipping estimators, and social plugins that
can accomplish almost everything that is expected of a modern e-commerce site.

For features such as inventory management, accounting, drop shipping, mailing lists,
and, reporting, an application that communicates with Shopify's API and/or handles
Shopify's XML notifications (called webhooks) is needed. In this book, we'll focus
on building such an app. You should have an understanding of web development
using a server-side language such as Ruby, PHP, or ASP.NET. Basic HTML, CSS,
and JavaScript skills are also required because we'll be building a simple UI. Finally,
familiarity with Shopify's features will be extremely helpful. If you've not used
Shopify before, I encourage you to go through this excellent primer on the Shopify
blog at http://www.shopify.com/technology/3671962-developing-shopify-
apps-part-1-the-setup.

http://www.shopify.com/technology/3671962-developing-shopify-apps-part-1-the-setup
http://www.shopify.com/technology/3671962-developing-shopify-apps-part-1-the-setup

Getting Started with Shopify

[8]

Throughout the course of this book, we will be building a web application that
allows the storeowners to run contests by randomly picking a customer who
has placed an order in the shop. Our app will be built using Ruby on Rails
(http://rubyonrails.org), which is an open source web development framework
that is relatively simple to learn. It is the same language that Shopify has been
written in. A few popular Ruby libraries (for example, Active Merchant and Liquid)
are extractions of the Shopify source code that have been released as open source.
Rails is based on the Model-View-Controller (MVC) enterprise architecture
pattern, so if you aren't familiar with this paradigm, I encourage you to head over to
Wikipedia for a general overview (http://en.wikipedia.org/wiki/Model–view–
controller).

This chapter will cover the following topics:

•	 An overview of the Shopify platform
•	 App development options
•	 The Shopify API
•	 The Shopify Webhook system
•	 Tips on how to get started

Revealing Shopify's power
Shopify offers a comprehensive e-commerce solution designed to meet the needs of
a typical storeowner who wants to sell products online. The theme gallery, extensive
wiki, and active forum provide an excellent end-to-end experience even for the most
inexperienced computer user. For customers who need more personalized support,
there is the Shopify Experts directory, which is a great place to find a designer,
programmer, or setup expert.

Two features, the robust API (http://docs.shopify.com/api) and the App
Store (http://apps.shopify.com), put Shopify ahead of the curve compared
to its competitors. Rather than trying to include every imaginable feature for
every possible line of business, Shopify focuses on the common needs of every
storeowner and leaves the rest to the theme customization and apps.

A third feature called webhooks (http://docs.shopify.com/api/webhook) allows
apps to receive near real-time notifications of events that take place in a shop. These
events range from order creation, product updates, customer signup, to account
cancellation. The notifications come in both XML and JSON formats and typical
mirror the schema of the API which makes integration a breeze.

http://rubyonrails.org
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/Model-view-controller
http://docs.shopify.com/api
http://apps.shopify.com
http://docs.shopify.com/api/webhook

Chapter 1

[9]

Deciding which type of app to build
When it comes to building an app for Shopify, there are two options: private and
public. Private applications are designed to access one Shopify store, and can be
changed as per the needs of the storeowner by the developer. Public applications
are designed to access multiple Shopify stores, and provide functionality that will
be used by different types of businesses. They can act as a revenue stream for the
developer by charging storeowners a monthly fee.

Both private and public apps perform operations by using the Shopify API
and/or by processing Shopify Webhooks. At a high level, a public application can be
thought of as a private application that was expanded to work with multiple stores.

To determine which one you need to build, take a look at the following scenarios:

Scenario 1

•	 You have a client Shopify store that needs additional functionality
•	 You have already determined that what they need is not included in the

Shopify out of the box
•	 You've looked through the App Store and determined that there isn't an app

that meets their needs
•	 They aren't interested in reselling the idea to other storeowners, or they don't

want competitors to have this functionality

What you are looking to build is a private app. This is an
app that is not listed in the official App Store and typically
only connects to a single Shopify account.

Scenario 2

•	 You or your client have a great idea for an app
•	 Other storeowners would benefit from the app and may even pay money

to use it

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Shopify

[10]

•	 You've already checked the App Store and determined that the app doesn't
already exist, or that it exists but you think you can improve the idea

What you are looking to build is a public app. This is an application
that can access multiple stores and that is listed in the App Store.
It can be installed automatically by storeowners.

Discovering the API
Shopify offers an extensive API that allows developers to perform almost any
task that can be done via the web admin (and a few that don't like working with
Metafields). The full documentation is available at http://api.shopify.com.

The API is RESTful and supports HTTP, JSON, and XML requests. There are several
free software libraries available for most of the popular web development languages
to help people get started. The libraries are actively supported either by Shopify or
the open source community.

In this book, we will only be scratching the surface of the API by focusing on the
areas of order retrieval, product management, and application charges. The API
allows you to do much more—from modifying the store's themes, setting up
shipping charges, to retrieving information about abandoned carts in order to
follow up with the shopper.

We'll be working with the following API verticals:

•	 Application charge
•	 Product
•	 Order
•	 Webhook

Exploring webhooks
Shopify allows applications to subscribe to a series of notifications called webhooks
(http://docs.shopify.com/api/webhook) around common events such as order
placement, product updates, and customer signup. Real-world events are mapped
to topics that can be subscribed to via the API or by manual setup in the Shopify
admin panel. The webhook notification mirrors the format of the API, which makes
the implementation code reusable. When an event occurs, Shopify automatically
sends the notification to all subscribers.

http://api.shopify.com
http://docs.shopify.com/api/webhook

Chapter 1

[11]

Orders
Order webhooks allow apps to respond in a near real-time fashion when an order
is placed or updated in the Shopify store. The following two events are the most
commonly subscribed topics that deal with the creation and payment of an Order:

•	 orders/create
•	 orders/paid

Products
Product webhooks can be handy for apps that handle inventory, product feeds,
or back office integrations. The following three events are of interest when dealing
with Products:

•	 products/create
•	 products/update
•	 products/delete

Shop/Application
It will be helpful to automatically reflect any updates to a shop's name, URL, and
so on in your app. Likewise, it's polite to suspend/cancel a user's account if they
uninstall the app from their store. The following two events allow us to do that:

•	 shop/update
•	 app/uninstall

Webhooks are sent asynchronously after the event occurs. This makes them suitable
for near real-time actions and allows an application to process information in smaller
chunks, which can reduce the load and improve performance.

I also recommend using the API to retrieve information as a backup in
case the webhook system gets bogged down or a notification
is missed.
For public applications, the webhook for uninstalling the application
should be subscribed to so that you can automatically suspend the
client's account when they remove your app from their Shopify store.

Getting Started with Shopify

[12]

Getting ready to build an app
If you've decided that you need to build an app, then the next step is to ask yourself
the following questions:

•	 What exactly does the app need to do?
•	 Will the app be private or public?
•	 Who will be developing the app?
•	 Who will be designing the UI?
•	 What is the budget and timeline?

Once you've answered these questions, you should have a rough idea of the big
pieces involved in creating the app. The set of features required to build a software
is often referred to as the scope.

Determining an application's scope even at a high level is a skill that requires
practice. This typically starts as a document that lists the overall purpose, feature
list, integration points with Shopify (if known), dependencies on external services
or software libraries, proprietary business logic, architectural decisions (language,
platform, server requirements, and so on), budget, timeframe, and anything else
that will impact the application life cycle.

Creating in-depth specs is beyond the scope of this book, though in general more
information at this phase is better (it's easier to trim features and defer them at a
later phase as development progresses rather than trying to cram in new ones that
were forgotten in the beginning).

At the very least, a list of must-have features is necessary. Even if you are doing
the development yourself and the feature set is small, it's a good skill to learn and
will often reveal aspects and features that weren't originally planned. This is the
technique we'll be using throughout this book. We are going to list out the high-level
features that we want to build and turn each one into a sprint. A sprint is an agile
methodology term that denotes a discrete amount of work. Usually, a sprint lasts
for two weeks or less. In our case, each sprint will last only a few hours because
our feature set is simple.

For a larger app, the simplest way to start is to list out all the features, prioritize
them, and then set a cutoff based on time and budget. Even if it never progresses
beyond a simple list, you'll have something to measure progress against while the
app is being developed. Without this list, all the features (complete and pending)
will only be in your head.

Chapter 1

[13]

An analogy for this would be going to the grocery store without a list. Chances are,
most of the things you need will end up in the cart, but undoubtedly, you'll either
forget a few things (feature deficiency), spend excess time roaming the aisles trying
to remember what you need by seeing something you forgot on the shelf (inefficient
development/refactoring), or add things that aren't on the list (scope creep). The
worst situation to be in is to have all the ingredients to make lunch tomorrow but be
unable to make dinner tonight because you forgot something important!

Summary
In this chapter, we looked at some of the features available in Shopify as well as the
difference between private and public applications. Then we briefly discussed the
Shopify API and webhook system before finishing up with some thoughts on software
development and how to get started planning your own app for fun and profit.

During the course of this book, we will be developing a simple app that will allow
storeowners to run contests. The app will pick a winner from the list of customers who
have made a purchase at the store within a certain timeframe or for a certain product.

The next chapter will cover setting up your local development environment,
installing Ruby on Rails, creating a basic app, and deploying it to Heroku
(http://www.heroku.com) for cloud hosting. This application will be iteratively
expanded in each chapter as we progress towards our goal of publishing it in
the Shopify App Store.

Setting Up
The web application that we'll be building throughout the course of the book
will be written in Ruby using the open source Rails framework. To quote
http://rubyonrails.org:

"Ruby on Rails® is an open-source web framework that's optimized for
programmer happiness and sustainable productivity. It lets you write beautiful
code by favoring convention over configuration."

I couldn't agree more. I find Rails fun to use and the development process to be
very intuitive. The community is very active and there are tons of free resources
online. It's also worth mentioning that Shopify is written in Rails and many popular
Ruby libraries such as Active Merchant and Liquid are extractions of the Shopify
source code.

Although the simplicity of Rails makes it an ideal tool for building our
application, we could have just as easily used any web framework, such
as ASP.NET, PHP, or Django and achieved a similar result. Remember,
the end goal is to output HTML/CSS and JavaScript to the browser as
efficiently as possible.

Rails uses the Model-View-Controller (MVC) architectural pattern. This pattern
facilitates development by creating boundaries between application layers. These
boundaries allow concurrent development, multi-level testing, rapid prototyping,
and scalability.

Additionally, Rails includes the Active Record pattern that interfaces with common
database engines, such as MySQL, PostgreSQL, SQLite, and MS SQL (to name a
few) and can be run on Linux, Mac OS X, and Windows. For in-depth explanations
of these two patterns, check out Patterns of Enterprise Application Architecture, Martin
Fowler, Pearson Education, Inc. (http://www.martinfowler.com/books/eaa.html).

http://rubyonrails.org
http://www.martinfowler.com/books/eaa.html

Setting Up

[16]

This chapter will cover the following topics:

•	 Choosing a development tool
•	 Setting up our development environment
•	 Generating a Rails app
•	 Installing Twitter Bootstrap
•	 Setting up source control
•	 Deploying to Heroku

Choosing a development tool
Programmers are as passionate about the tools they use to write code as they are about
which language the code is written in. There is typically a trade-off between speed
and ease of use, in that the tools that are the fastest tend to require memorization of
keystrokes and jargon; whereas the ones that are easier to use sacrifice efficiency
for a more intuitive user experience.

There are several options available when developing Rails applications. A couple
of popular simpler editors are Sublime Text (http://www.sublimetext.com) and
TextMate (http://macromates.com). A few popular rich editors are RubyMine
(http://www.jetbrains.com/ruby), Aptana (http://www.aptana.com), and
Visual Studio with Ruby in Steel (http://sapphiresteel.com).

I've tried them all, and personally tend to oscillate between RubyMine and Sublime
Text, depending on the project. If I'll be doing a lot of visual debugging, I'll use
RubyMine. But for most projects, I find the speed and intuitive features of Sublime
Text to be, well, sublime.

Selecting an editor is a personal choice, and there really isn't a
wrong answer. I know developers that still swear by Vim! My only
encouragement is to occasionally try out something new; if you don't
like it or the learning curve is too steep, you can always revert to your
old editor.

In short, there are plenty of excellent options that will help you develop your
application efficiently, and it might take trying a few out before you settle on
the one you like.

http://www.sublimetext.com
http://macromates.com
http://www.jetbrains.com/ruby
http://www.aptana.com
http://sapphiresteel.com

Chapter 2

[17]

Setting up our development environment
Before we can build our app, we need to set up our local development environment
so that we can commit code and deploy to Heroku.

Installing a Ruby management tool
Given the variety of ways in which Ruby can be installed, I would suggest using
a Ruby / Gem management tool to handle it for you. The following are a few
worth noting:

•	 The following tools can be used on Mac/Linux PCs:
°° Ruby Version Manager (RVM) (https://rvm.io)
°° Rbenv (https://github.com/sstephenson/rbenv)

•	 The following tool can be used on Windows PCs:

°° Pik (https://github.com/vertiginous/pik/)

Even if this is your only Ruby on Rails app, it's good practice to isolate applications
from each other to avoid version conflicts or inadvertent software updates on. RVM
allows you to not only install and manage multiple versions of Ruby on the same
system, but also create gemsets which are containers for an application's gems.
Gems are Ruby libraries that can be used to add common functionality to your app
quickly and easily. If you don't use a gemset, Ruby will install everything onto the
system's gem container, which means that later versions of the same gems will be
installed side by side as you build more apps in the future. This can lead to all sorts
of fun dependency loading issues (though to be fair, Bundler handles this quite
nicely). It's easier to spend a few minutes and start with isolation so as to avoid
the issue altogether.

We'll do everything using the terminal. Sure, there are GUI tools for some of these
tasks, but I find that working in a shell on my development machine keeps me in
the right mindset when I am working on a Linux production server. So, open up
a terminal window and let's get started!

Installing RVM is simple. We need to use the following steps:

1.	 The following command (the leading slash is intentional) can be used to
install RVM:
\curl -L https://get.rvm.io | bash -s stable

Once the installation is complete, make sure that you look for any additional
instructions given at the end of the process. These are typically notes on
updating your local bash profile or perhaps installing missing system libraries.

https://rvm.io
https://github.com/sstephenson/rbenv
https://github.com/vertiginous/pik/

Setting Up

[18]

2.	 You can confirm the installation by checking the version of RVM with the
following command:
rvm -v

The response should look something like the following command:
rvm 1.25.25 (stable) by Wayne E. Seguin <wayneeseguin@gmail.com>,
Michal Papis <mpapis@gmail.com> [https://rvm.io/]

Installing Ruby
At the time of writing this book, Ruby 2.1.2 had been released and deemed stable.
As mentioned, rather than downloading the binaries and installing it ourselves,
we'll use RVM. We use the following steps:

1.	 Run the following command to install Ruby:
rvm install 2.1.2

2.	 Once the process is complete, you can confirm the installation by checking
the installed version of Ruby by typing the following command:
ruby -v

The response should look something like the following command:
ruby 2.1.2p95 (2014-05-08 revision 45877)

Creating the application directory
Now, we need to create the directory for our app, as well as files to let RVM know
what version of Ruby to use and which gemset our gems will be stored in. We'll
use the following commands for that purpose:

mkdir contestapp
cd contestapp
rvm --ruby-version use 2.1.2@contestapp --create

Installing Rails
For the purposes of this book, I am going to explicitly specify the version of Rails we
want to use rather than just grabbing the latest stable version. I am doing this to ensure
that the code examples work correctly several months from now. One catch when
using the latest version of Rails is that the gems you want to use might not have been
updated yet by their authors. This can lead to bugs being introduced that might not
have an easy solution. I tend to lag one version behind (although I do keep an eye
out for critical security patches) to ensure that I can build stable apps for my clients.
The following command can be used to install Rails 4.0.3:
gem install rails -v 4.0.3 --no-ri --no-rdoc

Chapter 2

[19]

Generating a Rails app
Rails comes with many helpful scripts, including one to generate a "vanilla" Rails
application as follows:
rails new .

The preceding command will create the app in the current directory and automatically
install the required gems. At this point, we can start up the server with the
following command:
rails server

The response will be similar to the following output:
=> Booting WEBrick

=> Rails 4.0.3 application starting in development on http://0.0.0.0:3000

=> Run `rails server -h` for more startup options

=> Ctrl-C to shutdown server

[2014-03-29 21:07:26] INFO WEBrick 1.3.1

[2014-03-29 21:07:26] INFO ruby 2.1.1 (2014-02-24) [x86_64-darwin12.0]

[2014-03-29 21:07:26] INFO WEBrick::HTTPServer#start: pid=14160
port=3000

By default, Rails listens to port 3000, so we can view the site by opening up our
browser and going to http://localhost:3000. You should see a Welcome aboard
page that lists some helpful tips as well as information about the application's
configuration, as shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Setting Up

[20]

This page will automatically disappear once we've made our own controllers and
views, which is what we're going to do next. Rails provides many helpful scripts
to generate code for models, views, controllers, database schema creation, testing
frameworks, and much more. To get started, we're going to generate a simple
controller and view that will be used as a dashboard for our users. Open up a new
terminal window, navigate to the root folder of your app, and use the following
command to create a DashboardController class that has an index action:

rails generate controller Dashboard index

This command will create several files that we'll modify later on. We'll need to
update the routes file to make this new action our default. To do this, add the
following line to config/routes.rb below the line get "dashboard/index":

root 'dashboard#index'

If you refresh the browser window instead of the default Rails page, you'll now see a
page telling you where the view file for the index action is located, which is shown in
the following screenshot. Don't worry; we'll fix the ugliness soon!

Now that we've completed the Hello World equivalent in Rails, it's time to leverage
the Twitter Bootstrap framework to improve the UI for us.

Installing Twitter Bootstrap
The official website is http://getbootstrap.com and it describes Bootstrap as:

"The most popular front-end framework for developing responsive, mobile first
projects on the web."

What this means is that we can use Bootstrap to easily allow our web pages to scale
based on the device being used. We no longer have to worry about creating separate
view files for phones, tablets, and browsers. The scaling is automatically handled
using CSS and JavaScript. Bootstrap also includes helpful CSS styles for making
buttons stand out, formatting error messages correctly, and a myriad of other
common tasks.

http://getbootstrap.com

Chapter 2

[21]

Now, it's time to install Bootstrap using some helpful Gems. Add the following lines
below the line gem 'sass-rails', '~> 4.0.0' in your Gemfile::

gem "execjs"
gem "twitter-bootstrap-rails"
gem "bootstrap-sass"

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you. Additionally,
the complete source code for the application is available online at
http://github.com/mikelarkin/contestapp.

Then, execute the following commands in your terminal window to install the gems,
add support for Sass stylesheets, and update your current layout file:

bundle install

rails generate bootstrap:install sass

rails g bootstrap:layout application fluid -f

The -f option automatically overwrites the default application.html.erb layout
that Rails generated for us earlier. By the way, you can use fixed instead of fluid
if you prefer that layout style.

We need to stop and start our Rails server in order to load Bootstrap. Do this by
pressing CTRL + C in the terminal window running the Rails server. Then, run the
following command to start the app up again:

rails server

Once that's done, we can then reload our browser window and see the results. If we
adjust the browser width, the elements on the page automatically scale to fit. We'll
worry about updating the sidebar and navigation in the next chapter as we dive into
building the application.

Setting up source control
At this point, it's a good idea to add our code to a hosted source control. This serves
two purposes: the first is that it gives us a record of incremental changes made to
each code file, and also acts as an off-site backup in case our development machine
gets damaged or has a hard drive failure.

http://www.packtpub.com
http://www.packtpub.com/support
http://github.com/mikelarkin/contestapp

Setting Up

[22]

We'll be using Git (http://git-scm.com) as our Source Control Management
(SCM) tool. If you don't have Git installed on your system, please follow the relevant
installation instructions on the site. Additionally, we're going to use GitHub
(http://github.com) as our off-site backup. There are other popular alternatives
such as Bitbucket (http://bitbucket.org) or Unfuddle (http://unfuddle.com)
that work just as well.

The workflow may vary depending on which service you use, but in general setting
up a new repository involves the following steps:

1.	 Create a repository on the hosted service of your choice.
2.	 Initialize a new local repository using the following command:

git init.

3.	 Add a remote reference to the online service using the next command:
git remote add origin <path_to_remote_repository>

4.	 Add any existing files to the repository and create a commit using the
following commands:
git add --all

git commit -am "Initial commit"

5.	 Push the changes upstream to the hosted service with the following command:
git push -u origin master

Once you've completed the initial setup, subsequent commits need to be done at
regular intervals to ensure that work isn't lost.

Deploying to Heroku
Heroku (http://heroku.com) is a polyglot Platform as a Service (PaaS) that allows
scalable hosting of websites written in several popular languages, including Ruby,
Python, and Java. Deployment is as simple as installing the Heroku toolbelt and
running a few commands. Heroku keeps a copy of our code on its own Git server
and deploys the latest version when we do a push.

Sign up for Heroku and then head over to https://toolbelt.heroku.com and
follow the installation instructions for your OS.

If you use Apache Subversion (SVN) or Concurrent Versions System
(CVS) instead of Git, please note that you'll need to also use Git as it is
required for deployment to Heroku: https://devcenter.heroku.
com/articles/git#using-subversion-or-other-revision-
control-systems.

http://git-scm.com
http://github.com
http://bitbucket.org
http://unfuddle.com
http://heroku.com
https://toolbelt.heroku.com
https://devcenter.heroku.com/articles/git#using-subversion-or-other-revision-control-systems
https://devcenter.heroku.com/articles/git#using-subversion-or-other-revision-control-systems
https://devcenter.heroku.com/articles/git#using-subversion-or-other-revision-control-systems

Chapter 2

[23]

We need to perform the following steps while using Heroku:

1.	 To use Rails 4.0.3 with Heroku, we need to add the rails_12factor gem to
the Gemfile so that we can precompile our assets.
By default, Rails compiles the JavaScript and CSS assets on the first page
load after deployment, and saves them to the disk to be cached. However,
Heroku uses a read-only filesystem, and will not allow the compiled files to
be permanently saved.
Also, Heroku uses PostgreSQL exclusively, so we'll need to add the pg gem
to our Gemfile. Finally, we need to tell Heroku which version of Ruby we
want to use to ensure that we get the correct stack each time we deploy.
Add the following lines to your Gemfile under the gem 'rails', '4.0.3' line:
ruby 2.1.2
group :production do
 gem "rails_12factor"
 gem "pg"
end

We need to wrap the sqlite3 gem into a nonproduction group as well so
that it doesn't get deployed to Heroku, using the following lines:

group :development, :test do
 gem "sqlite3"
end

2.	 And then update the bundle with the following command:
bundle install

3.	 Let's commit these updates and push them to GitHub using the
following commands:
git add --all

git commit -am "Required Heroku gems"

git push

4.	 The next step is to create the app on Heroku, deploy our code, and build
the database using the following commands:
heroku create contestapp

git push heroku master

heroku run rake db:migrate

5.	 Once the migrations have finished running, we can view the site in our
default browser by using the following toolbelt shortcut:
heroku open

Setting Up

[24]

Summary
In this chapter, we covered a brief overview of the Ruby on Rails platform, looked at
different coding tools, got our development environment set up, and started building
our application. We decided to use the Twitter Bootstrap framework to make our
views responsive and reduce our frontend coding time. Finally, we checked everything
into source control and deployed it to Heroku, which is a scalable cloud service that
makes hosting Rails sites a breeze.

We now have a functioning website that we can expand to create our contest
application. We'll be developing using an iterative approach, with regular commits
to source control and deployments to Heroku to keep our production environment
up to date.

In the next chapter, we will start with a high-level overview of the application,
build the core business logic, and connect it privately to a Shopify test store.

Building a Private App
We will be expanding the application we started in the previous chapter to include
the ability to organize simple contests and select a winner. It'll start out as a private
application tied to a development Shopify account. Later on, we'll refactor the code
to support multiple shops and publish it in the Shopify App Store.

Even though the app will be simple and only take a few hours to build, we'll still use
good development practices to ensure we create a solid foundation. There are many
different approaches to software development and discussing even a fraction of them
is beyond the scope of this book. Instead, we'll use a few common concepts, such
as requirements gathering, milestones, Test-Driven Development (TDD), frequent
code check-ins, and appropriate commenting/documentation. Personal discipline in
following development procedures is one of the best things a developer can bring to
a project; it is even more important than writing code.

This chapter will cover the following topics:

•	 The structure of the app we'll be building
•	 The development process
•	 Working with the Shopify API
•	 Using source control
•	 Deploying to production

Signing up for Shopify
Before we dive back into code, it would be helpful to get the task of setting
up a Shopify store out of the way. Sign up as a Shopify partner by going to
http://partners.shopify.com. The benefit of this is that partners can provision
stores that can be used for testing. Go ahead and make one now before reading
further. Keep your login information close at hand; we'll need it in just a moment.

http://partners.shopify.com

Building a Private App

[26]

Understanding our workflow
The general workflow for developing our application is as follows:

1.	 Pull down the latest version of the master branch.
2.	 Pick a feature to implement from our requirements list.
3.	 Create a topic branch to keep our changes isolated.
4.	 Write tests that describe the behavior desired by our feature.
5.	 Develop the code until it passes all the tests.
6.	 Commit and push the code into the remote repository.
7.	 Pull down the latest version of the master branch and merge it with our

topic branch.
8.	 Run the test suite to ensure that everything still works.
9.	 Merge the code back with the master branch.
10.	 Commit and push the code to the remote repository.

The previous list should give you a rough idea of what is involved in a typical
software project involving multiple developers. The use of topic branches ensures
that our work in progress won't affect other developers (called breaking the build)
until we've confirmed that our code has passed all the tests and resolved any
conflicts by merging in the latest stable code from the master branch.

The practical upside of this methodology is that it allows bug fixes or work from
another developer to be added to the project at any time without us having to
worry about incomplete code polluting the build. This also gives us the ability
to deploy production from a stable code base.

In practice, a lot of projects will also have a production branch (or tagged release)
that contains a copy of the code currently running in production. This is primarily
in case of a server failure so that the application can be restored without having to
worry about new features being released ahead of schedule, and secondly so that
if a new deploy introduces bugs, it can easily be rolled back.

Building the application
We'll be building an application that allows Shopify storeowners to organize contests
for their shoppers and randomly select a winner. Contests can be configured based
on purchase history and timeframe. For example, a contest could be organized for all
the customers who bought the newest widget within the last three days, or anyone
who has made an order for any product in the month of August. To accomplish this,
we'll need to be able to pull down order information from the Shopify store, generate
a random winner, and show the storeowner the results.

Chapter 3

[27]

Let's start out by creating a list of requirements for our application. We'll use this list
to break our development into discrete pieces so we can easily measure our progress
and also keep our focus on the important features. Of course, it's difficult to make
a complete list of all the requirements and have it stick throughout the development
process, which is why a common strategy is to develop in iterations (or sprints).
The result of an iteration is a working app that can be reviewed by the client so
that the remaining features can be reprioritized if necessary.

High-level requirements
The requirements list comprises all the tasks we're going to accomplish in this chapter.
The end result will be an application that we can use to run a contest for a single
Shopify store. Included in the following list are any related database, business logic,
and user interface coding necessary.

1.	 Install a few necessary gems.
2.	 Store Shopify API credentials.
3.	 Connect to Shopify.
4.	 Retrieve order information from Shopify.
5.	 Retrieve product information from Shopify.
6.	 Clean up the UI.
7.	 Pick a winner from a list.
8.	 Create contests.

Now that we have a list of requirements, we can treat each one as a sprint. We will
work in a topic branch and merge our code to the master branch at the end of
the sprint.

Installing a few necessary gems
The first item on our list is to add a few code libraries (gems) to our application.
Let's create a topic branch and do just that. To avoid confusion over which branch
contains code for which feature, we can start the branch name with the requirement
number. We'll additionally prepend the chapter number for clarity, so our format
will be <chapter #>_<requirement #>_<branch name>. Execute the following
command line in the root folder of the app:

git checkout -b ch03_01_gem_updates

This command will create a local branch called ch03_01_gem_updates that we will use
to isolate our code for this feature. Once we've installed all the gems and verified that
the application runs correctly, we'll merge our code back with the master branch.

Building a Private App

[28]

At a minimum we need to install the gems we want to use for testing. For this app
we'll use RSpec. We'll need to use the development and test group to make sure the
testing gems aren't loaded in production.

1.	 Add the following code in bold to the block present in the Gemfile that we
created in the last chapter:
group :development, :test do

 gem "sqlite3"
 # Helpful gems
 gem "better_errors" # improves error handling
 gem "binding_of_caller" # used by better errors

 # Testing frameworks
 gem 'rspec-rails' # testing framework
 gem "factory_girl_rails" # use factories, not fixtures
 gem "capybara" # simulate browser activity
 gem "fakeweb"

 # Automated testing
 gem 'guard' # automated execution of test suite upon change
 gem "guard-rspec" # guard integration with rspec

 # Only install the rb-fsevent gem if on Max OSX
 gem 'rb-fsevent' # used for Growl notifications

end

2.	 Now we need to head over to the terminal and install the gems via Bundler
with the following command:
bundle install

3.	 The next step is to install RSpec:
rails generate rspec:install

4.	 The final step is to initialize Guard:
guard init rspec

This will create a Guard file, and fill it with the default code needed to detect
the file changes.

Chapter 3

[29]

5.	 We can now restart our Rails server and verify that everything works properly.
We have to do a full restart to ensure that any initialization files are properly
picked up. Once we've ensured that our page loads without issue, we can
commit our code and merge it back with the master branch:
git add --all

git commit -am "Added gems for testing"

git checkout master

git merge ch03_01_gem_updates

git push

Great! We've completed our first requirement.

Storing Shopify API credentials
In order to access our test store's API, we'll need to create a Private App and store
the provided credentials there for future use. Fortunately, Shopify makes this easy
for us via the Admin UI:

1.	 Go to the Apps page.
2.	 At the bottom of the page, click on the Create a private API key… link.
3.	 Click on the Generate new Private App button.

We'll now be provided with three important pieces of information: the API
Key, password, and shared secret. In addition, we can see from the example
URL field that we need to track our Shopify URL as well.

4.	 Now that we have credentials to programmatically access our Shopify
store, we can save this in our application. Let's create a topic branch
and get to work:
git checkout -b ch03_02_shopify_credentials

5.	 Rails offers a generator called a scaffold that will create the database migration
model, controller, view files, and test stubs for us. Run the following from the
command line to create the scaffold for the Account vertical (make sure it is all
on one line):
rails g scaffold Account shopify_account_url:string
shopify_api_key:string shopify_password:string
shopify_shared_secret:string

6.	 We'll need to run the database migration to create the database table using
the following commands:
bundle exec rake db:migrate

bundle exec rake db:migrate RAILS_ENV=test

www.allitebooks.com

http://www.allitebooks.org

Building a Private App

[30]

7.	 Use the following command to update the generated view files to make them
bootstrap compatible:
rails g bootstrap:themed Accounts -f

8.	 Head over to http://localhost:3000/accounts and create a new account
in our app that uses the Shopify information from the Private App page. By
the way, we'll be refactoring this part of the application in the next chapter
to make it more secure and user friendly.

9.	 It's worth getting Guard to run our test suite every time we make a change so
we can ensure that we don't break anything. Open up a new terminal in the
root folder of the app and start up Guard:
bundle exec guard

After booting up, Guard will automatically run all our tests. They should all pass
because we haven't made any changes to the generated code. If they don't, you'll
need to spend time sorting out any failures before continuing.

The next step is to make the app more user friendly. We'll make a few changes now
and leave the rest for you to do later.

1.	 Update the layout file so it has accurate navigation. Boostrap created several
dummy links in the header navigation and sidebar. Update the navigation
list in /app/views/layouts/application.html.erb to include the
following code:
 Contestapp
 <div class="container-fluid nav-collapse">
 <ul class="nav">
 <%= link_to "Accounts", accounts_path%>

 </div><!--/.nav-collapse -->

2.	 Add validations to the account model to ensure that all fields are required
when creating/updating an account. Add the following lines to /app/
models/account.rb:
validates_presence_of :shopify_account_url
validates_presence_of :shopify_api_key
validates_presence_of :shopify_password
validates_presence_of :shopify_shared_secret

This will immediately cause the controller tests to fail due to the fact that it
is not passing in all the required fields when attempting to submit the
created form.

Chapter 3

[31]

3.	 If you look at the top of the file, you'll see some code that creates
the :valid_attributes hash. If you read the comment above it,
you'll see that we need to update the hash to contain the following
minimally required fields:
This should return the minimal set of attributes required
to create a valid Account. As you add validations to
Account, be sure to adjust the attributes here as well.
let(:valid_attributes) { { "shopify_account_url" =>
"MyString", "shopify_password" => "MyString",
"shopify_api_key" => "MyString", "shopify_shared_secret" =>
"MyString" } }

This is a prime example of why having a testing suite is important. It keeps
us from writing code that breaks other parts of the application, or in this case,
helps us discover a weakness we might not have known we had: the ability
to create a new account record without filling in any fields!

4.	 Now that we have satisfied this requirement and all our tests pass,
we can commit the code and merge it with the master branch:
git add --all

git commit -am "Account model and related files"

git checkout master

git merge ch03_02_shopify_credentials

git push

Excellent! We've now completed another critical piece!

Connecting to Shopify
Now that we have a test store to work with, we're ready to implement the code
necessary to connect our app to Shopify.

1.	 First, we need to create a topic branch:
git checkout -b ch03_03_shopify_connection

2.	 We are going to use the official Shopify gem to connect our app to our
test store, as well as interact with the API. Add this to the Gemfile under
the gem 'bootstrap-sass' line:
gem 'shopify_api'

3.	 Update the bundle from the command line:
bundle install

We'll also need to restart Guard in order for it to pick up the new gem. This is typically
done by using a key combination like Ctrl + Z (Windows) or Cmd + C (Mac OS X) or by
typing the word exit and pressing the Enter key.

Building a Private App

[32]

I've written a class that encapsulates the Shopify connection logic and initializes the
global ShopifyAPI class that we can then use to interact with the API. You can find
the code for this class in ch03_shopify_integration.rb. You'll need to copy the
contents of this file to your app in a new file located at /app/services/shopify_
integration.rb. The contents of the spec file ch03_shopify_integration_spec.rb
need to be pasted in a new file located at /spec/services/shopify_integration_
spec.rb. Using this class will allow us to execute something like ShopifyAPI::Order.
find(:all) to get a list of orders, or ShopifyAPI::Product.find(1234) to retrieve
the product with the ID 1234.

The spec file contains tests for functionality that we haven't built yet
and will initially fail. We'll fix this soon!

We are going to add a Test Connection button to the account page that will give the
user instant feedback as to whether or not the credentials are valid. Because we will be
adding a new action to our application, we will need to first update controller, request,
routing, and view tests before proceeding. Given the nature of this book and because
in this case, we're connecting to an external service, the topics such as mocking, test
writing, and so on will have to be reviewed as homework. I recommend watching the
excellent screencasts created by Ryan Bates at http://railscasts.com as a primer
on testing in Rails.

I'll be showing examples of test code throughout the following chapters; this just
happens to be the kind of multilayer, cross-service testing that deserves its own book!

1.	 The first step is to update the resources :accounts route in the
/config/routes.rb file with the following block:
resources :accounts do
 member do
 get 'test_connection'
 end
end

2.	 Copy the controller code from ch03_accounts_controller.rb and replace
the code in /app/controllers/accounts_controller.rb file. This new
code adds the test_connection method as well as ensuring the account is
loaded properly.

3.	 Finally, we need to add a button to /app/views/account/show.html.erb
that will call this action in div.form-actions:
<%= link_to "Test Connection",
test_connection_account_path(@account), :class => 'btn' %>

http://railscasts.com

Chapter 3

[33]

4.	 If we view the account page in our browser, we can now test our Shopify
integration. Assuming that everything was copied correctly, we should see a
success message after clicking on the Test Connection button. If everything
was not copied correctly, we'll see the message that the Shopify API returned
to us as a clue to what isn't working.

5.	 Once all the tests pass, we can commit the code and merge it with
the master branch:
git add --all

git commit -am "Shopify connection and related UI"

git checkout master

git merge ch03_03_shopify_connection

git push

Having fun? Good, because things are about to get heavy.

Retrieving product information from Shopify
In order for the contests to be set up based on a product purchase, we need to store
product information locally in the application. For now, we'll pull this data in via
the API, but another strategy would be to subscribe to product-related webhooks
to keep our application in sync automatically.

Let's create a topic branch:

git checkout -b ch03_04_product_import

Shopify uses variants to handle product options. For example, if the product is a
t-shirt, the variants might correspond to the different size options. Each variant
can have a different price, SKU, and barcode.

1.	 To properly store product information in our app, we'll need to create a
product model and a variant model. Use the following commands to do
just that:
rails g scaffold Product name:string
shopify_product_id:integer last_shopify_sync:datetime

rails g scaffold Variant product_id:integer:index
shopify_variant_id:integer option1:string option2:string
option3:string sku:string barcode:string price:float
last_shopify_sync:datetime

2.	 Next, we need to run the migrations to create the tables:
bundle exec rake db:migrate

bundle exec rake db:migrate RAILS_ENV=test

Building a Private App

[34]

3.	 Update the UI to make it Bootstrap compatible:
rails g bootstrap:themed Products -f

rails g bootstrap:themed Variants -f

4.	 Restart Guard and then add another navigation link to /app/views/
layouts/application.html.erb that points to the order index page:
<ul class="nav">
 <%= link_to "Products", products_path %>
 <%= link_to "Accounts", accounts_path %>

5.	 Next, we need to set up the relationship between products and variants. To do
this, we're going to modify the product model (/app/models/product.rb):
class Product < ActiveRecord::Base
 has_many :variants
end

We are going to also modify the variant model (/app/models/variant.rb)
in a similar fashion:
class Variant < ActiveRecord::Base
 belongs_to :product
end

The previous statements tell Rails how the models are related. In our case,
a product is the parent and can have one or more variants associated with it.
Likewise, a variant is considered to be a child and can only belong to a single
product. This setup allows us to execute something like product.variants
or variant.product to reference the related information.

6.	 The next step is to update the routing to reflect the nested relationship.
Update /tests/routing/variants_routing_spec.rb with the code
from ch03_variants_routing_spec.rb.

7.	 As you can see, the tests immediately fail because the default scaffold
generator didn't take the nested relationship into account. Head over
to /config/routes.rb and move the variant resource inside the
product resource:
 resources :products do
 resources :variants
 end

This tells Rails that variants can only be accessed in the context of their
parent product, which is exactly what we want.

Chapter 3

[35]

8.	 The VariantsController (/app/controllers/variants_controller.rb)
class will also need to be updated to automatically load the product specified
in the route into the @product instance variable. To do this, we are going to
add a method called set_product and invoke it via a before_action:
class VariantsController < ApplicationController
 before_action :set_product
 before_action :set_variant, only: [:show, :edit, :update,
:destroy]

9.	 Then, at the bottom of the file, update the private methods:
private
 def set_product
 @product = Product.find(params[:product_id])
 end

 def set_variant
 @variant = @product.variants.find(params[:id])
 end

Notice that we also modified the set_variant method to scope it to @product.
variants for security purposes. This ensures that another product's variants
can't be accidentally (or maliciously) accessed by typing in a different :id in
the browser address bar.

The rest of the failed tests are also a result of the routing update we just made
because now the variant tests need to include the related product. I'll leave these
as homework for you to sort out, which will give you further insight into how
Rails handles nested resources.

On a project like this where we start building from the bottom up, it's tough
to accurately predict what the view tests need to test because the UI isn't finalized.
So, keeping them up to date might waste valuable time since the UI is likely to
change several times as we add more functionality to the app. In practice, I've
often had to mark them as pending until the designs were finalized.

If you aren't a designer yourself, I highly recommend hiring one to provide you with
not only the design for your site, but also HTML and CSS used in the view files. This
will reduce your development time and give you a visual goal to work towards.

Building a Private App

[36]

Once the routing and controller logic has been updated, we need to expand our
ShopifyIntegration class to retrieve product information. Shopify's API returns
paginated results, so we'll need to keep that in mind while writing our code. Take a look
at the the import_products method in /app/services/shopify_integration.rb
that we copied over earlier. This method iterates through the shop's product catalog
and syncs it with our app. This step is necessary because we'll need to use the products
and variants in order to organize contests.

The final step is to add a button to the UI that allows a product import to be executed
as needed by the storeowner. Even though we'll automate the import once the app is
in production, it's a nice touch and doesn't require much work on our end.

1.	 The first step is to add a route for the import. As usual, we'll update /spec/
routing/product_routing_spec.rb first by adding the following lines:
 # Custom Actions
 it "routes to #import" do
 get("/products/import").should route_to("products#import")
 end

2.	 Update the products route in /config/routes.rb to include the new
import route:
 resources :products do
 collection do
 get 'import'
 end
 resources :variants
 end

3.	 Now we need to add the controller action to /app/controllers/products_
controller.rb:
 # GET /products/import
 # GET /products/import.json
 def import
 # For now we'll use the first Account in the database
 account = Account.first

 # Instantiate the ShopifyIntegration class
 shopify_integration = ShopifyIntegration.new(
 api_key: account.shopify_api_key,
 shared_secret: account.shopify_shared_secret,
 url: account.shopify_account_url,
 password: account.shopify_password)

 respond_to do |format|
 shopify_integration.connect

Chapter 3

[37]

 result = shopify_integration.import_products
 format.html { redirect_to ({action: :index}),
 notice: "#{result[:created].to_i} created,
#{result[:updated]}
 updated, #{result[:failed]} failed." }
 end
 end

This method connects to Shopify and runs an import. Further work is needed
to ensure that the account exists, has proper credentials, responds to JSON,
and so on; however, for the sake of space, we'll focus on the key functionality
for now.

4.	 Finally, we need to add a link to the UI. Right now, let's put it under the page
header in /app/views/products/index.html.erb:
<div class="page-header">
 <h1><%=t '.title', :default =>
 model_class.model_name.human.pluralize.titleize %></h1>
 <p><a href="<%= import_products_path %>">Import Products</p>
</div>

5.	 If you open the products page on your browser and click on the
Import Products link, you should see your products come in from
Shopify. Neat, right?

6.	 As usual, once our tests pass we can commit and merge our code with the
master branch using the following commands:
git add --all

git commit -am "Shopify Product Import"

git checkout master

git merge ch03_04_product_import

git push

Whew! That was a big piece of code. Fortunately, we can reuse a lot of it for the
next requirement.

Retrieving order information from Shopify
We are going to save the order information locally in the application's database as well.
This will allow us to efficiently organize contests by filtering the data in ways that the
Shopify API doesn't provide natively. In the future, we could look into subscribing to
webhook notifications to automatically keep our database in sync, but for now, we'll
have to check for new orders each time before organizing a contest.

Building a Private App

[38]

As usual, let's create a topic branch before getting to work:

git checkout -b ch03_05_order_import

We need to create a table to store order information from Shopify. This will actually
require us to make two models: Order and OrderItem.

1.	 We'll again use the handy scaffold generator in Rails for the Order class and
the model generator for OrderItem:
rails g scaffold Order number:string email:string
first_name:string last_name:string shopify_order_id:integer
order_date:datetime total:float line_item_count:integer
financial_status:string

rails g model OrderItem order_id:integer:index
variant_id:integer:index shopify_product_id:integer:integer
shopify_variant_id:integer:index unit_price:float
quantity:integer

2.	 Next, we need to run the migrations to create the tables:
bundle exec rake db:migrate

bundle exec rake db:migrate RAILS_ENV=test

3.	 Next, we need to set up the relationship between orders and order items. To
do this, we're going to modify the product model (/app/models/order.rb):
class Order < ActiveRecord::Base
 has_many :order_items
end

We are going to also modify the order item model (/app/models/
order_item.rb) in a similar fashion:
class OrderItem < ActiveRecord::Base
 belongs_to :order
end

This setup allows us to execute something like order.order_items or
order_item.order to reference the related information.

4.	 Use the following command to update the UI to make it Bootstrap compatible:
rails g bootstrap:themed Orders -f

5.	 Finally, add another navigation link to /app/views/layouts/application.
html.erb that points to the order index page:
<ul class="nav">
 <%= link_to "Products", products_path %>
 <%= link_to "Orders", orders_path %>
 <%= link_to "Accounts", accounts_path %>

Chapter 3

[39]

Feel free to make any tweaks to the UI that you want; just be sure to update the
relevant tests when you do so.

Go back to the ShopifyIntegration class and look at the import_orders method.
We're going to use this to pull the order information from Shopify. The structure is
very similar to import_products in that it iterates through the shop's orders and
checks to see whether or not it has already been imported. If it has not been imported,
the method then creates a new order and related order items. The UI tasks are similar
to the product import feature we just added, so we can borrow the code and make
the appropriate updates to /config/routes.rb, /app/controllers/orders_
controller.rb, /app/views/orders/index.html.rb, and the related tests. Go ahead
and make these updates on your own (or look at the files included with the book).

One thing we should consider is executing a product import prior to running the
order import. It doesn't make sense for an order to fail to import just because our
app doesn't have the product information imported. In the interest of keeping
functionality isolated, we won't chain these together, but rather have the controller
perform the product import by invoking both methods.

As you probably guessed, once all the tests pass, we can commit the code and merge
it with the master branch:

git add --all

git commit -am "Shopify connection and related UI"

git checkout master

git merge ch03_05_order_import

git push

Our integration with Shopify is complete! It's time to take care of a few administrative
tasks in preparation of building the contest piece.

Cleaning up the UI
Let's clean up the UI a bit before diving into the contest functionality. The Rails
scaffold generator and the Bootstrap scaffolding were extremely helpful in getting
us started, so we could focus on the business logic, but it's time for an overhaul.

In particular, we need to clean up / tweak the following areas to hide superfluous
information, mask sensitive fields, and otherwise streamline things to make them
more user friendly.

As usual, let's create a topic branch before getting to work:

git checkout -b ch03_06_ui_cleanup

www.allitebooks.com

http://www.allitebooks.org

Building a Private App

[40]

Updating the sidebar
Bootstrap gave us both a top navigation and a sidebar. Though the sidebar
is populated with links by default, it also creates place to provide contextual
instructions for the page.

We are going to make the content dynamic by using content areas in our view files.
This will allow us to not only dynamically render HTML based on the page, but
also change the structure of the page to handle cases where no sidebar is needed.

The first thing to do is update /app/views/layouts/application.html.erb to
wrap the page content area in a conditional statement:

<div class="row-fluid">
 <% if content_for?(:sidebar) %>
 <div class="span3">
 <div class="well sidebar-nav">
 <%= yield(:sidebar) %>
 </div>
 </div>
 <div class="span9">
 <%= bootstrap_flash %>
 <%= yield %>
 </div>
 <% else %>
 <div class="span12">
 <%= bootstrap_flash %>
 <%= yield %>
 </div>
 <% end %>
</div>

What this logic does is determine whether or not there is any content for the sidebar
using the content_for? helper, and if there is sidebar content, it renders it in a special
div. If there is no sidebar content, the wrapper class is changed to span12 so that it
takes up the entire width of the page.

We'll now add a sidebar for the dashboard that contains a message. Place the following
block at the top of /apps/views/dashboard/index.html.erb:

<%- content_for :sidebar do-%>
 <h4>Welcome!</h4>
 <p>This is the Dashboard for your account. You'll be able to
 view past contest results, as well as create new ones.</p>
<%- end -%>

Chapter 3

[41]

As you can see, we are using the content_for block to designate the content that
should be inserted in the layout where :sidebar_key is referenced. If you refresh the
dashboard page on your browser, you'll see our message pop up in the sidebar. If you
then browse to the orders page, you'll see that the table now takes up the whole page
because no sidebar was provided.

Updating orders, products, and variants
By default, the scaffolding of the index page displays every column of the model,
which is unnecessary. We'll use the order pages as an example. It makes sense to
hide columns such as shopify_order_id, created_at, and financial_status.
Furthermore, we could enhance the page to make the number a link that takes us
to the show page, turn the email address into a mail_to link, format the order date,
and add a currency symbol next to the total.

We should make similar updates on the show page and also turn shopify_order_id
into a link to the order page in the Shopify store admin. Additionally, the create
and edit forms should be modified to include date pickers, inline validators for
e-mail addresses, tooltips, and so on. We also need to display a list of OrderItems
on the show page. Feel free to tinker around with the site and try to add some of
these features as homework.

Cleaning up the rest of the site
As mentioned, this sort of UI work is beyond the scope of this book, but it's still a
great way to get instant feedback and see visual progress. Just don't forget to update
the tests! Once you are satisfied with the UI for the site and have updated any related
tests, it's time to commit our work and merge it with the master branch:

git add --all

git commit -am "UI cleanup"

git checkout master

git merge ch03_06_ui_cleanup

git push

Picking a winner from a list
We plan on allowing several types of contests to be configured, so it makes sense
to have a common method that takes in a list of contestants as input and randomly
picks one. This list will be in the form of an array of IDs, and the result will be the
winning ID.

Building a Private App

[42]

We're going to create another service object with a method that accepts an array and
returns a random item. We should also support the ability to pick more than one
winner. The Array#sample method in Ruby does just that, so all we need to do is
wrap a call to this method in our code so that we can ensure consistent results.

The expected functionality boils down to a few simple requirements as follows:

•	 We need to provide an array of contestants
•	 If one winner is required, then we will return a single contestant
•	 If more than one winner is required, then we will return an array

of contestants

We're going to complete this task fairly quickly using the following steps:

1.	 As usual, create a topic branch for this feature:
git checkout -b ch03_07_winner_selection

2.	 Stub out the class file /app/services/contest_results.rb:
class ContestResults
 def initialize(array)
 end

 #Picks <count> winners
 def results(count=1)
 end
 end

3.	 Create the test in /spec/services/contest_results_spec.rb:
describe ContestResults do
 context "initialize" do
 it "should raise exception if not an array" do
 expect {ContestResults.new([1])}.to_not raise_error
 expect {ContestResults.new([1,2,3,4])}.to_not raise_error
 expect {ContestResults.new(["a","b"])}.to_not raise_error
 expect {ContestResults.new("")}.to raise_error
 expect {ContestResults.new(nil)}.to raise_error
 expect {ContestResults.new([])}.to raise_error
 expect {ContestResults.new}.to raise_error
 end
 end

 context "results" do
 it "should return the proper results" do
 contest_results = ContestResults.new([1,2,3,4])
 contest_results.results.should be_a Integer

Chapter 3

[43]

 contest_results.results(1).should be_a Integer
 contest_results.results(2).should be_a Array
 contest_results.results(0).should be_a Integer
 contest_results.results(nil).should be_a Integer

 contest_results = ContestResults.new(["a","b","c","d"])
 contest_results.results.should be_a String
 contest_results.results(1).should be_a String
 contest_results.results(2).should be_a Array
 contest_results.results(0).should be_a String
 contest_results.results(nil).should be_a String
 end
 end
end

4.	 Now that we have tests, we can fill in the methods we stubbed out earlier with
code. As mentioned, we are going to use the Array#sample method and return
the results. If we later decide to use a different algorithm to choose a winner,
we only need to make the change in one class, and we already have tests in
place that will ensure that we don't break existing code elsewhere in the app:
class ContestResults
 def initialize(array)
 raise ArgumentError.new("array is required") if array.blank?
 @array = array
 end

 #Picks <count> winners
 def results(count=1)
 if count.to_i < 2
 @array.sample
 else
 @array.sample(count)
 end
 end
end

After copying in this code and saving the file, Guard will automatically rerun the
tests, which will now pass. This requirement ended up being a quick one to satisfy,
which was a nice change. Let's commit the results and tackle the final few tasks on
our list:

git add --all

git commit -am "Random winner selection"

git checkout master

git merge ch03_07_winner_selection

git push

Building a Private App

[44]

Though we could have done this as part of the contest requirement, it made sense
to break it out as a separate task so that the feature can be kept modular and agnostic
and to give us room to easily expand the app in the future to organize additional
contests based on new criteria.

Creating contests
The ability to run contests is the whole goal of the application. It took a lot of
groundwork, but we are ready to add this final piece! For now, we are going
to start out by offering the ability to run a couple of different contests:

•	 Pick a winner from any past purchasers, with or without a date range
•	 Pick a winner based on a particular product purchase, with or without

a date range

Rather than creating a new set of pages for contests, we already have a dashboard
page where we can place the list of past contests as well as the form to run a new
one. This time we're going to switch things up a bit and create the UI first. This will
give us a taste of working from the top down rather than the bottom up. Let's create
a topic branch:

git checkout -b ch03_08_contests

First, we're going to add a form to the dashboard sidebar; we can borrow the
structure and the CSS classes from the Orders form, and for now, we'll substitute
plain HTML with sample values:

1.	 Replace the sidebar code in /app/views/dashboard/index.html.erb with
the following:
<%- content_for :sidebar do -%>
<h4>New Contest</h4>
<p>Use the form below to run a new Contest. Fields marked
 with * are required.</p>
 <form>
 <div class="control-group">
 <label for="name">Contest Name *</label>
 <div class="controls">
 <input type="text" class="text_field" id="name"
 class="name" required/>
 </div>
 </div>
 <div class="control-group">
 <label for="name">Type *</label>
 <div class="controls">
 <select id="product" name="product" required>

Chapter 3

[45]

 <option>Any Product</option>
 <optgroup label="Specific Product">
 <option>Product A</option>
 <option>Product B</option>
 </optgroup>
 </select>
 </div>
 </div>
 <div class="control-group">
 <label for="name">Order Date Range (optional)</label>
 <div class="controls">
 <input type="text" class="text_field" id="from-
 date" name="from-date"/> to
 <input type="text" class="text_field" id="to-date"
 name="to-date"/>
 </div>
 </div>
 <div class="control-group">
 <label for="name">Max # (optional)</label>
 <div class="controls">
 <input type="text" class="text_field" id="limit"
 name="limit"/>
 </div>
 </div>
 <div class="form-actions">
 <input type="submit" value="Submit" class="btn"/>
 <%= link_to t('.cancel', :default =>
 t("helpers.links.cancel")),
 dashboard_index_path, :class => 'btn' %>
 </div>
 </form>
<%- end -%>

2.	 Next, we'll copy the HTML table structure from the Orders index
page to /app/views/dashboard/index.html.erb and replace the
<h1>Dashboard#index</h1><p>Find me in /app/views/dashboard
/index.html.erb</p> lines with the following:
<h1>Contests</h1>
<table class="table table-striped">
 <thead>
 <tr>
 <th>Name</th>
 <th>Criteria</th>
 <th>Winner</th>
 <th>Date</th>
 </tr>

Building a Private App

[46]

 </thead>
 <tbody>
 <tr>
 <td>Customer Appreciation Giveaway</td>
 <td>Purchase made within last 30 days</td>
 <td>Order #1010, John Doe</td>
 <td>October 22, 2013</td>
 </tr>
 </tbody>
</table>

If we reload the dashboard page on our browser, we can see that our static
HTML fits right in. Based on the form and table, we have an idea of the
structure of the contest model we need to create, which consists of a few
fields for storing the name, optional date range, optional product ID, optional
max candidates, and the winning order ID. For the date of the contest, we'll
just use the created_at column. Let's use the generator to create the model:

rails g model Contest name:string product_id:integer
start_date:datetime end_date:datetime max_results:integer
order_id:integer:index

3.	 Migrate the databases and annotate the model:
bundle exec rake db:migrate

bundle exec rake db:migrate RAILS_ENV=test

4.	 Update /app/models/contest.rb to make it relate to the orders, validate
the presence of required fields, and also return contest criteria in a user
friendly manner:
class Contest < ActiveRecord::Base
 belongs_to :order
 validates_presence_of :name

 def criteria
 results = []
 results << "Product Name: #{product_name}" if
 product_name.present?
 results << "Start Date: #{I18n.l start_date.to_date,
 format: :short}" if start_date.present?
 results << "End Date: #{I18n.l end_date.to_date,
 format: :short}" if end_date.present?
 results << "Max #: #{max_results}" if
 max_results.present?
 return results.join(', ')

 end
end

Chapter 3

[47]

The criteria method uses conditional logic to create a string that summarizes
the contest criteria. An example result would be Product Name: Test
Product, Max #: 50.

5.	 Next, we'll need to add a method called candidate_list to create an array
of valid candidates that we can send to the ContestResults class. Based on
our form mockup, we need to be able to accept a product ID (or no product
ID, which will translate into any product) and an optional date range.
The tests for this method are found at ch03_order_spec.rb and the
necessary factory code is at ch03_order_factory.rb, ch03_order_item_
factory.rb, and ch03_product_factory.rb.
Add the following code to /app/models/order.rb:

 # This method constructs the query based on
 # the passed-in parameters
 def self.candidate_list(params={})

 params[:order] ||= "order_date asc"
 orders = order(params[:order]).includes(:order_items)

 if params[:limit].present?
 orders = orders.limit(params[:limit].to_i)
 end

 if params[:product_id].present?
 orders = orders.where("order_items.shopify_product_id" =>
 params[:product_id].to_i)
 end

 if params[:start_date].present?
 orders = orders.where(["orders.order_date >= ?",
 params[:start_date]])
 end

 if params[:end_date].present?
 orders = orders.where(["orders.order_date <= ?",
 params[:end_date]])
 end

 # .pluck returns an array containing the specified field
 return orders.pluck(:id).uniq

 end

Building a Private App

[48]

This method builds the query based on the different options passed in via the
params hash, and then returns an array of order IDs that qualify. The array
can then easily be fed into our results method to choose a winner.
Due to the way the ActiveRecord Query Interface works, we're able to add
conditions as needed based on the parameters, and nothing is executed
against the database until we are ready.
You probably noticed that the parameters use the same names as the columns
for a contest record even though it's on the order model. This is intentional to
allow us to easily reconstruct a previous contest and pick a new winner.

6.	 Now that we have the model method completed, we can update the
DashboardController to load the results and instantiate a new contest
object for our form:
def index
 # Load past results in reverse order
 @contests = Contest.order("created_at desc")

 # Instantiate a new Contest so the form loads properly
 @contest = Contest.new
end

7.	 We also need to create a controller action and a corresponding route for
the form to post to upon submission. As usual, we'll add the routing and
controller tests first, and then create the corresponding action:
This method creates a Contest and returns
the winner(s) in the notice message
 def create_contest
 @contest = Contest.new(contest_params)
Store the name of the product for easier readability
 @contest.product_name = Product.find_by_shopify_product_
 id(contest_params[:product_id]).try(:name) if contest_
 params[:product_id].present?
 respond_to do |format|
 if @contest.save
 # Pick a winner
 candidates = Order.candidate_list(params)
 contest_results = ContestResults.new(candidates)

 # Save the winner
 @contest.update_attribute(:order_id,
 contest_results.results)

 format.html { redirect_to root_path, notice: "Contest
 Winner: #{@

Chapter 3

[49]

 contest.order.email}" }
 format.json { render action: 'show', status: :created,
 location: @contest }

 else
 format.html { redirect_to root_path, alert: "Unable to
 create a Contest" }
 format.json { render json: @contest.errors, status
 : :unprocessable_entity }
 end
 end

 end

 private

 def contest_params
 params.require(:contest).permit(:name, :product_id, :start_
 date, :end_date, :max_results, :order_id)
 end

We need to make sure to add the corresponding route to the /config
/routes.rb file below get "dashboard/index":
post "create_contest" => 'dashboard#create_contest'

8.	 Finally, we need to update the UI to dynamically render the table and update
the form markup to use Rails helpers for the form tag, labels, and input
elements. The controller action will redirect to the dashboard page and
place the results on the notice bar. Copy the code from ch03_dashboard_
index.html.erb to /app/views/dashboard/index.html.erb.

You might have noticed that the select element didn't use the built-in Rails helper.
In our case, we needed to use a default option, option groups, and a dynamic list.
Rolling it manually was the simplest way to create this element inline, and also
illustrates how Rails constructs the id and name attributes on input elements.

We can now check in our work and merge it with the master branch using the
following commands:

git add --all

git commit -am "Contest Functionality"

git checkout master

git merge ch03_08_contests

git push

www.allitebooks.com

http://www.allitebooks.org

Building a Private App

[50]

That was the last requirement! We can now import products and orders and run
contests to pick winners based on a few different options. Let's deploy to Heroku
so we can try things out in a production environment:

git push heroku master

heroku run rake db:migrate

Summary
In this chapter, we signed up for Shopify, talked about our development process,
and knocked out several requirements for the application. This involved installing
several gems, writing a test suite, and using the built-in Rails generators to jump-start
our development.

We then created topic branches for each requirement and worked until we were
satisfied that the requirement was met. After we built the pieces to connect to
Shopify and import orders and products, we cleaned up the UI.

Finally, we implemented our contest logic, which we approached from the top down
by creating a mockup of the form and results table. This allowed us to see exactly
what was required to execute a contest, which made it possible to develop this
feature quickly without building unnecessary functionality. We now have a
working application that we can use to organize contests for a single store.

In the next chapter, we'll update the app to make it multitenant (supporting
multiple stores), enable it to verify requests from Shopify and subscribe and
respond to webhooks, and give our app a few other final touches before it
goes live in the Shopify App Store.

Going Public
In the previous chapter, we successfully turned our website into a functioning private
application. In this chapter, we are going to update our code to make the app support
multitenancy. This means that one instance of the app will be able to service multiple
Shopify accounts simultaneously, instead of requiring each store to have its own
copy of the app. An example of this is the difference between a site such as Facebook
(multitenant) and a program such as Microsoft Word (single tenant). Everyone logs
in to the same Facebook app, but each computer needs its own copy of Word. The
multitenant model should be familiar to you as most websites you use operate in
this manner.

To support multiple shops, we will need to acquire and store each shop's API
password in a secure manner. Each password will be different, so we'll use
them in place of the private ones that we generated earlier.

Fortunately for us, Shopify already has a process in place to securely acquire the
API password and install our app into a Shopify store, so we'll be able to add this
piece fairly easily. We'll then add security methods to verify the HTTP requests
and webhooks using code found on the Shopify wiki. Finally, we're also going to
add code to subscribe to and process webhooks from Shopify.

High-level requirements
As we did earlier, we are going to create a list of requirements that we'll turn into
sprints. We'll then create topic branches for each sprint. Finally, we'll merge our code
into the master branch once we're satisfied that we've met all the requirements and
that all of the tests have passed. For this chapter, our requirements are as following:

•	 Support multiple accounts
•	 Authorize user access to data
•	 Verify requests from Shopify

Going Public

[52]

•	 Install from the Shopify App Store
•	 Subscribe to and process Shopify Webhooks

Supporting multiple accounts
We'll need to update our Account model by adding a few more columns to store
additional information from Shopify. We'll also remove the shopify_shared_secret
and shopify_api_key columns and store the values in global variables. As can be
inferred from the name, this secret will be used whenever we need to make an API
request or verify an incoming request from Shopify.

As usual, we'll make a topic branch for our work with the following command:

git checkout -b ch04_01_account_rework

We'll then use a migration to update the database with the following command:

rails g migration AccountRework

This generator will create a ruby file that we can use to add and remove columns
from the accounts table. Copy and paste the following code into the migration
file that was created by the preceding command:

class AccountRework < ActiveRecord::Migration
 def change

 # These columns are not unique but global
 remove_column :accounts, :shopify_shared_secret
 remove_column :accounts, :shopify_api_key

 # We need to store more information about the shop
 add_column :accounts, :shopify_shop_id, :integer
 add_column :accounts, :shopify_shop_name, :string
 add_column :accounts, :shop_owner, :string
 add_column :accounts, :email, :string

 # Index commonly searched for fields
 add_index :accounts, :shopify_account_url
 add_index :accounts, :email

 end
end

Chapter 4

[53]

This migration will update the database and add a couple of indexes that will make
searching more efficient. We can now run the migration and annotate the models
via the following command lines:

bundle exec rake db:migrate

bundle exec rake db:migrate RAILS_ENV=test

As expected, because we dropped the columns before updating our tests, some of
them will immediately fail. This is precisely why we write tests. Ideally, we would
have updated the tests first, but I wanted to illustrate how a test suite can act as a
safety net. Once all the tests have passed again, we can be assured that the app works
the same as it did before. Then, we can update the tests to reflect the new columns that
we added when we removed the shopify_api_key and shopify_shared_secret
columns.

While you might be tempted to fix failing tests and add more for the
new columns at the same time, don't do it. Changing more than one
thing at a time is a recipe for confusion. Of course, following proper
TDD best practices means that this sort of situation theoretically
shouldn't happen because the updates would have been anticipated.
However, in practice, it's a common event, especially in existing
applications where test coverage is inadequate.

Now, we need to rework our code to store the API password and shared secret in
our global variables and update any references to the removed columns. We're also
going to store the current URL of our app in the configuration file so that we can
use it to create endpoints for webhooks when registering with Shopify. Add the
following lines of code (with your test shop values) to /config/environments/
development.rb:

SHOPIFY_API_KEY = "123456789abcdefghijk"
SHOPIFY_SHARED_SECRET = "zyxvutsrq987654321"
DOMAIN = "http://localhost:3000"

For testing purposes, we're going to use fake values and place the following code
in /config/environments/test.rb:

SHOPIFY_API_KEY = "123abc"
SHOPIFY_SHARED_SECRET = "test-secret"
DOMAIN = "http://localhost:3000"

These will be picked up the next time the web server is started (or restarted if it's
already running).

Going Public

[54]

For security purposes, sensitive production information such as passwords should
never be checked into source control. Instead, this information should be stored in
configuration files or environment variables that only exist on the server and are
loaded at application startup. We'll store the values as Heroku environment variables
and load them in /config/environments/production.rb with the following code:

SHOPIFY_API_KEY = ENV["SHOPIFY_API_KEY"]
SHOPIFY_SHARED_SECRET = ENV["SHOPIFY_SHARED_SECRET"]
DOMAIN = ENV["DOMAIN"]

And then we'll use the following Heroku toolbelt command to update the production
environment (substitute the real values from our Shopify test store's private app
settings as well as our Heroku app's URL):

heroku config:set SHOPIFY_API_KEY=123456789abcdefghijk

heroku config:set SHOPIFY_SHARED_SECRET=zyxvutsrq987654321

heroku config:set DOMAIN=http://contestapp.herokuapp.com

Now, we can rework the code to remove any references to the old database columns
and replace them with our global variables. If we search the project for occurrences
of shopify_api_key and shopify_shared_secret, we will see the variables
referenced in the ShopifyIntegration class, the Account model and related
controller, view files, and tests.

The following is what the rework of the relevant methods in the
ShopifyIntegration class looks like:

 attr_accessor :url, :password

 def initialize(params)
 # Ensure that all the parameters are passed in
 %w{url password}.each do |field|
 raise ArgumentError.new("params[:#{field}] is required") if
 params[field.to_sym].blank?

 # If present, then set as an instance variable
 instance_variable_set("@#{field}", params[field.to_sym])
 end
 end

 # Uses the provided credentials to connect to Shopify
 def connect

 # Initialize the gem
 ShopifyAPI::Session.setup({
 api_key: SHOPIFY_API_KEY,
 secret: SHOPIFY_SHARED_SECRET})

Chapter 4

[55]

 # Instantiate the session
 session = ShopifyAPI::Session.new(@url, @password)

 # Activate the Session so that requests can be made
 return ShopifyAPI::Base.activate_session(session)

 end

As can be seen, all that we had to do was update the initialize method to only
acquire the URL and password. We also updated the connect method to use our
global variables when appropriate.

After we've finished the rest of the rework and verified that the tests have passed,
we are going to jump back on the TDD train for the next feature and update our
test suite before making changes to the code. Hopefully, we'll see how doing it the
test-driven way makes development easier because it gives us concrete requirements
to satisfy and a definition of "done".

Let's update /spec/factories/accounts.rb to reflect the new Account fields with
the following code:

FactoryGirl.define do
 factory :account do
 # Use a sequence to ensure unique values
 sequence :shopify_account_url do |n|
 "test-#{n}.myshopify.com"
 end
 shopify_password "MyString"
 created_at {DateTime.now}
 updated_at {DateTime.now}
 # Use a large random number to ensure unique values
 shopify_shop_id {rand 9999999}
 sequence :shopify_shop_name do |n|
 "shop_#{n}"
 end
 shop_owner "Bugs Bunny"
 # Use a sequence to ensure unique values
 sequence :email do |n|
 "owner_#{n}@example.com"
 end
 end
end

Going Public

[56]

Now that we're going to be creating accounts directly through Shopify, we can
completely remove AccountsController and related views from the app since
they are now redundant. We will preserve the code that tests the connection to the
Shopify API for a particular Account, since we'll be moving this feature over to
DashboardController and turning the Test Connection button into a link at the
bottom of the sidebar on the dashboard page.

The updated dashboard files of interest are called ch04_dashboard_controller.rb,
ch04_dashboard_controller_spec.rb, and ch04_dashboard_routing_spec.rb.

Once our dashboard routing and view tests have passed again (we can ignore any
other failed tests for now), we're going to remove the following files (we can use
git rm as well, though this is not necessary):

•	 /app/controllers/accounts_controller.rb

•	 /app/views/accounts/*

•	 /spec/controllers/accounts_controller_spec.rb

•	 /spec/requests/accounts_spec.rb

•	 /spec/routing/accounts_routing_spec.rb

•	 /spec/views/accounts/*

The asterisk (*) means that all files in that
respective folder.

Note that we're still keeping the factory and model tests because they are needed
to verify that the Account model is behaving correctly. One final piece of cleanup
is to remove the unnecessary navigation link in /app/views/layouts/
application.html.erb as follows:

<div class="container-fluid nav-collapse">
 <ul class="nav">
 <%= link_to "Products", products_path %>
 <%= link_to "Orders", orders_path %>

</div>

Chapter 4

[57]

Once we're happy that the Account model has been properly reworked and all the
tests have passed, we can commit the code, merge it into the master branch, and
push it to the remote repository using the following commands:

git add --all

git commit -am "Reworked the Account model and related areas to support
multitenancy"

git checkout master

git merge ch04_01_account_rework

git push

Authorizing user access to data
Currently, the application loads all the contests, orders, and products in the database.
This was acceptable before because the app was only linked to a single Shopify
account. Now, we need to limit the information returned to the current Account model
only. This way, when a store owner logs in to the app, they will only see their own
information and will be unable to view any information from other shops.

To do this, we need to perform the following steps:

1.	 Make a topic branch for our work with the help of the following command:
git checkout -b ch04_02_account_scoping

2.	 Add an account_id field to the Contest, Product, and Order models.
We will do this by creating a migration to update the database with the
following command:
rails g migration AccountScoping

Our migration needs to add an account_id field to any models that we want
to protect. We'll also add the following database indexes on these new columns
to make the queries more efficient:

class AccountScoping < ActiveRecord::Migration
 def change
 add_column :orders, :account_id, :integer
 add_column :products, :account_id, :integer
 add_column :contests, :account_id, :integer

 add_index :orders, :account_id
 add_index :products, :account_id
 add_index :contests, :account_id
 end
end

Going Public

[58]

3.	 Run the following migrations for the development and test databases:
bundle exec rake db:migrate

bundle exec rake db:migrate RAILS_ENV=test

4.	 Set up the relationship between each of the models so we can take advantage
of the ActiveRecord query interface. We'll add the following line to the
Order, Product, and Contest models (found in the /app/models folder):
belongs_to :account

5.	 Add the corresponding lines to the Account model:
has_many :orders, :dependent => :destroy
has_many :products, :dependent => :destroy
has_many :contests, :dependent => :destroy

One consequence of adding the account_id field is that any existing records
are now orphaned, which means they are not associated with an Account
model, and will not show up in any of the scoped queries that we're about
to implement. Just for kicks, we're going to fix the existing data using the
Rails console rather than deleting the orphaned records.

6.	 Start up a Rails console session in a new terminal window with the
following command:
rails console

7.	 Enter the following commands to fill the account_id field with the ID of
the first account in the database:
account = Account.first

Order.update_all(["account_id = ?", account.id])

Product.update_all(["account_id = ?", account.id])

Contest.update_all(["account_id = ?", account.id])

8.	 Locate the places in our code where we are creating orders, products,
and contests and add the correct account ID in the account_id field.
We'll need to update our import methods in the ShopifyIntegration class.
Let's rework this service class to require account_id. First, we'll update our
tests to reflect this new requirement, which you can see in ch04_shopify_
integration_spec.rb. Then, we'll make the subsequent updates to the
class itself, until our tests have all passed. The updated class can be found
in ch04_shopify_integration.rb.

Chapter 4

[59]

9.	 We're going to add a few methods to ApplicationController and expose
some as helper methods that can also be used in our view files. The complete
class is as shown:
class ApplicationController < ActionController::Base
 # Prevent CSRF attacks by raising an exception.
 # For APIs, you may want to use :null_session instead.
 protect_from_forgery with: :exception

 helper_method :current_account, :logged_in?
 before_action :require_login

 ### Filters ###

 # This method is called before each controller action is
 # executed in order to ensure that the user is logged in
 def require_login
 redirect_to sessions_new_path unless current_account.present?
 end

 def login(account_id)
 session[:current_account_id] = account_id
 end

 def logged_in?
 current_account.present?
 end

 # Finds the Account with the ID stored in the session with the
 # key :current_account_id. This is a common way to handle user
 # login in a Rails application; logging in sets the session
 # value and logging out removes it.
 def current_account
 @_current_account ||= session[:current_account_id] &&
 Account. find_by(id: session[:current_account_id])
 end
end

10.	 For the controller rework, we need to change any class-level ActiveRecord
queries to use the current_account helper that we created earlier. In /app/
controllers/products_controller.rb, we need to change the following
methods to use the current_account scope:

def index
 @products = current_account.products.all

www.allitebooks.com

http://www.allitebooks.org

Going Public

[60]

end

def new
 @product = current_account.products.new
end

def create
 @product = current_account.products.new(product_params)
 […]
end

def import
 # Connect to Shopify
 shopify_integration = ShopifyIntegration.new(
 url: current_account.shopify_account_url,
 password: current_account.shopify_password,
 account_id: current_account.id)
 […]
end

def set_product
 @product = current_account.products.find(params[:id])
end

We'll need to make similar updates to the order controller, which can be seen
in ch04_orders_controller.rb. A high-level way to test that the scoping
is working is to populate the database with a few records that have different
values for account_id. Then, we'll make a request to the index action and
ensure that only the records with current_account.id are returned. For
example, the following is the OrdersController test for the index action
(the full set of tests can be found in ch04_orders_controller_spec.rb.
Keep in mind that some of these will fail until we complete the next step):
describe "GET index" do
 it "assigns scoped orders as @orders" do
 # Create an Account that will be loaded as the default
 account = FactoryGirl.create(:account)

 # Create 2 orders for the current account
 order1 = FactoryGirl.create(:order, account_id: account.id)
 order2 = FactoryGirl.create(:order, account_id: account.id)

 # And one for a different account
 order3 = FactoryGirl.create(:order, account_id: 100)

 get :index, {}, valid_session
 assigns(:orders).should eq([order1, order2])
 end
 end

Chapter 4

[61]

As you can see, the previous code creates three orders, with two belonging
to the same Account model. It then gets the index action and ensures that
the @orders variable only consists of the two orders that belong to the
currently logged in account.

In the final step, we'll create a way for our users to log in to their accounts. Rather
than storing our own set of user login information we're going to allow logins
directly from Shopify. This way, our storeowners won't have to remember another
login and password, and any of their staff users in Shopify will be able to log in to
our app with a single click. By default, the URL that our storeowners are redirected
to for logging in to the app will be the same one that was used to install the app. All
we have to do for now is remember to support a login to an existing account in our
install method, and we're done with this part.

To keep things consistent, we're going to create a controller to handle the login and
logout and display an error message if attempts are made to access pages in the app
without being logged in. We'll then add a filter to our ApplicationController to
ensure that the user is logged in before they can view any of the pages. A filter is a
method that we want executed before or after a specific event.

Run the following command in the console window to create the controller:

rails generate controller Sessions new create destroy

As can be seen, we specified the three methods (new, create, and destroy) that we
want the controller to have. Using the generator in this manner is a handy way to
ensure that all the files we care about (views, tests, and routes) have been properly
created as well. However, we need to make a tweak to the /config/routes.rb file
to change the line that says get "sessions/create" to post "sessions/create".

Note that the convention is to keep the controller's action names
limited to the following: index, show, new, create, edit, update,
and destroy. This ensures that the code is easily understood by
other developers because it keeps to best practices.

In place of the typical login screen, we're going to render a simple page with a form
that initiates the authorize/install process in Shopify. This way, storeowners with
existing accounts will be logged in automatically, and storeowners that do not have
an account with us will have the opportunity to install the app. This form will also
allow us to easily test our app as well as initiate installations from the app directly
rather than relying on storeowners finding us in the App store.

Going Public

[62]

Due to a limitation in Shopify that does not allow us to send messages to our
development machine (at least, not without using dynamic DNS to map a domain
to our local IP), we're going to add a small form to the login page that is only visible
in development mode. This form will allow us to select the account that we want to
impersonate.

The complete code can be copied from ch04_sessions_new_01.html.erb and
the corresponding controller code in ch04_sessions_controller.rb. This sort of
backdoor is a common way to shortcut complicated procedures in order to access a
certain part of the app during development. Backdoors can often lead to unintended
security vulnerabilities and should be used with extreme caution, and removed from
the production code branch if possible.

It doesn't make sense to show the navigation for orders and products if the user is
not logged in. Fortunately, we can easily hide this by checking for current_account.
Remember the logged_in? method that we added to the ApplicationController
earlier? We can use this helper to check for a logged-in account and if not found hide
the navigation.

The following is the updated HTML code for the navbar element in /app/view/
layouts/application.html.erb:

<div class="navbar navbar-fluid-top">
 <div class="navbar-inner">

Chapter 4

[63]

 <div class="container-fluid">
 <% if logged_in? %>
 <a class="btn btn-navbar" data-target=".nav-collapse"
 data-toggle="collapse">

 <% end %>
 Contest App
 <% if logged_in? %>
 <div class="container-fluid nav-collapse">
 <ul class="nav">
 <%= link_to "Products", products_path %>
 <%= link_to "Orders", orders_path %>
 <%= link_to "Logout", sessions_destroy_path %>

 </div><!--/.nav-collapse -->
 <% end %>
 </div>
 </div>
 </div>

As can be seen, we're using the logged_in? helper method to hide both the
collapsed menu as well as the regular navigation icon. Once we're satisfied that
everything is working properly and all the tests have passed, we can commit
the code, merge it into the master branch, and push it to the remote repository
using the following commands:

git add --all

git commit -am "Added Account Scoping and login."

git checkout master

git merge ch04_02_account_scoping

git push

Verifying Shopify requests
Now that we will be handling installation requests from Shopify and subscribing
to webhooks, it's a good idea to verify that the requests originate from Shopify and
haven't been tampered with. There are two different types of requests that we
need to authenticate:

•	 HTTP GET/POST requests (for example, an app installation request)
•	 Webhooks (for example, a new order was placed)

Going Public

[64]

Normally, we might have added this code inline as part of the next two sprints, but I
wanted to handle it separately in order to highlight the importance of security. Also,
these methods are reusable for future apps as well, and developing the code with
this encapsulation in mind will be beneficial.

Let's create a topic branch for our work with the following command:

git checkout -b ch04_03_shopify_verification

Verifying HTTP GET/POST requests
Shopify provides the Ruby code necessary to verify the first type of request. The code
extracts a few elements from the params hash into an array, sorts them alphabetically,
converts the array to a string, and then encrypts the string using our shared secret. This
value is compared to the field that was passed with the request. If the values match, we
can be assured that the request is valid.

We'll add the following tests to /spec/services/shopify_integration_spec.rb
to handle HTTP requests. These tests will use hardcoded values that match the ones
in /config/environments/test.rb. It's worth remembering that if any values in
this file change, the tests will fail as a result, and you'll need to manually recalculate
the correct hash to fix the specification. Refer to the following code:

 context "self.verify" do

 it "should return true if the signature matches" do
 # Assume we have the query parameters in a hash
 query_parameters = {
 shop: "some-shop.myshopify.com",
 code: "a94a110d86d2452eb3e2af4cfb8a3828",
 timestamp: "1337178173",
 signature: "929b77106a419bde96b151b318557a11"}

 ShopifyIntegration.verify(query_parameters).should be_true

 end

 it "should return false if the signature DOES NOT match" do
 # Assume we have the query parameters in a hash
 query_parameters = {
 shop: "some-shop.myshopify.com",
 code: "a94a110d86d2452eb3e2af4cfb8a3828",
 timestamp: "1337178173",
 signature: "929b77106a419bde96b151b318557234"} # Changed

 ShopifyIntegration.verify(query_parameters).should be_false
 end

 end

Chapter 4

[65]

A simplified version (for clarity) of the code that Shopify provides is listed as follows:

def self.verify(params)
 hash = params.slice(:code, :shop, :signature, :timestamp)
 received_signature = hash.delete(:signature)
 # Collect the URL parameters into an array of elements
 calc = hash.collect { |k, v| "#{k}=#{v}" }
 # Sort the key/value pairs in the array
 calc = calc.sort
 # Join the array elements into a string
 calc = calc.join
 # Final calculated signature to compare against
 calc = Digest::MD5.hexdigest(SHOPIFY_SHARED_SECRET + calc)
 return calc == received_signature
end

This code will exist as a class method in our /app/services/shopify_
integration.rb class. A class method is one that does not require an
instance of the class in order to be invoked. Instead, we can simply call it
using ShopifyIntegration.verify(params) from the controller action
that received the request in order to decide whether or not to proceed.

Verifying webhook requests
The second type of verification we'll need to implement is for webhook requests.
Though the topics vary, the method of verification is the same for all of them. The
process is very similar to what we just did, in that we'll be receiving an encrypted
hash from Shopify that we'll use to verify the contents of the request after we have
performed some encryption ourselves. Fortunately, in this case, we don't need to
reorder the parameters; instead, we can just take the entire body of the request and
use the SHA256 algorithm to generate a string that can be used for comparison.
Again, Shopify provides this code on their wiki, but we're going to make a few
tweaks to improve testability and abstraction.

Going Public

[66]

We're going to create a WebhookService class in a new file at /app/services/
webhook_service.rb by copying the code from ch04_webhook_service.
The following verification code from the Shopify wiki is listed below for review:

 def verify_webhook
 # TODO: disable this after launch
 return true if @request.headers['HTTP_X_SHOPIFY_TEST'].to_s ==
"true"

 # Make sure the encrypted header was passed in
 hmac_header = @request.headers['HTTP_X_SHOPIFY_HMAC_SHA256']
 return false if hmac_header.blank?

 # In order to verify the authenticity of the request
 # We need to compare the header hmac to one
 # We compute on the fly
 data = @request.body.read.to_s

 # Calculate the hmac using our shared secret and the body
 digest = OpenSSL::Digest::Digest.new('sha256')
 calculated_hmac = Base64.encode64(OpenSSL::HMAC.digest(
 digest,
 SHOPIFY_SHARED_SECRET,
 data)).strip

 unless calculated_hmac == hmac_header
 return false
 end

 # Rewind the request body so that Rails can reprocess it
 @request.body.rewind
 return true
 end

Before computing the hash, notice that the method checks for a header value that
indicates that the request is not a test as well as ensuring that a hashed value has
been passed in. If these two criteria are met, then the hash is computed using our
shared secret and compared to the header value.

Finally, we need to rewind the request stream so that Rails can finish processing it.
This is an important step because if we don't rewind it, the request stream will be
at the end and no further data will be available.

Chapter 4

[67]

Use the following commands to complete the sprint and deploy to production:

git add --all

git commit -am "Added Verification for HTTP and Webhook requests"

git checkout master

git merge ch04_03_shopify_verification

git push

git push heroku master

heroku run rake db:migrate

Installing from the Shopify App Store
Rather than requiring Shopify merchants to copy and paste their API credentials into
our app's Settings page. Shopify has a handy and secure way for us to request access
to a particular store, get the storeowner's permission, and programmatically receive
the API credentials. The workflow is listed as follows:

1.	 The storeowner clicks on the Install button in the Shopify App Store.
2.	 Shopify redirects them to a special URL in our app, which then redirects back

to Shopify with the API key of our app and a list of permissions we wish to
have (for example, the ability to read order information and update products).

3.	 The storeowner is presented with a page in their Shopify admin that shows
the access permissions that we've requested and allows them to approve it.

4.	 Once access is granted, Shopify posts back to our app with the shop address,
a timestamp, and a temporary token. We use this token along with our
shared secret to posts back to Shopify to complete the verification process.

5.	 Now that they've verified our identity with Shopify, the permanent API
key for the shop is sent back in the response. We then use this key to make
subsequent API calls in combination with our shared secret.

6.	 We'll do this right away to pull in a few pieces of data from the shop and
store it locally.

Fortunately for us, there are code examples on the Shopify wiki that we can use
as the starting point for these tasks. Let's create a topic branch with the following
command and get to work:

git checkout -b ch04_04_shopify_installation

Going Public

[68]

We need to create an App via our Shopify Partner account before proceeding. Once
we log into the Partners area, we need to go to the Apps page and click on the Create
App button. Fill out the form and be sure to set the Application Callback URL
to http://localhost:3000/shopify/install. Then we'll update our configuration
in /config/environments/development.rb as well as updating the Heroku
environment variables with the new values for api key and shared secret.

We'll need to create a new controller to facilitate the Shopify installation process. For
now, we'll only need two methods: authorize and install. To spice things up, we'll
add the routes ourselves and create the controller file and tests from scratch rather
than using the generator. The tests can be found in ch04_shopify_controller_
spec.rb and ch04_shopify_routing_spec.rb. Add the following code to /app/
config/routes.rb:

 # Shopify routes
 get 'shopify/authorize' => 'shopify#authorize'
 post 'shopify/authorize' => 'shopify#authorize'
 get 'shopify/install' => 'shopify#install'
 post 'shopify/install' => 'shopify#install'

We'll support both GET and POST so that we can call the actions from either a link or
a form post. Let's create the class in /apps/controllers/shopify_controller.rb
as follows and add the authorize action:

class ShopifyController < ApplicationController

 # Skip the login requirement
 skip_before_filter :require_login
 skip_before_filter :verify_authenticity_token
 def authorize
 unless params[:shop].present?
 render :text => "shop parameter required" and return
 end
 # Redirect to the authorization page
 redirect_to "https://
 #{params[:shop].gsub(".myshopify.com","")}.myshopify.com
 admin/oauth/authorize?client_id=#{SHOPIFY_API_KEY}&
 scope=read_products,read_orders,read_customers"
 end
 end

All we're doing is redirecting to a specific URL in Shopify and appending our API
key as well as a list of the permissions we want. In this case, we just need to read
Customers, Orders, and Products.

Chapter 4

[69]

The install method that we need to write is a bit more complex. This method will
complete the handshake with Shopify in order to receive the API password that we
need to access the store's information. The process involves exchanging a few tokens
as a means of verification. Again, we'll use the following sample code from the
Shopify wiki to get us started:

def install

 # Initialize the connection to Shopify
 http = Net::HTTP.new(params[:shop], 443)
 http.use_ssl = true
 path = '/admin/oauth/access_token'

 # Include the relevant pieces of information
 data = {
 'client_id' => SHOPIFY_API_KEY,
 'client_secret' => SHOPIFY_SHARED_SECRET,
 'code' => params[:code]
 }

 # POST to Shopify in order to receive the permanent token
 response = http.post(path, data.to_query, headers)
 result = ActiveSupport::JSON.decode(response.body)

 # See if the Account already exists
 account = Account.find_by_shopify_account_url(params[:shop])

 # Update the existing Account if so
 if account.present?
 account.update_attributes(
 shopify_password: result["access_token"])
 else # Create a new account
 account = Account.create(
 shopify_shop_name: params[:shop],
 shopify_password: result["access_token"],
 shopify_account_url: params[:shop]
)

 end

 # Reload to ensure we get the proper value for ID
 account.reload

 # Set this account as the active one
 login(account.id)

Going Public

[70]

 # Redirect to the dashboard
 redirect_to dashboard_index_path

end

Update /app/views/sessions/new.html.erb with the code from
ch04_sessions_new_02.html.erb. Then reload the dashboard page
and type in the address of your Shopify test site in the form to authorize access.

Once the request is sent back to Shopify, the user will see something similar to the
following screenshot:

The permissions we asked for are listed, and the storeowner has an easy way to
grant access. Once we have access to the API, we can use it to pull information into
the new Account columns that we added earlier. We'll add the following method
to /app/services/shopify_integration.rb to accomplish the mapping to the
new Account structure:

def update_account
 shop = ShopifyAPI::Shop.current

 # Map the shop fields to our local model
 # Choosing clarity over cleverness

Chapter 4

[71]

 account = Account.find @account_id

 account.shopify_shop_id = shop.id
 account.shopify_shop_name = shop.name
 account.shop_owner = shop.shop_owner
 account.email = shop.email

 account.save
end

The updated tests can be found in ch04_shopify_integration_spec.rb. Let's
update our install controller action to call this method after we've been
granted access to the API. We'll add the following lines before redirect_to
dashboard_index_path:

Use our new credentials to grab account information
shopify_service = ShopifyIntegration.new(
 url: account.shopify_account_url,
 password: account.shopify_password,
 account_id: account.id)
shopify_service.connect
shopify_service.update_account

According to our tests, we can now respond to an authorized request initiated by
a storeowner, request appropriate permissions from Shopify, and complete the
verification process. In reality, Shopify doesn't allow us to use our development
environment as the endpoint for the authorize and install URLs, which is why we
had to use FakeWeb to simulate the responses. In order to test this out in the real world,
we'll need to deploy to Heroku and update our app listing in Shopify to point to our
production site.

Going Public

[72]

To update our listing, we can head over to our Shopify partner account, go to our
app, and click on the Edit App Settings button. We can now update the Application
Callback URL to point to the Heroku URL as shown in the following screenshot:

Once this is done, we'll be able to do an end-to-end test of the installation process
using the form we added earlier.

Let's commit our work and test it out in production using the following commands:

git add --all

git commit -am "Completed the Shopify authorization and
installation process."

git checkout master

git merge ch04_04_shopify_installation

git push

We can deploy to Heroku and run any migrations by executing the following
two commands:

git push heroku master

heroku run rake db:migrate

Chapter 4

[73]

Subscribing to and processing Shopify
Webhooks
In addition to responding to installation requests, we also need to subscribe and
respond to webhooks sent from Shopify. For example, when a storeowner uninstalls
our app from their store, we want to receive a JSON notification from Shopify that we
can use to remove their account from our database.

A more user-friendly option would be to send out an e-mail with
a link to confirm the removal of their account. This way, if the
uninstall was accidental, everything isn't purged immediately.
Given the scope of this book, however, we're going to keep it
simple and leave that as homework.

We'll be able to use the API code we already have in place in the ShopifyIntegration
class to add the creation of webhook subscriptions. As usual, let's start off by creating a
topic branch with the following command:

git checkout -b ch04_05_shopify_webhooks

To create a webhook, all we need to do is provide a URL where we'll receive the
webhooks as well as the topic that we want to subscribe to. In our case, this is app/
uninstalled. The endpoint will require a new controller as well as new routes.
You can copy the code from ch04_webhooks_controller_spec.rb, ch04_
webhooks_controller.rb, ch04_webhooks_routing_spec.rb, and
ch04_routes.rb.

You may recall that we created a global constant called DOMAIN that stores the
address of our website. We can use this to create the URL endpoint where we
want the webhooks to be sent. The method we need to add to /apps/services/
shopify_integration.rb is listed as follows:

def setup_webhooks

 webhook_url = "#{DOMAIN}/webhooks/uninstall"

 begin

 # Remove any existing webhooks
 webhooks = ShopifyAPI::Webhook.find :all
 webhooks.each do |webhook|
 webhook.destroy if webhook.address.include?(DOMAIN)
 end

Going Public

[74]

 # Set up our webhooks
 ShopifyAPI::Webhook.create(
 address: webhook_url,
 topic: "app/uninstalled",
 format: "json"
)

 rescue => ex
 puts "---------------"
 puts ex.message
 end
 end

Now, whenever a storeowner uninstalls our app, we will receive a JSON notice to the
WebhooksController#uninstall method. This method will process the webhook
and use a new method called process_uninstall in our WebhookService class to call
the destroy method on the specified Account. While we could have called the destroy
method from within the WebhooksController, we're going to go ahead and use a
service class to lay the foundation for processing more types of webhooks in the future.
We also need to remember to call setup_webhooks in our ShopifyController.

Copy the code from ch04_webhook_service.rb, ch04_webhook_service_spec.rb,
and ch04_shopify_controller.rb to the matching files in our project.

Let's wrap up the last sprint and deploy to production as follows:

git add --all

git commit -am "Completed the Shopify Webhook integration"

git checkout master

git merge ch04_05_shopify_webhooks

git push

git push heroku master

Chapter 4

[75]

Summary
In this chapter, we reworked our app to support multitenancy, which means that
multiple Shopify stores can use it simultaneously with their data kept private from
other storeowners. This involved the adding of additional fields to the Account
model and the scoping of database queries to only return results associated with
the currently logged-in account. We also changed the way we gain access to the
Shopify API, added verification steps to ensure that our app is secure, and removed
redundant pages.

We created an easy way for people to install the app to their store as well as log in
with a single click.

We're just about ready to publish the app and let people use it with their live shops.
In the final chapter of the book, we'll complete the remaining steps necessary to
monetize the app and create a listing in the Shopify App Store.

App Billing and Publication
We covered a lot of ground in the last two chapters. Our vanilla Rails application
went through several sprints and grew to be a multitenant, API-consuming,
contest-creating beast!

In this chapter, we'll complete the final steps towards the first public release of the
application. We will be adding free and paid plans and setting up billing via the
Shopify API.

At this point a private beta might be in order, where a few shops are invited to try
the app for free and provide feedback before we make it available to all Shopify users.
A beta release is a great way to create awareness of the application and get people
excited about its official release. However, equally valuable (or more so) is the helpful
feedback from users that understand that the app may have bugs/rough edges rather
than complaints from users expecting a polished and production-ready experience.

Users are more than happy to be included in the creation/refinement
of a service that they plan on using, especially if the only cost to them
is their time.

With or without a beta, the final step is to publish the app in the Shopify App Store
(http://apps.shopify.com) so that any shop owner can try it out. To do this, we'll
need to create graphics, screenshots, and marketing copy. We'll also fill out details
about price and support contacts to give prospective customers the full picture.

http://apps.shopify.com

App Billing and Publication

[78]

High-level requirements
We're going to continue to work in topic branches, write tests, and verify our features
before merging them into the master branch for deployment. In this chapter, we're
going to complete the following requirements:

•	 Add free and paid plans
•	 Integrate with the Shopify Billing API
•	 Publish our listing in the Shopify App Store

Adding free and paid plans
We're going to offer two options to our users: a free plan that allows the creation
of three Contests per month and a paid plan that allows the creation of unlimited
Contests. In practice, our application might have multiple plans that offer different
levels or features to encourage users to upgrade as their business grows, but for now,
we'll keep it simple.

As usual, we'll need to create our topic branch as follows before making any
code changes:

git checkout -b ch05_01_plan_options

Facilitating these two plans is simple. We need to add an attribute to the Account
model to track whether or not it is a paid one. We will accomplish this by creating
and executing a migration using the following commands:

rails g migration AddPlanToAccounts paid:boolean

bundle exec rake db:migrate

bundle exec rake db:migrate RAILS_ENV=test

Don't forget to update /spec/factories/account_factory.rb and /spec/
models/account_spec.rb to reflect the addition of these fields.

In practice, the maximum number of allowed contests per month might be kept in
a database table or configuration file so it could be updated later. However, we're
going to store it in a constant, just like we do our Shopify credentials and domain
name. Add the following line at the bottom of /config/environment.rb and then
restart the Rails server to load it in:

MAX_CONTESTS_PER_MONTH = ENV["MAX_CONTESTS_PER_MONTH"] || 3

Chapter 5

[79]

Next, we'll create a simple page where the user can pick the plan that they want.
At this point, it may occur to you that we are recreating the account pages that we
removed earlier. This is part of the iterative process; you may find that a piece of code
removed in a previous sprint ends up being needed later. This is perfectly acceptable;
it's better to keep the code base clean and targeted rather than have unused code
around just in case. As you'll see, it's only a matter of issuing a few commands and
making a few tweaks to recreate the code we need. If it ended up being more work
than that, we could always look at the past commits in the source code where we
removed the code related to the Account pages and copy it from there.

We're going to use the handy Rails generator to stub out the controller, tests,
and views, and then we'll simply copy the relevant code from the existing Order
code and modify it to suit our needs. We are once again going to use the built-in
Rails generator by executing the follow command:

rails g controller Accounts edit update

Since we specified the controller actions that we wanted (edit and update),
Rails already added the routes for us at /config/routes.rb. However,
we need to adjust them before we can proceed. Consider the following two lines:

get "accounts/edit"
get "accounts/update"

Replace the preceding lines with the following:

get "account"=> 'accounts#edit'
patch "account"=> 'accounts#update'
put "account"=> 'accounts#update'

The code for the updated tests can be found in ch05_accounts_routing_spec.rb
and ch05_accounts_controller_spec_v1.rb.

As before, we'll need to update the navigation in /apps/views/layouts/
application.html.erb to allow access to these pages. Update the navigation
unordered list to match the following:

<ul class="nav">
 <%= link_to "Products", products_path %>
 <%= link_to "Orders", orders_path %>
 <%= link_to "My Account", account_path %>
 <%= link_to "Logout", sessions_destroy_path %>

App Billing and Publication

[80]

We don't want the user to be able to inadvertently update their Account and change
either shopify_account_url or shopify_password, which would break the
connection to Shopify, but we still need them to be able to upgrade or downgrade
as needed. To accomplish this, we're going to streamline the update form and modify
the protected attributes to ensure that only the paid column can be updated. The code
for the views and controller can be found in ch05_accounts_form.html.erb
(which needs to be created as to /app/views/accounts/_form.html.erb),
ch05_accounts_edit.html.erb, and ch05_accounts_controller_v1.rb
(which corresponds to /app/controllers/accounts_controller.rb).

The next step is to create a way to limit the number of Contests that can be run
per billing period. We will use a simple query that returns the number of Contests
created within a specified date range to determine whether or not a user can create
any more Contests.

The instance method for the query will be part of the Account model and looks like
the following:

def contests_run(start_date, end_date)
return self.contests.where([
 "contests.created_at >= ? AND contests.created_at <= ?",
 start_date.beginning_of_day,
 end_date.end_of_day
]).count
end

Chapter 5

[81]

The code builds the query by setting the boundaries for the created_at column based
on the start_date and end_date variables. Then, it returns the count as an integer for
easy comparison.

By keeping the query generic, we'll be able to create reports later that
reuse the same code, which means less work for us!

To enforce our rule, we're going to add checks at the View and Controller level.
If an account has reached its limit for the current billing period, we're going to hide
the create Contest form and show a message instead. We'll also add a check at the
Controller level to provide feedback in the case where someone posted directly
to our server in an attempt to illicitly create a contest.

This code is similar to what we used in the production.rb environment to load values
from the Heroku ENV variables, except that it has an additional bit of logic to default
to a value of 3 if the ENV variable isn't defined. We should encapsulate the logic that is
used to check for the ability to create Contests so that the code is in one location.
Let's add a method to the Account model as follows:

def can_create_contests?
 return true if self.paid? # Paid Accounts have no limitations
 return (contests_run(DateTime.now - 1.month, DateTime.now) <
 MAX_CONTESTS_PER_MONTH)
end

This method checks to see if it's a paying account, and if not, ties together our generic
query method and MAX_CONTESTS_PER_MONTH to determine whether or not the account
is allowed to create any more contests. This logic could also reside in a helper method,
concern class, or service class, depending on your preference. For the sake of simplicity,
we'll put it in the model for now.

The updated controller code that uses this method as a security check before creating
a contest can be found at ch05_dashboard_controller.rb. The updated view file
can be found at ch05_dashboard_index.html.erb and along with the updated spec
file in ch05_account_spec.rb.

Once all of our specs have passed and we're satisfied that we've completed this sprint,
it's time to merge our branch back into master using the following commands:

git add --all

git commit -am "Added free and paid plans"

App Billing and Publication

[82]

git checkout master

git merge ch05_01_plan_options

git push

Integrating with the Shopify Billing API
Shopify offers the ability to charge our customers as an add-on to their total Shopify
bill. This allows app creators to easily earn money without having to set up a merchant
account, deal with PCI compliance, or the myriad of other fun tasks associated with
accepting funds online. However, this ease of use and reduced liability comes at a price:
Shopify currently takes a 20 percent commission off of all charges created via the API.

Shopify allows us to create two different types of charges: one-time or recurring.
One-time charges are used for things such as in-app purchases or upgrades. Recurring
charges are meant for apps that offer monthly subscriptions, and Shopify is nice
enough to handle proration for us in the case where a user upgrades in the middle
of a billing period.

Before we dive in, let's go ahead and create our topic branch to store our work
as follows:

git checkout -b ch05_02_billing_api

From the Shopify wiki (http://docs.shopify.com/api/tutorials/shopify-
billing-api#how-it-works), we can see that the workflow consists of the
following steps (consolidated for brevity):

1.	 We need to create a charge to be issued to the shop owner. Shopify will verify
the charge and return a confirmation_url, which we will use to redirect the
storeowners to a page where they can accept or decline the charge.

2.	 When a shop owner accepts or declines the charge, they will be sent to the
return_url. The return_url contains an id for the charge that we'll use
to activate it (assuming the shop owner accepted it) and capture our funds.
Failure to activate the charge will result in the charge not appearing on the
shop owner's invoice, and consequently, we will not get paid.

We're going to opt for a recurring charge of $1 a month to run unlimited contests.
We'll need to expand our ShopifyIntegration class to include the creation of a
RecurringApplicationCharge via the Shopify API. We'll need to store the charge's
ID in our accounts table in order to be able to retrieve and verify the acceptance of
the charge via the Shopify API.

To do this, we need to create and execute a migration with the following commands:

rails g migration AddChargeIdToAccounts charge_id:integer

http://docs.shopify.com/api/tutorials/shopify-billing-api#how-it-works
http://docs.shopify.com/api/tutorials/shopify-billing-api#how-it-works

Chapter 5

[83]

bundle exec rake db:migrate

bundle exec rake db:migrate RAILS_ENV=test

In the next step, we need to add a method to /app/services/shopify_
integration.rb to create the charge and return the confirmation URL
from Shopify as follows:

 def create_charge(amount, is_test)
 return_url = "#{DOMAIN}/shopify/confirm"

 # Create the charge
 charge = ShopifyAPI::RecurringApplicationCharge.create(
 name: "Contest App Paid Membership",
 price: amount.to_f,
 return_url: return_url,
 test: is_test ? true : nil
)

 # Store the charge id for future reference
 account = Account.find @account_id
 account.update_attribute(:charge_id, charge.id)

 # Return the unique confirmation URL
 return charge.confirmation_url
 end

This method creates a recurring charge, stores charge_id in the database for future
reference, and returns confirmation_url as the result of the method invocation.
We can easily integrate this into our AccountsController#update method to
immediately redirect the user if they decide to upgrade, which we will do shortly.

The is_test parameter exists because Shopify doesn't allow us to
actually charge test shops with real transactions. So, for development
purposes, we need to be able to pass in the test flag with our request.

We also need to add a method that removes the charge if the user downgrades to
the free plan. Add the following method below the create_charge method in
/app/services/shopify_integration.rb:

This method destroys the recurring charge in Shopify
 def delete_charge(charge_id)
 begin
 charge=ShopifyAPI::RecurringApplicationCharge.find (charge_id)
 rescue
 end

App Billing and Publication

[84]

 # Ensure that the charge exists
 # trying to destroy it
 if charge.present?
 return charge.destroy
 else
 return true
 end
 end

The updated ShopifyIntegration class and related tests can be found in
ch05_shopify_integration.rb and ch05_shopify_integration_spec.rb .
Additionally, we need to modify the AccountsController#update method to
create the recurring charge when the user upgrades and to delete the charge if they
downgrade. The updated controller can be found in ch05_accounts_controller_
v2.rb (which corresponds to /app/controllers/accounts_controller.rb)
and the updated spec in ch05_accounts_controller_spec_v2.rb.

The following is a screenshot of what the shop owner will see when we redirect them
to confirm the charge. It looks ugly because we haven't uploaded an icon for our app,
which we'll do as part of filling out the listing in just a bit.

Next, we need to add a confirm action to our ShopifyController to receive the
postback from Shopify that contains the charge_id value so that we can verify
whether the merchant accepted it or not. If the charge was accepted, we need to
activate it via the Shopify API and then set the paid flag for the Account model. If
the merchant did not accept the charge, then we need to mark their account as unpaid.

Chapter 5

[85]

Copy the routes from ch05_routes.rb to /config/routes.rb. The updated
controller code can be viewed in ch05_shopify_controller.rb and the related
tests in ch05_shopify_controller_spec.rb.

Supporting recurring charges
Once the recurring charge is under way, the following situations can occur:

•	 A recurring charge was declined because the shop owner didn't pay
their Shopify bill

•	 A recurring charge was declined because they completely closed their
Shopify account

•	 The shop owner downgraded from paid back to free in the middle of
the billing cycle

These are business decisions that will drive the technical solution. Once you've
decided how you want to handle these, you can build the test suite to simulate
the different use cases before writing the code and making releases.

Once all of our tests pass and we're satisfied that we've completed this sprint,
it's time to merge our code back into master as follows:

git add --all

git commit -am "Added support for Shopify Billing API"

git checkout master

git merge ch05_02_billing_api

git push

Publishing in the Shopify App Store
The final step is to fill out a listing for our app and submit it to the Shopify App
Store. This listing includes the marketing copy, screenshots, icons, keywords,
and pricing information. It's very important to make the listing as appealing
as possible because this is the first impression most users will have of our app.

App Billing and Publication

[86]

The images will need to conform to the size and resolution specifications listed on
the form, so contact a graphical designer if this is beyond your skill set. Additionally,
have someone read over the marketing copy to check for spelling and grammatical
errors as well as coherence and readability. Remember that this listing will be the
first impression you make to a majority of the Shopify storeowners.

Once the listing is complete, all you need to do is submit it to Shopify and wait for
it to be published. Once it's live, you'll want to do an end-to-end test to ensure that
everything works as expected. Create a new shop via your Partner Account and go
through the entire installation process from start to finish. Create a few test products
and orders, and run a contest or two.

As you learned earlier, test shops can't be charged using the Billing API, so you'll
need to either use a real one or start a trial for one of your test shops in order to make
sure the charge shows up properly.

If you were able to do all of this without an issue, congratulations you made it!

Chapter 5

[87]

Summary
This chapter marks the launch of Version 1.0 of our app!

We added a free and paid option and integrated with the Shopify Billing API for
monetization. We wrapped up by spending some quality time creating a listing
in the Shopify App Store that highlights the features of our app, entices storeowners
to install it, and provides relevant information on pricing and support.

This book intentionally focused on the back-end programming related to creating
an app and relied heavily on the Twitter Bootstrap generators to provide a basic UI.
The upshot of using a popular library such as Bootstrap means that we'll be able to
modify the CSS (or hire a designer) to improve the look and feel of the app fairly
easily. Shopify maintains a list of experts, which is a great place to find a designer or
developer to help you build your app. You can read reviews, compare rates, and see
a portfolio of recent projects for each expert at http://experts.shopify.com.

Good luck!

http://experts.shopify.com

Index
A
ActiveRecord Query Interface 48
Apache Subversion (SVN) 22
API 10
API credentials

installing, from Shopify App Store 67-72
storing 29-31

app
building 9, 12
multitenant app, building 51
private app, building 26, 27
requisites 78

application directory
creating 18

Aptana
URL 16

B
backdoor 62
beta 77
Bitbucket

URL 22

C
Concurrent Versions System (CVS) 22
constant 78

D
DashboardController class 20
development environment

application directory, creating 18
Ruby, installing 18
Ruby management tool, installing 17, 18

setting up 17
development tool

selecting 16

F
filter 61
free plan

adding, to app 78-81

G
Git

URL 22

H
Heroku

about 22
URL 22
using 23

HTTP GET/POST requests
verifying 64, 65

I
installation

Rails 18
Ruby 18
Ruby management tool 17
RVM 17, 18
Twitter Bootstrap 20, 21
required gems 29

J
JSON notification 73

[90]

L
listing

publishing, in Shopify App Store 85, 86

M
Model-View-Controller (MVC) 8, 15
multiple accounts

supporting for 52-56
multitenant app

about 51
building 51
requisites 51

O
Order webhooks 11

P
paid plan

adding, to app 78-81
Pik

URL 17
Platform as a Service (PaaS) 22
private app

about 9
building 26, 27
developing, workflow 26
requisites 27

Product webhooks 11
public app 10. See also multitenant app

R
Rails

about 8, 18
app, generating 19, 20
installing 18

Rbenv
URL 17

required gems
installing 28, 29

requisites, app
about 78
free plan, adding 78-81
integrating, with Shopify Billing API 82-85

listing, publishing in Shopify
App Store 85, 86

paid plan, adding 78-81
requisites, multitenant app

about 51
API credentials, installing from Shopify

App Store 67-72
multiple accounts, supporting 52-56
Shopify requests, verifying 63, 64
user access, authorizing 57-63
webhooks, processing 73, 74
webhooks, subscribing to 73, 74

requisites, private app
API credentials, storing 29-31
connecting, to Shopify 31-33
contests, creating 44-50
gems, installing 29
order information, retrieving from Shopify

37-39
product information, retrieving from

Shopify 33-37
required gems, installing 27
UI, cleaning up 39
winner, selecting 41-43

RSpec 28
Ruby

installing 18
Ruby in Steel

URL 16
Ruby management tool

installing 17
RubyMine

URL 16
Ruby on Rails®

about 15
URL 15

Ruby Version Manager (RVM)
installing 17, 18

S
scaffold 29
SHA256 algorithm 65
Shopify

about 7
API 10
app, building 12

[91]

order information, retrieving from 37-39
private app, developing 26
product information, retrieving from 33-37
signing up 25
URL, for signing up 25

Shopify App Store
API credentials, installing from 67-72
listing, publishing in 85, 86
URL 77

Shopify Billing API
app, integrating with 82-85
recurring charge, handling 85

Shopify requests
HTTP GET/POST requests, verifying 64, 65
verifying 64
webhooks requests, verifying 64-66

Software as a Service (SaaS) 7
source control

setting up 21, 22
Source Control Management (SCM) 22
Sublime Text

URL 16

T
Test-Driven Development (TDD) 25
TextMate

URL 16
Twitter Bootstrap

installing 20, 21

U
UI

cleaning up 39
merging, with master branch 41
orders, updating 41
products, updating 41
sidebar, updating 40
variants, updating 41

Unfuddle
URL 22

user access
authorizing, to data 57-63

W
webhooks

about 7, 8
Application 11
Order webhooks 11
processing 73, 74
Product webhooks 11
Shop 11
subscribing to 73, 74
URL 8
requests, verifying 65, 66

Thank you for buying
Shopify Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

WordPress Web
Application Development
ISBN: 978-1-78328-075-9 Paperback: 376 pages

Develop powerful web applications quickly using
cutting-edge WordPress web development techniques

1.	 Develop powerful web applications rapidly
with WordPress.

2.	 Practical scenario-based approach with
ready-to-test source code.

3.	 Learning how to plan complex web
applications from scratch.

Instant E-commerce with
OpenCart: Build a Shop
ISBN: 978-1-78216-968-0 Paperback: 70 pages

A fast-paced, practical guide to setting up your own
shop with OpenCart

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Install and configure OpenCart correctly.

3.	 Tackle difficult tasks such as payment gateways,
shipping options, product attributes, and
managing orders.

Please check www.PacktPub.com for information on our titles

Magento Beginner's Guide
Second Edition
ISBN: 978-1-78216-270-4 Paperback: 320 pages

Learn how to create a fully featured, attractive online
store with the most powerful open source solution
for e-commerce

1.	 Install, configure, and manage your own
e-commerce store.

2.	 Extend and customize your store to reflect your
brand and personality.

3.	 Handle tax, shipping, and custom orders.

Instant E-Commerce with
Magento: Build a Shop
ISBN: 978-1-78216-486-9 Paperback: 52 pages

A fast-paced, practical guide to building your own
shop with Magento

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Learn how to install and configure an online
shop with Magento.

3.	 Tackle difficult tasks such as payment gateways,
shipping options, and custom theming.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Shopify
	Revealing Shopify's power
	Deciding which type of app to build
	Discovering the API
	Exploring Webhooks
	Orders
	Products
	Shop / Application

	Getting ready to build an app
	Summary

	Chapter 2: Setting Up
	Choosing a development tool
	Setting up our development environment
	Installing a Ruby management tool
	Installing Ruby
	Creating the application directory

	Installing Rails
	Generating a Rails app

	Installing Twitter Bootstrap
	Setting up source control
	Deploying to Heroku
	Summary

	Chapter 3: Building a Private App
	Signing up for Shopify
	Understanding our workflow
	Building the application
	High-level requirements
	Installing a few necessary gems
	Storing Shopify API credentials
	Connecting to Shopify
	Retrieving product information from Shopify
	Retrieving order information from Shopify
	Cleaning up the UI
	Picking a winner from a list
	Creating contests

	Summary

	Chapter 4: Going Public
	High-level requirements
	Supporting multiple accounts
	Authorizing user access to data
	Verifying Shopify requests
	Verifying HTTP GET/POST requests
	Verifying webhook requests

	Installing from the Shopify App Store
	Subscribing to and processing Shopify Webhooks

	Summary

	Chapter 5: App Billing and Publication
	High-level requirements
	Adding free and paid plans
	Integrating with the Shopify Billing API
	Supporting recurring charges

	Publishing in the Shopify App Store

	Summary

	Index

