

SignalR	–	Real-time	Application
Development	Second	Edition

Table	of	Contents

SignalR	–	Real-time	Application	Development	Second	Edition

Credits

About	the	Author

Acknowledgments

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

The	emperor’s	new	clothes

The	good	old	terminal

X	Server

Remote	desktop

Rich	clients

The	Web

Full	duplex	on	the	Web

Events

Comet

Hand-rolling	it	all

Why?

Now	what?

Think	different

Personal	style

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	The	Primer

Where	are	we	coming	from?

The	terminal

Fast	forwarding

Completing	the	circle

SignalR

Terminology

Messaging

Publish/subscribe

Decoupling

Patterns

Model	View	Controller

Model	View	ViewModel

Libraries	and	frameworks

jQuery

ASP.NET	MVC	5

AngularJS

Twitter	Bootstrap

Tools

Visual	Studio	2013

NuGet

Summary

2.	Persistent	Connections

Persistent	connections	–	what	are	they?

Where	are	we	going?

Getting	the	project	ready

Setting	up	the	packages

The	single	page	application

The	“code-behind”

Getting	started	with	the	server-side

Connecting	the	dots

Making	the	UI	light	up

Summary

3.	Hubs

Moving	up	a	level

The	client

Decoupling	it	all

The	Dependency	Inversion	Principle

Proxies

Life	cycle	events

Separation

Summary

4.	Groups

Getting	specific	with	groups

Composing	the	UI

Summary

5.	State

Becoming	stateful

The	client

Lifetime	event	handlers	and	more

Summary

6.	Security

Locking	things	down

Putting	the	infrastructure	in	place

HTTP	handler	config

Authentication

Securing	the	hub

The	great	finale

Summary

7.	Scaling	Out

It’s	all	about	messages	in	SignalR

Scaling	out	with	SQL	Server

Scaling	out	with	Redis

Scaling	out	with	Azure

Creating	our	own	backplane

Hooking	it	all	up

Summary

8.	Building	a	WPF	.NET	Client

Decoupling	it	all

Decoupling	–	the	next	level

Building	for	the	desktop

Setting	up	the	packages

Observables

Adding	security

Adding	support	for	cookies

Binding	helper

Creating	a	client	security	service

Adding	a	login	view

The	hub	proxy

Our	chat	rooms

The	chat

The	composition

Summary

9.	Write	Once,	Deploy	Many

Cross	platform

Getting	started

Code	signing

Preparing	for	connections

Packages

MVVM

Messenger

DelegateCommand

Security

ChatHub

Login

ChatRooms

Chat

The	result

Summary

10.	Monitoring

Logging

Logging	on	the	server	side

Logging	in	the	JavaScript	client

Logging	in	the	.NET	client

Logging	from	the	Xamarin	client

Digging	deeper	into	the	communication

Looking	under	the	cover	with	Fiddler

Performance	counters

Under	the	cover,	inside	the	browser

Summary

11.	Hosting	a	Server	Using	Self-hosted	OWIN

Self-hosting

Adding	the	needed	packages

Adding	the	code	needed	for	self-hosting

The	client

Summary

Index

SignalR	–	Real-time	Application
Development	Second	Edition

SignalR	–	Real-time	Application
Development	Second	Edition
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	June	2013

Second	edition:	September	2015

Production	reference:	1240915

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-545-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Einar	Ingebrigtsen

Reviewers

Niclas	Sahlin

Najam	Uddin

Commissioning	Editor

Dipika	Gaonkar

Acquisition	Editors

Vinay	Argekar

Sam	Wood

Content	Development	Editor

Rashmi	Suvarna

Technical	Editor

Madhunikita	Sunil	Chindarkar

Copy	Editor

Trishya	Hajare

Project	Coordinator

Judie	Jose

Proofreader

Safis	Editing

Indexer

Priya	Sane

Production	Coordinator

Nitesh	Thakur

Cover	Work

Nitesh	Thakur

About	the	Author
Einar	Ingebrigtsen	has	been	working	professionally	with	software	since	1994—ranging
from	games	development	on	platforms	such	as	PlayStation,	Xbox,	and	the	PC	to	the
enterprise	line	of	business	application	development	since	2002.	He	has	always	focused	on
creating	great	products	with	great	user	experiences,	putting	the	user	first.	Einar	was	a
Microsoft	MVP	awardee	from	October	2008	until	July	2015,	which	he	was	awarded	for
his	work	in	the	community	and	in	the	Silverlight	space	with	open	source	projects	such	as
Balder,	a	3D	engine	for	Silverlight.	For	years,	Einar	ran	a	company	called	Dolittle	together
with	partners,	doing	consultancy	work	and	building	their	own	products	with	their	own
open	source	projects	at	the	heart	of	what	they	did.	Amongst	the	clients	that	Dolittle	has
had	over	the	last	couple	of	years	include	NRK	(the	largest	TV	broadcaster	in	Norway),
Statoil	(a	Norwegian	oil	company),	Komplett	(the	largest	e-commerce	company	in
Norway),	and	Holte	(a	leading	Norwegian	developer	for	construction	software).	Today,
Einar	works	for	Microsoft	as	a	technical	evangelist,	focusing	on	Azure	and	advising	ISVs,
which	meant	giving	up	the	MVP	title.

A	strong	believer	in	open	source,	he	runs	a	few	projects	in	addition	to	Balder,	the	largest
being	Bifrost	(http://bifr.st),	a	line	of	business	platforms	for	.NET	developers,	and	also
worth	mentioning	is	Forseti	(http://github.com/dolittle/forseti),	a	headless	auto-running
JavaScript	test	runner.

Additionally,	Einar	loves	talking	at	user	groups	and	conferences	and	has	been	a	frequent
speaker	at	Microsoft	venues,	talking	about	different	topics—the	last	couple	of	years	he	has
mostly	focused	on	architecture,	code	quality,	and	cloud	computing.

His	personal	blog	is	at	http://www.ingebrigtsen.info.

Einar	has	also	published	another	book	on	the	subject	of	SignalR	Blueprints,	by	Packt
Publishing.

http://bifr.st
http://github.com/dolittle/forseti
http://www.ingebrigtsen.info

Acknowledgments
It	might	sound	like	a	cliché,	but	seriously,	without	my	wife	Anne	Grethe	this	book	could
not	have	happened.	Her	patience	with	me	and	her	support	is	truly	what	pretty	much	makes
just	about	anything	I	do	turn	into	a	reality.	To	my	kids,	Mia	and	Herman,	you	rock!
Thanks	to	my	kids	for	keeping	me	mentally	younger	and	playful.	I’d	also	like	to	thank	my
colleagues,	who	have	been	kind	enough	to	not	point	out	that	I’ve	had	too	much	going	on
in	the	period	of	writing	this	book.	I’ll	be	sure	to	buy	a	round	the	next	time	we’re	having	a
company	get-together.

About	the	Reviewers
Niclas	Sahlin	works	as	a	software	developer	in	Gothenburg,	Sweden.	After	graduating
from	Chalmers	University	of	Technology	with	a	degree	in	software	engineering	in	2012,
he	started	working	full-time	with	ASP.NET,	and	has	not	turned	his	back	on	it	since.

His	first	contact	with	ASP.NET	was	during	his	studies	at	Chalmers.	He	used	it	in	various
projects	in	his	spare	time	and	soon	took	interest	in	the	frontend	side	of	web	development.
During	the	development	of	a	game	together	with	two	friends,	he	discovered	SignalR	and
the	capabilities	the	library	provided,	and	he	has	used	it	for	many	projects	since	then.

You	can	find	Niclas	on	Twitter	as	@niclassahlin	or	visit	his	blog	at
www.niclassahlin.com	to	learn	more	about	him	and	what	he	does.

Najam	Uddin	specializes	in	designing	and	creating	secure	and	scalable	solutions.	With
over	10	years	of	experience	in	software	design,	development,	and	support,	he	has
engineered	strong,	data-driven	web	applications	and	services	for	the	banking	and	finance,
oil	and	gas,	and	insurance	industries.	He	is	mainly	focused	on	the	Microsoft	technology
stack.	He	has	a	master	of	science	degree	from	Birla	Institute	of	Technology	and	Science,
Pilani.	You	can	contact	him	at	<connect@najam.in>.

http://www.niclassahlin.com
mailto:connect@najam.in

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
This	preface	gives	you	a	look	at	what	this	book	consists	of,	conventions	and	details	about
downloading,	and	more.	In	addition,	it	establishes	a	common	understanding,	setting	the
theme	for	the	rest	of	the	book.	It	walks	you	through	the	history	of	application
development,	especially	that	of	web	applications.

The	topics	that	will	be	covered	are	as	follows:

Why	we	need	to	think	differently	about	our	applications	and	how	they	relate	to	a
server
The	different	techniques	that	can	be	used	without	something	like	SignalR
The	protocols	and	techniques	that	SignalR	uses	to	do	what	it	does
Why	we	need	something	like	SignalR
What	UX	improvements	one	could	have	in	an	application	when	applying	SignalR

At	this	stage,	the	developer	should	have	a	basic	knowledge	of	how	SignalR	works	and
what	the	developer	needs	to	rethink	when	designing	applications	that	have	a	persistent
connection	to	the	server.

The	emperor’s	new	clothes
As	with	fashion,	it	sometimes	feels	like	history	repeats	itself	in	our	industry	as	well.	It
seems	that	we	have	come	full	circle	with	how	software	should	be	architected.	I	guess	this
comes	from	having	pretty	much	the	same	goal;	software	solutions	that	are	available	to	a
lot	of	users	and	keep	the	data	as	updated	as	possible	for	all	users.	What	this	means	is	that
we	probably	want	to	have	a	shared	data	source	from	where	all	clients	can	get	their	data.	It
also	means	that	we	need	some	kind	of	network	connection	for	the	clients	to	connect	to	the
centralized	data	source.	The	clients	are	typically	distributed	across	multiple	offices,	maybe
even	different	geo-locations.	With	different	geo-locations	often	comes	the	challenge	of
different	network	types	and	bandwidth.

The	good	old	terminal
Before	we	get	in	to	the	cool	stuff,	it’s	important	to	gain	some	perspective	on	the	problem
we’re	trying	to	solve.	It	is,	in	fact,	a	real	problem	dating	back	to	the	early	days	of
computers.

Back	in	the	1970s,	in	the	early	days	of	computers,	it	was	quite	common	to	see	terminals	in
offices	much	like	the	one	shown	in	the	following	image:

The	nature	of	these	terminals	was	to	be	as	dumb	as	possible.	They	didn’t	do	any
computation,	nor	did	they	hold	any	state.	The	terminal	only	reflected	what	the	server
wanted	the	terminal	to	show	on	screen,	so	in	many	ways	they	were	just	really	fancy
television	sets.	Any	input	from	the	user’s	keyboard	was	sent	to	the	server,	and	the	server
interpreted	the	user	input,	updated	the	users’	terminal	session,	and	sent	the	screen	update
back	to	the	terminal,	as	shown	in	the	following	diagram:

This	model	proved	very	helpful;	technically,	we,	as	developers,	had	everything	on	our
server	and	didn’t	have	to	think	about	any	rich	clients	holding	stakes	and	making	it	all	the
more	complex.	We	only	needed	to	scale	the	server,	and	potentially	deal	with	multiple
servers	and	keep	them	in	sync,	or	work	against	a	centralized	data	source.	However,	it
didn’t	prove	useful	for	a	good	user	experience.	The	terminals	were	limited	to	text	only,
and	the	types	of	user	interface	one	could	create	were	limited,	often	ending	up	being	very
data-centric	and	keyboard-friendly.

X	Server
The	X	Window	system	(commonly	known	as	X11)	came	in	1984,	originating	at	the
Massachusetts	Institute	of	Technology	(MIT).	It	was	a	graphical	user	interface	system.
With	it	came	a	network	protocol	to	enable	networked	computers	to	connect	to	servers	in	a
similar	fashion	as	the	terminals	of	the	’70s,	but,	with	its	graphical	capabilities,	it	was	a	big
step	up	from	the	text-based	terminal.

As	with	the	terminal	solution,	the	users’	input	was	to	be	sent	to	a	server,	and	the	software
the	user	used	would,	in	fact,	run	on	that	very	server.	The	result	in	the	graphical	user
interface	would	then	be	sent	back	to	the	client	machine,	as	represented	in	the	following
figure,	again	leaving	the	client	to	be	rather	dumb	and	passive:

Remote	desktop
Meanwhile,	in	the	world	of	Windows,	in	1998,	Windows	NT	4.0	got	a	new	edition	of	the
operating	system:	Terminal	Server	Edition.	With	this	edition,	Microsoft	introduced	a	new
protocol	called	the	Remote	Desktop	Protocol	(RDP).	It	enabled	the	client	to	view	another
computer’s	desktop.	With	NT4	Terminal	Server,	the	operating	system	was	able	to	host
multiple	desktops	for	multiple	users	at	the	same	time.	From	this	remote	desktop,	clients
could	then	launch	any	application	they	wanted	that	existed	on	the	server	they	were
connected	to.	As	with	the	good	old	terminals,	the	client	computer	did	not	need	to	be	very
capable.	In	fact,	this	turned	out	to	give	birth	to	an	industry,	Think	Client	computers,
capable	of	connecting	to	RDP-enabled	servers,	as	shown	in	the	following	block	diagram:

Rich	clients
Running	the	software	on	the	server	puts	tremendous	pressure	on	the	server	and	its
capability.	The	server	must	be	capable	of	handling	all	the	users	and	their	inputs,	which
leads	to	the	need	for	a	certain	computational	power;	of	course,	depending	upon	the
application	itself.

Sometimes	it	does	not	make	any	sense	to	have	everything	running	on	a	server.	It	might	not
be	worth	it	for	your	particular	application,	or	it	might	be	too	costly	to	try	to	scale	for	what
you	need.	It	can	also	be	a	question	of	responsiveness;	your	app	might	need	more
responsiveness	to	make	sense	to	the	user.	However,	taking	the	step	into	the	world	of	a	rich
stateful	client	normally	increases	the	complexity	of	our	solutions,	depending	on	what
we’re	making.

If	we	do	not	have	any	concurrency	issues	or	data	that	has	become	stale,	we	don’t
necessarily	have	any	issues	that	need	to	be	solved.	Unfortunately,	for	most	lines	of
business	software	out	there,	this	is	not	the	case.	We	need	to	take	into	consideration	that
there	might	be	multiple	users	out	there,	and	decide	on	how	to	deal	with	them.	We	can	go
down	the	optimistic	path	and	pretend	that	the	users	seldom	run	into	each	other’s	data	and
we	just	overwrite	any	data	that	we	might	have	modified	while	we	were	making	a	change
in	the	same	piece	of	data.	We	could	also	go	pessimistic	and	not	allow	that	at	all,	which
would	give	us	an	exceptional	state	in	the	application	that	we	often	let	our	users	deal	with.
This	way,	we	can	let	the	rich	clients	deal	with	this	and	pretty	much	leave	the	problem
behind	and	use	something	like	TCP	sockets	and	communicate	among	the	clients	as	they
are	changing	the	state.	The	other	respective	clients	can	then	pick	up	the	change	and	alter
their	own	state	before	the	user	saves	theirs.	They	can	even	notify	the	user	that	someone
else	has	modified	it.

The	Web
Here	we	are	again,	back	to	the	dumb	client.	Our	web	browsers	have	served	as	the	passive
client	for	years.	The	model	is	frighteningly	similar	to	the	terminal	solution	of	the	’70s;	a
dumb	client	capable	of	taking	input	and	rendering	whatever	comes	across	the	network,
and	a	rich	server	doing	all	the	work.

Hypertext	Transfer	Protocol	(HTTP)	is	what	makes	up	the	Web.	It	surfaced	for	the	first
time	in	1991	and	basically	describes	a	protocol	for	making	a	request	to	a	server	and	the
server	sending	a	response	back.	The	protocol	is	stateless	and	you	will	need	to	keep	the
state	either	on	the	server	or	the	client.	Within	the	protocol	there	are	well-defined	verbs	that
can	be	used,	such	as	POST,	GET,	PUT,	DELETE,	and	many	more.	These	verbs	let	us
describe	what	we	are	doing.	However,	a	well-defined	and	rich	protocol	has	nothing
defined	in	it	to	let	the	clients	be	persistently	connected.	You	can	read	more	about	HTTP	at
http://en.wikipedia.org/wiki/Http.

As	the	capability	of	web	browsers	has	increased	over	time,	we’ve	watched	them	go	from
being	very	passive	to	rich	clients.	The	mid	2000s	gave	us	the	buzz	often	referred	to	as
Web	2.0	and	AJAX	(Asynchronous	JavaScript	and	XML).	At	the	core	of	this	JavaScript
was	something	called	XHR	(XMLHttpRequest),	making	it	programmatically	possible	to
call	the	server	from	the	client	without	any	user	interaction.	This	technique	leverages
HTTP,	and	you	find	yourself	getting	parts	or	even	the	data	instead	of	getting	whole	web
pages.	You	can	put	the	data	into	the	already-rendered	web	page.	You	can	find	more	details
about	AJAX	at	http://en.wikipedia.org/wiki/Ajax_(programming).

Modern	web	applications	are	turning	into	a	hybrid	of	rich	clients	and	thin	clients;	very
capable,	but	they	shouldn’t	do	it	all	–	we	also	need	the	server-side	logic.	A	true	step	in	the
right	direction	is	letting	the	client	be	good	at	its	forte	and	doing	likewise	with	the	server,
thus	separating	the	concerns	of	the	two	tiers.

Now	that	we	have	all	this	power	in	the	browser,	we	quickly	run	into	similar	problems	as
those	we	run	into	with	regular	rich	clients,	that	is,	states	on	the	client.

http://en.wikipedia.org/wiki/Http
http://en.wikipedia.org/wiki/Ajax_(programming)

Full	duplex	on	the	Web
With	the	evolution	going	back	to	where	we	started	from,	meaning	that	we	are	now	at	a
point	where	we	need	the	same	kind	of	connectivity	that	we	needed	for	rich	desktop
applications	in	the	past,	but	now	the	demand	is	that	applications	go	live	on	the	web.	With
user	demand	come	technical	challenges:	the	web	is	not	built	for	this;	the	web	is	based	on	a
request/response	pattern.	The	browser	goes	to	a	specific	URL	and	a	server	generates	a
resource.

One	of	the	things	that	the	W3C	organization	has	done	to	accommodate	this	need	is	the
standardization	of	something	called	WebSocket:	full-duplex	communication	channel	over
a	single	TCP	connection.	A	very	good	initiative	is	something	that	will	be	supported	by	all
browser	vendors	as	well	as	web	servers.	The	challenge,	with	it	getting	a	broad	adoption,	is
on	the	infrastructure	that	makes	up	the	Web.	The	entire	infrastructure	has	been	optimized
for	the	request/response	pattern,	and	a	steady	connection	establishes	a	point-to-point
connection	between	two	computers,	and	all	of	a	sudden	scalability	becomes	an	issue.	So	in
many	cases,	this	might	not	be	the	best	solution.

Events
Another	initiative	called	server-sent	events	was	implemented	by	Opera,	the	Norwegian
browser	vendor,	which	is	now	being	standardized	by	W3C.	It	gives	us	the	opportunity	to
push	events	from	the	server	to	the	clients	that	are	connected.	On	combining	it	with	the
regular	HTTP	request/response,	we	are	able	to	meet	the	requirements	of	rich	applications.
You	can	read	more	about	server-sent	events	at	http://en.wikipedia.org/wiki/Server-
sent_events.

http://en.wikipedia.org/wiki/Server-sent_events

Comet
Not	changing	the	subject	just	yet,	a	technique	called	Comet	has	also	been	applied	with
great	success.	The	basic	principle	is	to	utilize	something	called	long	polling	HTTP
requests.	One	opens	an	HTTP	request	to	the	server	from	the	client,	and	the	server	does	not
return	anything	until	it	has	something	to	return,	like	an	event	that	happens	on	the	server.
When	the	response	has	been	given,	the	client	starts	a	new	long	polling	connection	and
keeps	on	doing	so	for	ever.	This	simulates	a	full-duplex	connection	and	scales	very	well
with	the	existing	infrastructure	of	the	Web,	as	shown	in	the	following	block	diagram.	You
can	read	more	about	comet	here:	http://en.wikipedia.org/wiki/Comet_(programming).

Hand-rolling	it	all
By	now	you	probably	know	where	I	am	going	with	this.	The	techniques	described
previously	are	some	of	the	techniques	that	SignalR	utilizes.	The	techniques	and	standards
are	well	known,	and	nothing	is	holding	you	back	from	working	with	them	directly,	but	this
is	where	SignalR	comes	in	and	saves	the	day.

http://en.wikipedia.org/wiki/Comet_(programming)

Why?
The	most	important	thing	to	ask	in	software	development	is	“why?”
(http://en.wikipedia.org/wiki/5_Whys).	Why	do	we	want	all	this?	What	is	it	that	we’re
really	trying	to	solve?	We’re	trying	to	make	the	software	more	collaborative	and	make
users	work	together	without	having	artificial	technical	limitations	to	this	collaboration.	In
fact,	why	not	have	the	changes	occur	in	real	time	when	all	the	users	are	collaborating?

http://en.wikipedia.org/wiki/5_Whys

Now	what?
SignalR	represents	an	abstraction	for	all	the	techniques	that	it	supports	today,	and	with	it
we	also	gain	the	extensibility	of	supporting	techniques	that	might	come	along	in	the
future.	It	has	a	built-in	fallback	mechanism	which	enables	it	to	pick	the	best	solution	for
your	app	and	its	environment,	and	it	is	also	based	on	the	client	connection.	In	addition,
SignalR	provides	great	mechanisms	for	scaling	out	in	a	multiserver	environment,	enabling
applications	to	be	blissfully	unaware	of	the	server	they	are	running	on	and	just	work	with
the	same	abstraction	as	if	it	was	only	one	server.

Think	different
Apple	coined	the	phrase	Think	different	back	in	1997.	The	phrase	in	itself	forces	you	to
think	differently,	since	it	is	grammatically	incorrect.	With	all	the	asynchronous	operations
and	events	going	into	a	technology	like	SignalR,	one	really	has	to	think	in	a	different
manner,	but	a	manner	that	is	different	in	a	good	way.	It	is	good	for	users,	as	we	are	now
forced	to	create	user	experiences	that	are	non-blocking.	Of	course,	you	as	a	developer	can
force	locks	onto	the	users,	but	I	would	argue	that	it	would	be	easier	not	to,	and	instead
approach	building	the	user	interface	in	a	different	manner.

For	instance,	one	of	the	things	that	we	tend	to	build	into	our	apps	is	the	notion	of
concurrency	and	stale	data.	We	don’t	want	to	run	the	risk	of	two	users	updating	the	exact
same	data	and	one	client	not	having	the	updated	data	from	the	other	user.	Often	we	leave
our	users	to	get	a	bizarre	error	message	that	the	user	often	won’t	understand.	A	better
solution	would	be	to	have	all	the	data	on	all	user	screens	be	updated	as	they	are	looking	at
it,	and	maybe	even	make	them	aware	in	a	subtle	way	of	the	changes	that	happened	due	to
the	other	user(s).

Personal	style
Throughout	this	book,	you’ll	run	into	things	you	might	disagree	with.	It	could	be	things	in
naming	the	classes	or	methods	in	C#,	for	instance,	at	times,	I	like	to	drop	camel	casing,
both	upper	and	lower,	and	just	separate	the	words	with	underscores	yielding
“some_type_with_spaces”.	In	addition,	I	don’t	use	modifiers	without	them	adding	any
value.	You’ll	see	that	I	completely	avoid	private	as	that	is	the	default	modifier	for	fields	or
properties	on	types.	I’ll	also	avoid	things	such	as	read-only,	especially	if	it’s	a	private
member.	Most	annoyingly,	you	might	see	that	I	drop	scoping	for	single	line	statements
following	an	IF	or	FOR.	Don’t	worry,	this	is	my	personal	style;	you	can	do	as	you	please.
All	I’m	asking	is	that	you	don’t	judge	me	by	how	my	code	looks.	I’m	not	a	huge	fan	of
measuring	code	quality	with	tools	such	as	R#	and	its	default	setting	for	squiggles.	In	fact,
a	colleague	and	I	have	been	toying	with	the	idea	of	using	the	underscore	trick	for	all	our
code,	as	it	really	makes	it	a	lot	easier	to	read.

You’ll	notice	throughout	that	I’m	using	built-in	functions	in	the	browser	in	JavaScript,
where	you	might	expect	jQuery.	The	reason	for	this	is	basically	that	I	try	to	limit	the	usage
of	jQuery.	In	fact,	it’s	a	dependency	I’d	prefer	not	to	have	in	my	solutions,	as	it	does	not
add	anything	to	the	way	I	do	things.	There	is	a	bit	of	an	educational,	also	quite	intentional,
reason	for	me	to	not	use	jQuery	as	well:	we	now	have	most	of	the	things	we	need	in	the
browser	already.

What	this	book	covers
Chapter	1,	The	Primer,	explains	that	in	order	to	get	started	with	SignalR	and	real-time	web
applications,	it	is	important	to	understand	the	motivation	behind	wanting	to	have	such	a
technology	and	way	of	approaching	application	development.

Chapter	2,	Persistent	Connections,	explains	that	at	the	core	of	SignalR	sits	something
called	PersistentConnection,	and	this	is	where	everything	starts.	In	this	chapter,	you	will
learn	how	to	get	started	with	it	on	the	backend	and	consume	it	in	the	frontend.

Chapter	3,	Hubs,	enables	us	to	move	from	persistent	connections	to	one	abstraction	up:
something	called	hubs.	A	hub	provides	a	more	natural	abstraction	for	most	scenarios.	They
are	easier	to	write	and	easier	to	consume.

Chapter	4,	Groups,	explains	that	sometimes	you	want	to	filter	messages	so	that	you	have
better	control	over	which	client	gets	which	messages.	Grouping	in	SignalR	is	a	way	to
accomplish	this.	You	will	learn	how	to	deal	with	this	on	the	server	and	the	client.

Chapter	5,	State,	explains	that	in	addition	to	sending	messages	between	clients	and	servers
that	are	very	explicit,	you	sometimes	need	to	have	accompanying	metadata	or	additional
data	that	is	cross-cutting.	In	this	chapter,	you	will	learn	about	states	that	can	go	back	and
forth	with	messages.

Chapter	6,	Security,	explains	that	just	about	any	application	needs	to	take	security	into
consideration.	In	this	chapter,	you	will	learn	techniques	you	can	apply	to	your	SignalR
code	to	secure	messages.

Chapter	7,	Scaling	Out,	explains	that	building	applications	that	scale	on	multiple	servers
can	be	a	bit	of	a	puzzle.	This	chapter	will	show	you	how	to	scale	out	and	be	able	to	deal
with	these,	both	in	an	on-premise	environment	and	in	Microsoft’s	Windows	Azure	cloud.

Chapter	8,	Building	a	WPF	.NET	Client,	explains	that	SignalR	is	not	only	for	web
applications.	It	can	be	utilized	with	great	success	in	other	client	types	as	well.	This	chapter
shows	you	how	to	build	a	desktop	client	for	Windows	using	WPF	and	.NET.

Chapter	9,	Write	Once,	Deploy	Many,	takes	SignalR	even	further,	beyond	both	the	Web
and	desktop	to	the	mobile	space.	In	this	chapter,	you	will	learn	how	to	take	your	SignalR
knowledge	and	expand	into	areas	like	iOS,	Android,	and	Windows	Phone.

Chapter	10,	Monitoring,	explains	that	debugging	is	a	part	of	everyday	life	as	a	developer,
and	this,	of	course,	applies	to	development	with	SignalR	too.	This	chapter	will	show	you
how	to	monitor	messages	and	look	at	possible	performance	bottlenecks.

Chapter	11,	Hosting	a	Server	Using	Self-hosted	OWIN,	explains	that	open	web	interfaces
for	.NET	are	an	abstraction	enabling	web	frameworks	to	be	agnostic	about	the	underlying
platform.	In	this	chapter,	we	will	look	at	how	to	self-host	in	a	simple	console	application
using	OWIN.

What	you	need	for	this	book
The	book	uses	C#	and	JavaScript	in	the	samples,	and	we	will	use	Visual	Studio	2013	as
the	IDE	of	choice.	You	will	also	be	able	to	use	Visual	Studio	2013	Community	edition,
which	is	the	free	edition.	You	will	need	to	have	NuGet	installed,	which	can	be	accessed	at
http://www.nuget.org.	For	the	Xamarin	part	of	this	book,	you	will	need	to	have	access	to	a
Mac	with	XCode	installed,	plus	Xamarin	Studio,	which	you	can	download	at
http://www.xamarin.com.	Xamarin	does	provide	a	plugin	for	Visual	Studio,	but	it	needs	to
work	in	conjunction	with	a	tool	running	on	Mac	OS	X	that	compiles	the	code	for	use	on
iOS	and	also	runs	it	either	on	iOS	Simulator	or	a	real	device.

http://www.nuget.org
http://www.xamarin.com

Who	this	book	is	for
This	book	is	written	for	developers	with	experience	in	C#	and	JavaScript.	At	this	stage,
the	developer	should	also	have	a	basic	knowledge	of	how	SignalR	works,	as	well	as	what
the	developer	needs	to	rethink	when	designing	applications	that	have	a	persistent
connection	to	the	server.

Some	of	the	things	that	we	will	be	discussing	in	the	book	are	architectural	in	nature.
Software	architecture,	patterns,	and	practices	surround	us,	and	this	book	will	present	some
less	“mainstream”	ideas	that	are	ideal	for	the	world	of	small	changes.	You	don’t	need	to	be
an	architect	to	get	this;	the	book	will	keep	it	at	an	intermediate	level.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	path
names,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“At	the	core
level	of	SignalR	sits	something	called	a	PersistentConnection	class;	hubs	build	on	top
of	this.”

A	block	of	code	is	set	as	follows:

function	someFunctionDoingSomething()	{

		//	It	should	perform	some	work

}

Any	command-line	input	or	output	is	written	as	follows:

install-package	<package-name>	-version	<package-version>

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,
for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“With	the	code
running,	you	should	now	see	a	Started	message	in	the	console	of	the	developer	tool.”

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	The	Primer
This	chapter	serves	as	a	primer	of	knowledge.	With	this,	you	will	become	aware	of	all	the
terms,	patterns,	and	practices	applied	in	the	book.	Also,	you	will	learn	about	the	tools,
libraries,	and	frameworks	being	used	and	what	their	use	cases	are.	More	importantly,	you
will	find	out	why	you	should	be	performing	these	different	things	and,	in	particular,	why
you	are	using	SignalR,	and	how	the	methods	you	employ	will	naturally	find	their	way	into
your	software.

In	this	chapter,	the	following	topics	will	be	covered:

Walk-through	architectural	patterns
Messaging—what	is	it?
Publish/subscribe	models
Decoupling	for	scale—why	and	how?
Frontend	patterns—also	back	to	decoupling

MVC
MVVM

AngularJS
Twitter	Bootstrap—using	it	to	make	things	look	better
SignalR—what	is	it	built	of	and	how	does	it	all	come	together?

Where	are	we	coming	from?
By	asking	where	are	we	coming	from,	I’m	not	trying	to	ask	an	existential	question	that
dates	back	to	the	first	signs	of	life	on	this	planet.	Rather,	we	are	looking	at	the	scope	of
our	industry,	and	what	has	directed	us	all	the	way	to	where	we	are	now	and	how	we	create
software	today.	The	software	industry	is	very	young	and	is	constantly	moving.	We	haven’t
quite	settled	in	yet	like	other	professions	have.	The	rapid	advances	in	computer	hardware
present	opportunities	for	software	all	the	time.	We	find	better	ways	of	doing	things	as	we
improve	our	skills	as	a	community.	With	the	Internet	and	the	means	of	communication	that
we	have	today,	these	changes	are	happening	fast	and	frequently.	This	is	to	say	that
collectively,	we	are	changing	a	lot	more	than	any	other	industry.	With	all	this	being	said,	a
lot	of	these	changes	go	back	to	the	roots	of	our	industry.	They	seek	back	as	if	we	could
now	do	things	right	as	they	were	intended	in	the	first	place,	only	in	a	slightly	modified
version	with	a	few	new	techniques	or	perspectives.	Computers	and	software	are	the	tools
meant	to	solve	problems	for	humans,	and	often	in	the	line	of	business	applications	that	we
write;	these	tools	and	software	are	there	to	remove	manual	labor	or	remove	paper	clutter.
The	way	these	applications	are	modeled	is	therefore	often	closely	related	to	the	manual	or
paper	version,	not	really	modeling	the	process	or	applying	the	full	capability	of	what	the
computer	could	do	to	actually	improve	the	experience	of	the	particular	process.

The	terminal
Back	in	the	early	days	of	computing,	computers	lacked	CPU	power	and	memory.	They
were	expensive,	and	if	you	wanted	something	powerful,	it	would	fill	the	room	with
refrigerator-sized	computers.	The	idea	of	a	computer	on	each	desk,	at	least	a	powerful	one,
was	not	feasible.	Instead	of	delivering	rich	computers	onto	desks,	the	notion	of	terminals
became	a	reality.	These	were	connected	to	the	mainframe	and	were	completely	stateless.

The	entirety	of	each	terminal	was	kept	in	the	mainframe,	and	the	only	thing	transferred
from	the	client	was	user	input	and	the	only	thing	coming	back	from	the	mainframe	was
any	screen	updates.

The	relationship	between	multiple	terminals	connected	to	a	mainframe	and	all	terminals
exist	without	state,	with	the	mainframe	maintaining	the	state	and	views

Fast	forwarding
The	previous	methods	of	thinking	established	the	pattern	for	software	moving	through	the
decades.	If	you	look	at	web	applications	with	a	server	component	in	the	early	days	of	the
Web,	you’ll	see	the	exact	same	pattern:	a	server	that	keeps	the	state	of	the	user	and	the
clients	being	pretty	less;	this	being	the	web	browser.	In	fact,	the	only	thing	going	back	and
forth	between	them	was	the	user	input	from	the	client	and	the	result	in	the	form	of	HTML
going	back.

Bringing	this	image	really	up	to	speed	with	the	advancement	of	AJAX,	the	image	would
be	represented	as	shown	in	the	following	diagram:

A	representation	to	the	flow	is	in	a	modern	web	application	with	the	HTTP	protocol	and
requests	going	to	the	server	that	yields	responses

Completing	the	circle
Of	course,	by	skipping	three	decades	of	evolution	in	computing,	we	are	bound	to	miss	a
few	things.	However,	the	gist	of	most	techniques	has	been	that	we	keep	the	state	on	the
server	and	we	have	to	go	from	the	client	in	the	sense	of	request,	be	it	a	keystroke	or	a
HTTP	request,	before	receiving	a	response.	At	the	core	of	this	sits	a	network	stack	with
capabilities	beyond	what	the	overlying	techniques	have	been	doing.	In	games,	for
instance,	the	underlying	sockets	have	been	used	much	more	in	order	for	us	to	be	able	to
actually	play	multiplayer	games,	starting	off	with	games	on	your	local	network	to	massive
multiplayer	online	games	with	thousands	of	users	connected	at	once.	In	games,	the
request/response	pattern	will	not	work	as	they	yield	different	techniques	and	patterns.	We
can’t	apply	all	the	things	that	have	been	achieved	in	games	because	a	lot	of	it	is	based	on
approximation	due	to	network	latency.	However,	we	don’t	have	the	requirements	of	games
either	to	reflect	the	truth	in	an	interval	of	every	16-20	milliseconds.	Accuracy	is	far	more
important	in	the	world	of	line	of	business	application	development	where	it	needs	to	be
constantly	accurate.	The	user	has	to	trust	the	outcome	of	their	operations	in	the	system.
Having	said	this,	it	does	not	mean	that	the	output	has	to	be	in	synchrony.	Things	can
eventually	be	consistent	and	accurate,	just	as	long	as	the	user	is	well	informed.	By
allowing	eventual	consistency,	one	opens	up	a	lot	of	benefits	about	how	we	build	our
software	and	you	have	a	great	opportunity	to	improve	the	user	experience	of	the	software
you	are	building,	which	should	be	at	the	very	forefront	of	your	thinking	when	making
software.

Eventual	consistency	basically	means	that	the	user	performs	an	action	and,
asynchronously,	it	will	be	dealt	with	by	the	system	and	also	eventually	be	performed.
When	it’s	actually	performed,	you	could	notify	the	user.	If	it	fails,	let	the	client	know	so
that	it	can	perform	any	compensating	action	or	present	something	to	the	user.	This	is
becoming	a	very	common	approach.	It	does	impose	a	few	new	things	to	think	about.	We
seldom	build	software	that	targets	us	as	developers	but	has	other	users	in	mind	when
building	it.	This	is	the	reason	we	go	to	work	and	build	software	for	users.	The	user
experience	should,	therefore,	be	the	most	important	aspect	and	should	always	be	the
driving	force	and	the	main	motive	to	apply	a	new	technique.	Of	course,	there	are	other
aspects	to	decision	making	(such	as	budget)	as	this	gives	us	business	value,	and	so	on.
These	are	also	the	vital	parts	of	the	decision-making,	but	make	sure	that	you	never	lose
focus	on	the	user.

How	can	we	complete	the	circle	and	improve	the	model	and	take	what	we’ve	learned	and
mix	in	a	bit	of	real-time	thinking?	Instead	of	thinking	that	we	need	a	response	right	away
and	pretty	much	locking	up	the	user	interface,	we	can	send	off	the	request	for	what	we
want	and	not	wait	for	it	at	all.	So,	let	the	user	carry	on	and	then	let	the	server	tell	us	the
result	when	it	is	ready.	However,	hang	on,	I	mentioned	accuracy;	doesn’t	this	mean	that
we	would	be	sitting	with	a	client	in	the	wrong	state?	There	are	ways	to	deal	with	this	in	a
user-friendly	fashion.	They	are	as	follows:

For	simple	things,	you	could	assume	that	the	server	will	perform	the	action	and	just
perform	the	same	on	the	client.	This	will	give	instant	feedback	to	the	user	and	the

user	can	then	carry	on.	If,	for	some	reason,	the	action	didn’t	succeed	on	the	server,
the	server	can,	at	a	later	stage,	send	the	error	related	to	the	action	that	was	performed
and	the	client	can	perform	a	compensating	action.	Undoing	this	and	notifying	the
user	that	it	couldn’t	be	performed	is	an	example.	An	error	should	only	be	considered
an	edge	case,	so	instead	of	modeling	everything	around	the	error,	model	the	happy
path	and	deal	with	the	error	on	its	own.
Another	approach	would	be	to	lock	the	particular	element	that	was	changed	in	the
client	but	not	the	entire	user	interface,	just	the	part	that	was	modified	or	created.
When	the	action	succeeds	and	the	server	tells	you,	you	can	easily	mark	the	element(s)
as	succeeded	and	apply	the	result	from	the	server.	Both	of	these	techniques	are	valid
and	I	would	argue	that	you	should	apply	both,	depending	on	the	circumstances.

SignalR
What	does	this	all	mean	and	how	does	SignalR	fit	into	all	this?

A	regular	vanilla	web	application	without	even	being	AJAX-enabled	will	do	a	full	round-
trip	from	the	client	to	server	for	the	entire	page	and	all	its	parts	when	something	is
performed.	This	puts	a	strain	on	the	server	to	serve	the	content	and	maybe	even	having	to
perform	rendering	on	the	server	before	returning	the	request.	However,	it	also	puts	a	strain
on	the	bandwidth,	having	to	return	all	the	content	all	the	time.	AJAX-enabled	web	apps
made	this	a	lot	better	by	typically	not	posting	a	full	page	back	all	the	time.	Today,	with
Single	Page	Applications	(SPA),	we	never	do	a	full-page	rendering	or	reloading	and
often	not	even	rely	on	the	server	rendering	anything.	Instead,	it	just	sits	there	serving	static
content	in	the	form	of	HTML,	CSS,	and	JavaScript	files	and	then	provides	an	API	that	can
be	consumed	by	the	client.

SignalR	goes	a	step	further	by	representing	an	abstraction	that	gives	you	a	persistent
connection	between	the	server	and	the	client.	You	can	send	anything	to	the	server	and	the
server	can	at	any	time	send	anything	back	to	the	client,	breaking	the	request/response
pattern	completely.	We	lose	the	overhead	of	the	regular	request	or	response	pattern	of	the
Web	for	every	little	thing	that	we	need	to	do.	From	a	resource	perspective,	you	will	end	up
needing	less	from	both	your	server	and	your	client.	For	instance,	web	requests	are	returned
back	to	the	request	pool	of	ASP.NET	as	soon	as	possible	and	reduce	the	memory	and	CPU
usage	on	the	server.

By	default,	SignalR	will	choose	the	best	way	to	accomplish	this	based	on	the	capabilities
of	the	client	and	the	server	combined.	Ranging	from	WebSockets	to	Server	Sent	Events	to
Long	Polling	Requests,	it	promises	to	be	able	to	connect	a	client	and	a	server.	If	a
connection	is	broken,	SignalR	will	try	to	reestablish	it	from	the	client	immediately.

Although	SignalR	uses	long	polling,	the	response	going	back	from	the	server	to	a	client	is
vastly	improved	rather	than	having	to	do	a	pull	on	an	interval,	which	was	the	approach
done	for	AJAX-enabled	applications	before.

You	can	force	SignalR	to	choose	a	specific	technique	as	long	as	you	have	requirements
that	limit	what	is	allowed.	However,	when	left	as	default,	it	will	negotiate	what	is	the	best
fit.

Terminology
As	in	any	industry,	we	have	a	language	that	we	use	and	it	is	not	always	ubiquitous.	We
might	be	saying	the	same	thing	but	the	meaning	might	vary.	Throughout	the	book,	you’ll
find	terms	being	used	in	order	for	you	to	understand	what	is	being	referred	to;	I’ll
summarize	what	hides	behind	these	terms	mean.

Messaging
A	message	in	computer	software	refers	to	a	unit	of	communication	that	contains
information	that	the	source	wants	to	communicate	to	the	outside	world,	either	to	specific
recipients	or	as	a	broadcast	to	all	recipients	connected	now	or	in	the	future.	The	message
itself	is	nothing,	but	a	container	holding	information	to	identify	the	type	of	the	message
and	the	data	associated	with	it.	Messaging	is	used	in	a	variety	of	ways.	One	way	is	either
through	the	Win16/32	APIs	with	WM_*	messages	being	sent	for	any	user	input	or
changes	occurring	in	the	UI.	Another	is	things	affecting	the	application	to	XML	messages
used	to	integrate	systems.	It	could	also	be	typed	messages	inside	the	software,	modeled
directly	as	a	type.	It	comes	in	various	forms,	but	the	general	purpose	is	to	be	able	to	do	it
in	a	decoupled	manner	that	tells	other	parts	that	something	has	happened.	The	message
and	its	identifier	with	its	payload	becomes	the	contract	in	which	the	decoupled	systems
know	about.	The	two	systems	would	not	know	about	each	other.

Publish/subscribe
With	your	message	in	place,	you	want	to	typically	send	it.	Publish/subscribe,	or,	as	it	is
known	in	shorthand	“PubSub”,	is	often	what	you’re	looking	for.	The	message	can	be
broadcasted	and	any	part	of	your	system	can	subscribe	to	the	message	by	type	and	react	to
it.	This	decouples	the	components	in	your	system	by	leaving	a	message	for	them,	and	they
are	unaware	that	they	are	direct	to	each	other.	This	is	achieved	by	having	a	message	box
sitting	in	the	middle	that	all	systems	know	about,	which	could	be	a	local	or	global	message
box,	depending	on	how	your	model	thinks.	The	message	box	will	then	be	given	message
calls,	or	will	activate	subscriptions,	which	are	often	specific	to	a	message	type	or
identifier.

Over	the	years,	we’ve	had	all	kinds	of	message	boxes.	In	Windows,	we	have	something
called	a	message	queue,	which	basically	also	acts	as	a	message	box.	In	addition,	there	are
things	such	as	service	buses	that	pretty	much	do	the	same	thing	at	the	core	as	well.	The
notion	of	having	something	published	and	something	else	subscribed	is	not	new.

The	message	box	can	be	made	smarter,	which,	for	instance,	could	be	by	persisting	all
messages	going	through	so	that	any	future	subscribers	can	be	told	what	happened	in	the
past.	This	is	well	presented	by	the	following	diagram:

A	representation	of	how	the	subsystems	have	a	direct	relationship	with	a	message	box,
enabling	the	two	systems	to	be	decoupled	from	each	other

Decoupling
There	are	quite	a	few	paradigms	in	the	art	of	programming	and	it	all	boils	down	to	what	is
right	for	you.	It’s	hard	to	argue	what	is	right	or	wrong	because	the	success	of	any
paradigm	is	really	hard	to	measure.	Some	people	like	a	procedural	approach	to	things
where	you	can	read	end-to-end	how	a	system	is	put	together,	which	often	leads	to	a	much
coupled	solution.	Solutions	are	things	put	together	in	a	sequence	and	the	elements	can
know	about	each	other.	The	complete	opposite	approach	would	be	to	completely	decouple
things	and	break	each	problem	into	its	own	isolated	unit	with	each	unit	not	knowing	about
the	other.	This	approach	breaks	everything	down	into	more	manageable	units	and	helps
keep	complexity	down.	It	really	helps	in	the	long	term	velocity	of	development	and	also
how	you	can	grow	the	functionality.	In	fact,	it	also	helps	with	taking	things	out	if	one
discovers	one	has	features	that	aren’t	being	used.	By	decoupling	software	and	putting
things	in	isolation	and	even	sprinkle	some	SOLID	on	top	of	this	(which	is	known	as	a
collection	of	principles;	this	being	the	Single	Responsibility	Principle,	Open/Closed
Principle,	Liskov	Substitution	Principle,	Interface	Segregation	Principle,	and	Dependency
Inversion	Principle).

Note
You	can	find	more	information	about	this	at
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf.

By	applying	these	practices	with	decoupling	in	mind,	we	can:

Make	it	easier	to	scale	up	your	team	with	more	developers;	things	will	be	separated
out	and	responsibilities	within	the	team	can	be	done	so	as	well.
Make	more	maintainable	solutions.
Take	resource	hungry	parts	of	your	system	and	put	them	on	separate	servers;
something	that	is	harder	to	accomplish	if	it	all	is	coupled	together.
Gain	more	flexibility	by	focusing	more	on	each	individual	parts	and	then	compose	it
back	together	any	way	you	like.
Make	it	easier	to	identify	bottlenecks	in	isolation.
Have	less	chance	of	breaking	other	parts	of	the	system	when	fixing	or	expanding
your	code.
Gain	higher	development	pace.
This	might	be	a	bold	claim,	but	you	could	encounter	fewer	bugs!	Or	at	least,	they
would	be	more	maintainable	bugs	that	sit	inside	isolated	and	focused	code,	making	it
easier	to	identity	and	safer	to	fix.

The	ability	to	publish	messages	rather	than	calling	concrete	implementations	becomes
vital.	These	become	the	contracts	within	your	system.

This	book	will	constantly	remind	you	of	one	thing:	users	are	a	big	part	in	making	this
decision.	Making	your	system	flexible	and	more	maintainable	is	of	interest	to	your	users.
The	turnaround	time	to	fix	bugs	along	with	delivering	new	features	is	very	much	in	their
interest.	One	of	the	things	I	see	a	lot	in	projects	is	that	we	tend	to	try	to	define	everything

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf

way	too	early	and	often	upfront	of	development,	taking	an	end-to-end	design	approach.
This	often	leads	to	overthinking	and	often	coupling,	making	it	harder	to	change	later	on
when	we	know	more.	By	making	exactly	what	is	asked	for	and	not	trying	to	be	too
creative	and	add	things	that	could	be	nice	to	have,	and	then	really	thinking	of	small
problems	and	rather	compose	it	back	together,	the	chance	of	success	is	bigger	and	also
easier	to	maintain	and	change.	Having	said	this,	decoupling	is,	ironically	enough,	tightly
coupled	with	the	SOLID	principles	along	with	other	principles	to	really	accomplish	this.
For	instance,	take	the	S	in	SOLID.	This	represents	the	Single	Responsibility	Principle;	it
governs	that	a	single	unit	should	not	do	more	than	one	thing.	A	unit	can	go	all	the	way
down	to	a	method.	Breaking	up	things	into	more	tangible	units,	rather	than	huge
unreadable	units,	makes	your	code	more	flexible	and	more	readable.

Tip
Decoupling	will	play	a	vital	role	in	the	remainder	of	the	book.

Patterns
Techniques	that	repeat	can	be	classified	as	patterns;	you	probably	already	have	a	bunch	of
patterns	in	your	own	code	that	you	might	classify	even	as	your	own	patterns.	Some	of
these	become	popular	outside	the	realms	of	one	developer’s	head	and	are	promoted
beyond	just	this	one	guy.	A	pattern	is	a	well-understood	solution	to	a	particular	problem.
They	are	identified	rather	than	created.	That	is,	they	emerge	and	are	abstracted	from
solutions	to	real-world	problems	rather	than	being	imposed	on	a	problem	from	the	outside.
It’s	also	a	common	vocabulary	that	allows	developers	to	communicate	more	efficiently.

Note
A	popular	book	that	aims	to	gather	some	of	these	patterns	is	Design	Patterns:	Elements	of
Reusable	Object-Oriented	Software	by	Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and
John	Vlissides,	Addison-Wesley	Professional.

You	can	find	a	copy	at	http://www.amazon.com/Design-Patterns-Elements-Reusable-
Object-Oriented/dp/0201633612.

We	will	be	using	different	patterns	throughout	this	book,	so	it’s	important	to	understand
what	they	are,	the	reasons	behind	them,	and	how	they	are	applied	successfully.	The
following	sections	will	give	you	a	short	summary	of	the	patterns	being	referred	to	and
used.

http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612

Model	View	Controller
Interestingly	enough,	most	of	the	patterns	we	have	started	applying	have	been	around	for
quite	a	while.	The	Model	View	Controller	(MVC)	pattern	is	a	great	example	of	this.

Note
MVC	was	first	introduced	by	a	fellow	Norwegian	national	called	Dr.	Trygve	Reenskaug	in
1973	in	a	paper	called	Administrative	Control	in	the	Shipyard
(http://martinfowler.com/eaaDev/uiArchs.html).	Since	then,	it	has	been	applied
successfully	in	a	variety	of	frameworks	and	platforms.	With	the	introduction	of	Ruby	on
Rails	in	2005,	I	would	argue	the	focus	on	MVC	really	started	to	get	traction	in	the	modern
web	development	sphere.	When	Microsoft	published	ASP.NET	MVC	at	the	end	of	2007,
they	helped	gain	focus	in	the	.NET	community	as	well.

The	purpose	of	MVC	is	to	decouple	the	elements	in	the	frontend	and	create	a	better
isolated	focus	on	these	different	concerns.	Basically,	what	one	has	is	a	controller	that
governs	the	actions	that	are	allowed	to	be	performed	for	a	particular	feature	of	your
application.	The	actions	can	return	a	result	in	the	form	of	either	data	or	concrete	new
views	to	navigate	to.	The	controller	is	responsible	for	holding	and	providing	any	state	to
the	views	through	the	actions	it	exposes.	By	state,	we	often	think	of	the	model	and	often
the	data	comes	from	a	database,	either	directly	exposed	or	adapted	into	a	view-specific
model	that	suits	the	view	better	than	the	raw	data	from	the	database.	The	relationship
between	model,	controller,	view,	and	the	user	is	well	summarized	in	the	following
diagram:

A	representation	of	how	the	artifacts	make	up	MVC	(don’t	forget	there	is	a	user	that	will
interact	with	all	of	these	artifacts)

With	this	approach,	you	separate	out	the	presentation	aspect	of	the	business	logic	into	the

http://martinfowler.com/eaaDev/uiArchs.html

controller.	The	controller	then	has	a	relationship	with	other	subsystems	that	knows	the
other	aspects	of	the	business	logic	in	a	better	manner,	allowing	the	controller	to	only	focus
on	the	logic	that	is	specific	to	the	presentation	and	not	on	any	concrete	business	logic	but
more	on	the	presentation	aspect	of	any	business	logic.	This	decouples	it	from	the
underlying	subsystem	and	thus	more	specialized.	The	view	now	has	to	concern	itself	with
only	view-related	things,	which	are	typically	HTML	and	CSS	for	web	applications.	The
model,	either	a	concrete	model	from	the	database	or	adapted	for	the	view,	is	fetched	from
whatever	data	source	you	have.

Model	View	ViewModel
Extending	on	the	promise	of	decoupling	in	the	frontend,	we	get	something	called	Model
View	ViewModel	(short	for	MVVM).

Note
For	more	information,	visit	http://www.codeproject.com/Articles/100175/Model-View-
ViewModel-MVVM-Explained.

This	is	a	design	pattern	for	the	frontend	based	largely	on	MVC,	but	it	takes	it	a	bit	further
in	terms	of	decoupling.	From	this,	Microsoft	created	a	specialization	that	happened	to	be
MVVM.

Note
MVVM	was	presented	by	Martin	Fowler	in	2004	to	what	he	referred	to	as	the	Presentation
Model	(which	you	can	access	at	http://martinfowler.com/eaaDev/PresentationModel.html).

The	ViewModel	is	a	key	player	in	this	that	holds	the	state	and	behavior	needed	for	your
feature	to	be	able	to	do	its	job,	without	it	knowing	about	the	view.	The	view	will	then	be
observing	the	ViewModel	for	any	changes	it	might	get	and	utilize	any	behaviors	it
exposes.	In	the	ViewModel,	we	keep	the	state,	and	as	with	MVC,	the	state	is	in	the	form
of	a	model	that	could	be	a	direct	model	coming	from	your	data	source	or	an	adapted	model
more	fine-tuned	for	the	purpose	of	the	frontend.

The	additional	decoupling,	which	this	model	represents,	lies	within	the	fact	that	the
ViewModel	has	no	clue	to	any	view,	and	in	fact	should	be	blissfully	unaware	that	it	is
being	used	in	a	view.	This	makes	the	code	even	more	focused	and	it	opens	an	opportunity
of	being	able	to	swap	out	the	view	at	any	given	time	or	even	reuse	the	same	ViewModel
with	its	logic	and	state	for	second	view.

The	relationship	between	the	model,	view,	viewmodel,	and	the	user	is	summarized	in	the
following	diagram:

http://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained
http://martinfowler.com/eaaDev/PresentationModel.html

The	artefacts	that	make	up	MVVM.	As	a	reminder,	don’t	forget	that	the	user	interacts	with
these	artifacts	through	the	view.

Libraries	and	frameworks
We	will	not	be	doing	much	from	scratch	in	this	book	as	it	does	not	serve	our	purpose.
Instead,	we	will	be	relying	on	third-party	libraries	and	frameworks	to	do	things	for	us	that
don’t	have	anything	to	do	with	the	particular	thing	we	will	perform.	The	range	of	libraries
will	be	big	and	some	of	these	represent	architectural	patterns	and	decisions	sitting	behind
them.	Some	of	these	are	in	direct	conflict	with	each	other	and	for	consistency	in	your	code
base,	you	should	pick	one	over	the	other	and	stick	to	it.	The	chapters	in	this	book	will
make	it	clear	what	I	consider	as	conflict	and	why	and	what	libraries	are	right	for	you,
whereas	your	architecture	is	something	you	will	have	to	decide	for	yourself.	This	book
will	just	show	a	few	of	the	possibilities.

jQuery
Browsing	the	Web	for	JavaScript-related	topics	often	yields	results	with	jQuery	mentioned
in	the	subject	or	in	the	article	itself.	At	one	point,	I	was	almost	convinced	that	JavaScript
started	with	$,	followed	by	a	dot,	and	then	a	function	to	perform.	It	turns	out	that	this	is
not	true.	jQuery	just	happens	to	be	one	of	the	most	popular	libraries	out	there	when
performing	web	development.	It	puts	in	place	abstractions	for	parts	that	are	different
between	the	browsers,	but	most	importantly,	it	gives	you	a	powerful	way	to	query	the
Document	Object	Model	(DOM)	as	well	as	modify	pick	it	as	your	application	runs.	A	lot
of	the	things	jQuery	has	historically	solved	are	now	solved	by	the	browser	vendors
themselves	by	being	true	to	the	specifications	of	the	standards,	along	with	the	standards.
Its	demand	has	been	decreasing	over	the	years,	but	you	will	find	it	useful	if	you	need	to
target	all	browsers	and	not	just	the	modern	ones.	Personally,	I	would	highly	recommend
not	using	jQuery	as	it	will	most	likely	lead	you	down	the	path	of	breaking	the	SOLID
principles	and	mixing	up	your	concerns.

Tip
SignalR	has	a	dependency	on	jQuery	directly,	meaning	that	all	the	web	projects	in	this
book	will	have	jQuery	in	them	as	a	result.	The	part	of	jQuery	being	used	is	the
communication	stack	(anything	else	is	not	used).	There	are	projects	out	there	that	aim
towards	trimming	jQuery.	You	might	find	something	that	only	holds	the	communication
part	of	jQuery,	reducing	the	payload	dramatically,	since	I	do	not	recommend	using	jQuery
for	DOM	manipulation.

ASP.NET	MVC	5
Microsoft’s	web	story	consists	of	two	major	and	different	stories	at	the	root	level.	One	of
these	is	the	story	related	to	web	forms	that	came	with	the	first	version	of	the	.NET
Framework	back	in	2002.	Since	then,	it	has	been	iteratively	developed	and	improved	with
each	new	version	of	the	framework.	The	other	is	the	MVC	story,	which	was	started	in
2007	with	a	version	1	release	in	2009	that	represents	something	very	different	and	built
from	the	ground	up	from	different	concepts	than	found	in	the	web	forms	story.	In	2014,	we
saw	the	release	of	version	5	with	quite	a	few	new	ideas,	making	it	even	simpler	to	do	the
type	of	decoupling	one	aims	for	and	also	making	it	easier	to	bring	in	things	(such	as
SignalR).	We	will	use	ASP.NET	MVC	for	the	first	samples,	not	taking	full	advantage	of
its	potential,	but	enough	to	be	able	to	show	the	integration	with	SignalR	and	how	you	can
benefit	from	it.

AngularJS
It	seems	that	over	the	last	couple	of	years,	you	can	pretty	much	take	any	noun	or	verb	and
throw	a	JS	behind	it,	Google	it,	and	you	will	find	a	framework	at	the	other	end	of	it.	All
these	frameworks	often	play	as	a	part	of	the	puzzle.	Google	introduced	AngularJS	a
couple	of	years	ago	to	cover	more	than	just	a	little	part	of	the	puzzle,	but	it	rather	provides
a	broader	perspective	on	client-side	development	on	the	Web.	AngularJS	consists	of	a	core
and	modules	that	cover	different	aspects.	With	AngularJS,	you	get	the	opportunity	to
separate	your	code	into	smaller	parts,	promoting	separation	and	lending	itself	to	MVC	and
to	a	certain	extent	MVVM.	Throughout	this	book,	we	will	be	using	Angular	for	the	web
solution.

Twitter	Bootstrap
In	the	interest	of	saving	time	and	focusing	more	on	code,	we	will	“outsource”	the	design
in	this	book	and	layout	to	Twitter	Bootstrap	(which	you	can	access	at
http://getbootstrap.com).	Bootstrap	defines	a	grid	system	that	governs	all	layouts	and	it
also	has	well-defined	CSS	to	make	things	look	good.	It	comes	with	a	predefined	theme
that	looks	great,	and	there	are	other	themes	out	there	if	you	want	to	change	the	themes.

http://getbootstrap.com

Tools
As	with	any	craft,	we	need	tools	to	build	anything.	Here	is	a	summary	of	some	of	the	tools
we	will	be	using	to	create	our	applications.

Visual	Studio	2013
In	this	book,	you	will	find	that	Visual	Studio	2013	Professional	is	used.	For	the	iOS
content,	we	will	be	using	Visual	Studio—although	it	is	in	conjunction	with	Xamarin	and
Apple’s	Xcode.

Note
You	can	use	the	community	edition	of	Visual	Studio	2013	if	you	don’t	have	a	license	to
Visual	Studio	2013	professional	or	higher.	It	can	be	downloaded	from
http://www.visualstudio.com/.

http://www.visualstudio.com/

NuGet
All	third-party	dependencies	and	all	the	libraries	mentioned	in	this	chapter,	for	instance,
will	be	pulled	in	using	NuGet.

Note
In	the	interest	of	saving	space	in	the	book,	the	description	of	how	to	use	NuGet	sits	here
and	only	here.	The	other	chapters	will	refer	back	to	this	recipe.

If	you	need	to	install	NuGet	first,	visit	http://www.nuget.org	to	download	and	install	it.
Once	this	is	done,	you	can	use	NuGet	by	following	these	steps:

1.	 To	add	a	reference	to	a	project,	we	start	by	right-clicking	on	References	of	your
project	and	selecting	Manage	NuGet	Packages…,	as	shown	here:

2.	 Next,	select	Online	and	enter	the	name	of	the	package	that	you	want	to	add	a
reference	to	in	the	search	box.	When	you	have	found	the	proper	package,	click	on	the
Install	button,	as	shown	in	the	following	screenshot:

http://www.nuget.org

Tip
In	some	cases,	we	will	need	a	specific	version	of	a	file.	This	is	not	something	we	can
do	through	the	UI,	and	we	will	need	the	Package	Manager	Console.	To	specify	a
specific	version	of	a	package,	if	needed,	the	syntax	of	the	command	in	the	Package
Manager	Console	is	as	follows:

install-package	<package-name>	-version	<package-version>

3.	 Following	this,	go	to	TOOLS	and	then	NuGet	Package	Manager.	Click	on
Package	Manager	Console,	as	shown	here:

4.	 You	then	need	to	go	to	the	Package	Manager	Console	window	that	appears	and	you
need	to	make	sure	that	the	project	that	will	have	the	reference	is	selected:

By	now,	you	should	be	familiar	with	how	you	can	add	NuGet	packages	to	reference	third-
party	dependencies,	which	will	be	used	throughout	the	book.

Summary
You	now	have	a	backdrop	of	knowledge,	if	you	didn’t	already	know	it	all.	We	explained
the	terminology	in	this	chapter	so	that	the	terms	will	be	clear	to	you	throughout.	It’s	now
time	to	get	concrete	and	actually	start	applying	what	we’ve	discussed.	Although	this
chapter	mentions	quite	a	few	concepts	and	they	might	be	new	to	you,	don’t	worry	as	we’ll
revisit	them	throughout	the	book	and	gain	more	knowledge	about	them	as	we	go	along.
The	next	chapter	will	start	out	with	a	simple	sample,	showing	the	very	basics	of	SignalR
so	that	you	get	the	feeling	of	what	it	is	and	how	its	APIs	are.	It	will	also	establish	the
basics	of	the	project	that	we	will	be	working	on	throughout	this	book,	with	ASP.NET	and
AngularJS	throwing	bootstrap	into	the	mix	as	well.

Chapter	2.	Persistent	Connections
For	years	in	network	programming,	we	have	been	using	sockets	and	communicating	with
these.	Although	we	now	have	sockets	on	the	Web	as	well,	we	are	not	guaranteed	that	we
will	have	it	in	all	environments.	We,	therefore,	need	an	abstraction	that	helps	us	out	with
this	and	picks	the	right	transport	mechanism	for	us.	In	comes	persistent	connections.	This
chapter	will	cover	the	basics	of	getting	a	client	connected	to	the	server	and	how	the
messaging	works.

In	this	chapter,	the	following	topics	will	be	covered:

Getting	started	with	single-page	applications
Getting	started	with	AngularJS
Setting	up	a	web	application	with	SignalR
Exposing	a	persistent	connection	on	the	server
Consuming	the	connection	in	a	JavaScript	client

At	this	stage,	the	developer	should	be	having	the	beginning	of	a	single-page	web
application	connected	to	a	server.

Persistent	connections	–	what	are	they?
At	the	core	of	SignalR	sits	the	abstraction	that	represents	an	actual	connection.	This	is	the
lowest	level	of	the	abstraction	and	it	is	the	thing	that	deals	with	connecting	the	client	to	the
server	and	abstracting	away	the	negotiation	for	protocol,	and	in	general	all
communication.	One	could	look	at	this	as	what	is	known	as	the	socket	connection	in
regular	TCP/IP	development.	Although	it	is	a	bit	easier,	since	you’re	not	having	to	deal
with	byte	buffers,	but	strings	instead.

Where	are	we	going?
The	remainder	of	this	book	will	try	to	keep	to	the	narrow	path	of	developing	iteratively	on
the	same	application;	a	chat	application	with	a	web	client,	a	.NET	WPF	client,	and	a
Xamarin-based	mobile	client,	all	working	with	the	same	server.	We	will	also	go	into	how
to	self-host	SignalR	in	your	own	app	for	any	clients	to	connect	to,	without	having	to	have
a	web	server	installed	and	configured.

Getting	the	project	ready
Our	project	will	have	a	server	component	to	it;	the	server	component	will	also	be	hosting
the	web	client	that	we	will	be	using.

1.	 Start	by	creating	a	new	project	in	Visual	Studio:

2.	 Select	the	regular	empty	ASP.NET	Web	Application	project	template	situated	under
Visual	C#	|	Web.	Give	it	a	name:	SignalRChat.	Make	sure	Add	Application
Insights	to	Project	is	unchecked.	Then,	click	on	OK:

3.	 Select	the	Empty	template	and	make	sure	Host	in	the	cloud	is	left	unchecked.	Then,
click	on	OK:

Setting	up	the	packages
Now,	we	will	need	some	packages	to	get	things	started.	This	process	is	described	in	detail
in	Chapter	1,	The	Primer.	Let’s	start	off	with	adding	SignalR,	which	is	our	primary
framework	that	we	will	be	working	with	to	move	on.	We	will	be	pulling	this	using	NuGet,
as	described	in	Chapter	1,	The	Primer;	right-click	on	References	in	Solution	Explorer
and	select	Manage	NuGet	Packages,	and	type	Microsoft.AspNet.SignalR	in	the	Search
panel.	Select	this	and	click	on	Install.	For	our	web	project,	we	will	need	some	more
things.	Firstly,	we	will	need	a	package	called	AngularJS;	repeat	the	NuGet	process	using
AngularJS	in	the	Search	panel.	The	final	package	we	will	need	for	now	is	Bootstrap;
repeat	the	NuGet	process	again	and	this	time	enter	Bootstrap	in	the	Search	panel.

The	single	page	application
In	modern	web	development,	you’re	bound	to	come	across	the	concept	of	a	single-page
application,	which	is	often	just	referred	to	as	SPA.	The	concept	behind	this	is	very	simple;
it’s	not	about	navigating	the	entire	page	away	once	we’ve	hit	a	site	or	application.	The	first
page	that	we	hit	will	then	be	responsible	for	composing	everything	after	that,	based	on
what	the	user	does.	This	often	results	in	more	work	for	the	client	than	the	server,	which	is
really	a	good	thing.	It	means	better	separation	of	concerns,	letting	the	client	do	what	they
are	good	at	and	likewise	for	the	server.	There	are	quite	a	few	frameworks	out	there
promoting	this	way	of	working,	some	more	complete	than	others.	One	of	the	more	popular
ones	these	days	is	something	that	came	out	of	Google	called	AngularJS.	It	is	one	of	the
complete	frameworks,	providing	pretty	much	all	the	client	aspects	you	can	think	of.	It	is
an	open	source	framework	and	is	being	developed	rapidly.	At	the	time	of	writing	this
book,	the	latest	version	is	1.3.15,	and	the	development	of	version	2	is	well	on	its	way	with
a	few	changes.	In	an	SPA,	one	needs	an	entry	point	for	the	application,	the	page	that	holds
it	all:

1.	 Let’s	add	the	page	that	we	will	be	hitting	for	our	first	request,	our	index.	Right-click
on	the	project	in	Solution	Explorer	and	select	Add	|	New	Item.	Navigate	to	Web	in
the	template	tree	to	the	left	and	select	HTML	Page.	Give	the	file	a	name
index.html:

2.	 Within	the	HEAD	tag	on	the	top	of	the	newly	created	file,	we	will	need	to	add
references	to	Bootstrap.	Add	the	following	two	references:

<link	href="Content/bootstrap.min.css"	rel="stylesheet"	/>

<link	href="Content/bootstrap-theme.min.css"	rel="stylesheet"	/>

3.	 On	the	top	of	the	page,	we	want	to	have	a	navigation	bar.	For	now,	there	won’t	be	any
things	to	navigate	to,	but	we	want	it	there	from	the	start.	Within	the	BODY	tag,	add	the
following:

<nav	class="navbar	navbar-inverse">

				<div	class="container-fluid">

								<div	class="navbar-header">

												SignalR	Chat

								</div>

				</div>

</nav>

4.	 At	the	bottom	of	the	BODY	tag,	before	it	ends,	we	want	to	keep	our	script	references:

<script	src="Scripts/jquery-1.9.1.min.js"	type="text/javascript">

</script>

<script	src="Scripts/bootstrap.min.js"	type="text/javascript"></script>

<script	src="Scripts/angular.js"	type="text/javascript"></script>

<script	src="Scripts/jquery.signalR-2.2.0.min.js"></script>

Note
Keeping	the	script	references	at	the	bottom	of	the	page	while	keeping	the	stylesheet
references	in	the	head	ensures	that	the	user	gets	something	on	the	screen	as	fast	as
possible.	Script	downloads	actually	block	the	rendering	process,	so	keeping	these	at
the	bottom	will	make	sure	rendering	starts	as	soon	as	possible.	Stylesheets	providing
the	look	alongside	the	HTML	inside	the	BODY	will	render	it	for	the	user	before	it	starts
pulling	down	scripts.

It	is	worth	mentioning	here	that	the	version	numbers	in	the	preceding	code	snippet
may	be	different	from	yours;	look	inside	the	Scripts	folder	to	make	sure	you’re
referencing	the	right	versions.

5.	 Running	the	application	by	pressing	CTRL	+	F5	(Debug	|	Start	Without
Debugging)	should	yield	the	following	output:

6.	 We	will	need	to	configure	AngularJS.	To	do	that,	we	want	to	have	our	own
JavaScript	file	that	configures	our	application	with	AngularJS.	Add	a	JavaScript	file
by	right-clicking	on	the	project	and	select	Add	|	New	Item.	Select	JavaScript	File
and	give	it	a	name	config.js.

7.	 We	want	to	have	a	stricter	interpretation	of	the	JavaScript,	so	add	the	following	line

on	top	of	the	new	file:

"use	strict";

Note
The	"use	strict"	directive	tells	the	JavaScript	engine	to	execute	in	"strict	mode".
With	this,	you	will	get	errors	for	things	that	can	potentially	be	creating	problems	in
your	code.	An	example	of	this	would	be	global	variables.	This	is	considered	pollution
of	the	global	scope	and	will	therefore	be	considered	as	a	potential	problem	in	strict
mode.

8.	 Let’s	add	a	scope	where	we	can	configure	AngularJS	and	more:

(function	(global)	{

})(window);

Note
A	scope	is	a	self-executing	function	that	gives	you,	among	other	things,	a	simple	way
to	keep	local	variables	without	polluting	the	global	scope.	We	pass	the	window
instance	as	a	parameter	to	the	inner	function,	which	becomes	known	as	global	within
that	function	scope.	This	ensures	that	even	if	the	window	changed	the	reference
outside	our	scope,	we	won’t	be	affected.

9.	 Within	the	function,	we	will	need	to	configure	our	main	AngularJS	module.	Put	the
following	code	within	the	inner	function:

var	application	=	angular.module("SignalRChat");

application.config(["$provide",	

				function	($provide)	{

				}

]);

global.$application	=	application;

Note
Firstly,	the	module	definition	is	given	a	name	SignalRChat.	Secondly,	we	give	it	an
array	of	modules	we	rely	on.	In	our	case,	we	will	only	need	the	core	AngularJS
module	for	now:	ng.

The	application	variable	is	put	into	a	global	scope	(window)	for	accessibility	later.	In
our	particular	case,	we	will	have	only	one	module.	However,	in	AngularJS,	you	could
potentially	have	multiple.	This	is	a	question	of	how	you	structure	your	application.

10.	 Let’s	go	back	to	the	index.html	file	and	hook	up	AngularJS	and	the	config	file	that
we’ve	just	added.	We	want	to	use	the	application	module	that	we	just	registered	by
making	the	HTML	tag	look	as	follows:

<html	ng-app="SignalRChat">

11.	 The	next	thing	we	want	to	do	is	add	a	script	reference	to	the	config.js	file;	add	the

following	script	tag	after	all	the	other	tags:

<script	src="config.js"	type="text/javascript"></script>

The	“code-behind”
AngularJS	is	a	MVW	framework;	W	stands	for	whatever.	Although	being	this	flexible	and
non	opinionated,	it	does	have	the	concept	of	a	controller.	A	controller	is	responsible	for
managing	the	state	and	behavior	exposed	to	the	view.	It	is	typically	the	place	that
coordinates	the	interaction	with	other	systems,	such	as	services,	that	communicate	with
the	server	by	getting	data	and	pushing	actions	back	to	the	server.

With	AngularJS,	we	get	something	called	an	Inversion	of	Control	(IoC)	container.	This
is	a	system	that	is	responsible	for	the	life	cycle	of	objects	and	assumes	the	Dependency
Inversion	Principle.	This	principle	states	that	you	are	not	responsible	for	your
dependencies,	instead	you	specify	your	dependencies	and	the	IOC	container	will	make
sure	to	create	them	and	provide	them	to	your	system.	This	will	become	very	clear	when
we	define	our	controller.

1.	 Let’s	add	a	new	JavaScript	file	in	the	root	of	the	project	called	index.js.	Right-click
on	the	project	and	select	Add	|	New	Item.	Select	JavaScript	File	and	give	it	a	name
index.js.

2.	 Put	the	following	code	into	the	newly	created	file:

"use	strict";

$application.controller("index",	["$scope",	function	($scope)	{

}]);

Note
Notice	the	usage	of	the	$application	instance	that	we	set	up	during	our
configuration.	This	is	why	we	made	this	global.

3.	 Now,	we	will	associate	an	element	in	the	HTML	with	the	controller.	Open	up	the
index.html	file	and	make	the	BODY	tag	look	as	follows:

<body	ng-controller="index">

4.	 The	last	thing	we	will	need	for	the	controller	to	actually	work	is	to	have	the	index.js
file	loaded.	Add	the	following	script	tag	after	the	other	script	tags:

<script	src="index.js"	type="text/javascript"></script>

The	first	parameter	in	the	controller	function	is	the	name	of	the	controller;	we	are
consistent	with	naming	the	controller	and	the	file	the	same,	except	losing	the	file	extension
for	the	name	of	the	controller.	The	second	parameter	of	a	controller	definition	is	an	array
holding	all	the	dependencies	and,	as	the	last	element	of	the	array,	the	function	that	defines
the	controller.	The	parameters	are	specified	as	string	literals;	these	strings	are	the	names
that	identify	the	dependencies	and	are	typically	what	they	are	registered	with	in	the	IOC
container.	In	the	function	that	represents	the	controller,	the	same	dependencies	are	again
specified	in	the	same	order	as	they	appear	in	the	array	of	strings	before.

Note

AngularJS	supports	specifying	the	dependencies	by	its	parameter	name	in	the	function	that
represents	the	controller	only,	leaving	the	array	definition	without	any	string	literals	at	all.
However,	if	you	want	to	typically	minimize	or	uglify	your	JavaScript,	the	names	of	the
parameters	would	be	changed	and	they	would	not	match	what	they	are	defined	as.

Getting	started	with	the	server-side
We	will	need	some	C#	code	to	initialize	the	server	side	of	things.

SignalR	is	configured	through	something	called	Open	Web	Interface	for	.NET	(OWIN).
There	are	other,	more	traditional	ways	of	doing	this,	but	this	is	the	preferred	way	and	also
conceptually	how	things	are	evolving	in	the	ASP.NET	space.	We	will	be	using	it
throughout	the	book	in	different	forms.

Tip
Its	goal	is	to	define	a	standard	interface	between	.NET	web	servers	and	web	applications.
Read	more	at	http://owin.org.

1.	 Let’s	add	a	class	called	Startup	to	the	project.	Right-click	on	the	project	and	select
Add	|	Class.	Give	the	file	a	name	Startup.cs.

2.	 Replace	all	the	using	statements	with	the	following:

using	Microsoft.Owin;

using	Owin;

3.	 Inside	the	Startup	class,	we	will	a	Configuration	method.	Make	the	class	look	as
follows:

public	class	Startup

{

				public	void	Configuration(IAppBuilder	app)

				{

				}

}

4.	 As	you	can	see,	the	class	is	not	inheriting	anything	or	implementing	an	interface.	The
signature	is	a	convention	defined.	However,	in	order	for	OWIN	to	pick	up	this,	we
must	tell	OWIN	where	to	look.	Let’s	add	an	attribute	between	the	using	statements
and	the	namespace	statement:

[assembly:	OwinStartup(typeof(SignalRChat.Startup))]

Tip
There	is	another	way	of	telling	OWIN	where	to	look:	you	can	do	this	in	Web.config:

<appSettings>		

		<add	key="owin:appStartup"	value="SignalRChat.Startup"	/>

</appSettings>

http://owin.org

Connecting	the	dots
SignalR	has	at	its	core	an	abstraction	called	PersistentConnection.	This	is	the	building
block	that	everything	else	builds	upon.	This	chapter	will	show	you	how	we	can	start	using
this	building	block	and	achieve	results	very	fast.	First,	we	will	need	a	type	representing
our	connection:

1.	 Add	a	class	called	ChatConnection.cs	to	the	root	of	the	project.
2.	 Add	the	following	using	statements:

using	System.Threading.Tasks;

using	Microsoft.AspNet.SignalR;

3.	 Make	the	class	inherit	from	PersistentConnection:

public	class	ChatConnection	:	PersistentConnection

{

}

4.	 In	order	for	us	to	handle	messages	being	sent	from	the	client,	we	need	to	override	a
method	called	OnReceived.	We	will	take	whatever	data	we	get	into	that	method	and
broadcast	it	to	all	the	connected	clients.	Put	the	following	method	in	the
ChatConnection	class:

protected	override	Task	OnReceived(IRequest	request,	string	

connectionId,	string	data)

{

				return	Connection.Broadcast(data);

}

Note
With	Broadcast,	you	will	be	sending	the	data	to	all	connected	clients,	including	the
one	who	was	sending.	You	can	use	one	of	the	method	overloads	if	you	want	to	filter
connections	on	the	broadcast.

5.	 Now,	we	will	have	to	expose	the	connection	we	just	created	so	that	it	can	be
consumed	by	any	connecting	clients	.	Open	up	the	Startup.cs	file.	In	the
Configuration	method,	add	the	following	line:

app.MapConnection<ChatConnection>("/chat");

6.	 With	the	server	code	in	place,	we	need	to	move	back	to	the	client	and	hook	up	the
connection.	Open	up	the	config.js	file	and	put	the	following	code	into	the
configuration	function	that	has	$provide	as	an	argument:

var	chatConnection	=	$.connection("/chat");

chatConnection.start().done(function	()	{

				console.log("Started");

});

$provide.constant("chat",	chatConnection);

Note
SignalR	is	built	on	top	of	jQuery,	and	we	find	all	functionalities	for	SignalR	inside	the	$	-
jQuery	object.	The	connection	function	gets	a	connection	object	for	the	connection	URL
specified.

The	start()	function	returns	what	is	known	as	a	promise,	which	is	an	object	exposing	a
function	called	done().	This	takes	a	function	that	gets	called	when	we	are	connected.
When	one	starts	a	connection,	SignalR	starts	the	negotiation	with	the	server	to	find	the
most	optimal	connection	type	that	works	best	with	the	client	and	the	server	capabilities.

As	mentioned	before,	AngularJS	has	an	IOC	container	that	controls	objects	and	the	life
cycle.	The	$provide	dependency	that	we’ve	taken	into	the	configuration	function,	exposes
the	functionality	that	we	need	to	configure	these	dependencies.	There	are	different	ways	to
register;	in	our	case,	we	specify	it	as	a	constant.	The	constant,	we	specify,	named	chat
points	to	chatConnection	and	will	always	just	be	that	instance.	Another	option	is	to	use
factory	that	we	will	revisit	later.

With	the	server	up	and	running	and	the	basic	client	code	for	connecting,	we	can	run	the
application	again	(CTRL	+	F5	or	Debug	|	Run	Without	Debugger).	All	the	modern
browsers	have	a	developer	tool	built	into	it;	this	is	typically	accessible	by	hitting	the	F12
key.	With	the	code	running,	you	should	now	see	a	Started	message	in	the	console	of	the
developer	tool.

Thus,	so	far,	you’ve	actually	created	a	client	that	connects	to	a	server	and	keeps	that
connection	open	throughout	the	life	cycle	of	the	application.	This	was	done	with	little
effort,	I	might	add,	as	well.

Making	the	UI	light	up
Now,	we’re	ready	to	actually	make	a	UI	and	hook	it	up	to	the	code	that	connects	to	the
server.

In	AngularJS,	there	is	something	called	as	scope	that	we	need	to	be	aware	of.	You	may
have	noticed	on	the	controller	setup	that	there	was	a	dependency	going	into	the	controller
called	$scope.	This	is	something	that	AngularJS	automatically	resolves	with	a	factory	it
has	built	in.	A	scope	is	basically	a	place	where	we	can	put	variables	that	we	want	to	use
for	binding	in	the	view	and	also	expose	the	behavior	that	we	want	to	use	in	the	view.	The
scope	typically	inherits	a	parent	scope,	making	the	parent’s	state	and	behavior	accessible
for	use.	I	would,	however,	be	careful	about	doing	so,	as	this	opens	up	new	and	interesting
ways	to	couple	your	code	together,	making	it	harder	to	change.	Typically,	AngularJS
introduces	a	new	level	in	the	hierarchy	for	each	controller	within	the	DOM.	We’re	now
going	to	add	the	actual	chat	window	and	input	field	for	chatting:

1.	 Open	up	the	index.html	file	and	add	the	following	HTML	inside	the	BODY	tag	after
the	navigation	bar	and	before	the	script	tags:

<div	class="container">

				<div	class="row">

								<div	class="col-md-4">

												<textarea	id="chatWindow"	style="width:400px;	

height:200px;"	ng-model="messages"></textarea>

												<div	class="form-inline">

																<div	class="form-group">

																				<label	for="messageTextBox"	class="control-

label">Message</label>

																				<div	class="input-group">

																								<input	type="text"	class="form-control"	

id="messageTextBox"	placeholder="Message"	ng-model="message">

																				</div>

																				<button	type="submit"	class="btn	btn-primary"	ng-

click="click()">Send</button>

																</div>

												</div>

								</div>

				</div>

</div>

Note
Note	that,	on	the	textarea	tag,	we’re	using	an	attribute	called	ng-model.	This	is	an
AngularJS	directive,	making	the	textarea	bind	its	value	attribute,	to	a	variable	in	the
scope.	You’ll	notice	that	it	is	being	used	for	the	input	tag	as	well.	A	second	directive
is	also	being	used:	ng-click.	This	is	used	to	specify	as	to	what	to	do	when	an
element,	typically	a	button,	is	clicked.	In	our	code,	we	have	specified	it	to	call	a
function	called	click.

2.	 Open	up	the	index.js	file.	Now,	we	want	to	change	the	signature	of	the	controller	to
take	the	chat	connection	as	a	parameter.	Make	the	controller	definition	look	as

follows:

$application.controller("index",	["$scope",	"chat",	function	($scope,	

chat)	{

3.	 Since	we	have	specified	the	view	to	bind	to	things	in	the	scope,	we	need	to	get	these
things	in	place.	Within	the	controller	function,	add	the	following	code:

$scope.messages	=	"Connected";

$scope.click	=	function	()	{

				chat.send($scope.message);

};

Note
Note	that	chat.send()	takes	the	message	variable	from	the	scope	and	sends	it	to	the
chat	connection.

4.	 The	last	thing	we	will	need	is	a	function	that	receives	any	messages	from	the	chat	and
puts	it	into	the	messages	variable.	Add	the	following	after	the	click	handler:

chat.received(function	(data)	{

				$scope.$apply(function	()	{

								$scope.messages	=	$scope.messages	+	"\n"	+	data;

				});

});

Note
On	any	connection	in	the	client,	we	have	a	received	function	that	makes	it	possible
for	us	to	register	callbacks	that	get	called	when	data	is	received.	The	signature	takes
the	actual	data	as	a	parameter.	The	call	to	$apply	is	needed	in	order	to	tell	AngularJS
that	the	scope	variable	is	changing,	so	it	can	update	its	bindings.

Our	basic	chat	application	should	now	be	up	and	running.	Run	a	couple	of	browsers	side
by	side,	and	start	typing	messages	and	send	them.	This	should	be	giving	you	something	as
follows:

Summary
We’ve	seen	how	easy	it	is	to	get	started	with	SignalR	and	set	up	a	persistent	connection.
With	AngularJS,	we’ve	also	started	seeing	how	to	structure	a	single-page	application.
With	the	little	effort	put	in	this	chapter,	we	are	already	sending	a	message	for	our	chat
application	across	browsers.

Moving	forward	from	this	point,	we	will	be	looking	at	this	with	a	different	abstraction,
hubs	in	SignalR,	providing	a	way	to	expose	functionality	on	the	server	more	naturally.

Chapter	3.	Hubs
With	persistent	connections,	we	have	to	manage	everything	going	back	and	forth	with	the
server.	The	only	thing	abstracted	away	is	the	transport.	Typically,	in	applications,	you	are
looking	at	calling	well-defined	resources	on	the	server	and	would	probably	want	to	deal
with	those	rather	than	the	raw	power	of	persistent	connections.	This	chapter	will	cover
how	you	connect	a	client	with	a	server	in	a	very	different	way,	making	it	seem	like	you
can	call	code	directly	on	the	client	from	the	server	and	vice	versa.

Topics	covered	in	this	chapter	are	as	follows:

Setting	up	a	hub	on	the	server
Working	with	hubs
Consuming	a	hub	from	a	JavaScript	client
Improving	the	usage	of	a	hub	in	an	AngularJS	application

At	this	stage,	the	developer	should	be	able	to	use	a	hub,	and	our	sample	app	will	now	be
able	to	chat	properly.

Moving	up	a	level
While	PersistentConnection	seems	very	easy	to	work	with,	it	is	the	lowest	level	of
abstraction	in	SignalR.	It	does	provide	the	perfect	abstraction	for	keeping	a	connection
open	between	a	client	and	a	server,	but	that’s	just	about	all	it	does	provide.	Working	with
different	operations	is	not	far	from	how	you	would	deal	with	things	in	a	regular	socket
connection,	where	you	basically	have	to	parse	whatever	is	coming	from	a	client	and	figure
out	which	operation	needs	to	be	performed	based	on	the	input.	SignalR	provides	a	higher
level	of	abstraction	that	removes	this	need	and	you	can	write	your	server-side	code	in	a
more	intuitive	manner.	In	SignalR,	this	higher	level	of	abstraction	is	called	a	hub.

Basically,	a	hub	represents	an	abstraction	that	allows	you	to	write	classes	with	methods
that	takes	different	parameters,	as	you	would	with	any	API	in	your	application,	and	then
makes	it	completely	transparent	on	the	client—at	least	for	JavaScript.	This	resembles	a
concept	called	Remote	Procedure	Call	(RPC),	with	many	incarnations	of	it	out	there.

For	our	chat	application,	at	this	stage,	we	basically	just	want	to	be	able	to	send	a	message
from	a	client	to	the	server	and	have	it	send	the	message	to	all	the	other	clients	connected.
To	do	this,	we	will	now	move	away	from	the	PersistentConnection	and	introduce	a	new
class	called	Hub	using	the	following	steps:

1.	 First,	start	off	by	deleting	the	ChatConnection	class	from	your	web	project.
2.	 Then,	we	want	to	add	a	hub	implementation	instead.	Right-click	on	the	SignalRChat

project	and	select	Add	|	New	Item.
3.	 In	the	dialog	box,	choose	Class	and	give	it	a	name	Chat.cs:

4.	 This	is	the	class	that	will	represent	our	Hub.	Make	it	inherit	from	Hub:

public	class	Chat	:	Hub

5.	 Add	the	necessary	import	statement	at	the	top	of	the	file:

using	Microsoft.AspNet.SignalR.Hubs;

6.	 In	the	class,	we	will	add	a	simple	method	that	will	be	the	one	that	the	clients	will	call
to	send	a	message.	We	call	the	method	Send	and	take	one	parameter	into	it;	a	string
that	contains	the	message	being	sent	by	the	client:

public	void	Send(string	message)

{

}

7.	 From	the	base	class	of	Hub,	we	get	a	few	things	that	we	can	use.	For	now,	we’ll	be
using	the	clients	property	to	broadcast	to	all	other	clients	connected	to	the	Hub.	On
the	clients	property,	you’ll	find	an	All	property,	which	is	dynamic.	On	this,	we	can
call	anything	and	the	client	will	just	have	to	subscribe	to	the	method	we	call,	if	the
client	is	interested:

using	Microsoft.AspNet.SignalR;

namespace	SignalRChat

{

			public	class	Chat	:	Hub

			{

						public	void	Send(string	message)

						{

									Clients.All.addMessage(message);

						}

			}

}

8.	 The	next	thing	we	need	to	do	is	to	go	into	the	Startup.cs	file	and	make	some
changes.	Firstly,	we	remove	the	.MapSignalR<ChatConnection>(…)	line	and	replace
it	with	a	.MapSignalR()	call	that	does	not	specify	a	connection	as	a	parameter.	This
will	map	up	all	hubs	in	your	application	automatically	with	a	default	path	for	your
hubs	that	maps	to	/signalr/<name	of	hub>:	so	more	concretely	the	path	will	be:
http://<your-site>:port/signalr/<name	of	hub>.	We’re	going	with	the	defaults
for	now.	It	should	cover	the	needs	on	the	server-side	code.	Your	Startup	class	should
look	as	follows:

using	Microsoft.Owin;

using	Owin;

[assembly:	OwinStartup(typeof(SignalRChat.Startup))]

namespace	SignalRChat

{

				public	class	Startup

				{

								public	void	Configuration(IAppBuilder	app)

								{

												app.MapSignalR();

								}

				}

}

Tip
It	is	possible	to	change	the	name	of	the	Hub	to	not	be	the	same	as	the	class	name.	An
attribute	called	HubName()	can	be	placed	in	front	of	the	class	to	give	it	a	new	name.
The	attribute	takes	one	parameter:	the	name	you	want	for	your	Hub.	Similarly,	for
methods	inside	your	Hub,	you	can	use	an	attribute	called	HubMethodName()	to	give	the
method	a	different	name.

The	client
Now	that	we	have	the	server	setup	done,	we’re	ready	to	move	on	to	the	client.	Out	of	the
box,	SignalR	comes	with	very	simple	ways	of	consuming	any	hubs	that	are	created.	We’re
not	going	to	use	these	methods	since	we	have	the	power	of	AngularJS	in	our	solution;	we
want	to	do	things	in	conjunction	with	how	AngularJS	does	things.

Decoupling	it	all
AngularJS	talks	about	Model	View	Whatever	(MVW).	There	are	a	few	frontend	patterns
that	resemble	each	other	and	they	share	a	common	goal:	decoupling	and	making	the
different	concerns	in	the	frontend	more	clear.	The	alternative	to	thinking	in	these	manners
is	typically	a	model	where	the	different	concerns	are	all	mixed	together	and	coupled	in	a
way	that	makes	it	harder	to	change.	By	thinking	about	the	different	concerns	and
separating	these	out,	you	have	identified	the	responsibility	and	can	make	the	different
parts	more	specialized	and	focused.	Although	AngularJS	lends	itself,	in	terminology,	more
towards	Model	View	Controller	(MVC),	over	the	years	I’ve	grown	fond	of	the	pattern
called	Model	View	ViewModel	(MVVM),	and	even	though	I’m	doing	AngularJS	from
time	to	time,	I	still	like	to	think	in	this	manner.

MVVM	is	a	pattern	for	client	development	that	became	very	popular	in	the	XAML	stack,
enabled	by	Microsoft	based	on	Martin	Fowlers	presentation	model
(http://martinfowler.com/eaaDev/PresentationModel.html).	Its	principle	is	that	you	have	a
ViewModel	that	holds	the	state	and	exposes	behavior	that	can	be	utilized	from	a	view.	The
view	observes	any	changes	of	the	state	the	ViewModel	exposes,	making	the	ViewModel
totally	unaware	that	there	is	a	view.	The	ViewModel	is	decoupled	and	can	be	put	in
isolation	and	is	perfect	for	automated	testing.	As	part	of	the	state	that	the	ViewModel
typically	holds	is	the	model	part,	which	is	something	it	usually	gets	from	the	server,	and	a
SignalR	hub	is	the	perfect	transport	to	get	this.	In	AngularJS,	the	controller	in	combination
with	the	scope	can	be	looked	upon	as	representing	a	ViewModel.	It	boils	down	to
recognizing	the	different	concerns	that	make	up	the	frontend	and	separating	it	all.	This
gives	us	the	following	diagram:

http://martinfowler.com/eaaDev/PresentationModel.html

The	Dependency	Inversion	Principle
Robert	C.	Martin	coined	the	concept	of	SOLID	in	programming
(http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod).	These	are	a	set	of
principles	that	will	help	you	create	code	that	is	more	maintainable	and	easier	to
understand.	We	will	not	go	through	all	these	principles	as	they	are	well	defined	elsewhere,
but	it	is	important	to	understand	the	D	in	SOLID	as	it’s	widely	used	in	AngularJS.	The
concept	of	dependency	inversion	says	that	instead	of	a	unit	knowing	how	to	get	its
dependencies,	it	will	be	governed	by	something	else.	Dependencies	are	traditionally	also
seen	as	contracts,	and	the	system	would	only	rely	on	the	contract,	not	on	the	concrete
implementation.	This	is	flipping	the	responsibility	around	completely	and	saying	that	your
system	does	not	need	to	know	about	concrete	implementations,	nor	does	it	need	to	think
about	life	cycle.	With	this,	we	get	the	Inversion	of	Control	(IoC)	container.

We	have	already	used	and	mentioned	the	IOC	in	Chapter	2,	Persistent	Connections.
During	the	setup	of	AngularJS	in	the	config.js	file,	we	saw	the	usage	of	$provide.	This
represents	the	IOC.

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

Proxies
An	important	aspect	of	SignalR	is	that	it	provides	a	mechanism	for	generating	proxies
representing	the	hubs	on	the	server-side,	which	is	written	in	a	statically	compiled	.NET
language.	The	simplest	way	to	get	the	proxies	is	by	adding	a	script	reference	that	points	to
a	route	that	will	generate	it	at	runtime.

1.	 JavaScript	proxies	become	available	from	your	hubs	when	they’re	mapped	using
.MapSignalR();	they	are	also	subject	to	the	same	default	URL,	but	will	follow	the
configuration	given	to	.MapSignalR().We	will	need	to	include	a	script	reference	in
the	HTML	right	after	the	line	that	references	the	SignalR	JavaScript	file;	we	will	add
the	following:

<script	src="/signalr/hubs"	type="text/javascript"></script>

Note
This	will	include	the	generated	proxies	for	our	JavaScript	client.	What	this	means	is
that	we	get	whatever	is	exposed	on	a	Hub	generated	for	us,	and	we	can	start	using	it
straightaway.

2.	 The	proxies	in	SignalR	are	built	in	a	specific	way	with	a	particular	behavior.	In	order
for	clients	to	be	able	to	have	their	client	functions	called,	the	client	functions	have	to
be	set	before	initializing	the	hub	connection	to	the	server.	In	a	typical	single	page
application,	this	is	inconvenient	as	you	only	want	the	hub	connection	to	be	initialized
once.	We	will	work	around	this	by	mending	the	proxies	a	bit	at	runtime.	Open	the
config.js	file	and	put	the	following	code	after	the	(function	(global)	{,	which	is
the	start	of	the	scope	line:

function	__nothing()	{	}

function	setupAndRegisterProxies($provide)	{

				for	(var	property	in	$.connection)	{

								var	value	=	$.connection[property];

								if	(typeof	value	!==	"undefined"	&&	value	!==	null)	{

												if	(typeof	value.hubName	!==	"undefined"	&&	value	!==	null)	

{

																var	hubName	=	property;

																var	proxy	=	$.connection.hub.createHubProxy(hubName);

																

																proxy.client.__need_this_for_subscription__	=	

__nothing;

																registerHubFactory($provide,	hubName);

												}

								}

				}

}

Note

By	putting	in	need_this_for_subscription	and	pointing	it	to	the	__nothing
function,	we	force	SignalR	to	set	up	a	subscription	back	to	the	server.	This	is
something	it	won’t	do	if	there	are	no	functions	defined	on	the	client	object	sitting
inside	the	proxy.

3.	 At	the	end,	it	calls	a	function	called	registerHubFactory()	that	is	missing	at	the
moment.	Before	the	code	that	you	just	put	in,	add	the	following:

function	registerHubFactory($provide,	hubName)	{

				$provide.factory(hubName,	function	()	{

								var	proxy	=	$.connection.hub.createHubProxy(hubName);

								return	proxy;

				});

}

Note
The	$provide	object	in	AngularJS	has	different	ways	to	register	dependencies.	As	we
saw	in	Chapter	2,	Persistent	Connections,	we	used	the	.constant()	function	to
register.	This	gave	us	an	object	that	only	has	one	instance	in	the	life	cycle	of	the
application,	or	the	page,	seeing	it	is	a	web	application.	With	the
registerHubFactory()	function,	we’re	registering	a	factory	that	will	be	responsible
for	resolving	the	hub	dependency	whenever	it	is	needed.	This	factory	is	nothing	but	a
function	that	gets	called	when	something	needs	the	dependency.	In	our	case,	we	just
forward	the	creation	to	SignalR	itself.

4.	 Now,	we	want	to	change	the	configuration	of	the	application	object	in	config.js.
Swap	out	the	existing	.config()	call	to	look	as	follows:

application.config(["$provide",	

				function	($provide)	{

								setupAndRegisterProxies($provide);

								$.connection.hub.start().done(function	()	{

												console.log("Hub	connection	up	and	running");

								});

				}

]);

Note
This	will	set	up	all	the	proxies	properly	and	also	make	sure	we	have	the	hub
connection	started	and	running.	We	only	need	to	connect	once	for	a	single-page
application;	SignalR	will	maintain	the	connection	and	make	sure	that	we	reconnect	if
it	is	broken.	Surely,	if	you	need	to	know	when	it	is	connected	or	disconnected,	you
can	either	expose	the	connection	object	itself	as	a	dependency	for	AngularJS,	or	a
wrapper	object	with	the	needed	functionality.	The	latter	will	make	sure	you	don’t
expose	too	much	power	throughout	your	application.

5.	 Now	that	we	have	all	the	configuration	taken	care	of,	we	can	start	making	use	of	the
hub.	The	chat	object	has	two	important	properties:	one	representing	the	client
functions	that	get	invoked	when	the	server	“calls”	something	on	the	client,	the	second

one	is	the	property	representing	the	server	and	all	its	functionality	that	we	can	call
from	the	client.	Let’s	start	by	hooking	up	the	client	and	its	methods.	Earlier,	we
implemented	in	the	Hub	sitting	on	the	server	a	call	to	addMessage()	with	the
message	coming	in	from	the	client	to	notify	other	clients.	Open	up	the	index.js	file
we	created.	We	will	do	some	alterations	since	we	no	longer	use	a	persistent
connection,	but	a	hub	instead.	The	code	snippet	to	be	changed	is	as	follows:

$scope.click	=	function	()	{

				chat.send($scope.message);

};

The	following	changes	will	be	made	in	the	code:

$scope.click	=	function	()	{

				chat.server.send($scope.message);

};

Then,	we	want	to	change	the	following	code:

chat.received(function	(data)	{

				$scope.$apply(function	()	{

								$scope.messages	=	$scope.messages	+	"\n"	+	data;

				});

});

The	changes	made	in	the	code	snippet	are	as	follows:

chat.client.addMessage	=	function	(message)	{

				$scope.$apply(function	()	{

								$scope.messages	=	$scope.messages	+	"\n"	+	message;

				});

};

6.	 Your	entire	controller	file	should	look	as	follows:

"use	strict";

$application.controller("index",	["$scope",	"chat",	function	($scope,	

chat)	{

				$scope.messages	=	"Connected";

				$scope.click	=	function	()	{

								chat.server.send($scope.message);

				};

				chat.client.addMessage	=	function	(message)	{

								$scope.$apply(function	()	{

												$scope.messages	=	$scope.messages	+	"\n"	+	message;

								});

				};

}]);

Life	cycle	events
With	hubs,	there	is	a	full	set	of	events	you	can	subscribe	to,	to	deal	with	the	life	cycle.

The	events	you	have	are	as	follows:

connectionSlow

reconnecting

reconnected

disconnected

All	of	these	events	can	be	useful,	not	only	for	your	application	but	also	for	notifying	the
user	as	to	what	is	going	on.	This	is	especially	true	for	slow	connections	and	disconnected:

$.connection.hub.connectionSlow(function()	{

				//	Notify	user	about	slow	connection

});

$.connection.hub.disconnected(function()	{

				//	Notify	user	about	being	disconnected

});

For	disconnected	connections,	you	might	want	to	retry	connecting	after	a	certain	amount
of	time	out;	for	instance,	after	5	seconds:

$.connection.hub.disconnected(function()	{

			setTimeout(function()	{

							$.connection.hub.start();

			},	5000);	

});

Separation
One	of	the	benefits	we	can	already	see	with	decoupling	is	that	I	changed	the	controller
without	it	affecting	the	view	in	any	way,	nor	did	I	have	to	do	anything	special,	other	than
what	was	already	going	on.	It’s	also	easier	to	change	it	as	the	code	is	more	focused	on	its
part	of	the	system,	logic	for	the	frontend,	rather	than	focusing	on	other	concerns.
Typically,	with	a	more	classic	jQuery	approach	to	the	problem,	you	would	be	querying	the
DOM	for	objects	to	get	the	data	back	and	forth	between	view	and	logic.	The	queries	are	in
the	format	of	CSS	selectors,	and	you	would	typically	either	query	the	elements	by	their
name	or	by	a	CSS	construct,	leading	to	the	entire	system	being	coupled	together	with
changes	done	in	CSS	or	the	DOM	to	change	the	JavaScript	code.	This	is	in	the	long	run,
and	surprisingly	maybe	not	even	that	long,	hard	to	maintain,	and	leads	to	stale	solutions
that	are	so	hard	to	change	that	you	simply	don’t	do	it	because	it’s	too	expensive.

Next,	we’ll	see	even	more	separation	and	how	we	can	use	AngularJS	and	its	capabilities	to
deal	with	breaking	things	into	the	smallest	problem	and	then	putting	it	back	together	in	a
larger	composition.

Summary
Exposing	our	functionality	through	hubs	makes	it	easier	to	consume	on	the	client,	at	least
on	JavaScript	based	clients,	due	to	the	proxy	generation.	It	basically	brings	it	to	the	client
as	if	it	was	on	the	client.	With	the	hub,	you	also	get	the	ability	to	call	the	client	from	the
server	in	a	more	natural	manner.	We’ve	also	seen	how	focused	and	more	maintainable	our
code	gets	in	the	client.	One	of	the	things	often	important	for	applications	is	the	ability	to
filter	out	messages	so	you	only	get	messages	relevant	for	your	context.	In	the	next	chapter,
groups	will	cover	this;	groups	is	the	technique	used	in	SignalR	to	accomplish	this.

Chapter	4.	Groups
This	chapter	will	cover	how	you	can	group	connections	together	and	target	specific	groups
when	sending	messages.	There	will	be	times	when	you	won’t	want	to	broadcast	all
messages	to	all	clients;	groups	can	help	you	send	messages	to	the	specific	groups	of
connections.	SignalR	maintains	which	connections	are	in	what	groups,	making	it	very
easy	to	achieve.	Groups	allows	you	to	join	connections.	When	you	are	sending	a	message
from	the	server,	you	can	send	it	to	a	specific	group	by	its	group	name,	and	only	the
connections	in	that	group	will	receive	the	message,	not	the	other	connections.

In	this	chapter,	we	will	cover	the	following	topics:

Establishing	groups	on	the	server
Sending	messages	from	the	client	to	specific	groups
Receiving	messages	from	the	server	about	the	added	groups
Composing	your	UI	using	AngularJS.

At	this	stage,	the	developer	should	be	able	to	create	groups,	and	put	connections	into	these
groups,	and	have	a	more	maintainable	frontend	solution.

Getting	specific	with	groups
Many	scenarios	require	you	to	not	be	broadcasting	to	everyone,	but	to	be	more	specific	in
who	receives	the	message.	SignalR	provides	an	abstraction	called	groups	for	these.
Groups	hold	the	connections	that	will	receive	messages.	The	API	for	sending	messages	is
the	same,	but	you	just	choose	to	go	to	a	specific	group	instead	of	going	to	everyone.

For	our	chat	applications,	we	want	to	use	groups	to	create	chat	rooms;	specific	groups	will
receive	chat	messages	that	none	of	the	other	rooms/groups	will	receive.	In	order	for	us	to
get	this	working,	we	will	need	to	change	our	application	slightly	as	follows:

1.	 First,	we	will	need	a	class	to	manage	the	chat	rooms	that	get	created	by	any	clients,
so	we	keep	track	of	them	for	any	other	clients	that	connect.

2.	 Right-click	on	the	project	and	select	Add	|	New	Item.	In	the	dialog	box,	select	Class
and	give	it	a	name	ChatRooms.cs:

3.	 Basically,	this	class	will	just	hold	a	list	of	strings	that	represent	the	different	chat
rooms	by	name	for	now:

Static	List<string>	_rooms	=	new	List<string>();

4.	 We	then	want	to	have	the	ability	to	add	and	get	all	the	rooms	from	it,	and	also	to
check	whether	a	room	already	exists.	By	default,	we	will	also	add	a	well-known	chat
room	called	Lobby.	The	class	should	look	like	the	following:

using	System.Collections.Generic;

namespace	SignalRChat

{

				public	class	ChatRooms

				{

								static	List<string>	_rooms	=	new	List<string>();

								static	ChatRooms()

								{

												_rooms.Add("Lobby");

								}

								public	static	void	Add(string	name)

								{

												_rooms.Add(name);

								}

								public	static	bool	Exists(string	name)

								{

												return	_rooms.Contains(name);

								}

								public	static	IEnumerable<string>	GetAll()

								{

												return	_rooms;

								}

				}

}

The	implementation	uses	a	regular	List<string>	that	is	not	thread-safe.	This	means	that
you	can	run	into	exceptions	if	you	have	two	users	joining	a	chat	room	at	the	same	time.
There	are	implementations	out	there	that	deal	with	this,	and	a	quick	search	on	the	phrase
ConcurrentList	C#	will	yield	a	few	implementations.	Also,	there	is	a
SynchronizedCollection<>	type,	found	in	System.Collections.Generics	after	adding	a
reference	to	System.ServiceModel,	that	can	be	used.

1.	 Now,	let’s	go	back	to	the	hub	we	created	in	Chapter	3,	Hubs;	in	the	Chat.cs	file.	We
will	need	to	add	some	new	functionality	to	this	class,	and	also	change	some	existing
to	make	it	support	the	chat	rooms.	First,	lets	start	by	adding	a	method	that	we	can	call
from	the	client	in	order	to	create	a	chat	room:

public	void	CreateChatRoom(string	room)

{

				if	(!ChatRooms.Exists(room))

				{

								ChatRooms.Add(room);

								Clients.All.addChatRoom(room);

				}

}

The	next	thing	we	want	to	add	is	the	support	for	clients	to	be	able	to	join	a	room	and
receive	any	messages	published	to	it.	This	is	where	we	use	the	Groups	property	from

the	Hub,	and	add	the	connection	of	the	client	connected	to	the	group	with	the	same
name	as	the	room	that	we	want	to	join:

public	void	Join(string	room)

{

				Groups.Add(Context.ConnectionId,	room);

}

With	this,	the	client	will	only	receive	messages	for	the	groups	that	it	is	part	of,	and
none	of	the	others.

2.	 Now	that	we	have	a	subsystem	to	deal	with	rooms,	and	clients	can	connect	to	these
rooms,	we	want	to	be	able	to	tell	the	clients	getting	connected	which	rooms	are
available.	On	the	Hub,	there	is	a	virtual	method	that	we	can	override	to	get	notified
when	a	client	gets	connected:	OnConnected().	There	are	also	other	methods	for	when
clients	disconnect	and	reconnect.	However,	for	now,	we	only	need	the
OnConnected()	method.	In	this	method,	we	basically	get	all	the	rooms	that	have	been
created,	and	we	send	them	off	to	the	client	that	got	connected	using	the	Caller
property	on	the	Clients	property	sitting	on	the	Hub:

public	override	Task	OnConnected()

{

			foreach	(var	room	in	ChatRooms.GetAll())

								Clients.Caller.addChatRoom(room);

			Join("Lobby");

return	base.OnConnected();

}

3.	 We	now	need	to	change	the	Send	method	on	the	Hub	as	follows:

public	void	Send(string	room,	string	message)

{

				Clients.Group(room).addMessage(message);

}

4.	 Your	Hub	should	now	look	as	follows:

public	class	Chat	:	Hub

{

				public	void	Join(string	room)

				{

								Groups.Add(Context.ConnectionId,	room);

				}

				public	void	CreateChatRoom(string	room)

				{

								if	(!ChatRooms.Exists(room))

								{

												ChatRooms.Add(room);

												Clients.All.addChatRoom(room);

								}

				}

				public	void	Send(string	room,	string	message)

				{

								Clients.Group(room).addMessage(room,	message);

				}

				public	override	Task	OnConnected()

				{

								foreach	(var	room	in	ChatRooms.GetAll())

												Clients.Caller.addChatRoom(room);

								System.Console.WriteLine("Connected");

								return	base.OnConnected();

				}

				public	override	Task	OnDisconnected(bool	stopCalled)

				{

								return	base.OnDisconnected(stopCalled);

				}

}

Note
The	OnDisconnected	override	is	not	needed	in	this	sample,	but	it	shows	how	you	can
override	it	as	well.

Composing	the	UI
Decoupling	should	be	done	at	all	levels,	so	the	frontend	is	not	excluded	from	this.	Instead
of	thinking	end-to-end	in	one	view,	we	divide	things	up	and	create	features	in	isolation.
These	features	are	specialized	in	doing	one	thing	and	one	thing	only.	This	makes	the
individual	features	expert	in	their	isolated	domain,	instead	of	trying	to	fit	everything	in	a
wider	feature.	This	creates	something	that	is	more	decoupled	and	more	maintainable.	It’s
easier	to	change	each	of	these	features	to	become	even	better	at	what	they	do,	without
worrying	about	breaking	other	features.	Typically,	you	could	divide	a	page	up	as	shown	in
the	following	screenshot:

Every	box	represents	a	section	of	the	system	holding	a	feature.	Each	individual	feature	is
put	together	in	the	larger	composition.

One	could	create	the	preceding	entire	composition	in	one	page	and	one	code	file,	but	it
would	be	running	the	risk	of	being	highly	coupled	together,	and	changing	anything	could
easily	break	things	that	one	didn’t	mean	to	touch	at	all.

In	AngularJS,	there	are	a	few	ways	of	doing	compositions,	and	they	all	boil	down	to	a
single	construct	sitting	at	the	core	called	directive.	AngularJS	directives	are	one	of	the
most	powerful	features	of	AngularJS;	it	allows	you	to	create	your	own	custom	directives
that	can	act	as	attributes	on	elements,	or	even	your	own	custom	element.	Angular	will
make	sure	to	call	the	correct	code	when	your	directive	is	being	used	in	the	markup,	and
you’re	free	to	do	whatever	you	want.	Although	there	are	some	ways	of	achieving	what	we
want	to	achieve,	we	are	going	to	build	an	Angular	directive	that	enables	us	to	specify	on
an	element	that	the	content	should	come	from	another	file:

1.	 Open	up	config.js	and	add	the	following	code	before	the	global.$application
declaration:

application.directive("feature",	["$sce",	function	($sce)	{

				return	{

								templateUrl:	function	(element,	attributes)	{

												return	$sce.trustAsHtml(attributes.feature);

								} 				}
}]);

This	introduces	a	directive	called	feature.	We’re	going	to	use	this	as	an	attribute,	and
we	will,	therefore,	get	the	attribute	value	and	pass	it	into	something	called	Strict
Contextual	Escaping	(SCE)	that	will	make	sure	to	render	the	given	file	securely.

2.	 AngularJS	will	take	any	dependencies	that	are	resolved,	and	cache	these	as	what	is
known	as	singletons.	This	means	there	is	only	one	instance	throughout	the	life	cycle
of	your	app.	For	our	hubs,	this	means	that	by	breaking	our	application	up	into	smaller
parts,	we’re	going	to	have	to	accommodate	a	little	bit.	In	config.js,	right	after	the
(function	(global)	{	declaration	at	the	top,	put	in	the	following:

function	makeClientProxyFunction(callback)	{

				return	function	()	{

								callback.apply(this,	arguments);

				};

}

function	client(callback)	{

				var	client	=	{};

				callback(client);

				for	(var	property	in	client)	{

								var	value	=	client[property];

								if	(typeof	value	!=	"function")	{

												continue;

								}

								this.on(property,	makeClientProxyFunction(value));

				}

};

3.	 In	addition	to	this,	in	the	registerHubFactory()	function	following	this	code,	you
should	make	sure	we	set	the	client	to	be	the	newly	created	client()	function.	This
function	should	now	look	as	follows:

function	registerHubFactory($provide,	hubName)	{

				$provide.factory(hubName,	function	()	{

								var	proxy	=	$.connection.hub.createHubProxy(hubName);

								proxy.client	=	client;

								return	proxy;

				});

}

By	having	this	client	function	that	we	can	call	in	the	different	places,	we	can	now
enable	to	late	bind	client	functions	without	having	to	prepare	everything	before	we
start	the	hub.	This	is	really	convenient	and	we	do	not	need	to	worry	about	order	of
initialization	or	similar	anywhere	else	in	our	app.	We	will	make	use	of	this	new
functionality	a	bit	later.

4.	 Moving	to	the	index.html	file	of	your	web	application,	we	want	to	do	some	changes
and	make	use	of	our	new	directive.	Open	up	the	index.html	file;	inside	the	div
marked	with	the	class	container	and	the	div	within	that	with	the	class	of	the	row.
Let’s	add	the	following:

<div	class="col-xs-4"	feature="chatRooms">

</div>

Notice	the	feature	attribute	on	the	div.	This	is	making	use	of	the	directive	we
created	in	the	config.js	file.

The	container	block	in	your	HTML	file	should	look	as	follows:

<div	class="container">

				<div	class="row">

								<div	class="col-md-4"	feature="chatRooms">

								</div>

								<div	class="col-md-4">

												<textarea	id="chatWindow"	style="width:400px;	

height:200px;"	ng-model="messages"></textarea>

												<div	class="form-inline">

																<div	class="form-group">

																				<label	for="messageTextBox"	class="control-

label">Message</label>

																				<div	class="input-group">

																								<input	type="text"	class="form-control"	

id="messageTextBox"	placeholder="Message"	ng-model="message">

																				</div>

																				<button	type="submit"	class="btn	btn-primary"	ng-

click="click()">Send</button>

																</div>

												</div>

								</div>

				</div>

</div>

5.	 We	will	now	need	to	create	a	couple	of	files;	one	for	the	view	that	represents	the
chatRooms	and	one	for	holding	the	controller.	Add	a	file	called	chatRooms.html	in
the	root	of	your	project.

6.	 Put	the	following	HTML	inside	the	newly	created	file:

<div	ng-controller="chatRooms">

				<select	size="2"	style="width:200px;	height:200px;"	ng-

model="currentChatRoom"	ng-change="selectionChanged(currentChatRoom)"	

ng-options="room	for	room	in	rooms"></select>

				<div	class="form-inline">

								<div	class="form-group">

												<label	for="messageTextBox"	class="control-

label">Chatroom</label>

												<div	class="input-group">

																<input	type="text"	class="form-control"	

id="messageTextBox"	placeholder="Chatroom"	ng-model="chatRoom">

												</div>

												<button	type="submit"	class="btn	btn-primary"	ng-

click="createRoom()">Create	room</button>

								</div>

				</div>

</div>

Notice	the	ng-controller	attribute;	this	is	in	fact	also	a	directive.	It	is	at	this	point
setting	up	a	controller	that	we’re	going	to	use	for	this	tag	and	its	children.	In
AngularJS,	this	will	create	a	new	scope,	inheriting	the	parent	scope	for	bindings—
which	will	enable	a	local	scope	for	this	tag	for	us	to	work	with.

Also,	it	is	worth	mentioning	that	the	ng-model	directive	in	Angular,	as	we’ve	used
before,	is	what	binds	the	result	of	a	value	change	in	an	input.	The	result	will	be
bounded	back	to	the	scope	for	the	variable	that	we	specify.	Likewise,	by	going	into
the	input,	the	ng-model	directive	will	also	make	AngularJS	get	the	value	from	the
scope.

7.	 Now,	we	are	going	to	need	to	create	a	controller	for	this.	Add	a	file	called
chatRooms.js	and	add	the	following	to	it:

"use	strict";

$application.controller("chatRooms",	["$scope",	"chat",	function	

($scope,	chat)	{

}]);

8.	 With	the	controller	in	place,	we’re	going	to	need	to	include	it	in	our	index.html	file
where	we	have	our	other	script	included.	Add	the	following	script	tag	after	the
index.js	file	is	included:

<script	src="chatRooms.js"	type="text/javascript"></script>

9.	 Let’s	put	some	logic	into	the	controller	in	chatRoom.js.	Let’s	add	the	following	to
the	scope	so	that	all	the	bindings	work:

$scope.currentChatRoom	=	"Lobby";

$scope.chatRoom	=	"";

$scope.rooms	=	[];

10.	 Whenever	the	user	clicks	on	the	create	room	button,	a	function	gets	called;	put	in	the
following	function	inside	the	controller:

$scope.createRoom	=	function	()	{

				chat.server.createChatRoom($scope.chatRoom);

				chat.server.join($scope.chatRoom);

				$scope.currentChatRoom	=	$scope.chatRoom;

				$scope.chatRoom	=	"";

				$scope.$emit("chatRoomChanged",	room);

};

Notice	the	$scope.$emit()	code	as	this	is	an	important	part.	Due	to	the	fact	that
we’re	dividing	our	application	up	into	smaller	parts	and	we	don’t	want	to	let	the	parts
know	about	each	other,	we	publish	a	message	saying	that	the	chat	room	has	changed
—because	after	creating	a	room,	it’s	natural	to	be	on	the	room	one	has	created.	We
will	see	later	on	that	we	will	be	subscribing	to	this.

11.	 Now,	let’s	add	a	client	function	for	when	the	chat	rooms	are	added.	Primarily,	we
want	to	know	when	others	are	adding	chat	rooms,	but	this	will	also	work	when	we
add.	Add	the	following	function	to	the	controller:

chat.client(function	(client)	{

				client.addChatRoom	=	function	(room)	{

								$scope.$apply(function	()	{

												$scope.rooms.push(room);

								});

				}

});

Notice	the	usage	of	the	new	client()	function	that	we	added	in	config.js.	This
takes	a	callback	that	gives	us	a	client	object	in	which	we	can	add	our	client-side
functions	to.

Another	important	aspect	you’ll	notice	is	what	we’ve	already	done	once	before:
$scope.$apply().	This	will	make	sure	we	get	our	changes	that	affects	visuals
actually	done.	It	tells	AngularJS	to	perform	a	digest	of	the	rendering,	including
bindings	and	so	on.

12.	 The	last	thing	we’re	going	to	need	in	the	controller	is	the	function	that	we	will	be
setting	up	to	handle	selection	changes,	typically	when	a	user	selects	a	room.	Add	the
following	function	to	the	controller:

$scope.selectionChanged	=	function	(room)	{

				$scope.$emit("chatRoomChanged",	room);

				chat.server.join(room);

};

13.	 Your	entire	file	should	look	as	follows:

"use	strict";

$application.controller("chatRooms",	["$scope",	"chat",	function	

($scope,	chat)	{

				$scope.currentChatRoom	=	"Lobby";

				$scope.chatRoom	=	"";

				$scope.rooms	=	[];

				$scope.selectionChanged	=	function	(room)	{

								$scope.$emit("chatRoomChanged",	room);

								chat.server.join(room);

				};

				$scope.createRoom	=	function	()	{

								chat.server.createChatRoom($scope.chatRoom);

								chat.server.join($scope.chatRoom);

								$scope.currentChatRoom	=	$scope.chatRoom;

								$scope.chatRoom	=	"";

								$scope.$emit("chatRoomChanged",	$scope.chatRoom);

				};

				chat.client(function	(client)	{

								client.addChatRoom	=	function	(room)	{

												$scope.$apply(function	()	{

																$scope.rooms.push(room);

												});

								}

				});

}]);

14.	 Now,	we’re	going	to	need	to	change	the	main	controller	in	index.js.	First,	we’re
going	to	need	a	third	dependency	in	our	definition	that	we’re	going	to	take	in
$rootScope.	This	enables	us	to	subscribe	to	messages	that	bubbles	up	from	any	other
features	on	the	page.	Make	the	definition	look	like	the	following:

$application.controller("index",	["$scope",	"chat",	"$rootScope",	

function	($scope,	chat,	$rootScope)	{

15.	 Now,	we	want	a	variable	to	hold	the	current	chat	room	that	we’re	on.	At	the	top	of
the	controller,	add	the	following	line:

var	currentChatRoom	=	"Lobby";

16.	 Since	we	changed	the	signature	of	the	Send()	method	on	the	hub,	we	are	going	to
have	to	change	the	client	as	well	to	send	the	chat	room	the	message	is	for.	Make	the
click	handler	look	like	the	following:

$scope.click	=	function	()	{

				chat.server.send(currentChatRoom,	$scope.message);

};

17.	 Since	the	other	feature	is	the	publishing	of	a	message	when	the	user	selects	a
different	room,	we	want	to	subscribe	to	this	message	and	change	our	own	state
accordingly.	The	$rootScope	object	will	help	us	achieve	this.	Add	the	following	code
to	the	controller:

$rootScope.$on("chatRoomChanged",	function	(args,	room)	{

				currentChatRoom	=	room;

});

18.	 The	entire	controller	should	look	as	follows:

"use	strict";

$application.controller("index",	["$scope",	"chat",	"$rootScope",	

function	($scope,	chat,	$rootScope)	{

				var	currentChatRoom	=	"Lobby";

				$scope.messages	=	"Connected";

				$scope.click	=	function	()	{

								chat.server.send(currentChatRoom,	$scope.message);

				};

				$rootScope.$on("chatRoomChanged",	function	(args,	room)	{

								currentChatRoom	=	room;

				});

				chat.client(function	(client)	{

								client.addMessage	=	function	(message)	{

												$scope.$apply(function	()	{

																$scope.messages	=	$scope.messages	+	"\n"	+	message;

												});

								}

				});

}]);

Running	the	application	should	yield	the	following	result:

Summary
Often,	you	find	yourself	not	wanting	to	broadcast	your	messages	to	all	of	your	clients;	the
groups	in	SignalR	gives	you	the	control	you	want	for	grouping	connections	together	and
for	only	sending	messages	to	the	group(s)	you	want.	You	should	now	be	able	to	apply
grouping	as	a	technique	for	filtering.	Building	applications	larger	than	your	average	Hello
World	application	often	demands	a	certain	amount	of	structure.	Breaking	things	up	into
smaller	problems	instead	of	looking	at	an	application	as	one	big	problem	helps	during
development	and	maintenance.	We’ve	seen	techniques	for	doing	this	with	AngularJS
creating	our	own	directive.	Directives	are	by	far	where	the	gold	is	hidden	within
AngularJS.	It	helps	you	tackle	the	problem	of	breaking	things	up,	and	encapsulating	into
reusable	components,	as	well	as	breaking	features	up.	You	then	compose	this	back	into	a
bigger	application.	If	you	do	things	right,	you’ll	also	see	that	the	features	don’t	even	need
to	know	about	each	other,	hence,	gaining	flexibility	in	how	the	composition	is	done.	You
can	mix	and	match,	and	maybe	even	to	a	certain	degree	leave	things	up	to	the	user	as	to
what	they	want	on	the	screen.	One	thing	to	consider	for	improvement	is	to	encapsulate	the
main	chat	as	a	feature	on	its	own	and	include	this	in	the	main	page	as	part	of	the
composition.

In	the	next	chapter,	we’re	going	to	look	at	how	we	can	maintain	the	state	across	each	call
going	back	and	forth	from	the	client	to	the	server.

Chapter	5.	State
At	one	level,	applications	need	to	keep	data	that	puts	the	application	in	a	certain	state.
Traditionally,	this	data	is	kept	either	in	memory	on	the	server	or	on	the	client	and	gets
passed	around	between	the	client	and	the	server,	and	often	front	and	center	in	the	calls	as
parameters.	This	chapter	will	cover	how	you	can	have	a	state	in	the	client	that	is	available
automatically	on	the	server.	This	type	of	state	is	then	included	in	every	round-trip	taken
between	the	client	and	the	server	as	the	result	of	a	method	invocation.

In	this	chapter,	the	following	topics	will	be	covered:

Setting	a	state	on	the	client	that	will	be	round-tripped
Setting	a	state	on	the	server	that	will	be	round-tripped

At	this	stage,	the	developer	should	be	able	to	have	a	state	on	the	client	that	is	also	on	the
server	and	that	round-trips	on	every	call	in	a	transparent	manner.

Becoming	stateful
SignalR	brings	a	lot	to	the	table	for	abstractions;	we’ve	seen	so	far	the	abstractions	of
persistent	connections	and	Hubs.	Diving	further	into	Hubs	you’ll	see	that	there	is	even
more.	One	of	the	cool	things	one	can	add	is	a	round-tripped	state.	This	is	the	state	that	is
carried	alongside	any	traffic	going	from	a	client	to	the	server.	So	whenever	you	call
something	from	the	client	to	the	server	or	the	server	calls	something	on	the	client,	any
state	you	have	specified	will	be	transferred	along	with	the	call	being	made.	This	is
something	that	will	be	really	convenient,	especially	when	you	have	information	that	is	not
necessarily	relevant	for	the	method	you	need	to	call,	but	something	that	you	might	want	to
have	cross	cutting	any	method	you	call.

A	great	example	of	this,	which	we	will	use	in	this	chapter,	is	the	current	chat	room	the	user
is	on.	Instead	of	having	to	maintain	the	state	manually	on	the	client,	we	can	simply	add	it
to	the	connection	and	it	will	round-trip	between	the	server	and	the	client.	This	also	makes
it	possible	for	the	server	to	change	the	state	to	something	that	would	be	much	more
involved,	if	not	using	this	feature.

For	now,	we’re	just	going	to	use	it	for	something	very	simple—to	keep	track	of	the	current
chat	room	for	the	client.	This	way	we	don’t	need	to	have	it	on	the	method	call	for	sending
a	message,	it	will	just	be	available	on	the	server	as	well	as	on	the	client.	Perform	the
following	steps	to	become	stateful:

1.	 Let’s	start	by	changing	the	server	a	bit.	Open	the	server-side	representation	of	the
Hub—Chat.cs.

2.	 Change	the	method	signature	by	removing	the	first	parameter	for	room	that	we	put	in
the	previous	chapter:

public	void	Send(string	message)

3.	 Then,	add	the	line	for	getting	the	current	chat	room	from	the	caller’s	state.	The
method	should	look	as	follows:

public	void	Send(string	message)

{

				var	room	=	(string)Clients.Caller.currentChatRoom;

				Clients.Group(room).addMessage(message);

}

Note
Note	that	it	is	important	to	cast	currentChatRoom	to	a	string	for	the	call	to	the
Group()	method	to	work.	Otherwise,	the	dynamic	binder	in	the	runtime	will	throw	an
exception.

4.	 When	we	join	a	room,	we	also	want	the	server	to	set	the	current	chat	room	from	the
server;	change	the	join()	method	to	look	as	follows:

public	void	Join(string	room)

{

				Clients.Caller.currentChatRoom	=	room;

				Groups.Add(Context.ConnectionId,	room);

}

The	client
That’s	all	we	will	to	do	on	the	server	for	now.	However,	it	is	worth	mentioning	that	any
state	can	be	written;	it’s	not	just	to	get	the	state	from	the	client	to	the	server.	Also,	as
you’ve	already	seen,	the	Caller	property	is	of	a	dynamic	type,	so	you	can	put	anything	on
it	and	it	will	just	be	there	on	the	client.	Right	now,	we	have	no	way	of	knowing	which
room	is	the	current	room	down	into	a	chat:

1.	 Let’s	start	by	adding	a	functionality	to	the	frontend	that	makes	it	easier	to	see	what
room	you’re	on.	Open	the	index.js	file.	Let’s	change	the	variable	we	have	for
holding	currentChatRoom	to	a	variable	on	the	scope	that	we	can	use	for	binding:

$scope.currentChatRoom	=	"Lobby";

2.	 Secondly,	we	want	to	change	the	message	handling	of	the	chatRoomChanged
message;	make	the	function	look	as	follows:

$rootScope.$on("chatRoomChanged",	function	(args,	room)	{

				$scope.currentChatRoom	=	room;

});

Note
As	the	variable	is	now	available	in	the	scope,	we	can	utilize	it	during	binding.

3.	 Open	the	index.html	file	and	let’s	make	it	clear	above	the	text	area	as	to	which	room
we’re	on.	Add	the	following	before	the	<textarea/>	tag:

Current	room	:	{{currentChatRoom}}

4.	 Let’s	make	the	text	area	slightly	smaller	in	height.	Set	the	height	to	180px	instead	of
200px.	This	should	make	it	aligned.

Note
Running	this	now	should	give	you	Current	room	as	a	headline	above	the	text	area.

5.	 Open	the	chatRoom.js	file.	Let’s	change	the	first	initialization	line	in	the	controller.
In	addition	to	setting	the	currentChatRoom	variable	on	the	scope,	we	want	the	client
to	set	the	state	on	the	hub	for	it	as	well.	Make	the	line	look	as	follows:

chat.state.currentChatRoom	=	$scope.currentChatRoom	=	"Lobby";

Note
The	state	object	on	a	hub	proxy	can	hold	any	state.	Anything	you	put	in	here	will	be
round-tripped	between	the	client	and	the	server.	The	state	is	obviously	for	the
connected	client,	so	not	any	global	state.

6.	 Move	back	to	the	index.js	file.	We	will	have	to	change	the	click	function	we	set	up
on	the	scope.	Since	we	no	longer	need	the	room	as	the	first	argument	going	into	the
send	method	on	the	server,	we	simply	want	to	remove	this.	Make	the	function	look	as
follows:

$scope.click	=	function	()	{

				chat.server.send($scope.message);

};

7.	 Now	that	we	have	the	current	chat	room	sitting	as	a	state	on	all	our	calls	to	the	chat
hub,	we	can	also	implement	a	way	of	logging	out	of	a	chat	room	when	we’re	joining
one.	Make	the	Join	method,	on	the	chat	Hub	in	C#,	look	as	follows:

public	void	Join(string	room)

{

				var	currentChatRoom	=	(string)Clients.Caller.currentChatRoom;

				if	(!string.IsNullOrEmpty(currentChatRoom))

								Groups.Remove(Context.ConnectionId,	currentChatRoom);

				Clients.Caller.currentChatRoom	=	room;

				Groups.Add(Context.ConnectionId,	room);

}

Lifetime	event	handlers	and	more
The	state’s	information	is	not	available	in	any	of	the	lifetime	event	handlers	such	as
OnConnected,	OnDisconnected,	or	OnReconnected.	It	only	applies	to	methods	on	the
server	representation	or	functions	on	the	client	representation.

The	type	of	state	that	you	typically	have	should	be	large	pieces	of	data;	it	is	meant	for
simple	things	that	are	considered	crosscutting	in	nature	as	it	is	round-tripped	for	every
invocation.

In	VB.NET	or	strongly	typed	Hubs,	there	is	another	property	instead	of	Caller	that	you
have	to	use;	a	new	property	called	CallerState	can	be	used	for	those	scenarios.

Summary
From	time	to	time	there	are	bits	of	information	that	one	could	centralize	and	not	have	to
pass	along	on	all	function	and	method	calls.	As	shown	in	this	chapter,	the	current	chat
room	is	a	good	example	of	such	a	state.	You	should	now	be	able	to	add	state	that	round-
trips	from	the	server	to	the	client	and	give	you	back	the	opportunity	to	simplify	your	own
code.	Moving	on,	in	the	next	chapter,	we’re	going	to	look	at	securing	your	application	and
Hubs.

Chapter	6.	Security
This	chapter	will	cover	how	you	can	secure	your	SignalR	connections,	which	require
authentication	and	authorization	from	the	client,	and	also	how	you	can	communicate	this
back	to	the	client	in	a	graceful	manner.

In	this	chapter,	we	will	cover	the	following	topics:

General	infrastructure	needed	to	secure	any	web	application
Creating	a	login	page	and	using	AJAX	calls	to	perform	the	actual	login
How	to	keep	users’	authentication	for	your	connection
How	to	have	a	specific	role	for	your	connection

At	this	stage,	the	developer	should	be	familiar	with	securing	their	SignalR	connections.

Locking	things	down
Security	is	something	all	applications	need	to	have	a	relationship	with,	in	one	way	or
another.	For	instance,	let’s	look	at	the	type	of	chat	application	we’re	building.	You	might
want	to	have	private	chat	rooms	or	the	entire	chat	to	be	private.	You	might	have	operations
that	are	only	allowed	by	users	of	a	certain	role.	Luckily,	SignalR	has	out-of-the-box
support	for	the	most	common	scenarios,	and	is	very	extensible	if	you’d	like	more	complex
solutions	than	the	ones	that	are	out-of-the-box.	This	chapter	will	take	you	through
enabling	forms	authentication,	a	common	scenario	for	applications.	You	could	use
Windows	authentication	and	others	as	well,	but	for	our	application,	we’re	using	forms.	In
this	chapter,	we’re	hand-rolling	everything	ourselves;	it	will	give	you	an	idea	of	what	is
happening	for	security.	As	an	alternative,	you	could	go	for	something	such	as	ASP.NET
Identity.	The	way	that	you	secure	your	SignalR	artifacts	would	still	be	the	same.

Putting	the	infrastructure	in	place
First	of	all,	since	our	web	application	is	built	from	HTML	files	and	not	ASPX	or
ASP.NET	MVC	controllers,	we	need	to	be	able	to	have	security	in	place	for	these	as	well,
so	we	get	redirected	to	a	login	page	when	not	authenticated.	There	are	a	couple	of
approaches	one	can	choose	in	order	to	make	the	security	pipeline	of	ASP.NET	kick	in	for
static	files	such	as	HTML	files;	one	of	the	approaches	could	be	to	enable	all	the	HTTP
modules	to	run	for	all	the	requests,	but	that	would	mean	a	potential	performance	hit	for
static	content.	So	instead,	we’re	going	to	tell	ASP.NET	to	deal	with	the	.html	files
specifically:

1.	 We	will	need	to	do	a	few	changes	to	the	Web.config	file	sitting	in	the	web	project	to
accomplish	this.	In	the	compilation	tag	sitting	at	the	top,	we	need	to	add	the	page
build	providers	for	the	extensions	we	want	to	support:

<compilation	debug="true"	targetFramework="4.5">

		<buildProviders>

				<add	extension=".html"	

type="System.Web.Compilation.PageBuildProvider"/>

		</buildProviders>

</compilation>

2.	 At	the	bottom-right	before	the	end	of	the	<configuration>	tag,	we	will	be	adding	a
web	server	section,	which	is	specific	to	IIS7	and	higher,	to	configure	pretty	much	the
same	as	we	did	for	compilation:

<system.webServer>

		<handlers>

				<add	name="HTML"

										path="*.html"

										verb="GET,	HEAD,	POST,	DEBUG"

										type="System.Web.UI.PageHandlerFactory"

										resourceType="Unspecified"

										requireAccess="Script"

										/>

			</handlers>

</system.webServer>

3.	 Then,	inside	the	<system.web>	tag	again,	right	below	the	compilation	tag,	we	will
be	adding	our	security.	First,	we	set	the	authentication	to	be	Forms	and	then	add	a
form	for	our	application	with	some	attributes	configuring	its	behavior;	also,	we	add
in	an	authorization	tag	denying	all	anonymous	users,	but	allowing	all	the	logged-in
users:

<authentication	mode="Forms">

		<forms	name=".signalRChat"	

									loginUrl="login.html"	

									protection="All"	

									path="/"	

								timeout="30"/>

</authentication>

				

<authorization>

		<deny	users="?"/>

		<allow	users="*"/>

</authorization>

HTTP	handler	config
In	order	for	the	user	to	be	authenticated,	we	need	something	we	can	call	on	the	server	to
do	the	authentication.	We	could	have	gone	with	a	hub	for	that	purpose,	or	even	a	persistent
connection.	However,	it	would	lead	to	some	interesting	configuration	and	having	to
disconnect	from	SignalR,	when	we	were	authenticated,	and	then	having	to	reconnect.	So
instead,	we	can	do	something	in	the	simplest	possible	way.

In	order	to	be	able	to	log	in	from	our	login	page	that	we	will	be	creating,	we	will	be	using
an	HTTP	handler	for	authenticating	and	giving	us	the	authentication	cookie	for	any
subsequent	requests.	We’ll	create	the	handler	shortly.	However,	for	now,	let’s	just
configure	it	to	allow	requests	even	if	we’re	not	logged	in:

1.	 Add	the	following	right	before	the	<system.webserver>	tag	in	web.config:

<location	path="SecurityHandler.ashx">

		<system.web>

				<authorization>

						<allow	users="*"/>

				</authorization>

		</system.web>

</location>

2.	 To	enable	us	to	include	SignalR	on	the	login	page,	we’re	also	going	to	have	to	add	a
location	section	for	the	SignalR	proxy	path.	Add	the	following	right	after	the
previous	location	section:

<location	path="signalr">

		<system.web>

				<authorization>

						<allow	users="*"/>

				</authorization>

		</system.web>

</location>

3.	 Your	web.config	should	now	look	as	follows:

<?xml	version="1.0"	encoding="utf-8"?>

<configuration>

		

		<system.web>

				<compilation	debug="true"	targetFramework="4.5">

						<buildProviders>

								<add	extension=".html"	

type="System.Web.Compilation.PageBuildProvider"/>

								<add	extension=".htm"	

type="System.Web.Compilation.PageBuildProvider"/>

						</buildProviders>

				</compilation>

				

				<httpRuntime	targetFramework="4.5"	/>

				<authentication	mode="Forms">

						<forms	name=".signalRChat"	loginUrl="login.html"	protection="All"	

path="/"	timeout="30"/>

				</authentication>

				

				<authorization>

						<deny	users="?"/>

						<allow	users="*"/>

				</authorization>

		</system.web>

		

		<location	path="SecurityHandler.ashx">

				<system.web>

						<authorization>

								<allow	users="*"/>

						</authorization>

				</system.web>

		</location>

		

		<location	path="signalr">

				<system.web>

						<authorization>

								<allow	users="*"/>

						</authorization>

				</system.web>

		</location>

		

		<system.webServer>

				<handlers>

						<add	name="HTML"

											path="*.html"

											verb="GET,	HEAD,	POST,	DEBUG"

											type="System.Web.UI.PageHandlerFactory"

											resourceType="Unspecified"

											requireAccess="Script"

											/>

						

						<add	name="HTM"

											path="*.htm"

											verb="GET,	HEAD,	POST,	DEBUG"

											type="System.Web.UI.PageHandlerFactory"

											resourceType="Unspecified"

											requireAccess="Script"

											/>

				</handlers>

		</system.webServer>	

</configuration>

Authentication
Now	that	we	have	the	configuration	in	place	for	securing	our	site	properly,	we	want	to	be
able	to	actually	log	into	the	site:

1.	 Let’s	add	the	security	handler	that	we	just	configured.	Right-click	on	the	web	project
and	navigate	to	Add	|	New	item.	Select	Web	and	then	select	Generic	Handler.	Give
it	the	name	SecurityHandler.ashx:

2.	 We	will,	for	simplicity,	be	hardcoding	our	users,	passwords,	and	roles.	At	the	top	of
the	SecurityHandler.ashx	file,	add	the	following:

Dictionary<string,	string>	_usersAndPassword	=	new	Dictionary<string,	

string>

{

				{	"SomeCreator",	"1234"	},

				{	"SomeChatter",	"1234"	}

};

Dictionary<string,	string[]>	_usersAndRoles	=	new	Dictionary<string,	

string[]>

{

				{	"SomeCreator",	new[]	{	"Creator"	}	}

};

3.	 Let’s	go	ahead	and	add	the	simple	authentication	methods	for	dealing	with	the	users.

The	authentication	will	result	in	a	FormsAuthentication	cookie	that	we	will	generate
in	the	AuthenticateUser	method	that	follows.	The	cookie	will	hold	the	username
and	all	the	roles	for	the	user:

bool	IsValidUser(string	userName,	string	password)

{

				foreach	(var	user	in	_usersAndPassword.Keys)

								if	(user.ToLowerInvariant()	==	userName.ToLowerInvariant())

												if	(_usersAndPassword[user]	==	password)

																return	true;

				return	false;

}

string[]	GetRolesForUser(string	userName)

{

				foreach	(var	user	in	_usersAndRoles.Keys)

								if	(user.ToLowerInvariant()	==	userName.ToLowerInvariant())

												return	_usersAndRoles[user];

				return	new	string[0];

}

void	AuthenticateUser(

				HttpContext	context,

				string	userName,

				params	string[]	roles)

{

				var	ticket	=	new	FormsAuthenticationTicket(1,	userName,

								DateTime.Now,

								DateTime.Now.AddMinutes(30),

								false,

								string.Join(";",	roles));

				var	cookieString	=	FormsAuthentication.Encrypt(ticket);

				var	cookie	=	new	HttpCookie(FormsAuthentication.FormsCookieName,	

cookieString);

				context.Response.Cookies.Add(cookie);

}

4.	 The	handler	will	need	an	implementation	in	ProcessRequest()	that	deals	with	the
incoming	authentication.	Again,	for	simplicity,	we	will	be	using	clear	text	passwords
sitting	inside	a	HTTP	form.	Of	course,	it’s	recommended	to	do	something	a	bit	more
involved	than	this,	especially	if	you’re	not	using	SSL	to	secure	your	connection:

public	void	ProcessRequest(HttpContext	context)

{

				var	userName	=	context.Request.Form["userName"];

				var	password	=	context.Request.Form["password"];

				if	(IsValidUser(userName,	password))

				{

								var	roles	=	GetRolesForUser(userName);

								AuthenticateUser(context,	userName,	roles);

								context.Response.StatusCode	=	(int)HttpStatusCode.OK;

				}

				else

				{

								context.Response.StatusCode	=	(int)HttpStatusCode.Forbidden;

				}

}

5.	 The	entire	SecurityHandler	class	should	look	as	follows:

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Net;

using	System.Web;

using	System.Web.Security;

namespace	SignalRChat

{

				///	<summary>

				///	Summary	description	for	SecurityHandler

				///	</summary>

				public	class	SecurityHandler	:	IHttpHandler

				{

								Dictionary<string,	string>	_usersAndPassword	=	new	

Dictionary<string,	string>

								{

												{	"SomeCreator",	"1234"	},

												{	"SomeChatter",	"1234"	}

								};

								Dictionary<string,	string[]>	_usersAndRoles	=	new	

Dictionary<string,	string[]>

								{

												{	"SomeCreator",	new[]	{	"Creator"	}	}

								};

								bool	IsValidUser(string	userName,	string	password)

								{

												foreach	(var	user	in	_usersAndPassword.Keys)

																if	(user.ToLowerInvariant()	==	

userName.ToLowerInvariant())

																				if	(_usersAndPassword[user]	==	password)

																								return	true;

												return	false;

								}

								string[]	GetRolesForUser(string	userName)

								{

												foreach	(var	user	in	_usersAndRoles.Keys)

																if	(user.ToLowerInvariant()	==	

userName.ToLowerInvariant())

																				return	_usersAndRoles[user];

												return	new	string[0];

								}

								void	AuthenticateUser(

												HttpContext	context,

												string	userName,

												params	string[]	roles)

								{

												var	ticket	=	new	FormsAuthenticationTicket(1,	userName,

																DateTime.Now,

																DateTime.Now.AddMinutes(30),

																false,

																string.Join(";",	roles));

												var	cookieString	=	FormsAuthentication.Encrypt(ticket);

												var	cookie	=	new	

HttpCookie(FormsAuthentication.FormsCookieName,	cookieString);

												context.Response.Cookies.Add(cookie);

								}

								public	void	ProcessRequest(HttpContext	context)

								{

												var	userName	=	context.Request.Form["userName"];

												var	password	=	context.Request.Form["password"];

												if	(IsValidUser(userName,	password))

												{

																var	roles	=	GetRolesForUser(userName);

																AuthenticateUser(context,	userName,	roles);

																context.Response.StatusCode	=	(int)HttpStatusCode.OK;

												}

												else

												{

																context.Response.StatusCode	=	

(int)HttpStatusCode.Forbidden;

												}

								}

								public	bool	IsReusable

								{

												get

												{

																return	false;

												}

								}

				}

6.	 Now,	we	will	need	a	page	where	we	can	log	in.	This	is	the	page	we	configured	in
web.config	as	the	redirect	URL	when	users	try	to	access	the	site.	Right-click	on	the
web	project,	navigate	to	Add	|	New	Item,	select	Web,	and	then	select	HTML	page.
Name	the	page	login.html.

7.	 As	we	did	with	the	index	file,	we	want	to	include	Bootstrap	to	make	things	look
good.	Inside	the	<head>	tag,	add	the	following:

<link	href="Content/bootstrap.min.css"	rel="stylesheet"	/>

<link	href="Content/bootstrap-theme.min.css"	rel="stylesheet"	/>

8.	 In	the	page,	we	will	add	a	form	inside	the	body	holding	the	input	for	the

authentication.	This	could	also	have	been	a	form	pointing	directly	to	the
SecurityHandler,	but	we	will	be	doing	this	programmatically	instead.	Add	the
following	<body>	tag:

<div	class="container">

				<div	class="row">

								<div	class="col-xs-8">

												<form	class="form-horizontal">

																<div	class="form-group">

																				<h1	class="col-sm-2	control-label">Login</h1>

																</div>

																<div	class="form-group">

																				<label	for="inputEmail3"	class="col-sm-2	control-

label">Email</label>

																				<div	class="col-sm-10">

																								<input	type="text"	class="form-control"	

id="inputEmail3"	placeholder="Email"	data-ng-model="userName">

																				</div>

																</div>

																<div	class="form-group">

																				<label	for="inputPassword3"	class="col-sm-2	

control-label">Password</label>

																				<div	class="col-sm-10">

																								<input	type="password"	class="form-control"	

id="inputPassword3"	placeholder="Password"	data-ng-model="password">

																				</div>

																</div>

																<div	class="form-group">

																				<div	class="col-sm-offset-2	col-sm-10">

																								<button	type="submit"	class="btn	btn-default"	

data-ng-click="signIn()">Sign	in</button>

																				</div>

																</div>

												</form>

								</div>

				</div>

</div>

Note
As	we’ve	done	in	the	earlier	chapters,	we’re	using	the	data-ng-model	and	data-ng-
click	directives	to	be	able	to	bind	the	HTML	to	the	scope	and	make	it	available	for
the	JavaScript	code.

9.	 Then,	we	go	ahead	and	add	the	following	scripts	at	the	bottom	of	the	<body>	element:

<script	src="Scripts/jquery-1.9.1.min.js"	type="text/javascript">

</script>

<script	src="Scripts/bootstrap.min.js"	type="text/javascript"></script>

<script	src="Scripts/angular.js"	type="text/javascript"></script>

<script	src="Scripts/jquery.signalR-2.2.0.min.js"></script>

<script	src="SignalR/Hubs"	type="text/javascript"></script>

<script	src="config.js"	type="text/javascript"></script>

<script	src="login.js"	type="text/javascript"></script>

10.	 We	now	want	to	provide	the	JavaScript	logic	for	this;	the	last	script	we	included	is	a
file	called	login.js,	which	does	not	exist	yet.	Add	a	new	JavaScript	file	called
login.js.	Make	it	look	as	follows:

"use	strict";

$application.controller("login",	["$scope",	"$http",	function	($scope,	

$http)	{

				$scope.signIn	=	function	()	{

								$http({

												method:	"POST",

												url:	"/SecurityHandler.ashx",

												headers:	{	'Content-Type':	'application/x-www-form-

urlencoded'	},

												transformRequest:	function	(obj)	{

																var	str	=	[];

																for	(var	p	in	obj)

																				str.push(encodeURIComponent(p)	+	"="	+	

encodeURIComponent(obj[p]));

																return	str.join("&");

												},

												data:	{

																userName:	$scope.userName,

																password:	$scope.password

												}

								}).success(function	()	{

												window.location	=	"/";

								});

				}

}]);

We’re	doing	what	is	commonly	known	as	an	AJAX	call	for	the	authentication.	AngularJS
has	an	object	called	$http	that	we	can	use	to	work	with	this;	we	take	this	as	a	dependency
and	use	it	directly.	We	want	to	perform	a	HTTP	POST	with	the	username	and	password
bound	from	the	scope.	To	be	able	to	do	this,	we	have	to	set	the	header	to	be	a	form	that	is
URL	encoded.	This	is	also	why	we	have	the	transform	request—to	encode	the	content
properly.

Running	the	chat	should	now	lead	you	to	the	login	page,	and	you	will	not	be	able	to	get	to
the	index.html	file.

Securing	the	hub
Since,	by	default,	we	have	everything	locked	down,	the	hub	is	also	protected.	This	means
that	going	directly	to	the	URL	won’t	get	you	there.	However,	we	will	be	explicitly
securing	the	hub.	SignalR	comes	with	an	attribute	called	Authorize,	similar	to	the	one	you
find	in	ASP.NET	MVC	and	so	on.	There	are	other	mechanisms	for	securing	hubs,	but	we
won’t	go	into	that	in	this	book.	To	enforce	that	users	need	to	be	logged	in,	we	can	use	the
Authorize()	attribute:

The	Authorize()	attribute	can	be	used	for	both	hubs	and	methods	on	a	hub.	It	has	a
couple	of	options	that	can	be	passed	to	it,	such	as	users	and	roles	holding	comma
delimited	required	users	and/or	roles.	However,	it	also	has	a	property	called
RequireOutgoing	that	tells	SignalR	what	direction	it	should	be	securing.	By	default,
it	is	only	incoming,	but	by	setting	it	to	true,	it	will	become	outgoing.	We	will	set	it	to
true,	so	that	we	secure	both	directions;	by	effectively	making	it	impossible	for
anyone	to	consume	messages,	you	have	to	be	authorized	for	both	calling	methods	on
the	hub	and	getting	messages	from	the	hub:

[Authorize(RequireOutgoing=true)]

public	class	Chat	:	Hub

{

In	addition	to	requiring	authenticated	users	for	the	hub,	we	will	be	adding	a	specific
role	requirement	for	the	CreateChatRoom()	method	that	sits	on	the	hub:

[Authorize(Roles="Creator")]

public	void	CreateChatRoom(string	room)

{

The	great	finale
Now,	the	final	piece	of	the	puzzle.	SignalR	uses	the	underlying	credential	information
found	on	threads	in	.NET.	This	means	we	will	have	to	populate	this	information	based	on
the	cookie	generated	by	our	security	handler.	For	this,	we’re	going	to	need	Global
Application	Class.	Right-click	on	the	web	project	and	navigate	to	Add	|	New	item.	Select
Web	and	then	select	Generic	Handler.	Give	it	the	name	Global.asax:

1.	 If	the	request	coming	in	is	authenticated,	we	want	to	get	the	cookie	and	decrypt	it.
From	this,	we	want	to	put	the	identity	into	the	HttpContext.	Open	the
Global.asax.cs	file	and	make	the	Application_AuthenticateRequest	method	look
like	follows:

protected	void	Application_AuthenticateRequest(object	sender,	EventArgs	

e)

{

				if(HttpContext.Current.User	!=	null)

				{

								if(Request.IsAuthenticated	==	true)

								{

												var	ticket	=	FormsAuthentication.Decrypt(

																

Context.Request.Cookies[FormsAuthentication.FormsCookieName].Value);

												var	roles	=	ticket.UserData.Split(';');

												var	id	=	new	FormsIdentity(ticket);

												Context.User	=	new	GenericPrincipal(id,	roles);

								}

				}

}

2.	 Running	the	web	app	should	now	lead	you	straight	to	the	login.html	file.	Log	in	as
one	of	the	users,	such	as	SomeCreator	and	its	password	1234,	and	by	logging	in,	you
should	be	redirected	to	index.html	where	you	can	do	everything	you	could	before.
Verify	that	everything	is	working	by	closing	the	browser	and	logging	in	as
SomeChatter	and	try	to	create	a	new	chat	room;	a	new	room	should	not	appear.

Summary
Security	is	something	that	all	applications	must	take	into	consideration.	SignalR	just	taps
into	existing	infrastructure,	both	for	the	client	and	the	server	side,	making	this	possible.
All	we	need	to	do	is	authenticate	and	use	the	infrastructure	to	our	advantage	to	get	our	app
secured.	You	should	be	able	to	apply	security	in	the	form	described	in	this	chapter,	but
also	get	an	idea	to	move	forward	with	even	more	security,	such	as	applying	SSL.	The	next
big	step	now	is	to	make	our	application	scale.	With	the	scaleout	options	of	SignalR,	one
should	be	capable	of	truly	scaling	to	any	need.

The	next	chapter	will	go	into	depth	on	how	to	scale	with	different	options,	even	into	the
cloud.

Chapter	7.	Scaling	Out
This	chapter	will	cover	how	to	host	SignalR	in	different	environments.	Some	solutions	out
there	need	to	be	self-contained	and	not	rely	on	any	server	setup;	this	chapter	will	show
you	how	to	do	that,	ranging	all	the	way	to	larger	solutions	where	you	need	to	scale	out	into
a	multi-server	environment	and	even	all	the	way	to	the	cloud.	When	one	has	multiple
servers	and	is	not	necessarily	controlling	which	server	will	be	hit,	we	need	to	deal	with
this.	In	this	chapter,	we’ll	cover	the	following	topics:

The	basics	of	messaging	and	how	SignalR	deals	with	them
Using	SQL	Server	for	scaling	out
Using	Azure	Service	Bus	for	scaling	out
Using	Redis	for	scaling	out
Discussing	how	one	can	implement	a	bridge	for	their	own	messaging	backplane

At	this	stage,	the	developer	should	be	familiar	with	how	the	server	works	and	how	to	set	it
up	in	their	own	app.	They	should	have	a	working	sample	of	the	chat	working	with	the
OWIN	server.	The	developer	should	also	be	familiar	with	how	and	why	to	scale	out	the
messaging	aspect	of	SignalR.

It’s	all	about	messages	in	SignalR
Underneath	the	covers,	SignalR	wraps	all	communication	between	the	server	and	clients
into	messages	holding	all	the	information	with	its	origin,	what	the	message	is	for,	and	the
content	of	the	message.	By	default,	these	messages	are	kept	in	memory	in	the	process	that
hosts	your	SignalR-based	solution.

This	means	that	having	two	servers	will	not	have	inter-process	communication	going	on,
so	one	client	sitting	on	one	server	and	another	on	a	second	one	would	not	know	about	each
other’s	messages.	With	the	flexibility	of	SignalR	at	the	core	level	of	it	dealing	with	this
through	well-defined	interfaces,	it	is	fairly	simple	to	make	it	scale	out	for	different
technologies.	This	is	something	the	SignalR	team	has	done	as	well;	they	provide	the
ability	to	scale	out	in	different	ways.	You	get	support	to	use	Microsoft	SQL	Server	for
temporary	storage	of	messages	between	servers,	or	use	Windows	Azure	Service	Bus	to
distribute	the	messages,	or	even	the	popular	Redis	to	do	this.	There	is	a	thriving
community	around	SignalR	and	already	a	few	more	implementations	for	popular	message
buses	and	key/value	stores	to	act	as	a	backplane.	Expect	this	to	be	a	space	that	grows	even
more.

Scaling	out	with	SQL	Server
In	your	server	project,	you	will	need	a	package	for	the	SQL	scale-out	option.	Add	a	NuGet
package	reference	to	Microsoft.AspNet.SignalR.SqlServer.	We	are	now	ready	to
configure	it.	Open	the	Startup.cs	file,	before	the	call	to	.RunSignalR()	or
.MapSignalR()	as	we	did	in	Chapter	3,	Hubs,	we	will	add	the	configuration	for	SQL
Server.

Add	the	following	code	before	it:

GlobalHost.DependencyResolver.UseSqlServer(

								"Data	Source=(local);"+

								"Initial	Catalog=SignalRChat;"+

								"Integrated	Security=True"

);

The	overload	we’re	using	is	one	that	takes	a	SQL	Server	connection	string.	It	could	be	any
SQL	Server	you	have	either	on-premise	or	in	the	cloud.

In	order	for	SignalR	to	be	able	to	use	SQL	Server	as	a	messaging	backend,	we	need	to
enable	something	called	a	Service	Broker	for	our	database.	After	creating	your	database,
right-click	on	it	in	the	SQL	Server	Management	Studio	and	then	select	Properties.

In	the	Options	page,	scroll	down	until	you	find	the	Service	Broker	section	and	enable	the
Broker	Enabled	flag,	as	shown	here:

We	should	now	be	able	to	run	our	application	and	it	will	generate	messages	in	the
dbo.SignalR_Messages	table,	as	shown	here:

Scaling	out	with	Redis
Redis	is	another	option	that	can	be	used	with	SignalR	for	scaling	out.	Redis	is	an	open
source	distributed	key-value	store.	It	is	very	popular	in	the	Unix	space,	and	has	also	been
adopted	by	Microsoft.	It’s	fairly	easy	to	get	running	on	Azure	or	other	cloud	options.	If
you	want	to	try	things	out	with	Redis	locally,	the	procedure	is	as	follows:

Note
Download	the	source	that	Microsoft	has	published	through	their	Open	Tech	initiative	on
GitHub	at	https://github.com/MSOpenTech/redis.	Follow	the	guide	there,	build	and	run	it.

Once	it	is	running,	we	can	get	going	with	configuring	our	chat	application	for	Redis
instead	of	the	SQL	solution.

Add	a	reference	to	the	Microsoft.AspNet.SignalR.Redis	NuGet	package.	As	with	SQL
Server,	adding	Redis	is	just	as	easy.	Go	to	the	Startup.cs	file,	and	instead	of	using	the
.UseSqlServer()	method,	replace	it	with	the	following:

GlobalHost.DependencyResolver.UseRedis(

				"localhost",

				6379,

				"",

				"signalr.key");

This	points	us	to	the	local	Redis	server	running	with	a	blank	password,	something	you
obviously	would	not	have	in	production.

Running	the	server	with	connected	clients	,	you	should	see	the	result	in	the	Redis	console
output	directly:

https://github.com/MSOpenTech/redis

Scaling	out	with	Azure
A	third	option	that’s	available	out	of	the	box	is	the	usage	of	Azures	Service	Bus,	a
distributed	messaging	system	for	Microsoft’s	cloud	solution—Azure.	We	will	cover	it
briefly	in	this	book	as	it	requires	you	to	have	the	Azure	SDK	installed	to	make	it	fully
functional.	Once	you	have	installed	the	Azure	SDK,	you	will	need	to	add	a	cloud	project
to	your	solution	and	add	the	Web	project	as	a	website	to	the	cloud	project.	When	you	have
all	that	done,	you	need	to	set	the	cloud	project	as	the	startup	project.	The	reasoning	behind
this	is	that	it	needs	to	be	running	inside	the	Azure	emulator	to	be	able	to	this,	so	it’s
relying	on	infrastructure	to	do	this.

Log	into	your	Windows	Azure	portal	and	go	to	Service	Bus.	From	the	top	of	the	page,
create	a	namespace	if	you	haven’t	already	done	so:

Navigate	to	the	new	namespace	in	the	portal	after	creation.	At	the	bottom	of	the	page,
you’ll	find	a	button	called	Connection	Information;	click	on	it.

You	will	find	the	connection	string	that	we	need	in	our	code;	copy	it	from	the	page	so	that
you	can	add	it	in	the	code:

Back	in	Visual	Studio,	we’re	going	to	add	a	NuGet	package	reference	called
Microsoft.AspNet.SignalR.ServiceBus	to	the	project.	Open	the	Startup.cs	file	again
and	replace	the	.UseRedis()	code	with	the	following:

GlobalHost.DependencyResolver.UseServiceBus(

				"your	connection	string	from	azure",

				"signalr");

You	should	now	be	able	to	run	your	solution	on	Azure	and	be	ready	for	scaling	your
solution	any	way	you	like.

Creating	our	own	backplane
There	are	other	scale-out	solutions	available	out	there	as	well.	For	instance,	the
community	has	created	RabbitMQ	support.	Also,	the	popular	NServiceBus	has	a
backplane	implementation	for	SignalR.

The	scale-out	mechanisms	utilize	what	is	known	as	a	backplane.	In	electronics,	a
backplane	is	a	group	of	parallel	connectors.	By	analogy	in	SignalR	talk,	this	means
connecting	to	multiple	servers.	We	need	the	backplane	to	be	able	to	communicate	in	a
multi	server	world.

However,	you	might	have	infrastructure	in	place	that	does	not	have	any	support	yet	or	it	is
proprietary	to	your	system.	Fear	not,	implementing	support	is	fairly	easy.	At	the	heart	of	it
all	sits	an	interface	called	IMessageBus	that	you	can	build	on	top	of.	However,	for	the
most	part,	you	probably	don’t	even	need	all	this	raw	power.	You	will	only	need	an
abstraction	for	the	scale-out	scenario	called	ScaleoutMessageBus.	Let’s	have	a	look	at
how	you	can	do	this:

1.	 Add	a	C#	class	called	CustomBus	to	the	root	of	the	project.
2.	 Make	it	inherit	from	ScaleoutMessageBus:

using	Microsoft.AspNet.SignalR.Messaging;

namespace	SignalRChat

{

				public	class	CustomBus	:	ScaleoutMessageBus

				{

				}

}

3.	 This	won’t	compile,	as	the	base	class	has	dependencies	on	the	constructor	it	needs	to
fulfill.	One	of	these	dependencies	is	a	configuration	object	representing	any
configuration	for	your	custom	bus	implementation.	Let’s	create	a	C#	class	called
CustomBusConfiguration:

using	Microsoft.AspNet.SignalR.Messaging;

namespace	SignalRChat

{

				public	class	CustomBusConfiguration	:	ScaleoutConfiguration

				{

				}

}

This	configuration	object	is	where	you	keep	any	specific	configuration	for	your	bus.
In	our	sample,	we’re	not	really	connecting	to	anything,	so	we	won’t	put	anything	into
it.

4.	 With	the	configuration	type	in	place,	we	can	now	put	in	a	constructor	that	can	fulfill
the	dependencies	of	the	base	class	for	our	message	bus.	Go	back	to	the	CustomBus
class	and	add	in	the	following	constructor:

public	CustomBus(IDependencyResolver	dependencyResolver,	

CustomBusConfiguration	configuration)	

				:	base(dependencyResolver,	configuration)

{

}

5.	 The	next	thing	we	will	need	is	to	tell	the	underlying	bus	implementation	to	open.	Add
the	following	into	the	constructor:

Open(0);

The	0	being	passed	in	is	the	number	of	the	queue	to	open.

6.	 Every	message	in	the	system	has	an	identifier,	ulong	that	should	be	incremental.	You
as	an	implementer	of	the	custom	bus	need	to	keep	track	of	this.	Introduce	a	static
variable	on	the	class	to	hold	this:

static	ulong	_messageId;

7.	 The	ScaleoutMessageBus	type	has	a	few	things	we	can	override.	We	want	to	focus
on	the	Send()	method	that	gets	invoked	when	a	message	is	sent.	There	are	other
lifecycle	methods	also,	subscription	and	topic-related	methods	that	can	be	overridden
and	dealt	with,	but	we’re	not	going	into	those	in	this	chapter.	Put	the	following
method	in	place:

protected	override	Task	Send(int	streamIndex,	IList<Message>	messages)

{

				var	scaleoutMessage	=	new	ScaleoutMessage(messages);

				OnReceived(streamIndex,	_messageId++,	scaleoutMessage);

				return	Task.FromResult(0);

}

The	key	to	telling	SignalR	when	a	message	is	received	is	to	use	the	OnReceived()
method	from	the	base	class.	In	this	sample,	we	call	it	directly	from	the	Send()
method,	but	this	is	the	method	you’d	call	when	receiving	a	message	from	your	actual
backplane.

Worth	noting	is	that	everything	is	considered	async	in	SignalR;	therefore,	it	returns
Task.	Since	we’re	not	doing	anything	special,	we	basically	return	an	empty	Task.

Hooking	it	all	up
With	all	the	code	to	deal	with	the	bus	and	messaging,	we	need	to	hook	it	up	and	make	use
of	it.	We’ll	do	this	in	the	same	manner	as	other	buses	have	been	doing	it:

1.	 Let’s	create	extension	methods	for	DependencyResolver	as	we’ve	seen	done	with	the
SQL,	Azure,	and	Redis	implementations.	Add	a	C#	class	called
DependencyResolverExtensions	and	make	it	look	as	follows:

using	System;

using	Microsoft.AspNet.SignalR;

using	Microsoft.AspNet.SignalR.Messaging;

namespace	SignalRChat

{

				public	static	class	DependencyResolverExtensions

				{

								public	static	IDependencyResolver	UseCustom(this	

IDependencyResolver	resolver)

								{

												var	bus	=	new	Lazy<CustomBus>(()	=>	new	CustomBus(resolver,	

new	CustomBusConfiguration()));

												resolver.Register(typeof(IMessageBus),	()	=>	bus.Value);

												return	resolver;

								}

				}

}

The	DependencyResolver	is	the	key	to	everything	inside	SignalR,	and	this	code
registers	the	relationship	between	IMessageBus	and	our	implementation.	So,
whenever	SignalR	internally	asks	for	an	implementation	of	IMessageBus,	it	will	get
ours.	We	also	want	this	to	be	initialized	as	late	as	possible;	therefore,	we	use	the	Lazy
type	to	wrap	it.

2.	 Open	the	Startup.cs	file	and	let’s	hook	it	all	up.	In	the	Configuration	method,	you
can	now	add	the	following:

GlobalHost.DependencyResolver.UseCustom();

3.	 Add	a	breakpoint	in	the	Send()	method	of	the	CustomBus	class	and	run	it	with	the
debugger	attached.	You	should	hit	the	method	and	see	something	like	the	following:

Summary
Working	with	a	solution	over	multiple	servers	can	easily	become	a	nightmare.	A	state
being	kept	in	memory	on	one	server	is	not	available	on	the	second,	leading	to	weird
scenarios	as	a	result.	Having	a	stateless	server	is	vital	in	those	scenarios	and	also	when
applying	SignalR	in	a	multi	server	environment.	Hubs	or	persistent	connections	should	not
keep	the	state	floating	around	locally	on	a	server,	but	it	should	be	architected	in	a	way	to
accommodate	the	fact	that	you’re	running	distributed	environment.	There	is	no	guarantee
as	to	what	server	the	SignalR	is	connecting	to,	and	also	if	the	client	needs	to	reconnect,	so
the	scale-out	option	is	absolutely	vital	to	the	story.	With	the	different	options	described	in
this	chapter,	you	should	now	be	able	to	scale	in	an	on-premise	solution	as	well	as	in	the
cloud.	Moving	on	to	the	next	chapter,	we’ll	see	how	we	can	take	the	same	functionality
that	we’ve	created	for	the	web	and	make	it	in	a	WPF	.NET	client.

Chapter	8.	Building	a	WPF	.NET	Client
In	this	chapter,	we	will	bring	the	full	feature	set	of	what	we’ve	built	so	far	for	the	web
onto	the	desktop	through	a	WPF	.NET	client.	There	are	quite	a	few	ways	of	developing
Windows	client	solutions,	and	WPF	was	introduced	back	in	2005	and	has	become	one	of
the	most	popular	ways	of	developing	software	for	Windows.	In	WPF,	we	have	something
called	XAML,	which	is	what	Windows	Phone	development	supports	and	is	also	the	latest
programming	model	in	Windows	10.	In	this	chapter,	the	following	topics	will	be	covered:

MVVM
A	brief	introduction	to	the	SOLID	principles
XAML
WPF
The	C#	approach	to	consume	Hubs
The	C#	approach	to	use	groups

Decoupling	it	all
So	you	might	be	asking	yourself,	what	is	MVVM?	It	stands	for	Model	View	ViewModel:
a	pattern	for	client	development	that	became	very	popular	in	the	XAML	stack,	enabled	by
Microsoft	based	on	Martin	Fowlers	presentation	model
(http://martinfowler.com/eaaDev/PresentationModel.html).	Its	principle	is	that	you	have	a
ViewModel	that	holds	the	state	and	exposes	a	behavior	that	can	be	utilized	from	a	view.
The	view	observes	any	changes	of	the	state	the	ViewModel	exposes,	making	the
ViewModel	totally	unaware	that	there	is	a	view.

The	ViewModel	is	decoupled	and	can	be	put	in	isolation	and	is	perfect	for	automated
testing.	As	part	of	the	state	that	the	ViewModel	typically	holds	is	the	model	part,	which	is
something	it	usually	gets	from	the	server,	and	a	SignalR	hub	is	the	perfect	transport	to	get
this.	It	boils	down	to	recognizing	the	different	concerns	that	make	up	the	frontend	and
separating	it	all.

This	gives	us	the	following	diagram:

http://martinfowler.com/eaaDev/PresentationModel.html

Decoupling	–	the	next	level
In	this	chapter,	one	of	the	things	we	will	brush	up	is	the	usage	of	the	Dependency
Inversion	Principle,	the	D	of	SOLID.	Let’s	start	with	the	first	principle:	the	S	in	SOLID
stands	for	Single	Responsibility	Principle,	which	states	that	a	method	or	a	class	should
only	have	one	reason	to	change	and	only	have	one	responsibility.	With	this,	we	can’t	have
our	units	take	on	more	than	one	responsibility	and	need	help	from	collaborators	to	do	the
entire	job.	These	collaborators	are	things	we	now	depend	on	and	we	should	represent	these
dependencies	clearly	to	our	units	so	that	anyone	or	anything	instantiating	it	knows	what
we	are	depending	on.	We	have	now	flipped	around	the	way	in	which	we	get	dependencies.
Instead	of	the	unit	trying	to	instantiate	everything	itself,	we	now	clearly	state	what	we
need	as	collaborators,	opening	up	for	the	calling	code	to	decide	what	implementations	of
these	dependencies	you	want	to	pass	on.	Also,	this	is	an	important	aspect;	typically,	you’d
want	the	dependencies	expressed	in	the	form	of	interfaces,	yielding	flexibility	for	the
calling	code.	Basically,	what	this	all	means	is	that	instead	of	a	unit	or	system	instantiating
and	managing	its	dependencies,	we	decouple	and	let	something	called	as	the	Inversion	of
Control	container	deal	with	this.	In	the	sample,	we	will	use	an	IoC	(Inversion	of	Control)
container	called	Ninject	that	will	deal	with	this	for	us.	What	it	basically	does	is	manage
what	implementations	to	give	to	the	dependency	specified	on	the	constructor.	Often,	you’ll
find	that	the	dependencies	are	interfaces	in	C#.	This	means	one	is	not	coupled	to	a	specific
implementation	and	has	the	flexibility	of	changing	things	at	runtime	based	on
configuration.	Another	role	of	the	IOC	container	is	to	govern	the	life	cycle	of	the
dependencies.	It	is	responsible	for	knowing	when	to	create	new	instances	and	when	to
reuse	an	instance.	For	instance,	in	a	web	application,	there	are	some	systems	that	you	want
to	have	a	life	cycle	of	per	request,	meaning	that	we	will	get	the	same	instance	for	the
lifetime	of	a	web	request.	The	life	cycle	is	configurable	in	what	is	known	as	a	binding.
When	you	explicitly	set	up	the	relationship	between	a	contract	(interface)	and	its
implementation,	you	can	choose	to	set	up	the	life	cycle	behavior	as	well.

Building	for	the	desktop
The	first	thing	we	will	need	is	a	separate	project	in	our	solution:

1.	 Let’s	add	it	by	right-clicking	on	the	solution	in	Solution	Explorer	and	navigating	to
Add	|	New	Project:

2.	 In	the	Add	New	Project	dialog	box,	we	want	to	make	sure	the	.NET	Framework
4.5.1	is	selected.

Note
We	could	have	gone	with	4.5,	but	some	of	the	dependencies	that	we’re	going	to	use
have	switched	to	4.5.1.	This	is	the	latest	version	of	the	.NET	Framework	at	the	time
of	writing,	so	if	you	can,	use	it.

3.	 Make	sure	to	select	Windows	Desktop	and	then	select	WPF	Application.	Give	the
project	the	name	SignalRChat.WPF	and	then	click	on	the	OK	button:

Setting	up	the	packages
We	will	need	some	packages	to	get	started	properly.	This	process	is	described	in	detail	in
Chapter	1,	The	Primer.	Let’s	start	off	by	adding	SignalR,	which	is	our	primary	framework
that	we	will	be	working	with	to	move	on.	We	will	be	pulling	this	using	NuGet,	as
described	in	Chapter	1,	The	Primer:

1.	 Right-click	on	the	References	in	Solution	Explorer	and	select	Manage	NuGet
Packages,	and	type	Microsoft.AspNet.SignalR.Client	in	the	Search	dialog	box.
Select	it	and	click	on	Install.

2.	 Next,	we’re	going	to	pull	down	something	called	as	Bifrost.

Note
Bifrost	is	a	library	that	helps	us	build	MVVM-based	solutions	on	WPF;	there	are	a
few	other	solutions	out	there,	but	we’ll	focus	on	Bifrost.

3.	 Add	a	package	called	Bifrost.Client.
4.	 Then,	we	need	the	package	that	gives	us	the	IOC	container	called	Ninject,	working

together	with	Bifrost.	Add	a	package	called	Bifrost.Ninject.

Observables
One	of	the	things	that	is	part	of	WPF	and	all	other	XAML-based	platforms	is	the	notion	of
observables,	be	it	in	properties	or	collections	that	will	notify	when	they	change.	The
notification	is	done	through	well-known	interfaces	for	this,	such	as
INotifyPropertyChanged	or	INotifyCollectionChanged.	Implementing	these	interfaces
quickly	becomes	tedious	all	over	the	place	where	you	want	to	notify	everything	when
there	are	changes.

Luckily,	there	are	ways	to	make	this	pretty	much	go	away.	We	can	generate	the	code	for
this	instead,	either	at	runtime	or	at	build	time.	For	our	project,	we	will	go	for	a	build-time
solution.	To	accomplish	this,	we	will	use	something	called	as	Fody	and	a	plugin	for	it
called	PropertyChanged.	Add	another	NuGet	package	called	PropertyChanged.Fody.

Note
If	you	happen	to	get	problems	during	compiling,	it	could	be	the	result	of	the	dependency
to	a	package	called	Fody	not	being	installed.	This	happens	for	some	versions	of	the
package	in	combination	with	the	latest	Roslyn	compiler.	To	fix	this,	install	the	NuGet
package	called	Fody.

Now	that	we	have	all	the	packages,	we	will	need	some	configuration	in	code:

1.	 Open	the	App.xam.cs	file	and	add	the	following	statement:

using	Bifrost.Configuration;

2.	 The	next	thing	we	will	need	is	a	constructor	for	the	App	class:

public	App()

{

				Configure.DiscoverAndConfigure();

}

This	will	tell	Bifrost	to	discover	the	implementations	of	the	well-known	interfaces	to
do	the	configuration.

3.	 Bifrost	uses	the	IoC	container	internally	all	the	time,	so	the	next	thing	we	will	need	to
do	is	give	it	an	implementation.	Add	a	class	called	ContainerCreator	at	the	root	of
the	project.	Make	it	look	as	follows:

using	Bifrost.Configuration;

using	Bifrost.Execution;

using	Bifrost.Ninject;

using	Ninject;

namespace	SignalRChat.WPF

{

				public	class	ContainerCreator	:	ICanCreateContainer

				{

								public	IContainer	CreateContainer()

								{

												var	kernel	=	new	StandardKernel();

												var	container	=	new	Container(kernel);

												return	container;

								}

				}

}

Note
We’ve	chosen	Ninject	among	others	that	Bifrost	supports,	mainly	because	of
familiarity	and	habit.	If	you	happen	to	have	another	favorite,	Bifrost	supports	a	few.
It’s	also	fairly	easy	to	implement	your	own	support;	just	go	to	the	source	at
http://github.com/dolittle/bifrost	to	find	reference	implementations.

4.	 In	order	for	Bifrost	to	be	targeting	the	desktop,	we	need	to	tell	it	through
configuration.	Add	a	class	called	Configurator	at	the	root	of	the	project.	Make	it
look	as	follows:

using	Bifrost.Configuration;

namespace	SignalRChat.WPF

{

				public	class	Configurator	:	ICanConfigure

				{

								public	void	Configure(IConfigure	configure)

								{

												configure.Frontend.Desktop();

								}

				}

}

http://github.com/dolittle/bifrost

Adding	security
As	with	the	web	solution,	we	will	now	need	to	log	in,	in	order	for	us	to	do	anything.	In
order	for	us	to	do	that,	we	will	need	some	client-side	infrastructure	and	also	the	visuals	to
do	the	actual	retrieval	of	the	username	and	password.

Adding	support	for	cookies
The	security	that	we	put	in	place	on	the	web	solution	uses	cookies	to	identify	the	user
session.	We	will	need	to	use	this	in	the	desktop	as	well.	To	make	the	cookies	accessible,
we	will	create	an	implementation	of	WebClient	found	in	the	.NET	Framework	that
exposes	a	container	for	the	cookies.

Create	a	new	class	called	CookieAwareWebClient	in	the	root	of	the	project.	Make	the	class
look	as	follows:

using	System;

using	System.Net;

namespace	SignalRChat.WPF

{

				public	class	CookieAwareWebClient	:	WebClient

				{

								public	readonly	CookieContainer	CookieContainer	=	new	

CookieContainer();

								protected	override	WebRequest	GetWebRequest(Uri	address)

								{

												var	request	=	base.GetWebRequest(address);

												if	(request	is	HttpWebRequest)

																((HttpWebRequest)request).CookieContainer	=	

CookieContainer;

												return	request;

								}

				}

}

Binding	helper
In	WPF,	the	input	element	for	passwords	does	not	provide	binding	for	the	actual	content	of
it.	This	is	due	to	security	reasons.	It	has	been	made	hard	to	get	passwords	and	bind	these
to	something	such	as	a	ViewModel	that	will	potentially	keep	the	string	in	an	insecure
manner	and	then	provide	a	security	hole.	However,	we	will	violate	this	by	creating	a	little
helper	that	will	make	it	possible	for	us	to	bind	it	back	to	a	ViewModel.	An	improvement
to	this,	which	could	fly	better	in	a	real-world	scenario,	would	be	to	make	it	explicitly	only
support	SecureString	that	the	.NET	Framework	supports.

Add	a	file	called	PasswordHelper	in	the	root	of	the	project.	Make	the	class	look	as
follows:

using	System.Reflection;

using	System.Security;

using	System.Windows;

using	System.Windows.Controls;

using	System.Windows.Data;

namespace	SignalRChat.WPF

{

				public	class	PasswordHelper

				{

								public	static	DependencyProperty	BindablePasswordEnabledProperty	=

												DependencyProperty.RegisterAttached(

																"BindablePasswordEnabled",

																typeof(bool),

																typeof(PasswordHelper),

																new	PropertyMetadata(BindablePasswordEnabledChanged));

								private	static	void	BindablePasswordEnabledChanged(DependencyObject	

d,	DependencyPropertyChangedEventArgs	e)

								{

												var	passwordBox	=	d	as	PasswordBox;

												passwordBox.PasswordChanged	+=	(s,	ee)	=>

												{

																var	password	=	passwordBox.Password;

																BindingExpression	bindingExpression	=	

BindingOperations.GetBindingExpression(passwordBox,	

BindablePasswordProperty);

																if	(bindingExpression	!=	null)

																{

																				PropertyInfo	property	=	

bindingExpression.DataItem.GetType().GetProperty(bindingExpression.ParentBi

nding.Path.Path);

																				if	(property	!=	null)

																								property.SetValue(bindingExpression.DataItem,	

password,	null);

																}																

												};

								}

								public	static	bool	GetBindablePasswordEnabled(PasswordBox	

passwordBox)

								{

												return	

(bool)passwordBox.GetValue(BindablePasswordEnabledProperty);

								}

								public	static	void	SetBindablePasswordEnabled(PasswordBox	

passwordBox,	bool	enabled)

								{

												passwordBox.SetValue(BindablePasswordEnabledProperty,	enabled);

								}

								public	static	DependencyProperty	BindablePasswordProperty	=

												DependencyProperty.RegisterAttached(

																"BindablePassword",

																typeof(string),

																typeof(PasswordHelper));

								public	static	string	GetBindablePassword(PasswordBox	passwordBox)

								{

												return	passwordBox.Password;

								}

								public	static	void	SetBindablePassword(PasswordBox	passwordBox,	

string	password)

								{

												passwordBox.Password	=	password;

								}

				}

}

Basically,	the	code	puts	in	place	a	couple	of	attached	dependency	properties	that	makes	it
possible	for	us	to	bind	the	password	property	back	to	anything	through	bindings.

Creating	a	client	security	service
The	last	piece	of	the	infrastructure	puzzle	that	we	will	need	before	starting	on	the	actual
UI	is	the	thing	that	connects	to	the	server	and	actually	performs	the	authentication.	We
will	build	a	service	that	is	represented	with	an	interface,	making	it	possible	for	us	to	swap
implementations	and	also	making	it	possible	for	us	to	write	automated	unit	tests	that	only
test	the	unit	having	the	security	system	as	a	dependency,	without	having	to	have	the
concrete	type.	Basically,	with	this,	we	can	provide	any	fake	or	mock	implementation	and
test	that	the	interaction	is	correct.	We	won’t	go	into	the	topic	of	testing	in	this	book,	but
keep	in	mind	that,	with	this	type	of	decoupling,	there	is	a	great	opportunity	to	write
simpler	tests	that	enables	you	to	put	things	in	higher	isolation	without	having	to	set	up	a
full	environment	for	every	test.	We	will	represent	our	authentication	mechanism	through
an	interface:

1.	 Add	an	interface	called	ISecurity	at	the	root	of	the	project.
2.	 Make	it	look	as	follows:

using	System.Net;

namespace	SignalRChat.WPF

{

				public	interface	ISecurity

				{

								CookieContainer	CookieContainer	{	get;	}

								bool	Authenticate(string	userName,	string	password);

				}

}

3.	 With	the	interface	in	place,	we	want	to	create	an	implementation	that	will
automatically	be	hooked	up	by	Bifrosts	built-in	convention	to	match	interfaces	to	the
classes	in	the	IFoo	to	Foo	convention.	Add	a	class	called	Security	to	the	root	of	the
project.	Make	the	class	look	as	follows:

using	System.Collections.Specialized;

using	System.Net;

using	Bifrost.Execution;

namespace	SignalRChat.WPF

{

				[Singleton]

				public	class	Security	:	ISecurity

				{

								const	string	Site	=	"http://localhost:3705";

								public	CookieContainer	CookieContainer	{	get;	private	set;	}

								public	bool	Authenticate(string	userName,	string	password)

								{

												var	postData	=	new	NameValueCollection();

												postData.Add("userName",	userName);

												postData.Add("password",	password);

												var	url	=	string.Format("{0}/SecurityHandler.ashx",	Site);

												var	webClient	=	new	CookieAwareWebClient();

												try

												{

																webClient.UploadValues(url,	postData);

												}

												catch	(WebException)

												{

																return	false;

												}

												CookieContainer	=	webClient.CookieContainer;

												return	true;

								}

				}

}

Note
Notice	the	[Singleton]	attribute.	Bifrost	uses	this	information	during	its	hookup	and
identifies	the	implementation	as	something	that	should	only	be	one	instance	of,	and
will,	therefore,	register	it	with	the	IoC	container	with	such	a	life	cycle.

Another	important	aspect	is	that	the	constant	called	site	must	match	the	URL	and	port
number	of	the	actual	website.

Adding	a	login	view
With	the	infrastructure	in	place,	we	can	start	putting	in	place	the	UI	for	logging	in:

1.	 We	will	divide	the	different	features	into	user	controls.	Add	a	user	control	called
Login.xaml	by	right-clicking	on	the	project	and	navigating	to	Add	|	New	Item.	In
the	Add	New	Item	dialog	box,	select	User	Control	(WPF)	and	give	it	the	name
Login.xaml.	Then,	click	on	the	Add	button:

2.	 In	the	Xaml	view,	you	can	edit	things,	which	will	be	a	lot	easier	than	going	through
the	Design	view.	Let’s	add	the	following	XML	namespace	declaration	on	the
UserControl	element:

xmlns:viewModels="clr-

namespace:Bifrost.ViewModels;assembly=Bifrost.Client"

xmlns:interaction="clr-

namespace:Bifrost.Interaction;assembly=Bifrost.Client"

xmlns:local="clr-namespace:SignalRChat.WPF"

3.	 On	the	UserControl	element,	we	now	want	to	hook	up	the	ViewModel,	which	we
will	create	later.	Add	the	following	attribute	to	the	element:

DataContext="{viewModels:ViewModel	{x:Type	local:LoginViewModel}}"

Note
The	ViewModel	markup	extension	in	Bifrost	will	take	the	type	given	as	parameter
and	use	the	IoC	container	to	create	an	instance	when	it’s	needed.	This	results	in	the
dependencies	that	the	ViewModel	might	have	to	be	resolved.

4.	 Now,	we	are	going	to	need	the	actual	UI	with	typically	a	UserName,	Password,	and	a
button	for	logging	in.	Within	the	Grid	element	in	the	XAML,	add	the	following:

<StackPanel	Orientation="Vertical"	Margin="8">

				<Label>UserName</Label>

				<TextBox	Text="{Binding	UserName}"></TextBox>

				<Label>Password</Label>

				<PasswordBox	x:Name="password"	

																				local:PasswordHelper.BindablePasswordEnabled="true"

																				local:PasswordHelper.BindablePassword="{Binding	

Password}"

																				/>

				<Button	Command="{interaction:FromMethod	SignIn}">Sign	in</Button>

</StackPanel>

Note
Notice	the	usage	of	the	PasswordHelper,	we’re	telling	it	first	to	enable	the	binding	of
the	password	and	then	the	binding	for	the	password.

The	FromMethod	extension	is	something	Bifrost	provides	to	enable	a	declarative	way
of	binding	a	method	on	ViewModel	as	an	ICommand,	which	covers	most	of	the
scenarios.	The	markup	extension	has	more	support	as	well,	such	as	the
CanExecuteWhen	property	that	can	point	to	a	property	that	can	tell	whether	or	not
execution	can	happen;	if	it’s	sitting	on	a	type	implementing
INotifyPropertyChanged,	it	will	respond	to	change.

5.	 Now,	we	need	the	ViewModel.	The	ViewModel	will	need	to	be	able	to	take	the
UserName	and	Password	and	then	provide	a	method	for	doing	the	SignIn.	Add	a	class
called	LoginViewModel	to	the	root	of	the	project.

6.	 Add	the	following	statement	at	the	top:

using	PropertyChanged;

7.	 From	the	PropertyChanged	namespace,	we	get	access	to	an	attribute	that	we	will
adorn	our	ViewModel	with:

[ImplementPropertyChanged]

public	class	LoginViewModel

{

}

Note
With	this,	we’re	telling	a	post-build	task	to	implement	the	INotifyPropertyChanged
interface	for	the	class	and	to	make	all	public	properties	notify	for	changes	when	they
get	set	with	values.

8.	 For	the	View	to	not	have	any	exceptions,	we	will	have	to	add	some	properties	and	a
behavior	for	actually	logging	into	the	system.	Add	the	following	code	to	the
ViewModel:

public	string	UserName	{	get;	set;	}

public	string	Password	{	get;	set;	}

public	void	SignIn()

{

}

9.	 Now,	we	have	the	scaffolding	that	makes	the	View	work.	Let’s	move	on	to	the	actual
signing	in.	The	ViewModel	will	delegate	this	work	to	other	systems—especially	the
security	system	that	we	created.	Therefore,	we	will	need	a	dependency	for	it.	We	will
also	need	a	dependency	for	a	messenger.	Add	the	following	statement	at	the	top	of
the	file:

using	Bifrost.Messaging;

10.	 Then,	we’re	ready	to	add	the	following	private	fields	and	constructor	to	the
ViewModel:

IMessenger	_messenger;

ISecurity	_security;

public	LoginViewModel(IMessenger	messenger,	ISecurity	security)

{

				_messenger	=	messenger;

				_security	=	security;

}

Note
Ninject,	as	the	IoC	container,	will	resolve	the	dependencies	given	in	the	form	of
constructor	parameters.	With	this	approach,	we	get	an	opportunity	to	write	automated
tests	for	the	ViewModel	without	having	to	test	anything	specific	in	the	dependencies,
but	make	sure	the	ViewModel	interacts	correctly	with	them.	The	messenger	is
something	we	will	use	to	broadcast	when	we’re	logged	in	without	coupling
ViewModels	together.

11.	 Let’s	go	ahead	and	create	a	message	that	we	will	broadcast	when	we’re	logged	in.
Add	a	class	to	the	root	of	the	project	called	LoggedIn.	Just	leave	it	as	is;	we	will	not
need	anything	more.

12.	 Now,	we	will	expand	on	the	SignIn()	method	in	the	ViewModel.	Let’s	sign	in	and,	if
successful,	broadcast	that	we	are	logged	in.	Make	the	SignIn()	method	look	as
follows:

public	void	SignIn()

{

				if	(_security.Authenticate(UserName,	Password))

				{

								_messenger.Publish(new	LoggedIn());

				}

}

The	hub	proxy
After	we’re	logged	in,	we	can	start	thinking	about	SignalR	and	consuming	the	hub	that	we
have	on	the	server.	The	proxy	generation	we	have	with	JavaScript	for	the	web	solution	is
not	available	for	.NET	clients.	In	order	to	keep	with	the	theme	of	decoupling	and	making
our	code	testable,	we	want	to	introduce	a	proxy	and	define	it	through	an	interface
representing	the	functionality	that	we	will	consume	and	then	create	a	concrete
implementation	that	will	work	with	the	SignalR	client	APIs.

Add	an	interface	called	IChatHub	to	the	root	of	the	project	and	make	it	look	as	follows:

using	System;

using	Microsoft.AspNet.SignalR.Client;

namespace	SignalRChat.WPF

{

				public	interface	IChatHub

				{

								event	Action<StateChange>	StateChanged;

								event	Action<string>	JoinedRoom;

								event	Action<string>	RoomAdded;

								event	Action<string>	MessageReceived;

								string	CurrentChatRoom	{	get;	}

								void	Join(string	room);

								void	CreateRoom(string	room);

								void	Send(string	message);

				}

}

Then,	we	can	implement	this	interface.	Add	a	class	called	ChatHub	representing	the
implementation	of	the	interface	we	just	defined,	to	the	root	of	the	project.

1.	 Make	the	class	implement	the	IChatHub	interface	and	mark	the	class	as	singleton;	we
only	want	one	instance	of	this	in	memory	at	any	given	time:

[Singleton]

public	class	ChatHub	:	IChatHub

{

}

2.	 From	the	IChatHub	interface,	let’s	implement	the	events	at	the	top	of	the	class:

public	event	Action<StateChange>	StateChanged	=	(state)	=>	{	};

public	event	Action<string>	JoinedRoom	=	(room)	=>	{	};

public	event	Action<string>	RoomAdded	=	(room)	=>	{	};

public	event	Action<string>	MessageReceived	=	(message)	=>	{	};

Note
The	lambda	expression	makes	the	event	have	a	default	event	handler,	the	lambda
expression	makes	the	event	have	a	default	event	handler.	This	lets	any	code	ignore
checking	for	null	before	calling	the	event.	In	my	opinion,	null	is	inherently	bad,
making	code	more	complex	than	it	needs	to	be.	It’s	easy	to	avoid	having	null	to	be	a

valid	state	for	anything.

3.	 Let’s	add	a	couple	of	private	fields	and	a	constructor	that	takes	the	dependencies	we
will	need:

ISecurity	_security;

IHubProxy	_chatProxy;

public	ChatHub(IMessenger	messenger,	ISecurity	security)

{

				_security	=	security;

				messenger.SubscribeTo<LoggedIn>(LoggedIn);

}

4.	 The	last	line	suggests	a	method	called	LoggedIn	to	be	called	on	ChatHub	whenever
we	receive	the	LoggedIn	message.	Since	we	choose	to	just	publish	a	LoggedIn
message,	anyone	can	subscribe	to	it	in	our	system.	When	we’re	logged	in,	we	want	to
create	the	connection	to	the	hub.	Let’s	add	a	private	variable	to	the	ChatHub	class:

HubConnection	_hubConnection;

5.	 We	will	also	need	a	constant	to	hold	information	about	the	URL	to	connect	to.	Add
this	at	the	top	of	the	class	and	make	sure	it	matches	your	site’s	URL	and	port	number:

const	string	Site	=	"http://localhost:3705";

6.	 Now,	let’s	implement	the	LoggedIn	method:

void	LoggedIn(LoggedIn	loggedIn)

{

				_hubConnection	=	new	HubConnection(Site);

				_hubConnection.CookieContainer	=	_security.CookieContainer;

				_hubConnection.StateChanged	+=	(s)	=>	StateChanged(s);

				_chatProxy	=	_hubConnection.CreateHubProxy("chat");

				_chatProxy.On("addMessage",	(string	message)	=>	

MessageReceived(message));

				_chatProxy.On("addChatRoom",	(string	room)	=>	RoomAdded(room));

				CurrentChatRoom	=	"Lobby";

				JoinedRoom(CurrentChatRoom);

				_hubConnection.Start().Wait();

}

Note
Since	we	expose	the	container	of	cookies	from	the	security	system,	we	can	use	this
directly	on	the	connection.	From	HubConnection,	we	can	create	the	actual	underlying
proxy	object	that	we	will	be	working	with	for	communication.

To	handle	any	messages	sent	from	the	server,	we	use	the	.On()	method	on	the
underlying	proxy	and	specify	the	client	message	and	handler.	In	our	particular	case,
we’ve	gone	for	an	inline	lambda,	but	we	could	easily	have	just	a	private	method	on
this	particular	class.

7.	 With	the	hub	connection	in	place,	we	can	implement	the	rest	of	the	IChatHub
interface,	making	our	proxy	come	alive:

public	void	Join(string	room)

{

				_chatProxy.Invoke("Join",	room).Wait();

				JoinedRoom(room);

}

public	void	CreateRoom(string	room)

{

				_chatProxy.Invoke("CreateChatRoom",	room).Wait();

				JoinedRoom(room);

}

public	void	Send(string	message)

{

				_chatProxy.Invoke("Send",	message);

}

public	string	CurrentChatRoom

{

				get	{	return	(string)_chatProxy["currentChatRoom"];	}

				private	set	{	_chatProxy["currentChatRoom"]	=	value;	}

}

Note
Note	that,	when	calling	hubs	on	the	server,	it’s	basically	just	.Invoke()	on	the	proxy
representation.	The	second	parameter	is	in	fact	a	params	collection,	so	you	can	give	it
any	parameters	and	these	will	be	sent	along	to	match	the	signature	on	the	server.

Lastly	is	the	state	that	gets	carried	around	for	each	round	trip	to	the	server;	the	proxy
exposes	an	indexer	enabling	us	to	set	any	state	as	if	it	is	a	dictionary.

Our	chat	rooms
With	the	login	in	place	and	knowing	the	secret	behind	how	to	actually	do	the	SignalR	bits
and	pieces	in	a	.NET	client,	we	want	to	rush	to	the	conclusion.	Let’s	quickly	run	through
the	last	bits	as	we	need	to	start	with	the	feature	that	will	list	chat	rooms	and	allow	the	user
to	select	a	room	to	chat	in.

As	before,	add	another	UserControl;	this	time,	let’s	call	it	ChatRooms.	Make	the	XAML
look	as	follows:

<UserControl	x:Class="SignalRChat.WPF.ChatRooms"

													

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

													xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

													xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"	

													xmlns:d="http://schemas.microsoft.com/expression/blend/2008"	

													xmlns:viewModels="clr-

namespace:Bifrost.ViewModels;assembly=Bifrost.Client"

													xmlns:interaction="clr-

namespace:Bifrost.Interaction;assembly=Bifrost.Client"

													xmlns:local="clr-namespace:SignalRChat.WPF"

													mc:Ignorable="d"	

													d:DesignHeight="300"	d:DesignWidth="300"

													DataContext="{viewModels:ViewModel	{x:Type	

local:ChatRoomsViewModel}}"

													>

				<Grid>

								<Grid.RowDefinitions>

												<RowDefinition	Height="*"/>

												<RowDefinition	Height="30"/>

								</Grid.RowDefinitions>

								

								<Grid	Grid.Row="0"	VerticalAlignment="Stretch"	Height="Auto">

												<Grid.RowDefinitions>

																<RowDefinition	Height="30"/>

																<RowDefinition	Height="*"/>

												</Grid.RowDefinitions>

												<Label	Grid.Row="0">Chatroom</Label>

												<ListView	Grid.Row="1"	

																						ItemsSource="{Binding	Rooms}"	

																						SelectedItem="{Binding	CurrentRoom}">

												</ListView>

								</Grid>

								

								<Grid	Grid.Row="1">

												<Grid.ColumnDefinitions>

																<ColumnDefinition	Width="*"/>

																<ColumnDefinition	Width="100"/>

												</Grid.ColumnDefinitions>

												<TextBox	Grid.Column="0"	x:Name="room"/>

												<Button	Grid.Column="1"	

																				Command="{interaction:FromMethod	AddRoom}"	

																				CommandParameter="{Binding	ElementName=room,	

Path=Text}">

																Create	room

												</Button>

								</Grid>

				</Grid>

</UserControl>

We	are	pretty	much	doing	the	same	things	as	before.	We	have	a	listing	of	rooms,	and	the
selected	room	gets	bound	back	to	a	property	on	the	upcoming	ViewModel	called
CurrentRoom.	The	button	for	adding	a	room	has	a	binding	for	CommandParameter	to	get
the	actual	text	directly	from	the	TextBox	element.	This	approach	allows	us	to	keep	the
view	concern	in	the	view	and	not	introduce	variables	that	are	really	not	needed	on	the
ViewModel.	With	this	in	place,	let’s	add	the	ViewModel	for	it.	Add	a	class	called
ChatRoomsViewModel	in	the	root	of	the	project.	Make	it	look	as	follows:

using	System;

using	System.Collections.ObjectModel;

using	System.Windows;

using	PropertyChanged;

namespace	SignalRChat.WPF

{

				[ImplementPropertyChanged]

				public	class	ChatRoomsViewModel

				{

								IChatHub	_chatHub;

								string	_currentRoom;

								public	ChatRoomsViewModel(IChatHub	chatHub)

								{

												_chatHub	=	chatHub;

												_currentRoom	=	"Lobby";

												Rooms	=	new	ObservableCollection<string>();

												chatHub.RoomAdded	+=	(room)	=>	

Application.Current.Dispatcher.BeginInvoke((Action)(()	=>	

Rooms.Add(room)));

								}

								public	ObservableCollection<string>	Rooms	{	get;	private	set;	}

								public	string	CurrentRoom

								{

												get	{	return	_currentRoom;	}

												set

												{

																_currentRoom	=	value;

																_chatHub.Join(value);

												}

								}

								public	void	AddRoom(string	room)

								{

												_chatHub.CreateRoom(room);

								}

				}

}

As	you	can	see,	we’re	now	consuming	the	hub,	taking	it	in	as	a	dependency	on	the
constructor;	again,	making	it	easier	for	us	to	test	the	interaction	with	it.	For	the	RoomAdded
event	handler,	we	have	to	use	dispatcher	to	make	sure	we	add	items	to	the	UI	thread.	In
my	opinion,	this	is	a	leaky	abstraction	and	something	I’d	expect	ObservableCollection
to	take	care	of,	as	the	ViewModel	has	no	interest	in	knowing	about	anything	related	to	the
View,	not	even	knowing	whether	there	is	a	view	at	all.	However,	enough	about	this.	All
the	interaction	is	done	directly	against	the	IChatHub	interface,	and	our	ViewModel	is
again	just	delegating	the	work,	which	is	its	job.

The	chat
Let’s	keep	the	same	pace	for	the	final	feature.	Add	a	new	UserControl	called	Chat	in	the
root	of	the	project,	and	make	it	look	as	follows:

<UserControl	x:Class="SignalRChat.WPF.Chat"

													

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

													xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

													xmlns:mc="http://schemas.openxmlformats.org/markup-

compatibility/2006"	

													xmlns:d="http://schemas.microsoft.com/expression/blend/2008"	

													xmlns:viewModels="clr-

namespace:Bifrost.ViewModels;assembly=Bifrost.Client"

													xmlns:interaction="clr-

namespace:Bifrost.Interaction;assembly=Bifrost.Client"

													xmlns:local="clr-namespace:SignalRChat.WPF"

													mc:Ignorable="d"	

													d:DesignHeight="300"	d:DesignWidth="300"

													DataContext="{viewModels:ViewModel	{x:Type	

local:ChatViewModel}}">

				<Grid>

								<Grid.RowDefinitions>

												<RowDefinition	Height="*"/>

												<RowDefinition	Height="30"/>

								</Grid.RowDefinitions>

								<Grid	Grid.Row="0"	VerticalAlignment="Stretch"	Height="Auto">

												<Grid.RowDefinitions>

																<RowDefinition	Height="30"/>

																<RowDefinition	Height="*"/>

												</Grid.RowDefinitions>

												<TextBlock>

																<Run>Current	Room	:	</Run>

																<Run	Text="{Binding	CurrentRoom,	Mode=OneWay}"/>

																<Run>,	Current	State	:	</Run>

																<Run	Text="{Binding	CurrentState,	Mode=OneWay}"/>

												</TextBlock>

												<ListView	Grid.Row="1"	ItemsSource="{Binding	Messages}">

</ListView>

								</Grid>

								<Grid	Grid.Row="1">

												<Grid.ColumnDefinitions>

																<ColumnDefinition	Width="*"/>

																<ColumnDefinition	Width="150"/>

												</Grid.ColumnDefinitions>

												

												<TextBox	Grid.Column="0"	x:Name="message"/>

												<Button	Grid.Column="1"	

																				Command="{interaction:FromMethod	Send}"	

																				CommandParameter="{Binding	ElementName=message,	

Path=Text}">Send</Button>

								</Grid>

				</Grid>

</UserControl>

There	is	nothing	much	to	add	about	this	feature;	it’s	just	repeating	the	same	kind	of
concepts	that	we’ve	already	done	previously.	Now,	jump	to	creating	the	ViewModel	for
the	view.	Add	a	class	called	ChatViewModel	to	the	root	of	the	project,	and	make	it	look	as
follows:

using	System;

using	System.Collections.ObjectModel;

using	System.Windows;

using	PropertyChanged;

namespace	SignalRChat.WPF

{

				[ImplementPropertyChanged]

				public	class	ChatViewModel

				{

								IChatHub	_chatHub;

								public	ChatViewModel(IChatHub	chatHub)

								{

												_chatHub	=	chatHub;

												CurrentState	=	"Disconnected";

												Messages	=	new	ObservableCollection<string>();

												chatHub.StateChanged	+=	(stateChange)	=>	CurrentState	=	

stateChange.NewState.ToString();

												chatHub.JoinedRoom	+=	(room)	=>

												{

																Application.Current.Dispatcher.BeginInvoke((Action)(()	=>	

																{

																				CurrentRoom	=	room;

																				Messages.Clear();

																				Messages.Add("Joined	:	"	+	room);

																}));

												};

												chatHub.MessageReceived	+=	(message)	=>	

Application.Current.Dispatcher.BeginInvoke((Action)(()	=>	

Messages.Add(message)));

								}

								public	string	CurrentRoom	{	get;	private	set;	}

								public	string	CurrentState	{	get;	private	set;	}

								public	ObservableCollection<string>	Messages	{	get;	private	set;	}

								public	void	Send(string	message)

								{

												_chatHub.Send(message);

								}

				}

}

This	concludes	the	features.	We’re	now	ready	to	get	our	feature	visible	in	the	application.

The	composition
Now	that	we	have	all	that	in	place,	we	will	still	not	be	able	to	see	anything	on	the	screen	if
we	run	the	application.	We	will	need	to	bring	this	all	into	MainWindow	that	was	created	for
us	when	we	created	the	project.

Make	the	MainWindow.xaml	file	look	as	follows:

<Window	x:Class="SignalRChat.WPF.MainWindow"

								xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

								xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

								xmlns:local="clr-namespace:SignalRChat.WPF"

								xmlns:viewModels="clr-

namespace:Bifrost.ViewModels;assembly=Bifrost.Client"

								xmlns:interaction="clr-

namespace:Bifrost.Interaction;assembly=Bifrost.Client"

								Title="MainWindow"	

								Height="400"	

								Width="600"

								DataContext="{viewModels:ViewModel	{x:Type	

local:MainWindowViewModel}}">

				<Grid	Margin="8">

								<Grid.Resources>

												<local:BooleanToVisibilityConverter	

x:Key="BooleanToVisibilityConverter"/>

								</Grid.Resources>

								<Grid	Visibility="{Binding	LoggedIn,	Converter={StaticResource	

BooleanToVisibilityConverter}}">

												<Grid.ColumnDefinitions>

																<ColumnDefinition	Width="250"/>

																<ColumnDefinition	Width="*"/>

												</Grid.ColumnDefinitions>

												<local:ChatRooms	Grid.Column="0"/>

												<local:Chat	Grid.Column="1"/>

								</Grid>

								<Grid	Visibility="{Binding	LoggedIn,	Converter={StaticResource	

BooleanToVisibilityConverter},	ConverterParameter=true}">

												<local:Login/>

								</Grid>

				</Grid>

</Window>

Note	that	we	made	the	window	a	bit	larger	than	the	default.	Also,	we’re	introducing	the
usage	of	a	value	converter.	Value	converters	are	valuable	in	converting	values,	often
between	different	types.	In	our	case,	we	will	have	a	boolean	on	the	ViewModel,	but	it	will
need	to	be	converted	to	a	certain	Visibility	type,	to	do	this	we	use	the
BooleanToVisibilityConverter.	The	purpose	of	this,	as	you	can	see	in	the	grids
surrounding	the	different	features,	is	to	turn	on	and	off	the	visibility	of	the	different
features	depending	on	whether	or	not	we’re	logged	in.	If	you’re	familiar	with	WPF
development,	you	might	be	asking	yourself	why	are	we	not	using	the	built-in	converter

that	has	the	same	name.	The	answer	is	that	we	have	a	second	requirement:	we	want	it	to	be
able	to	take	a	Boolean	in	and	flip	the	result	so	that	we	can	have	one	boolean	used	for	two
scenarios.	Notice	the	converter	parameter	that	will	tell	it	to	negate	the	result	or	not	of	the
boolean.	Add	a	class	called	BooleanToVisibilityConverter	in	the	root	of	the	project.
Make	the	class	look	as	follows:

using	System;

using	System.Globalization;

using	System.Windows;

using	System.Windows.Data;

namespace	SignalRChat.WPF

{

				public	class	BooleanToVisibilityConverter	:	IValueConverter

				{

								public	object	Convert(object	value,	Type	targetType,	object	

parameter,	CultureInfo	culture)

								{

												var	visible	=	(bool)value;

												if	(parameter	!=	null	&&	bool.Parse(parameter.ToString())	==	

true)	visible	^=	true;

												return	visible	?	Visibility.Visible	:	Visibility.Hidden;

								}

								public	object	ConvertBack(object	value,	Type	targetType,	object	

parameter,	CultureInfo	culture)

								{

												throw	new	System.NotImplementedException();

								}

				}

}

We’re	only	interested	in	converting	one	way,	but	it	could	have	been	supporting	going	back
as	well.	The	converter	supports	a	parameter	that	can	be	true	or	false,	indicating	whether
or	not	to	flip	the	meaning	of	the	boolean	value	coming	in.

Now,	we	can	go	ahead	and	create	the	ViewModel	for	MainWindow.	Add	a	class	called
MainWindowViewModel	to	the	root	of	the	project:

using	Bifrost.Messaging;

using	PropertyChanged;

namespace	SignalRChat.WPF

{

				[ImplementPropertyChanged]

				public	class	MainWindowViewModel

				{

								public	MainWindowViewModel(IMessenger	messenger)

								{

												messenger.SubscribeTo<LoggedIn>(m	=>	LoggedIn	=	true);

								}

								public	bool	LoggedIn	{	get;	private	set;	}

				}

}

As	you	can	see	here,	we	have	the	second	use	of	consuming	the	LoggedIn	message	without
having	to	alter	the	publisher.	This	proves	how	we	can	scale	a	system	without	all	the	parts
knowing	about	each	other.

If	we’ve	done	everything	right	and	our	website	is	running,	launching	the	app	should	yield
a	login	window,	as	shown	here:

Logging	in	should	yield	the	following	window:

Summary
Although	there	are	differences	between	creating	a	web	solution	and	a	desktop	client,	the
differences	have	faded	over	time.	We	can	apply	the	same	principles	across	the	different
environments;	it’s	just	different	programming	languages.	The	SignalR	API	adds	the	same
type	of	consistency	in	thinking,	although	not	as	matured	as	the	JavaScript	API	with	proxy
generation	and	so	on;	still	the	same	ideas	and	concepts	are	found	in	the	underlying	API.
Creating	the	proxies	ourselves	is	not	all	that	much	work	either.	We’ve	seen	how	easy	it	is
to	consume	the	same	hub	used	in	the	web	solution	on	a	.NET	client.

In	the	next	chapter,	we’re	going	to	see	how	we	can	use	this	knowledge	and	approach	to
build	something	that	moves	across	the	boundaries	of	three	more	platforms	in	the	mobile
space.

Chapter	9.	Write	Once,	Deploy	Many
In	this	chapter,	we	will	create	a	mobile	experience	covering	the	full	feature	set	from	the
web	client	and	the	WPF	client.	The	goal	is	to	enable	us	to	bring	this	feature	set	to	all	the
major	mobile	clients	out	there—iOS,	Android,	and	Windows	Phone—but	without	having
to	rewrite	it	for	every	platform	natively.	The	following	topics	will	be	covered	in	this
chapter:

Understanding	Xamarin
Getting	an	environment	up	and	running	for	iOS	development	using	a	Mac
Utilizing	Visual	Studio	from	a	Virtual	Machine	on	the	Mac,	and	connecting	directly
to	the	device	simulator	and	a	real	device
Getting	an	environment	up	and	running	for	Android
MVVM	and	XAML
How	to	consume	Hubs
How	to	work	with	groups

Cross	platform
Ever	since	the	release	of	Microsoft	.NET	1.0	back	in	2002,	it	has	grown	to	more	and	more
platforms,	not	only	on	Microsoft’s	own	platforms	but	also	others.	Already	in	2003,	we	saw
an	open	source	implementation	for	BSD	variants	called	DotGNU	and	its	Portable	.NET.
In	2004,	the	initial	release	of	Mono	came	out,	whereas	a	second	open	source
implementation	aimed	at	Linux	and	Mac	OS	X.	All	of	a	sudden	in	2007	with	Silverlight,
we	saw	Microsoft	targeting	multiple	platforms	themselves	with	Windows	and	Mac	OS	X
with	an	implementation	of	the	CLR	and	a	subset	of	.NET	Framework.

Over	the	years,	we’ve	seen	Silverlight	come	and	go,	and	then	Windows	Phone	7	came
along,	which	kind	of	picked	up	Silverlight	and	brought	it	in	the	future.	Back	in	2006,
before	Silverlight	came,	Microsoft	launched	Windows	Presentation	Foundation	(WPF)
—a	new	way	to	perform	client	development	on	the	Windows	stack.	This	is	what
Silverlight	was	built	around;	a	subset	of	and	also	what	Windows	Phone	7	brought	with	it
further	as	well.	With	Windows	8	and	the	store	applications,	Microsoft	invested	even	more
in	XAML,	but	again	for	a	new	implementation.	The	people	behind	Mono	did	implement	a
Silverlight	version	to	run	on	Linux,	as	Microsoft	only	provided	OS	X,	which	was	called
Moonlight.	It	never	quite	matured	before	being	abandoned	and	was	sitting	in	a	hybrid
state	of	supporting	some	of	the	features	in	Silverlight	version	1	and	some	of	version	2	and
3,	even	some	of	version	4	sneaking	in.

Xamarin	is	a	company	that	is	leading	the	development	of	Mono.	The	company	provides
professional	services	for	Mono	and	also	branded	editions	of	the	IDE	used	for	Mono	called
MonoDevelop	(its	branded	version	is	called	Xamarin	Studio).	Fast	forwarding	to	2014,
Xamarin	launched	something	called	as	Xamarin	Forms:	a	set	of	commercial	tools	to
rapidly	build	mobile	applications,	targeting	the	most	popular	mobile	platforms	out	there
with	a	write	once,	run	many	philosophy.	Xamarin	Forms	is	yet	another	XAML	dialect,	not
as	fully	matured	as	the	ones	found	in	Microsoft,	but	nevertheless	really	powerful	and	fully
capable	of	delivering	very	rich	applications.	It’s	already	built	on	top	of	Xamarin’s
MonoTouch	and	MonoDroid,	which	are	the	.NET	binding	implementations	for	iOS	and
Android.

Obviously,	there	are	multiple	choices	out	there	for	going	cross-platform	with	a	single
codebase.	There	are	things	such	as	Cordova,	Ionic,	and	many	more.	Xamarin	is	a
commercial	product	targeting	the	.NET	space,	which	is	basically	why	I	chose	to	put	it	in
here	instead	of	other	options.

Getting	started
Before	you	start,	you	might	want	to	run	down	to	your	local	Apple	Store	and	pick	up	a
Mac,	if	you	haven’t	already	got	one.	Just	kidding!	The	code	is	the	same	no	matter	which
platform	you	choose,	but	as	the	iOS	one	is	the	hardest	with	most	moving	parts,	we’ll	focus
on	this.	In	fact,	this	is	a	lot	cheaper	than	buying	a	Mac.	There	are,	in	fact,	cloud	providers
that	will	give	you	a	virtual	Mac	in	the	cloud	(for	instance,	the	commercial	provider:
http://www.macincloud.com).	The	reason	you	need	a	Mac	is	because	of	the	way	Xamarin
actually	gets	compiled.	When	you’re	writing	code	in	C#,	it	will	not	run	inside	a	runtime
on	iOS,	but	it	will	be	compiled	down	to	a	native	language	for	iOS.

In	order	for	Xamarin	to	be	able	to	do	this,	it	relies	on	tools	found	in	Xcode,	which	is	only
available	on	Mac.	The	same	approach	is	for	Android.	It	does	not	have	a	Common
Language	Runtime	(CLR).	So,	it	compiles	down	to	what	is	right	for	Android	and	runs	it.
Any	references	you	have	will	be	included,	but	it’s	really	smart	and	does	not	include	things
you’re	not	using.	Therefore,	if	you	have	a	reference	to	an	assembly	from	the	base	class
library,	it	will	extract	the	functionality	that	is	used	and	natively	compiles	it	down	and	only
includes	this.	This	way,	you	don’t	have	a	full	copy	of	the	.NET	Framework	embedded	in
your	application	on	the	devices	but	only	the	stuff	your	application	consists	of.	When	you
install	Xamarin,	it	will	download	the	necessary	prerequisites	too.	So,	if	you	install	it	on
Mac,	it	will	download	whatever	it	needs	to	be	able	to	do	the	things	it	needs.	Likewise	for
Android;	it	will	download	the	environment	and	emulators	so	that	you	can	get	started.
Microsoft	has	also	built	an	emulator	themselves	for	Android	that	integrates	even	better	in
Visual	Studio	for	a	better	developer	experience.	When	doing	this,	read	more	about	it	at
http://blogs.msdn.com/b/visualstudioalm/archive/2014/11/12/introducing-visual-studio-s-
emulator-for-android.aspx.

I	am	a	Mac	user	myself	and	my	setup	consists	of	OS	X	as	my	host	operating	system	and
then	I	run	Windows	in	a	virtualized	environment;	I	prefer	using	parallels	for	virtualization.
In	order	for	us	to	get	things	working,	you	will	have	to	switch	from	Shared	Networking	to
Bridged	Networking,	as	we	will	access	the	virtual	computer	through	its	IP	address.

Once	your	OS	X	environment	is	good	to	go,	you	will	need	software	(this	is	where	it	might
sting	a	bit).	Xamarin	Forms	is	not	free	and	the	cheapest	you	can	get	is	the	Indie	license.
Once	you’ve	decided	which	way	to	go	with	licensing,	you	will	need	the	software,	which
can	all	be	found	at	http://xamarin.com/forms.	You	have	the	option	of	working	with	Visual
Studio	or	Xamarin	Studio.	I’ve	chosen	to	use	Visual	Studio,	as	everything	in	this	book,	so
far,	has	been	based	on	it.	In	addition	to	this,	you	will	have	to	get	Xcode	installed	on	your
OS	X	host.	This	can	be	done	through	the	OS	X	app	store.	In	addition,	you’ll	have	to	read
the	documentation	from	Xamarin	to	see	how	to	connect	your	Visual	Studio	to	Xcode
through	its	build	host,	as	this	book	can’t	cover	the	entire	environment	setup.

A	slight	health	warning:	there	are	typically	things	you’d	need	to	do	such	as	keep
configuration	in	a	clever	way	and	also	deal	with	errors	that	can	occur.	The	code	in	this
chapter	is	naive	in	this	way.	Anyway,	let’s	get	started:

1.	 Inside	Visual	Studio,	we	want	to	add	a	new	project	to	the	solution.	Right-click	on	the

http://www.macincloud.com
http://blogs.msdn.com/b/visualstudioalm/archive/2014/11/12/introducing-visual-studio-s-emulator-for-android.aspx
http://xamarin.com/forms

solution	in	Solution	Explorer	and	select	Add	|	New	Project.
2.	 From	the	left-hand	side	menu,	select	Mobile	Apps	and	then	select	Blank	App

(Xamarin.Forms	Portable):

You	should	now	have	four	new	projects:	SignalRChat.Mobile.Droid,
SignalRChat.Mobile.WinPhone,	SignalRChat.Mobile.iOS,	and	SignalRChat.Mobile.
The	last	project	is	where	we	are	going	to	do	the	majority	of	the	work	proving	that	we	can
write	most	of	our	code	once	and	still	get	it	to	work	on	multiple	platforms.	This	particular
walk-through,	however,	will	focus	on	getting	the	iOS	stuff	working,	as	it	is	the	most
complex	setup	with	two	machines	involved	+	an	emulator	hosted	on	the	Mac	side	of
things.

The	other	two	platforms	should	be	fairly	simple	to	get	running	by	just	setting	the	projects
to	start	up	and	running	them:

1.	 Let’s	set	the	iOS	project	as	the	startup	project	by	right-clicking	on	the	project	and
selecting	Set	as	StartUp	Project:

2.	 In	the	standard	toolbox	in	Visual	Studio,	you	should	also	now	have	a	drop-down	list
to	select	which	iPhone	to	target.	You	can	certainly	choose	whatever	feels	right	for
you,	but	throughout	this	walk-through,	we’re	using	the	iPhone	4s,	which	would	give
you	the	largest	reach.

3.	 At	the	time	of	writing	this	book	there	are	a	few	minor	issues	with	Xamarin;	one	of
them	being	that	it	won’t	necessarily	build	all	projects	as	it	should.	This	can	cause	a
lot	of	head-scratching	when	you’re	changing	things	in	the	common	project	and	it	is
not	being	reflected	in	the	running	code.	This	is	easy	to	fix;	right-click	on	the	solution
in	Solution	Explorer	and	select	Configuration	Manager…:

4.	 In	the	Configuration	Manager…,	we	want	to	make	sure	both	the	iOS	project	and
the	common	project	is	set	to	Build.	Check	the	checkbox	the	SignalRChat.Mobile
project	if	it	is	not	already	checked:

Code	signing
If	you	are	not	a	registered	Apple	developer,	but	are	just	using	Xamarin	and	eventually
Xcode	without	yet	thinking	about	going	to	the	store,	you	won’t	have	the	necessary
certificates	on	the	OS	X	side	to	actually	sign	the	binaries.	You	will	quickly	run	into
compiler	errors	telling	you	that	your	application	can’t	be	signed.

This	is	fairly	simple	to	fix;	all	we	need	to	do	is	manually	edit	the	project	file:

1.	 Unload	the	iOS	project	from	Solution	Explorer:

2.	 Right-click	on	the	unloaded	project	and	choose	to	edit	it:

3.	 For	instance,	in	the	Debug	configuration,	we	want	to	remove	the	file	reference	in
something	called	CodesignEntitlements:

4.	 Now,	we	can	reload	the	project	by	right-clicking	on	it	and	selecting	the	Reload
Project	action:

With	the	build	host	running	on	the	OS	X	side	of	things	and	Visual	Studio	that	is	paired
with	it,	as	described	in	the	Xamarin	documentation,	you	should	now	be	able	to	run	the
project	using	Ctrl	+	F5	(Debug	|	Run	without	debugger).	It	should	yield	the	following
result	in	the	emulator:

Preparing	for	connections
In	order	for	us	to	be	able	to	connect	from	OSX	to	SignalR,	we’re	going	to	have	to	do	some
changes	to	the	IIS	Express	configuration:

1.	 Locate	the	IIS	Express	icon	in	the	system	tray:

2.	 Right-click	on	it	and	select	Show	All	Applications:

3.	 From	the	dialog	box,	select	the	site	for	the	application	and	look	at	the	path	of	the
configuration	file.	Make	a	note	of	this	as	we’re	going	to	need	it	real	soon:

4.	 We	want	to	stop	the	site,	since	we’re	changing	its	configuration.	Right-click	on	the
tray	icon	to	locate	IIS	Express	again	and	select	Stop	Site:

5.	 We	need	to	know	the	IP	address	of	the	Windows	computer	that	is	hosting	the	website.
One	way	of	doing	this	is	to	open	up	a	console/cmd	and	just	type	ipconfig;	make
note	of	IPv4	Address:

6.	 Open	the	config	file	from	the	path	we	found	in	the	IIS	Express	configuration,	using
something	such	as	Notepad	or	whatever	your	favorite	text	editor	is.	Inside	it,	search
for	the	<site>	tag.	Under	the	<bindings>	tag,	we	want	to	add	a	binding	other	than
localhost,	with	the	specific	IP	address	that	we	found.	Copy	and	paste	the	localhost
line	and	swap	out	localhost	in	the	pasted	line	with	the	IP	address:

If	you	have	the	firewall	enabled	in	Windows,	now	would	be	a	good	time	to	add	a	TCP	port
exception	for	the	port;	in	my	case,	it	is	3705.

Packages
We	are	going	to	need	some	packages.	The	packages	will	only	need	to	be	added	to	the
common	project:	SignalRChat.Mobile.	First,	let’s	add	a	reference	to	SignalR	by	adding
the	package	called	Microsoft.AspNet.SignalR.Client.	After	this,	add	a	reference	to
SimpleInjector,	a	simple	IoC	container	implementation.	We	could	have	used	Ninject	or
others	here	as	well.	There	are,	however,	some	limitations	with	some	of	the	magic	that	was
going	on	when	we	used	Ninject	together	with	Bifrost	that	is	yet	to	be	solved	by	these
libraries;	therefore,	we	just	use	this	for	simplicity	instead.

MVVM
In	Chapter	8,	Building	a	WPF	.NET	Client,	we	had	some	help	for	doing	MVVM	from	a
package	called	Bifrost.	This	package	does	not	yet	support	Xamarin,	so	we	are	going	to
borrow	some	of	the	concepts	from	it,	although	a	bit	more	naïvely	implemented.	I	would
recommend	taking	a	look	at	the	source	code	for	Bifrost	(http://github.com/dolittle/bifrost),
for	a	fully	featured	version.	For	now,	however,	it	will	do.

http://github.com/dolittle/bifrost

Messenger
The	publish/subscribe	mechanism	we	have	is	fairly	simple	to	implement.	Let’s	add	the
interface	that	represents	the	functionality	we	need:

1.	 Add	an	interface	called	IMessenger	in	the	common	SignalRChat.Mobile	project.
2.	 Make	the	interface	look	as	follows:

public	interface	IMessenger

{

				void	Publish<T>(T	content);

				void	SubscribeTo<T>(Action<T>	receivedCallback);

}

3.	 We	will	need	an	implementation	for	the	interface;	add	a	class	called	Messenger
sitting	in	the	same	project.	Make	the	class	look	as	follows:

public	class	Messenger	:	IMessenger

{

				Dictionary<Type,	List<Delegate>>	_subscribers	=	new	

Dictionary<Type,	List<Delegate>>();

				public	void	Publish<T>(T	content)

				{

								var	type	=	typeof(T);

								if	(_subscribers.ContainsKey(type))

								{

												foreach	(var	subscriber	in	_subscribers[type])

												{

																subscriber.DynamicInvoke(content);

												}

								}

				}

				public	void	SubscribeTo<T>(Action<T>	receivedCallback)

				{

								var	type	=	typeof(T);

								List<Delegate>	subscribersList	=	null;

								if	(_subscribers.ContainsKey(type))

												subscribersList	=	_subscribers[type];

								else

								{

												subscribersList	=	new	List<Delegate>();

												_subscribers[type]	=	subscribersList;

								}

								subscribersList.Add(receivedCallback);

				}

}

This	implementation	is	very	naive.	It	just	holds	a	dictionary	of	Type,	and	callbacks	to
call	for	that	type.	If	systems	adding	a	subscriber	to	this	needs	to	go	out	of	scope	and
get	collected,	this	prevents	it.	There	are	typically	two	things	I’d	do	to	this:	add	a
Unsubscribe	method	and	let	the	SubscribeTo	method	return	something	that
identifies	the	subscription	for	the	Unsubscribe.	Secondly,	the	callbacks	should	be

wrapped	with	WeakReference,	which	is	something	.NET	supports.	The	callback
mechanism	allows	you	to	check	whether	the	reference	is	alive,	and	if	not,	clean	it	up.
We’re	basically	proving	the	concepts	at	this	stage,	and	this	book	does	not	have	the
goal	of	implementing	all	the	moving	parts	in	a	typical	MVVM	solution	on	Xamarin.
There	are	a	few	libraries	out	there	that	deal	with	this,	such	as	MvvmCross,	MVVM
Light,	and	soon	also	Bifrost.	I	would	recommend	taking	a	look	at	these.

DelegateCommand
The	second	building	block	we	are	going	to	need,	or	at	least	want	to	have	for	convenience,
is	something	called	DelegateCommand.	The	purpose	of	this	is	to	be	able	to	simply	create	an
ICommand	instance	from	a	method	in	our	ViewModels.	Add	a	class	called
DelegateCommand	in	the	common	SignalRChat.Mobile	project.

Make	the	file	look	as	follows:

using	System;

using	System.Windows.Input;

namespace	SignalRChat.Mobile

{

				public	delegate	bool	CanExecuteEventHandler<T>(T	parameter);

				public	delegate	void	ExecuteEventHandler<T>(T	parameter);

				public	delegate	bool	CanExecuteWithoutParameterEventHandler();

				public	delegate	void	ExecuteWithoutParameterEventHandler();

				public	class	DelegateCommand<T>	:	DelegateCommand

				{

								public	ExecuteEventHandler<T>	ExecuteEventHandler	{	get;	private	

set;	}

								public	CanExecuteEventHandler<T>	CanExecuteEventHandler	{	get;	

private	set;	}

								public	DelegateCommand(ExecuteEventHandler<T>	executeEventHandler)

												:	this(executeEventHandler,	null)

								{

								}

								public	DelegateCommand(ExecuteEventHandler<T>	executeEventHandler,	

CanExecuteEventHandler<T>	canExecuteEventHandler)

								{

												ExecuteEventHandler	=	executeEventHandler;

												CanExecuteEventHandler	=	canExecuteEventHandler;

								}

								public	override	bool	CanExecute(object	parameter)

								{

												if	(null	==	CanExecuteEventHandler)

												{

																return	true;

												}

												return	CanExecuteEventHandler((T)parameter);

								}

								public	override	void	Execute(object	parameter)

								{

												if	(null	!=	ExecuteEventHandler)

												{

																ExecuteEventHandler((T)parameter);

												}

								}

								public	override	Type	ExecuteTargetType

								{

												get

												{

																return	ExecuteEventHandler.Target.GetType();

												}

								}

								public	override	Type	CanExecuteTargetType

								{

												get

												{

																return	CanExecuteEventHandler.Target.GetType();

												}

								}

				}

				public	class	DelegateCommand	:	ICommand

				{

								public	ExecuteWithoutParameterEventHandler	

ExecuteWithoutParameterEventHandler	{	get;	private	set;	}

								public	CanExecuteWithoutParameterEventHandler	

CanExecuteWithoutParameterEventHandler	{	get;	private	set;	}

								protected	DelegateCommand()

								{

								}

								public	DelegateCommand(ExecuteWithoutParameterEventHandler	

executeWithoutParameterEventHandler)

												:	this(executeWithoutParameterEventHandler,	null)

								{

								}

								public	DelegateCommand(ExecuteWithoutParameterEventHandler	

executeWithoutParameterEventHandler,

																															CanExecuteWithoutParameterEventHandler	

canExecuteWithoutParameterEventHandler)

								{

												ExecuteWithoutParameterEventHandler	=	

executeWithoutParameterEventHandler;

												CanExecuteWithoutParameterEventHandler	=	

canExecuteWithoutParameterEventHandler;

								}

								public	event	EventHandler	CanExecuteChanged;

								public	virtual	bool	CanExecute(object	parameter)

								{

												if	(null	==	CanExecuteWithoutParameterEventHandler)

												{

																return	true;

												}

												return	CanExecuteWithoutParameterEventHandler();

								}

								public	virtual	void	Execute(object	parameter)

								{

												if	(null	!=	ExecuteWithoutParameterEventHandler)

												{

																ExecuteWithoutParameterEventHandler();

												}

								}

								protected	void	OnCanExecuteChanged()

								{

												if	(null	!=	CanExecuteChanged)

												{

																CanExecuteChanged(this,	new	EventArgs());

												}

								}

								public	static	DelegateCommand	Create(ExecuteEventHandler<object>	

execute)

								{

												return	new	DelegateCommand<object>(execute);

								}

								public	static	DelegateCommand	Create(ExecuteEventHandler<object>	

execute,	CanExecuteEventHandler<object>	canExecute)

								{

												return	new	DelegateCommand<object>(execute,	canExecute);

								}

								public	static	DelegateCommand	

Create(ExecuteWithoutParameterEventHandler	execute)

								{

												return	new	DelegateCommand(execute);

								}

								public	static	DelegateCommand	

Create(ExecuteWithoutParameterEventHandler	execute,	

CanExecuteWithoutParameterEventHandler	canExecute)

								{

												return	new	DelegateCommand(execute,	canExecute);

								}

								public	static	DelegateCommand	Create<T>(ExecuteEventHandler<T>	

execute)

								{

												return	new	DelegateCommand<T>(execute);

								}

								public	static	DelegateCommand	Create<T>(ExecuteEventHandler<T>	

execute,	CanExecuteEventHandler<T>	canExecute)

								{

												return	new	DelegateCommand<T>(execute,	canExecute);

								}

								public	virtual	Type	ExecuteTargetType

								{

												get

												{

																return	

ExecuteWithoutParameterEventHandler.Target.GetType();

												}

								}

								public	virtual	Type	CanExecuteTargetType

								{

												get

												{

																return	

CanExecuteWithoutParameterEventHandler.Target.GetType();

												}

								}

				}

}

Now,	with	the	building	blocks	in	place,	we	can	move	on	to	the	code	for	the	solution.	Let’s
start	with	the	SignalR	code.	This	code	will	basically	be	the	same	as	in	the	WPF	sample.
The	client	code	is	very	consistent.	You	could	in	fact	argue	that	we	should	have	created
what	is	called	a	PCL	(Portable	Class	Library)	and	shared	most	of	the	code	between	all
.NET-based	clients.	This	is	something	we	actually	could	have	done;	in	fact,	we	could	have
even	shared	the	ViewModels	across	desktop	and	mobile	as	well.	However,	for	the	sake	of
simplicity,	we	will	just	recreate	things	directly	for	the	mobile	project.

Security
We	need	to	log	into	the	solution	and	get	the	right	cookies	back;	the	interface	for	this	is	the
same	as	in	the	WPF	client,	but	the	implementation	differs	slightly:

1.	 Create	an	interface	called	ISecurity	in	the	common	SignalRChat.Mobile	project.
2.	 Make	the	file	look	as	follows:

using	System.Net;

namespace	SignalRChat.Mobile

{

				public	interface	ISecurity

				{

								CookieContainer	CookieContainer	{	get;	}

								bool	Authenticate(string	userName,	string	password);

				}

}

3.	 Add	an	implementation	of	this	interface	called	Security.	Make	the	file	look	as
follows:

using	System;

using	System.Collections.Generic;

using	System.Net;

using	System.Net.Http;

namespace	SignalRChat.Mobile

{

				public	class	Security	:	ISecurity

				{

								const	string	Site	=	"http://10.211.55.4:3705";

								public	CookieContainer	CookieContainer	{	get;	private	set;	}

								public	bool	Authenticate(string	userName,	string	password)

								{

												var	postData	=	new	List<KeyValuePair<string,	string>>();

												postData.Add(new	KeyValuePair<string,	string>("userName",	

userName));

												postData.Add(new	KeyValuePair<string,	string>("password",	

password));

												var	content	=	new	FormUrlEncodedContent(postData);

												CookieContainer	=	new	CookieContainer();

												var	handler	=	new	HttpClientHandler	{	CookieContainer	=	

CookieContainer	};

												var	client	=	new	HttpClient(handler);

												try

												{

																var	result	=	

client.PostAsync(Site+"/SecurityHandler.ashx",	content).Result;

																result.EnsureSuccessStatusCode();

												}	catch(Exception)

												{

																return	false;

												}

												return	true;

								}

				}

}

Tip
Make	sure	the	Site	const	reflects	the	URL	of	your	Windows	machine	with	the	IP
address	we	found	earlier.

ChatHub
As	with	the	WPF	client,	we	want	to	have	a	strongly	typed	representation	of	our	Hub	in	the
client.	Since	we	don’t	have	proxy	generation	for	this,	we	will	manually	create	it:

1.	 Create	an	interface	representing	the	hub	called	IChatHub	in	the	common
SignalRChat.Mobile	project.

2.	 Make	the	file	look	as	follows:

using	System;

using	Microsoft.AspNet.SignalR.Client;

namespace	SignalRChat.Mobile

{

				public	interface	IChatHub

				{

								event	Action<StateChange>	StateChanged;

								event	Action<string>	JoinedRoom;

								event	Action<string>	RoomAdded;

								event	Action<string>	MessageReceived;

								string	CurrentChatRoom	{	get;	}

								void	Join(string	room);

								void	CreateRoom(string	room);

								void	Send(string	message);

				}

}

3.	 Add	a	class	called	ChatHub	alongside	the	IChatHub	file,	and	make	it	look	as	follows:

using	System;

using	Microsoft.AspNet.SignalR.Client;

using	Microsoft.AspNet.SignalR.Client.Transports;

namespace	SignalRChat.Mobile

{

				public	class	ChatHub	:	IChatHub

				{

								const	string	Site	=	"http://10.211.55.4:3705";

								public	event	Action<StateChange>	StateChanged	=	(state)	=>	{	};

								public	event	Action<string>	JoinedRoom	=	(room)	=>	{	};

								public	event	Action<string>	RoomAdded	=	(room)	=>	{	};

								public	event	Action<string>	MessageReceived	=	(message)	=>	{	};

								HubConnection	_hubConnection;

								ISecurity	_security;

								IHubProxy	_chatProxy;

								public	ChatHub(IMessenger	messenger,	ISecurity	security)

								{

												_security	=	security;

												messenger.SubscribeTo<LoggedIn>(LoggedIn);

								}

								void	LoggedIn(LoggedIn	loggedIn)

								{

												_hubConnection	=	new	HubConnection(Site);

												

												_hubConnection.CookieContainer	=	_security.CookieContainer;

												_hubConnection.StateChanged	+=	(s)	=>	StateChanged(s);

												_chatProxy	=	_hubConnection.CreateHubProxy("chat");

												_chatProxy.On("addMessage",	(string	message)	=>	

MessageReceived(message));

												_chatProxy.On("addChatRoom",	(string	room)	=>	

RoomAdded(room));

												CurrentChatRoom	=	"Lobby";

												JoinedRoom(CurrentChatRoom);

												_hubConnection.Start().Wait();

								}

								public	void	Join(string	room)

								{

												_chatProxy.Invoke("Join",	room).Wait();

												JoinedRoom(room);

								}

								public	void	CreateRoom(string	room)

								{

												_chatProxy.Invoke("CreateChatRoom",	room).Wait();

												JoinedRoom(room);

								}

								public	void	Send(string	message)

								{

												_chatProxy.Invoke("Send",	message);

								}

								public	string	CurrentChatRoom

								{

												get	{	return	(string)_chatProxy["currentChatRoom"];	}

												private	set	{	_chatProxy["currentChatRoom"]	=	value;	}

								}

				}

}

Tip
Make	sure	the	Site	const	reflects	the	URL	of	your	Windows	machine	with	the	IP
address	we	found	earlier.

Login
The	first	screen	that	we	are	going	to	have	the	user	go	through	will	be	the	login	screen:

1.	 Right-click	on	the	common	SignalRChat.Mobile	project	and	select	Add	|	New
Item.	In	the	Add	New	Item	dialog	box,	select	the	Forms	Xaml	Page	and	name	it
Login.xaml.

2.	 Make	the	XML	in	the	newly	created	file	look	as	follows:

<?xml	version="1.0"	encoding="utf-8"	?>

<ContentPage	xmlns="http://xamarin.com/schemas/2014/forms"

													xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

													x:Class="SignalRChat.Mobile.Login">

		

		

		<StackLayout	Orientation="Vertical"	VerticalOptions="Start"	

Padding="8,32,8,8">

				<Label	Text="UserName"/>

				<Entry	Keyboard="Text"	Placeholder="Enter	username"	Text="{Binding	

UserName,	Mode=TwoWay}"	/>

				<Label	Text="Password"/>

				<Entry	Keyboard="Text"	IsPassword="true"	Placeholder="Enter	

password"	Text="{Binding	Password,	Mode=TwoWay}"/>

				

				<Button	Command="{Binding	LoginCommand}"	Text="Login"></Button>

		</StackLayout>

</ContentPage>

The	bindings	are	relative	to	what	is	called	BindingContext.	Unlike	WPF	and	most
XAML	platforms,	it	is	not	called	DataContext.	We’re	going	to	see	how	we	wire	this
up	soon.

3.	 We	are	now	going	to	need	the	ViewModel	that	the	view	will	consume.	Add	a	file
called	LoginViewModel.cs	and	make	it	look	as	follows:

using	System.Windows.Input;

using	Xamarin.Forms;

namespace	SignalRChat.Mobile

{

				public	class	LoginViewModel	

				{

								INavigation	_navigation;

								ISecurity	_security;

								IMessenger	_messenger;

								public	LoginViewModel(INavigation	navigation,	ISecurity	

security,	IMessenger	messenger)

								{

												_navigation	=	navigation;

												_security	=	security;

												_messenger	=	messenger;

												LoginCommand	=	DelegateCommand.Create(Login);

								}

								public	string	UserName	{	get;	set;	}

								public	string	Password	{	get;	set;	}

								public	ICommand	LoginCommand	{	get;	private	set;	}

								public	void	Login()

								{

												if	(_security.Authenticate(UserName,	Password))

												{

																var	navigationPage	=	new	NavigationPage();

																App.Navigation	=	navigationPage.Navigation;

																navigationPage.PushAsync(new	ChatRooms());

																

																_navigation.PushModalAsync(navigationPage);

																_messenger.Publish(new	LoggedIn());

												}

								}

				}

}

We’re	taking	in	a	dependency	to	INavigation.	This	is	an	interface	from
Xamarin.Forms	that	we’re	using	to	navigate	in	the	application.	In	addition	to	this,
we’re	also	taking	in	the	messenger	that	we	created	earlier	and	as	you	can	see,	we	are
publishing	the	LoggedIn	message	that	we	will	create	in	a	bit.	It	is	also	using
something	called	ChatRooms	that	is	also	coming	later.

4.	 Add	a	class	called	LoggedIn	to	the	same	common	project.	We	don’t	need	anything	in
this	class,	so	just	leave	it	empty,	save	it,	and	close	the	file.

5.	 Go	to	the	App.cs	in	the	SignalRChat.Mobile	project	and	make	it	look	as	follows:

using	System;

using	System.Collections.Generic;

using	System.Linq;

using	System.Text;

using	SimpleInjector;

using	Xamarin.Forms;

namespace	SignalRChat.Mobile

{

				public	class	App	:	Application

				{

								public	static	readonly	Container	Container;

								public	static	INavigation	Navigation;

								static	App()

								{

												Container	=	new	Container();

												var	security	=	new	Security();

												var	messenger	=	new	Messenger();

												var	chatHub	=	new	ChatHub(messenger,	security);

												Container.Register<ISecurity>(()=>security,	

Lifestyle.Singleton);

												Container.Register<IChatHub>(()	=>	chatHub,	

Lifestyle.Singleton);

												Container.Register<IMessenger>(()	=>	messenger,	

Lifestyle.Singleton);

												Container.Register<INavigation>(()	=>	Navigation);

								}

								public	App()

								{

												//	The	root	page	of	your	application

												MainPage	=	new	Login();

								}

								protected	override	void	OnStart()

								{

												//	Handle	when	your	app	starts

								}

								protected	override	void	OnSleep()

								{

												//	Handle	when	your	app	sleeps

								}

								protected	override	void	OnResume()

								{

												//	Handle	when	your	app	resumes

								}

				}

}

We	set	the	MainPage	to	the	Login	page.	This	will	then	navigate	directly	to	it.	In
addition,	the	static	constructor	sets	up	the	SimpleInjector	IoC	container	and
configures	it	correctly	for	the	dependencies	we	are	going	to	use.	The	navigation	field
is	being	set	outside	of	this	file—this	is	not	something	I	would	normally	recommend
doing,	but	in	the	interest	of	not	overcomplicating	things,	we	will	do	this.	In	general,	I
would	recommend	figuring	out	a	better	way	to	resolve	this	lazily	from	a	delegate
callback	or	similar.

6.	 Right-click	on	the	Login.xaml	file	and	select	View	Code.	Make	it	look	as	follows:

using	Xamarin.Forms;

namespace	SignalRChat.Mobile

{

				public	partial	class	Login	:	ContentPage

				{

								public	Login()

								{

												InitializeComponent();

												var	security	=	App.Container.GetInstance<ISecurity>();

												var	messenger	=	App.Container.GetInstance<IMessenger>();

												var	viewModel	=	new	LoginViewModel(Navigation,	security,	

messenger);

												BindingContext	=	viewModel;

								}

				}

}

Basically,	we	ask	the	IoC	container	using	it	as	a	ServiceLocator.	This	is	often	seen	as
an	anti-pattern,	and	I	generally	agree	with	it.	We	want	dependencies	to	be	injected.
However,	in	a	book	like	this,	we	have	to	take	a	couple	of	shortcuts	to	keep	focus	on
the	important	things.	The	usage	of	an	IoC	is	not	needed,	but	it	is	put	in	to	show	how	I
go	about	thinking	of	development.	Make	note	of	BindingContext;	we	take	the
ViewModel	instance	and	set	it	directly.	By	doing	this,	all	the	bindings	will	be
activated.

ChatRooms
We	are	not	going	to	be	able	to	compile	nor	run	just	yet.	We	will	need	to	complete	the
entire	application	in	order	for	us	to	do	so:

1.	 Right-click	on	the	common	SignalRChat.Mobile	project	and	select	Add	|	New
Item.	In	the	Add	New	Item	dialog	box,	select	the	Forms	Xaml	Page	and	name	it
ChatRooms.xaml.

2.	 Make	the	file	look	as	follows:

<?xml	version="1.0"	encoding="utf-8"	?>

<ContentPage	xmlns="http://xamarin.com/schemas/2014/forms"

													xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

													xmlns:local="clr-

namespace:SignalRChat.Mobile;assembly=SignalrChat.Mobile"

													x:Class="SignalRChat.Mobile.ChatRooms"

													Title="Rooms">

		<StackLayout	Orientation="Vertical"	Padding="8">

				<StackLayout	Orientation="Horizontal">

						<Entry	Keyboard="Text"	Placeholder="Enter	room"	

HorizontalOptions="FillAndExpand"	Text="{Binding	Room,	Mode=TwoWay}"/>

						<Button	Command="{Binding	AddRoomCommand}"	Text="Send"	

HorizontalOptions="End"/>

				</StackLayout>

				<ListView	ItemsSource="{Binding	Rooms}"	SelectedItem="{Binding	

CurrentRoom,	Mode=TwoWay}">

						<ListView.ItemTemplate>

								<DataTemplate>

										<TextCell	Text="{Binding}"/>

								</DataTemplate>

						</ListView.ItemTemplate>

				</ListView>

		</StackLayout>

</ContentPage>

3.	 We	are	now	going	to	need	the	ViewModel	that	the	view	will	consume.	Add	a	file
called	ChatRoomsViewModel.cs	and	make	it	look	as	follows:

using	System;

using	System.Collections.ObjectModel;

using	System.Windows.Input;

using	Xamarin.Forms;

namespace	SignalRChat.Mobile

{

				public	class	ChatRoomsViewModel

				{

								string	_currentRoom;

								INavigation	_navigation;

								IChatHub	_chatHub;

								public	ChatRoomsViewModel(INavigation	navigation,	IChatHub	

chatHub)

								{

												_navigation	=	navigation;

												_chatHub	=	chatHub;

												Rooms	=	new	ObservableCollection<string>();

												chatHub.RoomAdded	+=	(room)	=>	

Device.BeginInvokeOnMainThread(()	=>	Rooms.Add(room));

												AddRoomCommand	=	DelegateCommand.Create(AddRoom);

								}

								public	string	CurrentRoom	

								{

												get	{	return	_currentRoom;	}

												set

												{

																_currentRoom	=	value;

																_chatHub.Join(value);

																_navigation.PushAsync(new	Chat(value));

												}

								}

								public	ObservableCollection<String>	Rooms	{	get;	private	set;	}

								public	ICommand	AddRoomCommand	{	get;	private	set;	}

								public	string	Room	{	get;	set;	}

								public	void	AddRoom()

								{

												_chatHub.CreateRoom(Room);

								}

				}

}

4.	 Right-click	on	the	ChatRooms.xaml	file	and	select	View	Code.	Make	it	look	as
follows:

using	SimpleInjector;

using	Xamarin.Forms;

namespace	SignalRChat.Mobile

{

				public	partial	class	ChatRooms	:	ContentPage

				{

								public	ChatRooms()

								{

												InitializeComponent();

												BindingContext	=	

App.Container.GetInstance<ChatRoomsViewModel>();

								}

				}

}

Chat
The	last	component	is	the	actual	chat.	The	ChatRoom	class	navigates	to	the	chat	with	the
selected	room:

1.	 Right-click	on	the	common	SignalRChat.Mobile	project	and	select	Add	|	New
Item.	In	the	Add	New	Item	dialog	box,	select	the	Forms	Xaml	Page	and	name	it
Chat.xaml.

2.	 Make	the	file	look	as	follows:

<?xml	version="1.0"	encoding="utf-8"	?>

<ContentPage	xmlns="http://xamarin.com/schemas/2014/forms"

													xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"

													x:Class="SignalRChat.Mobile.Chat"

													Title="{Binding	Room}">

		<StackLayout	Orientation="Vertical"	Padding="8">

				<StackLayout	Orientation="Horizontal">

						<Entry	x:Name="room"	Keyboard="Text"	Placeholder="Enter	message"	

HorizontalOptions="FillAndExpand"	Text="{Binding	Message,	

Mode=TwoWay}"/>

						<Button	Command="{Binding	SendCommand}"	Text="Send"	

HorizontalOptions="End"/>

				</StackLayout>

				<ListView	ItemsSource="{Binding	Messages}">

						<ListView.ItemTemplate>

								<DataTemplate>

										<TextCell	Text="{Binding}"/>

								</DataTemplate>

						</ListView.ItemTemplate>

				</ListView>

		</StackLayout>

</ContentPage>

3.	 Open	up	the	code-behind	of	the	Chat.xaml	file	by	right-clicking	on	it	in	the	Solution
Explorer	and	selecting	View	Code.

4.	 Let’s	add	the	following	constructors	to	it:

public	Chat()	:	this("Unknown")	{}

public	Chat(string	room)

{

			InitializeComponent();

			var	chatHub	=	App.Container.GetInstance<IChatHub>();

			BindingContext	=	new	ChatViewModel(room,	chatHub);

}

Note
Every	room	we	go	into	will	get	a	new	view	and	ViewModel	for	the	room.	We
explicitly	have	to	initialize	the	ViewModel	like	this,	by	calling	the	IoC	container	to
get	an	instance	of	the	IChatHub.

5.	 We	are	now	going	to	need	the	ViewModel	that	the	view	will	consume.	Add	a	file
called	ChatViewModel.cs	and	make	it	look	as	follows:

using	System.Collections.ObjectModel;

using	System.Windows.Input;

using	Xamarin.Forms;

namespace	SignalRChat.Mobile

{

				public	class	ChatViewModel

				{

								IChatHub	_chatHub;

								public	ChatViewModel(string	room,	IChatHub	chatHub)

								{

												Room	=	room;

												_chatHub	=	chatHub;

												Messages	=	new	ObservableCollection<string>();

												SendCommand	=	DelegateCommand.Create(Send);

												chatHub.MessageReceived	+=	(message)	=>	

Device.BeginInvokeOnMainThread(()	=>	Messages.Add(message));

								}

								public	string	Room	{	get;	private	set;	}

								public	string	Message	{	get;	set;	}

								public	ICommand	SendCommand	{	get;	private	set;	}

								public	ObservableCollection<string>	Messages	{	get;	private	

set;	}

								public	void	Send()

								{

												_chatHub.Send(Message);

								}

				}

}

The	result
The	solution	should	now	be	possible	to	compile	and	run.	First,	you	need	to	set	the	Web
project	as	the	startup	project	and	then	run	it	so	that	the	server	is	ready.	Once	you	have	it
running,	you	can	set	the	iOS	project	again	as	the	startup	project	and	then	run	it.

You	should	then	be	presented	with	the	login	screen:

After	logging	in	with	the	credentials	that	the	server	is	configured	with,	you	will	get	to	the
Rooms	page.	You	can	select	a	room	from	the	list	or	create	a	new	one:

Once	in	the	room,	you	can	send	messages	and	also	receive	messages:

Having	the	web	browser	and	the	iOS	emulator	side	by	side	should	give	you	the	same	data
going	back	and	forth	between	them,	when	either	of	the	clients	are	in	use:

The	Room	list	should	look	as	follows:

Summary
Xamarin	has	matured	over	the	years,	and	with	their	recent	embracing	of	XAML,	they	are
building	on	the	great	things	that	XAML	has	going	for	it.	It	is	truly	becoming	a	write	once,
run	many	type	of	platform.	With	Visual	Studio	2015,	Xamarin	even	comes	as	part	of	the
out-of-the-box	experience,	proving	the	maturity	of	the	platform	and	also	the	Microsoft’s
commitment	to	work	with	Xamarin	in	order	to	give	us,	as	developers,	the	best	tools	for	the
job.

In	the	next	chapter,	we	will	see	how	you	can	debug	things	and	figure	out	when	there	are
problems	in	a	good	way.

Chapter	10.	Monitoring
This	chapter	will	show	tools	that	exist	to	help	you	know	what	is	going	on	in	your	SignalR-
enabled	system.	Until	now,	SignalR	has	been	a	black	box,	which	is	fine	until	things	start
failing.	Then	comes	monitoring	that	helps	us	pinpoint	any	problems.	Monitoring	allows
you	to	look	under	the	hood	and	get	the	facts	about	what	is	going	on,	thus	helping	you	to
diagnose	your	solution.	Sometimes,	it	is	not	that	obvious	as	to	what	causes	a	problem,
especially	when	moving	into	a	single	page	application	development;	this	shift	of	looking
at	postbacks	looks	at	the	traffic	between	the	server	and	the	client.	With	the	right	tools	and
know-hows,	this	shouldn’t	be	a	problem.

In	this	chapter,	we	will	cover	the	following	topics:

Enabling	tracing	or	logging
Using	Fiddler	and	Charles
Enabling	performance	counters
Getting	debug	info	into	Visual	Studio
Chrome	Developer	Tools

Logging
Perhaps	one	of	the	most	efficient	debugging	tools	is	logging;	just	get	the	text	out	that	says
what	is	going	on	in	your	system.	Logging	is	the	age-old	technique	of	putting	in	code	that
writes	out	text	to	know	what	the	system	is	doing.	SignalR	has	a	great	support	for	this	in	all
tiers.

Logging	on	the	server	side
You	simply	enable	logging	on	the	server	by	adding	configuration	to	the	application
configuration	file	(App.config	or	Web.config)	depending	on	the	project	type.	In	the
configuration,	you	specify	what	events	you	are	interested	in	seeing.	You	can	also	specify
where	you	want	it	to	log	to,	such	as	a	text	file,	the	Windows	event	log,	or	a	custom	log,
using	an	implementation	of	TraceListener.	The	following	table	shows	what	trace	sources
are	available	and	a	description	of	what	they	represent:

Source Messages

SignalR.SqlMessageBus
This	scales	out	the	setup,	database	operation,	error,	and	timeout
events

SignalR.ServiceBusMessageBus
This	scales	out	provider	topic	creation	and	subscription,	error,
and	messaging	events

SignalR.RedisMessageBus
This	scales	out	provider	connection,	disconnection,	and	error
events

SignalR.ScaleoutMessageBus This	scales	out	messaging	events

SignalR.Transports.WebSocketTransport
This	transports	connection,	disconnection,	messaging,	and	error
events

SignalR.Transports.ServerSentEventsTransport
This	transports	connection,	disconnection,	messaging,	and	error
events

SignalR.Transports.ForeverFrameTransport
This	transports	connection,	disconnection,	messaging,	and	error
events

SignalR.Transports.LongPollingTransport
This	transports	connection,	disconnection,	messaging,	and	error
events

SignalR.Transports.TransportHeartBeat
This	transport	connection,	disconnection,	messaging,	and	error
events

SignalR.ReflectedHubDescriptorProvider This	reflects	the	hub	discovery	events

To	enable	this,	you	can	add	the	following	code	to	your	application	config	file	(App.config
or	Web.config)	within	the	configuration	tag	of	one	of	these	files:

<system.diagnostics>

				<sources>	

						<source	name="SignalR.SqlMessageBus">

								<listeners>

										<add	name="SignalR-Bus"	/>

								</listeners>

						</source>

						<source	name="SignalR.ServiceBusMessageBus">

								<listeners>

										<add	name="SignalR-Bus"	/>

								</listeners>

						</source>

						<source	name="SignalR.RedisMessageBus">

								<listeners>

										<add	name="SignalR-Bus"	/>

								</listeners>

						</source>

						<source	name="SignalR.ScaleoutMessageBus">

								<listeners>

										<add	name="SignalR-Bus"	/>

								</listeners>

						</source>

						<source	name="SignalR.Transports.WebSocketTransport">

								<listeners>

										<add	name="SignalR-Transports"	/>

								</listeners>

						</source>					

						<source	name="SignalR.Transports.ServerSentEventsTransport">

								<listeners>

										<add	name="SignalR-Transports"	/>

								</listeners>

						</source>

						<source	name="SignalR.Transports.ForeverFrameTransport">

								<listeners>

										<add	name="SignalR-Transports"	/>

								</listeners>

						</source>

						<source	name="SignalR.Transports.LongPollingTransport">

								<listeners>

										<add	name="SignalR-Transports"	/>

								</listeners>

						</source>

						<source	name="SignalR.Transports.TransportHeartBeat">

								<listeners>

										<add	name="SignalR-Transports"	/>

								</listeners>

						</source>

						<source	name="SignalR.ReflectedHubDescriptorProvider">

								<listeners>

										<add	name="SignalR-Init"	/>

								</listeners>

						</source>

				</sources>

				<!--	Sets	the	trace	verbosity	level	-->

				<switches>

						<add	name="SignalRSwitch"	value="Verbose"	/>

				</switches>

				<!--	Specifies	the	trace	writer	for	output	-->

				<sharedListeners>

						<!--	Listener	for	transport	events	-->

						<add	name="SignalR-Transports"	

type="System.Diagnostics.TextWriterTraceListener"	

initializeData="transports.log.txt"	/>

						<!--	Listener	for	scaleout	provider	events	-->

						<add	name="SignalR-Bus"	

type="System.Diagnostics.TextWriterTraceListener"	

initializeData="bus.log.txt"	/>

						<!--	Listener	for	hub	discovery	events	-->

						<add	name="SignalR-Init"	

type="System.Diagnostics.TextWriterTraceListener"	

initializeData="init.log.txt"	/>

				</sharedListeners>

				<trace	autoflush="true"	/>

		</system.diagnostics>

Running	an	application	with	this	should	yield	something	similar	in	the
transports.log.txt	file.	Typically,	this	file	is	located	in	your	application	bin	output
folder,	whereas	for	a	web	application,	it’s	in	the	root	of	the	web	application:

In	Windows,	we	have	the	Windows	event	log,	in	which	the	system	itself	registers	events
that	occur,	but	it’s	also	a	place	where	applications	can	post	to.	This	is	often	used	by	IT	to
monitor	what	goes	on.	Popular	toolsets	out	there	can	use	this	to	alert	IT	when	something
happens.	To	get	the	same	logging	into	the	Windows	event	log,	you	simply	need	to	change
the	listeners	as	follows:

<sharedListeners>

		<!--	Listener	for	transport	events	-->

		<add	name="SignalR-Transports"	

type="System.Diagnostics.EventLogTraceListener"	

initializeData="SignalRScaleoutLog"	/>

		<!--	Listener	for	scaleout	provider	events	-->

		<add	name="SignalR-Bus"	type="System.Diagnostics.EventLogTraceListener"	

initializeData="SignalRTransportLog"	/>

		<!--	Listener	for	hub	discovery	events	-->

		<add	name="SignalR-Init"	type="System.Diagnostics.EventLogTraceListener"	

initializeData="SignalRInitLog"	/>

</sharedListeners>

The	easiest	way	to	see	the	result	is	to	open	the	event	viewer	in	Windows.	This	is
accessible	by	pressing	Windows	key	+	R,	and	entering	eventvwr	in	it,	as	shown	here:

Once	it	is	opened,	you	should	then	see	events,	as	shown	in	the	following	screenshot:

Tip
To	keep	the	level	of	events	in	the	event	log	to	a	manageable	level,	you	should	set
TraceLevel	to	Error.

Logging	in	the	JavaScript	client
The	server	side	will	only	tell	you	parts	of	the	truth;	you	might	run	into	issues	in	the	client
as	well.	Enabling	this	is	very	simple.

If	you	are	using	the	generated	proxies	for	the	Hubs,	you	can	simply	enable	it	with	the
following	code:

$.connection.hub.logging	=	true;

$.connection.hub.start();

If	you’re	not	using	the	proxies,	you	can	enable	it	as	follows:

var	connection	=	$.hubConnection();

connection.logging	=	true;

connection.start();

In	the	browser’s	developer	tools	in	the	Console	output,	you	should	be	seeing	something
similar	to	the	following	screenshot.	The	developer	tools	are	typically	available	by	pressing
the	F12	button	on	your	keyboard.	For	some	browsers,	you	might	need	to	enable	it	in	the
settings	of	the	browser:

Logging	in	the	.NET	client
In	a	regular	.NET	client,	this	is	just	as	simple,	as	shown	in	the	following	code:

var	hubConnection	=	new	HubConnection("http://localhost:9044/");

hubConnection.TraceLevel	=	TraceLevels.All;

hubConnection.TraceWriter	=	Console.Out;

await	hubConnection.Start();

Note
With	C#	5.0,	we	get	the	async/await	paradigm.	This	has	the	new	keywords	to	help	us	with
asynchronous	tasks.	Earlier,	we	had	used	.Wait()	on	the	returning	task	of	an
asynchronous	method.	With	the	async	and	await	keywords,	we	can	get	a	clearer	way	of
doing	this.	The	only	drawback	of	this	is	that	the	keywords	bleed	through	your	API.	Be
aware	of	this	and	you	should	be	fine.

The	TraceWriter	is	set	to	output	to	the	console;	this	can	be	customized	to	be	outputting	to
a	file	instead,	if	you	want,	as	shown	here:

var	hubConnection	=	new	HubConnection("http://localhost:9044/");

var	writer	=	new	StreamWriter("client.log.txt");

writer.AutoFlush	=	true;

hubConnection.TraceLevel	=	TraceLevels.All;

hubConnection.TraceWriter	=	writer;

await	hubConnection.Start();

The	file	would	then	be	written	to	the	place	it	runs	from.	By	default,	this	is	the	binary
output	folder	of	the	project.	Once	you	run	with	this,	you	should	see	the	following	output:

Logging	from	the	Xamarin	client
The	API	for	the	Xamarin	is	pretty	much	exactly	the	same	as	for	the	.NET	client,	so
enabling	it	also	very	similar.	There	is,	however,	not	a	regular	console,	so	we	need	a
different	writer.	The	simplest	thing	is	then	to	get	it	into	the	output	window	in	Visual
Studio.	All	we	need	then	is	to	implement	TextWriter	that	can	actually	do	this,	as	shown
in	the	following	code:

public	class	DebugTextWriter	:	TextWriter

{

				StringBuilder	_messageBuilder;

				public	DebugTextWriter()

				{

								_messageBuilder	=	new	StringBuilder();

				}

				public	override	void	Write(char	value)

				{

								switch	(value)

								{

												case	'\n':

																return;

												case	'\r':

																Debug.WriteLine(_messageBuilder.ToString());

																_messageBuilder.Clear();

																return;

												default:

																_messageBuilder.Append(value);

																break;

								}

				}

												

				public	override	void	Write(string	value)

				{

								Debug.WriteLine(value);

																

				}

				#region	implemented	abstract	members	of	TextWriter

				public	override	Encoding	Encoding

				{

								get	{	throw	new	NotImplementedException();	}

				}

				#endregion

}

Then,	you	need	the	following	when	initializing	the	Hub:

var	hubConnection	=	new	HubConnection("http://localhost:9044/");

hubConnection.TraceLevel	=	TraceLevels.All;

hubConnection.TraceWriter	=	new	DebugTextWriter();

await	hubConnection.Start();

This	should	yield	an	output	similar	to	the	following:

The	same	writer	could	be	used	in	a	regular	.NET	application	as	well,	which	is	a	great	way
for	a	developer	to	see	things	while	working.

Digging	deeper	into	the	communication
Logging	is	really	helpful	and	can	really	save	you	a	lot	of	time	to	figure	out	what	is	going
on.	However,	sometimes,	you	need	to	go	even	deeper.	At	times,	you	need	to	look	at	the
raw	traffic.	There	are	a	few	ways	of	doing	this.

Looking	under	the	cover	with	Fiddler
A	popular,	free,	and	very	good	debugging	tool	to	debug	HTTP	traffic	is	Fiddler.	You	can
download	it	for	free	at	http://www.telerik.com/fiddler.	It	gives	you	the	opportunity	to
monitor	all	HTTP	requests	happening	on	your	computer.

Fiddler	sets	itself	as	a	proxy	between	all	traffic	and	in	order	to	get	the	best	experience
from	it,	you	need	to	enable	streams,	otherwise	SignalR	will	fall	back	to	long-polling,	but
not	immediately	(typically	after	3-5	seconds),	as	shown	in	the	following	screenshot:

If	the	browser	and	server	support	web	sockets,	SignalR	might	choose	to	use	this	as	its
preferred	transport.	In	this	case,	you	want	to	open	up	the	Log	tab,	as	shown	here:

On	the	Mac	OS	X	side	of	things,	there	are	quite	a	few	alternatives	to	do	the	same	thing.

http://www.telerik.com/fiddler

The	tool	that	I	found	most	useful	was	something	called	as	Charles.	It	is	supported	on
Windows,	Mac	OS	X,	and	Linux,	and	can	be	downloaded	from	here:
http://www.charlesproxy.com/.

http://www.charlesproxy.com/

Performance	counters
Monitoring	messages	on	a	higher	level	to	see	the	throughput	of	your	application,	number
of	failing	messages,	and	such	is	vital	when	putting	a	system	into	production.	SignalR	has	a
utilities	project	that	gives	you	performance	counters	that	can	be	installed	on	the	server(s)
that	host	your	application.

The	utility	is	available	through	NuGet	as	a	package.	So	right-click	on	the	references	of
any	of	the	projects	and	select	Manage	NuGet	packages,	find	the	package	called
Microsoft	ASP.NET	SignalR	Utilities	and	install	it:

In	order	to	install	the	performance	counters,	we	need	to	open	a	command	prompt	in
Administrator	mode.

Navigate	to	the	path	of	your	solution;	inside	it	you	should	find	a	folder	called	packages,
and	inside	it	a	folder	called	Microsoft.AspNet.SignalR.Utils.2.1.2	or	similar,
depending	on	the	version	you	installed;	within	this	you’ll	find	a	folder	called	tools.

Now	that	you’ve	navigated	into	all	these,	enter	signalr	ipc	and	press	Enter.	This	will
install	all	the	performance	counters:

1.	 To	see	the	performance	counters,	we	need	to	open	perfmon	(Start	|	Run	or	Windows
8,	press	Windows	key	+	R)	and	type	perfmon	and	press	Enter:

2.	 Inside	perfmon	you	expand	the	monitoring	tools	and	click	on	the	Performance
Monitor	node	and	you	should	see	a	graph.

3.	 Click	on	the	big	+	button	at	the	top	so	that	you	can	add	the	SignalR	counters	you
want	to	look	at.	If	you	have	your	application	running,	you	should	see	it	in	the
Instances	of	selected	object	filter	list:

Once	added,	you	can	try	out	the	app	by	sending	messages	and	see	the	result	in	the	graph:

Tip
It	is	really	important	to	disable	any	performance	encounters	that	you	might	have	enabled
for	debugging	purposes	on	your	production	system,	as	these	will	cause	overhead	for	all
messages.	To	disable	it,	you	simply	enter	signalr	upc	in	the	console	from	the	same
folder	of	the	tools	in	which	you	enabled	it.

Under	the	cover,	inside	the	browser
Inside	all	modern	web	browsers,	you	should	be	able	to	see	the	network	traffic	between	the
client	and	the	server.	The	browser	should	be	able	to	show	you	the	details	for	each	transport
type.	The	following	screenshot	shows	how	this	looks	in	Chrome	for	WebSockets
transport:

This	shows	the	frames	going	back	and	forth	for	each	message	being	sent	either	from	the
client	or	the	server.

Summary
Debugging	is	not	always	a	matter	of	attaching	the	debugger	to	the	server	code	or	the	client
code	and	stepping	through.	Sometimes,	the	secret	is	hidden	in	the	data	going	back	and
forth	and	it’s	not	that	obvious	to	understand	this	with	the	debugger.	With	logging	enabled,
Fiddler,	the	browser,	and	the	performance	counters,	you	should	now	be	able	to	both	debug
and	find	potential	bottlenecks	in	your	system.	Although,	it	might	feel	a	bit	primitive
compared	to	the	tools	that	you	might	be	used	to	when	developing	vanilla	web	apps,	they
are	very	detailed	and	should	be	of	great	assistance.

In	the	next	chapter,	we	will	look	at	how	to	self-host	SignalR	in	your	own	application.

Chapter	11.	Hosting	a	Server	Using	Self-
hosted	OWIN
This	chapter	will	cover	how	to	host	SignalR	outside	the	comfort	of	a	web	server.	There	are
occasions	where	you	need	to	be	more	lightweight,	or	simply	host	things	inside	a	.NET
client	or	similar.

In	this	chapter,	we’ll	cover	the	following	topics:

Getting	started	with	self-hosted	OWIN
Connecting	a	.NET	client	to	the	self-hosted	server

At	this	stage,	the	developer	should	be	familiar	with	how	the	server	works	and	how	to	set	it
up	in	their	own	app.	They	should	have	a	working	sample	of	the	chat	working	with	the
OWIN	server.	The	developer	should	also	be	familiar	with	how	and	why	to	scale	out	the
messaging	aspect	of	SignalR.

Self-hosting
Sometimes	you	really	don’t	want	to	have	a	big	footprint	on	your	application	when	you’re
deploying.	You	don’t	want	to	have	the	IIS	dependency	or	other	web	server	software,	you
just	your	own	executable	and	that’s	it.	In	combination	with	OWIN	Open	Web	Interface
for	.NET,	SignalR	supports	this	out	of	the	box.	OWIN	is	something	to	keep	an	eye	on	and
get	your	hands	dirty	with,	as	this	is	what	will	make	up	the	Microsoft	web	stack	moving
forward,	not	only	for	self-hosting	but	also	for	all	kinds	of	hosts.	It	represents	an
abstraction	that	is	not	linked	to	any	particular	environment	and	makes	it	easier	to	move
between	different	environments.

Let’s	get	started	by	creating	a	new	solution.	This	time,	the	focus	will	be	on	how	to	achieve
the	technical	solution	of	self-hosting	and	not	what	the	solution	does:

1.	 Open	Visual	Studio	and	create	a	new	project	(File	|	New	Project).
2.	 Select	Visual	C#	from	the	left-hand	side	tree	and	then	select	Console	Application.

Name	the	project	Chapter11:

Adding	the	needed	packages
As	in	the	previous	chapters,	we	are	now	going	to	pull	down	a	few	dependencies	from
NuGet:

1.	 Add	a	NuGet	package	reference,	as	described	in	Chapter	1,	The	Primer.
2.	 Right-click	on	References	in	Solution	Explorer	and	select	Manage	NuGet

packages,	and	type	Microsoft.AspNet.SignalR.SelfHost	into	the	Search	panel.
3.	 Select	it	and	then	click	on	Install.

In	addition	to	this,	if	you	want	to	enable	the	self-hosted	server	to	be	available	for	clients
coming	from	other	domains,	you	need	to	pull	down	a	package	called
Microsoft.Owin.Cors;	so	add	this	package	as	well.

Adding	the	code	needed	for	self-hosting
As	mentioned	earlier,	this	chapter	is	not	focusing	on	anything	from	a	user’s	perspective.
So	we’re	just	going	to	create	the	simplest	chat	that	is	there	(no	authentication	nor	chat
rooms	or	anything)—a	chat	that	only	sends	messages.

Let’s	start	off	with	the	server	and	how	we	initialize	it.	We	will	be	needing	a	startup	class,
as	we’ve	seen	in	the	previous	solutions,	but	this	time	around	it	won’t	be	created	by	any
package	that	we	have	pulled	down.	In	the	root	of	the	project,	add	a	C#	class	file	called
Startup.cs.

Add	the	following	by	using	the	statements	at	the	top:

using	Microsoft.AspNet.SignalR;

using	Microsoft.Owin.Cors;

using	Owin;

Then,	make	the	class	implementation	look	as	follows:

public	class	Startup

{

				public	void	Configuration(IAppBuilder	app)

				{

								app.Map("/signalr",	map	=>

								{

												app.UseCors(CorsOptions.AllowAll);

												var	hubConfiguration	=	new	HubConfiguration

												{

																EnableJSONP	=	true

												};

												map.RunSignalR(hubConfiguration);

								});

				}

}

The	first	thing	we	need	to	do	is	to	host	SignalR	at	the	/signalr	route,	which	is	default,
and	we	could	in	fact	have	been	using	the	map.MapSignalR()	method	if	that’s	all	we
wanted	to	achieve.	However,	we	want	to	enable	cross-domain	access	for	our	server.
Although	this	is	not	going	to	be	used	here,	it’s	important	to	decide	if	you	want	to	enable
any	clients	from	any	domain	to	connected	to	your	solution.	The	first	thing	we	do	is	to
enable	it	through	the	.UseCors()	method.	Then,	we	tell	the	hub	configuration	that	allows
JavaScript	clients	to	connect	using	a	technique	called	JSONP.	This	allows	web	browsers	to
do	cross-domain	communication	by	telling	the	server	to	return	JavaScript	code	that	gets
executed	when	the	call	is	done.	One	reason	for	this	approach	is	that	browsers	protect
against	cross-site	scripting	in	order	to	avoid	code	from	other	domains/servers	being	added.
Another	approach	is	that	browsers	include	malicious	scripts	that	could	potentially	take
over	your	solution	or	simply	just	start	recording	keystrokes	or	capture	changes	in	input
fields	on	the	page	and	send	these	back	to	the	attacker.	With	this	technique,	we	are
circumventing	the	mechanism	that	is	protecting	us	by	asking	it	to	return	data	in	the	form

executable	JavaScript.	When	enabling	Cross-Origin	Resource	Sharing	(CORS),	we	tell
SignalR	to	add	HTTP	headers	that	provide	the	browser	and	the	server	a	way	to	request
remote	URLs	when	they	have	the	permission.

Now,	we	need	to	start	a	host	that	will	then	start	the	SignalR	pipeline.	Open	the
Program.cs	file.	Inside	the	main()	method,	place	the	following	code:

using(WebApp.Start<Startup>("http://localhost:8181"))

{

				Console.WriteLine("Server	running	at	http://localhost:8181/");

				Console.ReadLine();

}

This	is	all	that’s	needed	to	get	a	SignalR	server	hosted;	all	we	now	need	is	a	hub	that	will
expose	the	logic	we	want	exposed.

Add	a	new	class	called	ChatHub.cs	to	the	root	of	the	project.	Make	sure	you	have	the
following	using	statements	at	the	top:

using	System;

using	Microsoft.AspNet.SignalR;

Make	the	class	look	as	follows:

public	class	ChatHub	:	Hub

{

				public	void	SendMessage(string	message)

				{

								Console.WriteLine("Connection	{0}	:	{1}",Context.ConnectionId,	

message);

								Clients.AllExcept(Context.ConnectionId).messageReceived(message);

				}

}

All	we	do	is	expose	a	SendMessage()	method	that	can	be	called	by	any	client	and	it	then
just	sends	out	that	message	to	the	console	and	to	other	connected	clients.

Tip
Notice	the	.AllExcept()	method	call.	This	is	really	handy	if	you	want	to	send	a	message
to	all	the	connected	clients,	except	for	one	or	more	clients.	This	method	takes	a	parameter
list	of	connection	identifiers.	In	this	particular	case,	we	don’t	want	to	send	the	message
back	to	the	sender,	we	just	want	to	get	the	incoming	connection	identifier	from	the
Context	property.

The	client
This	was	all	for	the	server.	We’re	now	going	to	need	a	client	that	can	connect	and	send
messages	and	also	receive	messages	from	other	connected	clients.	Let’s	add	a	second
project	to	the	solution:

1.	 Right-click	on	the	solution	in	Solution	Explorer	and	navigate	to	Add	|	New	Project:

2.	 Select	Visual	C#	from	the	left-hand	side	tree	and	then	select	Console	Application.
Name	the	project	Chapter11.Client:

Again,	we	will	be	needing	something	from	good	old	NuGet.	Add	a	reference	to	a	package
called	Microsoft.AspNet.SignalR.Client.	Open	up	the	Program.cs	file	in	the	client
project.	Put	the	following	code	inside	the	Main()	method:

var	hubConnection	=	new	HubConnection("http://localhost:8181");

var	hubProxy	=	hubConnection.CreateHubProxy("ChatHub");

hubProxy.On("messageReceived",	(string	message)	=>

{

				Console.WriteLine(message);

});

hubConnection.Start().ContinueWith(t=>Console.WriteLine("Connected")).Wait(

);

												

for	(;	;)

{

				var	line	=	Console.ReadLine();

				if	(line	==	"q")

				{

								break;

				}

				hubProxy.Invoke("SendMessage",	line);

}

As	we	saw	earlier,	with	both	the	Windows	Phone	client	libraries	and	the	Xamarin	ones,	we
create	HubConnection	and	HubProxy.	The	API	is	exactly	the	same,	making	it	very

consistent	to	work	with	and	easy	to	reuse	knowledge.

Running	both,	and	typing	Hello	and	hitting	the	Enter	key	should	yield	a	server	to	look	as
follows:

Also,	the	client	should	look	as	follows:

Summary
Hosting	any	web	solution	in	your	own	process	can	be	very	useful	in	many	scenarios.	For
instance,	let’s	say	you	have	a	legacy	Windows	app	and	you	are	in	the	process	of	building	a
web	version	of	it,	but	you	want	to	explore	new	features	in	the	old	app	before	releasing	the
new	one.	Hosting	these	parts	on	your	own	using	OWIN	can	then	be	useful.	With	the
information	in	this	chapter,	you	should	be	well	on	your	way	to	do	just	that	and	have
SignalR	be	your	transport	for	communication.

Although	SignalR	is	very	technical	in	its	nature,	and	there	are	a	lot	of	interesting	things	it
does	technically.	In	my	opinion,	it	is,	first	and	foremost,	a	tool	to	increase	the	user
experience.	Users	today	are	expecting	more	from	our	systems;	they’ve	grown	accustomed
to	a	certain	experience	they	find	in	solutions	such	as	Facebook	and	Twitter,	wherein	things
are	delivered	almost	instantly	to	them.	Through	the	advances	in	the	mobile	space,	our
users	have	raised	the	bar	in	terms	of	expectations	in	general.	This	is	something	that	even
the	line	of	business	apps	should	do	their	best	to	accommodate.	SignalR	is	not	the	only
implementation	out	there.

For	platforms	other	than	.NET,	there	are	other	options	as	well.	For	the	.NET	space,
SignalR	is	the	most	well-known	and	popular	one.	In	fact,	I	personally	have	yet	to	learn
about	any	other	solution	(not	that	I	have	looked	under	every	rock	that	is	there).	The	point
is	that	I	digress	what	SignalR	does,	to	take	away	all	the	nitty-gritty	details	of	how	to	keep
a	persistent	connection	between	the	client	and	the	server,	leaving	you	as	a	developer	to
think	about	the	important	things—delivering	business	value.	SignalR	gives	us	the
potential	to	not	think	about	a	few	technical	concepts	that	we	tend	to	spend	time	on—
concurrency	and	staleness.	Especially,	if	we	break	things	down	into	the	smallest	problem
and	are	able	to	represent	this	in	a	message	or	a	command,	we	can	really	start	focusing	on
the	business	value	and	our	core	domain.	The	concepts	behind	SignalR	are	the	most
important	things	to	take	away	from	SignalR:	the	messaging,	the	decoupling	of	your
software,	and	how	you	can	think	differently	about	the	technical	problems	we	tend	to
impose	on	our	system,	such	as	concurrency	and	staleness.	SignalR	really	proves	that	it	is
possible	to	take	these	things	out	of	the	equation,	enabling	us	to	write	better,	more
responsive,	and	more	user-friendly	applications	today.	By	default,	my	position	today	is	to
use	SignalR	no	matter	what—I	see	no	point	in	not	using	it.	In	fact,	I	use	it	for	all	the
communication	going	back	and	forth	with	the	server.	Due	to	its	nature,	it	feels	more
responsive,	and	I	get	new	opportunities	that	I	didn’t	have	before.

“RealTime”	applications	are	a	different	ballgame,	and	it’s	about	recognizing	this	rather
than	the	technical	aspect	of	it.	I	really	hope	you’ve	enjoyed	this	book	and	that	it	has
helped	in	opening	the	door	to	this	ballgame.

Index
A

AngularJS
about	/	The	single	page	application,	The	“code-behind”

ASP.NET	MVC	5
about	/	ASP.NET	MVC	5

authentication
about	/	Authentication

Authorize
about	/	Securing	the	hub

B
backplane

about	/	Creating	our	own	backplane
Bifrost

about	/	Setting	up	the	packages,	MVVM
URL	/	Observables,	MVVM

C
Charles

URL	/	Looking	under	the	cover	with	Fiddler
about	/	Looking	under	the	cover	with	Fiddler

chat
about	/	The	chat

chat	application
defining	/	Where	are	we	going?,	Moving	up	a	level

chat	rooms
about	/	Our	chat	rooms

client
defining	/	Fast	forwarding,	The	client

code	signing
about	/	Code	signing

Common	Language	Runtime	(CLR)
about	/	Getting	started

communication
defining	/	Digging	deeper	into	the	communication

composition
about	/	The	composition

connections
preparing	for	/	Preparing	for	connections

Cross-Origin	Resource	Sharing	(CORS)
about	/	Adding	the	code	needed	for	self-hosting

cross	platform
about	/	Cross	platform

D
DataContext

about	/	Login
decoupling

about	/	Decoupling,	Decoupling	it	all
Dependency	Inversion	Principle

about	/	The	“code-behind”,	The	Dependency	Inversion	Principle
using	/	Decoupling	–	the	next	level

desktop
building	for	/	Building	for	the	desktop

Document	Object	Model	(DOM)
about	/	jQuery

DotGNU
about	/	Cross	platform

E
emulator

URL	/	Getting	started
extension	methods

creating	/	Hooking	it	all	up

F
Fiddler

defining	/	Looking	under	the	cover	with	Fiddler
final	puzzle	piece

defining	/	The	great	finale
Fody

about	/	Observables

H
HTTP	handler	config

about	/	HTTP	handler	config
Hub

about	/	Moving	up	a	level
hub

securing	/	Securing	the	hub
hub	proxy

about	/	The	hub	proxy

I
IIS7

about	/	Putting	the	infrastructure	in	place
Inversion	of	Control	(IoC)

about	/	The	“code-behind”,	The	Dependency	Inversion	Principle
IoC	(Inversion	of	Control)

about	/	Decoupling	–	the	next	level

J
jQuery

about	/	jQuery
JSONP

about	/	Adding	the	code	needed	for	self-hosting

L
life	cycle	events

about	/	Life	cycle	events
logging

about	/	Logging
on	server	side	/	Logging	on	the	server	side
in	JavaScript	client	/	Logging	in	the	JavaScript	client
in	.NET	client	/	Logging	in	the	.NET	client
from	Xamarin	client	/	Logging	from	the	Xamarin	client

M
Mac

using	/	Getting	started
Mac,	in	cloud

URL	/	Getting	started
Martin	Fowlers

URL	/	Decoupling	it	all
Martin	Fowlers	presentation	model

URL	/	Decoupling	it	all
messages

defining,	in	SignalR	/	It’s	all	about	messages	in	SignalR
messages,	in	SignalR

scaling	out,	with	SQL	Server	/	Scaling	out	with	SQL	Server
scaling	out,	with	Redis	/	Scaling	out	with	Redis
scaling	out,	with	Azure	/	Scaling	out	with	Azure
backplane,	creating	/	Creating	our	own	backplane

messaging
about	/	Messaging

Model	View	Controller	(MVC)
URL	/	Model	View	Controller
about	/	Model	View	Controller,	Decoupling	it	all

Model	View	ViewModel	(MVVM)
URL	/	Model	View	ViewModel
about	/	Model	View	ViewModel,	Decoupling	it	all,	Decoupling	it	all

Model	View	Whatever	(MVW)
about	/	Decoupling	it	all

MonoDevelop
about	/	Cross	platform

MonoDroid
about	/	Cross	platform

MonoTouch
about	/	Cross	platform

Moonlight
about	/	Cross	platform

multiplayer	games
playing	/	Completing	the	circle

MVVM
about	/	MVVM
Messenger	/	Messenger
DelegateCommand	/	DelegateCommand
security	/	Security
ChatHub	/	ChatHub
login	screen	/	Login

ChatRooms	/	ChatRooms
chat	/	Chat

N
network	traffic

analyzing	/	Under	the	cover,	inside	the	browser
Ninject

about	/	Decoupling	–	the	next	level,	Setting	up	the	packages,	Adding	a	login
view

NServiceBus
about	/	Creating	our	own	backplane

NuGet
URL	/	NuGet

O
observables

about	/	Observables
Open	Web	Interface	for	.NET

about	/	Self-hosting
Open	Web	Interface	for	.NET	(OWIN)

about	/	Getting	started	with	the	server-side

P
packages

setting	up	/	Setting	up	the	packages,	Setting	up	the	packages
about	/	Packages

patterns
about	/	Patterns
URL	/	Patterns
Model	View	Controller	(MVC)	pattern	/	Model	View	Controller
Model	View	ViewModel	(MVVM)	/	Model	View	ViewModel

PCL	(Portable	Class	Library)
about	/	DelegateCommand

performance	counters
about	/	Performance	counters

persistent	connections
defining	/	Persistent	connections	–	what	are	they?

principles	and	patterns
URL	/	Decoupling

project
creating	/	Getting	the	project	ready
code,	defining	/	The	“code-behind”

PropertyChanged
about	/	Observables

proxies
about	/	Proxies

publish/subscribe
about	/	Publish/subscribe

R
RabbitMQ	support

creating	/	Creating	our	own	backplane
Redis

about	/	Scaling	out	with	Redis
URL	/	Scaling	out	with	Redis

Remote	Procedure	Call	(RPC)
about	/	Moving	up	a	level

S
scope

about	/	The	single	page	application
security

defining	/	Locking	things	down
adding	/	Adding	security
support,	adding	for	cookies	/	Adding	support	for	cookies
helper,	binding	/	Binding	helper
client	security	service,	creating	/	Creating	a	client	security	service
login	view,	adding	/	Adding	a	login	view

self-hosting
about	/	Self-hosting
packages,	adding	/	Adding	the	needed	packages
code,	adding	for	/	Adding	the	code	needed	for	self-hosting
client	/	The	client

separation
about	/	Separation

server
defining	/	Fast	forwarding

server-side
defining	/	Getting	started	with	the	server-side
dots,	connecting	/	Connecting	the	dots
UI,	creating	/	Making	the	UI	light	up

SignalR
defining	/	SignalR,	It’s	all	about	messages	in	SignalR
messages,	defining	/	It’s	all	about	messages	in	SignalR

single	page	application
about	/	The	single	page	application

Single	Responsibility	Principle
about	/	Decoupling
using	/	Decoupling	–	the	next	level

singletons
about	/	Composing	the	UI

SOLID
about	/	Decoupling

SOLID,	in	programming
URL	/	The	Dependency	Inversion	Principle

sources,	logging
defining	/	Logging	on	the	server	side

specific	groups
obtaining	/	Getting	specific	with	groups

stateful
defining	/	Becoming	stateful

client	/	The	client
lifetime	event	handlers	/	Lifetime	event	handlers	and	more

Strict	Contextual	Escaping	(SCE)
about	/	Composing	the	UI

T
terminal

about	/	The	terminal
tools

about	/	Tools
Visual	Studio	2013	/	Visual	Studio	2013
NuGet	/	NuGet

Twitter	Bootstrap
URL	/	Twitter	Bootstrap

U
UI

composing	/	Composing	the	UI

W
web	application

building,	from	HTML	files	/	Putting	the	infrastructure	in	place
Web	project

setting	/	The	result
Windows	Presentation	Foundation	(WPF)

about	/	Cross	platform

X
Xamarin	Forms

about	/	Getting	started
URL	/	Getting	started

Xamarin	Studio
about	/	Cross	platform

	SignalR – Real-time Application Development Second Edition
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	The emperor's new clothes
	The good old terminal
	X Server
	Remote desktop
	Rich clients
	The Web
	Full duplex on the Web
	Events
	Comet
	Hand-rolling it all
	Why?
	Now what?
	Think different
	Personal style
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. The Primer
	Where are we coming from?
	The terminal
	Fast forwarding
	Completing the circle
	SignalR
	Terminology
	Messaging
	Publish/subscribe
	Decoupling
	Patterns
	Model View Controller
	Model View ViewModel
	Libraries and frameworks
	jQuery
	ASP.NET MVC 5
	AngularJS
	Twitter Bootstrap
	Tools
	Visual Studio 2013
	NuGet
	Summary
	2. Persistent Connections
	Persistent connections – what are they?
	Where are we going?
	Getting the project ready
	Setting up the packages
	The single page application
	The "code-behind"
	Getting started with the server-side
	Connecting the dots
	Making the UI light up
	Summary
	3. Hubs
	Moving up a level
	The client
	Decoupling it all
	The Dependency Inversion Principle
	Proxies
	Life cycle events
	Separation
	Summary
	4. Groups
	Getting specific with groups
	Composing the UI
	Summary
	5. State
	Becoming stateful
	The client
	Lifetime event handlers and more
	Summary
	6. Security
	Locking things down
	Putting the infrastructure in place
	HTTP handler config
	Authentication
	Securing the hub
	The great finale
	Summary
	7. Scaling Out
	It's all about messages in SignalR
	Scaling out with SQL Server
	Scaling out with Redis
	Scaling out with Azure
	Creating our own backplane
	Hooking it all up
	Summary
	8. Building a WPF .NET Client
	Decoupling it all
	Decoupling – the next level
	Building for the desktop
	Setting up the packages
	Observables
	Adding security
	Adding support for cookies
	Binding helper
	Creating a client security service
	Adding a login view
	The hub proxy
	Our chat rooms
	The chat
	The composition
	Summary
	9. Write Once, Deploy Many
	Cross platform
	Getting started
	Code signing
	Preparing for connections
	Packages
	MVVM
	Messenger
	DelegateCommand
	Security
	ChatHub
	Login
	ChatRooms
	Chat
	The result
	Summary
	10. Monitoring
	Logging
	Logging on the server side
	Logging in the JavaScript client
	Logging in the .NET client
	Logging from the Xamarin client
	Digging deeper into the communication
	Looking under the cover with Fiddler
	Performance counters
	Under the cover, inside the browser
	Summary
	11. Hosting a Server Using Self-hosted OWIN
	Self-hosting
	Adding the needed packages
	Adding the code needed for self-hosting
	The client
	Summary
	Index

