

Spring	Boot	Cookbook

Table	of	Contents

Spring	Boot	Cookbook

Credits

About	the	Author

Acknowledgment

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	Subscribe?

Free	Access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Getting	Started	with	Spring	Boot

Introduction

Using	a	Spring	Boot	template	and	starters

How	to	do	it…

How	it	works…

Creating	a	simple	application

How	to	do	it…

How	it	works…

Launching	an	application	using	Gradle

How	to	do	it…

How	it	works…

Using	the	command-line	runners

How	to	do	it…

How	it	works…

Setting	up	a	database	connection

Getting	ready

How	to	do	it…

How	it	works…

Setting	up	a	data	repository	service

How	to	do	it…

How	it	works…

Scheduling	executors

Getting	ready

How	to	do	it…

How	it	works…

2.	Configuring	Web	Applications

Creating	a	basic	RESTful	application

How	to	do	it…

How	it	works…

Creating	a	Spring	Data	REST	service

How	to	do	it…

How	it	works…

Configuring	custom	servlet	filters

How	to	do	it…

How	it	works…

Configuring	custom	interceptors

How	to	do	it…

How	it	works…

Configuring	custom	HttpMessageConverters

How	to	do	it…

How	it	works…

Configuring	custom	PropertyEditors

How	to	do	it…

How	it	works…

Configuring	custom	type	Formatters

How	to	do	it…

How	it	works…

3.	Web	Framework	Behavior	Tuning

Introduction

Configuring	route	matching	patterns

How	to	do	it…

How	it	works…

Configuring	custom	static	path	mappings

How	to	do	it…

How	it	works…

Tuning	Tomcat	via	EmbeddedServletContainerCustomizer

How	to	do	it…

How	it	works…

Choosing	embedded	servlet	containers

How	to	do	it…

How	it	works…

Adding	custom	connectors

Getting	ready

How	to	do	it…

How	it	works…

4.	Writing	Custom	Spring	Boot	Starters

Introduction

Understanding	Spring	Boot	autoconfiguration

How	to	do	it…

How	it	works…

Creating	a	custom	Spring	Boot	autoconfiguration	starter

How	to	do	it…

How	it	works…

Configuring	custom	conditional	bean	instantiations

How	to	do	it…

How	it	works…

Using	custom	@Enable*	annotations	to	toggle	configurations

How	to	do	it…

How	it	works…

5.	Application	Testing

Introduction

Creating	tests	for	Spring	MVC	Controllers

How	to	do	it…

How	it	works…

Automatically	configuring	the	database	schema	and	populating	it	with	data

How	to	do	it…

How	it	works…

Initializing	the	database	with	Spring	JPA	and	Hibernate

Initializing	the	database	with	Spring	JDBC

Creating	tests	using	in-memory	database	with	data	fixtures

How	to	do	it…

How	it	works…

Creating	tests	using	Mockito	to	mock	DB

How	to	do	it…

How	it	works…

Writing	tests	using	Cucumber

How	to	do	it…

How	it	works…

Writing	tests	using	Spock

How	to	do	it…

How	it	works…

6.	Application	Packaging	and	Deployment

Introduction

Creating	a	Spring	Boot	executable	JAR

How	to	do	it…

How	it	works…

Creating	Docker	images

How	to	do	it…

How	it	works…

Building	self-executing	binaries

Getting	ready

How	to	do	it…

How	it	works…

Spring	Boot	environment	config	hierarchy	and	precedence

How	to	do	it…

How	it	works…

Externalizing	environmental	config	using	property	files

How	to	do	it…

How	it	works…

Externalizing	environmental	config	using	environment	variables

How	to	do	it…

How	it	works…

Externalizing	environmental	config	using	Java	system	properties

How	to	do	it…

How	it	works…

Setting	up	Consul

How	to	do	it…

How	it	works…

Externalizing	environmental	config	using	Consul	and	envconsul

Getting	ready

How	to	do	it…

How	it	works…

7.	Health	Monitoring	and	Data	Visualization

Introduction

Writing	custom	health	indicators

How	to	do	it…

How	it	works…

Emitting	metrics

Getting	ready

How	to	do	it…

How	it	works…

Monitoring	Spring	Boot	via	JMX

Getting	ready

How	to	do	it…

How	it	works…

Management	of	Spring	Boot	via	CRaSH	and	writing	custom	remote	shell	commands

How	to	do	it…

How	it	works…

Integrating	Codahale/Dropwizard	metrics	with	Graphite

Getting	ready

How	to	do	it…

How	it	works…

Integrating	Codahale/Dropwizard	metrics	with	Dashing

Getting	ready

How	to	do	it…

How	it	works…

Index

Spring	Boot	Cookbook

Spring	Boot	Cookbook
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	September	2015

Production	reference:	1240915

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78528-415-1

www.packtpub.com

http://www.packtpub.com

Credits
Author

Alex	Antonov

Reviewers

Theo	Pack

Eric	Pirard

Geoffroy	Warin

Ricky	Yim

Commissioning	Editor

Dipali	Goankar

Acquisition	Editor

Sonali	Vernekar

Content	Development	Editor

Shweta	Pant

Technical	Editor

Bharat	Patil

Copy	Editor

Tasneem	Fatehi

Project	Coordinator

Shipra	Chawhan

Proofreader

Safis	Editing

Indexer

Monica	Ajmera	Mehta

Production	Coordinator

Arvindkumar	Gupta

Cover	Work

Arvindkumar	Gupta

About	the	Author
Alex	Antonov	is	a	very	passionate	technologist	with	a	hunger	to	learn	new	tools,
languages,	techniques,	and	concepts	behind	enterprise	application	design.	His	specialty
lies	in	designing	highly	scalable	distributed	large-scale	enterprise	systems,	which	he	has
been	successfully	doing	for	the	last	12	years.	He	is	also	a	frequent	presenter	on	the	topics
of	architecture	and	design	at	conferences	such	as	UberConf,	JavaOne,	and	Spring	2GX.

Alex	joined	Orbitz	Worldwide	in	2004,	and	in	his	current	role	of	Senior	Principal
Engineer,	he	is	responsible	for	providing	technical	leadership	and	guidance	in	the
development	of	foundational	technologies,	core	libraries,	and	APIs	for	enterprise-wide
use,	as	well	as	establishing	and	maintaining	common	design	principles	and	standards	used
within	the	company	and	integration	of	new	software	development	practices	within	the
development	community.	He	has	extensive	experience	in	enterprise	architecture	designing
distributed	systems,	and	spends	a	lot	of	time	doing	object	domain	modeling	and	focusing
on	domain-driven	design	and	behavior-driven	development	and	testing.	Prior	to	that,	Alex
was	a	lead	engineer	in	the	same	team	that	was	responsible	for	web	application	frameworks
and	developing	common	practices	and	additional	functionality	on	top	of	Spring	MVC	and
Webflow.

He	has	been	a	long-time	Spring	user,	starting	with	Spring	2.0.8	and	all	the	way	to	the
latest	and	greatest—Spring	Boot.	Ever	since	the	introduction	of	Spring	Boot,	he	has	been
writing	applications	using	the	framework	as	well	as	contributing	patches	to	the	codebase.
His	general	interests	lie	in	the	area	of	distributed	computing	and	technologies	and
frameworks	that	enable	ease	of	application	creation	and	cross	communication.	Besides
Java,	he	is	also	proficient	in	Ruby/Rails,	PHP,	Groovy	and	is	currently	learning	Erlang.

Alex	is	a	graduate	of	Loyola	University	of	Chicago,	with	a	BS	in	computer	science	and	an
MS	in	computer	science	specializing	in	software	architecture.	He	currently	resides	in
Evanston,	IL.	When	not	coding,	Alex	enjoys	playing	tennis,	hiking,	skiing,	and	traveling.

Acknowledgment
I	would	like	to	thank	all	the	people	who	have	inspired,	supported,	and	encouraged	me
through	the	book	writing	process.	For	me,	this	book	represents	the	ability	to	take	my
passion	to	build	software,	my	appreciation	of	the	Spring	family	of	frameworks	and	the
amazing	work	that	was	done	by	their	creators,	combine	it	with	many	years	of	my	first-
hand	experience	building	complex	applications	and	share	all	the	thoughts	and	best
practices,	which	I’ve	developed	over	time	and	always	wanted	to	share,	with	the
community,	to	help	them	build	better,	more	elegant,	robust,	and	performant	applications.

I	want	to	specially	thank	my	wife,	Alla,	for	constantly	being	there	for	me,	for	supporting
me	in	writing	this	book,	for	being	understanding	when	I	spent	countless	evenings	and
weekends	working	on	the	chapters,	for	giving	me	an	extra	push	to	the	finish	line,	when	I
was	close	to	being	done	and	for	just	being	there	for	me!	Honey,	I	love	you	very	much!!!

A	special	thank	you	goes	to	my	parents,	for	giving	me	the	opportunity	to	pursue	my	carrier
dreams,	for	the	education,	and	raising	me	to	become	the	person	I	am.	All	your	hard	work
is	now	paying	off,	and	I	would	not	be	able	to	achieve	what	I	had,	and	write	this	book,	if	it
weren’t	for	you.	I	love	you	guys	a	lot,	and	while	you	are	around,	I	can	still	be	a	child.

About	the	Reviewers
Theo	Pack	is	a	software	engineer	with	several	years	of	experience	in	developing	frontend
and	backend	applications.	He	completed	his	M.Sc.	and	has	been	working	at	Cologne
Intelligence	GmbH,	a	consulting	company	in	Germany,	since	2009.

Theo	is	passionate	about	technology	and	likes	to	master	new	programming	languages.

You	can	read	his	blog	at	http://furikuri.github.io	or	follow	him	on	Twitter	at	@furikuri.

Eric	Pirard	is	a	Java	developer	from	the	past	few	years.	He	is	interested	in	the	new
technologies	that	help	developers	in	their	jobs	to	satisfy	the	customer’s	requirements	as
quick	as	possible.	He	also	likes	to	help	his	friends	or	colleagues	in	solving	their	problems
and	progressing	in	their	projects	if	he	can.

As	there	are	a	lot	of	things	to	do	in	addition	to	his	exciting	job,	if	technology	can	help	to
solve	customers	problems	as	soon	as	possible,	he	is	very	interested.	In	this	way,	he	has
more	time	to	spend	with	his	family,	enjoying	sports,	travelling,	in	short,	enjoying	life.

Geoffroy	Warin	has	been	programming	since	he	was	10.	He	is	a	firm	believer	in	the
software	craftsmanship	movement	and	open	source	initiatives.	A	developer	by	choice	and
conviction,	he	has	been	working	on	the	conception	of	enterprise-level	web	applications	in
Java	and	JavaScript	throughout	the	course	of	his	career.

He	also	teaches	courses	on	Java	web	stacks	and	is	a	Groovy	and	Spring	enthusiast.

You	can	read	more	about	him	on	his	blog	at	http://geowarin.github.io	and	on	Twitter	at
@geowarin.

Ricky	Yim	is	a	passionate	software	engineer	who	has	over	15	years	of	industry
experience.	He	is	a	firm	believer	in	using	test-driven	and	behavior-driven	development
and	agile	practices	to	solve	problems.	He	takes	a	flexible	approach	to	software	delivery
and	applies	innovative	solutions.	He	is	currently	the	Delivery	Manager	for	DiUS,	an
Australian	technology	services	organization,	http://www.dius.com.au.

You	can	find	out	more	about	him	at	http://codingricky.com,	and	you	can	follow	him	on
GitHub	at	http://github.com/codingricky	and	on	Twitter	at	@codingricky.	He	is	also	an
avid	runner	and	you	can	read	about	his	adventures	here	at	http://runningricky.com.

http://furikuri.github.io
http://geowarin.github.io
http://www.dius.com.au
http://codingricky.com
http://github.com/codingricky
http://runningricky.com

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	read	Packt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	Subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	Access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

http://www.PacktPub.com

Preface
Spring	Boot	gives	you	the	ability	to	create	modern	enterprise	applications	using	a
convention-over-configuration	design	principle	and	building	on	the	power	and	flexibility
of	the	underlying	Spring	Framework	and	its	various	components.

This	book	will	help	readers	to	create	different	types	of	Spring	Boot	applications,
understand	how	to	configure	their	behavior,	and	write	and	add	custom	components.	They
will	obtain	knowledge	in	how	to	be	more	efficient	in	testing,	deploying,	and	monitoring
their	applications,	which	will	help	them	through	all	the	stages	of	the	Software
Development	Life	Cycle.	By	the	end	of	the	book,	readers	will	have	gained	the	skills	and
expertise	to	deploy	and	develop	applications	using	Spring	Boot.

What	this	book	covers
Chapter	1,	Getting	Started	with	Spring	Boot,	provides	you	with	an	overview	of	the
important	and	useful	Spring	Boot	starters	that	are	included	in	the	framework.	You	will
learn	how	to	use	the	http://spring.io/	resources,	how	to	get	started	with	a	simple	project,
configure	the	build	file	to	contain	your	desired	starters,	and	finish	by	creating	a	simple
command-line	application	configured	to	execute	some	scheduled	tasks.

Chapter	2,	Configuring	Web	Application,	provides	you	with	examples	of	how	to	create	and
add	the	custom	ServletFilters,	Interceptors,	Converters,	Formatters	and	PropertyEditors	to
a	Spring	Boot	web	application.	It	will	start	by	creating	a	new	web	application	and	proceed
to	use	it	as	a	base	to	customize	with	the	above	mentioned	components.

Chapter	3,	Web	Framework	Behavior	Tuning,	delves	into	fine-tuning	the	behavior	of	a
web	application.	It	will	cover	configuring	the	custom	routing	rules	and	patterns,	adding
additional	static	asset	paths,	and	adding	and	modifying	the	servlet	container	connectors
and	other	properties	such	as	enabling	SSL.

Chapter	4,	Writing	Custom	Spring	Boot	Starters,	shows	you	how	to	create	custom	Spring
Boot	Starters	in	order	to	provide	additional	behaviors	and	functionalities	that	might	be
required	for	complex	enterprise	applications.	You	will	learn	about	the	inner	workings	of
the	autoconfiguration	mechanics	and	how	to	use	them	to	selectively	enable/disable	default
functionalities	and	conditionally	load	your	own.

Chapter	5,	Application	Testing,	explores	the	different	techniques	to	test	Spring	Boot
applications.	It	starts	by	introducing	you	to	the	testing	of	MVC	applications,	then	proceeds
with	some	tips	on	how	to	use	the	in-memory	database	with	prepopulated	data	in	order	to
mimic	the	real	DB	interactions	during	tests,	and	concludes	with	examples	of	behavior-
driven	development	via	testing	tools	such	as	Cucumber	and	Spock.

Chapter	6,	Application	Packaging	and	Deployment,	shows	you	how	every	written
application	needs	to	be	deployed.	You	will	see	examples	of	configuring	their	build	to
produce	Docker	images	and	self-executing	binary	files	for	the	Linux/OSX	environments.
It	will	explore	the	options	to	configure	the	external	applications	using	Consul	and	delve
into	the	details	of	the	Spring	Boot	environment	and	configuration	functionalities.

Chapter	7,	Health	Monitoring	and	Data	Visualization,	explores	the	various	mechanisms
that	Spring	Boot	provides	to	help	us	see	the	data	about	our	application’s	health.	It	will	start
by	showing	you	how	to	write	and	expose	the	custom	health	metrics	and	see	the	data	using
the	http	endpoints	and	JMX.	It	will	then	proceed	with	the	overview	and	creation	of	the
management	commands	for	CRaSH	and	finish	with	the	integration	of	the	monitoring	data
with	Graphite	and	Dashing	using	the	Codahale/Dropwizard	Metrics	framework.

http://spring.io/

What	you	need	for	this	book
For	this	book,	you	need	JDK	1.8	installed	in	your	favorite	operating	system:	Linux,
Windows,	or	OS	X.

The	rest	of	the	software	such	as	the	Gradle	build	tool,	all	the	necessary	Java	libraries	such
as	Spring	Boot	and	Spring	Framework,	and	their	dependencies	as	well	as	Docker,	Consul,
Graphite,	Grafana,	and	Dashing	will	all	be	installed	through	the	recipes	in	this	book.

Who	this	book	is	for
This	book	is	targeted	at	the	Java	developers	who	have	a	good	knowledge	level	and	an
understanding	of	the	Spring	and	Java	application	development,	are	familiar	with	the
notions	of	Software	Development	Life	Cycle	(SDLC),	and	understand	the	need	for
different	kinds	of	testing	strategies,	general	monitoring,	and	deployment	concerns.	This
book	is	for	those	who	want	to	learn	efficient	Spring	Boot	development	techniques,
integration,	and	extension	capabilities	in	order	to	make	the	existing	development	process
more	efficient.

Conventions
In	this	book,	you	will	find	a	number	of	styles	of	text	that	distinguish	between	the	different
kinds	of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,
pathnames,	dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	“We	can
include	other	contexts	through	the	use	of	the	include	directive.”

A	block	of	code	is	set	as	follows:

public	class	StartupRunner	implements	CommandLineRunner	{

		protected	final	Log	logger	=	LogFactory.getLog(getClass());

		@Autowired

		private	DataSourceds;

		@Override

		public	void	run(String…	args)	throws	Exception	{

				logger.info("DataSource:	"+ds.toString());

		}

}

Any	command-line	input	or	output	is	written	as	follows:

spring.datasource.driver-class-name:	com.mysql.jdbc.Driver

spring.datasource.url:	jdbc:mysql://localhost:3306/springbootcookbook

spring.datasource.username:	root

spring.datasource.password:

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	in
menus	or	dialog	boxes	for	example,	appear	in	the	text	like	this:	”	Clicking	on	Generate
Project	will	download	a	premade	project	skeleton	for	us	to	start	with.”.

Note
Warnings	or	important	notes	appear	in	a	box	like	this.

Tip
Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	may	have	disliked.	Reader	feedback	is	important	for	us	to
develop	titles	that	you	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	send	an	e-mail	to	<feedback@packtpub.com>,	and
mention	the	book	title	via	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	on	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	would	report	this	to	us.	By	doing	so,	you	can	save
other	readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If
you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-
errata,	selecting	your	book,	clicking	on	the	errata	submission	form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	on	our	website,	or	added	to	any	list	of	existing	errata,	under	the
Errata	section	of	that	title.	Any	existing	errata	can	be	viewed	by	selecting	your	title	from
http://www.packtpub.com/support.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Piracy
Piracy	of	copyright	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works,	in	any	form,	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors,	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
You	can	contact	us	at	<questions@packtpub.com>	if	you	are	having	a	problem	with	any
aspect	of	the	book,	and	we	will	do	our	best	to	address	it.

mailto:questions@packtpub.com

Chapter	1.	Getting	Started	with	Spring
Boot
Spring	Boot	has	a	lot	of	starters	that	are	already	a	part	of	the	Spring	Boot	family.	This
chapter	will	provide	you	with	an	overview	of	http://start.spring.io/,	available	components
provided	by	Spring	Boot,	and	will	also	show	you	how	to	make	a	project	Bootiful,	as	Josh
Long	likes	to	call	it.

In	this	chapter,	we	will	learn	about	the	following	topics:

Using	a	Spring	Boot	template	and	starter
Creating	a	simple	application
Launching	an	application	using	Gradle
Using	the	command-line	runners
Setting	up	a	database	connection
Setting	up	a	data	repository	service
Scheduling	executors

http://start.spring.io/

Introduction
In	a	fast-paced	world	of	today’s	software	development,	the	speed	of	an	application
creation	and	the	need	for	rapid	prototyping	are	becoming	more	and	more	important.	If	you
are	developing	a	software	using	a	JVM	language,	Spring	Boot	is	exactly	the	kind	of
framework	that	will	give	you	the	power	combined	with	the	flexibility	that	will	enable	you
to	produce	high-quality	software	at	a	rapid	pace.	So,	let’s	take	a	look	at	how	Spring	Boot
can	help	you	to	make	your	application	Bootiful.

Using	a	Spring	Boot	template	and	starters
Spring	Boot	comes	with	over	40	different	starter	modules,	which	provide	ready-to-use
integration	libraries	for	many	different	frameworks,	such	as	database	connections	that	are
both	relational	and	NoSQL,	web	services,	social	network	integration,	monitoring	libraries,
logging,	template	rendering,	and	the	list	just	keeps	going.	While	it	is	not	practically
feasible	to	cover	every	single	one	of	these	components,	we	will	go	over	the	important	and
popular	ones	in	order	to	get	an	idea	of	the	realm	of	possibilities	and	the	ease	of	application
development	that	Spring	Boot	provides	us	with.

How	to	do	it…
We	will	start	with	creating	a	basic	simple	project	skeleton	and	Spring	Boot	will	help	us	in
this:

1.	 Let’s	head	over	to	http://start.spring.io.
2.	 Fill	out	a	simple	form	with	the	details	about	our	project.
3.	 Clicking	on	Generate	Project	will	download	a	premade	project	skeleton	for	us	to

start	with.

http://start.spring.io

How	it	works…
You	will	see	the	Project	Dependencies	section,	where	we	can	choose	the	kind	of
functionalities	that	our	application	will	perform:	will	it	connect	to	a	database,	will	it	have
a	web	interface,	do	we	plan	to	integrate	with	any	of	the	social	networks,	provide	runtime
operational	support	capabilities,	and	so	on.	By	selecting	the	desired	technologies,	the
appropriate	starter	libraries	will	be	added	automatically	to	the	dependency	list	of	our
pregenerated	project	template.

Before	we	proceed	with	the	generation	of	our	project,	let’s	go	over	exactly	what	a	Spring
Boot	starter	is	and	the	benefits	it	provides	us	with.

Spring	Boot	aims	to	simplify	the	process	of	getting	started	with	an	application	creation.
Spring	Boot	starters	are	bootstrap	libraries	that	contain	a	collection	of	all	the	relevant
transitive	dependencies	that	are	needed	to	start	a	particular	functionality.	Each	starter	has	a
special	file,	which	contains	the	list	of	all	the	provided	dependencies—spring.provides.
Let’s	take	a	look	at	the	following	link	for	a	spring-boot-starter-test	definition	as	an
example:

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-starters/spring-
boot-starter-test/src/main/resources/META-INF/spring.provides

Here	we	will	see	the	following:

provides:	spring-test,	spring-boot,	junit,	mockito,	hamcrest-library

This	tells	us	that	by	including	spring-boot-starter-test	in	our	build	as	a	dependency,
we	will	automatically	get	spring-test,	spring-boot,	junit,	mockito,	and	hamcrest-
library.	These	libraries	will	provide	us	with	all	the	necessary	things	in	order	to	start
writing	application	tests	for	the	software	that	we	will	develop,	without	needing	to
manually	add	these	dependencies	to	the	build	file	individually.

With	more	than	40	starters	provided	and	with	the	ongoing	community	additions	increasing
the	list,	it	is	very	likely	that	in	case	we	find	ourselves	with	the	need	to	integrate	with	a
fairly	common	or	popular	framework,	there	is	already	a	starter	out	there	that	we	can	use.

The	following	table	shows	you	the	most	notable	ones	so	as	to	give	you	an	idea	of	what	is
available:

Starter Description

spring-

boot-

starter

This	is	the	core	Spring	Boot	starter	that	provides	you	with	all	the	foundational	functionalities.	It	is	depended
upon	by	all	other	starters,	so	there	is	no	need	to	declare	it	explicitly.

spring-

boot-

starter-

actuator

This	starter	provides	you	with	a	functionality	to	monitor,	manage	an	application,	and	audit	it.

spring-

boot-

starter-

jdbc

This	starter	provides	you	with	a	support	to	connect	and	use	JDBC	databases,	connection	pools,	and	so	on.

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-starters/spring-boot-starter-test/src/main/resources/META-INF/spring.provides

spring-

boot-

starter-

data-jpa

The	JPA	starter	provides	you	with	needed	libraries	in	order	to	use	Java	Persistence	API	such	as	Hibernate,
and	others.

spring-

boot-

starter-

data-*

Collection	of	data-*	family	starter	components	providing	support	for	a	number	of	data	stores	such	as
MongoDB,	Data-Rest,	or	Solr.

spring-

boot-

starter-

security

This	brings	in	all	the	needed	dependencies	for	spring-security.

spring-

boot-

starter-

social-*

This	provides	you	with	integration	with	Facebook,	Twitter,	and	LinkedIn.

spring-

boot-

starter-

test

This	is	a	starter	that	contains	the	dependencies	for	spring-test	and	assorted	testing	frameworks	such	as
JUnit	and	Mockito	among	others.

spring-

boot-

starter-

web

This	gives	you	all	the	needed	dependencies	for	web	application	development.	It	can	be	complimented	with
spring-boot-starter-hateoas,	spring-boot-starter-websocket,	spring-boot-starter-mobile,	or
spring-boot-starter-ws,	and	assorted	template	rendering	starters	such	as	sping-boot-starter-
thymeleaf	or	spring-boot-starter-mustache.

Creating	a	simple	application
Now	that	we	have	a	basic	idea	of	the	starters	that	are	available	to	us,	let’s	go	ahead	and
create	our	application	template	at	http://start.spring.io.

http://start.spring.io

How	to	do	it…
The	application	that	we	are	going	to	create	is	a	book	catalog	management	system.	It	will
keep	a	record	of	books	that	were	published,	who	were	the	authors,	the	reviewers,
publishing	houses,	and	so	forth.	We	will	name	our	project	BookPub,	and	apply	the
following	steps:

1.	 Use	the	default	proposed	Group	name:	org.test.
2.	 Enter	bookpub	for	an	Artifact	field.
3.	 Provide	BookPub	as	a	Name	for	the	application.
4.	 Specify	org.test.bookpub	as	our	Package	Name.
5.	 Choose	Gradle	Project.
6.	 Select	Jar	as	Packaging.
7.	 Use	Java	Version	as	1.8.
8.	 Use	Spring	Boot	Version	as	1.2.5.
9.	 Select	the	H2,	JDBC,	and	JPA	starters	from	the	Project	Dependencies	selection	so

that	we	can	get	the	needed	artifacts	in	our	build	file	in	order	to	connect	to	an	H2
database

10.	 Click	Generate	Project	to	download	the	project	archive.

How	it	works…
Clicking	on	the	Generate	Project	button	will	download	the	bookpub.zip	archive,	which
we	will	extract	in	our	working	directory.	In	the	newly	created	bookpub	directory,	we	will
see	a	build.gradle	file	that	defines	our	build.	It	already	comes	preconfigured	with	the
right	version	of	a	Spring	Boot	plugin	and	libraries	and	even	includes	the	extra	starters,
which	we	have	chosen.

The	following	is	the	code	of	the	build.gradle	file:

dependencies	{

		compile("org.springframework.boot:spring-boot-starter-data-jpa")

		compile("org.springframework.boot:spring-boot-starter-jdbc")

		runtime("com.h2database:h2")

		testCompile("org.springframework.boot:spring-boot-starter-test")	

}

We	have	selected	the	following	starters:

org.springframework.boot:spring-boot-starter-data-jpa	pulls	in	the	JPA
dependency
org.springframework.boot:spring-boot-starter-jdbc	pulls	in	the	JDBC
supporting	libraries
com.h2database:h2	is	a	particular	type	of	database	implementation,	namely	H2

As	you	can	see,	the	runtime("com.h2database:h2")	dependency	is	a	runtime	one.	This	is
because	we	don’t	really	need,	and	probably	don’t	even	want,	to	know	the	exact	kind	of	a
database	to	which	we	will	connect	at	the	compile	time.	Spring	Boot	will	autoconfigure	the
needed	settings	and	create	appropriate	beans	once	it	detects	the	presence	of	the
org.h2.Driver	class	in	the	classpath	when	the	application	is	launched.	We	will	look	into
the	inner	workings	of	how	and	where	this	happens	later	in	this	chapter.

The	data-jpa	and	jdbc	are	Spring	Boot	starter	artifacts.	If	we	look	inside	these
dependency	jars	once	they	are	downloaded	locally	by	Gradle,	or	using	Maven	Central
online	file	repository,	we	will	find	that	they	don’t	contain	any	actual	classes,	only	the
various	metadata.	The	two	containing	files	that	are	of	particular	interest	to	us	are	pom.xml
and	spring.provides.	Let’s	first	look	at	the	spring.provides	file	in	the	spring-boot-
starter-jdbc.jar	artifact,	with	the	following	content:

provides:	spring-jdbc,spring-tx,tomcat-jdbc

This	tells	us	that	by	having	this	starter	as	our	dependency,	we	will	transitively	get	the
spring-jdbc,	spring-tx,	and	tomcat-jdbc	dependency	libraries	in	our	build.	The
pom.xml	file	contains	the	proper	dependency	declarations	that	will	be	used	by	Gradle	or
Maven	to	resolve	the	needed	dependencies	during	the	build	time.	This	also	applies	to	our
second	starter:	spring-boot-starter-data-jpa.	This	starter	will	transitively	provide	us
with	the	spring-orm,	hibernate-entity-manager,	and	spring-data-jpa	libraries.

At	this	point,	we	have	enough	libraries/classes	in	our	application	classpath	so	as	to	give
Spring	Boot	an	idea	of	what	kind	of	application	we	are	trying	to	run	and	what	are	the	kind

of	facilities	and	frameworks	that	need	to	be	configured	automatically	by	Spring	Boot	in
order	to	stitch	things	together.

 Earlier,	we	mentioned	that	the	presence	of	the	org.h2.Driver	class	in	the	classpath	will
trigger	Spring	Boot	to	automatically	configure	the	H2	database	connection	for	our
application.	To	see	exactly	how	this	will	happen,	let’s	start	by	looking	at	our	newly	created
application	template,	specifically	at	BookPubApplication.java	located	in	the
src/main/java/org/test/bookpub	directory	in	the	root	of	the	project,	as	follows:

package	org.test.bookpub;

import	org.springframework.boot.SpringApplication;

import	org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public	class	BookPubApplication	{

		public	static	void	main(String[]	args)	{

				SpringApplication.run(BookPubApplication.class,	args);

		}

}

This	is	effectively	our	entire	and	fully	runnable	application.	There’s	not	a	whole	lot	of
code	here	and	definitely	no	mention	about	configuration	or	databases	anywhere.	The	key
to	making	magic	is	the	@SpringBootApplication	meta-annotation.	In	order	to	understand
what	actually	happens,	we	can	take	a	look	inside	the	code	definition	for	this	annotation,
where	we	will	find	the	real	annotations	that	will	direct	Spring	Boot	to	set	things	up
automatically:

@Configuration

@EnableAutoConfiguration

@ComponentScan

public	@interface	SpringBootApplication	{…}

Let’s	go	through	the	following	list	of	annotations:

@Configuration	tells	Spring	(and	not	just	Spring	Boot,	as	it	is	a	Spring	Framework
core	annotation)	that	the	annotated	class	contains	Spring	configuration	definitions
such	as	the	@Bean,	@Component,	and	@Service	declarations,	and	others.
@ComponentScan	tells	Spring	that	we	want	to	scan	our	application	packages—starting
from	the	package	of	our	annotated	class	as	a	default	package	root—for	the	other
classes	that	might	be	annotated	with	@Configuration,	@Controller,	and	other
applicable	annotations,	which	Spring	will	automatically	include	as	part	of	the	context
configuration.
@EnableAutoConfiguration	is	a	part	of	the	Spring	Boot	annotation,	which	is	a	meta-
annotation	on	its	own	(you	will	find	that	Spring	libraries	rely	very	heavily	on	the
meta-annotations	in	order	to	group	and	compose	configurations	together).	It	imports
the	EnableAutoConfigurationImportSelector	and
AutoConfigurationPackages.Registrar	classes	that	effectively	instruct	Spring	to
automatically	configure	the	conditional	beans	depending	on	the	classes	available	in

the	classpath.	(We	will	cover	the	inner	workings	of	autoconfiguration	in	detail	in
Chapter	4,	Writing	Custom	Spring	Boot	Starters).

The	SpringApplication.run(BookPubApplication.class,	args);	line	in	the	main
method	basically	creates	a	Spring	application	context	that	reads	the	annotations	in
BookPubApplication.class	and	instantiates	a	context,	which	is	similar	to	how	it	would
have	been	done	if	instead	of	using	Spring	Boot	we	would	have	stuck	with	the	regular
Spring	Framework.

Launching	an	application	using	Gradle
Typically,	the	very	first	step	of	creating	any	application	is	to	have	a	basic	skeleton,	which
can	be	immediately	launched	as	is.	As	the	Spring	Boot	starter	has	created	the	application
template	for	us	already,	all	we	have	to	do	is	extract	the	code,	build,	and	execute	it.	Now
let’s	go	to	the	console	and	launch	the	app	with	Gradle.

How	to	do	it…
1.	 Change	in	the	directory	where	the	bookpub.zip	archive	was	extracted	from	and

execute	the	following	command	from	the	command	line:

$./gradlew	clean	bootRun

Tip
If	you	don’t	have	gradlew	in	the	directory,	then	download	a	version	of	Gradle	from
https://gradle.org/downloads	or	install	it	via	homebrew	by	executing	brew	install
gradle.	After	Gradle	is	installed,	run	gradle	wrapper	to	get	the	Gradle	wrapper	files
generated.	Another	way	is	to	invoke	gradle	clean	bootRun	in	order	to	achieve	the	same
results.

The	output	of	the	preceding	command	will	be	as	follows:

…

		.			____										_												__	_	_

	/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

	\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

		'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

	=========|_|==============|___/=/_/_/_/

	::	Spring	Boot	::		(v1.2.3.BUILD-SNAPSHOT)

2015-03-09	23:18:53.721	:	Starting	BookPubApplication	on	mbp	with	PID	43850	

2015-03-09	23:18:53.781	:	Refreshing	

org.springframework.context.annotation.Annotatio

2015-03-09	23:18:55.544	:	Building	JPA	container	EntityManagerFactory	for	

persistence	

2015-03-09	23:18:55.565	:	HHH000204:	Processing	PersistenceUnitInfo	[name:	

default	

2015-03-09	23:18:55.624	:	Hibernate	Core	{4.3.8.Final}

2015-03-09	23:18:55.625	:	HHH000206:	hibernate.properties	not	found

2015-03-09	23:18:55.627	:	HHH000021:	Bytecode	provider	name	:	javassist

2015-03-09	23:18:55.774	:	HCANN000001:	Hibernate	Commons	Annotations	

{4.0.5.Final

2015-03-09	23:18:55.850	:	HHH000400:	Using	dialect:	

org.hibernate.dialect.H2Dialect

2015-03-09	23:18:55.902	:	HHH000397:	Using	ASTQueryTranslatorFactory

2015-03-09	23:18:56.094	:	HHH000227:	Running	hbm2ddl	schema	export

2015-03-09	23:18:56.096	:	HHH000230:	Schema	export	complete

2015-03-09	23:18:56.337	:	Registering	beans	for	JMX	exposure	on	startup

2015-03-09	23:18:56.345	:	Started	BookPubApplication	in	3.024	seconds	(JVM	

running…

2015-03-09	23:18:56.346	:	Closing	

org.springframework.context.annotation.AnnotationC..

2015-03-09	23:18:56.347	:	Unregistering	JMX-exposed	beans	on	shutdown

2015-03-09	23:18:56.349	:	Closing	JPA	EntityManagerFactory	for	persistence	

unit	'def…

2015-03-09	23:18:56.349	:	HHH000227:	Running	hbm2ddl	schema	export

2015-03-09	23:18:56.350	:	HHH000230:	Schema	export	complete

https://gradle.org/downloads

BUILD	SUCCESSFUL

Total	time:	52.323	secs

How	it	works…
As	we	can	see,	the	application	started	just	fine,	but	as	we	didn’t	add	any	functionality	or
configure	any	services,	it	terminated	right	away.	From	the	startup	log,	however,	we	do	see
that	the	autoconfiguration	did	take	place.	Let’s	take	a	look	at	the	following	lines:

Building	JPA	container	EntityManagerFactory	for	persistence	unit	'default'

HHH000412:	Hibernate	Core	{4.3.8.Final}

HHH000400:	Using	dialect:	org.hibernate.dialect.H2Dialect

This	information	tells	us	that	because	we	added	the	jdbc	and	data-jpa	starters,	the	JPA
container	was	created	and	will	use	Hibernate	4.3.8.Final	to	manage	the	persistence	using
H2Dialect.	This	was	possible	because	we	had	the	right	classes	in	the	classpath.

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	for	all	Packt	books	you	have	purchased	from
your	account	at	http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can
visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to
you.

http://www.packtpub.com
http://www.packtpub.com/support

Using	the	command-line	runners
With	our	basic	application	skeleton	ready,	let’s	add	some	meat	to	the	bones	by	making	our
application	do	something.

Let’s	start	by	first	creating	a	class	named	StartupRunner.	This	will	implement	the
CommandLineRunner	interface,	which	basically	provides	just	one	method—public	void

run(String…	args)—that	will	get	called	by	Spring	Boot	only	once	after	the	application
has	started.

How	to	do	it…
1.	 Create	the	file	named	StartupRunner.java	under	the

src/main/java/org/test/bookpub/	directory	from	the	root	of	our	project	with	the
following	content:

package	org.test.bookpub;

import	org.apache.commons.logging.Log;

import	org.apache.commons.logging.LogFactory;

import	org.springframework.boot.CommandLineRunner;

public	class	StartupRunner	implements	CommandLineRunner	{

		protected	final	Log	logger	=	LogFactory.getLog(getClass());

		@Override

		public	void	run(String…	args)	throws	Exception	{

				logger.info("Hello");

		}

}

2.	 After	we	have	defined	the	class,	let’s	proceed	by	defining	it	as	@Bean	in	the
BookPubApplication.java	application	configuration,	which	is	located	in	the	same
folder	as	our	newly	created	StartupRunner.java,	shown	as	follows:

@Bean

public	StartupRunner	schedulerRunner()	{

		return	new	StartupRunner();

}

How	it	works…
If	we	run	our	application	again	by	executing	$./gradlew	clean	bootRun,	we	will	get	an
output	that	is	similar	to	our	previous	application	startup.	However,	we	will	see	our	Hello
message	in	the	logs	as	well,	which	will	look	as	follows:

2015-03-10	21:57:51.048		INFO	---	org.test.bookpub.StartupRunner									:	

Hello

Even	though	the	program	will	get	terminated	on	execution,	at	least	we	made	it	do
something!

Command	line	runners	are	a	useful	functionality	to	execute	the	various	types	of	code	that
only	have	to	be	run	once,	right	after	application	startup.	Some	may	also	use	this	as	a	place
to	start	various	executor	threads	but	Spring	Boot	provides	a	better	solution	for	this	task,
which	will	be	discussed	at	the	end	of	this	chapter.	The	CommandLineRunner	interface	is
used	by	Spring	Boot	to	scan	all	of	its	implementations	and	invoke	each	instance’s	run
method	with	the	startup	arguments.	We	can	also	use	an	@Order	annotation	or	implement	an
Ordered	interface	so	as	to	define	the	exact	order	in	which	we	want	Spring	Boot	to	execute
them.	For	example,	Spring	Batch	relies	on	the	runners	in	order	to	trigger	the	execution	of
the	jobs.

As	command-line	runners	are	instantiated	and	executed	after	the	application	has	started,
we	can	use	the	dependency	injection	to	our	advantage	in	order	to	wire	in	whatever
dependencies	that	we	need,	such	as	data	sources,	services,	and	other	components.	These
can	be	utilized	later	while	implementing	run(String…	args)	method..

Note
It	is	important	to	note	that	if	any	exceptions	are	thrown	inside	the	run(String…	args)
method,	this	will	cause	the	context	to	close	and	an	application	to	shut	down.	Wrapping	the
risky	code	blocks	with	try/catch	is	recommended	in	order	to	prevent	this	from
happening.

Setting	up	a	database	connection
In	every	application,	there	is	a	need	to	access	some	data	and	conduct	some	operations	on
it.	Most	frequently,	this	source	of	data	is	a	data	store	of	some	kind,	namely	a	database.
Spring	Boot	makes	it	very	easy	to	get	started	in	order	to	connect	to	the	database	and	start
consuming	the	data	via	the	Java	Persistence	API	among	others.

Getting	ready
In	our	previous	example,	we	created	the	basic	application	that	will	execute	a	command-
line	runner	by	printing	a	message	in	the	logs.	Let’s	enhance	this	application	by	adding	a
connection	to	a	database.

Earlier,	we	already	added	the	necessary	jdbc	and	data-jpa	starters	as	well	as	an	H2
database	dependency	to	our	build	file.	Now,	we	will	configure	an	in-memory	instance	of
the	H2	database.

Tip
In	the	case	of	an	embedded	database	such	as	H2,	HSQL,	or	Derby,	no	actual	configuration
is	required	besides	including	the	dependency	on	one	of	these	in	the	build	file.	When	one	of
these	databases	is	detected	in	the	classpath	and	a	DataSource	bean	dependency	is	declared
in	the	code,	Spring	Boot	will	automatically	create	one	for	you.

To	demonstrate	the	fact	that	just	by	including	the	H2	dependency	in	the	classpath,	we	will
automatically	get	a	default	database,	let’s	modify	our	StartupRunner.java	to	look	as
follows:

public	class	StartupRunner	implements	CommandLineRunner	{

		protected	final	Log	logger	=	LogFactory.getLog(getClass());

		@Autowired

		private	DataSourceds;

		@Override

		public	void	run(String…	args)	throws	Exception	{

				logger.info("DataSource:	"+ds.toString());

		}

}

Now,	if	we	proceed	with	the	running	of	our	application,	we	will	see	the	name	of	the
DataSource	printed	in	the	log,	as	follows:

2015-03-11	21:46:22.067	org.test.bookpub.StartupRunner	:DataSource:	

org.apache.tomcat.jdbc.pool.DataSource@4…{…driverClassName=org.h2.Driver;	…	

}

So,	under	the	hood,	Spring	Boot	recognized	that	we’ve	autowired	a	DataSource
dependency	and	automatically	created	one	initializing	the	in-memory	H2	datastore.	It	is	all
good	and	well,	but	probably	not	all	too	useful	beyond	an	early	prototyping	phase	or	for	the
purpose	of	testing.	Who	would	want	a	database	that	goes	away	with	all	the	data	as	soon	as
your	application	shuts	down	and	you	have	to	start	with	a	clean	slate	every	time	you	restart
the	app?

How	to	do	it…
Let’s	change	the	defaults	in	order	to	create	an	embedded	H2	database	that	will	not	store
data	in-memory,	but	rather	use	a	file	to	persist	the	data	in	between	application	restarts.

1.	 Open	the	file	named	application.properties	under	the	src/main/resources
directory	from	the	root	of	our	project	and	add	the	following	content:

spring.datasource.url	=	

jdbc:h2:~/test;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE

spring.datasource.username	=	sa

spring.datasource.password	=

2.	 Start	the	application	by	executing	./gradlew	clean	bootRun	from	the	command
line.

3.	 Check	your	home	directory	and	you	should	see	the	following	file	in	there:
test.mv.db.

Note
The	user	home	directory	is	located	under	/home/<username>	on	Linux	and	under
/Users/<username>	on	OS	X.

How	it	works…
Even	though,	by	default,	Spring	Boot	makes	certain	assumptions	about	the	database
configuration	by	examining	the	classpath	for	the	presence	of	supported	database	drivers,	it
provides	you	with	easy	configuration	options	in	order	to	tweak	the	database	access	via	a
set	of	exposed	properties	grouped	under	spring.datasource.

The	things	that	we	can	configure	are	the	url,	username,	password,	driver-class-name,
and	so	on.	If	you	want	to	consume	the	datasource	from	a	JNDI	location,	where	an	actual
instance	of	a	DataSource	is	being	created	outside	the	application,	for	example	by	a
container,	like	JBoss	or	Tomcat,	and	shared	via	JNDI,	you	can	configure	this	using	the
spring.datasource.jndi-name	property.	The	complete	set	of	possible	properties	is	fairly
large,	so	we	will	not	go	into	all	of	them.	However,	we	will	cover	more	options	in	Chapter
5,	Application	Testing,	where	we	will	talk	about	mocking	data	for	application	tests	using	a
database.

Note
By	looking	at	various	blogs	and	examples,	you	might	notice	that	some	places	use	dashes
in	property	names	such	as	driver-class-name	while	others	use	camel-cased	variants	such
as	driverClassName.	In	Spring	Boot,	these	are	actually	two	equally	supported	ways	of
naming	the	same	property	and	they	get	translated	into	the	same	thing	internally.

If	you	want	to	connect	to	a	regular	(non-embedded)	database,	besides	just	having	the
appropriate	driver	library	in	the	classpath,	we	need	to	specify	the	driver	of	our	choice	in
the	configuration.	The	following	snippet	is	what	the	configuration	to	connect	to	MySQL
would	resemble:

spring.datasource.driver-class-name:	com.mysql.jdbc.Driver

spring.datasource.url:	jdbc:mysql://localhost:3306/springbootcookbook

spring.datasource.username:	root

spring.datasource.password:

If	we	wanted	Hibernate	to	create	the	schema	automatically,	based	on	our	entity	classes,	we
will	need	to	add	the	following	line	to	the	configuration:

spring.jpa.hibernate.ddl-auto=create-drop

Note
Don’t	do	this	in	the	production	environment,	otherwise	on	startup,	all	the	table	schemas
and	data	will	be	deleted!	Use	the	update	or	validate	values	instead,	where	needed.

One	can	go	even	further	in	the	abstraction	layer	and	instead	of	auto-wiring	a	DataSource
object,	you	could	go	straight	for	a	JdbcTemplate.	This	would	instruct	Spring	Boot	to
automatically	create	a	DataSource	and	then	create	a	JdbcTemplate	wrapping	the
DataSource,	thus	providing	you	with	a	more	convenient	way	of	interacting	with	a	database
in	a	safe	way.	The	code	for	JdbcTemplate	is	as	follows:

@Autowired

private	JdbcTemplate	jdbcTemplate;

For	the	extra	curious	minds,	one	can	look	in	the	spring-boot-autoconfigure	source	at
an	org.springframework.boot.autoconfigure.jdbc.DataSourceAutoConfiguration
class	so	as	to	see	the	code	behind	the	DataSource	creation	magic.

Setting	up	a	data	repository	service
Connecting	to	a	database	and	then	executing	good	old	SQL—while	simplistic	and
straightforward—is	not	the	most	convenient	way	to	operate	on	the	data,	map	it	in	a	set	of
domain	objects,	and	manipulate	the	relational	content.	This	is	why	multiple	frameworks
emerged	in	order	to	aid	you	with	mapping	the	data	from	tables	into	objects,	better	known
as	Object	Relational	Mapping.	The	most	notable	example	of	such	a	framework	is
Hibernate.

In	the	previous	example,	we	covered	how	to	set	up	a	connection	to	a	database	and
configure	the	settings	for	the	username,	password,	which	driver	to	use,	and	so	on.	In	this
recipe,	we	will	enhance	our	application	by	adding	a	few	entity	objects	that	define	the
structure	of	the	data	in	the	database	and	a	CrudRepository	interface	to	access	the	data.

As	our	application	is	a	book	tracking	catalogue,	the	obvious	domain	objects	would	be	the
Book,	Author,	Reviewers,	and	Publisher.

How	to	do	it…
1.	 Create	a	new	package	folder	named	entity	under	the

src/main/java/org/test/bookpub	directory	from	the	root	of	our	project.
2.	 In	this	newly	created	package,	create	a	new	class	named	Book	with	the	following

content:

@Entity

public	class	Book	{

		@Id

		@GeneratedValue

		private	Long	id;

		private	String	isbn;

		private	String	title;

		private	String	description;

		@ManyToOne

		private	Author	author;

		@ManyToOne

		private	Publisher	publisher;

		@ManyToMany

		private	List<Reviewers>	reviewers;

		protected	Book()	{}

		public	Book(String	isbn,	String	title,	Author	author,	Publisher	

publisher)	{

				this.isbn=	isbn;

				this.title	=	title;

				this.author=	author;

				this.publisher=	publisher;

		}

		//Skipping	getters	and	setters	to	save	space,	but	we	do	need	them

}

3.	 As	any	book	should	have	an	author	and	a	publisher,	and	ideally	some	reviewers,	we
need	to	create	these	entity	objects	as	well.	Let’s	start	by	creating	an	Author	entity
class	under	the	same	directory	as	our	Book	on,	as	follows:

@Entity

public	class	Author	{

		@Id

		@GeneratedValue

		private	Long	id;

		private	String	firstName;

		private	String	lastName;

		@OneToMany(mappedBy	=	"author")

		private	List<Book>	books;

		protected	Author()	{}

		public	Author(String	firstName,	String	lastName)	{...}

				//Skipping	implementation	to	save	space,	but	we	do	need	it	all

}

4.	 Similarly,	we	will	create	the	Publisher	and	Reviewer	classes,	as	shown	in	the
following	code:

@Entity

public	class	Publisher	{

		@Id

		@GeneratedValue

		private	Long	id;

		private	String	name;

		@OneToMany(mappedBy	=	"publisher")

		private	List<Book>	books;

		protected	Publisher()	{}

		public	Publisher(String	name)	{...}

		}

		@Entity

		public	class	Reviewer	{

				@Id

				@GeneratedValue

				private	Long	id;

				private	String	firstName;

				private	String	lastName;

				protected	Reviewer()	{}

				public	Reviewer(String	firstName,	String	lastName)	{

						//Skipping	implementation	to	save	space

				}

}

5.	 Now,	we	will	create	our	BookRepository	interface	by	extending	Spring’s
CrudRepository	under	the	src/main/java/org/test/bookpub/repository
package,	as	follows:

@Repository

public	interface	BookRepository	extends	CrudRepository<Book,	Long>	{

		public	Book	findBookByIsbn(String	isbn);

}

6.	 Finally,	let’s	modify	our	StartupRunner	in	order	to	print	the	number	of	books	in	our
collection	instead	of	some	random	DataSource	string	by	auto-wiring	a	newly	created
BookRepository	and	printing	the	result	of	a	.count()	call	to	the	log,	as	follows:

public	class	StartupRunner	implements	CommandLineRunner	{

		@Autowired

		private	BookRepository	bookRepository;

		public	void	run(String…	args)	throws	Exception	{

				logger.info("Number	of	books:	"	+	bookRepository.count());

		}

}

How	it	works…
As	you	have	probably	noticed,	we	didn’t	write	a	single	line	of	SQL	or	even	mentioned
anything	about	database	connections,	building	queries,	or	things	like	that.	The	only	hint
that	we	are	dealing	with	the	database-backed	data	that	we	have	in	our	code	are	the	class
and	field	annotations:	@Entity,	@Repository,	@Id,	@GeneratedValue,	and	@ManyToOne
along	with	@ManyToMany	and	@OneToMany.	These	annotations,	which	are	a	part	of	the	Java
Persistance	API,	along	with	the	extension	of	the	CrudRepository	interface	are	our	ways
of	communicating	with	Spring	about	the	need	to	map	our	objects	to	the	appropriate	tables
and	fields	in	the	database	and	provide	us	with	the	programmatic	ability	to	interact	with
this	data.

Let’s	go	through	the	following	annotations:

@Entity	indicates	that	the	annotated	class	should	be	mapped	to	a	database	table.	The
name	of	the	table	will	be	derived	from	the	name	of	the	class	but	it	can	be	configured,
if	needed.	It	is	important	to	note	that	every	entity	class	should	have	a	default
protected	constructor,	which	is	needed	for	automated	instantiation	and	Hibernate
interactions.
@Repository	indicates	that	the	interface	is	intended	to	provide	you	with	the	access
and	manipulation	of	data	for	a	database.	It	also	serves	as	an	indication	to	Spring
during	the	component	scan	that	this	instance	should	be	created	as	a	bean	that	will	be
available	for	use	and	injection	into	other	beans	in	the	application.
The	CrudRepository	interface	defines	the	basic	common	methods	to	read,	create,
update,	and	delete	data	from	a	data	repository.	The	extra	methods	that	we	will	define
in	our	BookRepository	extension,	public	Book	findBookByIsbn(String	isbn),
indicate	that	Spring	JPA	should	automatically	translate	the	call	to	this	method	to	a
SQL	finder	query	selecting	a	Book	by	its	ISBN	field.	This	is	a	convention-named
mapping	that	translates	the	method	name	into	a	SQL	query.	It	can	be	a	very	powerful
ally,	allowing	you	to	build	queries	such	as	findByNameIgnoringCase(String	name)
and	others.
The	@Id	and	@GeneratedValue	annotations	provide	you	with	an	indication	that	an
annotated	field	should	be	mapped	to	a	primary	key	column	in	the	database	and	the
value	for	this	field	should	be	generated,	instead	of	being	explicitly	entered.
The	@ManyToOne	and	@ManyToMany	annotations	define	the	relational	field	associations
that	refer	to	the	data	stored	in	the	other	tables.	In	our	case,	multiple	Books	belong	to
one	Author	and	many	Reviewers	review	multiple	Books.	The	mappedBy	attribute	in
@OneToMany	annotation	declaration	defines	a	reverse	association	mapping.	It	indicates
to	Hibernate	that	the	mapping	source	of	truth	is	defined	in	the	Book	class,	in	the
author	or	publisher	fields.	The	Books	references	from	within	Author	and
Publisher	classes	are	merely	reverse	associations.

Tip
For	more	information	about	all	the	vast	capabilities	of	Spring	Data,	visit
http://docs.spring.io/spring-data/data-commons/docs/current/reference/html/.

http://docs.spring.io/spring-data/data-commons/docs/current/reference/html/

Scheduling	executors
Earlier	in	this	chapter,	we	discussed	how	the	command-line	runners	can	be	used	as	a	place
to	start	the	scheduled	executor	thread	pools	in	order	to	run	the	worker	threads	in	intervals.
While	that	is	certainly	a	possibility,	Spring	provides	you	with	a	more	concise
configuration	to	achieve	the	same	goal:	@EnableScheduling.

Getting	ready
We	will	enhance	our	application	so	that	it	will	print	a	count	of	books	in	our	repository
every	10	seconds.	To	achieve	this,	we	will	make	the	necessary	modifications	to	the
BookPubApplication	and	StartupRunner	classes.

How	to	do	it…
1.	 Let’s	add	an	@EnableScheduling	annotation	to	the	BookPubApplication	class,	as

follows:

@SpringBootApplication

@EnableScheduling

public	class	BookPubApplication	{…}

2.	 As	an	@Scheduled	annotation	can	be	placed	only	on	methods	without	arguments,	let’s
add	a	new	run()	method	to	the	StartupRunner	class	and	annotate	it	with	the
@Scheduled	annotation,	as	shown	in	the	following	line:

@Scheduled(initialDelay	=	1000,	fixedRate	=	10000)

public	void	run()	{

		logger.info("Number	of	books:	"	+	bookRepository.count());

}

3.	 Start	the	application	by	executing	./gradlew	clean	bootRun	from	the	command	line
so	as	to	observe	the	Number	of	books:	0	message	that	shows	in	the	logs	every	10
seconds.

How	it	works…
Like	some	other	annotations	that	we	discussed	in	this	chapter	and	will	further	discuss	in
the	book,	@EnableScheduling	is	not	a	Spring	Boot	annotation,	but	instead	is	a	Spring
Context	module	annotation.	Similar	to	the	@SpringBootApplication	and
@EnableAutoConfiguration	annotations,	this	is	a	meta-annotation	and	internally	imports
the	SchedulingConfiguration	via	the	@Import(SchedulingConfiguration.class)
instruction,	which	can	be	seen	if	looked	found	inside	the	code	for	the	@EnableScheduling
annotation	class.

ScheduledAnnotationBeanPostProcessor	that	will	be	created	by	the	imported
configuration	will	scan	the	declared	Spring	Beans	for	the	presence	of	the	@Scheduled
annotations.	For	every	annotated	method	without	arguments,	the	appropriate	executor
thread	pool	will	be	created.	It	will	manage	the	scheduled	invocation	of	the	annotated
method.

Chapter	2.	Configuring	Web	Applications
In	the	previous	chapter,	we	learned	how	to	create	a	starting	application	template,	add	some
basic	functionalities,	and	set	up	a	connection	to	a	database.	In	this	chapter,	we	will
continue	to	evolve	our	BookPub	application	and	give	it	a	web	presence.

In	this	chapter,	we	will	learn	about	the	following	topics:

Creating	a	basic	RESTful	application
Creating	a	Spring	Data	REST	service
Configuring	custom	servlet	filters
Configuring	custom	interceptors
Configuring	custom	HttpMessageConverters
Configuring	custom	PropertyEditors
Configuring	custom	type	Formatters

Creating	a	basic	RESTful	application
While	command-line	applications	do	have	their	place	and	use,	most	of	today’s	application
development	is	centered	around	web,	REST,	and	data	services.	Let’s	start	with	enhancing
our	BookPub	application	by	providing	it	with	a	web-based	API	in	order	to	get	access	to	the
book	catalogues.

We	will	start	where	we	left	off	in	the	previous	chapter,	so	there	should	already	be	an
application	skeleton	with	the	entity	objects	and	a	repository	service	defined	and	a
connection	to	the	database	configured.

How	to	do	it…
1.	 The	very	first	thing	that	we	will	need	to	do	is	add	a	new	dependency	to

build.gradle	with	the	spring-boot-starter-web	starter	to	get	us	all	the	necessary
libraries	for	a	web-based	functionality.	The	following	snippet	is	what	it	would	look
like:

dependencies	{

		compile("org.springframework.boot:spring-boot-starter-data-jpa")

		compile("org.springframework.boot:spring-boot-starter-jdbc")

		compile("org.springframework.boot:spring-boot-starter-web")

		runtime("com.h2database:h2")

		testCompile("org.springframework.boot:spring-boot-

				starter-test")

}

2.	 Next,	we	will	need	to	create	a	Spring	controller	that	will	be	used	to	handle	the	web
requests	for	the	catalog	data	in	our	application.	Let’s	start	by	creating	a	new	package
structure	to	house	our	controllers	so	that	we	have	our	code	nicely	grouped	by	their
appropriate	purposes.	Create	a	package	folder	called	controllers	in	the
src/main/java/org/test/bookpub	directory	from	the	root	of	our	project.

3.	 As	we	will	be	exposing	the	Book	data,	let’s	create	the	controller	class	file	called
BookController	in	our	newly	created	package	with	the	following	content:

@RestController

@RequestMapping("/books")

public	class	BookController	{

		@Autowired

		private	BookRepository	bookRepository;

		@RequestMapping(value	=	"",	method	=	RequestMethod.GET)

		public	Iterable<Book>	getAllBooks()	{

				return	bookRepository.findAll();

		}

		@RequestMapping(value	=	"/{isbn}",	method	=	

				RequestMethod.GET)

		public	Book	getBook(@PathVariable	String	isbn)	{

				return	bookRepository.findBookByIsbn(isbn);

		}

}

4.	 Start	the	application	by	running	./gradlew	clean	bootRun.
5.	 After	the	application	has	started,	open	the	browser	and	go	to

http://localhost:8080/books	and	you	should	see	a	response:	[].

How	it	works…
The	key	to	get	the	service	exposed	to	web	requests	is	the	@RestController	annotation.
This	is	yet	another	example	of	a	meta-annotation	or	a	convenience	annotation,	as	the
Spring	documentation	refers	to	it	at	times,	which	we	have	seen	in	previous	recipes.	In
@RestController,	two	annotations	are	defined:	@Controller	and	@ResponseBody.	So	we
could	just	as	easily	annotate	BookController,	as	follows:

@Controller

@ResponseBody

@RequestMapping("/books")

public	class	BookController	{...}

@Controller	is	a	Spring	stereotype	annotation	that	is	similar	to	@Bean	and
@Repository	and	declares	the	annotated	class	as	an	MVC	Controller
@ResponseBody	is	a	Spring	MVC	annotation	indicating	that	responses	from	the	web-
request-mapped	methods	constitute	the	entire	content	of	the	HTTP	response	body
payload,	which	is	typical	for	RESTful	applications

Creating	a	Spring	Data	REST	service
In	the	previous	example,	we	fronted	our	BookRepository	with	a	REST	controller	in	order
to	expose	the	data	behind	it	via	a	web	RESTful	API.	While	this	is	definitely	a	quick	and
easy	way	to	make	the	data	accessible,	it	does	require	us	to	manually	create	a	controller	and
define	the	mappings	for	all	the	desired	operations.	To	minimize	the	boilerplate	code,
Spring	provides	us	with	a	more	convenient	way:	spring-boot-starter-data-rest.	This
allows	us	to	simply	add	an	annotation	to	the	repository	interface	and	Spring	will	do	the
rest	to	to	expose	it	to	the	web.

We	will	continue	from	the	place	where	we	had	finished	in	the	previous	recipe,	and	so	the
entity	models	and	the	BookRepository	should	already	exist.

How	to	do	it…
1.	 We	will	start	by	adding	another	dependency	to	our	build.gradle	file	in	order	to	add

the	spring-boot-starter-data-rest	artefact:

dependencies	{

		...

		compile("org.springframework.boot:spring-boot-starter-data-rest")

		...

}

2.	 Now,	let’s	create	a	new	interface	to	define	AuthorRepository	in	the
src/main/java/org/test/bookpub/repository	directory	from	the	root	of	our
project	with	the	following	content:

@RepositoryRestResource

public	interface	AuthorRepository	extends

		PagingAndSortingRepository<Author,	Long>	{

}

3.	 While	we	are	at	it—given	how	little	code	it	takes—let’s	create	the	repository
interfaces	for	the	remaining	entity	models,	PublisherRepository	and
ReviewerRepository	by	placing	the	files	in	the	same	package	directory	as
AuthorRepository	with	the	following	content:

@RepositoryRestResource

public	interface	PublisherRepository	extends

		PagingAndSortingRepository<Publisher,	Long>	{

}

Otherwise,	you	can	use	this	code	instead	of	the	previous:

@RepositoryRestResource

public	interface	ReviewerRepository	extends

		PagingAndSortingRepository<Reviewer,	Long>	{

}

4.	 Start	the	application	by	running	./gradlew	clean	bootRun.
5.	 After	the	application	has	started,	open	the	browser	and	go	to

http://localhost:8080/authors	and	you	should	see	the	following	response:

How	it	works…
As	is	evident	from	the	browser	view,	we	will	get	significantly	more	information	than	we
got	when	we	wrote	the	books	controller.	This	is	in	part	due	to	us	extending	not	a
CrudRepository	interface,	but	a	PagingAndSortingRepository	one,	which	in	turn	is	an
extension	of	CrudRepository.	The	reason	that	we’ve	decided	to	do	this	is	to	get	the	extra
benefits	provided	by	the	PagingAndSortingRepository.	This	will	add	the	extra
functionality	to	retrieve	entities	using	the	pagination	and	being	able	to	sort	them.

The	@RepositoryRestResource	annotation,	while	optional,	provides	us	with	the	ability	to
have	a	finer	control	over	the	exposure	of	the	repository	as	a	web	data	service.	For
example,	if	we	wanted	to	change	the	URL	path	or	rel	value,	to	writers	instead	of	authors,
we	could	have	tuned	the	annotation,	as	follows:

@RepositoryRestResource(collectionResourceRel	=	"writers",	

																								path	=	"writers")

As	we	included	spring-boot-starter-data-rest	in	our	build	dependencies,	we	will	also
get	the	spring-hateoas	library	support,	which	gives	us	nice	ALPS	metadata,	such	as	a
_links	object.	This	can	be	very	helpful	when	building	an	API-driven	UI,	which	can
deduce	the	navigational	capabilities	from	the	metadata	and	present	them	appropriately.

Configuring	custom	servlet	filters
In	a	real-world	web	application,	we	almost	always	find	a	need	to	add	facades	or	wrappers
to	service	requests;	to	log	them,	filter	out	bad	characters	for	XSS,	perform	authentication,
and	so	on	and	so	forth.	Out	of	the	box,	Spring	Boot	automatically	adds
OrderedCharacterEncodingFilter	and	HiddenHttpMethodFilter,	but	we	can	always
add	more.	Let’s	see	how	Spring	Boot	helps	us	achieve	this	task.

Among	the	various	assortments	of	Spring	Boot,	Spring	Web,	Spring	MVC,	and	others,
there	is	already	a	vast	variety	of	different	servlet	filters	that	are	available	and	all	we	have
to	do	is	to	define	them	as	beans	in	the	configuration.	Let’s	say	that	our	application	will	be
running	behind	a	load	balancer	proxy	and	we	would	like	to	translate	the	real	request	IP
that	is	used	by	the	users	instead	of	the	IP	from	the	proxy	when	our	application	instance
receives	the	request.	Luckily,	Tomcat	8	already	provides	us	with	an	implementation:
RemoteIpFilter.	All	we	will	need	to	do	is	add	it	to	our	filter	chain.

How	to	do	it…
1.	 It	is	a	good	idea	to	separate	and	group	the	configurations	in	different	classes	in	order

to	provide	more	clarity	about	what	kind	of	things	are	being	configured.	So,	let’s
create	a	separate	configuration	class	called	WebConfiguration	in	the
src/main/java/org/test/bookpub	directory	from	the	root	of	our	project	with	the
following	content:

@Configuration

public	class	WebConfiguration	{

		@Bean

		public	RemoteIpFilter	remoteIpFilter()	{

				return	new	RemoteIpFilter();

		}

}

2.	 Start	the	application	by	running	./gradlew	clean	bootRun.
3.	 In	the	startup	log,	we	should	see	the	following	line,	indicating	that	our	filter	has	been

added:

..FilterRegistrationBean		:	Mapping	filter:	'remoteIpFilter'	to:	

[/*]

How	it	works…
The	magic	behind	this	functionality	is	actually	very	simple.	Let’s	start	from	the	separate
configuration	class	and	work	our	way	to	the	filter	bean	detection.

If	we	look	in	our	main	class,	BookPubApplication,	we	will	see	that	it	is	annotated	with
@SpringBootApplication,	which	in	turn	is	a	convenience	meta-annotation	that	declares
@ComponentScan	among	others.	We	discussed	this	in	detail	in	one	of	our	earlier	recipes.
The	presence	of	@ComponentScan	instructs	Spring	Boot	to	detect	WebConfiguration	as	a
@Configuration	class	and	add	its	definitions	to	the	context.	So,	anything	that	we	will
declare	in	WebConfiguration	is	as	good	as	if	we	were	to	put	it	right	in
BookPubApplication	itself.

The	@Bean	public	RemoteIpFilter	remoteIpFilter()	{…}	declaration	simply	creates	a
spring	bean	for	the	RemoteIpFilter	class.	When	Spring	Boot	detects	all	the	beans	of
javax.servlet.Filter,	it	will	add	them	to	the	filter	chain	automatically.	So,	all	we	have
to	do,	if	we	want	to	add	more	filters,	is	to	just	declare	them	as	@Bean	configurations.	For
example,	for	a	more	advanced	filter	configuration,	if	we	want	a	particular	filter	to	apply
only	to	specific	URL	patterns,	we	can	create	a	@Bean	configuration	of	a
FilterRegistrationBean	type	and	use	it	to	configure	the	precise	settings.

Configuring	custom	interceptors
While	Servlet	Filters	are	a	part	of	the	Servlet	API	and	have	really	nothing	to	do	with
Spring—besides	being	automatically	added	in	the	filter	chain—Spring	MVC	provides	us
with	another	way	of	wrapping	web	requests:	HandlerInterceptor.	According	to	the
documentation,	HandlerInterceptor	is	just	like	a	Filter;	but	instead	of	wrapping	a
request	in	a	nested	chain,	an	interceptor	gives	us	cutaway	points	at	different	phases,	such
as	before	the	request	gets	handled,	after	the	request	has	been	processed,	before	the	view
has	been	rendered,	and	at	the	very	end,	after	the	request	has	been	fully	completed.	It	does
not	let	us	change	anything	about	the	request	but	it	does	let	us	stop	the	execution	by
throwing	an	exception	or	returning	false	if	the	interceptor	logic	determines	so.

Similar	to	the	case	with	Filters,	Spring	MVC	comes	with	a	number	of	premade
HandlerInterceptors.	The	commonly	used	ones	are	LocaleChangeInterceptor	and
ThemeChangeInterceptor;	but	there	are	certainly	others	that	provide	great	value.	So	let’s
add	LocaleChangeInterceptor	to	our	application	in	order	to	see	how	it	is	done.

How	to	do	it…
Despite	what	you	might	think,	after	seeing	the	previous	recipe,	adding	an	interceptor	is	not
as	straightforward	as	just	declaring	it	a	bean.	We	actually	need	to	do	it	via
WebMvcConfigurer	or	by	overriding	WebMvcConfigurationSupport.

1.	 Let’s	enhance	our	WebConfiguration	class	to	extend	WebMvcConfigurerAdapter:

public	class	WebConfiguration	extends

		WebMvcConfigurerAdapter	{…}

2.	 Now	we	will	add	a	@Bean	declaration	for	LocaleChangeInterceptor:

@Bean

public	LocaleChangeInterceptor	localeChangeInterceptor()	{

		return	new	LocaleChangeInterceptor();

}

3.	 This	will	actually	create	the	interceptor	spring	bean	but	will	not	add	it	to	the	request
handling	chain.	For	this	to	happen,	we	will	need	to	override	the	addInterceptors
method	and	add	our	interceptor	to	the	provided	registry:

@Override

public	void	addInterceptors(InterceptorRegistry	registry)	{

		registry.addInterceptor(localeChangeInterceptor());

}

4.	 Start	the	application	by	running	./gradlew	clean	bootRun.
5.	 In	the	browser,	go	to	http://localhost:8080/books?locale=foo.
6.	 Now,	if	you	look	at	the	console	logs,	you	will	see	a	bunch	of	stack	trace	errors

basically	saying	the	following:
Caused	by:	java.lang.UnsupportedOperationException:	Cannot	change	HTTP

accept	header	-	use	a	different	locale	resolution	strategy

Note
The	error	is	not	because	we	entered	an	invalid	locale,	but	because	the	default	locale
resolution	strategy	does	not	allow	the	resetting	of	the	locale	that	is	requested	by	the
browser.	The	fact	that	we	got	an	error	shows	that	our	interceptor	is	working.

How	it	works…
When	it	comes	to	configuring	the	Spring	MVC	internals,	it	is	not	as	simple	as	just
defining	a	bunch	of	beans—at	least	not	always.	This	is	due	to	the	need	of	providing	a
more	fine-tuned	mapping	of	the	MVC	components	to	requests.	To	make	things	easier,
Spring	provides	us	with	an	adapter	implementation	of	WebMvcConfigurer,
WebMvcConfigurerAdapter,	that	we	can	extend	and	override	the	settings	that	we	need.

In	the	particular	case	of	configuring	interceptors,	we	are	overriding	the
addInterceptors(InterceptorRegistry	registry)	method.	This	is	a	typical	callback
method	where	we	are	given	a	registry	in	order	to	register	as	many	additional	interceptors
as	we	need.	During	the	MVC	autoconfiguration	phase,	Spring	Boot,	just	as	in	the	case	of
Filters,	detects	instances	of	WebMvcConfigurer	and	sequentially	calls	the	callback	methods
on	all	of	them.	It	means	that	we	can	have	more	than	one	implementation	of	the
WebMvcConfigurer	class	if	we	want	to	have	some	logical	separation.

Configuring	custom
HttpMessageConverters
While	we	were	building	our	RESTful	web	data	service,	we	defined	the	controllers,
repositories,	and	put	some	annotations	on	them;	but	nowhere	did	we	do	any	kind	of	object
translation	from	the	java	entity	beans	to	the	HTTP	data	stream	output.	However,	behind
the	scenes,	Spring	Boot	automatically	configured	HttpMessageConverters	to	translate	our
entity	beans	objects	into	a	JSON	representation	using	Jackson	library,	writing	the	resulting
JSON	data	to	an	HTTP	response	output	stream.	When	multiple	converters	are	available,
the	most	applicable	one	gets	selected	based	on	the	message	object	class	and	the	requested
content	type.

The	purpose	of	HttpMessageConverters	is	to	translate	various	object	types	into	their
corresponding	HTTP	output	formats.	A	converter	can	either	support	a	range	of	multiple
data	types	or	multiple	output	formats,	or	a	combination	of	both.	For	example,
MappingJackson2HttpMessageConverter	can	translate	any	Java	Object	into
application/json,	whereas	ProtobufHttpMessageConverter	can	only	operate	on
instances	of	com.google.protobuf.Message	but	can	write	them	to	the	wire	as
application/json,	application/xml,	text/plain,	or	application/x-protobuf.
HttpMessageConverters	support	not	only	writing	out	to	the	HTTP	stream	but	also
converting	HTTP	requests	to	appropriate	Java	objects	as	well.

How	to	do	it…
There	are	a	number	of	ways	in	which	we	can	configure	converters.	It	all	depends	on	which
one	you	prefer	or	how	much	control	you	want	to	achieve.

1.	 Let’s	add	ByteArrayHttpMessageConverter	as	@Bean	to	our	WebConfiguration	class
in	the	following	manner:

@Bean

public	

		ByteArrayHttpMessageConverter	byteArrayHttpMessageConverter()	{

				return	new	ByteArrayHttpMessageConverter();

}

2.	 Another	way	to	achieve	this	is	to	override	the	configureMessageConverters	method
in	the	WebConfiguration	class,	which	extends	WebMvcConfigurerAdapter,	defining
such	method	as	follows:

@Override

public	void	configureMessageConverters(List<HttpMessageConverter<?>>	

converters)	{

				converters.add(new	ByteArrayHttpMessageConverter());

}

3.	 If	you	want	to	have	a	bit	more	control,	we	can	override	the
extendMessageConverters	method	in	the	following	way:

@Override

public	void	

		extendMessageConverters(List<HttpMessageConverter<?>>	

				converters)	{

		converters.clear();

		converters.add(new	ByteArrayHttpMessageConverter());

}

How	it	works…
As	you	can	see,	Spring	gives	us	multiple	ways	of	achieving	the	same	thing	and	it	all
depends	on	our	preference	or	particular	details	of	the	implementation.

We	covered	three	different	ways	of	adding	HttpMessageConverter	to	our	application.	So
what	is	the	difference,	one	might	ask?

Declaring	HttpMessageConverter	as	@Bean	is	the	quickest	and	simplest	way	of	adding	a
custom	converter	to	the	application.	It	is	similar	to	how	we	added	Servlet	Filters	in	an
earlier	example.	If	Spring	detects	a	bean	of	the	HttpMessageConverter	type,	it	will	add	it
to	the	list	automatically.	If	we	did	not	have	a	WebConfiguration	class	that	extends
WebMvcConfigurerAdapter,	it	would	have	been	the	preferred	approach.

When	the	application	needs	to	dictate	the	extension	of	WebMvcConfigurerAdapter	to
configure	other	things	such	as	interceptors,	then	it	would	be	more	consistent	to	override
the	configureMessageConverters	method	and	add	our	converter	to	the	list.	As	there	can
be	multiple	instances	of	WebMvcConfigurers,	which	could	be	either	added	by	us	or	via	the
autoconfiguration	settings	from	various	Spring	Boot	Starters,	there	is	no	guarantee	that	our
method	can	get	called	in	any	particular	order.

If	we	need	to	do	something	even	more	drastic	such	as	removing	all	the	other	converters
from	the	list	or	clearing	it	of	duplicate	converters,	this	is	where	overriding
extendMessageConverters	comes	into	play.	This	method	gets	invoked	after	all	the
WebMvcConfigurers	get	called	for	configureMessageConverters	and	the	list	of
converters	is	fully	populated.	Of	course,	it	is	entirely	possible	that	some	other	instance	of
WebMvcConfigurer	could	override	the	extendMessageConverters	as	well;	but	the	chances
of	this	are	very	low	so	you	have	a	high	degree	of	having	the	desired	impact.

Configuring	custom	PropertyEditors
In	the	previous	example,	we	learned	how	to	configure	converters	for	an	HTTP	request	and
response	data.	There	are	other	kinds	of	conversions	that	take	place,	especially	in	regards	to
dynamically	converting	parameters	to	various	objects,	such	as	Strings	to	Date	or	an
Integer.

When	we	declare	a	mapping	method	in	a	controller,	Spring	allows	us	to	freely	define	the
method	signature	with	the	exact	object	types	that	we	require.	The	way	in	which	this	is
achieved	is	via	the	use	of	the	PropertyEditor	implementations.	PropertyEditor	is	a
default	concept	defined	as	part	of	the	JDK	and	designed	to	allow	the	transformation	of	a
textual	value	to	a	given	type.	It	was	initially	intended	to	be	used	to	build	Java	Swing/AWT
GUI	and	later	proved	to	be	a	good	fit	for	Spring’s	need	to	convert	web	parameters	to
method	argument	types.

Spring	MVC	already	provides	you	with	a	lot	of	PropertyEditor	implementations	for
most	of	the	common	types,	such	as	Boolean,	Currency,	and	Class.	Let’s	say	that	we	want
to	create	a	proper	Isbn	class	object	and	use	this	in	our	controller	instead	of	a	plain	String.

How	to	do	it…
1.	 First,	we	will	need	to	remove	the	extendMessageConverters	method	from	our

WebConfiguration	class	as	the	converters.clear()	call	will	break	the	rendering
because	we	removed	all	of	the	supported	type	converters.

2.	 Next,	we	will	add	the	definition	of	an	Isbn	object	and	IsbnEditor	class	as	well	as	a
method,	initBinder,	to	our	BookController	where	we	will	configure	the
IsbnEditor	with	the	following	content:

public	class	Isbn	{

		private	String	isbn;

		public	Isbn(String	isbn)	{

				this.isbn	=	isbn;

		}

		public	String	getIsbn()	{

				return	isbn;

		}

}

public	class	IsbnEditor	extends	PropertyEditorSupport	{

		@Override

		public	void	setAsText(String	text)	throws	IllegalArgumentException	{

						if	(StringUtils.hasText(text))	{

								setValue(new	Isbn(text.trim()));

						}

						else	{

								setValue(null);

						}

				}

		@Override

		public	String	getAsText()	{

				Isbn	isbn	=	(Isbn)	getValue();

				if	(isbn	!=	null)	{

						return	isbn.getIsbn();

				}

				else	{

						return	"";

				}

		}

}

@InitBinder

public	void	initBinder(WebDataBinder	binder)	{

		binder.registerCustomEditor(Isbn.class,	new	IsbnEditor());

}

3.	 Our	getBook	method	in	the	BookController	will	also	change	in	order	to	accept	the
Isbn	object,	in	the	following	way:

@RequestMapping(value	=	"/{isbn}",	method	=	RequestMethod.GET)

public	Book	getBook(@PathVariable	Isbn	isbn)	{

		return	bookRepository.findBookByIsbn(isbn.getIsbn());

}

4.	 Start	the	application	by	running	./gradlew	clean	bootRun.
5.	 In	the	browser,	go	to	http://localhost:8080/books/978-1-78528-415-1.
6.	 While	we	will	not	observe	any	visible	changes,	the	IsbnEditor	is	indeed	at	work,

creating	an	instance	of	an	Isbn	class	object	from	the	{isbn}	parameter.

How	it	works…
Spring	automatically	configures	a	large	number	of	default	editors;	but	for	custom	types,
we	have	to	explicitly	instantiate	new	editors	for	every	web	request.	This	is	done	in	the
controller	in	a	method	that	is	annotated	with	@InitBinder.	This	annotation	is	scanned	and
all	the	detected	methods	should	have	a	signature	of	accepting	WebDataBinder	as	an
argument.	Among	other	things,	WebDataBinder	provides	us	with	an	ability	to	register	as
many	custom	editors	as	we	require	for	the	controller	methods	to	be	bound	properly.

Note
It	is	VERY	important	to	know	that	PropertyEditor	is	not	thread	safe!

For	this	reason,	we	have	to	create	a	new	instance	of	our	custom	editors	for	every	web
request	and	register	them	with	WebDataBinder.

In	case	a	new	PropertyEditor	is	needed,	it	is	best	to	create	one	by	extending
PropertyEditorSupport	and	overriding	the	desired	methods	with	custom
implementation.

Configuring	custom	type	Formatters
Mostly	because	of	its	statefulness	and	lack	of	thread	safety,	since	version	3,	Spring	has
added	a	Formatter	interface	as	a	replacement	for	PropertyEditor.	The	Formatters	are
intended	to	provide	a	similar	functionality	but	in	a	completely	thread-safe	manner	and
focusing	on	a	very	specific	task	of	parsing	a	String	in	an	object	type	and	converting	an
object	to	its	String	representation.

Let’s	suppose	that	for	our	application,	we	would	like	to	have	a	Formatter	that	would	take
an	ISBN	number	of	a	book	in	a	String	form	and	convert	it	to	a	Book	entity	object.	This
way,	we	can	define	the	controller	request	methods	with	a	Book	argument	when	the	request
URL	signature	only	contains	an	ISBN	number	or	a	database	ID.

How	to	do	it…
1.	 First,	let’s	create	a	new	package	called	formatters	in	the

src/main/java/org/test/bookpub	directory	from	the	root	of	our	project.
2.	 Next,	we	will	create	the	Formatter	implementation	called	BookFormatter	in	our

newly	created	formatters	directory	from	the	root	of	our	project	with	the	following
content:

public	class	BookFormatter	implements	Formatter<Book>	{

		private	BookRepository	repository;

		public	BookFormatter(BookRepository	repository)	{

				this.repository	=	repository;

		}

		@Override

		public	Book	parse(String	bookIdentifier,	Locale	locale)	throws	

ParseException	{

				Book	book	=	repository.findBookByIsbn(bookIdentifier);

				return	book	!=	null	?	book	:	

repository.findOne(Long.valueOf(bookIdentifier));

		}

		@Override

		public	String	print(Book	book,	Locale	locale)	{

				return	book.getIsbn();

		}

}

3.	 Now	that	we	have	our	formatter,	we	will	add	it	to	the	registry	by	overriding	an
addFormatters(FormatterRegistry	registry)	method	in	the	WebConfiguration
class:

@Autowired	

private	BookRepository	bookRepository;

@Override

public	void	addFormatters(FormatterRegistry	registry)	{

		registry.addFormatter(new	BookFormatter(bookRepository));

}

4.	 Finally,	let’s	add	a	new	request	method	to	our	BookController	class	located	in	the
src/main/java/org/test/bookpub/controllers	directory	from	the	root	of	our
project	that	will	display	the	reviewers	for	a	given	ISBN	of	a	book:

@RequestMapping(value	=	"/{isbn}/reviewers",	method	=	

RequestMethod.GET)

public	List<Reviewer>	getReviewers(@PathVariable("isbn")	Book	book)	{

		return	book.getReviewers();

}

5.	 Just	so	that	we	can	have	some	data	to	play	with,	let’s	manually	(for	now)	populate
our	database	with	some	test	data	by	adding	two	more	autowired	repositories	to	the
StartupRunner	class:

@Autowired	private	AuthorRepository	authorRepository;

@Autowired	private	PublisherRepository	publisherRepository;

The	following	code	snippet	is	used	for	StartupRunner's	run(…)	method:

Author	author	=	new	Author("Alex",	"Antonov");

author	=	authorRepository.save(author);

Publisher	publisher	=	new	Publisher("Packt");

publisher	=	publisherRepository.save(publisher);

Book	book	=	new	Book("978-1-78528-415-1",	"Spring	Boot	Recipes",	

author,	publisher);

bookRepository.save(book);

6.	 Start	the	application	by	running	./gradlew	clean	bootRun.
7.	 Let’s	open	http://localhost:8080/books/978-1-78528-415-1/reviewers	in	the

browser	and	you	should	be	able	to	see	the	following	results:

How	it	works…
The	Formatter	facility	is	aimed	towards	providing	a	similar	functionality	to
PropertyEditors.	By	registering	our	formatter	with	the	FormatterRegistry	in	the
overridden	addFormatters	method,	we	are	instructing	Spring	to	use	our	Formatter	to
translate	a	textual	representation	of	our	Book	into	an	entity	object	and	back.	As	Formatters
are	stateless,	we	don’t	need	to	do	the	registration	in	our	controller	for	every	call;	we	have
to	do	it	only	once	and	this	will	ensure	Spring	to	use	it	for	every	web	request.

Tip
It	is	also	good	to	remember	that	if	you	want	to	define	a	conversion	of	a	common	type,
such	as	String	or	Boolean—as	we	did	in	our	IsbnEditor	example—it	is	best	to	do	this
via	PropertyEditors	initialization	in	Controller’s	InitBinder	method	because	such	a
change	is	probably	not	globally	desired	and	is	only	needed	for	a	particular	Controller’s
functionality.

You	have	probably	noticed	that	we	also	autowired	BookRepository	to	a
WebConfiguration	class,	as	this	was	needed	to	create	the	BookFormatter.	This	is	one	of
the	cool	things	about	Spring—it	lets	us	combine	the	configuration	classes	and	make	them
dependent	on	the	other	beans	at	the	same	time.	As	we	indicated	that	we	need	a
BookRepository	in	order	to	create	a	WebConfiguration	class,	Spring	ensured	that	the
BookRepository	will	be	created	first	and	then	automatically	injected	as	a	dependency
during	the	creation	of	the	WebConfiguration	class.	After	WebConfiguration	is
instantiated,	it	is	processed	for	configuration	instructions.

The	rest	of	the	added	functionalities	should	already	be	familiar	as	we	covered	that	in	our
previous	recipes.	We	will	explore	how	to	automatically	populate	databases	with	schemas
and	data	in	Chapter	5,	Application	Testing,	in	detail,	where	we	will	also	talk	about
application	testing.

Chapter	3.	Web	Framework	Behavior
Tuning
In	this	chapter,	we	will	learn	about	the	following	topics:

Configuring	route	matching	patterns
Configuring	custom	static	path	mappings
Tuning	Tomcat	via	the	EmbeddedServletContainerCustomizer
Choosing	embedded	servlet	containers
Adding	custom	connectors

Introduction
In	Chapter	2,	Configuring	Web	Applications,	we	explored	how	to	configure	web
applications	in	Spring	Boot	with	our	custom	filters,	interceptors,	and	so	on.	We	will
continue	to	look	further	into	enhancing	our	web	application	by	doing	behavior	tuning,
configuring	the	custom	routing	rules	and	patterns,	adding	additional	static	asset	paths,	and
adding	and	modifying	servlet	container	connectors	and	other	properties	such	as	enabling
SSL.

Configuring	route	matching	patterns
When	we	build	web	applications,	it	is	not	always	the	case	that	a	default,	out-of-the-box,
mapping	configuration	is	applicable.	At	times,	we	want	to	create	our	RESTful	URLs	that
contain	characters	such	as	.	(dot),	which	Spring	treats	as	a	delimiter	defining	format,	for
example	the	dot	in	path.xml,	or	we	might	not	want	to	recognize	a	trailing	slash,	as	in
/home/,	and	so	on.	Conveniently,	Spring	provides	us	with	a	way	to	get	this	accomplished
with	ease.

In	Chapter	2,	Configuring	Web	Applications,	we	introduced	a	WebConfiguration	class,
which	extends	from	WebMvcConfigurerAdapter.	This	extension	allows	us	to	override
methods	that	are	geared	toward	adding	filters,	formatters,	and	many	more.	It	also	has
methods	that	can	be	overridden	in	order	to	configure	the	path	match,	among	other	things.

Let’s	imagine	that	the	ISBN	format	does	allow	the	use	of	dots	to	separate	the	book	number
from	the	revision	with	a	pattern	looking	like	[isbn-number].[revision].

How	to	do	it…
We	will	configure	our	application	to	not	use	the	suffix	pattern	match	of	.*	and	not	to	strip
the	values	after	the	dot	when	parsing	the	parameters.	Let’s	perform	the	following	steps:

1.	 Let’s	add	the	necessary	configuration	to	our	WebConfiguration	class	with	the
following	content:

@Override

public	void	configurePathMatch(PathMatchConfigurer	configurer)	{

				configurer.setUseSuffixPatternMatch(false).

						setUseTrailingSlashMatch(true);

}

2.	 Start	the	application	by	running	./gradlew	clean	bootRun.
3.	 Let’s	open	http://localhost:8080/books/978-1-78528-415-1.1/reviewers	in	the

browser	to	see	the	following	results:

If	we	enter	the	correct	ISBN,	we	will	see	a	different	result,	as	follows:

How	it	works…
Let’s	look	at	what	we	did	in	detail.	The	configurePathMatch(PathMatchConfigurer
configurer)	method	gives	us	an	ability	to	set	our	own	behavior	in	how	we	want	Spring	to
match	the	request	URL	path	to	the	controller	parameters:

The	configurer.setUseSuffixPatternMatch(false)	method	indicates	that	we
don’t	want	to	use	the	.*	suffix	so	as	to	strip	the	trailing	characters	after	the	last	dot.
This	translates	into	Spring	parsing	out	the	entire	978-1-78528-415-1.1	as	an	{isbn}
parameter	for	BookController.	So	http://localhost:8080/books/978-1-78528-
415-1.1	and	http://localhost:8080/books/978-1-78528-415-1	will	become
different	URLs.
The	configurer.setUseTrailingSlashMatch(true)	method	indicates	that	we	want
to	use	the	trailing	/	in	the	URL	as	a	match	as	if	it	were	not	there.	This	effectively
makes	http://localhost:8080/books/978-1-78528-415-1	the	same	as
http://localhost:8080/books/978-1-78528-415-1/.

If	you	want	to	do	further	configuration	of	how	the	path	matching	takes	place,	you	can
provide	your	own	implementation	of	PathMatcher	and	UrlPathHelper,	but	these	would
be	required	in	the	most	extreme	and	custom-tailored	situations	and	are	not	generally
recommended.

Configuring	custom	static	path	mappings
In	the	previous	recipe,	we	looked	at	how	to	tune	the	URL	path	mapping	for	requests	and
translate	them	into	controller	methods.	It	is	also	possible	to	control	how	our	web
application	deals	with	static	assets	and	the	files	that	exist	on	the	file	system	or	are	bundled
in	the	deployable	archive.

Let’s	say	that	we	want	to	expose	our	internal	application.properties	file	via	the	static
web	URL	of	http://localhost:8080/internal/application.properties	from	our
application.	To	get	started	with	this,	proceed	with	the	steps	in	the	next	section.

How	to	do	it…
1.	 Let’s	add	a	new	method,	addResourceHandlers,	to	the	WebConfiguration	class	with

the	following	content:

@Override

public	void	addResourceHandlers(ResourceHandlerRegistry	registry)	{

		registry.addResourceHandler("/internal/**")

				.addResourceLocations("classpath:/");

}

2.	 Start	the	application	by	running	./gradlew	clean	bootRun.
3.	 Let’s	open	http://localhost:8080/internal/application.properties	in	the

browser	to	see	the	following	results:

How	it	works…
The	method	that	we	overrode,	addResourceHandlers(ResourceHandlerRegistry
registry),	is	another	configuration	method	from	WebMvcConfigurer,	which	gives	us	an
ability	to	define	custom	mappings	for	static	resource	URLs	and	connect	them	with	the
resources	on	the	file	system	or	application	classpath.	In	our	case,	we	defined	a	mapping	of
anything	that	is	being	accessed	via	the	/	internal	URL	to	be	looked	for	in	classpath:/	of
our	application.	(For	production	environment,	you	probably	don’t	want	to	expose	the
entire	classpath	as	a	static	resource!)	So	let’s	look	at	what	we	did	in	detail,	as	follows:

The	registry.addResourceHandler("/internal/**")	methods	adds	a	resource
handler	to	the	registry	to	handle	our	static	resources	and	it	returns	a
ResourceHandlerRegistration	to	us,	which	can	be	used	to	further	configure	the
mapping	in	a	chained	fashion.	The	/internal/**	string	is	a	path	pattern	that	will	be
used	to	match	against	the	request	URL	using	PathMatcher.	We	have	seen	how
PathMatcher	can	be	configured	in	the	previous	example,	but	by	default	an
AntPathMatcher	implementation	is	used.	We	can	configure	more	than	one	URL
pattern	to	be	matched	to	a	particular	resource	location.
The	addResourceLocations("classpath:/")	method	is	called	on	the	newly	created
instance	of	ResourceHandlerRegistration	and	it	defines	the	directories	where	the
resources	should	be	loaded	from.	These	should	be	valid	file	systems	or	classpath
directories,	and	there	can	be	more	than	one	entered.	If	multiple	locations	are
provided,	they	will	be	checked	in	the	order	in	which	they	were	entered.

We	can	also	configure	a	caching	interval	for	the	given	resource	using	the
setCachePeriod(Integer	cachePeriod)	method.

Tuning	Tomcat	via
EmbeddedServletContainerCustomizer
Spring	Boot	exposes	many	of	the	server	properties	that	can	be	used	to	configure	things
such	as	PORT,	SSL,	and	others	by	simply	setting	the	values	in	application.properties.
However,	if	we	need	to	do	any	more	complex	tuning,	Spring	Boot	provides	us	with	an
EmbeddedServletContainerCustomizer	interface	to	programmatically	define	our
configuration.

Even	though	the	session	timeout	can	be	easily	configured	by	setting	the	server.session-
timeout	property	in	application.properties	to	our	desired	value	in	seconds,	we	will	do
it	using	EmbeddedServletContainerCustomizer	to	demonstrate	the	functionality.

How	to	do	it…
1.	 Let’s	say	that	we	want	our	session	to	last	for	one	minute.	To	make	this	happen,	we

will	add	an	EmbeddedServletContainerCustomizer	bean	to	our	WebConfiguration
class	with	the	following	content:

@Bean

public	

		EmbeddedServletContainerCustomizer

		embeddedServletContainerCustomizer()	{

		return	new	EmbeddedServletContainerCustomizer()	{

				@Override

				public	void	

						customize(ConfigurableEmbeddedServletContainer	

								container)	{

								container.setSessionTimeout(1,	TimeUnit.MINUTES);

				}

		};

}

2.	 Just	for	the	purpose	of	demonstration,	we	will	ask	the	request	object	for	the	session
by	calling	getSession()	method,	which	will	force	its	creation.	To	do	this,	we	will
add	a	new	request	mapping	to	our	BookController	class	with	the	following	content:

@RequestMapping(value	=	"/session",	method	=	RequestMethod.GET)

public	String	getSessionId(HttpServletRequest	request)	{

		return	request.getSession().getId();

}

3.	 Start	the	application	by	running	./gradlew	clean	bootRun.
4.	 Let’s	open	http://localhost:8080/books/session	in	the	browser	to	see	the

following	results:

If	we	wait	for	more	than	a	minute	and	then	reload	this	page,	the	session	ID	will	change	to
a	different	one.

How	it	works…
The	EmbeddedServletContainerCustomizer	interface	defines	the
customize(ConfigurableEmbeddedServletContainer	container)	method.	This	is
actually	a	nice	convenience	for	those	using	Java	8	as	we	can	just	return	a	lambda	rather
than	create	an	implementation	of	the	class.	In	this	case,	it	would	look	as	follows:

public	EmbeddedServletContainerCustomizer

embeddedServletContainerCustomizer()	{

						return	(ConfigurableEmbeddedServletContainer	container)	->	{

								container.setSessionTimeout(1,	TimeUnit.MINUTES);

						};

}

During	the	application	startup,	the	Spring	Boot	autoconfiguration	detects	the	presence	of
the	customizer	and	invokes	the	customize(…)	method,	passing	the	reference	to	a	servlet
container.	In	our	specific	case,	we	actually	get	an	instance	of	the
TomcatEmbeddedServletContainerFactory	implementation;	but	depending	on	the	kind	of
servlet	container	that	is	used,	such	as	Jetty,	or	Undertow,	the	implementation	will	vary.

Choosing	embedded	servlet	containers
Despite	Tomcat	being	the	default	embedded	container	in	Spring	Boot,	we	are	not	limited
to	only	one.	Spring	Boot	provides	you	with	ready-to-use	starters	for	Jetty	and	Undertow	as
well,	so	we	have	a	choice	of	containers.

If	we	decide	that	we	want	to	use	Jetty	as	our	servlet	container,	we	will	need	to	add	a	Jetty
starter	to	our	build	file.

How	to	do	it…
1.	 As	Tomcat	already	comes	as	a	transitive	dependency	of	Spring	Boot,	we	will	need	to

exclude	it	from	our	build	dependency	tree	by	adding	the	following	to	build.gradle:

configurations	{

		compile.exclude	module:	"spring-boot-starter-tomcat"

}

2.	 We	will	also	need	to	add	a	compile	dependency	to	our	build	dependencies	on	Jetty:

compile("org.springframework.boot:spring-boot-starter-jetty")

3.	 To	fix	the	compiler	errors,	we	will	need	to	remove	the	bean	declaration	of	Tomcat’s
RemoteIpFilter	from	our	WebConfiguration	class	as	the	Tomcat	dependency	has
been	removed.

4.	 Start	the	application	by	running	./gradlew	clean	bootRun.
5.	 If	we	now	look	at	the	console	logs,	we	will	see	that	our	application	is	running	in

Jetty:

2015-03-29	---	o.eclipse.jetty.server.ServerConnector			:	Started	

ServerConn…

2015-03-29	---.s.b.c.e.j.JettyEmbeddedServletContainer	:	Jetty	started	

on	port(s)	8080	(http/1.1)

How	it	works…
The	reason	that	this	works	is	because	of	Spring	Boot’s	autoconfiguration	magic.	We	had	to
remove	the	Tomcat	dependency	from	the	build	file	in	order	to	prevent	a	dependency
collision	between	Tomcat	and	Jetty.	Spring	Boot	does	a	conditional	scan	of	the	classes	in
the	classpath	and	depending	on	what	it	detects,	it	determines	which	servlet	container	will
be	used.

If	we	look	in	the	EmbeddedServletContainerAutoConfiguration	class,	we	will	see	the
following	conditional	code	that	checks	for	the	presence	of	Servlet.class,	Server.class
and	Loader.class	from	the	Jetty	package	in	order	to	determine	if
JettyEmbeddedServletContainerFactory	should	be	used:

/**

	*	Nested	configuration	if	Jetty	is	being	used.

	*/

@Configuration

@ConditionalOnClass({	Servlet.class,	Server.class,	Loader.class})

@ConditionalOnMissingBean(value	=	EmbeddedServletContainerFactory.class,	

search	=	SearchStrategy.CURRENT)

public	static	class	EmbeddedJetty	{

		@Bean

		public	JettyEmbeddedServletContainerFactory	

						jettyEmbeddedServletContainerFactory()	{

								return	new	JettyEmbeddedServletContainerFactory();

		}

}

The	@ConditionalOnClass	annotation	tells	Spring	Boot	to	use	only	the	EmbeddedJetty
configuration	if	Jetty’s	classes,	namely	org.eclipse.jetty.server.Server	and
org.eclipse.jetty.util.Loader,	are	present	in	the	classpath.

Adding	custom	connectors
Another	very	common	scenario	in	the	enterprise	application	development	and	deployment
is	to	run	the	application	with	two	separate	HTTP	port	connectors:	one	for	HTTP	and	the
other	for	HTTPS.

Getting	ready
We	will	start	by	going	back	to	using	Tomcat;	so	for	this	recipe,	we	will	undo	the	changes
that	we	implemented	in	the	previous	example.

In	order	to	create	an	HTTPS	connector,	we	will	need	a	few	things;	but	most	importantly,
we	will	need	to	generate	Certificate	keystore	that	is	used	to	encrypt	and	decrypt	the	SSL
communication	with	the	browser.

If	you	are	using	Unix	or	Mac,	you	can	do	it	by	running	the	following	command:

$JAVA_HOME/bin/keytool	-genkey	-alias	tomcat	-keyalg	RSA

On	Windows,	this	could	be	achieved	via	the	following	code:

"%JAVA_HOME%\bin\keytool"	-genkey	-alias	tomcat	-keyalg	RSA

During	the	creation	of	the	keystore,	you	should	enter	the	information	that	is	appropriate	to
you,	including	passwords,	name,	and	so	on.	For	the	purpose	of	this	book,	we	will	use	the
default	password:	changeit.	Once	the	execution	is	complete,	a	newly	generated	keystore
file	will	appear	in	your	home	directory	under	the	name:	.keystore.

Note
You	can	find	more	information	about	preparing	the	certificate	keystore	at
https://tomcat.apache.org/tomcat-8.0-doc/ssl-
howto.html#Prepare_the_Certificate_Keystore.

https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html#Prepare_the_Certificate_Keystore

How	to	do	it…
With	the	keystore	creation	complete,	we	will	need	to	create	a	separate	properties	file	in
order	to	store	our	configuration	for	the	HTTPS	connector,	such	as	port	and	others.	After
that,	we	will	create	a	configuration	property	binding	object	and	use	it	to	configure	our	new
connector.	Perform	the	following	steps;

1.	 First,	we	will	create	a	new	properties	file	named	tomcat.https.properties	in	the
src/main/resources	directory	from	the	root	of	our	project	with	the	following
content:

custom.tomcat.https.port=8443

custom.tomcat.https.secure=true

custom.tomcat.https.scheme=https

custom.tomcat.https.ssl=true

custom.tomcat.https.keystore=${user.home}/.keystore

custom.tomcat.https.keystore-password=changeit

2.	 Next,	we	will	create	a	nested	static	class	named	TomcatSslConnectorProperties	in
our	WebConfiguration	class	with	the	following	content:

@ConfigurationProperties(prefix	=	"custom.tomcat.https")

public	static	class	TomcatSslConnectorProperties	{

		private	Integer	port;

		private	Boolean	ssl=	true;

		private	Boolean	secure	=	true;

		private	String	scheme	=	"https";

		private	File	keystore;

		private	String	keystorePassword;

		//Skipping	getters	and	setters	to	save	space,	but	we	do	need	them

		public	void	configureConnector(Connector	connector)	{

				if	(port	!=	null)

						connector.setPort(port);

				if	(secure	!=	null)

						connector.setSecure(secure);

				if	(scheme	!=	null)

						connector.setScheme(scheme);

				if	(ssl!=	null)

						connector.setProperty("SSLEnabled",	ssl.toString());

				if	(keystore!=	null	&&	keystore.exists())	{

						connector.setProperty("keystoreFile",	

keystore.getAbsolutePath());

						connector.setProperty("keystorePassword",	keystorePassword);

				}

		}

}

3.	 Now,	we	will	need	to	add	our	newly	created	tomcat.http.properties	file	as	a
Spring	Boot	property	source	and	enable	TomcatSslConnectorProperties	to	be
bound.	This	can	be	done	by	adding	the	following	code	right	above	the	class
declaration	of	the	WebConfiguration	class:

@Configuration

@PropertySource("classpath:/tomcat.https.properties")

@EnableConfigurationProperties(WebConfiguration.TomcatSslConnectorPrope

rties.class)

public	class	WebConfiguration	extends	WebMvcConfigurerAdapter	{...}

4.	 Finally,	we	will	need	to	create	an	EmbeddedServletContainerFactory	Spring	bean
where	we	will	add	our	HTTPS	connector.	We	will	do	that	by	adding	the	following
code	to	the	WebConfiguration	class:

@Bean

public	EmbeddedServletContainerFactory	

servletContainer(TomcatSslConnectorProperties	properties)	{

						TomcatEmbeddedServletContainerFactory	tomcat	=	new	

TomcatEmbeddedServletContainerFactory();

						

tomcat.addAdditionalTomcatConnectors(createSslConnector(properties)

);

						return	tomcat;

}

private	Connector	createSslConnector(TomcatSslConnectorProperties	

properties)	{

				Connector	connector	=	new	Connector();

				properties.configureConnector(connector);

				return	connector;

}

5.	 Start	the	application	by	running	./gradlew	clean	bootRun.
6.	 Let’s	open	https://localhost:8443/internal/tomcat.https.properties	in	the

browser	to	see	the	following	results:

How	it	works…
In	this	recipe,	we	did	a	number	of	things;	so	let’s	break	them	down	one	change	at	a	time.

The	first	change,	which	we	did	in	this	recipe,	ignoring	the	need	to	create	the	keystore,	was
the	creation	of	tomcat.https.properties	and	TomcatSslConnectorProperties	object	to
bind	them	to.	Previously,	we	already	dealt	with	making	changes	to	the	various	settings	in
application.properties	when	configuring	our	DataSource.	At	that	time,	though,	we	did
not	have	to	create	any	binding	objects	because	Spring	Boot	already	has	them	defined.

As	we	learned	earlier,	Spring	Boot	already	exposes	many	properties	to	configure	the
application	settings,	including	a	whole	set	of	settings	for	the	server	configuration.	These
values	get	bound	to	an	internal	Spring	Boot	class:	ServerProperties.

Note
A	complete	list	of	the	common	application	properties	can	be	found	in	the	Spring	Boot
reference	documentation	at	http://docs.spring.io/spring-
boot/docs/current/reference/html/common-application-properties.html.

What	we	did	with	our	addition	was	simply	mimicking	Spring	Boot	and	creating	our	own
configuration	group	with	a	binding	object	behind	it.	The	reason	that	we	didn’t	use	the
already	existing	server.prefix,	and	instead	opted	for	custom.tomcat,	was	due	to
ServerProperties	forbidding	the	reuse	of	the	namespace	and	throwing	an	exception
during	property	binding	upon	detection	of	unknown	configuration	fields,	as	it	would	have
been	in	our	case.

The	@ConfigurationProperties(prefix	=	"custom.tomcat.https")	method	is	an
important	annotation	for	our	TomcatSslConnectorProperties	object.	It	tells	Spring	Boot
to	automatically	bind	the	properties	with	the	custom.tomcat.https	prefix	to	fields	that
are	declared	in	TomcatSslConnectorProperties.	In	order	for	the	binding	to	take	place—
in	addition	to	defining	the	fields	in	the	class—it	is	very	important	to	define	the	getters	and
setters	as	well.	It	is	also	worth	mentioning	that	during	the	binding	process,	Spring	will
automatically	try	to	convert	the	property	values	to	their	appropriate	data	types.	For
example,	the	value	of	custom.tomcat.https.keystore	gets	automatically	bound	to	a
private	File	keystore	field	object.

Note
The	converters,	which	we	learned	about	earlier,	will	also	be	used	during	the	process	of
converting	to	custom-defined	data	types.

The	next	step	is	to	tell	Spring	Boot	to	include	the	properties	that	are	defined	in
tomcat.https.properties	in	the	list	of	properties.	This	is	achieved	by	adding
@PropertySource("classpath:/tomcat.https.properties")	next	to	@Configuration
in	the	WebConfiguration	class.

After	the	values	are	imported,	we	will	need	to	tell	Spring	Boot	to	automatically	create	an
instance	of	TomcatSslConnectorProperties	for	us	to	use.	This	is	done	by	adding	the
following	annotation	next	to	@Configuration:

http://docs.spring.io/spring-boot/docs/current/reference/html/common-application-properties.html

@EnableConfigurationProperties(WebConfiguration.TomcatSslConnectorPropertie

s.class)

After	all	the	property	support	is	set	and	done,	we	will	proceed	with	the	actual	code	to
create	a	second	connector.	The	creation	of	the	EmbeddedServletContainerFactory	bean
provides	Spring	Boot	with	a	factory	to	use	in	order	to	create	the
EmbeddedServletContainer.	The	convenient	configureConnector(Connector
connector)	method,	which	we	added	to	TomcatSslConnectorProperties,	gives	us	a
good	place	to	encapsulate	and	consolidate	all	the	settings	that	are	needed	to	configure	the
newly	created	Connector	instance.

Chapter	4.	Writing	Custom	Spring	Boot
Starters
In	this	chapter,	we	will	cover	the	following	topics:

Understanding	Spring	Boot	autoconfiguration
Creating	a	custom	Spring	Boot	autoconfiguration	starter
Configuring	custom	conditional	bean	instantiations
Using	custom	@Enable*	annotations	to	toggle	configurations

Introduction
In	the	previous	chapters,	we	did	a	lot	of	configuration,	and	even	more	autoconfiguration
while	developing	our	Spring	Boot	application.	Now,	it	is	time	to	take	a	look	behind	the
scenes	and	find	out	the	magic	behind	the	Spring	Boot	autoconfiguration,	and	write	some
starters	of	our	own	as	well.

This	is	a	very	useful	capability	to	possess,	especially	for	large	software	enterprises	where
the	presence	of	a	proprietary	code	is	inevitable,	and	it	is	very	helpful	to	be	able	to	create
internal	custom	starters	that	would	automatically	add	some	of	the	configuration	or
functionalities	to	the	applications.	Some	likely	candidates	can	be	custom	configuration
systems,	libraries,	and	configurations	that	deal	with	connecting	to	databases,	using	custom
connection	pools,	http	clients,	servers,	and	so	on.	We	will	go	through	the	internals	of
Spring	Boot	autoconfiguration,	take	a	look	at	how	new	starters	are	created,	explore
conditional	initialization	and	wiring	of	beans	based	on	various	rules,	and	see	that
annotations	can	be	a	powerful	tool,	which	provides	the	consumers	of	the	starters	with
more	control	over	dictating	what	configurations	should	be	used	and	where.

Understanding	Spring	Boot
autoconfiguration
Spring	Boot	has	a	lot	of	power	when	it	comes	to	bootstrapping	an	application	and
configuring	it	with	exactly	the	things	that	are	needed,	all	without	much	of	the	glue	code
that	is	required	of	us,	the	developers.	The	secret	behind	this	power	actually	comes	from
Spring	itself	or	rather	from	the	Java	Configuration	functionality	that	it	provides.	As	we
add	more	starters	as	dependencies,	more	and	more	classes	will	appear	in	our	classpath.
Spring	Boot	detects	the	presence	or	absence	of	specific	classes	and	based	on	this
information,	makes	some	decisions,	which	are	fairly	complicated	at	times,	and
automatically	creates	and	wires	the	necessary	beans	to	the	application	context.

Sounds	simple,	right?

In	the	previous	recipes,	we	added	a	number	of	Spring	Boot	starters	such	as	spring-boot-
starter-data-jpa,	spring-boot-starter-web,	spring-boot-starter-data-test,	and
so	on.	We	will	use	the	same	code	that	we	finished	in	the	previous	chapter	in	order	to	see
what	actually	happens	during	the	application	startup	and	the	decisions	that	Spring	Boot
will	make	while	wiring	our	application	together.

How	to	do	it…
1.	 Conveniently,	Spring	Boot	provides	us	with	an	ability	to	get	the	AUTO-

CONFIGURATION	REPORT	by	simply	starting	the	application	with	the	debug	flag.	This
can	be	passed	to	the	application	either	as	an	environment	variable,	DEBUG,	as	a	system
property,	-Ddebug,	or	as	an	application	property,	--debug.

2.	 Start	the	application	by	running	DEBUG=true	./gradlew	clean	bootRun.
3.	 Now,	if	you	look	at	the	console	logs,	you	will	see	a	lot	more	information	printed

there	that	is	marked	with	the	DEBUG	level	log.	At	the	end	of	the	startup	log
sequence,	we	will	see	the	AUTO-CONFIGURATION	REPORT	as	follows:

=========================

AUTO-CONFIGURATION	REPORT

=========================

Positive	matches:

…

DataSourceAutoConfiguration

						-	@ConditionalOnClass	classes	found:	

javax.sql.DataSource,org.springframework.jdbc.datasource.embedded.Embed

dedDatabaseType	(OnClassCondition)

…

Negative	matches:

…

GsonAutoConfiguration

						-	required	@ConditionalOnClass	classes	not	found:	

com.google.gson.Gson	(OnClassCondition)

…

How	it	works…
As	you	can	see,	the	amount	of	information	that	is	printed	in	the	debug	mode	can	be
somewhat	overwhelming;	so	I’ve	selected	only	one	example	of	positive	and	negative
matches	each.

For	each	line	of	the	report,	Spring	Boot	tells	us	why	certain	configurations	have	been
selected	to	be	included,	what	they	have	been	positively	matched	on,	or,	for	the	negative
matches,	what	was	missing	that	prevented	a	particular	configuration	to	be	included	in	the
mix.	Let’s	look	at	the	positive	match	report	for	DataSourceAutoConfiguration:

The	@ConditionalOnClass	marker	in	parenthesis	classes	found	tells	us	that	Spring
Boot	has	detected	the	presence	of	a	particular	class,	specifically	two	classes	in	our
case:	javax.sql.DataSource	and
org.springframework.jdbc.datasource.embedded.EmbeddedDatabaseType.
The	OnClassCondition	indicates	the	kind	of	matching	that	was	used.	This	is
supported	by	the	@ConditionalOnClass	and	@ConditionalOnMissingClass
annotations.

While	OnClassCondition	is	the	most	common	kind	of	detection,	Spring	Boot	also	uses
many	other	conditions.	For	example,	OnBeanCondition	is	used	to	check	the	presence	or
absence	of	specific	bean	instances,	OnPropertyCondition	is	used	to	check	the	presence,
absence,	or	a	specific	value	of	a	property	as	well	as	any	number	of	the	custom	conditions
that	can	be	defined	using	the	@Conditional	annotation	and	Condition	interface
implementations.

The	negative	matches	show	us	a	list	of	configurations	that	Spring	Boot	has	evaluated,
which	means	that	they	do	exist	in	the	classpath	and	were	scanned	by	Spring	Boot	but
didn’t	pass	the	conditions	required	for	their	inclusion.	GsonAutoConfiguration,	while
available	in	the	classpath	as	it	is	a	part	of	the	imported	spring-boot-autoconfigure
artifact,	was	not	included	because	the	required	com.google.gson.Gson	class	was	not
detected	as	present	in	the	classpath,	thus	failing	the	OnClassCondition	presence	check.

The	implementation	of	the	GsonAutoConfiguration	file	looks	as	follows:

@Configuration

@ConditionalOnClass(Gson.class)

public	class	GsonAutoConfiguration	{

		@Bean

		@ConditionalOnMissingBean

		public	Gson	gson()	{

				return	new	Gson();

		}

}

After	looking	at	the	code,	it	is	very	easy	to	make	the	connection	between	the	conditional
annotations	and	the	report	information	that	is	provided	by	Spring	Boot	at	the	start	time.

Creating	a	custom	Spring	Boot
autoconfiguration	starter
We	have	a	high-level	idea	of	the	process	by	which	Spring	Boot	decides	which
configurations	to	include	in	the	formation	of	the	application	context.	Now,	let’s	take	a	stab
at	creating	our	own	Spring	Boot	starter	artifact,	which	we	can	include	as	an
autoconfigurable	dependency	in	our	build.

In	Chapter	2,	Configuring	Web	Applications,	you	learned	how	to	create	database
Repository	objects.	So,	let’s	build	a	simple	starter	that	will	create	another
CommandLineRunner	that	will	take	the	collection	of	all	the	Repository	instances	and	print
out	the	count	of	the	total	entries	for	each.

We	will	start	by	adding	a	child	Gradle	project	to	our	existing	project	that	will	house	the
codebase	for	the	starter	artifact.	We	will	call	it	db-count-starter.

How	to	do	it…
1.	 We	will	start	by	creating	a	new	directory	named	db-count-starter	in	the	root	of	our

project.
2.	 As	our	project	has	now	become	what	is	known	as	a	multiproject	build,	we	will

need	to	create	a	settings.gradle	configuration	file	in	the	root	of	our	project	with
the	following	content:

include	'db-count-starter'

3.	 We	should	also	create	a	separate	build.gradle	configuration	file	for	our	subproject
in	the	db-count-starter	directory	in	the	root	of	our	project	with	the	following
content:

apply	plugin:	'java'

repositories	{

		mavenCentral()

		maven	{	url	"https://repo.spring.io/snapshot"	}

		maven	{	url	"https://repo.spring.io/milestone"	}

}

dependencies	{

		compile("org.springframework.boot:spring-boot:1.2.3.RELEASE")

		compile("org.springframework.data:spring-data-commons:1.9.2.RELEASE")

}

4.	 Now	we	are	ready	to	start	coding.	So,	the	first	thing	is	to	create	the	directory
structure,	src/main/java/org/test/bookpubstarter/dbcount,	in	the	db-count-
starter	directory	in	the	root	of	our	project.

5.	 In	the	newly	created	directory,	let’s	add	our	implementation	of	the
CommandLineRunner	file	named	DbCountRunner.java	with	the	following	content:

public	class	DbCountRunner	implements	CommandLineRunner	{

				protected	final	Log	logger	=	LogFactory.getLog(getClass());

				private	Collection<CrudRepository>	repositories;

				public	DbCountRunner(Collection<CrudRepository>	repositories)	{

								this.repositories	=	repositories;

				}

				@Override

				public	void	run(String…	args)	throws	Exception	{

								repositories.forEach(crudRepository	->

												logger.info(String.format("%s	has	%s	entries",

																getRepositoryName(crudRepository.getClass()),

																crudRepository.count())));

				}

				private	static	String	getRepositoryName(Class	crudRepositoryClass)	

{

								for(Class	repositoryInterface	:

																crudRepositoryClass.getInterfaces())	{

												if	(repositoryInterface.getName().

startsWith("org.test.bookpub.repository"))	{

																return	repositoryInterface.getSimpleName();

												}

								}

								return	"UnknownRepository";

				}

}

6.	 With	the	actual	implementation	of	DbCountRunner	in	place,	we	will	now	need	to
create	the	configuration	object	that	will	declaratively	create	an	instance	during	the
configuration	phase.	So,	let’s	create	a	new	class	file	called
DbCountAutoConfiguration.java	with	the	following	content:

@Configuration

public	class	DbCountAutoConfiguration	{

				@Bean

				public	DbCountRunner	dbCountRunner(Collection<CrudRepository>	

repositories)	{

								return	new	DbCountRunner(repositories);

				}

}

7.	 We	will	also	need	to	tell	Spring	Boot	that	our	newly	created	JAR	artifact	contains	the
autoconfiguration	classes.	For	this,	we	will	need	to	create	a	resources/META-INF
directory	in	the	db-count-starter/src/main	directory	in	the	root	of	our	project.

8.	 In	this	newly	created	directory,	we	will	place	the	file	named	spring.factories	with
the	following	content:

org.springframework.boot.autoconfigure.EnableAutoConfiguration=org.test

.bookpubstarter.dbcount.DbCountAutoConfiguration

9.	 For	the	purpose	of	our	demo,	we	will	add	the	dependency	to	our	starter	artifact	in	the
main	project’s	build.gradle	by	adding	the	following	entry	in	the	dependencies
section:

compile	project(':db-count-starter')

10.	 Start	the	application	by	running	./gradlew	clean	bootRun.
11.	 Once	the	application	is	complied	and	has	started,	we	should	see	the	following	in	the

console	logs:

2015-04-05	INFO	org.test.bookpub.StartupRunner											:	Welcome	to	

the	Book	Catalog	System!

2015-04-05	INFO	o.t.b.dbcount.DbCountRunner														:	

AuthorRepository	has	1	entries

2015-04-05	INFO	o.t.b.dbcount.DbCountRunner														:	

PublisherRepository	has	1	entries

2015-04-05	INFO	o.t.b.dbcount.DbCountRunner														:	

BookRepository	has	1	entries

2015-04-05	INFO	o.t.b.dbcount.DbCountRunner														:	

ReviewerRepository	has	0	entries

2015-04-05	INFO	org.test.bookpub.BookPubApplication		:	Started	

BookPubApplication	in	8.528	seconds	(JVM	running	for	9.002)

2015-04-05	INFO	org.test.bookpub.StartupRunner											:	Number	of	

books:	1

How	it	works…
Congratulations!	You	have	now	built	your	very	own	Spring	Boot	autoconfiguration	starter.

First,	let’s	quickly	walk	through	the	changes	that	we	made	to	our	Gradle	build
configuration	and	then	we	will	examine	the	starter	setup	in	detail.

As	the	Spring	Boot	starter	is	a	separate,	independent	artifact,	just	adding	more	classes	to
our	existing	project	source	tree	would	not	really	demonstrate	much.	To	make	this	separate
artifact,	we	had	a	few	choices:	making	a	separate	Gradle	configuration	in	our	existing
project	or	creating	a	completely	separate	project	altogether.	The	most	ideal	solution,
however,	was	to	just	convert	our	build	to	Gradle	Multi-Project	Build	by	adding	a	nested
project	directory	and	subproject	dependency	to	build.gradle	of	the	root	project.	By
doing	this,	Gradle	actually	creates	a	separate	artifact	JAR	for	us	but	we	don’t	have	to
publish	it	anywhere,	only	include	it	as	a	compile	project(':db-count-starter')
dependency.

Note
For	more	information	about	Gradle	multi-project	builds,	you	can	check	out	the	manual	at
http://gradle.org/docs/current/userguide/multi_project_builds.html.

Spring	Boot	Auto-Configuration	Starter	is	nothing	more	than	a	regular	Spring	Java
Configuration	class	annotated	with	the	@Configuration	annotation	and	the	presence	of
spring.factories	in	the	classpath	in	the	META-INF	directory	with	the	appropriate
configuration	entries.

During	the	application	startup,	Spring	Boot	uses	SpringFactoriesLoader,	which	is	a	part
of	Spring	Core,	in	order	to	get	a	list	of	the	Spring	Java	Configurations	that	are	configured
for	the	org.springframework.boot.autoconfigure.EnableAutoConfiguration	property
key.	Under	the	hood,	this	call	collects	all	the	spring.factories	files	located	in	the	META-
INF	directory	from	all	the	jars	or	other	entries	in	the	classpath	and	builds	a	composite	list
to	be	added	as	application	context	configurations.	In	addition	to	the
EnableAutoConfiguration	key,	we	can	declare	the	following	other	keys	with
implementations,	which	would	be	automatically	initializable	during	startup	in	a	similar
fashion:

org.springframework.context.ApplicationContextInitializer

org.springframework.context.ApplicationListener

org.springframework.boot.SpringApplicationRunListener

org.springframework.boot.env.PropertySourceLoader

org.springframework.boot.autoconfigure.template.TemplateAvailabilityProvider

org.springframework.test.contex.TestExecutionListener

Ironically	enough,	a	Spring	Boot	Starter	does	not	need	to	depend	on	the	Spring	Boot
library	as	its	compile	time	dependency.	If	we	look	at	the	list	of	class	imports	in	the
DbCountAutoConfiguration	class,	we	will	not	see	anything	from	the
org.springframework.boot	package.	The	only	reason	that	we	have	a	dependency
declared	on	Spring	Boot	is	because	our	implementation	of	DbCountRunner	implements	the

http://gradle.org/docs/current/userguide/multi_project_builds.html

org.springframework.boot.CommandLineRunner	interface.

Configuring	custom	conditional	bean
instantiations
In	the	previous	example,	you	learned	how	to	get	the	basic	Spring	Boot	Starter	going.	On
the	inclusion	of	the	jar	in	the	application	classpath,	the	DbCountRunner	bean	will	be
created	automatically	and	added	to	the	application	context.	In	the	very	first	recipe	of	this
chapter,	we	have	also	seen	that	Spring	Boot	has	an	ability	to	do	conditional	configurations
depending	on	a	few	conditions,	such	as	the	presence	of	specific	classes	in	the	classpath,
existence	of	a	bean,	and	others.

For	this	recipe,	we	will	enhance	our	starter	with	a	conditional	check.	This	will	create	the
instance	of	DbCountRunner	only	if	no	other	bean	instance	of	this	class	has	already	been
created	and	added	to	the	application	context.

How	to	do	it…
1.	 In	the	DbCountAutoConfiguration	class,	we	will	add	an

@ConditionalOnMissingBean	annotation	to	the	dbCountRunner(…)	method,	as
follows:

@Bean

@ConditionalOnMissingBean

public	DbCountRunner	dbCountRunner(Collection<CrudRepository>	

repositories)	{

		return	new	DbCountRunner(repositories);

}

2.	 We	will	also	need	to	add	a	dependency	on	the	spring-boot-autoconfigure	artifact
to	the	dependencies	section	of	the	db-count-starter/build.gradle	file:

compile("org.springframework.boot:spring-boot-

autoconfigure:1.2.3.RELEASE")

3.	 Now,	let’s	start	the	application	by	running	./gradlew	clean	bootRun	in	order	to
verify	that	we	will	still	see	the	same	output	in	the	console	logs	as	we	did	in	the
previous	recipe.

4.	 If	we	start	the	application	with	the	DEBUG	switch	so	as	to	see	the	Auto-Configuration
Report,	which	we	already	learned	in	the	first	recipe	of	this	chapter,	we	will	see	that
our	autoconfiguration	is	in	the	Positive	Matches	group,	as	follows:

DbCountAutoConfiguration#dbCountRunner

						-	@ConditionalOnMissingBean	(types:	

org.test.bookpubstarter.dbcount.DbCountRunner;	SearchStrategy:	all)	

found	no	beans	(OnBeanCondition)

5.	 Let’s	explicitly/manually	create	an	instance	of	DbCountRunner	in	our	main
BookPubApplication	configuration	class	and	we	will	also	override	its	run(…)
method,	just	so	we	can	see	the	difference	in	the	logs:

protected	final	Log	logger	=	LogFactory.getLog(getClass());

@Bean

public	DbCountRunner	dbCountRunner(Collection<CrudRepository>	

repositories)	{

		return	new	DbCountRunner(repositories)	{

				@Override

				public	void	run(String…	args)	throws	Exception	{

						logger.info("Manually	Declared	DbCountRunner");

				}

		};

}

6.	 Start	the	application	by	running	DEBUG=true	./gradlew	clean	bootRun.
7.	 If	we	look	at	the	console	logs,	we	will	see	two	things:	the	Auto-Configuration

Report	will	print	our	autoconfiguration	in	the	Negative	Matches	group	and,	instead
of	the	count	output	for	each	repository,	we	will	see	Manually	Declared
DbCountRunner:

DbCountAutoConfiguration#dbCountRunner

						-	@ConditionalOnMissingBean	(types:	

org.test.bookpubstarter.dbcount.DbCountRunner;	SearchStrategy:	all)	

found	the	following	[dbCountRunner]	(OnBeanCondition)

2015-04-05	INFO	org.test.bookpub.BookPubApplication$1				:	Manually	

Declared	DbCountRunner

How	it	works…
As	we	learned	from	the	previous	recipe,	Spring	Boot	will	automatically	process	all	the
configuration	class	entries	from	spring.factories	during	the	application	context
creation.	Without	any	extra	guidance,	everything	that	is	annotated	with	an	@Bean
annotation	will	be	used	to	create	a	Spring	Bean.	This	functionality	is	actually	a	part	of	the
plain	old	Spring	framework	Java	Configuration.	To	enhance	this	even	further,	Spring	Boot
adds	an	ability	to	conditionally	control	the	rules	for	when	certain	@Configuration	or
@Bean	annotations	should	be	executed	and	when	it	is	best	to	ignore	them.

In	our	case,	we	used	the	@ConditionalOnMissingBean	annotation	to	instruct	Spring	Boot
to	create	our	DbCountRunner	bean	only	if	there	is	no	other	bean	matching	either	the	class
type	or	bean	name	already	declared	elsewhere.	As	we	explicitly	created	an	@Bean	entry	for
DbCountRunner	in	the	BookPubApplication	configuration,	this	took	precedence	and
caused	OnBeanCondition	to	detect	the	existence	of	the	bean;	thus	instructing	Spring	Boot
not	to	use	DbCountAutoConfiguration	during	the	application	context	setup.

Using	custom	@Enable*	annotations	to
toggle	configurations
Allowing	Spring	Boot	to	automatically	evaluate	the	classpath	and	detected	configurations
that	are	found	there	makes	it	very	quick	and	easy	to	get	a	simple	application	going.
However,	there	are	times	when	we	want	to	provide	the	configuration	classes	but	require
consumers	of	the	starter	library	to	explicitly	enable	such	a	configuration	rather	than
relying	on	Spring	Boot	to	decide	automatically	if	it	should	be	included	or	not.

We	will	modify	our	previous	recipe	to	enable	the	starter	via	a	meta-annotation	rather	than
using	the	spring.factories	route.

How	to	do	it…
1.	 First,	we	will	comment	out	the	content	of	the	spring.factories	file	located	in	db-

count-starter/src/main/resources	in	the	root	of	our	project,	as	follows:

#org.springframework.boot.autoconfigure.EnableAutoConfiguration	=\

#org.test.bookpubstarter.dbcount.DbCountAutoConfiguration

2.	 Next,	we	will	need	to	create	the	meta-annotation.	We	will	create	a	new	file	named
EnableDbCounting.java	in	the	db-count-
starter/src/main/java/org/test/bookpubstarter/dbcount	directory	in	the	root
of	our	project	with	the	following	content:

@Target(ElementType.TYPE)

@Retention(RetentionPolicy.RUNTIME)

@Import(DbCountAutoConfiguration.class)

@Documented

public	@interface	EnableDbCounting	{

}

3.	 We	will	now	add	the	@EnableDbCounting	annotation	to	our	BookPubApplication
class	and	also	remove	the	dbCountRunner(…)	method	from	it,	as	shown	in	the
following	snippet:

@SpringBootApplication

@EnableScheduling

@EnableDbCounting

public	class	BookPubApplication	{

		public	static	void	main(String[]	args)	{

				SpringApplication.run(BookPubApplication.class,	args);

		}

		@Bean

		public	StartupRunner	schedulerRunner()	{

				return	new	StartupRunner();

		}

}

4.	 Start	the	application	by	running	./gradlew	clean	bootRun.

How	it	works…
After	running	the	application,	the	first	thing	that	you	might	have	noticed	is	that	the	printed
counts	all	showed	0,	even	though	StartupRunner	had	printed	Number	of	books:	1	to	the
console,	as	shown	in	the	following	output:

o.t.b.dbcount.DbCountRunner														:	AuthorRepository	has	0	entries

o.t.b.dbcount.DbCountRunner														:	BookRepository	has	0	entries

o.t.b.dbcount.DbCountRunner														:	PublisherRepository	has	0	

entries

o.t.b.dbcount.DbCountRunner														:	ReviewerRepository	has	0	entries

org.test.bookpub.StartupRunner											:	Welcome	to	the	Book	Catalog	

System!

org.test.bookpub.StartupRunner											:	Number	of	books:	1

This	is	because	Spring	Boot	is	randomly	executing	CommandLineRunners	and,	as	we
changed	the	configuration	to	use	the	@EnableDbCounting	annotation,	it	gets	processed
before	the	configuration	in	the	BookPubApplication	class	itself.	As	the	database
population	is	done	by	us	in	the	StartupRunner.run(…)	method	and	the	execution	of
DbCountRunner.run(…)	happens	before	this,	the	database	tables	have	no	data	and	so
report	the	0	count.

If	we	want	to	enforce	the	order,	Spring	provides	us	with	this	ability	using	the	@Order
annotation.	Let’s	annotate	the	StartupRunner	class	with
@Order(Ordered.LOWEST_PRECEDENCE	-	15).	As	LOWEST_PRECEDENCE	is	the	default	order
that	is	assigned,	we	will	ensure	that	StartupRunner	will	be	executed	after	DbCountRunner
by	slightly	reducing	the	order	number.	Let’s	run	the	app	again	and	now	we	will	see	that
the	counts	are	properly	displayed.

Now	that	this	little	ordering	issue	is	behind	us,	let’s	examine	what	we	did	with	the
@EnableDbCounting	annotation	in	a	bit	more	detail.

Without	spring.factories	containing	the	configuration,	Spring	Boot	does	not	really
know	that	the	DbCountAutoConfiguration	class	should	be	included	during	the	application
context	creation.	By	default,	the	configuration	component	scan	will	look	only	from	the
package	to	which	BookPubApplication	class	belongs	to	and	below,	so	anything	that
provides	configuration	and	resides	under	org.test.bookpub.*	will	get	detected	and
evaluated.	As	the	packages	for	BookPubApplication	and	DbCountAutoConfiguration
classes	are	different—org.test.bookpub	versus	org.test.bookpubstarter.dbcount—
the	scanner	won’t	pick	it	up.

This	is	where	our	newly	created	meta-annotation	comes	into	play.	In	the
@EnableDbCounting	annotation,	there	is	a	key	nested	annotation,
@Import(DbCountAutoConfiguration.class),	which	makes	things	happen.	This	is	an
annotation	that	is	provided	by	Spring,	which	can	be	used	to	annotate	other	annotations
with	declarations	of	which	configuration	classes	should	be	imported	in	the	process.	By
annotating	our	BookPubApplication	class	with	@EnableDbCounting,	we	transitively	tell
Spring	that	it	should	include	DbCountAutoConfiguration	as	a	part	of	the	application
context	as	well.

Using	the	convenience	meta-annotations,	spring.factories,	and	conditional	bean
annotations,	we	can	now	create	sophisticated	and	elaborate	custom	autoconfiguration
Spring	Boot	starters	in	order	to	solve	the	needs	of	our	enterprises.

Chapter	5.	Application	Testing
In	this	chapter,	we	will	cover	the	following	topics:

Creating	tests	for	MVC	Controllers
Automatically	configuring	database	schema	and	populating	it	with	data
Creating	tests	using	in-memory	database	with	data	fixtures
Creating	tests	using	Mockito	to	mock	DB
Writing	tests	using	Cucumber
Writing	tests	using	Spock

Introduction
In	the	previous	chapters	we	did	a	lot	of	coding.	We	created	a	new	Spring	Boot	application
from	scratch,	added	an	MVC	component	to	it,	some	database	services,	made	a	few	tweaks
to	the	application	behavior,	and	even	wrote	our	very	own	Spring	Boot	Starter.	It	is	now
time	to	take	the	next	step	and	learn	what	kind	of	tools	and	capabilities	Spring	Boot	offers
when	it	comes	to	testing	all	this	code	and	how	well	it	integrates	with	the	other	popular
testing	frameworks.

We	will	see	how	to	use	the	Spring	JUnit	integration	to	create	unit	tests.	Next,	we	will
explore	the	options	of	setting	up	the	database	with	test	data	to	test	against	it.	We	will	then
look	to	the	Behavior	Driven	Development	tools,	Cucumber	and	Spock,	and	see	how	they
integrate	with	Spring	Boot.

Creating	tests	for	Spring	MVC
Controllers
In	the	previous	chapters,	we	made	a	lot	of	progress	in	gradually	creating	our	application;
but	how	do	we	know	that	it	actually	does	what	we	want	it	to	do?	More	importantly,	how
do	we	know	for	sure	that	after	six	months,	or	even	a	year	from	now,	it	will	still	continue	to
do	what	we	expected	it	to	do	at	the	very	beginning?	This	question	is	best	answered	by
creating	a	set	of	tests,	preferably	automated,	that	run	a	suite	of	assertions	against	our	code.
This	ensures	that	we	constantly	get	the	same	and	expected	outputs	given	the	specific
inputs.	Having	tests	gives	us	the	much	needed	peace	of	mind	that	our	application	is	not
only	elegantly	coded	and	looks	beautiful,	but	it	also	performs	reliably	and	is	as	much	error
free	as	possible.

In	Chapter	4,	Writing	Custom	Spring	Boot	Starters,	we	left	off	with	our	web	application
fitted	with	a	custom-written	Spring	Boot	starter.	We	will	now	create	some	basic	tests	to
test	our	web	application	to	ensure	that	all	the	controllers	expose	the	expected	RESTful
URLs	on	which	we	can	rely	on	as	the	service	API.	This	type	of	testing	is	a	bit	beyond
what	is	commonly	known	as	Unit	Testing	as	it	tests	the	entire	web	application,	requires
the	application	context	to	be	fully	initialized,	and	all	the	beans	should	be	wired	together	in
order	to	work.	This	kind	of	testing	is	sometimes	referred	as	Integration	or	Service
Testing.

How	to	do	it…
Spring	Boot	gets	us	going	by	already	creating	a	placeholder	test	file,
BookPubApplicationTests.java,	in	the	src/test/java/org/test/bookpub	directory	at
the	root	of	our	project	with	the	following	content:

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes	=	BookPubApplication.class)

public	class	BookPubApplicationTests	{

		@Test

		public	void	contextLoads()	{

		}

}

1.	 In	build.gradle,	we	also	get	a	test	dependency	on	spring-boot-starter-test,	as
follows:

testCompile("org.springframework.boot:spring-boot-starter-test")

2.	 We	will	go	ahead	and	extend	the	basic	template	test	to	contain	the	following	code:

import	static	org.hamcrest.Matchers.containsString;

import	static	org.junit.Assert.assertEquals;

import	static	org.junit.Assert.assertNotNull;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get

;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.conte

nt;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.jsonP

ath;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.statu

s;

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes	=	BookPubApplication.class)

@WebIntegrationTest("server.port:0")

public	class	BookPubApplicationTests	{

		@Autowired

		private	WebApplicationContext	context;

		@Autowired

		private	BookRepository	repository;

		@Value("${local.server.port}")

		private	int	port;

		private	MockMvc	mockMvc;

		private	RestTemplate	restTemplate	=	new	TestRestTemplate();

		@Before

		public	void	setupMockMvc()	{

				mockMvc	=	MockMvcBuilders.webAppContextSetup(context).build();

		}

		@Test

		public	void	contextLoads()	{

				assertEquals(1,	repository.count());

		}

		@Test

		public	void	webappBookIsbnApi()	{

				Book	book	=	restTemplate.getForObject("http://localhost:"	+	port	+	

"/books/978-1-78528-415-1",	Book.class);

				assertNotNull(book);

				assertEquals("Packt",	book.getPublisher().getName());

		}

		@Test

		public	void	webappPublisherApi()	throws	Exception	{

				

mockMvc.perform(get("/publishers/1")).andExpect(status().isOk()).andExp

ect(content().contentType(MediaType.parseMediaType("application/hal+jso

n"))).

						

andExpect(content().string(containsString("Packt"))).andExpect(jsonPath

("$.name").value("Packt"));

		}

}

3.	 In	order	to	be	able	to	use	the	jsonPath(…)	matcher	at	runtime,	we	will	also	need	to
add	the	following	dependency	to	the	dependencies	{…}	block	in	our	build.gradle
file:

testRuntime("com.jayway.jsonpath:json-path")

4.	 Execute	the	tests	by	running	./gradlew	clean	test.
5.	 By	the	console	output,	we	can	tell	that	our	tests	have	succeeded	and	are	running,	but

we	don’t	really	see	much	information	besides	the	following	lines	(truncated	for
brevity):

:compileJava

:compileTestJava

:testClasses

:test

2015-04-13	21:40:44.694		INFO	25739	---	[Thread-4]	

ationConfigEmbeddedWebApplicationContext	:	Closing	

org.springframework.boot.context.embedded.AnnotationConfigEmbeddedWebAp

plicationContext@206f4aa6:	startup	date	[Mon	Apr	13	21:40:36	CDT	2015];	

root	of	context	hierarchy

2015-04-13	21:40:44.704		INFO	25739	---	[Thread-4]	

j.LocalContainerEntityManagerFactoryBean	:	Closing	JPA	

EntityManagerFactory	for	persistence	unit	'default'

2015-04-13	21:40:44.705		INFO	25739	---	[Thread-4]	

org.hibernate.tool.hbm2ddl.SchemaExport		:	HHH000227:	Running	hbm2ddl	

schema	export

2015-04-13	21:40:44.780		INFO	25739	---	[Thread-4]	

org.hibernate.tool.hbm2ddl.SchemaExport		:	HHH000230:	Schema	export	

complete

BUILD	SUCCESSFUL

Total	time:	24.635	secs

6.	 A	better	insight	can	be	gathered	by	viewing	the	HTML	reports	that	are	generated	by
Gradle,	which	can	be	opened	in	the	browser	and	reside	in
build/reports/tests/index.html,	as	shown	in	the	following	screenshot:

7.	 Clicking	on	org.test.bookpub.BookPubApplicationTests	will	take	us	to	the
individual	test	case	breakdown	that	shows	the	status	of	each	test	and	how	long	it	took
to	get	executed,	as	follows:

8.	 The	more	curious	minds	can	also	click	on	the	Standard	output	button	in	order	to	see
the	runtime	application	logs	that	are	produced	during	the	execution	of	the	test.

How	it	works…
Now	that	we	created	our	first	test,	let’s	examine	the	code	in	detail.

We	will	first	look	at	the	following	annotations	that	have	been	declared	for	the
BookPubApplicationTests	class:

@RunWith(SpringJUnit4ClassRunner.class):	This	is	a	standard	JUnit	annotation
that	we	can	configure	so	as	to	use	the	SpringJUnit4ClassRunner	providing
functionality	of	Spring	Test	Context	framework	to	the	standard	JUnit	tests.
@SpringApplicationConfiguration(classes	=	BookPubApplication.class):
This	is	a	Spring	Boot	annotation	that	is	used	to	determine	how	to	load	and	configure
the	Spring	Application	Context	for	the	integration	tests.	It	is	a	meta-annotation	that
contains	the	ContextConfiguration	annotation,	which	instructs	the	testing
framework	to	use	Spring	Boot’s	SpringApplicationContextLoader	for	application
context	creation.
@WebIntegrationTest("server.port:0"):	This	is	an	annotation	that	indicates	to
Spring	Boot	that	the	current	test	is	an	integration	test	and	will	require	a	complete
context	initialization	and	application	startup,	as	if	it	were	a	real	deal.	This	annotation
is	usually	included	along	with	@SpringApplicationConfiguration	for	the
integration	tests.	The	server.port:0	value	is	used	to	tell	Spring	Boot	to	start	the
Tomcat	server	on	a	randomly	chosen	http	port,	which	we	will	later	obtain	by
declaring	the	@Value("${local.server.port}")	private	int	port;	value	field.
This	ability	to	select	a	random	http	port	is	very	handy	when	running	tests	on	a
Jenkins	or	any	other	CI	server	where,	if	multiple	jobs	are	running	in	parallel,	you
could	get	a	port	collision.

With	the	class	annotations	magic	dispelled,	let’s	look	at	the	content	of	the	class	itself.	As
this	is	a	Spring	Boot	test,	we	can	declare	any	objects	that	are	managed	by	Spring	to	be
@Autowired	during	the	execution	or	set	to	a	specific	environment	value	using	an	@Value
annotation.	In	our	test,	we	autowired	the	WebApplicationContext	and	BookRepository
objects,	which	we	will	use	in	the	execution	of	the	standard	JUnit	@Test	annotated	test
cases.

In	the	first	test	case,	the	contextLoads()	method,	we	will	just	assert	that	we	have	the
BookRepository	connection	established	and	that	it	contains	our	one	book	entry.

Our	second	test	will	ensure	that	our	web	application	responds	to	a	RESTful	URL	for	a
Book	lookup	by	ISBN	–	"/books/{isbn}".	For	this	test,	we	will	use	the	instance	of
TestRestTemplate	and	make	a	RESTful	call	to	the	running	instance	on	a	randomly
selected	port.	Spring	Boot	provides	the	value	of	the	port	field.

Alternatively,	we	can	execute	the	same	flavor	of	tests	by	going	through	the	MockMvc
object.	This	is	provided	by	the	Spring	Test	framework	and	allows	you	to	perform	MVC
testing	without	actually	doing	the	client-side-based	testing	through	RestTemplate,	but
instead	doing	it	fully	server-side	where	the	Controller	requests	are	executed	from	the	same
context	as	the	tested	application.

In	order	to	use	MockMvc,	we	will	use	the	MockMvcBuilders	utility	to	build	an	instance
using	@Autowired	WebApplicationContext.	We	will	do	this	in	the	setup	method	so	that
we	don’t	have	to	do	it	in	every	test	explicitly.

MockMvc	provides	us	with	a	very	extensive	set	of	capabilities	in	order	to	execute	assertions
on	practically	all	the	things	that	are	related	to	a	web	request.	It	is	designed	to	be	used	in	a
method	chained	fashion,	allowing	us	to	link	the	various	tests	together	and	forming	a	nice
continuous	logical	chain.	We	have	used	the	following	checks	in	our	example:

The	perform(get(…))	method	sets	up	the	web	request.	In	our	particular	case,	we
perform	a	GET	request	but	the	MockMvcRequestBuilders	class	provides	you	with
static	helper	functions	for	all	the	common	method	calls.
The	andExpect(…)	method	can	be	invoked	multiple	times	where	each	call	represents
an	evaluation	of	a	condition	against	the	result	of	the	perform(…)	call.	The	argument
of	this	call	is	any	implementation	of	the	ResultMatcher	interface	along	with	many
stock	ones	that	are	provided	by	the	MockMvcResultMatchers	static	utility	class.	This
really	opens	up	a	possibility	of	having	an	infinite	number	of	different	checks	such	as
verifying	the	response	status,	content	type,	values	stored	in	a	session,	flash	scope,
verify	redirects,	contents	of	the	rendering	model	or	headers,	and	much	more.	We	will
use	a	third-party	json-path	add-on	library	to	test	the	JSON	response	data	in	order	to
ensure	that	it	contains	the	right	elements	in	the	right	tree	hierarchy,
andExpect(jsonPath("$.name").value("Packt")),	which	validates	that	we	have	a
name	element	at	the	root	of	the	JSON	document	with	a	value	of	Packt.

Note
To	learn	more	about	the	various	possibilities	that	are	available	in	MockMvc,	you	can
refer	to	https://github.com/spring-projects/spring-mvc-
showcase/tree/master/src/test/java/org/springframework/samples/mvc.

https://github.com/spring-projects/spring-mvc-showcase/tree/master/src/test/java/org/springframework/samples/mvc

Automatically	configuring	the	database
schema	and	populating	it	with	data
Earlier	in	the	book,	in	Chapter	2,	Configuring	Web	Applications,	we	manually	added	a	few
entries	to	the	database	in	the	StartupRunner's	run(…)	method.	While	doing	so
programmatically	can	be	a	quick	and	easy	way	to	get	something	going	very	quickly,	in	the
long	run,	it	is	not	really	a	good	idea	to	do	so—especially	when	you	are	dealing	with	a
large	amount	of	data.	It	is	also	a	good	practice	to	separate	the	database	preparations,
changes,	and	other	configurations	from	the	rest	of	the	running	application	code,	even	if	it
is	setting	up	the	test	cases.	Thankfully,	Spring	has	provided	you	with	the	support	to	make
this	task	fairly	easy	and	straightforward	to	solve.

We	will	continue	with	the	state	of	the	application	as	we	had	left	it	in	the	previous	recipe.
Spring	provides	us	with	a	couple	of	ways	to	define	how	both	the	structure	and	data	should
be	populated	in	the	database.	The	first	way	relies	on	using	Hibernate	to	automatically
create	the	table	structure	by	inferring	it	from	our	defined	@Entity	objects	and	using	the
import.sql	file	to	populate	the	data.	The	second	approach	is	to	use	the	plain	old	Spring
JDBC	capability,	which	relies	on	using	the	schema.sql	file	that	contains	the	database
table	definition	and	a	corresponding	data.sql	file	that	contains	the	data.

How	to	do	it…
1.	 First,	we	will	remove	the	programmatic	database	population,	which	we	created	in

Chapter	2.	Configuring	Web	Applications.	So	let’s	comment	out	the	following	code
from	the	StartupRunner's	run(…)	method:

Author	author	=	new	Author("Alex",	"Antonov");

author	=	authorRepository.save(author);

Publisher	publisher	=	new	Publisher("Packt");

publisher	=	publisherRepository.save(publisher);

Book	book	=	new	Book("978-1-78528-415-1",	"Spring	Boot	Recipes",	

author,	publisher);

bookRepository.save(book);

2.	 If	we	were	to	run	our	tests,	they	might	fail	if	the	test.h2.db	file	is	missing	because
they	expect	the	data	to	be	in	the	database.	We	will	populate	the	database	by	creating	a
Hibernate	import.sql	file	in	the	src/main/resources	directory	at	the	root	of	our
project	with	the	following	content:

INSERT	INTO	author	(id,	first_name,	last_name)	VALUES	(1,	'Alex',	

'Antonov')

INSERT	INTO	publisher	(id,	name)	VALUES	(1,	'Packt')

INSERT	INTO	book	(isbn,	title,	author_id,	publisher_id)	VALUES	('978-1-

78528-415-1',	'Spring	Boot	Recipes',	1,	1)

3.	 On	running	the	tests	again	by	running	./gradlew	clean	test,	they	are	magically
started	to	get	passed	again.

4.	 Another	way	to	do	this	is	to	use	the	Spring	JDBC	support	for	schema.sql	and
data.sql.	Let’s	rename	the	newly	created	import.sql	file	to	data.sql	and	create	a
schema.sql	file	in	the	same	directory	with	the	following	content:

--	Create	syntax	for	TABLE	'author'

DROP	TABLE	IF	EXISTS	`author`;

CREATE	TABLE	`author`	(

		`id`	bigint(20)	NOT	NULL	AUTO_INCREMENT,

		`first_name`	varchar(255)	DEFAULT	NULL,

		`last_name`	varchar(255)	DEFAULT	NULL,

		PRIMARY	KEY	(`id`)

);—Create	syntax	for	TABLE	'publisher'

DROP	TABLE	IF	EXISTS	`publisher`;

CREATE	TABLE	`publisher`	(

		`id`	bigint(20)	NOT	NULL	AUTO_INCREMENT,

		`name`	varchar(255)	DEFAULT	NULL,

		PRIMARY	KEY	(`id`)

);—Create	syntax	for	TABLE	'reviewer'

DROP	TABLE	IF	EXISTS	`reviewer`;

CREATE	TABLE	`reviewer`	(

		`id`	bigint(20)	NOT	NULL	AUTO_INCREMENT,

		`first_name`	varchar(255)	DEFAULT	NULL,

		`last_name`	varchar(255)	DEFAULT	NULL,

		PRIMARY	KEY	(`id`)

);—Create	syntax	for	TABLE	'book'

DROP	TABLE	IF	EXISTS	`book`;

CREATE	TABLE	`book`	(

		`id`	bigint(20)	NOT	NULL	AUTO_INCREMENT,

		`description`	varchar(255)	DEFAULT	NULL,

		`isbn`	varchar(255)	DEFAULT	NULL,

		`title`	varchar(255)	DEFAULT	NULL,

		`author_id`	bigint(20)	DEFAULT	NULL,

		`publisher_id`	bigint(20)	DEFAULT	NULL,

		PRIMARY	KEY	(`id`),

		CONSTRAINT	`FK_publisher`	FOREIGN	KEY	(`publisher_id`)	REFERENCES	

`publisher`	(`id`),

		CONSTRAINT	`FK_author`	FOREIGN	KEY	(`author_id`)	REFERENCES	`author`	

(`id`)

);—Create	syntax	for	TABLE	'book_reviewers'

DROP	TABLE	IF	EXISTS	`book_reviewers`;

CREATE	TABLE	`book_reviewers`	(

		`book_id`	bigint(20)	NOT	NULL,

		`reviewers_id`	bigint(20)	NOT	NULL,

		CONSTRAINT	`FK_book`	FOREIGN	KEY	(`book_id`)	REFERENCES	`book`	

(`id`),

		CONSTRAINT	`FK_reviewer`	FOREIGN	KEY	(`reviewers_id`)	REFERENCES	

`reviewer`	(`id`)

);

5.	 As	we	are	now	manually	creating	the	database	schema,	we	will	need	to	tell	the
Hibernate	mapper	not	to	automatically	derive	one	from	the	entities	and	populate	the
database	with	it.	So,	let’s	set	the	spring.jpa.hibernate.ddl-auto=none	property	in
the	application.properties	file	in	the	src/main/resources	directory	at	the	root	of
our	project.

6.	 Execute	the	tests	by	running	./gradlew	clean	test	and	they	should	get	passed.

How	it	works…
In	this	recipe,	we	actually	explored	two	ways	of	achieving	the	same	thing	and	this	is	quite
common	when	you	are	living	in	the	Spring	ecosystem.	Depending	on	the	components	that
are	used,	whether	it’s	a	plain	Spring	JDBC,	Spring	JPA	with	Hibernate,	or	the	Flyway	or
Liquidbase	migrations,	the	approach	of	populating	and	initializing	the	database	differs	but
the	end	result	remains	pretty	much	the	same.

Note
Both	Flyway	and	Liquidbase	are	frameworks	that	provide	incremental	database	migration
capabilities.	This	comes	in	very	handy	when	one	wants	to	maintain	the	incremental	log	of
the	database	changes	in	a	programmatic,	describable	fashion	with	an	ability	to	quickly	put
the	database	in	a	desired	state	for	a	particular	version.	While	these	frameworks	differ	in
their	approach	of	providing	such	support,	they	are	similar	in	the	purpose.	More	detailed
information	can	be	obtained	at	their	respective	sites,	http://flywaydb.org	and
http://www.liquibase.org.

In	the	preceding	example,	we	explored	two	different	ways	of	populating	and	initializing
the	database.

Initializing	the	database	with	Spring	JPA	and	Hibernate
In	this	approach,	most	of	the	work	is	actually	done	by	the	Hibernate	library	and	we
merely	set	up	the	appropriate	configurations	and	create	conventionally	expected	files	that
are	needed	for	Hibernate	to	do	the	work.	In	this	recipe	we	have	used	the	following
settings:

The	spring.jpa.hibernate.ddl-auto=create-drop	setting	instructs	Hibernate	to
use	the	@Entity	models	and,	based	on	their	structure,	automatically	deduce	the
database	schema.	On	starting	the	application,	the	calculated	schema	will	be	used	to
preinitialize	the	database	table	structure;	when	the	application	is	shut	down,	it	will	all
be	destroyed.	Even	in	the	event	where	the	application	was	forcefully	terminated	or	it
abruptly	crashed,	on	startup,	if	the	existing	tables	are	detected,	they	will	be	dropped
and	recreated	from	scratch;	so	it’s	probably	not	a	good	idea	to	rely	on	this	for	the
production	environment.

Note
If	the	spring.jpa.hibernate.ddl-auto	property	is	not	explicitly	configured,	Spring
Boot	uses	create-drop	for	embedded	databases	such	as	H2	by	default;	so	be	careful
and	set	it	appropriately.

The	import.sql	file	is	also	expected	to	reside	in	the	root	of	the	classpath	by
Hibernate.	This	is	used	to	execute	the	declared	SQL	statements	on	the	application
startup.	While	any	valid	SQL	statement	can	go	in	the	file,	it	is	recommended	that	you
put	the	data	importing	statements	such	as	INSERT	or	UPDATE	and	stay	clear	of	table
structure	mutations,	as	the	schema	definition	is	already	taken	care	of	by	Hibernate.

http://flywaydb.org
http://www.liquibase.org

Initializing	the	database	with	Spring	JDBC
If	the	application	does	not	use	JPA	or	you	don’t	want	to	depend	on	the	Hibernate
functionality	explicitly,	Spring	offers	you	another	way	of	getting	the	database	set	up,	as
long	as	the	spring-boot-starter-jdbc	dependency	is	present.	So	let’s	take	a	look	at
what	we	did	to	get	it	to	work,	as	shown	in	the	following	list:

The	spring.jpa.hibernate.ddl-auto=none	setting	tells	Hibernate	not	to	do	any
automatic	handling	of	the	database	if	the	Hibernate	dependency	also	exists,	as	it	does
in	our	case.	This	setting	is	a	good	practice	for	the	production	environment	as	you
probably	don’t	want	to	get	all	of	your	database	tables	wiped	out	clean	inadvertently
—that	would	be	one	hell	of	a	disaster,	that’s	for	sure!
The	schema.sql	file	is	expected	to	exist	in	the	root	of	the	classpath.	It	is	executed	by
Spring	during	the	schema	creation	of	the	database	on	every	startup	of	the	application.
However,	unlike	Hibernate,	this	will	not	drop	any	of	the	existing	tables	automatically,
so	it	might	be	a	good	idea	to	either	use	DROP	TABLE	IF	EXISTS	to	delete	an	existing
table	before	creating	the	new	one	or	use	the	CREATE	TABLE	IF	NOT	EXISTS	as	a	part
of	the	table	creation	SQL,	if	we	only	want	to	create	new	tables	in	case	they	don’t
already	exist.	This	makes	it	a	lot	more	flexible	to	declare	the	database	structure
evolution	logic,	thus	making	it	safer	to	be	used	in	production	as	well.
The	data.sql	file	is	expected	to	exist	in	the	root	of	the	classpath.	This	is	used	to
execute	the	data	population	SQL,	so	this	is	where	all	the	INSERT	INTO	statements	go.

Given	that	this	is	a	Spring	native	functionality,	we	will	also	get	the	ability	to	define	the
schema	and	data	files	not	only	globally,	but	also	as	per	the	specific	database	platform.	For
example,	we	can	have	one	set	of	files	that	we	can	use	for	Oracle,	schema-oracle.sql,	and
a	different	one	for	MySQL,	schema-mysql.sql.	The	same	applies	to	the	data.sql
variants	as	well;	however,	they	don’t	have	to	be	all	defined	per	platform,	so	while	you
might	have	platform-specific	schema	files,	there	could	be	a	shared	data	file.	The
spring.datasource.platform	configuration	value	can	be	explicitly	set	if	you	want	to
override	Spring	Boot’s	automatically	deduced	value.

Tip
If	one	wants	to	override	the	default	names	of	schema.sql	and	data.sql,	Spring	Boot
provides	us	with	the	configuration	properties,	which	we	can	use	to	control
spring.datasource.schema	and	spring.datasource.data.

Creating	tests	using	in-memory	database
with	data	fixtures
In	the	previous	recipe,	we	explored	how	to	get	our	databases	set	up	with	the	desired	tables
and	populated	with	the	needed	data.	When	it	comes	to	testing,	one	of	the	typical
challenges	is	to	get	the	environment	set	up	correctly	and	predictably	so	that	when	the	tests
are	executed,	we	can	safely	assert	the	behavior	in	a	deterministic	fashion.	In	an	application
that	connects	to	a	database,	making	sure	that	the	database	contains	a	deterministic	dataset
on	which	the	assertions	can	be	evaluated	is	extremely	important.	For	an	elaborate	test
suite,	it	is	also	necessary	to	be	able	to	refresh	or	change	that	dataset	based	on	the	tests.
Thankfully,	Spring	has	some	nice	facilities	that	aid	you	in	accomplishing	this	task.

We	will	pick	up	from	the	state	of	our	BookPub	application	as	we	left	it	in	the	previous
recipe.	At	this	point,	we	have	the	schema.sql	file	defining	all	the	tables	and	we	also	need
the	database	with	some	starting	data	that	is	defined	in	data.sql.	In	this	recipe,	we	will
extend	our	tests	to	use	the	specific	data	fixture	files	that	are	tailored	to	a	particular	test
suite.

How	to	do	it…
1.	 Our	first	step	will	be	to	create	a	resources	directory	in	the	src/test	directory	at	the

root	of	our	project.
2.	 In	this	directory,	we	will	start	placing	our	fixture	SQL	data	files.	Let’s	create	a	new

file	named	test-data.sql	in	the	resources	directory	with	the	following	content:

INSERT	INTO	author	(id,	first_name,	last_name)	VALUES	(2,	'Greg',	

'Turnquist')

INSERT	INTO	book	(isbn,	title,	author_id,	publisher_id)	VALUES	('978-1-

78439-302-1',	'Learning	Spring	Boot',	2,	1)

3.	 We	now	need	a	way	to	load	this	file	when	our	test	runs.	We	will	modify	our
BookPubApplicationTests	class	in	the	following	way:

public	class	BookPubApplicationTests	{

			...

			@Autowired

			private	BookRepository	repository;

			@Autowired

			private	DataSource	ds;

			@Value("${local.server.port}")

			private	int	port;

			private	MockMvc	mockMvc;

			private	RestTemplate	restTemplate	=	new	TestRestTemplate();

			private	static	boolean	loadDataFixtures	=	true;

			@Before

			public	void	setupMockMvc()	{

						...

			}

			@Before

			public	void	loadDataFixtures()	{

						if	(loadDataFixtures)	{

									ResourceDatabasePopulator	populator	=	new	

ResourceDatabasePopulator(context.getResource("classpath:/test-

data.sql"));

									DatabasePopulatorUtils.execute(populator,	ds);

									loadDataFixtures	=	false;

						}

			}

			@Test

			public	void	contextLoads()	{

						assertEquals(2,	repository.count());

			}

			@Test

			public	void	webappBookIsbnApi()	{

						...

			}

			@Test

			public	void	webappPublisherApi()	throws	Exception	{

						...

			}

}

4.	 Execute	the	tests	by	running	./gradlew	clean	test	and	they	should	continue	to	get
passed	despite	us	adding	another	book	and	its	author	to	the	database.

5.	 We	can	also	use	the	method	of	populating	the	database,	which	we	have	learned	in	the
previous	recipe.	As	the	test	code	has	its	own	resources	directory,	it	is	possible	to	add
another	data.sql	file	to	it	and	Spring	Boot	will	use	both	the	files	to	populate	the
database.	Let’s	go	ahead	and	create	the	data.sql	file	in	the	src/test/resources
directory	at	the	root	of	our	project	with	the	following	content:

INSERT	INTO	author	(id,	first_name,	last_name)	VALUES	(3,	'William',	

'Shakespeare')

INSERT	INTO	publisher	(id,	name)	VALUES	(2,	'Classical	Books')

INSERT	INTO	book	(isbn,	title,	author_id,	publisher_id)	VALUES	('978-1-

23456-789-1',	'Romeo	and	Juliet',	3,	2)

Tip
As	Spring	Boot	collects	all	the	occurrences	of	the	data	files	from	the	classpath,	it	is
possible	to	place	the	data	files	in	JARs	or	different	physical	locations	that	all	end	up
being	at	the	root	of	the	classpath.

Note
It	is	also	important	to	remember	that	as	the	loading	order	of	these	scripts	is	not
deterministic	and	in	case	you	rely	on	certain	referential	IDs,	it	is	better	if	you	use
selects	to	get	them	instead	of	making	assumptions.

6.	 As	we	added	another	book	to	the	database	and	now	that	we	have	three	of	them,	we
should	fix	the	assertion	in	our	contextLoads()	test	method	to	the	following:

assertEquals(3,	repository.count());

7.	 Execute	the	tests	by	running	./gradlew	clean	test	and	they	should	continue	to
pass.

8.	 It	would	be	a	fair	statement	that	when	running	unit	tests,	an	in-memory	database	is
probably	more	suitable	for	the	role	as	compared	to	a	persistent	one.	Let’s	create	a
dedicated	test	configuration	instance	of	the	application.properties	file	in	the
src/test/resources	directory	at	the	root	of	our	project	with	the	following	content:

spring.datasource.url	=	

jdbc:h2:mem:testdb;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE

spring.jpa.hibernate.ddl-auto=none

Note
It	is	important	to	know	that	Spring	Boot	loads	only	one	application.properties
from	the	classpath.	When	we	created	another	application.properties	in
src/test/resources,	the	previous	one	from	src/main/resources	was	no	longer
loaded	and	thus	none	of	the	properties	defined	in	here	were	merged	in	the

environment.	For	this	reason,	you	should	configure	all	of	the	property	values	that	are
needed.	In	our	case,	we	had	to	redefine	the	spring.jpa.hibernate.dll-auto
property,	even	though	it	was	already	declared	in
src/main/resources/application.properties.

9.	 Execute	the	tests	by	running	./gradlew	clean	test	and	the	tests	should	continue	to
get	passed.

How	it	works…
In	this	recipe,	we	relied	on	the	facility	that	is	provided	by	Spring	to	initialize	and	populate
the	database	in	order	to	get	our	database	populated	with	the	data	needed	to	run	the	tests
and	assert	on	them;	however,	we	also	wanted	to	be	able	to	use	some	data	that	is	only
relevant	to	a	particular	test	suite.	For	this,	we	turned	to	the	ResourceDatabasePopulator
and	DatabasePopulatorUtils	classes	to	insert	the	desired	data	right	before	the	test	gets
executed.	These	are	exactly	the	same	classes	that	are	used	internally	by	Spring	in	order	to
handle	the	schema.sql	and	data.sql	files,	except	that	now	we	are	explicitly	defining	the
script	files	that	we	want	to	execute.

So,	let’s	break	up	what	we	did	step	by	step,	as	follows:

We	created	a	setup	method	named	loadDataFixtures(),	which	we	annotated	with	an
@Before	annotation	to	tell	JUnit	to	run	it	before	every	test.
In	this	method,	we	obtained	a	resource	handle	to	the	classpath:/test-data.sql
data	file	that	resides	in	our	application’s	classpath	and	where	we	store	our	test	data
and	execute	it	against	@Autowired	DataSource	ds.
As	Spring	can	only	autowire	dependencies	in	the	instances	of	the	class	and	the
@Before	annotated	setup	methods	get	executed	for	every	test,	we	had	to	get	a	little
creative	in	order	to	avoid	repopulating	our	database	with	the	duplicate	data	for	every
test	instead	of	once	per	test	suite/class.	To	achieve	this,	we	created	a	static	boolean
loadDataFixtures	variable	that	retains	its	state	for	every	instance	of	the
BookPubApplicationTests	class,	thus	ensuring	that	we	execute
DatabasePopulatorUtils	only	once.	The	reason	that	the	variable	has	to	be	static	is
as	a	new	instance	of	the	test	class	gets	created	for	every	test	method	that	it	runs	in	the
class,	having	the	boolean	flag	at	the	instance	level	will	not	do	the	trick.
For	a	finishing	touch,	we	decided	to	have	a	separate	application.properties	file	to
be	used	for	testing	purposes.	We	added	this	to	our	src/test/resources	classpath
with	a	testing	configuration	of	the	in-memory	database	instead	of	using	the	file-based
persistent	one.

Tip
Unlike	application.properties	where	only	one	file	can	be	loaded	from	the
classpath,	Spring	supports	a	number	of	profile	configurations,	which	will	get	all
merged	together,	during	the	application	startup.	So,	instead	of	declaring	a	completely
separate	application.properties	file,	we	could	create	an	application-
test.properties	file	and	set	an	active	profile	to	test	while	running	the	tests.

Creating	tests	using	Mockito	to	mock	DB
Now	that	we	are	done	with	setting	up	the	fixtures	to	use	during	the	set	up	and	population
of	our	database	when	it	is	used	for	testing	purposes,	let’s	examine	how	we	can	use	the
power	of	Mockito	so	that	we	don’t	need	to	rely	on	the	database	at	all.	We	will	learn	how	to
elegantly	mock	the	Repository	instance	objects	using	the	Mockito	framework	and	some
annotation	cleverness.

We	will	create	a	special	Spring	Boot	configuration	class	where	we	will	define	and	replace
the	Spring	Beans	that	are	necessary	for	testing	purposes.	We	will	use	annotations	to	tell
Spring	Boot	when	to	add	the	testing	configuration	and	when	to	exclude	it.	In	the
configuration	class,	we	will	use	Mockito	to	create	some	mock	objects	with	preconfigured
behavior,	which	will	later	be	injected	by	Spring	Boot	while	executing	the	tests.

How	to	do	it…
1.	 First,	we	will	create	a	special	annotation	that	we	will	use	in	order	to	tag	the

configuration	classes	that	are	designed	to	be	loaded	for	testing	purposes	only.	To
achieve	this,	we	will	enhance	our	BookPubApplication	class	with	the	following
content:

@Configuration

@EnableAutoConfiguration

@ComponentScan(excludeFilters=@ComponentScan.Filter(UsedForTesting.clas

s))

@EnableScheduling

@EnableDbCounting

public	class	BookPubApplication	{

		public	static	void	main(String[]	args)	{

				SpringApplication.run(BookPubApplication.class,	args);

		}

		...

}

@interface	UsedForTesting	{}

2.	 With	this	annotation	defined,	we	are	ready	to	create	our	TestMockBeansConfig	class
in	the	src/test/java/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

@Configuration

@UsedForTesting

public	class	TestMockBeansConfig	{

		@Bean

		@Primary

		public	PublisherRepository	createMockPublisherRepository()	{

				return	Mockito.mock(PublisherRepository.class);

		}

}

3.	 We	will	also	create	a	separate	test	suite	class	as	we	have	too	much	going	on	already
in	the	BookPubApplicationTests.	Let’s	create	a	separate	test	file	named
PublisherRepositoryTests.java	in	the	src/test/java/org/test/bookpub
directory	at	the	root	of	our	project	with	the	following	content:

@RunWith(SpringJUnit4ClassRunner.class)

@SpringApplicationConfiguration(classes	=	{BookPubApplication.class,	

TestMockBeansConfig.class})

@IntegrationTest

public	class	PublisherRepositoryTests	{

		@Autowired

		private	PublisherRepository	repository;

		@Before

		public	void	setupPublisherRepositoryMock()	{

				Mockito.when(repository.count()).thenReturn(1L);

		}

		@Test

		public	void	publishersExist()	{

				assertEquals(1,	repository.count());

		}

		@After

		public	void	resetPublisherRepositoryMock()	{

				Mockito.reset(repository);

		}

}

4.	 Execute	the	tests	by	running	./gradlew	clean	test	and	the	tests	should	get	passed.

How	it	works…
There	are	a	few	magical	things	happening	here.	Let’s	start	with	the	following
modifications	that	we	made	to	the	BookPubApplication	class:

The	@SpringBootApplication	annotation	was	replaced	with	three	alternative
annotations:	@Configuration,	@EnableAutoConfiguration,	and
@ComponentScan(excludeFilters=@ComponentScan.Filter(UsedForTesting.class))

The	reason	we	had	to	do	this	was	that	we	can	add	the	excludeFilters	attributes	to
the	@ComponentScan	annotation.	Otherwise,	the	@SpringBootApplication
meta/convenience	annotation	internally	declared	the	exact	three	annotations;	we	just
unrolled	them	as	the	explicit	annotations	of	our	application	class.	In	our	explicit
declaration	of	the	@ComponentScan	annotation,	we	told	Spring	to	ignore	any
configuration	classes	that	have	been	annotated	with	an	@UsedForTesting	annotation.
The	@UsedForTesting	annotation	is	what	we	added	as	an	additional	outer	declaration
to	the	BookPubApplication	class.	We	used	it	in	order	to	annotate	our
TestMockBeansConfig	class,	thus	letting	Spring	know	not	to	include	it	when	the
application	is	being	booted	in	a	regular,	nontest	mode.

With	the	application	changes	examined,	let’s	now	look	at	what	we	did	in	the
TestMockBeansConfig	configuration	class:

The	@Configuration	annotation	tells	Spring	that	this	class	contains	the	Application
Context	configuration	and	@Bean	declarations	and	if	included,	these	should	be	added
to	the	created	context.
The	@UsedForTesting	annotation	marks	this	class	as	test-only.	We	discussed	this
earlier.
The	@Primary	annotation	on	the	createMockPublisherRepository()	method	is	how
we	will	tell	Spring	to	prefer	this	instance	of	the	bean	during	an	autowiring	selection	if
multiple	instances	of	the	class	are	available.	In	our	application,	we	already	have	the
PublisherRepository	instance	created	during	the	application	startup	because	we
have	this	interface	annotated	with	@RepositoryRestResource.	Thus,	Spring	already
knows	that	it	has	to	create	an	instance	of	this	class	and	add	it	to	the	context.	As	we
don’t	want	to	use	the	real	instance	for	our	test	but	prefer	to	use	the	Mockito	mocked
one,	using	the	@Primary	annotation	allows	us	to	accomplish	exactly	this.

Now	that	we	know	how	the	mocked	instance	of	PublisherRepository	gets	injected	into
our	tests,	let’s	take	a	look	at	the	newly	created	test	class	itself.	The	two	methods	of
particular	interest	are	setupPublisherRepositoryMock()	and
resetPublisherRepositoryMock().	They	are	described	as	follows:

The	setupPublisherRepositoryMock()	method	is	annotated	with	@Before,	which
tells	JUnit	to	execute	this	method	before	running	every	@Test	method	in	the	class.	In
this,	we	will	use	the	Mockito	framework	in	order	to	configure	the	behavior	of	our
mocked	instance.	We	will	tell	it	that	when	repository.count()	method	is	called,
return	1	as	a	result.	The	Mockito	library	provides	us	with	many	convenient	DLS-like
methods,	which	we	can	use	to	define	such	rules	with	an	English-like,	easy-to-read

style.
The	resetPublisherRepositoryMock()	method	is	annotated	with	@After,	which
tells	JUnit	to	execute	this	method	after	running	every	@Test	method	in	the	class.	At
the	end	of	every	test,	we	will	need	to	reset	the	mocked	behavior,	so	we	will	use	the
Mockito.reset(…)	method	call	to	clear	out	all	of	our	settings	and	get	the	Mock	ready
for	the	next	test,	which	can	be	used	from	another	test	suite	altogether.

Writing	tests	using	Cucumber
Unit	testing	has	been	an	expected	part	of	the	software	development	lifecycle	for	quite
some	time	now	and	one	can	hardly	imagine	writing	code	without	having	unit	tests	along
with	it.	The	art	of	testing	does	not	stay	the	same	and	the	advances	in	the	testing
philosophies	have	extended	the	concept	of	unit	testing	even	further,	introducing	things
such	as	service	testing,	integration	testing,	and	lastly,	what	is	known	as	Behavior	Driven
Development.	Behavior	Driven	Development	proposes	to	create	the	test	suites	describing
the	application	behavior	at	large,	and	not	getting	down	too	much	to	the	minute
implementation	details	at	the	lower	levels	of	the	code.	One	such	framework,	which	has
gained	a	lot	of	popularity	first	in	the	Ruby	world	and	later	expanding	to	other	languages
including	Java,	is	the	Cucumber	BDD.

For	the	purpose	of	this	recipe,	we	will	pick	up	from	our	previous	example	and	continue
enhancing	the	testing	suite	by	adding	the	Cucumber-JVM	implementation,	which	will
provide	us	with	the	Java-based	version	of	the	original	Ruby	Cucumber	framework	and
create	a	few	tests	in	order	to	demonstrate	the	capabilities	and	integration	points	with	the
Spring	Boot	application.

Note
This	recipe	is	by	no	means	intended	to	cover	the	entire	set	of	functionalities	provided	by
the	Cucumber	testing	framework	and	is	mostly	focused	on	the	integration	points	of
Cucumber	and	Spring	Boot.	To	learn	more	about	Cucumber-JVM,	you	can	go	to
https://cukes.info/docs#cucumber-implementations	or
https://github.com/cucumber/cucumber-jvm	for	details.

https://cukes.info/docs#cucumber-implementations
https://github.com/cucumber/cucumber-jvm

How	to	do	it…
1.	 The	first	thing	that	we	need	to	do	is	add	the	necessary	dependencies	for	the

Cucumber	libraries	to	our	build.gradle	file,	as	follows:

dependencies	{

				compile("org.springframework.boot:spring-boot-starter-data-jpa")

				compile("org.springframework.boot:spring-boot-starter-jdbc")

				compile("org.springframework.boot:spring-boot-starter-web")

				compile("org.springframework.boot:spring-boot-starter-data-rest")

				compile	project(':db-count-starter')

				runtime("com.h2database:h2")

				runtime("mysql:mysql-connector-java")

				testCompile("org.springframework.boot:spring-boot-starter-test")

				testCompile("info.cukes:cucumber-spring:1.2.2")

				testCompile("info.cukes:cucumber-java8:1.2.2")

				testCompile("info.cukes:cucumber-junit:1.2.2")

				testRuntime("com.jayway.jsonpath:json-path")

}

2.	 Next,	we	will	need	to	create	a	test	driver	class	to	run	Cucumber	tests.	Let’s	create	a
RunCukeTests.java	file	in	the	src/test/java/org/test/bookpub	directory	at	the
root	of	our	project	with	the	following	content:

@RunWith(Cucumber.class)

@CucumberOptions(plugin={"pretty",	"html:build/reports/cucumber"},		

																	glue	=	{"cucumber.api.spring",	

"classpath:org.test.bookpub"},	

																	monochrome	=	true)

public	class	RunCukeTests	{

}

3.	 With	the	driver	class	created,	we	are	ready	to	start	writing	what	Cucumber	refers	to
as	Step	Definitions.	I	will	talk	briefly	about	what	these	are	in	the	How	it	works…
section	of	this	recipe	For	now,	let’s	create	a	RepositoryStepdefs.java	file	in	the
src/test/java/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

@WebAppConfiguration

@ContextConfiguration(classes	=	{BookPubApplication.class,	

TestMockBeansConfig.class},	loader	=	

SpringApplicationContextLoader.class)	

public	class	RepositoryStepdefs	{

				@Autowired

				private	WebApplicationContext	context;

				@Autowired

				private	DataSource	ds;

				@Autowired

				private	BookRepository	bookRepository;

				private	Book	loadedBook;

				@Given("^([^\\\"]*)	fixture	is	loaded$")

				public	void	data_fixture_is_loaded(String	fixtureName)	throws	

Throwable	{

								ResourceDatabasePopulator	populator	=	new	

ResourceDatabasePopulator(context.getResource("classpath:/"	+	

fixtureName	+	".sql"));

								DatabasePopulatorUtils.execute(populator,	ds);

				}

				@Given("^(\\d+)	books	available	in	the	catalogue$")

				public	void	books_available_in_the_catalogue(int	bookCount)	throws	

Throwable	{

								assertEquals(bookCount,	bookRepository.count());

				}

				@When("^searching	for	book	by	isbn	([\\d-]+)$")

				public	void	searching_for_book_by_isbn(String	isbn)	throws	

Throwable	{

								loadedBook	=	bookRepository.findBookByIsbn(isbn);

								assertNotNull(loadedBook);

								assertEquals(isbn,	loadedBook.getIsbn());

				}

				@Then("^book	title	will	be	([^\"]*)$")

				public	void	book_title_will_be(String	bookTitle)	throws	Throwable	{

								assertNotNull(loadedBook);

								assertEquals(bookTitle,	loadedBook.getTitle());

				}

}

4.	 Now,	we	will	need	to	create	a	corresponding	testing	feature	definition	file	named
repositories.feature	in	the	src/test/resources/org/test/bookpub	directory	at
the	root	of	our	project	with	the	following	content:

@txn

Feature:	Finding	a	book	by	ISBN

		Background:	Preload	DB	Mock	Data

				Given	packt-books	fixture	is	loaded

		Scenario:	Load	one	book

				Given	3	books	available	in	the	catalogue

				When	searching	for	book	by	isbn	978-1-78398-478-7

				Then	book	title	will	be	Orchestrating	Docker

5.	 Lastly,	we	will	create	one	more	data	SQL	file	named	packt-books.sql	in	the
src/test/resources	directory	at	the	root	of	our	project	with	the	following	content:

INSERT	INTO	author	(id,	first_name,	last_name)	VALUES	(5,	

'Shrikrishna',	'Holla')

INSERT	INTO	book	(isbn,	title,	author_id,	publisher_id)	VALUES	('978-1-

78398-478-7',	'Orchestrating	Docker',	5,	1)

6.	 Execute	the	tests	by	running	./gradlew	clean	test	and	the	tests	should	get	passed.
7.	 With	the	addition	of	Cucumber,	we	also	get	the	results	of	the	tests	in	both	the	JUnit

report	and	Cucumber-specific	report	HTML	files.	If	we	open
build/reports/tests/index.html	in	the	browser	and	click	the	Classes	button,	we
will	see	our	scenario	in	the	table,	as	shown	in	the	following	screenshot:

8.	 Selecting	the	Scenario:	Load	one	book	link	will	take	us	to	the	detailed	report	page,
as	shown:

9.	 As	we	can	see,	the	descriptions	are	nicer	than	the	class	and	method	names	that	we
saw	in	the	original	JUnit-based	test	cases.

10.	 Cucumber	also	generates	its	own	report,	which	can	be	viewed	by	opening
build/reports/cucumber/index.html	in	the	browser.

11.	 Being	a	behavior-driven	testing	framework,	the	feature	files	allow	us	to	define	not
only	individual	conditions,	but	also	declare	entire	scenario	outlines,	which	make	the
defining	of	multiple	assertions	of	similar	data	easier.	Let’s	create	another	feature	file
named	restful.feature	in	the	src/test/resources/org/test/bookpub	directory

at	the	root	of	our	project	with	the	following	content:

@txn

Feature:	Finding	a	book	via	REST	API

		Background:

				Given	packt-books	fixture	is	loaded

		Scenario	Outline:	Using	RESTful	API	to	lookup	books	by	ISBN

				Given	catalogue	with	books

				When	requesting	url	/books/<isbn>

				Then	status	code	will	be	200

				And	response	content	contains	<title>

				Examples:

						|isbn													|title															|

						|978-1-78398-478-7|Orchestrating	Docker|

						|978-1-78528-415-1|Spring	Boot	Recipes	|

12.	 We	will	also	create	a	corresponding	RestfulStepdefs.java	file	in	the
src/test/java/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

import	cucumber.api.java.Before;

import	cucumber.api.java.en.Given;

import	cucumber.api.java.en.Then;

import	cucumber.api.java.en.When;

import	static	org.hamcrest.CoreMatchers.containsString;

import	static	org.junit.Assert.assertTrue;

import	static	

org.springframework.test.web.servlet.request.MockMvcRequestBuilders.get

;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.statu

s;

import	static	

org.springframework.test.web.servlet.result.MockMvcResultMatchers.conte

nt;

@WebAppConfiguration

@ContextConfiguration(classes	=	{BookPubApplication.class,	

TestMockBeansConfig.class},	loader	=	

SpringApplicationContextLoader.class)

public	class	RestfulStepdefs	{

		@Autowired

		private	WebApplicationContext	context;

		@Autowired

		private	BookRepository	bookRepository;

		private	MockMvc	mockMvc;

		private	ResultActions	result;

		@Before

		public	void	setup()	throws	IOException	{

				mockMvc	=	MockMvcBuilders.webAppContextSetup(context).build();

		}

		@Given("^catalogue	with	books$")

		public	void	catalogue_with_books()	{

				assertTrue(bookRepository.count()	>	0);

		}

		@When("^requesting	url	([^\"]*)$")

		public	void	requesting_url(String	url)	throws	Exception	{

				result	=	mockMvc.perform(get(url));

		}

		@Then("^status	code	will	be	([\\d]*)$")

		public	void	status_code_will_be(int	code)	throws	Throwable	{

				result.andExpect(status().is(code));

		}

		@Then("^response	content	contains	([^\"]*)$")

		public	void	response_content_contains(String	content)	throws	

Throwable	{

				result.andExpect(content().string(containsString(content)));

		}

}

13.	 Execute	the	tests	by	running	./gradlew	clean	test	and	the	tests	should	continue	to
get	passed.

How	it	works…
If	you	feel	a	bit	lost	after	looking	at	all	this	code	and	following	along	without	having	a	full
understanding	of	what	exactly	is	going	on,	here	you	will	find	the	detailed	breakdown	of
everything	that	we	did.

Let’s	start	with	a	quick	overview	of	what	Step	Definitions	are.	As	the	Cucumber
framework	uses	the	Gherkin	feature	document	files	in	order	to	describe	the	business	rules
that	are	to	be	tested,	which	are	represented	in	a	form	of	English-like	sentence	statements,
these	need	to	be	translated	into	an	executable	code.	This	is	the	job	of	the	Step	Definition
classes.	Every	step	in	a	defined	feature	scenario	needs	to	be	matched	to	a	method	in	a	Step
Definition	class	that	will	execute	it.	This	matching	is	done	by	declaring	a	regular
expression	in	the	step	annotations,	such	as	@Given,	@When,	or	@Then,	placed	above	the
methods.	The	regex	contains	the	matching	groups	that	Cucumber	uses	so	as	to	extract	the
method	arguments	and	pass	them	to	the	executing	method.

In	RepositoryStepdefs,	we	can	see	this	in	the	following	method:

@Given("^([^\\\"]*)	fixture	is	loaded$")

public	void	data_fixture_is_loaded(String	fixtureName)	{...}

The	@Given	annotation	contains	the	regex	that	matches	the	Given	packt-books	fixture
is	loaded	line	from	repositories.feature	and	extracts	the	packt-books	text	from	the
pattern,	which	is	then	passed	as	a	fixtureName	argument	to	the	method.	The	@When	and
@Then	annotations	work	on	exactly	the	same	principle.	So,	in	effect,	what	the	Cucumber
framework	does	is	it	matches	the	English-like	worded	rules	from	the	feature	files	to	the
matched	patterns	of	the	executing	methods	and	extracts	parts	of	the	rules	as	arguments	to
the	matched	methods.

Note
More	information	on	Gherkin	and	how	to	use	it	can	be	found	at
https://cukes.info/docs/reference#gherkin.

With	the	basic	Cucumber	overview	explained,	let’s	shift	our	focus	on	how	the	tests
integrate	with	Spring	Boot	and	are	configured.

It	all	starts	with	the	driver	harness	class,	which	in	our	case	is	RunCukeTests.	This	class
itself	does	not	contain	any	tests	but	has	two	important	annotations	that	stitch	things
together:	@RunWith(Cucumber.class)	and	@CucumberOptions.

@RunWith(Cucumber.class):	This	is	a	JUnit	annotation	that	indicates	that	the	JUnit
runner	should	use	the	Cucumber	Feature	files	to	execute	the	tests.
@CucumberOptions:	This	provides	an	additional	configuration	for	Cucumber.

plugin={"pretty",	"html:build/reports/cucumber"}:	This	tells	Cucumber
to	generate	its	reports	in	an	html	format	in	the	build/reports/cucumber
directory.
glue	=	{"cucumber.api.spring",	"classpath:org.test.bookpub"}:	This	is
a	VERY	important	setting	as	it	tells	Cucumber	which	packages	to	load	and	from

https://cukes.info/docs/reference#gherkin

where	to	load	them	during	the	execution	of	the	tests.	The	cucumber.api.spring
package	needs	to	be	present	in	order	to	take	advantage	of	the	cucumber-spring
integration	library	and	the	org.test.bookpub	package	is	the	location	of	our
Step	Definition	implementation	classes.
monochrome	=	true:	This	tells	Cucumber	not	to	print	the	output	with	the	ANSI
color	as	we	integrate	with	JUnit	and	it	will	not	look	correct	in	the	saved	console
output	files.

Note
A	complete	list	of	the	options	can	be	found	at
https://cukes.info/docs/reference/jvm#list-all-options.

Now	let’s	look	at	the	RepositoryStepdefs	class.	It	starts	with	the	following	annotations	at
the	class	level:

@WebAppConfiguration	tells	Spring	that	this	class	needs	WebApplicationContext
initialized	and	it	will	be	used	for	testing	purposes	during	the	execution
@ContextConfiguration(classes	=	{BookPubApplication.class,

TestMockBeansConfig.class},	loader	=

SpringApplicationContextLoader.class)	instruct	Spring	to	use	the
BookPubApplication	and	TestMockBeansConfig	classes	as	a	configuration	for	the
Spring	application	context	as	well	as	to	use	the	SpringApplicationContextLoader
class	from	Spring	Boot	in	order	to	bootstrap	the	testing	harness

As	the	Cucumber-Spring	integration	does	not	know	about	Spring	Boot,	but	only	knows
about	Spring,	we	can’t	use	the	@SpringApplicationConfiguration	meta-annotation.	We
have	to	resort	to	using	only	the	annotations	available	from	Spring	proper,	in	order	to	stitch
things	together.	Thankfully,	we	don’t	have	to	jump	through	many	hoops,	we	just	declare
the	exact	annotation	that	SpringApplicationConfiguration	encapsulates,	by	passing	the
desired	configuration	classes	and	loader	to	@ContextConfiguration.

Once	the	proper	annotations	are	in	place,	Spring	and	Spring	Boot	will	take	over	and
provide	us	with	the	same	convenience	of	autowiring	beans	as	dependencies	of	our	Step
Definition	classes.

One	interesting	characteristic	of	the	Cucumber	tests	is	the	instantiation	of	a	new	instance
of	the	Step	Definition	class	for	every	execution	of	a	scenario.	Even	though	the	method
namespace	is	global—meaning	that	we	can	use	the	methods	that	are	declared	in	the
different	Step	Definition	classes—they	operate	on	states	defined	in	them	and	are	not
shared.	As	a	new	instance	gets	created	per	scenario,	the	definition	classes	are	stateful	and
rely	on	internal	variables	to	keep	a	state	among	transitions	from	assertion	to	assertion.	For
example,	in	the	@When	annotated	method,	a	particular	state	gets	set	and	in	the	@Then
annotated	method,	a	set	of	assertions	on	that	state	gets	evaluated.	In	our	example	of	the
RepositoryStepdefs	class,	we	will	internally	set	the	state	of	the	loadedBook	class
variable	in	its	searching_for_book_by_isbn(...)	method,	which	later	gets	used	to	assert
on	so	as	to	verify	the	match	of	the	book’s	title	in	the	book_title_will_be	method
afterwards.	Due	to	this,	if	we	mix	the	rules	from	the	different	definition	classes	in	our

https://cukes.info/docs/reference/jvm#list-all-options

feature	files,	the	internal	states	would	not	be	accessible	among	the	multiple	classes.

With	the	integration	with	Spring,	this	problem	can	be	solved	using	the	injection	of	the
mocked	objects—as	we	have	seen	in	PublisherRepositoryTests	from	one	of	our
previous	examples—and	have	the	shared	@Given	annotated	method	be	used	to	set	up	the
particular	behavior	of	the	mock	for	the	given	test.	Then	we	can	use	the	same	dependency
instance	and	inject	it	into	another	definition	class	that	can	be	used	in	order	to	evaluate	the
@Then	annotated	assertion	methods.

Another	approach	is	the	one	that	we	saw	in	the	second	definition	class,	RestfulStepdefs,
where	we	injected	the	BookRepository.	However,	in	restful.feature,	we	will	be	using
the	Given	packt-books	fixture	is	loaded	directive	that	translates	to	the	invocation	of
data_fixture_is_loaded	method	from	the	RepositoryStepdefs	class,	which	shares	the
same	instance	of	the	injected	BookRepository	object,	inserting	packt-books.sql	data
into	it.

Another	neat	feature	of	the	Cucumber	and	Spring	integration	is	the	use	of	the	@txn
annotation	in	the	feature	files.	This	tells	Spring	to	execute	the	tests	in	a	transaction
wrapper,	reset	the	database	between	the	test	executions,	and	guarantee	a	clean	database
state	for	every	test.

Due	to	the	global	method	namespace	among	all	the	Step	Definition	classes	and	test
behavior	defining	feature	files,	we	can	use	the	power	of	the	Spring	injection	to	our
advantage	so	as	to	reuse	the	testing	models	and	have	a	common	setup	logic	for	all	of	the
tests,	thus	making	the	tests	behave	similarly	to	how	our	application	would	function	in	the
real	production	environment.

Writing	tests	using	Spock
Another,	no	less	popular,	testing	framework	is	Spock,	which	is	written	in	Groovy	by	Peter
Niederwieser.	Being	a	Groovy-based	framework,	it	is	ideally	suited	to	create	testing	suites
for	a	majority	of	the	JVM-based	languages,	especially	for	Java	and	Groovy	itself.	The
dynamic	language	traits	of	Groovy	make	it	well	suited	to	write	elegant,	efficient,	and
expressive	specifications	in	the	Groovy	language	itself	without	the	need	for	translations,
as	it	is	done	in	Cucumber	with	the	help	of	the	Gherkin	library.	As	Spock	is	based	on	top	of
JUnit,	integrating	with	it	through	JUnit’s	@RunWith	facility,	just	like	Cucumber	does,	is	an
easy	enhancement	to	the	traditional	unit	tests.	It	works	well	with	all	the	existing	tools,
which	have	built-in	support	or	integration	with	JUnit.

In	this	recipe,	we	will	pick	up	from	the	previous	recipe	and	enhance	our	test	collection
with	a	couple	of	Spock-based	tests.	In	these	tests,	we	will	see	how	to	set	up	MockMVC
using	the	Spring	dependency	injection	and	testing	harnesses.	These	will	be	used	by	the
Spock	test	specifications	in	order	to	validate	the	fact	that	our	data	repository	services	will
return	the	data	as	expected.

How	to	do	it…
1.	 In	order	to	add	the	Spock	tests	to	our	application,	we	will	need	to	make	a	few

changes	to	our	build.gradle	file	first.	As	Spock	tests	are	written	in	Groovy,	the	first
thing	to	do	is	add	a	groovy	plugin	to	our	build.gradle	file,	as	follows:

apply	plugin:	'java'

apply	plugin:	'groovy'

apply	plugin:	'eclipse'

apply	plugin:	'idea'

apply	plugin:	'spring-boot'

2.	 We	will	also	need	to	add	the	necessary	Spock	framework	dependencies	to	the
build.gradle	dependencies	block:

dependencies	{

		...

		testCompile('org.spockframework:spock-core:1.0-groovy-2.4')

		testCompile('org.spockframework:spock-spring:1.0-groovy-2.4')

		...

}

3.	 As	the	tests	will	be	in	Groovy,	we	will	need	to	create	a	new	source	directory	for	the
files.	Let’s	create	the	src/test/groovy/org/test/bookpub	directory	in	the	root	of
our	project.

4.	 Now	we	are	ready	to	write	our	first	test.	Create	a
SpockBookRepositorySpecification.groovy	file	in	the
src/test/groovy/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

@WebAppConfiguration

@ContextConfiguration(classes	=	

[BookPubApplication.class,TestMockBeansConfig.class],	loader	=	

SpringApplicationContextLoader.class)

class	SpockBookRepositorySpecification	extends	Specification	{

		@Autowired

		private	ConfigurableWebApplicationContext	context

		@Shared

		boolean	sharedSetupDone	=	false

		@Autowired

		private	DataSource	ds;

		@Autowired

		private	BookRepository	repository;

		@Shared

		private	MockMvc	mockMvc;

		void	setup()	{

				if	(!sharedSetupDone)	{

						mockMvc	=	MockMvcBuilders.webAppContextSetup(context).build();

						sharedSetupDone	=	true

				}

				ResourceDatabasePopulator	populator	=	new	

ResourceDatabasePopulator(context.getResource("classpath:/packt-

books.sql"));

				DatabasePopulatorUtils.execute(populator,	ds);

		}

		@Transactional

		def	"Test	RESTful	GET"()	{

				when:

						def	result	=	mockMvc.perform(get("/books/${isbn}"));

				then:

						result.andExpect(status().isOk())

						result.andExpect(content().string(containsString(title)));

				where:

						isbn													|	title

				"978-1-78398-478-7"|"Orchestrating	Docker"

				"978-1-78528-415-1"|"Spring	Boot	Recipes"

		}

		@Transactional

		def	"Insert	another	book"()	{

				setup:

				def	existingBook	=	repository.findBookByIsbn("978-1-78528-415-1")

				def	newBook	=	new	Book("978-1-12345-678-9","Some	Future	Book",	

existingBook.getAuthor(),	existingBook.getPublisher())

				expect:

				repository.count()	==	3

				when:

						def	savedBook	=	repository.save(newBook)

				then:

						repository.count()	==	4

						savedBook.id	>	-1

		}

}

5.	 Execute	the	tests	by	running	./gradlew	clean	test	and	the	tests	should	get	passed.
6.	 As	Spock	integrates	with	JUnit,	we	can	see	the	execution	report	of	the	Spock	tests

together	with	the	rest	of	our	test	suite.	If	we	open	build/reports/tests/index.html
in	the	browser	and	click	the	Classes	button,	we	will	see	our	specification	in	the	table,
as	shown	in	the	following	screenshot:

7.	 Selecting	the	org.test.bookpub.SpockBookRespositorySpecification	link	will	take
us	to	the	detailed	report	page,	which	is	as	follows:

8.	 Next,	we	will	take	our	tests	a	bit	further	and	explore	the	mocking	functionality	of	the
database	repositories.	Let’s	use	the	existing	PublisherRepository—for	which	we
have	already	created	a	Mockito	object	mock	in	TestMockBeansConfig—and	wire	it
into	the	BookController	class	to	provide	a	getBooksByPublisher	functionality.
Let’s	add	the	following	content	to	the	BookController	class	in	the
src/main/java/org/test/bookpub/controllers	directory	at	the	root	of	our	project:

@Autowired

private	PublisherRepository	publisherRepository;

@RequestMapping(value	=	"/publisher/{id}",	method	=	RequestMethod.GET)

public	List<Book>	getBooksByPublisher(@PathVariable("id")	Long	id)	{

				Publisher	publisher	=	publisherRepository.findOne(id);

				Assert.notNull(publisher);

				return	publisher.getBooks();

}

9.	 We	will	also	need	to	add	another	annotation	to	our	Book	and	Publisher	entity
classes.	Let’s	add	the	following	to	the	Book	and	Publisher	classes	in	the
src/main/java/org/test/bookpub/entity	directory	at	the	root	of	our	project:

@JsonIdentityInfo(generator=ObjectIdGenerators.PropertyGenerator.class,	

property="id",	scope=Book.class)

public	class	Book	{...}

@JsonIdentityInfo(generator=ObjectIdGenerators.PropertyGenerator.class,	

property="id",	scope=Publisher.class)

public	class	Publisher	{...}

10.	 Lastly,	let’s	add	a	getter	and	setter	for	the	books	to	the	Publisher	entity	class	as	well:

public	List<Book>	getBooks()	{

				return	books;

}

public	void	setBooks(List<Book>	books)	{

				this.books	=	books;

}

11.	 With	all	the	code	additions	completed,	we	are	ready	to	add	another	test	to	the
SpockBookRepositorySpecification.groovy	file	in	the
src/test/groovy/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

...

class	SpockBookRepositorySpecification	extends	Specification	{

				...

				@Autowired

				private	PublisherRepository	publisherRepository

				def	"Test	RESTful	GET	books	by	publisher"()	{

								setup:

								Publisher	publisher	=	

										new	Publisher("Strange	Books")

								publisher.setId(999)

								Book	book	=	new	Book("978-1-98765-432-1",

																"Mystery	Book",

																new	Author("John",	"Doe"),

																publisher)

								publisher.setBooks([book])

								Mockito.when(publisherRepository.count()).

																thenReturn(1L)																			

								Mockito.when(publisherRepository.findOne(1L)).

																thenReturn(publisher)

								when:

								def	result	=	

										mockMvc.perform(get("/books/publisher/1"))

								then:

								result.andExpect(status().isOk())

								result.andExpect(content().

																string(containsString("Strange	Books")))

								cleanup:

								Mockito.reset(publisherRepository)

				}

}

12.	 Execute	the	tests	by	running	./gradlew	clean	test	and	the	tests	should	continue	to
get	passed.

How	it	works…
As	you	saw	from	this	example,	writing	tests	can	be	just	as	elaborate	and	sophisticated	as
the	production	code	being	tested	itself.	Let’s	examine	the	steps	that	we	took	in	order	to	get
the	Spock	tests	integrated	in	our	Spring	Boot	application.

The	first	thing	that	we	did	was	to	add	a	groovy	plugin	in	order	to	make	our	build	Groovy-
friendly	and	we	also	added	the	required	Spock	library	dependencies	of	spock-core	and
spock-spring,	both	of	which	are	required	to	make	Spock	work	with	Spring’s	dependency
injection	and	contexts.

The	next	step	was	to	create	the	SpockBookRepositorySpecification	Spock	specification,
which	extends	the	Spock’s	Specification	abstract	base	class.	Extending	the
Specification	class	is	very	important	because	this	is	how	JUnit	knows	that	our	class	is
the	test	class	that	needs	to	be	executed.	If	we	look	in	the	Specification	source,	we	will
see	the	@RunWith(Sputnik.class)	annotation,	similar	to	the	one	that	we	used	in	the
Cucumber	recipe.	In	addition	to	the	JUnit	bootstrapping,	the	Specification	class
provides	us	with	many	helpful	methods	and	mocking	support	as	well.

Note
For	more	information	about	the	detailed	capabilities	that	are	offered	by	Spock,	you	can
refer	to	the	Spock	documentation	that	is	available	at
http://spockframework.github.io/spock/docs/1.0/index.html.

It	is	also	worth	mentioning	that	we	used	the	same	annotations	for	the
SpockBookRepositorySpecification	class	as	we	did	for	our	Cucumber-based	tests,	as
shown	in	the	following	code:

@WebAppConfiguration

@ContextConfiguration(classes	=	[BookPubApplication.class,	

TestMockBeansConfig.class],	loader	=	SpringApplicationContextLoader.class)

The	reason	that	we	had	to	resort	to	using	these	instead	of	just	using
@SpringApplicationConfiguration	is	exactly	the	same	as	well.	Neither	the	Spock	nor
the	Cucumber	frameworks	know	about	Spring	Boot	explicitly	and	thus	are	not	capable	of
recognizing	its	meta/convenience	annotations.	The	good	news	is	that	we	can	always	use
the	same	annotations	as	they	are	just	regular	Spring	ones	and	annotate	our	classes	directly,
which	is	exactly	what	we	did.

Unlike	Cucumber,	Spock	combines	all	the	aspects	of	the	test	in	one	Specification	class,
dividing	it	into	multiple	blocks,	as	follows:

setup:	This	block	is	used	to	configure	the	specific	test	with	variables,	populating
data,	building	mocks,	and	so	on.
expect:	This	block	is	one	of	the	stimulus	blocks,	as	Spock	defines	it,	designed	to
contain	simple	expressions	asserting	a	state	or	condition.	Besides	evaluating	the
conditions,	we	can	only	define	variables	in	this	block	and	nothing	else	is	allowed.
when:	This	block	is	another	stimulus	type	block,	which	always	goes	together	with
then.	It	can	contain	any	arbitrary	code	and	is	designed	to	define	the	behavior	that	we

http://spockframework.github.io/spock/docs/1.0/index.html

are	trying	to	test.
then:	This	block	is	a	response	type	block.	It	is	similar	to	expect:	and	can	only
contain	conditions,	exception	checking,	variable	definition,	and	object	interactions,
such	as	how	many	times	a	particular	method	has	been	called	and	so	forth.

Note
More	information	on	interaction	testing	is	available	on	Spock’s	website	at
http://spockframework.github.io/spock/docs/1.0/interaction_based_testing.html.

cleanup:	This	block	is	used	to	clean	the	state	of	the	environment	and	potentially
undo	whatever	changes	were	done	as	part	of	the	individual	test	execution.	In	our
recipe,	this	is	where	we	will	reset	our	publisherRepository	mock	object.

Spock	provides	us	with	the	instance-based	setup()	and	cleanup()	methods	as	well,
which	can	be	used	to	define	the	setup	and	cleanup	behavior	that	is	common	to	all	the	tests
in	the	specification.

If	we	look	at	our	setup()	method,	this	is	where	we	can	configure	the	database	population
with	the	test	data	and	build	the	MockMvc	object.	An	interesting	and	important	nuance	is
the	use	of	the	sharedSetupDone	variable.	In	Spock,	any	field	that	is	annotated	with	an
@Shared	annotation	means	that	the	same	object	will	be	used	for	all	the	tests.	The	problem
is	that	Spring	cannot	inject	the	static	fields	with	data,	only	the	per-instance	ones.	So,	we
will	use	the	sharedSetupDone	field	to	track	if	we	already	ran	the	setup()	method	and
created	the	mockMvc	field,	and	so	we	don’t	end	up	starting	a	new	container	for	the
execution	of	every	single	test,	thus	saving	a	significant	amount	of	time	during	the	test
execution.

Another	helpful	annotation	is	the	@Transactional	annotation	of	the	test	methods.	Just	as
with	the	@txn	tag	in	the	Cucumber	feature	files,	this	annotation	instructs	Spock	to	execute
the	annotated	method	and	its	corresponding	setup()	and	cleanup()	executions	with	a
transaction	scope,	which	gets	rolled	back	after	the	particular	test	method	is	finished.	We
rely	on	this	behavior	to	get	a	clean	database	state	for	every	test	so	that	we	don’t	end	up
inserting	duplicate	data	during	the	execution	of	the	setup()	method	every	time	each	of
our	tests	runs.

Most	of	you	are	probably	wondering	why	we	had	to	add	the
@JsonIdentityInfo(generator=ObjectIdGenerators.PropertyGenerator.class,

property="id")	annotation	to	our	Book	and	Publisher	entity	classes.	The	answer	has	to
do	with	the	Jackson	JSON	parser	and	how	it	handles	circular	dependency.	In	our	model,
we	have	a	Book	belonging	to	a	Publisher	and	each	Publisher	having	multiple	Books.
When	we	created	our	Publisher	with	the	Books	mock	and	assigned	a	publisher	instance	to
a	book—which	later	got	put	in	the	publisher’s	book	collection—we	created	a	circular
reference.	During	the	execution	of	the	BookController.getBooksByPublisher(…)
method,	the	Jackson	renderer	would	have	thrown	StackOverflowError	while	trying	to
write	the	object	model	to	JSON.	By	adding	this	annotation	to	the	Book	and	Publisher
classes,	we	told	Jackson	to	use	the	reference	identifier	instead	of	trying	to	write	out	the
complete	object,	thus	avoiding	the	circular	reference	loop	situation.

http://spockframework.github.io/spock/docs/1.0/interaction_based_testing.html

The	last	thing	that	is	important	to	keep	in	mind	is	how	Spring	Boot	handles	and	processes
the	repository	interfaces	that	are	annotated	with	@RepositoryRestResource.	Unlike	the
BookRepository	interface,	which	we	have	annotated	with	a	plain	@Repository	annotation
and	later	explicitly	declared	as	an	autowire	dependency	of	our	BookController	class,	we
did	not	create	an	explicit	controller	to	handle	RESTful	requests	for	the	rest	of	our
repository	interfaces	such	as	the	PublisherRepository	and	others.	These	interfaces	get
scanned	by	Spring	Boot	and	automatically	wrapped	with	the	mapped	endpoints	that	trap
the	requests	and	delegate	the	calls	to	the	backing	SimpleJpaRepository	proxy.	Due	to	this
setup,	we	can	use	only	the	@Primary	mock	object	replacement	approach	for	these	objects
that	have	been	explicitly	injected	as	bean	dependencies	such	as	with	our	example	of
BookRepository.	The	good	news	is	that	in	these	situations,	where	we	don’t	explicitly
expect	beans	to	be	wired	and	only	use	some	annotations	to	stereotype	the	interfaces	for
Spring	Boot	to	do	its	magic,	we	can	rely	on	Spring	Boot	to	do	the	job	correctly	and	know
that	it	has	tested	all	the	functionalities	behind	it	so	that	we	don’t	have	to	test	them.

Chapter	6.	Application	Packaging	and
Deployment
In	this	chapter,	we	will	cover	the	following	topics:

Creating	a	Spring	Boot	executable	JAR
Creating	Docker	images
Building	self-executing	binaries
Spring	Boot	environment	configuration	hierarchy	and	precedence
Externalizing	an	environmental	configuration	using	property	files
Externalizing	an	environmental	configuration	using	environment	variables
Externalizing	an	environmental	configuration	using	Java	system	properties
Setting	up	Consul
Externalizing	an	environmental	configuration	using	Consul	and	envconsul

Introduction
What	good	is	an	application	unless	it	is	being	used?	In	today’s	day	and	age—when
DevOps	became	the	way	of	doing	software	development,	when	Cloud	is	the	king,	and
when	building	Microservices	is	considered	as	the	thing	to	do—a	lot	of	attention	is	being
focused	on	how	the	applications	get	packaged,	distributed,	and	deployed	in	their
designated	environments.

The	Twelve-Factor	App	methodology	has	played	an	instrumental	role	in	defining	how	a
modern	Software	as	a	Service	(SaaS)	application	is	supposed	to	be	built	and	deployed.
One	of	the	key	principles	is	the	separation	of	environmental	configuration	definitions	from
the	application	and	storage	of	this	in	the	environments.	They	also	favor	the	isolation	and
bundling	of	the	dependencies,	development	versus	production	parity,	and	ease	of
deployment	and	disposability	of	the	applications,	among	others.

Note
The	Twelve-Factor	App	methodology	can	be	found	at	http://12factor.net/.

The	DevOps	model	also	encourages	us	to	have	complete	ownership	of	our	application,
starting	from	writing	and	testing	the	code	all	the	way	to	building	and	deploying	it.	If	we
are	to	assume	this	ownership,	we	need	to	ensure	that	the	maintenance	and	overhead	costs
are	not	excessive	and	won’t	take	away	much	time	from	our	primary	task	of	developing
new	features.	This	can	be	achieved	by	having	clean,	well-defined,	and	isolated	deployable
artifacts,	which	are	self-contained,	self-executed,	and	can	be	deployed	in	any	environment
without	having	to	be	rebuilt.

The	following	recipes	will	walk	us	through	all	the	necessary	steps	to	achieve	the	goals	of
low-effort	deployment	and	maintenance	while	having	a	clean	and	elegant	code	behind	it.

http://12factor.net/

Creating	a	Spring	Boot	executable	JAR
The	Spring	Boot	magic	would	not	be	complete	without	providing	a	nice	way	to	package
the	entire	application	including	all	of	its	dependencies,	resources,	and	so	on	in	one
composite,	executable	JAR.	After	the	JAR	file	is	created,	it	can	simply	be	launched	by
running	a	java	–jar	<name>.jar	command.

We	will	continue	with	the	application	code	that	we	built	in	the	previous	chapters	and	will
add	the	necessary	functionalities	to	package	it.	Let’s	go	ahead	and	take	a	look	at	how	to
create	the	Spring	Boot	Uber	JAR.

Note
The	Uber	JAR	is	typically	known	as	an	application	bundle	encapsulated	in	a	single
composite	jar	that	internally	contains	a	/lib	directory	with	all	the	dependent	inner	jars	and
optionally	a	/bin	directory	with	the	executables.

How	to	do	it…
1.	 Let’s	go	to	our	code	directory	from	Chapter	5,	Application	Testing,	and	execute

./gradlew	clean	build.
2.	 With	the	Uber	JAR	built,	let’s	launch	the	application	by	executing	java	-jar

build/libs/bookpub-0.0.1-SNAPSHOT.jar.
3.	 This	will	result	in	our	application	running	in	the	jar	with	the	following	console

output:

		.			____										_												__	_	_

	/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

	\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

		'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

	=========|_|==============|___/=/_/_/_/

	::	Spring	Boot	::		(v1.3.0.BUILD-SNAPSHOT)

...

(The	rest	is	omitted	for	conciseness)

...

2015-05-08	INFO:	Registering	beans	for	JMX	exposure	on	startup

2015-05-08	INFO:	Tomcat	started	on	port(s):	8080	(http)	8443	(https)

2015-05-08	INFO:	Welcome	to	the	Book	Catalog	System!

2015-05-08	INFO:	BookRepository	has	1	entries

2015-05-08	INFO:	ReviewerRepository	has	0	entries

2015-05-08	INFO:	PublisherRepository	has	1	entries

2015-05-08	INFO:	AuthorRepository	has	1	entries

2015-05-08	INFO:	Started	BookPubApplication	in	12.156	seconds	(JVM	

running	for	12.877)

2015-05-08	INFO:	Number	of	books:	1

How	it	works…
As	you	can	see,	getting	the	packaged	executable	JAR	is	fairly	straightforward.	All	the
magic	is	already	coded	and	provided	to	us	as	part	of	the	Spring	Boot	Gradle	plugin.	The
addition	of	the	plugin	adds	a	number	of	tasks,	which	allow	us	to	package	the	Spring	Boot
application	together,	run	it,	and	build	JAR,	TAR,	WAR	files,	and	so	on.	For	example,	the
bootRun	task,	which	we	have	been	using	throughout	this	book,	is	provided	by	Spring	Boot
Gradle	plugin,	among	others.	We	can	see	the	complete	list	of	the	available	Gradle	tasks	by
executing	./gradlew	tasks.	When	we	run	this	command,	we	will	get	the	following
output:

--

All	tasks	runnable	from	root	project

--

Application	tasks

bootRun	-	Run	the	project	with	support	for	auto-detecting	main	class	and	

reloading	static	resources

installApp	-	Installs	the	project	as	a	JVM	application	along	with	libs	and	

OS	specific	scripts.

run	-	Runs	this	project	as	a	JVM	application

Build	tasks

assemble	-	Assembles	the	outputs	of	this	project.

bootRepackage	-	Repackage	existing	JAR	and	WAR	archives	so	that	they	can	be	

executed	from	the	command	line	using	'java	-jar'

build	-	Assembles	and	tests	this	project.

buildDependents	-	Assembles	and	tests	this	project	and	all	projects	that	

depend	on	it.

buildNeeded	-	Assembles	and	tests	this	project	and	all	projects	it	depends	

on.

classes	-	Assembles	classes	'main'.

clean	-	Deletes	the	build	directory.

jar	-	Assembles	a	jar	archive	containing	the	main	classes.

testClasses	-	Assembles	classes	'test'.

Build	Setup	tasks

init	-	Initializes	a	new	Gradle	build.	[incubating]

Distribution	tasks

assembleMainDist	-	Assembles	the	main	distributions

distTar	-	Bundles	the	project	as	a	distribution.

distZip	-	Bundles	the	project	as	a	distribution.

installDist	-	Installs	the	project	as	a	distribution	as-is.

The	preceding	output	is	not	complete;	I’ve	excluded	the	non	relevant	task	groups	such	as
IDE,	Documentation,	and	so	on,	but	you	will	see	them	in	your	console.	In	the	task	list,	we
will	see	tasks	such	as	bootRun,	bootRepackage,	and	others.	These	tasks	have	been	added
by	the	Spring	Boot	Gradle	plugin	in	order	to	enhance	the	build	pipeline	and	produce	the

proper	Spring	Boot	application	bundle	or	start	it.	You	can	see	the	actual	task	dependency
if	you	execute	./gradlew	tasks	--all,	which	will	not	only	print	the	visible	tasks,	but
also	the	depended,	internal	tasks	and	the	task	dependencies.	For	example,	when	we	were
running	the	build	task,	all	the	following	depended	tasks	were	executed	as	well:

build	-	Assembles	and	tests	this	project.	[assemble,	check]

assemble	-	Assembles	the	outputs	of	this	project.	[bootRepackage,	distTar,	

distZip,	jar]

You	can	see	that	the	build	task	will	execute	the	assemble	task,	which	in	turn,	will	call
bootRepackage	where	the	creation	of	the	Uber	JAR	is	actually	taking	place.

The	plugin	also	provides	a	number	of	very	useful	configuration	options.	While	I	am	not
going	to	go	into	detail	on	all	of	them,	I’ll	mention	the	two	that	I	find	very	useful:

First	configuration	allows	us	to	specify	the	executable	JAR	file	classifier,	creating	a
regular	JAR	containing	just	the	application	code	and	a	separate	executable	JAR	with	the
classifier	in	the	name,	bookpub-0.0.1-SNAPSHOT-exec.jar.

bootBoot	{

		classifier	=	'exec'

}

Another	useful	configuration	option	allows	us	to	specify	which	dependency	JARs	require
unpacking	because,	for	some	reason,	they	can’t	be	included	as	nested	inner	JARs.	This
comes	in	very	handy	when	you	need	something	to	be	available	in	System	Classloader
such	as	setting	a	custom	SecurityManager	via	the	startup	system	properties:

springBoot	{

		requiresUnpack	=	['org.group.name:some-artifact']

}

In	this	example,	the	contents	of	the	some-artifact	JAR	from	the	org.group	dependency
will	be	inlined	in	the	main	JAR	along	with	the	Spring	Boot	bootstrap	code	and	the
application	code	itself.

Creating	Docker	images
Docker,	Docker,	Docker!	I	hear	this	phrase	more	and	more	in	all	the	conferences	and	tech
meetups	that	I	attend.	The	arrival	of	Docker	has	been	welcomed	by	the	community	with
open	arms	and	it	has	instantly	become	a	hit.	The	Docker	ecosystem	has	been	rapidly
expanding	with	many	other	companies	providing	services,	support,	and	complimenting
frameworks	such	as	Apache	Mesos	and	Amazon	Elastic	Beanstalk,	just	to	name	a	few.
Even	Microsoft	has	embraced	the	technology	and	is	working	on	providing	Docker	support
in	their	Azure	Cloud	service.

The	reason	for	Docker’s	overwhelming	popularity	lies	behind	the	ability	that	it	provides	to
package	and	deploy	applications	in	a	form	of	self-contained	containers.	The	containers	are
more	lightweight	than	the	traditional	full-blown	virtual	machines.	Multiple	numbers	of
them	can	be	run	on	top	of	a	single	OS	instance,	thus	increasing	the	number	of	applications
that	can	be	deployed	on	the	same	hardware	as	compared	to	traditional	VMs.

In	this	recipe,	we	will	take	a	look	at	what	it	would	take	to	package	our	Spring	Boot
application	as	a	Docker	image	and	how	to	deploy	and	run	it.

Building	a	Docker	image	and	just	running	it	on	your	development	machine	is	doable,	but
not	as	much	fun	as	being	able	to	share	it	with	the	world.	You	will	need	to	publish	it
somewhere	for	it	to	be	deployable,	especially	if	you	are	thinking	of	doing	it	in	Amazon	or
some	other	cloud-like	environment.	Luckily,	Docker	provides	us	with	not	only	the
Container	solution,	but	also	with	a	repository	service,	DockerHub,	located	at
https://hub.docker.com	where	we	can	create	repositories	and	publish	our	Docker	images.
So	think	of	it	like	Maven	Central	for	Docker.

https://hub.docker.com

How	to	do	it…
1.	 The	first	step	will	be	to	create	an	account	on	DockerHub	so	that	we	can	publish	our

images.	Go	to	https://hub.docker.com	and	create	an	account.	You	can	also	use	your
GitHub	account	and	log	in	using	it	if	you	have	one.

2.	 Once	you	have	an	account,	we	will	need	to	create	a	repository	named
springbootcookbook.

3.	 With	this	account	created,	now	is	the	time	to	build	the	image.	For	this,	we	will	use
one	of	the	Gradle	Docker	plugins.	We	will	start	by	changing	build.gradle	to	modify
the	buildscript	block	with	the	following	change:

buildscript	{

		dependencies	{

				classpath("org.springframework.boot:spring-boot-gradle-

						plugin:${springBootVersion}")

				classpath("se.transmode.gradle:gradle-docker:1.2")

		}

}

4.	 We	will	also	need	to	apply	this	plugin	by	adding	the	apply	plugin:	'docker'
directive	to	the	build.gradle	file.

5.	 Lastly,	we	will	need	to	add	the	following	Docker	configuration	to	the	build.gradle
file	as	well:

distDocker	{

		exposePort	8080

		exposePort	8443

		addFile	

				file("${System.properties['user.home']}/.keystore"),	

						"/root/"

}

6.	 Assuming	that	you	already	have	Docker	installed	on	your	machine,	we	can	proceed
to	create	the	image	by	executing	./gradlew	clean	distDocker.

Note
For	Docker	installation	instructions,	please	visit	the	tutorial	that	is	located	at
https://docs.docker.com/installation/#installation.

7.	 If	everything	has	worked	out	correctly,	you	should	see	the	following	output:

$./gradlew	distDocker

…

:compileGroovy	UP-TO-DATE

:processResources	UP-TO-DATE

:classes	UP-TO-DATE

:jar	UP-TO-DATE

:findMainClass

:startScripts	UP-TO-DATE

:distTar	UP-TO-DATE

:distDocker

Sending	build	context	to	Docker	daemon	30.46	MB

https://hub.docker.com
https://docs.docker.com/installation/#installation

Sending	build	context	to	Docker	daemon

Step	0	:	FROM	aglover/java8-pier

	--->	69f4574a230e

Step	1	:	EXPOSE	8080

	--->	Using	cache

	--->	725f1fd8c808

Step	2	:	EXPOSE	8443

	--->	Using	cache

	--->	d552630db9d5

Step	3	:	ADD	.keystore	/root/

	--->	d0684cbd7fac

Removing	intermediate	container	ef2dffe243f4

Step	4	:	ADD	ch6.tar	/

	--->	a0963c837391

Removing	intermediate	container	fb140e526e29

Step	5	:	ENTRYPOINT	/ch6/bin/ch6

	--->	Running	in	a769b6d6b40b

	--->	778da2170839

Removing	intermediate	container	a769b6d6b40b

Successfully	built	778da2170839

BUILD	SUCCESSFUL

Total	time:	1	mins	0.009	secs

8.	 We	can	also	execute	docker	images	command	to	see	the	newly	created	image:

$	docker	images

REPOSITORY											TAG																	IMAGE	ID												CREATED													

VIRTUAL		SIZE

ch6																										latest														778da2170839								17	

minutes	ago						1.04	GB

aglover/java8-pier			latest														69f4574a230e									11	months	

ago							1.01	GB

9.	 With	the	image	built	successfully,	we	are	now	ready	to	start	it	by	executing	the
following	command:

docker	run	-d	-P	ch6.

10.	 After	the	container	has	started,	we	can	query	the	Docker	registry	for	the	port	bindings
so	that	we	can	access	the	HTTP	endpoints	for	our	service.	This	can	be	done	by	the
docker	ps	command.	If	the	container	is	running	successfully,	we	should	see	the
following	result	(names	and	ports	will	vary):

CONTAINER	ID								IMAGE															COMMAND													CREATED													

STATUS														PORTS																																														

NAMES

37b37e411b9e								ch6:latest										"/ch6/bin/ch6"						10	minutes	

ago						Up	10	minutes							0.0.0.0:32778->8080/tcp,	0.0.0.0:32779-

>8443/tcp			drunk_carson

11.	 From	this	output,	we	can	tell	that	the	port	mapping	for	the	internal	port	8080	has	been
set	up	to	be	32778	(your	port	will	vary	for	every	run).	Let’s	open
http://localhost:32778/books	in	the	browser	to	see	our	application	in	action,	as

shown	in	the	following	screenshot:

Tip
If	you	are	using	a	Mac	OS	X,	you	will	be	using	boot2docker	and	thus	won’t	be
running	the	Docker	container	locally.	In	this	scenario,	you	will	be	using	boot2docker
ip	instead	of	the	local	host	to	connect	to	the	application.	For	more	good	tips	on	how
to	make	the	boot2docker	integration	easier,	please	visit	http://viget.com/extend/how-
to-use-docker-on-os-x-the-missing-guide.

One	can	also	use	a	nice	Docker	façade,	generously	created	by	Ian	Sinnott,	which
would	automatically	start	boot2docker	and	handle	the	environment	variables	as	well.
To	get	the	wrapper,	go	to	https://gist.github.com/iansinnott/0a0c212260386bdbfafb.

http://viget.com/extend/how-to-use-docker-on-os-x-the-missing-guide
https://gist.github.com/iansinnott/0a0c212260386bdbfafb

How	it	works…
In	the	preceding	example,	we	have	seen	how	easy	it	is	to	have	our	build	package	the
application	in	a	Docker	container.	The	additional	Gradle-Docker	plugin	does	the	bulk	of
the	work	of	image	building	and	publishing;	all	we	have	to	do	is	give	it	some	instructions
on	what	and	how	we	want	the	image	to	be.	These	are	defined	in	the	distDocker
configuration	block.	Let’s	examine	these	instructions	in	detail:

The	exposePort	directive	tells	the	plugin	to	add	an	EXPOSE	<port>	instruction	to	the
Dockerfile	so	that	when	our	container	is	started,	it	will	expose	these	internal	ports	to
the	outside	via	port	mapping.	We	have	seen	this	mapping	while	running	the	docker
ps	command.
The	addFile	directive	tells	the	plugin	to	add	an	ADD	<src>	<dest>	instruction	to	the
Dockerfile	so	that	when	the	container	is	being	built,	we	will	copy	the	file	from	the
source	filesystem	in	the	filesystem	in	the	container	image.	In	our	case,	we	will	need
to	copy	the	.keystore	certificate	file	that	we	configured	in	one	of	our	previous
recipes	for	the	HTTPS	connector,	which	we	instructed	in	tomcat.https.properties
to	be	loaded	from	${user.home}/.keystore.	Now,	we	need	it	to	be	in	the	/root/
directory	as,	in	the	container,	our	application	will	be	executed	under	root.	(This	can
be	changed	with	more	configurations.)

Note
The	Gradle-Docker	plugin	uses	the	project	name	as	a	name	for	the	image	by	default.
The	project	name,	in	turn,	is	being	inferred	by	Gradle	from	the	project’s	directory
name,	unless	an	explicit	property	value	is	configured.	As	in	the	code	example	for
Chapter	6,	the	project	directory	is	named	ch6,	thus	the	name	of	the	image.	The
project	name	can	be	explicitly	configured	by	adding	name='some_project_name'	in
gradle.properties.

If	you	look	at	the	resulting	Dockerfile,	which	can	be	found	in	the	build/docker/
directory	at	the	root	of	the	project,	you	will	see	the	following	two	instructions:

ADD	ch6.tar	/

ENTRYPOINT	["/ch6/bin/ch6"]

The	ADD	instruction	adds	the	TAR	application	archive	that	was	produced	by	the	distTar
task	and	contains	our	application	bundled	up	as	a	tarball.	We	can	even	see	the	contents	of
the	produced	tarball	by	executing	tar	tvf	build/distributions/ch6.tar.	During	the
building	of	the	container,	the	contents	of	the	TAR	file	will	be	extracted	in	the	/	directory
in	the	container	and	later	used	to	launch	the	application.

It	is	followed	by	the	ENTRYPOINT	instruction.	This	tells	Docker	to	execute	/ch6/bin/ch6—
which	we	saw	to	be	a	part	of	the	tarball	content—once	the	container	is	started,	thus
automatically	launching	our	application.

The	first	line	in	the	Dockerfile,	which	is	FROM	aglover/java8-pier,	is	the	instruction	to
use	the	aglover/java8-pier	image,	which	contains	the	Ubuntu	OS	with	Java	8	installed,
as	a	base	image	for	our	container,	on	which	we	will	install	our	application.	This	image

comes	from	the	Docker	Hub	Repository	and	is	automatically	used	by	the	plugin,	but	can
be	changed	via	the	configuration	settings,	if	so	desired.

If	you	created	an	account	on	Docker	Hub,	we	can	also	publish	the	created	Docker	image
to	the	registry.	In	fair	warning,	the	resulting	image	could	be	many	hundreds	of	megabytes
in	size	so	uploading	it	could	take	some	time.	To	publish	this	image,	we	will	need	to	add
the	following	two	configuration	settings	to	the	distDocker	configuration	block	in
build.gradle:

distDocker	{

		tag	"<docker	hub	username>/<docker	hub	repository	name>"

		push	true

		exposePort	8080

		exposePort	8443

		addFile	file("${System.properties['user.home']}/.keystore"),	

				"/root/"

}

The	tag	property	sets	up	the	created	image	tag	and	by	default,	the	plugin	assumes	that	it	is
residing	in	the	Docker	Hub	Repository;	so	this	is	where	it	will	be	publishing	it	if	the	push
configuration	is	set	to	true,	as	it	is	in	our	case.

Note
For	a	complete	list	of	all	the	Gradle-Docker	plugin	configuration	options,	take	a	look	at
the	https://github.com/Transmode/gradle-docker	Github	project	page.

When	launching	a	Docker	image,	we	used	the	–d	and	–P	command-line	arguments.	Their
uses	are	as	follows:

-d:	This	indicates	the	desire	to	run	the	container	in	a	detached	mode	where	the
process	starts	in	the	background
-P:	This	instructs	Docker	to	publish	all	the	internally	exposed	ports	to	the	outside	so
that	we	can	access	them

Note
For	a	detailed	explanation	of	all	the	possible	command-line	options,	refer	to
https://docs.docker.com/reference/commandline/cli/.

https://github.com/Transmode/gradle-docker
https://docs.docker.com/reference/commandline/cli/

Building	self-executing	binaries
Starting	with	Spring	Boot	version	1.3,	the	Gradle	and	Maven	plugins	support	an	option	of
generating	true	executable	binaries,	which	look	like	normal	JAR	files,	but	have	the	content
of	JAR	fused	together	with	the	launch	script	that	contains	the	command-building	logic	and
is	capable	of	self-starting	itself	without	the	need	to	execute	the	java	-jar	file.jar
command	explicitly.	This	capability	comes	in	very	handy	as	it	allows	the	easy
configuration	of	the	Linux	autostart	services	such	as	init.d	or	systemd	and	launchd	on
OS	X.

Getting	ready
For	this	recipe,	we	will	use	our	existing	application	build.	We	will	examine	how	the	self-
starting	executable	JAR	files	get	created	and	how	to	modify	the	default	launch	script	to
add	support	for	the	custom	JVM	start	up	arguments,	such	as	the	-D	startup	system
properties,	JVM	memory,	GC,	and	other	settings.

For	this	recipe,	make	sure	that	build.gradle	is	using	Spring	Boot	version	1.3	or	above.	If
it	is	not,	then	change	the	following	setting	in	the	buildscript	configuration	block,	as
follows:

ext	{

		springBootVersion	=	'1.3.0.BUILD-SNAPSHOT'

}

The	same	upgrade	of	the	Spring	Boot	version	should	be	done	in	the	db-counter-
starter/build.gradle	file	as	well.

We	need	to	explicitly	add	the	application	plugin	to	build.gradle	as	it	is	no	longer
automatically	included	by	the	Spring	Boot	Gradle	plugin.	Add	apply	plugin:
'application'	to	the	list	of	plugins	in	the	build.gradle	file.

How	to	do	it…
1.	 Building	a	default	self-executing	JAR	file	is	very	easy;	actually	it	is	done

automatically	once	we	execute	the	./gradlew	clean	bootRepackage	command.
2.	 We	can	proceed	to	the	launching	of	the	created	application	simply	by	invoking

./build/libs/bookpub-0.0.1-SNAPSHOT.jar.
3.	 For	the	enterprise	environment,	it	is	rare	that	we	are	satisfied	with	the	default	JVM

launch	arguments	as	we	often	need	to	tweak	the	memory	settings,	GC	configurations,
and	even	pass	the	start	up	system	properties	in	order	to	ensure	that	we	are	using	the
desired	version	of	the	XML	parser	or	a	proprietary	implementation	of	Class	Loader
or	Security	Manager.	To	accomplish	this,	we	will	modify	the	default	launch.script
file	to	add	support	for	the	JVM	options.	Let’s	start	by	copying	the	default
launch.script	file	from	the	https://github.com/spring-projects/spring-
boot/blob/master/spring-boot-tools/spring-boot-loader-
tools/src/main/resources/org/springframework/boot/loader/tools/launch.script	Spring
Boot	GitHub	repository	in	the	root	of	our	project.

Note
The	launch.script	file	is	supported	only	on	the	Linux	and	OS	X	environments.	If
you	are	looking	to	make	the	self-executing	JARs	for	Windows,	you	will	need	to
provide	your	own	launch.script	file	that	is	tailored	for	the	Windows	shell
command	execution.	The	good	news	is	that	it	is	the	only	special	thing	that	is
required;	all	the	instructions	and	concepts	in	this	recipe	will	work	just	fine	on
Windows	as	well,	provided	that	the	compliant	launch.script	template	is	being	used.

4.	 We	will	modify	the	copied	launch.script	file	and	add	the	following	content	right
above	the	line	90	mark:	(This	is	showing	only	the	relevant	part	of	the	script	in	order
to	condense	the	space	usage.)

...

#	Find	Java

if	[[-n	"$JAVA_HOME"]]	&&	[[-x	"$JAVA_HOME/bin/java"]];	then

				javaexe="$JAVA_HOME/bin/java"

elif	type	-p	java	2>&1>	/dev/null;	then

				javaexe=java

elif	[[-x	"/usr/bin/java"]];		then

				javaexe="/usr/bin/java"

else

				echo	"Unable	to	find	Java"

				exit	1

fi

#	Configure	JVM	Options

jvmopts="{{jvm_options:}}"

if	[[-n	"JAVA_OPTS"]];	then

				jvmopts="$jvmopts	$JAVA_OPTS"

fi

#	Build	actual	command	to	execute

command="$javaexe	$jvmopts	-jar	-

https://github.com/spring-projects/spring-boot/blob/master/spring-boot-tools/spring-boot-loader-tools/src/main/resources/org/springframework/boot/loader/tools/launch.script

Dsun.misc.URLClassPath.disableJarChecking=true	$jarfile	$@"

#	Action	functions

start()	{

...

5.	 With	the	custom	launch.script	file	in	place,	we	will	need	to	add	the	options	setting
to	our	build.gradle	file	with	the	following	content:

applicationDefaultJvmArgs	=	[

				"-Xms128m",

				"-Xmx256m"

]

springBoot	{

				classifier	=	'exec'

				embeddedLaunchScript	=	file('launch.script')

				embeddedLaunchScriptProperties	=	['jvm_options'	:	

applicationDefaultJvmArgs.join('	')]

}

6.	 We	are	now	ready	to	launch	our	application.	First,	let’s	use	the	./gradlew	clean
bootRun	command,	and	if	we	look	at	the	JConsole	VM	Summary	tab,	we	will	see
that	our	arguments	indeed	have	been	passed	to	the	JVM,	as	follows:

7.	 We	can	also	build	the	self-starting	executable	JAR	by	running	the	./gradlew	clean
bootRepackage	command	and	then	executing	./build/libs/bookpub-0.0.1-
SNAPSHOT-exec.jar	in	order	to	launch	our	application	and	we	should	expect	to	see	a
similar	result	in	JConsole.

8.	 Alternatively,	we	can	also	use	the	JAVA_OPTS	environment	variable	to	override	some
of	the	JVM	arguments.	Say	we	want	to	change	the	minimum	memory	heap	size	to
128	megabytes.	We	can	launch	our	application	using	the	JAVA_OPTS=-Xmx128m
./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar	command	and	this	would	show
us	the	following	effect	in	JConsole:

How	it	works…
With	a	small	customization	to	launch.script,	we	were	able	to	create	a	self-executing
deployable	application,	packaged	as	a	self-contained	JAR	file,	which	on	top	of	all	the
things,	can	also	be	configured	in	order	to	be	launched	using	the	various	OS-specific
autostarting	frameworks.

The	Spring	Boot	Gradle	and	Maven	plugins	provide	us	with	lots	of	options	for	parameter
customization	and	even	an	ability	to	embed	mustache-like	template	placeholders	in
launch.script,	which	can	later	be	replaced	with	values	during	build	time.	We	have
leveraged	this	capability	to	inject	our	JVM	arguments	into	the	file	using	the
embeddedLaunchScriptProperties	configuration	setting.

In	our	custom	version	of	launch.script,	we	added	the	jvmopts="{{jvm_options:}}"
line,	which	will	be	replaced	with	the	value	of	the	jvm_options	parameter	during	the	build
and	packaging	time.	This	parameter	is	declared	in	our	build.gradle	file	as	a	value	of	the
embeddedLaunchScriptProperties	argument:	embeddedLaunchScriptProperties	=
['jvm_options'	:	applicationDefaultJvmArgs.join('	')].

The	JVM	arguments	can	be	hardcoded,	but	it	is	much	better	to	maintain	the	consistency
between	how	our	application	starts	using	the	bootRun	task	and	how	it	starts	when
launched	from	the	self-executing	JAR.	To	achieve	this,	we	will	use	the	same
applicationDefaultJvmArgs	collection	of	arguments	that	we	will	define	for	the	bootRun
execution	purpose,	only	with	all	the	different	arguments	collapsed	in	a	single	line	of	text
separated	by	white	spaces.	Using	this	approach,	we	have	to	define	the	JVM	arguments
only	once	and	use	them	in	both	the	modes	of	execution.

Note
It	is	important	to	notice	that	this	reuse	also	applies	to	the	application	distributions	that	are
built	using	the	distZip	and	distTar	tasks	defined	by	Gradle’s	application	plugin.

We	can	modify	the	build	to	create	the	Docker	image	by	launching	our	self-executing	JAR
instead	of	the	contents	of	the	TAR	file	produced	by	the	distTar	task	by	default.	To	do
this,	we	will	need	to	replace	our	distDocker	configuration	block	with	the	following	code:

task	distDocker(type:	Docker,	overwrite:	true,	dependsOn:	bootRepackage)	{

		group	=	'docker'

		description	=	"Packs	the	project's	JVM	application	as	a	Docker	image."

		inputs.files	project.bootRepackage

		doFirst	{

				tag	"aantono/springbootcookbook"

				push	false

				exposePort	8080

				exposePort	8443

				addFile	file("${System.properties['user.home']}/.keystore"),	"/root/"

				applicationName	=	project.applicationName

				addFile	project.bootRepackage.outputs.files.singleFile

				def	executableName	=	"/"	+	

project.bootRepackage.outputs.files.singleFile.name

				entryPoint	=	["$executableName"]

		}

}

This	will	effectively	overwrite	the	existing	distDocker	task	and	replace	it	with	ours.

Spring	Boot	environment	config	hierarchy
and	precedence
In	the	previous	few	recipes,	we	have	seen	how	to	package	our	application	in	a	variety	of
ways	and	how	it	can	be	deployed.	The	next	logical	step	is	the	need	to	configure	the
application	in	order	to	provide	some	behavioral	control	as	well	as	some	environment-
specific	configuration	values,	which	could	and	most	likely	will	vary	from	environment	to
environment.

A	common	example	of	such	an	environmental	configuration	difference	is	the	database
setup.	We	certainly	don’t	want	to	connect	to	a	production	environment	database	with	an
application	running	on	our	development	machine.	There	are	also	cases	when	we	want	an
application	to	run	in	different	modes	or	use	a	different	set	of	profiles,	as	they	are	referred
to	by	Spring.	An	example	could	be	running	an	application	in	live	or	simulator	mode.

For	this	recipe,	we	will	pick	up	from	the	previous	state	of	the	codebase	and	add	the
support	for	different	configuration	profiles	as	well	as	examine	how	to	use	the	property
values	as	placeholders	in	other	property	definitions	and	how	to	add	your	own
PropertySource	implementation.

How	to	do	it…
1.	 We	will	start	by	adding	an	@Profile	annotation	to	the	@Bean	creation	of

schedulerRunner	by	changing	the	definition	of	the	schedulerRunner(…)	method	in
BookPubApplication.java	located	in	the	src/main/java/org/test/bookpub
directory	at	the	root	of	our	project	to	the	following	content:

@Bean

@Profile("logger")

public	StartupRunner	schedulerRunner()	{

				return	new	StartupRunner();

}

2.	 Start	the	application	by	running	./gradlew	clean	bootRun.
3.	 Once	the	application	is	running,	we	should	no	longer	see	the	previous	log	output

from	the	StartupRunner	class,	which	looked	as	follows:

2015-05-29	---	org.test.bookpub.StartupRunner											:	Number	of	

books:	1

4.	 Now,	let’s	build	the	application	by	running	./gradlew	clean	bootRepackage	and
start	it	by	running	./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar	--
spring.profiles.active=logger	and	we	will	see	the	log	output	line	showing	up
again.

5.	 Another	functionality	that	is	enabled	by	the	Profile	selector	is	the	ability	to	add
Profile-specific	property	files.	Let’s	create	an	application-inmemorydb.properties
file	in	the	src/main/resources	directory	at	the	root	of	our	project	with	the	following
content:

spring.datasource.url	=	

jdbc:h2:mem:testdb;DB_CLOSE_DELAY=-1;DB_CLOSE_ON_EXIT=FALSE

6.	 Let’s	build	the	application	by	running	./gradlew	clean	bootRepackage	and	start	it
by	running	./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar	--
spring.profiles.active=logger,inmemorydb,	which	will	use	the	inmemorydb
Profile	configuration	in	order	to	use	the	in-memory	database	instead	of	the	file-based
one.

In	the	cases	where	the	enterprise	is	already	using	a	particular	configuration	system,
custom	written	or	off	the	shelf,	Spring	Boot	provides	us	with	a	facility	to	integrate	this
into	the	application	via	the	creation	of	a	custom	PropertySource	implementation.

Let’s	imagine	that	we	have	an	existing	configuration	setup	that	uses	a	popular	Apache
Commons	Configuration	framework	and	stores	the	configuration	data	in	XML	files.

1.	 To	mimic	our	supposed	pre-existing	configuration	system,	add	the	following	content
to	the	dependencies	section	in	the	build.gradle	file:

dependencies	{

		...

		compile	project(':db-count-starter')

		compile("commons-configuration:commons-configuration:1.10")

		compile("commons-codec:commons-codec:1.6")

		compile("commons-jxpath:commons-jxpath:1.3")

		compile("commons-collections:commons-collections:3.2.1")

		runtime("com.h2database:h2")

		...

}

2.	 Follow	this	up	by	creating	a	simple	configuration	file	named	commons-config.xml	in
the	src/main/resources	directory	at	the	root	of	our	project	with	the	following
content:

<?xml	version="1.0"	encoding="ISO-8859-1"	?>

<config>

		<book>

				<counter>

						<delay>1000</delay>

						<rate>${book.counter.delay}0</rate>

				</counter>

		</book>

</config>

3.	 Next,	we	will	create	the	PropertySource	implementation	file	named
ApacheCommonsConfigurationPropertySource.java	in	the
src/main/java/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

public	class	ApacheCommonsConfigurationPropertySource	extends	

EnumerablePropertySource<XMLConfiguration>	{

		private	static	final	Log	logger	=	

LogFactory.getLog(ApacheCommonsConfigurationPropertySource.class);

		public	static	final	String	COMMONS_CONFIG_PROPERTY_SOURCE_NAME	=	

"commonsConfig";

		public	ApacheCommonsConfigurationPropertySource(String	name,

				XMLConfiguration	source)	{

						super(name,	source);

		}

		@Override

		public	String[]	getPropertyNames()	{

				ArrayList<String>	keys	=	Lists.newArrayList(this.source.getKeys());

				return	keys.toArray(new	String[keys.size()]);

		}

		@Override

		public	Object	getProperty(String	name)	{

				return	this.source.getString(name);

		}

		public	static	void	addToEnvironment(ConfigurableEnvironment	

environment,	XMLConfiguration	xmlConfiguration)	{

				

environment.getPropertySources().addAfter(StandardEnvironment.SYSTEM_EN

VIRONMENT_PROPERTY_SOURCE_NAME,	new	

ApacheCommonsConfigurationPropertySource(

												COMMONS_CONFIG_PROPERTY_SOURCE_NAME,

														xmlConfiguration));

				logger.trace("ApacheCommonsConfigurationPropertySource	add	to	

Environment");

		}

}

4.	 We	will	now	create	the	SpringApplicationRunListener	implementation	class	so	as
to	bootstrap	our	PropertySource	named
ApacheCommonsConfigurationApplicationRunListener.java	in	the
src/main/java/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

public	class	ApacheCommonsConfigurationApplicationRunListener	

implements	SpringApplicationRunListener{

				public	

ApacheCommonsConfigurationApplicationRunListener(SpringApplication	

application,	String[]	args)	{

				}

		@Override

		public	void	started()	{

						

		}

		@Override

		public	void	environmentPrepared(ConfigurableEnvironment	environment)	

{

						try	{

								

ApacheCommonsConfigurationPropertySource.addToEnvironment(environment,	

new	XMLConfiguration("commons-config.xml"));

						}

						catch	(ConfigurationException	e)	{

								throw	new	RuntimeException("Unable	to	load	commons-config.xml",	

e);

						}

				}

		@Override

		public	void	contextPrepared(ConfigurableApplicationContext	context)	{

		}

		@Override

		public	void	contextLoaded(ConfigurableApplicationContext	context)	{

		}

		@Override

		public	void	finished(ConfigurableApplicationContext	context,	

Throwable	exception)	{

		}

}

5.	 Finally,	we	will	need	to	create	a	new	directory	named	META-INF	in	the
src/main/resources	directory	at	the	root	of	our	project	and	create	a	file	named
spring.factories	in	it	with	the	following	content:

#	Run	Listeners

org.springframework.boot.SpringApplicationRunListener=\

org.test.bookpub.ApacheCommonsConfigurationApplicationRunListener

6.	 With	all	the	setup	done,	we	are	now	ready	to	use	our	new	properties	in	our
application.	Let’s	change	the	configuration	of	the	@Scheduled	annotation	for	our
StartupRunner	class	located	in	the	src/main/java/org/test/bookpub	directory	at
the	root	of	our	project,	as	follows:

@Scheduled(initialDelayString	=	"${book.counter.delay}",	

fixedRateString	=	"${book.counter.rate}")

7.	 Let’s	build	the	application	by	running	./gradlew	clean	bootRepackage	and	start	it
by	running	./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar	--
spring.profiles.active=logger	in	order	to	ensure	that	our	StartupRunner	class	is
still	logging	the	book	count	every	ten	seconds,	as	expected.

How	it	works…
In	this	recipe,	we	experimented	with	the	using	of	Profiles,	applying	additional
configuration	settings	based	on	the	active	profiles,	and	adding	our	own	custom
PropertySource	that	allowed	us	to	bridge	the	existing	system	in	the	Spring	Boot
environment.	We	will	examine	each	of	these	in	detail	starting	with	the	notion	of	Spring
Profiles.

Profiles	were	first	introduced	in	the	Spring	Framework	3.2	and	used	to	conditionally
configure	the	beans	in	context	based	on	which	profiles	were	active.	In	Spring	Boot,	this
facility	was	extended	even	further	to	allow	configuration	separation	as	well.

By	placing	an	@Profile("logger")	annotation	on	our	StartupRunner	@Bean	creation
method,	we	told	Spring	to	create	the	bean	only	if	the	logger	profile	has	been	activated.
Conventionally,	this	is	done	by	passing	the	--spring.profiles.active	option	in	the
command	line	during	the	application	startup.	In	the	tests,	another	way	that	this	can	be
done	is	using	the	@ActiveProfiles("profile")	annotation	on	the	test	class,	but	it	is	not
supported	for	the	execution	of	a	normal	application.	It	is	also	possible	to	negate	profiles
such	as	@Profile("!production").	When	such	an	annotation	is	used	(with	!	marking	the
negation),	the	bean	will	be	created	only	if	no	profile	production	is	active.

During	the	startup,	Spring	Boot	treats	all	the	options	that	get	passed	via	the	command	line
as	application	properties,	and	thus	anything	that	gets	passed	during	the	startup,	ends	up	as
a	property	value	that	is	capable	of	being	used.	This	same	mechanism	not	only	works	for
new	properties	but	can	be	used	as	a	way	to	override	the	already	existing	properties	as	well.
Let’s	imagine	a	situation	where	we	already	have	an	active	profile	defined	in	our
application.properties	file	that	looks	like	this:	spring.profiles.active=basic.	By
passing	the	--spring.profiles.active=logger	option	via	the	command	line,	we	will
replace	the	active	profile	from	basic	to	logger.	If	we	want	to	include	some	profiles
regardless	of	the	active	configuration,	Spring	Boot	gives	us	a	spring.profiles.include
option	to	configure.	Any	profiles	that	are	set	up	this	way	will	be	added	to	the	list	of	active
profiles.

As	these	options	are	nothing	more	than	regular	Spring	Boot	application	properties,	they	all
follow	the	same	hierarchy	for	override	precedence.	The	options	have	been	outlined	as
follows:

Command	Line	Arguments:	These	values	supersede	every	other	property	source	in
the	list	and	you	can	always	be	rest	assured	that	anything	passed	via	--
property.name=value	will	take	precedence	over	the	other	means.
JNDI	Attributes:	They	are	the	next	in	seniority.	If	you	are	using	an	application
container	that	provides	data	via	a	JNDI	java:comp/env	namespace,	these	values	will
override	all	the	other	settings	from	below.
Java	System	Properties:	These	values	are	another	way	to	pass	the	properties	to	the
application	either	via	the	–Dproperty=name	command	line	arguments	or	by	calling
System.setProperty(…)	in	the	code.	They	provide	another	way	to	replace	the
existing	properties.	Anything	coming	from	System.getProperty(…)	will	win	over

the	others	in	the	list	below.
OS	Environment	Variables:	Either	from	Windows,	Linux,	OS	X,	or	any	other,	they
are	a	common	way	to	specify	a	configuration,	especially	for	locations	and	values.
The	most	notable	one	is	JAVA_HOME,	which	is	a	common	way	to	indicate	where	the
JVM	location	resides	in	the	filesystem.	If	neither	of	the	preceding	settings	are
present,	the	ENV	variables	will	be	used	for	the	property	values	instead	of	the	ones
mentioned	as	follows:

Note
As	the	OS	Environment	Variables	typically	don’t	support	dots	(.)	or	dashes	(-),
Spring	Boot	provides	an	automatic	remapping	mechanism	that	replaces	the
underscores	(_)	with	dots	(.)	during	the	property	evaluation	as	well	as	handles	the
case	conversion.	Thus,	JAVA_HOME	becomes	synonymous	to	java.home.

random.*:	This	provides	a	special	support	for	the	random	values	of	primitive	types
that	can	be	used	as	placeholders	in	configuration	properties.	For	example,	we	can
define	a	property	named	some.number=${random.int}	where	${random.int}	will	be
replaced	by	some	random	integer	value.	The	same	goes	for	${random.value}	for
textual	values	and	${random.long}	for	longs.
application-{profile}.properties:	These	are	the	Profile-specific	files	that	get
applied	only	if	a	corresponding	Profile	gets	activated.
application.properties:	These	are	the	main	property	files	that	contain	the
base/default	application	configuration.	Similar	to	the	Profile-specific,	these	values
can	be	loaded	from	the	following	list	of	locations,	with	the	top	one	taking	priority
over	the	lower	entries:

file:config/:	This	represents	a	/config	directory	located	in	the	current
directory
file::	This	represents	the	current	directory
classpath:/config:	This	represents	a	/config	package	in	the	classpath
classpath::	This	represents	a	root	of	the	classpath

@Configuration	annotated	classes	which	are	also	annotated	with
@PropertySource:	These	are	any	in-code	property	sources	that	have	been
configured	using	annotations.	We	have	seen	an	example	of	such	a	usage	in	our	recipe
from	Chapter	3,	Web	Framework	Behavior	Tuning	in	the	Adding	custom	connectors
section.	They	are	very	low	in	the	precedence	chain	and	are	only	preceded	by	the
default	properties.
Default	properties:	They	are	configured	via	the
SpringApplication.setDefaultProperties(…)	call	and	are	seldom	used,	as	it	feels
very	much	like	hard	coding	values	in	code	instead	of	externalizing	them	in
configuration	files.

Now	that	we	know	how	the	different	configuration	definitions	stack	up	and	which	rules
are	used	to	overlay	them	on	top	of	each	other,	let’s	look	at	the	last	part	of	our	recipe:	the
bridging	of	Apache	Commons	Configuration	using	a	custom	PropertySource
implementation.	(This	should	not	be	confused	with	an	@PropertySource	annotation!)

In	Chapter	4,	Writing	Custom	Spring	Boot	Starters	we	learned	about	the	use	of
spring.factories,	and	so	we	already	know	that	this	file	serves	to	define	the	classes	that
should	automatically	be	incorporated	by	Spring	Boot	during	the	application	startup.	The
only	difference	this	time	is	that	instead	of	configuring	the	EnableAutoConfiguration
settings,	we	will	configure	the	SpringApplicationRunListener	ones.

We	created	the	following	two	classes	to	support	our	needs:

ApacheCommonsConfigurationPropertySource:	This	is	the	extension	of	the
EnumerablePropertySource	base	class	that	provides	you	with	the	internal
functionality	in	order	to	bridge	XMLConfiguration	from	Apache	Commons
Configuration	to	the	world	of	Spring	Boot	by	providing	transformation	to	get	the
specific	property	values	by	name	via	the	getProperty(String	name)
implementation	and	the	list	of	all	the	supported	property	names	via	the
getPropertyNames()	implementation.	In	situations	where	you	are	dealing	with	the
use	case	when	the	complete	list	of	the	available	property	names	is	not	known	or	is
very	expensive	to	compute,	we	can	just	extend	the	PropertySource	abstract	class
instead	of	using	EnumerablePropertySource.
ApacheCommonsConfigurationApplicationRunListener;	This	is	the	implementation
of	the	SpringApplicationRunListener	interface	that	gets	instantiated	by	Spring
Boot	during	the	application	startup	and	receives	notification	callbacks	during	the
various	stages	of	the	application	startup	lifecycle.	This	class	is	configured	in
spring.factories	and	is	automatically	created	by	Spring	Boot.

Note
It	is	VERY	important	to	note	that	all	the	implementations	of	the
SpringApplicationRunListener	interface	must	define	a	public	constructor	with	the
exact	signature	of	(SpringApplication	application,	String[]	args)	as	this	is
what	Spring	Boot	expects	to	be	available	when	instantiating	the	class.

In	our	listener,	we	are	interested	in	the	environmentPrepared(ConfigurableEnvironment
environment)	callback,	which	gives	us	access	to	the	ConfigurableEnvironment	instance.
By	the	time	this	callback	is	invoked,	we	will	get	an	environment	instance	that	has	already
been	populated	with	all	of	the	properties	from	the	preceding	hierarchy.	However,	we	will
get	an	opportunity	to	inject	our	own	PropertySource	implementation	anywhere	in	the	list,
which	we	will	successfully	do	in	the
ApacheCommonsConfigurationPropertySource.addToEnvironment(…)	method.

In	our	case,	we	will	choose	to	insert	our	source	right	below	systemEnvironment	in	the
order	of	precedence	but	if	need	be,	we	can	alter	this	order	to	whatever	highest	precedence
that	we	desire.	Just	be	careful	not	to	place	it	so	high	that	your	properties	become
impossible	to	override	via	the	command-line	arguments,	system	properties,	or
environment	variables.

Externalizing	environmental	config	using
property	files
The	previous	recipe	taught	us	about	the	application	properties	and	how	they	are
provisioned.	As	was	mentioned	in	the	beginning	of	this	chapter,	during	application
deployment,	it	is	almost	inevitable	to	have	some	property	values	that	are	environment
dependant.	They	can	be	database	configurations,	service	topologies,	or	even	simple
feature	configurations	where	something	might	be	enabled	in	development	but	not	quite
ready	for	production	just	yet.

In	this	recipe,	we	will	learn	how	to	use	an	externally	residing	properties	file	for	an
environment-specific	configuration,	which	might	reside	in	the	local	filesystem	or	out	in
the	wild	on	the	Internet.

In	this	recipe,	we	will	use	the	same	application	with	all	the	existing	configurations	as	we
did	in	the	previous	recipe.	We	will	use	it	to	see	how	to	consume	external	properties	when
we	launch	our	application	using	the	external	configuration	properties	that	are	living	in	the
local	filesystem	and	from	an	Internet	URL,	such	as	GitHub	or	any	other.

How	to	do	it…
1.	 Let’s	start	by	adding	a	bit	of	code	to	log	the	value	of	our	particular	configuration

property	so	that	we	can	easily	see	the	change	in	it	as	we	do	different	things.	Add	an
@Bean	method	to	the	BookPubApplication	class	located	in	the
src/main/java/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

@Bean

public	CommandLineRunner	

configValuePrinter(@Value("${my.config.value:}")	String	configValue)	{

		return	args	->	LogFactory.getLog(getClass()).info("Value	of	

my.config.value	property	is:	"	+	configValue);

}

2.	 Let’s	build	the	application	by	running	./gradlew	clean	bootRepackage	and	start	it
by	running	./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar	--
spring.profiles.active=logger	so	as	to	see	the	following	log	output:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:

3.	 The	value	is	empty	as	we	expected.	Next,	we	will	create	a	file	named
external.properties	in	our	home	directly	with	the	following	content:

my.config.value=From	Home	Directory	Config

4.	 Let’s	run	our	application	by	executing	./build/libs/bookpub-0.0.1-SNAPSHOT-
exec.jar	--spring.profiles.active=logger	--

spring.config.location=file:/home/<username>/external.properties	in	order
to	see	the	following	output	in	the	logs:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	From	Home	Directory	Config

Note
For	OS	X	users,	the	home	directories	can	be	found	in	the	/Users/<username>	folder.

5.	 We	can	also	load	the	file	as	an	HTTP	resource	and	not	from	the	local	filesystem.	So,
place	a	file	named	external.properties	with	the	content	of	my.config.value=From
HTTP	Config	somewhere	on	the	web.	It	can	even	be	checked	in	a	GitHub	or
BitBucket	repository,	as	long	as	it	is	accessible	without	any	need	for	authentication.

6.	 Let’s	run	our	application	by	executing	./build/libs/bookpub-0.0.1-SNAPSHOT-
exec.jar	--spring.profiles.active=logger	--

spring.config.location=http://<your	file	location

path>/external.properties	in	order	to	see	the	following	output	in	the	logs:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	From	HTTP	Config

How	it	works…
Before	delving	into	the	details	of	an	external	configuration	setup,	let’s	quickly	look	at	the
code	that	was	added	in	order	to	print	the	property	value	in	the	log.	The	element	of	focus	is
the	@Value	annotation	that	can	be	used	on	class	fields	or	method	arguments;	it	also
instructs	Spring	to	automatically	inject	the	annotated	variable	with	the	value	defined	in	the
annotation.	If	the	value	is	positioned	in	the	wrapping	curly	braces	prefixed	with	a	dollar
sign,	(${	}),	Spring	will	replace	this	with	the	value	from	the	corresponding	application
property	or	with	the	default	value	if	it	is	provided	by	adding	the	textual	data	after	the
colon	(:).

In	our	case,	we	defined	it	as	@Value("${my.config.value:}")	String	configValue;	so
unless	an	application	property	named	my.config.value	exists,	the	default	value	of	an
empty	String	will	be	assigned	to	the	configValue	method	argument.	This	construct	is
quite	handy	and	eliminates	the	need	to	explicitly	wire	in	the	instance	of	an	Environment
object	just	to	get	a	specific	property	value	out	of	it	as	well	as	simplifies	the	code	during
the	testing	with	less	objects	to	mock.

The	support	for	being	able	to	specify	the	location	of	the	application	properties
configuration	file	is	geared	towards	supporting	the	dynamic	multitude	of	environmental
topologies,	especially	in	cloud	environments.	This	is	often	the	case	when	the	compiled
application	gets	bundled	into	different	cloud	images	that	are	destined	for	different
environments	and	are	being	specially	assembled	by	deployment	tools	such	as	Packer,
Vagrant,	and	others.

In	this	scenario,	it	is	very	common	to	drop	a	configuration	file	in	the	image	filesystem
while	making	the	image,	depending	on	which	environment	it	should	be	destined	for.
Spring	Boot	provides	a	very	convenient	ability	to	specify	via	the	command-line	arguments
where	the	configuration	properties	file	that	should	be	added	to	the	Application
Configuration	bundle	resides.

Using	the	--spring.config.location	start	up	option,	we	can	specify	a	location	of	one	or
multiple	files,	which	would	then	be	separated	by	a	comma	(,),	to	be	added	to	the	default
ones.	The	file	designations	can	be	either	files	from	a	local	filesystem,	a	classpath,	or	a
remote	URL.	The	locations	will	be	resolved	either	by	the	DefaultResourceLoader	class
or,	if	configured	via	a	SpringApplication	constructor	or	setter,	by	the	implementation
that	is	provided	by	the	SpringApplication	instance.

If	the	location	contains	directories,	the	names	should	end	with	a	(/)	so	as	to	let	Spring
Boot	know	that	it	should	look	for	the	application.properties	file	in	these	directories.

If	you	want	to	change	the	default	name	of	the	file,	Spring	Boot	provides	us	with	this
ability	as	well.	Just	set	the	--spring.config.name	option	to	whatever	file	name	that	you
want.

Note
It	is	important	to	remember	that	the	default	search	paths	for	the	configuration	of
classpath:,classpath:/config,file:,file:config/	will	always	be	used	regardless	of

the	presence	of	the	--spring.config.location	setting.	This	way,	you	can	always	retain
your	default	configuration	in	application.properties	and	just	override	the	ones	that	you
need	via	the	start	up	settings.

Externalizing	environmental	config	using
environment	variables
In	the	previous	recipes,	we	have	a	number	of	times	eluded	to	the	fact	that	the
configuration	values	to	a	Spring	Boot	application	can	be	passed	and	overridden	by	using
OS	Environment	Variables.	Operating	Systems	rely	on	these	variables	to	store	information
about	various	things.	We	probably	have	come	across	having	to	set	JAVA_HOME	or	PATH	a
few	times	and	these	would	be	the	examples	of	environment	variables.	It	is	also	a	very
important	feature	in	case	one	deploys	their	application	using	a	PaaS	Platform	such	as
Heroku	or	Amazon	AWS.	In	these	environments,	configuration	values	such	as	database
access	credentials	and	various	API	tokens	are	all	provided	over	the	environment	variables.

Their	power	comes	from	the	ability	to	completely	externalize	the	configuration	of	simple
key-value	data	pairs	without	the	need	to	rely	on	placing	a	property	or	some	other	files	in	a
particular	location	and	having	this	hard-coded	in	the	application	codebase.	These	variables
are	also	agnostic	to	the	particular	operating	system	and	can	be	consumed	in	the	Java
program	in	the	same	way,	System.getenv(),	regardless	of	which	OS	the	program	is
running	on.

In	this	recipe,	we	will	explore	how	this	power	can	be	leveraged	to	pass	the	configuration
properties	to	our	Spring	Boot	applications.	We	will	continue	to	use	the	codebase	from	the
previous	recipe	and	experiment	with	a	few	different	ways	of	starting	the	application	and
using	the	OS	environment	variables	in	order	to	change	the	configuration	values	of	some
properties.

How	to	do	it…
1.	 In	the	previous	recipe,	we	added	a	configuration	property	named	my.config.value.

Let’s	build	the	application	by	running	./gradlew	clean	bootRepackage	and	start	it
by	running	MY_CONFIG_VALUE="From	ENV	Config"	./build/libs/bookpub-0.0.1-
SNAPSHOT-exec.jar	--spring.profiles.active=logger	so	as	to	see	the	following
output	in	the	logs:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	From	ENV	Config

2.	 If	we	want	to	use	the	environment	variables	while	running	our	application	via	the
Gradle	bootRun	task,	the	command	line	will	be	MY_CONFIG_VALUE="From	ENV
Config"	./gradlew	clean	bootRun	and	should	produce	the	same	output	as	in	the
preceding	step.

3.	 Conveniently	enough,	we	can	even	mix	and	match	how	we	set	the	configurations.	We
can	use	the	environment	variable	to	configure	the	spring.config.location	property
and	use	it	to	load	other	property	values	from	the	external	properties	file	as	we	did	in
the	previous	recipe.	Let’s	try	this	by	launching	our	application	by	executing
SPRING_CONFIG_LOCATION=file:/home/<username>/external.properties

./gradlew	bootRun.	We	should	see	the	following	in	the	logs:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	From	Home	Directory	Config

Tip
While	using	environment	variables	is	very	convenient,	it	does	have	a	maintenance
overhead	if	the	number	of	these	variables	gets	too	many.	To	help	deal	with	this	issue,
it	is	good	practice	to	use	the	method	of	delegation	by	setting	the
SPRING_CONFIG_LOCATION	variable	to	configure	the	location	of	the	environment-
specific	properties	file,	typically	by	loading	them	from	some	URL	location.

How	it	works…
As	you	learned	from	the	section	on	Spring	Boot	environment	config	hierarchy	and
precedence	in	this	chapter.	Spring	Boot	offers	multiple	ways	of	providing	the
configuration	properties.	Each	of	these	is	managed	via	an	appropriate	PropertySource
implementation.	We	have	seen	how	to	create	a	custom	implementation	of	PropertySource
when	we	were	implementing	ApacheCommonsConfigurationPropertySource.	Spring
Boot	already	provides	a	SystemEnvironmentPropertySource	implementation	for	us	to	use
out	of	the	box.	This	even	gets	automatically	registered	with	the	default	implementation	of
the	environment	interface:	the	SystemEnvironment.

As	the	SystemEnvironment	implementation	provides	a	composite	façade	on	top	of	a
multitude	of	different	PropertySource	implementations,	the	overriding	takes	place
seamlessly,	simply	because	the	SystemEnvironmentPropertySource	class	sits	higher	up	in
the	list	than	the	application.properties	file	one.

An	important	aspect	that	you	should	notice	is	the	use	of	ALL_CAPS	with	underscore	(_)
in	order	to	separate	the	words	instead	of	the	traditional	conventional	all.lower.cased
format	with	dots	(.)	separating	the	words	used	in	Spring	Boot	to	name	the	configuration
properties.	This	is	due	to	the	nature	of	some	Operating	Systems,	namely	Linux	and	OS	X,
that	prevents	the	use	of	dots	(.)	in	the	names	and	instead	encourages	the	use	of	the
ALL_CAPS	underscore-separated	notation

In	situations	where	the	usage	of	environment	variables	to	specify	or	override	the
configuration	properties	is	not	desired,	Spring	Boot	provides	us	with
‑Dspring.getenv.ignore	system	property,	which	can	be	set	to	true,	and	prevents	the
usage	of	environment	variables.	One	might	want	to	change	this	setting	to	true	if	you	see
errors	or	exceptions	in	the	log	due	to	the	running	of	your	code	on	some	application
servers,	or	a	particular	security	policy	configuration	that	might	not	allow	access	to
environment	variables.

Externalizing	environmental	config	using
Java	system	properties
While	environment	variables	could,	on	a	rare	occasion,	be	a	hit	or	miss,	the	good	old	Java
system	properties	can	always	be	trusted	to	be	there	for	you.	In	addition	to	using	the
Environment	Variables	and	command-line	arguments	represented	by	the	property	names
prefixed	with	a	double	dash	(--),	Spring	Boot	provides	you	with	the	ability	to	use	the
plain	Java	System	Properties	to	set	or	override	the	configuration	properties.

This	could	be	useful	in	a	number	of	situations,	particularly	if	your	application	is	running
in	a	container	that	sets	certain	values	during	the	startup	via	the	system	properties	that	you
want	to	get	access	to	or	if	a	property	value	is	not	set	via	a	command-line	–D	argument,	but
rather	in	some	library	via	a	code	by	calling	System.setProperty(…),	especially	if	this
resides	in	a	static	method	of	sorts.	While	arguably	these	cases	are	rare,	it	takes	only	one	to
have	you	bend	backwards	in	an	effort	to	try	and	integrate	this	value	into	your	application.

In	this	recipe,	we	will	use	the	same	application	executable	binary	as	we	have	done	in	the
previous	recipe,	with	the	only	difference	of	using	Java	System	Properties	instead	of	the
command-line	arguments	or	Environment	Variables	to	set	our	configuration	properties	at
runtime.

How	to	do	it…
1.	 Let’s	continue	our	experiments	by	setting	the	my.config.value	configuration

property.	Build	the	application	by	running	./gradlew	clean	bootRepackage	and
start	it	by	running	java	-Dmy.config.value="From	System	Config"	-jar
./build/libs/bookpub-0.0.1-SNAPSHOT-exec.jar	so	as	to	see	the	following	in	the
logs:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	From	System	Config

2.	 If	we	want	to	be	able	to	set	the	Java	System	Property	while	running	our	app	using	the
Gradle’s	bootRun	task,	we	will	need	to	add	this	to	the	applicationDefaultJvmArgs
configuration	in	the	build.gradle	file.	Let’s	add	-Dmy.config.value=Gradle	to	this
list	and	start	the	application	by	running	./gradlew	clean	bootRun	and	we	should
see	the	following	in	the	logs:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	Gradle

3.	 As	we	made	the	applicationDefaultJvmArgs	setting	to	be	shared	with
launch.script,	rebuilding	the	application	by	running	./gradlew	clean
bootRepackage	and	starting	it	by	running	./build/libs/bookpub-0.0.1-SNAPSHOT-
exec.jar	should	yield	us	the	same	output	in	the	logs	as	in	the	preceding	step.

How	it	works…
You	might	have	already	guessed	that	Java	System	Properties	are	consumed	by	a	similar
mechanism	that	is	used	for	environment	variables,	and	you	would	be	correct.	The	only
real	difference	is	the	implementation	of	PropertySource.	This	time,	a	more	generic
MapPropertySource	implementation	is	used	by	StandardEnvironment.

What	you	have	also	probably	noticed	is	the	need	to	launch	our	application	using	the	java
-Dmy.config.value="From	System	Config"	-jar	./build/libs/bookpub-0.0.1-

SNAPSHOT-exec.jar	command	instead	of	just	simply	invoking	the	self-executing
packaged	jar	by	itself.	This	is	because,	unlike	the	Environment	Variables	and	command-
line	arguments,	Java	System	Properties	have	to	be	set	on	the	java	executable	ahead	of
everything	else.

We	did	manage	to	work	around	this	need	by	effectively	hard-coding	the	values	in	our
build.gradle	file,	which,	combined	with	the	enhancements	that	we	made	to
launch.script,	allowed	us	embed	the	my.config.value	property	in	the	command	line	in
the	self-executing	jar	as	well	as	use	it	with	the	Gradle’s	bootRun	task.

The	risk	of	using	this	approach	with	the	configuration	properties	is	that	it	will	always
override	the	values	that	we	set	in	the	higher	layers	of	the	configuration,	such	as
application.properties	and	others.	Unless	you	are	explicitly	constructing	the	java
executable	command	line	and	not	using	the	self-launching	capabilities	of	the	packaged
JAR,	it	is	best	not	to	use	Java	System	Properties	and	consider	using	the	command-line
arguments	or	environment	variables	instead.

Setting	up	Consul
So	far,	everything	that	we	have	been	doing	with	the	configuration	was	connected	to	the
local	set	of	data.	In	a	real	large-scale	enterprise	environment,	this	is	not	always	the	case
and	quite	frequently,	there	is	a	desire	to	be	able	to	make	the	configuration	changes	at	large
—across	hundreds	or	even	thousands	of	instances	or	machines.

There	are	a	number	of	tools	that	exist	to	help	you	with	this	task,	and	in	this	recipe,	we	will
take	a	look	at	one	that—in	my	opinion—stands	out	from	the	group,	giving	you	the	ability
to	cleanly	and	elegantly	configure	the	environment	variables	for	a	starting	application
using	a	distributed	data	store.	The	tool’s	name	is	Consul.	It	is	an	open	source	product
from	Hashicorp	and	is	designed	to	discover	and	configure	the	services	in	a	large,
distributed	infrastructure.

In	this	recipe,	we	will	take	a	look	at	how	to	install	and	do	the	basic	configuration	of
Consul,	and	experiment	with	some	key	functionalities	that	it	provides.	This	will	give	us
the	necessary	familiarity	for	our	next	recipe,	where	we	will	be	using	Consul	to	provide	the
configuration	values	that	are	needed	to	start	our	application.

How	to	do	it…
1.	 Go	to	https://consul.io/downloads.html	and	download	the	appropriate	archive,

depending	on	the	operating	system	that	you	are	using.	Consul	supports	Windows,	OS
X,	and	Linux,	so	it	should	work	for	the	majority	of	the	readers.

Tip
If	you	are	an	OS	X	user,	you	can	install	Consul	using	Homebrew	by	running	brew
install	caskroom/cask/brew-cask	followed	by	brew	cask	install	consul.

2.	 After	the	installation,	we	should	be	able	to	run	consul	--version	and	see	the
following	output:

Consul	v0.5.2

Consul	Protocol:	2	(Understands	back	to:	1)

3.	 With	Consul	successfully	installed,	we	should	be	able	to	start	it	by	running	consul
agent	-server	-bootstrap-expect	1	-data-dir	/tmp/consul	and	our	terminal
window	will	display	the	following:

==>	WARNING:	BootstrapExpect	Mode	is	specified	as	1;	this	is	the	same	

as	Bootstrap	mode.

==>	WARNING:	Bootstrap	mode	enabled!	Do	not	enable	unless	necessary

==>	WARNING:	It	is	highly	recommended	to	set	GOMAXPROCS	higher	than	1

==>	Starting	Consul	agent…

==>	Starting	Consul	agent	RPC…

==>	Consul	agent	running!

									Node	name:	<your	machine	name>'

								Datacenter:	'dc1'

												Server:	true	(bootstrap:	true)

							Client	Addr:	127.0.0.1	(HTTP:	8500,	HTTPS:	-1,	DNS:	8600,	RPC:	

8400)

						Cluster	Addr:	192.168.1.227	(LAN:	8301,	WAN:	8302)

				Gossip	encrypt:	false,	RPC-TLS:	false,	TLS-Incoming:	false

													Atlas:	<disabled>

==>	Log	data	will	now	stream	in	as	it	occurs:

				2015/06/10	20:34:43	[INFO]	serf:	EventMemberJoin:	<your	machine	

name>	192.168.1.227

				2015/06/10	20:34:43	[INFO]	serf:	EventMemberJoin:	<your	machine	

name>.dc1	192.168.1.227

				2015/06/10	20:34:43	[INFO]	raft:	Node	at	192.168.1.227:8300	

[Follower]	entering	Follower	state

				2015/06/10	20:34:43	[INFO]	consul:	adding	server	<your	machine	

name>	(Addr:	192.168.1.227:8300)	(DC:	dc1)

				2015/06/10	20:34:43	[INFO]	consul:	adding	server	<your	machine	

name>.dc1	(Addr:	192.168.1.227:8300)	(DC:	dc1)

				2015/06/10	20:34:43	[ERR]	agent:	failed	to	sync	remote	state:	No	

cluster	leader

				2015/06/10	20:34:45	[WARN]	raft:	Heartbeat	timeout	reached,	

starting	election

				2015/06/10	20:34:45	[INFO]	raft:	Node	at	192.168.1.227:8300	

https://consul.io/downloads.html

[Candidate]	entering	Candidate	state

				2015/06/10	20:34:45	[INFO]	raft:	Election	won.	Tally:	1

				2015/06/10	20:34:45	[INFO]	raft:	Node	at	192.168.1.227:8300	

[Leader]	entering	Leader	state

				2015/06/10	20:34:45	[INFO]	consul:	cluster	leadership	acquired

				2015/06/10	20:34:45	[INFO]	consul:	New	leader	elected:	<your	

machine	name>

				2015/06/10	20:34:45	[INFO]	raft:	Disabling	EnableSingleNode	

(bootstrap)

				2015/06/10	20:34:45	[INFO]	consul:	member	'<your	machine	name>'	

joined,	marking	health	alive

				2015/06/10	20:34:47	[INFO]	agent:	Synced	service	'consul'

4.	 With	the	Consul	service	running,	we	can	verify	that	it	contains	one	member	by
running	consul	members	command	and	should	see	the	following	result:

Node										Address													Status		Type				Build		Protocol		DC

<your_machine_name>		192.168.1.227:8301		alive			server		0.5.2		2									

dc1

5.	 While	Consul	can	also	provide	discovery	for	services,	health	checks,	distributed
locks,	and	more,	we	are	going	to	focus	on	the	Key/Value	service	as	this	is	what	will
be	used	to	provide	the	configuration	in	the	next	recipe.	So,	let’s	put	the	From	Consul
Config	value	in	the	KV	store	by	executing	curl	-X	PUT	-d	'From	Consul	Config'
http://localhost:8500/v1/kv/bookpub/my/config/value.

Note
If	you	are	using	Windows,	you	can	get	cURL	from	http://curl.haxx.se/download.html.

6.	 We	can	also	retrieve	the	data	by	running	curl
http://localhost:8500/v1/kv/bookpub/my/config/value	and	should	see	the
following	output:

[{"CreateIndex":20,"ModifyIndex":20,"LockIndex":0,"Key":"bookpub/my/con

fig/value","Flags":0,"Value":"RnJvbSBDb25zdWwgQ29uZmln"}]

7.	 We	can	delete	this	value	by	running	curl	-X	DELETE
http://localhost:8500/v1/kv/bookpub/my/config/value.

8.	 In	order	to	modify	the	existing	value	for	something	else,	execute	curl	-X	PUT	-d
'newval'	http://localhost:8500/v1/kv/bookpub/my/config/value?cas=20.

http://curl.haxx.se/download.html

How	it	works…
The	detailed	explanation	about	how	Consul	works	or	about	all	the	possible	options	for	its
Key/Value	service	would	take	a	book	of	its	own,	so	here	we	will	look	only	at	the	basic
pieces	and	it	is	strongly	recommended	that	you	read	the	Consul’s	documentation	at
https://consul.io/intro/getting-started/services.html.

In	Step	3,	we	started	the	Consul	agent	in	a	server	mode.	It	acts	as	a	main	master	node	and
in	the	real	deployment,	the	local	agents	running	on	the	individual	instances	will	be	using
the	server	node	to	connect	to	and	retrieve	data	from.	For	our	test	purpose,	we	will	just	use
this	server	node	as	if	it	were	a	local	agent	one.

The	information	displayed	upon	the	startup	shows	us	that	our	node	has	started	as	a	server
node,	establishing	an	HTTP	service	on	port	8500	as	well	as	the	DNS	and	RPC	services,	in
case	that’s	how	one	chooses	to	connect	to	it.	We	can	also	see	that	there	is	only	one	node	in
the	cluster—ours—and	we	are	the	elected	leader	running	in	a	healthy	state.

As	we	will	be	using	the	convenient	RESTful	HTTP	API	via	cURL,	all	of	our	requests	will
be	using	localhost	on	port	8500.	Being	a	RESTful	API,	it	fully	adheres	to	a	CRUD	verb
terminology	and	to	insert	the	data,	we	will	use	a	PUT	method	on	a	/v1/kv	endpoint	in
order	to	set	the	bookpub/my/config/value	key.

Retrieving	the	data	is	even	more	straightforward:	we	just	make	a	GET	request	to	the	same
/v1/kv	service	using	the	desired	key.	The	same	goes	for	DELETE,	with	the	only
difference	being	the	method	name.

The	update	operation	requires	a	bit	more	information	in	the	URL,	namely	the	cas
parameter.	The	value	of	this	parameter	should	be	ModifyIndex	of	the	desired	key,	which
can	be	obtained	from	the	GET	request.	In	our	case,	it	has	a	value	of	20.

https://consul.io/intro/getting-started/services.html

Externalizing	environmental	config	using
Consul	and	envconsul
In	the	previous	recipe,	we	had	our	Consul	service	installed	and	experimented	with	its
Key/Value	capabilities	to	learn	how	we	can	manipulate	the	data	in	it.	Next	step	would	be
to	integrate	Consul	with	our	application	and	make	the	data	extraction	process	seamless
and	non-invasive	from	the	application’s	stand	point.

As	we	don’t	want	our	application	to	know	anything	about	Consul	and	have	to	explicitly
connect	to	it—even	though	such	a	possibility	exists—we	will	employ	another	utility,	also
created	and	open-sourced	by	Hashicorp,	called	envconsul	to	connect	to	the	Consul	service
for	us,	extract	the	specified	configuration	key/value	tree,	and	expose	it	as	the	environment
variables	to	be	used	while	also	launching	our	application.	Pretty	cool,	right?!

Getting	ready
Before	we	get	started	with	launching	our	application	that	was	created	in	the	previous
recipes,	we	need	to	install	the	envconsul	utility.

Let’s	download	the	binary	for	your	respective	operating	system	from
https://github.com/hashicorp/envconsul/releases	and	extract	the	executable	to	any
directory	of	your	choice;	though	it	is	better	to	put	it	somewhere	that	is	in	the	PATH.

Once	envconsul	is	extracted	from	the	downloaded	archive,	we	are	ready	to	start	using	it	so
as	to	configure	our	application.

https://github.com/hashicorp/envconsul/releases

How	to	do	it…
1.	 If	you	have	not	already	added	the	value	for	the	my/config/value	key	to	Consul,	let’s

add	it	by	running	curl	-X	PUT	-d	'From	Consul	Config'
http://localhost:8500/v1/kv/bookpub/my/config/value.

2.	 The	first	step	is	to	make	sure	envconsul	can	connect	to	the	Consul	server	and	that	it
extracts	the	correct	data	based	on	our	configuration	key.	Let’s	execute	a	simple	test
by	running	envconsul	--once	--sanitize	--upcase	--prefix	bookpub	env	and
we	should	see	the	following	in	the	output:

…

TERM=xterm-256color

SHELL=/bin/bash

LANG=en_US.UTF-8

HOME=/Users/<your_user_name>

…

MY_CONFIG_VALUE=From	Consul	Config

3.	 After	we	have	verified	that	envconsul	is	returning	the	correct	data	to	us,	we	will	use	it
to	launch	our	BookPub	application	by	running	envconsul	--once	--sanitize	--
upcase	--prefix	bookpub	./gradlew	clean	bootRun	and	once	the	application	has
started,	we	should	see	the	following	output	in	the	logs:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	From	Consul	Config

4.	 We	can	do	the	same	thing	by	building	the	self-starting	executable	JAR	by	running
./gradlew	clean	bootRepackage	and	start	it	by	running	envconsul	--once	--
sanitize	--upcase	--prefix	bookpub	./build/libs/bookpub-0.0.1-SNAPSHOT-

exec.jar	to	make	sure	we	see	the	same	output	in	the	logs	as	in	the	preceding	step.	If
you	see	Gradle	instead	of	From	Consul	Config,	make	sure	the
applicationDefaultJvmArgs	configuration	in	build.gradle	does	not	have	-
Dmy.config.value=Gradle	in	it.

5.	 Another	marvelous	ability	of	envconsul	is	not	only	to	export	the	configuration	key
values	as	environment	variables,	but	also	monitor	for	any	changes	and	restart	the
application	if	the	values	in	Consul	change.	Let’s	launch	our	application	by	running
envconsul	--sanitize	--upcase	--prefix	bookpub	./build/libs/bookpub-

0.0.1-SNAPSHOT-exec.jar	and	we	should	see	the	following	value	in	the	log:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	From	Consul	Config

6.	 We	will	now	use	the	curl	command	to	get	the	current	ModifyIndex	of	our	key	and
update	its	value	to	From	UpdatedConsul	Config	by	opening	another	terminal
window	and	executing	curl
http://localhost:8500/v1/kv/bookpub/my/config/value,	grabbing	the
ModifyIndex	value,	and	using	it	to	execute	curl	-X	PUT	-d	'From	UpdatedConsul
Config'	http://localhost:8500/v1/kv/bookpub/my/config/value?cas=

<ModifyIndex	Value>.	We	should	see	our	running	application	magically	restart	itself
and	our	newly	updated	value	displayed	in	the	log	at	the	end:

2015-05-31	---	ication$$EnhancerBySpringCGLIB$$b123df6a	:	Value	of	

my.config.value	property	is:	From	UpdatedConsul	Config

How	it	works…
What	we	just	did	was	pretty	sweet,	right!?	Let’s	examine	the	magic	behind	the	scenes	in
more	detail.	We	will	start	by	dissecting	the	command	line	and	explaining	what	each
argument	control	option	does.

Our	first	execution	command	line	was	envconsul	--once	--sanitize	--upcase	--
prefix	bookpub	./gradlew	clean	bootRun,	so	let’s	take	a	look	at	exactly	what	we	did,
as	follows:

First,	one	might	notice	that	there	is	no	indication	as	to	which	Consul	node	we	should
be	connecting	to.	This	is	because	there	is	an	implicit	understanding	or	an	assumption
that	you	already	have	a	Consul	agent	running	locally	on	localhost:8500.	If	this	is	not
the	case	for	whatever	reason,	you	can	always	explicitly	specify	the	Consul	instance	to
connect	via	the	--consul	localhost:8500	argument	added	to	the	command	line.
The	--prefix	option	specifies	the	starting	configuration	key	segment	in	which	to
look	for	the	different	values.	When	we	were	adding	keys	to	Consul,	we	used	the
following	key:	bookpub/my/config/value.	By	specifying	the	--prefix	bookpub
option,	we	tell	envconsul	to	strip	the	bookpub	part	of	the	key	and	use	all	the	internal
tree	elements	in	bookpub	to	construct	the	environment	variables.	Thus,
my/config/value	becomes	the	environment	variable.
The	--sanitize	option	tells	envconsul	to	replace	all	the	invalid	characters	with
underscores	(_).	So,	if	we	were	to	only	use	--sanitize,	we	would	end	up	with
my_config_value	as	an	environment	variable.
The	--upcase	option,	as	you	might	already	have	guessed,	makes	the	environment
variable	key	to	all	upper	cased	characters;	so,	when	combined	with	the	--sanitize,
my/config/value	key,	it	gets	transformed	into	the	MY_CONFIG_VALUE	environment
variable.
The	--once	option	indicates	that	we	only	want	to	externalize	the	keys	as	environment
variables	once	and	do	not	want	to	continuously	monitor	for	changes	in	the	Consul
cluster,	and	if	a	key	in	our	prefix	tree	has	changed	its	value,	re-externalize	the	keys	as
environment	variables	and	restart	the	application.

This	last	option,	--once,	provides	a	very	useful	choice	of	functionalities.	If	you	are
interested	only	in	the	initial	bootstrap	of	your	application	via	the	use	of	a	Consul-shared
configuration,	then	the	keys	will	be	set	as	environment	variables,	application	will	be
launched,	and	envconsul	will	consider	its	job	done.	However,	if	you	would	like	to	monitor
the	Consul	cluster	for	changes	to	key/values	and	after	the	change	has	taken	place,	restart
your	application	reflecting	the	new	change,	then	by	removing	the	--once	option,
envconsul	will	restart	the	application	once	the	change	has	occurred.

Such	a	behavior	can	be	very	useful	and	handy	for	things	such	as	a	near-instantaneous
change	to	the	database	connection	configuration.	Imagine	that	you	need	to	do	a	quick
failover	from	one	database	to	another	and	JDBC	URL	is	configured	via	Consul.	All	you
need	to	do	is	push	a	new	JDBC	URL	value	and	envconsul	will	almost	immediately	detect
this	change	and	restart	the	application	telling	it	to	connect	to	a	new	database	node.

Currently,	this	functionality	is	implemented	by	sending	a	traditional	SIGTERM	signal	to
an	application	running	process	telling	it	to	terminate	and	once	the	process	exited,	restart
the	application.	This	might	not	always	be	the	desired	behavior,	especially	if	it	takes	some
time	for	an	application	to	start	up	and	be	capable	of	taking	traffic.	You	don’t	want	your
entire	cluster	of	web	applications	to	be	shut	down,	even	if	it	will	be	only	for	a	few
minutes.

To	provide	a	better	handling	of	this	scenario,	envconsul	was	enhanced	to	be	able	to	send	a
number	of	standard	signals	that	can	be	configured	via	a	newly	added	--kill-signal
option.	Using	this	option,	we	can	specify	any	of	the	SIGHUP,	SIGTERM,	SIGINT,
SIGQUIT,	SIGUSR1,	or	SIGUSR2	signals	to	be	used	instead	of	the	default	SIGTERM	to
be	sent	to	a	running	application	process	once	the	key/value	changes	have	been	detected.
This	functionality	should	become	available	as	of	version	0.5.1	or	0.6,	whichever’s	release
comes	first.

The	process	signal	handling	in	Java	is	not	as	clear	and	straightforward	due	to	most	of	the
behavior	being	very	specific	to	a	particular	operating	system	and	the	JVM	that	is	run	atop.
Some	of	the	signals	in	the	list	will	terminate	the	application	anyways	or,	in	the	case	of
SIGQUIT,	the	JVM	will	print	Core	Dump	into	the	standard	output.	However,	there	are
ways	to	configure	the	JVM,	depending	on	the	operating	system,	to	let	us	use	SIGUSR1
and	SIGUSR2	instead	of	acting	on	those	signals	itself,	but	unfortunately	that	topic	falls
outside	the	scope	of	this	book.

Note
Here	is	a	sample	example	of	how	to	deal	with	Signal	Handlers:
https://github.com/spotify/daemon-java	or	see	Oracle	Java	documentation	at
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/signals.html	for	a
detailed	explanation.

https://github.com/spotify/daemon-java
https://docs.oracle.com/javase/8/docs/technotes/guides/troubleshoot/signals.html

Chapter	7.	Health	Monitoring	and	Data
Visualization
In	this	chapter,	you	will	learn	about	the	following	topics:

Writing	custom	health	indicators
Emitting	metrics
Monitoring	Spring	Boot	via	JMX
Management	of	Spring	Boot	via	CRaSH	and	writing	custom	remote	shell	commands
Integrating	Codahale/Dropwizard	metrics	with	Graphite
Integrating	Codahale/Dropwizard	metrics	with	Dashing

Introduction
In	the	previous	chapter,	you	learned	a	few	techniques	about	how	to	efficiently	package	and
get	the	application	ready	for	deployment,	as	well	as	a	number	of	techniques	to	provide	an
environmental	configuration	without	changing	the	code.	With	the	deployment	and
configuration	woes	behind	us,	the	last	but	not	least,	important	step	remains:	ensuring	that
we	have	complete	visibility,	monitoring,	and	management	control	of	our	application,	as	it
is	running	in	the	production	environment	and	is	exposed	to	the	harsh	environment	of
customers’	(ab)use.

Just	as	airline	pilots	don’t	like	to	fly	blind,	neither	do	developers	get	excited	if	they	can’t
see	how	their	beloved	and	hard-worked-on	application	performs	in	production.	We	want	to
know,	at	any	given	time,	how	the	CPU	utilization	is	doing,	how	much	memory	we	are
consuming,	is	our	connection	to	the	database	up	and	available,	how	many	customers	use
the	system	in	any	given	time	interval,	and	so	on	and	so	forth.	Not	only	do	we	want	to
know	all	these	things,	but	we	also	want	to	be	able	to	see	it	in	pretty	charts,	graphs,	and
visual	dashboards.	These	come	in	very	handy	to	put	on	the	big	Plasma	displays	to	monitor
as	well	as	impress	your	boss	so	as	to	show	that	you	are	on	top	of	things	and	have
everything	under	control.

This	chapter	will	help	us	learn	the	necessary	techniques	to	enhance	our	application	in
order	to	expose	custom	metrics,	health	status,	and	so	on,	as	well	as	how	to	get	the
monitoring	data	out	of	our	application	and	either	store	it	in	Graphite	for	historical
reference	or	use	this	data	to	create	real-time	monitoring	dashboards	using	the	Dashing	and
Grafana	frameworks.	We	will	also	take	a	look	at	the	capabilities	to	connect	to	running
instances	and	perform	various	management	tasks	using	the	powerful	CRaSH	framework
integration.

Note
While	this	chapter	was	being	written,	various	changes	to	the	1.3.0-SNAPSHOT	version	of
Spring	Boot	have	been	added;	one	of	them	is	the	rendering	output	of	JSON	to	be	more
HATEOAS	compliant.

Writing	custom	health	indicators
Knowing	the	state	of	the	application	that	is	running	in	the	production,	especially	in	a
large-scale	distributed	system,	is	just	as—if	not	more—important	than	having	things	such
as	automated	testing	and	deployment.	In	today’s	fast	paced	IT	world,	we	can’t	really
afford	much	downtime,	so	we	need	to	have	the	information	about	the	health	of	the
application	at	our	fingertips,	ready	to	go	at	a	minute’s	notice.	If	the	all-so-important
database	connections	go	down,	we	want	to	see	it	right	away	and	be	able	to	quickly	remedy
the	situation;	the	customers	are	not	going	to	be	waiting	around	for	long	before	they	go	to
another	site.

We	will	resume	working	on	our	BookPub	application	in	the	state	as	we	left	it	in	the
previous	chapter.	In	this	recipe,	we	will	add	the	necessary	Spring	Boot	starters	to	enable
the	monitoring	and	instrumentation	of	our	application	and	will	even	write	our	own	health
indicator.

How	to	do	it…
1.	 The	first	thing	that	we	need	to	do	is	add	a	dependency	on	the	Spring	Boot	Actuator

starter	in	our	build.gradle	file	with	the	following	content:

dependencies	{

				...

				compile("org.springframework.boot:spring-boot-starter-data-rest")

				//	compile("org.springframework.boot:spring-boot-starter-jetty")	//	

Need	to	use	Jetty	instead	of	Tomcat

				compile("org.springframework.boot:spring-boot-starter-actuator")

				compile	project(':db-count-starter')

				...

}

2.	 Adding	this	dependency	alone	already	gives	us	an	ability	to	access	the	Spring
management	endpoints,	such	as	/env,	/info,	/metrics,	/health,	and	so	on.	So,
let’s	start	our	application	by	executing	./gradlew	clean	bootRun	and	then	we	can
access	the	newly	available	/health	endpoint	by	opening	our	browser	and	going	to
http://localhost:8080/health	in	the	browser	so	as	to	see	the	new	endpoint	in
action,	as	shown	in	the	following	screenshot:

3.	 With	the	Actuator	dependency	added,	we	can	now	add	and	perform	all	kinds	of
monitoring	functions	on	our	application.	Let’s	go	ahead	and	populate	the	/info
endpoint	with	some	data	by	adding	the	property	placeholders	to
application.properties	located	in	the	src/main/resources	directory	at	the	root	of
our	project	with	the	following	content:

info.build.name=${name}

info.build.description=${description}

info.build.version=${version}

4.	 Next,	we	will	create	a	new	properties	file	named	gradle.properties	in	the	root
directory	of	our	project	with	the	following	content:

version=0.0.1-SNAPSHOT

description=BookPub	Catalog	Application

5.	 We	will	also	add	rootProject.name='BookPub'	to	the	settings.gradle	file	located
in	the	root	directory	of	our	project.

6.	 To	stitch	things	together,	we	will	enhance	build.gradle	with	the	following
configuration:

bootRun	{

				addResources	=	false

}

processResources	{

				filesMatching("**/application.properties")	{

								expand(project.properties)

				}

}

7.	 Now,	let’s	start	our	application	by	executing	./gradlew	clean	bootRun	and	then	we
can	access	the	newly	available	/info	endpoint	by	opening	our	browser	and	going	to
http://localhost:8080/info	in	the	browser	to	see	the	new	endpoint	in	action,	as
follows:

8.	 As	we	have	got	the	hang	of	how	things	work,	let’s	go	ahead	and	make	our	custom
health	indicator,	which	will	be	accessible	via	the	/health	endpoint,	in	order	to	report
the	count	status	of	the	entries	for	each	of	our	repositories.	If	they	are	greater	or	equal
to	0,	we	are	UP,	otherwise	we	are	not	really	sure	what’s	going	on.	Obviously,	if	an
exception	has	occurred,	we	would	be	reporting	DOWN.	Let’s	start	by	relaxing	the
getRepositoryName(…)	method	visibility	from	private	to	protected	in
DbCountRunner.java	located	in	the	db-count-
starter/src/main/java/org/test/bookpubstarter/dbcount	directory	at	the	root
of	our	project.

9.	 Next,	we	will	add	the	same	dependency	on	the

compile("org.springframework.boot:spring-boot-starter-actuator")	library
to	build.gradle	in	the	db-count-starter	directory	at	the	root	of	our	project.

10.	 Now,	we	will	create	a	new	file	named	DbCountHealthIndicator.java	in	the	db-
count-starter/src/main/java/org/test/bookpubstarter/dbcount	directory	at
the	root	of	our	project	with	the	following	content:

public	class	DbCountHealthIndicator	implements	HealthIndicator	{

				private	CrudRepository	repository;

				public	DbCountHealthIndicator(CrudRepository	repository)	{

								this.repository	=	repository;

				}

				@Override

				public	Health	health()	{

								try	{

												long	count	=	repository.count();

												if	(count	>=	0)	{

																return	Health.up().withDetail("count",	count).build();

												}	else	{

																return	Health.unknown().withDetail("count",	

count).build();

												}

								}	catch	(Exception	e)	{

												return	Health.down(e).build();

								}

				}

}

11.	 Finally,	for	the	automatic	registration	of	our	HealthIndicator,	we	will	enhance
DbCountAutoConfiguration.java	located	in	the	db-count-
starter/src/main/java/org/test/bookpubstarter/dbcount	directory	at	the	root
of	our	project	with	the	following	content:

@Autowired

private	HealthAggregator	healthAggregator;

@Bean

public	HealthIndicator	

dbCountHealthIndicator(Collection<CrudRepository>	repositories)	{

				CompositeHealthIndicator	compositeHealthIndicator	=	new	

CompositeHealthIndicator(healthAggregator);

				for	(CrudRepository	repository	:	repositories)	{

								String	name	=	

DbCountRunner.getRepositoryName(repository.getClass());

								compositeHealthIndicator.addHealthIndicator(name,	new	

DbCountHealthIndicator(repository));

				}

				return	compositeHealthIndicator;

}

12.	 So,	let’s	start	our	application	by	executing	./gradlew	clean	bootRun	and	then	we
can	access	the	/health	endpoint	by	opening	our	browser	and	going	to
http://localhost:8080/health	in	the	browser	to	see	our	new	HealthIndicator	in
action,	as	follows:

How	it	works…
The	Spring	Boot	Actuator	starter	adds	a	number	of	important	features	that	give	insight
into	the	runtime	state	of	the	application.	The	library	contains	a	number	of
AutoConfigurations	that	add	and	configure	the	various	endpoints	to	access	the	runtime
monitoring	data	and	health	of	the	application.	The	following	endpoints	are	available	to	aid
us	in	getting	insight	into	the	application	runtime	state	and	configuration:

The	/env	endpoint	provides	us	with	the	ability	to	query	the	application	about	all	of
the	environment	variables	that	the	application	has	access	to	via	the	environment
implementation,	which	we	have	seen	earlier.	It	is	very	useful	when	you	need	to	debug
a	particular	issue	and	want	to	know	a	value	of	any	given	configuration	property.	If	we
access	the	endpoint	by	going	to	http://localhost:8080/env,	we	will	see	a	number
of	different	configuration	sections,	for	example,	class	path	resource
[tomcat.https.properties],	applicationConfig:

[classpath:/application.properties],	commonsConfig,	systemEnvironment,
systemProperties,	and	others.

They	all	represent	an	instance	of	an	individual	PropertySource	implementation	that
is	available	in	the	Environment	instance	and	depending	on	their	place	in	the
hierarchy,	may	or	may	not	be	used	to	provide	the	value	resolution	at	the	runtime.	To
find	out	exactly	which	entry	is	used	to	resolve	a	particular	value,	for	example,	for	the
book.count.rate	property,	we	can	query	it	by	going	to	the
http://localhost:8080/env/book.counter.rate	URL	and	by	default,	should	get
10000	as	a	result,	unless	of	course,	a	different	value	was	set	via	the	system
environment	or	command-line	arguments	as	an	override.	If	you	really	want	to	dig
deep	in	the	code,	the	EnvironmentEndpoint	class	is	responsible	for	handling	the
logic	behind	this	capability.

The	/configprops	endpoint	provides	you	with	an	insight	into	the	settings	of	the
various	configuration	property	objects,	such	as	our
WebConfiguration.TomcatSslConnectorProperties	one.	It	is	slightly	different
from	the	/env	endpoint	as	it	provides	insight	into	the	configuration	object	bindings.	If
we	open	the	browser	to	go	to	http://localhost:8080/configprops	and	search	for
custom.tomcat.https,	we	will	see	the	entry	for	our	configuration	property	object
that	we	will	use	to	configure	TomcatSslConnector,	which	was	automatically
populated	and	bound	for	us	by	Spring	Boot.
The	/autoconfig	endpoint	serves	as	a	web-based	analog	to	AutoConfiguration
Report,	which	we	have	seen	in	Chapter	4,	Writing	Custom	Spring	Boot	Starters.	This
way,	we	can	get	the	report	using	the	browser	at	any	time	without	having	to	start	the
application	with	the	specific	flags	to	get	it	printed.
The	/beans	endpoint	is	designed	to	list	all	the	beans	that	have	been	created	by	Spring
Boot	and	are	available	in	Application	Context.
The	/mappings	endpoint	exposes	a	list	of	all	the	URL	mappings	that	are	supported	by
the	application	as	well	as	a	reference	to	the	HandlerMapping	bean	implementation.
This	is	very	useful	to	answer	a	question	of	where	would	a	specific	URL	get	routed	to.

Try	going	to	http://localhost:8080/mappings	to	see	the	list	of	all	the	routes	that
our	application	can	handle.
The	/info	endpoint	shows	the	basic	description	and	application	information	that	we
added	and	we’ve	seen	this	in	action,	so	it	should	be	familiar	to	us	as	of	now.	The	nice
support	in	the	build	tools	gives	us	the	ability	to	replace	the	data	placeholders	in
application.properties	with	the	real	values	using	the	processResources
directive,	which	expands	the	project	properties	to	application.properties,	thus
allowing	us	to	automatically	populate	the	placeholders	with	the	current	data	at	all
times.

Any	properties	that	start	with	info.	will	be	displayed	while	accessing	the	/info
endpoint,	so	you	are	definitely	not	limited	to	only	the	three	endpoints	that	we	used
previously.	Configuring	this	specific	endpoint	in	order	to	return	the	relevant
information	can	be	very	helpful	when	building	various	automated	discovery	and
monitoring	tools	as	it	is	a	great	way	to	expose	application-specific	information	in	the
form	of	a	nice	JSON	RESTful	API.

The	/health	endpoint	provides	information	about	the	general	application	health
status	as	well	as	a	detailed	breakdown	and	health	status	of	the	individual	components.
The	/metrics	endpoint	gives	an	overview	of	all	the	various	data	points	that	are
emitted	by	the	Metrics	subsystem.	You	can	experiment	with	it	by	accessing	it	via	the
http://localhost:8080/metrics	URL	in	the	browser.	We	will	cover	this	in	more
detail	in	the	next	recipe.

Now	that	we	know	in	general	what	is	being	provided	for	us	by	Spring	Boot	Actuator,	we
can	move	on	to	take	a	look	at	the	details	of	what	we	did	to	get	our	custom
HealthIndicator	working	and	how	the	whole	Health	monitoring	subsystem	in	Spring
Boot	functions.

As	you	saw,	getting	the	basic	HealthIndicator	to	work	is	very	easy:	all	we	have	to	do	is
create	an	implementing	class	that	will	return	a	Health	object	upon	a	call	to	the	health()
method.	All	you	have	to	do	is	expose	the	instance	of	the	HealthIndicator	as	@Bean	for
Spring	Boot	to	pick	it	up	and	add	it	to	the	/health	endpoint.

In	our	case,	we	went	a	step	further	because	we	had	to	deal	with	the	need	to	create	a
HealthIndicator	for	each	CrudRepository	instance.	To	accomplish	this,	we	created	an
instance	of	CompositeHealthIndicator	to	which	we	added	all	the	instances	of
DbHealthIndicator	for	each	CrudRepository.	We	then	returned	this	as	@Bean	and	this	is
what	was	used	by	Spring	Boot	to	represent	the	health	status.	Being	a	composite,	it
preserved	the	inner	hierarchy	as	is	evident	from	the	returned	JSON	data	representing	the
health	status.	We	also	added	some	extra	data	element	to	provide	the	indication	of	the	entry
count	as	well	as	the	name	of	each	particular	repository	so	that	we	can	tell	them	apart.

Looking	at	the	code,	you	are	probably	wondering:	what	is	this	HealthAggregator	instance
that	we’ve	wired	in.	The	reason	that	we	needed	a	HealthAggregator	instance	is	because
CompositeHealthIndicator	needs	to	know	how	to	decide	if	the	inner	composition	of	all
the	nested	HeathIndicators	represents	good	or	bad	health	as	a	whole.	Imagine	that	all	the
repositories,	but	one,	return	UP,	except	for	one,	which	returns	DOWN.	What	does	this	mean:

is	the	composite	indicator	healthy	as	a	whole	or	should	it	also	report	DOWN	because	one
inner	repository	is	having	issues?

By	default,	Spring	Boot	already	creates	and	uses	an	instance	of	HealthAggregator,	so	we
just	@Autowired	it	and	used	it	in	our	use	case	as	well.	Even	though	the	default
implementation	is	an	instance	of	OrderedHealthAggregator,	which	just	collects	all	the
inner	Status	responses	and	chooses	the	lowest	on	the	priority	level	out	of	DOWN,
OUT_OF_SERVICE,	UP,	and	UNKNOWN,	it	doesn’t	always	have	to	be	that	way.	For	example,	if
the	composite	indicator	consists	of	the	indicators	for	redundant	service	connections,	your
combined	result	could	be	UP	as	long	as	at	least	one	of	the	connections	is	healthy.	Creating
a	custom	HealthAggregator	is	very	easy:	all	one	has	to	do	is	either	extend
AbstractHealthAggregator	or	implement	a	HealthAggregator	interface	itself.

Before	we	continue	with	the	next	recipe,	I	wanted	to	touch	briefly	on	the	topic	of	the
Spring	Boot	Actuator	endpoints	and	Security.	The	data	that	is	exposed	by	the	various
management	endpoints,	especially	the	ones	from	sensitive	ones	such	as	/health,	/env,
and	others,	can	be	a	very	lucrative	prize	for	malicious	people	on	the	outside.	To	prevent
this	from	happening,	Spring	Boot	provides	us	with	an	ability	to	configure	if	we	want	the
endpoints	to	be	available	via	endpoints.enabled=false.	We	can	specify	which	individual
endpoints	we	want	to	disable	by	setting	an	appropriate	endpoints.
<name>.enabled=false	property	as	well.

Alternatively,	we	can	set	management.port=-1	to	disable	the	HTTP	exposure	of	these
endpoints	or	use	a	different	port	number	in	order	to	have	the	management	endpoints	and
live	services	on	different	ports.	If	we	want	to	enable	access	via	only	a	localhost,	we	can
achieve	this	by	configuring	management.address=127.0.0.1	to	prevent	external	access.
Even	the	context	URL	path	can	be	configured	to	something	else,	say	/admin,	via
management.context-path=/admin.	This	way,	to	get	access	to	a	/health	endpoint,	we
would	go	to	http://127.0.0.1/admin/health	instead.	This	can	be	useful	if	you	want	to
control	and	restrict	access	via	the	firewall	rules,	so	you	can	just	add	a	filter	to	block
external	access	to	anything,	/admin/*,	for	all	the	applications	from	the	outside.	With	the
addition	of	Spring	Security,	an	authentication	can	also	be	configured	to	require	a	user
login	to	get	access	to	the	endpoints.

Emitting	metrics
The	previous	recipe	has	provided	us	with	an	overview	of	the	capabilities	provided	by
Spring	Boot	Actuators.	We	played	with	the	different	management	endpoints	such	as
/info,	/health,	and	so	on	and	even	created	our	own	health	metrics	to	add	to	the	default
set.	However,	besides	the	health	status	there	are	a	number	of	things	that	we,	as	developers
and	operations	folks,	want	to	be	able	to	see	and	monitor	on	an	ongoing	basis,	and	just
knowing	that	the	uplink	is	functional	is	not	good	enough.	We	also	would	like	to	see	the
number	of	open	sessions,	concurrent	requests	to	the	application,	latency,	and	so	on	and	so
forth.	In	this	recipe,	we	will	learn	about	the	metric	reporting	facilities	in	Spring	Boot	as
well	as	how	to	add	our	own	metrics	and	some	quick	and	simple	ways	of	visualizing	them.

Getting	ready
To	help	us	visualize	the	metrics	better,	we	will	be	using	a	great	open	source	project,
spring-boot-admin,	located	at	https://github.com/codecentric/spring-boot-admin.	It
provides	a	simple	web	UI	on	top	of	the	Spring	Boot	Actuators	to	give	a	nicer	view	of	the
various	data.

We	will	create	a	simple	admin	application	in	Gradle	using	the	instructions	from
https://github.com/codecentric/spring-boot-admin#server-application	following	these
simple	steps:

1.	 Go	to	start.spring.io	and	create	a	new	application	template	with	the	following	fields:

Group:	org.sample.admin
Artifact:	spring-boot-admin-web
Name:	Spring	Boot	Admin	Web
Description:	Spring	Boot	Admin	Web	Application
Package	Name:	org.sample.admin
Type:	Gradle	Project
Packaging:	Jar
Java	Version:	1.8
Language:	Java
Spring	Boot	Version:	1.2.5

2.	 Select	the	Actuator	option	in	the	Ops	group.
3.	 Click	Generate	Project	to	download	the	application	template	archive.
4.	 Extract	the	contents	in	the	directory	of	your	choice.
5.	 In	the	extracted	directory,	execute	gradle	wrapper	to	generate	a	gradlew	script.
6.	 In	the	build.gradle	file,	add	the	following	dependencies	to	the	dependencies	block:

compile("de.codecentric:spring-boot-admin-server:1.2.1")

compile("de.codecentric:spring-boot-admin-server-ui:1.2.1")

7.	 Open	SpringBootAdminWebApplication.java	located	in	the
src/main/java/spring-boot-admin-web	directory	and	add	the	following
annotations	to	the	SpringBootAdminWebApplication	class:

@SpringBootApplication

@EnableAdminServer

public	class	SpringBootAdminWebApplication	{

		public	static	void	main(String[]	args)	{

				SpringApplication.run(SpringBootAdminWebApplication.class,	args);

		}

}

8.	 Open	application.properties	located	in	the	src/main/resources	directory	and
add	the	following	settings:

server.port:	8090

spring.application.name:	Spring	Boot	Admin	Web

https://github.com/codecentric/spring-boot-admin
https://github.com/codecentric/spring-boot-admin#server-application
http://start.spring.io

spring.boot.admin.url:	http://localhost:${server.port}

spring.cloud.config.enabled:	false

spring.jackson.serialization.indent_output:	true

endpoints.health.sensitive:	false

9.	 We	are	now	ready	to	start	our	Admin	Web	Console	by	running	./gradlew	bootRun
and	open	the	browser	to	http://localhost:8090	to	see	the	following	screenshot:

How	to	do	it…
1.	 With	the	Admin	Web	up	and	running,	we	are	now	ready	to	start	adding	various

metrics	to	our	BookPub	application.	Let’s	expose	the	same	information	about	our	data
repositories	as	we	did	in	HealthIndicators,	but	this	time,	we	will	expose	the	counts
data	as	Metric.	We	will	continue	to	add	code	to	our	db-count-starter	subproject.
So,	let’s	create	a	new	file	named	DbCountMetrics.java	in	the	db-count-
starter/src/main/java/org/test/bookpubstarter/dbcount	directory	at	the	root
of	our	project	with	the	following	content:

public	class	DbCountMetrics	implements	PublicMetrics	{

		private	Collection<CrudRepository>	repositories;

		public	DbCountMetrics(Collection<CrudRepository>	repositories)	{

				this.repositories	=	repositories;

		}

		@Override

		public	Collection<Metric<?>>	metrics()	{

				List<Metric<?>>	metrics	=	new	LinkedList<>();

				for	(CrudRepository	repository	:	repositories)	{

						String	name	=	

								DbCountRunner.getRepositoryName(repository.getClass());

						String	metricName	=	"counter.datasource."	+	name;

						metrics.add(new	Metric(metricName,	repository.count()));

				}

				return	metrics;

		}

}

2.	 Next,	for	the	automatic	registration	of	DbCountMetrics,	we	will	enhance
DbCountAutoConfiguration.java	located	in	the	db-count-
starter/src/main/java/org/test/bookpubstarter/dbcount	directory	at	the	root
of	our	project	with	the	following	content:

@Bean

public	PublicMetrics	dbCountMetrics(Collection<CrudRepository>	

repositories)	{

				return	new	DbCountMetrics(repositories);

}

3.	 So,	let’s	start	our	application	by	executing	./gradlew	clean	bootRun	and	then	we
can	access	the	/metrics	endpoint	by	opening	our	browser	and	going	to
http://localhost:8080/metrics	in	the	browser	to	see	our	new	DbCountMetrics
added	to	the	existing	metrics	list,	as	follows:

4.	 Our	next	step	would	be	to	get	our	application	to	appear	in	the	Spring	Boot	Admin
Web,	which	we	created	earlier.	To	make	this	happen,	we	will	need	to	add	a
dependency	on	the	compile("de.codecentric:spring-boot-admin-starter-
client:1.2.1")	library	to	build.gradle	in	the	db-count-starter	directory	at	the
root	of	our	project.

5.	 Additionally,	application.properties	located	in	the	src/main/resources
directory	in	the	root	of	our	project	needs	to	be	enhanced	with	the	following	entries:

spring.application.name=${description}

server.port=8080

spring.boot.admin.url=http://localhost:8090

6.	 Once	again,	let’s	start	our	application	by	executing	./gradlew	clean	bootRun	and	if
we	now	go	to	Spring	Boot	Admin	Web	by	directing	our	browser	to
http://localhost:8090,	we	should	see	a	new	entry	for	our	application	named
BookPub	Catalog	Application	appear	in	the	list.	If	we	click	on	the	Details	button	to
the	right	and	scroll	down	to	the	Metrics	section,	we	will	see	our	metrics	along	with
the	others,	reported	in	a	form	of	nicer	looking	horizontal	green	bars,	as	follows:

How	it	works…
A	few	words	about	Spring	Boot	Admin	Web	before	we	delve	into	the	details	of	creating
and	emitting	metrics.	It	is	a	simple	web	GUI	that,	in	the	backend,	uses	the	same	endpoints
exposed	by	Spring	Boot	Actuator,	which	we	learned	about	in	the	previous	recipe.	The	data
is	extracted	from	the	application	as	we	click	the	various	links	in	Admin	Web	and
displayed	in	a	nice	graphical	way—no	magic!

We	only	had	to	configure	a	few	properties	in	addition	to	adding	the	client	library
dependency	in	order	to	get	our	application	to	connect	and	register	with	Admin	Web.

spring.application.name=${description}:	This	configures	the	name	of	the
application	that	we	have	chosen	to	take	from	the	description	property	defined	in
gradle.properties.	Admin	Web	uses	this	value	when	displaying	the	application	list.
spring.boot.admin.url=http://localhost:8090:	This	configures	the	location	of
the	Admin	Web	application	so	that	our	application	knows	where	to	go	in	order	to
register	itself.	As	we	are	running	on	port	8080,	we	chose	to	configure	Admin	Web	to
listen	on	port	8090,	but	any	port	can	be	chosen	as	desired.	You	can	see	more
configuration	options	by	visiting	https://github.com/codecentric/spring-boot-
admin/blob/master/spring-boot-admin-starter-client/README.md.

If	we	also	want	to	enable	the	Logging	Level	control	through	the	UI,	we	will	need	to	add	a
Jolokia	JMX	library	to	our	build	dependency—compile("org.jolokia:jolokia-

core:+")—as	well	as	a	logback.xml	file	in	the	src/main/resources	directory	in	the	root
of	the	project	with	the	following	content:

<configuration>

		<include	resource="org/springframework/boot/logging/logback/base.xml"/>	

<jmxConfigurator/>	

</configuration>

The	metrics	facility	in	Spring	Boot	is	very	powerful	and	extendable,	offering	a	number	of
different	approaches	to	emit	and	consume	metrics.	Out	of	the	box,	Spring	Boot	already
configures	a	number	of	data	metrics	that	monitor	the	system	resources,	such	as	heap
memory,	thread	counts,	system	uptime,	and	many	others	as	well	as	the	database	usage	and
http	session	counts.	The	MVC	endpoints	are	also	instrumented	to	gauge	the	request
latency,	which	is	measured	in	milliseconds,	as	well	as	counter	for	each	endpoint	request
status.

The	gauge	and	counter	metrics	are	emitted	via	the	GaugeService	and	CounterService
implementations	that	are	provided	by	Spring	Boot	at	runtime.	These	services	can	be	easily
autowired	into	any	Spring-managed	object	and	be	used	to	emit	metrics.

For	example,	we	can	easily	count	the	number	of	times	a	particular	method	gets	invoked	by
autowiring	CounterService	and	placing	the	following	line	at	the	beginning	of	the	method:
counterService.increment("objectName.methodName.invoked");.	Each	time	the
method	gets	called,	the	particular	metric	count	will	get	incremented.

This	approach	will	give	us	the	counts	that	we	can	increment,	decrement,	or	reset,	but	if	we

https://github.com/codecentric/spring-boot-admin/blob/master/spring-boot-admin-starter-client/README.md

want	to	measure	latency	or	any	other	arbitrary	value,	we	will	need	to	use	GaugeService	to
submit	our	metrics.	To	measure	how	long	it	will	take	for	our	method	to	execute,	we	can
autowire	GaugeService	and	at	the	beginning	of	the	method,	record	the	time:	long	start
=	System.currentTimeMillis();.	We	will	then	place	our	code	and	before	the	return,
capture	the	time	again:	long	end	=	System.currentTimeMillis();.	Then	we	will	emit
the	metric:	gaugeService.submit("objectName.methodName.latency",	end	-
start);,	which	will	update	the	given	metric	with	the	latest	value.

These	services	cover	most	of	the	simple	use	cases	and	are	especially	handy	when	we
operate	in	our	own	code	and	have	the	flexibility	to	add	them	where	we	need	to.	However,
it	is	not	always	the	case	and	in	these	cases,	we	will	need	to	resort	to	wrapping	whatever	it
is	we	want	to	monitor	by	creating	a	custom	implementation	of	PublicMetrics.	In	our
case,	we	will	use	it	to	expose	the	counts	for	each	of	the	repositories	in	the	database	as	we
can’t	insert	any	monitoring	code	into	the	CrudRepository	proxy	implementations.

The	interface	has	only	one	method	defined:	Collection<Metric<?>>	metrics();,	which
the	implementer	needs	to	code	with	the	definition	of	what	exactly	is	being	monitored.	The
implementation	class	needs	to	be	exposed	as	@Bean	and	it	will	automatically	be	picked	up
and	registered	with	the	MetricsEndpoint	handler,	which	will	execute	the	metrics()
method	every	time	the	/metrics	endpoint	is	being	accessed.

Monitoring	Spring	Boot	via	JMX
In	today’s	day	and	age,	the	RESTful	HTTP	JSON	services	are	a	de	facto	way	of	accessing
data	but	this	is	not	the	only	way	to	do	so.	Another	quite	popular	and	common	way	of
managing	systems	in	real	time	is	via	JMX.	The	good	news	is	that	Spring	Boot	already
comes	with	the	same	level	of	support	to	expose	the	management	endpoints	over	JMX	as	it
does	over	HTTP.	Actually,	these	are	exactly	the	same	endpoints;	they	are	just	wrapped
around	the	MBean	container.

In	this	recipe,	we	will	take	a	look	at	how	to	retrieve	the	same	information	via	JMX	as	we
did	via	HTTP	as	well	as	how	to	expose	some	MBeans,	which	are	provided	by	third-party
libraries	through	HTTP	using	the	Jolokia	JMX	library.

Getting	ready
If	you	haven’t	done	so	already	for	the	previous	recipe,	then	please	add	the	Jolokia	JMX
library	to	our	compile("org.jolokia:jolokia-core:+")	build	dependency	as	we	will
need	it	to	expose	MBeans	via	HTTP.

How	to	do	it…
1.	 After	we	add	the	Jolokia	JMX	dependency,	all	we	need	to	do	is	build	and	start	our

application	by	executing	./gradlew	clean	bootRun	and	now	we	can	simply	execute
jconsole	to	see	the	the	various	endpoints	exposed	under	the
org.springframework.boot	domain.	The	following	is	the	screenshot:

2.	 After	the	Jolokia	JMX	library	is	added	to	the	classpath,	Spring	Boot	also	enables	the
accessing	of	all	the	registered	MBeans	via	HTTP	API	using	the	/jolokia	endpoint.
To	find	out	the	maxThreads	setting	for	our	Tomcat	HTTP	port	8080	connector,	we
can	either	look	it	up	using	jConsole	by	selecting	the	maxThreads	attribute	on
Tomcat:type=ThreadPool,name="http-nio-8080"	MBean	to	get	the	value	of	200	or
we	can	use	Jolokia	JMX	HTTP	by	opening	our	browser	and	going	to
http://localhost:8080/jolokia/read/Tomcat:type=ThreadPool,name=%22http-

nio-8080%22/maxThreads	and	we	should	see	the	following	JSON	response:

{"request":

		{"mbean":"Tomcat:name=\"http-nio-8080\",type=ThreadPool",

			"attribute":"maxThreads",

			"type":"read"

		},

	"value":200,"timestamp":1436740537,"status":200}

How	it	works…
By	default,	the	Spring	Boot	Actuator,	when	added	to	the	application,	comes	with	all	the
endpoints	and	management	services	enabled.	This	includes	the	JMX	access	as	well.	If,	for
some	reason,	one	would	like	to	disable	the	exposing	endpoints	via	JMX,	this	can	easily	be
configured	by	adding	endpoints.jmx.enabled=false	or	in	order	to	disable	the	exporting
of	all	the	Spring	MBeans,	we	can	configure	the	spring.jmx.enabled=false	setting	in
application.properties.

The	presence	of	the	Jolokia	library	in	the	classpath	triggers	Spring	Boot
JolokiaAutoConfiguration,	which	would	automatically	configure	JolokiaMvcEndpoint
accepting	requests	on	/jolokia	URL	path.	It	is	also	possible	to	set	various	Jolokia-
specific	configuration	options	via	jolokia.config.*	set	of	properties.	Complete	list	is
available	at	https://jolokia.org/reference/html/agents.html#agent-war-init-params.	In	case
you	would	like	to	use	Jolokia,	but	want	to	manually	set	it	up,	we	can	tell	Spring	Boot	to
ignore	it’s	presence	by	adding	endpoints.jolokia.enabled=false	setting	in
application.properties.

https://jolokia.org/reference/html/agents.html#agent-war-init-params

Management	of	Spring	Boot	via	CRaSH
and	writing	custom	remote	shell
commands
Some	of	you	are	probably	reminiscing	about	the	good	old	days	where	all	the
administration	was	done	via	SSH	directly	on	the	machine,	where	one	has	complete
flexibility	and	control,	or	even	using	a	Telnet	to	connect	to	a	management	port	and	apply
whatever	the	changes	needed	directly	to	a	running	application.	For	you,	Spring	Boot
provides	integration	with	the	CRaSH	Java	Shell.

For	this	recipe,	we	will	use	the	health	indicator	and	management	endpoint,	which	we
created	earlier	in	this	chapter.	We	will	expose	the	same	capabilities	via	the	SSH	and	Telnet
console	access.

How	to	do	it…
1.	 The	first	step	to	get	CRaSH	to	work	is	add	the	necessary	dependency	starters	to	our

build.gradle	file,	as	follows:

dependencies	{

				...

				compile("org.springframework.boot:spring-boot-starter-actuator")

				compile("org.springframework.boot:spring-boot-starter-remote-

shell")

				compile("org.crashub:crash.connectors.telnet:1.3.1")

				compile("de.codecentric:spring-boot-admin-starter-client:1.2.1")

				compile("org.jolokia:jolokia-core:+")

				...

}

2.	 Now,	let’s	start	our	application	by	executing	./gradlew	clean	bootRun	and	then
connect	to	it	via	SSH	by	executing	ssh	-p	2000	user@localhost.

3.	 We	will	be	prompted	for	a	password	so	let’s	find	the	autogenerated	hash	key	in	the
application	startup	log,	which	would	look	as	follows:

Using	default	password	for	shell	access:	40c50992-ab6b-45f4-b17c-

f8c8e5e94677

4.	 If	the	password	is	entered	correctly,	we	will	be	greeted	by	the	following	welcome
banner:

		.			____										_												__	_	_

	/\\	/	___'_	__	_	_(_)_	__		__	_	\	\	\	\

(()___	|	'_	|	'_|	|	'_	\/	_`	|	\	\	\	\

	\\/		___)|	|_)|	|	|	|	|	||	(_|	|))))

		'		|____|	.__|_|	|_|_|	|___,	|	/	/	/	/

	=========|_|==============|___/=/_/_/_/

	::	Spring	Boot	::		(v1.3.0.BUILD-SNAPSHOT)

5.	 Next,	we	will	invoke	our	existing	Health	endpoint	by	typing	endpoint	invoke
healthEndpoint	and	we	should	get	the	following	result:

{status=UP,	dbCount={status=UP,	PublisherRepository={status=UP,	

count=1},	ReviewerRepository={status=UP,	count=0},	AuthorRepository=

{status=UP,	count=1},	BookRepository={status=UP,	count=1}},	diskSpace=

{status=UP,	total=249804886016,	free=2491744256,	threshold=10485760},	

db={status=UP,	database=H2,	hello=1}}

6.	 Typing	help	will	show	the	list	of	all	the	existing	commands	so	you	can	play	with
some	of	them	to	see	what	they	do	and	then	we	will	proceed	with	adding	our	own
CRaSH	command,	which	will	enable	us	to	add	new	publishers	to	the	system	via	the
command	line.

7.	 Make	a	new	directory	named	commands	in	src/main/resources	at	the	root	of	our
project.

8.	 Add	a	file	named	publishers.groovy	in	the	src/main/resources/commands
directory	at	the	root	of	our	project	with	the	following	content:

package	commands

import	org.crsh.cli.Option

import	org.crsh.cli.Usage

import	org.crsh.cli.Command

import	org.crsh.command.InvocationContext

import	org.springframework.beans.factory.BeanFactory

import	org.test.bookpub.entity.Publisher

import	org.test.bookpub.repository.PublisherRepository

@Usage("Publisher	management")

class	publishers	{

				@Usage("Lists	all	publishers")

				@Command

				def	list(InvocationContext	context)	{

								PublisherRepository	repository	=	

																									getPublisherRepository(context)

							if	(repository)	{

												repository.findAll().each{publisher	->

																context.provide([id:publisher.id,	name:publisher.name])

												}

								}	else	{

												return	"PublisherRepository	is	not	found!"

								}

				}

				@Usage("Add	new	publisher")

				@Command

				def	add(@Usage("publisher	name")	@Option(names=["n","name"])	String	

name,	InvocationContext	context)	{

								PublisherRepository	repository	=	

																												getPublisherRepository(context)

								if	(repository)	{

												publisher	=	new	Publisher(name)

												try	{

																publisher	=	repository.save(publisher)

																return	"Added	new	publisher	${publisher.id}	->	

${publisher.name}"

											}	catch	(Exception	e)	{

																return	"Unable	to	add	new	publisher	named	

${name}\n${e.getMessage()}"

											}

								}	else	{

												return	"PublisherRepository	is	not	found!"

							}

				}

				@Usage("Remove	existing	publisher")

				@Command

				def	remove(@Usage("publisher	id")	@Option(names=["i","id"])	String	

id,	InvocationContext	context)	{

								PublisherRepository	repository	=	

																												getPublisherRepository(context)

								if	(repository)	{

												try	{

																repository.delete(Long.parseLong(id))

																return	"Removed	publisher	${id}"

											}	catch	(Exception	e)	{

																return	"Unable	to	remove	publisher	with	id	

${id}\n${e.getMessage()}"

											}

								}	else	{

												return	"PublisherRepository	is	not	found!"

							}

				}

				def	getPublisherRepository(InvocationContext	context)	{

								BeanFactory	bf	=	

										context.getAttributes().get("spring.beanfactory")

								PublisherRepository	repository	=	

										bf.getBean(PublisherRepository)

								return	repository

				}

}

9.	 With	the	commands	built	up,	now	let’s	start	our	application	by	executing	./gradlew
clean	bootRun	and	then	connect	to	it	via	SSH	by	executing	ssh	-p	2000
user@localhost	and	log	in	using	the	generated	password	hash.

10.	 When	we	type	publishers,	we	will	see	the	list	of	all	the	possible	commands,	as
follows:

>	publishers

usage:	publishers	[-h	|	--help]	COMMAND	[ARGS]

The	most	commonly	used	publishers	commands	are:

			add														Add	new	publisher

			remove											Remove	existing	publisher

			list													Lists	all	publishers

11.	 Let’s	add	a	publisher	by	typing	publishers	add	--name	"Fictitious	Books"	and
we	should	see	a	message:	Added	new	publisher	2	->	Fictitious	Books.

12.	 If	we	will	now	type	publishers	list,	we	will	get	a	list	of	all	the	books:

id	name

1		Packt

2		Fictitious	Books

13.	 Removing	a	publisher	is	a	simple	command:	publishers	remove	--id	2	that	should
respond	with	a	message:	Removed	publisher	2.

14.	 Just	to	confirm	that	the	publisher	is	really	gone,	execute	publishers	list	and	we
should	see	the	following:

Available	Publishers:	id	->	name

1	->	Packt

How	it	works…
The	Spring	Boot	integration	with	CRaSH	provides	you	with	many	commands	out	of	the
box.	We	can	invoke	the	same	management	end	points	that	were	available	to	us	over	HTTP
and	JMX.	We	can	get	access	to	the	JVM	information,	make	changes	to	the	logging
configuration,	and	even	interact	with	the	JMX	server	and	all	the	registered	MBeans.	The
list	of	all	the	possibilities	is	really	impressive	and	very	rich	in	functionalities,	so	I	would
definitely	advise	you	to	read	the	reference	documentation	on	CRaSH	by	going	to
http://www.crashub.org/1.3/reference.html.

In	Spring	Boot,	the	expectation	is	that	any	groovy	file	placed	in	the	classpath	of
/commands/**	or	/crash/commands/**	will	be	automatically	picked	up	and	registered	as
a	CRaSH	command.	The	name	of	the	class	translates	into	the	main	command	name.	In	our
case,	we	called	the	class	publishers	and	it	became	the	top-level	command	name	in	the
CRaSH	console.

Until	version	1.3,	CRaSH	only	supported	Groovy	to	write	the	commands	but	later	versions
gained	the	support	to	do	it	in	pure	Java	as	well;	so	though	Groovy	is	more	convenient	for
writing	these	type	of	scripts,	one	can	do	it	in	plain	Java	as	well.	The	following	are	the
annotations	that	we’ve	used	in	our	command	definition:

The	@Usage	annotation	can	be	used	to	annotate	the	class	and	command	methods	and
parameters	to	provide	a	description	of	the	intended	usage	for	the	given	component.	It
is	a	good	idea	to	provide	as	much	description	and	documentation	as	possible	as	in	the
shell,	one	would	like	to	clearly	educate	the	users	of	what	needs	to	happen	and	how	to
call	the	command.	The	Man	pages	are	great	so	keep	the	documentation	top	notch.
The	@Command	annotation	indicates	that	a	given	method	represents	a	command	that	is
to	be	executed.	If	a	class	has	only	one	method,	it	is	conventional	to	name	it	main	and
it	will	become	the	only	command	for	a	given	class	that	would	be	executed	when	the
class	name	is	typed.	If	we	want	multiple	subcommands	to	reside	in	the	class
command,	as	we	did	with	publishers,	the	name	of	the	method	will	translate	into	the
name	of	the	command.
The	@Option	annotation	goes	in	the	method	argument	and	provides	the	short	and	long
option	names	that	would	be	translated	into	the	argument	value,	which	has	to	be	of	the
String,	Integer,	Boolean,	or	a	few	other	basic	types.
The	@Argument	annotation	also	goes	in	the	method	argument	and	indicates	that	an
annotated	method	argument	should	be	populated	from	the	command-line	argument
entry.	If	it	is	required,	an	@Required	annotation	can	be	used	as	well.
InvocationContext	is	a	special	object	that	can	be	defined	as	a	method	argument	and
it	can	be	used	to	retrieve	the	various	context-bound	elements.	Spring	Boot	registers	a
number	of	arguments	that	can	be	extracted	from	the	context,	as	follows:

spring.boot.version:	This	provides	a	version	of	Spring	Boot.
spring.version:	This	provides	a	version	of	Spring.
spring.beanfactory:	This	provides	a	reference	to	the	Bean	Factory	instance,
which	can	be	used	to	get	access	to	any	of	the	beans	registered	in	it.	We	used	this

http://www.crashub.org/1.3/reference.html

to	get	a	reference	to	the	PublisherRepository	in	our	example.
spring.environment:	This	provides	a	reference	to	the	Spring	Environment
instance,	which	can	be	used	to	get	access	to	any	of	the	environment	properties
and	configurations.

Each	command	can	be	queried	for	its	usage	by	using	--help,	just	like	in	most	Linux-
based	command-line	tools.	Similarly,	CRaSH	has	a	notion	of	man-pages,	so	typing	man
<command>	will	display	the	detailed	instructions,	which	can	be	defined	by	using	the	@Man
annotation	so	that	it	can	be	used	in	conjunction	with	@Usage.

While	CRaSH	comes	with	many	built-in	commands,	Spring	Boot,	via	remote-shell-starter,
adds	a	few	more	Spring	Boot-specific	ones,	which	are	as	follows:

The	autoconfig	command	displays	the	AutoConfiguration	report,	which	we	have
seen	earlier,	showing	which	conditions	have	matched	and	which	ones	did	not.
The	beans	command	shows	all	the	Spring	Beans	that	exist	in	the
ApplicationContext.
The	endpoint	command	provides	a	list	of	all	the	available	endpoints	as	well	as	an
ability	to	invoke	any	of	them	and	get	their	results.	We	have	seen	this	in	action	when
we	invoked	the	healthEndpoint.
The	metrics	command	simply	prints	out	all	the	metrics	information	on	a	screen	in	a
nice	table	layout.

Looking	at	the	code,	one	might	have	noticed	the	different	handling	of	results	between	the
list	and	add/remove	commands.	This	is	because	for	the	list	command	we	wanted	to
support	the	Pipe	functionality,	which	is	a	very	powerful	facility	that	provides	you	with	the
ability	to	stack	commands	in	CRaSH,	piping	results	of	one	command,	as	an	input	to	the
other,	just	like	in	Linux	process	pipe	functionality.

We	can	chain	different	commands	together	so	as	to	help	process	the	output	and	filter	out
the	necessary	data	when	the	amount	of	information	tends	to	get	overwhelming.	Imagine
that	our	publishers	list	command	returns	not	two,	but	two	thousand	publishers.	From	this
list,	we	want	to	find	the	ones	that	start	with	Pa.	Using	the	Pipe	functionality,	we	can	easily
chain	the	publishers	list	command	with	the	filter	command	in	the	following	way:

publishers	list	|	filter	-p	name:Pa*

In	our	example,	this	should	return	us	only	one	record,	as	follows:

id	name																																																												

1		Packt

While	not	every	command—for	one	reason	or	other—supports	piping,	we	can	easily	find
out	if	it	does	by	running	the	man	command.	For	example,	if	we	run	man	publishers	list,
we	will	get	all	the	information	about	the	list	command:

NAME

							publishers	list	-	Lists	all	publishers

SYNOPSIS

							publishers	[-h	|	--help]	list

STREAM

							publishers	list	<java.lang.Void,	java.util.Map>

PARAMETERS

							[-h	|	--help]

											Display	this	help	message

The	STREAM	section	gives	us	the	necessary	information	about	what	the	expected	pipe
inputs	and	outputs	are.	In	this	case,	Void	is	the	expected	input,	meaning	that	this	command
does	not	accept	anything	to	be	piped	into	it	but	it	does	return	Map	as	an	output,	which	can
be	piped	into	another	command	such	as	filter	as	an	input	for	processing.

Running	man	filter	will	tell	us	that	the	filter	command	accepts	Map	as	a	pipe	input	and	will
return	filtered	Map	as	an	output	containing	the	entries	that	match	the	provided	pattern.

While	adding	the	CRaSH	dependencies,	we	added	a
compile("org.crashub:crash.connectors.telnet:1.3.1")	dependency,	which	enabled
us	to	connect	not	only	via	SSH,	but	also	using	the	Telnet	protocol.	The	Telnet	connection
can	be	established	by	invoking	the	telnet	localhost	5000	command.

The	CRaSH	Spring	Boot	integration	comes	with	a	number	of	configuration	options
allowing	us	to	disable	certain	commands	or	connection	methods,	configure	the
authentication	settings,	and	specify	usernames,	passwords,	and	even	key	certificates.	For
example,	if	we	want	to	use	a	specific	username	and	password,	we	can	do	so	by
configuring	the	following	properties:

shell.auth.simple.user.name=remote

shell.auth.simple.user.password=shell

In	a	real-world	enterprise	environment,	it	is	more	common	to	use	the	shared	keys	for
restricted	access	and	these	can	be	configured	using	the	shell.ssh.key-path=<key	path>
property.

Integrating	Codahale/Dropwizard	metrics
with	Graphite
Earlier	in	this	chapter,	we	learned	about	the	monitoring	capabilities	that	are	provided	by
Spring	Boot.	We	saw	examples	of	writing	custom	HealthIndicators	implementations,
creating	Metrics,	and	using	GaugeService	and	CounterService	to	emit	data.	The	simple
Spring	Boot	Admin	Web	framework	gave	us	some	nice	graphical	UI	to	visualize	the	data,
but	all	of	these	metrics	were	in-the-moment,	with	no	long-term	retention	and	historical
access.	Not	being	able	to	observe	the	trends,	detect	the	deviations	from	the	baseline,	and
compare	today	with	last	week	is	not	a	very	good	strategy,	especially	for	an	enterprise
complex	system.	We	all	want	to	be	able	to	have	access	to	the	time	series	data	going	weeks,
if	not	months,	back	and	set	up	alarms	and	thresholds,	if	something	goes	unplanned.

This	recipe	will	introduce	us	to	an	amazing	time	series	graphical	tool:	Graphite.	Graphite
is	a	two-part	system.	It	provides	storage	for	numeric	time	series	data	as	well	as	a	service	to
render	this	data	in	a	form	of	on-demand	graphs	or	expose	the	graph	data	as	a	JSON
stream.	We	will	learn	how	to	utilize	another	great	framework:	Codahale/Dropwizard
Metrics,	in	order	to	send	the	monitoring	data	from	a	Spring	Boot	application	to	Graphite
and	play	a	bit	with	Graphite	to	visualize	the	different	statistics	that	we’ve	gathered.

Getting	ready
Graphite	is	an	application	that	is	written	in	Python	and	is	thus	capable	of	running	on
virtually	any	system	supporting	Python	and	its	libraries.	There	are	multiple	ways	of
installing	Graphite	on	any	given	system,	ranging	from	compilation	from	a	source,	using
pip	all	the	way,	or	to	prebuilt	RPMs	for	various	Linux	distributions.

Note
For	all	the	different	installation	strategies,	take	a	look	at	the	Graphite	documentation	by
visiting	http://graphite.readthedocs.org/en/latest/install.html.	OS	X	users	should	read	a
very	good	step-by-step	guide	located	at	https://gist.github.com/relaxdiego/7539911.

For	the	purposes	of	this	recipe,	we	will	use	a	premade	Docker	container	containing
Graphite	as	well	as	its	counterpart	Grafana.	While	there	is	an	abundance	of	various
prebuilt	variants	of	Docker	images	containing	combinations	of	Graphite	and	Grafana,	we
will	use	the	one	from	https://registry.hub.docker.com/u/alexmercer/graphite-grafana/	as	it
contains	all	the	right	configurations	that	will	make	it	easy	for	us	to	get	started	quickly.

1.	 The	first	step	will	be	to	download	the	desired	Docker	container	image.	We	will	do
this	by	executing	docker	pull	alexmercer/graphite-grafana.	The	container	size
is	about	500	MB;	so	the	download	might	take	a	few	minutes,	depending	on	your
connection	speed.

2.	 Both	Graphite	and	Grafana	store	their	data	in	the	database	files.	We	will	need	to
create	external	directories,	which	will	reside	outside	the	container,	and	we	will
connect	them	to	a	running	instance	via	Docker	Data	Volumes	in	a	following	way:

Make	a	directory	for	the	Graphite	data	anywhere	in	your	system,	for	example,	in
<user_home>/data/graphite

Make	a	directory	for	the	Grafana	data,	for	example,	in
<user_home>/data/grafana

3.	 In	this	container,	the	Graphite	data	will	go	to	/var/lib/graphite/storage/whisper,
while	Grafana	stores	its	data	in	/usr/share/grafana/data.	So,	we	will	use	these
paths	as	internal	volume	mount	destinations	when	starting	the	container.

4.	 Run	the	container	by	executing	docker	run	-v
<user_home>/data/graphite:/var/lib/graphite/storage/whisper	-v

<user_home>/data/grafana:/usr/share/grafana/data	-p	2003:2003	-p

3000:3000	-p	8888:80	-d	alexmercer/graphite-grafana.

In	Docker,	the	-v	option	configures	a	volume	mount	binding.	In	our	example,
we	configured	the	external	<user_home>/data/graphite	directory	to	be	the
same	as	the	/var/lib/graphite/storage/whisper	directory	reference	in	the
container.	The	same	goes	for	the	<user_home>/data/grafana	mapping.	We	can
even	look	in	the	<user_home>/data/graphite	or	data/grafana	directories	to
see	them	contain	the	subdirectories	and	files.
The	-p	option	configures	the	port	mappings	similar	to	the	directory	volumes.	In
our	example,	we	mapped	three	different	ports	to	be	accessible	from	outside	the

http://graphite.readthedocs.org/en/latest/install.html
https://gist.github.com/relaxdiego/7539911
https://registry.hub.docker.com/u/alexmercer/graphite-grafana/

container	to	the	internal	ports	to	which	the	various	services	are	bound.

The	2003:2003	port	mapping	externalizes	the	Graphite	data	stream	listener
known	as	Carbon-Cache	Line	Receiver,	to	which	we	will	connect	in	order	to
send	the	metrics	data.

The	3000:3000	port	mapping	externalizes	the	Grafana	Web	Dashboard	UI,
which	we	will	use	to	create	visual	dashboards	on	top	of	the	Graphite	data.

The	8888:80	port	mapping	externalizes	the	Graphite	Web	UI.	Though	it	is
running	on	port	80	in	the	container,	it	is	unlikely	that	on	our	development
machine,	port	80	is	open;	so	it	is	better	to	map	it	to	some	other	higher	number
port	such	as	8080	or	8888	in	our	case,	as	8080	is	already	taken	by	our	BookPub
application.

5.	 If	everything	has	gone	according	to	plan,	Graphite	and	Grafana	should	be	up	and
running	and	thus,	we	can	access	Graphite	by	pointing	our	browser	to
http://localhost:8888	and	we	should	see	the	following	screen:

6.	 To	see	Grafana,	point	the	browser	to	http://localhost:3000	so	as	to	see	the
following	screen:

7.	 The	default	login	and	password	for	Grafana	are	admin/admin	and	can	be	changed	via
the	web	UI	admin.

Note
For	the	OS	X	users	who	use	boot2docker,	the	IP	would	not	be	of	the	localhost,	but
rather	a	result	of	the	boot2docker	ip	call.

8.	 Once	we	are	in	Grafana,	we	will	need	to	add	our	Graphite	instance	as	a	Data	Source

entry,	so	click	on	the	 	icon,	go	to	Data	Sources,	and	add	a	new	source	of	Type:
Graphite,	Url:	http://localhost:80,	Access:	proxy.

How	to	do	it…
With	Graphite	and	Grafana	up	and	running,	we	are	now	ready	to	start	configuring	our
application	in	order	to	send	the	metrics	to	the	Graphite	listener	on	port	2003.	To	do	this,
we	will	use	the	Codahale/Dropwizard	Metrics	library,	which	is	fully	supported	by	Spring
Boot	and	thus	requires	a	minimum	amount	of	configuration.

1.	 The	first	thing	on	our	list	is	to	add	the	necessary	library	dependencies.	Extend	the
dependencies	block	in	build.gradle	with	the	following	content:

compile("io.dropwizard.metrics:metrics-core:3.1.0")

compile("io.dropwizard.metrics:metrics-jvm:3.1.0")

compile("io.dropwizard.metrics:metrics-graphite:3.1.0")

2.	 We	will	also	add	the	following	dependency	to	build.gradle	located	in	the	db-
count-starter	directory	at	the	root	of	our	project:

compile("io.dropwizard.metrics:metrics-core:3.1.0")

3.	 Create	a	file	named	MonitoringConfiguration.java	in	the
src/main/java/org/test/bookpub	directory	at	the	root	of	our	project	with	the
following	content:

@Configuration

class	MonitoringConfiguration	{

				@Bean

				public	Graphite	graphite(@Value("${graphite.host}")	

																																String	graphiteHost,

																														@Value("${graphite.port}")	

																																int	graphitePort)	{

						return	new	Graphite(

								new	InetSocketAddress(graphiteHost,	graphitePort));

				}

				@Bean

				public	GraphiteReporter	graphiteReporter(Graphite	graphite,

																																													MetricRegistry	registry)	{

								GraphiteReporter	reporter	=

																GraphiteReporter.forRegistry(registry)

																.prefixedWith("bookpub.app")

																.convertRatesTo(TimeUnit.SECONDS)

																.convertDurationsTo(TimeUnit.MILLISECONDS)

																.filter(MetricFilter.ALL)

																.build(graphite);

								reporter.start(1,	TimeUnit.MINUTES);

								return	reporter;

				}

				@Bean

				public	MemoryUsageGaugeSet	memoryUsageGaugeSet(MetricRegistry	

registry)	{

								MemoryUsageGaugeSet	memoryUsageGaugeSet	=	

																									new	MemoryUsageGaugeSet();

								registry.register("memory",	memoryUsageGaugeSet);

								return	memoryUsageGaugeSet;

				}

				@Bean

				public	ThreadStatesGaugeSet	

						threadStatesGaugeSet(MetricRegistry	registry)	{

								ThreadStatesGaugeSet	threadStatesGaugeSet	=	

																										new	ThreadStatesGaugeSet();

								registry.register("threads",	threadStatesGaugeSet);

								return	threadStatesGaugeSet;

				}

}

4.	 We	will	also	need	to	add	the	configuration	property	settings	for	our	Graphite	instance
to	the	application.properties	file	in	the	src/main/resources	directory	at	the	root
of	our	project:

graphite.host=localhost

graphite.port=2003

5.	 To	complete	the	changes,	we	will	make	small	changes	to	the	DbCountMetrics.java
file	in	db-count-starter/src/main/java/org/test/bookpubstarter/dbcount
with	the	following	content:

public	class	DbCountMetrics	implements	PublicMetrics,	MetricSet	{

				...

				@Override

				public	Map<String,	com.codahale.metrics.Metric>	getMetrics()	{

								final	Map<String,	com.codahale.metrics.Metric>	gauges	=	

															new	HashMap<String,	com.codahale.metrics.Metric>();

								for	(Metric	springMetric	:	metrics())	{

												gauges.put(springMetric.getName(),	

																									(Gauge<Number>)	springMetric::getValue);

								}

								return	gauges;

				}

}

6.	 We	will	make	another	small	change	to	the	dbCountMetrics	method	in	the
DbCountAutoConfiguration.java	file,	also	in	db-count-
starter/src/main/java/org/test/bookpubstarter/dbcount,	with	the	following
changes:

@Configuration

public	class	DbCountAutoConfiguration	{

		...

		@Bean

		public	PublicMetrics	dbCountMetrics(

																													Collection<CrudRepository>	repositories,	

																													MetricRegistry	registry)	{	

				DbCountMetrics	dbCountMetrics	=	new	DbCountMetrics(repositories);

				registry.registerAll(dbCountMetrics);

				return	dbCountMetrics;

		}

}

7.	 Now,	let’s	build	and	run	our	application	by	executing	./gradlew	clean	bootRun	and
if	we	have	configured	everything	correctly,	it	should	start	without	any	issues.

8.	 With	the	application	up	and	running,	we	should	start	seeing	some	data	appearing	in
the	Graphite	and,	and	we	will	see	bookpub	data	nodes	getting	added	to	the	tree	under
Metrics.	To	add	some	more	realism,	let’s	open	our	browser	and	load	a	book	URL,
http://localhost:8080/books/978-1-78528-415-1/,	a	few	dozen	times	to
generate	some	metrics.

9.	 Let’s	go	ahead	and	look	at	some	of	the	metrics	in	Graphite	and	set	the	data	time	range
to	15	minutes	in	order	to	get	some	close-look	graphs,	which	is	as	follows:

10.	 We	can	also	create	some	fancy	looking	dashboards	using	this	data	in	Grafana	by
creating	a	new	Dashboard	and	adding	a	Graph	panel,	as	shown	in	the	following
screenshot:

11.	 The	newly	created	Graph	panel	will	appear	as	follows:

12.	 Click	on	the	no	title	(click	here)	label,	choose	edit,	and	enter	the	metric	name
bookpub.app.counter.status.200.books.isbn.root.count	in	the	text	field:

13.	 Clicking	Back	to	dashboard	will	take	you	out	of	the	edit	mode.

Note
For	a	more	detailed	tutorial,	see	http://docs.grafana.org/guides/gettingstarted/.

http://docs.grafana.org/guides/gettingstarted/

How	it	works…
To	add	the	Dropwizard	metrics,	we	will	add	the	following	three	new	dependencies	to	our
build	file:

core:	This	adds	the	basic	Dropwizard	functionality,	the	MetricsRegistry,	common
API	interfaces,	and	base	classes.	This	is	the	bare	minimum	that	is	required	to	get
Dropwizard	working	and	integrated	into	Spring	Boot	to	handle	the	metrics.
jvm:	This	adds	a	number	of	GaugeSets	that	expose	the	various	JVM-related	metrics
and	can	be	registered	with	MetricsRegistry.	We	used	MemoryUsageGuageSet	and
ThreadStatesGaugeSet	to	demonstrate	how	the	JVM	runtime	data	can	be	sent	to
Graphite.	These	metrics	expose	the	Heap	and	Non-Heap	memory	pool	statistics	and
the	Thread	information,	such	as	how	many	threads	are	created,	which	ones	are	active,
waiting,	blocked,	and	so	on.
graphite:	This	adds	support	for	GraphiteReporter	and	is	needed	in	order	to
configure	Dropwizard	to	send	the	monitoring	data	that	it	collects	to	our	Graphite
instance.

In	order	to	keep	things	clean	and	nicely	separated,	we	created	a	separate	configuration
class	with	all	the	monitoring-related	beans	and	settings:	MonitoringConfiguration.	In
this	class,	we	configured	four	@Bean	instances:	first	was	the	Graphite	instance,	which	has	a
dependency	on	two	configuration	values,	defined	in	application.properties,	specifying
the	host/ip	and	port	of	our	Graphite	instance.

Second	was	the	GraphiteReporter,	which	is	dependent	on	Graphite	and
MetricsRegistry,	and	configured	so	as	to	send	the	data	to	the	Graphite	instance	every
one	minute,	use	bookpub.app	as	a	base	tree	node	hierarchy,	and	translate	all	the	time
duration	intervals,	such	as	the	latency	measurements,	into	milliseconds	and	all	the	variable
rates,	such	as	the	number	of	requests	per	some	time	frame,	into	seconds.	These	values	are
the	default	configuration	settings	for	Graphite	but	can	be	changed,	if	desired.

The	other	two	beans	are	the	MemoryUsageGuageSet	and	ThreadStatesGaugeSet	instances,
which	are	registered	with	MetricsRegistry,	and	expose	the	memory	and	thread	metrics	to
Graphite	in	the	memory	and	threads	data	nodes.	They	can	be	found	in
Metrics/bookpub/app/memory	or	Metrics/bookpub/app/threads	nodes	in	the	Graphite
tree.

You	have	probably	noticed	that	we	added	the	metrics-core	dependency	to	our	db-count-
starter	subproject	as	well.	This	was	done	so	that	we	can	expose	our	DbCountMetrics
data	not	only	via	the	HTTP	/metrics	endpoint,	but	see	it	in	Graphite	as	well.	The	reason
for	this	change	is	the	fact	that	the	PublicMetrics	implementations	are	being	exposed	only
via	the	/metrics	endpoint	and	they	don’t	get	registered	with	the	GaugeService	or
CoutnerService	providers.	Luckily	for	us,	the	Dropwizard	Metrics	provide	a	very	rich
API	in	the	form	of	MetricSet,	which	allows	us	to	wrap	anything	and	expose	it	as	an
encapsulated	set	of	metrics,	register	this	wrapper	with	the	MetricRegistry	and	this	will
automatically	expose	the	data	to	all	the	configured	reporters.	The	MemoryUsageGuageSet
and	ThreadStatesGaugeSet	implementations	are	a	good	example.	They	wrap	the	various

JVM	system	data	and	provide	it	as	a	set	of	metrics	to	the	MetricRegistry.

Having	implemented	MetricSet,	DbCountMetrics	now	implements	the	getMetrics()
method,	which	just	translates	the	result	of	the	existing	metrics()	call,	returns	a	map	of
simple	values	that	are	implemented	as	the	Java	8	Lambda	expressions	for	the	Gauge
interface,	thus	returning	a	result	of	the	springMetric::getValue	method	call.

With	this	small	enhancement,	we	will	add	MetricRegistry	as	an	argument	to	the
dbCountMetrics(…)	bean	creating	method	in	the	DbCountAutoConfiguration	class	that	in
addition	to	creating	the	DbCountMetrics	instance,	registers	it	with	MetricRegistry	before
returning	it.

The	running	application	will	gather	all	the	metrics	registered	with	MetricRegistry	and
every	configured	reporter—in	our	case:	GraphiteReporter—reports	all	these	metrics	at	a
timed	interval	to	its	destination.	The	proper	Reporter	implementations	run	in	a	separate
ThreadPool,	thus	outside	of	the	main	application	threads	and	not	interfering	with	them.
However,	this	should	be	kept	in	mind	in	case	the	Metric	implementations	use	some
ThreadLocal	data	internally,	which	would	not	be	available	to	Reporters.

Integrating	Codahale/Dropwizard	metrics
with	Dashing
The	previous	recipe	has	given	us	a	glimpse	of	how	we	can	collect	the	various	metrics	from
our	application	during	its	runtime	We’ve	also	seen	how	powerful	the	ability	to	visualize
this	data	as	a	set	of	graphs	of	historical	trends	can	be.

While	Grafana	and	Graphite	offers	us	a	very	powerful	capability	of	manipulating	the	data
in	the	form	of	graphs	and	building	elaborate	dashboards	that	are	full	of	thresholds,	applied
data	functions,	and	much	more.	Sometimes	we	want	something	simpler,	more	readable,
and	something	widgetty.	This	is	exactly	the	kind	of	dashboard	experience	that	is	provided
by	Dashing.

Dashing	is	a	popular	dashboard	framework	developed	by	Shopify	and	written	in
Ruby/Sinatra.	It	provides	you	with	an	ability	to	create	an	assortment	of	dashboards	that	are
comprised	of	different	types	of	widgets.	We	can	have	things	such	as	Graphs,	Meters,	Lists,
Numeric	values,	or	just	plain	Text	to	display	the	information.

In	this	recipe,	we	will	install	the	Dashing	framework,	learn	how	to	create	dashboards,	send
and	consume	the	data	to	report	from	an	application	directly	as	well	as	fetching	it	from
Graphite,	and	using	Dashing	API	to	push	the	data	to	the	Dashing	instance.

Getting	ready
In	order	to	get	Dashing	to	run,	we	will	need	to	have	an	environment	that	has	a	Ruby	1.9+
installed	with	Ruby	Gems.

Note
Typically,	Ruby	should	be	available	on	any	common	distribution	of	Linux	and	OS	X.	If
you	are	running	Windows,	I	would	suggest	using	http://rubyinstaller.org	in	order	to	get	the
installation	bundle.

Once	you	have	such	an	environment	available,	we	will	install	Dashing	and	create	a	new
dashboard	application	for	our	use,	as	follows:

1.	 Installing	Dashing	is	very	easy;	simply	execute	the	gem	install	dashing	command
to	install	Dashing	Ruby	Gem	in	your	system.

2.	 With	the	gem	successfully	installed,	we	will	create	the	new	dashboard	named
bookpub_dashboard	by	executing	the	dashing	new	bookpub_dashboard	command
in	the	directory	where	you	want	the	dashboard	application	to	be	created.

3.	 Once	the	dashboard	application	has	been	generated,	go	to	the	bookpub_dashboard
directory	and	execute	the	bundle	command	to	install	the	needed	dependency	gems.

4.	 After	the	gems	bundle	has	been	installed,	we	can	start	the	dashboard	application	by
executing	the	dashing	start	command	and	then	pointing	our	browser	to
http://localhost:3030	to	see	the	following	result:

http://rubyinstaller.org

How	to	do	it…
If	you	look	carefully	at	the	URL	of	our	shiny	new	dashboard,	you	will	see	that	it	actually
says	http://localhost:3030/sample	and	displays	a	sample	dashboard	that	was
automatically	generated.	We	will	use	this	sample	dashboard	to	make	some	changes	in
order	to	display	some	metrics	from	our	application	directly	as	well	as	get	some	raw
metrics	from	the	Graphite	data	API	endpoint.

To	demonstrate	how	to	connect	the	data	from	the	application	/metrics	endpoint	so	as	to
display	it	in	the	Dashing	dashboard,	we	will	change	the	Buzzwords	widget	to	display	the
counts	of	our	data	repositories,	as	follows:

1.	 Before	we	start,	we	will	need	to	add	the	gem	'httparty',	'>=	0.13.3'	gem	to
Gemfile	located	in	the	bookpub_dashboard	directory,	which	will	enable	us	to	use	an
HTTP	client	in	order	to	extract	the	monitoring	metrics	from	the	HTTP	endpoints.

2.	 After	adding	the	gem,	run	the	bundle	command	one	more	time	to	install	the	newly
added	gem.

3.	 Next,	we	will	need	to	modify	the	sample.erb	dashboard	definition	located	in	the
bookpub_dashboard/dashboards	directory,	replacing	<div	data-id="buzzwords"
data-view="List"	data-unordered="true"	data-title="Buzzwords"	data-

moreinfo="#	of	times	said	around	the	office"></div>	with	<div	data-
id="repositories"	data-view="List"	data-unordered="true"	data-

title="Repositories	Count"	data-moreinfo="#	of	entries	in	data

repositories"></div>.
4.	 With	the	widget	replaced,	we	will	create	a	new	data	provisioning	job	file	named

repo_counters.rb	in	the	bookpub_dashboard/jobs	directory	with	the	following
content:

require	'httparty'

repos	=	['AuthorRepository',	'ReviewerRepository',	'BookRepository',	

'PublisherRepository']

SCHEDULER.every	'10s'	do

		data	=	JSON.parse(HTTParty.get("http://localhost:8080/metrics").body)

		repo_counts	=	[]

		repos.each	do	|repo|

				current_count	=	data["counter.datasource.#{repo}"]

				repo_counts	<<	{	label:	repo,	value:	current_count	}

		end

		send_event('repositories',	{	items:	repo_counts	})

end

5.	 With	all	the	code	changes	in	place,	let’s	start	our	dashboard	by	executing	the	dashing
start	command.	Go	to	http://localhost:3030/sample	in	the	browser	to	see	our
new	widget	displaying	the	data	as	shown	in	the	following	image:

6.	 If	we	use	the	remote	shell	to	log	in	to	the	application,	as	we	did	earlier	in	this	chapter,
and	add	a	publisher,	we	would	see	the	counter	on	the	dashboard	increase.

7.	 Another	way	to	push	the	data	to	the	dashboard	is	to	use	their	RESTful	API.	Let’s
update	the	text	in	the	top	left	text	widget	by	executing	curl	-d	'{	"auth_token":
"YOUR_AUTH_TOKEN",	"text":	"My	RESTful	dashboard	update!"	}'

http://localhost:3030/widgets/welcome.
8.	 If	everything	has	worked	correctly,	we	should	see	the	text	updated	to	our	new	value,

My	RESTful	dashboard	update!,	under	the	Hello	title.
9.	 In	an	environment	where	multiple	instances	of	the	same	application	kind	are	running,

it	is	probably	not	a	good	idea	to	directly	pull	the	data	from	each	node,	especially	if
they	are	very	dynamic	and	can	come	and	go	as	they	please.	It	is	advised	that	you
consume	the	data	from	a	more	static	and	well-known	location,	such	as	a	Graphite
instance.	To	get	a	demonstration	of	volatile	data	metrics,	we	will	consume	the
memory	pool	data	for	the	Eden,	Survivor,	and	OldGen	spaces	and	display	them
instead	of	the	Convergence,	Synergy,	and	Valuation	graph	dashboards.	We	will	start
by	replacing	the	content	of	the	sample.rb	job	file	located	in	the
bookpub_dashboard/jobs	directory	with	the	following	content:

require	'httparty'

require	'date'

eden_key	=	"bookpub.app.memory.pools.PS-Eden-Space.usage"

survivor_key	=	"bookpub.app.memory.pools.PS-Survivor-Space.usage"

oldgen_key	=	"bookpub.app.memory.pools.PS-Old-Gen.usage"

SCHEDULER.every	'60s'	do

data	=	JSON.parse(HTTParty.get("http://localhost:8888/render/?

from=-11minutes&target=bookpub.app.memory.pools.PS-Eden-

Space.usage&target=bookpub.app.memory.pools.PS-Survivor-

Space.usage&target=bookpub.app.memory.pools.PS-Old-

Gen.usage&format=json&maxDataPoints=11").body)

		data.each	do	|metric|

				target	=	metric["target"]

				#	Remove	the	last	data	point,	which	typically	has	empty	value

				data_points	=	metric["datapoints"][0…-1]

				if	target	==	eden_key

						points	=	[]

						data_points.each_with_index	do	|entry,	idx|

								value	=	100	*	entry[0]	rescue	0

								points	<<	{	x:	entry[1],	y:	value.round(0)}

						end

						send_event('heap_eden',	points:	points)

				elsif	target	==	survivor_key

						current_survivor	=	100	*	data_points.last[0]	rescue	0

						send_event("heap_survivor",	{	value:	current_survivor.round(2)})

				elsif	target	==	oldgen_key

						current_oldgen	=	100	*	data_points.last[0]	rescue	0

						last_oldgen	=	100	*	data_points[-2][0]	rescue	0

						send_event("heap_oldgen",	{	current:	current_oldgen.round(2),	

last:	last_oldgen.round(2)})

				end

		end

end

10.	 In	the	sample.erb	template	located	in	the	bookpub_dashboard/dashboards
directory,	we	will	replace	the	synergy,	valuation,	and	convergence	graphs	with	the
following	alternatives:

<div	data-id="synergy"	data-view="Meter"	data-title="Synergy"	data-

min="0"	data-max="100"></div>	gets	replaced	with	<div	data-
id="heap_survivor"	data-view="Meter"	data-title="Heap:	Survivor"

data-min="0"	data-max="100"></div>

<div	data-id="valuation"	data-view="Number"	data-title="Current

Valuation"	data-moreinfo="In	billions"	data-prefix="$"></div>	gets
replaced	with	<div	data-id="heap_oldgen"	data-view="Number"	data-
title="Heap:	OldGen"	data-moreinfo="In	%"	data-suffix="%"></div>

<div	data-id="convergence"	data-view="Graph"	data-

title="Convergence"	style="background-color:#ff9618"></div>	gets
replaced	with	<div	data-id="heap_eden"	data-view="Graph"	data-
title="Heap:	Eden"	style="background-color:#ff9618"></div>

11.	 After	all	the	changes	are	made,	we	can	restart	the	dashboard	application	and	reload
our	browser	to	http://localhost:3030	to	see	the	following	result:

How	it	works…
In	this	recipe,	we	have	seen	how	to	extract	the	data	directly	from	our	application	and	via
Graphite	and	render	it	using	the	Dashing	dashboard	as	well	as	pushing	information
directly	to	Dashing	using	their	RESTful	API.	It	is	no	secret	that	it	is	better	to	see
something	once	than	hear	about	it	seven	times.	This	is	true	when	it	comes	to	trying	to	get	a
holistic	picture	of	the	key	metrics	that	represent	how	the	systems	behave	at	runtime	and	to
be	able	to	act	on	the	data	quickly.

Without	going	in	great	detail	about	the	internals	of	Dashing,	it	is	still	important	to	mention
a	few	things	about	how	data	gets	in	Dashing.	This	can	happen	in	the	following	two	ways:

Scheduled	Jobs:	This	is	used	to	pull	data	from	the	external	sources
RESTful	API:	This	is	used	to	push	data	to	Dashing	from	outside

The	scheduled	jobs	are	defined	in	the	jobs	directory	in	the	generated	dashboard
application.	Each	file	has	a	piece	of	ruby	code	wrapped	in	the	SCHEDULER.every	block,
which	computes	the	data	points	and	sends	an	event	to	an	appropriate	widget	with	the	new
data	for	an	update.

In	our	recipe,	we	created	a	new	job	named	repo_counters.rb	where	we	used	the
httparty	library	in	order	to	make	a	direct	call	to	our	application	instance’s	/metrics
endpoint	and	extracted	the	counters	for	each	of	the	predefined	repositories.	Looping	over
the	metrics,	we	created	a	repo_counts	collection	with	data	for	each	repository	containing
a	label	display	and	a	value	count.	The	resulting	collection	was	sent	to	the	repositories
widget	for	an	update	in	the	form	of	an	event:	send_event('repositories',	{	items:
repo_counts	}).

We	configured	this	job	to	get	executed	every	ten	seconds,	but	if	the	rate	of	data	change	is
not	very	frequent,	the	number	can	be	changed	to	a	few	minutes	or	even	hours.	Every	time
the	scheduler	runs	our	job,	the	repositories	widget	gets	updated	via	the	client-side
websockets	communication	with	the	new	data.	Looking	in	dashboards/sample.erb,	we
can	find	the	widget’s	definition	using	data-id="repositories".

Besides	adding	our	own	new	job,	we	also	changed	the	existing	sample.rb	job	to	pull	data
from	Graphite	using	Graphite’s	RESTful	API	to	populate	the	different	types	of	widgets	in
order	to	display	the	memory	heap	data.	As	we	were	not	pulling	data	directly	from	the
application	instance,	it	was	a	good	idea	not	to	put	the	code	in	the	same	job	because	the
jobs	could—and	in	our	case,	do—have	different	time	intervals.	As	we	send	data	to
Graphite	only	once	every	minute,	it	does	not	make	sense	to	pull	it	any	less	frequently	than
this.

To	get	the	data	out	of	Graphite,	we	used	the	following	API	call:

/render/?from=-11minutes&target=bookpub.app.memory.pools.PS-Eden-

Space.usage&target=bookpub.app.memory.pools.PS-Survivor-

Space.usage&target=bookpub.app.memory.pools.PS-Old-

Gen.usage&format=json&maxDataPoints=11

It	translates	into	the	following	components:

target:	This	parameter	is	a	repeated	value	that	defines	a	list	of	all	the	different
metrics	that	we	want	to	retrieve.
from:	This	parameter	specifies	the	time	range;	in	our	case,	we	asked	for	data	going
back	to	11	minutes	back.
format:	This	parameter	configures	the	desired	output	format.	We	chose	JSON	but
many	others	are	available.	Refer	to
http://graphite.readthedocs.org/en/latest/render_api.html#format.
maxDataPoints:	This	parameter	indicates	how	many	entries	we	want	to	get.

The	reason	we	asked	for	eleven	entries	and	not	ten	is	due	to	a	frequent	occurrence	where
the	last	entry	of	short-ranged	requests,	which	consist	of	only	a	few	minutes,	sometimes	get
returned	as	empty.	We	just	use	the	first	ten	entries	and	ignore	the	most	recent	ones	to	avoid
weird	data	visualization.

Iterating	over	the	target	data,	we	will	populate	the	appropriate	widgets,	heap_eden,
heap_survivor,	and	heap_oldgen,	with	their	designated	data,	as	follows:

heap_eden:	This	is	a	Graph	widget,	as	defined	in	the	sample.erb	template	in	the
form	of	a	data-view="Graph"	attribute,	so	it	wants	a	data	input	in	the	form	of	the
points	collection	containing	a	value	for	x	and	y.	The	x	value	represents	a	timestamp,
which	conveniently	gets	returned	to	us	by	Graphite	and	is	automatically	converted	to
the	minutes	display	value	by	the	Graph	widget.	The	y	value	represents	the	memory
pool	utilization	in	percent.	As	the	value	from	Graphite	is	in	the	form	of	a	decimal
number,	we	will	need	to	convert	it	to	a	whole	number	so	as	to	make	it	look	better.
heap_survivor:	This	is	a	Meter	widget,	as	defined	in	the	sample.erb	template	in	the
form	of	a	data-view="Meter"	attribute,	so	it	wants	a	data	input	as	a	simple	value
number	between	a	template	configured	range.	In	our	case,	the	range	is	set	as	the
data-min="0"	data-max="100"	attributes.	Even	though	we	chose	to	round	the
number	to	two	decimal	positions,	it	could	probably	just	be	an	integer	as	it	is	precise
enough	for	the	purpose	of	a	dashboard	display.
heap_oldgen:	This	is	a	Number	widget,	as	defined	in	the	sample.erb	template	in	the
form	of	a	data-view="Number"	attribute,	so	it	wants	a	data	input	as	a	current	value
and	optionally	a	last	value;	in	which	case,	a	percentage	change	with	the	change
direction	will	be	displayed	as	well.	As	we	get	the	last	ten	entries,	we	have	no	issues
in	retrieving	both	the	current	and	last	values	so	we	can	easily	satisfy	this	requirement.

In	this	recipe,	we	also	experimented	with	Dashing’s	RESTful	API	by	trying	to	use	a	curl
command	to	update	the	value	of	the	welcome	widget.	This	was	a	push	operation	and	can
be	used	in	situations	where	there	is	no	data	API	exposed,	but	you	have	a	capability	of
creating	some	sort	of	a	script	or	piece	of	code	that	could	send	the	data	to	Dashing	instead.
To	achieve	this,	we	used	the	following	command:	curl	-d	'{	"auth_token":
"YOUR_AUTH_TOKEN",	"text":	"My	RESTful	dashboard	update!"	}'

http://localhost:3030/widgets/welcome.

The	Dashing	API	accepts	data	in	a	JSON	format,	sent	via	a	POST	request	that	contains	the
parameters	needed	for	the	widgets	as	well	as	the	widget	ID	which	is	a	part	of	the	URL
path	itself.	The	following	are	the	accepted	URL	parameters:

http://graphite.readthedocs.org/en/latest/render_api.html#format

auth_token:	This	allows	for	a	secure	data	update	and	can	be	configured	in	the
dashboard	root	directory	in	the	config.ru	file.
text:	This	is	a	widget	property	that	is	being	changed.	As	we	are	updating	a	Text
widget,	as	defined	in	the	sample.erb	template	in	the	form	of	a	data-view="Text"
attribute,	we	need	to	send	it	the	text	attribute	for	an	update.
/widgets/<widget	id>:	This	URL	path	identifies	the	particular	widget	where	the
update	is	destined	to.	This	id	corresponds	to	a	declaration	in	the	sample.erb
template.	In	our	case,	it	looks	like	data-id="welcome".

The	definition	of	the	various	widgets	can	also	be	manipulated	and	a	very	rich	collection	of
the	various	widgets	has	been	created	by	the	community,	which	is	available	at
https://github.com/Shopify/dashing/wiki/Additional-Widgets.	The	widgets	get	installed	in
the	widgets	directory	in	the	dashboard	and	can	be	installed	by	simply	running	dashing
install	GIST	where	GIST	is	the	hash	of	the	GitHub	Gist	entry.

The	dashboard	template	files,	similar	to	our	sample.erb,	can	be	modified	in	order	to
create	the	desired	layout	for	each	particular	dashboard	as	well	as	multiple	dashboard
templates,	which	can	be	rotated	or	directly	loaded	manually.

Each	dashboard	represents	a	grid	in	which	the	various	widgets	get	placed.	Each	widget	is
defined	by	a	<div>	entry	with	the	appropriate	configuration	attributes	and	it	should	be
nested	in	the		grid	element.	We	can	use	the	following	data	element	attributes	to
control	the	positioning	of	each	widget	in	the	grid:

data-row:	This	represents	the	row	number	where	the	widget	should	be	positioned
data-col:	This	represents	the	column	number	where	the	widget	should	be	positioned
data-sizex:	This	defines	the	number	of	columns	the	widget	will	span	horizontally
data-sizey:	This	defines	the	number	of	rows	the	widget	will	span	vertically

The	existing	widgets	can	be	modified	to	change	their	look	and	feel	as	well	as	extend	their
functionality;	so	the	sky	is	the	limit	for	what	kind	of	information	display	we	can	have.	You
should	definitely	check	out	http://dashing.io	for	more	details.

https://github.com/Shopify/dashing/wiki/Additional-Widgets
http://dashing.io

Index
A

application
creating	/	Creating	a	simple	application,	How	it	works…
@Configuration	annotation	/	How	it	works…
@ComponentScan	annotation	/	How	it	works…
@EnableAutoConfiguration	annotation	/	How	it	works…
launching,	Gradle	used	/	Launching	an	application	using	Gradle,	How	it
works…

autoconfiguration
about	/	Understanding	Spring	Boot	autoconfiguration,	How	it	works…
custom	Spring	Boot	autoconfiguration	starter,	creating	/	Creating	a	custom
Spring	Boot	autoconfiguration	starter,	How	to	do	it…,	How	it	works…

B
Behavior	Driven	Development

about	/	Writing	tests	using	Cucumber
binaries

self-executing	binaries,	building	/	Building	self-executing	binaries,	How	to	do
it…,	How	it	works…

boot2docker	integration
URL	/	How	to	do	it…

C
certificate	keystore

URL	/	Getting	ready
Codahale	metric

integrating,	with	Graphite	/	Integrating	Codahale/Dropwizard	metrics	with
Graphite,	Getting	ready,	How	to	do	it…,	How	it	works…
integrating,	with	Dashing	/	Integrating	Codahale/Dropwizard	metrics	with
Dashing,	Getting	ready,	How	to	do	it…,	How	it	works…

command-line	options
URL	/	How	it	works…

command-line	runners
using	/	Using	the	command-line	runners,	How	it	works…

configuration	options
URL	/	How	it	works…

Consul
setting	up	/	Setting	up	Consul,	How	to	do	it…,	How	it	works…
URL	/	How	to	do	it…
documentation,	URL	/	How	it	works…
used,	for	externalizing	environmental	config	/	Externalizing	environmental
config	using	Consul	and	envconsul,	How	to	do	it…,	How	it	works…

CRaSH
URL	/	How	it	works…

Cucumber
used,	for	writing	tests	/	Writing	tests	using	Cucumber,	How	to	do	it…,	How	it
works…
URL	/	How	it	works…

Cucumber-JVM
URL	/	Writing	tests	using	Cucumber

cURL
URL	/	How	to	do	it…

custom	@Enable*	annotations
using,	to	toggle	configuration	/	Using	custom	@Enable*	annotations	to	toggle
configurations,	How	it	works…

custom	conditional	bean	instantiations
configuring	/	Configuring	custom	conditional	bean	instantiations,	How	to	do
it…,	How	it	works…

custom	connectors
adding	/	Adding	custom	connectors,	How	to	do	it…,	How	it	works…

custom	HttpMessageConverters
configuring	/	Configuring	custom	HttpMessageConverters,	How	it	works…

custom	interceptors
configuring	/	Configuring	custom	interceptors,	How	it	works…

custom	PropertyEditors

configuring	/	Configuring	custom	PropertyEditors,	How	to	do	it…,	How	it
works…

custom	remote	shell	commands
writing	/	Management	of	Spring	Boot	via	CRaSH	and	writing	custom	remote
shell	commands

custom	servlet	filters
configuring	/	Configuring	custom	servlet	filters,	How	it	works…

custom	static	path	mappings
configuring	/	Configuring	custom	static	path	mappings,	How	it	works…

custom	type	formatters
configuring	/	Configuring	custom	type	Formatters,	How	to	do	it…,	How	it
works…

D
Dashing

used,	for	integrating	Codahale	metric	/	Integrating	Codahale/Dropwizard	metrics
with	Dashing,	Getting	ready,	How	to	do	it…,	How	it	works…
used,	for	integrating	Dropwizard	metric	/	Integrating	Codahale/Dropwizard
metrics	with	Dashing,	Getting	ready,	How	to	do	it…,	How	it	works…

database
initializing,	with	Spring	JPA	and	Hibernate	/	Initializing	the	database	with
Spring	JPA	and	Hibernate
initializing,	with	Spring	JDBC	/	Initializing	the	database	with	Spring	JDBC

database	connection
setting	up	/	Setting	up	a	database	connection,	Getting	ready,	How	it	works…

database	schema
automatic	configuration	/	Automatically	configuring	the	database	schema	and
populating	it	with	data,	How	it	works…

data	repository	service
setting	up	/	Setting	up	a	data	repository	service,	How	to	do	it…,	How	it	works…
@Entity	annotation	/	How	it	works…
@Repository	annotation	/	How	it	works…
CrudRepository	interface	/	How	it	works…
@GeneratedValue	annotation	/	How	it	works…
@Id	annotation	/	How	it	works…
@ManyToOne	annotation	/	How	it	works…
@ManyToMany	annotation	/	How	it	works…

Docker
URL	/	How	to	do	it…

DockerHub
URL	/	Creating	Docker	images

Docker	images
creating	/	Creating	Docker	images,	How	to	do	it…,	How	it	works…

Dropwizard	metric
integrating,	with	Graphite	/	Integrating	Codahale/Dropwizard	metrics	with
Graphite,	Getting	ready,	How	to	do	it…,	How	it	works…
integrating,	with	Dashing	/	Integrating	Codahale/Dropwizard	metrics	with
Dashing,	Getting	ready,	How	to	do	it…,	How	it	works…

E
EmbeddedServletContainerCustomizer

used,	for	tuning	Tomcat	/	Tuning	Tomcat	via
EmbeddedServletContainerCustomizer,	How	to	do	it…,	How	it	works…

embedded	servlet	containers
selecting	/	Choosing	embedded	servlet	containers,	How	it	works…

envconsul
used,	for	externalizing	environmental	config	/	Externalizing	environmental
config	using	Consul	and	envconsul,	How	to	do	it…,	How	it	works…

environmental	config
hierarchy	/	Spring	Boot	environment	config	hierarchy	and	precedence,	How	to
do	it…,	How	it	works…
precedence	/	Spring	Boot	environment	config	hierarchy	and	precedence,	How	to
do	it…,	How	it	works…
externalizing,	property	files	used	/	Externalizing	environmental	config	using
property	files,	How	to	do	it…,	How	it	works…
externalizing,	environment	variables	used	/	Externalizing	environmental	config
using	environment	variables,	How	it	works…
externalizing,	Java	system	properties	used	/	Externalizing	environmental	config
using	Java	system	properties,	How	it	works…
externalizing,	Consul	used	/	Externalizing	environmental	config	using	Consul
and	envconsul,	How	to	do	it…,	How	it	works…
externalizing,	envconsul	used	/	Externalizing	environmental	config	using	Consul
and	envconsul,	How	to	do	it…,	How	it	works…

environment	variables
used,	for	externalizing	environmental	config	/	Externalizing	environmental
config	using	environment	variables,	How	to	do	it…,	How	it	works…

executors
scheduling	/	Scheduling	executors,	How	it	works…

F
Flyway

URL	/	How	it	works…

G
Gherkin

URL	/	How	it	works…
Gradle

used,	for	launching	application	/	Launching	an	application	using	Gradle,	How	it
works…
URL	/	How	to	do	it…,	Getting	ready
multi-project	builds,	URL	/	How	it	works…

Gradle-Docker	plugin	configuration	options
URL	/	How	it	works…

Grafana
URL	/	Getting	ready

Graphite
used,	for	integrating	Codahale	metric	/	Integrating	Codahale/Dropwizard	metrics
with	Graphite,	Getting	ready,	How	to	do	it…,	How	it	works…
used,	for	integrating	Dropwizard	metric	/	Integrating	Codahale/Dropwizard
metrics	with	Graphite,	Getting	ready,	How	to	do	it…,	How	it	works…
URL	/	Getting	ready,	How	to	do	it…

H
Hibernate

database,	initializing	with	/	Initializing	the	database	with	Spring	JPA	and
Hibernate

I
in-memory	database

with	data	fixtures,	used	for	creating	tests	/	Creating	tests	using	in-memory
database	with	data	fixtures,	How	to	do	it…,	How	it	works…

Integration	/	Creating	tests	for	Spring	MVC	Controllers

J
JAR

executable	JAR,	creating	/	Creating	a	Spring	Boot	executable	JAR,	How	it
works…

Java	system	properties
used,	for	externalizing	environmental	config	/	Externalizing	environmental
config	using	Java	system	properties,	How	to	do	it…,	How	it	works…

Jolokia
URL	/	How	it	works…

L
Liquidbase

URL	/	How	it	works…

M
metrics

emitting	/	Emitting	metrics,	Getting	ready,	How	to	do	it…,	How	it	works…
Mockito

used,	for	creating	tests	/	Creating	tests	using	Mockito	to	mock	DB,	How	to	do
it…,	How	it	works…

MockMvc
URL	/	How	it	works…

MVC	Controllers
tests,	creating	/	Creating	tests	for	Spring	MVC	Controllers,	How	to	do	it…,	How
it	works…

O
Oracle	Java	documentation

URL	/	How	it	works…

P
property	files

used,	for	externalizing	environmental	config	/	Externalizing	environmental
config	using	property	files,	How	to	do	it…,	How	it	works…

R
RESTful	application

creating	/	Creating	a	basic	RESTful	application,	How	to	do	it…,	How	it
works…

route	matching	patterns
configuring	/	Configuring	route	matching	patterns,	How	to	do	it…,	How	it
works…

Ruby
URL	/	Getting	ready

S
Service	Testing	/	Creating	tests	for	Spring	MVC	Controllers
Signal	Handlers

URL	/	How	it	works…
skeleton	project

creating	/	How	to	do	it…
Software	as	a	Service	(SaaS)	application

URL	/	Introduction
Spock

used,	for	writing	tests	/	Writing	tests	using	Spock,	How	to	do	it…,	How	it
works…
URL	/	How	it	works…

spring-boot-admin
URL	/	Getting	ready

spring-boot-starter-test	definition
URL	/	How	it	works…

Spring	Boot
reference	documentation,	URL	/	How	it	works…
autoconfiguration	/	Understanding	Spring	Boot	autoconfiguration,	How	it
works…
monitoring,	JMX	used	/	Monitoring	Spring	Boot	via	JMX,	How	it	works…
managing,	CRaSH	used	/	Management	of	Spring	Boot	via	CRaSH	and	writing
custom	remote	shell	commands,	How	to	do	it…,	How	it	works…

Spring	Data
URL	/	How	it	works…

Spring	Data	REST	service
creating	/	Creating	a	Spring	Data	REST	service,	How	to	do	it…,	How	it
works…

Spring	JDBC
database,	initializing	with	/	Initializing	the	database	with	Spring	JDBC

Spring	JPA
database,	initializing	with	/	Initializing	the	database	with	Spring	JPA	and
Hibernate

starters
using	/	Using	a	Spring	Boot	template	and	starters,	How	it	works…
spring-boot-starter	/	How	it	works…
spring-boot-starter-actuator	/	How	it	works…
spring-boot-starter-jdbc	/	How	it	works…
spring-boot-starter-data-jpa	/	How	it	works…
spring-boot-starter-data-*	/	How	it	works…
spring-boot-starter-security	/	How	it	works…
spring-boot-starter-social-*	/	How	it	works…
spring-boot-starter-test	/	How	it	works…

spring-boot-starter-web	/	How	it	works…

T
template

using	/	Using	a	Spring	Boot	template	and	starters,	How	it	works…
tests

creating,	for	MVC	Controllers	/	Creating	tests	for	Spring	MVC	Controllers,
How	to	do	it…,	How	it	works…
creating,	in-memory	database	with	data	fixtures	used	/	Creating	tests	using	in-
memory	database	with	data	fixtures,	How	to	do	it…,	How	it	works…
creating,	Mockito	to	mock	DB	used	/	Creating	tests	using	Mockito	to	mock	DB,
How	to	do	it…,	How	it	works…
writing,	Cucumber	used	/	Writing	tests	using	Cucumber,	How	to	do	it…,	How	it
works…
writing,	Spock	used	/	Writing	tests	using	Spock,	How	to	do	it…,	How	it
works…

Tomcat
tuning,	via	EmbeddedServletContainerCustomizer	/	Tuning	Tomcat	via
EmbeddedServletContainerCustomizer,	How	to	do	it…,	How	it	works…

Twelve-Factor	App	methodology
URL	/	Introduction

U
Unit	Testing	/	Creating	tests	for	Spring	MVC	Controllers

W
widgets

URL	/	How	it	works…

	Spring Boot Cookbook
	Credits
	About the Author
	Acknowledgment
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why Subscribe?
	Free Access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Getting Started with Spring Boot
	Introduction
	Using a Spring Boot template and starters
	How to do it…
	How it works…
	Creating a simple application
	How to do it…
	How it works…
	Launching an application using Gradle
	How to do it…
	How it works…
	Using the command-line runners
	How to do it…
	How it works…
	Setting up a database connection
	Getting ready
	How to do it…
	How it works…
	Setting up a data repository service
	How to do it…
	How it works…
	Scheduling executors
	Getting ready
	How to do it…
	How it works…
	2. Configuring Web Applications
	Creating a basic RESTful application
	How to do it…
	How it works…
	Creating a Spring Data REST service
	How to do it…
	How it works…
	Configuring custom servlet filters
	How to do it…
	How it works…
	Configuring custom interceptors
	How to do it…
	How it works…
	Configuring custom HttpMessageConverters
	How to do it…
	How it works…
	Configuring custom PropertyEditors
	How to do it…
	How it works…
	Configuring custom type Formatters
	How to do it…
	How it works…
	3. Web Framework Behavior Tuning
	Introduction
	Configuring route matching patterns
	How to do it…
	How it works…
	Configuring custom static path mappings
	How to do it…
	How it works…
	Tuning Tomcat via EmbeddedServletContainerCustomizer
	How to do it…
	How it works…
	Choosing embedded servlet containers
	How to do it…
	How it works…
	Adding custom connectors
	Getting ready
	How to do it…
	How it works…
	4. Writing Custom Spring Boot Starters
	Introduction
	Understanding Spring Boot autoconfiguration
	How to do it…
	How it works…
	Creating a custom Spring Boot autoconfiguration starter
	How to do it…
	How it works…
	Configuring custom conditional bean instantiations
	How to do it…
	How it works…
	Using custom @Enable* annotations to toggle configurations
	How to do it…
	How it works…
	5. Application Testing
	Introduction
	Creating tests for Spring MVC Controllers
	How to do it…
	How it works…
	Automatically configuring the database schema and populating it with data
	How to do it…
	How it works…
	Initializing the database with Spring JPA and Hibernate
	Initializing the database with Spring JDBC
	Creating tests using in-memory database with data fixtures
	How to do it…
	How it works…
	Creating tests using Mockito to mock DB
	How to do it…
	How it works…
	Writing tests using Cucumber
	How to do it…
	How it works…
	Writing tests using Spock
	How to do it…
	How it works…
	6. Application Packaging and Deployment
	Introduction
	Creating a Spring Boot executable JAR
	How to do it…
	How it works…
	Creating Docker images
	How to do it…
	How it works…
	Building self-executing binaries
	Getting ready
	How to do it…
	How it works…
	Spring Boot environment config hierarchy and precedence
	How to do it…
	How it works…
	Externalizing environmental config using property files
	How to do it…
	How it works…
	Externalizing environmental config using environment variables
	How to do it…
	How it works…
	Externalizing environmental config using Java system properties
	How to do it…
	How it works…
	Setting up Consul
	How to do it…
	How it works…
	Externalizing environmental config using Consul and envconsul
	Getting ready
	How to do it…
	How it works…
	7. Health Monitoring and Data Visualization
	Introduction
	Writing custom health indicators
	How to do it…
	How it works…
	Emitting metrics
	Getting ready
	How to do it…
	How it works…
	Monitoring Spring Boot via JMX
	Getting ready
	How to do it…
	How it works…
	Management of Spring Boot via CRaSH and writing custom remote shell commands
	How to do it…
	How it works…
	Integrating Codahale/Dropwizard metrics with Graphite
	Getting ready
	How to do it…
	How it works…
	Integrating Codahale/Dropwizard metrics with Dashing
	Getting ready
	How to do it…
	How it works…
	Index

