
www.allitebooks.com

http://www.allitebooks.org

SugarCRM Developer's Manual

Customize and extend SugarCRM

Learn the application and database architecture of this
open-source CRM and develop and integrate your own
modules and custom workflows

Dr. Mark Alexander Bain

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

SugarCRM Developer's Manual
Customize and extend SugarCRM

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author(s), Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2007

Production Reference: 1140607

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-06-6

www.packtpub.com

Cover Image by Andrew Jalali (www.acjalali.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author

Dr. Mark Alexander Bain

Reviewers

Andrew J. R. Whitehead

Michael J. R. Whitehead

Ajay Gupta

Susie Williams

Aspen Olmsted

Emilio Taylor

Ryuhei Uchida

Acquisition Editor

David Barnes

Development Editor

Mithil Kulkarni

Technical Editor

Shayantani Chaudhuri

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Sagara Naik

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dr. Mark Alexander Bain first started customizing CRM systems back in the mid
'90s when he was team leader for Vodafone's Cascade project—the team took the
'out-of-the-box' Clarify CRM and turned it into a radio base station planning
application, complete with a workflow engine for passing jobs between the
different departments involved in the planning, building, and implementation of a
radio network.

Since then he's lectured at the University of Central Lancashire, and currently Mark
writes articles on all things Linux and Open Source for Linux Format, Newsforge.com,
and Linux Journal. He works from his home on the edge of the Lake District in the
UK, where he lives with his wife, two dogs and two cats, and gets the odd visit from
his sons—Michael and Simon.

SugarCRM customization, therefore, seems the obvious choice for this, his second
book, since it combines Mark's knowledge of working with commercial CRM's and
the Open Source philosophy.

For Mum, Donna, and Ellie.

And thanks (as always) to Simon, to Michael, and to all of the Packt
Publishing team.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Andrew J. R. Whitehead

Andrew Whitehead is the lead developer at The Long Reach Corporation and
has been working with the SugarCRM framework, in the form of the company's
Info At Hand product, for the past three years. He has been implementing web
applications both recreationally and professionally for the past fifteen years.
Andrew is passionate about designing general solutions to common problems
and enjoys working with new languages and technologies. He lives in Toronto,
Canada and studies Linguistics part-time at the University of Toronto.

I would like to thank my family and friends, particularly Aziza, for
their patience during the editing process.

Michael J. R. Whitehead

Michael Whitehead is a leading authority on the design and implementation
of Customer Relationship Management (CRM) systems. Michael's experience
and expertise spans a thirty year career in software architecture, design, and
development as well as business management and ownership of multiple technology
organizations. Among many other accomplishments Michael is the author of
Implementing SugarCRM (from Packt Publishing) and a contributing author of the
Sugar Open Source User Guide.

Michael is currently the founder and President of The Long Reach Corporation
(www.infoathand.com). At The Long Reach Corp. the focus is Info At Hand™—a
Customer Relationship & Business Management (CRBM) system for Small &
Mid-Size Businesses, built on a base of SugarCRM Open Source. It blends a
best-of-breed CRM with extended business management features for Order
Management, Project & Resource tracking, Customer Service, and HR.

www.allitebooks.com

http://www.allitebooks.org

Ajay Gupta

Ajay Gupta has over ten years of experience in the CRM industry. He has
participated in design and development of several CRM applications that have
been deployed globally.

Susie Williams

Susie Williams is the Sr. Manager of Community Development at SugarCRM. Her
responsibilities include development of the Sugar Adoption Program as well as
management of the Forums and Sugar Forge. Prior to joining SugarCRM, Susie
managed the Worldwide Sales Engineering group at WebEx Communications;
she has also been involved in the CRM industry through various positions (from
Engineering to Implementation Consulting) at Aurum Software/Baan Company.
Susie holds a B.A. in Electrical Engineering/Computer Science from U.C. San Diego.

Aspen Olmsted

Aspen Olmsted is founder and president of Alliance Software Corporation, a CRM
software solutions provider to the entertainment and non profit verticals. Aspen
holds an MBA from the University of South Carolina along with certifications in
PHP, MySQL, MCSD, MCSE, and many ERP applications.

Emilio Taylor

For the past one and half years, Emilio has been developing as a Project Manager
for SugarCRM Development. Specializing in Microsoft SQL Server 2005
implementations, Emilio has integrated Stored Procedures, Database Triggers,
Customized Modules, and Java scripting into the development lifecycle of
SugarCRM deployment. Plus, in June of 2005, Emilio founded EmillionDreamz.org,
a web design company utilizing Joomla! CMS for customized website development
and deployment. Emilio has been living Central Florida for the past thirteen years.

www.allitebooks.com

http://www.allitebooks.org

Ryuhei Uchida

Ryuhei Uchida is Chief Technology Officer and a partner consultant of CareBrains,
an open source consulting company and a reseller partner of SugarCRM Inc. He has
broad experience of business strategies, international operations, and innovation
management in the IT industry.

Prior to joining CareBrains, he had held positions in business development, product
management, consulting, and sales & marketing at Fujitsu, Fujitsu Business Systems
of America, J.D. Edwards, and Vitria Technology.

He is one of the enthusiastic evangelists of open-source business applications in
Japan, and is leading state-of-the-art open-source communities to bring innovation
into the second largest IT industry in the world.

He earned his B.A. in agriculture from Tokyo University in Japan, and also an MBA
in Technology Management from Waseda University Business School.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Stamping Your Own Brand on SugarCRM 5

Before We Start... 5
Customizing SugarCRM URL 7

Changing the SugarCRM URL in Windows 7
Changing the SugarCRM URL in Linux 8

Customizing SugarCRM Tabs 8
Re-name the SugarCRM Tabs 10
The SugarCRM Custom Directory 14
Customizing the Text within SugarCRM Tab Screens 15
Changing the Browser Title 18
Adding a Company Logo 18

Customizing SugarCRM Themes 21
Creating a New Theme 22
Removing a Theme 24

Summary 24
Chapter 2: Customizing the SugarCRM Application Content 25

A Note About Terminology 25
Changing the About Screen 26

Changing the About Screen into a Help Screen 28
Controlling the Visible Tabs 29

User Control 29
Administrator Control 31

A Note about Administering Live Systems 32
Adding a Custom Tab 34

Custom Tab Contents 36
User-Controlled Dashlet Customization 41

Customizing Dashlets 43

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Creating Custom Dashlets 43
Making Dashlets Accessible to Users 45

Summary 47
Chapter 3: Introducing Custom Fields 49

Adding a Custom Field 50
The Standard Module Tab 50
The General Process for Creating a Custom Dropdown 51
Using Studio to Create a Drop-down Box 51
Manually Adding a Drop-down Box 53
Using Studio to Create a Custom Field 53
Creating the Custom Field Manually 56
Adding the Dropdown to a Module Tab 58

Adding Rows 60
Recovering Previous Versions of a Layout 61
Manually Modifying Layouts 61

Including Custom Fields in Mass Updates 64
Making Sure that Your Changes are Visible 66
Limitations of the Mass Update 67
Adding Built-in SugarCRM Fields to the Mass Update 67

Creating other Field Types 68
Field Data Types 70

Summary 71
Chapter 4: Interfacing with SugarCRM 73

What Have we Learned so Far? 73
The Include Directory 74
The Custom Directory 74
The Themes Directory 74
The Modules Directory 74

Overview of the SugarCRM Application Architecture 75
The SugarCRM User Interface 76

Calling Modules 76
SugarBean—The SugarCRM Data Interface 80

The SugarBean Files 81
vardefs.php 82
vardefs On-line Documentation 83
vardefs Field Types 84
The Complete vardefs File 85
The <module>.php File 85

SugarBean in Action—SugarCRM's Logic Hooks 87
The End Result of Using the Logic Hook 90

Summary 92

Table of Contents

[iii]

Chapter 5: SugarCRM Database Schematics 93
Database Schematic Diagrams 93

Access Control List 94
Accounts 94
Bugs 95
Calls 95
Campaigns 96
Cases 96
Contacts 97
Documents 98
Emails 98
Email Management 99
Leads 100
Meetings 100
Opportunities 101
Projects 101
Project Tasks 102
Prospects 102
Schedulers 103
Users 103

Differences Between Versions 4.5.0 and 4.5.1 104
Summary 104

Chapter 6: SugarCRM Data Dictionary 105
SugarCRM Table Definitions 105

Accounts 106
accounts_audit 107
accounts_bugs 108
accounts_cases 108
accounts_contacts 109
accounts_opportunities 109
acl_actions 110
acl_roles 110
acl_roles_actions 111
acl_roles_users 111
Bugs 112
bugs_audit 113
Calls 113
calls_contacts 114
calls_users 115
campaign_log 115
campaign_trkrs 116

Table of Contents

[iv]

Campaigns 117
campaigns_audit 118
Cases 119
cases_audit 120
cases_bugs 120
Config 120
Contacts 121
contacts_audit 123
contacts_bugs 123
contacts_cases 124
contacts_users 124
Currencies 125
custom_fields 125
Dashboards 126
document_revisions 126
Documents 127
email_marketing 128
email_marketing_prospect_lists 128
email_templates 129
emailman 129
Emails 130
emails_accounts 132
emails_bugs 132
emails_cases 133
emails_contacts 133
emails_leads 134
emails_opportunities 134
emails_project_tasks 134
emails_projects 135
emails_prospects 135
emails_tasks 136
emails_users 136
Feeds 136
fields_meta_data 137
Files 138
iframes 138
import_maps 138
inbound_email 139
inbound_email_autoreply 140
Leads 140
leads_audit 142

Table of Contents

[v]

linked_documents 142
Meetings 143
meetings_contacts 144
meetings_users 144
Notes 145
Opportunities 146
opportunities_audit 147
opportunities_contacts 147
Project 148
project_relation 148
project_task 149
project_task_audit 150
prospect_list_campaigns 150
prospect_lists 151
prospect_lists_prospects 151
Prospects 152
Relationships 153
Releases 154
Roles 155
roles_modules 155
roles_users 156
saved_search 156
Schedulers 157
schedulers_times 157
Tasks 158
Tracker 159
upgrade_history 159
user_preferences 160
Users 160
users_feeds 162
users_last_import 162
users_signatures 163
vcals 163
Versions 164

Summary 164
Chapter 7: Development and Testing Strategies for SugarCRM 165

Why Use Development and Testing Strategies? 165
The Unbreakable Rule:Thou Shalt Not Do Any Development
on a Live Server 166
Setting up a Development Server 167

Table of Contents

[vi]

Creating a Server 168
Installing Software 170
Setting the Server's IP Address 170

Migrating SugarCRM Files and Databases Between Servers 171
Setting Up the Export on Server 1 172
Setting up a Mount Point on Server 2 172
Migrating Files from Server 1 to Server 2 173

An Example Upgrade 175
Upgrading PHP 176
Upgrading SugarCRM 177

Comparing Database Files 179
Migrating Database Files 182
Comparing and Migrating the SugarCRM Application Files 186

Testing SugarCRM 188
Releasing Your Customizations 190
Summary 191

Chapter 8: Developing Your Own Modules 193
Adding Third-party Modules 194
Creating Custom Modules 197

A (Very) Basic Module 197
Data for the New Module 198
Processing Data in the Module 199

Adding More Data 200
Adding Shortcuts 202
Using language/en_us.lang.php 203
Tables for the Module 204

Advanced Modules 207
The Initial Setup 207
The Module's Data Schema—vardefs.php 208
The Module's Business Object 210

Registering the Business Object 211
The Module's Language File 211
The Module's List View 212

Selecting the Fields to be Displayed 212
Creating the List View 213
Making the List View the Default View 214

The Modules Edit View 214
The EditView.php File 214
The EditView.html File 216
The Module's Save File 217

Creating New Reports 219
Summary 220

Table of Contents

[vii]

Chapter 9: Developing a Custom Workflow within SugarCRM 221
A Very Simple Workflow 222

Setting up the Process Stages 222
Deciding Who Does What 223
Introducing Business Rules 224
Completing the Automated Workflow 227

Moving the Rules into the Database 230
Add a Custom Table 231
Create the Workflow Module 231

Building a Data Input Module 232
Making Use of the Rules in the Database 235

Parallel Tasks 236
Adding Dependent Tasks to the Database 237
Using Dependent Tasks in the Workflow 239

Summary 242
Chapter 10: Customizing and Optimizing SugarCRM—Tips
and Tricks 243

Delving into SugarCRM Variables 244
Developing Dashlets Further 245
Speeding up SugarCRM 247

Optimizing Queries 247
Using the explain Command 248
Creating Indexes 250
Logging Slow Queries 251
Using the MySQL Query Cache 253

Optimizing the SugarCRM Application 254
The SugarCRM Diagnostic Tool 254
Install a PHP Optimizer 259

Creating Reports 259
Obtaining OpenOffice.org 259
Accessing the Database Remotely 261

Allowing Connections to the Database 261
Creating an Account for Remote Access 261

Setting Up the ODBC Connection 262
Accessing the Data Through OOo Base 263

Creating Queries 267
Creating the Report 269

Summary 272
Index 273

Preface
This is a developer’s manual on SugarCRM. The book focuses on customizing
SugarCRM. It provides you with an overview of the architecture of the application
and the database. It also shows essential steps for hooking your module into the
SugarCRM infrastructure.

What This Book Covers
Chapter 1—This chapter is a smooth introduction to customizing Sugar CRM.

Chapter 2—You will start to customize the SugarCRM application itself, and you will
be able to add your own components in the form of module tabs and dashlets.

Chapter 3—You will learn how to modify the look and feel of SugarCRM. This
chapter also shows how to add new fields to SugarCRM.

Chapter 4—This chapter looks at the interfaces, and how to use them effectively in
your customizations.

Chapter 5—This chapter includes database schematic diagrams, showing the
relationships between each table in the database.

Chapter 6—In this chapter we have covered complete database schematics for the
SugarCRM application, providing full details on each table.

Chapter 7—You will learn in this chapter how to develop, test, and use SugarCRM in
a safe environment using a development server, a test server, and a live server.

Chapter 8—You will learn to incorporate third-party modules into your site and
develop your own modules from scratch.

Chapter 9—This chapter deals with developing a custom workflow within
SugarCRM.

Preface

[2]

Chapter 10—You will see various techniques in this chapter for optimizing the
performance of SugarCRM implementations, and a few more ways of extending
the application.

Who is This Book for
The book is for PHP developers working with SugarCRM, who want to extend its
capabilities. Readers should have basic knowledge of SugarCRM as the book does
not provide any instructions on installation and usage.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

[default]
mkdir -p modules/TestApp/language
touch modules/TestApp/language/en_us.lang.php
touch modules/TestApp/Forms.php
touch modules/TestApp/index.php

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

insert into fields_meta_data
 (id,
 name,
 label,
 help,
 custom_module,
 data_type,
 ext1,
 default_value,
 date_modified,
 mass_update
)

Preface

[3]

Tips and tricks appear like this.

New terms and important words are introduced in a bold-type font. Words that you
see on the scre]en, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

www.allitebooks.com

http://www.allitebooks.org

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

Stamping Your Own Brand
on SugarCRM

So, there you are, you've got SugarCRM up and running, you've played with it and
maybe you've added an account, created a case, or a project, or maybe even sent an
email or two. However, after a while you feel that SugarCRM is very generic (well, it
has got to be hasn't it?) but generic is probably one thing that your business is not.

You will, of course, be wondering just what customizations can be carried out in
order for SugarCRM to truly reflect the way in which your organization operates. To
start with, we can group the possible customizations into:

How SugarCRM looks
How SugarCRM works

The first two chapters of this book are concerned with tailoring the looks of the
tool, and if you're happy with SugarCRM's general look and feel, then just move to
Chapter 3. You can always come back here once you've finished customizing the
actual operation of SugarCRM.

However, if you do continue with this chapter (or if you have just come back to it)
then by the end of Chapter 1 you'll be able to make SugarCRM look the way that you
want it to—so that it reflects the image of your company, and uses the terminology
of your users.

Before We Start...
I expect that one of the reasons that you've chosen SugarCRM is because it's open
source, and any changes that you make are covered by the SugarCRM Public License
(of course, only really need to worry, if you're planning to customize and then
distribute SugarCRM). With that in mind, you may be wondering if there is anything

•

•

Stamping Your Own Brand on SugarCRM

[6]

that you're not allowed to change. Only one. At the bottom of every screen you're
expected to show the acknowledgement:

However, if you do want to read the full SugarCRM Public License you'll find it at:
http://www.sugarcrm.com/crm/SPL

Having identified what we're required to do under the SugarCRM Public License
we can move on to choosing an example company. Throughout the book we'll be
looking at Penguin P.I.—Private Investigators in the dark world between Windows
and Linux.

When Penguin P.I.'s founder—Pygoscelis P. Ellsworthy—started the business it was
a simple, two-man setup (or rather one man, one woman since he was working with
the famous femme fatale, Korora Blue). However, after a few high profile cases he
needed a bigger office, and it wasn't long before he had several offices spread across
the world. It was at this point that he realized that a couple of spreadsheets weren't
enough to manage all of his staff and his clients. Fortunately that's where SugarCRM
comes in.

And that's our starting point. Now, you'll need a server complete with Apache, PHP,
MySQL, and SugarCRM. How you do this is up to you, but you could:

Follow the SugarCRM installation instructions—you'll find these at
http://www.sugarcrm.com/wiki/index.php?title=Installation.
Get hold of a decent book on the subject—such as Implementing SugarCRM
by Michael J. R. Whitehead (ISBN 978-1-904811-68-8), published by
Packt Publishing.
Get someone else to do one of the previous steps for you—Pygoscelis, of
course, he didn't actually do any of this himself—he got his new IT person,
Robby Eudyptes, to do it for him.

All of this assumes that you've given your servers good names—the most important
job that any IT person can do. When Pygoscelis came to name all his servers he
thought that he wouldn't follow the more common naming convention of choosing
characters from J.R.R.Tolkien's Lord of the Rings. Instead he chose Homer's The Iliad
(a fantastic book, and well worth reading if you get the chance—it shows you that
human nature was just the same in 700BC as it is today). Therefore, he called his
Linux servers Acamas, Aeneas, Cassandra, Hector, and Helenus. He also had one
Windows server—Achilles (powerful, but with some major flaws).

With all of that done then you're ready to start customizing.

•

•

•

Chapter 1

[7]

Customizing SugarCRM URL
At this stage we're not even going beyond SugarCRM's logon screen. If you've used
an automatic installer (such as the very effective SpikeSource Windows Installer)
then you'll be able open a browser, and type in the equivalent of http://achilles/
sugarcrm. If you've manually installed SugarCRM on Linux then you'll probably
need to type in something like: http://hector/SugarOS-Full-4.5.0f.

It doesn't matter if you're using Linux or Windows—in either case you'll be directed
to the logon screen:

And you'll see that the URL reads: http://achilles/sugarcrm/index.php?ac
tion=Login&module=Users or http://hector/SugarOS-Full-4.5.0f/index.
php?action=Login&modules=Users. There's nothing actually wrong here, but the
URLs don't really tell you much (apart from the fact that you're using SugarCRM), so
it seems a good idea to change the URL to something more meaningful—something
related to the actual project that you're working on. Fortunately this is a very easy
change to make.

Changing the SugarCRM URL in Windows
If you're using Windows then the first thing that you'll have to do is to find the
SugarCRM directory. Obviously if you've installed everything manually then you'll
know where the directory is—however, if you've used the Windows installer then it
may not be quite so obvious. You may (or may not) know that the SugarCRM

Stamping Your Own Brand on SugarCRM

[8]

directory has to be in the document root for your web server, and if you've
used the installer then this will probably be something like
C:\Program Files\SugarCRM\oss\httpd\htdocs:

All you have to do is rename the directory (for instance our friend Pygoscelis might
want it renamed penguin_pi for the Penguin P.I. organization), and then type the
new URL into your browser (and for the Penguin P.I. organization this would be
http://achilles/penguin_pi).

Changing the SugarCRM URL in Linux
In this instance Linux isn't too different from Windows—all you need to do is find
the SugarCRM directory (again it will be in your web server's document root), and
then rename it appropriately:

mv SugarOS-Full-4.5.0f penguin_pi

With that done the new URL will work:
(e.g. http://hector/penguin_pi/index.php?action=index&module=Home)

Having sorted out SugarCRM's URL we can turn our attention to the rest of
the screen.

Customizing SugarCRM Tabs
Your users are now able to access your SugarCRM implementation via a URL that
means something to them. So, their first view of the system will be something like:

Chapter 1

[9]

If we imagine Korora Blue looking at this for the first time, Korora would
immediately realize that she can navigate around the system by using the SugarCRM
Tabs. And she will recognize a lot of them (for example Emails and Calendar), but a
lot will be new to her (for example My Portal and Opportunities).

Stamping Your Own Brand on SugarCRM

[10]

So you've got two choices:

Re-train your staff so that they map their work to SugarCRM terminology.
Re-name the SugarCRM tabs to the language of your organization.

Guess what we're going to start with.

Re-name the SugarCRM Tabs
To start with you need to log on to the administrator account (by default
this will be by using the user name 'admin'), and then go to the
ADMINISTRATION: HOME screen:

•

•

Chapter 1

[11]

Here you can either click Rename Tabs, or you can go to the Studio screen first:

Now you can rename any of the SugarCRM tabs to something more appropriate to
your organization:

Stamping Your Own Brand on SugarCRM

[12]

Once you've saved your changes your users will see something that relates to them.
For example, here we've renamed:

My Portal => Web Sites
Opportunities => Preliminary Investigations
Cases => Investigations

And now Korora would have tabs that she'd immediately understand:

•

•

•

Chapter 1

[13]

However, the screen still contains a large amount of the default text (which has
nothing to do with Korora's job), and this would be even more apparent if Korora
were to click on one of the newly named tabs such as Preliminary Investigations:

Still not exactly 'custom' is it? And I'm sure that you've had a look around the
administration screens to change other details on the screen, but not had any
success. That's because any further changes need to be done outside the SugarCRM
application, in the SugarCRM custom directory.

www.allitebooks.com

http://www.allitebooks.org

Stamping Your Own Brand on SugarCRM

[14]

The SugarCRM Custom Directory
We'll do most of our work in the SugarCRM custom directory—in fact we've been
using it already. You'll find it in your SugarCRM folder on your web server, and if
you take a look there, you will see that there's already a file in the folder—when we
saved the changes to the tab names SugarCRM created custom/include/language/
en_us.lang.php. Examination of the file will reveal the changes made:

<?php
$app_list_strings['moduleList'] = array (
 'Home' => 'Home',
 'Dashboard' => 'Dashboard',
 'Contacts' => 'Contacts',
 'Accounts' => 'Accounts',
 'Opportunities' => 'Preliminary Investigations',
 'Cases' => 'Investigations',
 'Notes' => 'Notes',
 'Calls' => 'Surveillance',
 'Emails' => 'Emails',
 'Meetings' => 'Meetings',
 'Tasks' => 'Tasks',
 'Calendar' => 'Calendar',
 'Leads' => 'Leads',
 'Activities' => 'Activities',
 'Bugs' => 'Bug Tracker',
 'Feeds' => 'RSS',
 'iFrames' => 'Web Sites',
 'TimePeriods' => 'Time Periods',
 'Project' => 'Projects',
 'ProjectTask' => 'Project Tasks',
 'Campaigns' => 'Campaigns',
 'Documents' => 'Documents',
 'Sync' => 'Sync',
 'Users' => 'Users',
 'Releases' => 'Releases',
 'Prospects' => 'Targets',
 'Queues' => 'Queues',
 'EmailMarketing' => 'Email Marketing',
 'EmailTemplates' => 'Email Templates',
 'ProspectLists' => 'Target Lists',
 'SavedSearch' => 'Saved Searches',
 'Invoice' => 'Invoices',
);
?>

Chapter 1

[15]

And that should give you a clue as to how language customization works within
SugarCRM.

Customizing the Text within SugarCRM
Tab Screens
We're not going to look at every tab screen—once you know how to modify one
then you can make changes as required. Since we've already been looking at the
Opportunities screen let's carry on with that—but don't forget that the techniques
we use will apply on any other screen that you want to customize.

We've seen that we use a file called en_us.lang.php in order to make our own
changes to the text displayed on the SugarCRM screen, and you may well reason that
we'll use this file to make changes to any text on the screen. Well, you're nearly right.
We will use an en_us.lang.php file—but not the same one. This time we're going to
use a file called custom/modules/Opportunities/language/en_us.lang.php
(remember that custom is in your SugarCRM directory—and you'll need to create the
sub-directories and the file itself).

The way in which this works is quite simple—SugarCRM will look at its default
language files for the text to be displayed. However, if you've got your own
definitions in a custom file then it will use those instead. Of course, next you'll need
the default definitions so that you know what to put into your custom language file.

You may have already worked this out (but in case you haven't) the default language
file for 'Opportunities' is modules/Opportunities/language/en_us.lang.php. If you
examine the file then you'll find that it contains similar data to the en_us.lang.php
that we've already seen:

$mod_strings = array (
 'LBL_MODULE_NAME' => 'Opportunities',
 'LBL_MODULE_TITLE' => 'Opportunities: Home',
 'LBL_SEARCH_FORM_TITLE' => 'Opportunity Search',
 'LBL_VIEW_FORM_TITLE' => 'Opportunity View',
 'LBL_LIST_FORM_TITLE' => 'Opportunity List',
 'LBL_OPPORTUNITY_NAME' => 'Opportunity Name:',

Stamping Your Own Brand on SugarCRM

[16]

As you can see, it contains the text to be displayed in the tab screen labels, and you
may be wondering why we don't just edit this file instead. There are a few reasons:

This gives you a nice fall-back position—if everything goes wrong then you
just need to delete the custom files to return to the defaults.
There are some lines in the default file that must not be changed—the
application may get very upset with you if you do change them.
You only need to worry about maintaining your own changes and not the
whole file.
If you use the custom files then your changes remain isolated from the core
functionality while allowing you to make the customizations that you need.

So, the next stage is to edit the custom/modules/Opportunities/language/
en_us.lang.php file so that it contains the text that you actually want to be
displayed on the Opportunities screen:

<?php
$opp_single = 'Preliminary Investigation';
$opp_title = $opp_single . 's';
$mod_strings['LBL_MODULE_NAME'] = $opp_title;
$mod_strings['LBL_MODULE_TITLE'] = $opp_title . ': Home';
$mod_strings['LBL_LIST_FORM_TITLE'] = $opp_title . ' List';
$mod_strings['LBL_OPPORTUNITY_NAME'] = $opp_single . ' Name';
$mod_strings['LBL_NEW_FORM_TITLE'] = 'Create ' . $opp_title;
$mod_strings['LNK_NEW_OPPORTUNITY'] = 'Create ' . $opp_title;
$mod_strings['LNK_OPPORTUNITY_LIST'] = $opp_title;
$mod_strings['LBL_TOP_OPPORTUNITIES'] = 'My Top Open ' . $opp_title;
$mod_strings['LBL_DEFAULT_SUBPANEL_TITLE'] = $opp_title;
?>

Notice that we haven't just hard coded all of the label details—this time we're using
some variables ($opp_single and $opp_title). This means, of course, that if you
decide to change the name of the module then you only need to change one line of
code to update all the labels.

•

•

•

•

Chapter 1

[17]

Once you've saved the file you can see the effects immediately by going to the
Opportunities tab:

Obviously you need to repeat this process for each of the tab screens, but before long
you won't have a generic CRM system—you will have a CRM system that uses the
same terminology as your organization.

Stamping Your Own Brand on SugarCRM

[18]

Changing the Browser Title
We've now modified the SugarCRM screens so that any users recognize the
language, but we can still do more to reflect your company's brand. The first thing to
look at is the browser title. At the moment it will look like:

While we're not trying to cover up the fact that we're using SugarCRM, we are
trying to stamp our own brand onto the application. To do this we'll need to edit the
custom/include/language/en_us.lang.php file again, and add a line:

$app_strings['LBL_BROWSER_TITLE'] = 'Penguin PI - SugarCRM';

Now, you need to refresh the browser:

With the title set correctly, we can think about one of the most important parts of a
brand—the company logo.

Adding a Company Logo
You may already have a logo that you're wanting to use with your SugarCRM
installation. However, whether you're going to use an existing one, or you're creating
a completely new one, there are a couple of things that you need to keep in mind:

To be consistent with the SugarCRM layout your company logo must be
220x40 pixels.
Your company logo should have a transparent background—so that it can
work with different SugarCRM themes.

•

•

Chapter 1

[19]

Then it's just a matter of creating the image with an appropriate piece of software; for
example, you could use Gimp (Gimp is the GNU Image Manipulation Program, and
if it's not already on your computer then you can get it from http://www.gimp.org).

Once you have saved your image you'll want to apply it to your SugarCRM
implementation—so, it's back to the main admininistration screen, where you need
to click on System Settings:

And then you can upload the logo:

With that done you've got a SugarCRM implementation with:

Tabs with titles that mean something to people in your organization
Screens that use the correct terminology for your users
A logo that illustrates the implementation belongs to your company

•

•

•

Stamping Your Own Brand on SugarCRM

[20]

Now your users can log on and see your company's SugarCRM application, and
they'll know that it's something designed for them, and (hopefully) they'll be happy
to use it:

At this stage you may decide that you don't need to do any further customizations
to the look and feel of SugarCRM, and if that's the case then it's time to move on to
Chapter 2 where we start looking at customizing the application contents. However,
before you do that it's worth spending a little time considering another aspect of the
SugarCRM front-end user experience—Themes.

Chapter 1

[21]

Customizing SugarCRM Themes
We've spent time getting the general look and feel right, but (as you probably
already know) your users can already customize SugarCRM by using
themes—sometimes with quite startling results:

Stamping Your Own Brand on SugarCRM

[22]

If you're striving to create an application with your own brand then some of the
themes may not work with your view of how things should look. If that's the case
then you can:

Create your own theme(s)
Limit the themes that can be accessed by your users

So, that's what we'll look at next. However, before we start have a look at this:

You should see two lines, each saying Hello Korora. However, if any of your users
are color blind then they may not be able to read the information (personally, I've
got a red-green deficiency that means that I can read both lines but they give me a
blinding headache).

The point is, of course, if you are going to be creating your own color
scheme then be aware of the effect that it will have on your users. The
same goes for the size of fonts that you want to use.

Creating a New Theme
You'll find that the easiest way to create a new theme is simply to copy an existing
one and then modify it. Start by looking for the themes directory—a sub-directory
of your main SugarCRM folder. On Linux you can achieve this by typing
something like:

cd /var/www/htdocs/penguin_pi/themes
cp -R SugarClassic PenguinPI

or on Windows:

cd "C:\Program Files\SugarCRM\oss\httpd\htdocs\SugarCRM\themes"
copy sugarclassic penguinpi

You now need to move to your new directory, edit the config.php file, and add the
theme name and description:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
$theme_name = "Penguin PI";
$theme_description = "Penguin PI theme";

•
•

Chapter 1

[23]

$version_compatibility = 3.0;
$max_tabs = 12;
$png_support = false;
?>

Also in the directory you'll find all of the files needed for formatting the theme itself.
For now we'll just look at a very simple modification—we'll change the theme so that
any link is highlighted in yellow when the mouse pointer is placed over it.

All you need to do is edit the style.css file in your new theme folder, and make the
following change:

a:hover {

 color: #666666;

 text-decoration: underline;

 background-color:yellow; //highlight the link

 }

You'll probably need to restart your browser, but once you have done so, then
you'll be able to select your new theme from the drop-down list at the bottom of the
SugarCRM screen:

This new theme will appear exactly the same as the Sugar theme, except that links
will be highlighted in yellow when you place the mouse pointer over them:

www.allitebooks.com

http://www.allitebooks.org

Stamping Your Own Brand on SugarCRM

[24]

Of course, when you've finished creating the theme that you want, then you can start
thinking about removing the themes that you don't want.

Removing a Theme
Some themes are incompatible with your company image. So you go to the themes
directory and delete the directory containing the offending theme.

Next time the browser is started the theme will be absent—and don't worry, if
someone was using the theme that you've deleted then they move to to the next
theme on the list by default in their next session.

Summary
Chapter 1 has been a nice, gentle introduction into the world of customizing
SugarCRM. In the course of the chapter you learned how to customize the look and
feel of the SugarCRM screen—without affecting any of the functionality.

We have changed the SugarCRM URL to something that relates to the project.
Installation of the tool will give a name to the directory by default; this can be
changed for customization. However, do not forget the directory name is the main
part of the SugarCRM URL.

Customizing tab names will make them more specific catering to the need of the
company. You can also get creative with the browser title. Also you can change the
text on the screen to appropriate terminology to suit the company requirements. You
can play around with SugarCRM themes and add the company logo.

After all this, you should be able to produce a SugarCRM implementation that has
the appropriate look and feel for the project that you're working on—one that would
make Pygoscelis proud.

In Chapter 2 we look at how we can start customizing the application content, so that
you are able to give each user exactly what they need—at their fingertips.

Customizing the SugarCRM
Application Content

In Chapter 1, we looked at changing the look and feel of a basic SugarCRM
implementation. In particular we examined Pygoscelis P. Ellsworthy's
organization—Penguin P. I.—and saw how to introduce the day-to-day terminology
that his staff uses. You will also remember that we started to change the general look
of the screen by introducing our own custom theme.

In this chapter we're going to start with adding our own functionality into
SugarCRM. Nothing too elaborate, and we won't touch any of the core functionalities
(yet). We'll just see how easy it is to add your own tab screens and Dashlets—your
own GUI components.

A Note About Terminology
In Chapter 1, we've been referring to Tab screens, but you must have already
realized that the information for these are stored in a directory named modules.
That's because SugarCRM consists of a number of components (i.e. modules). If a
module has a tab screen then (in SugarCRM talk) this is a module tab. OK, got that?
Right, let's look at one of the modules—the Home module. We're actually going to
change the impact of clicking on the About link.

Customizing the SugarCRM Application Content

[26]

Changing the About Screen
If you click on the About link you'll see something like:

All very interesting, but it doesn't really relate to your project or the organization
in which SugarCRM is going to be used. However, it does tell us a lot about how
SugarCRM is structured. If you look at the URL you can see that we're using the
Home module and the action is About. This means that if you do want to change
the contents of the About page then you need to look in the modules/Home
directory—where you will find the About.php file. After taking a backup of the file
(just for peace of mind) you can edit it so that it contains the information that you

Chapter 2

[27]

want to display. How you edit the file is up to you�� for instance, I use the Linux text. How you edit the file is up to you�� for instance, I use the Linux text
editor GEdit:

However, once you've saved About.php you'll be able to view it via your browser:

Customizing the SugarCRM Application Content

[28]

Of course, you may decide that you want to make the About screen more useful,
something that will be helpful to your users—i.e. a help screen.

Changing the About Screen into a Help
Screen
The first thing that you may want to do is to change the link text from About to
something more appropriate—such as Penguin P.I. Help. To do that we need to
return to the custom/include/language/en_us.lang.php file that we worked with
in Chapter 1. Just add a line:

$app_strings['LNK_ABOUT'] = 'Penguin P.I. Help';

And then refresh your browser:

Now you just need to modify modules/Home/About.php again so that it contains
some helpful information and refresh the page on the browser:

Chapter 2

[29]

Of course, at this point you're probably thinking that this is all very interesting, but
what you actually want to do is to start creating your own tabs. Obviously that's
what we need to look at next.

Controlling the Visible Tabs
Before we create a new tab it's probably worth having a look at how we can control
the visibility of SugarCRM tabs to our users.

User Control
In fact, in an out-of-the-box SugarCRM installation, any user can choose which tabs
are visible by clicking on My Account:

Then, for example, if Korora wishes to remove the Bug Tracker she can do this in the
Layout Options section:

When she clicks the Save button then Bug Tracker will no longer be visible in the
list of tabs:

Customizing the SugarCRM Application Content

[30]

However, while this is useful it does have its drawbacks:

User control of tab visibility will make it more difficult for you to create a
single set up for your organization.
Users may choose not to view the tabs that you are going to create.

It's worth noting that there is only one tab that can't be removed by the user—the
Home tab. However, this can still lead to some extreme situations:

If that's the case then you may wish to limit the users' ability to change the tabs to be
shown—the least it will do is prevent a call to the Help Desk from Korora saying "I'm
not sure what has happened, but I can't access my emails anymore".

•

•

Chapter 2

[31]

Administrator Control
If you want only the administrator to be able to set the visible tabs then you need
to log on to your admin account, and go to the Admin screen, and then click on
Configure Tabs:

Now you can decide:

Whether or not your users are allowed to configure their own tabs
Which tabs are available to your users

By default users are allowed to configure their own tabs, so uncheck Allow users
to configure tabs, and then drag and drop tabs until you've got the setup that
you require:

•

•

Customizing the SugarCRM Application Content

[32]

At this point it's worth considering the browser that you're using. You will find that
this screen will work well with:

Firefox
Internet Explorer
Konqueror
Safari

Unfortunately, it won't work with Opera (my personal favorite).

Once you've clicked on the Save button your users will not be able to disable any of
the tabs, and they will only be able to view the ones that you have selected for them:

A Note about Administering Live Systems
If you decide to restrict tab selection to administrators only on a live system then
don't walk away expecting no problems. Let's imagine that the Help Desk has
explained to Korora that she needs to click on My Account to solve her problem.
What she'll see is:

•

•

•

•

Chapter 2

[33]

This is, of course, because Korora had previously removed all the other tabs, and
now you've removed her ability to add any back in again. Fortunately the solution
is quite simple—she just needs to scroll up to the top of her My Account screen, to
where she'll see Reset To Default Preferences:

Clicking this link would cause Korora to be logged out, but once she logs back in her
tabs would be set up as you had defined them.

And it is worth pointing out that when a user does this all of their preferences will be
reset, so the first thing that they'll see will be:

One worrying effect that all this has is that your user's email signature (if they have
one) will suddenly stop appearing when they create new emails. Don't worry—the
signature hasn't been deleted, it has just been turned off. Your user can turn it back
on by going into My Account, clicking Edit and then selecting the signature under
Email Options:

www.allitebooks.com

http://www.allitebooks.org

Customizing the SugarCRM Application Content

[34]

Now, if you don't want to leave it to individual users to reset their default tabs you
can do this in bulk—but not via the SugarCRM application itself. You'll need to log
on to your SugarCRM database and use some SQL:

update user_preferences
set contents=null
where category='global'

But be warned—this will reset the default preferences of all users.

Adding a Custom Tab
If you want to create a custom tab for SugarCRM then you'll need to start by creating
a new module (remember that a tab is actually a module tab). You may be surprised
to learn that this is very easy. You'll find that there are four steps:

1. Create a directory for your module.
2. Create four default files—Forms.php, index.php, language/en_us.lang.php,

and a PHP file with the same name as your module—none of these files need
contain anything, but they must exist.

3. Update include/module.php to tell SugarCRM that your new tab exists.
4. Update custom/include/language/en_us.lang.php so that it contains

the text to be displayed for the tab (just as we did when we renamed tabs
in Chapter 1).

So, let us look at those steps in a bit more detail. On Windows or Linux you can
create the required directories and files via your file managers or on the command
line�� for example, on Linux you could move to your SugarCRM directory and
then type:

mkdir -p modules/TestApp/language
touch modules/TestApp/language/en_us.lang.php
touch modules/TestApp/Forms.php
touch modules/TestApp/index.php
touch modules/TestApp/TestApp.php

Then edit include/module.php and add the lines:

$moduleList[] = 'TestApp';
$beanList['NewTab'] = 'TestApp';
$beanFiles['NewTab'] = 'modules/TestApp/TestApp.php';

Chapter 2

[35]

Finally edit custom/include/language/en_us.lang.php so that it contains the line:

'TestApp' => 'Test App',

for example:

$app_list_strings['moduleList'] = array (
 'TestApp' => 'Test App',
 'Home' => 'Home',
 'Dashboard' => 'Dashboard',
 'Contacts' => 'Contacts',
 'Accounts' => 'Accounts',
 'Opportunities' => 'Preliminary Investigations',

Now, admit it—you've done that, refreshed your browser and there's no change
there? Well, don't worry, you haven't done anything wrong—you're just jumping the
gun a little. First you need to log on as an administrator, and go to the Admin screen
where you'll find your new tab under Hide Tabs:

Customizing the SugarCRM Application Content

[36]

You'll need to drag your new tab into Display Tabs, and then it will be made
available to your users:

Now it's just a matter of what you want to show in the tab screen...

Custom Tab Contents
At the moment, if you view the Test App tab then you'll see:

Chapter 2

[37]

I'm sure you'll agree that it is nice to see that we can create a new tab, but it's not the
most interesting thing in the world, is it?

You will remember that our new module (TestApp) actually consists of four
default files:

modules/TestApp/language/en_us.lang.php

modules/TestApp/Forms.php

modules/TestApp/index.php

modules/TestApp/TestApp.php

You will also remember that these files do need to exist, but they don't need to
contain anything. Obviously the next stage is to edit these files in order to add
contents to the tab. In fact we only have to edit one of the files—modules/TestApp/
index.php. So, you could start by adding some HTML code to the page:

<HTML>
<H1>Test Application</H1>
</HTML>

But that's boring—and you don't want to be boring, do you? It would seem more
sensible to add something more interactive. But what? Since all of the modules are
written in PHP then we can use them as a starting point. For example, you can take a
little code from the Emails module, and a little code from the Opportunities module:

<?php
include ('modules/Emails/language/en_us.lang.php');
include ('modules/Emails/ListView.php');

include ('modules/Opportunities/language/en_us.lang.php');
include ('custom/modules/Opportunities/language/en_us.lang.php');
include ('modules/Opportunities/ListView.php');
?>

•

•

•

•

Customizing the SugarCRM Application Content

[38]

This code will produce:

Having just said 'Don't use HTML, use PHP instead', I'm now going to say 'Actually,
there is something interesting in HTML that you can make use of.' Why? Well, it's
probable that you've got some useful applications that people are already using (and
don't particularly want to lose). If these are web-based then you've got a few options:

Carry on using the existing applications in parallel with SugarCRM—not the
best idea since it means that you can't have a single, global point of reference,
and can cause a bit of a headache when it comes to maintenance.
Re-write all of the software into SugarCRM—good plan, but a bit time
consuming, plus it may delay the launch of your application.
Incorporate the existing applications directly into SugarCRM—now that
sounds like a good idea.

•

•

•

Chapter 2

[39]

And that's where the HTML tag <IFRAME> comes in.

Let's imagine that Pygoscelis has already employed someone to create a web page
that enables staff to use webcams when carrying out some surveillance:

You'll find that you can incorporate any such web page very easily. First we need to
edit modules/TestApp/index.php so that it contains:

<IFRAME SRC="http://acamas/apache2-default/webcam" WIDTH=100%
HEIGHT=400>
</IFRAME>

Customizing the SugarCRM Application Content

[40]

Of course, you'll need to change the web page to one that you can
actually access. And you might want to change the TestApp title in
custom/include/language/en_us.lang.php to something more appropriate:

'TestApp' => 'PPI Surveillance WebCams',

We will return to developing tabs throughout the book, but for now we're going to
look at another aspect of customizing the application content—Dashlets.

Chapter 2

[41]

User-Controlled Dashlet Customization
If you look at the Home tab then you'll see Dashlets in action:

Users can edit the screen by removing Dashlets:

Users can even customize each Dashlet themselves:

Customizing the SugarCRM Application Content

[42]

They can also decide which fields are shown in the Dashlet:

So that we see the tabs, and they can display exactly what they want:

Chapter 2

[43]

By clicking on Add Dashlets we can make the required changes:

Your users can add any Dashlets that are included in the application. Obviously, we
want to be able to give the users any extra Dashlets that they require in order to carry
out their jobs effectively. So, that's what we'll look at next.

Customizing Dashlets
After having created your own module tabs you've probably got a fair idea of how
to create a new Dashlet. You're probably expecting to have to create a directory, and
some default files—and you're quite right.

Creating Custom Dashlets
In order to create your own Dashlet you'll need:

A directory in which to store the Dashlet files
A meta file containing details of how the Dashlet should be displayed
The Dashlet file itself—this contains the workings of the Dashlet itself

•

•

•

www.allitebooks.com

http://www.allitebooks.org

Customizing the SugarCRM Application Content

[44]

So, the first thing that you need to do is to create a directory in which the dashlet is
stored. This directory is going to be in the custom/modules area, and needs to take
the format <dashlet name>/Dashlets/<dashlet name>. So, on Linux you can do
this by typing:

mkdir -p custom/modules/PPIDashlet/Dashlets/PPIDashlet/

Or, obviously you could create the structure using a file browser on either Linux or
Windows. Next you need to move to the new directory and create the meta file.
As you'd expect it has to be named the same as your Dashlet, but has the suffix
meta.php. In this case we'll need PPIDashlet.meta.php, and it should contain
something like:

<?php
 $dashletMeta['PPIDashlet'] = array(
 'title' => 'PPI Dashlet',
 'description' => 'A Dashlet for Penguin P.I.',
 'icon' => 'themes/PenguinPI/images/Tasks.gif',
 'category' => 'Tools');
?>

Most of the file is self explanatory, the only thing that may be new to you is the
category. However, if you look at the Add Dashlets dialog then you'll see that you
have a choice of categories under which a dashlet can be located.

Next we need to create the dashlet file, PPIDashlet.php. In this case we're just going
to get the dashlet to display some text:

<?php
 //Start by including the base Dashlet class
 require_once('include/Dashlets/Dashlet.php');
 class PPIDashlet extends Dashlet
 {
 function PPIDashlet($id, $def)
 {
 global $current_user, $app_strings;
 parent::Dashlet($id);
 $this->title = 'My PPI';
 }

 function display($text = '')
 {
 $text = 'Dashlet for the PPI Organization';
 return parent::display($text);
 }
 }
?>

Chapter 2

[45]

OK—not mind boggling functionality, but it's enough to show how to quickly create
a Dashlet. As the book progresses we'll make the functionality more complicated.
However, for the time being, let's look at how we make our new (simple) Dashlet
available to our users.

Making Dashlets Accessible to Users
Although you've created your dashlet, no one will be able to see it yet. As you might
expect, we have to do that through the admin account. Once you have logged on as
an administrator, then you'll need to go to the Admin screen:

Having clicked on Admin you'll need to look for the System section, and then (even
though this may seem strange) find the link marked Repair.

You may not think that Repair is really a suitable label for this activity. However,
the next stage is logical—the link that you'll have to look for now is named
Rebuild Dashlets:

Customizing the SugarCRM Application Content

[46]

Your new Dashlet will now be available to all your users (in the Tools section):

And the end result? Nothing too complicated yet, but it's a good starting point:

With that completed you have the beginnings of your own custom
SugarCRM implementation.

Chapter 2

[47]

Summary
In this chapter we've started to customize the SugarCRM application itself, and
you're now able to add our own components in the form of module tabs and
dashlets. You've also seen how to add our own About Page and modify the text for
the link to the About screen. You can see that, by default, users can set which tabs
are visible when they access SugarCRM. However, this option can be disabled via
the admin account. Thus to sum it all up, this chapter covers various facets to modify
SugarCRM to suit our needs

In Chapter 3 we will continue with the customization of module tabs and dashlets, as
we start introducing custom fields into SugarCRM.

Introducing Custom Fields
As you've worked your way through the first two chapters of this book, you have
learned how to:

Change the title of each of the module tabs that make up the SugarCRM
front end.
Change the terminology used in each of the module tabs, so that SugarCRM
uses the same terms as your organization.
Give SugarCRM a look and feel in keeping with your company's branding.
Create your own module tabs and dashlets, either to add your own
functionality, or to incorporate any existing web-based applications already
used in your organization.

So, now you can provide a SugarCRM implementation that won't be completely
alien to your intended users—hopefully they'll be able to use the application with
minimum training.

Of course, there's more to it than just making SugarCRM look the way that you
want. Let us imagine Korora Blue sat at her desk. The first thing that she does, every
morning, is to evaluate all of the new preliminary investigations. When she does
this then she decides if any surveillance needs to be carried out. As it stands, there
is nowhere to store this in the SugarCRM application. So, obviously, we need to
provide some extra fields for Korora so that she can do her job.

And that's the aim of this chapter—to show you how to add your own custom
fields to SugarCRM. By the end of the chapter your implementation won't just look
different to the standard, out-of-the-box SugarCRM application, it will actually start
to behave differently.

•

•

•

•

Introducing Custom Fields

[50]

Adding a Custom Field
Before we jump in and add a new field let's have a look at what it is that Korora is
trying to achieve.

The Standard Module Tab
When Korora decides that a new preliminary investigation is required she can do so
by using the shortcuts on her Home tab:

Having clicked on Create Preliminary Investigation she just needs to fill in the
appropriate details:

Chapter 3

[51]

So, is there a show stopper here? Well, in Korora's case, yes. She needs to be able to
record whether or not any surveillance is required, but that's not possible with
the standard form. What she actually needs is an extra drop-down field with a
'Yes/No' option.

The General Process for Creating a Custom
Dropdown
Having decided that Korora needs a dropdown adding to Preliminary
Investigations we need to go through three stages in order to add the custom field:

1. Create the options for the drop-down box
2. Create the custom field itself and link the options to it
3. Place the drop-down box on a module tab

To start with there are two ways to create your own drop-down box:

By using Studio
Manually

We'll start by using Studio.

Using Studio to Create a Drop-down Box
As you would expect you will need to log on to SugarCRM as an administrator, and
then go to the Admin screen where you'll find the link to the Studio:

Once you're in the Studio, you need to find the Edit a Module link:

•

•

Introducing Custom Fields

[52]

And then choose the module that you want to edit. At the moment we're
interested in Preliminary Investigations (you'll remember that this was formerly
named Opportunities):

At this point you have to select Edit Drop Downs from the available options.

Once you've done that you can edit existing dropdowns, but at the moment select
Create a Drop Down.

You can now create your new dropdown by giving it a suitable name, and assigning
options to it. As you create each option you'll find that you need to enter two values—
the value to be displayed on the screen and the value to stored in the database:

Chapter 3

[53]

Interestingly, once you've clicked Save you'll find that the dropdown is actually
available to All modules, and not just Preliminary Investigations:

Now, all of that may seem a little long-winded—especially if you have a number of
dropdowns to create. In fact, you will probably find that it is quicker and easier to
create a dropdown manually, and so that's what we'll look at next.

Manually Adding a Drop-down Box
You will find that adding a dropdown manually is much simpler than adding one
using the Studio—as long as you're happy to edit files. Well, only one file. You need
to edit a file that you have already used in Chapters 1 and 2: custom/include/
language/en_us.lang.php.

Now we're going to use custom/include/language/en_us.lang.php to create a
new dropdown. All you have to do is to add the definition for the dropdown:

$app_list_strings['surveillance_required_dom'] = array (
 'YES' => 'Yes',
 'NO' => 'No',
);

And that's all there is to creating a new dropdown. Next we need to look at the
second stage of adding your custom field to a module tab—creating the custom
field itself.

You have learned that we can create a dropdown either by using the Studio or by
doing it manually. Custom field creation is exactly the same.

Using Studio to Create a Custom Field
Having defined a dropdown we now need to create a custom field. In actual fact this
is a table column in the database. We will see how to do this manually, but first let's
see how to use the Studio to do the job.

www.allitebooks.com

http://www.allitebooks.org

Introducing Custom Fields

[54]

You'll remember that earlier we selected a module to edit (Preliminary
Investigations) and then Edit Drop Downs—this time select Edit Custom Fields:

Next you'll need to click on Create Custom Field:

And then you'll be presented with the default field—the Text data type:

Of course, we're not interested in the text field, we're interested in creating a
dropdown. If you select Dropdown then you'll see that you'll be presented with a
list of existing option lists. The one that we've already created should be available in
this list:

Chapter 3

[55]

Most of the fields are self explanatory, but it's worth just looking at a couple of them
before we move on:

Mass Update—If you enable this then you can include your field in the mass
updates in the module tab screen.
Audit—This tells SugarCRM to track any change that you make to your field.
Duplicate Merge—This allows you to merge any duplicate records.

Once you've entered all of the details then press Save, and the Studio will update the
SugarCRM database for you:

You will notice that the details are not saved exactly as you entered them:

_c is appended onto the end of your field name.
_c_10 is appended onto the end of your field label.

•

•

•

•

•

Introducing Custom Fields

[56]

Spaces in the field name and label are replaced by underscores.
The data type is no longer shown as Dropdown, it is defined as enum—this
is because there isn't a data type of 'dropdown'; the data is actually stored as
an enum (i.e. a list).

Now you're ready to add the dropdown to your module tab. However, first you may
want to consider how to create the field definitions manually.

Creating the Custom Field Manually
We've already established that a custom field is simply a reference stored in a
database. All we have to do is to insert the appropriate information into the
database ourselves:

insert into fields_meta_data
 (id,
 name,
 label,
 help,
 custom_module,
 data_type,
 ext1,
 default_value,
 date_modifieddate_modified
)
values
 ('Opportunitiessurv1_req_c',
 'surv1_req_c',
 'surv1_req_c_10',
 'Surveillance?',
 'Opportunities','Opportunities',
 'enum',
 'surveillance_required_dom',
 'YES',
 now()
)
;

There is, of course, a major advantage here, you can create a simple script to create
all of the custom fields that you need—especially useful when you come to migrating
from your development environment to your live environment (we'll discuss that
further in Chapter 7).

•

•

Chapter 3

[57]

Now, we're not quite finished with the database yet. If you've used Studio to add a
custom field for the Opportunities module then you will find that you have a table
named opportunities_cstm in the database (and don't forget—the renaming of the
module is only for the browser—the SugarCRM structure remains the same). If not
then you'll need to create it yourself. This table requires a new field for every custom
field that you add (to opportunities, of course).

So, depending on whether opportunities_cstm exists or not, you'll need to do one
of the following:

create table opportunities_cstm (surv1_req_c varchar(150));

or:

alter table opportunities_cstm add surv1_req_c varchar(150);

On the other hand, once you've created your fields, then you may prefer to let the
Studio set up opportunities_cstm for you. To do that just uses the Studio's Repair
Custom Fields facility:

Once you've added all of the fields that you want then you can view them via
the Studio:

With your custom fields defined you can add them to your module tabs.

Introducing Custom Fields

[58]

Adding the Dropdown to a Module Tab
You'll need to return to the module editor in the Studio in order to add your newly
created custom field, but this time go to the Edit Layout link:

At this point you'll be presented with the list the layouts that you're able to modify:

Now, I'm sure you'll agree that so far the development environment hasn't been
exactly WYSIWYG. However, if you click on Edit View (for example), you'll find that
you see the layout to be modified, and a toolbox:

Chapter 3

[59]

You'll see that the toolbox contains the field that we created, and you can drag and
drop it into an appropriate location (you'll find a space between Lead Source and
Assigned to):

All that is left to define is the text to be displayed next to your new drop-down box.
You can either do this by using the Studio, or by adding a line to custom/modules/
Opportunities/ language/en_us.lang.php:

$mod_strings['Surveillance_Required_c_10'] = “Surveillance Required?”;

Introducing Custom Fields

[60]

Once you've done all of that then you can click on Save & Publish to make the new
layout available to all of your users:

Of course that's fine for a single field (there's a gap for it), but you're going to have to
make space for any additional fields.

Adding Rows
If you need to add more that one field then you'll need to add additional rows. You
may have already noticed that one of the buttons on the layout screen is entitled Add
Rows—click on this and you can add as many rows as you need:

Chapter 3

[61]

Adding rows is very easy (just press one of the + buttons). However, you need to
be careful if you want to delete a row. If you accidentally delete a row containing
important fields, you will find that there is no Undo button. You will also find that
any fields that you delete by doing this do not appear in the toolbox when you return
to the layout editing screen.

Recovering Previous Versions of a Layout
If, for any reason, you decide that you need to roll back to a previous layout then
click on the History button. You can then view (and restore) the layout that
you require:

Manually Modifying Layouts
We've seen that we can use the Studio in order to modify the layout of the
SugarCRM screens, but, as you'd expect, we can do this manually as well. The views
that we can edit in the Studio are:

Display
Edit
List
Search

We've already established that the files for Preliminary Investigations are stored in
the modules/Opportunities directory. All we have to do is to find the right files to
edit. In the directory you'll find:

DisplayView.html

EditView.html

•
•
•
•

•

•

Introducing Custom Fields

[62]

ListView.html

SearchView.html

If you have already modified the edit view, and now look at EditView.html, then
you'll find that it contains something like:

<tr><!-- BEGIN: open_source -->
<td class=”dataLabel”>

 {MOD.Surveillance_Required_c_10}{MOD.Surveillance_Required_c_10}

</td>
<td class=”dataField”>

 <select title='{SURVEILLANCE_REQUIRED_C_HELP}'<select title='{SURVEILLANCE_REQUIRED_C_HELP}'
 name=”surveillance_required_c”>{OPTIONS_SURVEILLANCE_REQUIRED_C}
 </select>

</td>
<td class=”dataLabel”>

 {MOD.LBL_SALES_STA{MOD.LBL_SALES_STAGE}
 {APP.LBL_REQUIRED_SYMBOL}

</td>
<td class=”dataField”>

 <select tabindex='2'<select tabindex='2'
 name='sales_stage'>{SALES_STAGE_OPTIONS}
 </select>

</td>
<!-- END: open_source --></tr>

You'll realize that this is simple HTML code for adding lines to a table, but that it
also makes use of some of our SugarCRM variables. Now, if we look back at the field
that we manually created in this chapter then we'll see that its details are:

name—surv1_req_c
label—surv1_req_c_10

All we have to do is to add another line for our extra field at the end of the table of
details in EditView.html:

<tr><!-- BEGIN: open_source -->
<td class=”dataLabel”>

•

•

•

•

Chapter 3

[63]

 {MOD.SURV1_REQ_C_10}

</td>
<td class=”dataField”>

 <select title='{SURV1_REQ_C_HELP}'<select title='{SURV1_REQ_C_HELP}'
 name=”surv1_req_c”>{OPTIONS_SURV1_REQ_C}
 </select>

</td>
<!-- END: open_source --></tr>

Again, we're just using simple HTML to add a line to the table, but including
references to the new field that we've created. And don't forget to modify
custom/modules/Opportunities/language/en_us.lang.php to add a label for
the dropdown:

$mod_strings['surv1_req_c_10'] = “Surveillance Started?”;

The end result is a screen containing two new dropdowns:

Introducing Custom Fields

[64]

Including Custom Fields in Mass Updates
I'm sure that you're already aware of the mass update function built into SugarCRM.
This allows you to view a number of opportunities, cases, project tasks, etc., and
then update key fields at the same time. So, for example, if you go to our Primary
Investigations tab then you'll find that the default mass-update panel for the module
looks like:

The mass-update function is very useful, and you will, of course, want to use your
custom fields with it. In fact, if you've been following the examples in this chapter
then you may find that one of the fields is already there:

So, how do we add fields to the Mass Update sub-screen? Actually it is very easy.
You may remember that earlier we saw how to create a new field using the Studio.
On the Studio screen there's a box named Mass Update—tick this and your field will
be automatically included in the sub-screen.

We have seen how to create the custom field manually using SQL, and, as you'd
expect, it's just a matter of including a value for the appropriate field in the
SQL statement:

insert into fields_meta_data
 (id,
 name,
 label,
 help,
 custom_module,
 data_type,
 ext1,
 default_value,

Chapter 3

[65]

 date_modified,
 mass_update

))
values
 ('Opportunitiessurv2_req_c',
 'surv2_req_c',
 'surv2_req_c_10',
 'Surveillance?',
 'Opportunities',
 'enum','enum',
 'surveillance_required_dom',
 'YES',
 now(),
 1

)
;

But, what about fields that we've already created? Hopefully, you'll remember that
back then we used the Studio to select the screen for creating new fields. This time
select View Custom Fields:

Introducing Custom Fields

[66]

Then you can choose the field that you're interested in and check the Mass Update box:

Or, you can achieve the same by running SQL directly on the database:

update fields_meta_data
set mass_update=1
where id='Opportunitiessurv1_req_c';

Making Sure that Your Changes are Visible
Occasionally you'll make changes that aren't automatically passed through to all of
your users. This is because SugarCRM uses a caching system for any custom fields
(similar to, but not the same as, your web browser's caching). So, if you do change
the mass_update field, make sure that you clear the cache via Studio's Custom
Field Editor:

Or you can do it manually by clearing the contents of the
cache/dynamic_fields directory.

Chapter 3

[67]

Limitations of the Mass Update
Now, before you run off and create loads of fields, it's worth noting that not all fields
can be used for mass updating. The only field types that have these capabilities are:

Dropdown (as we already know)
Multiple Select
Radio Buttons
Date

That means that you can't use:

Text
Text Area
Integer
Decimal
Checkbox
Email
Web Link
HTML

Adding Built-in SugarCRM Fields to the
Mass Update
At this point you may be wondering if any other built-in fields can be added into the
mass update. The answer is yes, but like custom fields not all types can be used. So,
your next questions will be—which ones are they, and how do you do it?

The built-in fields are handled differently to custom fields. In each module directory
you'll find a vardefs.php file. Each vardefs.php file contains the details of fields
to be used by the SugarCRM application. Any fields that can be used in the mass
update have a massupdate property. Not all modules have fields that you can add to
the mass update, but if you look in modules/Emails/vardefs.php (for example)
then you'll find:

'date_start' => array (
 'name' => 'date_start',
 'vname' => 'LBL_DATE','vname' => 'LBL_DATE',
 'type' => 'date','type' => 'date',
 'len' => '255',
 'rel_field' => 'time_start',
 'massupdate'=>false,
),

•
•
•
•

•
•
•
•
•
•
•
•

Introducing Custom Fields

[68]

So, the standard mass update for emails looks like:

However, change massupdate to true, and you'll see:

As you can see the built-in fields have the same limitations as custom ones when it
comes to mass updates—in this case date_start can only be included because it is a
date field.

Creating other Field Types
We've seen how to create a drop-down field, both by using the Studio and manually,
but you're probably wondering how to create other field types. Some (such as radio
buttons) follow the same route as drop downs. Other types (such as dates) are
simpler to create, since the process is the same except that you don't have to start by
creating the drop-down box itself. So, if you want to create a date box (for instance)
then go straight to the custom field editor:

Chapter 3

[69]

From there on the process is exactly the same as creating the dropdown that we've
already dealt with.

And if you're going to do this manually (using SQL) then you just need to know the
data type—obviously in this case it would be date, so use an SQL insert query to
do that:

insert into fields_meta_data
 (id,
 name,
 label,
 help,
 custom_module,
 data_type,
 date_modified,
 mass_update
)
values
 ('Opportunitiessurv_start_c',
 'surv_start_c',
 'surv_start_c_10',
 'Surveillance Start',
 'Opportunities',
 'date',
 now(),
 1
)
;

Having inserted the data, don't forget to add a new field to opportunities_ctsm,
and a simple SQL alter statement will do that:

alter table opportunities_cstm add surv_start_c date;

Update custom/modules/Opportunities/ language/en_us.lang.php :

$mod_strings['surv_start_c_10'] = “Surveillance Start Date”;

Introducing Custom Fields

[70]

And once you've used the Studio or edited the .html files you'll have a date field on
your screen as well as the dropdowns that we've already created—and Korora's life
will suddenly become much easier:

Field Data Types
So far we've looked at the dropdown (enum) and date field types. Now, if you are
going to use the Studio to create your new fields then all you have to do is select the
data type from the drop-down list. However, if you want to create the fields manually
then you'll need to know what to enter in the data_type field in fields_meta_data:

Text—varchar
Text Area—text
Integer—int
Decimal—float
Checkbox—bool
Email—email

•

•

•

•

•

•

Chapter 3

[71]

Dropdown—enum
Multiple Select—multienum
Radio Buttons—radioenum
Date—date
Web Link—url
HTML—html

With all this information at your fingertips you can now create whatever new fields
your users require, and you can do it by using the methods that you feel most
comfortable with—whether it be through the Studio, or by editing files and using
SQL on the command line.

Summary
In this chapter we've seen how to create and make use of our own custom fields in
SugarCRM modules. We've also seen how to include some of our fields (and some of
the built-in SugarCRM fields) in the mass-update sub-panels.

We saw that the process for creating a custom field manually is the same as in the
Studio; it's just that you'll be doing all of the things that the Studio would do for you.

In Chapter 4 we'll start to look at SugarCRM in more depth as we start to understand
the structure of the application itself.

•

•

•

•

•

•

Interfacing with SugarCRM
Hopefully, you are feeling very confident about customizing SugarCRM. Therefore,
this seems an appropriate point to take a step back from the customization process,
and have a deeper look into the structure of SugarCRM itself. So, what we'll do
now is:

See how the SugarCRM application is put together as we examine the user
and data interfaces in this chapter.
In the next chapter we'll see how the SugarCRM database is put together.

What Have we Learned so Far?
Over the past three chapters we've actually learned quite a bit about the application
architecture. To start with:

The application consists of a number of PHP files on a web server.
The application requires a database in the background.

So, if we think about the PHP files we know that:

We always access the SugarCRM application via a central
PHP file—index.php.
We have the custom directory for storing any language customizations.
We have a themes directory where we store the files for customizing colors,
fonts, icons, and images for the application.
SugarCRM consists of a number of module directories, which provide the
actual SugarCRM functionality. They're all stored in the modules directory.

Let us just remind ourselves about the files that each of these directories needs
to contain.

•

•

•

•

•

•

•

•

Interfacing with SugarCRM

[74]

The Include Directory
The include directory contains module-independent files such as:

modules.php

The Custom Directory
The custom directory contains:

custom/include/language/en_us.lang.php

custom/modules/<module>/language/en_us.lang.php

The Themes Directory
The themes directory contains a directory for each theme to be used by your
application. Each of these directories must have:

config.php

style.css

The Modules Directory
The modules directory contains a directory for each module to be used by your
application. Each of these directories must have:

index.php

Forms.php

<module name>.php

language/en_us.lang.php

We've also learned that the SugarCRM modules have an interface to the database,
and in particular:

Custom fields can be defined on the database, but the application caches
details about them in cache/dynamic_fields.
Each module has its own data field definitions in a file named vardefs.php.

From all of this we can already build ourselves a general picture of the SugarCRM
application architecture.

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[75]

Overview of the SugarCRM Application
Architecture
The SugarCRM application architecture is simple, but effective:

As you can see form the diagram above, and, as you may well have worked out for
yourself already from the last three chapters, our users use their computers (i.e. their
web browsers) to access the Sugar User Interface—this then governs all interactions
between the user and the SugarCRM functionality.

You will also see that there is another interface (the SugarCRM data interface)
between the SugarCRM functionality and the underlying database (as you
would expect).

In the remainder of the chapter we'll concentrate on the user and data interfaces, and
then in Chapter 5 we'll look at the database itself.

Interfacing with SugarCRM

[76]

The SugarCRM User Interface
You probably have worked out that the SugarCRM user interface is actually
generated by the index.php file in your main SugarCRM directory:

So, there's nothing here that you don't already know. It is, therefore, worth having a
look at what the interface actually does for us.

The user interface (or if you prefer—the UI layer):

Decodes information posted (via the HTML forms) to the SugarCRM forms
Authenticates users' log on details and active sessions
Provides a wrapper around the modules files

In other words all a user has to do is to call up index.php on the web server, and it
will do all of the work for them.

Calling Modules
Having identified that index.php handles all of our interactions with SugarCRM,
it's worth just looking at how we can use the user interface to guide us to particular
modules, and, perhaps more importantly, how we can use it to carry out actions.

There are two key parameters that you can pass to index.php:

module—This, obviously, is the module that you want to call. However, to
be completely correct, it is the directory in which the module is stored.
action—This is the PHP file in the module directory to be used. By default its
index.php (i.e. the index.php file in the module directory, not index.php in
the top level of the web server). However, you can call other PHP files in
the directory.

•
•
•

•

•

Chapter 4

[77]

So, let us imagine Korora logging on—she'll start by typing in the SugarCRM URL
(in her case http://hector/penguin_pi) however, once she's finished typing in her
user name and password then she'll see:

As you can see the user interface has set the module to Home, and the action
to index.

If Korora then clicks on one of the tabs (for example Preliminary Investigations)
then the user interface handles this change for her, and you can see that this has been
done by setting the module to Opportunities and the action to index:

In fact, you'll find that each of the tab titles is actually a link, and each of the links
simply passes the appropriate module and index back to the main index.php. For
example, if you place the mouse pointer over the Preliminary Investigations tab title
then you'll see that the link address is:

We can now use this knowledge to manage the way in which we use SugarCRM. For
example, if we return to the module tab that we created in Chapter 2, then we can
change it so that it contains a list of key 'jobs' to be done.

Interfacing with SugarCRM

[78]

We could start by changing the title of the module by going to custom/include/
language, editing en_us.lang.php, and changing:

'TestApp' => 'PPI Surveillance WebCams',

to:

'TestApp' => 'Daily Tasks',

Next we can think about editing modules/TestApp/index.php so that Korora's
daily tasks are displayed. And, to make it even more useful, we can make use of
the strftime function (which formats the local time) to display different tasks at
different times:

<?php
global $current_user;
#Get the local time (from the server)
$h = strftime("%H");
$m = strftime("%M");
?>
<h1>Daily Tasks for
<?php
#Display the users name (to be more personal just use the first name)
echo $current_user->first_name . " " . $current_user->last_name;
?></h1>

<table width=100%>

<?php
#Display tasks for the morning
if ($h >= 9) { ?>
<tr><td><h2>AM Tasks</h2></td></tr>
<tr><td>

Preliminary Investigations
</td></tr>
<?php } ?>

<?php
#Display tasks for the afternoon
if ($h >= 12) { ?>
<tr><td><hr></td></tr>
<tr><td><h2>PM Tasks</h2></td></tr>
<tr><td>

Investigations
</td></tr>
<?php } ?>
<tr><td align=right>
<?php
#And finally show the current (server) time
echo "Current time:" . $h . ":" . $m; ?>
</td></tr>
</table>

Chapter 4

[79]

The end result (in the morning) is:

And in the afternoon:

Interfacing with SugarCRM

[80]

Now that we've had a look at the SugarCRM user interface it's time to move on to the
SugarCRM Data Interface—otherwise known as SugarBean.

SugarBean—The SugarCRM Data
Interface
We'll be looking at the structure of the database in Chapter 5, but it's possible that
you will never have to access it, and that's because of SugarCRM's SugarBean:

So, what is the SugarBean? At its simplest level it's another PHP file, but it does
a very important job—it's a high-level API that allows you to manipulate your
business data without having to worry (too much) about what's going on in the
database. The SugarBean:

Chapter 4

[81]

Is the base class for the entire SugarCRM business object that you need to
use. This means that the Opportunity object (for example) is just an extension
of the SugarBean.
It supplies all of the key functions for your business objects, such as creating
records, retrieving records, updating and deleting.

And, as you would expect, the SugarBean consists of a set of PHP files.

The SugarBean Files
As we've already learned the SugarBean is the data interface between our modules
and our database, and it consists of a number of PHP files on the SugarCRM
web server:

You can see that there are three key files for the SugarBean:

SugarBean.php—This is located in the data directory and is (as we've
already learned) the base class file.
vardefs.php—This is the schema for the business object. There is one for
each module that uses the SugarBean.
<module>.php—Each module using the SugarBean must contain this file,
and it is used to extend the base class for the particular module. It is not
actually named the same as the module, but takes the singular form, e.g. the
Opportunities module would contain Opportunity.php.

•

•

•

•

•

Interfacing with SugarCRM

[82]

So, if we continue to think about Opportunities for a moment then we'd see the
following set up:

In order to better understand the SugarBean let's start by examining vardefs.php in
a little bit more detail.

vardefs.php
You'll hopefully remember that we have already worked with the vardefs.php file.
In Chapter 3 we saw that it is possible to add SugarCRM fields into the mass update
sub-screen by editing this file—we modfied modules/Emails/vardefs.php, and
updated the massupdate property:

'date_start' => array (
 'name' => 'date_start',
 'vname' => 'LBL_DATE',
 'type' => 'date',
 'len' => '255',
 'rel_field' => 'time_start',
 'massupdate'=>true,

 'comment' => 'Date of last inbound email check',),

Last time we just made the changes and moved on, but this time we'll look each of
the properties, although now that you know that this is the database schema file, I'm
sure that you can work out most of the details yourself.

Chapter 4

[83]

In case you haven't worked out what's going on here—this array represents a single
field in the database schema, and you'll see that each field has a set of parameters. In
this case 'date_start' has:

'name'—Unsurprisingly this is the name of the field.
'vname'—The field label ID for the module's en_us.lang.php file.
'type'—The data type of the property.
'len'—The length of the field.
'rel_field'—Since this is a date field it has a related time field.
'massupdate'—You already know what this does (but in case you've
forgotten—you set this if you want to be able to update a group of records all
at the same time).
'comment'—That would be a comment then.

There are actually a lot more parameters that are available to you, but this is still a
fairly fluid area of SugarCRM, and these are liable to change. For that reason I'm not
going to give you an exhaustive list. Instead it's time to look at some of SugarCRM's
on-line documentation.

vardefs On-line Documentation
You'll find current details about vardefs at http://www.sugarcrm.com/
wiki/index.php?title=Vardefs_Documentation:

Having just said that you should refer to the on-line SugarWiki to obtain an up to
date list of all of the available parameters for the vardef fields, it is still worth looking
at one parameter—the type.

•

•

•

•

•

•

•

•

Interfacing with SugarCRM

[84]

vardefs Field Types
There are a number of different field types available to you for use in the data
schema—some of which you'll recognize if you've worked databases, and some of
which are specific to SugarCRM:

'assigned_user_name'—Contains a SugarCRM user name
'blob'—the Binary Large OBject—Normally used when you want to store a
large amount of data in a single field
'bool'—A boolean value, although it uses a 1 or 0 rather than true or false
and in fact it maps to tiny integer on a MySQL database
'char'—An array of characters—although you'd never use this, since
varchar is available
currency

'date'

'datetime'
'email'

'enum'—Enumeration—normally used for dropdown lists
'float'—A decimal number—normally used to store currency
'id'—A 36 character SugarCRM ID number
'int'—Integer
'link'—A relationship link
'nondb'—A derived value—not from database (and not technically a type),
which could come from a PHP function
'num'—Interesting one—this is actually stored in the MySQL database as
a varchar
'phone'—a phone number
'relate'—Related Bean, i.e. related to a field in another table
'text'—text field. Basically a 'char' that holds 65,535 characters
'varchar'—A variable sized string, the length of which is set by the
'len' field

So, nothing really contentious here—the list contains all the common field types that
you will need for your project.

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

Chapter 4

[85]

The Complete vardefs File
So far we've only looked at an individual field within vardefs.php; however, that's
not the end of the story. Each field is defined as an array of parameters, but these are
just part of a larger array of fields, and are stored in another array—the dictionary:

$dictionary['Opportunity'] = array(
 'table' => 'opportunities',
 'audited'=>true,
 'unified_search' => true,
 'duplicate_merge'=>true,
 'comment' => 'An opportunity is the target of selling activities',
 'fields' => array)

We're now going to leave vardefs.php again, but we will be coming back to it—in
Chapter 8, when we'll be looking at developing a complete module. In the meantime
we'll have a quick look at the <module>.php file.

The <module>.php File
Although I've referred to the <module>.php file don't forget that the file must
actually be given the singular name for the module, so for Opportunities use
Opportunity.php, for Emails use Email.php, and so on.

Our file contains a class that extends the basic SugarBean class (SugarBean.php), and
it's used to define:

Variables mapped to the database schema (vardefs.php)
Any additional functionality specific to the particular business object

The class files all have the same format, and so if we look at Opportunity.php, we'll
see that the base class file is loaded, along with any others that are required:

require_once('data/SugarBean.php');
require_once('modules/Contacts/Contact.php');
require_once('modules/Tasks/Task.php');
require_once('modules/Notes/Note.php');
require_once('modules/Calls/Call.php');
require_once('modules/Leads/Lead.php');
require_once('modules/Emails/Email.php');
require_once('include/utils.php');

•

•

Interfacing with SugarCRM

[86]

And then the new class is defined:

class Opportunity extends SugarBean
{
 var $field_name_map;
 // Stored fields
 var $id;
 var $lead_source;
 var $date_entered;
 var $date_modified;
 var $modified_user_id;
}

And, of course, it will need a constructor function:

function Opportunity()
{
 parent::SugarBean();
 global $sugar_config;
 if(!$sugar_config['require_accounts'])
 {
 unset($this->required_fields['account_name']);
 }
 global $current_user;
 }

As well as any extra functions required for the Opportunity class:

function get_list_view_data()
{
 global $locale, $current_language, $current_user, $mod_strings,
 $app_list_strings, $sugar_config;
 $app_strings = return_application_language($current_language);
 require_once('modules/Currencies/Currency.php');
 $temp_array = $this->get_list_view_array();
 #Set the sales state
 $temp_array['SALES_STAGE'] =
 empty($temp_array['SALES_STAGE']) ? '' :
 $temp_array['SALES_STAGE'];
 #Set the ammount
 $temp_array['AMOUNT'] = currency_format_number($this->amount);
 #Set the name
 $temp_array["ENCODED_NAME"]=$this->name;
 #Return the result
 return $temp_array;
}

Now, just like vardefs.php, we're going to leave the class file behind for now, and
return to it in Chapter 8. However, you, no doubt, want to see the SugarBean in
action—so we'll turn our attention to SugarCRM's logic hooks.

Chapter 4

[87]

SugarBean in Action—SugarCRM's
Logic Hooks
You may not have heard of logic hooks before—if not then, quite simply, they
provide us with the ability to add in our own custom business logic into the
SugarCRM applications. These logic hooks may take the form of some kind of
validation, or they may take the form of a more involved business operation.

If we look at the Penguin P.I. office for a moment, we might see Korora sat at her
desk. One of her tasks is to evaluate any new preliminary investigations and then
assign them to someone. However, when she does this she must ensure that:

Only people with certain roles can receive preliminary investigations.
Each preliminary investigation must got to the correct office covering the
geographical region in which the investigation is to be carried out.
Where more than one person qualifies for receiving the preliminary
investigation then the person with the least amount of work must be chosen.

We've therefore got two options:

Let Korora work it all out for herself—regardless of how long it's going
to take.
Add a logic hook that will do all of this automatically.

We're not going to do all of that at the moment; we'll save that for Chapter 9 when
we'll look at developing custom workflows within SugarCRM. However, what
we will do is create a logic hook that records changes in assigned users for
any Opportunity.

Now, if you're already used to working with databases such as Oracle then you'll be
used to the concept of a trigger. Triggers are simply pieces of code that are run when
particular events (such as update or insert) occur on the database—and that's exactly
what the logic hook does—it runs a PHP file when the SugarBean carries out certain
database operations. These key events are:

after_retrieve

before_save

before_delete

after_delete

before_undelete

after_undelete

•

•

•

•

•

•

•

•

•

•

•

Interfacing with SugarCRM

[88]

So, in this case we want the logic hook to operate on the before_save event.
We're also going to be writing to a log file in this instance, and so the first thing
to do is to write the code for that. We want to keep this separate from the
standard SugarCRM code and so we'll place it custom/include and call the file
penguin_pi_functions.php:

#File: penguin_pi_functions.php
<?php
function WriteToLogFile($strText) {
 $File = '/www/penguin_pi/test.log'; #Choose a suitable file name
 $Handle = fopen($File, 'a'); #Open the file
 $Data = $strText . "\n"; #Add a carriage return to the text
 if($Handle) { // avoid further errors on file access failure
 fwrite($Handle, $Data); #Write the text to the file
 fclose($Handle); #Close the file
 }
}
?>

And just a note—you may need to manually create (and set the
permissions for) the log file before you run the code.

Next we'll need the code file that's going to be run by the logic hook. Again, we'll put
it in custom/include, but this time we'll call the file ppi_prelim_change.php, and
it's another class file:

#File: ppi_prelim_change.php
<?php
require_once('data/SugarBean.php');
require_once('modules/Opportunities/Opportunity.php');
require_once('custom/include/penguin_pi_functions.php');

class ppi_prelim_change {
 function ppi_prelim_change (&$bean, $event, $arguments) {
 global $sugar_config;

 if ($bean->fetched_row['assigned_user_id']!=
 $bean->assigned_user_id)
 {
 #Obtain the information for the old user
 $old_user = new User(); #Create a user object
 $old_user->retrieve($bean->fetched_row['assigned_user_id']);
 $old_assigned_user_name =
 $old_user->first_name.' '.$old_user->last_name;

 #Obtain the information for the new user
 $new_user = new User();
 $new_user->retrieve($bean->assigned_user_id);
 $new_assigned_user_name =

Chapter 4

[89]

 $new_user->first_name.' '.$new_user->last_name;
 #Write the information to the log file
 WriteToLogFile
 ($old_assigned_user_name . " -> " . $new_assigned_user_name);
 }
 }
}
?>

You'll notice from the code that both the current (i.e. changed) data and the original
data are available to the function by making use of the $bean object:

$bean->assigned_user_id provides the new user ID
$bean->fetched_row['assigned_user_id'] provides the old user ID.

You'll also notice that the code makes use of:

The SugarBean base class file (SugarBean.php)
The Opportunity class file (Opportunity.php)
Our own custom functions file (penguin_pi_functions.php)

One very useful function worth taking note of is retrieve—you'll see from the code that
this obtains the assigned user details with the minimum of effort on your part.

Finally, we just need to create the logic hook file itself. However, unlike the last
two files, this must be placed in a specific location. You might expect that the
Opportunities logic hook should be placed in modules/Opportunities, and
you'd be nearly correct—it actually needs to be be placed in custom/modules/
Opportunities, and it also has to be named logic_hooks.php:

#File: logic_hooks.php
<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
$hook_array = Array(); #Create an array

$hook_array['before_save'] = Array(); #Create a sub-array

#Write the required information to the array
$hook_array['before_save'][] = Array(1, 'ppi_prelim_change',
 'custom/include/ppi_prelim_change.php',
 'ppi_prelim_change', 'ppi_prelim_change');
?>

If you examine the code then you'll see that we have to define an array (called
$hook_array). This array then contains a sub-array, and it's this array that defines
the logic hook itself.

•

•

•
•
•

Interfacing with SugarCRM

[90]

You'll notice that the array has the same name as the event on which the trigger is to
be set, and it has a number of elements:

Logic hook order—we can define a number of hooks in the same file, and this
element defines the order in which they should be used.
Name—this is just a placeholder to store the name of the hook.
PHP code file location.
PHP class to be called.
PHP function that is to be run by the hook.

If you have these three files in place then your logic hook is up and running, and just
waiting for your users to do something.

The End Result of Using the Logic Hook
Back to Korora—she now needs to edit one of the preliminary investigations and
change the assigned user:

•

•

•

•

•

Chapter 4

[91]

When she clicks the Save button then she'll be unaware of any differences in
SugarCRM�� however, in the background something will have changed:

Although your users will see nothing, SugarCRM will check to see if a Logic Hook
exists. If it does then the associated PHP code file will be run, and (in this case) the
data will be saved. And, of course, if Korora was to look on the web server she'd find
that the www/penguin_pi/test.log file would contain a new entry:

Korora Blue -> Pygoscelis Ellsworthy

And this doesn't only work for individual instances—this will also work for the mass
update. So, if you look back on the tab screen and actually carry out a mass update:

Interfacing with SugarCRM

[92]

You'll find that the logic hook fires for each record that you update.

Obviously this has been a very simple example, but we'll look at this more
extensively in Chapter 9, and then we'll see how to use logic hooks as part of a
workflow system.

Summary
In this chapter we've spent some time looking at the SugarCRM user interface
and the data interface. We've seen how to use these effectively within our
SugarCRM customizations.

The SugarBean is SugarCRM's high-level API that handles all our interactions with
the database.

Logic hooks enable us to add in our own business logic into SugarCRM with the
minimum effort. They are similar to database triggers—except that it's the SugarBean
that does all the work and not the database.

Thus we've looked at the interfaces, and how to use them effectively in our
customizations. We'll look at the files in more detail in Chapter 8 (when we'll
develop a complete module), and Chapter 9 (when we'll look at custom workflows).
However, before we do all that we'll examine the structure of the database itself.

SugarCRM Database
Schematics

All our work so far has mainly been with the SugarCRM PHP files on the web server,
and we've only dipped a little bit into the database. However, we're going to rectify
that in Chapters 5 and 6.

The aim of this chapter is to map out the key areas of the database, and to see how
the tables of the database are linked together. And so, we won't actually be doing
practical work in this chapter—this is all reference material.

The areas covered by this chapter and Chapter 6 are:

Database schematic diagrams—We will show you how the tables are related
to each other in the database in this chapter.
SugarCRM table definitions—We will show you the actual structure of each
table in the database in the next chapter.

You can then use the contents of the chapters to build your own SQL statements.
These are useful if you want to add SQL statements into your new modules and
create your own custom reports or run batch programs external to SugarCRM—for
example using cron to run regular shell scripts.

Database Schematic Diagrams
The database schematic diagrams show the relationships between tables in the
database. They don't show all the fields in each table—just the fields that can be used
in join statements. Refer to the table definitions in Chapter 6 for details of all of the
fields in any particular table.

•

•

SugarCRM Database Schematics

[94]

Access Control List

Accounts

*Added in version 4.5.1

Chapter 5

[95]

Bugs

Calls

SugarCRM Database Schematics

[96]

Campaigns

Cases

Chapter 5

[97]

Contacts

*Added in version 4.5.1

SugarCRM Database Schematics

[98]

Documents

Emails

Chapter 5

[99]

Email Management

SugarCRM Database Schematics

[100]

Leads

Meetings

Chapter 5

[101]

Opportunities

*Added in version 4.5.1

Projects

SugarCRM Database Schematics

[102]

Project Tasks

Prospects

*Added in version 4.5.1

Chapter 5

[103]

Schedulers

Users

SugarCRM Database Schematics

[104]

Differences Between Versions 4.5.0 and
4.5.1
There are a few additional relationships that have been added into SugarCRM
version 4.5.1—these are all marked in the diagrams.

Summary
It's unlikely that you will have read this chapter from end to end. However, you will
(hopefully) find it invaluable when you start to build SQL statements. Remember to
use the schematic diagram to understand how the tables fit together. So having seen
the database schematics you want to see what fields are available in each table�� we
will see this in the next chapter.

SugarCRM Data Dictionary
In Chapter 5 we looked at the SugarCRM database schematics—this showed us all of
the relationships between the tables in the database. We'll now turn our attention to
the individual tables themselves.

Differences between Versions 4.5.0 and 4.5.1
You'll find that some minor changes in the table structures between SugarCRM
version 4.5.0 and 4.5.1. The changes are:

One or two additional fields in 4.5.1—these are all marked in the
table definitions.
The data type for each id field has been changed from varchar to char. This
has no effect on the operation of the database, but can potentially save some
of the space required to store the data.

SugarCRM Table Definitions
Having seen how the tables are related together, and the fields that are used to
do that, we can now look at the other fields that make up each table. Each table
definition contains:

Field name
Field type, width and any additional information (such as auto_increment)
If a null value is allowed
Index details—this will either be PRI—primary index, or MUL—duplicate
entries allowed
The default value

•

•

•

•

•

•

•

SugarCRM Data Dictionary

[106]

Accounts
Field Name Field Type Null

Allowed
Index Default Value

id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36)

assigned_user_id char(36) YES NULL

created_by char(36) YES NULL

name varchar(150) YES NULL

parent_id char(36) YES MUL NULL
account_type varchar(25) YES NULL

industry varchar(25) YES NULL

annual_revenue varchar(25) YES NULL

phone_fax varchar(25) YES NULL

billing_address_street varchar(150) YES NULL

billing_address_city varchar(100) YES NULL

billing_address_state varchar(100) YES NULL

billing_address_
postalcode

varchar(20) YES NULL

billing_address_country varchar(100) YES NULL

description text YES NULL

rating varchar(25) YES NULL

phone_office varchar(25) YES NULL

phone_alternate varchar(25) YES NULL

email1 varchar(100) YES NULL

email2 varchar(100) YES NULL

website varchar(255) YES NULL

ownership varchar(100) YES NULL

employees varchar(10) YES NULL

sic_code varchar(10) YES NULL

Chapter 6

[107]

Field Name Field Type Null
Allowed

Index Default Value

ticker_symbol varchar(10) YES NULL

shipping_address_street varchar(150) YES NULL

shipping_address_city varchar(100) YES NULL

shipping_address_state varchar(100) YES NULL

shipping_address_
postalcode

varchar(20) YES NULL

shipping_address_
country

varchar(100) YES NULL

deleted tinyint(1) MUL 0

campaign_id char(36) YES NULL

This table is used in the database schematics:

Accounts
Bugs
Cases
Contacts
Emails
Leads
Opportunities
Projects
Users

Field campaign_id added in version 4.5.1

accounts_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)

parent_id char(36)

date_created datetime YES NULL

created_by char(36) YES NULL

field_name varchar(100) YES NULL

•

•

•

•

•

•

•

•

•

SugarCRM Data Dictionary

[108]

Field Name Field Type Null Allowed Index Default Value
data_type varchar(100) YES NULL

before_value_
string

varchar(255) YES NULL

after_value_
string

varchar(255) YES NULL

before_value_
text

text YES NULL

after_value_text text YES NULL

This table is used in the database schematic:

Accounts

accounts_bugs
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

account_id char(36) YES MUL NULL
bug_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Accounts
Bugs

accounts_cases
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

account_id char(36) YES MUL NULL
case_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

•

•

•

Chapter 6

[109]

This table is used in the database schematics:

Accounts
Cases

accounts_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

contact_id char(36) YES MUL NULL
account_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Accounts
Contacts

accounts_opportunities
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

opportunity_id char(36) YES MUL NULL
account_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Accounts
Opportunities

•

•

•

•

•

•

SugarCRM Data Dictionary

[110]

acl_actions
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36)
created_by char(36) YES NULL
name varchar(150) YES NULL
category varchar(100) YES NULL
acltype varchar(100) YES NULL
aclaccess int(3) YES NULL
deleted tinyint(1) YES 0

This table is used in the database schematic:

Access Control List

acl_roles
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_
id

char(36)

created_by char(36) YES NULL

name varchar(150) YES NULL

description text YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematics:

Access Control List
Users

•

•

•

Chapter 6

[111]

acl_roles_actions
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

role_id char(36) YES MUL NULL
action_id char(36) YES MUL NULL
access_override int(3) YES NULL

date_modified datetime YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematic:

Access Control List

acl_roles_users
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

role_id char(36) YES MUL NULL
user_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematics:

Access Control List
Users

•

•

•

SugarCRM Data Dictionary

[112]

Bugs
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

bug_number int(11) auto_
increment

MUL NULL

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36)

assigned_user_id char(36) YES NULL

deleted tinyint(1) 0

name varchar(255) YES MUL NULL
status varchar(25) YES NULL

priority varchar(25) YES NULL

description text YES NULL

created_by char(36) YES NULL

resolution varchar(255) YES NULL

found_in_release varchar(255) YES NULL

type varchar(255) YES NULL

fixed_in_release varchar(255) YES NULL

work_log text YES NULL

source varchar(255) YES NULL

product_category varchar(255) YES NULL

This table is used in the database schematics:

Accounts
Bugs
Cases
Contacts
Emails
Users

•

•

•

•

•

•

Chapter 6

[113]

bugs_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_
string

varchar(255) YES NULL

after_value_
string

varchar(255) YES NULL

before_value_
text

text YES NULL

after_value_text text YES NULL

This table is used in the database schematic:

Bugs

Calls
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

assigned_user_id char(36) YES NULL

modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL

name varchar(50) YES MUL NULL
duration_hours int(2) YES NULL

duration_
minutes

int(2) YES NULL

date_start date YES NULL

time_start time YES NULL

•

SugarCRM Data Dictionary

[114]

Field Name Field Type Null Allowed Index Default Value
date_end date YES NULL

parent_type varchar(25) YES NULL

status varchar(25) YES NULL

direction varchar(25) YES NULL

parent_id char(36) YES NULL

description text YES NULL

deleted tinyint(1) 0

reminder_time int(4) YES -1

outlook_id varchar(255) YES NULL

This table is used in the database schematics:

Accounts
Calls
Cases
Contacts
Leads
Opportunities
Projects
Project Tasks
Users

calls_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

call_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
required char(1) YES 1

accept_status varchar(25) YES none

date_modified datetime YES NULL

deleted tinyint(1) 0

•

•

•

•

•

•

•

•

•

Chapter 6

[115]

This table is used in the database schematics:

Calls
Contacts

calls_users
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

call_id char(36) YES MUL NULL
user_id char(36) YES MUL NULL
required char(1) YES 1

accept_status varchar(25) YES none

date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Calls
Users

campaign_log
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

campaign_id char(36) YES MUL NULL
target_tracker_key char(36) YES MUL NULL
target_id char(36) YES NULL

target_type varchar(25) YES NULL

activity_type varchar(25) YES NULL

activity_date datetime YES NULL

related_id char(36) YES NULL

related_type varchar(25) YES NULL

archived tinyint(1) YES 0

hits int(11) YES 0

•

•

•

•

SugarCRM Data Dictionary

[116]

Field Name Field Type Null Allowed Index Default Value
list_id char(36) YES NULL

deleted tinyint(1) YES 0

date_modified datetime YES NULL

more_information varchar(100) YES MUL NULL
marketing_id char(36) YES NULL

This table is used in the database schematics:

Campaigns
Contacts

Added in version 4.5.1

campaign_trkrs
Field Name Field Type Null

Allowed
Index Default Value

id char(36) PRI
tracker_name varchar(30) YES NULL
tracker_url varchar(255) YES http://
tracker_key int(11) auto_

increment
MUL NULL

campaign_id char(36) YES NULL
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36) YES NULL
created_by char(36) YES NULL
is_optout tinyint(1) 0
deleted tinyint(1) 0

This table is used in the database schematic:

Campaigns

•

•

•

Chapter 6

[117]

Campaigns
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

tracker_key int(11) auto_
increment

MUL NULL

tracker_count int(11) YES 0

name varchar(50) YES MUL NULL
refer_url varchar(255) YES http://

tracker_text varchar(255) YES NULL

date_entered datetime YES NULL

date_modified datetime YES NULL

modified_user_
id

char(36) YES NULL

assigned_user_id char(36) YES NULL

created_by char(36) YES NULL

deleted tinyint(1) 0

start_date date YES NULL

end_date date YES NULL

status varchar(25) YES NULL

currency_id char(36) YES NULL

budget double YES NULL

expected_cost double YES NULL

actual_cost double YES NULL

expected_
revenue

double YES NULL

campaign_type varchar(25) YES NULL

objective text YES NULL

content text YES NULL

impressions int(11) YES 0

frequency varchar(25) YES NULL

SugarCRM Data Dictionary

[118]

This table is used in the database schematics:

Campaigns
Email Management
Leads
Prospects
Users

Added in version 4.5.1

campaigns_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)

parent_id char(36)

date_created datetime YES NULL

created_by char(36) YES NULL

field_name varchar(100) YES NULL

data_type varchar(100) YES NULL

before_value_string varchar(255) YES NULL

after_value_string varchar(255) YES NULL

before_value_text text YES NULL

after_value_text text YES NULL

This table is used in the database schematic:

Campaigns

•

•

•

•

•

•

Chapter 6

[119]

Cases
Field Name Field Type Null

Allowed
Index Default Value

id char(36) PRI

case_number int(11) auto_
increment

MUL NULL

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36)

assigned_user_id char(36) YES NULL

created_by char(36) YES NULL

deleted tinyint(1) 0

name varchar(255) YES MUL NULL
account_id char(36) YES NULL

status varchar(25) YES NULL

priority varchar(25) YES NULL

description text YES NULL

resolution text YES NULL

This table is used in the database schematics:

Accounts
Bugs
Cases
Contacts
Emails
Users

•

•

•

•

•

•

SugarCRM Data Dictionary

[120]

cases_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_
string

varchar(255) YES NULL

after_value_
string

varchar(255) YES NULL

before_value_
text

text YES NULL

after_value_text text YES NULL

This table is used in the database schematic:

Cases

cases_bugs
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
case_id char(36) YES MUL NULL
bug_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0

This table is used in the database schematics:

Bugs
Cases

Config
Field Name Field Type Null Allowed Index Default Value
category varchar(32) YES MUL NULL
name varchar(32) YES NULL

value text YES NULL

•

•

•

Chapter 6

[121]

Contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

deleted tinyint(1) MUL 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36) YES NULL

assigned_user_id char(36) YES MUL NULL
created_by char(36) YES NULL

salutation varchar(5) YES NULL

first_name varchar(100) YES NULL

last_name varchar(100) YES MUL NULL
lead_source varchar(100) YES NULL

title varchar(50) YES NULL

department varchar(100) YES NULL

reports_to_id char(36) YES NULL

birthdate date YES NULL

do_not_call varchar(3) YES 0

phone_home varchar(25) YES NULL

phone_mobile varchar(25) YES NULL

phone_work varchar(25) YES NULL

phone_other varchar(25) YES NULL

phone_fax varchar(25) YES NULL

email1 varchar(100) YES MUL NULL
email2 varchar(100) YES MUL NULL
assistant varchar(75) YES NULL

assistant_phone varchar(25) YES NULL

email_opt_out varchar(3) YES 0

primary_address_street varchar(150) YES NULL

primary_address_city varchar(100) YES NULL

primary_address_state varchar(100) YES NULL

SugarCRM Data Dictionary

[122]

Field Name Field Type Null Allowed Index Default Value
primary_address_
postalcode

varchar(20) YES NULL

primary_address_
country

varchar(100) YES NULL

alt_address_street varchar(150) YES NULL

alt_address_city varchar(100) YES NULL

alt_address_state varchar(100) YES NULL

alt_address_postalcode varchar(20) YES NULL

alt_address_country varchar(100) YES NULL

description text YES NULL

portal_name varchar(255) YES NULL

portal_active tinyint(1) 0

portal_app varchar(255) YES NULL

invalid_email tinyint(1) YES 0

campaign_id char(36) YES NULL

This table is used in the database schematics:

Accounts
Bugs
Calls
Cases
Contacts
Emails
Leads
Meetings
Opportunities
Projects
Users

Added in version 4.5.1

•

•

•

•

•

•

•

•

•

•

•

Chapter 6

[123]

contacts_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_string varchar(255) YES NULL
after_value_string varchar(255) YES NULL
before_value_text text YES NULL
after_value_text text YES NULL

This table is used in the database schematic:

Contacts

contacts_bugs
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
contact_id char(36) YES MUL NULL
bug_id char(36) YES MUL NULL
contact_role varchar(50) YES NULL
date_modified datetime YES NULL
deleted tinyint(1) 0

This table is used in the database schematics:

Bugs
Contacts

•

•

•

SugarCRM Data Dictionary

[124]

contacts_cases
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

contact_id char(36) YES MUL NULL
case_id char(36) YES MUL NULL
contact_role varchar(50) YES NULL

date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Cases
Contacts

contacts_users
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

contact_id char(36) YES MUL NULL
user_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Contacts
Users

•

•

•

•

Chapter 6

[125]

Currencies
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

name char(36) MUL

symbol char(36)

iso4217 varchar(3)

conversion_rate double 0

status varchar(25) YES NULL

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

created_by char(36)

This table is used in the database schematic:

Campaigns

custom_fields
Field Name Field Type Null Allowed Index Default Value
bean_id char(36) YES MUL NULL
set_num int(11) YES 0

field0 varchar(255) YES NULL

field1 varchar(255) YES NULL

field2 varchar(255) YES NULL

field3 varchar(255) YES NULL

field4 varchar(255) YES NULL

field5 varchar(255) YES NULL

field6 varchar(255) YES NULL

field7 varchar(255) YES NULL

field8 varchar(255) YES NULL

field9 varchar(255) YES NULL

deleted tinyint(1) YES 0

•

SugarCRM Data Dictionary

[126]

Dashboards
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_
id

char(36)

assigned_user_id char(36) YES NULL

created_by char(36) YES NULL

name varchar(100) YES MUL NULL
description text YES NULL

content text YES NULL

This table is used in the database schematic:

Users

document_revisions
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

change_log varchar(255) YES NULL

document_id char(36) YES NULL

date_entered datetime YES NULL

created_by char(36) YES NULL

filename varchar(255)

file_ext varchar(25) YES NULL

file_mime_type varchar(100) YES NULL

revision varchar(25) YES NULL

deleted tinyint(1) YES 0

date_modified datetime YES NULL

This table is used in the database schematic:

Documents

•

•

Chapter 6

[127]

Documents
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

document_name varchar(255)

active_date date YES NULL

exp_date date YES NULL

description text YES NULL

category_id varchar(25) YES MUL NULL
subcategory_id varchar(25) YES NULL

status_id varchar(25) YES NULL

date_entered datetime YES NULL

date_modified datetime YES NULL

deleted tinyint(1) YES 0

modified_user_id char(36) YES NULL

created_by char(36) YES NULL

document_
revision_id

char(36) YES NULL

mail_merge_
document

varchar(3) YES off

related_doc_id char(36) YES NULL

related_doc_rev_id char(36) YES NULL

is_template tinyint(1) YES 0

template_type varchar(25) YES NULL

This table is used in the database schematic:

Documents•

SugarCRM Data Dictionary

[128]

email_marketing
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) MUL 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL
name varchar(255) YES MUL NULL
from_addr varchar(100) YES NULL
from_name varchar(100) YES NULL
inbound_email_
id

char(36) YES NULL

date_start date YES NULL
time_start time YES NULL
template_id char(36)
status varchar(25)
campaign_id char(36) YES NULL
all_prospect_lists tinyint(1) YES 0

This table is used in the database schematics:

Email Management
Prospects

email_marketing_prospect_lists
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
prospect_list_id char(36) YES NULL
email_
marketing_id

char(36) YES MUL NULL

date_modified datetime YES NULL
deleted tinyint(1) YES 0

This table is used in the database schematics:

Email Management
Prospects

•

•

•

•

Chapter 6

[129]

email_templates
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36) YES NULL

created_by char(36) YES NULL

published varchar(3) YES NULL

name varchar(255) YES MUL NULL
description text YES NULL

subject varchar(255) YES NULL

body text YES NULL

body_html text YES NULL

deleted tinyint(1) 0

campaign_id tinyint(1) YES 0

This table is used in the database schematic:

Email Management

Added in version 4.5.1

emailman
Field Name Field Type Null Allowed Index Default Value
date_entered datetime YES NULL

date_modified datetime YES NULL

user_id char(36) YES NULL

id int(11) auto_
increment

PRI NULL

campaign_id char(36) YES MUL NULL
marketing_id char(36) YES NULL

list_id char(36) YES MUL NULL
send_date_time datetime YES NULL

•

SugarCRM Data Dictionary

[130]

Field Name Field Type Null Allowed Index Default Value
modified_user_id char(36) YES NULL

in_queue tinyint(1) YES 0

in_queue_date datetime YES NULL

send_attempts int(11) YES 0

deleted tinyint(1) YES 0

related_id char(36) YES NULL

related_type varchar(100) YES NULL

This table is used in the database schematics:

Campaigns
Email Management
Users

Emails
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

assigned_user_id char(36) YES MUL NULL
modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL

name varchar(255) YES MUL NULL
date_start date YES NULL

time_start time YES NULL

parent_type varchar(25) YES NULL

parent_id char(36) YES MUL NULL
description longtext YES NULL

description_html longtext YES NULL

from_addr varchar(100) YES NULL

from_name varchar(100) YES NULL

•

•

•

Chapter 6

[131]

Field Name Field Type Null Allowed Index Default Value
to_addrs text YES NULL

cc_addrs text YES NULL

bcc_addrs text YES NULL

to_addrs_ids text YES NULL

to_addrs_names text YES NULL

to_addrs_emails text YES NULL

cc_addrs_ids text YES NULL

cc_addrs_names text YES NULL

cc_addrs_emails text YES NULL

bcc_addrs_ids text YES NULL

bcc_addrs_
names

text YES NULL

bcc_addrs_
emails

text YES NULL

type varchar(25) YES NULL

status varchar(25) YES NULL

message_id varchar(100) YES MUL NULL
reply_to_name varchar(100) YES NULL

reply_to_addr varchar(100) YES NULL

intent varchar(25) YES pick

mailbox_id char(36) YES NULL

raw_source longtext YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Accounts
Bugs
Cases
Contacts
Emails
Leads
Opportunities

•

•

•

•

•

•

•

SugarCRM Data Dictionary

[132]

Projects
Project Tasks
Prospects
Users

emails_accounts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
account_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Accounts
Emails

emails_bugs
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
bug_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Bugs
Emails

•

•

•

•

•

•

•

•

Chapter 6

[133]

emails_cases
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
case_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Cases
Emails

emails_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

campaign_data text YES NULL

This table is used in the database schematics:

Contacts
Emails

Added in version 4.5.1

•

•

•

•

SugarCRM Data Dictionary

[134]

emails_leads
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
lead_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

campaign_data text YES NULL

Added in version 4.5.1

emails_opportunities
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
opportunity_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Emails
Leads

emails_project_tasks
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
project_task_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Emails
Project Tasks

•
•

•
•

Chapter 6

[135]

emails_projects
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
project_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Emails
Projects

emails_prospects
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
prospect_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

campaign_data text YES NULL

This table is used in the database schematics:

Emails
Prospects

Added in version 4.5.1

•

•

•

•

SugarCRM Data Dictionary

[136]

emails_tasks
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
task_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematic:

Emails

emails_users
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
user_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

campaign_data text YES NULL

This table is used in the database schematics:

Emails
Users

Added in version 4.5.1

Feeds
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

•

•

•

Chapter 6

[137]

Field Name Field Type Null Allowed Index Default Value
modified_user_
id

char(36)

assigned_user_id char(36) YES NULL

created_by char(36) YES NULL

title varchar(100) YES MUL NULL
description text YES NULL

url varchar(255) YES NULL

This table is used in the database schematic:

Users

fields_meta_data
Field Name Field Type Null Allowed Index Default Value
id varchar(255) PRI

name varchar(255) YES NULL

label varchar(255) YES NULL

help varchar(255) YES NULL

custom_module varchar(255) YES NULL

data_type varchar(255) YES NULL

max_size int(11) YES NULL

required_option varchar(255) YES NULL

default_value varchar(255) YES NULL

date_modified datetime YES NULL

deleted tinyint(1) YES 0

audited tinyint(1) YES 0

mass_update tinyint(1) YES 0

duplicate_merge smallint(6) YES 0

ext1 varchar(255) YES

ext2 varchar(255) YES

ext3 varchar(255) YES

ext4 text YES NULL

•

SugarCRM Data Dictionary

[138]

Files
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
name char(36) YES NULL
content blob YES NULL
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL

This table is used in the database schematic:

Users

iframes
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
name varchar(255) MUL
url varchar(255)
type varchar(255)
placement varchar(255)
status tinyint(1) 0
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
created_by char(36)

import_maps
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
name char(36)
source char(36)
module char(36)
content blob YES NULL
has_header tinyint(1) 1

•

Chapter 6

[139]

Field Name Field Type Null Allowed Index Default Value
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES MUL NULL
is_published varchar(3) no

This table is used in the database schematic:

Users

inbound_email
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL
name varchar(255) YES NULL
status varchar(25) Active
server_url varchar(100)
email_user varchar(100)
email_password varchar(100)
port int(5) 0
service varchar(50)
mailbox varchar(50)
delete_seen tinyint(1) YES 0
mailbox_type varchar(10) YES NULL
template_id char(36) YES NULL
stored_options text YES NULL
group_id char(36) YES NULL

This table is used in the database schematic:

Email Management

•

•

SugarCRM Data Dictionary

[140]

inbound_email_autoreply
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
autoreplied_to varchar(100) MUL

Leads
Field Name Field Type Null

Allowed
Index Default Value

id char(36) PRI
deleted tinyint(1) 0
converted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36) YES NULL
assigned_user_id char(36) YES MUL NULL
created_by char(36) YES NULL
salutation varchar(5) YES NULL
first_name varchar(25) YES NULL
last_name varchar(25) YES MUL NULL
title varchar(100) YES NULL
refered_by varchar(100) YES NULL
lead_source varchar(100) YES NULL
lead_source_description text YES NULL
status varchar(100) YES NULL
status_description text YES NULL
department varchar(100) YES NULL
reports_to_id char(36) YES NULL
do_not_call varchar(3) YES 0
phone_home varchar(25) YES NULL
phone_mobile varchar(25) YES NULL
phone_work varchar(25) YES NULL

Chapter 6

[141]

Field Name Field Type Null
Allowed

Index Default Value

phone_other varchar(25) YES NULL
phone_fax varchar(25) YES NULL
email1 varchar(100) YES MUL NULL
email2 varchar(100) YES MUL NULL
email_opt_out varchar(3) YES 0
primary_address_street varchar(150) YES NULL
primary_address_city varchar(100) YES NULL
primary_address_state varchar(100) YES NULL
primary_address_
postalcode

varchar(20) YES NULL

primary_address_country varchar(100) YES NULL
alt_address_street varchar(150) YES NULL
alt_address_city varchar(100) YES NULL
alt_address_state varchar(100) YES NULL
alt_address_postalcode varchar(20) YES NULL
alt_address_country varchar(100) YES NULL
description text YES NULL
account_name varchar(150) YES NULL
account_description text YES NULL
contact_id char(36) YES MUL NULL
account_id char(36) YES MUL NULL
opportunity_id char(36) YES MUL NULL
opportunity_name varchar(255) YES NULL
opportunity_amount varchar(50) YES NULL
campaign_id char(36) YES NULL
portal_name varchar(255) YES NULL
portal_app varchar(255) YES NULL
invalid_email tinyint(1) YES 0

This table is used in the database schematics:

Accounts
Contacts
Emails
Leads

•

•

•

•

SugarCRM Data Dictionary

[142]

Opportunities
Prospects
Users

leads_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)

parent_id char(36)

date_created datetime YES NULL

created_by char(36) YES NULL

field_name varchar(100) YES NULL

data_type varchar(100) YES NULL

before_value_string varchar(255) YES NULL

after_value_string varchar(255) YES NULL

before_value_text text YES NULL

after_value_text text YES NULL

This table is used in the database schematic:

Leads

linked_documents
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

parent_id char(36) YES NULL

parent_type varchar(25) YES NULL

document_id char(36) YES NULL

document_revision_id char(36) YES NULL

date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematic:

Documents

•

•

•

•

•

Chapter 6

[143]

Meetings
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL
modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL
name varchar(50) YES MUL NULL
location varchar(50) YES NULL
duration_hours int(2) YES NULL
duration_
minutes

int(2) YES NULL

date_start date YES NULL
time_start time YES NULL
date_end date YES NULL
parent_type varchar(25) YES NULL
status varchar(25) YES NULL
parent_id char(36) YES MUL NULL
description text YES NULL
deleted tinyint(1) 0
reminder_time int(11) YES -1
outlook_id varchar(255) YES NULL

This table is used in the database schematics:

Accounts
Cases
Contacts
Leads
Meetings
Opportunities
Projects
Project Tasks
Users

•
•
•
•
•
•
•
•
•

SugarCRM Data Dictionary

[144]

meetings_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

meeting_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
required char(1) YES 1

accept_status varchar(25) YES none

date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Contacts
Meetings

meetings_users
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

meeting_id char(36) YES MUL NULL
user_id char(36) YES MUL NULL
required char(1) YES 1

accept_status varchar(25) YES none

date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Meetings
Users

•

•

•

•

Chapter 6

[145]

Notes
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL

name varchar(255) YES MUL NULL
filename varchar(255) YES NULL

file_mime_type varchar(100) YES NULL

parent_type varchar(25) YES NULL

parent_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
portal_flag tinyint(1) 0

description text YES NULL

deleted tinyint(1) 0

embed_flag tinyint(1) 0

This table is used in the database schematics:

Accounts
Cases
Contacts
Leads
Opportunities
Projects
Project Tasks

Added in version 4.5.1

•

•

•

•

•

•

•

SugarCRM Data Dictionary

[146]

Opportunities
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36) YES NULL

assigned_user_id char(36) YES MUL NULL
created_by char(36) YES NULL

deleted tinyint(1) 0

name varchar(50) YES MUL NULL
opportunity_type varchar(255) YES NULL

lead_source varchar(50) YES NULL

amount double YES NULL

amount_backup varchar(25) YES NULL

amount_usdollar double YES NULL

currency_id char(36) YES NULL

date_closed date YES NULL

next_step varchar(100) YES NULL

sales_stage varchar(25) YES NULL

probability double YES NULL

description text YES NULL

campaign_id char(36) YES NULL

This table is used in the database schematics:

Accounts
Contacts
Emails
Leads
Opportunities
Projects
Users

Added in version 4.5.1

•

•

•

•

•

•

•

Chapter 6

[147]

opportunities_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)

parent_id char(36)

date_created datetime YES NULL

created_by char(36) YES NULL

field_name varchar(100) YES NULL

data_type varchar(100) YES NULL

before_value_
string

varchar(255) YES NULL

after_value_
string

varchar(255) YES NULL

before_value_
text

text YES NULL

after_value_text text YES NULL

This table is used in the database schematic:

Opportunities

opportunities_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

contact_id char(36) YES MUL NULL
opportunity_id char(36) YES MUL NULL
contact_role varchar(50) YES NULL

date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Contacts
Opportunities

•

•

•

SugarCRM Data Dictionary

[148]

Project
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL
modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL
name varchar(50)
description text YES NULL
deleted tinyint(1) 0

This table is used in the database schematics:

Accounts
Contacts
Emails
Opportunities
Projects
Project Tasks
Users

project_relation
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
project_id char(36)
relation_id char(36)
relation_type varchar(255)
deleted tinyint(1) 0
date_modified datetime 0000-00-00 00:00:00

This table is used in the database schematics:

Accounts
Contacts
Opportunities
Projects

•
•
•
•
•
•
•

•
•
•
•

Chapter 6

[149]

project_task
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL
modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL
name varchar(50)
status varchar(255) YES NULL
date_due date YES NULL
time_due time YES NULL
date_start date YES NULL
time_start time YES NULL
parent_id char(36)
priority varchar(255) YES NULL
description text YES NULL
order_number int(11) YES 1
task_number int(11) YES NULL
depends_on_id char(36) YES NULL
milestone_flag varchar(255) YES NULL
estimated_effort int(11) YES NULL
actual_effort int(11) YES NULL
utilization int(11) YES 100
percent_
complete

int(11) YES 0

deleted tinyint(1) 0

This table is used in the database schematics:

Emails
Projects
Project Tasks
Users

•

•

•

•

SugarCRM Data Dictionary

[150]

project_task_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)

parent_id char(36)

date_created datetime YES NULL

created_by char(36) YES NULL

field_name varchar(100) YES NULL

data_type varchar(100) YES NULL

before_value_string varchar(255) YES NULL

after_value_string varchar(255) YES NULL

before_value_text text YES NULL

after_value_text text YES NULL

This table is used in the database schematic:

Project Tasks

prospect_list_campaigns
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

prospect_list_id char(36) YES MUL NULL
campaign_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematics:

Campaigns
Prospects

•

•

•

Chapter 6

[151]

prospect_lists
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

name varchar(50) YES MUL NULL
list_type varchar(25) YES NULL

date_entered datetime YES NULL

date_modified datetime YES NULL

modified_user_id char(36) YES NULL

assigned_user_id char(36) YES NULL

created_by char(36) YES NULL

deleted tinyint(1) 0

description text YES NULL

domain_name varchar(255) YES NULL

This table is used in the database schematics:

Campaigns
Email Management
Prospects
Users

prospect_lists_prospects
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

prospect_list_id char(36) YES MUL NULL
related_id char(36) YES MUL NULL
related_type varchar(25) YES NULL

date_modified datetime YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematic:

Prospects

•

•

•

•

•

SugarCRM Data Dictionary

[152]

Prospects
Field Name Field Type Null

Allowed
Index Default Value

id char(36) PRI

tracker_key int(11) auto_
increment

MUL NULL

deleted tinyint(1) YES 0

date_entered datetime 0000-00-00
00:00:00

date_modified datetime 0000-00-00
00:00:00

modified_user_id char(36) YES NULL

assigned_user_id char(36) YES NULL

created_by char(36) YES NULL

salutation varchar(5) YES NULL

first_name varchar(100) YES NULL

last_name varchar(100) YES MUL NULL
title varchar(25) YES NULL

department varchar(255) YES NULL

birthdate date YES NULL

do_not_call varchar(3) YES 0

phone_home varchar(25) YES NULL

phone_mobile varchar(25) YES NULL

phone_work varchar(25) YES NULL

phone_other varchar(25) YES NULL

phone_fax varchar(25) YES NULL

email1 varchar(100) YES NULL

email2 varchar(100) YES NULL

assistant varchar(75) YES NULL

assistant_phone varchar(25) YES NULL

email_opt_out varchar(3) YES 0

primary_address_street varchar(150) YES NULL

primary_address_city varchar(100) YES NULL

Chapter 6

[153]

Field Name Field Type Null
Allowed

Index Default Value

primary_address_state varchar(100) YES NULL

primary_address_
postalcode

varchar(20) YES NULL

primary_address_
country

varchar(100) YES NULL

alt_address_street varchar(150) YES NULL

alt_address_city varchar(100) YES NULL

alt_address_state varchar(100) YES NULL

alt_address_postalcode varchar(20) YES NULL

alt_address_country varchar(100) YES NULL

description text YES NULL

invalid_email tinyint(1) YES 0

lead_id char(36) YES NULL

account_name varchar(150) YES NULL

campaign_id char(36) YES NULL

This table is used in the database schematics:

Emails
Leads
Prospects
Users

Added in version 4.5.1

Relationships
Field Name Field Type Null

Allowed
Index Default Value

id char(36) PRI

relationship_name varchar(150) MUL

lhs_module varchar(100)

lhs_table varchar(64)

lhs_key varchar(64)

•

•

•

•

SugarCRM Data Dictionary

[154]

Field Name Field Type Null
Allowed

Index Default Value

rhs_module varchar(100)

rhs_table varchar(64)

rhs_key varchar(64)

join_table varchar(64) YES NULL

join_key_lhs varchar(64) YES NULL

join_key_rhs varchar(64) YES NULL

relationship_type varchar(64) YES NULL

relationship_role_column varchar(64) YES NULL

relationship_role_column_
value

varchar(50) YES NULL

reverse tinyint(1) YES 0

deleted tinyint(1) YES 0

Releases
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_
id

char(36)

created_by char(36) YES NULL

name varchar(50) MUL

list_order int(4) YES NULL

status varchar(25) YES NULL

This table is used in the database schematic:

Bugs•

Chapter 6

[155]

Roles
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_
id

char(36)

created_by char(36) YES NULL

name varchar(150) YES NULL

description text YES NULL

modules text YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematics:

Access Control List
Users

roles_modules
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

role_id char(36) YES MUL NULL
module_id char(36) YES MUL NULL
allow tinyint(1) YES 0

date_modified datetime YES NULL

deleted tinyint(1) YES 0

This table is used in the database shematic

Users

•

•

•

SugarCRM Data Dictionary

[156]

roles_users
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

role_id char(36) YES MUL NULL
user_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematics:

Access Control List
Users

saved_search
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

name varchar(150) YES MUL NULL
search_module varchar(150) YES NULL

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

assigned_user_id char(36) YES NULL

contents text YES NULL

description text YES NULL

This table is used in the database schematic:

Users

•

•

•

Chapter 6

[157]

Schedulers
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
created_by char(36) YES NULL
modified_user_
id

char(36) YES NULL

name varchar(255)
job varchar(255)
date_time_start datetime MUL 0000-00-00 00:00:00
date_time_end datetime YES NULL
job_interval varchar(100)
time_from time YES NULL
time_to time YES NULL
last_run datetime YES NULL
status varchar(25) YES NULL
catch_up tinyint(1) YES 1

This table is used in the database schematic:

Schedulers

schedulers_times
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
scheduler_id char(36) MUL
execute_time datetime 0000-00-00 00:00:00
status varchar(25) ready

This table is used in the database schematic:

Schedulers

•

•

SugarCRM Data Dictionary

[158]

Tasks
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

assigned_user_id char(36) YES MUL NULL
modified_user_
id

char(36) YES NULL

created_by char(36) YES NULL

name varchar(50) YES MUL NULL
status varchar(25) YES NULL

date_due_flag varchar(5) YES on

date_due date YES NULL

time_due time YES NULL

date_start_flag varchar(5) YES on

date_start date YES NULL

time_start time YES NULL

parent_type varchar(25) YES NULL

parent_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
priority varchar(25) YES NULL

description text YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

Accounts
Cases
Contacts
Emails
Leads
Opportunities
Project Tasks

•

•

•

•

•

•

•

Chapter 6

[159]

Tracker
Field Name Field Type Null Allowed Index Default Value
id int(11) auto_

increment
PRI NULL

user_id char(36) YES NULL

module_name varchar(25) YES NULL

item_id char(36) YES NULL

item_summary varchar(255) YES NULL

date_modified datetime YES NULL

This table is used in the database schematic:

Users

upgrade_history
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

filename varchar(255) YES NULL

md5sum varchar(32) YES MUL NULL
type varchar(30) YES NULL

status varchar(50) YES NULL

version varchar(10) YES NULL

name varchar(255) YES NULL

description text YES NULL

id_name varchar(255) YES NULL

manifest datetime NULL

date_entered datetime 0000-00-00 00:00:00

•

SugarCRM Data Dictionary

[160]

user_preferences
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

category varchar(50) YES NULL

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

assigned_user_id char(36) YES MUL NULL
contents text YES NULL

This table is used in the database schematic:

Users

Users
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

user_name varchar(60) YES MUL NULL
user_hash varchar(32) YES NULL

authenticate_id varchar(100) YES NULL

sugar_login tinyint(1) YES 1

first_name varchar(30) YES NULL

last_name varchar(30) YES NULL

reports_to_id char(36) YES NULL

is_admin tinyint(1) YES 0

receive_
notifications

tinyint(1) YES 1

description text YES NULL

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36) YES NULL

created_by char(36) YES NULL

title varchar(50) YES NULL

•

Chapter 6

[161]

Field Name Field Type Null Allowed Index Default Value
department varchar(50) YES NULL

phone_home varchar(50) YES NULL

phone_mobile varchar(50) YES NULL

phone_work varchar(50) YES NULL

phone_other varchar(50) YES NULL

phone_fax varchar(50) YES NULL

email1 varchar(100) YES NULL

email2 varchar(100) YES NULL

status varchar(25) YES NULL

address_street varchar(150) YES NULL

address_city varchar(100) YES NULL

address_state varchar(100) YES NULL

address_country varchar(25) YES NULL

address_
postalcode

varchar(9) YES NULL

user_preferences text YES NULL

deleted tinyint(1) 0

portal_only tinyint(1) YES 0

employee_status varchar(25) YES NULL

messenger_id varchar(25) YES NULL

messenger_type varchar(25) YES NULL

is_group tinyint(1) YES 0

This table is used in the database schematics:

Access Control List
Accounts
Bugs
Calls
Campaigns
Cases
Contacts

•

•

•

•

•

•

•

SugarCRM Data Dictionary

[162]

Documents
Email Management
Emails
Leads
Meetings
Opportunities
Projects
Project Tasks
Prospects
Schedulers
Users

users_feeds
Field Name Field Type Null Allowed Index Default Value
user_id char(36) YES MUL NULL
feed_id char(36) YES NULL

rank int(11) YES NULL

date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematic:

Users

users_last_import
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

assigned_user_id char(36) YES MUL NULL
bean_type char(36) YES NULL

bean_id char(36) YES NULL

deleted tinyint(1) 0

This table is used in the database schematic:

Users

•

•

•

•

•

•

•

•

•

•

•

•

•

Chapter 6

[163]

users_signatures
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

deleted tinyint(1) 0

user_id char(36) YES MUL NULL
name varchar(255) YES NULL

signature text YES NULL

signature_html text YES NULL

This table is used in the database schematic:

Users

vcals
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

deleted tinyint(1) 0

date_entered datetime YES NULL

date_modified datetime YES NULL

user_id char(36)

type varchar(25) YES MUL NULL
source varchar(25) YES NULL

content text YES NULL

This table is used in the database schematic:

Users

•

•

SugarCRM Data Dictionary

[164]

Versions
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_
id

char(36)

created_by char(36) YES NULL

name varchar(255) MUL

file_version varchar(255)

db_version varchar(255)

Summary
With the information that is contained in Chapters 5 and 6 you have all of the
information that you need for your SQL statements for any modules or reports that
you build.

We have see in these chapters schematic diagrams to understand how the tables fit
together and the table definitions to find out which fields are available in each table.

That's enough reference material for now—in Chapter 7 we'll make sure that we're
developing in a sensible, and upgrade-safe way as we a look at development and
testing strategies.

Development and Testing
Strategies for SugarCRM

By now you must be confident about customizing SugarCRM, after all over the last
six chapters we've looked at:

Changing the look and feel of SugarCRM
Adding simple modules
Custom fields and logic hooks
The architecture of the application and its supporting database

So, you'll be champing at the bit to move on and start building your own complex
modules and processes, and that's what the remaining chapters of this book will help
you do. However, before we jump in with both feet, it will be worth spending some
time looking at development and testing strategies. By the end of Chapter 7 you will:

Understand why development and testing strategies are important
Understand how to set up development and testing servers
Understand how to migrate code from development to testing to live

And then you'll be ready to start building your own modules.

Why Use Development and Testing
Strategies?
Let's imagine a scenario—you've carried out all of your customizations, and
everything is working beautifully. Pygoscelis, Korora, and all the other Penguin
P.I. staff are really happy with your work, and they're now able to use SugarCRM
to carry out their day-to-day tasks. In fact, they've even started to rely on the

•

•

•

•

•

•

•

Development and Testing Strategies for SugarCRM

[166]

application completely. So, you decide to upgrade to the newest version of
SugarCRM—and overnight all of your modifications disappear. Suddenly you
become the most unpopular person in the organization.

Or let us think about a second scenario—you've carried out all your customizations,
and everything is working beautifully. Pygoscelis is really happy with your work,
and tells Korora, and all of the other Penguin P.I. staff, to start using it immediately.
However, they turn round and say 'Pygoscelis really doesn't know how we do
our work—this is all useless!'. Again, you become the most unpopular person in
the organization.

And one final scenario—after the customizations have been completed, and everyone
is using the application Korora comes to you and says that she just needs a minor
modification carrying out. So, you carry out the changes, only to find that it's affected
some of the other modules. And for the third time you become the most unpopular
person in the organization.

You don't really want to be that unpopular, so we'll spend some time looking at how
you can carry out SugarCRM customizations in a professional and safe manner—so
that you will always be popular.

The Unbreakable Rule:Thou Shalt Not Do
Any Development on a Live Server
The best way to ensure the failure of your project is to start messing about with the
live application that people are using. So, don't do it. This may seem common sense,
but there is always a temptation just to do a quick change, but as Pippin says in The

Lord of the Rings 'Short cuts make long delays'.

So, if you're not going to do any development to the live SugarCRM application, then
where are you going to do it? The answer is to set up two servers:

Server 1—The live server that people use in their normal daily activities
Server 2—The development server

By doing this you can safely develop new modules and new functionality without
affecting the users of your application. If something does go wrong then no one will
be affected, and, in fact, no one but you need to know about it.

•

•

Chapter 7

[167]

Setting up a Development Server
Having decided that we're not going to do any development directly on the live
server, then obviously we need to set up a second server on which we can carry
out the customizations. Now, at this stage you may be tempted to set up a second
version of SugarCRM on your existing web server�� after all it is possible to do that.
However, there is a very good reason for not doing that.

Let's imagine that you've got an existing SugarCRM implementation based on
SugarOS-Full-4.5.0f. Looking on the SugarCRM website you will find that the current
version (at the time of writing) is SugarOS-Full-4.5.1, and so, you may decide that an
upgrade is needed.

Now, remember from your initial installation that the second stage checks for
SugarCRM dependencies. If you've currently got a working instance of SugarCRM
then you would have seen something like:

However, if you download the newest version and try to install it on your existing
web server then you may come across an immediate show stopper (have a look at
the line PHP version):

Development and Testing Strategies for SugarCRM

[168]

So, in this case the server has a PHP version suitable for SugarOS-Full-4.5.0f, but
not SugarOS-Full-4.5.1. We could install a newer version of PHP, but then that
goes against rule 1—thou shalt not do any development on a live server. If you do
upgrade PHP, then can you really guarantee that the existing (live) implementation
of SugarCRM will continue working with the newer version of PHP?

The answer is, therefore, to set up a new, clean server—one that you can play with,
and which won't affect your live users.

In the Penguin P.I. example the servers have had Debian Linux as the operating
system, and by default it comes with PHP version 4.3.10. Therefore, the question
is—which version of PHP do you need on the server? Fortunately, you can find this
out directly from the SugarCRM website:

And once there we can look at the PHP section:

As you can see, the current version of SugarCRM does not support PHP 4.3.10.
However, because we're going to be using two separate servers, we can upgrade one
of them to another version of PHP and see what the effect is.

Creating a Server
If you're already confident in setting up your own server then just move on to the
next section—where we'll look at migrating files from one server to another. If not
then let's see just how easy it is to create a server using Debian (Debian GNU/Linux
if you want to be exact).

The first thing that you need is a computer (obviously). Fortunately you won't need
a new state of the art (and expensive) box—Debian, like many versions of Linux,
will work on most machines—regardless of age, although a reasonable disk speed
and plenty of memory won't do any harm. However, your computer will need a
network card.

Chapter 7

[169]

Next, you will need the installation disk, and this can be downloaded directly from
Debian at http://www.debian.org/CD:

Once you've created your installation disk then it's just a matter of connecting your
machine to the network, inserting your disk and rebooting. After that, just follow the
on-screen instructions. The process will:

Format the machine for you
Install the core Linux files
Allow you to select one of the online application sources (choose one of the
HTTP sources near to your location)
Create a root user account (so that you can log on to do further work)

If you're wondering why the computer needs a network connection at the
moment— it allows you to download most of the required files directly from
the Internet, rather than having to install them from a number of disks.

When the process has finished you'll have a minimal setup—just enough to log
on and start turning the base install into a working server. In order to do this you
need to log on using your new root account, and then use the apt-get command to
download all of the applications that you're going to need.

•

•

•

•

Development and Testing Strategies for SugarCRM

[170]

Installing Software
Using apt-get is simple—all you need to know is the name of the application that
you are going to install and then type:

apt-get install <package name>

For example:

apt-get install apache2

For your server you're going to need:

SSH
nfs-common
nfs-kernel-server
Sudo
Apache2
MySQL-Server
PHP4
php4-mysql
libapache2-mod-php4
Unzip

These are just a tiny proportion of all of the Debian packages that are available, but
they're all that you'll need in order to manage your SugarCRM server. You will have
to modify Apache's config files so that it recognizes PHP, but apart from that all you
need to do now is to set up the server's IP address.

Setting the Server's IP Address
By default your new server would have been given a dynamic IP address—meaning
that every time that there's a reboot then it will (potentially) be given a different
IP address. And I'm sure that you will agree that this is not really of any use to the
people trying to access SugarCRM. You'll be pleased to know that there is an easy
remedy. All that you have to do is edit a file called /etc/network/interfaces. You
need to find a line that says:

iface eth0 inet dhcp

Either comment out or delete the line and then add:

iface eth0 inet static
 address 192.168.1.3
 netmask 255.255.255.0
 gateway 192.168.1.1

•
•
•
•
•
•
•
•
•
•

Chapter 7

[171]

The address and gateway will, of course, depend on your network—address is
the IP address that you want your machine to have, and gateway is your network's
gateway to the Internet.

Finally, reboot the machine, and you've got a server ready for SugarCRM—in fact
you'll already be able to access it from other computers on your network:

With the server in place, and accessible from anywhere on your network, we can
now install SugarCRM. However, we're not going to do that from scratch—we're
going to use the files from our existing SugarCRM setup.

Migrating SugarCRM Files and Databases
Between Servers
As you may well have worked out, we're working with two Debian Linux servers in
the Penguin P.I scenario:

Server 1—hector—which is to be used as the live server, and already has
some minor customizations
Server 2—acamas—the development server

•

•

Development and Testing Strategies for SugarCRM

[172]

Both servers have Apache, MySQL, and PHP installed—the only difference being
that hector has a working version of SugarCRM. Our aim now is to:

Set the servers up so that server 2 can see all of the files on server 1
Copy all of the SugarCRM files from server 1 onto server 2
Ensure that SugarCRM is running correctly on server 2

This can be achieved quite easily in Linux by setting up the appropriate exports and
mount points.

Setting Up the Export on Server 1
The plan is to export data from server 1 (hector) to server 2 (acamas), and the first
step is add the IP address of acamas into hector's /etc/hosts file:

192.168.1.3 acamas

We do this so that we just have to refer to acamas in other files, rather than having to
repeat the IP address all over the place. For example we next have to add an entry to
hector's /etc/exports file:

/ acamas(ro)

The entry tell the network that acamas has authorized read access to hector's
top directory.

Finally we need to export the information:

sudo /usr/sbin/exportfs -a

With that done you can access information on hector from acamas—once we've set
up acamas, of course.

Setting Up a Mount Point on Server 2
Turning our attention to acamas, we need to update its /etc/hosts file:

192.168.1.4 hector

Next we need to create a directory. This will be the mount point through which we
will access all of the files on hector:

sudo mkdir /hector

•

•

•

Chapter 7

[173]

And then we need to tell acamas about this new mount point by updating its
/etc/fstab file:

hector:/ /hector nfs ro 0 0

Finally we need to mount the mount point:

sudo mount /hector

Now we can access information on hector from acamas just as if it were in one of
acamas' directories:

Migrating Files from Server 1 to Server 2
We've actually done the hardest part of the migration process, and that wasn't
exactly difficult. All that's left to do is to transfer the files that we need from server
1 to server 2. So, to migrate the SugarCRM files we need to log onto server 2 (in this
case acamas), and type:

sudo cp --preserve -r /hector/www/penguin_pi /www

Remembering, of course, to use your own directory location. Then we need to
transfer the MySQL files:

sudo cp --preserve -r /hector/var/lib/mysql/penguinpi /var/lib/mysql

Development and Testing Strategies for SugarCRM

[174]

You'll need to restart MySQL:

sudo /etc/init.d/mysql restart

But once you've done that you'll be able to log on to the database and view the
SugarCRM tables and their contents. However, you won't be able to access them
from your web browser yet. Before you're able to do that you'll need to create a
user on the database—the SugarCRM user account that's created during the normal
installation process. Chances are you won't be able to remember the details that you
originally entered. If you can't then don't worry—they are stored in the SugarCRM
config file /var/www/penguin_pi/config.php. If you look through the file you'll
find something like:

 array
 (
 'db_host_name' => 'localhost',
 'db_host_instance' => '',
 'db_user_name' => 'penguinpi_user',
 'db_password' => 'penguinpi_go',
 'db_name' => 'penguinpi',
 'db_type' => 'mysql',
),

You can now log onto the database and create the SugarCRM account from
these details:

GRANT SELECT,UPDATE,INSERT,DELETE

ON penguinpi.* TO 'penguinpi_user'@'localhost'

IDENTIFIED BY 'penguinpi_go';
GRANT SELECT,UPDATE,INSERT,DELETE

ON penguinpi.* TO 'penguinpi_user'@'acamas'

IDENTIFIED BY 'penguinpi_go';

flush privileges;

And so, with all the files in place, and having given SugarCRM access to
the database, you can now use a web browser to view your new SugarCRM
implementation (which, at the moment, will be identical to your old one):

Chapter 7

[175]

You can now customize and upgrade to your heart's content, knowing that any
changes you make will not affect the live users at all—well, not until you're ready
that is.

An Example Upgrade
You'll remember that earlier in the chapter we saw that we couldn't upgrade to
SugarOS-Full-4.5.0h because:

SugarOS-Full-4.5.0h needs a newer version of PHP than Debian supplies.
We can't be sure of the effects that upgrading PHP will have on
SugarOS-Full-4.5.0f.
We don't want to do anything on the live server that might affect our users. If
fact, we don't even want to do anything on the live server that shouldn't affect
our users.

However, now that we've got a development server we can safely carry out the
upgrade and see what effect it does have.

•

•

•

Development and Testing Strategies for SugarCRM

[176]

Upgrading PHP
Obviously, you need to check how to carry out the upgrade for your own operating
system, but on Debian it's just of matter of carrying out two steps:

Select an appropriate download source
Install the software

So, the first step is to find a download source. One such source is dotdeb.org—this
is a repository for many current applications, and so it's just a matter of updating
/etc/apt/sources.list with the source details:

deb http://packages.dotdeb.org stable all
deb-src http://packages.dotdeb.org stable all

Next install the new version of PHP:

sudo apt-get update
sudo apt-get install php4
sudo apt-get install php4-mysql

And then you can check what version is now installed:

php4 -v
PHP 4.4.4-0.dotdeb.3 with Suhosin-Patch 0.9.6 (cli) (built: Nov 16
2006 11:21:12)
Copyright (c) 1997-2004 The PHP Group
Zend Engine v1.3.0, Copyright (c) 1998-2004 Zend Technologies

With the correct version of PHP installed, you can login to ensure that everything is
working correctly:

In theory everything should work perfectly, but if it doesn't then at least it won't
affect your users—and you'll be able to correct any problems in isolation. And now
you can think about upgrading to a newer version of SugarCRM.

•

•

Chapter 7

[177]

Upgrading SugarCRM
As we've now got a suitable version of PHP on our development server we can
think about looking at a more current version of SugarCRM. If you take a look at the
SugarCRM website then you can see that you have a few options:

If you're certain that the upgrade will have no effect on your current implementation
then you can download the files that will enable you to upgrade from 4.5.0 to 4.5.1.
However, since we have already carried out some customizations then it is much
safer to create a new installation, and then carry out a comparison of the two.

So, to get the new version of SugarCRM either download via the browser, or use
widget, for example:

wget http://www.sugarforge.org/frs/download.php/2535/SugarOS-
4.5.1.zip

Development and Testing Strategies for SugarCRM

[178]

Once you've unzipped the SugarCRM files then you'll be able to continue the
installation process by opening up a web browser starting the installscript:

As you go through the process make sure that you use a new name for your
database—we don't want to overwrite the existing one:

Chapter 7

[179]

Once you've followed all of the instructions, and completed the process then you're
ready to start comparing installations.

Comparing Database Files
Before we look at the PHP application side of SugarCRM we'll look at the database.
The question that we need to ask first is 'Are the tables in 4.5.0 the same as in 4.5.1?'.
We can answer this with a quick bit of Linux scripting:

#Define the databases to used
DATABASES[0]=”penguinpi”
DATABASES[1]=”sugarcrm_new”

#Loop through the databases
for DATABASE in ${DATABASES[*]}
do
 #Count the tables
 TABLES=$(echo “show tables” |
 mysql -s -uroot -ppassword $DATABASE |
 wc -l)

 #Output the result
 echo $DATABASE $TABLES
done

To which you'll get the output:

penguinpi 93
sugarcrm_new 92

So, at first glance it would appear that there are different tables involved—the new
version loses a table. This means that we need to know the differences between the
lists of tables. Again, a little Linux scripting will tell us:

#Define the databases to used
DATABASES[0]=”penguinpi”
DATABASES[1]=”sugarcrm_new”

#Loop through the databases
for DATABASE in ${DATABASES[*]}
do
 #output the stucture of the database to files
 echo “show tables” |
 mysql -s -uroot -ppassword $DATABASE > $DATABASE
done

#compare the contents of the files
diff ${DATABASES[*]}

Development and Testing Strategies for SugarCRM

[180]

This time the output is:

< opportunities_cstm

If you remember, this table was created automatically by SugarCRM when we
introduced our own custom fields—meaning that the default list of tables is the same
for both 4.5.0 and 4.5.1. Of course, that doesn't mean that the table structures are the
same. So, let's look at that next:

#Define the databases
DATABASES[0]=”penguinpi”
DATABASES[1]=”sugarcrm_new”
#Loop through the databases
for DATABASE in ${DATABASES[*]}
do
 #Obtain the list of fileds in table in each database
 TABLES=”$(cat $DATABASE)”
 for TABLE in $TABLES
 do
 echo desc $TABLE |
 mysql -s -uroot -ppassword $DATABASE |
 awk '{print $1}'> $DATABASE.$TABLE
 done
done

Get the list of table files for one database
TABLES=”$(cat ${DATABASES[1]})”

#Compare the field list for each table
for TABLE in $TABLES
do
 DIFF=”$(diff ${DATABASES[0]}.$TABLE ${DATABASES[1]}.$TABLE | wc -l)”
 if [$DIFF -gt 0]
 then
 diff ${DATABASES[0]}.$TABLE ${DATABASES[1]}.$TABLE|
 grep “>” | awk '{print $2}' > $TABLE.new
 fi
done

#Output the results
FILES=*.new
for FILE in $FILES
do
 basename $FILE .new
 echo “___________”
 cat $FILE
 echo
done

Chapter 7

[181]

The output of this shows us the additional fields that are required in 4.5.1 (and you
may remember these from Chapter 6):

Table Additional Fields Required

accounts campaign_id

campaign_log marketing_id

campaigns impressions

frequency

contacts campaign_id

email_templates text_only

emails_contacts campaign_data

emails_leads campaign_data

emails_prospects campaign_data

emails_users campaign_data

notes embed_flag

opportunities campaign_id

prospects campaign_id

upgrade_history name
description
id_name
manifest

In fact, if you log onto the database you will find that there are also some
fundamental changes to the tables themselves:

mysql -uroot -ppassword mysql
mysql> desc penguinpi.cases;
+------------------+--------------+------+-----+---------------------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+--------------+------+-----+---------------------+----------------+
id	varchar(36)	NO	PRI		
case_number	int(11)	NO	MUL	NULL	auto_increment
date_entered	datetime	NO		0000-00-00 00:00:00	
date_modified	datetime	NO		0000-00-00 00:00:00	
modified_user_id	varchar(36)	NO			
assigned_user_id	varchar(36)	YES		NULL	
created_by	varchar(36)	YES		NULL	
deleted	tinyint(1)	NO		0	
name	varchar(255)	YES	MUL	NULL	
account_id	varchar(36)	YES		NULL	
status	varchar(25)	YES		NULL	
priority	varchar(25)	YES		NULL	
description	text	YES		NULL	
resolution	text	YES		NULL	
+------------------+--------------+------+-----+---------------------+----------------+

Development and Testing Strategies for SugarCRM

[182]

14 rows in set (0.01 sec)

mysql> desc sugarcrm_new.cases;
+------------------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+--------------+------+-----+---------+----------------+
id	char(36)	NO	PRI		
case_number	int(11)	NO	MUL	NULL	auto_increment
date_entered	datetime	NO			
date_modified	datetime	NO			
modified_user_id	char(36)	NO			
assigned_user_id	char(36)	YES		NULL	
created_by	char(36)	YES		NULL	
deleted	tinyint(1)	NO		0	
name	varchar(255)	YES	MUL	NULL	
account_id	char(36)	YES		NULL	
status	varchar(25)	YES		NULL	
priority	varchar(25)	YES		NULL	
description	text	YES		NULL	
resolution	text	YES		NULL	
+------------------+--------------+------+-----+---------+----------------+
14 rows in set (0.01 sec)

mysql>

You'll notice that the ID, modified_user_id, assigned_user_id, and created_by
fields have been changed from varchar to char, and the default values for the
date_entered and date_modified fields have been removed. This means, therefore,
that we can't just add the missing fields to our old tables—we must load our existing
data into the new tables.

Migrating Database Files
If all of the tables contained the same fields then the migration from one database to
another would be very simple, for example for cases the SQL would be:

insert into sugarcrm_new.cases select * from penguinpi.cases;

However, as we've already seen, some of the new database tables contains additional
fields, and you mustn't forget the tables and fields that you may have added to the
old database during your customizations. So, let's look at the custom tables first.

Earlier in the chapter we identified the one table that we were using, and that is
missing from the new one—that's opportunities_cstm. You'll remember that this
was created in Chapter 2 when we introduced custom fields into the SugarCRM
application. Now, if you manually created the table then you can just apply the SQL
to the new database. If not (i.e. SugarCRM created the table for you), then you won't
have the SQL. Obviously you could write your own SQL to do the job, but there is an
easier way—just copy the MySQL database files from the old database to the new one:

Chapter 7

[183]

sudo cp /var/lib/mysql/penguinpi/opportunities_cstm.* /var/lib/
mysql/sugarcrm_new

That's fine for one table, but what if you have introduced a number of tables? If
that's the case then the same Linux scripting that told us opportunities_cstm was
missing can also migrate any other missing tables:

#Define the databases
DATABASES[0]=”penguinpi”
DATABASES[1]=”sugarcrm_new”

#Loop through the databases
for DATABASE in ${DATABASES[*]}
do
 #Write the data structure to a file
 echo “show tables” |
 mysql -s -uroot -ppassword $DATABASE > $DATABASE
done

#Obtain a list of missing tables
diff ${DATABASES[*]} |
awk '{print $2}' |
grep -v ^$ |
while read TABLE
do
 #Copy the missing tables from one database to the other
 sudo cp /var/lib/mysql/penguinpi/${TABLE}.* /var/lib/mysql/sugarcrm_
new/
done

I'm sure that you will agree that table migration is very straightforward; however,
if you've created custom fields on your tables then things could be a little more
involved—and this time you're going to have to do some manual checking, unless, of
course you've been careful in the way that you've added the fields.

Let's say, for example, that you added a field called campaign_id to the accounts
table. If that's the case then you've got a problem, because that's exactly what the new
version of SugarCRM has done. However, if you name your fields sensibly then you
can avoid this problem—for example if you'd named your field ppi_campaign_id
(for example) then you can minimize the chances of this type of conflict happening.

Assuming that you've not been tripped up by any field naming problems then the
next step is to add your fields to the new database. Now, the process of migrating
fields should actually start with the initial creation of the custom field. When you
create the custom field don't just log onto the database and type the SQL directly.
Instead write your SQL into a file, and then apply the file to the database. Now all

Development and Testing Strategies for SugarCRM

[184]

you have to do is apply this file to your new database. For example, for our correctly
named ppi_campaign_id field we would store a file called ppi_campaign_id.sql.
which would contain:

alter table accouts add ppi_campaign_id char(36);

Now we just need to do:

mysql -uroot -ppassword sugarcrm_new < ppi_campaign_id.sql

Or if this is stored in a directory with any other custom field files then we could
move to that directory and type:

FILES=*.sql
for F in $FILES
do
 mysql -uroot -ppassword sugarcrm_new < $F
done

Once we've applied the structure to the new database, we need to think about
transferring the existing data. However, as we've already identified, some of the
tables contain different numbers of fields, and in these cases we have to say exactly
which fields are to be used. For example, to transfer the data in accounts the SQL
would be:

insert into sugarcrm_new.accounts
(id, date_entered, date_modified, modified_user_id, assigned_user_id,
created_by, name, parent_id, account_type, industry, annual_revenue,
phone_fax, billing_address_street, billing_address_city, billing_
address_state, billing_address_postalcode, billing_address_country,
description, rating, phone_office, phone_alternate, email1, email2,
website, ownership, employees, sic_code, ticker_symbol, shipping_
address_street, shipping_address_city, shipping_address_state,
shipping_address_postalcode, shipping_address_country, deleted)
select
id, date_entered, date_modified, modified_user_id, assigned_user_id,
created_by, name, parent_id, account_type, industry, annual_revenue,
phone_fax, billing_address_street, billing_address_city, billing_
address_state, billing_address_postalcode, billing_address_country,
description, rating, phone_office, phone_alternate, email1,
email2, website, ownership, employees, sic_code, ticker_symbol,
shipping_address_street, shipping_address_city, shipping_address_
state, shipping_address_postalcode, shipping_address_country, deleted
from penguinpi.accounts ;

Chapter 7

[185]

To do this by hand would be very time consuming, but again we can turn to a Linux
script to do the jobs for us. First we'll create a set of SQL files that will load the data:

#Define the databases
DATABASES[0]=”penguinpi”
DATABASES[1]=”sugarcrm_new”

#Obtain the list of tables
TABLES=”$(cat ${DATABASES[1]})”
#Loop through the tables
for TABLE in $TABLES
do
 #Define the SQL to empty the table
 SQL=”delete from ${DATABASES[1]}.$TABLE;”

 #Define the SQL to load the new data
 SQL=”$SQL insert into ${DATABASES[1]}.$TABLE”
 FIELDS=”$(cat ${DATABASES[0]}.$TABLE)”
 FC=$(cat ${DATABASES[0]}.$TABLE|wc -l)
 FIELD_LIST=””
 FN=0
 for FIELD in $FIELDS
 do
 let FN=$FN+1
 if [$FN -lt $FC]
 then
 FIELD=”$FIELD,”
 fi
 FIELD_LIST=”${FIELD_LIST}${FIELD}”
 done
 SQL=”$SQL ($FIELD_LIST)”
 SQL=”$SQL select”
 SQL=”$SQL $FIELD_LIST”
 SQL=”$SQL from ${DATABASES[0]}.${TABLE};”

 #Output the complete SQL to a file
 echo $SQL > ${TABLE}.sql
done

Next we'll need another piece of script to run each of the SQL files:

#Obtain the list of SQL files
SQLS=*.sql

#Loop through the SQL files

Development and Testing Strategies for SugarCRM

[186]

for SQL in $SQLS
do
 #Display the table name
 basename $SQL .sql
 #Run the SQL
 mysql -uroot -ppassword mysql < $SQL
done

You may be wondering why we're using individual SQL files. That's just in case
there is any problem with an individual table—the remainder of the data load will
still continue, leaving you to look at the table's SQL file, and work out what the
problem is.

One thing that you will have to do before you continue is to run a little more SQL on
the new database:

update config set value='4.5.1' where name = 'sugar_version';

If you don't do this then SugarCRM will refuse to log on because it will believe that
you're trying to use a 4.5.0 database.

At the end of the process you will have all of your data loaded into your brand new
SugarCRM database, and it's time to turn your attention to the application files.

Comparing and Migrating the SugarCRM
Application Files
Having set up the new SugarCRM database we need to consider the PHP files that
make up the application itself. We, of course, can't just copy our modified files over
the top of the new ones—we have no idea what kind of affect this will have since we
don't know where new functionality has been added to SugarCRM 4.5.1. The first
step, therefore, is to find any changes that affect our customizations.

In order to find files that have changed, and what those changes are, we can turn
back to a Linux command that we've already been using—diff. If you do want to
find every file that has been changed then go to your web server's document root
and type:

diff -q -r penguin_pi SugarOS-Full-4.5.1

After you've seen data scrolling up the screen for a minute or two then you'll realize
that there are an awful lot of files that have been changed. In fact if you type:

diff -q -r penguin_pi SugarOS-Full-4.5.1 | wc -l

Chapter 7

[187]

you'll find that there are 1251 differences between the two versions. Obviously we
want to narrow it down a little bit. And this is where it becomes essential that you
keep track of your customizations as you carry them out—if you do that then this
next bit becomes really easy.

In our case, we haven't customized that much yet, so it's not a major problem, the
only module that we've worked with is Opportunities—if you remember in Chapter
3 we added some custom fields, and one of the files that we edited was EditView.
html. So let's compare that to the version in SugarOS-Full-4.5.1 by making use of the
Linux diff command:

diff penguin_pi/modules/Opportunities/EditView.html \
SugarOS-Full-4.5.1/modules/Opportunities/EditView.html

The output tells us that the only differences between the files are the ones that
we made:

87,88c96,97
< <td class=”dataLabel”>{MOD.Surveillance_
Required_c_10}</td>
< <td class=”dataField”><select
title='{SURVEILLANCE_REQUIRED_C_HELP}' name=”surveillance_required_
c”>{OPTIONS_SURVEILLANCE_REQUIRED_C}</select></td>

You can see that there are differences between line 87 of the first file and 88 of the
second, as well as 96 in the first and 97 of the second. So then it's just a matter of
migrating our modified file:

sudo cp penguin_pi/modules/Opportunities/EditView.html \
SugarOS-Full-4.5.1/modules/Opportunities/

Of course we mustn't forget to transfer our custom files (including the logic hooks):

sudo cp -r penguin_pi/custom SugarOS-Full-4.5.1

And, our nice new theme:

sudo cp -r penguin_pi/themes/PenguinPI SugarOS-Full-4.5.1/themes/

As well as the module that we created:

sudo cp -r penguin_pi/modules/TestApp SugarOS-Full-4.5.1/modules

Finally we need to check and then migrate any supporting files that we've had
to change:

diff penguin_pi/include/modules.php \
SugarOS-Full-4.5.1/include/modules.php
< $moduleList[] = 'TestApp';

Development and Testing Strategies for SugarCRM

[188]

< $beanList['NewTab'] = 'TestApp';
< $beanFiles['NewTab'] = 'modules/TestApp/TestApp.php';

In this case we can copy our modified modules.php over the top of the new one;
however, that's not so in the next situation:

diff penguin_pi/modules/Emails/vardefs.php \
SugarOS-Full-4.5.1/modules/Emails/vardefs.php
< 'massupdate'=>true,
> 'massupdate'=>false,
< 'type' => 'text',
> 'type' => 'longtext',
< 'type' => 'text',
> 'type' => 'longtext',

Here, we can see that there are more changes than the ones that we made, and so
you'll need to edit the new file rather than just copying the modified one.

So, as you can see the process consists of:

1. Compare all of the customized files with the new ones.
2. If suitable copy the customized files over the new ones, if not then make the

changes directly to the new files.

Once you've done all that then you'll have two identical versions of SugarCRM,
except that one is version 4.5.0 and the other is 4.5.1. So, next we need to think about
testing our application.

Testing SugarCRM
You're now in a rather nice situation:

Your users can work in the safe knowledge that their using a stable system
that's not subject to random changes.
You can work on customizations to the system knowing that you won't affect
your users.

However, at some point you're going to want to release all of your changes to your
users. At this time you'll need to think about testing. By this I don't mean the testing
that you should be doing anyway; by testing I mean someone sitting down and
replicating the normal day to day task that the users carry out. At this point there are
two questions that you need to ask:

Who is going to do the testing?
Where is the testing to be carried out?

•

•

•

•

Chapter 7

[189]

The answer to the first question should not be 'Myself' or 'one of the developers'.
Why? Think about emails—when do you notice spelling mistakes? Invariably it's
once you've pressed the send button. Bugs are just the same—you'll only find them
after the application's been released. Plus, any user will only be confident if the
software is tested by someone who understands their job—and that's not you, it's one
of them. So, which one of them should do the testing? Let's look at the Penguin P.I.
organization for some inspiration:

Sphen—being the managing director he's the last person to ask. Not
because he's too important—it's because he only thinks he knows how
everything works.
Robby Eudyptes—the newbie—he's not doing anything essential at the
moment, as so seems the obvious choice. However, he's also the most
inexperienced person in the organization.
Korora—the most experienced (and busiest) person around—now, that's who
you want on board. If you can get Sphen to get Korora to pass some of her
work onto Robby, then you've got someone who completely understands the
daily workings, and will pick up any problems very quickly.

Next, having a willing volunteer, you're going to have to give them something
to test. Obviously you could let them loose on the development server, but by
definition that's an unstable environment—plus you may have some elements that
you're not ready to release yet. The solution is to set up another server—a test server.

So, it's back to the start of the chapter for you and just follow the instructions
for setting up a server. However, this time you won't be migrating from the live
environment, you'll be migrating from the development environment. And, of
course, in the scenario that we've been looking at then you need two migration and
testing periods:

Migrate the original (4.5.0) set up to the test server with the newer version
of PHP. Once that's been tested then you'll be able to upgrade the version of
PHP on the live server.
Migrate your customized version of SugarCRM 4.5.1 to the test server.

Of course, there's one other thing that you may want to consider at this
point—documentation. It's all very well Korora telling you that everything is OK,
but imagine the embarrassment when you release the software and then a bug is
found, and then Korora turns round and says 'Well, I didn't test that bit'. So, make
sure either:

1. You document the areas to be tested, and Korora signs to say that they've
been tested.

2. Korora records her testing.

•

•

•

•

•

Development and Testing Strategies for SugarCRM

[190]

Obviously, the best solution is a combination of the two.

So, assuming that there are no issues, then you're ready to pass the new version on to
all of the other users.

Releasing Your Customizations
You've now done all of the hard work, and you're on the final step of the process—
releasing the application. All you have to do now is:

Carry out any required upgrades to the live sever (such as PHP)
Transfer the new SugarCRM directory to the live server
Transfer the new SugarCRM database to the live server
Migrate the live data into the new database
Make the new SugarCRM application the default one

We've already covered the first three of these activities in detail, and so we'll just
concentrate on the fourth and fifth ones—migrating the live data into the new
database, and making the new SugarCRM application the default one.

In fact, we've already seen how to migrate the database data—you'll remember
that we created a set of SQL files to copy the data from our live snapshot into the
development database—we can use those same SQL files to transfer the data from
the live database into the new database. Obviously you'll need to transfer the
migration files to the live server, and you'll need to run the files at a time when there
aren't any changes being made i.e. there are no users using the application.

And, of course, don't forget to set the value of sugar_version to '4.5.1' in the config
table. The SQL (in case you can't remember) is:

update config set value='4.5.1' where name = 'sugar_version';

Next you can make the new application the default one—after all the users will want
this change over to be as seamless as possible. If you looking in your web server's
document root you should see two directories, and in our example these would be:

1. penguin_pi
2. SugarOS-Full-4.5.1

All you have to do is:

sudo mv penguin_pi penguin_pi_old
sudo mv SugarOS-Full-4.5.1 penguin_pi

•

•

•

•

•

Chapter 7

[191]

Now, when your users next log on they'll be using your new version of SugarCRM.
However, there's one little bit of tidying up that you want to do before they do
that—the database name.

The database name has no affect on the operation at all, and so the users will be
unaware of the fact that their database was named penguinpi when they last logged
on, but is now named sugarcrm_new. However, it is easier for you to manage if you
maintain some consistency. Therefore the final thing to do is to rename the database,
and then tell your new version of SugarCRM about the change.

Renaming the database is easy:

cd /var/lib/mysql/
sudo mv penguinpi penguinpi_old
sudo mv sugarcrm_new penguinpi

Now you'll need to edit the SugarCRM config.php file where you'll find
something like:

 'db_name' => 'sugarcrm_new',

Just change it to:

 'db_name' => 'penguinpi',

Finally you'll need to restart MySQL and Apache:

sudo /etc/init.d/mysql restart
sudo /etc/init.d/Apache2 restart

And now your users will be free to carry on with their day-to-day tasks, and you can
get back to the next round of customizations.

Summary
In this chapter we've looked at how to develop, test, and use SugarCRM in a safe
environment. To do this we've seen that we need: a development server, a test
server, and a live server.

By setting up a development server we can ensure that SugarCRM customizations
can be carried out in isolation—without any danger of affecting users of the live
application. The server should have: a copy of the live application, a snapshot of the
live data, and all your development work.

Development and Testing Strategies for SugarCRM

[192]

You should set up a test server so that you can ensure that: users have a safe
environment in which they can test your customizations—they don't have to
worry about affecting live data; and testing doesn't have to affect ongoing
customizations—you can carry on working towards the next release whilst users
test the current one.

Remember the cardinal rule—Thou shalt not do any development on a live server.
The only thing that should be placed on the live server is a thoroughly tested release
from the test server.

Don't take shortcuts, and always ensure that you follow a well defined process:
replicate your live environment on the development server; carry out any
customizations on the development server. When you're ready migrate your changes
to the test server and get a well respected user to do all of the testing on the test
server; if testing is successful then agree a time to migrate your changes to the
live server.

If you load your data into a new database ensure that the SugarCRM version is set to
the correct value when you finish.

Now that you know that you can develop and test your application safely, it's time to
move on to Chapter 8 and look a developing a completely new module.

Developing Your
Own Modules

Through the course of this book you've learned that the SugarCRM application
consists of a number of modules, each of which governs a key element of the sales
and service process. You've also learned how to customize those modules so that you
can add in your own elements—such as additional drop-down boxes. We've also had
a brief look at how to add your own modules. In Chapter 8, we're going to develop
these modules further, so that you can introduce all of your required functionality
into SugarCRM.

So what sort of functionality do you want to add? Let's imagine two things that
Korora at Penguin P.I. might need adding to SugarCRM:

The ability to create invoices
A set of reports—again everyone needs to produce reports

In Chapter 8 we'll look at some ways in which you could introduce this
functionality into your SugarCRM installation (and not necessarily by doing all of
the work yourself).

By the end of this chapter you'll be able to:

Incorporate third-party modules—make the most of work that people have
already done
Build your own fully functional modules

We'll start by looking at third-party modules.

•

•

•

•

Developing Your Own Modules

[194]

Adding Third-party Modules
Before you actually move on to developing a new module you really must ask
yourself an important question—has it already been done? If someone has already
built a module that does the job for you then wouldn't you be better off installing
that module, and then spend your time more productively—building modules
containing functionality that doesn't exist? Therefore, let's start by looking at modules
that already exist, and can be used.

You'll be pleased to know that there are already quite a number of modules that are
available to you—the number is increasing all the time, and you can download them
from the Internet (of course).

The website that you need is http://www.sugarforge.org where you'll find all
the available modules listed by application type, although if you don't want to hunt
through all of the categories then you can make use of the search facility:

Chapter 8

[195]

You'll find that an invoice module has already been created (by Ray Gauss II), and
that you can download it:

Now, you don't have to download the ZIP file to the web server—just your normal
desktop will suffice. And, don't unzip it either—SugarCRM will do all of the work
for you when you load the module. So, next you'll need to know how to load
the module.

You will need to log on as the SugarCRM administrator, and then go to the
Administration screen where you'll find the Module Loader in the System section:

Developing Your Own Modules

[196]

With the module loader you can browse for the invoice.zip file, upload it onto the
server, and install the new module:

Your new invoices module is now up and running and you'll find that:

There is a new Invoices module tab in which you can create your invoices.
When you edit a project task you'll see that you're able to associate an invoice
with it.

If you log onto your database you'll find that you've now got a new table as well:

mysql> desc invoice;
+------------------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+------------------+-------------+------+-----+---------+-------+
id	char(36)	NO	PRI		
date_entered	datetime	NO			
date_modified	datetime	NO			
assigned_user_id	char(36)	YES		NULL	
contact_id	char(36)	NO			
modified_user_id	char(36)	YES		NULL	
created_by	char(36)	YES		NULL	
name	varchar(50)	NO			
description	text	YES		NULL	
date_sent	date	YES		NULL	
date_paid	date	YES		NULL	
deleted	tinyint(1)	NO		0	
+------------------+-------------+------+-----+---------+-------+
12 rows in set (0.01 sec)

In addition to the table some relationships will also have been created:

mysql> select relationship_name, lhs_module, lhs_table, lhs_key,
 -> rhs_module, rhs_table, rhs_key
 -> from relationships
 -> where lhs_module = 'Invoice' or rhs_module = 'Invoice';

•

•

Chapter 8

[197]

+------------------------+------------+-----------+---------+-------------+--------------+--------------+

| relationship_name | lhs_module | lhs_table | lhs_key | rhs_module | rhs_table | rhs_key |

+------------------------+------------+-----------+---------+-------------+--------------+--------------+

| invoice_notes | Invoice | invoice | id | Notes | notes | parent_id |

| invoice_project_tasks | Invoice | invoice | id | ProjectTask | project_task | invoice_id |
| invoice_assigned_user | Users | users | id | Invoice | invoice | assigned_user_

 id |

| invoice_contact | Contacts | contacts | id | Invoice | invoice | contact_id |
| invoices_modified_user | Users | users | id | Invoice | invoice | modified_user_

 id |

| invoices_created_by | Users | users | id | Invoice | invoice | created_by |

+------------------------+------------+-----------+---------+-------------+--------------+--------------+

6 rows in set (0.01 sec)

There is nothing here that you can't do yourself (or, at least, once you've finished
this chapter), but using a third-party module will save you a lot of time and
effort— provided that the module does the job that you want, of course. However,
you may well find that the modules available don't exactly do what you want, or
maybe there isn't a module that meets your requirements. If that's the case then
you're going to have to do everything from scratch.

Creating Custom Modules
This chapter is all about creating custom modules, but you'll remember, no doubt,
that we've already learned how to do this in Chapter 2. However, we're going to
build a simple module and create something much more complex (and useful). So, to
start with let's just recap on the basic requirements for a module.

A (Very) Basic Module
At its simplest level a module is a directory that contains at least three PHP files, and
these are:

index.php

Forms.php

language/en_us.lang.php

•

•

•

Developing Your Own Modules

[198]

And that's all there is to a module. So, if we imagine Korora's second requirement
(a set of reports), then we might want to do the following (and remember to do it on
your development server not your live server):

mkdir modules/ppi_reports
touch modules/ppi_reports/index.php
touch modules/ppi_reports/Forms.php
mkdir modules/ppi_reports/language
touch modules/ppi_reports/language/en_us.lang.php

Next, we need to tell SugarCRM about the new module by editing
include/modules.php and adding:

$moduleList[] = 'ppi_reports';

Finally we need to edit custom/include/language/en_us.lang.php to define the
title for the module:

$app_list_strings['moduleList']['ppi_reports'] = 'PPI Reports';

Then it's just a matter of refreshing your web browser to see the new module:

Next we really want to be thinking about the data that we're going to be using.

Data for the New Module
Any report that you make will, naturally, use the tables in the SugarCRM database.
This means that you can use the information from Chapters 6 and 7 to create the
SQL that's going to extract the correct data for you. So, for example, if Korora wants
a report that returns the name of every new Preliminary Investigation created in the
current month then you could use the SQL:

SELECT name
FROM opportunities
WHERE MONTH(date_entered) = MONTH(NOW());

Chapter 8

[199]

If she wants the assigned user name as well then you could use:

SELECT o.name, CONCAT(u.first_name, CONCAT(' ', u.last_name))
FROM opportunities o, users u
WHERE MONTH(o.date_entered) = MONTH(NOW())
AND o.assigned_user_id = u.id;

Now that we've got some SQL let's use it in our module.

Processing Data in the Module
We're going to keep things very simple to start with, and so, in this example, we'll:

Connect to the database
Run the SQL and obtain a set of records
Display the contents of our set of records on the screen

You'll remember that we've already created the required files for the module (index.
php, Forms.php and language/en_us.lang.php), and in this case we're going to
edit index.php:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
 Point');
$sql = "SELECT o.name, CONCAT(u.first_name, CONCAT(' ', u.last_name))
 FROM opportunities o, users u
 WHERE MONTH(o.date_entered) = MONTH(NOW())
 AND o.assigned_user_id = u.id";

$report_title = "Monthly New Preliminary Investigations Report";

$result = mysql_query($sql);

echo "<h2>$report_title</h2>";
echo "<table width=100% cellspacing=0 cellpading=0>";
$r=0;
while ($r < mysql_numrows($result))
{
 echo "<tr>";
 $c=0;
 while ($c < mysql_num_fields($result))
 {
 $field = mysql_result($result,$r,$c);
 echo "<td>$field</td>";
 $c++;
 }
 echo "<tr>";

•

•

•

Developing Your Own Modules

[200]

 $r++;
}
echo "</table>";
?>

If you look through the code you'll see that we haven't hard coded in any of the
database connection details (i.e. the host name, database name, user name, and
password), and that's because SugarCRM does that for us. This means, of course,
that we can write code without having to worry about such details—for example the
password can be changed and it won't affect the operation of our module.

You'll also see that a strange looking line is at the start of the file:

if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');

In fact you'll find this line at the start of every SugarCRM PHP file. Its purpose? It
ensures that any access can only be done through the SugarCRM application, and not
by someone randomly accessing one of the files.

The next thing to take note of is the use of two functions—mysql_numrows and
mysql_num_fields. Making use of these means that we don't have to be concerned
with the number of rows or fields returned by our SQL—the code will always
display them correctly. The end result is something like:

That's fine for a single report, but it's rather unlikely Korora will only need a single
report, so the next stage is to add more reports to the module.

Adding More Data
We know that the code will handle any number of fields returned by our SQL, and
so we have to do two things:

1. Define the new SQL statement
2. Tell the module which SQL statement to use

Chapter 8

[201]

We'll decide which SQL to be used by looking at the value of report—a variable that
we'll pass to the module:

$report = $_REQUEST['report'];
if ($report == "monthly_new_prelim_invest")
{
 $sql = "SELECT o.name, CONCAT(u.first_name, CONCAT(' ', u.last_name))
 FROM opportunities o, users u
 WHERE MONTH(o.date_entered) = MONTH(NOW())
 AND o.assigned_user_id = u.id";

 $report_title = "Monthly New Preliminary Investigations Report";

}
 else if ($report == "monthly_open_invest")
 {
 $sql = "SELECT c.name, CONCAT(u.first_name, CONCAT(' ', u.last_name))
 FROM cases c, users u
 WHERE MONTH(c.date_entered) = MONTH(NOW())
 AND c.assigned_user_id = u.id
 AND c.status <> 'Closed'";

 $report_title = "Monthly Open Investigations Report";

 }
 else
{
 $sql = "select 'Choose report'";
}

Now you can call the first report by using the URL:

Or to call the second report you can change the URL to end—monthly_open_invest.
However, at this point, you may be thinking that this is a rather inefficient way of
calling the reports, and that we can't expect each user to remember the URLs—and
you'd be right. That's why we'll look at shortcuts next.

Developing Your Own Modules

[202]

Adding Shortcuts
If you'll look at the left of the screen then you'll see the list of shortcuts associated
with the module:

Not very impressive at the moment, but we can change this by adding a file to our
module's directory. This file is Menu.php:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
$url = "index.php?module=ppi_reports&action=index&report=";

$module_menu[] = Array($url . "monthly_new_prelim_invest",
 'Monthly New Preliminary Investigations');
$module_menu[] = Array($url . "monthly_open_invest",
 'Monthly Open Investigations');
?>

As you can see the module menu consists of arrays each of which contains the URL
for the shortcut and the text to display. Once you've saved the file and refreshed
your web browser then you'll see:

It may occur to you that we're being a bit inefficient again—we've stored the title for
each report in two files: index.php and Menu.php. It's time to start using a central file
for such details, and we've actually already created it—language/en_us.lang.php.

Chapter 8

[203]

Using language/en_us.lang.php
When we created the module we also had to create the file language/en_us.lang.
php, and this is why. It's used for the central location for text to be used specifically
for the module. In this case we can edit it and add:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
 Point');
$mod_strings['lbl_monthly_new_prelim_invest'] =
 "Monthly New Preliminary Investigations";
$mod_strings['lbl_monthly_open_invest'] = "Monthly Open
Investigations";
?>

Then we can change some of the code in index.php to use your new
$mod_strings array:

if ($report == "monthly_new_prelim_invest")
{
 $sql = ...

$report_title = $mod_strings['lbl_monthly_new_prelim_invest']."
Report";

}
else if ($report == "monthly_open_invest")
{
 $sql = ...

 $report_title = "$mod_strings['lbl_monthly_open_invest'] . " Report";

}
else
{
 $sql = "select 'Choose report'";
}

And then we can do the same in Menu.php:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
global $mod_strings;
$url = "index.php?module=ppi_reports&action=index&report=";

$module_menu[] = Array($url . "monthly_new_prelim_invest",
 $mod_strings['lbl_monthly_new_prelim_invest']);
$module_menu[] = Array($url . "monthly_open_invest",
 $mod_strings['lbl_monthly_open_invest']);
?>

Developing Your Own Modules

[204]

It's worth noting that $mod_strings must be declared as a global in Menu.php, but
you won't have to do that in index.php.

You'll realize the benefits of using a single location immediately—it won't affect
your users at all, but it will make life a lot easier for you—you won't have to
remember where you've used any particular title or label—you just have one
file—en_us.lang.php.

Of course, if you want to be really efficient then you might want to create a table
(or tables) for the module.

Tables for the Module
We've been using index.php to create our reports (all two of them), but I'm sure that
you can see a major disadvantage here—every time you create a new report then
you're going to have to go through the whole testing process before you can allow
it to be used on the live server. In fact, we can even start thinking about moving the
creation of reports from a developer to a user—after all you don't need a developer
to create cases, accounts, or opportunities.

The first thing that we need, therefore, is a table:

create table ppi_reports (
 id char(36),
 date_entered datetime,
 assigned_user_id char(36),
 modified_user_id char(36),
 created_by char(36),
 name varchar(50),
 description text,
 report_sql longtext,
 date_modified datetime,
 deleted tinyint(1),
 primary key (id)
);

Remember to place this in a file rather than creating the table directly on the
database. By doing it that way you've got a record of what you've done, and you can
replicate it again when you migrate to testing and then to live.

Chapter 8

[205]

Before we leave the structure of the table it's worth noting that there are three
mandatory fields:

id—for the unique SugarCRM identification string
date_modified—certain of the SugarCRM processes automatically
update this
deleted—no data is actually deleted from the SugarCRM database��
however, records with deleted set to 1 will be ignored

And, of course, a primary key will be required—this is always the id field.

Next, you'll need to load some data into the table. In this case we're using the name,
SQL and title for the reports that we've already used:

insert into ppi_reports
(id, name, description, report_sql)
values
('monthly_new_prelim_invest' , 'monthly_new_prelim_invest',
'Monthly New Preliminary Investigations',
'SELECT o.name, CONCAT(u.first_name, CONCAT('' '', u.last_name)) FROM
opportunities o, users u WHERE MONTH(o.date_entered) = MONTH(NOW())
AND o.assigned_user_id = u.id');

insert into ppi_reports
(id, name, description, report_sql)
values
('monthly_open_invest' , 'monthly_open_invest',
'Monthly Open Investigations',
'SELECT c.name, CONCAT(u.first_name, CONCAT('' '', u.last_name))
FROM cases c, users u WHERE MONTH(c.date_entered) = MONTH(NOW()) AND
c.assigned_user_id = u.id AND c.status <> ''Closed''');

There are a couple of things to take note of in the SQL:

We've used the report name as the id. Normally SugarCRM would assign
its own unique ID, but in this case we need to provide our own ID because
we're entering the data directly onto the database rather than using the
SugarCRM application—we'll see how to do that shortly.
You'll notice that there are some double quotes used in the SQL—this allows
us to enter a single quote into the database similar to ''Closed'' ending up as
'Closed' on the database.

•

•

•

•

•

Developing Your Own Modules

[206]

Once the data is loaded into the table we can make use of it in the module, so we
don't have to edit index.php every time we need a new report:

if ($report == "monthly_new_prelim_invest")
{
...
}
else if ($report == "monthly_open_invest")
{
...
if ($report == "monthly_new_prelim_invest")
{
...
}
else if ($report == ...)
{
...
}
else
{
...
}

Now we can extract the information required for the report (i.e. the title and the SQL
for the report) directly from the database:

if ($report)
{
 $sql = "select description, report_sql
 from ppi_reports where name='$report'";
 $result = mysql_query($sql);
 $report_title = mysql_result($result,0,0);
 $sql = mysql_result($result,0,1);
}
else
{
 $sql = "select 'Choose report'";
}

And, we can do similarly for Menu.php:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
$url = "index.php?module=ppi_reports&action=index&report=";

$sql = "select name, description from ppi_reports";
$result = mysql_query($sql);
$r=0;
while ($r < mysql_numrows($result))
{

Chapter 8

[207]

 $name = mysql_result($result,$r,'Name');
 $description = mysql_result($result,$r,'Description');
 $module_menu[] = Array($url . $name, $description);
 $r++;
}
?>

At first glance this looks more complicated than the original file�� however, it does
mean that you won't have to edit it every time that you add a new report—the
information will just be picked up automatically from the database.

Advanced Modules
We've now created a couple of very simple modules, and we've seen how easy
the built-in SugarCRM functionality makes this. For example, we can query the
database without having any knowledge of the connection details—we just have to
tell SugarCRM to send the query, and then we're free to deal with the results in our
module. We'll now move on to create a module that uses more of the functionality
that's available to us, one that:

Allows us to view and edit all existing reports
Allows us to create new reports

The Initial Setup
By now you should be quite happy with the basic setup required for new modules,
but it's worth running through the process once more. First you'll need to create a
directory for your module, and then populate it with the mandatory files:

mkdir modules/ppi_report_manager
touch modules/ppi_report_manager/index.php
touch modules/ppi_report_manager/Forms.php
mkdir modules/ppi_report_manager/language
touch modules/ppi_report_manager/language/en_us.lang.php

With the directory structure in place you'll need to tell SugarCRM about the module
by editing include/modules.php and adding:

$moduleList[] = 'ppi_report_manager';

Finally you'll need to modify custom/include/language/en_us.lang.php to add a
title for the module:

$app_list_strings['moduleList']['ppi_report_manager']='Reports Manager';

So, that's the module in place. Next we need to think about the data that we're going
to be using.

•
•

Developing Your Own Modules

[208]

The Module's Data Schema—vardefs.php
We've already created the table (ppi_reports), and we've seen how easy it is to
use the data stored in it. However, SugarCRM doesn't normally access the database
directly—instead it has its own data schema for each of the modules, and this data
schema, or dictionary, is defined in the vardefs.php file (there's one in each of the
module directories). Each vardefs file contains a $dictionary array, and this contains
the table name, as well as a set of sub-arrays—one for each of the fields to be used:

<?php
#Ensure that the file can only be accessed via SugarCRM
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
#Define the dictionary
$dictionary['ppi_report_manager'] = array(
 #Define the table to be used, their data types, labels, etc
 'table' => 'ppi_reports',
 'unified_search' => true,
 'comment' => 'Reports',
 #Define the fields to be used
 'fields' => array(
 'id' => array(
 'name' => 'id',
 'vname' => 'LBL_ID',
 'required' => true,
 'type' => 'id',
 'reportable'=>false,
 'comment' => 'Unique identifier'),
 'description' => array(
 'name' => 'description',
 'vname' => 'LBL_DESCRIPTION',
 'required' => false,
 'type' => 'text',
 'comment' => 'Report description'),
 'report_sql' => array(
 'name' => 'report_sql',
 'vname' => 'LBL_REPORT_SQL',
 'required' => false,
 'type' => 'text',
 'comment' => 'Report SQL'),
 'name' => array(
 'name' => 'name',

Chapter 8

[209]

 'vname' => 'LBL_NAME',
 'required' => true,
 'dbType' => 'varchar',
 'type' => 'name',
 'len' => 50,
 'unified_search' => true,
 'comment' => 'Report name'),
 'assigned_user_id' => array(
 'name' => 'assigned_user_id',
 'rname' => 'user_name',
 'id_name' => 'assigned_user_id',
 'type' => 'assigned_user_name',
 'vname' => 'LBL_ASSIGNED_USER_ID',
 'required' => false,
 'len' => 36,
 'dbType' => 'id',
 'table' => 'users',
 'isnull' => false,
 'reportable'=>true,
 'comment' => 'User assigned to this report'),
 'date_modified' => array (
 'name' => 'date_modified',
 'vname' => 'LBL_DATE_MODIFIED',
 'type' => 'datetime',
 'required' => false,
 'comment' => 'Date record last modified'),
 'deleted' => array (
 'name' => 'deleted',
 'vname' => 'LBL_DELETED',
 'type' => 'bool',
 'required' => true,
 'reportable'=>false,
 'comment' => 'Record deletion indicator',
),
),
);
?>

The dictionary is only half of the data model. The other half is the module's
business object.

Developing Your Own Modules

[210]

The Module's Business Object
We have the module's data dictionary in place, but we won't normally be accessing
it directly—instead we make use of the module's business object. The business object
does two things:

Define any variables to be used
Set up any required functionality

We do this by creating a class in a PHP file—in this case ppi_report_manager.php
in the module's directory :

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
require_once('data/SugarBean.php');
require_once('include/utils.php');

class ppi_report_manager extends SugarBean
{
 var $id;var $id;
 var $description;
 var $report_sql;
 var $name;
 var $assigned_user_id;
 var $date_modified;var $date_modified;
 var $deleted;

 var $table_name = "ppi_reports";
 var $module_dir = "ppi_report_manager";

 var $track_on_save=true;

 var $object_name = "ppi_report_manager";

 function ppi_report_manager()
 {
 parent::SugarBean();
 }
}
?>

•

•

Chapter 8

[211]

If you read through the code you'll see that it:

Makes use of the SugarCRM SugarBean file—this incorporates your vardefs
file, and sets up the business object itself
Loads all of the utilities that you'll need for working with your
business object

Now, it's worth noting that you can call this file anything you like, but the normally
accepted naming convention is to use either the module name, or the singular of the
module name—for example the business object for Opportunities is opportunity.php.

Finally, you'll need to give SugarCRM the details of your new file.

Registering the Business Object
You'll remember that we needed to tell SugarCRM about the module by editing
include/modules.php and adding:

$moduleList[] = 'ppi_report_manager';

Well, we use the same file to register the business object:

$beanList['ppi_report_manager'] = 'ppi_report_manager';
$beanFiles['ppi_report_manager'] =
 'modules/ppi_report_manager/ppi_report_manager.php';

The business object will now be incorporated into SugarCRM, and you can start
making use of it; however, there is just a little tidying up that needs to be done—the
setting up of the language file.

The Module's Language File
We now need to turn back to one of the module's required files:
language/en_us.lang.php. It's here that we define the default terminology
to be used by the module.

If you look at the vardefs.php file you'll see that each field contains a variable
vname, for example assigned_user_id has the vname LBL_ASSIGNED_USER_ID. You
must assign some text to this vname in language/en_us.lang.php, and it's this text
that SugarCRM will then display on the screen:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
$mod_strings = array (
 'LBL_MODULE_NAME' => 'ppi_report_manager',

•

•

Developing Your Own Modules

[212]

 'LBL_MODULE_TITLE' => 'Report Manager',
 'LBL_ID' => 'ID',
 'LBL_DESCRIPTION' => 'Title',
 'LBL_REPORT_SQL' => 'SQL',
 'LBL_NAME' => 'Name',
 'LBL_ASSIGNED_USER_ID' => 'Owner',
);
?>

So, in the above example SugarCRM will display the text 'Owner' on the screen
where ever assigned_user_id is used.

That's all the background setting up that the module needs—now we can turn our
attention to something that we can actually see via the web browser.

The Module's List View
When you click on any module tab in SugarCRM then the first thing that you'll see is
the List View—so, for example, if you go to Opportunities then you'll see the list of
all of the opportunities currently in the system. We'll now look at doing exactly the
same for our new module.

Selecting the Fields to be Displayed
The first thing that you must do is to decide which fields are to be displayed in the
List View. Once, you know which fields you want, then you'll need to tell SugarCRM
about them in the module's metadata/listviewdefs.php file:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
$listViewDefs['Report'] = array(
 'NAME' => array(
 'width' => '50',
 'label' => 'LBL_NAME',
 'default' => true),
 'DESCRIPTION' => array(
 'width' => '50',
 'label' => 'LBL_DESCRIPTION',
 'default' => true),
 'REPORT_SQL' => array(
 'width' => '50',
 'label' => 'LBL_REPORT_SQL',
 'default' => true),);
?>

Chapter 8

[213]

Creating the List View
You've actually done all of the hard work—all you have to do now is to create a PHP
file (normally named ListView.php), which will make use of your business object
and some SugarCRM functionality:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
require_once ('modules/ppi_report_manager/ppi_report_manager.php');
require_once('include/ListView/ListViewSmarty.php');
require_once('modules/ppi_report_manager/metadata/listviewdefs.php');

$seedReport = new ppi_report_manager();
$lv = new ListViewSmarty();
$lv->displayColumns = $listViewDefs['Report'];
$lv->setup($seedReport,
 'include/ListView/ListViewGeneric.tpl', $where,
 $listViewDefs['Report']);
echo $lv->display();
?>

Now you can view the result:

Developing Your Own Modules

[214]

Making the List View the Default View
Having created the List View we need to make it the default screen. To do this you'll
need to edit the module's index.php file:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');

echo get_module_title($mod_strings['LBL_MODULE_NAME'],
 $mod_strings['LBL_MODULE_TITLE'],
true);

include ("modules/$currentModule/ListView.php");
?>

Now that we can see the list of reports the next logical thing to do is to edit existing
ones and add new ones. To do that we need to add an Edit View.

The Modules Edit View
If you look on the right of the List View then you'll see the edit button:

If you click on this button then SugarCRM will take you to the Edit View—once
you've created it, of course.

The EditView.php File
This time you have no choice as to the name for the PHP file that you create. It
must be named EditView.php. However, as before you make use of a lot of built-in
functionality to minimize the amount of coding that you need to do:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');

require_once('XTemplate/xtpl.php');
require_once('modules/ppi_report_manager/ppi_report_manager.php');

Chapter 8

[215]

$focus = new ppi_report_manager();

//Load the data for the fields
if(isset($_REQUEST['record']))
{
 $focus->retrieve($_REQUEST['record']);
 $focus->format_all_fields();
}

echo get_module_title($mod_strings['LBL_MODULE_NAME'],
 $mod_strings['LBL_MODULE_NAME'].": ".$focus->name, true);

//Load the edit form
$xtpl=new XTemplate ('modules/ppi_report_manager/EditView.html');

//Define the Save and Cancel buttons
$xtpl->assign("MOD", $mod_strings);
$xtpl->assign("APP", $app_strings);

//Create a popup for the Assigned user
$json = getJSONobj();
$popup_request_data = array(
 'call_back_function' => 'set_return',
 'form_name' => 'EditView',
 'field_to_name_array' => array(
 'id' => 'assigned_user_id',
 'user_name' => 'assigned_user_name',
),
);
$xtpl->assign('encoded_users_popup_request_data',
 $json->encode($popup_request_data));

$xtpl->assign("ID", $focus->id);
$xtpl->assign("NAME", $focus->name);
$xtpl->assign("DESCRIPTION", $focus->description);
$xtpl->assign("REPORT_SQL", $focus->report_sql);
$xtpl->assign("ASSIGNED_USER_ID",$focus->assigned_user_id);
$xtpl->assign("ASSIGNED_USER_NAME",
 get_assigned_user_name ($focus->assigned_user_id));

//Output to the screen
$xtpl->parse("main");
$xtpl->out("main");
?>

Developing Your Own Modules

[216]

If you look through the code then you'll see that it references a file that doesn't
exist yet—modules/ppi_report_manager/EditView.html.

The EditView.html File
Your module's EditView.html file is used for designing the layout of your
edit form:

<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr>
<td width="15%" class="dataLabel">{MOD.LBL_NAME}
{APP.LBL_REQUIRED_SYMBOL}</span
sugar='slot'></td>
<td width="35%" class="dataField"><input
name='name' type="text" tabindex='1' size='35' maxlength='50'
value="{NAME}"></td>
</tr>
<tr>
<td valign="top" class="dataLabel">{MOD.LBL_
DESCRIPTION}</td>
<td colspan="4" class="dataField"><input
name='description' type="text" tabindex='1' size='35' maxlength='50'
value="{DESCRIPTION}"></td>
</tr>
<tr>
<td valign="top" class="dataLabel">{MOD.LBL_
REPORT_SQL}</td>
<td colspan="4" class="dataField"><textarea
name='report_sql' tabindex='3' cols="60" rows="8">{REPORT_SQL}</
textarea></td>
</tr>
<tr>
<td class="dataLabel">{APP.LBL_ASSIGNED_TO}</
span sugar='slot'></td>
<td class="dataField"><input class="sqsEnabled"
tabindex="1" autocomplete="off" id="assigned_user_name"
name='assigned_user_name' type="text" value="{ASSIGNED_USER_
NAME}"><input id='assigned_user_id' name='assigned_user_id'
type="hidden" value="{ASSIGNED_USER_ID}" />
<input title="{APP.LBL_SELECT_BUTTON_TITLE}" accessKey="{APP.
LBL_SELECT_BUTTON_KEY}" type="button" tabindex='1' class="button"
value='{APP.LBL_SELECT_BUTTON_LABEL}' name=btn1 onclick='open_
popup("Users", 600, 400, "", true, false, {encoded_users_popup_
request_data});' />
</td>
</tr>
</table>

Chapter 8

[217]

The end result is a form in which you can edit the details for any existing report:

Of course, now that you've edited the report you need to be able to save it.

The Module's Save File
Your module's save file must be called Save.php, and should contain any
preprocessing that your data may need before sending to the database:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');

require_once('include/utils.php');
require_once('modules/ppi_report_manager/vardefs.php');

//Function to prepare data for the database
function format_mysql_text ($ip_text) {
 return mysql_real_escape_string(
 html_entity_decode(str_replace("'","'",$ip_text)));
}

//Identify the fields to be loaded
$table = $dictionary['ppi_report_manager']['table'];
while (list($key, $value) = each($dictionary['ppi_report_
manager']['fields'])) {
 if ($key != "id") {
 if ($_REQUEST[$key] != "") {
 $field_list[] = $key;

Developing Your Own Modules

[218]

 }
 }
}

/*Create a SQL statement according to whether this is an insert or an
update*/
if ($_REQUEST['record'] == "")
{
 $field_names .= "id";
 $field_values .= "'" . create_guid() . "'";
 foreach ($field_list as $key)
 {
 $field_names .= "," . $key;
 $field_values .= ",'" . format_mysql_text($_REQUEST[$key]) . "'";
 }
 $sql = "insert into $table";
 $sql .= "(" . $field_names . ")";
 $sql .= " values ";
 $sql .= " (". $field_values . ")";
}
else
{
 foreach ($field_list as $key)
{
 if ($sql_body != "")
 {
 $sql_body .= ",";
 }
 $sql_body .= $key . " = '" . format_mysql_text(
 $_REQUEST[$key]) ."'";

}
 $sql = "update $table set ";
 $sql .= $sql_body;
 $sql .= " where id ='" . $_REQUEST['record'] ."'";
}

//Send the SQL to the database
$db->query($sql);

//Return to the index page
header
 ("Location: index.php?module=".$_REQUEST['module']."&action=index")
;
?>

You'll see from the code that the save file handles both update and insert statements,
and that the script returns you to the module index at the end of the process.

Chapter 8

[219]

Creating New Reports
Having seen how to edit the existing reports you'll be wondering how to create new
ones. You'll be pleased to know that we've done all of the hard work. All you have
to do now is call the Edit View without any input details, and we can do this just by
editing the Menu.php file for the module:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
$module_menu[] =
 Array("index.php?module=ppi_report_manager&action=EditView",
 "New Report");
$module_menu[] =
 Array("index.php?module=ppi_report_manager&action=index",
 "List Reports");
?>

Now you can either edit existing records or create a new one:

You can now go back to Korora and tell her that you don't have to create any new
reports for her—she can do it all for herself.

Developing Your Own Modules

[220]

Summary
In this chapter we've seen that you have two options when it comes to new modules.

You can incorporate a third-party module (if it does the job that you want carried
out) and you also know the procedure for developing your own modules
from scratch.

We'll be looking at other aspects of module development in Chapter 10, but before
that we'll look at a contentious issue for any organization—the workflow.

Developing a Custom
Workflow within SugarCRM

We've now come to a very contentious area—Workflow. It's not that anyone
disagrees about what workflow is:

Workflow is about getting the right work to the right people at the right time,
repeatedly—and knowing you have done so. Workflow is human-centric. First and
foremost, workflow is a human activity that is made by and for those who use it:
workflow is something that can easily be handled and understood by human beings.

UK Enterprise Workflow National e-Government Project—Workflow from a
Business Perspective

Well, that sounds good, but the problems start to occur when you ask people to
consider workflow in their organization, and there are usually a few main issues
to deal with:

You'll find that people are normally experts in their own fields—there are
often very few people who have an overview of the whole process that you're
trying to map.
Sections of a large organization will often have different ways of carrying out
the same overall process.
People don't really like to be told how to do their jobs—they especially
don't like to have any extra processes imposed on them for now obvious
reason—well, would you?
Talk of 'improved utilization of resources', 'improved performance
monitoring', and such like can soon alienate the staff who are going to be
using the system. They'll soon start using terms such as 'Big Brother'.

•

•

•

•

Developing a Custom Workflow within SugarCRM

[222]

How you are able to deal with these will depend on your organization and the
people that are available to you. At least once you've read this chapter you'll know
that, once you've overcome those problems, the workflow itself will be easy.

A Very Simple Workflow
In our simple workflow we'll assume that each task is carried out by one person at
a time, and that all tasks are done sequentially (i.e. none are done in parallel). So,
we'll look at the PPI Preliminary Investigation which, as you remember, maps to
the standard SugarCRM Opportunity. Also, in this example, we're going to have a
different person carrying out each one of the Investigation stages.

Setting up the Process Stages
If you look at SugarCRM then you'll see that by default none of the stages are related
to investigations—they're all named using standard CRM terms:

Obviously the first thing to do is to decide what the preliminary investigation stages
actually are, and then map these to the SugarCRM stages. You'll realize that you'll
need to edit the custom/include/langauge/en_us.lang.php file:

$app_list_strings['sales_stage_dom']=array (
 'Prospecting' => 'Fact Gathering',
 'Qualification' => 'Witness and Subject Location',
 'Needs Analysis' => 'Witness and Subject Interviews',
 'Value Proposition' => 'Scene Investigation',

Chapter 9

[223]

 'Id. Decision Makers' => 'Financial and background Investigation',
 'Perception Analysis' => 'Document and evidence retrieval',
 'Proposal/Price Quote' => 'Covert Camera surveillance',
 'Negotiation/Review' => 'Wiretapping',
 'Closed Won' => 'Full Investigation required',
 'Closed Lost' => 'Insufficient Evidence',
);

Don't forget that you can also do this via Studio. However, once you've added your
mapping into custom/include/langauge/en_us.lang.php file, and refresh your
browser, then you'll see the new stages:

Now that our stages are set up we need to know who'll be carrying out each one.

Deciding Who Does What
In our simple workflow there may not be the need to do anything further. Each
person just needs to know who does what next:

Preliminary Investigation Stage Investigator User Name
Fact Gathering Fran Varady varadyf
Witness and Subject Location William Monk monkw
Witness and Subject Interviews Charlotte Pitt pittc
Scene Investigation David Brock brockd
Financial and background Investigation Guido Brunetti brunettig
Document and evidence retrieval Luke Thanet thanetl

Developing a Custom Workflow within SugarCRM

[224]

Preliminary Investigation Stage Investigator User Name
Covert Camera surveillance Kurt Wallander wallanderk
Wiretapping Maisie Dobbs dobbsm
Full Investigation required Korora Blue bluek
Insufficient Evidence Korora Blue bluek

For example, once Kurt finishes the 'Covert Camera surveillance' stage then he just
needs to update the Preliminary Investigation so that the stage is set to 'Wiretapping'
and the assigned user as 'dobbsm'.

However, things are rarely as simple as that. It's much more likely that:

Investigations may be based on geographical locations, so that the above
table may only apply to investigations based in London. Investigations based
in New York follow the same process but with a different set of staff.
On Mondays Fran does 'Witness and Subject Location' and William does
'Fact Gathering'.

This means, of course, that we need to be using some businesses rules.

Introducing Business Rules
We saw how to start implementing business rules in Chapter 4 when we made use of
SugarCRM's logic hooks, and it's those that we are going to make use of again. Just
to recap—you'll remember that there are six 'triggers' that will cause the logic hooks
to fire:

after_retrieve

before_save

before_delete

after_delete

before_undelete

after_undelete

And the logic hooks are stored in custom/modules/<module name>/logic_hook.php,
so for 'Preliminary Inquiries' this will be custom/modules/Opportunities/
logic_hook.php. You'll also remember, of course, that the logic hook file needs
to contain:

The priority of the business rule
The name of the businesses rule

•

•

•

•

•

•

•

•

•

•

Chapter 9

[225]

The file containing the business rule
The business rule class
The business rule function

So, custom/modules/Opportunities/logic_hook.php needs to contain
something like:

<?php
#As always ensure that the file can only be accessed through SugarCRM
if(!defined('sugarEntry') || !sugarEntry) die(
 'Not A Valid Entry Point');
$hook_array = Array(); #Create an array

$hook_array['before_save'] = Array();
$hook_array['before_save'][] = Array(1, 'ppi_workflow',
 'custom/include/ppi_workflow.php',
 'ppi_workflow', 'ppi_workflow');
?>

Next we'll need the file that logic hook will be calling, but to start with this can
be very basic—so, custom/include/ppi_workflow.php just needs to contain
something like:

<?php
#Define the entry point
if(!defined('sugarEntry') || !sugarEntry) die(
 'Not A Valid Entry Point');
#Load any required files
require_once('data/SugarBean.php');
require_once('modules/Opportunities/Opportunity.php');

#Define the class
class ppi_workflow
{
 function ppi_workflow (&$bean, $event, $arguments)
 {

 }
}
?>

With those two files set up as above nothing obvious will change in the operation
of SugarCRM—the logic hook will fire, but we haven't told it to do anything, and so
that what we'll do now.

•

•

•

Developing a Custom Workflow within SugarCRM

[226]

When the logic hook does run (i.e. when any Primary Investigation is saved) we
would want it to:

Check to see what stage we're now at
Define the assigned user accordingly

All of the relevant information (i.e. the new stage) is passed to the logic hook by
means of the $bean object, and we can obtain the stage from $bean->sales_stage.
Now all we have to do is combine this with PHP's switch statement into the
ppi_workflow function:

 switch ($bean->sales_stage)
{
 case "Prospecting":
 $assigned_user = "varadyf";
 break;
 case "Qualification":
 $assigned_user = "monkw";
 break;
 case "Needs Analysis":
 $assigned_user = "pittc";
 break;
 case "Value Proposition":
 $assigned_user = "brockd";
 break;
 case "Id. Decision Makers":
 $assigned_user = "brunettig";
 break;
 case "Perception Analysis":
 $assigned_user = "thanetl";
 break;
 case "Proposal/Price Quote":
 $assigned_user = "wallanderk";
 break;
 case "Negotiation/Review":
 $assigned_user = "dobbsm";
 break;
 case "Closed Won":
 $assigned_user = "bluek";
 break;
 case "Closed Lost":
 $assigned_user = "bluek";
 break;
 }

•

•

Chapter 9

[227]

You'll notice from the code that we must use the original SugarCRM sales stage
terms and not our new mapping—that only appears on the screen.

Next we'll have to add the code to update $bean->assigned_user_id with the ID of
our new user:

 global $db;

 $sql =
 "select id from users where user_name = '" . $assigned_user ."'";
 $result = $db->query($sql);
 $bean->assigned_user_id = mysql_result($result,0,0);

With the code in place, if you now change the Investigation (or Sales) stage, and then
save the Preliminary Investigation (or Opportunity) then you'll see that the assigned
user is automatically updated for you.

However, this is still only a semi-automatic process—the correct person for the stage
is selected correctly, but only if the stage is selected manually. The process running
correctly still depends on someone telling SugarCRM what that next stage is.
Obviously the next step is to move from stage to stage automatically.

Completing the Automated Workflow
At the moment we're relying on a user telling the application which stage to move
to next. However, it would be much better for the user to tell SugarCRM that the
current stage has been completed, and then for the business rules to decide which
stage should be carried out next. We want to keep it simple and therefore an
'Investigation Stage Complete' checkbox will do the job.

Developing a Custom Workflow within SugarCRM

[228]

If you look at the edit view for any of the existing Opportunities then you'll see
that there's nothing that can really be renamed to represent our 'Investigation
Stage Complete':

However, as we saw in Chapter 3, we can use the SugarCRM Studio to add the field
that we're going to need:

Chapter 9

[229]

After adding the custom field itself we'll need to add text for the field label into
custom/modules/Opportunities/language/en_us.lang.php:

$mod_strings['lbl_chk_complete_c_10'] = "Investigation Stage
Completed";

And then we're ready to see the new edit view:

We can now go back to our code (in custom/include/ppi_workflow.php), and we
can place all of our functionality within an if statement:

if ($bean->chk_complete_c == 1)
{
 switch ($bean->sales_stage)
 {
 /* etc, etc, etc */
 }
}

Our logic hook will, of course, fire every time a save is made—but our business
rule will only be implemented if the Investigation Stage Completed box is ticked.
So now we need the code that will define the process itself, and you would need to
place this before the code for deciding who the assigned user is:

 switch ($bean->sales_stage)
{
 case "Prospecting":
 $bean->sales_stage = "Qualification";
 break;
 case "Qualification":

Developing a Custom Workflow within SugarCRM

[230]

 $bean->sales_stage = "Needs Analysis";
 break;
 case "Needs Analysis":
 $bean->sales_stage = "Value Proposition";
 break;
 case "Value Proposition":
 $bean->sales_stage = "Id. Decision Makers";
 break;
 case "Id. Decision Makers":
 $bean->sales_stage = "Perception Analysis";
 break;
 case "Perception Analysis":
 $bean->sales_stage = "Proposal/Price Quote";
 break;
 case "Proposal/Price Quote":
 $bean->sales_stage = "Negotiation/Review";
 break;
 case "Negotiation/Review":
 $bean->sales_stage = "Closed Won";
 break;
 }
 //Now decide who the assigned user is...

And finally we need to reset the completed status back to 0:

$bean->chk_complete_c = 0;

You'll notice that we've not taken the process all the way to the final stage—this is
because the final two stages are 'Closed won' or 'Closed lost' (in PPI speak—'Full
Investigation required' and 'Insufficient Evidence'). Korora will need to make that
decision herself.

However, the important thing is that you can see just how easy it is to set up a simple
process (not that any process is ever simple).

Moving the Rules into the Database
Now that we've proved how easy it is to set up a workflow within SugarCRM you're
probably wondering how we can improve the process. Well, the first thing we can do
is move the rules onto the database—meaning, of course, that we won't have to edit
the files every time a change is made to the workflow itself.

Chapter 9

[231]

Add a Custom Table
Your first step should be to decide what fields you're going to require for your
workflow�� however, we'll start by just keeping it to the basics:

create table ppi_workflow
(
 id char(36),
 user_id char(36),
 process_step varchar(50),
 predecessor varchar(50),
 primary key (id)
);

Don't forget that if you save this to a file then you have a record of what you've done,
and you can use the file to create the table from the command line:

mysql -uroot -p<password> penguin_pi < create_ppi_workflow.sql

With the table in place we now need to think about entering the workflow details.

Create the Workflow Module
You can, of course load the data you want from the command line, but it's probably
just as easy (certainly in the long run) to add a module to help you do the job. Your
first step is to create the directory and obligatory files:

mkdir modules/ppi_workflow
touch modules/ppi_workflow/index.php
touch modules/ppi_workflow/Forms.php
mkdir modules/ppi_workflow/language
touch modules/ppi_workflow/language/en_us.lang.php

As always add the module to include/modules.php:

$moduleList[] = 'ppi_workflow';

And place it's title in custom/include/language/en_us.lang.php:

$app_list_strings['moduleList']['ppi_workflow'] = 'PPI Workflow';

Developing a Custom Workflow within SugarCRM

[232]

Finally, don't forget—you may have to log on as the administrator so that you can
move 'PPI Workflow' from Hide Tabs to Display Tabs:

That's the blank module in place—now it's time to think about doing something with
it—in this case it will handle the data entry for us.

Building a Data Input Module
You're now ready to add the workings of the module, and this time we're going to
do everything within one file—index.php:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
 Point');

Chapter 9

[233]

Having ensured that the module can only be access through the SugarCRM we can
initialize the database:

$db=$GLOBALS['db']; #Not always essential, but is safer

and then deal with any requests that we send to the module:

if ($_REQUEST['assigned_user_id'])
{
 $sql = "insert into ppi_workflow (id, user_id,
 process_step,predecessor)";
 $sql .= " values ";
 $sql .= "('". create_guid() ."'";
 $sql .= ",'".$_REQUEST['assigned_user_id']."'";
 $sql .= ",'".$_REQUEST['prelim_stage']."'";
 $sql .= ",'".$_REQUEST['predecessor']."')";
 $db->query($sql);
}
?>

The above code will save any new information to the database, and then we'll want
to display the contents of the table to the screen:

<table width=100%>
<tr><td>Assigned User</td><td>Process step</
td><td>Predecessor</td></tr>
<?php
$sql = "select u.user_name, w.process_step,w.predecessor";
$sql .= " from users u,ppi_workflow w";
$sql .= " where u.id = w.user_id";
$result = $db->query($sql);
$r=0;
while ($r < mysql_numrows($result))
{
 $user_name = mysql_result($result,$r,0);
 $ppi_stage =
 $app_list_strings['sales_stage_dom'][mysql_result($result,$r,1)];
 $predecessor =
 $app_list_strings['sales_stage_dom'][mysql_result($result,$r,2)];
 $op = "<tr>";
 $op .= "<td>" . $user_name . "</td>";
 $op .= "<td>" . $ppi_stage . "</td>";
 $op .= "<td>" . $predecessor . "</td>";
 $op .= "</tr>";
 echo $op;
 $r++;
}
?>
</table>
<hr>

Developing a Custom Workflow within SugarCRM

[234]

Finally we can add a form for adding new details:

<form action="index.php?module=ppi_workflow&action=index" method=post>
<table>
<tr>

You'll notice that we call the module by assigning it to the form action, and then
we need to go on to create a combo-box containing the list of users by querying
the database:

<td>Assigned User</td>
<td>
<!-- Build the combo for the assigned user -->
<select name='assigned_user_id'>
<?php
$sql="select id,user_name from users where id <> '1'";
$sql .= " and deleted = 0 and status = 'Active'";
$result = $db->query($sql);
$r=0;

And we create the combo by looping through the results:

while ($r < mysql_numrows($result))
{
 $op = "<option value='";
 $op .= mysql_result($result,$r,0) . "'>";
 $op .= mysql_result($result,$r,1);
 echo $op;
 $r++;
}
?>
</select>
</td>

However, to create combo-boxes containing a list of the investigation stages we use
the $app_list_strings['sales_stage_dom'] array with a for each statement:

<td>Preliminary Investigation Stage</td>
<td>
<select name='prelim_stage'>
<?php
foreach ($app_list_strings['sales_stage_dom'] as $key => $value)
{
 echo "<option value='" . $key . "'>$value";
}
?>
</select>
</td>

Chapter 9

[235]

<td>Predecessor</td>
<td>
<select name='predecessor'>
<option value=NONE>None
<?php
foreach ($app_list_strings['sales_stage_dom'] as $key => $value)
{
 echo "<option value='" . $key . "'>$value";
}
?>
</select>
</td>

</tr>
<tr><td colspan=4 align=center><input type=submit value="Save"></td></
tr>
</form>

Once you've saved index.php then you can access the module via your web browser
where you'll see that we have a simple means of assigning process steps to users:

Once you've assigned each step to a user then you can start thinking about
modifying the way that the business rule carries out its decision making process.

Making Use of the Rules in the Database
Now that we've got the set of rules on the database the decision making process
becomes much easier. All we have to do is to query the database to find the process
step for which the current step is the predecessor. Then it's just a matter of updating
the assigned user and sales stage accordingly:

Developing a Custom Workflow within SugarCRM

[236]

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
require_once('data/SugarBean.php');
require_once('modules/Opportunities/Opportunity.php');

class ppi_workflow {
 function ppi_workflow (&$bean, $event, $arguments)
{
 global $db;

 if ($bean->chk_complete_c == 1)
 {
 $sql = "select user_id, process_step from ppi_workflow";
 $sql .= " where predecessor = '" . $bean->sales_stage . "'";
 $result = $db->query($sql);

 $bean->assigned_user_id = mysql_result($result,0,0);
 $bean->sales_stage = mysql_result($result,0,1);
 $bean->chk_complete_c = 0;
 }
 }
}
?>

So that's a simple workflow in place—simple because all tasks are done sequentially
and by one person at a time. However, as we all know, that doesn't really represent
the real world. In the real world you'll have a team of people involved, and they'll all
be working on a project at the same time. Obviously what we need next is the ability
to carry out parallel processing.

Parallel Tasks
In our scenario we've assigned the SugarCRM Opportunities to the Penguin Private
Investigation organization's Preliminary Investigation, and we've set up a simple
sequential process. However, in many cases some jobs will have to be carried out in
parallel—for example at the 'Witness and Subject Interviews' stage Charlotte Pitt has
overall control, but while she undertakes witness interviews William Monk does the
subject interviews. It's only once they've both finished that the stage is complete. This
can be done by going to a Preliminary Investigation (or Opportunity) and manually
adding tasks by clicking Create Task:

Chapter 9

[237]

Obviously we'll need to change the logic hook so that:

The tasks are created automatically and assigned to the correct person.
The stage cannot be completed until all tasks have been closed.

Adding Dependent Tasks to the Database
As you've already seen, we can build the business rule functionality into a PHP
file, but it is much more efficient (both from a maintenance and development
perspective) to store the rules in the database. With that in mind the first thing that
we need to do is to create a table in which to store the workflow tasks (i.e. the tasks
that need to be run in parallel):

create table ppi_workflow_tasks (
 id char(36),
 user_id char(36),
 process_step varchar(50),
 title varchar(50),
 primary key (id));

As always you should store the SQL in a file and then run the file against
the database.

•

•

Developing a Custom Workflow within SugarCRM

[238]

Once you've created your table then you need to think about populating it with data.
Now, as you know, we can:

Load the data from the command line
Create a specific module for data entry

However, this time we'll add an action to an existing module that will carry out the
creation of the data for us:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');

$step='Needs Analysis';
$task['title'][0] = 'Subject Interviews';
$task['title'][1] = 'Witness Interviews';
$task['username'][0] = 'monkw';
$task['username'][1] = 'pittc';

for ($c = 0; $c <= 1; $c++)
{
 $sql = "select id from users";
 $sql .= " where user_name = '" . $task['username'][$c] . "'";
 $result = $db->query($sql);
 $user_id = mysql_result($result,0,0);

 $sql = "insert into ppi_workflow_tasks";
 $sql .= "(id, user_id, process_step, title)";
 $sql .= " values ";
 $sql .= "('". create_guid() ."'";
 $sql .= ",'". $user_id ."'";
 $sql .= ",'". $step ."'";
 $sql .= ",'". $task['title'][$c] ."')";
 $db->query($sql);
}
?>

If you store this file as ppi_workflow_tasks.php in the ppi_workflow module
directory then you can run it through the web browser—for example if your were in
the PPI organization then you would type in the URL:

http://hector/penguin_pi/index.php?module=ppi_workflow&action=ppi_workflow_
tasks

However you decide to load the data for the dependent tasks, the next stage is to
modify the workflow so that they can be taken into account.

•

•

Chapter 9

[239]

Using Dependent Tasks in the Workflow
Our simple workflow assumes that everything is done sequentially�� however, our
new workflow must:

Ensure that all dependent tasks have been closed before the next stage can
be initiated
Create any required dependent tasks for each stage

So, it's back to our business rules file to make the necessary changes. The start of the
file is the same—we need to:

Define the entry point
Include any other required files
Define the class and the function to be called
Declare any global variables (in this case $db)

 <?php
 if(!defined('sugarEntry') || !sugarEntry) die(
 'Not A Valid Entry Point');
 require_once('data/SugarBean.php');
 require_once('modules/Opportunities/Opportunity.php');

 class ppi_workflow {
 function ppi_workflow (&$bean, $event, $arguments) {
 global $db;

And, as before, we only want the business rule to be run if the stage has been marked
as 'Completed':

 if ($bean->chk_complete_c == 1) {

However, the differences start at this point, and the first thing we must do is to check
if the current step is one with dependent tasks:

 $sql = "select * from ppi_workflow_tasks";
 $sql .= " where process_step = '" . $bean->sales_stage . "'";
 $result = $db->query($sql);
 if (mysql_numrows($result) > 0) {

If we find that there are dependent tasks then we must now look to see if any of
those are still being worked on:

 $sql = "select id from tasks";
 $sql .= " where parent_id = '" . $bean->id . "'";
 $sql .= " and status <> 'Completed'";
 $status_result = $db->query($sql);

•

•

•

•

•

•

Developing a Custom Workflow within SugarCRM

[240]

And if we find that any tasks are open then we need to record that fact (we'll use that
to decide how the remainder of the code is to be run:

 if (mysql_numrows($status_result) > 0)
 {
 $tasks_outstanding = 1;
 }
 }

The next portion of the code is unchanged from the original, apart from the fact that
it's only run if all dependent tasks have been closed:

 if (! $tasks_outstanding)
 {
 $sql = "select user_id, process_step from ppi_workflow";
 $sql .= " where predecessor = '" . $bean->sales_stage . "'";
 $result = $db->query($sql);

 $bean->assigned_user_id = mysql_result($result,0,0);
 $bean->sales_stage = mysql_result($result,0,1);

Once we've decided what the new stage is then we need to create any dependent
tasks (if they're required):

 $sql = "select user_id,title from ppi_workflow_tasks";
 $sql .= " where process_step = '" . $bean->sales_stage . "'";
 $result = $db->query($sql);
 $r=0;
 while ($r < mysql_numrows($result))
 {
 $sql = "insert into tasks";
 $sql .= "(id,parent_id,date_entered,date_modified";
 $sql .= ",assigned_user_id,name,status,parent_type)";
 $sql .= " values ";
 $sql .= "(";
 $sql .= "'" . create_guid() . "'";
 $sql .= ",'" . $bean->id . "'";
 $sql .= ",now(),now()";
 $sql .= ",'" . mysql_result($result,$r,0) . "'";
 $sql .= ",'" . mysql_result($result,$r,1) . "'";
 $sql .= ",'Not Started'";
 $sql .= ",'Opportunities'";
 $sql .= ")";
 $db->query($sql);
 $r++;
 }
 }

Chapter 9

[241]

All finally we set the new step to uncompleted (or change the original step back to
uncompleted if there are outstanding tasks):

 $bean->chk_complete_c = 0;
 }
 }
}
?>

With all of that done you'll find that any required tasks will be created as you move
from stage to stage, and that you won't be able to move on to the next stage until all
of the dependent tasks have been marked as completed. One advantage of using the
tasks in this way is that you also end up with a record of who did what and when:

Obviously you'll want to take this technique further and modify it according to
the particular situations that your organization deals with. For instance by adding
additional fields you can have different workflows according to:

Department
Country
Lead Source

•
•
•

Developing a Custom Workflow within SugarCRM

[242]

Or you could just add your own custom fields. And, of course, you can start adding
workflows to all of your modules.

The important thing, of course, is that you are now able to create the workflow itself,
and that you can incorporate both serial and parallel tasks.

Summary
Before you start work on your workflow, ensure that: the people who understand the
processes in the organization are available to you�� both managers and staff agree that
the process plan is correct; staff don't feel that the process is being enforced on them;
and that this isn't another case of 'Big Brother'.

When you do start building the work flow ensure that you've correctly mapped your
organization's stages onto the SugarCRM stages and that you have a complete listing
of who does what and when.

Business rules are created by making use of SugarCRM's logic hooks. The logic hook
file contains the priority of the business rule, the name of the businesses rule, the file
containing the business rule, the business rule class, and the business rule function.

You can build all of your rules into a single file�� however, it is better to build these
into the database because you won't have to add code every time that you add a
workflow or change an existing one�� changes in assigned users can be handled easily.

A workflow can be serial (i.e. each task is handled one at a time and by only one
person); however, it is much more likely that each stage will contain a number of
tasks all carried out at once.

Your workflow can be maintained in a number of ways: you may wish to update
everything directly on the database via the command line; you may wish to build
a custom module to do the job�� you can create individual PHP files to carry out
maintenance.

If you do use parallel tasks then your code must ensure that all tasks have been
completed before the next stage; the code must automatically create the tasks for
each of the stages.

Remember that you can add your own fields to provide additional workflows that
may depend on: region, department, time of year, and anything else that you can
possibly think of.

With the workflow up and running we can now move on to the final chapter of the
book. In Chapter 10 we'll be looking at various ways of improving SugarCRM
even further.

Customizing and Optimizing
SugarCRM—Tips and Tricks

Through the course of this book we've looked at some of the major issues involved in
carrying out SugarCRM customizations:

Changing the look and feel of SugarCRM
Changing the modules that make up the application
Understanding the SugarCRM user interface and SugarBeans
Understanding the database structure and how SugarCRM interfaces with it
How to carry out development in a safe and professional manner
How to implement your own custom modules
How to introduce your own workflow system

With the knowledge that you now have at your fingertips you'll be able to create
your own set of customizations for your organization. We've seen how we could
modify SugarCRM for PPI so that Korora and all of her workmates have an
application that will be of direct benefit to their day-to-day tasks, and hopefully will
make their lives that little bit easier.

In this final chapter we're not going to tackle any major new projects�� instead we'll
look at various simple ways of improving the application even more. We will,
therefore, re-visit one or two of the subjects that we've already covered, and will
have a look at a few additional techniques—things that may help turn this from a
very useful piece of software into a truly killer application.

The first area that we'll look at is how to get more information out of SugarCRM.

•

•

•

•

•

•

•

Customizing and Optimizing SugarCRM—Tips and Tricks

[244]

Delving into SugarCRM Variables
While we've been customizing SugarCRM we've made use of a number of different
variables—most of which are elements in SugarCRM arrays. Now, it may have
occurred to you to ask the question—"How can I find out what other elements
are available to me in SugarCRM arrays?" For instance let's consider one such
array—$current_user. We can view the elements of any array that we're interested
in by adding an action to one of our modules:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
var_dump($current_user);
?>

You'll notice that we've used the var_dump function here, and the end result (once
you'll call it through the web browser) is:

That's useful, but if it looks a bit too complicated (and it does) then the output can be
improved by a change to the script:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
foreach ($current_user as $key => $value){
 echo "current_user[$key] = $value
";
}
?>

Chapter 10

[245]

Once you refresh the browser you'll see something like:

Now we can start making use of all of that useful information.

Developing Dashlets Further
You'll remember that we first came across dashlets in Chapter 2—these allow us
to build additional functionality into the Home page without having to create
completely new modules. You'll also remember that we built a very simple dashlet:

OK—not very exciting at the moment; however, we can quickly make it more
interesting by making use of the $current_user array that we've just been
examining. So, in this case we can use the reports_to_id element of
$current_user to create a dashlet that displays all of the Preliminary
Investigations for the team that the currently logged on user belongs to:

<?php
#As always ensure that the file can only run from SugarCRM
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
 //Start by including the base Dashlet class

Customizing and Optimizing SugarCRM—Tips and Tricks

[246]

 require_once('include/Dashlets/Dashlet.php');
 class PPIDashlet extends Dashlet{
 function PPIDashlet($id, $def){
 global $current_user, $app_strings;
 parent::Dashlet($id);
 $this->title = 'My PPI';
 }

 function display($text = ''){
 #Initialize the current user and the database
 global $current_user, $db;
 #Create the sql to be run
 $sql = "select o.id,o.name,u.user_name";
 $sql .= " from opportunities o, users u";
 $sql .= " where o.assigned_user_id";
 $sql .= " in (select id from users";
 $sql .=
 " where reports_to_id = '" .
 $current_user->reports_to_id . "')";
 $sql .= " and o.assigned_user_id = u.id";
 #Obtain the results
 $result = $db->query($sql);

 Define the text to be returned
 $text = 'Team Preliminary Investigations<hr>';
 $text .= "<table>";
 $r=0;
 while ($r < mysql_numrows($result)) {
 $text .= "<tr>";
 $text .= "<td><a href=index.php?";
 $text .= "action=DetailView&module=Opportunities&record=";
 $text .= mysql_result($result,$r,0) . ">";
 $text .= mysql_result($result,$r,1);
 $text .= "</td>";
 $text .= "<td>" . mysql_result($result,$r,2) . "</td>";
 $text .= "</tr>";
 $r++;
 }
 $text .= "</table>";
 #Output the text
 return parent::display($text);
 }
 }
?>

Chapter 10

[247]

Now, for example, if Maisie Dobbs logs on then she'll see:

However, as you add extra functionality with more and more complex queries then
you may find that SugarCRM starts to slow down—so next we'll look at various
ways in which we can speed up the application.

Speeding up SugarCRM
Let's imagine you've finished all of your customizations, tested, and released the
application to the organization. After a month or two Korora comes to your office.

'This application of yours,' she says 'it's getting really slow—what have you done
to it?'

'Nothing.' you reply 'I've not touched it.'

'Well, we're finding it impossible to use—you have to sort it out'.

So, what's gone wrong? There are two areas that we can look at:

What is there in the application that could slow it down.
What is there in the database that could affect performance.

Since we've just added another query into our dashlet, let's look at the database first.

Optimizing Queries
When you write SQL queries for your application you may expect all queries to
operate pretty well the same. However, you'll find that this isn't necessarily true.
For instance let's look at two very similar queries. The first extracts data from the
users table:

mysql> select user_name
 -> from users
 -> where id = '792a77f9-6537-9eb3-6561-455f3a4ba8e9';

•
•

Customizing and Optimizing SugarCRM—Tips and Tricks

[248]

+-----------+
| user_name |
+-----------+
| bluek |
+-----------+
1 row in set (0.00 sec)

and so does the second:

mysql> select user_name
 -> from users
 -> where reports_to_id = '792a77f9-6537-9eb3-6561-455f3a4ba8e9';
+------------+
| user_name |
+------------+
| varadyf |
| monkw |
| pittc |
| brockd |
| brunettig |
| thanetl |
| wallanderk |
| dobbsm |
+------------+
8 rows in set (0.01 sec)

The only difference between the two queries is that the first uses the id field in its
where clause, the second uses the reports_to_id field.

Having seen the two queries you might expect their performance to be
identical—they both extract information from the same table in almost the same
way. However, you'd be wrong. As you add more and more users into the database
you'll find that the first query (using id in the where clause) carries on running
quickly, while the second (using reports_to_id in the where clause) will start to
run more slowly. So what's the difference?

Using the explain Command
To understand the difference between our two queries we need to make use of the
SQL explain command:

mysql> explain select user_name
 -> from users
 -> where id = '792a77f9-6537-9eb3-6561-455f3a4ba8e9';

Chapter 10

[249]

+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+

| 1 | SIMPLE | users | const | PRIMARY | PRIMARY | 108 | const | 1 | |

+----+-------------+-------+-------+---------------+---------+---------+-------+------+-------+

1 row in set (0.00 sec)

If you look at the results you'll see the rows field—this contains the number of rows
of data from the table that have had to be searched in order to find the required
information. In this case only one row has had to be searched. However, if we use
explain on the second query then we see a different picture:

mysql> explain select user_name
 -> from users
 -> where reports_to_id = '792a77f9-6537-9eb3-6561-455f3a4ba8e9';
+----+-------------+-------+------+---------------+------+---------+------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+------+---------------+------+---------+------+------+-------------+

| 1 | SIMPLE | users | ALL | NULL | NULL | NULL | NULL | 512 | Using where |

+----+-------------+-------+------+---------------+------+---------+------+------+-------------+

1 row in set (0.00 sec)

The query itself only returns eight rows of data, but 512 rows have had to be
searched to find them. Why 512 rows? Running another query may give us some
more information:

mysql> select count(*)
 -> from users;
+----------+
| count(*) |
+----------+
| 512 |
+----------+
1 row in set (0.05 sec)

You'll realize from this that the query has had to search through the whole table in
order to find what it's looking for. Obviously the more users we add then the more
rows that the query must search through, and the longer that the query is going to
take to run.

So why does one query search through only one of the 512 rows while the other
searches through all of them? The answer is indexes.

Customizing and Optimizing SugarCRM—Tips and Tricks

[250]

Creating Indexes
Indexes do for a database exactly the same as they do for books. If you were looking
in this book for the section on 'Creating Indexes' you wouldn't go through page by
page, you'd just look for the page number in the index and then go there directly.
Database indexes are just the same.

At this point it may occur to you to ask why every column isn't indexed—wouldn't
that guarantee that every query always ran quickly? Well, that's true but indexes take
up space, and so it's a trade-off between the amount of space used and the benefit
of increased speed. And, of course, if you have too many indexes then this will
actually slow the database down. For that reason only the most often used fields are
normally indexed.

Next you would want to know how to find out if a field is indexed or not, and there
are two ways to do this. The first way is to use the explain command that we've just
been looking at. If there is an index you'll see it listed in the key field. If there's not
one then the key field will contain 'NULL'.

You can also see if any fields are indexed by looking at the table structure on
the database:

mysql> desc users;
+-----------------------+--------------+------+-----+---------------------+-------+
| Field | Type | Null | Key | Default | Extra |
+-----------------------+--------------+------+-----+---------------------+-------+
id	varchar(36)	NO	PRI		
user_name	varchar(60)	YES	MUL	NULL	
user_hash	varchar(32)	YES		NULL	
authenticate_id	varchar(100)	YES		NULL	
sugar_login	tinyint(1)	YES		1	
first_name	varchar(30)	YES		NULL	
last_name	varchar(30)	YES		NULL	
reports_to_id	varchar(36)	YES		NULL	
is_admin	tinyint(1)	YES		0	
receive_notifications	tinyint(1)	YES		1	
description	text	YES		NULL	
date_entered	datetime	NO		0000-00-00 00:00:00	
date_modified	datetime	NO		0000-00-00 00:00:00	
modified_user_id	varchar(36)	YES		NULL	
created_by	varchar(36)	YES		NULL	
title	varchar(50)	YES		NULL	
department	varchar(50)	YES		NULL	
phone_home	varchar(50)	YES		NULL	
phone_mobile	varchar(50)	YES		NULL	
phone_work	varchar(50)	YES		NULL	
phone_other	varchar(50)	YES		NULL	
phone_fax	varchar(50)	YES		NULL	
email1	varchar(100)	YES		NULL	
email2	varchar(100)	YES		NULL	
status	varchar(25)	YES		NULL	

Chapter 10

[251]

address_street	varchar(150)	YES		NULL	
address_city	varchar(100)	YES		NULL	
address_state	varchar(100)	YES		NULL	
address_country	varchar(25)	YES		NULL	
address_postalcode	varchar(9)	YES		NULL	
user_preferences	text	YES		NULL	
deleted	tinyint(1)	NO		0	
portal_only	tinyint(1)	YES		0	
employee_status	varchar(25)	YES		NULL	
messenger_id	varchar(25)	YES		NULL	
messenger_type	varchar(25)	YES		NULL	
is_group	tinyint(1)	YES		0	

+-----------------------+--------------+------+-----+---------------------+-------+

37 rows in set (0.01 sec)

From the output you can see that two of the users table fields are indexed—id and
user_name. You'll notice that reports_to_id is not indexed.

If you decide that the lack of an index is contributing to any degradation in
performance that your users are experiencing then it's easy to create a new one:

mysql> create index idx_rti on users (reports_to_id);
Query OK, 512 rows affected (0.15 sec)
Records: 512 Duplicates: 0 Warnings: 0

And now you can use explain to see what affect this has had:

mysql> explain select user_name

 -> from users

 -> where reports_to_id = '792a77f9-6537-9eb3-6561-455f3a4ba8e9';

+----+-------------+-------+------+---------------+---------+---------+-------+------+-------------+

| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |

+----+-------------+-------+------+---------------+---------+---------+-------+------+-------------+

| 1 | SIMPLE | users | ref | idx_rti | idx_rti | 111 | const | 31 | Using where |

+----+-------------+-------+------+---------------+---------+---------+-------+------+-------------+

1 row in set (0.00 sec)

This time the query will still need to search through some of the rows of data (31 of
them), but won't need to go through the full 512 records in the table.

Before we leave the optimization of queries all together we'll just look at how you
can catch those queries that are causing you problems.

Logging Slow Queries
Since it's you that's done all of these SugarCRM customizations you'll already know
which queries are likely to cause you problems, and hopefully you'll have done all of
your optimization before releasing the application to your users. However,

Customizing and Optimizing SugarCRM—Tips and Tricks

[252]

how do you know which queries to look at, if someone else has carried out the
customizations, or if you've inherited the system? Luckily SugarCRM can come to
your rescue by enabling you to log slow queries.

You'll need to log on as administrator and go to the Administration module. When
there click on System Settings:

Now scroll down to the Advanced section, where you'll be able to turn on slow
query logging:

You'll notice that you can also set the threshold for the query (in milliseconds)—any
query that takes longer that that will be logged.

Of course, you may have a problem here—what if you want to see this in action, but
haven't got any slow queries? If that's the case then set the threshold to -1—this will
catch every query that you (or any of your users) run.

If you've done that then you can now see what queries are being run, and how they
are performing, by viewing the SugarCRM log file (which should be located in the
SugarCRM directory on your web server):

bluek@hector:/www/penguin_pi$ cat sugarcrm.log
Thu Mar 29 19:09:38 2007,685 [3852] FATAL SugarCRM - Slow Query
(time:0.000523
select o.id,o.name,u.user_name from opportunities o, users u where
o.assigned_user_id in (select id from users where reports_to_id =
'792a77f9-6537-9eb3-6561-455f3a4ba8e9') and o.assigned_user_id = u.id

So here we can see the result of the query that we added to our dashlet at the start of
this chapter—it takes 0.000523 seconds to run.

Chapter 10

[253]

And just before we finish we'll just have a quick look at the administration of the log
file itself. If you find that messages are not being logged then examine the log4php.
properties in the SugarCRM directory, and look for the setting for log4php.
appender.A2.File. If this is set as:

log4php.appender.A2.File=/sugarcrm.log

Then change it so that it shows the full path to your file, for example:

log4php.appender.A2.File=/www/penguin_pi/sugarcrm.log

Of course, the file must exist, and it must be writable by your web service.

bluek@hector:/www/penguin_pi$ ls -l sugarcrm.log
-rwxrwxr-x 1 www-data www-data 147809 2007-03-30 22:37 sugarcrm.log

We've been looking at how to optimize individual queries, but there is a way to
optimize all of your queries—by making use of the MySQL query cache.

Using the MySQL Query Cache
You'll no doubt realize that every time SugarCRM sends a query to the database then
a new set of data will be compiled and then returned to the application. You'll also
realize that the queries that SugarCRM sends are always the same—they are always
the ones built into the application, either the default ones or ones that you've added
through your customizations. You can make use of this knowledge by enabling the
MySQL query cache.

If the MySQL query cache is enabled then instead of accessing the tables every time
a query is carried out, a result is stored on the database. It's this result that's returned
when another, identical, query is sent to the database.

Now—before you ask—this doesn't mean that you may retrieve out of date
information from the database. To prevent this, the cache is automatically updated
every time that the underlying data is changed.

So, how do we enable the MySQL query cache?

First you need to make sure that the cache exists (and it will by default):

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+
1 row in set (0.02 sec)

Customizing and Optimizing SugarCRM—Tips and Tricks

[254]

Having confirmed that the cache is there, then we can turn it on by allocating a size
to it (a size of 0 turns it off):

mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |
+------------------+--------+
1 row in set (0.01 sec)

How much of a benefit you reap will depend on the complexity of the query—the
more complex the query the better the saving—but you can expect to more than
halve the time it takes to run a query.

Now that you know how to optimize your queries we can turn our attention to
optimizing the SugarCRM application itself

Optimizing the SugarCRM Application
You may find that simply optimizing your queries will provide all of the
performance enhancements that you require. However, if not, then you'll need to
start looking at the SugarCRM application itself—and a good starting point is the
SugarCRM diagnostic tool.

The SugarCRM Diagnostic Tool
If you want to use the SugarCRM diagnostic tool, then you'll have to again log on as
the administrator and go to the Admin module where you'll see the link to the tool:

Chapter 10

[255]

You'll find that the diagnostic tool allows you to check various aspects of
the application:

Then, when you've clicked on Execute Diagnostic Operations, the SugarCRM will
display its progress:

Customizing and Optimizing SugarCRM—Tips and Tricks

[256]

The diagnostic tools won't give you any results directly—you'll need to download
and then open the diagnostic file (which will be a ZIP file):

Further (manual) analysis of these files may (or may not) give you further insight
into what's happening in your SugarCRM application. We've already looked at one
of these files—sugarcrm.log—but there's one other that you may find particularly
useful—phpinfo.html.

Chapter 10

[257]

Using phpinfo
If you open up phpinfo.html then you'll find that it contains something like:

However, if you scroll down the file then you'll see that it contain a lot of
information. In particular:

Configuration
PHP core
Apache Environment
HTTP Headers
MySQL
PHP Variables

So, how can this help us? Let's imagine that you've just created a new module—it's
very complex, and pulls a lot of information from the database. However, during
testing Korora comes to you and tells you that sometimes it will run, sometimes it
won't. This is where the techniques that we've looked at come in.

•

•

•

•

•

•

Customizing and Optimizing SugarCRM—Tips and Tricks

[258]

Hopefully it won't take you too long looking through the files to work out what's
going on. The maximum execution time of a PHP script is set by default to 30
seconds. If your script takes longer than that then the application will time out. After
a minor modification then the problem is solved and, if you're re-run the diagnostics,
then you'll be able to see your new settings:

And where do you need to make these changes? The phpinfo.html file will tell you
that as well:

You'll probably find phpinfo very useful, and you'll be pleased to know that you
don't have to run the diagnostic tool every time that you want to view the data. You
can call it directly via a module action:

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point');
phpinfo();
?>

If you save this as phpinfo.php in the ppi_workflow directory then you can call it
via your web browser:

There are many, many PHP variables that you can play with—far too many to
cover in this chapter, and so we'll just finish this section by mentioning one
important one. If your users start complaining about blank screens then check
the memory_limit setting:

If you are having problems then try setting this to a higher value.

Chapter 10

[259]

Install a PHP Optimizer
We've seen how we can make use of MySQL's query cache in order to speed up
the application, and you can achieve a similar level of performance improvement
by doing the same for PHP. However, there is no such cache with PHP—you must
obtain a third-party tool to do the same job—a PHP optimizer. The optimizer will
compile and cache the PHP code so that this doesn't have to be done every time a
web page is accessed.

There are few available, but two of the most mature are:

APC (Alternative PHP Cache)—http://pecl.php.net/package/APC

eAccelerator—http://eaccelerator.net/

In both cases it's just a matter of downloading the software and following the
installation instructions.

Right—now that we've got the database and the application running as efficiently
and as quickly as possible, we'll turn our minds to another important aspect of
working with SugarCRM.

Creating Reports
Everybody has to create reports—all the time—and we've already seen how to create
our own reports within SugarCRM. However, as I'm sure you'll agree, they may not
be the most pretty looking reports in the world. Would you really want to print one
one off for your managing director? So, what's the solution? Rather than doing lots of
work developing something ourselves, why don't we look at something designed to
do the job? In this case we're going to look at OpenOffice.org.

If I say that OpenOffice.org (often referred to as OOo) is like Microsoft Office
then you'll immediately understand what it's all about—there's a word processor,
spreadsheet, database, and many more things that are often required to make a good
report. The key difference is that it's open source and, therefore, free.

We'll now take the time to have a look at how we can make use of OpenOffice.org to
make reports from the information that we can obtain from the SugarCRM database.

Obtaining OpenOffice.org
Before you start installing OpenOffice.org it's just worth noting that it goes on your
client PC, and not the server.

•

•

Customizing and Optimizing SugarCRM—Tips and Tricks

[260]

Installation is simple, regardless of the operating system that you're using. Just go to
the OpenOffice.org website:

It's then just a matter of downloading the version for your particular OS and
following the instructions (and remember—it goes on your own PC, not the server).

Chapter 10

[261]

Accessing the Database Remotely
So far we've accessed the database via the SugarCRM application via the web
browser. However, when we start to use OpenOffice.org we'll need to create a direct
connection to the database, and to do that we have to:

Change the settings on the database so that it can accept the connection
Create a read-only account on the database—one specifically for our reports

Allowing Connections to the Database
You'll find that by default you can only connect to the database when you're logged
on to the server—that's because MySQL has been told to only accept connections
on the local IP address (127.0.0.1). All we have to do is to edit /etc/mysql/my.cnf
and change the bind-address variable so it listens on the network address of the server
rather than the local address:

bind-address = 192.168.1.4 #The ip address of your server
#bind-address = 127.0.0.1
#skip-networking

And to bring that into effect you'll need to restart the server:
sudo /etc/init.d/mysql restart

With the network connection set up you need to add a user account through which
you can access the database.

Creating an Account for Remote Access
At the moment you will still not be able to connect to the database from anywhere
else apart from the web server. This is because any standard user accounts only
allow you to log on from the local machine. We'll need to create a new account
specifically for our remote access. Therefore the first thing that you must do is to log
onto the database as root:

bluek@hector: mysql -uroot -ppassword penguin_pi

Now you'll need to create an account with select only privileges:

mysql> grant select
 -> on *
 -> to reports@"%"
 -> identified by "reports";
Query OK, 0 rows affected (0.03 sec)

mysql> flush privileges;
Query OK, 0 rows affected (0.03 sec)

•

•

Customizing and Optimizing SugarCRM—Tips and Tricks

[262]

You'll notice that we've defined the user name as reports@"%"—the % means 'allow
a connection from anywhere'.

Now you can log onto the database from any other PC on your network:

bluek@hector: mysql -hhector -ureports -preports penguin_pi

And you'll find that you can carry out any select queries as per normal:

mysql> select count(*)
 -> from opportunities
 -> where deleted = 0;
+----------+
| count(*) |
+----------+
| 1004 |
+----------+
1 row in set (0.07 sec)

However, if you try to update, insert, or delete then you'll just get an error message:

mysql> delete from opportunites
 -> where id = 'ref_999';
ERROR 1142 (42000): DELETE command denied to user 'reports'@'aeneas'
for table 'opportunites'

With that done you're nearly ready to start creating your reports.

Setting Up the ODBC Connection
One of the standard ways to connect to a database is by using an Open Database
Connectivity (ODBC) connection. Basically this is a piece of third-party software
that handles all the boring connecting stuff for you—if you're a Windows user then
you've probably got MS ODBC, if you (sensibly) prefer Linux then you may have
unixODBC. You'll also need drivers for MySQL—these tell ODBC how to talk to
the database, and you'll be able to download the driver from the suppliers of your
OS, or directly from MySQL at http://dev.mysql.com/downloads/connector/
odbc/3.51.html.

Once you've installed your drivers then you'll need to update two files. First you'll
need to find your odbcinst.ini file to set up the driver name and location:

bluek@aeneas:/etc/unixODBC> nano odbcinst.ini
[myodbcdriver]
Description = MySQL ODBC Driver
Driver = /usr/lib/unixODBC/libmyodbc3.so
Setup =
FileUsage =

Chapter 10

[263]

and then you'll need find your odbc.ini file and set up the data source itself:

bluek@aeneas:/etc/unixODBC> nano odbc.ini
[penguin_pi]
Driver = myodbcdriver
Description = MySQL ODBC
SERVER = hector
PORT =
USER = reports
Password = reports
Database = penguin_pi
OPTION = 3
SOCKET =

Finally, you can test the connection:

bluek@aeneas:~> isql penguin_pi
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL>

If all's well then you're ready to start using OpenOffice.org.

Accessing the Data Through OOo Base
If you've already installed OOo then it's just a matter of calling it from your desktop
menu—in this case we're going to be running OOo Base, and we're going to make
use of its built-in report generator:

Customizing and Optimizing SugarCRM—Tips and Tricks

[264]

This will start a wizard that will help you connect to the MySQL database:

Next you need to tell the wizard that we're going to be using the ODBC connection:

Chapter 10

[265]

And then you'll supply it with the name of the data source that we've just created:

Finally you need to save this as an OOo Base file:

Customizing and Optimizing SugarCRM—Tips and Tricks

[266]

With that done we've got an OOo database that contains a connection to our
SugarCRM database. In fact, if you go to the Tables section then you'll see the
complete table listing:

Chapter 10

[267]

Creating Queries
Before we can generate a report you will need to create the query that is going to
compile the data for the report to use. You can do this in the query design mode:

Customizing and Optimizing SugarCRM—Tips and Tricks

[268]

However, you'll probably find that the SQL design mode gives you more control
over what's produced:

Once you're happy with your results then save the query and give it an
appropriate name.

Chapter 10

[269]

Creating the Report
In the Reports section you'll find another wizard that will, rather obviously, create a
new report for you. Once you've started it you'll need to tell it which query you want
to use as the source for the report and which fields you want to be included:

Then you can label each of the fields:

Customizing and Optimizing SugarCRM—Tips and Tricks

[270]

And then, quite an important step—how you want the data grouped:

Next you'll have to decide on the look of the report.

And finally, you'll input the title for the report, and also whether you want the report
to be static (i.e. a snapshot of the current data) or dynamic (i.e. uses fresh data every
time you run the report):

Chapter 10

[271]

And now we can see the result of all your hard work:

Customizing and Optimizing SugarCRM—Tips and Tricks

[272]

Summary
In this final chapter we've looked at various techniques for helping you to optimize
the performance and your SugarCRM implementation, and a few more ways of
extending the application.

And so you can now ride off into the sunset, safe in the knowledge that you left
Korora and her team with a SugarCRM application that does exactly what they need.
It's fast, stable, and they can even do nice reports.

Or maybe you're just straight into taming another wild SugarCRM
implementation—at least now you can go in all guns blazing, knowing that
you've got the fire power to handle any situation.

Index
Symbols
<module>.php 85

A
access control list

database schematic diagram 94
administrator control

about 31
live systems, administrating 32, 33

advanced modules
about 207
business object 210, 211
business object, registering 211
data schema 208
edit view 214-218
initial setup 207
language file 211, 212
list view 212-214
new reports, creating 219
vardefs.php 208, 209

application, optimizing
phpinfo, using 257, 258
PHP optimizer, installing 259
SugarCRM diagnostic tool 254-257

application architecture
custom directory 74
include directory 74
modules directory 74
overview 75
themes directory 74

B
bugs

database schematic diagram 95

business object
about 210
registering 211

business rules
about 224
database, moving into 230
database, using in 235, 236

business rules, moving into database
about 230
custom table, adding 231
workflow module, creating 231-236

C
calls

database schematic diagram 96
campaigns

database schematic diagram 96
cases

database schematic diagram 97
contacts

database schematic diagram 97
custom fields

adding 50
creating, manually 56, 57
creating, studio used 53-56
dropdown, adding to module tab 58-60
field data types 70
layouts, manually modifying 61-63
layout versions, recovering 61
mass updates 64
other field types, creating 68-71
rows, adding 60, 61

custom fields, adding
custom dropdown, adding manually 53
custom dropdown, creating 51
custom dropdown, studio used 51-53

[274]

standard module tab 50, 51
custom modules

basic module 197
basic module, data for 198, 199
creating 197
data, adding 200, 201
data, processing 199-201
language/en_us.lang.php, using 203
shortcuts, adding 202
tables 204-207

custom tabs
adding 34
contents 36-39

custom workflow. See workflow

D
Dashlet

custom dashlet, creating 43-45
customizing 43
developing 245, 246
making accessible 45, 46
user controlled dashlet, customizing 41-43

database, accessing remotely
account, creating 261
connections, allowing 261

database schematics diagrams
about 93
access control list 94
bugs 95
calls 96
campaigns 96
cases 97
contacts 97
documents 98
emails 99
meetings 101
opportunities 101
projects 102
prospects 102
schedulers 104

data dictionary
table definitions 105

data interface. See SugarBean
development and testing strategies

customization, releasing 190, 191
development server 167
need for 165, 166

SugarCRM, testing 188, 189
SugarCRM, upgrading 177
SugarOS, upgrading 175
unbreakable rule 166

development server
creating 168-170
databases, migrating between servers 171
IP address, setting 170, 171
setting up 167, 168
software, installing 170
SugarCRM files, migrating between servers

171
documents

database schematic diagram 98
dropdown

adding, manually 53
adding, to module tab 58-61
creating 51
creating, studio used 51-53
rows, adding 60

E
edit view

about 214
EditView.html 216, 217
EditView.php 214, 215
save file 217, 218

emails
database schematic diagram 99

F
files, migrating

about 171
export, setting up on server 1 172
from server 1 to server 2 173, 174
mount point, setting up on server 2 172

L
list view

about 212
creating 213
fields to be displayed, selecting 212
making it default view 214

logic hooks
about 87
triggers 87

[275]

M
mass updates, custom fields

about 64
built-in SugarCRM fields, adding 67
changes, making visible 66
limitations 67

meetings
database schematic diagram 101

modules
advanced modules 207
calling 76-80
custom modules, creating 197
developing 193
parameters for calling 76
third party modules, adding 194-197

N
new reports

creating 219

O
opportunities

database schematic diagram 101

P
parallel tasks

about 236
dapendent tasks, adding to database 237,

238
dapendent tasks, using in workflow 239,

240
projects

database schematic diagram 102
prospects

database schematic diagram 102

Q
queries, optimizing

explain command, using 248-250
indexes, creating 250, 251
MySQL query chache, using 253
slow queries, logging 251-253

R
reports

creating 219, 259
data, accessing through OOo base 263
database, accessing remotely 261
ODBC connection, setting up 262
OpenOffice.org, obtaining 259-261

S
schedulers

database schematic diagram 104
server

creating 168-170
files, migrating 171
IP address, setting 170, 171
software, installing 170

SugarBean
<module>.php, files 85
about 80, 81
files 81
logic hooks 87
triggers 87
vardefs.php, files 82, 83
vardefs field types 84
vardefs file 85
working of 87

SugarCRM
about screen, changing 26-28
about screen, changing into help screen 28,

29
advantages 5
application content, customizing 25
custom fields 49
customization, releasing 190, 191
customizing 7, 25, 243
custom tab, adding 34-39
custom workflow, developing 221
Dashlets 25
database schematics 93
data dictionary 105
data interface 80
design strategy 73
development strategies 165
files, migrating between servers 171
functionality, adding 25
logic hooks 87

[276]

modules, developing 193
optimizing 243
other field types, creating 68-70
prerequisites 6
strategies 165
SugarBean 80
tabs, customizing 8
terminology 25
testing 188
testing strategies 165
upgrading 177
url, customizing 7
url, customizing in Linux 8
url, customizing in Windows 7
user interface 76
variables 244
version difference 104
visible tabs, controlling 29
workflow, developing 221

SugarCRM, speeding up
application, optimizing 254
queries, optimizing 247

SugarCRM, upgrading
application files, comparing 186-188
application files, migrating 186-188
database files, comparing 179-182
database files, migrating 182-186

SugarCRM diagnostic tool 254
SugarOS, upgrading

about 175
PHP, upgrading 176, 177
SugarCRM, upgrading 177

T
table definitions

about 105
accounts 106, 107
accounts_audit 107, 108
accounts_bugs 108
accounts_cases 108, 109
accounts_contacts 109
accounts_opportunities 109
acl_actions 110
acl_roles 110
acl_roles_actions 111
acl_roles_users 111
bugs 112

bugs_audit 113
calls 113, 114
calls_contacts 114
calls_users 115
campaign_log 115, 116
campaign_trkrs 116
campaigns 117, 118
campaigns_audit 118
cases 119
cases_audit 120
cases_bugs 120
config 120
contacts 121, 122
contacts_audit 123
contacts_bugs 123
contacts_cases 124
contacts_users 124
currencies 125
custom_fields 125
dashboards 126
document_revisions 126
documents 127
email_marketing 128
email_marketing_prospect_lists 128
email_templates 129
emailman 129, 130
emails 130, 131
emails_accounts 132
emails_bugs 132
emails_cases 133
emails_contacts 133
emails_leads 134
emails_opportunities 134
emails_projects 135
emails_projects_tasks 134
emails_prospects 135
emails_tasks 136
emails_users 136
feeds 136
fields_meta_data 137
files 138
iframes 138
import_maps 138, 139
inbound_email 139
inbound_email_autoreply 140
leads 140-142
leads_audit 142
linked_documents 142

[277]

meetings 143
meetings_contacts 144
meetings_users 144
notes 145
opportunities 146
opportunities_audit 147
opportunities_contacts 147
project 148
project_list_campaigns 150
project_relation 148
project_task 149
project_task_audit 150
prospect_lists 151
prospect_lists_prospects 151
prospects 152, 153
relationships 153
releases 154
roles 155
roles_modules 155
roles_users 156
saved_search 156
schedulers 157
schedulers_times 157
tasks 158
tracker 159
upgrade_history 159
user_preferences 160
users 160-162
users_feeds 162
users_last_import 162
users_signatures 163
vcals 163
versions 164

tabs, SugarCRM
browser title, changing 18
custom directory 14
customizing 8
custom tab content 36
custom tabs, adding 34
logo, adding 18-20
re-naming 10-13
text, customizing 15-17
themes, customizing 21
visible tabs, controlling 29

themes, SugarCRM
creating 22-24
customizing 21
removing 24

third party modules
adding 194

triggers 87

U
user control 29
user controlled dashlet

customizing 41-43
user interface

about 76
modules, calling 76-80

V
vardefs.php

about 82
advanced modules 208
complete file 85
field types 84
online documentation 83

variables 244
version difference

about 104
data dictionary 105

visible tabs
administrator control 31, 32
controlling 29
live systems, administrating 32, 33
user control 29

W
workflow

about 221
automated workflow, completing 227-230
business rules, introducing 224-227
business rules, moving into database 230
dependent tasks, using 239, 240
developing 221
issues 221
parallel tasks 236
process stages, setting up 222, 223
roles, deciding 223, 224
simple workflow 222

workflow module
creating 231-236
data input module, building 232-235
rules, using in database 235, 236

Thank you for buying
SugarCRM Developer’s Manual

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing a paper copy of SugarCRM Developer’s Manual, Packt will have
given some of the money received to the SugarCRM project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to authors@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us�� one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

Implementing SugarCRM
ISBN: 1-904811-68-X Paperback: 328 pages

A step-by-step guide to using this powerful Open
Source application in your business

1. Your complete guide to SugarCRM
implementation – assess your needs, install the
software, start using it, train users, integrate
with existing systems

2. # Covers both the free and commercial versions
of SugarCRM – get maximum benefit from the
free version before paying for add ons

Building Websites with Joomla!
1.5 Beta 1
ISBN: 978-1-847192-38-7 Paperback: 380 pages

The bestselling Joomla tutorial guide updated for the
latest download release

1. Install and configure Joomla! 1.5 beta 1

2. Customize and extend your Joomla! site

3. Create your own template and extensions

4. Free eBook upgrades up to 1.5 Final Release

5. Also available covering Joomla v1

Please check www.PacktPub.com for information on our titles

	Cover
	Table of Contents
	Preface
	Chapter 1: Stamping Your Own Brand on SugarCRM
	Before We Start...
	Customizing SugarCRM URL
	Changing the SugarCRM URL in Windows
	Changing the SugarCRM URL in Linux

	Customizing SugarCRM Tabs
	Re-name the SugarCRM Tabs
	The SugarCRM Custom Directory
	Customizing the Text within SugarCRM Tab Screens
	Changing the Browser Title
	Adding a Company Logo

	Customizing SugarCRM Themes
	Creating a New Theme
	Removing a Theme

	Summary

	Chapter 2: Customizing the SugarCRM Application Content
	A Note About Terminology
	Changing the About Screen
	Changing the About Screen into a Help Screen

	Controlling the Visible Tabs
	User Control
	Administrator Control
	A Note about Administering Live Systems

	Adding a Custom Tab
	Custom Tab Contents

	User-Controlled Dashlet Customization
	Customizing Dashlets
	Creating Custom Dashlets
	Making Dashlets Accessible to Users

	Summary

	Chapter 3: Introducing Custom Fields
	Adding a Custom Field
	The Standard Module Tab
	The General Process for Creating a Custom Dropdown
	Using Studio to Create a Drop-down Box
	Manually Adding a Drop-down Box
	Using Studio to Create a Custom Field
	Creating the Custom Field Manually
	Adding the Dropdown to a Module Tab
	Adding Rows

	Recovering Previous Versions of a Layout
	Manually Modifying Layouts

	Including Custom Fields in Mass Updates
	Making Sure that Your Changes are Visible
	Limitations of the Mass Update
	Adding Built-in SugarCRM Fields to the Mass Update

	Creating other Field Types
	Field Data Types

	Summary

	Chapter 4: Interfacing with SugarCRM
	What Have we Learned so Far?
	The Include Directory
	The Custom Directory
	The Themes Directory
	The Modules Directory

	Overview of the SugarCRM Application Architecture
	The SugarCRM User Interface
	Calling Modules

	SugarBean—The SugarCRM Data Interface
	The SugarBean Files
	vardefs.php
	vardefs On-line Documentation
	vardefs Field Types
	The Complete vardefs File
	The <module>.php File

	SugarBean in Action—SugarCRM's Logic Hooks
	The End Result of Using the Logic Hook

	Summary

	Chapter 5: SugarCRM Database Schematics
	Database Schematic Diagrams
	Access Control List
	Accounts
	Bugs
	Calls
	Campaigns
	Cases
	Contacts
	Documents
	Emails
	Email Management
	Leads
	Meetings
	Opportunities
	Projects
	Project Tasks
	Prospects
	Schedulers
	Users

	Differences Between Versions 4.5.0 and 4.5.1
	Summary

	Chapter 6: SugarCRM Data Dictionary
	SugarCRM Table Definitions
	Accounts
	accounts_audit
	accounts_bugs
	accounts_cases
	accounts_contacts
	accounts_opportunities
	acl_actions
	acl_roles
	acl_roles_actions
	acl_roles_users
	Bugs
	bugs_audit
	Calls
	calls_users
	campaign_log
	campaign_trkrs
	Campaigns
	campaigns_audit
	Cases
	cases_audit
	cases_bugs
	Config
	Contacts
	contacts_audit
	contacts_bugs
	contacts_cases
	contacts_users
	Currencies
	Dashboards
	document_revisions
	Documents
	email_marketing
	email_marketing_prospect_lists
	email_templates
	emailman
	Emails
	emails_accounts
	emails_bugs
	emails_cases
	emails_contacts
	emails_leads
	emails_opportunities
	emails_project_tasks
	emails_projects
	emails_prospects
	emails_tasks
	emails_users
	Feeds
	fields_meta_data
	Files
	iframes
	import_maps
	inbound_email
	inbound_email_autoreply
	Leads
	leads_audit
	linked_documents
	Meetings
	meetings_contacts
	meetings_users
	Notes
	Opportunities
	opportunities_audit
	opportunities_contacts
	Project
	project_relation
	project_task
	project_task_audit
	prospect_list_campaigns
	prospect_lists
	prospect_lists_prospects
	Prospects
	Relationships
	Releases
	Roles
	roles_modules
	roles_users
	saved_search
	Schedulers
	schedulers_times
	Tasks
	Tracker
	upgrade_history
	user_preferences
	Users
	users_feeds
	users_last_import
	users_signatures
	vcals
	Versions

	Summary

	Chapter 7: Development and Testing Strategies for SugarCRM
	Why Use Development and Testing Strategies?
	The Unbreakable Rule:Thou Shalt Not Do Any Development on a Live Server
	Setting up a Development Server
	Creating a Server
	Installing Software
	Setting the Server's IP Address

	Migrating SugarCRM Files and Databases Between Servers
	Setting Up the Export on Server 1
	Setting up a Mount Point on Server 2
	Migrating Files from Server 1 to Server 2

	An Example Upgrade
	Upgrading PHP
	Upgrading SugarCRM
	Comparing Database Files
	Migrating Database Files
	Comparing and Migrating the SugarCRM Application Files

	Testing SugarCRM
	Releasing Your Customizations
	Summary

	Chapter 8: Developing Your Own Modules
	Adding Third-party Modules
	Creating Custom Modules
	A (Very) Basic Module
	Data for the New Module
	Processing Data in the Module
	Adding More Data

	Adding Shortcuts
	Using language/en_us.lang.php
	Tables for the Module

	Advanced Modules
	The Initial Setup
	The Module's Data Schema—vardefs.php
	The Module's Business Object
	Registering the Business Object

	The Module's Language File
	The Module's List View
	Selecting the Fields to be Displayed
	Creating the List View
	Making the List View the Default View

	The Modules Edit View
	The EditView.php File
	The EditView.html File
	The Module's Save File

	Creating New Reports

	Summary

	Chapter 9: Developing a Custom Workflow within SugarCRM
	A Very Simple Workflow
	Setting up the Process Stages
	Deciding Who Does What
	Introducing Business Rules
	Completing the Automated Workflow

	Moving the Rules into the Database
	Add a Custom Table
	Create the Workflow Module
	Building a Data Input Module
	Making Use of the Rules in the Database

	Parallel Tasks
	Adding Dependent Tasks to the Database
	Using Dependent Tasks in the Workflow

	Summary

	Chapter 10: Customizing and Optimizing SugarCRM—Tips and Tricks
	Logging Slow Queries
	Using the MySQL Query Cache
	Optimizing the SugarCRM Application
	The SugarCRM Diagnostic Tool
	Install a PHP Optimizer

	Creating Reports
	Obtaining OpenOffice.org
	Accessing the Database Remotely
	Allowing Connections to the Database
	Creating an Account for Remote Access

	Setting Up the ODBC Connection
	Accessing the Data Through OOo Base
	Creating Queries
	Creating the Report

	Summary

	Index

