SugarCRM Developer’s Manual

Customize and extend SugarCREM

Learn the application and database architecture of this
open-source CRM and develop and integrate your own
modules and custom workflows

PACKT

Wwww.allitebooks.cond

http://www.allitebooks.org

SugarCRM Developer's Manual

Customize and extend SugarCRM

Learn the application and database architecture of this
open-source CRM and develop and integrate your own
modules and custom workflows

Dr. Mark Alexander Bain

PUBLISHING
BIRMINGHAM - MUMBALI

[vww allitebooks.cond

http://www.allitebooks.org

SugarCRM Developer's Manual

Customize and extend SugarCRM

Copyright © 2007 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author(s), Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2007
Production Reference: 1140607

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-847192-06-6

www . packtpub. com

Cover Image by Andrew Jalali (www.acjalali.com)

[vww allitebooks.cond

http://www.allitebooks.org

Credits

Author
Dr. Mark Alexander Bain

Reviewers

Andrew J. R. Whitehead
Michael J. R. Whitehead
Ajay Gupta

Susie Williams

Aspen Olmsted

Emilio Taylor

Ryuhei Uchida

Acquisition Editor

David Barnes

Development Editor

Mithil Kulkarni

Technical Editor

Shayantani Chaudhuri

Editorial Manager

Dipali Chittar

Project Manager

Patricia Weir

Project Coordinator

Sagara Naik

Indexer

Bhushan Pangaonkar

Proofreader

Chris Smith

Production Coordinator

Shantanu Zagade

Cover Designer

Shantanu Zagade

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Dr. Mark Alexander Bain first started customizing CRM systems back in the mid
'90s when he was team leader for Vodafone's Cascade project— the team took the
'out-of-the-box' Clarify CRM and turned it into a radio base station planning
application, complete with a workflow engine for passing jobs between the

different departments involved in the planning, building, and implementation of a
radio network.

Since then he's lectured at the University of Central Lancashire, and currently Mark
writes articles on all things Linux and Open Source for Linux Format, Newsforge.com,
and Linux Journal. He works from his home on the edge of the Lake District in the
UK, where he lives with his wife, two dogs and two cats, and gets the odd visit from
his sons —Michael and Simon.

SugarCRM customization, therefore, seems the obvious choice for this, his second
book, since it combines Mark's knowledge of working with commercial CRM's and
the Open Source philosophy.

For Mum, Donna, and Ellie.

And thanks (as always) to Simon, to Michael, and to all of the Packt
Publishing team.

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewers

Andrew J. R. Whitehead

Andrew Whitehead is the lead developer at The Long Reach Corporation and
has been working with the SugarCRM framework, in the form of the company's
Info At Hand product, for the past three years. He has been implementing web
applications both recreationally and professionally for the past fifteen years.
Andrew is passionate about designing general solutions to common problems
and enjoys working with new languages and technologies. He lives in Toronto,
Canada and studies Linguistics part-time at the University of Toronto.

I would like to thank my family and friends, particularly Aziza, for
their patience during the editing process.

Michael J. R. Whitehead

Michael Whitehead is a leading authority on the design and implementation

of Customer Relationship Management (CRM) systems. Michael's experience

and expertise spans a thirty year career in software architecture, design, and
development as well as business management and ownership of multiple technology
organizations. Among many other accomplishments Michael is the author of
Implementing SugarCRM (from Packt Publishing) and a contributing author of the
Sugar Open Source User Guide.

Michael is currently the founder and President of The Long Reach Corporation
(www.infoathand. com). At The Long Reach Corp. the focus is Info At Hand™ —a
Customer Relationship & Business Management (CRBM) system for Small &
Mid-Size Businesses, built on a base of SugarCRM Open Source. It blends a
best-of-breed CRM with extended business management features for Order
Management, Project & Resource tracking, Customer Service, and HR.

[vww allitebooks.cond

http://www.allitebooks.org

Ajay Gupta

Ajay Gupta has over ten years of experience in the CRM industry. He has
participated in design and development of several CRM applications that have
been deployed globally.

Susie Williams

Susie Williams is the Sr. Manager of Community Development at SugarCRM. Her
responsibilities include development of the Sugar Adoption Program as well as
management of the Forums and Sugar Forge. Prior to joining SugarCRM, Susie
managed the Worldwide Sales Engineering group at WebEx Communications;

she has also been involved in the CRM industry through various positions (from
Engineering to Implementation Consulting) at Aurum Software/Baan Company.
Susie holds a B.A. in Electrical Engineering/Computer Science from U.C. San Diego.

Aspen Olmsted

Aspen Olmsted is founder and president of Alliance Software Corporation, a CRM
software solutions provider to the entertainment and non profit verticals. Aspen
holds an MBA from the University of South Carolina along with certifications in
PHP, MySQL, MCSD, MCSE, and many ERP applications.

Emilio Taylor

For the past one and half years, Emilio has been developing as a Project Manager
for SugarCRM Development. Specializing in Microsoft SQL Server 2005
implementations, Emilio has integrated Stored Procedures, Database Triggers,
Customized Modules, and Java scripting into the development lifecycle of
SugarCRM deployment. Plus, in June of 2005, Emilio founded EmillionDreamz.org,
a web design company utilizing Joomla! CMS for customized website development
and deployment. Emilio has been living Central Florida for the past thirteen years.

[vww allitebooks.cond

http://www.allitebooks.org

Ryuhei Uchida

Ryuhei Uchida is Chief Technology Officer and a partner consultant of CareBrains,
an open source consulting company and a reseller partner of SugarCRM Inc. He has
broad experience of business strategies, international operations, and innovation
management in the IT industry.

Prior to joining CareBrains, he had held positions in business development, product
management, consulting, and sales & marketing at Fujitsu, Fujitsu Business Systems
of America,].D. Edwards, and Vitria Technology.

He is one of the enthusiastic evangelists of open-source business applications in
Japan, and is leading state-of-the-art open-source communities to bring innovation
into the second largest IT industry in the world.

He earned his B.A. in agriculture from Tokyo University in Japan, and also an MBA
in Technology Management from Waseda University Business School.

[vww allitebooks.cond

http://www.allitebooks.org

vww allitebooks.conl

http://www.allitebooks.org

Table of Contents

Preface 1
Chapter 1: Stamping Your Own Brand on SugarCRM 5
Before We Start... 5
Customizing SugarCRM URL 7
Changing the SugarCRM URL in Windows 7
Changing the SugarCRM URL in Linux 8
Customizing SugarCRM Tabs 8
Re-name the SugarCRM Tabs 10
The SugarCRM Custom Directory 14
Customizing the Text within SugarCRM Tab Screens 15
Changing the Browser Title 18
Adding a Company Logo 18
Customizing SugarCRM Themes 21
Creating a New Theme 22
Removing a Theme 24
Summary 24
Chapter 2: Customizing the SugarCRM Application Content 25
A Note About Terminology 25
Changing the About Screen 26
Changing the About Screen into a Help Screen 28
Controlling the Visible Tabs 29
User Control 29
Administrator Control 31

A Note about Administering Live Systems 32
Adding a Custom Tab 34
Custom Tab Contents 36
User-Controlled Dashlet Customization 41
Customizing Dashlets 43

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Creating Custom Dashlets 43
Making Dashlets Accessible to Users 45
Summary 47
Chapter 3: Introducing Custom Fields 49
Adding a Custom Field 50
The Standard Module Tab 50
The General Process for Creating a Custom Dropdown 51
Using Studio to Create a Drop-down Box 51
Manually Adding a Drop-down Box 53
Using Studio to Create a Custom Field 53
Creating the Custom Field Manually 56
Adding the Dropdown to a Module Tab 58
Adding Rows 60
Recovering Previous Versions of a Layout 61
Manually Modifying Layouts 61
Including Custom Fields in Mass Updates 64
Making Sure that Your Changes are Visible 66
Limitations of the Mass Update 67
Adding Built-in SugarCRM Fields to the Mass Update 67
Creating other Field Types 68
Field Data Types 70
Summary 71
Chapter 4: Interfacing with SugarCRM 73
What Have we Learned so Far? 73
The Include Directory 74
The Custom Directory 74
The Themes Directory 74
The Modules Directory 74
Overview of the SugarCRM Application Architecture 75
The SugarCRM User Interface 76
Calling Modules 76
SugarBean—The SugarCRM Data Interface 80
The SugarBean Files 81
vardefs.php 82
vardefs On-line Documentation 83
vardefs Field Types 84
The Complete vardefs File 85
The <module>.php File 85
SugarBean in Action—SugarCRM's Logic Hooks 87
The End Result of Using the Logic Hook 90
Summary 92

Lii]

Table of Contents

Chapter 5: SugarCRM Database Schematics 93
Database Schematic Diagrams 93
Access Control List 94
Accounts 94
Bugs 95
Calls 95
Campaigns 96
Cases 96
Contacts 97
Documents 98
Emails 98
Email Management 99
Leads 100
Meetings 100
Opportunities 101
Projects 101
Project Tasks 102
Prospects 102
Schedulers 103
Users 103
Differences Between Versions 4.5.0 and 4.5.1 104
Summary 104
Chapter 6: SugarCRM Data Dictionary 105
SugarCRM Table Definitions 105
Accounts 106
accounts_audit 107
accounts_bugs 108
accounts_cases 108
accounts_contacts 109
accounts_opportunities 109
acl_actions 110
acl_roles 110
acl_roles_actions 111
acl_roles_users 111
Bugs 112
bugs_audit 113
Calls 113
calls_contacts 114
calls_users 115
campaign_log 115

campaign_trkrs 116
[iii]

Table of Contents

Campaigns 117
campaigns_audit 118
Cases 119
cases_audit 120
cases_bugs 120
Config 120
Contacts 121
contacts_audit 123
contacts_bugs 123
contacts_cases 124
contacts_users 124
Currencies 125
custom_fields 125
Dashboards 126
document_revisions 126
Documents 127
email_marketing 128
email_marketing_prospect_lists 128
email_templates 129
emailman 129
Emails 130
emails_accounts 132
emails_bugs 132
emails_cases 133
emails_contacts 133
emails_leads 134
emails_opportunities 134
emails_project_tasks 134
emails_projects 135
emails_prospects 135
emails_tasks 136
emails_users 136
Feeds 136
fields_meta_data 137
Files 138
iframes 138
import_maps 138
inbound_email 139
inbound_email_autoreply 140
Leads 140

leads_audit 142

[iv]

Table of Contents

linked_documents
Meetings
meetings_contacts
meetings_users
Notes
Opportunities
opportunities_audit
opportunities_contacts
Project
project_relation
project_task
project_task_audit

prospect_list_campaigns

prospect_lists

prospect_lists_prospects

Prospects
Relationships
Releases
Roles
roles_modules
roles_users
saved_search
Schedulers
schedulers_times
Tasks
Tracker
upgrade_history
user_preferences
Users
users_feeds
users_last_import
users_signatures
vcals
Versions
Summary

142
143
144
144
145
146
147
147
148
148
149
150
150
151
151
152
153
154
155
155
156
156
157
157
158
159
159
160
160
162
162
163
163
164
164

Chapter 7: Development and Testing Strategies for SugarCRM 165

Why Use Development and Testing Strategies?
The Unbreakable Rule:Thou Shalt Not Do Any Development

on a Live Server

Setting up a Development Server

165

166
167

[v]

Table of Contents

Creating a Server 168
Installing Software 170
Setting the Server's IP Address 170

Migrating SugarCRM Files and Databases Between Servers 171
Setting Up the Export on Server 1 172
Setting up a Mount Point on Server 2 172
Migrating Files from Server 1 to Server 2 173

An Example Upgrade 175

Upgrading PHP 176

Upgrading SugarCRM 177
Comparing Database Files 179
Migrating Database Files 182
Comparing and Migrating the SugarCRM Application Files 186

Testing SugarCRM 188
Releasing Your Customizations 190
Summary 191
Chapter 8: Developing Your Own Modules 193
Adding Third-party Modules 194
Creating Custom Modules 197

A (Very) Basic Module 197

Data for the New Module 198

Processing Data in the Module 199
Adding More Data 200

Adding Shortcuts 202

Using language/en_us.lang.php 203

Tables for the Module 204

Advanced Modules 207

The Initial Setup 207

The Module's Data Schema—vardefs.php 208

The Module's Business Object 210
Registering the Business Object 211

The Module's Language File 211

The Module's List View 212
Selecting the Fields to be Displayed 212
Creating the List View 213
Making the List View the Default View 214

The Modules Edit View 214
The EditView.php File 214
The EditView.html File 216
The Module's Save File 217

Creating New Reports 219

Summary 220

[vil

Table of Contents

Chapter 9: Developing a Custom Workflow within SugarCRM 221

A Very Simple Workflow 222
Setting up the Process Stages 222
Deciding Who Does What 223
Introducing Business Rules 224
Completing the Automated Workflow 227

Moving the Rules into the Database 230
Add a Custom Table 231
Create the Workflow Module 231

Building a Data Input Module 232
Making Use of the Rules in the Database 235

Parallel Tasks 236
Adding Dependent Tasks to the Database 237
Using Dependent Tasks in the Workflow 239

Summary 242

Chapter 10: Customizing and Optimizing SugarCRM—Tips

and Tricks 243
Delving into SugarCRM Variables 244
Developing Dashlets Further 245
Speeding up SugarCRM 247
Optimizing Queries 247
Using the explain Command 248
Creating Indexes 250
Logging Slow Queries 251
Using the MySQL Query Cache 253
Optimizing the SugarCRM Application 254
The SugarCRM Diagnostic Tool 254
Install a PHP Optimizer 259
Creating Reports 259
Obtaining OpenOffice.org 259
Accessing the Database Remotely 261
Allowing Connections to the Database 261
Creating an Account for Remote Access 261
Setting Up the ODBC Connection 262
Accessing the Data Through OOo Base 263
Creating Queries 267
Creating the Report 269

Summary 272

Index 273

[vii]

Preface

This is a developer’s manual on SugarCRM. The book focuses on customizing
SugarCRM. It provides you with an overview of the architecture of the application
and the database. It also shows essential steps for hooking your module into the
SugarCRM infrastructure.

What This Book Covers

Chapter 1—This chapter is a smooth introduction to customizing Sugar CRM.

Chapter 2 —You will start to customize the SugarCRM application itself, and you will
be able to add your own components in the form of module tabs and dashlets.

Chapter 3—You will learn how to modify the look and feel of SugarCRM. This
chapter also shows how to add new fields to SugarCRM.

Chapter 4—This chapter looks at the interfaces, and how to use them effectively in
your customizations.

Chapter 5 —This chapter includes database schematic diagrams, showing the
relationships between each table in the database.

Chapter 6 —In this chapter we have covered complete database schematics for the
SugarCRM application, providing full details on each table.

Chapter 7—You will learn in this chapter how to develop, test, and use SugarCRM in
a safe environment using a development server, a test server, and a live server.

Chapter 8 —You will learn to incorporate third-party modules into your site and
develop your own modules from scratch.

Chapter 9—This chapter deals with developing a custom workflow within
SugarCRM.

Preface

Chapter 10— You will see various techniques in this chapter for optimizing the
performance of SugarCRM implementations, and a few more ways of extending
the application.

Who is This Book for

The book is for PHP developers working with SugarCRM, who want to extend its
capabilities. Readers should have basic knowledge of SugarCRM as the book does
not provide any instructions on installation and usage.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

There are three styles for code. Code words in text are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code will be set as follows:

[default]

mkdir -p modules/TestApp/language

touch modules/TestApp/language/en us.lang.php
touch modules/TestApp/Forms.php

touch modules/TestApp/index.php

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

insert into fields meta_ data
(id,

name,
label,
help,
custom module,
data_type,
extl,
default_value,
date modified,
mass_update

[2]

Preface

[Q Tips and tricks appear like this.]

New terms and important words are introduced in a bold-type font. Words that you
see on the scre]en, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Reader Feedback

Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply drop an email to feedbackepacktpub. com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send
us a note in the SUGGEST A TITLE form on www.packtpub.com or
email suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book

Visit http://www.packtpub.com/support, and select this book from the list of titles
to download any example code or extra resources for this book. The files available
for download will then be displayed.

The downloadable files contain instructions on how to use them.

[31]

[vww allitebooks.cond

http://www.allitebooks.org

Preface

Errata

Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in text or
code —we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the Submit Errata link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Questions

You can contact us at questionse@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

[4]

Stamping Your Own Brand
on SugarCRM

So, there you are, you've got SugarCRM up and running, you've played with it and
maybe you've added an account, created a case, or a project, or maybe even sent an
email or two. However, after a while you feel that SugarCRM is very generic (well, it
has got to be hasn't it?) but generic is probably one thing that your business is not.

You will, of course, be wondering just what customizations can be carried out in
order for SugarCRM to truly reflect the way in which your organization operates. To
start with, we can group the possible customizations into:

¢ How SugarCRM looks
e How SugarCRM works

The first two chapters of this book are concerned with tailoring the looks of the
tool, and if you're happy with SugarCRM's general look and feel, then just move to
Chapter 3. You can always come back here once you've finished customizing the
actual operation of SugarCRM.

However, if you do continue with this chapter (or if you have just come back to it)
then by the end of Chapter 1 you'll be able to make SugarCRM look the way that you
want it to—so that it reflects the image of your company, and uses the terminology
of your users.

Before We Start...

I expect that one of the reasons that you've chosen SugarCRM is because it's open
source, and any changes that you make are covered by the SugarCRM Public License
(of course, only really need to worry, if you're planning to customize and then
distribute SugarCRM). With that in mind, you may be wondering if there is anything

Stamping Your Own Brand on SugarCRM

that you're not allowed to change. Only one. At the bottom of every screen you're
expected to show the acknowledgement:

© 2004-2006 SugarCRM Ine. All Rights Resenved.

FOWERED BY
USARCHIM.

However, if you do want to read the full SugarCRM Public License you'll find it at:
http://www.sugarcrm.com/crm/SPL

Having identified what we're required to do under the SugarCRM Public License
we can move on to choosing an example company. Throughout the book we'll be
looking at Penguin P.I. — Private Investigators in the dark world between Windows
and Linux.

When Penguin P.I.'s founder — Pygoscelis P. Ellsworthy — started the business it was
a simple, two-man setup (or rather one man, one woman since he was working with
the famous femme fatale, Korora Blue). However, after a few high profile cases he
needed a bigger office, and it wasn't long before he had several offices spread across
the world. It was at this point that he realized that a couple of spreadsheets weren't
enough to manage all of his staff and his clients. Fortunately that's where SugarCRM
comes in.

And that's our starting point. Now, you'll need a server complete with Apache, PHP,
MySQL, and SugarCRM. How you do this is up to you, but you could:

¢ Follow the SugarCRM installation instructions —you'll find these at
http://www.sugarcrm.com/wiki/index.php?title=Installation.

e Get hold of a decent book on the subject —such as Implementing SugarCRM
by Michael J. R. Whitehead (ISBN 978-1-904811-68-8), published by
Packt Publishing.

e Get someone else to do one of the previous steps for you—Pygoscelis, of
course, he didn't actually do any of this himself—he got his new IT person,
Robby Eudyptes, to do it for him.

All of this assumes that you've given your servers good names — the most important
job that any IT person can do. When Pygoscelis came to name all his servers he
thought that he wouldn't follow the more common naming convention of choosing
characters from J.R.R.Tolkien's Lord of the Rings. Instead he chose Homer's The Iliad
(a fantastic book, and well worth reading if you get the chance —it shows you that
human nature was just the same in 700BC as it is today). Therefore, he called his
Linux servers Acamas, Aeneas, Cassandra, Hector, and Helenus. He also had one
Windows server — Achilles (powerful, but with some major flaws).

With all of that done then you're ready to start customizing.

[6]

Chapter 1

Customizing SugarCRM URL

At this stage we're not even going beyond SugarCRM's logon screen. If you've used
an automatic installer (such as the very effective SpikeSource Windows Installer)
then you'll be able open a browser, and type in the equivalent of http://achilles/
sugarcrm. If you've manually installed SugarCRM on Linux then you'll probably
need to type in something like: http://hector/Sugar0s-Full-4.5.0f.

It doesn't matter if you're using Linux or Windows —in either case you'll be directed
to the logon screen:

Welcome fo

SUGAROPEN SOURCE.

Please enter your username and password.

User Name | |

Password | |

% Options

Server response time: 0.701631 seconds.
© 20042006 SugarCRM Inc. All Rights Reserved.

SUGARACAHM.

And you'll see that the URL reads: http://achilles/sugarcrm/index.php?ac
tion=Login&module=Users Or http://hector/Sugar0OS-Full-4.5.0f/index.
php?action=Login&modules=Users. There's nothing actually wrong here, but the
URLs don't really tell you much (apart from the fact that you're using SugarCRM), so
it seems a good idea to change the URL to something more meaningful —something
related to the actual project that you're working on. Fortunately this is a very easy
change to make.

Changing the SugarCRM URL in Windows

If you're using Windows then the first thing that you'll have to do is to find the
SugarCRM directory. Obviously if you've installed everything manually then you'll
know where the directory is—however, if you've used the Windows installer then it
may not be quite so obvious. You may (or may not) know that the SugarCRM

[71

Stamping Your Own Brand on SugarCRM

directory has to be in the document root for your web server, and if you've
used the installer then this will probably be something like
C:\Program Files\SugarCRM\oss\httpd\htdocs:

File Edit “iew Go Favortez Help

<:=,->,@‘§£

Back: Farsard Up Cit Copy
Address I[:I C:\Program Files\SugarCRMYosshttpdihtdocs

B & =

phpMyddmin EEEUNEIEE apache pb.gif apache pb.... a

All you have to do is rename the directory (for instance our friend Pygoscelis might
want it renamed penguin_pi for the Penguin P.I. organization), and then type the
new URL into your browser (and for the Penguin P.I. organization this would be
http://achilles/penguin pi).

Changing the SugarCRM URL in Linux

In this instance Linux isn't too different from Windows —all you need to do is find
the SugarCRM directory (again it will be in your web server's document root), and
then rename it appropriately:

mv SugarOS-Full-4.5.0f penguin pi

With that done the new URL will work:
(e.g. http://hector/penguin_pi/index.php?action=index&module=Home)

Having sorted out SugarCRM's URL we can turn our attention to the rest of
the screen.

Customizing SugarCRM Tabs

Your users are now able to access your SugarCRM implementation via a URL that
means something to them. So, their first view of the system will be something like:

[8]

Chapter 1

Welcome Korora My Account | Employess | Logout | About]

v SUGARCRM.

COMMERCIAL OPEMN SOURCE

Home | My Portal @ Calendar | Activities | Contacts = Accounts | Leads | Opportunities | Cases Bug Tracks

Last Viewed: none

ﬂ SHORTCUTS Add Dashlets

Create Contact

Enter Business Card MY CALLS ctex
£5) Create Account ~ Start ~ Previous (0-00f0) Next[- End [
& Create Lead Close Subject = Duration Start Date = Start Time =
% Create Opportunity

% Create Caze

1 Report Bug MY MEETINGS FAEDR
@ Schedule Mesting < Start < Previous (0-0of0) Next[~ End [y
Sehedule Call Close Subject = Duration Start Date - Start Time =
Create Tazk

9 Compose Email MY LEADS Frd el
MNEW CONTACT <« Start « Previous (0-0of0) Next[~ End [
Firzt Name: Name -~ Office Phone = Date Created —

Last Mame: *

Phone:

Email:

Home | My Portal | Calendar | Activities | Contacts | Accounts | Leads | Opporfunities | Cases |
Campaigns | Projects | RSS | Dashboard

If we imagine Korora Blue looking at this for the first time, Korora would
immediately realize that she can navigate around the system by using the SugarCRM
Tabs. And she will recognize a lot of them (for example Emails and Calendar), but a
lot will be new to her (for example My Portal and Opportunities).

[o]

Stamping Your Own Brand on SugarCRM

So you've got two choices:

e Re-train your staff so that they map their work to SugarCRM terminology.

e Re-name the SugarCRM tabs to the language of your organization.

Guess what we're going to start with.

Re-name the SugarCRM Tabs

To start with you need to log on to the administrator account (by default
this will be by using the user name 'admin’'), and then go to the

ADMINISTRATION: HOME screen:

7 ADMINISTRATION: HOME

& Print *? Help

SUGAR NETWORK

@Su ar Support Partal Access your personalized portal for technical

‘ @ Cnline Documentation

Get end-user and administrator

support and more documentation
8 Sugar Updates Check for latest updates. |
SYSTEM
£7 System Seftings Configure system-wide settings | BH) Backups Perform a backup
@ Scheduler Set up scheduled events | f Repair Check and repair Sugar Suite

Capture system configuraton for diag neatics

Diagnostic Tool . Currencies
% and analysis &0 Currencies
4 Upgrade Wizard Upload and install Sugar Suite upgrades. . Module Loader

£2) Locale Settings Set default localization settings for your ‘
Locale Settings

Set up currencies and currency rates

Add or remove Sugar modules, themes, and
language packs

system.

USERS

33 User Management Manage user accounts and passwords | Q Fole Management Manage role membership and properties
EMAIL

@ Email Settings Configure email settings | @ Manage Email Queue Manage the outbound email queue
@Inmund Email Setgp mailboxes to be monitored for inbound ‘

———— email

STUDIO

Studio 3:;;‘”"“‘”5’ S (AR, (EpEnient) Fortal Add tabe which can display any web site
Configure Tabs Chocee which tabe are displayed system-wide | Configure Giroup Tabs Create and edit groupings of tabs
Rename Tabe Change the label of the tate |
BUG TRACKER

@ Releazes Manage releases and versions |

[10]

Chapter 1

Here you can either click Rename Tabs, or you can go to the Studio screen first:

WELGOME TO STUDIOI

What would you like to do today?
Please select from the options below.

Edita Module | Edit Drop Downs | Configure Tabs |

Fename Tabs | Configure Group Tabe | Edit Portal

| Repair Custom Fields

| Migrate Custom Fields)

Now you can rename any of the SugarCRM tabs to something more appropriate to

your organization:

EmailMarketing
EmailTem plates|

reepectlists|
[SavedSearch

0

[an || moduleList ~f[usEnglish ~|
Database Value Display Value
Home
Dashboard
Contacts
Accounts
Opportunities
Notes
Calls
Emails
Mestings
Tasks
Calendar
Leads
Activities
Bug Tracker

RS5

My Portal
Time Periods
Projects
Project Tasks

Campaigns
Documents
Sync

Llzers

Releazes
Targets

Queues

Email Marketing
Email Templates
Target Lists
Saved Searches

Invoices

[-]

[11]

Stamping Your Own Brand on SugarCRM

Once you've saved your changes your users will see something that relates to them.

For example, here we've renamed:

e My Portal => Web Sites

e Opportunities => Preliminary Investigations

e C(Cases => Investigations

And now Korora would have tabs that she'd immediately understand:

OoOooono su

Welcome Korora My fccount | Employees | Logout | About
.
cE Q Search
Activities Contacts = Accounts Leads = Preliminary Investigations Investigations | Bug Tracker Documents
Add Dashlets
MY CALLS RYx JOTPAD Double click below o Edit.
< Sfart « Previous (0-00of0) Mext End [Welcome to SugarSuite 4.5
Close Subject = Duration Start Date = Start Time = SugarCRM proudly announces the introduction of
in this release. 'Sugar Dashlet is an extensible fra
allows customers and users fo create Ul componen
and non CRM specific. This provides a powerful fog
MY MEETINGS P2 X and developers to customize and create data object

< Start ~ Previous (0-0of0) MNext~ End P

individual neads

Close Subject = Duration Start Date — Start Time = MY OPEMN CASES
~ Start - Prewvious (0 -0 of
Number — Subject — Prior
MY LEADS ST — -
< Start ~ Previous (0-0 of0) Mext [~ End [
Mame < Office Phone - Date Created - MY TOP OPEN OPPORTUNITIES

< Start " Previous (0 -0 of

Opportunity Name = Amount & Expected

MY ACCOUNTS

-+ Start " Previous (0 -0 of
Phone = Dy

Account Name =

Campaigns | Projects | RSS | Dashboard

tes | Calendar | Activities | Contacts | Accounts | Leads | Preliminary Investigations | Investigations | Bug Tracker | Documents | Emails

[12]

Chapter 1

However, the screen still contains a large amount of the default text (which has
nothing to do with Korora's job), and this would be even more apparent if Korora
were to click on one of the newly named tabs such as Preliminary Investigations:

PRELIMINARY INVESTIGATIONS: HOME

Basic Search | Advanced Search Saved Search & Layout

Preliminary Investigation Name Account Name: d
PRELIMINARY INVESTIGATIONS LIST
o Exporl | Merge Duplicates | Selected: 0 “+ Start < Previous (1 -
I_ Preliminary Investigation = Account Name = Investigation stage = Amount = Close =
I_ — ZXB1 dizsappeared Sinclair Closed Won £760.00 200861117

— Windows attacked by Giant .

I_ Hedgehog Ubuntu Prospecting £2 500.00 2006-11-30
I_ - Possible infiltration by hostiles Maowvell Needs Analysis £2 500.00 2007-01-31
o Exporl | Merge Duplicates | Selected: 0 “+ Start < Previous (1 -
Clear all
MASS UPDATE

Update

Assigned to: | || Select

Type: | —MNone— ;l Account Name:

Lead Source: [-None— | Expected Close Date: I:l

Investigation stage |—None— ;l

Still not exactly 'custom' is it? And I'm sure that you've had a look around the
administration screens to change other details on the screen, but not had any
success. That's because any further changes need to be done outside the SugarCRM
application, in the SugarCRM custom directory.

[13]

vww allitebooks.conl

http://www.allitebooks.org

Stamping Your Own Brand on SugarCRM

The SugarCRM Custom Directory

We'll do most of our work in the SugarCRM custom directory —in fact we've been
using it already. You'll find it in your SugarCRM folder on your web server, and if
you take a look there, you will see that there's already a file in the folder —when we
saved the changes to the tab names SugarCRM created custom/include/language/
en_us.lang.php. Examination of the file will reveal the changes made:

<?php
Sapp_list strings['moduleList'] = array (
'Home' => 'Home',

'Dashboard' => 'Dashboard',
'Contacts' => 'Contacts',
'Accounts' => 'Accounts',
'Opportunities' => 'Preliminary Investigations',
'Cases' => 'Investigations',
'Notes' => 'Notes',

'Calls' => 'Surveillance',
'Emails' => 'Emails',

'Meetings' => 'Meetings',

'Tasks' => 'Tasks',

'Calendar' => 'Calendar’',

'Leads' => 'Leads',

'Activities' => 'Activities',
'Bugs' => 'Bug Tracker',

'Feeds' => 'RSS',

'iFrames' => 'Web Sites',
'TimePeriods' => 'Time Periods',
'Project' => 'Projects’',
'ProjectTask' => 'Project Tasks',
'Campaigns' => 'Campaigns',
'Documents' => 'Documents',

'Sync' => 'Sync',

'Users' => 'Users',

'Releases' => 'Releases',
'Prospects' => 'Targets',

'Queues' => 'Queues',
'EmailMarketing' => 'Email Marketing',
'EmailTemplates' => 'Email Templates',
'ProspectLists' => 'Target Lists',
'SavedSearch' => 'Saved Searches',
'Invoice' => 'Invoices',

[14]

Chapter 1

And that should give you a clue as to how language customization works within
SugarCRM.

Customizing the Text within SugarCRM
Tab Screens

We're not going to look at every tab screen —once you know how to modify one
then you can make changes as required. Since we've already been looking at the
Opportunities screen let's carry on with that—but don't forget that the techniques
we use will apply on any other screen that you want to customize.

We've seen that we use a file called en_us.lang.php in order to make our own
changes to the text displayed on the SugarCRM screen, and you may well reason that
we'll use this file to make changes to any text on the screen. Well, you're nearly right.
We will use an en_us. lang.php file—but not the same one. This time we're going to
use a file called custom/modules/Opportunities/language/en_us.lang.php
(remember that customis in your SugarCRM directory —and you'll need to create the
sub-directories and the file itself).

The way in which this works is quite simple —SugarCRM will look at its default
language files for the text to be displayed. However, if you've got your own
definitions in a custom file then it will use those instead. Of course, next you'll need
the default definitions so that you know what to put into your custom language file.

You may have already worked this out (but in case you haven't) the default language
file for 'Opportunities' is modules/Opportunities/language/en_us.lang.php. If you
examine the file then you'll find that it contains similar data to the en_us.lang.php
that we've already seen:

$mod_strings = array (
'LBL_MODULE NAME' => 'Opportunities',
'LBL_MODULE TITLE' => 'Opportunities: Home',
'LBL_SEARCH FORM TITLE' => 'Opportunity Search',
'LBL_VIEW FORM TITLE' => 'Opportunity View',
'LBL_LIST FORM TITLE' => 'Opportunity List',
'LBL_OPPORTUNITY NAME' => 'Opportunity Name:',

[15]

Stamping Your Own Brand on SugarCRM

As you can see, it contains the text to be displayed in the tab screen labels, and you
may be wondering why we don't just edit this file instead. There are a few reasons:

This gives you a nice fall-back position —if everything goes wrong then you
just need to delete the custom files to return to the defaults.

There are some lines in the default file that must not be changed — the
application may get very upset with you if you do change them.

You only need to worry about maintaining your own changes and not the
whole file.

If you use the custom files then your changes remain isolated from the core
functionality while allowing you to make the customizations that you need.

So, the next stage is to edit the custom/modules/Opportunities/language/
en_us.lang.php file so that it contains the text that you actually want to be
displayed on the Opportunities screen:

<?php

Sopp_single = 'Preliminary Investigation';

Sopp_title = $opp single . 's';
$mod_strings['LBL_MODULE NAME'] = $Sopp title;
$mod_strings['LBL_MODULE TITLE'] = $opp title . ': Home';
$mod_strings['LBL_LIST FORM TITLE'] = S$opp_title . ' List';
$mod_strings['LBL_OPPORTUNITY NAME'] = $opp single . ' Name';
$mod_strings['LBL NEW FORM TITLE'] = 'Create ' . $opp_ title;
$mod_strings['LNK NEW OPPORTUNITY'] = 'Create ' . $opp_title;
$mod_strings['LNK OPPORTUNITY LIST'] = $opp title;
$mod_strings['LBL_TOP_OPPORTUNITIES'] = 'My Top Open ' . S$Sopp_ title;
$mod_strings['LBL_DEFAULT SUBPANEL TITLE'] = S$Sopp_title;

?>

Notice that we haven't just hard coded all of the label details — this time we're using
some variables (Sopp_single and $opp_title). This means, of course, that if you
decide to change the name of the module then you only need to change one line of
code to update all the labels.

[16]

Chapter 1

Once you've saved the file you can see the effects immediately by going to the
Opportunities tab:

Welcome Korora My Account | Employees | Logout | About D D D D D EJ
QSearch

ar | Activiiies Contacts @ Accounts Leads | Preliminary Investigations 1 Investigations = Bug Tracker = Documents

M.

IRCE

5 OPPORTUNITIES: TEST

Basic Search | Advanced Search Saved Search & Layout

Opportunity Name: | Account Name: Onl

OPPORTUNITY LIST

o Expori | Merge Duplicates | Selectzd: O ~* Start " Previous (1-3
|_ Opportunity — Account Name = Sales Stage — Amount — Close =
[~ = ZX81disappeared Sinclair Closed Won £760.00 20061117
[~ - Windows attacked by Giant Ubuntu Prospecting £2,500.00 200611-30
Hedgehog
[T ~ Possible infiltration by hostiles Novell :::;;5 £2.500.00 2007-01-31
o Expori | Merge Duplicates | Selectzd: O ~* Start " Previous (1-3
Clear All
MASS UPDATE
Update
Assigned to: | || Select
Type: Account Name:
Lead Source: | -MNone- ;I Expected Close Date: l:l
Sales Stage: |—None— ;I

Obviously you need to repeat this process for each of the tab screens, but before long
you won't have a generic CRM system —you will have a CRM system that uses the
same terminology as your organization.

[17]

Stamping Your Own Brand on SugarCRM

Changing the Browser Title

We've now modified the SugarCRM screens so that any users recognize the
language, but we can still do more to reflect your company's brand. The first thing to
look at is the browser title. At the moment it will look like:

) SugarCRM - Commercial Open Source CRM - Mozilla Firefox £

-

File Edit View Go Bookmarks Tools Help

@ e @ E—?_’, |ﬁ http:/fhector/penguin_pifindex.php?module=0pporunities&action=index

While we're not trying to cover up the fact that we're using SugarCRM, we are
trying to stamp our own brand onto the application. To do this we'll need to edit the
custom/include/language/en_us.lang.php file again, and add a line:

Sapp_strings['LBL BROWSER TITLE'] = 'Penguin PI - SugarCRM';

Now, you need to refresh the browser:

=) Penguin PI'- SugarCRM - Mozilla Firefox 2}

File Edit View Go Bookmarks Tools Help

@ © @ {':I |ﬁ hitp/hectorpenguin_pifindex.php?action=Login&module=Users

With the title set correctly, we can think about one of the most important parts of a
brand — the company logo.

Adding a Company Logo
You may already have a logo that you're wanting to use with your SugarCRM

installation. However, whether you're going to use an existing one, or you're creating
a completely new one, there are a couple of things that you need to keep in mind:

e To be consistent with the SugarCRM layout your company logo must be
220x40 pixels.

e Your company logo should have a transparent background —so that it can
work with different SugarCRM themes.

[18]

Chapter 1

Then it's just a matter of creating the image with an appropriate piece of software; for
example, you could use Gimp (Gimp is the GNU Image Manipulation Program, and
if it's not already on your computer then you can get it from http://www.gimp.org).

company_logo.png-6.0' (RGEB, 1 layer) 212:(40___-_?_’3‘,4

Eile Edit Select View |mage Layer Tools Dialogues Filters Script-Fu
I 1 |_1q0| T I |O| | I I I |1pg P N T I |2pq) . VI |3pg 1]
(e ERDNE 3

px - 100% - laackground (77.0 KB) l

Once you have saved your image you'll want to apply it to your SugarCRM
implementation —so, it's back to the main admininistration screen, where you need
to click on System Settings:

SYSTEM

&75 Systemn Setlings Configure system-wide settings

And then you can upload the logo:

LOGOS

Current logo in use: m Pengu ”‘] PI
I

Upload new logo (212x40) Choose...

With that done you've got a SugarCRM implementation with:

e Tabs with titles that mean something to people in your organization
e Screens that use the correct terminology for your users

e Alogo that illustrates the implementation belongs to your company

[19]

Stamping Your Own Brand on SugarCRM

Now your users can log on and see your company's SugarCRM application, and
they'll know that it's something designed for them, and (hopefully) they'll be happy
to use it:

Welcome Korora My Account | Employees | L

¥} Penguin PI

JHume 1 Web Sites | Calendar @ Activities Contacts = Accounts Leads Preliminary Invey

Last Viewed: none

ﬂ SHORTCUTS Add Dashlets

#=| Create Contact

f=] Enter Business Card MY CALLS Frd B4
#5) Create Account < Start ~ Previous (0-00of0) Next [~ End [
E Create Lead Close Subject = Duration Start Date = Start Time =
5 Create Preliminary

Investigation

%l Create Case MY MEETINGS ST
ﬁ Report Bug < Start - Previous (0-00of0) Mext |~ End [
m Schedule Meeting Close Subject — Duration StartDate — Start Time =

Schedule Call
Create Task

5 Compose Email

MY LEADS Prd ol 4

< Start - Previous (0-0ofQ) Next |~ End [}
Office Phone — Date Created —

[

MEW CONTACT Name

First Name:

Last Mame: *

Phone:

Email:

| |

At this stage you may decide that you don't need to do any further customizations
to the look and feel of SugarCRM, and if that's the case then it's time to move on to
Chapter 2 where we start looking at customizing the application contents. However,
before you do that it's worth spending a little time considering another aspect of the
SugarCRM front-end user experience — Themes.

[20]

Chapter 1

Customizing SugarCRM Themes

We've spent time getting the general look and feel right, but (as you probably
already know) your users can already customize SugarCRM by using
themes —sometimes with quite startling results:

\- 'J
Home | Web Sites ” Calendar ” Activities II Contacts ” Accounts II Leads ” Preliminary Investigations i

Welcome Korora

,QJ Create Contact

,§-| Enter Business Card = MY Calls

| Create Account
Create Lead
51| Create Preliminary Investigation
Create Case
Report Bug
Schedule Meeting

Schedule Call

| Compose Email

 Mew Contact

First Name:
Last Name:
Phone:

Email:

[21]

Stamping Your Own Brand on SugarCRM

If you're striving to create an application with your own brand then some of the
themes may not work with your view of how things should look. If that's the case
then you can:

e Create your own theme(s)
e Limit the themes that can be accessed by your users

So, that's what we'll look at next. However, before we start have a look at this:

You should see two lines, each saying Hello Korora. However, if any of your users
are color blind then they may not be able to read the information (personally, I've
got a red-green deficiency that means that I can read both lines but they give me a
blinding headache).

KY The point is, of course, if you are going to be creating your own color
Q scheme then be aware of the effect that it will have on your users. The
same goes for the size of fonts that you want to use.

Creating a New Theme

You'll find that the easiest way to create a new theme is simply to copy an existing
one and then modify it. Start by looking for the themes directory —a sub-directory
of your main SugarCRM folder. On Linux you can achieve this by typing
something like:

cd /var/www/htdocs/penguin pi/themes
cp -R SugarClassic PenguinPI

or on Windows:

cd "C:\Program Files\SugarCRM\oss\httpd\htdocs\SugarCRM\themes"
copy sugarclassic penguinpi

You now need to move to your new directory, edit the config.php file, and add the
theme name and description:

<?php

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

$theme name = "Penguin PI";

Stheme description = "Penguin PI theme";

[22]

Chapter 1

$version compatibility = 3.0;
$max_tabs = 12;
$png support = false;

?>

Also in the directory you'll find all of the files needed for formatting the theme itself.
For now we'll just look at a very simple modification —we'll change the theme so that
any link is highlighted in yellow when the mouse pointer is placed over it.

All you need to do is edit the style.css file in your new theme folder, and make the
following change:

a:hover {
color: #666666;
text-decoration: underline;
background-color:yellow; //highlight the link

}

You'll probably need to restart your browser, but once you have done so, then
you'll be able to select your new theme from the drop-down list at the bottom of the
SugarCRM screen:

Theme | Sugar ll

Sernver response | Awesome 80s

€ 2004-2006 SugarC| Beld Move wed.
~&ow Final Fronfier

SILI Golden Gak
Links

Lo |
Paradiss

Penguin Pl
e Reiro

RipCurl

Shred

Sugar

Sugar Classic
Sugar Lie
Sunsel
Vintage Sugar
‘White Sands

This new theme will appear exactly the same as the Sugar theme, except that links
will be highlighted in yellow when you place the mouse pointer over them:

[23]

vww allitebooks.conl

http://www.allitebooks.org

Stamping Your Own Brand on SugarCRM

Shoricuts

% Create Preliminary Investigations|
E Preliminary Investigations
|mport

Saved Searches
;_—Nane— -

.

Of course, when you've finished creating the theme that you want, then you can start
thinking about removing the themes that you don't want.

Removing a Theme

Some themes are incompatible with your company image. So you go to the themes
directory and delete the directory containing the offending theme.

Next time the browser is started the theme will be absent—and don't worry, if
someone was using the theme that you've deleted then they move to to the next
theme on the list by default in their next session.

Summary

Chapter 1 has been a nice, gentle introduction into the world of customizing
SugarCRM. In the course of the chapter you learned how to customize the look and
feel of the SugarCRM screen — without affecting any of the functionality.

We have changed the SugarCRM URL to something that relates to the project.
Installation of the tool will give a name to the directory by default; this can be
changed for customization. However, do not forget the directory name is the main
part of the SugarCRM URL.

Customizing tab names will make them more specific catering to the need of the
company. You can also get creative with the browser title. Also you can change the
text on the screen to appropriate terminology to suit the company requirements. You
can play around with SugarCRM themes and add the company logo.

After all this, you should be able to produce a SugarCRM implementation that has
the appropriate look and feel for the project that you're working on —one that would
make Pygoscelis proud.

In Chapter 2 we look at how we can start customizing the application content, so that
you are able to give each user exactly what they need —at their fingertips.

[24]

Customizing the SugarCRM
Application Content

In Chapter 1, we looked at changing the look and feel of a basic SugarCRM
implementation. In particular we examined Pygoscelis P. Ellsworthy's
organization — Penguin P. I. —and saw how to introduce the day-to-day terminology
that his staff uses. You will also remember that we started to change the general look
of the screen by introducing our own custom theme.

In this chapter we're going to start with adding our own functionality into
SugarCRM. Nothing too elaborate, and we won't touch any of the core functionalities
(yet). We'll just see how easy it is to add your own tab screens and Dashlets —your
own GUI components.

A Note About Terminology

In Chapter 1, we've been referring to Tab screens, but you must have already
realized that the information for these are stored in a directory named modules.
That's because SugarCRM consists of a number of components (i.e. modules). If a
module has a tab screen then (in SugarCRM talk) this is a module tab. OK, got that?
Right, let's look at one of the modules — the Home module. We're actually going to
change the impact of clicking on the About link.

Customizing the SugarCRM Application Content

Changing the About Screen

If you click on the About link you'll see something like:

e
™1 Penguin PI'- SugarCRM - Kongqueror -2y

Location Edit Wiew Go Bookmarks Tools Setlings Window Help

QOOOOAEXANAE S

E# Location: [ﬁ hitpid/hectodpenguin_pifindex.php?module=Home&action=About "] @ [
= S My Account | Employees | Logout | About
Yk Penguin PI asn s
| Home |["Web Sites || Calendar || Activities || Contacts || |[Leads |["Preliminary igations | igations || D [Emaits |["c: ians_|[2]
EEEEsm s [seare [=o] |
Last Viewed: 5 Possible infilt §8 Korora Blue
e — SUGAROPEN SOURCE.
=l Version 4.5.0f (Build 1202)
Enter Business Card
ﬁ Create Account Copyright © 2004-2006 SunarCRM Inc. All Rights Reserved. View License Agreement
& CresEilead SugarCRMrm, Sugar Cpen Sourcetm and Sugar Suitetm are trademarks of SugarCRM Inc,

% Create Preliminary |nvestigation)
% Create Case

g Schedule Meeting

f5 Schedule Call

[Create Task

[Composs Emall

Silicon Valley Corporale Office

SugarCRM Inc.

10050 North Wolfe Road
Suite SW2-130

Cuperting, CA 85014 USA

hitp:/fwww sugarcrm.com

N} Founders

= John Roberts
= Clint Oram
= Jacob Taylor

Thanks to the following developers for their contributions:
= Marcelo Leite of AnySoft, Inc. (www.anysoft com.br) - Contributed Upgrade Wizard enhancements and many other minor fixes and
features.
» Ryuhei Uchida of CareBrains, Inc. (www .carebrains.co.ip) - Contributed shared calendar enhancement.
» Mike Dawson of Gamma Code Corporation {wwaw.gammacode com) - Contributed enhancements to e-mail notification feature.

= Erik Mitchell and Ray Gauss || of the OpenLDAP#Active Directory Authentication project (www .sugarforge ora/projectsiidapauth) -
Contributed integration to support LOAP and Active Directory.

= RPS Technolegy (www.rpstechnology .com) - Contributed original porting work for Microsoft SQL Server support

» Andrew Whitehead of Info At Hand (www.infoathand.com){ SugarForge org: www.sugarforge org/projectsfudae’) - Contributad
enhancement for theme color selection.

» Installer Language Pack - Giovanni Calmon (Brazilian), Vincent Rollin (French), Juergen Schramm {German), and Naoko
KondoiJa panese)

= The Sugar Developar Community {www.sugaforge org} bug reports (with fixes!), outstanding feature requests and unbelievable
support and input.

Source Code

= Sugar Suite - The world's mest popular sales force automation application created by SugarCRM Inc. (hitp:www sugarcrm.com)
n XTemplate - A femplate engine for PHP created by Barnabés Debreceni (hitpudisourceforge. net/projectsixtpl)

» Logdphp - A PHP port of Logd|, the most popular Java logging framework, created by Ceki Gulch (http:/hwwny v itilogd php)
|httpeifhe ctorpenguin_piiindex php?module=Home &action=About

All very interesting, but it doesn't really relate to your project or the organization
in which SugarCRM is going to be used. However, it does tell us a lot about how
SugarCRM is structured. If you look at the URL you can see that we're using the
Home module and the action is About. This means that if you do want to change
the contents of the About page then you need to look in the modules/Home
directory —where you will find the About . php file. After taking a backup of the file
(just for peace of mind) you can edit it so that it contains the information that you

[26]

Chapter 2

want to display. How you edit the file is up to you; for instance, I use the Linux text
editor GEdit:

File Edit View Search Tools Documents Help

@-E|@=ﬁ|% ’%|@E 1 L‘:“"j|9é

New Open Save Pﬁrﬁ Undo Redo Cut Copy Paste Find Replace

Aboutphp &
\ : I
<table><tr><td valign=top>

</td><td>

<p>Mark ARlexander Bain hasn't always been the leading autheority on open
source software that you know him as now. Back in the late seventies he
started work as a woodsman at Bowood Estates in Wiltshire. ARfter that he
spend a number of years working at Lowther Wildlife Park in Cumbria -
it's not clear if his character made him suitable for looking after
packs of wolves, or whether the experience made him the way he is now.</f

P>

However, once you've saved About . php you'll be able to view it via your browser:

(53 Penguin'PI'- SugarCRM'- Konquerol

Location Edit View Go Bockmarks Tools Seitings Window Help

0000 00GRIARES,

. E» Location: (il htip:#hecicrpenguin_pifindex php?module=Home&action=About [~ 21|

My Account | Employees | Logout | About

m PengUin P[SUGARSUITE.

Home |["Web Sites |[Calendar | Activities || Contacts [Leads || Preliminary igati igati Bug Tracker || Decuments |["Emails

ﬂ Shoriculs] Mark Alexander Bain hasn't always been the lzading authority on open source software that you
g=| Creaie Contact | know him as now. Back in the late seventies he stared work as a wocdsman at Bowood Estates in
i | | Wiltshire. After that he spend a number of years working at Lowther Wildlife Park in Cumbria - its not
fi=| Enter Business Card clear if his character made him suitable for looking aftsr packs of wolves, or whether the experience
=) Create Account || made him the way he is now.
& Create Lead n the mid eighties there was a general down turn in the popularity of animal parks in the UK, and
% Create Preliminary Investigation) Mark found him out of work with two young sons (Simon and Michael) - but with a growing interest in
Q Greate Case programming. His wife had recently bought him the state of the art Sinclair ZX 81 - and it was her who
suggested that he went to college to study computing.
ﬁ Report Bug
Mark left college in 1989 and jeined Vodafone - then a very small company - where he started writing
Schedule Meetin:
ﬂﬂ] programs using VAXAMS. It was shortly after that, that he became addicted to something that was to
& Schedule Call drastically affect the rest of his life - Unix. His demise was further compounded when he was
@ Create Task introduced to Oracle. After that there was nosaving him. Over the next few years Vodafone became
= the multinational company that it is now, and Mark progressed from Technician to Engineer, and from
Ea{Gompessitma) Engineer to Senior Engineer and finally to Principal Engineer.
At the turn of the century general ill health made Mark reconsider his career — and his wife again
came to his rescue when she saw a job advert for a lecturer at the University of Central Lancashire. It
was also her that suggested that he should think about writing
Today Mark writes regularly for Linux Format, Mewsforge com and Linux Journal. He's still teaching
And (apparently) he writes books as well.
Home | Web Sites | Calendar | Activities | Contacts | Accounts | Leads | Preliminary Investigations | |n igations | Bug Tracker | Documents | Emails

Campaigns | Projects | RSS | Dashboard

Theme [Penguin PI n

Senver response time: 0553649 seconds.
©2004-2006 SugarCRM Inc. All Rights Resarved

FOWERED BY
SUGARCHM.

[27]

Customizing the SugarCRM Application Content

Of course, you may decide that you want to make the About screen more useful,
something that will be helpful to your users —i.e. a help screen.

Changing the About Screen into a Help
Screen

The first thing that you may want to do is to change the link text from About to
something more appropriate —such as Penguin P.I. Help. To do that we need to
return to the custom/include/language/en us.lang.php file that we worked with
in Chapter 1. Just add a line:

$app_strings['LNK ABOUT'] = 'Penguin P.I. Help';

And then refresh your browser:

My Account | Employees | Logout | Penguin P.I. Help
SUGARSUITE.

[Investigations || Documents || Emails || Campaigns |[3]

Now you just need to modify modules/Home/About . php again so that it contains
some helpful information and refresh the page on the browser:

*"Penguin PI'- SugarCRM!- Konqueror &

Location Edit View Go Bookmarks Tools Seftings Window Help

00000 &XN AN A S

E» Location: [ﬁ hitp:/fhector’penguin_pi/index php?module=Home &action=About |V] @ [
= o My Account | Employees | Logout | Penguin P.1. Help)
¥k Penguin PI mUcansLTe
[Home |["Web Sites |[Calendar || Activities | Contacts ||"A ts || Leads || Preliminary Investigations || fons || D | Emails || Campaigns |[3]
selEs |- seare] [l |
Last Viewed: 53 Possible infilt 3 Korom Blue
| [shortouts Penguin P.I. Help Page

f=| |Create Contact

f=] Enter Business Card
=) Create Acoount You can learn more about becoming a penguin by clicking here.
¥ Create Lead

% Create Preliminary Investigation|
% Create Case

@ Schedule Meeting

& Schedule Call

[E] Create Task

g Compoes Email

You can learn more about becoming a private investigator by clicking here.

Home | Web Sites | Calendar | Activities | Contacts | Accounts | Leads | Preliminary Investigations | Investigations | Documents | Emails | Campaigns
Projects | RSS | Dashboard | Test App

Theme | Penguin FI n

Server response time: 0.531241 seconds.
© 2004-2006 SugarCRM Inc. All Rights Reserved

SUGARCHM.

[28]

Chapter 2

Of course, at this point you're probably thinking that this is all very interesting, but
what you actually want to do is to start creating your own tabs. Obviously that's
what we need to look at next.

Controlling the Visible Tabs

Before we create a new tab it's probably worth having a look at how we can control
the visibility of SugarCRM tabs to our users.

User Control

In fact, in an out-of-the-box SugarCRM installation, any user can choose which tabs
are visible by clicking on My Account:

pAccalint | Employees | Logout | About
SUGARSUITE.

[Investigations || Bug Tracker || Documents || Emails |[3]

Then, for example, if Korora wishes to remove the Bug Tracker she can do this in the
Layout Options section:

Layout Oplions
Edit Tabs

Dis play Tabs Hide Tabs Choose which tabs are displayed
Home

EI E“I' Bug Tracker
Web Sites

Calendar

Artivities

Caontacts

Accounts

Leads

Preliminary Investigations

Investigations
Documents

When she clicks the Save button then Bug Tracker will no longer be visible in the
list of tabs:

My Account | Employees | Logout | About
SUGARSUITE.

(I:nvesﬁgaﬁnns |r Decuments |(Emaib |r Campaigns |

[29]

Customizing the SugarCRM Application Content

However, while this is useful it does have its drawbacks:

e User control of tab visibility will make it more difficult for you to create a
single set up for your organization.
e Users may choose not to view the tabs that you are going to create.

It's worth noting that there is only one tab that can't be removed by the user —the
Home tab. However, this can still lead to some extreme situations:

““Penguin Pl - SugarcRM - Konqueror &5

ocation Edit View Go Bookmarks Tools Sefings Window Help

OO ORI AANAGS

E» Location: [ﬁ http:/fhectorfpenguin_pi/index.php?module=Home&action=index |'] @ [

My Account | Employees | Logout | Penguin P.1. Help|

m Peng U in P[SUGARSUITE

i kol [seare] [m]
LastViewed: g Korora Blue 5 Possible infilt

ﬂ Shoricuts Add Dashlets FHelp

New Conlaci
e N My Calls ZIEE M JotPad Double click below to Edit PEE
First Name:
M4 Start 4 Previous (0-0of D) Mextp End py | Velcome to SugarSuite 4.5 [«]
Last Name: * = = = S i o ﬂ
Close Subject £ Duration StartDate & StartTime & SugarCRM proudly announces the introduction of 'Sugar Dashlet in this
Bhone: releass. 'Sugar Dashlet is an extensible framework which allows customers
. ; and users to create Ul components, both CRM and nen CRM specific. This
_ N MY Meetlngs IE provides a powe rful tool for end usars and developers to customize and create
Email: dats objects kasad on individual needs,
] Stari_ 4 Previeus (0001 0) Nexib Fnd
Kd Start d Previous [J Mextp End by My Open Cases AERE
Close Subject £ Duration Start Date £ Start Time 2
Save
[Start 4 Previous (0-0of 0) Nextp End by
A My Leads ® Number & Subject = Priority © Status 2
Start Previ 0-00f0) MNextp End T A 2
St evion S) Nexth End B | \) My Top Open Preliminary Investigations EEE
Mame £ Office Phone < Date Created =
léd Start 4 Previous {0-0 of 0) Nextp End by
Prefiminary Investigation Name £ Amount £ Expected Close Date &
Al My Accounts 1=
K4 Start 4 Previous (0-0of 0) Nexip End pjy
Account Name £ Phone = Date Entered £
Home

Theme [Fenguin FI n

Server response time: 2.054 553 seconds.
© 20042006 SugarCRM Inc. All Rights Resarved

SUGARCHM.

If that's the case then you may wish to limit the users' ability to change the tabs to be
shown — the least it will do is prevent a call to the Help Desk from Korora saying "I'm
not sure what has happened, but I can't access my emails anymore".

[30]

Chapter 2

Administrator Control

If you want only the administrator to be able to set the visible tabs then you need
to log on to your admin account, and go to the Admin screen, and then click on
Configure Tabs:

M Studio

Studio Edit Dropdowns, Custom Fields, Layouts and Portal Add tabs which can display any web site
Labels

Configure Tabs Chocse which tabs are displayed syste m-wide Configure Group Tabs Create and edit groupings of tabs
Rename Tabs Change the label of the fabs

Now you can decide:

e Whether or not your users are allowed to configure their own tabs
e Which tabs are available to your users
By default users are allowed to configure their own tabs, so uncheck Allow users

to configure tabs, and then drag and drop tabs until you've got the setup that
you require:

[Save H Cancel]
[] Allow users to configure tabs

Display Tabs Hide Tabs

o Home 0 ||= g Trdker
n Wiab Sites

n Calendar

n Adivilies

s Contads

n Accounts

n Leads

m Fraliminary Invesligations
» Invesligations

n Documents

n Emails

» Campaigns

n Frojacs

s RES

n Dazhboard

[31]

Customizing the SugarCRM Application Content

At this point it's worth considering the browser that you're using. You will find that
this screen will work well with:

e Firefox
e Internet Explorer
¢ Konqueror

e Safari
Unfortunately, it won't work with Opera (my personal favorite).

Once you've clicked on the Save button your users will not be able to disable any of
the tabs, and they will only be able to view the ones that you have selected for them:

Layout Options

Edit Tabs
Display Tabs Chocee which tabs are displayed

‘Home

[#]| web Sites
Contacts

Leads
Investigations
Documents
Emails

Projects
Dashboard

A Note about Administering Live Systems

If you decide to restrict tab selection to administrators only on a live system then
don't walk away expecting no problems. Let's imagine that the Help Desk has
explained to Korora that she needs to click on My Account to solve her problem.
What she'll see is:

Layout Options
Edit Tabs
Display Ta

Home

bs Choose which tabs are displayed

[32]

Chapter 2

This is, of course, because Korora had previously removed all the other tabs, and
now you've removed her ability to add any back in again. Fortunately the solution
is quite simple —she just needs to scroll up to the top of her My Account screen, to
where she'll see Reset To Default Preferences:

38 Users: Korora Blue (bluek) (&l Print (7] Help
| Edit || Change Password | Reset To Default Homepage | [EESEITODSEUNPEEEnses|
Mame: Korora Blue User Name: bluek
Stalus: Aclive

Clicking this link would cause Korora to be logged out, but once she logs back in her
tabs would be set up as you had defined them.

And it is worth pointing out that when a user does this all of their preferences will be
reset, so the first thing that they'll see will be:

43 Users: Korora Blue (bluek) (& Print [Z] Help
| Edit || Change Password | Reset To Default Home pane | |[EESe Tolbalaul Praferences|
Name: Korora Blue User Name: bluek
Stalus: Aclive

One worrying effect that all this has is that your user's email signature (if they have
one) will suddenly stop appearing when they create new emails. Don't worry —the
signature hasn't been deleted, it has just been turned off. Your user can turn it back
on by going into My Account, clicking Edit and then selecting the signature under

Email Options:

Email Options

Email address kerora. blue @|inuxtalk.co.uk | Other email address |

Reply-to name Korora Blue Reply-to address [|

Signature Edit Signature above reply ? |:|

Email client: [System Default Mail Client |,] Show email counts ? O

Compose format: Default Email Format | Qutbound Character Sﬁli[1S0-8359-1 (Western European and US) | -]

[33]

vww allitebooks.conl

http://www.allitebooks.org

Customizing the SugarCRM Application Content

Now, if you don't want to leave it to individual users to reset their default tabs you
can do this in bulk —but not via the SugarCRM application itself. You'll need to log
on to your SugarCRM database and use some SQL:

update user preferences
set contents=null
where category='global'

But be warned — this will reset the default preferences of all users.

Adding a Custom Tab

If you want to create a custom tab for SugarCRM then you'll need to start by creating
a new module (remember that a tab is actually a module tab). You may be surprised
to learn that this is very easy. You'll find that there are four steps:

1. Create a directory for your module.

2. Create four default files— Forms . php, index.php, language/en_us.lang.php,
and a PHP file with the same name as your module —none of these files need
contain anything, but they must exist.

3. Update include/module.php to tell SugarCRM that your new tab exists.

Update custom/include/language/en_us.lang.php so that it contains
the text to be displayed for the tab (just as we did when we renamed tabs
in Chapter 1).

So, let us look at those steps in a bit more detail. On Windows or Linux you can
create the required directories and files via your file managers or on the command
line; for example, on Linux you could move to your SugarCRM directory and
then type:

mkdir -p modules/TestApp/language

touch modules/TestApp/language/en us.lang.php
touch modules/TestApp/Forms.php

touch modules/TestApp/index.php

touch modules/TestApp/TestApp.php

Then edit include/module.php and add the lines:

SmodulelList [] = 'TestApp';
SbeanlList ['NewTab'] = 'TestApp';
SbeanFiles['NewTab'] = 'modules/TestApp/TestApp.php';

[34]

Chapter 2

Finally edit custom/include/language/en_us.lang.php so that it contains the line:

'TestApp' => 'Test App',

for example:

$app_list strings['modulelList'] = array (

'TestApp' => 'Test App',
'"Home' => 'Home',
'Dashboard' => 'Dashboard',
'Contacts' => 'Contacts',
'Accounts' => 'Accounts',

'Opportunities' => 'Preliminary Investigations',

Now, admit it—you've done that, refreshed your browser and there's no change

there? Well, don't worry, you haven't done anything wrong — you're just jumping the
gun a little. First you need to log on as an administrator, and go to the Admin screen
where you'll find your new tab under Hide Tabs:

| Sa-.re.H Cancel |

[] Allow users to configure tabs

|

Display Tabs
s Home

m Web Sites

m Calendar

m Adhviies

n Con@cs

= Accounts

n Lleads

m Fraliminary Investigations
m Investigations

s [Documents

n Emails

= Campaigns

n Frojecs

s RES

m [ashboard

Hide Tabs

s Bug Tracker
s TestApp

[35]

Customizing the SugarCRM Application Content

You'll need to drag your new tab into Display Tabs, and then it will be made
available to your users:

My Account | Employees | Logout | Penguin P.l. Help
SUGARSUITE.

[l

| Emails || Campaigns |

7| Help

Now it's just a matter of what you want to show in the tab screen...

Custom Tab Contents
At the moment, if you view the Test App tab then you'll see:

4 Penguin'PI'- SugarCRM'- Konqueror,

Location Edit View Go Bookmarks Tools Seitings Window Help

COOOOB=XIAN &S

E» Location: [ﬁ hitp:fhector/penguin_pifindex.php?module=TestApp&action=index | '] @ [

mpengl."n P[My Account | Employees | Logout | Penguin P.I. Helg

SUGARSUITE|

| Emate |(Testpe |
\mﬂ

[Wekcome Korora)
Last Viewed: 35 Korora Blue [Test &5 Possible infilt

ﬂ_ Shoricuts

Projects | RSS | Dashboard | Test App

Theme | Penguin PI ﬂ

Server response time: 0.525731 seconds.
© 2004-2006 SugarCRM Inc. All Rights Reserved

FOWEAED BY
SUEARCAM.

[36]

Chapter 2

I'm sure you'll agree that it is nice to see that we can create a new tab, but it's not the
most interesting thing in the world, is it?

You will remember that our new module (TestApp) actually consists of four
default files:

e modules/TestApp/language/en us.lang.php
e modules/TestApp/Forms.php

e modules/TestApp/index.php

e modules/TestApp/TestApp.php

You will also remember that these files do need to exist, but they don't need to
contain anything. Obviously the next stage is to edit these files in order to add
contents to the tab. In fact we only have to edit one of the files —modules/TestApp/
index.php. So, you could start by adding some HTML code to the page:

<HTML>
<H1>Test Application</H1l>
</HTML>

But that's boring —and you don't want to be boring, do you? It would seem more
sensible to add something more interactive. But what? Since all of the modules are
written in PHP then we can use them as a starting point. For example, you can take a
little code from the Emails module, and a little code from the Opportunities module:

<?php
include ('modules/Emails/language/en us.lang.php') ;
include ('modules/Emails/ListView.php');

include ('modules/Opportunities/language/en us.lang.php') ;
include ('custom/modules/Opportunities/language/en us.lang.php') ;
include ('modules/Opportunities/ListView.php') ;

?>

[37]

Customizing the SugarCRM Application Content

This code will produce:

= Emails: My Inbox & Print (7] Help

Al Email Search

Email Status: Subject: |:| Contact: [Search][Clear]

Al My Inbox

Take from Group
A Export | Selected: C} Wd Start Previous (0-0of 0) Mextp End b

¥ Subject2 Contacts = Related to Reply Status £ Date Sent =

AExport |Selectea:[0 | W4 Start { Previous (0-0 of 0) Nexth End)

Basic Search | | Advanced Search | | Saved Search & Layout |
Preliminary Investigation Name l:l Account Name: l:l Only my items: []

Al Preliminary Investigations List

A Export | Merge Duplicates | Selected: }d Start 4 Previous (0-00of 0) MNextp End b

D Preliminary Investigation = Account Name 2= Investigation stage = Amount £ Close 2 User =
Export | Meme Duplicates | Selected: [:] 4 Start 4 Previous (0-00of 0) Nextp End b
Clear All

Al Mass Update

Assigned to: —l Select
Type: —None— - Account Mame: || Sekat

Lead Source: _None— Expected Close Date: T (wyy-mm-od)
Investigation stage | _pone— l

Having just said 'Don't use HTML, use PHP instead', I'm now going to say 'Actually,
there is something interesting in HTML that you can make use of.! Why? Well, it's

probable that you've got some useful applications that people are already using (and
don't particularly want to lose). If these are web-based then you've got a few options:

e Carry on using the existing applications in parallel with SugarCRM —not the
best idea since it means that you can't have a single, global point of reference,
and can cause a bit of a headache when it comes to maintenance.

e Re-write all of the software into SugarCRM — good plan, but a bit time
consuming, plus it may delay the launch of your application.

e Incorporate the existing applications directly into SugarCRM —now that
sounds like a good idea.

[38]

Chapter 2

And that's where the HTML tag <IFRAME> comes in.

Let's imagine that Pygoscelis has already employed someone to create a web page
that enables staff to use webcams when carrying out some surveillance:

PPI'WebCams - Konqueror_

Location Edit View Go Bookmarks Tools Settings Window Help

QOO OV =KAKA LSS 1K

E3 Location: i&_j http://facamas/apache2-defaultwebcam/ |'| o | |'J

PPI Surveillance WebCams

Select WebCam | Hidden Office Cam |~ |

1o A

[1
Freir

=

'}'lrII'IFIJ]JTJH- el L1t

20051221 1128

You'll find that you can incorporate any such web page very easily. First we need to
edit modules/TestApp/index.php so that it contains:

<IFRAME SRC="http://acamas/apache2-default/webcam" WIDTH=100%
HEIGHT=400>
</IFRAME>

[39]

Customizing the SugarCRM Application Content

Of course, you'll need to change the web page to one that you can
actually access. And you might want to change the TestApp title in
custom/include/language/en_us.lang.php to something more appropriate:

'TestApp' => 'PPI Surveillance WebCams',

“="Penguin PI'- SugarCRM - Konqueror -2
Location Edit View Go Bookmarks Tools Seftings Window Help

000000 & ALaE K|

E» Location: [ﬁ http-//hactorpenguin_pifindex php?madule=TestApp&action=index |'] o ‘V

R, S My Account | Employees | Logout| Penguin P.I Hel
¥ Penguin PI i
i i at [PR Surveitance WeGams |5

(o]

LastViewed: 53 Korora Blue (=) Test 55 Possible infilt

Jeeee 1 PP| Surveillance WebCams
Select WebCam

20081221 11:22

Projects | RSS | Dashboard | PRI Surveillance WebCams

ene (a7}

Server response time: 1.213098 seconds.
© 2004-2006 SugarCRIM Inc. All Rights Reserved

SUEARCAM.

We will return to developing tabs throughout the book, but for now we're going to
look at another aspect of customizing the application content — Dashlets.

[40]

Chapter 2

User-Controlled Dashlet Customization

If you look at the Home tab then you'll see Dashlets in action:

m Pengu En PI‘ My Account | Employees | Logout | Penguin P Help

SUGARSUITE.
[Home |["Web Sites || Galendar |["Activities || Contacts |["Accounts |["Leads || Preliminary igations |[” igations || D |[Emails || RSS
[Welcone erer) s ==
Last Viewed: 23 Korora Blue (=] Test g Possible infilt

e @
Greate Gontact
=) Enter Business Gard N My Calls [ZEE X JotPad Double click below bo Edit. FlRE
#5) Create Account
% Create Lead }d Start { Previous (0-0 of 0) Next p End yy | VWelcome to SugarSuite 4.5
5 Create Preliminary Investigation| | Glose Subject ¢ Duration StartDate & StrtTime £ | SugarGRM proudly announces the introduction of ‘Sugar Dashlet in this H
‘@ Create Case releass. ‘Sugar Dashlet isan extensible framework which allows customers
: and users fo create Ul components, both CRM and non CRM specific. This
Schedule Meeti
ﬁ@ e Me=nng = My Meetmgs IZ\ provides a powerful tool for end users and developers to customize and create
Schedule Call data objects basad on individual nesds
Create Task Kd Start { Previous (0-0of 0) Nextp End By ~ My Dpen Cases e
fq Composs Email Close Subject = Duration StartDate < Stari Time 2
[d Start 4 Previous (0-00cf 0) Mextp End by
Mew Coniacl
ko My Leads I [Number = Subject & Priority = Status =
First Name:
Start Previous (0-0 of 0) Mextp End P - %
F b RO) Nexth End B | \) My Top Open Preliminary Investigations FE®E
4 Mame 2 Office Phone £ Date Created 2
Phone: Kd Start 4 Previous (0-00of 0) Mextp End b
N My Pipeline b (21 [refiminary Investigation Name = Amount = Expected Close Date <
Emdl Shows cumulative amount by selecied sales slages for your opporiunities
where the expected aloesd date is within the spesiticed date range. My Accounts =
Last run on 2006-12-17 20:47
Kd Start 4 Previous (0-0of 0) Mextp End po
Account Name < Phone 2 Date Entered 2

Users can edit the screen by removing Dashlets:

N My Calls 2] 63 3] et

K4 Start 4 Previous (0-0cf 0) Mextp End }II_DEIEtE Dashlet

Close Subject = Duration Start Date = Start Time =

Users can even customize each Dashlet themselves:

N My Calls |]

M4 Stat 4 Previous (0-0of0) Mextp EEdit Dashlet
Close Subject = Duration Start Date = Start Time =

[41]

Customizing the SugarCRM Application Content

They can also decide which fields are shown in the Dashlet:

[x]
' General
| Title My Calls |
' Display Rows 5 vI
Display Columns Hide Columns
Closs [= Related to [«
. Subject J El Direction !j
! Diuration g
| Start Date |+ | Date Created |~
| Start Time |+ Last Modified |+
Filters
My Calls F
| Start Date: Direction: Inbound
i Outbound
| Status: Blanned Subject:
| Held
! Assigned to: admin
! bainm
| bluek
| =)
So that we see the tabs, and they can display exactly what they want:
> My Calls =
e Start o Previous (0-0cf 0 Mext p End by
Subject = Duration Start Date = StartTime = Sistus = Relstedio

[42]

Chapter 2

By clicking on Add Dashlets we can make the required changes:

Add Dashlets

EIE: Module Views

- 5 My Accounts

- #f My Assigned Bugs
- & My Calls

- [l My Open Cases
- =] My Contacts

- = My Inbox

- £ My Leads

- (] My Meetings

- B My Top Open
Preliminary
Investigations

@] My Open Project
Tasks

- [E] My Open Tasks
E-E Charts

.. £ Pipeline By Sales
Stage

B[Tools
- % JotPad

Your users can add any Dashlets that are included in the application. Obviously, we
want to be able to give the users any extra Dashlets that they require in order to carry
out their jobs effectively. So, that's what we'll look at next.

Customizing Dashlets

After having created your own module tabs you've probably got a fair idea of how
to create a new Dashlet. You're probably expecting to have to create a directory, and
some default files —and you're quite right.

Creating Custom Dashlets

In order to create your own Dashlet you'll need:

e A directory in which to store the Dashlet files
¢ A meta file containing details of how the Dashlet should be displayed
e The Dashlet file itself — this contains the workings of the Dashlet itself

[43]

[vww allitebooks.cond

http://www.allitebooks.org

Customizing the SugarCRM Application Content

So, the first thing that you need to do is to create a directory in which the dashlet is
stored. This directory is going to be in the custom/modules area, and needs to take
the format <dashlet name>/Dashlets/<dashlet names.So, on Linux you can do
this by typing;:

mkdir -p custom/modules/PPIDashlet/Dashlets/PPIDashlet/

Or, obviously you could create the structure using a file browser on either Linux or
Windows. Next you need to move to the new directory and create the meta file.

As you'd expect it has to be named the same as your Dashlet, but has the suffix
meta .php. In this case we'll need PPIDashlet .meta.php, and it should contain
something like:

<?php

SdashletMeta['PPIDashlet'] = array(
'title' => 'PPI Dashlet',
'description' => 'A Dashlet for Penguin P.I.',
'icon' => 'themes/PenguinPI/images/Tasks.gif',

'category' => 'Tools');

?>

Most of the file is self explanatory, the only thing that may be new to you is the
category. However, if you look at the Add Dashlets dialog then you'll see that you
have a choice of categories under which a dashlet can be located.

Next we need to create the dashlet file, PPIDashlet . php. In this case we're just going
to get the dashlet to display some text:

<?php
//Start by including the base Dashlet class
require once('include/Dashlets/Dashlet.php') ;
class PPIDashlet extends Dashlet

{

function PPIDashlet ($id, $def)

{

global $current user, S$app_ strings;
parent: :Dashlet ($id) ;
Sthis->title = 'My PPI';

}

function display($text = '')

{
Stext = 'Dashlet for the PPI Organization'
return parent::display(Stext) ;

?>

[44]

Chapter 2

OK—not mind boggling functionality, but it's enough to show how to quickly create
a Dashlet. As the book progresses we'll make the functionality more complicated.
However, for the time being, let's look at how we make our new (simple) Dashlet
available to our users.

Making Dashlets Accessible to Users

Although you've created your dashlet, no one will be able to see it yet. As you might
expect, we have to do that through the admin account. Once you have logged on as
an administrator, then you'll need to go to the Admin screen:

Logout | Penguin P.I. Help
SUGARSUITE.

My Account | Employees | [&

Having clicked on Admin you'll need to look for the System section, and then (even
though this may seem strange) find the link marked Repair.

~ System
ﬁ System Seftings Configure system-wide ssttings @ Backups Perform a backup
E% Scheduler Set up scheduled events # Repair Check and repair Sugar Suite
QP Diagnostic Tool Capture zystem configuraton for diagnesticeand 51 Currencies Set up currencies and currency rates
analysis
ﬁ} Upgrade Wizard Upload and install Sugar Suite upgrades é’:“}: Module Loader Add or remove Sugar modules, themes, and language
packs
Fil Locale Settings Set default localization settings for your system.

You may not think that Repair is really a suitable label for this activity. However,
the next stage is logical — the link that you'll have to look for now is named
Rebuild Dashlets:

%5, Rebuild Schedulers Rebuild your out-of-the-box Scheduler Jobs,

#;, Rebuild Dashlets Rebuild the Dashlete cache file.

$ Rebuild Javascript Language s Rebuild javascript versions of language files

[45]

Customizing the SugarCRM Application Content

Your new Dashlet will now be available to all your users (in the Tools section):

Add Dashlets

ErE Module Views

- =) My Accounts

- ff My Assigned Bugs
- g My Calls

(@ My Open Cases

- =] My Contacts

- =g My Inbox

- (% My Leads

- (g My Megtings

- &5 My Top Open
Preliminary
Investigations

- [My Open Project
Tasks

- [B] My Open Tasks
B[Charts

L. ES)Pipeline By Sales
Stage

B[Tools
PP Dashlet
% JotPad

And the end result? Nothing too complicated yet, but it's a good starting point:

Add Dashlets

M My PPl Dashiet for the PPI Organization 1
» My Calls]]

el Start f Previous (0-0of 0) Mextp End
Close Subject = Duration Start Date 2 Start Time =

With that completed you have the beginnings of your own custom
SugarCRM implementation.

[46]

Chapter 2

Summary

In this chapter we've started to customize the SugarCRM application itself, and
you're now able to add our own components in the form of module tabs and
dashlets. You've also seen how to add our own About Page and modify the text for
the link to the About screen. You can see that, by default, users can set which tabs
are visible when they access SugarCRM. However, this option can be disabled via
the admin account. Thus to sum it all up, this chapter covers various facets to modify
SugarCRM to suit our needs

In Chapter 3 we will continue with the customization of module tabs and dashlets, as
we start introducing custom fields into SugarCRM.

[47]

Introducing Custom Fields

As you've worked your way through the first two chapters of this book, you have
learned how to:

e Change the title of each of the module tabs that make up the SugarCRM
front end.

e Change the terminology used in each of the module tabs, so that SugarCRM
uses the same terms as your organization.

e Give SugarCRM a look and feel in keeping with your company's branding.

e Create your own module tabs and dashlets, either to add your own
functionality, or to incorporate any existing web-based applications already
used in your organization.

So, now you can provide a SugarCRM implementation that won't be completely
alien to your intended users —hopefully they'll be able to use the application with
minimum training,.

Of course, there's more to it than just making SugarCRM look the way that you
want. Let us imagine Korora Blue sat at her desk. The first thing that she does, every
morning, is to evaluate all of the new preliminary investigations. When she does
this then she decides if any surveillance needs to be carried out. As it stands, there
is nowhere to store this in the SugarCRM application. So, obviously, we need to
provide some extra fields for Korora so that she can do her job.

And that's the aim of this chapter —to show you how to add your own custom
fields to SugarCRM. By the end of the chapter your implementation won't just look
different to the standard, out-of-the-box SugarCRM application, it will actually start
to behave differently.

Introducing Custom Fields

Adding a Custom Field

Before we jump in and add a new field let's have a look at what it is that Korora is

trying to achieve.

The Standard M

odule Tab

When Korora decides that a new preliminary investigation is required she can do so
by using the shortcuts on her Home tab:

Home | Web Sites || Calendar #

Last Viewed: 33 Korora Blue (=] Tes|

¢(| Shoricuis
=] Create Contact
#=| Enfer Business Card
=) Creafe Account
%% Creafe Lead
5 Creats Preliminary Investigation
‘@ Create Case
fily Schedule Mesting
Schedule Call
Create Task
s Compose Email

Having clicked on Create Preliminary Investigation she just needs to fill in the

appropriate details:

Preliminary Investigations:

Help|

Save * Indicates required field
Preliminary | Currency: British Pounds . £ -

Investigation Name *

Account Name: * || Select |Amount: * :l

Type: —Mone— - Expected Close Date: * (¥¥yy-mm-dd)

Lead Source: —None— b Mext Step: |
Investigation stage * Prospecting LI

Assigned to: bluek |[Select Probability (%): 10

Descriplion:

[50]

Chapter 3

So, is there a show stopper here? Well, in Korora's case, yes. She needs to be able to
record whether or not any surveillance is required, but that's not possible with

the standard form. What she actually needs is an extra drop-down field with a
"Yes/No' option.

The General Process for Creating a Custom
Dropdown

Having decided that Korora needs a dropdown adding to Preliminary
Investigations we need to go through three stages in order to add the custom field:

1. Create the options for the drop-down box
2. Create the custom field itself and link the options to it

3. Place the drop-down box on a module tab
To start with there are two ways to create your own drop-down box:

e By using Studio
e Manually

We'll start by using Studio.

Using Studio to Create a Drop-down Box

As you would expect you will need to log on to SugarCRM as an administrator, and
then go to the Admin screen where you'll find the link to the Studio:

Studio Edit Dropdowns, Custom Fields, Layouts Portal Add tabs which can display any web site
and Labels

Configure Tabs Chocse which tabs are displayed Configure Group Tabs Create and edit groupings of tabs
system-wide

Rename Tabs Change the label of the tabs

Once you're in the Studio, you need to find the Edit a Module link:

Welcome to Studio!

What would you like to do today?
Please select from the options below.

Edita Module | Edit Drop Downs | Configure Tabe | Fename Tabe | Configure Group Tabe | Edit Portal | Repair Custom Fields | Migrate Custom Fields

[51]

Introducing Custom Fields

And then choose the module that you want to edit. At the moment we're
interested in Preliminary Investigations (you'll remember that this was formerly
named Opportunities):

Welcome to Studio!

Please select a module from below.

Accounts | Bug Tracker | Campaigns | Contacts | Documentz | Investigations | [nvoices | Leads
Mestings | Notes | [PrEliminaryinvestigations| | Project Tasks | Projects | Surveillance | Targets | Tasks

At this point you have to select Edit Drop Downs from the available options.

Edit a Module

What do you want to do with that module®?
Please select what action you would like to take.

Edit Layout | EditCustom Fields | EdiDipDewns

Once you've done that you can edit existing dropdowns, but at the moment select
Create a Drop Down.

Drop Down Editor

You can either edit an exisiting drop
down or create a new drop down.

Eait Drop Downs | SBIBOEH

You can now create your new dropdown by giving it a suitable name, and assigning
options to it. As you create each option you'll find that you need to enter two values —
the value to be displayed on the screen and the value to stored in the database:

Dropdown Mame: buweillanoa_required_dom
Dropdown Language: | US English =

Databaze Value Display Value

Yes

Mo

| |]

[52]

Chapter 3

Interestingly, once you've clicked Save you'll find that the dropdown is actually
available to All modules, and not just Preliminary Investigations:

|AII ;|| surveillance_required_dom ;” USs English ;l
Database Value Display Value

ﬂﬁ @& ves

EE =& no

I || [+]

Now, all of that may seem a little long-winded — especially if you have a number of
dropdowns to create. In fact, you will probably find that it is quicker and easier to
create a dropdown manually, and so that's what we'll look at next.

Manually Adding a Drop-down Box

You will find that adding a dropdown manually is much simpler than adding one
using the Studio —as long as you're happy to edit files. Well, only one file. You need
to edit a file that you have already used in Chapters 1 and 2: custom/include/
language/en_us.lang.php.

Now we're going to use custom/include/language/en_us.lang.php to create a
new dropdown. All you have to do is to add the definition for the dropdown:

$app_list strings|['surveillance required dom'] = array (
'YES' => 'Yes',
'NO' => 'No',
)i

And that's all there is to creating a new dropdown. Next we need to look at the

second stage of adding your custom field to a module tab— creating the custom
field itself.

You have learned that we can create a dropdown either by using the Studio or by
doing it manually. Custom field creation is exactly the same.

Using Studio to Create a Custom Field

Having defined a dropdown we now need to create a custom field. In actual fact this
is a table column in the database. We will see how to do this manually, but first let's
see how to use the Studio to do the job.

[53]

[vww allitebooks.cond

http://www.allitebooks.org

Introducing Custom Fields

You'll remember that earlier we selected a module to edit (Preliminary
Investigations) and then Edit Drop Downs — this time select Edit Custom Fields:

Edit a Module

What do you want to do with that medule?
Please select what action you would like to take.

Edit Layout | ESHCUSIOMELIGS | Edit Drop Downs

Next you'll need to click on Create Custom Field:

Custom Field Editor

You can either view and edit an exisiting custom field., create a new custom field,
or clean the custom field cache.

View Custom Fields | EfSSBICUSIOMIFIBI | Clear Cache | Fepair Custom Fields

And then you'll be presented with the default field — the Text data type:

Data Type
Figld Mame: | |
Field Label: | |
Help Text: | |
Default Valus, | |
Max Size: B0 |
Required Field: [

Audit 7 I~

Duplicate Merge:

Of course, we're not interested in the text field, we're interested in creating a
dropdown. If you select Dropdown then you'll see that you'll be presented with a
list of existing option lists. The one that we've already created should be available in
this list:

[54]

Chapter 3

Data Type:

Field Mame: burueillanoe_required |
Field Label: [Surveillance Required |
Help Text: s surveillance required? |
Drop Down List: [surveillance_required_dom |

Default Value:
Mass Lpdate: [
Required Field: [
Audit 7 I~

Duplicate Merge: | Disabled

Most of the fields are self explanatory, but it's worth just looking at a couple of them
before we move on:

e Mass Update —If you enable this then you can include your field in the mass
updates in the module tab screen.
e Audit— This tells SugarCRM to track any change that you make to your field.

e Duplicate Merge — This allows you to merge any duplicate records.

Once you've entered all of the details then press Save, and the Studio will update the
SugarCRM database for you:

Studio Print [7] Help

Custom Field Editor

You can either view and edit an exisiting custom field., create a new custom field,
or clean the custom field cache.

View Custom Fields | Create Custom Field | Clear Cache | Repair Custom Fields

Md Start Previous (1-10f 1) MNextp End py
Name = Label = Data Type < Defoult Value £ Mass Update = Audited =
surveillance_required_c Surveillance Required_c_10 enum YES [v] [

Kd Start 4 Previous (1-1of1) Mextp End py

You will notice that the details are not saved exactly as you entered them:

e _cisappended onto the end of your field name.

e _c_10is appended onto the end of your field label.

[55]

Introducing Custom Fields

Now you're ready to add the dropdown to your module tab. However, first you may
want to consider how to create the field definitions manually.

Creating the Custom Field Manually

We've already established that a custom field is simply a reference stored in a
database. All we have to do is to insert the appropriate information into the

Spaces in the field name and label are replaced by underscores.

The data type is no longer shown as Dropdown, it is defined as enum — this
is because there isn't a data type of 'dropdown’; the data is actually stored as

an enum (i.e. a list).

database ourselves:

insert into fields meta data

values

7

There is, of course, a major advantage here, you can create a simple script to create
all of the custom fields that you need — especially useful when you come to migrating
from your development environment to your live environment (we'll discuss that

(

)

(

id,

name,

label,

help,

custom module,
data_type,
extl,

default value,
date modified

'Opportunitiessurvl req c',
'survl req c',
'survl req c 10',
'Surveillance?',
'Opportunities’',
'enum',

'surveillance required dom',

'YES',
now ()

further in Chapter 7).

[56]

Chapter 3

Now, we're not quite finished with the database yet. If you've used Studio to add a
custom field for the Opportunities module then you will find that you have a table
named opportunities_cstmin the database (and don't forget— the renaming of the
module is only for the browser — the SugarCRM structure remains the same). If not
then you'll need to create it yourself. This table requires a new field for every custom
field that you add (to opportunities, of course).

So, depending on whether opportunities_cstm exists or not, you'll need to do one
of the following:

create table opportunities cstm (survl req c varchar(150));
or:
alter table opportunities cstm add survl req c varchar(150) ;

On the other hand, once you've created your fields, then you may prefer to let the
Studio set up opportunities_cstm for you. To do that just uses the Studio's Repair
Custom Fields facility:

Welcome to Studio!

Vhat would you like to do foday ?
Please select from the options below.

Edita Module | Edit Drop Downs | Configure Tabs | Bename Tabe | Configure Group Tabs | Edit Portal | [RepairCustom Fields | Migrate Custom Field:

Once you've added all of the fields that you want then you can view them via
the Studio:

4 Start 4 Previous (1-3of3) Mextp End by

Name = Label = Data Type = Default Value £ Mass Update = Audited &
surveillance_required_c Surveillance_Required_c_10 enum YES [] [
SUV_req_c suny_req_c_ 10 enum YES (5] [&]
survl_req_c sunl_req_c 10 enum YES T [

d Start 4 Previous (1-3of3) Mextp End by

With your custom fields defined you can add them to your module tabs.

[57]

Introducing Custom Fields

Adding the Dropdown to a Module Tab

You'll need to return to the module editor in the Studio in order to add your newly
created custom field, but this time go to the Edit Layout link:

Studio

Primt Helpi

Edit a Module

What do you want to do with that module?
Please select what action you would like to take.

EdItLaydul | Edit Custom Figldz | Edit Drop Downs

At this point you'll be presented with the list the layouts that you're able to modify:

Layouts Detail View | [Edit View | List View | Search Form
Subpanels: Leads | Confick | Projeck

Now, I'm sure you'll agree that so far the development environment hasn't been
exactly WYSIWYG. However, if you click on Edit View (for example), you'll find that

you see the layout to be modified, and a toolbox:

Shorleuls Studio

Print 7] Help

Wizand

Continue Wizard [Opportunities]

Layouts Detail View | Edit View | List View | Search Form
Subpanels: Leads | Confct | Projeck

Toolbox [Undo|[Rede]|[Add Custom Field][Add Rows][Edit Tabbing Order] - Save|[Save & Publish|[History]

Preliminary Investigations:

Print Help|

“ Indicates required field

‘
Drag Fields Here To Delete
=]

y |lame] urrency: Brilish Pounds £ |~
[=] Sugar Fields (click items to Inve stigation
add to staging area) Mame *
& S| | Ermmrrene: Rirweas T —
[Burveillance Required_c_10 . |
CrEa— | T N o
Created by [Lead Source: |Mexl Step: |Inest_step |

|@- igation stage * || Froepecting]
[Assigned to: 1l | | Select |

[?IDescription: |[description

[58]

Chapter 3

You'll see that the toolbox contains the field that we created, and you can drag and
drop it into an appropriate location (you'll find a space between Lead Source and

Assigned to):

Studio

Print [7] Help

Subpanels: Leadz | Confisl | Projech

Layouts Detail View | Edit View | List View | Search Form

Undo][Ped] Add Custom Field][Add Rows]| Edit Tabbing Order] - [Save][Save & Publish|[History]

Preliminary Investigations:

Print [7] Help|

* Indicates required field

[#Prefiminary Investigation |“~”“'-' | Urrency: Eritish Pounds . £ |«
Mame *
rccomtrams:” |
Select |
|VI!EZ | Existing Business |+ [Expected Close (iyyy-mm-da)
Date: *
[Lead source: | |n-.-.-:l_ stap |
= [RE=E [inve stigation swge ["rocls 7]
[Surveiliance Required] |
[Assigned to: I |[setect | [@IProbability (%):
|Dest:ri|:tic|n: | description

All that is left to define is the text to be displayed next to your new drop-down box.
You can either do this by using the Studio, or by adding a line to custom/modules/
Opportunities/ language/en us.lang.php:

$mod_strings['Surveillance Required c 10']

= “Surveillance Required?”;

[59]

Introducing Custom Fields

Once you've done all of that then you can click on Save & Publish to make the new
layout available to all of your users:

Preliminary Investigations: [Z) Help
* Indicates required field

Preliminary [|Currency: British Pounds . £ =

Investigation Name

z

Account Mame: * | Amount: * I:l

Select |

Type: —Mone— b Expected Close Date: * {yyyy-mm-dd)

Lead Source: —None— - Mext Step: |
Surveillance Yes ~| Investigation stage * Prospecting |

Required?

Assigned to: ldmin |[select Probability (%): 10

Description:

Of course that's fine for a single field (there's a gap for it), but you're going to have to
make space for any additional fields.

Adding Rows

If you need to add more that one field then you'll need to add additional rows. You
may have already noticed that one of the buttons on the layout screen is entitled Add
Rows —click on this and you can add as many rows as you need:

Preliminary |:'|.n|n-:: Furlency:

Inve stigation

MName *

B Accouthme: | Jumount

= Type: Existing Business | = Expected Close Date: * (¥¥yy-mm-dd)
= Lead Source: Mext Step: |i-.-;:;;1__ slzp

= Surveillance Required? Investigation stage *

= Assigned to: | Select | Probability (%a):

= Description: description

[60]

Chapter 3

Adding rows is very easy (just press one of the + buttons). However, you need to
be careful if you want to delete a row. If you accidentally delete a row containing
important fields, you will find that there is no Undo button. You will also find that

any fields that you delete by doing this do not appear in the toolbox when you return
to the layout editing screen.

Recovering Previous Versions of a Layout

If, for any reason, you decide that you need to roll back to a previous layout then
click on the History button. You can then view (and restore) the layout that
you require:

History

History allows you o view previously published editions of the file you are currently working on. You can compareand restore previous
versions. If you do restore a file it will become your warking file. You must publish it before it is visible by everyone else.
What would you like to do today?

Please select from the options below.

200612-2821:51 |«
2006-12.2521:45
2006-12-28 21:43
2006-12-2821:43 |
2006-12-28 20:39 |

Preview

2006-12-28 20:39 Restore
2006-12-28 19:21

Manually Modifying Layouts

We've seen that we can use the Studio in order to modify the layout of the

SugarCRM screens, but, as you'd expect, we can do this manually as well. The views
that we can edit in the Studio are:

e Display
o [Edit

e List

e Search

We've already established that the files for Preliminary Investigations are stored in

the modules/Opportunities directory. All we have to do is to find the right files to
edit. In the directory you'll find:

e DisplayView.html
e EditView.html

[61]

Introducing Custom Fields

e ListView.html

e SearchView.html

If you have already modified the edit view, and now look at Editview.html, then
you'll find that it contains something like:

<tr><!-- BEGIN: open_source -->
<td class="dataLabel”>

{MOD.Surveillance Required c 10}

</td>
<td class="dataField”>

<select title='{SURVEILLANCE REQUIRED C HELP}'
name="surveillance required c”>{OPTIONS SURVEILLANCE REQUIRED C}
</select>

</td>
<td class="dataLabel”>

{MOD.LBL_SALES STAGE}
{APP.LBL_ REQUIRED SYMBOL}

</td>
<td class="dataField”>

<select tabindex='2"'
name='sales stage's>{SALES_STAGE OPTIONS}

</select>

</td>
<!-- END: open_source --></tr>

You'll realize that this is simple HTML code for adding lines to a table, but that it
also makes use of some of our SugarCRM variables. Now, if we look back at the field
that we manually created in this chapter then we'll see that its details are:

e name—survl_req c

e label —survl_req_c_10

All we have to do is to add another line for our extra field at the end of the table of
details in EditView.html:

<tr><!-- BEGIN: open source -->
<td class="dataLabel”>

[62]

Chapter 3

{MOD.SURV1 REQ C 10}

</td>
<td class="dataField”>

<select title='{SURV1 REQ C HELP}'
name="survl req_c”>{OPTIONS_SURV1 REQ C}

</select>

</td>
<!-- END: open_source --></trs

Again, we're just using simple HTML to add a line to the table, but including
references to the new field that we've created. And don't forget to modify
custom/modules/Opportunities/language/en us.lang.php to add a label for
the dropdown:

$mod_strings['survl req c 10'] = “Surveillance Started?”;

The end result is a screen containing two new dropdowns:

Preliminary Investigations: (7] Help
Save Cancel| * Indicates required field
Preliminary i | currency:
Inve stigation Name *
Account Name: * | Amount: * l:l
Select |
Type: -None- o, Expected Close Date: * (¥ yy-mm-dd)
Lead Source: —None— - Next Step: . |
Surveillance Yes vl Investigation stage * Prospecting 'l
Required?
Assigned to: bainm |[Select Probability (20): 10
Description:

Surveillance Yes 'I

Started?
[save]

[63]

Introducing Custom Fields

Including Custom Fields in Mass Updates

I'm sure that you're already aware of the mass update function built into SugarCRM.
This allows you to view a number of opportunities, cases, project tasks, etc., and
then update key fields at the same time. So, for example, if you go to our Primary
Investigations tab then you'll find that the default mass-update panel for the module
looks like:

l Mass Update
Update Delete

Assigned to: || Select
Type: —MNone— - Account Mame: || Select |

Lead Source: —None— - Expected Close Date: (¥yyy-mm-dd)
Investigation stage | —Mone— ~

The mass-update function is very useful, and you will, of course, want to use your
custom fields with it. In fact, if you've been following the examples in this chapter
then you may find that one of the fields is already there:

Al Mass Update

Assigned to: || Select

Type: —None— - Account Name: || Select |
Lead Source: —None— * Expected Close Date: (¥ ¥yy-mm-dd)
Investigation stage | —None- ;l Surveillance Required? —Nonz— vi

So, how do we add fields to the Mass Update sub-screen? Actually it is very easy.
You may remember that earlier we saw how to create a new field using the Studio.
On the Studio screen there's a box named Mass Update —tick this and your field will
be automatically included in the sub-screen.

We have seen how to create the custom field manually using SQL, and, as you'd
expect, it's just a matter of including a value for the appropriate field in the
SQL statement:

insert into fields_meta data
(id,

name,

label,

help,
custom_module,
data_type,

extl,

default value,

[64]

Chapter 3

date modified,
mass_update

)

values

('Opportunitiessurv2_reqg c',
'surv2_req c',
'surv2_req c 10',
'Surveillance?',
'Opportunities',
'enum',
'surveillance required dom',
'YES',
now () ,
1

7

But, what about fields that we've already created? Hopefully, you'll remember that
back then we used the Studio to select the screen for creating new fields. This time
select View Custom Fields:

Custom Field Editor

You can either view and edit an exisiting custom field., create a new custom field,
or clean the custom field cache.

[ViewClsiom Figlds | Create Custom Figld | Clear Cache | Repair Custom Fields

Studio Print [F] Help

Custom Field Editor

You can either view and edit an exisiting custom field., create a new custom field,
or clean the custom field cache.

Vigw Custom Fields | Efeale GlstomField | Clear Cache | Repair Custom Fields

[65]

Introducing Custom Fields

Then you can choose the field that you're interested in and check the Mass Update box:

Data Type:

Field Mame: |:.l||'-.' 1_req_c |

Field Label: |:.|||'-.-' |_req_c 10 |

Help Text: [Surveiliancs? |

Drop Down List: | surveillance_required_dom ;l
Default Value:

Mass Update: ™

Fieguired Field: I~

Audit % I~

Duplicate Merge:

Or, you can achieve the same by running SQL directly on the database:

update fields meta data
set mass_update=1

where id='Opportunitiessurvl req c';

Making Sure that Your Changes are Visible

Occasionally you'll make changes that aren't automatically passed through to all of
your users. This is because SugarCRM uses a caching system for any custom fields
(similar to, but not the same as, your web browser's caching). So, if you do change

the mass_update field, make sure that you clear the cache via Studio's Custom
Field Editor:

Custom Field Editor

You can either view and edit an exisiting custom field., create a new custom field,
or clean the custom field cache.

Wiew Custom Fields | Create Custom Field | Clear Cache | Bepair Custom Fields

Or you can do it manually by clearing the contents of the
cache/dynamic_fields directory.

[66]

Chapter 3

Limitations of the Mass Update
Now, before you run off and create loads of fields, it's worth noting that not all fields
can be used for mass updating. The only field types that have these capabilities are:

e Dropdown (as we already know)

e Multiple Select

e Radio Buttons

e Date

That means that you can't use:

o Text

e Text Area
e Integer

e Decimal

o Checkbox
e Email

e Web Link
e HTML

Adding Built-in SugarCRM Fields to the
Mass Update

At this point you may be wondering if any other built-in fields can be added into the
mass update. The answer is yes, but like custom fields not all types can be used. So,
your next questions will be —which ones are they, and how do you do it?

The built-in fields are handled differently to custom fields. In each module directory
you'll find a vardefs.php file. Each vardefs.php file contains the details of fields
to be used by the SugarCRM application. Any fields that can be used in the mass
update have a massupdate property. Not all modules have fields that you can add to
the mass update, but if you look in modules/Emails/vardefs.php (for example)
then you'll find:

'date start' => array (
'name' => 'date_ start',
'vname' => 'LBL DATE',
'type' => 'date',
'len' => '255',
'rel field' => 'time start',
'massupdate'=>false,

[67]

Introducing Custom Fields

So, the standard mass update for emails looks like:

Al Mass Update
[Update || Delete || Archive |

Assigned To: | || select | Email Status:

However, change massupdate to true, and you'll see:

~ Mass Update
Update || Delete |[Archive |

Assigned To: || Select Date Sent:

Email Status: —MNone— vI

i (vyyy-mm-dd)

As you can see the built-in fields have the same limitations as custom ones when it
comes to mass updates —in this case date_start can only be included because it is a
date field.

Creating other Field Types

We've seen how to create a drop-down field, both by using the Studio and manually,
but you're probably wondering how to create other field types. Some (such as radio
buttons) follow the same route as drop downs. Other types (such as dates) are
simpler to create, since the process is the same except that you don't have to start by
creating the drop-down box itself. So, if you want to create a date box (for instance)
then go straight to the custom field editor:

Data Type: | Date ;l

Field Name: Burv_start |

Field Label: Eurv_start |
Help Text: | |
Default Value: | today LI

Mass Update: [«
Required Field: [~
Audit 7 r

Duplicate Merge: | Disabled =

[68]

Chapter 3

From there on the process is exactly the same as creating the dropdown that we've
already dealt with.

And if you're going to do this manually (using SQL) then you just need to know the

data type —obviously in this case it would be date, so use an SQL insert query to
do that:

insert into fields meta data
(id,
name,
label,
help,
custom module,
data_type,
date modified,
mass_update
)
values
('Opportunitiessurv_start c',
'surv_start c',
'surv_start c 10',
'Surveillance Start',
'Opportunities’',
'date',
now (),
1

7

Having inserted the data, don't forget to add a new field to opportunities_ctsm,
and a simple SQL alter statement will do that:

alter table opportunities cstm add surv_start c date;
Update custom/modules/Opportunities/ language/en_us.lang.php:

$mod_strings|['surv_start c 10'] = “Surveillance Start Date”;

[69]

Introducing Custom Fields

And once you've used the Studio or edited the . html files you'll have a date field on
your screen as well as the dropdowns that we've already created —and Korora's life
will suddenly become much easier:

Preliminary Investigations: Home & Print (F)Help
Basic Search | | Advanced Search | | Saved Search & Layout |
Preliminary Inve stigation Name | | Account Name: | only my items: [~
A Preliminary Investigations List
A Export | Merge Duplicates | Selected: 0 [Start 4 Frevious (1-3of3) MNextp End pH
|_ Preliminary Investigation £ Account Mame £ Investigation stage £ Amount £ Close £ User £
I_ — ZXB1disappeared Sinclair Closed Won F780.00 2008-11-17 blusk)=
I— v. Windows attacked by Ubuntu Prospecting £2.500.00 2008-11-30 ellsworthyp El=]
Giant Hedgehog
I— - E055|bI9|nf|ltrat|on by Mowvell MNeeds Analysis £2.500.00 2007-01-31 ellsworthyp El=]
hostiles
A Export | Merge Duplicates | Selected: 0 4 Start 4 Previous (1 -3of3) Nextp End by
Clear All

Al Mass Update

Assigned to: || Select

Type: —None— - Account Name: [select |
Lead Source: —None— - Expected Close Date:

Investigation stoge —None— ;' Surveillance Required? E

Surveillance Start Date (¥ ¥y y-mm-did)

Field Data Types

So far we've looked at the dropdown (enum) and date field types. Now, if you are
going to use the Studio to create your new fields then all you have to do is select the
data type from the drop-down list. However, if you want to create the fields manually
then you'll need to know what to enter in the data_type field in fields_meta_data:

o Text—varchar

o Text Area—text

e Integer—int

e Decimal —float

e Checkbox—bool

e Email —email

[70]

Chapter 3

¢ Dropdown—enum

e Multiple Select — multienum

e Radio Buttons —radioenum

e Date—date

e Web Link—url

e HTML—html
With all this information at your fingertips you can now create whatever new fields
your users require, and you can do it by using the methods that you feel most

comfortable with — whether it be through the Studio, or by editing files and using
SQL on the command line.

Summary

In this chapter we've seen how to create and make use of our own custom fields in
SugarCRM modules. We've also seen how to include some of our fields (and some of
the built-in SugarCRM fields) in the mass-update sub-panels.

We saw that the process for creating a custom field manually is the same as in the
Studio; it's just that you'll be doing all of the things that the Studio would do for you.

In Chapter 4 we'll start to look at SugarCRM in more depth as we start to understand
the structure of the application itself.

[71]

Interfacing with SugarCRM

Hopefully, you are feeling very confident about customizing SugarCRM. Therefore,
this seems an appropriate point to take a step back from the customization process,
and have a deeper look into the structure of SugarCRM itself. So, what we'll do
now is:

e See how the SugarCRM application is put together as we examine the user
and data interfaces in this chapter.

¢ In the next chapter we'll see how the SugarCRM database is put together.

What Have we Learned so Far?

Over the past three chapters we've actually learned quite a bit about the application
architecture. To start with:

e The application consists of a number of PHP files on a web server.

e The application requires a database in the background.
So, if we think about the PHP files we know that:

o We always access the SugarCRM application via a central

PHP file — index . php.
e We have the custom directory for storing any language customizations.

e We have a themes directory where we store the files for customizing colors,
fonts, icons, and images for the application.

e SugarCRM consists of a number of module directories, which provide the
actual SugarCRM functionality. They're all stored in the modules directory.

Let us just remind ourselves about the files that each of these directories needs
to contain.

Interfacing with SugarCRM

The Include Directory

The include directory contains module-independent files such as:

e modules.php

The Custom Directory

The custom directory contains:

e custom/include/language/en us.lang.php

e custom/modules/<module>/language/en us.lang.php

The Themes Directory

The themes directory contains a directory for each theme to be used by your
application. Each of these directories must have:
e config.php

e style.css

The Modules Directory

The modules directory contains a directory for each module to be used by your
application. Each of these directories must have:

e index.php

e Forms.php

e <module name>.php

e language/en_us.lang.php

We've also learned that the SugarCRM modules have an interface to the database,
and in particular:

e Custom fields can be defined on the database, but the application caches
details about them in cache/dynamic_fields.
e Each module has its own data field definitions in a file named vardefs . php.

From all of this we can already build ourselves a general picture of the SugarCRM
application architecture.

[74]

Chapter 4

Overview of the SugarCRM Application
Architecture

The SugarCRM application architecture is simple, but effective:

SugarCRM User Interface

include | custom | themes modules

SugarCRM Data Interface

As you can see form the diagram above, and, as you may well have worked out for
yourself already from the last three chapters, our users use their computers (i.e. their
web browsers) to access the Sugar User Interface — this then governs all interactions
between the user and the SugarCRM functionality.

You will also see that there is another interface (the SugarCRM data interface)
between the SugarCRM functionality and the underlying database (as you
would expect).

In the remainder of the chapter we'll concentrate on the user and data interfaces, and
then in Chapter 5 we'll look at the database itself.

[75]

Interfacing with SugarCRM

The SugarCRM User Interface

You probably have worked out that the SugarCRM user interface is actually
generated by the index.php file in your main SugarCRM directory:

Web Browser

index.php

Web Server

So, there's nothing here that you don't already know. It is, therefore, worth having a
look at what the interface actually does for us.

The user interface (or if you prefer — the Ul layer):

e Decodes information posted (via the HTML forms) to the SugarCRM forms
e Authenticates users' log on details and active sessions
e Provides a wrapper around the modules files

In other words all a user has to do is to call up index.php on the web server, and it
will do all of the work for them.

Calling Modules

Having identified that index.php handles all of our interactions with SugarCRM,
it's worth just looking at how we can use the user interface to guide us to particular
modules, and, perhaps more importantly, how we can use it to carry out actions.

There are two key parameters that you can pass to index.php:

e module—This, obviously, is the module that you want to call. However, to
be completely correct, it is the directory in which the module is stored.

e action—This is the PHP file in the module directory to be used. By default its
index.php (i.e. the index. php file in the module directory, not index.php in
the top level of the web server). However, you can call other PHP files in
the directory.

[76]

Chapter 4

So, let us imagine Korora logging on —she'll start by typing in the SugarCRM URL
(in her case http://hector/penguin_pi) however, once she's finished typing in her
user name and password then she'll see:

; J Penguin PI'- SugarCRM - Mozilla Firefos :

Eile Edit View Go Bookmarks Tools Help
@ © &) & [® ntpnectorpenguin_pindex php?action=indexamodule=Home |- & [IGL
T, ——— My Account| Employees | Logout| Penguin P.I. Help
¥ Penguin PI B eRaine
[Home | WebStes | Calendar || Activities | Contacts | |[Leads || Prefiminary investigations | investigations | D [Emails | Campaigns |[3]
Welcome Korora [v

As you can see the user interface has set the module to Home, and the action
to index.

If Korora then clicks on one of the tabs (for example Preliminary Investigations)
then the user interface handles this change for her, and you can see that this has been
done by setting the module to Opportunities and the action to index:

& Penguin Pl - SugarCRM - Mozilla Firefox £

File Edit View Go Bookmarks Tools Halp 4
i @ @ @ O ﬁ [e hitpz//hector/penguin_pifindex php?module=0Opportunities&action=index ‘V] [IQ,
. e My Account | Employees | Logout | Penguin P.I. Help
“¥kPenguin PI o atra!
Home |"Web Sites | Calendar | Activities || Contacts | Accounts || Leads | Preliminary Investigations iggati 3] | Emails || Campaigns |[3]
Welcome Korora ' ‘ ' - Chh

In fact, you'll find that each of the tab titles is actually a link, and each of the links
simply passes the appropriate module and index back to the main index.php. For
example, if you place the mouse pointer over the Preliminary Investigations tab title
then you'll see that the link address is:

Projects | RSS | Dashboard | Bug Tracker | PPI Surveillance WebCams

Theme | Fenguin PI hd

Server response time: 0.96154 4 seconds.
@ 2004-2006 SugarCRM Inc. All Rights Reserved.

FOWEAED BY
SUGARCRHM.

hitp://hector/penguin_pifindex.php?module=Opportunities&action=index

We can now use this knowledge to manage the way in which we use SugarCRM. For
example, if we return to the module tab that we created in Chapter 2, then we can
change it so that it contains a list of key 'jobs' to be done.

[77]

Interfacing with SugarCRM

We could start by changing the title of the module by going to custom/include/
language, editing en_us.lang.php, and changing:

'TestApp' => 'PPI Surveillance WebCams',
to:
'TestApp' => 'Daily Tasks',

Next we can think about editing modules/TestApp/index.php so that Korora's
daily tasks are displayed. And, to make it even more useful, we can make use of
the strftime function (which formats the local time) to display different tasks at
different times:

<?php

global $current user;

#Get the local time (from the server)
Sh = strftime ("%H") ;

Sm = strftime ("$M") ;

?>

<hlsDaily Tasks for

<?php

#Display the users name (to be more personal just use the first name)
echo $current user->first name . " " . Scurrent user->last name;
?></hl>

<table width=100%>

<?php

#Display tasks for the morning

if ($h >= 9) { ?>

<tr><td><h2>AM Tasks</h2></td></tr>

<tr><td>

Preliminary Investigations

</as></td></tr>

<?php } ?>

<?php

#Display tasks for the afternoon

if ($h >= 12) { 2>

<tr><tds<hr></tds</tr>

<tr><td><h2>PM Tasks</h2></tds></tr>
<tr><td>

Investigations

</td></tr>

<?php } ?>

<tr><td align=rights>

<?php

#And finally show the current (server) time
echo "Current time:" . S$h . ":" . Sm; ?>
</td></tr>

</table>

[78]

Chapter 4

The end result (in the morning) is:

File Edit View Go Bookmarks Tools Help {3

QOB LA [rttprmectorpenguin_piindex pnp7module=TestAppsaction=index |- @ (&

My Account | Employees | Logout | Penguin P.I. Help

m Peng U in PI SUGARSUITE.

Home | "Web Sites || Calendar

Activities

Welcome Korora
Last Viewed: 33 Korora Blue = Test &5 Pessible infilt

|sterews | Daily Tasks for Korora Blue

AM Tasks
Preliminary Investigations

Current time9:17

Projects | RSS | Dashbeard | Bug Tracker | Daily Tasks

Theme | Penguin PI 54

Server respones time: 0.412397 seconds.
@ 2004-2006 SugarCRM Inc. All Rights Reserved.

FOWERED BY
SUGARCRAM.

Done

And in the afternoon:

File Edit View Go Bookmarks Tools Help {:

QY LA [ntp:imectonpenguin_pyindex pnp7module=Testapp&action=index @ (&

My Account | Employees | Logout| Penguin P.I. Help

m F’engUin Pl SUGARSUITE .

[Home | Web Sites | Calendar imi igati igati Emails |[* Daily BE

Welcome Korora
Last Viewed: 33 Korora Blue (=) Test 5 Pessible infilt

{[shoewts | Daily Tasks for Korora Blue
AM Tasks

Preliminary Investigations

PM Tasks

Investigations
Current time:15:20

Projects | BSS | Dashbeard | Bug Tracker | Daily Tasks

Theme | Penguin PI *

Server response time: 0.439595 seconds.
@ 2004-2006 SugarCAM Inc. All Rights Reserved

FOWERED BY
SUGARCRHM. |

Done

[79]

Interfacing with SugarCRM

Now that we've had a look at the SugarCRM user interface it's time to move on to the
SugarCRM Data Interface — otherwise known as SugarBean.

SugarBean—The SugarCRM Data
Interface

We'll be looking at the structure of the database in Chapter 5, but it's possible that
you will never have to access it, and that's because of SugarCRM's SugarBean:

SugarCRM User Interface

include | custom | themes modules

SugarBean

So, what is the SugarBean? At its simplest level it's another PHP file, but it does
a very important job—it's a high-level API that allows you to manipulate your
business data without having to worry (too much) about what's going on in the
database. The SugarBean:

[80]

Chapter 4

o Is the base class for the entire SugarCRM business object that you need to
use. This means that the Opportunity object (for example) is just an extension
of the SugarBean.

e It supplies all of the key functions for your business objects, such as creating
records, retrieving records, updating and deleting.

And, as you would expect, the SugarBean consists of a set of PHP files.

The SugarBean Files

As we've already learned the SugarBean is the data interface between our modules
and our database, and it consists of a number of PHP files on the SugarCRM

web server:

Module

<module>.php

vardefs.php

4

A

SugarBean.php

SugarBean

You can see that there are three key files for the SugarBean:

e SugarBean.php—This is located in the data directory and is (as we've
already learned) the base class file.

e vardefs.php—This is the schema for the business object. There is one for
each module that uses the SugarBean.

e <modules.php—Each module using the SugarBean must contain this file,
and it is used to extend the base class for the particular module. It is not
actually named the same as the module, but takes the singular form, e.g. the
Opportunities module would contain Opportunity.php.

[81]

Interfacing with SugarCRM

So, if we continue to think about Opportunities for a moment then we'd see the

following set up:

Modules

Opportunities

Opportunity.php

vardefs.php

4

A

SugarBean.php

data

In order to better understand the SugarBean let's start by examining vardefs.php in

a little bit more detail.

vardefs.php

You'll hopefully remember that we have already worked with the vardefs.php file.
In Chapter 3 we saw that it is possible to add SugarCRM fields into the mass update
sub-screen by editing this file —we modfied modules/Emails/vardefs.php, and
updated the massupdate property:

'date_start' => array (

'name' => 'date_start',
'vname' => 'LBL DATE',
'type' => 'date',

'len' => '255"',

'rel_field' => 'time_start',
'massupdate'=>true,

'comment' => 'Date of last inbound email check',),

Last time we just made the changes and moved on, but this time we'll look each of
the properties, although now that you know that this is the database schema file, I'm
sure that you can work out most of the details yourself.

[82]

Chapter 4

In case you haven't worked out what's going on here — this array represents a single
field in the database schema, and you'll see that each field has a set of parameters. In
this case 'date_start' has:

e 'name' —Unsurprisingly this is the name of the field.

e 'vname' —The field label ID for the module's en_us.lang.php file.

e 'type' —The data type of the property.

e 'len' —The length of the field.

e 'rel field'—Since thisis a date field it has a related time field.

e 'massupdate'—You already know what this does (but in case you've
forgotten —you set this if you want to be able to update a group of records all
at the same time).

e 'comment' —That would be a comment then.

There are actually a lot more parameters that are available to you, but this is still a
fairly fluid area of SugarCRM, and these are liable to change. For that reason I'm not
going to give you an exhaustive list. Instead it's time to look at some of SugarCRM's
on-line documentation.

vardefs On-line Documentation

e You'll find current details about vardefs at http://www.sugarcrm.com/
wiki/index.php?title=Vardefs Documentation:

7'7]7SugarCRM Wiki - Vardefs Documenfation - Mozilla Firefox__-,'_?';

File Edit View Go Bookmarks Tools Help
g @ O @ I:\i &} [ﬁ hitp/iwww sugarcrm.comiwikifindex phpHitle=Vardefs_Documentation |'} [Q,

SugarCRM SugarExchange SugarFome Forums Wiki Downloads Demo Site Directony

W SUGARWIKI. " @ SUsAncEMm

Creale an account or log in|

Views Vardefs Documentation

Article

Having just said that you should refer to the on-line SugarWiki to obtain an up to
date list of all of the available parameters for the vardef fields, it is still worth looking
at one parameter — the type.

[83]

Interfacing with SugarCRM

vardefs Field Types

There are a number of different field types available to you for use in the data
schema —some of which you'll recognize if you've worked databases, and some of
which are specific to SugarCRM:

'assigned_user_name' —Contains a SugarCRM user name

'blob' —the Binary Large OBject —Normally used when you want to store a
large amount of data in a single field

'bool' — A boolean value, although it uses a 1 or 0 rather than true or false
and in fact it maps to tiny integer on a MySQL database

'char' — An array of characters —although you'd never use this, since
varchar is available

currency

'date’

'datetime’

'email'

'enum' — Enumeration —normally used for dropdown lists
'float' —A decimal number —normally used to store currency
'id' — A 36 character SugarCRM ID number

"int ' —Integer

'link' — A relationship link

'nondb' — A derived value —not from database (and not technically a type),
which could come from a PHP function

'num' — Interesting one — this is actually stored in the MySQL database as
a varchar

'phone ' —a phone number
'relate' —Related Bean, i.e. related to a field in another table
'text ' —text field. Basically a 'char' that holds 65,535 characters

'varchar' — A variable sized string, the length of which is set by the
len' field

So, nothing really contentious here — the list contains all the common field types that
you will need for your project.

[84]

Chapter 4

The Complete vardefs File

So far we've only looked at an individual field within vardefs. php; however, that's
not the end of the story. Each field is defined as an array of parameters, but these are
just part of a larger array of fields, and are stored in another array — the dictionary:

Sdictionary['Opportunity'] = array(
'table' => 'opportunities',
'audited'=>true,
'unified search' => true,
'duplicate merge'=>true,
'comment' => 'An opportunity is the target of selling activities',
'fields' => array)

We're now going to leave vardefs.php again, but we will be coming back to it—in
Chapter 8, when we'll be looking at developing a complete module. In the meantime
we'll have a quick look at the <modules.php file.

The <module>.php File

Although I've referred to the <modules>.php file don't forget that the file must
actually be given the singular name for the module, so for Opportunities use
Opportunity.php, for Emails use Email . php, and so on.

Our file contains a class that extends the basic SugarBean class (SugarBean.php), and
it's used to define:

e Variables mapped to the database schema (vardefs.php)

e Any additional functionality specific to the particular business object

The class files all have the same format, and so if we look at Opportunity.php, we'll
see that the base class file is loaded, along with any others that are required:

'data/SugarBean.php') ;
'modules/Contacts/Contact.php') ;
'modules/Tasks/Task.php') ;
'modules/Notes/Note.php') ;
'modules/Calls/Call.php') ;
'modules/Leads/Lead.php') ;
'modules/Emails/Email.php') ;
'include/utils.php') ;

require once
require once
require once
require once
require once
require once
require once

(
(
(
(
(
(
(
(

require once

[85]

Interfacing with SugarCRM

And then the new class is defined:

class Opportunity extends SugarBean
{

var $field name map;

// Stored fields

var $id;

var $lead source;

var $date entered;

var $date modified;

var $modified user id;

}
And, of course, it will need a constructor function:

function Opportunity ()

{
parent: :SugarBean () ;
global $sugar config;
if (!$sugar config['require accounts'])
{
}
global $current user;

}

As well as any extra functions required for the Opportunity class:

unset ($this->required fields['account name']) ;

function get list view dataf()
{
global $locale, $current language, $current user, S$mod strings,
Sapp list strings, $sugar config;
Sapp_strings = return application language ($current language) ;
require once ('modules/Currencies/Currency.php') ;
Stemp_array = $this->get list view array();
#Set the sales state
Stemp_array['SALES STAGE'] =
empty ($temp array['SALES STAGE']) ? '' :
Stemp array['SALES STAGE'];
#Set the ammount
Stemp array['AMOUNT'] = currency format number ($this->amount) ;
#Set the name
Stemp_array ["ENCODED NAME"]=$this->name;
#Return the result
return Stemp array;

}

Now, just like vardefs.php, we're going to leave the class file behind for now, and
return to it in Chapter 8. However, you, no doubt, want to see the SugarBean in
action—so we'll turn our attention to SugarCRM's logic hooks.

[86]

Chapter 4

SugarBean in Action—SugarCRM's
Logic Hooks

You may not have heard of logic hooks before —if not then, quite simply, they
provide us with the ability to add in our own custom business logic into the
SugarCRM applications. These logic hooks may take the form of some kind of
validation, or they may take the form of a more involved business operation.

If we look at the Penguin P.I. office for a moment, we might see Korora sat at her
desk. One of her tasks is to evaluate any new preliminary investigations and then
assign them to someone. However, when she does this she must ensure that:

e Only people with certain roles can receive preliminary investigations.

e Each preliminary investigation must got to the correct office covering the
geographical region in which the investigation is to be carried out.

e Where more than one person qualifies for receiving the preliminary
investigation then the person with the least amount of work must be chosen.

We've therefore got two options:

o Let Korora work it all out for herself —regardless of how long it's going
to take.

e Add alogic hook that will do all of this automatically.

We're not going to do all of that at the moment; we'll save that for Chapter 9 when
we'll look at developing custom workflows within SugarCRM. However, what
we will do is create a logic hook that records changes in assigned users for

any Opportunity.

Now, if you're already used to working with databases such as Oracle then you'll be
used to the concept of a trigger. Triggers are simply pieces of code that are run when
particular events (such as update or insert) occur on the database —and that's exactly
what the logic hook does —it runs a PHP file when the SugarBean carries out certain
database operations. These key events are:

e after retrieve

e Dbefore save

e Dbefore delete

e after delete

e Dbefore undelete

e after undelete

[87]

Interfacing with SugarCRM

So, in this case we want the logic hook to operate on the before_save event.
We're also going to be writing to a log file in this instance, and so the first thing
to do is to write the code for that. We want to keep this separate from the
standard SugarCRM code and so we'll place it custom/include and call the file
penguin pi functions.php:

#File: penguin pi functions.php

<?php

function WriteToLogFile ($strText) {
$File = '/www/penguin pi/test.log'; #Choose a suitable file name
SHandle = fopen($File, 'a'); #Open the file
$Data = S$strText . "\n"; #Add a carriage return to the text

if ($Handle) { // avoid further errors on file access failure
fwrite ($Handle, $Data); #Write the text to the file
fclose ($SHandle); #Close the file
}
1

?>

And just a note —you may need to manually create (and set the
K=" permissions for) the log file before you run the code.

Next we'll need the code file that's going to be run by the logic hook. Again, we'll put
it in custom/include, but this time we'll call the file ppi_prelim change.php, and
it's another class file:

#File: ppi prelim change.php

<?php

require once('data/SugarBean.php') ;

require once ('modules/Opportunities/Opportunity.php');
require once ('custom/include/penguin pi functions.php');

class ppi prelim change {
function ppi prelim change (&$bean, $event, $arguments) {
global $sugar config;

if ($bean->fetched row['assigned user id']!=
$bean->assigned user id)

#0btain the information for the old user

$old_user = new User(); #Create a user object

$old user-s>retrieve (sbean->fetched row['assigned user id']) ;
$old assigned user name =

$old user->first name.' '.$0ld user->last name;

#0btain the information for the new user
Snew_user = new User();

$new user->retrieve ($bean->assigned user id);
$new_assigned user name =

[88]

Chapter 4

$new user->first name.' '.$new user->last name;
#Write the information to the log file
WriteToLogFile
(sold assigned user name . " -> " . Snew assigned user name) ;

}
}

?>

You'll notice from the code that both the current (i.e. changed) data and the original
data are available to the function by making use of the $bean object:

e Sbean->assigned_user_id provides the new user ID

e $bean->fetched row['assigned user id'] provides the old user ID.
You'll also notice that the code makes use of:

¢ The SugarBean base class file (SugarBean. php)
e The Opportunity class file (Opportunity.php)
e Our own custom functions file (penguin_pi_functions.php)

One very useful function worth taking note of is retrieve — you'll see from the code that
this obtains the assigned user details with the minimum of effort on your part.

Finally, we just need to create the logic hook file itself. However, unlike the last
two files, this must be placed in a specific location. You might expect that the
Opportunities logic hook should be placed in modules/Opportunities, and
you'd be nearly correct—it actually needs to be be placed in custom/modules/
Opportunities, and it also has to be named 1logic_ hooks.php:

#File: logic_ hooks.php

<?php

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

Shook array = Array(); #Create an array

Shook array['before save'] = Array(); #Create a sub-array

#Write the required information to the array

Shook array['before save'] [] = Array(l, 'ppi prelim change',
'custom/include/ppi_prelim change.php',
'ppi prelim change', 'ppi prelim change') ;

?>

If you examine the code then you'll see that we have to define an array (called
$hook_array). This array then contains a sub-array, and it's this array that defines
the logic hook itself.

[89]

Interfacing with SugarCRM

You'll notice that the array has the same name as the event on which the trigger is to
be set, and it has a number of elements:

Logic hook order —we can define a number of hooks in the same file, and this
element defines the order in which they should be used.

Name — this is just a placeholder to store the name of the hook.
PHP code file location.

PHP class to be called.

PHP function that is to be run by the hook.

If you have these three files in place then your logic hook is up and running, and just
waiting for your users to do something.

The End Result of Using the Logic Hook

Back to Korora —she now needs to edit one of the preliminary investigations and
change the assigned user:

Preliminary Investigations: Windows attacked by Giant Hedgehog 7] Help
Save * Indicates required fisld

Preliminary lWindows attacked by Giant Hedgehog |Currency: British Pounds . £ »

Investigation Name

L]

Account Mame: * [Ubuntu | Amount: *

Select |

Type: Existing Business - Expected Close Date: * [2008-11-30 ¥¥yy-mm-dd

Lead Source: Email - Next Step: |
Surveillance Yes vl Investigation stage * Prespecting ;l

Required?

Assigned to: Elisworthyp |[Select Probability (%): 10

Description:

Surveillance Yes 'l

Started?
Save Cancel

[90]

Chapter 4

When she clicks the Save button then she'll be unaware of any differences in
SugarCRM; however, in the background something will have changed:

User Interface

'Save' Pressed

Custom Files

logic_hooks.php

PHP code file

A

Logic Hook check <

X

Logic Hook action (e

A

Data Saved

Data Interface

Although your users will see nothing, SugarCRM will check to see if a Logic Hook
exists. If it does then the associated PHP code file will be run, and (in this case) the
data will be saved. And, of course, if Korora was to look on the web server she'd find
that the www/penguin_pi/test.log file would contain a new entry:

Korora Blue -> Pygoscelis Ellsworthy

And this doesn't only work for individual instances — this will also work for the mass
update. So, if you look back on the tab screen and actually carry out a mass update:

[91]

Interfacing with SugarCRM

N Preliminary Investigations List

& Export | Merge Duplicates | Selected: 4 W4 Start 4 Previous (1-4 of 4) Nextp End by

[~ Preliminary Investigation = Account Name = Investigation stage = Amount £ Close £ User £

|7 - ZXB1disappeared Sinclair Closed Won E7B0.00 2008-11-17 bluek =

F — Windows attacked by Giant Ubuntu Prospecting £2500.00 2008-11-30 bluek L=
Hedgehog

F - Eossible infiltration by MNovell Meeds Analysis £2.500.00 2007-01-31 bluek =]
hostiles

|7 = VBA Trap? Mowell Prospecting £1,000.00 2007-01-16 bluek [Fa] =]

Export | Merge Duplicates | Selected: 4 Md Start 4 Previous (1 -4 of4) Nextp End by

Clear All

N Mass Update

Assigned to: llsworthyp |[Select:

Type: —Mone- - Account Name: || Select |
Lead Source: —None— - Expected Close Date: (¥¥y¥-mm-dd)
Inve stigation stage —None— | Surveillance Required? E :

Surveillance Start Date (¥¥y¥-mm-dd)

You'll find that the logic hook fires for each record that you update.

Obviously this has been a very simple example, but we'll look at this more
extensively in Chapter 9, and then we'll see how to use logic hooks as part of a
workflow system.

Summary

In this chapter we've spent some time looking at the SugarCRM user interface
and the data interface. We've seen how to use these effectively within our
SugarCRM customizations.

The SugarBean is SugarCRM's high-level API that handles all our interactions with
the database.

Logic hooks enable us to add in our own business logic into SugarCRM with the
minimum effort. They are similar to database triggers —except that it's the SugarBean
that does all the work and not the database.

Thus we've looked at the interfaces, and how to use them effectively in our
customizations. We'll look at the files in more detail in Chapter 8 (when we'll
develop a complete module), and Chapter 9 (when we'll look at custom workflows).
However, before we do all that we'll examine the structure of the database itself.

[92]

SugarCRM Database
Schematics

All our work so far has mainly been with the SugarCRM PHP files on the web server,
and we've only dipped a little bit into the database. However, we're going to rectify
that in Chapters 5 and 6.

The aim of this chapter is to map out the key areas of the database, and to see how
the tables of the database are linked together. And so, we won't actually be doing
practical work in this chapter — this is all reference material.

The areas covered by this chapter and Chapter 6 are:

e Database schematic diagrams — We will show you how the tables are related
to each other in the database in this chapter.

e SugarCRM table definitions — We will show you the actual structure of each
table in the database in the next chapter.

You can then use the contents of the chapters to build your own SQL statements.
These are useful if you want to add SQL statements into your new modules and
create your own custom reports or run batch programs external to SugarCRM — for
example using cron to run regular shell scripts.

Database Schematic Diagrams

The database schematic diagrams show the relationships between tables in the
database. They don't show all the fields in each table —just the fields that can be used
in join statements. Refer to the table definitions in Chapter 6 for details of all of the
fields in any particular table.

SugarCRM Database Schematics

Access Control List

acl_roles_actions acl_roles
role_id id i
action_id modified_user_id

—< created_by

acl_actions
id acl_roles_users
modified_user_id . >
created by role_id 5
el user_id
users
id
accounts_contacts accounts | meetings
account_id E id %Q parent_id
contact_id — modified_user_id
assigned_user_id calls
contacts created_by -
campaign_id* parent_id
id
accounts_cases notes
accounts_audit < account_id parent_id
- —<] case_id
parent_id -
tasks
cases campaigns
accounts_bugs parent_id
- — id id
accognt_ld L—< acount_id project_relation
bug_id users
leads relation_id
bugs id project_id
—< acount_id
id tasks -
project
— parent_id -
opportunities = id
id emails_accounts
" email_id
accounts_opportunities account id
opportunity_id -
account_id emails
id

*Added in version 4.5.1

[94]

Chapter 5

Bugs

Calls

bugs emails
cases
id id id
! modified_user _id
assigned_user_id ;
cases_bugs crea%ed By - emails_bugs
case_id ?)und__in_release email_id
bug,_id ixed_in_release bug,_id
users accounts
contacts
id id id
contacts_bugs releases accounts_bugs
contact_id id account_id
bug_id bug_id
bugs_audit
parent_id
calls_contacts calls
call_id — id
contact_id assigned_user_id
modified_user_id
contacts created_by
id calls_users
—< call_id
—< user_id
users
L— id

[95]

SugarCRM Database Schematics

Campaigns

campaign_trkrs campaigns campaigns_audit
campaign_id >—, id ————< parent_id
modified_user_id
ien | assigned_user_id p—
campaign_log created_by B>— prospect_lists
o currency_id
campaign_id id
currencies
email_marketing
id prospect_list_compaigns
campaign_id
prospect_list_id
users campaign_id
emailman
id
campaign_id
contacts_cases cases meetings
case_id id Lo parent_id
contact_role modified_user_id
assigned_user_id calls
cases createc_i_by_ -
campaign_id* B>— parent_id
id
accounts notes
cases_bugs f
— id parent_id
case_id y
bug_id tasks
— accounts_cases
parent_id
bugs account_id
q case_id cases_audit
i
] parent_id
emails_cases -
emails case_id users
id email_id "

[96]

Chapter 5

Contacts

emails_contacts emails meetings meetings_contacts tasks
email_id >— | id id L —< meeting id parent_id
contact_id B contact_id
contacts meetings
accounts_contacts -
- = i parent_id
contact_id B> modified_user_id
account_id B> assigned_user_id leads calls
created_by ntact id
accounts reports_to_id contact | parent_id
campaign_id*
id tasks notes
ntact r contact_id .
contacts_bugs contacts_users —< parent_id
) —< contact_id
Eﬁgt?gt_ld user id notes campaign_log
— campaigns contact_id < related_id
bugs paig
; contacts_audit - -
i users id project_relation
id parent_id < relation_id
opportunities_contacts —<| project_id
calls_contacts
contact_id - calls - project
opportunity_id id | call_id
contact_id B> L id
contacts_cases
opportunities cases
- '— contact_id
id id case_id
*Added in version 4.5.1

[97]

SugarCRM Database Schematics

Documents

emails_leads

user_id

emails_prospects

email_id

linked_documents
document_id
docuemnt_revision_id
documents - -
id
modified_user_id document_revisions
created_by
document_revision_id id
created_by
users
id
Emails
emails_bugs emails_projects emails_project_tasks
email_id —< email_id —< email_id
bug_id project_id project_task_id
bugs projects project_tasks
id id — id
parent_id
emails_contacts
emails_opportunities
email_id > i
contact_id assigned_user id email_idl)
modified_user_id opportunity_id
contacts created_by
opportunities
id emails_users
id
email_id

lead_id users email_id
- prospect id
id B
leads
prospects
id

emails_accounts
id
- email_id
emails_tasks account id :
- emails_cases
email_id
task_id accounts email_id
- case_id
tasks d
cases
id
id

[98]

Chapter 5

Email Management

campaigns

emailman

id

user_id
campaign_id
marketing_id
modified_user_id

email_marketing

id
modified_user_id
created_by
inbound_email_id
template_id
campaign_id

inbound-email

email_templates

id
modified_user_id
created_by

id
modified_user_id
created_by

users

-

email_marketing_prospect_lists

prospect_list_id
email_marketing_id

prospect_lists

id

L

[99]

SugarCRM Database Schematics

Leads

leads_audit
prospects leads _
arent_id
lead_id id parent
modified_user_id
emails assignment_user_id -
created_by meetings
id contact_id parent_id
account_id -
emails_leads opportunity_id calls
campaign_id
emaill_id parent_id
lead_id campaigns
. notes
users id
- parent_id
id opportunities
- tasks
contacts id
} parent_id
id accounts
id
Meetings
meetings_contacts meetings
meeting_id id
contact_id assigned_user_id
modified_user_id
created_by —
contacts
id meetings_users

meeting_id
user_id

AA

users

[100]

Chapter 5

Opportunities

accounts_opportunities opportunities
opportunities_audit
opportunity_id — id
account_id B> modified_user_id parent_id
assigned_user_id B>
accounts created_by S— -
campaign_id* meetings
id parent_id
campaigns
emails
id calls
id parent_id
users
emails_opportunities d notes
i
email_id B> parent_id
opportunity_id P leads -
r - P task
project_relation opportunity_id
. parent_id
relation_id contacts -
project_id
id
project
id opportunities_contacts
contact_id
opportunity_id
*Added in version 4.5.1
Projects
emails_projects project meetings
project_id id parent_id
email_id assigned_user_id
modified_user_id calls
; created_by
emails - parent_id
id
users notes
project_relation id parent_id
project_id
relation_id >—|_ opportunities project_task
accounts id parent_id
id contacts
id

[101]

SugarCRM Database Schematics

Project Tasks

emails_prospects

email_id

prospect_id

prospect_lists_prospects

related_id
prospect_list_id

prospect_lists_campaigns

modified_user_id
assigned_user_id

emails_projects_tasks project_task meetings
project_task_id id parent_id
email_id parent_id
assigned_user_id
emails modified_user_id calls
created_by -
id - parent_id
users notes
id parent_id
project
id project_task_audit
i
parent_id
emails
prospects
id
id

created by
leads -
,—é lead_id
id campaign_id*
campaigns
id

prospects_lists

users

. id
prospef:t_ll§t_|d modified_user_id
campaign_id assigned_user_id

created_by
campaigns
id email_marketing_prospect_lists
prospect_list_id
email_marketing_id
email_marketing
id
*Added in version 4.5.1

[102]

Chapter 5

Schedulers

schedulers schedulers_times
id scheduler_id
created _by
modified_user_id
users
id
veals accounts
user_preferences - -
user_id assigned_user_id cases
assigned_user_id
tracker bugs assigned_user_id
emailman id assigned_user_id
user_id cases import_maps
- users_last_import assigned_user_id assigned_user_id
meetings _ _
" | assigned_user_id prospects opportunities
assigned_user_id users_signatures assigned_user _id assigned_user id
meetings_users user_id leads files
meetilng_id B> calls_users assigned_user_id assigned_user _id
user_id > _user_|
call_id prospects_lists project
roles_modules roles| |||~—< user_id
- . assigned_user_id assigned_user_id
role_id Bid calls
- project_task dashboards
roles_users id
assigned_user id —< assigned_user id assigned_user_id
role_id
user_id contacts_users saved_search emails_users
feeds contact_id L assigned_user_id user_id
user id email_id
id) acl_roles
assigned_user id - contacts emails
id
users_feeds id id
assigned_user_id acl_roles_users assigned_user_id
user_id
feed_id role_id >
user_id o

[103]

SugarCRM Database Schematics

Differences Between Versions 4.5.0 and
4.5.1

There are a few additional relationships that have been added into SugarCRM
version 4.5.1 — these are all marked in the diagrams.

Summary

It's unlikely that you will have read this chapter from end to end. However, you will
(hopefully) find it invaluable when you start to build SQL statements. Remember to
use the schematic diagram to understand how the tables fit together. So having seen
the database schematics you want to see what fields are available in each table; we
will see this in the next chapter.

[104]

SugarCRM Data Dictionary

In Chapter 5 we looked at the SugarCRM database schematics — this showed us all of
the relationships between the tables in the database. We'll now turn our attention to
the individual tables themselves.

Differences between Versions 4.5.0 and 4.5.1
You'll find that some minor changes in the table structures between SugarCRM
version 4.5.0 and 4.5.1. The changes are:

e One or two additional fields in 4.5.1 — these are all marked in the

table definitions.

e The data type for each id field has been changed from varchar to char. This
has no effect on the operation of the database, but can potentially save some
of the space required to store the data.

SugarCRM Table Definitions

Having seen how the tables are related together, and the fields that are used to
do that, we can now look at the other fields that make up each table. Each table
definition contains:
e Field name
e Field type, width and any additional information (such as auto_increment)
e If anull value is allowed

¢ Index details — this will either be PRI— primary index, or MUL — duplicate
entries allowed

e The default value

SugarCRM Data Dictionary

Accounts
Field Name Field Type Null Index Default Value
Allowed
id char(36) PRI
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36)
assigned_user_id char(36) YES NULL
created_by char(36) YES NULL
name varchar(150) YES NULL
parent_id char(36) YES MUL NULL
account_type varchar(25) YES NULL
industry varchar(25) YES NULL
annual_revenue varchar(25) YES NULL
phone_fax varchar(25) YES NULL
billing_address_street varchar(150) YES NULL
billing_address_city varchar(100) YES NULL
billing_address_state varchar(100) YES NULL
billing_address_ varchar(20) YES NULL
postalcode
billing_address_country varchar(100) YES NULL
description text YES NULL
rating varchar(25) YES NULL
phone_office varchar(25) YES NULL
phone_alternate varchar(25) YES NULL
emaill varchar(100) YES NULL
email2 varchar(100) YES NULL
website varchar(255) YES NULL
ownership varchar(100) YES NULL
employees varchar(10) YES NULL
sic_code varchar(10) YES NULL

[106]

Chapter 6

Field Name Field Type Null Index Default Value
Allowed

ticker_symbol varchar(10) YES NULL
shipping address_street varchar(150) YES NULL
shipping_address_city varchar(100) YES NULL
shipping_address_state = varchar(100) YES NULL
shipping address_ varchar(20) YES NULL
postalcode
shipping_address_ varchar(100) YES NULL
country
deleted tinyint(1) MUL 0
campaign_id char(36) YES NULL
This table is used in the database schematics:

e Accounts

e Bugs

e Cases

e Contacts

e Emails

e Leads

e Opportunities

e Projects

e Users
Field campaign_id added in version 4.5.1
accounts_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL

[107]

SugarCRM Data Dictionary

Field Name Field Type Null Allowed Index Default Value
data_type varchar(100) YES NULL
before_value_ varchar(255) YES NULL
string
after_value_ varchar(255) YES NULL
string
before_value_ text YES NULL
text
after_value_text text YES NULL
This table is used in the database schematic:
e Accounts
accounts_bugs
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
account_id char(36) YES MUL NULL
bug_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematics:
e Accounts
e Bugs
accounts_cases
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
account_id char(36) YES MUL NULL
case_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0

[108]

Chapter 6

This table is used in the database schematics:

e Accounts

e Cases
accounts_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
contact_id char(36) YES MUL NULL
account_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematics:

e Accounts

e Contacts
accounts_opportunities
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
opportunity_id char(36) YES MUL NULL
account_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0

This table is used in the database schematics:

e Accounts

e Opportunities

[109]

SugarCRM Data Dictionary

acl_actions

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36)

created_by char(36) YES NULL

name varchar(150) YES NULL

category varchar(100) YES NULL

acltype varchar(100) YES NULL

aclaccess int(3) YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematic:

e Access Control List

acl_roles

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

date_entered datetime 0000-00-00 00:00:00
date_modified = datetime 0000-00-00 00:00:00
modified_user_ char(36)

id

created_by char(36) YES NULL

name varchar(150) YES NULL

description text YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematics:

e Access Control List

e Users

[110]

Chapter 6

acl_roles_actions

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

role_id char(36) YES MUL NULL
action_id char(36) YES MUL NULL
access_override int(3) YES NULL
date_modified datetime YES NULL

deleted tinyint(1) YES 0
This table is used in the database schematic:

e Access Control List

acl_roles_users

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

role_id char(36) YES MUL NULL

user_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) YES 0

This table is used in the database schematics:

e Access Control List

e Users

[111]

SugarCRM Data Dictionary

Bugs

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

bug_number int(11) auto_ MUL NULL
increment

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36)

assigned_user_id char(36) YES NULL

deleted tinyint(1) 0

name varchar(255) YES MUL NULL

status varchar(25) YES NULL

priority varchar(25) YES NULL

description text YES NULL

created_by char(36) YES NULL

resolution varchar(255) YES NULL

found_in_release varchar(255) YES NULL

type varchar(255) YES NULL

fixed_in_release varchar(255) YES NULL

work_log text YES NULL

source varchar(255) YES NULL

product_category varchar(255) YES NULL

This table is used in the database schematics:

e Accounts
e Bugs

o (Cases

e Contacts
e Emails

e Users

[112]

Chapter 6

bugs audit

Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_ varchar(255) YES NULL
string
after_value_ varchar(255) YES NULL
string
before_value_ text YES NULL
text
after_value_text text YES NULL
This table is used in the database schematic:

e Bugs
Calls
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL
modified_user_ char(36) YES NULL
id
created_by char(36) YES NULL
name varchar(50) YES MUL NULL
duration_hours int(2) YES NULL
duration_ int(2) YES NULL
minutes
date_start date YES NULL
time_start time YES NULL

[113]

SugarCRM Data Dictionary

Field Name Field Type Null Allowed Index Default Value
date_end date YES NULL
parent_type varchar(25) YES NULL
status varchar(25) YES NULL
direction varchar(25) YES NULL
parent_id char(36) YES NULL
description text YES NULL
deleted tinyint(1) 0
reminder_time int(4) YES -1
outlook_id varchar(255) YES NULL
This table is used in the database schematics:

e Accounts

e Calls

e Cases

¢ Contacts

e Leads

¢ Opportunities

e Projects

e Project Tasks

e Users
calls_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
call_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
required char(1) YES 1
accept_status varchar(25) YES none
date_modified datetime YES NULL
deleted tinyint(1) 0

[114]

Chapter 6

This table is used in the database schematics:

e Calls

e Contacts

calls_users

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
call_id char(36) YES MUL NULL
user_id char(36) YES MUL NULL
required char(1) YES 1
accept_status varchar(25) YES none
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematics:

e Calls

e Users
campaign_log
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
campaign_id char(36) YES MUL NULL
target_tracker_key char(36) YES MUL NULL
target_id char(36) YES NULL
target_type varchar(25) YES NULL
activity_type varchar(25) YES NULL
activity_date datetime YES NULL
related_id char(36) YES NULL
related_type varchar(25) YES NULL
archived tinyint(1) YES 0
hits int(11) YES 0

[115]

SugarCRM Data Dictionary

Field Name Field Type Null Allowed Index Default Value
list_id char(36) YES NULL
deleted tinyint(1) YES 0
date_modified datetime YES NULL
more_information varchar(100) YES MUL NULL
marketing_id char(36) YES NULL
This table is used in the database schematics:
e Campaigns
e Contacts
Added in version 4.5.1
campaign_trkrs
Field Name Field Type Null Index Default Value
Allowed
id char(36) PRI
tracker_name varchar(30) YES NULL
tracker_url varchar(255) YES http://
tracker_key int(11) auto_ MUL NULL
increment
campaign_id char(36) YES NULL
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36) YES NULL
created_by char(36) YES NULL
is_optout tinyint(1) 0
deleted tinyint(1) 0

This table is used in the database schematic:

e Campaigns

[116]

Chapter 6

Campaigns
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
tracker_key int(11) auto_ MUL NULL
increment
tracker_count int(11) YES 0
name varchar(50) YES MUL NULL
refer_url varchar(255) YES http://
tracker_text varchar(255) YES NULL
date_entered datetime YES NULL
date_modified datetime YES NULL
modified_user_ char(36) YES NULL
id
assigned_user_id char(36) YES NULL
created_by char(36) YES NULL
deleted tinyint(1) 0
start_date date YES NULL
end_date date YES NULL
status varchar(25) YES NULL
currency_id char(36) YES NULL
budget double YES NULL
expected_cost double YES NULL
actual_cost double YES NULL
expected_ double YES NULL
revenue
campaign_type varchar(25) YES NULL
objective text YES NULL
content text YES NULL
impressions int(11) YES 0
frequency varchar(25) YES NULL

[117]

SugarCRM Data Dictionary

This table is used in the database schematics:

Campaigns
Email Management
Leads

e Prospects

e Users
Added in version 4.5.1
campaigns_audit
Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_string varchar(255) YES NULL
after_value_string varchar(255) YES NULL
before_value_text text YES NULL
after_value_text text YES NULL

This table is used in the database schematic:

Campaigns

[118]

Chapter 6

Cases
Field Name Field Type Null Index Default Value
Allowed
id char(36) PRI
case_number int(11) auto_ MUL NULL
increment
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36)
assigned_user_id char(36) YES NULL
created_by char(36) YES NULL
deleted tinyint(1) 0
name varchar(255) YES MUL NULL
account_id char(36) YES NULL
status varchar(25) YES NULL
priority varchar(25) YES NULL
description text YES NULL
resolution text YES NULL

This table is used in the database schematics:

e Accounts
e Bugs

o (Cases

o Contacts
e Emails

e Users

[119]

SugarCRM Data Dictionary

cases_audit

Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_ varchar(255) YES NULL
string
after_value_ varchar(255) YES NULL
string
before_value_ text YES NULL
text
after_value_text text YES NULL
This table is used in the database schematic:
e Cases
cases_bugs
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
case_id char(36) YES MUL NULL
bug_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematics:
e Bugs
e C(Cases
Config
Field Name Field Type Null Allowed Index Default Value
category varchar(32) YES MUL NULL
name varchar(32) YES NULL
value text YES NULL

[120]

Chapter 6

Contacts

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

deleted tinyint(1) MUL 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36) YES NULL
assigned_user_id char(36) YES MUL NULL
created_by char(36) YES NULL
salutation varchar(5) YES NULL
first_name varchar(100) YES NULL
last_name varchar(100) YES MUL NULL
lead_source varchar(100) YES NULL
title varchar(50) YES NULL
department varchar(100) YES NULL
reports_to_id char(36) YES NULL
birthdate date YES NULL
do_not_call varchar(3) YES 0
phone_home varchar(25) YES NULL
phone_mobile varchar(25) YES NULL
phone_work varchar(25) YES NULL
phone_other varchar(25) YES NULL
phone_fax varchar(25) YES NULL
emaill varchar(100) YES MUL NULL
email2 varchar(100) YES MUL NULL
assistant varchar(75) YES NULL
assistant_phone varchar(25) YES NULL
email_opt_out varchar(3) YES 0
primary_address_street varchar(150) YES NULL
primary_address_city ~ varchar(100) YES NULL
primary_address_state ~ varchar(100) YES NULL

[121]

SugarCRM Data Dictionary

Field Name Field Type Null Allowed Index Default Value
primary_address_ varchar(20) YES NULL
postalcode

primary_address_ varchar(100) YES NULL
country

alt_address_street varchar(150) YES NULL
alt_address_city varchar(100) YES NULL
alt_address_state varchar(100) YES NULL
alt_address_postalcode varchar(20) YES NULL
alt_address_country varchar(100) YES NULL
description text YES NULL
portal_name varchar(255) YES NULL
portal_active tinyint(1) 0
portal_app varchar(255) YES NULL
invalid_email tinyint(1) YES 0
campaign_id char(36) YES NULL

This table is used in the database schematics:

e Accounts

e Bugs
e Calls
e Cases

e Contacts

e Emails
e Leads
e Meetings

e Opportunities
e Projects

e Users

Added in version 4.5.1

[122]

Chapter 6

contacts_audit

Field Name Field Type Null Allowed Index Default Value
id char(36)

parent_id char(36)

date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_string varchar(255) YES NULL
after_value_string varchar(255) YES NULL
before_value_text text YES NULL
after_value_text text YES NULL

This table is used in the database schematic:

e Contacts

contacts_bugs

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

contact_id char(36) YES MUL NULL

bug_id char(36) YES MUL NULL
contact_role varchar(50) YES NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

e Bugs

e Contacts

[123]

SugarCRM Data Dictionary

contacts_cases

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

contact_id char(36) YES MUL NULL

case_id char(36) YES MUL NULL
contact_role varchar(50) YES NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

e C(Cases

e Contacts

contacts_users

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

contact_id char(36) YES MUL NULL

user_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

e Contacts

e Users

[124]

Chapter 6

Currencies

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

name char(36) MUL

symbol char(36)

is04217 varchar(3)

conversion_rate double 0

status varchar(25) YES NULL

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
created_by char(36)

This table is used in the database schematic:

e Campaigns

custom_fields

Field Name Field Type Null Allowed Index Default Value
bean_id char(36) YES MUL NULL
set_num int(11) YES 0
field0 varchar(255) YES NULL
field1l varchar(255) YES NULL
field2 varchar(255) YES NULL
field3 varchar(255) YES NULL
field4 varchar(255) YES NULL
field5 varchar(255) YES NULL
field6 varchar(255) YES NULL
field7 varchar(255) YES NULL
field8 varchar(255) YES NULL
field9 varchar(255) YES NULL
deleted tinyint(1) YES 0

[125]

SugarCRM Data Dictionary

Dashboards

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime

modified_user_ char(36)

0000-00-00 00:00:00

id
assigned_user_id char(36) YES NULL
created_by char(36) YES NULL
name varchar(100) YES MUL NULL
description text YES NULL
content text YES NULL
This table is used in the database schematic:

e Users
document_revisions
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
change_log varchar(255) YES NULL
document_id char(36) YES NULL
date_entered datetime YES NULL
created_by char(36) YES NULL
filename varchar(255)
file_ext varchar(25) YES NULL
file_mime_type varchar(100) YES NULL
revision varchar(25) YES NULL
deleted tinyint(1) YES 0
date_modified datetime YES NULL

This table is used in the database schematic:

e Documents

[126]

Chapter 6

Documents

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

document_name varchar(255)

active_date date YES NULL
exp_date date YES NULL
description text YES NULL
category_id varchar(25) YES MUL NULL
subcategory_id varchar(25) YES NULL
status_id varchar(25) YES NULL
date_entered datetime YES NULL
date_modified datetime YES NULL
deleted tinyint(1) YES 0
modified_user_id char(36) YES NULL
created_by char(36) YES NULL
document_ char(36) YES NULL
revision_id

mail_merge_ varchar(3) YES off
document

related_doc_id char(36) YES NULL
related_doc_rev_id char(36) YES NULL
is_template tinyint(1) YES 0
template_type varchar(25) YES NULL

This table is used in the database schematic:

Documents

[127]

SugarCRM Data Dictionary

email_marketing

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) MUL 0
date_entered datetime 0000-00-00 00:00:00
date_modified = datetime 0000-00-00 00:00:00
modified_user_ char(36) YES NULL
id
created_by char(36) YES NULL
name varchar(255) YES MUL NULL
from_addr varchar(100) YES NULL
from_name varchar(100) YES NULL
inbound_email char(36) YES NULL
id
date_start date YES NULL
time_start time YES NULL
template_id char(36)
status varchar(25)
campaign_id char(36) YES NULL
all_prospect_lists tinyint(1) YES 0
This table is used in the database schematics:

e Email Management

e Prospects
email_marketing_prospect_lists
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
prospect_list_id char(36) YES NULL
email_ char(36) YES MUL NULL
marketing_id
date_modified datetime YES NULL
deleted tinyint(1) YES 0

This table is used in the database schematics:

Email Management

Prospects

[128]

Chapter 6

email_templates

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36) YES NULL

created_by char(36) YES NULL

published varchar(3) YES NULL

name varchar(255) YES MUL NULL

description text YES NULL

subject varchar(255) YES NULL

body text YES NULL

body_html text YES NULL

deleted tinyint(1) 0

campaign_id tinyint(1) YES 0
This table is used in the database schematic:

¢ Email Management

Added in version 4.5.1
emailman

Field Name Field Type Null Allowed Index Default Value
date_entered datetime YES NULL
date_modified datetime YES NULL
user_id char(36) YES NULL

id int(11) auto_ PRI NULL

increment

campaign_id char(36) YES MUL NULL
marketing_id char(36) YES NULL

list_id char(36) YES MUL NULL
send_date_time datetime YES NULL

[129]

SugarCRM Data Dictionary

Field Name Field Type Null Allowed Index Default Value
modified_user_id char(36) YES NULL
in_queue tinyint(1) YES 0
in_queue_date datetime YES NULL
send_attempts int(11) YES 0
deleted tinyint(1) YES 0
related_id char(36) YES NULL
related_type varchar(100) YES NULL
This table is used in the database schematics:

¢ Campaigns

e Email Management

e Users
Emails
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES MUL NULL
modified_user_ char(36) YES NULL
id
created_by char(36) YES NULL
name varchar(255) YES MUL NULL
date_start date YES NULL
time_start time YES NULL
parent_type varchar(25) YES NULL
parent_id char(36) YES MUL NULL
description longtext YES NULL
description_html longtext YES NULL
from_addr varchar(100) YES NULL
from_name varchar(100) YES NULL

[130]

Chapter 6

Field Name Field Type Null Allowed Index Default Value
to_addrs text YES NULL
cc_addrs text YES NULL
bcc_addrs text YES NULL
to_addrs_ids text YES NULL
to_addrs_names text YES NULL
to_addrs_emails text YES NULL
cc_addrs_ids text YES NULL
cc_addrs_names text YES NULL
cc_addrs_emails text YES NULL
bcc_addrs_ids text YES NULL
bce_addrs_ text YES NULL
names

bec_addrs_ text YES NULL
emails

type varchar(25) YES NULL
status varchar(25) YES NULL
message_id varchar(100) YES MUL NULL
reply_to_name varchar(100) YES NULL
reply_to_addr varchar(100) YES NULL
intent varchar(25) YES pick
mailbox_id char(36) YES NULL
raw_source longtext YES NULL
deleted tinyint(1) 0

This table is used in the database schematics:

e Accounts
e Bugs

o (Cases

e Contacts
e Emails

e Leads

e Opportunities

[131]

SugarCRM Data Dictionary

e Projects
e Project Tasks

e Prospects

e Users
emails_accounts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
email_id char(36) YES MUL NULL
account_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematics:
e Accounts
e Emails
emails_bugs
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
email_id char(36) YES MUL NULL
bug_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0

This table is used in the database schematics:

e Bugs

e Emails

[132]

Chapter 6

emails_cases

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
email_id char(36) YES MUL NULL
case_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematics:
e (Cases
e Emails
emails_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
email_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
date_modified = datetime YES NULL
deleted tinyint(1) 0
campaign_data text YES NULL

This table is used in the database schematics:

e Contacts

e Emails

Added in version 4.5.1

[133]

SugarCRM Data Dictionary

emails_leads

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL

lead_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0
campaign_data text YES NULL
Added in version 4.5.1
emails_opportunities

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
opportunity_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) 0
This table is used in the database schematics:

e Emails
e Leads

emails_project_tasks

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

email_id char(36) YES MUL NULL
project_task_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0

This table is used in the database schematics:

e Emails
e Project Tasks

[134]

Chapter 6

emails_projects

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
email_id char(36) YES MUL NULL
project_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematics:
e Emails
e Projects
emails_prospects
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
email_id char(36) YES MUL NULL
prospect_id char(36) YES MUL NULL
date_modified = datetime YES NULL
deleted tinyint(1) 0
campaign_data text YES NULL

This table is used in the database schematics:

e Emails

e Prospects

Added in version 4.5.1

[135]

SugarCRM Data Dictionary

emails_tasks

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
email_id char(36) YES MUL NULL
task_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematic:
e Emails
emails_users
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
email_id char(36) YES MUL NULL
user_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
campaign_data text YES NULL
This table is used in the database schematics:
e Emails
e Users
Added in version 4.5.1
Feeds
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00

[136]

Chapter 6

Field Name Field Type Null Allowed Index Default Value
modified_user_ char(36)

id

assigned_user_id char(36) YES NULL
created_by char(36) YES NULL

title varchar(100) YES MUL NULL
description text YES NULL

url varchar(255) YES NULL

This table is used in the database schematic:

e Users

fields_meta_data

Field Name Field Type Null Allowed Index Default Value
id varchar(255) PRI

name varchar(255) YES NULL
label varchar(255) YES NULL
help varchar(255) YES NULL
custom_module varchar(255) YES NULL
data_type varchar(255) YES NULL
max_size int(11) YES NULL
required_option varchar(255) YES NULL
default_value varchar(255) YES NULL
date_modified datetime YES NULL
deleted tinyint(1) YES 0
audited tinyint(1) YES 0
mass_update tinyint(1) YES 0
duplicate_merge smallint(6) YES 0

extl varchar(255) YES

ext2 varchar(255) YES

ext3 varchar(255) YES

ext4 text YES NULL

[137]

SugarCRM Data Dictionary

Files

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

name char(36) YES NULL

content blob YES NULL

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL

This table is used in the database schematic:

e Users
iframes
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
name varchar(255) MUL
url varchar(255)
type varchar(255)
placement varchar(255)
status tinyint(1) 0
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
created_by char(36)
import_maps
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
name char(36)
source char(36)
module char(36)
content blob YES NULL
has_header tinyint(1) 1

[138]

Chapter 6

Field Name Field Type Null Allowed Index Default Value
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES MUL NULL
is_published varchar(3) no
This table is used in the database schematic:
e Users
inbound_email
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_ char(36) YES NULL
id
created_by char(36) YES NULL
name varchar(255) YES NULL
status varchar(25) Active
server_url varchar(100)
email_user varchar(100)
email_password varchar(100)
port int(5) 0
service varchar(50)
mailbox varchar(50)
delete_seen tinyint(1) YES 0
mailbox_type varchar(10) YES NULL
template_id char(36) YES NULL
stored_options text YES NULL
group_id char(36) YES NULL

This table is used in the database schematic:

¢ Email Management

[139]

SugarCRM Data Dictionary

inbound_email_autoreply

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

autoreplied_to varchar(100) MUL

Leads

Field Name Field Type Null Index Default Value
Allowed

id char(36) PRI

deleted tinyint(1) 0

converted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_id char(36) YES NULL

assigned_user_id char(36) YES MUL NULL

created_by char(36) YES NULL

salutation varchar(5) YES NULL

first_name varchar(25) YES NULL

last_name varchar(25) YES MUL NULL

title varchar(100) YES NULL

refered_by varchar(100) YES NULL

lead_source varchar(100) YES NULL

lead_source_description text YES NULL

status varchar(100) YES NULL

status_description text YES NULL

department varchar(100) YES NULL

reports_to_id char(36) YES NULL

do_not_call varchar(3) YES 0

phone_home varchar(25) YES NULL

phone_mobile varchar(25) YES NULL

phone_work varchar(25) YES NULL

[140]

Chapter 6

Field Name Field Type Null Index Default Value
Allowed
phone_other varchar(25) YES NULL
phone_fax varchar(25) YES NULL
emaill varchar(100) YES MUL NULL
email2 varchar(100) YES MUL NULL
email_opt_out varchar(3) YES 0
primary_address_street varchar(150) YES NULL
primary_address_city varchar(100) YES NULL
primary_address_state varchar(100) YES NULL
primary_address_ varchar(20) YES NULL
postalcode
primary_address_country varchar(100) YES NULL
alt_address_street varchar(150) YES NULL
alt_address_city varchar(100) YES NULL
alt_address_state varchar(100) YES NULL
alt_address_postalcode varchar(20) YES NULL
alt_address_country varchar(100) YES NULL
description text YES NULL
account_name varchar(150) YES NULL
account_description text YES NULL
contact_id char(36) YES MUL NULL
account_id char(36) YES MUL NULL
opportunity_id char(36) YES MUL NULL
opportunity_name varchar(255) YES NULL
opportunity_amount varchar(50) YES NULL
campaign_id char(36) YES NULL
portal_name varchar(255) YES NULL
portal_app varchar(255) YES NULL
invalid_email tinyint(1) YES 0

This table is used in the database schematics:

e Accounts
e Contacts
e Emails

e Leads

[141]

SugarCRM Data Dictionary

e Opportunities

e Prospects

e Users

leads_audit

Field Name Field Type Null Allowed Index Default Value
id char(36)

parent_id char(36)

date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_string varchar(255) YES NULL
after_value_string varchar(255) YES NULL
before_value_text text YES NULL
after_value_text text YES NULL
This table is used in the database schematic:

e Leads

linked_documents

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

parent_id char(36) YES NULL
parent_type varchar(25) YES NULL
document_id char(36) YES NULL
document_revision_id char(36) YES NULL
date_modified datetime YES NULL
deleted tinyint(1) 0

This table is used in the database schematic:

e Documents

[142]

Chapter 6

Meetings

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL
modified_user_ char(36) YES NULL

id

created_by char(36) YES NULL

name varchar(50) YES MUL NULL
location varchar(50) YES NULL
duration_hours int(2) YES NULL
duration_ int(2) YES NULL
minutes

date_start date YES NULL
time_start time YES NULL
date_end date YES NULL
parent_type varchar(25) YES NULL

status varchar(25) YES NULL
parent_id char(36) YES MUL NULL
description text YES NULL

deleted tinyint(1) 0
reminder_time int(11) YES -1

outlook_id varchar(255) YES NULL

This table is used in the database schematics:

Accounts
Cases
Contacts
Leads
Meetings
Opportunities
Projects
Project Tasks
Users

[143]

SugarCRM Data Dictionary

meetings_contacts

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

meeting_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
required char(1) YES 1
accept_status varchar(25) YES none
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

e Contacts

¢ Meetings

meetings_users

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

meeting_id char(36) YES MUL NULL

user_id char(36) YES MUL NULL
required char(1) YES 1
accept_status varchar(25) YES none
date_modified datetime YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

¢ Meetings

e Users

[144]

Chapter 6

Notes

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_ char(36) YES NULL

id

created_by char(36) YES NULL

name varchar(255) YES MUL NULL

filename varchar(255) YES NULL
file_mime_type varchar(100) YES NULL
parent_type varchar(25) YES NULL

parent_id char(36) YES MUL NULL

contact_id char(36) YES MUL NULL

portal_flag tinyint(1) 0

description text YES NULL

deleted tinyint(1) 0

embed_flag tinyint(1) 0

This table is used in the database schematics:

e Accounts

e Cases

e Contacts

° Leads

¢ Opportunities

e DProjects

e Project Tasks

Added in version 4.5.1

[145]

SugarCRM Data Dictionary

Opportunities

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36) YES NULL
assigned_user_id char(36) YES MUL NULL
created_by char(36) YES NULL

deleted tinyint(1) 0

name varchar(50) YES MUL NULL
opportunity_type varchar(255) YES NULL
lead_source varchar(50) YES NULL
amount double YES NULL
amount_backup varchar(25) YES NULL
amount_usdollar ~ double YES NULL
currency_id char(36) YES NULL
date_closed date YES NULL
next_step varchar(100) YES NULL
sales_stage varchar(25) YES NULL
probability double YES NULL
description text YES NULL
campaign_id char(36) YES NULL

This table is used in the database schematics:

e Accounts

e Contacts
e Emails
e Leads

e Opportunities

e DProjects

e Users

Added in version 4.5.1

[146]

Chapter 6

opportunities_audit

Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_ varchar(255) YES NULL
string
after_value_ varchar(255) YES NULL
string
before_value_ text YES NULL
text
after_value_text text YES NULL
This table is used in the database schematic:

e Opportunities
opportunities_contacts
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
contact_id char(36) YES MUL NULL
opportunity_id char(36) YES MUL NULL
contact_role varchar(50) YES NULL
date_modified datetime YES NULL
deleted tinyint(1) 0

This table is used in the database schematics:

e Contacts

e Opportunities

[147]

SugarCRM Data Dictionary

Default Value

Project

Field Name Field Type Null Allowed
id char(36)

date_entered datetime

date_modified datetime

0000-00-00 00:00:00
0000-00-00 00:00:00

assigned_user_id char(36) YES NULL
modified_user_ char(36) YES NULL
id
created_by char(36) YES NULL
name varchar(50)
description text YES NULL
deleted tinyint(1) 0
This table is used in the database schematics:

e Accounts

e Contacts

e Emails

e Opportunities

e Projects

e Project Tasks

e Users
project_relation
Field Name Field Type Null Allowed Default Value
id char(36)
project_id char(36)
relation_id char(36)
relation_type varchar(255)
deleted tinyint(1) 0

date_modified datetime

0000-00-00 00:00:00

This table is used in the database schematics:

e Accounts

e Contacts

¢ Opportunities
e Projects

[148]

Chapter 6

project_task

Field Name Field Type Null Allowed Default Value
id char(36)

date_entered datetime 0000-00-00 00:00:00
date_modified = datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL
modified_user_ char(36) YES NULL

id

created_by char(36) YES NULL

name varchar(50)

status varchar(255) YES NULL
date_due date YES NULL
time_due time YES NULL
date_start date YES NULL
time_start time YES NULL
parent_id char(36)

priority varchar(255) YES NULL
description text YES NULL
order_number int(11) YES 1
task_number int(11) YES NULL
depends_on_id char(36) YES NULL
milestone_flag ~ varchar(255) YES NULL
estimated_effort int(11) YES NULL
actual_effort int(11) YES NULL
utilization int(11) YES 100

percent_ int(11) YES 0

complete

deleted tinyint(1) 0

This table is used in the database schematics:

e Emails

e Projects

e Project Tasks

e Users

[149]

SugarCRM Data Dictionary

project_task audit

Field Name Field Type Null Allowed Index Default Value
id char(36)
parent_id char(36)
date_created datetime YES NULL
created_by char(36) YES NULL
field_name varchar(100) YES NULL
data_type varchar(100) YES NULL
before_value_string varchar(255) YES NULL
after_value_string varchar(255) YES NULL
before_value_text text YES NULL
after_value_text text YES NULL
This table is used in the database schematic:
e Project Tasks
prospect_list_campaigns
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
prospect_list_id char(36) YES MUL NULL
campaign_id char(36) YES MUL NULL
date_modified datetime YES NULL
deleted tinyint(1) YES 0

This table is used in the database schematics:

e Campaigns

e Prospects

[150]

Chapter 6

prospect_lists

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
name varchar(50) YES MUL NULL
list_type varchar(25) YES NULL
date_entered datetime YES NULL
date_modified datetime YES NULL
modified_user_id char(36) YES NULL
assigned_user_id char(36) YES NULL
created_by char(36) YES NULL
deleted tinyint(1) 0
description text YES NULL
domain_name varchar(255) YES NULL
This table is used in the database schematics:

e Campaigns

¢ Email Management

e Prospects

e Users
prospect_lists prospects
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
prospect_list_id char(36) YES MUL NULL
related_id char(36) YES MUL NULL
related_type varchar(25) YES NULL
date_modified datetime YES NULL
deleted tinyint(1) YES 0

This table is used in the database schematic:

e Prospects

[151]

SugarCRM Data Dictionary

Prospects
Field Name Field Type Null Index Default Value
Allowed
id char(36) PRI
tracker_key int(11) auto_ MUL NULL
increment
deleted tinyint(1) YES 0
date_entered datetime 0000-00-00
00:00:00
date_modified datetime 0000-00-00
00:00:00
modified_user_id char(36) YES NULL
assigned_user_id char(36) YES NULL
created_by char(36) YES NULL
salutation varchar(5) YES NULL
first_name varchar(100) YES NULL
last_name varchar(100) YES MUL NULL
title varchar(25) YES NULL
department varchar(255) YES NULL
birthdate date YES NULL
do_not_call varchar(3) YES 0
phone_home varchar(25) YES NULL
phone_mobile varchar(25) YES NULL
phone_work varchar(25) YES NULL
phone_other varchar(25) YES NULL
phone_fax varchar(25) YES NULL
emaill varchar(100) YES NULL
email2 varchar(100) YES NULL
assistant varchar(75) YES NULL
assistant_phone varchar(25) YES NULL
email_opt_out varchar(3) YES 0
primary_address_street varchar(150) YES NULL
primary_address_city varchar(100) YES NULL

[152]

Chapter 6

Field Name Field Type Null Index Default Value
Allowed

primary_address_state varchar(100) YES NULL
primary_address_ varchar(20) YES NULL
postalcode
primary_address_ varchar(100) YES NULL
country
alt_address_street varchar(150) YES NULL
alt_address_city varchar(100) YES NULL
alt_address_state varchar(100) YES NULL
alt_address_postalcode varchar(20) YES NULL
alt_address_country varchar(100) YES NULL
description text YES NULL
invalid_email tinyint(1) YES 0
lead_id char(36) YES NULL
account_name varchar(150) YES NULL
campaign_id char(36) YES NULL
This table is used in the database schematics:

e Emails

e Leads

e Prospects

e Users
Added in version 4.5.1
Relationships
Field Name Field Type Null Index Default Value

Allowed

id char(36) PRI
relationship_name varchar(150) MUL
lhs_module varchar(100)
lhs_table varchar(64)
lhs_key varchar(64)

[153]

SugarCRM Data Dictionary

Field Name Field Type Null Index Default Value
Allowed

rhs_module varchar(100)

rhs_table varchar(64)

rhs_key varchar(64)

join_table varchar(64) YES NULL

join_key_lhs varchar(64) YES NULL

join_key_rhs varchar(64) YES NULL

relationship_type varchar(64) YES NULL

relationship_role_column varchar(64) YES NULL

relationship_role_column_ varchar(50) YES NULL

value

reverse tinyint(1) YES 0

deleted tinyint(1) YES 0

Releases

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00

date_modified datetime 0000-00-00 00:00:00

modified_user_ char(36)

id

created_by char(36) YES NULL

name varchar(50) MUL

list_order int(4) YES NULL

status varchar(25) YES NULL

This table is used in the database schematic:

e Bugs

[154]

Chapter 6

Roles
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_ char(36)
id
created_by char(36) YES NULL
name varchar(150) YES NULL
description text YES NULL
modules text YES NULL
deleted tinyint(1) YES 0
This table is used in the database schematics:
e Access Control List
e Users
roles_modules
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
role_id char(36) YES MUL NULL
module_id char(36) YES MUL NULL
allow tinyint(1) YES 0
date_modified datetime YES NULL
deleted tinyint(1) YES 0

This table is used in the database shematic

e Users

[155]

SugarCRM Data Dictionary

roles_users

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

role_id char(36) YES MUL NULL

user_id char(36) YES MUL NULL
date_modified datetime YES NULL

deleted tinyint(1) YES 0
This table is used in the database schematics:

e Access Control List
e Users

saved_search

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

name varchar(150) YES MUL NULL
search_module varchar(150) YES NULL

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES NULL

contents text YES NULL

description text YES NULL

This table is used in the database schematic:

e Users

[156]

Chapter 6

Schedulers
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
created_by char(36) YES NULL
modified_user_ char(36) YES NULL
id
name varchar(255)
job varchar(255)
date_time_start datetime MUL 0000-00-00 00:00:00
date_time_end datetime YES NULL
job_interval varchar(100)
time_from time YES NULL
time_to time YES NULL
last_run datetime YES NULL
status varchar(25) YES NULL
catch_up tinyint(1) YES 1
This table is used in the database schematic:
e Schedulers
schedulers_times
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
deleted tinyint(1) 0
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
scheduler_id char(36) MUL
execute_time datetime 0000-00-00 00:00:00
status varchar(25) ready

This table is used in the database schematic:

e Schedulers

[157]

SugarCRM Data Dictionary

Tasks

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES MUL NULL
modified_user_ char(36) YES NULL

id

created_by char(36) YES NULL

name varchar(50) YES MUL NULL

status varchar(25) YES NULL
date_due_flag varchar(5) YES on

date_due date YES NULL
time_due time YES NULL
date_start_flag varchar(5) YES on

date_start date YES NULL
time_start time YES NULL
parent_type varchar(25) YES NULL
parent_id char(36) YES MUL NULL
contact_id char(36) YES MUL NULL
priority varchar(25) YES NULL
description text YES NULL

deleted tinyint(1) 0

This table is used in the database schematics:

e Accounts

o Cases

o Contacts

e Emails

o Leads

e Opportunities
e Project Tasks

[158]

Chapter 6

Tracker
Field Name Field Type Null Allowed Index Default Value
id int(11) auto_ PRI NULL
increment

user_id char(36) YES NULL
module_name varchar(25) YES NULL
item_id char(36) YES NULL
item_summary varchar(255) YES NULL
date_modified datetime YES NULL
This table is used in the database schematic:

e Users
upgrade _history
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
filename varchar(255) YES NULL
md5sum varchar(32) YES MUL NULL
type varchar(30) YES NULL
status varchar(50) YES NULL
version varchar(10) YES NULL
name varchar(255) YES NULL
description text YES NULL
id_name varchar(255) YES NULL
manifest datetime NULL
date_entered datetime 0000-00-00 00:00:00

[159]

SugarCRM Data Dictionary

user_preferences

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

category varchar(50) YES NULL

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
assigned_user_id char(36) YES MUL NULL

contents text YES NULL
This table is used in the database schematic:

e Users

Users

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

user_name varchar(60) YES MUL NULL

user_hash varchar(32) YES NULL
authenticate_id varchar(100) YES NULL

sugar_login tinyint(1) YES 1

first_name varchar(30) YES NULL

last_name varchar(30) YES NULL
reports_to_id char(36) YES NULL

is_admin tinyint(1) YES 0

receive_ tinyint(1) YES 1

notifications

description text YES NULL
date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
modified_user_id char(36) YES NULL

created_by char(36) YES NULL

title varchar(50) YES NULL

[160]

Chapter 6

Field Name Field Type Null Allowed Index Default Value
department varchar(50) YES NULL
phone_home varchar(50) YES NULL
phone_mobile varchar(50) YES NULL
phone_work varchar(50) YES NULL
phone_other varchar(50) YES NULL
phone_fax varchar(50) YES NULL
emaill varchar(100) YES NULL
email2 varchar(100) YES NULL
status varchar(25) YES NULL
address_street varchar(150) YES NULL
address_city varchar(100) YES NULL
address_state varchar(100) YES NULL
address_country varchar(25) YES NULL
address_ varchar(9) YES NULL
postalcode

user_preferences text YES NULL
deleted tinyint(1) 0
portal_only tinyint(1) YES 0
employee_status varchar(25) YES NULL
messenger_id varchar(25) YES NULL
messenger_type varchar(25) YES NULL
is_group tinyint(1) YES 0

This table is used in the database schematics:

e Access Control List
e Accounts

e Bugs

e (Calls

e Campaigns

o Cases

e Contacts

[161]

SugarCRM Data Dictionary

e Documents

¢ Email Management

e Emails
e Leads
e Meetings

¢ Opportunities
e Projects

e Project Tasks
e Prospects

e Schedulers

e Users
users_feeds
Field Name Field Type Null Allowed Index Default Value
user_id char(36) YES MUL NULL
feed_id char(36) YES NULL
rank int(11) YES NULL
date_modified datetime YES NULL
deleted tinyint(1) 0
This table is used in the database schematic:
e Users
users_last_import
Field Name Field Type Null Allowed Index Default Value
id char(36) PRI
assigned_user_id char(36) YES MUL NULL
bean_type char(36) YES NULL
bean_id char(36) YES NULL
deleted tinyint(1) 0

This table is used in the database schematic:

e Users

[162]

Chapter 6

users_signatures

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

date_entered datetime 0000-00-00 00:00:00
date_modified datetime 0000-00-00 00:00:00
deleted tinyint(1) 0

user_id char(36) YES MUL NULL

name varchar(255) YES NULL

signature text YES NULL
signature_html text YES NULL

This table is used in the database schematic:

e Users

vcals

Field Name Field Type Null Allowed Index Default Value
id char(36) PRI

deleted tinyint(1) 0
date_entered datetime YES NULL
date_modified datetime YES NULL
user_id char(36)

type varchar(25) YES MUL NULL
source varchar(25) YES NULL
content text YES NULL

This table is used in the database schematic:

e Users

[163]

SugarCRM Data Dictionary

Versions

Field Name Field Type Null Allowed Index Default Value

id char(36) PRI

deleted tinyint(1) 0

date_entered datetime 0000-00-00 00:00:00
date_modified = datetime 0000-00-00 00:00:00
modified_user_ char(36)

id

created_by char(36) YES NULL

name varchar(255) MUL

file_version varchar(255)

db_version varchar(255)

Summary

With the information that is contained in Chapters 5 and 6 you have all of the
information that you need for your SQL statements for any modules or reports that
you build.

We have see in these chapters schematic diagrams to understand how the tables fit
together and the table definitions to find out which fields are available in each table.

That's enough reference material for now —in Chapter 7 we'll make sure that we're
developing in a sensible, and upgrade-safe way as we a look at development and
testing strategies.

[164]

Development and Testing
Strategies for SugarCRM

By now you must be confident about customizing SugarCRM, after all over the last
six chapters we've looked at:

¢ Changing the look and feel of SugarCRM

¢ Adding simple modules

e Custom fields and logic hooks

e The architecture of the application and its supporting database
So, you'll be champing at the bit to move on and start building your own complex
modules and processes, and that's what the remaining chapters of this book will help
you do. However, before we jump in with both feet, it will be worth spending some
time looking at development and testing strategies. By the end of Chapter 7 you will:

e Understand why development and testing strategies are important

e Understand how to set up development and testing servers

e Understand how to migrate code from development to testing to live

And then you'll be ready to start building your own modules.

Why Use Development and Testing
Strategies?

Let's imagine a scenario—you've carried out all of your customizations, and
everything is working beautifully. Pygoscelis, Korora, and all the other Penguin
P.I staff are really happy with your work, and they're now able to use SugarCRM
to carry out their day-to-day tasks. In fact, they've even started to rely on the

Development and Testing Strategies for SugarCRM

application completely. So, you decide to upgrade to the newest version of
SugarCRM —and overnight all of your modifications disappear. Suddenly you
become the most unpopular person in the organization.

Or let us think about a second scenario —you've carried out all your customizations,
and everything is working beautifully. Pygoscelis is really happy with your work,
and tells Korora, and all of the other Penguin P.I. staff, to start using it immediately.
However, they turn round and say 'Pygoscelis really doesn't know how we do

our work — this is all useless!'. Again, you become the most unpopular person in
the organization.

And one final scenario —after the customizations have been completed, and everyone
is using the application Korora comes to you and says that she just needs a minor
modification carrying out. So, you carry out the changes, only to find that it's affected
some of the other modules. And for the third time you become the most unpopular
person in the organization.

You don't really want to be that unpopular, so we'll spend some time looking at how
you can carry out SugarCRM customizations in a professional and safe manner —so
that you will always be popular.

The Unbreakable Rule:Thou Shalt Not Do
Any Development on a Live Server

The best way to ensure the failure of your project is to start messing about with the
live application that people are using. So, don't do it. This may seem common sense,
but there is always a temptation just to do a quick change, but as Pippin says in The
Lord of the Rings 'Short cuts make long delays'.

So, if you're not going to do any development to the live SugarCRM application, then
where are you going to do it? The answer is to set up two servers:

e Server 1—The live server that people use in their normal daily activities

e Server 2—The development server
By doing this you can safely develop new modules and new functionality without

affecting the users of your application. If something does go wrong then no one will
be affected, and, in fact, no one but you need to know about it.

[166]

Chapter 7

Setting up a Development Server

Having decided that we're not going to do any development directly on the live
server, then obviously we need to set up a second server on which we can carry
out the customizations. Now, at this stage you may be tempted to set up a second
version of SugarCRM on your existing web server; after all it is possible to do that.
However, there is a very good reason for not doing that.

Let's imagine that you've got an existing SugarCRM implementation based on
SugarOS-Full-4.5.0f. Looking on the SugarCRM website you will find that the current
version (at the time of writing) is SugarOS-Full-4.5.1, and so, you may decide that an
upgrade is needed.

Now, remember from your initial installation that the second stage checks for
SugarCRM dependencies. If you've currently got a working instance of SugarCRM
then you would have seen something like:

File Edit View Go Bookmarks Tools Help

QO O @ A (@ ntpsmectorsugarosFul4.5.omnstalphp [~ 7l (G

Step 2: System Check Acceptance

B SUGARCRM.

In erder for your SugarCRM installation to function properly, please ensure all of the system check items
listed below are green. If any are red, please take the necessary steps to fix them.

Component Status

PHP Version Unsupporied PHP Version Insialied: (ver 4.3.10-18)
My SQL Database oK

However, if you download the newest version and try to install it on your existing
web server then you may come across an immediate show stopper (have a look at
the line PHP version):

J SugarCRM'Setup Wizard: Step 2 - Mozilla Firefox -2
File Edit View Go Bookmarks Tools Help {:}

@ O © O A W ntprnectorsugaros-Ful4.s./nstaipnp |~] Tl [IGL

Step 2: System Check Acceptance

¥ SUGARCRM.

In erder for your SugarCRM installation tofunction properly, please ensure all of the system check items
listed below are green. If any are red, please take the necessary steps to fix them.

Fer help on these system checks, please visit the Sugar Wiki.

Component Status

PHP Version Invalid PHP Version Installed: [ver 4.3.10-18)
My SQL Dalabase oK

[167]

Development and Testing Strategies for SugarCRM

So, in this case the server has a PHP version suitable for SugarOS-Full-4.5.0f, but
not SugarOS-Full-4.5.1. We could install a newer version of PHP, but then that
goes against rule 1—thou shalt not do any development on a live server. If you do
upgrade PHP, then can you really guarantee that the existing (live) implementation
of SugarCRM will continue working with the newer version of PHP?

The answer is, therefore, to set up a new, clean server —one that you can play with,
and which won't affect your live users.

In the Penguin P.I. example the servers have had Debian Linux as the operating
system, and by default it comes with PHP version 4.3.10. Therefore, the question
is—which version of PHP do you need on the server? Fortunately, you can find this
out directly from the SugarCRM website:

|[ﬁ hitp:/fwww.sugarcrm.com/crm/products/supported-platforms. htrml |'l|

And once there we can look at the PHP section:

PHP 4.3.11
441-44.4

5.01-505
51.0,512,51.4

As you can see, the current version of SugarCRM does not support PHP 4.3.10.
However, because we're going to be using two separate servers, we can upgrade one
of them to another version of PHP and see what the effect is.

Creating a Server

If you're already confident in setting up your own server then just move on to the
next section —where we'll look at migrating files from one server to another. If not
then let's see just how easy it is to create a server using Debian (Debian GNU/Linux
if you want to be exact).

The first thing that you need is a computer (obviously). Fortunately you won't need
a new state of the art (and expensive) box — Debian, like many versions of Linux,
will work on most machines —regardless of age, although a reasonable disk speed
and plenty of memory won't do any harm. However, your computer will need a
network card.

[168]

Chapter 7

Next, you will need the installation disk, and this can be downloaded directly from
Debian at http://www.debian.org/CD:

File Edit View Go Bookmarks Tools Help

) | @ nttpziwww.debian.org/CD/ T+ =l [GL

Selecta Server near you
e lan [United States =] o |

About Debian | News | Getting Debian | Support = Developers' Corner = Site map | Search

Debian on CD Debian GNU/Linux on CDs

FAQ
Network Install

Buy CDs or DVDs

If you want to obtain Debian GNU/Linux on CD, see below for the available
options. In case of problems, please check the FAQ about Debian CDs.

Download ¢ Download a minimal bootable CD image (or a couple of floppy disk
%‘Wg@ images). Are you sure you really need the full CDs? You can just get the
% basic installation system - it will download the rest of the distributionif and 7

G e when needed during the installation. =

Done

Once you've created your installation disk then it's just a matter of connecting your
machine to the network, inserting your disk and rebooting. After that, just follow the
on-screen instructions. The process will:

e Format the machine for you

e Install the core Linux files

e Allow you to select one of the online application sources (choose one of the
HTTP sources near to your location)

e Create a root user account (so that you can log on to do further work)

If you're wondering why the computer needs a network connection at the
moment— it allows you to download most of the required files directly from
the Internet, rather than having to install them from a number of disks.

When the process has finished you'll have a minimal setup —just enough to log

on and start turning the base install into a working server. In order to do this you
need to log on using your new root account, and then use the apt -get command to
download all of the applications that you're going to need.

[169]

Development and Testing Strategies for SugarCRM

Installing Software

Using apt-get is simple —all you need to know is the name of the application that
you are going to install and then type:

apt-get install <package name>
For example:

apt-get install apache?2
For your server you're going to need:

e SSH
e nfs-common
e nfs-kernel-server

e Sudo

e Apache2

e MySQL-Server
e PHP4

e php4-mysql
e libapache2-mod-php4
e Unzip

These are just a tiny proportion of all of the Debian packages that are available, but
they're all that you'll need in order to manage your SugarCRM server. You will have
to modify Apache's config files so that it recognizes PHP, but apart from that all you
need to do now is to set up the server's IP address.

Setting the Server's IP Address

By default your new server would have been given a dynamic IP address —meaning
that every time that there's a reboot then it will (potentially) be given a different

IP address. And I'm sure that you will agree that this is not really of any use to the
people trying to access SugarCRM. You'll be pleased to know that there is an easy
remedy. All that you have to do is edit a file called /etc/network/interfaces. You
need to find a line that says:

iface eth0 inet dhcp

Either comment out or delete the line and then add:

iface eth0 inet static
address 192.168.1.3
netmask 255.255.255.0
gateway 192.168.1.1

[170]

Chapter 7

The address and gateway will, of course, depend on your network —address is
the IP address that you want your machine to have, and gateway is your network's
gateway to the Internet.

Finally, reboot the machine, and you've got a server ready for SugarCRM —in fact
you'll already be able to access it from other computers on your network:

File Edit View Go Bookmarks Tools Help

QO 2 [3 ntpur1ez168.1.30 [] = G

If you can see this, it means that the installation of the Apache web server software on this system was successful. You
may now add content to this directory and replace this page.

Seeing this instead of the website you expected?

This page is here because the site administrator has changed the configuration of this web server. Please contact the
person responsible for maintaining this server with questions. The Apache Software Foundation, which wrote the
web server software this site administrator is using, has nothing to do with maintaining this site and cannot help resolve
configuration issues.

The Apache documentation has been included with this distribution

You are free to use the image below on an Apache-powered web server. Thanks for using Apache!

Done

With the server in place, and accessible from anywhere on your network, we can
now install SugarCRM. However, we're not going to do that from scratch—we're
going to use the files from our existing SugarCRM setup.

Migrating SugarCRM Files and Databases
Between Servers

As you may well have worked out, we're working with two Debian Linux servers in
the Penguin P.I scenario:

e Server 1—hector —which is to be used as the live server, and already has
some minor customizations

e Server 2—acamas— the development server

[171]

Development and Testing Strategies for SugarCRM

Both servers have Apache, MySQL, and PHP installed — the only difference being
that hector has a working version of SugarCRM. Our aim now is to:

o Set the servers up so that server 2 can see all of the files on server 1
e Copy all of the SugarCRM files from server 1 onto server 2

¢ Ensure that SugarCRM is running correctly on server 2

This can be achieved quite easily in Linux by setting up the appropriate exports and
mount points.

Setting Up the Export on Server 1

The plan is to export data from server 1 (hector) to server 2 (acamas), and the first
step is add the IP address of acamas into hector's /etc/hosts file:

192.168.1.3 acamas

We do this so that we just have to refer to acamas in other files, rather than having to
repeat the IP address all over the place. For example we next have to add an entry to
hector's /etc/exports file:

/ acamas (ro)

The entry tell the network that acamas has authorized read access to hector's
top directory.

Finally we need to export the information:
sudo /usr/sbin/exportfs -a

With that done you can access information on hector from acamas —once we've set
up acamas, of course.

Setting Up a Mount Point on Server 2

Turning our attention to acamas, we need to update its /etc/hosts file:

192.168.1.4 hector

Next we need to create a directory. This will be the mount point through which we
will access all of the files on hector:

sudo mkdir /hector

[172]

Chapter 7

And then we need to tell acamas about this new mount point by updating its
/etc/fstab file:

hector:/ /hector nfs ro 0 0
Finally we need to mount the mount point:
sudo mount /hector

Now we can access information on hector from acamas just as if it were in one of
acamas' directories:

|Sessi0n Edit View Bookmarks Settings Help

bainmBacamas:™$ ls Jhector/www/penguin_pl E
install

cache
Jscalendar soap

config_owverride.php

custom
data logdphp test.log
themes
themes_kackup
examples metadata
upgradellizard. log
Modulelnstall
modules
include xTemplate

bainmBacamas:~% |

@ shell [

=

Migrating Files from Server 1 to Server 2

We've actually done the hardest part of the migration process, and that wasn't
exactly difficult. All that's left to do is to transfer the files that we need from server
1 to server 2. So, to migrate the SugarCRM files we need to log onto server 2 (in this
case acamas), and type:

sudo cp --preserve -r /hector/www/penguin pi /www

Remembering, of course, to use your own directory location. Then we need to
transfer the MySQL files:

sudo cp --preserve -r /hector/var/lib/mysqgl/penguinpi /var/lib/mysql

[173]

Development and Testing Strategies for SugarCRM

You'll need to restart MySQL:

sudo /etc/init.d/mysgl restart

But once you've done that you'll be able to log on to the database and view the
SugarCRM tables and their contents. However, you won't be able to access them
from your web browser yet. Before you're able to do that you'll need to create a
user on the database — the SugarCRM user account that's created during the normal
installation process. Chances are you won't be able to remember the details that you
originally entered. If you can't then don't worry — they are stored in the SugarCRM
config file /var/www/penguin_pi/config.php. If you look through the file you'll
find something like:

array
(
'db_host name' => 'localhost',
'db_host instance' => '',
'db_user name' => 'penguinpi user',
'db_password' => 'penguinpi go',
'db_name' => 'penguinpi',
'db _type' => 'mysqgl',

) ’

You can now log onto the database and create the SugarCRM account from

these details:

GRANT SELECT,UPDATE, INSERT, DELETE

ON penguinpi.* TO 'penguinpi user'@'localhost'
IDENTIFIED BY 'penguinpi go';

GRANT SELECT,UPDATE, INSERT, DELETE

ON penguinpi.* TO 'penguinpi user'@'acamas'
IDENTIFIED BY 'penguinpi go';

flush privileges;

And so, with all the files in place, and having given SugarCRM access to

the database, you can now use a web browser to view your new SugarCRM

implementation (which, at the moment, will be identical to your old one):

[174]

Chapter 7

[File Edit View Go Bookmarks Tools Help '::3’
@ O @ @ {a [ﬁ hitp:/facamas/penguin_pifindex.php?action=Login&module=Users |'] [@,
. My Account | Employees | Logout | About | D D D D D SUGARSUITE.
¥t Pengiun Pl

Welcome fo

SUGAROPEN SOURCE.

Please enter your username and password.

UserMame |bluek

% Options

Server response time: 2.515398 seconds.
© 2004-2006 SugarCRM Inc. All Rights Reserved.
POWERED BY

SUGARCAM

Done

You can now customize and upgrade to your heart's content, knowing that any
changes you make will not affect the live users at all —well, not until you're ready
that is.

An Example Upgrade

You'll remember that earlier in the chapter we saw that we couldn't upgrade to
SugarOS-Full-4.5.0h because:

e SugarOS-Full-4.5.0h needs a newer version of PHP than Debian supplies.

e We can't be sure of the effects that upgrading PHP will have on
SugarOS-Full-4.5.0f.

¢ We don't want to do anything on the live server that might affect our users. If
fact, we don't even want to do anything on the live server that shouldn't affect
our users.

However, now that we've got a development server we can safely carry out the
upgrade and see what effect it does have.

[175]

Development and Testing Strategies for SugarCRM

Upgrading PHP

Obviously, you need to check how to carry out the upgrade for your own operating
system, but on Debian it's just of matter of carrying out two steps:

e Select an appropriate download source

e Install the software

So, the first step is to find a download source. One such source is dotdeb . org—this
is a repository for many current applications, and so it's just a matter of updating
/etc/apt/sources.list with the source details:

deb http://packages.dotdeb.org stable all
deb-src http://packages.dotdeb.org stable all

Next install the new version of PHP:

sudo apt-get update
sudo apt-get install php4
sudo apt-get install php4-mysqgl

And then you can check what version is now installed:

php4 -v

PHP 4.4.4-0.dotdeb.3 with Suhosin-Patch 0.9.6 (cli) (built: Nov 16
2006 11:21:12)

Copyright (c) 1997-2004 The PHP Group

Zend Engine v1.3.0, Copyright (c) 1998-2004 Zend Technologies

With the correct version of PHP installed, you can login to ensure that everything is
working correctly:

€} Penguin PI'- SugarCRM!- Mozilla Firefox__@.’)

File Edit View Go Bookmarks Tools Help i}
@ @ @ @ {a [e hitp-ffacamasfpenguin_pifindex php?module=Opportunities&action=index |'] [@,]
v My Account | Employees | Logout | Penguin P.I. Help
m Peng[un PI SUGARSUITE.
[Home | Web Sites | Calendar | Activities | Contacts | ["Leads | prefiminary igations | igations | "D |[Emails ||’ campai
Last Viewed: (& VBA Trap? 28 Korora Blue =9 Test 55 Poesible infilt

In theory everything should work perfectly, but if it doesn't then at least it won't
affect your users—and you'll be able to correct any problems in isolation. And now
you can think about upgrading to a newer version of SugarCRM.

[176]

Chapter 7

Upgrading SugarCRM

As we've now got a suitable version of PHP on our development server we can
think about looking at a more current version of SugarCRM. If you take a look at the
SugarCRM website then you can see that you have a few options:

Sugar Open Source

Already have MySQL, PHP and Apache or 115 installed? Then download the Sugar application
here toget up and running on Sugar Open Source.

Wisit the Sugar Wiki for installation documentation and FAQs. Be sure to read the Release
Motes for supported platform versions and other information pertinent to the release.

Full Installation Packages
Sugar Open Source 4.5.1 (9.89 MB ZIP)
Sugar Open Source for Microsofi SGL Server 4.5.1 (10.21 MB ZIP)

Previous Versions ==

Upgrade Installation Packages
Sugar Open Source Upgrade 4.5.010 4.5.1 (3.31 MB ZIP)

Sugar Open Source Upgrade 4.2.1 40 4.5.1 (5.65 MB ZIF)
Previous Versions >>

Paich Installation Packages
Install using the Upgrade Wizard in your admin panel.
Previous Versions >>

Exiensions
Sugar Forums 4.5.0g (104 KB ZIP) - Install using the Module Loader in your admin panel.

W SUGAREXCHANGE.
Find more production-ready extensions at the SugarExchange marketplace.

If you're certain that the upgrade will have no effect on your current implementation
then you can download the files that will enable you to upgrade from 4.5.0 to 4.5.1.
However, since we have already carried out some customizations then it is much
safer to create a new installation, and then carry out a comparison of the two.

So, to get the new version of SugarCRM either download via the browser, or use
widget, for example:

wget http://www.sugarforge.org/frs/download.php/2535/Sugar0sS-
4.5.1.zip

[177]

Development and Testing Strategies for SugarCRM

Once you've unzipped the SugarCRM files then you'll be able to continue the
installation process by opening up a web browser starting the installscript:

SugarCRM Setup Wizard: Step 2’ - Mozilla Flrefox:f—i}"

Eile Edit ¥iew Go Bookmarks Tools Help {:}

€] © (9 £ | ntpwracamas/sugaros-Ful4.s.1/installpnp |~ 5 [IGL

Step 2: System Check Acceptance W SUGARGRM.

In order for your SugarCRM installation to function properly, please ensure all of the system check items
listed below are green. If any are red, please take the necessary steps to fix them.

For help on these system checks, please visit the Sugar Wiki.

Component Status

PHP Version Unsupported PHP Version Installed: { ver 44.4-0.doideb.3)
My SOL Database oK

As you go through the process make sure that you use a new name for your
database —we don't want to overwrite the existing one:

Step 3: Datahase Configuration ¥ SUGARCRM.

Please enter your database configuration information below. If you are unsure of what te fill in, we suggest that you use
the default values.

* Required field

Database Configuration

* Host Name ! Hest Instance

" Databese Nare I¥" create Database
Wi iy etz

Database Password
Re-enter Database Password

Drop and Recreate Existing Sugar tables?
Caution: Al Sugar data wilf be erased
if this box s checked.

@
Populate Database with Demo Data’? |—
&

Database Account Above Is a Privileged User?

* Privileged Database User Name
This privileged database user must have the proper
permissions io creale 8 dalabase, drop/create tables, and
cresale a user. This prvleged dalabase user will only be used
io perform these tasks 85 needed during the insialaion
process. You may aleo use the same daiabase user as above
If that user has sulficient privileges.
Privileged Database User Password

o | oock | wox |

[178]

Chapter 7

Once you've followed all of the instructions, and completed the process then you're
ready to start comparing installations.

Comparing Database Files

Before we look at the PHP application side of SugarCRM we'll look at the database.
The question that we need to ask first is 'Are the tables in 4.5.0 the same as in 4.5.1?'.
We can answer this with a quick bit of Linux scripting:

#Define the databases to used
DATABASES [0] ="penguinpi”
DATABASES [1] =" sugarcrm_new”

#Loop through the databases
for DATABASE in ${DATABASES[*]}
do
#Count the tables
TABLES=S (echo “show tables” |
mysgl -s -uroot -ppassword SDATABASE |
we -1)

#Output the result
echo $SDATABASE STABLES
done

To which you'll get the output:

penguinpi 93
sugarcrm new 92

So, at first glance it would appear that there are different tables involved — the new
version loses a table. This means that we need to know the differences between the
lists of tables. Again, a little Linux scripting will tell us:

#Define the databases to used
DATABASES [0] ="penguinpi”
DATABASES [1] =" sugarcrm_new”

#Loop through the databases
for DATABASE in ${DATABASES[*]}
do
#output the stucture of the database to files
echo “show tables” |
mysgl -s -uroot -ppassword S$DATABASE > S$SDATABASE
done

#icompare the contents of the files
diff ${DATABASES[*]}

[179]

Development and Testing Strategies for SugarCRM

This time the output is:

< opportunities cstm

If you remember, this table was created automatically by SugarCRM when we
introduced our own custom fields —meaning that the default list of tables is the same
for both 4.5.0 and 4.5.1. Of course, that doesn't mean that the table structures are the
same. So, let's look at that next:

#Define the databases
DATABASES [0] =”"penguinpi”
DATABASES [1] =" sugarcrm_new”
#Loop through the databases
for DATABASE in ${DATABASES[*]}
do
#0Obtain the list of fileds in table in each database
TABLES="$ (cat $DATABASE)”
for TABLE in $TABLES
do
echo desc STABLE |
mysqgl -s -uroot -ppassword $DATABASE |
awk '{print $1}'> SDATABASE.STABLE
done
done

Get the list of table files for one database
TABLES="$ (cat ${DATABASES[1]})”

#Compare the field list for each table

for TABLE in $TABLES

do
DIFF="$(diff ${DATABASES[0]}.$TABLE ${DATABASES[1]}.$TABLE | wc -1)"
if [$DIFF -gt 0]

then
diff ${DATABASES[0]}.$TABLE ${DATABASES[1]}.$TABLE |
grep “>" | awk '{print $2}' > $TABLE.new
fi
done

#Output the results
FILES=*.new
for FILE in SFILES
do
basename SFILE .new
echo " "
cat SFILE
echo
done

[180]

Chapter 7

The output of this shows us the additional fields that are required in 4.5.1 (and you
may remember these from Chapter 6):

Table

Additional Fields Required

accounts

campaign_log

campaign_id

marketing_id

campaigns impressions
frequency
contacts campaign_id

email_templates
emails_contacts
emails_leads
emails_prospects

emails_users

text_only

campaign_data
campaign_data
campaign_data

campaign_data

notes embed_flag
opportunities campaign_id
prospects campaign_id
upgrade_history name
description
id_name
manifest

mysgl -uroot -ppassword mysqgl
mysgl> desc penguinpi.cases;

In fact, if you log onto the database you will find that there are also some
fundamental changes to the tables themselves:

D e Hmmmmmmmm oo oo I Hmmm o m oo D e e +
| Field | Type | Null | Key | Default | Extra |
D e Hmmmmmmmm oo oo I Hmmm o m oo D e e +
ia	varchar(36)	NO	PRI		
case number	int(11)	No	MUL	NULL	auto_increment
date entered	datetime	NO		0000-00-00 00:00:00	
date modified	datetime	NO		0000-00-00 00:00:00	
modified user id	varchar(36)	NO			
assigned user id	varchar(36)	YES		NULL	
created by	varchar(36)	YES		NULL	
deleted	tinyint (1)	No		o	
name	varchar(255)	YES	MUL	NULL	
account id	varchar(36)	YES		NULL	
status	varchar(25)	YES		NULL	
priority	varchar(25)	YES		NULL	
description	text	YES		NULL	
resolution	text	YES		NULL	
D e Hmmmmmmmm oo oo I Hmmm o m oo D e e +

[181]

Development and Testing Strategies for SugarCRM

14 rows in set (0.01 sec)

mysgl> desc sugarcrm_new.cases;

B T e T +------ +----- LT B e e +
| Field | Type | Null | Key | Default | Extra |
B T e T +------ +----- LT B e e +
ia	char(36)	NOo	PRI		
case_number	int(11)	NO	MUL	NULL	auto_increment
date_entered	datetime	NO			
date_modified	datetime	NO			
modified_user_ id	char(36)	NO			
assigned_user id	char(36)	YES		NULL	
created_by	char(36)	YES		NULL	
deleted	tinyint (1)	NO		o	
name	varchar(255)	YES	MUL	NULL	
account_id	char(36)	YES		NULL	
status	varchar(25)	YES		NULL	
priority	varchar(25)	YES		NULL	
description	text	YES		NULL	
resolution	text	YES		NULL	
B T e T +------ +----- LT B e e +

14 rows in set (0.01 sec)
mysqgl>

You'll notice that the ID, modified user id, assigned user id, and created by
fields have been changed from varchar to char, and the default values for the
date_entered and date modified fields have been removed. This means, therefore,
that we can't just add the missing fields to our old tables —we must load our existing
data into the new tables.

Migrating Database Files

If all of the tables contained the same fields then the migration from one database to
another would be very simple, for example for cases the SQL would be:

insert into sugarcrm new.cases select * from penguinpi.cases;

However, as we've already seen, some of the new database tables contains additional
fields, and you mustn't forget the tables and fields that you may have added to the
old database during your customizations. So, let's look at the custom tables first.

Earlier in the chapter we identified the one table that we were using, and that is
missing from the new one — that's opportunities_cstm. You'll remember that this
was created in Chapter 2 when we introduced custom fields into the SugarCRM
application. Now, if you manually created the table then you can just apply the SQL
to the new database. If not (i.e. SugarCRM created the table for you), then you won't
have the SQL. Obviously you could write your own SQL to do the job, but there is an
easier way —just copy the MySQL database files from the old database to the new one:

[182]

Chapter 7

sudo cp /var/lib/mysql/penguinpi/opportunities cstm.* /var/lib/
mysqgl/sugarcrm new

That's fine for one table, but what if you have introduced a number of tables? If
that's the case then the same Linux scripting that told us opportunities_cstmwas
missing can also migrate any other missing tables:

#Define the databases
DATABASES [0] ="penguinpi”
DATABASES [1] =" sugarcrm new”

#Loop through the databases
for DATABASE in ${DATABASES[*]}
do
#Write the data structure to a file
echo “show tables” |
mysgl -s -uroot -ppassword $SDATABASE > S$SDATABASE
done

#Obtain a list of missing tables
diff ${DATABASES[*]} |
awk '{print $2}' |

grep -v *$ |
while read TABLE
do

#Copy the missing tables from one database to the other
sudo cp /var/lib/mysql/penguinpi/${TABLE}.* /var/lib/mysqgl/sugarcrm
new/

done

I'm sure that you will agree that table migration is very straightforward; however,

if you've created custom fields on your tables then things could be a little more
involved —and this time you're going to have to do some manual checking, unless, of
course you've been careful in the way that you've added the fields.

Let's say, for example, that you added a field called campaign_id to the accounts
table. If that's the case then you've got a problem, because that's exactly what the new
version of SugarCRM has done. However, if you name your fields sensibly then you
can avoid this problem —for example if you'd named your field ppi_campaign_id
(for example) then you can minimize the chances of this type of conflict happening.

Assuming that you've not been tripped up by any field naming problems then the
next step is to add your fields to the new database. Now, the process of migrating
tields should actually start with the initial creation of the custom field. When you
create the custom field don't just log onto the database and type the SQL directly.
Instead write your SQL into a file, and then apply the file to the database. Now all

[183]

Development and Testing Strategies for SugarCRM

you have to do is apply this file to your new database. For example, for our correctly
named ppi_campaign_id field we would store a file called ppi campaign id.sql.
which would contain:

alter table accouts add ppi campaign id char(36) ;

Now we just need to do:
mysgl -uroot -ppassword sugarcrm new < ppi campaign id.sql

Or if this is stored in a directory with any other custom field files then we could
move to that directory and type:

FILES=*.sqgl
for F in SFILES
do
mysgl -uroot -ppassword sugarcrm new < SF
done

Once we've applied the structure to the new database, we need to think about
transferring the existing data. However, as we've already identified, some of the
tables contain different numbers of fields, and in these cases we have to say exactly
which fields are to be used. For example, to transfer the data in accounts the SQL
would be:

insert into sugarcrm new.accounts

(id, date entered, date modified, modified user id, assigned user id,
created by, name, parent id, account type, industry, annual revenue,
phone fax, billing address street, billing address city, billing
address_state, billing address postalcode, billing address country,
description, rating, phone office, phone alternate, emaill, email2,
website, ownership, employees, sic code, ticker symbol, shipping
address_street, shipping address city, shipping address state,
shipping address postalcode, shipping address country, deleted)
select

id, date entered, date modified, modified user id, assigned user id,
created by, name, parent id, account type, industry, annual revenue,
phone fax, billing address street, billing address city, billing
address_state, billing address postalcode, billing address country,
description, rating, phone office, phone alternate, emaill,

email2, website, ownership, employees, sic code, ticker symbol,
shipping address street, shipping address city, shipping address
state, shipping address postalcode, shipping address country, deleted
from penguinpi.accounts ;

[184]

Chapter 7

To do this by hand would be very time consuming, but again we can turn to a Linux
script to do the jobs for us. First we'll create a set of SQL files that will load the data:

#Define the databases
DATABASES [0] ="penguinpi”
DATABASES [1] =" sugarcrm_ new”

#0Obtain the list of tables

TABLES="$ (cat ${DATABASES[1]})”

#Loop through the tables

for TABLE in $TABLES

do
#Define the SQL to empty the table
SQL="delete from ${DATABASES[1]}.S$TABLE;"

#Define the SQL to load the new data
SQL="$SQL insert into ${DATABASES[1]}.$TABLE”
FIELDS="$ (cat ${DATABASES[0]}.$TABLE)"
FC=$ (cat ${DATABASES[0]}.$TABLE|wc -1)
FIELD LIST=""
FN=0
for FIELD in $FIELDS
do
let FN=$SFN+1
if [$FN -1t $FC]

then
FIELD="S$FIELD,"”
fi
FIELD LIST="${FIELD LIST}${FIELD}”
done

SQL="$SQL ($FIELD LIST)”

SQL="$SQL select”

SQL="3$SQL $FIELD LIST”

SQL="3SQL from ${DATABASES[0]}.${TABLE};"

#Output the complete SQL to a file
echo $SQL > ${TABLE}.sql
done

Next we'll need another piece of script to run each of the SQL files:

#0btain the list of SQL files
SQLS=*.g8ql

#Loop through the SQL files

[185]

Development and Testing Strategies for SugarCRM

for SQL in $SQLS
do

#Display the table name

basename $SQL .sqgl

#Run the SQL

mysgl -uroot -ppassword mysgl < $SQL
done

You may be wondering why we're using individual SQL files. That's just in case
there is any problem with an individual table — the remainder of the data load will
still continue, leaving you to look at the table's SQL file, and work out what the
problem is.

One thing that you will have to do before you continue is to run a little more SQL on
the new database:

update config set value='4.5.1' where name = 'sugar version';

If you don't do this then SugarCRM will refuse to log on because it will believe that
you're trying to use a 4.5.0 database.

At the end of the process you will have all of your data loaded into your brand new
SugarCRM database, and it's time to turn your attention to the application files.

Comparing and Migrating the SugarCRM
Application Files

Having set up the new SugarCRM database we need to consider the PHP files that
make up the application itself. We, of course, can't just copy our modified files over
the top of the new ones —we have no idea what kind of affect this will have since we
don't know where new functionality has been added to SugarCRM 4.5.1. The first
step, therefore, is to find any changes that affect our customizations.

In order to find files that have changed, and what those changes are, we can turn
back to a Linux command that we've already been using—dif£. If you do want to
find every file that has been changed then go to your web server's document root

and type:

diff -g -r penguin pi SugarOS-Full-4.5.1

After you've seen data scrolling up the screen for a minute or two then you'll realize
that there are an awful lot of files that have been changed. In fact if you type:

diff -q -r penguin pi SugarOS-Full-4.5.1 | wc -1

[186]

Chapter 7

you'll find that there are 1251 differences between the two versions. Obviously we
want to narrow it down a little bit. And this is where it becomes essential that you
keep track of your customizations as you carry them out—if you do that then this
next bit becomes really easy.

In our case, we haven't customized that much yet, so it's not a major problem, the
only module that we've worked with is Opportunities —if you remember in Chapter
3 we added some custom fields, and one of the files that we edited was EditView.
html. So let's compare that to the version in SugarOS-Full-4.5.1 by making use of the
Linux diff command:

diff penguin pi/modules/Opportunities/EditView.html \
SugarOS-Full-4.5.1/modules/Opportunities/EditView.html

The output tells us that the only differences between the files are the ones that
we made:

87,88c96,97

< <td class="datalLabel”>{MOD.Surveillance
Required c 10}</span sugar='slot's</td>

< <td class="dataField” ><select
title='{SURVEILLANCE REQUIRED C HELP}' name="surveillance required
c”>{OPTIONS SURVEILLANCE REQUIRED C}</select></span sugar='slot's</td>

You can see that there are differences between line 87 of the first file and 88 of the
second, as well as 96 in the first and 97 of the second. So then it's just a matter of
migrating our modified file:

sudo cp penguin pi/modules/Opportunities/EditView.html \
Sugar0S-Full-4.5.1/modules/Opportunities/

Of course we mustn't forget to transfer our custom files (including the logic hooks):
sudo cp -r penguin pi/custom SugarOS-Full-4.5.1
And, our nice new theme:
sudo cp -r penguin pi/themes/PenguinPI SugarOS-Full-4.5.1/themes/
As well as the module that we created:
sudo cp -r penguin pi/modules/TestApp SugarOS-Full-4.5.1/modules

Finally we need to check and then migrate any supporting files that we've had
to change:

diff penguin pi/include/modules.php \
Sugar0OS-Full-4.5.1/include/modules.php
< SmodulelList[] = 'TestApp';

[187]

Development and Testing Strategies for SugarCRM

< $beanList ['NewTab'] = 'TestApp';
< SbeanFiles['NewTab'] = 'modules/TestApp/TestApp.php';

In this case we can copy our modified modules.php over the top of the new one;
however, that's not so in the next situation:

diff penguin pi/modules/Emails/vardefs.php \
SugarO0S-Full-4.5.1/modules/Emails/vardefs.php
'massupdate'=>true,
'massupdate'=>false,
'type' => 'text',
'type' => 'longtext',
'type' => 'text',
'type' => 'longtext',

V. A V. AV A

Here, we can see that there are more changes than the ones that we made, and so
you'll need to edit the new file rather than just copying the modified one.

So, as you can see the process consists of:

1. Compare all of the customized files with the new ones.
2. If suitable copy the customized files over the new ones, if not then make the
changes directly to the new files.

Once you've done all that then you'll have two identical versions of SugarCRM,
except that one is version 4.5.0 and the other is 4.5.1. So, next we need to think about
testing our application.

Testing SugarCRM

You're now in a rather nice situation:

* Your users can work in the safe knowledge that their using a stable system
that's not subject to random changes.

* You can work on customizations to the system knowing that you won't affect
your users.

However, at some point you're going to want to release all of your changes to your
users. At this time you'll need to think about testing. By this I don't mean the testing
that you should be doing anyway; by testing I mean someone sitting down and
replicating the normal day to day task that the users carry out. At this point there are
two questions that you need to ask:

e Who is going to do the testing?

e Where is the testing to be carried out?

[188]

Chapter 7

The answer to the first question should not be 'Myself' or 'one of the developers'.
Why? Think about emails —when do you notice spelling mistakes? Invariably it's
once you've pressed the send button. Bugs are just the same —you'll only find them
after the application's been released. Plus, any user will only be confident if the
software is tested by someone who understands their job—and that's not you, it's one
of them. So, which one of them should do the testing? Let's look at the Penguin P.IL
organization for some inspiration:

e Sphen—being the managing director he's the last person to ask. Not
because he's too important —it's because he only thinks he knows how
everything works.

e Robby Eudyptes —the newbie —he's not doing anything essential at the
moment, as so seems the obvious choice. However, he's also the most
inexperienced person in the organization.

e Korora—the most experienced (and busiest) person around —now, that's who
you want on board. If you can get Sphen to get Korora to pass some of her
work onto Robby, then you've got someone who completely understands the
daily workings, and will pick up any problems very quickly.

Next, having a willing volunteer, you're going to have to give them something

to test. Obviously you could let them loose on the development server, but by
definition that's an unstable environment— plus you may have some elements that
you're not ready to release yet. The solution is to set up another server —a test server.

So, it's back to the start of the chapter for you and just follow the instructions

for setting up a server. However, this time you won't be migrating from the live
environment, you'll be migrating from the development environment. And, of
course, in the scenario that we've been looking at then you need two migration and
testing periods:

e Migrate the original (4.5.0) set up to the test server with the newer version
of PHP. Once that's been tested then you'll be able to upgrade the version of
PHP on the live server.

e Migrate your customized version of SugarCRM 4.5.1 to the test server.

Of course, there's one other thing that you may want to consider at this

point —documentation. It's all very well Korora telling you that everything is OK,
but imagine the embarrassment when you release the software and then a bug is
found, and then Korora turns round and says 'Well, I didn't test that bit'. So, make
sure either:

1. You document the areas to be tested, and Korora signs to say that they've
been tested.

2. Korora records her testing.

[189]

Development and Testing Strategies for SugarCRM

Obviously, the best solution is a combination of the two.

So, assuming that there are no issues, then you're ready to pass the new version on to
all of the other users.

Releasing Your Customizations
You've now done all of the hard work, and you're on the final step of the process—
releasing the application. All you have to do now is:
e Carry out any required upgrades to the live sever (such as PHP)
e Transfer the new SugarCRM directory to the live server
e Transfer the new SugarCRM database to the live server
e Migrate the live data into the new database
e Make the new SugarCRM application the default one
We've already covered the first three of these activities in detail, and so we'll just

concentrate on the fourth and fifth ones —migrating the live data into the new
database, and making the new SugarCRM application the default one.

In fact, we've already seen how to migrate the database data—you'll remember

that we created a set of SQL files to copy the data from our live snapshot into the
development database —we can use those same SQL files to transfer the data from
the live database into the new database. Obviously you'll need to transfer the
migration files to the live server, and you'll need to run the files at a time when there
aren't any changes being made i.e. there are no users using the application.

And, of course, don't forget to set the value of sugar_version to '4.5.1' in the config
table. The SQL (in case you can't remember) is:

update config set value='4.5.1' where name = 'sugar version';

Next you can make the new application the default one — after all the users will want
this change over to be as seamless as possible. If you looking in your web server's
document root you should see two directories, and in our example these would be:

1. penguin_pi
2. SugarOS-Full-4.5.1

All you have to do is:

sudo mv penguin pi penguin pi old
sudo mv SugarOS-Full-4.5.1 penguin pi

[190]

Chapter 7

Now, when your users next log on they'll be using your new version of SugarCRM.
However, there's one little bit of tidying up that you want to do before they do
that —the database name.

The database name has no affect on the operation at all, and so the users will be
unaware of the fact that their database was named penguinpi when they last logged
on, but is now named sugarcrm_new. However, it is easier for you to manage if you
maintain some consistency. Therefore the final thing to do is to rename the database,
and then tell your new version of SugarCRM about the change.

Renaming the database is easy:

cd /var/lib/mysqgl/
sudo mv penguinpi penguinpi old
sudo mv sugarcrm new penguinpi

Now you'll need to edit the SugarCRM config.php file where you'll find
something like:

'db name' => 'sugarcrm new',
Just change it to:
'db_name' => 'penguinpi',
Finally you'll need to restart MySQL and Apache:

sudo /etc/init.d/mysgl restart
sudo /etc/init.d/Apache2 restart

And now your users will be free to carry on with their day-to-day tasks, and you can
get back to the next round of customizations.

Summary

In this chapter we've looked at how to develop, test, and use SugarCRM in a safe
environment. To do this we've seen that we need: a development server, a test
server, and a live server.

By setting up a development server we can ensure that SugarCRM customizations
can be carried out in isolation — without any danger of affecting users of the live
application. The server should have: a copy of the live application, a snapshot of the
live data, and all your development work.

[191]

Development and Testing Strategies for SugarCRM

You should set up a test server so that you can ensure that: users have a safe
environment in which they can test your customizations — they don't have to
worry about affecting live data; and testing doesn't have to affect ongoing
customizations —you can carry on working towards the next release whilst users
test the current one.

Remember the cardinal rule — Thou shalt not do any development on a live server.
The only thing that should be placed on the live server is a thoroughly tested release
from the test server.

Don't take shortcuts, and always ensure that you follow a well defined process:
replicate your live environment on the development server; carry out any
customizations on the development server. When you're ready migrate your changes
to the test server and get a well respected user to do all of the testing on the test
server; if testing is successful then agree a time to migrate your changes to the

live server.

If you load your data into a new database ensure that the SugarCRM version is set to
the correct value when you finish.

Now that you know that you can develop and test your application safely, it's time to
move on to Chapter 8 and look a developing a completely new module.

[192]

Developing Your
Own Modules

Through the course of this book you've learned that the SugarCRM application
consists of a number of modules, each of which governs a key element of the sales
and service process. You've also learned how to customize those modules so that you
can add in your own elements —such as additional drop-down boxes. We've also had
a brief look at how to add your own modules. In Chapter 8, we're going to develop
these modules further, so that you can introduce all of your required functionality
into SugarCRM.

So what sort of functionality do you want to add? Let's imagine two things that
Korora at Penguin P.I. might need adding to SugarCRM:

e The ability to create invoices

e A set of reports —again everyone needs to produce reports

In Chapter 8 we'll look at some ways in which you could introduce this
functionality into your SugarCRM installation (and not necessarily by doing all of
the work yourself).

By the end of this chapter you'll be able to:

e Incorporate third-party modules —make the most of work that people have
already done

e Build your own fully functional modules

We'll start by looking at third-party modules.

Developing Your Own Modules

Adding Third-party Modules

Before you actually move on to developing a new module you really must ask
yourself an important question —has it already been done? If someone has already
built a module that does the job for you then wouldn't you be better off installing
that module, and then spend your time more productively —building modules
containing functionality that doesn't exist? Therefore, let's start by looking at modules
that already exist, and can be used.

You'll be pleased to know that there are already quite a number of modules that are
available to you —the number is increasing all the time, and you can download them
from the Internet (of course).

The website that you need is http://www.sugarforge.org where you'll find all
the available modules listed by application type, although if you don't want to hunt
through all of the categories then you can make use of the search facility:

€} SugarForge: Open Source CRM, SugarCRM, Sugar CRM - Mozilla F‘irefo)&__,.@.}

File Edit Wiew Go Bookmarks Tools Help

@O &) A W rpsmwwsugartorge.org/ [-E [

SugarCRM ‘ SugarExchange ! SugarFerge ‘ Forums | Wiki | Deownloads | Demo | Site Directory -

W SUGARFORGE.

Open Source CRM | Community | Downloads | Installation | Documentation Forums | Projects
Software/Group x| [invaice] Searchl Logout | My account]
Main Downloads: 2,860,414 1 Developers: 7,775 1 Fles: 1,951 | Projects: 331

[194]

Chapter 8

You'll find that an invoice module has already been created (by Ray Gauss II), and
that you can download it:

Eile Edit View Go Bookmarks Tools Help
@ @ @ @ & [ﬁ http:/rwww sugarforge. org/frs/?group_id=298 |V] [@.

SugarCRM | SugarExchange | SugarForge | Forums | Wiki | Downlsads | Demo | Site Directory.

W SUGARFORGE.

Open Source CRM Community Downloads Installation Documentation Forums Projects

Search the entire project j | Search | Advanced search Login | Create an account
Main 1 -
Open Source CRM nvoices
Community | Overview H Downloads H Resources H Reviews H Forums H Developer
Downloads i
Below is a list of all files of the project. Before downloading, you may want to read Release Notes and ChangelLog
Installation (accessible by clicking on release version).
Documentation invoices Fii:!
Support
Forums 0.2 - 2007-02-08 14:07 File Size Downloads
Projects Invoice.jrxml (29 KB) 37
README. html (3KB) 75

Browse by application

Y AR sugar invoice module 0.2.zip (124 KB) 62
Account Mgmt

0.1 - 2006-09-26 11:16 File Size Downloads

Books
Bug Tracking Inveice.jrxml (29 KB} 563
Calendaring README. him (3kB) 1350
Case Mgmt sugar inveice module 0.1.zip (123 KB) 758

Collaboration

Contact Mgmt

Done

Now, you don't have to download the ZIP file to the web server —just your normal
desktop will suffice. And, don't unzip it either —SugarCRM will do all of the work
for you when you load the module. So, next you'll need to know how to load

the module.

You will need to log on as the SugarCRM administrator, and then go to the
Administration screen where you'll find the Module Loader in the System section:

SYSTEM
£ System Settings Configure system-wide settings EFh Backups Perform a backup
@Scheduler Set up scheduled events /Rep_air Check and repair Sugar Suite
% Diagnostic Tool g::r;srizsystem configliEton;fard ignastics and £ Currencies Set up currencies and currency rates
" 4 = s Add or remove Sugar medules, themes, and|
Nedule Loader
ﬁ} Upgrade Wizard Upload and install Sugar Suite upgrades o Module Leader language packs
£ Locale Settings Set default localization settings for your system.

[195]

Developing Your Own Modules

With the module loader you can browse for the invoice. zip file, upload it onto the
server, and install the new module:

£ ADMINISTRATION: MODULE LOADER = Print 7 Help

Install from Sugar Exchange | Install from local file |

Module |

Browse... |

The following modules have been installed: | Check for Updates

MName | Type || Version || Date Installed |, Description | Action |
Invoice medule 02 200702-11 10:49 A module to associate ProjectTasks with an Invoice Uninstall

Your new invoices module is now up and running and you'll find that:

e There is a new Invoices module tab in which you can create your invoices.

¢ When you edit a project task you'll see that you're able to associate an invoice

with it.
If you log onto your database you'll find that you've now got a new table as well:

mysgl> desc invoice;

R TR e e T +------ o= R e it +
| Field | Type | Null | Key | Default | Extra |
R TR e e T +------ o= R e it +
id	char(36)	NO	PRI		
date entered	datetime	o			
date modified	datetime	o			
assigned user id	char(36)	YES		NULL	
contact_id	char(36)	o			
modified user id	char(36)	YES		NULL	
created by	char(36)	YES		NULL	
name	varchar(50)	NO			
description	text	YES		NULL	
date sent	date	YES		NULL	
date paid	date	YES		NULL	
deleted	tinyint(1)	NO		o	
R TR e e T +------ o= R e it +
12 rows in set (0.01 sec)

In addition to the table some relationships will also have been created:

mysgl> select relationship name, lhs module, lhs table, lhs key,
-> rhs module, rhs table, rhs key
-> from relationships
-> where lhs module = 'Invoice' or rhs module = 'Invoice';

[196]

Chapter 8

e e B it o m - e e e +

| relationship_name | lhs_module | lhs_table | lhs_key | rhs_module | rhs_table | rhs_key

e e B it o m - e e e +

| invoice_notes | Invoice | invoice | ia | Notes | notes | parent_id

| invoice_project_tasks | Invoice | invoice | id | ProjectTask | project_task | invoice_id

| invoice_assigned_user | Users | users | ia | Invoice | invoice | assigned_user_
id |

| invoice_contact | Contacts | contacts | id | Invoice | invoice | contact_id

| invoices_modified user | Users | users | id | Invoice | invoice | modified user
id |

| invoices_created_by | Users | users | id | Invoice | invoice | created_by

e e B it o m - e e e +

6 rows in set (0.01 sec)

There is nothing here that you can't do yourself (or, at least, once you've finished
this chapter), but using a third-party module will save you a lot of time and
effort— provided that the module does the job that you want, of course. However,
you may well find that the modules available don't exactly do what you want, or
maybe there isn't a module that meets your requirements. If that's the case then
you're going to have to do everything from scratch.

Creating Custom Modules

This chapter is all about creating custom modules, but you'll remember, no doubt,
that we've already learned how to do this in Chapter 2. However, we're going to
build a simple module and create something much more complex (and useful). So, to
start with let's just recap on the basic requirements for a module.

A (Very) Basic Module

At its simplest level a module is a directory that contains at least three PHP files, and
these are:

e index.php

e Forms.php

e language/en_us.lang.php

[197]

Developing Your Own Modules

And that's all there is to a module. So, if we imagine Korora's second requirement
(a set of reports), then we might want to do the following (and remember to do it on
your development server not your live server):

mkdir modules/ppi_ reports

touch modules/ppi_ reports/index.php

touch modules/ppi_ reports/Forms.php

mkdir modules/ppi_ reports/language

touch modules/ppi_ reports/language/en us.lang.php

Next, we need to tell SugarCRM about the new module by editing
include/modules.php and adding:

$modulelist[] = 'ppi reports';

Finally we need to edit custom/include/language/en_us.lang.php to define the
title for the module:

Sapp_ list strings['moduleList'] ['ppi reports'] = 'PPI Reports';

Then it's just a matter of refreshing your web browser to see the new module:

| Home | My Portal | Calendar | Activites | Contacts | Accounts | Leads | Opportunities | Cases | BugTracker | Documents | PPIReports | >»|

Last Viewed: none

ﬂ SHORTCUTS

Home | My Portal | Calendar | Activities | Contacts | Accounts | Leads | Opportunities | Cases | Bug Tracker | Documents | Emails
Campaigns | Projects | R3S | Dashboard | Invoices | PPl Reports

Next we really want to be thinking about the data that we're going to be using.

Data for the New Module

Any report that you make will, naturally, use the tables in the SugarCRM database.
This means that you can use the information from Chapters 6 and 7 to create the
SQL that's going to extract the correct data for you. So, for example, if Korora wants
a report that returns the name of every new Preliminary Investigation created in the
current month then you could use the SQL:

SELECT name
FROM opportunities
WHERE MONTH (date_entered) = MONTH (NOW()) ;

[198]

Chapter 8

If she wants the assigned user name as well then you could use:

SELECT o.name, CONCAT (u.first name, CONCAT(' ', u.last name))
FROM opportunities o, users u
WHERE MONTH (o.date entered) = MONTH (NOW ())

AND o.assigned user id = u.id;

Now that we've got some SQL let's use it in our module.

Processing Data in the Module

We're going to keep things very simple to start with, and so, in this example, we'll:

e Connect to the database
e Run the SQL and obtain a set of records
e Display the contents of our set of records on the screen
You'll remember that we've already created the required files for the module (index.

php, Forms . php and language/en_us.lang.php), and in this case we're going to
edit index.php:

<?php
if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;
$sql = "SELECT o.name, CONCAT (u.first name, CONCAT(' ', u.last name))
FROM opportunities o, users u
WHERE MONTH (o.date entered) = MONTH (NOW ())
AND o.assigned user id = u.id";
$report title = "Monthly New Preliminary Investigations Report";

$result = mysqgl query($sql);

echo "<h2>$report title</h2>";
echo "<table width=100% cellspacing=0 cellpading=0>";
Sr=0;
while ($r < mysgl numrows ($Sresult))
{
echo "<tr>";
$c=0;
while ($c < mysgl num fields($result))
{
$field = mysqgl result (Sresult,r,Sc);
echo "<td>$field</td>";
Sc++;
}

echo "<tr>";

[199]

Developing Your Own Modules

STr++;
!
echo "</table>";

?>

If you look through the code you'll see that we haven't hard coded in any of the
database connection details (i.e. the host name, database name, user name, and
password), and that's because SugarCRM does that for us. This means, of course,
that we can write code without having to worry about such details — for example the
password can be changed and it won't affect the operation of our module.

You'll also see that a strange looking line is at the start of the file:

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

In fact you'll find this line at the start of every SugarCRM PHP file. Its purpose? It
ensures that any access can only be done through the SugarCRM application, and not
by someone randomly accessing one of the files.

The next thing to take note of is the use of two functions —mysql_numrows and
mysgl_num_fields. Making use of these means that we don't have to be concerned
with the number of rows or fields returned by our SQL — the code will always
display them correctly. The end result is something like:

| Home | My Portal | Calendar | Activities | Contacts \ Accounts | Leads | Opportunities | Cases | Bug Tracker | Documents | PPIReports | >>

Last Viewed: none

] SHORTCUTS MONTHLY NEW PRELIMINARY INVESTIGATIONS REFORT
Z¥51 disappeared Korora Blug]
Windows attacked by Giant Hedge hog Korora Blug
Possible infiltration by hostiles Korora Blug]
VBA Trap? Korora Blug]

That's fine for a single report, but it's rather unlikely Korora will only need a single
report, so the next stage is to add more reports to the module.

Adding More Data

We know that the code will handle any number of fields returned by our SQL, and
so we have to do two things:

1. Define the new SQL statement
2. Tell the module which SQL statement to use

[200]

Chapter 8

We'll decide which SQL to be used by looking at the value of report —a variable that
we'll pass to the module:

$report = $ REQUEST['report'];
if ($report == "monthly new prelim invest")
{
$sgl = "SELECT o.name, CONCAT (u.first name, CONCAT(' ', u.last name))
FROM opportunities o, users u
WHERE MONTH (o.date entered) = MONTH (NOW ())
AND o.assigned user id = u.id";

$report title = "Monthly New Preliminary Investigations Report";
}
else if ($Sreport == "monthly open invest")
{
$sgl = "SELECT c.name, CONCAT (u.first name, CONCAT(' ', u.last name))

FROM cases c, users u
WHERE MONTH (c.date entered) = MONTH (NOW ())
AND c.assigned user id = u.id

AND c.status <> 'Closed'";

$report_title = "Monthly Open Investigations Report";
}

else
{

$sgl = "select 'Choose report'";

}
Now you can call the first report by using the URL:

|[http:/facamas/penguin_pifindex.php?module=ppi_reporis&action=index&report=monthly_new_prelim_invest | 'l|

Or to call the second report you can change the URL to end —monthly_ open_invest.
However, at this point, you may be thinking that this is a rather inefficient way of
calling the reports, and that we can't expect each user to remember the URLs —and
you'd be right. That's why we'll look at shortcuts next.

[201]

Developing Your Own Modules

Adding Shortcuts

If you'll look at the left of the screen then you'll see the list of shortcuts associated
with the module:

ﬂ SHORTCUTS

Not very impressive at the moment, but we can change this by adding a file to our
module's directory. This file is Menu. php:

<?php
if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;
Surl = "index.php?module=ppi reports&action=index&report=";
$module menu[] = Array($url . "monthly new prelim invest",
'Monthly New Preliminary Investigations') ;
$module menu[] = Array($url . "monthly open invest",
'Monthly Open Investigations');
?>

As you can see the module menu consists of arrays each of which contains the URL
for the shortcut and the text to display. Once you've saved the file and refreshed
your web browser then you'll see:

ﬂ SHORTCUTS

Manthly Mew Preliminary
Investigations

Monthly Open Investigations

It may occur to you that we're being a bit inefficient again — we've stored the title for
each report in two files: index.php and Menu. php. It's time to start using a central file
for such details, and we've actually already created it— language/en_us.lang.php.

[202]

Chapter 8

Using language/en_us.lang.php

When we created the module we also had to create the file 1anguage/en_us.lang.
php, and this is why. It's used for the central location for text to be used specifically
for the module. In this case we can edit it and add:

<?php
if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;
$mod_strings['lbl_monthly new_prelim_invest'] =
"Monthly New Preliminary Investigations";
$mod_strings['lbl monthly open invest'] = "Monthly Open
Investigations";

?>

Then we can change some of the code in index.php to use your new
smod_strings array:

if ($report == "monthly new prelim invest")
{
$sqgl =
Sreport title = $mod strings['lbl monthly new prelim invest']."
Report";
}
else if ($report == "monthly open invest")
{
$sql =
Sreport_title = "$mod strings['lbl monthly open invest'] . " Report";
}
else
{
$sgl = "select 'Choose report'";

}

And then we can do the same in Menu . php:

<?php

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry

Point') ;

global $mod_strings;

Surl = "index.php?module=ppi reports&action=index&report=";

$module menu[] = Array($url . "monthly new prelim invest",
Smod_strings['lbl_monthly new_prelim invest']);

$module menu[] = Array($Surl . "monthly open invest",
Smod_strings['lbl monthly open invest']);

?>

[203]

Developing Your Own Modules

It's worth noting that $mod_strings must be declared as a global in Menu . php, but
you won't have to do that in index. php.

You'll realize the benefits of using a single location immediately — it won't affect
your users at all, but it will make life a lot easier for you—you won't have to
remember where you've used any particular title or label — you just have one
file—en us.lang.php.

Of course, if you want to be really efficient then you might want to create a table
(or tables) for the module.

Tables for the Module

We've been using index. php to create our reports (all two of them), but I'm sure that
you can see a major disadvantage here —every time you create a new report then
you're going to have to go through the whole testing process before you can allow

it to be used on the live server. In fact, we can even start thinking about moving the
creation of reports from a developer to a user —after all you don't need a developer
to create cases, accounts, or opportunities.

The first thing that we need, therefore, is a table:

create table ppi reports (
id char(36),
date entered datetime,
assigned user id char(36),
modified user id char(36),
created by char(36),
name varchar (50),
description text,
report sgl longtext,
date modified datetime,
deleted tinyint (1),
primary key (id)

) ;

Remember to place this in a file rather than creating the table directly on the
database. By doing it that way you've got a record of what you've done, and you can
replicate it again when you migrate to testing and then to live.

[204]

Chapter 8

Before we leave the structure of the table it's worth noting that there are three
mandatory fields:
e id—for the unique SugarCRM identification string

e date_modified—certain of the SugarCRM processes automatically
update this

e deleted—no data is actually deleted from the SugarCRM database;
however, records with deleted set to 1 will be ignored

And, of course, a primary key will be required — this is always the id field.

Next, you'll need to load some data into the table. In this case we're using the name,
SQL and title for the reports that we've already used:

insert into ppi reports
(id, name, description, report sqgl)

values

('monthly new prelim invest' , 'monthly new prelim invest',

'Monthly New Preliminary Investigations',

'SELECT o.name, CONCAT (u.first name, CONCAT('' '', u.last name)) FROM
opportunities o, users u WHERE_MONTH(o.date_entered) = MOﬁTH(NOW())

AND o.assigned user id = u.id');

insert into ppi reports
(id, name, description, report sqgl)

values

('monthly open_invest' , 'monthly open_invest',

'Monthly Open Investigations',

'SELECT c.name, CONCAT (u.first name, CONCAT('' '', u.last name))
FROM cases c, users u WHERE MONTH (c.date entered) = MONTH(NOW()) AND

c.assigned user id = u.id AND c.status <> ''Closed''');
There are a couple of things to take note of in the SQL:

e We've used the report name as the id. Normally SugarCRM would assign
its own unique ID, but in this case we need to provide our own ID because
we're entering the data directly onto the database rather than using the
SugarCRM application —we'll see how to do that shortly.

¢ You'll notice that there are some double quotes used in the SQL — this allows
us to enter a single quote into the database similar to "Closed" ending up as
'Closed' on the database.

[205]

Developing Your Own Modules

Once the data is loaded into the table we can make use of it in the module, so we
don't have to edit index.php every time we need a new report:

if ($report == "monthly new prelim invest")
{

}

else if ($Sreport == "monthly open invest")
{

if ($report == "monthly new prelim invest")

{

else if ($Sreport == ...)

Now we can extract the information required for the report (i.e. the title and the SQL
for the report) directly from the database:

if (S$report)
{
$sqgl = "select description, report sqgl
from ppi reports where name='S$Sreport'";
$result = mysqgl query($sql);
Sreport title = mysqgl result ($result,0,0);
$sqgl = mysql result (Sresult,0,1);
}

else

{
}

And, we can do similarly for Menu. php:

$sgl = "select 'Choose report'";

<?php

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

Surl = "index.php?module=ppi reports&action=index&report=";

$sql = "select name, description from ppi reports";

Sresult = mysqgl query(s$sql);

$r=0;

while ($r < mysgl numrows ($Sresult))

{

[206]

Chapter 8

$name = mysgl result ($result,$r, 'Name');

$description = mysgl result ($result, $r, 'Description');
$module menu[] = Array($url . $name, $description);
STr++;

}

?>

At first glance this looks more complicated than the original file; however, it does
mean that you won't have to edit it every time that you add a new report—the
information will just be picked up automatically from the database.

Advanced Modules

We've now created a couple of very simple modules, and we've seen how easy

the built-in SugarCRM functionality makes this. For example, we can query the
database without having any knowledge of the connection details —we just have to
tell SugarCRM to send the query, and then we're free to deal with the results in our
module. We'll now move on to create a module that uses more of the functionality
that's available to us, one that:

e Allows us to view and edit all existing reports
e Allows us to create new reports

The Initial Setup

By now you should be quite happy with the basic setup required for new modules,
but it's worth running through the process once more. First you'll need to create a
directory for your module, and then populate it with the mandatory files:

mkdir modules/ppi report manager

touch modules/ppi_ report manager/index.php

touch modules/ppi_report manager/Forms.php

mkdir modules/ppi report manager/language

touch modules/ppi_ report manager/language/en_us.lang.php

With the directory structure in place you'll need to tell SugarCRM about the module
by editing include/modules.php and adding;:

$moduleList [] = 'ppi_report_manager';
Finally you'll need to modify custom/include/language/en_us.lang.php to add a
title for the module:

Sapp_list strings['moduleList'] ['ppi report manager']='Reports Manager';

So, that's the module in place. Next we need to think about the data that we're going
to be using,.

[207]

Developing Your Own Modules

The Module's Data Schema—vardefs.php

We've already created the table (ppi_reports), and we've seen how easy it is to

use the data stored in it. However, SugarCRM doesn't normally access the database
directly —instead it has its own data schema for each of the modules, and this data
schema, or dictionary, is defined in the vardefs.php file (there's one in each of the
module directories). Each vardefs file contains a $dictionary array, and this contains
the table name, as well as a set of sub-arrays — one for each of the fields to be used:

<?php

#Ensure that the file can only be accessed via SugarCRM

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

#Define the dictionary

$dictionary['ppil report manager'] = array(
#Define the table to be used, their data types, labels, etc
'table' => 'ppi reports',

'unified search' => true,
'comment' => 'Reports',
#Define the fields to be used
'fields' => array(
'id' => array(
'name' => 'id',
'vname' => 'LBL _ID',
'required' => true,

'type' => 'id',
'reportable'=>false,

'comment' => 'Unique identifier'),
'description' => array(

'name' => 'description',

'vname' => 'LBL DESCRIPTION',

'required' => false,

'type' => 'text',

'comment' => 'Report description'),
'report sqgl' => array(

'name' => 'report sqgl',

'vname' => 'LBL REPORT SQL',

'required' => false,

'type' => 'text',

'comment' => 'Report SQL'),
'name' => array(
'name' => 'name',

[208]

Chapter 8

'vname' => 'LBL NAME',
'required' => true,
'dbType' => 'varchar',

'type' => 'mame',

'len' => 50,

'unified search' => true,

'comment' => 'Report name'),
'assigned user id' => array(

'name' => 'assigned user id',

'rname' => 'user name',

'id name' => 'assigned user id',

'type' => 'assigned user name',

'vname' => 'LBL_ASSIGNED USER_ID',

'required' => false,

'len' => 36,

'dbType' => 'id"',

'table' => 'users',

'isnull' => false,

'reportable'=>true,

'comment' => 'User assigned to this report'),
'date modified' => array (
'name' => 'date modified',

'vname' => 'LBL DATE MODIFIED',
'type' => 'datetime',
'required' => false,
'comment' => 'Date record last modified'),
'deleted' => array (
'name' => 'deleted',
'vname' => 'LBL DELETED',
'type' => 'bool',
'required' => true,
'reportable'=>false,
'comment' => 'Record deletion indicator’',

)i

?>

The dictionary is only half of the data model. The other half is the module's
business object.

[209]

Developing Your Own Modules

The Module's Business Object

We have the module's data dictionary in place, but we won't normally be accessing
it directly —instead we make use of the module's business object. The business object
does two things:

¢ Define any variables to be used

e Set up any required functionality

We do this by creating a class in a PHP file —in this case ppi_report_manager.php
in the module's directory :

<?php

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

require once('data/SugarBean.php') ;

require once('include/utils.php');

class ppi_report manager extends SugarBean

{

var
var
var
var
var
var

var

var

var
var

var

$id;

Sdescription;
Sreport_sqgl;
Sname;

Sassigned _user_id;
$date_modified;

Sdeleted;

Stable name = "ppi_reports";
$module_dir = "ppi_report_manager";
Strack on save=true;

$object _name = "ppi report_manager';

function ppi_report manager ()

{
}

parent: :SugarBean() ;

[210]

Chapter 8

If you read through the code you'll see that it:

e Makes use of the SugarCRM SugarBean file — this incorporates your vardefs
file, and sets up the business object itself

e Loads all of the utilities that you'll need for working with your
business object

Now, it's worth noting that you can call this file anything you like, but the normally
accepted naming convention is to use either the module name, or the singular of the
module name — for example the business object for Opportunities is opportunity.php.

Finally, you'll need to give SugarCRM the details of your new file.

Registering the Business Object

You'll remember that we needed to tell SugarCRM about the module by editing
include/modules.php and adding:

$modulelList[] = 'ppi report manager';
Well, we use the same file to register the business object:

$beanList ['ppi report manager'] = 'ppi report manager';
$beanFiles['ppi report manager'] =
'modules/ppi report manager/ppi_report manager.php';

The business object will now be incorporated into SugarCRM, and you can start
making use of it; however, there is just a little tidying up that needs to be done —the
setting up of the language file.

The Module's Language File

We now need to turn back to one of the module's required files:
language/en_us.lang.php. It's here that we define the default terminology
to be used by the module.

If you look at the vardefs. php file you'll see that each field contains a variable
vname, for example assigned user_id has the vname LBL._ASSIGNED USER_ID. You
must assign some text to this vname in language/en_us.lang.php, and it's this text
that SugarCRM will then display on the screen:

<?php

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

$mod strings = array (

'LBL_MODULE NAME' => 'ppi report manager',

[211]

Developing Your Own Modules

'LBL_MODULE TITLE' => 'Report Manager',
'LBL_ID' => 'ID',

'LBL_DESCRIPTION' => 'Title',
'LBL_REPORT_SQL' => 'SQL',

'LBL_NAME' => 'Name',
'LBL_ASSIGNED_USER_ID' => 'Owner',

?>

So, in the above example SugarCRM will display the text 'Owner' on the screen
where ever assigned user idis used.

That's all the background setting up that the module needs —now we can turn our
attention to something that we can actually see via the web browser.

The Module's List View

When you click on any module tab in SugarCRM then the first thing that you'll see is
the List View —so, for example, if you go to Opportunities then you'll see the list of
all of the opportunities currently in the system. We'll now look at doing exactly the
same for our new module.

Selecting the Fields to be Displayed

The first thing that you must do is to decide which fields are to be displayed in the
List View. Once, you know which fields you want, then you'll need to tell SugarCRM
about them in the module's metadata/listviewdefs.php file:

<?php

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

$listViewDefs['Report'] = array(

'NAME' => array(
'width' => '50"',
'label' => 'LBL NAME',
'default' => true),

'DESCRIPTION' => array(
'width' => '50"',
'label' => 'LBL DESCRIPTION',
'default' => true),

'REPORT SQL' => array(
'width' => '50"',
'label' => 'LBL REPORT SQL',
'default' => true),);

?>

[212]

Chapter 8

Creating the List View

You've actually done all of the hard work —all you have to do now is to create a PHP
file (normally named ListView.php), which will make use of your business object
and some SugarCRM functionality:

<?php

if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

require once ('modules/ppi report manager/ppi report manager.php') ;
require once ('include/ListView/ListViewSmarty.php') ;

require once ('modules/ppi report manager/metadata/listviewdefs.php') ;

$seedReport = new ppi report manager () ;

$1lv = new ListViewSmarty () ;

$lv->displayColumns = $listViewDefs['Report'];

$lv->setup (SseedReport,
'include/ListView/ListViewGeneric.tpl', S$where,
$listViewDefs['Report']) ;

echo $lv->display();

?>

Now you can view the result:

|[http:/facamas/penguin_pifindex.php?module=ppi_report_manager&action=ListView |']|

e Exporl | Selectzd: 0 |“ Start # Previous [1-2of2) Mext [~ End Y
me =& ~ Fay
Ma el Title = SQL =&

BZELECT c.name, CONCAT{u first_name,
CONCAT(', u.last_name)) FRCM

opportunities o, users u WHERE
MCNTH{o.date_entered) =
MONTH{NOW() AND o.assigned_user_id
= u.id

SELECT c.name, COMCAT(u.first_name,
CONCAT(' ', u.last_name)) FROM casesc,
users u WHERE MONTH(c.date_entered)
= MONTH{NCW(}] AND
c.assigned_user_id = u.id AND c.status <~
'Closed'

e Exporl | Selected: 0 | Start # Previous [1-2of2) Mext [~ End [
Clear All

I_ monthly_new_prelim_invest Monthly New Preliminary Investigations

I_ monthly_open_invest Monthly Cpen Investigations

[213]

Developing Your Own Modules

Making the List View the Default View

Having created the List View we need to make it the default screen. To do this you'll
need to edit the module's index . php file:

<?php
if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

echo get module title($mod strings['LBL MODULE NAME'],
$mod strings['LBL MODULE TITLE'],
true) ;

include ("modules/$currentModule/ListView.php") ;

?>

Now that we can see the list of reports the next logical thing to do is to edit existing
ones and add new ones. To do that we need to add an Edit View.

The Modules Edit View

If you look on the right of the List View then you'll see the edit button:

SQL =

SELECT o.name, CONCAT(u.firgt_name,
COMCAT(', ulast_name)) FRCOM

opportunities o, users u WHERE
MONTH{o.date_entered) =
MONTH{NCWI)) AND o.assigned_user_id

= u.id

If you click on this button then SugarCRM will take you to the Edit View —once
you've created it, of course.

The EditView.php File

This time you have no choice as to the name for the PHP file that you create. It
must be named EditView.php. However, as before you make use of a lot of built-in
functionality to minimize the amount of coding that you need to do:

<?php
if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

require once ('XTemplate/xtpl.php') ;
require once('modules/ppi_report manager/ppi report manager.php');

[214]

Chapter 8

$focus = new ppi report manager() ;

//Load the data for the fields

if (isset ($_REQUEST['record']))

{
$focus->retrieve ($_REQUEST['record']) ;
$focus->format all fields();

echo get module title($mod strings['LBL MODULE NAME'],
Smod strings['LBL MODULE NAME'].": ".$focus->name, true);

//Load the edit form
$xtpl=new XTemplate ('modules/ppi report manager/EditView.html') ;

//Define the Save and Cancel buttons
$xtpl->assign("MOD", $mod strings) ;
$xtpl->assign ("APP", S$app strings);

//Create a popup for the Assigned user
$json = getJSONobj () ;
S$popup request data = array(
'call back function' => 'set return',
'form name' => 'EditView',
'field to name array' => array(
'id' => 'assigned user id',
'user name' => 'assigned user name',
),
) ;
$xtpl->assign('encoded users popup request data',
$json->encode ($popup request data)) ;

$xtpl->assign ("ID", $focus->id);
$xtpl->assign ("NAME", S$focus-sname) ;
$xtpl->assign ("DESCRIPTION", $focus->description);
$xtpl->assign ("REPORT_SQL", $focus->report sql);
$xtpl->assign ("ASSIGNED USER_ID", $focus->assigned user id);
$xtpl->assign ("ASSIGNED USER_NAME",

get assigned user name ($focus->assigned user id)) ;

//Output to the screen
$xtpl->parse ("main") ;
Sxtpl->out ("main") ;

?>

[215]

Developing Your Own Modules

If you look through the code then you'll see that it references a file that doesn't
exist yet—modules/ppi_report_manager/EditView.html.

The EditView.html File

Your module's Editview.html file is used for designing the layout of your
edit form:

<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr>

<td width="15%" class="datalabel">{MOD.LBL_ NAME}
{APP.LBL REQUIRED SYMBOL}</td>

<td width="35%" class="dataField"><input
name='name' type="text" tabindex='1l' size='35' maxlength='50"
value="{NAME}"></td>

</tr>

<tr>

<td valign="top" class="dataLabel">{MOD.LBL_
DESCRIPTION}</td>

<td colspan="4" class="dataField"><input
name='description' type="text" tabindex='1l' size='35' maxlength='50"'
value="{DESCRIPTION}"></td>

</tr>

<tr>

<td valign="top" class="dataLabel">{MOD.LBL
REPORT SQL}</td>

<td colspan="4" class="dataField"><textarea
name="'report sgl' tabindex='3' cols="60" rows="8">{REPORT SQL}</
textarea></td>

</tr>

<tr>

<td class="datalLabel">{APP.LBL ASSIGNED TO}</
span sugar='slot's></td>

<td class="dataField"><input class="sgsEnabled"
tabindex="1" autocomplete="off" id="assigned user name"
name="'assigned user name' type="text" value="{ASSIGNED USER_
NAME}"><input id='assigned user id' name='assigned user_ id'
type="hidden" value="{ASSIGNED USER ID}" />

<input title="{APP.LBL SELECT BUTTON TITLE}" accessKey="{APP.
LBL_SELECT BUTTON KEY}" type="button" tabindex='l' class="button"
value='{APP.LBL SELECT BUTTON LABEL}' name=btnl onclick='open

popup ("Users", 600, 400, "", true, false, {encoded_users_popup_
request data});' />

</td>

</tr>

</tables>

[216]

Chapter 8

The end result is a form in which you can edit the details for any existing report:

PPI_REPORT_MANAGER: MONTHLY OPEN INVESTIGATIONS ? Help!
Save || Cancel | * Indicates required field
Name * |I'l."|onthly Cpen Investigations |
Title |Report showing Monthly Cpen Investigatiori
sQL ISELECT c.name, CONCAT(u first_name, CONCAT(' ', ulast_name})
FROM cases ¢, users u WHERE MONTH(c date_entered) =
WMONTH{NCW()) AND c.assigned_user_id = u.id AND c.status <=
'Closed'

Assigned tor |Muek H Select

| Save || Cancel |

Of course, now that you've edited the report you need to be able to save it.

The Module's Save File

Your module's save file must be called save.php, and should contain any
preprocessing that your data may need before sending to the database:

<?php
if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;

require once ('include/utils.php');
require once ('modules/ppi report manager/vardefs.php') ;

//Function to prepare data for the database
function format mysgl text ($ip text) ({
return mysql real escape_string(
html entity decode(str replace("'","'",Sip text)));

//Identify the fields to be loaded
Stable = $dictionary['ppi report manager'] ['table'];

while (list($key, $value) = each($dictionary['ppi report
manager'] ['fields'])) {
if ($key != "id") {
if ($_REQUEST [$key] != "") {

$field list[] = Skey;

[217]

Developing Your Own Modules

}
}
}

/*Create a SQL statement according to whether this is an insert or an
update*/
if ($_REQUEST|['record'] == "")
{
$field names .= "id";
$field values .= "'" . create guid() . "'";
foreach ($field list as skey)

{

$field names .= "," . Skey;
$field values .= ",'" . format mysqgl text ($_REQUEST [$key]) . "'";
}

$sgl = "insert into $table";

$sql .= " (" . $field names . ")";

$sgl .= " values ";

$sql .= " (". $field values . ")";

}

else

{

foreach ($field list as skey)
{

if ($sgl body != "")
{

$sql body .= ",";
}
$sql body .= skey . " = '" . format mysqgl text(

$ REQUEST [Skey]) ."'";

$sgl = "update S$table set ";
$sql $sql body;
$sqgl " where id ='" . $ REQUEST|['record'l ."'";

}

//Send the SQL to the database
$db->query ($sql) ;

//Return to the index page
header
("Location: index.php?module=".$ REQUEST['module']."&action=index")

?>

You'll see from the code that the save file handles both update and insert statements,
and that the script returns you to the module index at the end of the process.

[218]

Chapter 8

Creating New Reports

Having seen how to edit the existing reports you'll be wondering how to create new
ones. You'll be pleased to know that we've done all of the hard work. All you have
to do now is call the Edit View without any input details, and we can do this just by
editing the Menu. php file for the module:

<?php
if (!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry
Point') ;
$module menul[] =
Array ("index.php?module=ppi report manager&action=EditView",
"New Report") ;
$module menul[] =
Array ("index.php?module=ppi report manager&action=index",
"List Reports");

?>

Now you can either edit existing records or create a new one:

SHORTCUTS PPI_REPORT_MANAGER: “? Help
Mew Report | Save || Cancel | * Indicates reguired field
List Reports

Name * | |

Title | |

S0l

Assigned to: || Select

| Save || Cancel |

You can now go back to Korora and tell her that you don't have to create any new
reports for her —she can do it all for herself.

[219]

Developing Your Own Modules

Summary

In this chapter we've seen that you have two options when it comes to new modules.

You can incorporate a third-party module (if it does the job that you want carried
out) and you also know the procedure for developing your own modules
from scratch.

We'll be looking at other aspects of module development in Chapter 10, but before
that we'll look at a contentious issue for any organization — the workflow.

[220]

Developing a Custom
Workflow within SugarCRM

We've now come to a very contentious area — Workflow. It's not that anyone
disagrees about what workflow is:

Workflow is about getting the right work to the right people at the right time,
repeatedly — and knowing you have done so. Workflow is human-centric. First and
foremost, workflow is a human activity that is made by and for those who use it:
workflow is something that can easily be handled and understood by human beings.

UK Enterprise Workflow National e-Government Project — Workflow from a
Business Perspective

Well, that sounds good, but the problems start to occur when you ask people to
consider workflow in their organization, and there are usually a few main issues
to deal with:

e You'll find that people are normally experts in their own fields — there are
often very few people who have an overview of the whole process that you're
trying to map.

e Sections of a large organization will often have different ways of carrying out
the same overall process.

e People don't really like to be told how to do their jobs —they especially
don't like to have any extra processes imposed on them for now obvious
reason—well, would you?

e Talk of 'improved utilization of resources', 'improved performance
monitoring', and such like can soon alienate the staff who are going to be
using the system. They'll soon start using terms such as 'Big Brother'.

Developing a Custom Workflow within SugarCRM

How you are able to deal with these will depend on your organization and the
people that are available to you. At least once you've read this chapter you'll know
that, once you've overcome those problems, the workflow itself will be easy.

A Very Simple Workflow

In our simple workflow we'll assume that each task is carried out by one person at
a time, and that all tasks are done sequentially (i.e. none are done in parallel). So,
we'll look at the PPI Preliminary Investigation which, as you remember, maps to
the standard SugarCRM Opportunity. Also, in this example, we're going to have a
different person carrying out each one of the Investigation stages.

Setting up the Process Stages

If you look at SugarCRM then you'll see that by default none of the stages are related
to investigations — they're all named using standard CRM terms:

>~ Mass Update
| Update || Delete |

Assigned to: || Select
Type: —MNone— d |
Lead Source: —Mone— ;l
Investigation stage “None— e
Surveillance Start Date)
1 Prospecting
Qualification
Needs Analysis
| Calendar | Activities | Contacts ¥alue Propesition inary Investigati

Pr Id. Decision Makers aily Tasks | Bu
— Perception Analysis arly Tasks [Bug
Proposal/Price Quote
Negatiation/Review

Closad Won in Pl b
Closed Lost 921195 seconds)

Obviously the first thing to do is to decide what the preliminary investigation stages
actually are, and then map these to the SugarCRM stages. You'll realize that you'll
need to edit the custom/include/langauge/en_us.lang.php file:

Sapp list strings['sales stage dom']=array (
'Prospecting' => 'Fact Gathering',
'Qualification' => 'Witness and Subject Location',
'Needs Analysis' => 'Witness and Subject Interviews',
'Value Proposition' => 'Scene Investigation',

[222]

Chapter 9

'Id. Decision Makers' =>

'Perception Analysis' =>
'Proposal/Price Quote' =>

'Negotiation/Review' => 'Wiretapping',
'Closed Won'

'Closed Lost'

=>
=> 'Insufficient Evidence',

)i

Don't forget that you can also do this via Studio. However, once you've added your

'Full Investigation required',

'Financial and background Investigation',
'Document and evidence retrieval',
'Covert Camera surveillance',

mapping into custom/include/langauge/en_us.lang.php file, and refresh your

browser, then you'll see the new stages:

~ Mass Update
| Update || Delete]

Surveillance Start Date

Fact Gathering

Witness and Subject Location
Witness and Subject Interviews
ir | Activities | Contacts | Acco Scene [nvestigation

Projects |

Deocument and evidence retrieval
Covert Camera surveillance
Wiretapping

Full Investigation required

= Insufficient Evidence

Assigned to: || select |
Type: —Mone— ll

Lead Source: —Mone— i

Inve stigation stage —Maone— - P

Financial and background Investigation

Now that our stages are set up we need to know who'll be carrying out each one.

Deciding Who Does What

In our simple workflow there may not be the need to do anything further. Each

person just needs to know who does what next:

Preliminary Investigation Stage Investigator User Name
Fact Gathering Fran Varady varadyf
Witness and Subject Location William Monk monkw
Witness and Subject Interviews Charlotte Pitt pittc

Scene Investigation David Brock brockd
Financial and background Investigation Guido Brunetti brunettig
Document and evidence retrieval Luke Thanet thanetl

[223]

Developing a Custom Workflow within SugarCRM

Preliminary Investigation Stage Investigator User Name
Covert Camera surveillance Kurt Wallander wallanderk
Wiretapping Maisie Dobbs dobbsm
Full Investigation required Korora Blue bluek
Insufficient Evidence Korora Blue bluek

For example, once Kurt finishes the 'Covert Camera surveillance' stage then he just
needs to update the Preliminary Investigation so that the stage is set to 'Wiretapping'
and the assigned user as 'dobbsm’'.

However, things are rarely as simple as that. It's much more likely that:

¢ Investigations may be based on geographical locations, so that the above
table may only apply to investigations based in London. Investigations based
in New York follow the same process but with a different set of staff.

¢ On Mondays Fran does 'Witness and Subject Location' and William does
'Fact Gathering'.

This means, of course, that we need to be using some businesses rules.

Introducing Business Rules

We saw how to start implementing business rules in Chapter 4 when we made use of
SugarCRM's logic hooks, and it's those that we are going to make use of again. Just
to recap — you'll remember that there are six 'triggers' that will cause the logic hooks
to fire:

e after retrieve

e Dbefore save

e Dbefore delete

e after delete

e Dbefore undelete

e after undelete
And the logic hooks are stored in custom/modules/<module name>/logic_hook.php,
so for 'Preliminary Inquiries' this will be custom/modules/Opportunities/
logic_hook.php. You'll also remember, of course, that the logic hook file needs
to contain:

e The priority of the business rule

e The name of the businesses rule

[224]

Chapter 9

o The file containing the business rule
e The business rule class
e The business rule function

So, custom/modules/Opportunities/logic_hook.php needs to contain
something like:

<?php
#As always ensure that the file can only be accessed through SugarCRM
if (!defined('sugarEntry') || !sugarEntry) die(

'Not A Valid Entry Point');
Shook array = Array(); #Create an array
Shook array['before save'] = Array();
Shook array['before save'] [] = Array(l, 'ppi workflow',

'custom/include/ppi_workflow.php',
'ppi workflow', 'ppi workflow') ;

?>

Next we'll need the file that logic hook will be calling, but to start with this can
be very basic—so, custom/include/ppi_workflow.php just needs to contain
something like:

<?php
#Define the entry point
if (!defined('sugarEntry') || !sugarEntry) die(

'Not A Valid Entry Point');

#Load any required files
require once('data/SugarBean.php') ;
require once ('modules/Opportunities/Opportunity.php') ;

#Define the class
class ppi_workflow

{

function ppi workflow (&$bean, $event, S$arguments)

{

}

?>

With those two files set up as above nothing obvious will change in the operation
of SugarCRM — the logic hook will fire, but we haven't told it to do anything, and so
that what we'll do now.

[225]

Developing a Custom Workflow within SugarCRM

When the logic hook does run (i.e. when any Primary Investigation is saved) we
would want it to:

o Check to see what stage we're now at

e Define the assigned user accordingly

All of the relevant information (i.e. the new stage) is passed to the logic hook by
means of the $bean object, and we can obtain the stage from $bean->sales_stage.
Now all we have to do is combine this with PHP's switch statement into the
ppi_workflow function:

switch ($bean->sales_ stage)

case "Prospecting":

$assigned user = "varadyf";
break;

case "Qualification":
$assigned user = "monkw";
break;

case "Needs Analysis":
$assigned user = "pittc";
break;

case "Value Proposition":
$assigned user = "brockd";
break;

case "Id. Decision Makers":

$assigned user = "brunettig";
break;

case "Perception Analysis":
$assigned user = "thanetl";
break;

case "Proposal/Price Quote":
$assigned user = "wallanderk";
break;

case "Negotiation/Review":
$assigned user = "dobbsm";
break;

case "Closed Won":
$assigned user = "bluek";
break;

case "Closed Lost":
$assigned user = "bluek";
break;

[226]

Chapter 9

You'll notice from the code that we must use the original SugarCRM sales stage
terms and not our new mapping —that only appears on the screen.

Next we'll have to add the code to update $bean->assigned_user_id with the ID of
our new user:

global $db;

$sgl =

"select id from users where user name = '" . $Sassigned user ."'";
Sresult = $db->query($sql) ;
$bean->assigned user id = mysqgl result ($result,0,0);

With the code in place, if you now change the Investigation (or Sales) stage, and then
save the Preliminary Investigation (or Opportunity) then you'll see that the assigned
user is automatically updated for you.

However, this is still only a semi-automatic process — the correct person for the stage
is selected correctly, but only if the stage is selected manually. The process running
correctly still depends on someone telling SugarCRM what that next stage is.
Obviously the next step is to move from stage to stage automatically.

Completing the Automated Workflow

At the moment we're relying on a user telling the application which stage to move
to next. However, it would be much better for the user to tell SugarCRM that the
current stage has been completed, and then for the business rules to decide which
stage should be carried out next. We want to keep it simple and therefore an
'Investigation Stage Complete' checkbox will do the job.

[227]

Developing a Custom Workflow within SugarCRM

If you look at the edit view for any of the existing Opportunities then you'll see
that there's nothing that can really be renamed to represent our 'Investigation

Stage Complete":
Preliminary Investigations: ZX81 disappeared (7] Help
* Indicates required field
Inve stigation
MName *
Account Name: [Sinclair | Amount: *
: Select
Type: —Mone— - Expected Close Date: *2006-11-17 yyyy-mm-dd
Lead Source: | Email - Mext Step: |
Surveillance |Yes Investigation stage * | Fact Gathering R |
Required?
Assignedio: fvaradyf |[Select Probability (%): ko
Description:
Surveillance Yes v|
Started?

However, as we saw in Chapter 3, we can use the SugarCRM Studio to add the field

that we're going to need:

éPre liminary | |

Investigation Data Type: Checkbox b

o

W| Field Kame: }:hk_mmplete |
|Mame: * ![Field Label: [Ibl_chk_complete |
@hype: alp Text:

Zhyp ||| Help Text

_ T Default Value: [

:5’ |

:!:lL?@.?““".’.“' | Required Field: [~

[Fsurveillance | Audit 7: -

'Hfguired? | Het e

Asstgnedto { Duplicate Merge: | Disabled =
Clescription: |

an

[228]

Chapter 9

After adding the custom field itself we'll need to add text for the field label into
custom/modules/Opportunities/language/en us.lang.php:

$mod strings['lbl chk complete ¢ 10'] = "Investigation Stage
Completed";

And then we're ready to see the new edit view:

Preliminary Investigations: ZX81 disappeared 7] Help
* Indicates required field
Preliminary 7381 disappeared Currency: British Pounds : £ vi
Inve stigation Name *
Account Name: