

Swift	2	for	Absolute	Beginners

Gary	Bennett

Brad	Lees

Swift	2	for	Absolute	Beginners

Copyright	©	2015	by	Gary	Bennett	and	Brad	Lees

This	work	is	subject	to	copyright.	All	rights	are	reserved	by	the	Publisher,	whether
the	whole	or	part	of	the	material	is	concerned,	specifically	the	rights	of	translation,
reprinting,	reuse	of	illustrations,	recitation,	broadcasting,	reproduction	on	microfilms
or	in	any	other	physical	way,	and	transmission	or	information	storage	and	retrieval,
electronic	adaptation,	computer	software,	or	by	similar	or	dissimilar	methodology
now	known	or	hereafter	developed.	Exempted	from	this	legal	reservation	are	brief
excerpts	in	connection	with	reviews	or	scholarly	analysis	or	material	supplied
specifically	for	the	purpose	of	being	entered	and	executed	on	a	computer	system,	for
exclusive	use	by	the	purchaser	of	the	work.	Duplication	of	this	publication	or	parts
thereof	is	permitted	only	under	the	provisions	of	the	Copyright	Law	of	the
Publisher’s	location,	in	its	current	version,	and	permission	for	use	must	always	be
obtained	from	Springer.	Permissions	for	use	may	be	obtained	through	RightsLink	at
the	Copyright	Clearance	Center.	Violations	are	liable	to	prosecution	under	the
respective	Copyright	Law.

ISBN-13	(pbk):	978-1-4842-1489-3

ISBN-13	(electronic):	978-1-4842-1488-6

Trademarked	names,	logos,	and	images	may	appear	in	this	book.	Rather	than	use	a
trademark	symbol	with	every	occurrence	of	a	trademarked	name,	logo,	or	image	we
use	the	names,	logos,	and	images	only	in	an	editorial	fashion	and	to	the	benefit	of	the
trademark	owner,	with	no	intention	of	infringement	of	the	trademark.

The	use	in	this	publication	of	trade	names,	trademarks,	service	marks,	and	similar
terms,	even	if	they	are	not	identified	as	such,	is	not	to	be	taken	as	an	expression	of
opinion	as	to	whether	or	not	they	are	subject	to	proprietary	rights.

While	the	advice	and	information	in	this	book	are	believed	to	be	true	and	accurate	at
the	date	of	publication,	neither	the	authors	nor	the	editors	nor	the	publisher	can
accept	any	legal	responsibility	for	any	errors	or	omissions	that	may	be	made.	The
publisher	makes	no	warranty,	express	or	implied,	with	respect	to	the	material
contained	herein.

Managing	Director:	Welmoed	Spahr

Lead	Editor:	Michelle	Lowman

Development	Editor:	Douglas	Pundick

Technical	Reviewer:	Stefan	Kaczmarek

Editorial	Board:	Steve	Anglin,	Louise	Corrigan,	James	DeWolf,	Jonathan
Gennick,	Robert	Hutchinson,	Michelle	Lowman,	James	Markham,
Susan	McDermott,	Matthew	Moodie,	Jeffrey	Pepper,	Douglas
Pundick,	Ben	Renow-Clarke,	Gwenan	Spearing,	Steve	Weiss

Coordinating	Editors:	Kevin	Walter	and	Mark	Powers

Copy	Editor:	Kezia	Endsley

Compositor:	SPi	Global

Indexer:	SPi	Global

Artist:	SPi	Global

Distributed	to	the	book	trade	worldwide	by	Springer	Science+Business	Media	New
York,	233	Spring	Street,	6th	Floor,	New	York,	NY	10013.	Phone	1-800-SPRINGER,
fax	(201)	348-4505,	e-mail	orders-ny@springer-sbm.com,	or	visit
www.springeronline.com.	Apress	Media,	LLC	is	a	California	LLC	and	the
sole	member	(owner)	is	Springer	Science	+	Business	Media	Finance	Inc	(SSBM
Finance	Inc).	SSBM	Finance	Inc	is	a	Delaware	corporation.

For	information	on	translations,	please	e-mail	rights@apress.com,	or	visit
www.apress.com.

Apress	and	friends	of	ED	books	may	be	purchased	in	bulk	for	academic,	corporate,
or	promotional	use.	eBook	versions	and	licenses	are	also	available	for	most	titles.	For
more	information,	reference	our	Special	Bulk	Sales–eBook	Licensing	web	page	at
www.apress.com/bulk-sales.

Any	source	code	or	other	supplementary	material	referenced	by	the	author	in	this	text
is	available	to	readers	at	www.apress.com/9781484214893	or
http://forum.xcelme.com.	For	detailed	information	about	how	to	locate	your
book’s	source	code,	go	to	www.apress.com/source-code/.	Readers	can	also
access	source	code	at	SpringerLink	in	the	Supplementary	Material	section	for	each
chapter.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484214893
http://http://forum.xcelme.com
http://www.apress.com/source-code/

Gary	would	like	to	dedicate	this	book	to	wife	Stefanie	and	children,
Michael,	Danielle,	Michelle,	and	Emily,	for	always	supporing	him.

Brad	would	like	to	dedicate	this	book	to	his	wife	Natalie,	for	always
supporting	him.	He	couldn’t	do	it	without	her.

Contents	at	a	Glance
About	the	Authors

About	the	Technical	Reviewer

Acknowledgments

Introduction

	Chapter	1:	Becoming	a	Great	iOS	Developer

	Chapter	2:	Programming	Basics

	Chapter	3:	It’s	All	About	the	Data

	Chapter	4:	Making	Decisions,	Program	Flow,	and	App	Design

	Chapter	5:	Object-Oriented	Programming	with	Swift

	Chapter	6:	Learning	Swift	and	Xcode

	Chapter	7:	Swift	Classes,	Objects,	and	Methods

	Chapter	8:	Programming	Basics	in	Swift

	Chapter	9:	Comparing	Data

	Chapter	10:	Creating	User	Interfaces

	Chapter	11:	Storing	Information

	Chapter	12:	Protocols	and	Delegates

	Chapter	13:	Introducing	the	Xcode	Debugger

	Chapter	14:	A	Swift	iPhone	App

	Chapter	15:	Apple	Watch	and	watchKit

	Chapter	16:	A	Swift	HealthKit	iPhone	App

Index

Contents
About	the	Authors

About	the	Technical	Reviewer

Acknowledgments

Introduction

	Chapter	1:	Becoming	a	Great	iOS	Developer

Thinking	Like	a	Developer

Completing	the	Development	Cycle

Introducing	Object-Oriented	Programming

Working	with	the	Playground	Interface

Summary

What’s	Next

Exercises

	Chapter	2:	Programming	Basics

Touring	Xcode
Exploring	the	Workspace	Window

Navigating	Your	Workspace

Editing	Your	Project	Files

Creating	Your	First	Swift	Playground	Program
Installing	and	Launching	Xcode	7

Using	Xcode	7

Xcode	Playground	IDE:	Editor	and	Results	Areas

Summary

Exercise

	Chapter	3:	It’s	All	About	the	Data

Numbering	Systems	Used	in	Programming
Bits

Bytes

Hexadecimal

Unicode

Data	Types

Declaring	Constants	and	Variables

Optionals

Using	Variables	in	Playgrounds

Summary

Exercises

	Chapter	4:	Making	Decisions,	Program	Flow,	and	App	Design

Boolean	Logic
Truth	Tables

Comparison	Operators

Designing	Apps
Pseudocode

Optionals	and	Forced	Unwrapping

Flowcharting

Designing	and	Flowcharting	an	Example	App

The	App’s	Design

Using	Loops	to	Repeat	Program	Statements

Coding	the	Example	App	in	Swift
Nested	if	Statements	and	else	if	Statements

Removing	Extra	Characters

Improving	the	Code	Through	Refactoring

Running	the	App

Design	Requirements

Summary

Exercises

	Chapter	5:	Object-Oriented	Programming	with	Swift

The	Object

What	Is	a	Class?

Planning	Classes
Planning	Properties

Planning	Methods

Implementing	the	Classes

Inheritance

Why	Use	OOP?
OOP	Is	Everywhere

Eliminate	Redundant	Code

Ease	of	Debugging

Ease	of	Replacement

Advanced	Topics
Interface

Polymorphism

Summary

Exercises

	Chapter	6:	Learning	Swift	and	Xcode

A	Newcomer

Understanding	the	Language	Symbols

Implementing	Objects	in	Swift

Writing	Another	Program	in	Xcode
Creating	the	Project

Summary

Exercises

	Chapter	7:	Swift	Classes,	Objects,	and	Methods

Creating	a	Swift	Class
Instance	Variables

Methods

Using	Your	New	Class
Creating	Your	Project

Adding	Objects

Writing	the	Class

Creating	the	User	Interface

Hooking	Up	the	Code

Running	the	Program

Taking	Class	Methods	to	the	Next	Level

Accessing	the	Xcode	Documentation

Summary

Exercises

	Chapter	8:	Programming	Basics	in	Swift

Using	let	vs.	var

Understanding	Collections

Using	Arrays

Using	the	Dictionary	Class

Creating	the	BookStore	Application
Creating	Your	Class

Introducing	Properties

Accessing	Variables

Finishing	the	BookStore	Program
Creating	the	View

Adding	Properties

Adding	a	Description

Creating	a	Simple	Data	Model	Class

Modifying	MasterViewController

Modifying	the	DetailViewController

Summary

Exercises

	Chapter	9:	Comparing	Data

Revisiting	Boolean	Logic

Using	Relational	Operators
Comparing	Numbers

Creating	an	Example	Xcode	App

Using	Boolean	Expressions
Comparing	Strings

Using	the	switch	Statement
Comparing	Dates

Combining	Comparisons

Summary

Exercises

	Chapter	10:	Creating	User	Interfaces

Understanding	Interface	Builder

The	Model-View-Controller	Pattern

Human	Interface	Guidelines

Creating	an	Example	iPhone	App	with	Interface	Builder
Using	Interface	Builder

The	Document	Outline

The	Library

Inspector	Pane	and	Selector	Bar

Creating	the	View

Using	Outlets

Using	Actions

The	Class

Summary

Exercises

	Chapter	11:	Storing	Information

Storage	Considerations

Preferences
Writing	Preferences

Reading	Preferences

Databases

Storing	Information	in	a	Database

Getting	Started	with	Core	Data

The	Model
Managed	Object	Context

Setting	Up	the	Interface

Summary

Exercises

	Chapter	12:	Protocols	and	Delegates

Multiple	Inheritance

Understanding	Protocols

Protocol	Syntax

Delegation

Protocol	and	Delegation	Example

Getting	Started

How	It	Works

Summary

Exercise

	Chapter	13:	Introducing	the	Xcode	Debugger

Getting	Started	with	Debugging
Setting	Breakpoints

Using	the	Breakpoint	Navigator

Debugging	Basics

Working	with	the	Debugger	Controls

Using	the	Step	Controls
Looking	at	the	Thread	Window	and	Call	Stack

Debugging	Variables

Dealing	with	Code	Errors	and	Warnings
Errors

Warnings

Summary

	Chapter	14:	A	Swift	iPhone	App

Let’s	Get	Started

App	Summary

Exercises

	Chapter	15:	Apple	Watch	and	watchKit

Considerations	When	Creating	a	watchOS	App

Creating	an	Apple	Watch	App

Adding	More	Functionality

Summary

Exercises

	Chapter	16:	A	Swift	HealthKit	iPhone	App

Introduction	to	Core	Bluetooth
Central	and	Peripheral	Devices

Peripheral	Advertising

Peripheral	Data	Structure

Let’s	Get	Started	and	Build	the	App

App	Summary

What’s	Next?

Exercises

Index

About	the	Authors

Gary	Bennett	is	president	of	xcelMe.com,	which	provides	iOS	programming	courses
online.	By	day,	Gary	develops	iOS	apps	professionally,	and	by	night,	he	teaches	iOS
programming.	For	more	than	six	years,	Gary	has	taught	thousands	of	students	how	to
develop	iPhone/iPad	apps	and	has	several	popular	apps	in	the	iTunes	App	Store.	Gary	has
a	bachelor’s	degree	in	computer	science	and	has	worked	for	25	years	in	the	technology
and	defense	industries.	He	served	10	years	in	the	U.S.	Navy	as	a	nuclear	engineer	aboard
two	nuclear	submarines.	After	leaving	the	Navy,	Gary	worked	for	several	companies	as	a
software	developer,	CIO,	and	president.	As	CIO,	he	helped	take	VistaCare	public	in	2002.
Gary	also	coauthored	two	editions	of	Objective-C	for	Absolute	Beginners	and	iPhone	Cool
Projects	for	Apress.	He	lives	in	Scottsdale,	Arizona,	with	his	wife	Stefanie	and	their	four
children.

http://www.xcelMe.com

Brad	Lees	has	more	than	16	years	of	experience	in	application	development	and	server
management.	He	has	specialized	in	creating	and	initiating	software	programs	in	financial
institutions,	credit	card	processing,	point-of-sale	systems,	and	real	estate	development.

His	professional	career	highlights	have	been	lead	iOS	developer	at	Apriva,	owner	of
Innovativeware,	product	development	manager	for	Smarsh,	and	vice	president	of
application	development	for	iNation.	Brad	also	coauthored	two	editions	of	Objective-C	for
Absolute	Beginners.

A	graduate	of	Arizona	State	University,	Brad	resides	in	Phoenix	with	his	wife	Natalie	with
their	five	children.

About	the	Technical	Reviewer

Stefan	Kaczmarek	has	more	than	15	years	of	software	development	experience
specializing	in	mobile	applications,	large-scale	software	systems,	project	management,
network	protocols,	encryption	algorithms,	and	audio/video	codecs.	As	chief	software
architect	and	cofounder	of	SKJM,	LLC,	Stefan	developed	a	number	of	successful	mobile
applications	including	iCam	(which	has	been	featured	on	CNN,	Good	Morning	America,
and	The	Today	Show,	and	which	was	chosen	by	Apple	to	be	featured	in	the	“Dog	Lover”
iPhone	3GS	television	commercial)	and	iSpy	Cameras	(which	held	the	#1	Paid	iPhone
App	ranking	in	a	number	of	countries	around	the	world	including	the	United	Kingdom,
Ireland,	Italy,	Sweden,	and	South	Korea).	Stefan	resides	in	Phoenix,	Arizona	with	his	wife
Veronica	and	their	two	children.

Acknowledgments
We	would	like	to	thank	Apress	for	all	their	help	in	making	this	book	possible.	Specifically,
we	would	like	to	thank	Kevin	Walter,	our	coordinating	editor,	and	Michelle	Lowman,	our
acquisitions	editor,	for	helping	us	stay	focused	and	overcoming	many	obstacles.	Without
Kevin	and	Michelle,	this	book	would	not	have	been	possible.

Special	thanks	to	Douglas	Pundick,	our	development	editor,	for	all	his	suggestions	during
the	editorial	review	process	to	help	make	this	a	great	book.	Thanks	to	Kezia	Endsley,	the
copy	editor,	who	made	the	book	look	great.

Introduction
Over	the	past	three	years,	we’ve	heard	the	following	countless	times:

“I’ve	never	programmed	before,	but	I	have	a	great	idea	for	an
iPhone/iPad	app.”

“Can	I	really	learn	to	program	the	iPhone	or	iPad?”

To	the	latter	we	answer,	“Yes,	but	you	have	to	believe	you	can.”	Only	you	are	going	to	tell
yourself	you	can’t	do	it.

For	the	Newbie
This	book	assumes	you	have	never	programmed	before.	The	book	is	also	written	for
someone	who	may	have	programmed	before	but	never	using	object-oriented	programming
(OOP)	languages.	There	are	several	Swift	books	out	there,	but	all	of	these	books	assume
you	have	programmed	before	and	know	OOP	and	computer	logic.	We	wanted	to	write	a
book	that	takes	readers	from	knowing	little	or	nothing	about	computer	programming	and
logic	to	being	able	to	program	in	Swift.	After	all,	Swift	is	a	native	programming	language
for	the	iPhone,	iPad,	and	Mac.

Over	the	past	six	years,	we	have	taught	thousands	of	students	at	xcelMe.com	to	be
iPhone/iPad	(iOS)	developers.	Many	of	our	students	have	developed	some	of	the	most
successful	iOS	apps	in	their	category	in	the	iTunes	App	Store.	We	have	incorporated	what
we	have	learned	in	our	first	two	courses—Introduction	to	Object-Oriented	Programming
and	Logic	and	Swift	for	iPhone/iPad	Developers—into	this	book.

For	the	More	Experienced
Many	developers	who	programmed	years	ago	or	programmed	in	a	non-OOP	language
need	a	background	in	OOP	and	logic	before	they	dive	into	Swift.	This	book	is	for	you.	We
gently	walk	you	through	OOP	and	how	it	is	used	in	iOS	development	to	help	make	you	a
successful	iOS	developer.

How	This	Book	Is	Organized
You’ll	notice	that	we	are	all	about	successes	in	this	book.	We	introduce	the	OOP	and	logic
concepts	in	playgrounds	and	then	move	those	concepts	to	Xcode	and	Swift.	Many	students
are	visual	learners	or	learn	by	doing.	We	use	both	techniques.	We’ll	walk	you	through
topics	and	concepts	with	visual	examples	and	then	take	you	through	step-by-step
examples	that	reinforce	the	concepts.

We	often	repeat	topics	in	different	chapters	to	reinforce	what	you	have	learned	and	apply
these	skills	in	new	ways.	This	enables	new	programmers	to	reapply	development	skills

http://www.xcelMe.com

and	feel	a	sense	of	accomplishment	as	they	progress.	Don’t	worry	if	you	feel	you	haven’t
mastered	a	topic.	Keep	moving	forward!

The	Formula	for	Success
Learning	to	program	is	an	interactive	process	between	your	program	and	you.	Just	like
learning	to	play	an	instrument,	you	have	to	practice.	You	must	work	through	the	examples
and	exercises	in	this	book.	Understanding	the	concept	doesn’t	mean	you	know	how	to
apply	it	and	use	it.

You	will	learn	a	lot	from	this	book.	You	will	learn	a	lot	from	working	through	the
exercises	in	this	book.	However,	you	will	really	learn	when	you	debug	your	programs.
Spending	time	walking	through	your	code	and	trying	to	find	out	why	it	is	not	working	the
way	you	want	is	an	unparalleled	learning	process.	The	downside	of	debugging	is	that	a
new	developer	can	find	it	frustrating.	If	you	have	never	wanted	to	throw	your	computer
out	the	window,	you	will.	You	will	question	why	you	are	doing	this	and	whether	you	are
smart	enough	to	solve	the	problem.	Programming	is	humbling,	even	for	the	most
experienced	developer.

Like	a	musician,	the	more	you	practice,	the	better	you	get.	By	practicing,	we	mean
programming!	You	can	do	some	amazing	things	as	a	programmer.	The	world	is	your
oyster.	Seeing	your	app	in	the	iTunes	App	Store	is	one	of	the	most	satisfying
accomplishments.	However,	there	is	a	price,	and	that	price	is	time	spent	coding	and
learning.

Having	taught	many	students	to	become	iOS	developers,	we	have	put	together	a	formula
for	what	makes	students	successful.	Here	is	our	formula	for	success:

Believe	you	can	do	it.	You’ll	be	the	only	one	who	says	you	can’t	do
this.	So,	don’t	tell	yourself	that.

Work	through	all	the	examples	and	exercises	in	this	book.

Code,	code,	and	keep	coding.	The	more	you	code,	the	better	you’ll
get.

Be	patient	with	yourself.	If	you	were	fortunate	enough	to	have	been	a
4.0	student	who	could	memorize	material	just	by	reading	it,	this	will
not	happen	with	Swift	coding.	You	are	going	to	have	to	spend	time
coding.

You	learn	by	reading	this	book.	You	really	learn	by	debugging	your
code.

Use	the	free	xcelMe.com	webinars	and	YouTube	videos
mentioned	at	the	end	of	this	introduction.	The	free	live	and	recorded
training	videos	will	be	invaluable	in	quickly	becoming	a	successful
iOS	developer.

Don’t	give	up!

http://www.xcelMe.com

The	Development	Technology	Stack
We	will	walk	you	through	the	development	process	for	your	iOS	apps	and	what
technology	you	need.	However,	briefly	looking	at	all	the	technology	pieces	together	is
helpful.	These	are	the	key	iOS	development	technologies	you	will	need	to	know	in	order
to	build	a	successful	app	and	get	it	on	the	App	Store:

Apple’s	developer	web	site

iTunes	Connect

Xcode

Swift

Object-oriented	programming	and	logic

Debugging

Performance	tuning

We	know	this	is	a	lot	of	technology.	Don’t	worry,	we	will	go	through	it,	and	you	will
become	comfortable	using	it.

Required	Software,	Materials,	and
Equipment
One	of	the	great	things	about	developing	iOS	apps	is	that	everything	you	need	to	develop
your	app	is	free.

Xcode

Swift

OSX	10.10	Yosemite

Integrated	development	environment

iPhone	and	iPad	simulators

All	you	need	to	get	started	is	a	Mac	and	knowledge	of	where	to	download	everything.	We
will	cover	this.

Operating	System	and	IDE
When	developing	iOS	apps,	you	have	to	use	Xcode	and	Mac	OS	X.	You	can	download
both	of	these	for	free	from	the	Mac	App	Store.

Software	Development	Kits
You	will	need	to	register	as	an	iOS	developer.	You	can	do	this	for	free	at
http://developer.apple.com/iphone.

When	you	are	ready	to	upload	your	app	to	the	iTunes	App	Store,	you	will	need	to	pay	$99
per	year	in	order	to	access	iTunes	Connect	and	upload	your	apps	to	the	App	Store.

http://developer.apple.com/iphone

Dual	Monitors
We	recommend	developers	have	a	second	monitor	connected	to	their	computers.	It	is	great
to	step	through	your	code	and	watch	your	output	window	and	iOS	simulator	at	the	same
time	on	dual	independent	monitors.

Apple	hardware	makes	this	easy.	Just	plug	your	second	monitor	into	the	display	port	of
any	Mac,	with	the	correct	Mini	DisplayPort	adapter,	and	you	have	two	monitors	working
independently	of	one	another.	Note	that	dual	monitors	are	not	required.	You	will	just	have
to	organize	your	open	windows	to	fit	on	your	screen	if	you	don’t.

FREE	LIVE	WEBINARS,	Q&A,	AND	YOUTUBE	VIDEOS

Every	Monday	night	at	5:30	p.m.	Pacific	time,	we	have	live	webinars	and	discuss	a
topic	from	the	book	or	a	timely	item	of	interest.	These	webinars	are	free,	and	you	can
register	for	them	at	www.xcelme.com/latest-videos/.

http://www.xcelme.com/latest-videos/

At	the	end	of	the	webinars,	we	do	a	Q&A.	You	can	ask	a	question	on	the	topic
discussed	or	on	any	topic	in	the	book.

Additionally,	all	these	webinars	are	recorded	and	available	on	YouTube.	Make	sure
you	subscribe	to	the	YouTube	channel	so	you	are	notified	when	new	recordings	are
uploaded.

Free	Book	Forum
We	have	developed	an	online	forum	for	this	book	at	http://forum.xcelme.com,
where	you	can	ask	questions	while	you	are	learning	Swift	and	get	answers	from	the
authors.	Also,	Apple	makes	frequent	changes	to	the	programming	language	and	SDK.	We
try	our	best	to	make	sure	any	changes	affecting	the	book	are	updated	on	the	forum	along
with	any	significant	text	or	code	changes.

You	can	download	the	source	code	from	the	chapters	on	this	forum	too.

http://forum.xcelme.com

Chapter				1

Becoming	a	Great	iOS	Developer
Now	that	you’re	ready	to	become	a	software	developer	and	have	read	the	introduction	of
this	book,	you	need	to	become	familiar	with	several	key	concepts.	Your	computer	program
will	do	exactly	what	you	tell	it	to	do—no	more	and	no	less.	It	will	follow	the
programming	rules	that	were	defined	by	the	operating	system	and	the	Swift	programming
language.	Your	program	doesn’t	care	if	you	are	having	a	bad	day	or	how	many	times	you
ask	it	to	perform	something.	Often,	what	you	think	you’ve	told	your	program	to	do	and
what	it	actually	does	are	two	different	things.

Key	To	Success		If	you	haven’t	already,	take	a	few	minutes	to	read	the
introduction	of	this	book.	The	introduction	shows	you	where	to	go	to	access	the
free	webinars,	forums,	and	YouTube	videos	that	go	with	each	chapter.	Also,
you’ll	better	understand	why	this	book	uses	the	Swift	playground	programming
environment	and	how	to	be	successful	in	developing	your	iOS	apps.

Depending	on	your	background,	working	with	something	absolutely	black	and	white	may
be	frustrating.	Many	times,	programming	students	have	lamented,	“That’s	not	what	I
wanted	it	to	do!”	As	you	begin	to	gain	experience	and	confidence	in	programming,	you’ll
begin	to	think	like	a	programmer.	You	will	understand	software	design	and	logic,	and	you
will	experience	having	your	programs	perform	exactly	as	you	want	and	the	satisfaction
associated	with	this.

Thinking	Like	a	Developer
Software	development	involves	writing	a	computer	program	and	then	having	a	computer
execute	that	program.	A	computer	program	is	the	set	of	instructions	that	you	want	the
computer	to	perform.	Before	beginning	to	write	a	computer	program,	it	is	helpful	to	list
the	steps	that	you	want	your	program	to	perform	in	the	order	you	want	them
accomplished.	This	step-by-step	process	is	called	an	algorithm.

If	you	want	to	write	a	computer	program	to	toast	a	piece	of	bread,	you	would	first	write	an
algorithm.	This	algorithm	might	look	something	like	this:

1.	 Take	the	bread	out	of	the	bag.

2.	 Place	the	bread	in	the	toaster.

3.	 Press	the	toast	button.

4.	 Wait	for	the	toast	to	pop	up.

5.	 Remove	the	toast	from	the	toaster.

At	first	glance,	this	algorithm	seems	to	solve	the	problem.	However,	the	algorithm	leaves

out	many	details	and	makes	many	assumptions.	Here	are	some	examples:

What	kind	of	toast	does	the	user	want?	Does	the	user	want	white
bread,	wheat	bread,	or	some	other	kind	of	bread?

How	does	the	user	want	the	bread	toasted?	Light	or	dark?

What	does	the	user	want	on	the	bread	after	it	is	toasted:	butter,
margarine,	honey,	or	strawberry	jam?

Does	this	algorithm	work	for	all	users	in	their	cultures	and
languages?	Some	cultures	may	have	another	word	for	toast	or	not
know	what	toast	is.

Now,	you	might	be	thinking	this	is	getting	too	detailed	for	making	a	simple	toast	program.
Over	the	years,	software	development	has	gained	a	reputation	of	taking	too	long,	costing
too	much,	and	not	being	what	the	user	wants.	This	reputation	came	to	be	because
computer	programmers	often	start	writing	their	programs	before	they	have	actually
thought	through	their	algorithms.

The	key	ingredients	to	making	successful	applications	are	design	requirements.	Design
requirements	can	be	formal	and	detailed	or	simple	like	a	list	on	a	piece	of	paper.	Design
requirements	are	important	because	they	help	the	developer	flesh	out	what	the	application
should	do	and	not	do	when	complete.	Design	requirements	should	not	be	completed	in	a
programmer’s	vacuum,	but	should	be	produced	as	the	result	of	collaboration	between
developers,	users,	and	customers.

Another	key	ingredient	to	your	successful	app	is	the	user	interface	(UI)	design.	Apple
recommends	you	spend	more	than	50	percent	of	the	entire	development	process	focusing
on	the	UI	design.	The	design	can	be	done	using	simple	pencil	and	paper	or	using	Xcode’s
storyboard	feature	to	lay	out	your	screen	elements.	Many	software	developers	start	with
the	UI	design,	and	after	laying	out	all	the	screen	elements	and	having	many	users	look	at
paper	mock-ups,	they	then	write	the	design	requirements	from	their	screen	layouts.

Note		If	you	take	anything	away	from	this	chapter,	take	away	the	importance	of
considering	design	requirements	and	user	interface	design	before	starting
software	development.	This	is	the	most	effective	(and	least	expensive)	use	of
time	in	the	software	development	cycle.	Using	a	pencil	and	eraser	is	a	lot	easier
and	faster	than	making	changes	to	code	because	you	didn’t	have	others	look	at
the	designs	before	starting	to	program.

After	you	have	done	your	best	to	flesh	out	all	the	design	requirements,	laid	out	all	the	user
interface	screens,	and	had	the	clients	or	potential	customers	look	at	your	design	and	give
you	feedback,	you	can	begin	coding.	Once	coding	begins,	design	requirements	and	user
interface	screens	can	change,	but	the	changes	are	typically	minor	and	easily
accommodated	by	the	development	process.	See	Figures	1-1	and	1-2.

Figure	1-1.	This	is	a	UI	mock-up	of	the	account	balance	screen	for	an	iPhone	mobile	banking	app	before	development
begins	on	the	original	iPhone	in	2010.	This	UI	design	mock-up	was	completed	using	OmniGraffle

Figure	1-2.	This	is	a	completed	iPhone	mobile	banking	application	as	it	appeared	on	the	App	Store	after	several
revisions	in	2015.	This	app	is	called	Woodforest	Mobile	Banking

Figure	1-1	shows	a	mock-up	of	a	mobile	banking	app	screen	prior	to	development.

Developing	mock-up	screens	along	with	design	requirements	forces	developers	to	think
through	many	of	the	application’s	usability	issues	before	coding	begins.	This	enables	the
application	development	time	to	be	shortened	and	makes	for	a	better	user	experience	and
better	reviews	on	the	App	Store.	Figure	1-2	shows	how	the	view	for	the	mobile	banking
app	appears	when	completed.

Completing	the	Development	Cycle
Now	that	you	have	the	design	requirements	and	user	interface	designs	and	have	written
your	program,	what’s	next?	After	programming,	you	need	to	make	sure	your	program
matches	the	design	requirements	and	user	interface	design	and	ensure	that	there	are	no
errors.	In	programming	vernacular,	errors	are	called	bugs.	Bugs	are	undesired	results	of
your	programming	and	must	be	fixed	before	the	app	is	released	to	the	App	Store.	The
process	of	finding	bugs	in	programs	and	making	sure	the	program	meets	the	design
requirements	is	called	testing.	Typically,	someone	who	is	experienced	in	software	testing
methodology	and	who	didn’t	write	the	app	performs	this	testing.	Software	testing	is
commonly	referred	to	as	quality	assurance	(QA).

Note		When	an	application	is	ready	to	be	submitted	to	the	App	Store,	Xcode
gives	the	file	an	.app	or	.ipa	extension,	for	example,	appName.app.	That
is	why	iPhone,	iPad,	and	Mac	applications	are	called	apps.	This	book	uses
program,	application,	and	app	to	mean	the	same	thing.

During	the	testing	phase,	the	developer	will	need	to	work	with	the	QA	staff	to	determine
why	the	application	is	not	working	as	designed.	The	process	is	called	debugging.	It
requires	the	developer	to	step	through	the	program	to	find	out	why	the	application	is	not
working	as	designed.	Figure	1-3	shows	the	complete	software	development	cycle.

Figure	1-3.	The	typical	software	development	cycle

Frequently	during	testing	and	debugging,	changes	to	the	requirements	(design)	must	occur
to	make	the	application	more	usable	for	the	customers.	After	the	design	requirements	and
user	interface	changes	are	made,	the	process	starts	again.

At	some	point,	the	application	that	everyone	has	been	working	so	hard	on	must	be	shipped
to	the	App	Store.	Many	considerations	are	taken	into	account	as	to	when	in	the	cycle	this
happens:

Cost	of	development

Budget

Stability	of	the	application

Return	on	investment

There	is	always	the	give	and	take	between	developers	and	management.	Developers	want
the	app	to	be	perfect,	and	management	wants	to	start	realizing	revenue	from	the
investment	as	soon	as	possible.	If	the	release	date	were	left	up	to	the	developers,	the	app
would	likely	never	ship	to	the	App	Store.	Developers	would	continue	to	tweak	the	app
forever,	making	it	faster,	more	efficient,	and	more	usable.	At	some	point,	however,	the
code	needs	to	be	pried	from	the	developers’	hands	and	uploaded	to	the	App	Store	so	it	can
do	what	it	was	meant	to	do.

Introducing	Object-Oriented
Programming
As	discussed	in	detail	in	the	introduction,	playgrounds	enable	you	to	focus	on	object-
oriented	programming	(OOP)	without	having	to	cover	all	the	Swift	programming	syntax
and	complex	Xcode	development	environment	in	one	big	step.	Instead,	you	can	focus	on
learning	the	basic	principles	of	OOP	and	using	those	principles	quickly	to	write	your	first
programs.

For	decades,	developers	have	been	trying	to	figure	out	a	better	way	to	develop	code	that	is
reusable,	manageable,	and	easily	maintained	over	the	life	of	a	project.	OOP	was	designed
to	help	achieve	code	reuse	and	maintainability	while	reducing	the	cost	of	software
development.

OOP	can	be	viewed	as	a	collection	of	objects	in	a	program.	Actions	are	performed	on
these	objects	to	accomplish	the	design	requirements.

An	object	is	anything	that	can	be	acted	on.	For	example,	an	airplane,	person,	or
screen/view	on	the	iPad	can	all	be	objects.	You	may	want	to	act	on	the	plane	by	making
the	plane	bank.	You	may	want	the	person	to	walk	or	to	change	the	color	of	the	screen	of	an
app	on	the	iPad.

Playgrounds	execute	your	code	as	you	complete	each	line,	such	as	the	one	shown	in
Figure	1-4.	When	you	run	your	playground	applications,	the	user	can	apply	actions	to	the
objects	in	your	application.	Xcode	is	an	integrated	development	environment	(IDE)	that

enables	you	to	run	your	application	from	within	your	programming	environment.	You	can
test	your	applications	on	your	computer	first	before	running	them	on	your	iOS	devices	by
running	the	apps	in	Xcode’s	simulator,	as	shown	in	Figure	1-5.

Figure	1-4.	There	are	multiple	objects	in	this	playground	view

Figure	1-5.	This	sample	iPhone	app	contains	a	table	object	to	organize	a	list	of	tech	toys.	Actions	such	as	“rotate	left”
or	“user	did	select	row	3”	can	be	applied	to	this	object

Actions	that	are	performed	on	objects	are	called	methods.	Methods	manipulate	objects	to
accomplish	what	you	want	your	app	to	do.	For	example,	for	a	jet	object,	you	might	have
the	following	methods:

goUp
goDown
bankLeft
turnOnAfterburners
lowerLandingGear

The	table	object	in	Figure	1-5	is	actually	called	UITableView	when	you	use	it	in	a
program,	and	it	could	have	the	following	methods:

numberOfRowsInSection
cellForRowAtIndexPath
canEditRowAtIndexPath
commitEditingStyle
didSelectRowAtIndexPath

Most	objects	have	data	that	describes	those	objects.	This	data	is	defined	as	properties.

Each	property	describes	the	associated	object	in	a	specific	way.	For	example,	the	jet
object’s	properties	might	be	as	follows:

altitude	=	10,000	feet
heading	=	North
speed	=	500	knots
pitch	=	10	degrees
yaw	=	20	degrees
latitude	=	33.575776
longitude	=	-111.875766

For	the	UITableView	object	in	Figure	1-5,	the	following	might	be	the	properties:

backGroundColor	=	Red
selectedRow	=	3
animateView	=	No

An	object’s	properties	can	be	changed	at	any	time	when	your	program	is	running,	when
the	user	interacts	with	the	app,	or	when	the	programmer	designs	the	app	to	accomplish	the
design	requirements.	The	values	stored	in	the	properties	of	an	object	at	a	specific	time	are
collectively	called	the	state	of	an	object.

State	is	an	important	concept	in	computer	programming.	When	teaching	students	about
state,	we	ask	them	to	go	over	to	a	window	and	find	an	airplane	in	the	sky.	We	then	ask
them	to	snap	their	fingers	and	make	up	some	of	the	values	that	the	plane’s	properties
might	have	at	that	specific	time.	Those	values	might	be	as	follows:

altitude	=	10,000	feet
latitude	=	33.575776
longitude	=	-111.875766

Those	values	represent	the	state	of	the	object	at	the	specific	time	that	they	snapped	their
fingers.

After	waiting	a	couple	minutes,	we	ask	the	students	to	find	that	same	plane,	snap	their
fingers	again,	and	record	the	plane’s	possible	state	at	that	specific	point	in	time.

The	values	of	the	properties	might	then	be	something	like	the	following:

altitude	=	10,500	feet
latitude	=	33.575665
longitude	=	-111.875777

Notice	how	the	state	of	the	object	changes	over	time.

Working	with	the	Playground	Interface
Playgrounds	offer	a	great	approach	in	using	the	concepts	just	discussed	without	all	the
complexity	of	learning	Xcode	and	the	Swift	language	at	the	same	time.	It	takes	only	a	few

minutes	to	familiarize	yourself	with	the	playground	interface	and	begin	writing	a	program.

Technically	speaking,	the	playground	interface	is	not	a	true	IDE	like	you	will	be	using	to
write	your	iOS	apps,	but	it	is	pretty	close	and	much	easier	to	learn	in.	A	true	IDE
combines	code	development,	user	interface	layout,	debugging	tools,	documentation,	and
simulator/console	launching	for	a	single	application;	see	Figure	1-6.	However,
playgrounds	offer	a	similar	look,	feel,	and	features	to	the	Xcode	IDE	you	develop	apps
with.

Figure	1-6.	The	Xcode	IDE	with	the	iPhone	simulator

In	the	next	chapter,	you	will	go	through	the	playground	interface	and	write	your	first
program.

Summary
Congratulations,	you	have	finished	the	first	chapter	of	this	book.	It	is	important	that	you
have	an	understanding	of	the	following	terms	because	they	will	be	reinforced	throughout
this	book:

Computer	program

Algorithm

Design	requirements

User	interface

Bug

Quality	assurance	(QA)

Debugging

Object-oriented	programming	(OOP)

Object

Property

Method

State	of	an	object

Integrated	development	environment	(IDE)

What’s	Next
The	next	15	chapters	provide	the	information	you	need	to	learn	Swift	and	write	iOS
applications.	Terms	and	concepts	are	introduced	and	reinforced	over	and	over	so	you	will
begin	to	get	more	comfortable	with	them.	Keep	going	and	be	patient	with	yourself.

Exercises
Answer	the	following	questions:

Why	is	it	so	important	to	spend	time	on	your	user	requirements?

What	is	the	difference	between	design	requirements	and	an
algorithm?

What	is	the	difference	between	a	method	and	a	property?

What	is	a	bug?

What	is	state?

Write	an	algorithm	for	how	a	soda	machine	works	from	the	time	a
coin	is	inserted	until	a	soda	is	dispensed.	Assume	the	price	of	a	soda
is	80	cents.

Write	the	design	requirements	for	an	app	that	will	run	the	soda
machine.

Chapter				2

Programming	Basics
This	chapter	focuses	on	the	building	blocks	that	are	necessary	to	become	a	great	Swift
programmer.	This	chapter	covers	how	to	use	the	playground	user	interface,	how	to	write
your	first	Swift	program,	and	how	to	use	the	Xcode	integrated	development	environment
(IDE).

Note		We	will	introduce	you	to	using	playgrounds,	which	will	enable	you	to
program	right	away	without	worrying	about	the	complexities	of	Xcode.	We
have	used	this	approach	for	the	last	six	years,	teaching	Objective-C	and	Swift,
and	know	that	it	helps	you	learn	the	concepts	quickly,	without	discouragement,
and	gives	you	a	great	foundation	to	build	upon.

Touring	Xcode
Xcode	and	playgrounds	make	writing	Swift	code	incredibly	simple	and	fun.	Type	a	line	of
code,	and	the	result	appears	immediately.	If	your	code	runs	over	time,	for	instance	through
a	loop,	you	can	watch	its	progress	in	the	timeline	area.	When	you’ve	perfected	your	code
in	the	playground,	simply	move	that	code	into	your	Swift	iOS	project.	With	Xcode
playgrounds,	you	can	do	the	following:

Design	a	new	algorithm,	watching	its	results	every	step	of	the	way

Create	new	tests,	verifying	that	they	work	before	promoting	them
into	your	test	suite

Experiment	with	new	APIs	to	hone	your	Swift	coding	skills

First	you’ll	need	to	learn	a	little	more	about	the	Xcode	user	interface.	When	you	open	an
Xcode	iOS	project,	you	are	presented	with	a	screen	that	looks	like	Figure	2-1.

Figure	2-1.	Xcode	Integrated	Developer	Enviroment	with	a	Swift	project

The	Xcode	user	interface	is	set	up	to	help	you	efficiently	write	your	Swift	applications.
The	user	interface	for	playgrounds	is	similar	to	the	user	interface	for	an	iOS	application.
You	will	now	explore	the	major	sections	of	Xcode’s	IDE	workspace	and	playgrounds.

Exploring	the	Workspace	Window
The	workspace	window,	shown	in	Figure	2-2,	enables	you	to	open	and	close	files,	set	your
application	preferences,	develop	and	edit	an	app,	and	view	the	text	output	and	error
console.

Figure	2-2.	Xcode’s	workspace	window

The	workspace	window	is	your	primary	interface	for	creating	and	managing	projects.	The
workspace	window	automatically	adapts	itself	to	the	task	at	hand,	and	you	can	further
configure	the	window	to	fit	your	work	style.	You	can	open	as	many	workspace	windows
as	you	need.

The	workspace	window	has	four	main	areas:	Editor,	Navigator,	Debug,	and	Utilities.

When	you	select	a	project	file,	its	contents	appear	in	the	Editor	area,	where	Xcode	opens
the	file	in	the	appropriate	editor.

You	hide	or	show	the	other	three	areas	by	using	buttons	in	the	view	selector	in	the	toolbar.

	Clicking	this	button	shows	or	hides	the	Navigator	area.	This	is	where	you	view	and
maneuver	through	files	and	other	facets	of	your	project.

	Clicking	this	button	shows	or	hides	the	Debug	area.	This	is	where	you	control
program	execution	and	debug	code.

	Clicking	this	button	shows	or	hides	the	Utilities	area.	You	use	the	Utilities	area	for
several	purposes,	most	commonly	to	view	and	modify	attributes	of	a	file	and	to	add	ready-
made	resources	to	your	project.

Navigating	Your	Workspace
You	can	access	files,	symbols,	unit	tests,	diagnostics,	and	other	facets	of	your	project	from
the	Navigator	area.	In	the	navigator	selector	bar,	you	choose	the	navigator	suited	to	your
task.	The	content	area	of	each	navigator	gives	you	access	to	relevant	portions	of	your
project,	and	each	navigator’s	filter	bar	allows	you	to	restrict	the	content	that	is	displayed.

Choose	from	these	options	in	the	navigator	selector	bar:

	Project	navigator.	Add,	delete,	group,	and	otherwise
manage	files	in	your	project,	or	choose	a	file	to	view	or	edit	its
contents	in	the	editor	area.

	Symbol	navigator.	Browse	the	class	hierarchy	of	the
symbols	in	your	project.

	Find	navigator.	Use	search	options	and	filters	to	quickly
find	any	string	within	your	project.

	Issue	navigator.	View	issues	such	as	diagnostics,	warnings,
and	errors	found	when	opening,	analyzing,	and	building	your
project.

	Test	navigator.	Create,	manage,	run,	and	review	unit	tests.

	Debug	navigator.	Examine	the	running	threads	and
associated	stack	information	at	a	specified	point	of	time	during
program	execution.

	Breakpoint	navigator.	Fine-tune	breakpoints	by	specifying
characteristics	such	as	triggering	conditions.

	Report	navigator.	View	the	history	of	your	builds,	app
console	output,	continuous	integration,	and	source	control	tasks.

Editing	Your	Project	Files
Most	development	work	in	Xcode	occurs	in	the	Editor	area,	which	is	the	main	area	that	is
always	visible	within	the	workspace	window.	The	editors	you	will	use	most	often	are	as
follows:

Source	editor:	Write	and	edit	Swift	source	code.

Interface	Builder:	Graphically	create	and	edit	user	interface	files	(see
Figure	2-3).

Project	editor:	View	and	edit	how	your	apps	should	be	built,	such	by
specifying	build	options,	target	architectures,	and	app	entitlements.

Figure	2-3.	Xcode’s	Interface	Builder	showing	a	storyboard	file

When	you	select	a	file,	Xcode	opens	the	file	in	an	appropriate	editor.	In	Figure	2-3,	the	file
Main.storyboard	is	selected	in	the	Project	navigator,	and	the	file	is	open	in	Interface
Builder.

The	editor	offers	three	controls:

	Clicking	this	button	opens	the	Standard	editor.	You	will	see	a	single	editor	pane
with	the	contents	of	the	selected	file.

	Clicking	this	button	opens	the	Assistant	editor.	You	will	see	a	separate	editor	pane
with	content	logically	related	to	that	in	the	Standard	editor	pane.

	Clicking	this	button	opens	the	Version	editor.	You	will	see	the	differences	between
the	selected	file	in	one	pane	and	another	version	of	that	same	file	in	a	second	pane.

Creating	Your	First	Swift	Playground
Program
Now	that	you	have	learned	a	little	about	Xcode,	it’s	time	to	write	your	first	Swift
playground	program	and	begin	to	understand	the	Swift	language,	Xcode,	and	some	syntax.
First	you	have	to	install	Xcode.

Installing	and	Launching	Xcode	7
Xcode	7	is	available	for	download	from	the	Mac	App	Store	for	free,	as	shown	in	Figure	2-

4,	and	from	the	Apple	Developer	Center,	as	shown	in	Figure	2-5.

Figure	2-4.	Xcode	7	is	available	for	download	from	the	Mac	App	Store	for	free

Figure	2-5.	The	Apple	Developer	Program

Note		This	package	has	everything	you	need	to	write	iOS	apps.	To	develop	iOS
apps,	you	will	need	to	apply	for	the	Apple	Developer	Program	and	pay	$99
when	you’re	ready	to	submit	to	the	App	Store.	See
http://developer.apple.com.	In	2015,	Apple	combined	the	iOS,
watchOS,	Mac	OS	X,	and	Safari	developer	programs	into	one	program	called
the	Apple	Developer	Program.

Now	that	you	have	installed	Xcode,	let’s	begin	writing	a	Swift	playground.

Launch	Xcode	and	click	“Get	started	with	a	playground,”	as	shown	in	Figure	2-6.

http://developer.apple.com

Figure	2-6.	Creating	your	first	Swift	playground

Using	Xcode	7
After	launching	Xcode,	follow	these	steps:

1.	 Let’s	name	the	playground	HelloWorld	and	select	iOS	as	the
platform,	as	shown	in	Figure	2-7.	Then	click	Next	and	save	your
app	in	the	folder	of	your	choice.

Figure	2-7.	Name	your	playground	HelloWorld	and	select	iOS	as	the	platform

Xcode	does	a	lot	of	work	for	you	and	creates	a	playground	file	with	code	ready	for	you	to
use.	It	also	opens	your	playground	file	in	your	Xcode	editor	so	you	can	start,	as	shown	in
Figure	2-8.

Figure	2-8.	The	playground	window

You	now	need	to	become	familiar	with	the	Xcode	playground	IDE.	Let’s	look	at	two	of
the	most	often	used	features.

The	Editor	area

The	Results	area

Xcode	Playground	IDE:	Editor	and
Results	Areas
The	Editor	area	is	the	business	end	of	the	Xcode	playground	IDE—where	your	dreams	are
turned	into	reality.	It	is	where	you	write	your	code.	As	you	write	your	code,	you	will
notice	it	change	color.	Sometimes,	Xcode	will	even	try	to	autocomplete	words	for	you.
The	colors	have	meanings	that	will	become	apparent	as	you	use	the	IDE.	The	Editor	area
is	also	where	you	debug	your	apps.

Note		Even	if	we’ve	mentioned	it	already,	it	is	worth	saying	again:	you	will
learn	Swift	programming	by	reading	this	book,	but	you	will	really	learn	Swift
by	debugging	your	apps.	Debugging	is	where	developers	learn	and	become
great	developers.

Let’s	add	a	line	of	code	to	see	the	power	of	Swift	playgrounds.	Add	line	6	shown	in	Figure

2-8.	As	soon	as	you	enter	the	line	of	code,	Xcode	automatically	executes	the	line	and
shows	the	result,	“Hello	World.”
When	you	write	Swift	code,	everything	is	important—commas,	capitalization,	and
parentheses.	The	collection	of	rules	that	enable	the	compiler	to	compile	your	code	to	an
executable	app	is	called	syntax.

Line	5	creates	a	string	variable	called	str	and	assigns	“Hello,	playground”	to	the	variable
str.

Line	6	reassigns	“Hello	World”	to	the	variable	str.

Let’s	create	a	syntax	error	by	entering	line	8	shown	in	Figure	2-9.

Figure	2-9.	The	playground	with	a	syntax	error	caught	by	the	Swift	compiler

On	line	8,	print	is	a	function	that	will	print	the	contents	of	its	parameters	in	the	Results
area.	As	you	enter	code,	the	Results	area	automatically	updates	with	the	results	for	each
line	of	code	that	you	entered.

Now,	let’s	fix	the	app	by	spelling	the	str	variable	correctly,	as	shown	in	Figure	2-10.

Figure	2-10.	Syntax	error	fixed

Feel	free	to	play	around	and	change	the	text	that	is	printed.	Have	fun!

Summary
In	this	chapter,	you	built	your	first	basic	Swift	playground.	We	also	covered	new	Xcode
terms	that	are	key	to	your	understanding	of	Swift.

Key	to	Success		As	mentioned	in	the	introduction	of	the	book,	you	can	visit
http://www.xcelme.com/	and	click	the	Free	Videos	tab	to	view	videos
related	to	this	chapter.	The	videos	will	help	you	understand	more	about	Xcode,
IDEs,	and	playgrounds.	Also	visit	http://forum.xcelme.com/	to	ask
questions	about	these	concepts.

The	concepts	that	you	should	understand	are	as	follows:

Playground

Editor	area

Results	area

http://www.xcelme.com/
http://forum.xcelme.com/

Exercise
Extend	your	playground	by	adding	a	line	of	code	that	prints	any	text
of	your	choosing.

Chapter				3

It’s	All	About	the	Data
As	you	probably	know,	data	is	stored	as	zeros	and	ones	in	your	computer’s	memory.
However,	zeros	and	ones	are	not	very	useful	to	developers	or	app	users,	so	you	need	to
know	how	your	program	uses	data	and	how	to	work	with	the	data	that	is	stored.

In	this	chapter,	you	look	at	how	data	is	stored	on	computers	and	how	you	can	manipulate
that	data.	You	then	use	playgrounds	to	learn	more	about	data	storage.

Numbering	Systems	Used	in
Programming
Computers	work	with	information	differently	than	humans	do.	This	section	covers	the
various	ways	information	is	stored,	tallied,	and	manipulated	by	devices	such	as	your
iPhone	and	iPad.

Bits
A	bit	is	defined	as	the	basic	unit	of	information	used	by	computers	to	store	and	manipulate
data.	A	bit	has	a	value	of	either	0	or	1.	When	computers	were	first	introduced,	transistors
and	microprocessors	didn’t	exist.	Data	was	manipulated	and	stored	by	vacuum	tubes	being
turned	on	or	off.	If	the	vacuum	tube	was	on,	the	value	of	the	bit	was	1,	and	if	the	vacuum
tube	was	off,	the	value	was	0.	The	amount	of	data	a	computer	was	able	to	store	and
manipulate	was	directly	related	to	how	many	vacuum	tubes	the	computer	had.

The	first	recognized	computer	was	called	the	Electronic	Numerical	Integrator	and
Computer	(ENIAC).	It	took	up	more	than	136	square	meters	and	had	18,000	vacuum
tubes.	It	was	about	as	powerful	as	your	handheld	calculator.

Today,	computers	use	transistors	to	store	and	manipulate	data.	The	power	of	a	computer
processor	largely	depends	on	how	many	transistors	are	placed	on	its	chip	or	central
processing	unit	(CPU).	Like	the	vacuum	tube,	transistors	have	an	off	or	on	state.	When	the
transistor	is	off,	its	value	is	0.	When	the	transistor	is	on,	its	value	is	1.	Apple’s	A8
processor,	which	was	introduced	with	the	iPhone	6,	has	a	dual-core	ARM	processor	with
more	than	2	billion	transistors	(see	Figure	3-1).	This	was	up	from	200	million	transistors
from	the	A5	processor	and	up	from	149	million	transistors	on	the	A4	processor	that	was	in
the	iPhone	4	and	the	first	iPad.

Figure	3-1.	Apple’s	proprietary	A8	processor	(Source:	Wikipedia)

Moore’s	Law
The	number	of	transistors	on	your	iPhone’s	or	iPad’s	processor	is	directly	related	to	your
device’s	processing	speed,	graphics	performance,	memory	capacity,	and	the	sensors
(accelerometer,	gyroscope)	available	in	the	device.	The	more	transistors	there	are,	the
more	powerful	your	device	is.

In	1965,	the	cofounder	of	Intel,	Gordon	E.	Moore,	described	the	trend	of	transistors	in	a
processor.	He	observed	that	the	number	of	transistors	in	a	processor	doubled	every	18
months	from	1958	to	1965	and	would	likely	continue	“for	at	least	18	months.”	The
observation	became	famously	known	as	Moore’s	law	and	has	proven	accurate	for	more
than	55	years	(see	Figure	3-2).

Figure	3-2.	Moore’s	law	(Source:	Wikipedia)

Note		There	is	a	downside	to	Moore’s	law,	and	you	have	probably	felt	it	in	your
wallet.	The	problem	with	rapidly	increasing	processing	capability	is	that	it
renders	technology	obsolete	quickly.	So,	when	your	iPhone’s	two-year	cell
phone	contract	is	up,	the	new	iPhones	on	the	market	will	be	twice	as	powerful
as	the	iPhone	you	had	when	you	signed	up.	How	convenient	for	everyone!

Bytes
A	byte	is	another	unit	used	to	describe	information	storage	on	computers.	A	byte	is
composed	of	8	bits	and	is	a	convenient	power	of	2.	Whereas	a	bit	can	represent	up	to	two
different	values,	a	byte	can	represent	up	to	28,	or	256,	different	values.	A	byte	can	contain
values	from	0	to	255.

Note		In	Chapter	13,	we	discuss	Base-2,	Base-10,	and	Base-16	number	systems
in	more	detail.	However,	we	will	introduce	these	systems	in	this	chapter	so	you
can	understand	data	types.

The	binary	number	system	represents	the	numerical	symbols	0	and	1.	To	illustrate	how	the
number	71	would	be	represented	in	binary,	you	can	use	a	simple	table	of	8	bits	(1	byte),
with	each	bit	represented	as	a	power	of	2.	To	convert	the	byte	value	01000111	to	decimal,
simply	add	up	the	on	bits,	as	shown	in	Table	3-1.

Table	3-1.	The	Number	71	Represented	as	a	Byte	(64	+	4	+	2	+	1)

To	represent	the	number	22	in	binary,	turn	on	the	bits	that	add	up	to	22,	or	00010110,	as
shown	in	Table	3-2.

Table	3-2.	The	Number	22	Represented	as	a	Byte	(16	+	4	+	2)

To	represent	the	number	255	in	binary,	turn	on	the	bits	that	add	up	to	255,	or	11111111,	as
shown	in	Table	3-3.

Table	3-3.	The	Number	255	Represented	as	a	Byte	(128	+	64	+	32	+	16	+	8	+	4	+	2	+	1)

To	represent	the	number	0	in	binary,	turn	on	the	bits	that	add	up	to	0,	or	00000000,	as
shown	in	Table	3-4.

Table	3-4.	The	Number	0	Represented	as	a	Byte

Hexadecimal

Often,	it	will	be	necessary	to	represent	characters	in	another	format	that	is	recognized	by
computers,	namely,	the	hexadecimal	format.	You	will	encounter	hexadecimal	numbers
when	you	are	debugging	your	apps.	The	hexadecimal	system	is	a	base-16	number	system.
It	uses	16	distinct	symbols:	0	to	9	to	represent	the	values	0	to	9	and	A	to	F	to	represent	the
values	10	to	15.	For	example,	the	hexadecimal	number	2AF3	is	equal	in	decimal	to	(2	×
163)	+	(10	×	162)	+	(15	×	161)	+	(3	×	160),	or	10,995.	Figure	3-3	shows	the	ASCII	table	of
characters.	Because	1	byte	can	represent	256	characters,	this	works	well	for	Western
characters.	For	example,	hexadecimal	20	represents	a	space.	Hexadecimal	7D	represents	a
right	curly	brace	(}).

Figure	3-3.	ASCII	characters

Unicode
Representing	characters	with	a	byte	worked	well	for	computers	until	about	the	1990s,
when	the	personal	computer	became	widely	adopted	in	non-Western	countries	where
languages	have	more	than	256	characters.	Instead	of	a	1-byte	character	set,	Unicode	can
have	up	to	a	4-byte	character	set.

To	facilitate	faster	adoption,	the	first	256	code	points	are	identical	to	the	ASCII	character
table.	Unicode	can	have	different	character	encodings.	The	most	common	encoding	used
for	Western	text	is	called	UTF-8.	As	an	iPhone	developer,	you	will	probably	use	this
character	encoding	the	most.

Data	Types
Now	that	we’ve	discussed	how	computers	manipulate	data,	we	will	cover	an	important
concept	called	data	types.	Humans	can	generally	just	look	at	data	and	the	context	in	which
it	is	being	used	to	determine	what	type	of	data	it	is	and	how	it	will	be	used.	Computers
need	to	be	told	how	to	do	this.	So,	the	programmer	needs	to	tell	the	computer	the	type	of
data	it	is	being	given.	Here’s	an	example:	2	+	2	=	4.

The	computer	needs	to	know	you	want	to	add	two	numbers	together.	In	this	example,	they
are	integers.	You	might	first	believe	that	adding	these	numbers	is	obvious	to	even	the	most
casual	observer,	let	alone	a	sophisticated	computer.	However,	it	is	common	for	users	of
iOS	apps	to	store	data	as	a	series	of	characters,	not	a	calculation.	For	example,	a	text
message	might	read	“Everyone	knows	that	2	+	2	=	4.”

In	this	case,	the	example	is	a	series	of	characters	called	a	string.	A	data	type	is	simply	the
declaration	to	your	program	that	defines	the	data	you	want	to	store.	A	variable	is	used	to
store	your	data	and	is	declared	with	an	associated	data	type.	All	data	is	stored	in	a
variable,	and	the	variable	has	to	have	a	variable	type.	For	example,	in	Swift,	the	following
are	variable	declarations	with	their	associated	data	types:

var	x:	Int	=	10
var	y:	Int	=	2
var	z:	Int	=	0
var	submarineName:	Int		=	"USS	Nevada	SSBN-733"

Data	types	cannot	be	mixed	with	one	another.	You	cannot	do	the	following:

z	=	x	+	submarineName

Mixing	data	types	will	cause	either	compiler	warnings	or	compiler	errors,	and	your	app
will	not	run.

Table	3-5	gives	examples	of	the	basic	data	types	in	Swift.

Table	3-5.	Swift	Data	Types

Type Examples

Int 1,	5,	10,	100

Float	or	Double 1.0,	2.222,	3.14159

Bool true,	false

String “Star	Wars”,	“Star	Trek”

ClassName UIView,	UILabel,	and	so	on

Declaring	Constants	and	Variables
Swift	constants	and	variables	must	be	declared	before	they	are	used.	You	declare	constants
with	the	let	keyword	and	variables	with	the	var	keyword.	Constants	never	change
during	the	program,	but	variables	do	change	during	the	program.

There	are	two	ways	to	declare	variables:	explicit	and	implicit.

Here	is	the	syntax	for	explicit	variables:

var	name:	type	=	value

var	firstNumber:	Int	=	5

However,	declaring	the	type	is	normally	optional,	and	removing	the	type	shortens	the	code
and	makes	it	easier,	because	there	is	less	code	to	type	and	maintain.

Here	is	the	syntax	for	implicit	variables:

var	name	=	value

var	firstNumber	=	5

You	can	use	implicit	most	of	the	time	because	Swift	is	smart	enough	to	figure	out
what	the	variable	is	by	what	you	assign	to	it.

If	a	variable	isn’t	going	to	change,	then	you	should	declare	it	as	a	constant.	Constants
never	change.	Constants	start	with	the	keyword	let,	as	shown	here:

let	secondNumber		=	10

To	best	understand	how	variables	and	constants	are	declared,	here	are	two	examples:

let	maximumNumberOfStudents	=	30
var	currentNumberOfStudents	=	5

This	code	can	be	read	as	follows:	“Declare	a	new	constant	called
maximumNumberOfStudents,	and	give	it	a	value	of	30.	Then,	declare	a	new	variable

called	currentNumberOfStudents,	and	give	it	an	initial	value	of	5.”

In	this	example,	the	maximum	number	of	students	is	declared	as	a	constant	because	the
maximum	value	never	changes.	The	current	number	of	students	is	declared	as	a	variable
because	this	value	must	be	incremented	or	decremented	after	the	student	enrollment
changes.

Most	data	you	will	use	in	your	programs	can	be	classified	into	four	different	kinds—
Booleans,	numbers,	strings,	and	objects.	We	will	discuss	how	to	work	with	numbers	and
object	data	types	in	the	remainder	of	this	chapter.	In	Chapter	4,	we	will	talk	more	about
Boolean	data	types	when	you	learn	how	to	write	apps	with	decision	making.

Note		Localizing	your	app	is	the	process	of	writing	your	app	so	users	can	buy
and	use	it	in	their	native	language.	This	process	is	too	advanced	for	this	book,
but	it	is	a	simple	one	to	complete	when	you	plan	from	the	beginning.	Localizing
your	app	greatly	expands	the	total	number	of	potential	customers	and	revenue
for	your	app	without	your	having	to	rewrite	it	for	each	language.	Be	sure	to
localize	your	app.	It	is	not	hard	to	do	and	can	easily	double	or	triple	the	number
of	people	who	buy	it.	For	more	information	on	localizing	your	app,	visit	Apple’s
“Build	Apps	for	the	World”	site:
https://developer.apple.com/internationalization/.

Optionals
Swift	introduces	an	important	concept	called	optionals	that	developers	need	to	understand.
Even	for	experienced	iOS	developers,	this	concept	is	new.	Optionals	are	not	a	hard	topic
to	understand,	but	they	take	some	time	to	get	used	to.

Use	optionals	when	a	value	may	be	absent.	An	optional	says	the	following:

There	is	a	value	assigned	to	a	variable	or	there	is	no	value.

There	are	times	when	a	constant	or	variable	might	not	have	a	value.	Listing	3-1	shows	an
example	of	the	integer	initializer	called	Int(),	which	converts	a	String	value	to	an
Int.

Listing	3-1.	Converting	a	string	to	an	integer

1	var	myString	=	"42"
2	let	someInteger	=	Int(myString)
3	//	someInteger	is	inferred	to	be	of	type	"Int?",	or	
"optional	Int"

The	constant	someInteger	is	assigned	the	integer	value	42.	someInteger	is	also
assigned	the	type	of	Int?.	The	question	mark	indicates	that	it	is	an	optional	type,
meaning	that	the	variable	or	constant’s	value	may	be	absent.	See	Listing	3-2.

Listing	3-2.	Unable	to	convert	a	string	to	an	integer

https://developer.apple.com/internationalization/

1	var	myString	=	"Hello	World"
2	let	someInteger	=	Int(myString)
3	//	someInteger's	value	is	now	absent

Line	2	in	Listing	3-2	has	a	problem.	It	is	not	possible	to	convert	“Hello	World”	from	a
String	to	an	Int.	So,	the	value	of	someInteger	is	said	to	be	absent	or	nil,	because
on	line	2,	someInteger	is	inferred	to	be	an	optional	Int.

Note		Objective-C	programmers	may	have	used	nil	to	return	an	object	from	a
method,	with	nil	meaning	“the	absence	of	a	valid	object.”	This	works	for
objects	but	not	well	for	structures,	basic	C	types,	or	enumeration	values.
Objective-C	methods	typically	return	a	special	value,	like	NSNotFound
indicating	the	absence	of	a	valid	object.	This	assumes	that	the	method’s	caller
knows	the	special	value	to	test	against.	Optionals	indicate	the	absence	of	a	value
for	any	type	at	all,	without	using	special	constants.

The	Integer	Int()	initializer	might	fail	to	return	a	value,	so	the	method	returns	an
optional	Int,	rather	than	an	Int.	Again,	the	question	mark	indicates	that	the	value	it
contains	is	optional,	meaning	that	it	might	contain	some	Int	value,	or	it	may	contain	no
value	at	all.	The	value	is	either	some	Int	or	is	nothing	at	all.

Swift’s	nil	is	not	the	same	as	nil	in	Objective-C.	With	Objective-C,	nil	is	a	pointer	to
a	nonexistent	object.	In	Swift,	nil	is	not	a	pointer;	it	is	the	absence	of	a	value.	Optionals
of	any	type	can	be	set	to	nil,	not	just	object	types.

In	Chapter	4,	you	will	learn	how	to	unwrap	optionals	and	check	for	the	object	of	a	valid
object.

Using	Variables	in	Playgrounds
Now	that	you	have	learned	about	data	types,	let’s	write	your	code	in	a	playground	that
adds	two	numbers	and	displays	the	sum.

1.	 Open	Xcode	and	select	“Get	started	with	a	playground,”	as	shown
in	Figure	3-4.

Figure	3-4.	Creating	a	playground

2.	 Name	your	playground	DataTypes,	as	shown	in	Figure	3-5.	Press
next	and	select	a	directory	to	save	your	playground.

Figure	3-5.	Naming	your	playground

3.	 When	your	playground	is	created,	two	lines	of	code	are	already
placed	in	your	code	for	you,	as	shown	in	Figure	3-6.

Figure	3-6.	Two	lines	of	code

4.	 Enter	the	code	of	this	playground,	as	shown	in	Listing	3-3.

Listing	3-3.	Playground	adding

	1	//	Playground	-	noun:	a	place	where	people	can	play
	2
	3	import	UIKit
	4
	5	var	str	=	"Hello,	playground"
	6
	7	var	firstNumber	=	2
	8	var	secondNumber	=	3
	9
10	var	totalSum	=	firstNumber	+	secondNumber
11
12	firstNumber	=	firstNumber	+	1
13	secondNumber	=	secondNumber	+	1
14
15	totalSum	=	firstNumber	+	secondNumber
16

17
18	print("totalSum	=	\(totalSum)")

Your	playground	should	look	like	Figure	3-7.

Figure	3-7.	Playground	displaying	the	results	of	your	Swift	app

One	of	the	neat	features	of	playgrounds	is	that	as	you	type	in	your	code,	Swift	executes
the	line	of	code	as	you	enter	it	so	you	can	immediately	view	the	results.

The	//	used	in	Swift	programming	enables	programmers	to	make	comments	about	their
code.	Comments	are	not	compiled	by	your	applications	and	are	used	as	notes	for	the
programmer	or,	more	importantly,	for	programmers	who	follow	the	original	developer.
Comments	help	both	the	original	developer	and	later	developers	understand	how	the	app
was	developed.

Sometimes,	it	is	necessary	for	comments	to	span	several	lines	or	just	part	of	a	line.	This
can	be	accomplished	with	/*	and	*/.	All	the	text	between	/*	and	*/	is	treated	as
comments	and	is	not	compiled.

print	is	a	function	that	can	take	one	parameter	and	print	its	contents.

Note		If	your	editor	doesn’t	have	the	same	menus	or	gutter	(the	left	column	that
contains	the	line	numbers	of	the	program)	you	saw	in	the	previous	screenshots,
you	can	turn	these	settings	on	in	Xcode	preferences.	You	can	open	Xcode
preferences	by	clicking	the	Xcode	menu	in	the	menu	bar	and	then	selecting
Preferences.

Summary

In	this	chapter,	you	learned	how	data	is	used	by	your	apps.	You	saw	how	to	initialize
variables	and	how	to	assign	data	to	them.	We	explained	that	when	variables	are	declared,
they	have	a	data	type	associated	with	them	and	that	only	data	of	the	same	type	can	be
assigned	to	variables.	The	differences	between	variables	and	constants	was	also	discussed,
and	we	also	introduced	optionals.

Exercises
Write	code	within	a	Swift	playground	that	multiplies	two	integers
and	displays	the	result.

Write	code	within	a	Swift	playground	that	squares	a	float.	Display
the	resulting	float.

Write	code	within	a	Swift	playground	that	subtracts	two	floats,	with
the	result	being	stored	as	an	integer.	Note	that	rounding	does	not
occur.

Chapter				4

Making	Decisions,	Program	Flow,	and
App	Design
One	of	the	great	things	about	being	an	iOS	developer	is	you	get	to	tell	your	devices
exactly	what	you	want	them	to	do	and	they	do	it—your	devices	will	do	tasks	over	and
over	again	without	getting	tired.	That’s	because	iOS	devices	don’t	care	how	hard	they
worked	yesterday,	and	they	don’t	let	feelings	get	in	the	way.	These	devices	don’t	need
hugs.

There	is	a	downside	to	being	a	developer:	you	have	to	think	of	all	the	possible	outcomes
when	it	comes	to	your	apps.	Many	students	love	having	this	kind	of	control.	They	enjoy
focusing	on	the	many	details	of	their	apps;	however,	it	can	be	frustrating	having	to	handle
so	many	details.	As	mentioned	in	the	introduction	to	this	book,	there	is	a	price	to	pay	for
developing	apps,	and	that	price	is	time.	The	more	time	you	spend	developing	and
debugging,	the	better	you	will	get	with	all	the	details,	and	the	better	your	apps	will
perform.	You	have	to	pay	this	price	to	become	a	successful	developer.

Computers	are	black	and	white;	there	are	no	shades	of	gray.	Your	devices	produce	results,
many	of	which	are	based	on	true	and	false	conditions.

In	this	chapter,	you	learn	about	computer	logic	and	controlling	the	flow	of	your	apps.
Processing	information	and	arriving	at	results	are	at	the	heart	of	all	apps.	Your	apps	need
to	process	data	based	on	values	and	conditions.	To	do	this,	you	need	to	understand	how
computers	perform	logical	operations	and	execute	code	based	on	the	information	your
apps	have	acquired.

Boolean	Logic
Boolean	logic	is	a	system	for	logical	operations.	Boolean	logic	uses	binary	operators	such
as	AND	and	OR	and	the	unary	operator	NOT	to	determine	whether	your	conditions	have
been	met.	Binary	operators	take	two	operands.	Unary	operators	take	one	operand.

We	just	introduced	a	couple	of	new	terms	that	can	sound	confusing;	however,	you
probably	use	Boolean	logic	every	day.	Let’s	look	at	a	couple	of	examples	of	Boolean	logic
with	the	binary	operators	AND	and	OR	in	a	conversation	parents	sometimes	have	with	their
teenage	children:

“You	can	go	to	the	movies	tonight	if	your	room	is	clean	AND	the	dishes	are	put	away.”

“You	can	go	to	the	movies	tonight	if	your	room	is	clean	OR	the	dishes	are	put	away.”

Boolean	operators’	results	are	either	TRUE	or	FALSE.	In	Chapter	3,	we	briefly	introduced
the	Boolean	data	type.	A	variable	that	is	defined	as	Boolean	can	contain	only	the	values
TRUE	and	FALSE.

var	seeMovies:	Bool	=	false

In	the	preceding	example,	the	AND	operator	takes	two	operands:	one	to	the	left	and	one	to
the	right	of	the	AND.	Each	operand	can	be	evaluated	independently	with	a	TRUE	or
FALSE.

For	an	AND	operation	to	yield	a	TRUE	result,	both	sides	of	the	AND	have	to	be	TRUE.	In
the	first	example,	the	teenager	has	to	clean	his	or	her	room	AND	have	the	dishes	done.	If
either	one	of	the	conditions	is	FALSE,	the	result	is	FALSE—no	movies	for	the	teenager.

For	an	OR	operation	to	yield	a	TRUE	result,	only	one	operand	has	to	be	TRUE,	or	both
conditions	can	be	TRUE	to	yield	a	TRUE	result.	In	the	second	example,	just	a	clean
bedroom	would	result	in	the	ability	to	go	to	the	movies.

Note		In	Objective-C	and	other	programming	languages,	Boolean	variables	can
hold	integer	variables;	0	represents	FALSE,	and	any	nonzero	value	represents
TRUE.	Swift’s	strong	type	checking	doesn’t	allow	this.	Boolean	variables	in
Swift	can	be	assigned	only	true	or	false.

A	NOT	statement	is	a	unary	operator.	It	takes	just	one	operand	to	yield	a	Boolean	result.
Here’s	an	example:

“You	can	NOT	go	to	the	movies.”

This	example	takes	one	operand.	The	NOT	operator	turns	a	TRUE	operand	to	a	FALSE	and
a	FALSE	operand	to	a	TRUE.	Here,	the	result	is	a	FALSE.

AND,	OR,	and	NOT	are	three	common	Boolean	operators.	Occasionally,	you	need	to	use
more	complex	operators.	XOR,	NAND,	and	NOR	are	common	operations	for	iOS
developers.

The	Boolean	operator	XOR	means	exclusive-or.	An	easy	way	to	remember	how	the	XOR
operator	works	is	the	XOR	operator	will	return	a	TRUE	result	if	only	one	argument	is
TRUE,	not	both.

Swift	does	not	have	these	operators	built	in,	but	consider	that	NAND	and	NOR	mean	NOT
AND	and	NOT	OR.	After	evaluating	the	AND	or	OR	argument	and	the	results,	simply
negate	the	results.

Truth	Tables
You	can	use	a	tool	to	help	you	evaluate	all	the	Boolean	operators	called	a	truth	table,	and
it	is	a	mathematical	table	used	in	logic	to	evaluate	Boolean	operators.	They	are	helpful
when	trying	to	determine	all	the	possibilities	of	a	Boolean	operator.	Let’s	look	at	some
common	truth	tables	for	AND,	OR,	NOT,	XOR,	NAND,	and	NOR.

In	an	AND	truth	table,	there	are	four	possible	combinations	of	TRUE	and	FALSE.

TRUE	AND	TRUE	=	TRUE

TRUE	AND	FALSE	=	FALSE

FALSE	AND	TRUE	=	FALSE

FALSE	AND	FALSE	=	FALSE

Placing	these	combinations	in	a	truth	table	results	in	Table	4-1.

Table	4-1.	An	AND	Truth	Table

A B A	AND	B

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

An	AND	truth	table	produces	a	TRUE	result	only	if	both	of	its	operands	are	TRUE.

Table	4-2	illustrates	an	OR	truth	table	and	all	possible	operands.

Table	4-2.	An	OR	Truth	Table

A B A	OR	B

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

An	OR	truth	table	produces	a	TRUE	result	if	one	or	both	of	its	operands	are	TRUE.

Table	4-3	illustrates	a	NOT	truth	table	and	all	possible	operands.

Table	4-3.	A	NOT	Truth	Table

A NOT	A

TRUE FALSE

FALSE TRUE

A	NOT	flips	the	bit	or	negates	the	original	operand’s	Boolean	value.

Table	4-4	illustrates	an	XOR	(or	exclusive-or)	truth	table	and	all	possible	operands.

Table	4-4.	An	XOR	Truth	Table

A B A	XOR	B

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

The	operator	XOR	yields	a	TRUE	result	if	only	one	of	the	operands	is	TRUE.

Table	4-5	illustrates	a	NAND	truth	table	and	all	possible	operands.

Table	4-5.	A	NAND	Truth	Table

A B A	NAND	B

TRUE TRUE FALSE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE TRUE

Table	4-6	illustrates	a	NOR	truth	table	and	all	possible	operands.

Table	4-6.	A	NOR	Truth	Table

A B A	NOR	B

TRUE TRUE FALSE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE TRUE

The	easiest	way	to	look	at	the	NAND	and	NOR	operators	is	to	simply	negate	the	results
from	the	AND	and	OR	truth	tables,	respectively.

Comparison	Operators

In	software	development,	you	can	compare	different	data	items	using	comparison
operators.	These	operators	produce	a	logical	TRUE	or	FALSE	result.	Table	4-7	shows	the
list	of	comparison	operators.

Table	4-7.	Comparison	Operators

Operator Definition

> Greater	than

< Less	than

>= Greater	than	or	equal	to

<= Less	than	or	equal	to

== Exactly	equal	to

!= Not	equal	to

Note		If	you’re	constantly	forgetting	which	way	the	greater	than	and	less	than
signs	go,	use	a	crutch	we	learned	in	grade	school:	if	the	greater	than	and	less
than	signs	represent	the	mouth	of	an	alligator,	the	alligator	always	eats	the
bigger	value.	It	may	sound	silly,	but	it	works.

Designing	Apps
Now	that	we’ve	introduced	Boolean	logic	and	comparison	operators,	you	can	start
designing	your	apps.	Sometimes	it’s	important	to	express	all	or	parts	of	your	apps	to
others	without	having	to	write	the	actual	code.

Writing	pseudocode	helps	a	developer	think	out	loud	and	brainstorm	with	other	developers
regarding	sections	of	code	that	are	of	concern.	This	helps	to	analyze	problems	and
possible	solutions	before	coding	begins.

Pseudocode
Pseudocode	refers	to	writing	code	that	is	a	high-level	description	of	an	algorithm	you	are
trying	to	solve.	Pseudocode	does	not	contain	the	necessary	programming	syntax	for
coding;	however,	it	does	express	the	algorithm	that	is	necessary	to	solve	the	problem	at
hand.

Pseudocode	can	be	written	by	hand	on	paper	(or	a	whiteboard)	or	typed	on	a	computer.

Using	pseudocode,	you	can	apply	what	you	know	about	Boolean	data	types,	truth	tables,
and	comparison	operators.	Refer	to	Listing	4-1	for	some	pseudocode	examples.

Listing	4-1.	Pseudocode	Examples	Using	Conditional	Operators	in	if-then-else	Code

x	=	5
y	=	6
isComplete	=	TRUE

if		x	<	y
{
				//	in	this	example,	x	is	less	than	6

				do	stuff
}
else
{
					do	other	stuff
}

if	isComplete	==	TRUE
{
					//	in	this	example,	isComplete	is	equal	to	TRUE

					do	stuff
}
else
{
					do	other	stuff
}

//	another	way	to	check	isComplete	==	TRUE

if	isComplete
{
					//	in	this	example,		isComplete	is	TRUE

					do	stuff
}

//	two	ways	to	check	if	a	value	is	false
if	isComplete	==	FALSE
{
					do	stuff
}
else
{
						//	in	this	example,	isComplete	is	TRUE	so	the	else	block	will	be	

executed

					do	other	stuff
}

//	another	way	to	check	isComplete	==	FALSE

if	!isComplete
{
					do	stuff
}

else
{
						//	in	this	example,		isComplete	is	TRUE	so	the	else	block	will	be	

executed

						do	other	stuff
}

Note		Pseudocode	is	for	expressing	and	teaching	coding	ideas.	Pseudocode	will
not	execute!

Note	that	!	switches	the	value	of	the	Boolean	it’s	applied	to;	so,	using	!	makes	a	TRUE
value	into	a	FALSE	and	makes	a	FALSE	value	into	a	TRUE.

Often,	it	is	necessary	to	combine	your	comparison	tests.	A	compound	relationship	test	is
one	or	more	simple	relationship	tests	joined	by	either	&&	or	||	(two	pipe	characters).

&&	and	||	are	verbalized	as	logical	AND	and	logical	OR,	respectively.	The	pseudocode	in
Listing	4-2	illustrates	logical	AND	and	logical	OR	operators.

Listing	4-2.	Using	&&	and	||	Logical	Operators	Pseudocode

x	=	5
y	=	6
isComplete	=	TRUE

//	using	the	logical	AND

if	x	<	y	&&	isComplete	==	TRUE
{
				//	in	this	example,	x	is	less	than	6	and	isComplete	==	TRUE
				do	stuff
}

if	x	<	y	||	isComplete	==	FALSE
{
				//	in	this	example,	x	is	less	than	6.

				//	Only	one	operand	has	to	be	TRUE	for	an	OR	to	result	in	a	TRUE.

				//	See	Table	4-2	A	OR	Truth	Table

				do	stuff
}

//	another	way	to	test	for	TRUE

if	x	<	y	&&	isComplete
{
				//	in	this	example,	x	is	less	than	6	and	isComplete	==	TRUE
				do	stuff
}

//	another	way	to	test	for	FALSE

if	x	<	y	&&	!isComplete
{

				do	stuff
}
else
{
					//	isComplete	==	TRUE
					do	other	stuff
}

Optionals	and	Forced	Unwrapping
Chapter	3	introduced	optionals.	Optionals	are	variables	that	might	not	contain	a	value.
Since	optionals	may	not	contain	a	value,	you	need	to	check	for	that	before	you	access
them.

You	start	by	using	an	if	statement	to	determine	whether	the	optional	contains	a	value	by
comparing	the	optional	against	nil.	If	the	optional	has	a	value,	it	is	considered	to	be	“not
equal	to”	nil,	as	shown	in	Listing	4-3.

Line	4	in	Listing	4-3	checks	to	see	whether	the	optional	variable	is	not	equal	to	nil.	In
this	example,	the	someInteger	value	is	absent,	and	it	is	equal	to	nil,	so	line	8	code	is
executed.

Listing	4-3.	Checking	Whether	an	Optional	Has	a	Value

1	var	myString	=	"Hello	world"
2	let	someInteger	=	Int(myString)
3	//	someInteger’s	value	is	now	absent
4	if	someInteger	!=	nil	{
5					print("someInteger	contains	an	integer	value.")
6	}
7	else	{
8					print("someInteger	doesn’t	contain	an	integer	value.")
9	}

Now	that	you	have	added	a	check	to	make	sure	your	optional	does	or	doesn’t	contain	a
value,	you	can	access	its	value	by	adding	an	exclamation	mark	(!)	to	the	end	of	the
optional’s	name.	The	!	means	you	have	checked	to	ensure	the	optional	variable	has	a
value	and	use	it.	This	is	called	forced	unwrapping	of	the	optional’s	value.	See	Listing	4-4.

Listing	4-4.	Forced	Unwrapping

1	var	myString	=	"42"
2	let	someInteger	=	Int(myString)
3	//	someInteger	contains	a	value
4	if	someInteger	!=	nil	{
	5					print("someInteger	contains	a	value.	Here	it	is:	\
(someInteger!)")
6	}

7	else	{
8					print("someInteger	doesn’t	contain	an	integer	value.")
9	}

Note		Displaying	the	contents	of	a	variable	in	a	print	function	is	done	with	\
(youVariable!).

Optional	Binding
You	can	find	out	whether	an	optional	contains	a	value	and,	if	so,	assign	a	temporary
constant	or	variable	to	that	value	in	a	single	action.	See	Listing	4-5.	This	is	called	optional
binding.	Optional	binding	can	be	used	with	if	and	while	statements	to	determine
whether	an	optional	has	a	value	and,	if	so,	extract	the	value	to	a	constant	or	variable.

Listing	4-5.	Optional	Binding	Syntax	to	a	Constant

1	let	someOptional:	String?	=	"hello	world"
2	if	let	constantName	=	someOptional	{
3					print("constantName	contains	a	value,	Here	it	is:	\
(constantName)")
4	}

If	you	want	to	assign	the	optional	to	a	variable	so	you	can	manipulate	that	variable,	you
can	assign	the	optional	to	a	var,	as	shown	in	Listing	4-6.

Listing	4-6.	Optional	Binding	Syntax	to	a	Variable

1	let	someOptional:	String?	=	"hello	world"
2	if	var	variableName	=	someOptional	{
3					print("variableName	contains	a	value,	Here	it	is:	\
(variableName)")
4	}

Notice	in	Listings	4-5	and	4-6	you	didn’t	need	to	use	the	!.	If	the	conversion	was
successful,	the	variable	or	constant	was	initialized	with	the	value	contained	within	the
optional,	so	the	!	was	not	necessary.

Implicitly	Unwrapped	Optionals
There	are	instances	after	the	value	is	first	set	when	you	know	that	an	optional	will	always
have	a	value.	In	these	instances,	it’s	useful	to	remove	the	need	to	check	and	unwrap	an
optional	every	time	it	needs	to	be	accessed.	These	kinds	of	optionals	are	called	implicitly
unwrapped	optionals.

Because	of	the	program’s	structure,	you	know	that	the	optional	has	a	value,	so	you	can
give	permission	for	the	optional	to	be	safely	unwrapped	whenever	it	needs	to	be	accessed.
The	!	is	not	needed	every	time	you	use	it;	instead,	you	place	an	!	after	the	optional’s	type
when	you	declare	it.	Listing	4-7	shows	the	comparison	between	an	optional	String	and

an	implicitly	unwrapped	optional	String.

Listing	4-7.	Comparison	of	an	Optional	String	and	an	Implicitly	Unwrapped	Optional
String

1	var	optionalString:	String?	=	"My	optional	string."
2	var	forcedUnWrappedString:	String	=	optionalString!	//	
requires	an	!
3
4	var	nextOptionalString:	String!	=	"An	implicitly	unwrapped	
optional."
5	var	implicitUnwrappedString:	String	=	nextOptionalString	
//	no	need	for	an	!

Note		The	following	will	trigger	runtime	exceptions:	trying	to	access	implicitly
unwrapped	optionals	when	they	don’t	contain	a	value	and	attempting	to	unwrap
an	optional	that	does	not	contain	a	value.

Flowcharting
After	the	design	requirements	are	finalized,	you	can	create	pseudocode	sections	of	your
app	to	solve	complex	development	issues.	Flowcharting	is	a	common	method	of
diagramming	an	algorithm.	An	algorithm	is	represented	as	different	types	of	boxes
connected	by	lines	and	arrows.	Developers	often	use	flowcharting	to	express	code
visually,	as	shown	in	Figure	4-1.

Figure	4-1.	Sample	flowchart	showing	common	figures	and	their	associated	names

Flowcharts	should	always	have	a	start	and	a	stop.	Branches	should	never	come	to	an	end
without	a	stop.	This	helps	developers	make	sure	all	of	the	branches	in	their	code	are
accounted	for	and	that	they	cleanly	stop	execution.

Designing	and	Flowcharting	an	Example	App
We	have	covered	a	lot	of	information	about	decision-making	and	program	flow.	It’s	time
to	do	what	programmers	do	best:	write	apps!

The	app	you	have	been	assigned	to	write	generates	a	random	number	between	0	and	100
and	asks	the	user	to	guess	the	number.	Users	have	to	do	this	until	the	number	is	guessed.
When	users	guess	the	correct	answer,	they	will	be	asked	if	they	want	to	play	again.

The	App’s	Design
Using	your	design	requirements,	you	can	make	a	flowchart	for	your	app.	See	Figure	4-2.

Figure	4-2.	Flowchart	for	guessing	a	random	number	app

Reviewing	Figure	4-2,	you’ll	notice	that	as	you	approach	the	end	of	a	block	of	logic	in
your	flowchart,	there	are	arrows	that	go	back	to	a	previous	section	and	repeat	that	section
until	some	condition	is	met.	This	is	called	looping.	It	enables	you	to	repeat	sections	of
programming	logic—without	having	to	rewrite	those	sections	of	code	over—until	a
condition	is	met.

Using	Loops	to	Repeat	Program	Statements
A	loop	is	a	sequence	of	program	statements	that	is	specified	once	but	can	be	repeated
several	times	in	succession.	A	loop	can	repeat	a	specified	number	of	times	(count-

controlled)	or	until	some	condition	(condition-controlled)	occurs.

In	this	section,	you’ll	learn	about	count-controlled	loops	and	condition-controlled	loops.
You	will	also	learn	how	to	control	your	loops	with	Boolean	logic.

Count-Controlled	Loops
A	count-controlled	loop	repeats	a	specified	number	of	times.	In	Swift,	this	is	a	for	loop.
A	for	loop	has	a	counter	variable,	which	enables	the	developer	to	specify	the	number	of
times	the	loop	will	be	executed.	See	Listing	4-8.

Listing	4-8.	A	Count-Controlled	Loop

var	i	=	0

for	i;	i	<	10;	i++	{
				print("The	index	is:	\(i)")
}
//....continue

The	loop	in	Listing	4-8	will	loop	ten	times.	The	variable	i	starts	at	zero	and	increments	at
the	end	of	the	}	by	one.	The	incrementing	is	done	by	the	i++	in	the	for	statement;	i++
is	equivalent	to	i	=	i	+	1.	Then	i	is	incremented	by	one	to	ten	and	checked	to	see
whether	it	is	less	than	ten.	This	for	loop	will	exit	when	i	=	10	and	the	}	is	reached.

Note		It	is	common	for	developers	to	confuse	the	number	of	times	they	think
their	loops	will	repeat.	If	the	loop	started	at	1	in	Listing	4-8,	the	loop	would
repeat	nine	times	instead	of	ten.

In	Swift,	for	loops	can	have	their	counter	variables	declared	in	the	for	loop	declaration.
See	Listing	4-9.

Listing	4-9.	Counter	Variable	Initialized	in	the	for	Loop	Declaration

for	var	i	=	0;	i	<	10;	i++	{
				print("The	index	is:	\(i)")
}
//....continue

You	use	the	for-in	loop	to	iterate	over	collections	of	items,	such	as	ranges	of	numbers,
items	in	an	array,	or	characters	in	a	string.

Listing	4-10	prints	a	few	entries	in	the	ten	times	table.

Listing	4-10.	Counter	Variable	Initialized	in	the	for	Loop	Declaration

for	index	in	1…10	{
				print("\(index)	times	10	is	\(index	*	10)")
}
//....continue

Condition-Controlled	Loops
Swift	has	the	ability	to	repeat	a	loop	until	some	condition	changes.	You	may	want	to
repeat	a	section	of	your	code	until	a	false	condition	is	reached	with	one	of	your	variables.
This	type	of	loop	is	called	a	while	loop.	A	while	loop	is	a	control	flow	statement	that
repeats	based	on	a	given	Boolean	condition.	You	can	think	of	a	while	loop	as	a	repeating
if	statement.	See	Listing	4-11.

Listing	4-11.	A	Swift	while	Loop	Repeating

var	isTrue	=	true
while	isTrue
	{
					//	do	something
					isTrue	=	false	//	a	condition	occurs	that	sometimes	sets	
isTrue	to	FALSE
	}
//....continue

The	while	loop	in	Listing	4-11	first	checks	whether	the	variable	isTrue	is	true—
which	it	is—so	the	{loop	body}	is	entered	where	the	code	is	executed.	Eventually,
some	condition	is	reached	that	causes	isTrue	to	become	false.	After	completing	all
the	code	in	the	loop	body,	the	condition	(isTrue)	is	checked	once	more,	and	the	loop	is
repeated.	This	process	is	repeated	until	the	variable	isTrue	is	set	to	false.

Infinite	Loops
An	infinite	loop	repeats	endlessly,	either	because	of	the	loop	not	having	a	condition	that
causes	termination	or	because	of	the	loop	having	a	terminating	condition	that	can	never	be
met.

Generally,	infinite	loops	can	cause	apps	to	become	unresponsive.	They	are	the	result	of	a
side	effect	of	a	bug	in	either	the	code	or	the	logic.

Listing	4-12	is	an	example	of	an	infinite	loop	caused	by	a	terminating	condition	that	can
never	be	met.	The	variable	x	will	be	checked	with	each	iteration	through	the	while	loop
but	will	never	be	equal	to	5.	The	variable	x	will	always	be	an	even	number	because	it	was
initialized	to	zero	and	incremented	by	two	in	the	loop.	This	will	cause	the	loop	to	repeat
endlessly.	See	Listing	4-13.

Listing	4-12.	An	Example	of	an	Infinite	Loop

var	x	=	0
while	x	!=	5
{
				//	do	something
				x	=	x	+	2
}
//....continue

Listing	4-13.	An	Example	of	an	Infinite	Loop	Caused	by	a	Terminating	Condition	That
Can	Never	Be	Met

while	true
{
				//	do	something	forever
}
//....continue

Coding	the	Example	App	in	Swift
Using	your	requirements	and	what	you	learned,	try	writing	your	random	number	generator
in	Swift.

To	program	this	app,	you	have	to	leave	the	playground	and	do	this	as	a	Mac	Console	app.
Unfortunately,	at	this	time,	a	playground	doesn’t	enable	you	to	interact	with	a	running	app,
so	you	can’t	capture	keyboard	input.

Note		You	can	download	the	complete	random	number	generator	app	at
http://forum.xcelme.com.	The	code	is	in	the	topic	of	Chapter	4.

Your	Swift	app	will	run	from	the	command	line	because	it	asks	the	user	to	guess	a	random
number.

1.	 Open	Xcode	and	start	a	new	project.	Choose	the	Command	Line
Tool	project.	See	Figure	4-3.

Figure	4-3.	Starting	a	new	Command	Line	Tool	project

2.	 Call	your	project	RandomNumber	(see	Figure	4-4).	Ensure	that
the	Language	drop-down	is	Swift.	Save	the	project	anywhere	you
prefer	on	your	hard	drive.

http://forum.xcelme.com

Figure	4-4.	Project	options	for	RandomNumber

3.	 Open	the	main.swift	file.	Write	the	code	in	Listing	4-14.

Listing	4-14.	Source	Code	for	Your	Random	Number	Generator	App

	1		//
	2		//		main.swift
	3		//		Guess
	4
	5
	6		import	Foundation
	7
	8		var	randomNumber	=	1
	9		var	userGuess:Int?	=	1
10		var	continueGuessing	=	true
11		var	keepPlaying	=	true
12		var	input	=	""
13
14		while	(keepPlaying)	{
15					randomNumber	=	Int(arc4random_uniform(101))	//get	
a	random	number	between	0-100

16					print("The	random	number	to	guess	is:	\
(randomNumber)");
17					while	(continueGuessing)	{
18									print	("Pick	a	number	between	0	and	100.	")
19									input	=	NSString(data:	
NSFileHandle.fileHandleWithStandardInput().availableData,	
encoding:NSUTF8StringEncoding)!	as	String	//get	keyboard	
input
20									input	

=	input.stringByReplacingOccurrencesOfString("\n",	
withString:	"",	options:	
NSStringCompareOptions.LiteralSearch,	range:	nil)	//strip	
off	the	/n
21									userGuess	=	Int(input)
22									if	(userGuess	==	randomNumber)	{
23													continueGuessing	=	false
24													print("Correct	number!");
25									}
26													//nested	if	statement
27									else	if	(userGuess	>	randomNumber){
28													//user	guessed	too	high
29													print("Your	guess	is	too	high");
30									}
31									else{
32													//	no	reason	to	check	if	userGuess	<	
randomNumber.	It	has	to	be.
33													print("Your	guess	is	too	low");
34									}
35					}
36					print	("Play	Again?	Y	or	N");
37					input	=	NSString(data:	
NSFileHandle.fileHandleWithStandardInput().availableData,	
encoding:NSUTF8StringEncoding)!	as	String
38					input	
=	input.stringByReplacingOccurrencesOfString("\n",	
withString:	"",	options:	
NSStringCompareOptions.LiteralSearch,	range:	nil)
39
40					if	(input	==	"N"	||	input	==	"n"){
41									keepPlaying	=	false
42					}
43					continueGuessing	=	true
44		}

In	Listing	4-14,	there	is	new	code	that	we	haven’t	discussed	before.	The	first	new	line	of
code	(line	15)	is	as	follows:

randomNumber	=	Int(arc4random_uniform(101))

This	line	will	produce	a	random	number	between	0	and	100;
arc4random_uniform()	is	a	function	that	returns	a	random	number.

The	next	line	of	new	code	is	on	line	19:

input	=	NSString(data:	
NSFileHandle.fileHandleWithStandardInput().availableData,	
encoding:NSUTF8StringEncoding)!

This	enables	you	to	get	keyboard	input	for	the	user.	We	will	talk	about	this	syntax	in	later
chapters.

The	next	new	line	of	code	is	on	line	21:

userGuess	=	Int(input)

Int	takes	a	string	initializer	and	converts	it	to	an	integer.

Nested	if	Statements	and	else	if	Statements
Sometimes,	it	is	necessary	to	nest	if	statements.	This	means	that	you	need	to	have	if
statements	nested	inside	an	existing	if	statement.	Additionally,	it	is	sometimes	necessary
to	have	a	comparison	as	the	first	step	in	the	else	section	of	the	if	statement.	This	is
called	an	else	if	statement	(recall	line	27	in	Listing	4-14).

else	if	(userGuess	>	randomNumber)

Removing	Extra	Characters
Line	20	in	Listing	4-14	is	as	follows:

input	=	input.stringByReplacingOccurrencesOfString("\n",	
withString:	"",	options:	
NSStringCompareOptions.LiteralSearch,	range:	nil)	//strip	
off	the	/n

Reading	keyboard	input	can	be	difficult.	In	this	case,	it	leaves	a	remnant	at	the	end	of	your
string,	\n,	and	you	need	to	remove	it.	This	is	a	newline	character	that	is	generated	when
the	users	press	the	Return	key	on	their	keyboards.

Improving	the	Code	Through	Refactoring
Often,	after	you	get	your	code	to	work,	you	examine	the	code	and	find	more	efficient	ways
to	write	it.	The	process	of	rewriting	your	code	to	make	it	more	efficient,	maintainable,	and
readable	is	called	code	refactoring.

As	you	review	your	code	in	Swift,	you	will	often	notice	that	you	can	eliminate	some
unnecessary	code.

Note		As	developers,	we	have	found	that	the	best	line	of	code	is	the	line	that
you	don’t	have	to	write—less	code	means	less	to	debug	and	maintain.

Running	the	App
To	run	your	app,	click	the	Play	button	at	the	top	left	of	your	screen	in	your	Swift	project.
See	Figure	4-5.

Figure	4-5.	The	console	output	of	the	Swift	random	number	generator	app

Note		If	you’re	not	seeing	the	output	console	when	you	run	your	app,	make	sure
you	have	selected	the	same	options	at	the	top-right	and	bottom-right	corners	of
the	editor	(choose	View	 	Debug	Area	 	Activate	Console).	See	Figure	4-5.

Design	Requirements
As	discussed	in	Chapter	1,	the	most	expensive	process	in	the	software	development
lifecycle	is	writing	code.	The	least	expensive	process	in	the	software	development
lifecycle	is	gathering	the	requirements	for	your	application;	yet,	this	latter	process	is	the
most	overlooked	and	least	used	in	software	development.

Design	requirements	usually	begin	by	asking	clients,	customers,	and/or	stakeholders	how
the	application	should	work	and	what	problems	it	should	solve.

With	respect	to	apps,	requirements	can	include	long	or	short	narrative	descriptions,	screen
mock-ups,	and	formulas.	It	is	far	easier	to	open	your	word	processor	and	change	the
requirements	and	screen	mock-ups	before	coding	begins	than	it	is	to	modify	an	iOS	app.
The	following	is	the	design	requirement	for	one	view	of	an	iPhone	mobile	banking	app:

View:	Accounts	view.

Description:	Displays	the	list	of	accounts	the	user	has.	The	list	of
accounts	will	be	in	the	following	sections:	Business	Accounts,
Personal	Accounts	and	Car	Loans,	IRA,	and	Home	Equity	Loans.

Cells:	Each	cell	will	contain	the	account	name,	the	last	four	digits	of
the	account,	the	available	balance,	and	the	present	balance.

A	picture	is	worth	a	thousand	words.	Screen	mock-ups	are	helpful	to	developers	and	users
because	they	can	show	how	the	views	will	look	when	they	are	completed.	There	are	many
tools	that	can	quickly	design	mock-ups;	one	of	these	tools	is	OmniGraffle.	See	Figure	4-6
for	an	example	of	a	screen	mock-up	used	for	design	requirements	generated	by
OmniGraffle.

Figure	4-6.	Screen	mock-up	for	a	mobile	banking	app	using	OmniGraffle	and	the	Ultimate	iPhone	Stencil	plug-in.	This
mock-up	was	done	for	the	original	Woodforest	Banking	app	in	2010

Many	developers	believe	that	design	requirements	take	too	long	and	are	unnecessary.
There	is	a	lot	of	information	presented	on	the	Accounts	screen	in	Figure	4-6.	Many
business	rules	can	determine	how	information	is	displayed	to	the	users,	along	with	all	of

the	error	handling	when	things	go	bad.	When	designing	your	app,	working	with	all	the
business	stakeholders	at	the	beginning	of	the	development	process	is	critical	to	getting	it
right	the	first	time.
Figure	4-7	is	an	example	of	all	stakeholders	being	involved	in	your	app’s	development.
Having	all	stakeholders	involved	in	every	view	from	the	beginning	will	eliminate	multiple
rewrites	and	application	bugs.

Figure	4-7.	Woodforest	Mobile	Banking	app	as	it	appeared	on	the	App	Store	in	2015;	compare	this	with	the	app
requirements	Accounts	screen	in	Figure	4-6

Additionally,	Apple	recommends	that	developers	spend	at	least	50	percent	of	their
development	time	on	the	user	interface’s	design	and	development.

Balsamiq	also	has	great	tools	for	laying	out	your	iOS	app’s	look.	See	Figure	4-8.

Figure	4-8.	Balsamiq.com	web	site	for	creating	wireframe	mock-ups

Summary
This	chapter	covered	a	lot	of	important	information	on	how	to	control	your	applications;
program	flow	and	decision	making	are	essential	to	every	iOS	app.	Make	sure	you	have
completed	the	Swift	example	in	this	chapter.	You	might	review	these	examples	and	think
you	understand	everything	without	having	to	write	this	app.	This	will	be	a	fatal	mistake
that	will	prevent	you	from	becoming	a	successful	iOS	developer.	You	must	spend	time
coding	this	example.	Developers	learn	by	doing,	not	by	reading.

The	terms	in	this	chapter	are	important.	You	should	be	able	to	describe	the	following:

AND

OR

XOR

NAND

NOR

NOT

Truth	tables

Negation

All	comparison	operators

Application	requirement

Logical	AND	(&&)

Logical	OR	(||)

Optionals	and	forced	unwrapping

Optional	binding

Implicitly	unwrapped	optionals

Flowchart

Loop

Count-controlled	loops

For	loop

Condition-controlled	loops

Infinite	loops

while	loops

Nested	if	statements

Code	refactoring

Exercises
Extend	the	random	number	generator	app	to	print	to	the	console	how
many	times	the	user	guessed	before	guessing	the	correct	random
number.

Extend	the	random	number	generator	app	to	print	to	the	console	how
many	times	the	user	played	the	app.	Print	this	value	to	the	console
when	the	user	quits	the	app.

Chapter				5

Object-Oriented	Programming	with	Swift
Over	the	past	15	years,	the	programming	world	focused	on	the	development	paradigm	of
object-oriented	programming	(OOP).	Most	modern	development	environments	and
languages	implement	OOP.	Put	simply,	OOP	forms	the	basis	of	everything	you	develop
today.

You	may	be	asking	yourself	why	we	waited	until	Chapter	5	to	present	OOP	using	Swift	if
it	is	the	primary	development	style	of	today.	The	simple	answer	is	that	it	is	not	an	easy
concept	for	new	developers.	This	chapter	will	go	into	detail	about	the	different	aspects	of
OOP	and	how	they	affect	your	development.

Implementing	OOP	into	your	applications	correctly	will	take	some	front-end	planning,	but
you	will	save	yourself	a	lot	of	time	throughout	the	life	of	your	projects.	OOP	has	changed
the	way	development	is	done.	In	this	chapter,	you	will	learn	what	OOP	is.	OOP	was
initially	discussed	in	the	first	chapter	of	this	book,	but	this	chapter	will	go	into	more	detail
about	it.	You	will	revisit	what	objects	are	and	how	they	relate	to	physical	objects	you	find
in	the	world.	You	will	look	into	what	classes	are	and	how	they	relate	to	objects.	You	will
also	learn	the	steps	you	need	to	take	when	planning	your	classes	and	some	visual	tools	you
can	use	to	accomplish	these	steps.	When	you	have	read	this	chapter	and	have	worked
through	the	exercises,	you	will	have	a	better	understanding	of	what	OOP	is	and	why	it	is
necessary	for	you	as	a	developer.

At	first,	objects	and	object-oriented	programming	may	seem	difficult	to	understand,	but
the	hope	is	that	as	you	progress	through	this	chapter,	they	will	begin	to	make	sense.

The	Object
As	discussed	in	Chapter	1,	OOP	is	based	on	objects.	Some	of	the	discussion	about	objects
will	be	a	review,	but	it	will	also	go	into	more	depth.	An	object	is	anything	that	can	be
acted	upon.	To	better	understand	what	a	programming	object	is,	you	will	first	look	at	some
items	in	the	physical	world	around	you.	A	physical	object	can	be	anything	around	you	that
you	can	touch	or	feel.	Take,	for	example,	a	television.	Some	characteristics	of	a	television
include	type	(plasma,	LCD,	or	CRT),	size	(40	inches),	brand	(Sony	or	Vizio),	weight,	and
cost.	Televisions	also	have	functions.	They	can	be	turned	on	or	off.	You	can	change	the
channel,	adjust	the	volume,	and	change	the	brightness.

Some	of	these	characteristics	and	functions	are	unique	to	televisions,	and	some	are	not.
For	example,	a	couch	in	your	house	would	probably	not	have	the	same	characteristics	as	a
television.	You	would	want	different	information	about	a	couch,	such	as	material	type,
seating	capability,	and	color.	A	couch	might	have	only	a	few	functions,	such	as	converting
to	a	bed	or	reclining.

Now	let’s	talk	specifically	about	objects	as	they	relate	to	programming.	An	object	is	a

specific	item.	It	can	describe	something	physical	like	a	book,	or	it	could	be	something
such	as	a	window	for	your	application.	Objects	have	properties	and	methods.	Properties
describe	certain	things	about	an	object	such	as	location,	color,	or	name.	Conversely,
methods	describe	actions	the	object	can	perform	such	as	close	or	recalculate.	In	this
example,	a	TV	object	would	have	type,	size,	and	brand	properties,	while	a	Couch
object	would	have	properties	such	as	color,	material,	and	comfort	level.	In
programming	terms,	a	property	is	a	variable	that	is	part	of	an	object.	For	example,	a	TV
would	use	a	string	variable	to	store	the	brand	and	an	integer	to	store	the	height.

Objects	also	have	commands	the	programmer	can	use	to	control	them.	The	commands	are
called	methods.	Methods	are	the	way	that	other	objects	interact	with	a	certain	object.	For
example,	with	the	television,	a	method	would	be	any	of	the	buttons	on	the	remote	control.
Each	of	those	buttons	represents	a	way	you	can	interact	with	your	television.	Methods	can
and	often	are	used	to	change	the	values	of	properties,	but	methods	do	not	store	any	values
themselves.

As	described	in	Chapter	1,	objects	have	a	state,	which	is	basically	a	snapshot	of	an	object
at	any	given	point	in	time.	A	state	would	be	the	values	of	all	the	properties	at	a	specific
time.

In	previous	chapters,	you	saw	the	example	of	the	bookstore.	A	bookstore	contains	many
different	objects.	It	contains	book	objects	that	have	properties	such	as	title,
author,	page	count,	and	publisher.	It	also	contains	magazines	with	properties
such	as	title,	issue,	genre,	and	publisher.	A	bookstore	also	has	some
nontangible	objects	such	as	a	sale.	A	sale	object	would	contain	information	about	the
books	purchased,	the	customer,	the	amount	paid,	and	the	payment	type.	A	sale	object
might	also	have	some	methods	that	calculate	tax,	print	the	receipt,	or	void	the	sale.	A
sale	object	does	not	represent	a	tangible	object,	but	it	is	still	an	object	and	is	necessary
for	creating	an	effective	bookstore.

Because	the	object	is	the	basis	of	OOP,	it	is	important	to	understand	objects	and	how	to
interact	with	them.	You	will	spend	the	rest	of	the	chapter	learning	about	objects	and	some
of	their	characteristics.

What	Is	a	Class?
We	cannot	discuss	OOP	without	discussing	what	a	class	is.	A	class	defines	which
properties	and	methods	an	object	will	have.	A	class	is	basically	a	cookie	cutter	that	can	be
used	to	create	objects	that	have	similar	characteristics.	All	objects	of	a	certain	class	will
have	the	same	properties	and	the	same	methods.	The	values	of	those	properties	will
change	from	object	to	object.

A	class	is	similar	to	a	species	in	the	animal	world.	A	species	is	not	an	individual	animal,
but	it	does	describe	many	similar	characteristics	of	the	animal.	To	understand	classes
more,	let’s	look	at	an	example	of	classes	in	nature.	The	Dog	class	has	many	properties	that
all	dogs	have	in	common.	For	example,	a	dog	may	have	a	name,	an	age,	an	owner,	and	a
favorite	activity.	An	object	that	is	of	a	certain	class	is	called	an	instance	of	that	class.	If

you	look	at	Figure	5-1,	you	can	see	the	difference	between	the	class	and	the	actual	objects
that	are	instances	of	the	class.	For	example,	Lassie	is	an	instance	of	the	Dog	class.	In
Figure	5-1,	you	can	see	a	Dog	class	that	has	four	properties	(Breed,	Age,	Owner,	and
Favorite	Activity).	In	real	life,	a	dog	will	have	many	more	properties,	but	these
four	are	for	this	demonstration.

Figure	5-1.	An	example	of	a	class	and	its	individual	objects

Planning	Classes
Planning	your	classes	is	one	of	the	most	important	steps	in	your	development	process.
While	it	is	possible	to	go	back	and	add	properties	and	methods	after	the	fact	(and	you	will
definitely	need	to	do	this),	it	is	important	that	you	know	which	classes	are	going	to	be
used	in	your	application	and	which	basic	properties	and	methods	they	will	have.	Spending
time	planning	your	different	classes	is	important	at	the	beginning	of	the	process.

Planning	Properties
Let’s	look	at	the	bookstore	example	and	some	of	the	classes	you	need	to	create.	First,	it	is
important	to	create	a	Bookstore	class.	A	Bookstore	class	contains	the	blueprint	of
the	information	each	Bookstore	object	stores,	such	as	the	bookstore’s	name,	address,
phone	number,	and	logo	(see	Figure	5-2).	Placing	this	information	in	a	class	rather	than
hard-coding	it	in	your	application	will	allow	you	to	easily	make	changes	to	this
information	in	the	future.	You	will	learn	the	reasons	for	using	OOP	methodologies	later	in
this	chapter.	Also,	if	your	bookstore	becomes	a	huge	success	and	you	decide	to	open
another	one,	you	will	be	prepared	because	you	can	create	another	object	of	class

Bookstore.

Figure	5-2.	The	Bookstore	class

Let’s	also	plan	a	Customer	class	(see	Figure	5-3).	Notice	how	the	name	has	been	broken
into	First	Name	and	Last	Name.	This	is	important	to	do.	There	will	be	times	in	your
project	when	you	may	want	to	use	only	the	first	name	of	a	customer,	and	it	would	be	hard
to	separate	the	first	name	from	the	last	if	you	didn’t	plan	ahead.	Let’s	say	you	want	to	send
a	letter	to	a	customer	letting	them	know	about	an	upcoming	sale.	You	do	not	want	your
greeting	to	say,	“Dear	John	Doe.”	It	would	look	much	more	personal	to	say,	“Dear	John.”

Figure	5-3.	The	Customer	class

You	will	also	notice	how	the	address	is	broken	into	its	different	parts	instead	of	grouping	it
all	together.	The	Address	Line	1,	Address	Line	2,	City,	State,	and	Zip	are
separate.	This	is	important	and	will	be	used	in	your	application.	Let’s	go	back	to	the	letter
you	want	to	send	to	customers	about	an	upcoming	sale.

You	might	not	want	to	send	it	to	all	of	the	customers	who	live	in	different	states.	By
separating	the	address,	you	can	easily	filter	out	those	customers	you	do	not	want	to
include	in	your	mailings.

We	have	also	added	the	attribute	of	Favorite	Book	Genre	to	the	Customer	class.
We	added	this	to	show	you	how	you	can	keep	many	different	types	of	information	in	each

class.	This	field	may	come	in	handy	if	you	have	a	new	mystery	title	coming	out	and	you
want	to	send	an	e-mail	alerting	customers	who	are	especially	interested	in	mysteries.	By
storing	this	type	of	information,	you	will	be	able	to	specifically	target	different	portions	of
your	customer	base.

A	Book	class	is	also	necessary	to	create	the	bookstore	(see	Figure	5-4).	You	will	store
information	about	the	book	such	as	author,	publisher,	genre,	page	count,	and	edition
number	(in	case	there	are	multiple	editions).	The	Book	class	will	also	have	the	price	for
the	book.

Figure	5-4.	The	Book	class

You	can	add	another	class	called	Sale	(see	Figure	5-5).	This	class	is	more	abstract	than
the	other	classes	discussed	because	it	does	not	describe	a	tangible	object.	You	will	notice
how	we	have	added	a	reference	to	a	customer	and	a	book	to	the	Sale	class.	Because	the
Sale	class	will	track	sales	of	books,	you	need	to	know	which	book	was	sold	and	to	which
customer.

Figure	5-5.	The	Sale	class

Now	that	you	know	the	properties	of	the	classes,	you	need	to	look	at	some	methods	that
each	of	the	classes	will	have.

Planning	Methods
You	will	not	add	all	of	the	methods	now,	but	the	more	planning	you	can	do	at	the
beginning,	the	easier	it	will	be	for	you	later.	Not	all	of	your	classes	will	have	many
methods.	Some	may	not	have	any	methods	at	all.

Note		When	planning	your	methods,	remember	to	have	them	focus	on	a	specific

task.	The	more	specific	the	method,	the	more	likely	it	is	that	it	can	be	reused.

For	the	time	being,	you	will	not	add	any	methods	to	the	Book	class	or	the	Bookstore
class.	You	will	focus	on	your	other	two	classes.

For	the	Customer	class,	you	will	add	methods	to	list	the	purchase	history	of	that	client.
There	may	be	other	methods	that	you	will	need	to	add	in	the	future,	but	you	will	add	just
that	one	for	now.	Your	completed	Customer	class	diagram	should	look	like	Figure	5-6.
The	line	near	the	bottom	separates	the	properties	from	the	methods.

Figure	5-6.	The	completed	Customer	class

For	the	Sales	class,	we	have	added	three	methods.	We	added	Charge	Credit
Card,	Print	Invoice,	and	Checkout	(see	Figure	5-7).	For	the	time	being,	you	do
not	need	to	know	how	to	implement	these	methods,	but	you	need	to	know	that	you	are
planning	on	adding	them	to	your	class.

Figure	5-7.	The	completed	Sale	class

Now	that	you	have	finished	mapping	out	the	classes	and	the	methods	you	are	going	to	add
to	them,	you	have	the	beginnings	of	a	Unified	Modeling	Language	(UML)	diagram.

Basically,	this	is	a	diagram	used	by	developers	to	plan	their	classes,	properties,	and
methods.	Starting	your	development	process	by	creating	such	a	diagram	will	help	you
significantly	in	the	long	run.	An	in-depth	discussion	of	UML	diagrams	is	beyond	the
scope	of	this	book.	If	you	would	like	more	information	about	this	subject,
smartdraw.com	has	a	great	in-depth	overview	of	them;	see
http://www.smartdraw.com/uml-diagram/.	Omnigroup
(www.omnigroup.com)	provides	a	great	UML	diagram	program	for	Mac	OS	X	called
Omnigraffle.

Figure	5-8	shows	the	complete	diagram.

Figure	5-8.	The	completed	UML	diagram	for	the	bookstore

Implementing	the	Classes
Now	that	you	understand	the	objects	you	are	going	to	be	creating,	you	need	to	create	your
first	object.	To	do	so,	you	will	start	with	a	new	project.

1.	 Launch	Xcode.	Select	File	 	New	 	Project.

2.	 Select	iOS	on	the	left	side.	On	the	right	side,	select	Master-Detail
Application.	For	what	you	are	doing	in	this	chapter,	you	could	have
selected	any	of	the	application	types	(see	Figure	5-9).	Click	Next.

http://smartdraw.com
http://www.smartdraw.com/uml-diagram/
http://www.omnigroup.com

Figure	5-9.	Creating	a	new	project

3.	 Enter	a	product	name	for	your	project.	We	will	use	the	name	of
BookStore.	You	will	also	have	to	enter	a	company	name	and	a
company	identifier.	The	company	identifier	is	usually
com.companyname	(i.e.,	com.innovativeware).	Leave	the
checkboxes	on	this	screen	as	they	appear	by	default.	You	will	not	be
worrying	about	Core	Data	right	now;	it’s	discussed	in	Chapter	11.
Also,	leave	the	current	language	selection	set	to	Swift.	Click	Next
to	select	a	location	to	save	your	project	and	then	save	your	project.
You	can	use	the	name	BookStore	or	any	other	project	name	you
want.

4.	 Select	the	BookStore	project	from	the	Project	navigator	on	the
left	side	of	the	screen	(see	Figure	5-10).	This	is	where	the	majority
of	your	code	will	reside.

Figure	5-10.	Selecting	the	bookStore	folder

5.	 Select	File	 	New	 	File.

6.	 From	the	pop-up	window,	select	Source	under	the	iOS	header	and
then	click	the	Swift	File	on	the	right	side	(see	Figure	5-11).	Then
click	Next.

Figure	5-11.	Creating	a	new	Swift	file

7.	 You	will	now	be	given	the	opportunity	to	name	your	file	(see	Figure
5-12).	For	this	exercise,	you	will	create	the	Customer	class.	For
now,	name	the	file	Customer.	Click	Create.

Figure	5-12.	Creating	the	file

Note		For	ease	of	use	and	for	understanding	your	code,
remember	that	class	names	should	always	be	capitalized
in	Swift.	Object	names	should	always	start	lowercase.	For
example,	Book	would	be	an	appropriate	name	for	a	class,
and	book	would	be	a	great	name	for	an	object	based	on
the	Book	class.	For	a	two-word	object,	such	as	the
book’s	author,	an	appropriate	name	would	be
bookAuthor.	This	type	of	capitalization	is	called	lower
camel	case.

8.	 Now	look	in	your	main	project	folder;	you	should	have	a	new	file.
It	is	called	Customer.swift.

Note		If	you	had	created	a	class	in	Objective-C,
Customer.h	and	Customer.m	files	would	have	been
created.	The	.h	file	is	the	header	file	that	contains
information	about	your	class.	The	header	file	lists	all	of
the	properties	and	methods	in	your	class,	but	it	does
actually	contain	the	code	related	to	them.	The	.m	file	is
the	implementation	file,	which	is	where	you	write	the
code	for	your	methods.	In	Swift,	the	entire	class	is
contained	in	a	single	file.

9.	 The	Customer.swift	file	should	now	be	selected,	and	you	will
see	the	window	shown	in	Figure	5-13.	Notice	it	does	not	contain	a

lot	of	information	currently.	The	first	part,	with	the	double	slashes
(//),	consists	of	comments	and	is	not	considered	part	of	the	code.
Comments	allow	you	to	tell	those	who	might	read	your	code	what
each	portion	of	code	is	meant	to	accomplish.	All	you	have	done	this
far	in	Swift	is	create	a	file.	You	now	need	to	add	the	code	to	the	file
to	actually	create	a	class.	In	your	Swift	file,	type	the	following:

class	Customer	{

}

Figure	5-13.	Your	empty	customer	class

This	is	all	that	is	needed	to	create	a	Customer	class.

Note		In	Swift,	a	class	does	not	need	to	be	in	its	own	file.	Many	classes	can	be
defined	in	a	single	Swift	file,	but	this	can	be	difficult	to	maintain	when	your
project	contains	a	lot	of	classes.	It	is	usually	cleaner	and	more	organized	to	have
a	separate	file	for	each	class.

Now	let’s	transfer	the	properties	from	the	UML	diagram	to	the	actual	class.

Tip		Properties	should	always	start	with	a	lowercase	letter.	There	can	be	no
spaces	in	a	property	name.

For	the	first	property,	First	Name,	add	this	line	to	your	file:

var	firstName	=	""

This	creates	an	object	in	your	class	called	firstName.	Notice	you	did	not	tell	Swift
what	type	of	property	firstName	is.	In	Swift,	you	can	declare	a	property	and	not
specify	the	type,	and	a	property	can	be	assigned	a	type	based	on	the	value	we	initially
assign	it.	By	giving	the	property	an	initial	value	of	””,	you	tell	the	Swift	compiler	to	make
firstName	a	String.	In	Swift,	all	non-optional	properties	require	a	default	value	either
when	they	are	declared	or	in	the	class	initializer.	We	will	discuss	optionals	later	in	this
book.

Note		In	Objective-C,	all	properties	are	required	to	declare	a	type.	For	example,
to	create	the	same	firstName	property,	you	would	use	the	following	code:

NSString	*firstName;

This	declares	an	NSString	with	the	name	firstName.	In	Swift,	you	can
declare	only	a	variable	and	allow	the	system	to	determine	the	type.

Since	all	of	the	properties	will	be	vars,	you	just	need	to	repeat	the	same	procedure	for	the
other	ones.	When	that	is	complete,	your	Swift	file	should	look	like	Figure	5-14.

Figure	5-14.	The	Customer	class	interface	with	properties

Now	that	the	class	declaration	is	complete,	you	will	need	to	add	your	method.	Methods
should	be	contained	in	the	same	class	file	and	location	as	the	properties.	You	will	add	a
new	method	that	returns	an	array.	This	code	will	look	as	follows:

func	listPurchaseHistory()	->	[String]	{

								return	["Purchase	1",	"Purchase	2"]
}

This	code	might	seem	a	little	confusing.	The	empty	parentheses	tell	the	compiler	that	you
are	not	passing	any	parameters	to	the	method.	The	->	tells	the	system	what	you	return

from	your	method.	[String]	tells	you	that	you	are	returning	an	array	of	strings.	In	the
final	version,	you	will	actually	want	to	return	purchase	objects,	but	you	are	using	String
for	now.	This	code	will	not	yet	compile	because	you	do	not	return	an	array,	so	you	added	a
return	of	a	simple	array.	That	is	all	that	needs	to	be	done	in	the	Swift	file	to	create	the
class.	Figure	5-15	shows	the	final	Swift	file.

Figure	5-15.	The	finished	Customer	class	Swift	file

Inheritance
Another	major	quality	of	OOP	is	inheritance.	Inheritance	in	programming	is	similar	to
genetic	inheritance.	You	might	have	inherited	your	eye	color	from	your	mother	or	hair
color	from	your	father,	or	vice	versa.	Classes	can,	in	a	similar	way,	inherit	properties	and
methods	from	their	parent	classes,	but	unlike	genetics,	you	do	not	inherit	the	values	of
those	properties.	In	OOP,	a	parent	class	is	called	a	superclass,	and	a	child	class	is	called	a
subclass.

Note		In	Swift,	there	is	no	superclass	unless	specifically	stated.

You	could,	for	example,	create	a	class	of	printed	materials	and	use	subclasses	for	books,
magazines,	and	newspapers.	Printed	materials	can	have	many	things	in	common,	so	you
could	define	properties	in	the	superclass	of	printed	materials	and	not	have	to	redundantly
define	them	in	each	individual	class.	By	doing	this,	you	further	reduce	the	amount	of
redundant	code	that	is	necessary	for	you	to	write	and	debug.

In	Figure	5-16,	you	will	see	a	layout	for	the	properties	of	a	Printed	Material
superclass	and	how	that	will	affect	the	subclasses	of	Book,	Magazine,	and
Newspaper.	The	properties	of	the	Printed	Material	class	will	be	inherited	by	the

subclasses,	so	there	is	no	need	to	define	them	explicitly	in	the	class.	You	will	notice	that
the	Book	class	now	has	significantly	fewer	properties.	By	using	a	superclass,	you	will
significantly	reduce	the	amount	of	redundant	code	in	your	programs.

Figure	5-16.	Properties	of	the	super-	and	subclasses

Why	Use	OOP?
Throughout	this	chapter,	we	have	discussed	what	OOP	is	and	have	even	discussed	how	to
create	classes	and	objects.	However,	it’s	also	important	to	discuss	why	you	want	to	use
OOP	principles	in	your	development.

If	you	take	a	look	at	the	popular	programming	languages	of	the	day,	all	of	them	use	the
OOP	principles	to	a	certain	extent.	Swift,	Objective-C,	C++,	Visual	Basic,	C#,	and	Java	all
require	the	programmer	to	understand	classes	and	objects	to	successfully	develop	in	those
languages.	In	order	to	become	a	developer	in	today’s	world,	you	need	to	understand	OOP.
But	why	use	it?

OOP	Is	Everywhere
Just	about	any	development	you	choose	to	do	today	will	require	you	to	understand	object-
oriented	principles.	On	Mac	OS	X	and	in	iOS,	everything	you	interact	with	will	be	an
object.	For	example,	simple	windows,	buttons,	and	text	boxes	are	all	objects	and	have
properties	and	methods.	If	you	want	to	be	a	successful	programmer,	you	need	to
understand	OOP.

Eliminate	Redundant	Code
By	using	objects,	you	can	reduce	the	amount	of	code	you	have	to	retype.	If	you	write	code
to	print	a	receipt	when	a	customer	checks	out,	you	will	want	that	same	code	available
when	you	need	to	reprint	a	receipt.	If	you	placed	your	code	to	print	the	receipt	in	the
Sales	class,	you	will	not	have	to	rewrite	this	code	again.	This	not	only	saves	you	time
but	often	helps	you	eliminate	mistakes.	If	you	do	not	use	OOP	and	there	is	a	change	to	the
invoice	(even	something	as	simple	as	a	graphic	change),	you	have	to	make	sure	you	make
the	change	in	your	desktop	and	mobile	applications.	If	you	miss	one	of	them,	you	run	the

risk	of	having	the	two	interfaces	behave	differently.

Ease	of	Debugging
By	having	all	of	the	code	relating	to	a	book	in	one	class,	you	know	where	to	look	when
there	is	a	problem	with	the	book.	This	may	not	sound	like	such	a	big	deal	for	a	little
application,	but	when	your	application	gets	to	hundreds	of	thousands	or	even	millions	of
lines	of	code,	it	will	save	you	a	lot	of	time.

Ease	of	Replacement
If	you	place	all	of	your	code	in	a	class,	then	as	things	change	in	your	application,	you	can
change	out	classes	and	give	your	new	class	completely	different	functionality.	However,
the	modified	class	can	still	interact	with	the	rest	of	the	application	in	the	same	way	as	your
current	class.	This	is	similar	to	car	parts.	If	you	want	to	replace	a	muffler	on	a	car,	you	do
not	need	to	get	a	new	car.	If	you	have	code	related	to	your	invoice	scattered	all	over	the
place,	it	makes	it	much	more	difficult	to	change	items	about	a	class.

Advanced	Topics
We	have	discussed	the	basics	of	OOP	throughout	this	chapter,	but	there	are	some	other
topics	that	are	important	to	your	understanding.

Interface
As	discussed	in	this	chapter,	the	way	the	other	objects	interact	is	with	methods.	In	Swift,
you	can	set	access	levels	on	your	methods.	Declaring	a	method	private	will	make	it
accessible	only	to	objects	derived	from	it.	By	default,	Swift	methods	are	internal	and	can
be	accessed	by	any	object	or	method	in	the	current	module.	This	is	often	called	the
interface	because	it	tells	other	objects	how	they	can	interact	with	your	objects.
Implementing	a	standard	interface	throughout	your	application	will	allow	your	code	to
interact	with	different	objects	in	similar	ways.	This	will	significantly	reduce	the	amount	of
object-specific	code	you	need	to	write.

Polymorphism
Polymorphism	is	the	ability	of	an	object	of	one	class	to	appear	and	be	used	as	an	object	of
another	class.	This	is	usually	done	by	creating	methods	and	properties	that	are	similar	to
those	of	another	class.	A	great	example	of	polymorphism	that	you	have	been	using	is	the
bookstore.	In	the	bookstore,	you	have	three	similar	classes:	Book,	Magazine,	and
Newspaper.	If	you	wanted	to	have	a	big	sale	for	your	entire	inventory,	you	could	go
through	all	of	the	books	and	mark	them	down.	Then	you	could	go	through	all	of	the
magazines	and	mark	them	down	and	then	go	through	all	of	the	newspapers	and	mark	them
down.	That	would	be	more	work	than	you	would	need	to	do.	It	would	be	better	to	make

sure	all	of	the	classes	have	a	markdown	method.	Then	you	could	call	that	on	all	of	the
objects	without	needing	to	know	which	class	they	were	as	long	as	they	were	subclasses	of
a	class	that	contained	the	methods	needed.	This	would	save	a	bunch	of	time	and	coding.

As	you	are	planning	your	classes,	look	for	similarities	and	for	methods	that	might	apply	to
more	than	one	type	of	class.	This	will	save	you	time	and	speed	up	your	application	in	the
long	run.

Summary
You’ve	finally	reached	the	end	of	the	chapter!	Here	is	a	summary	of	the	things	that	were
covered:

Object-oriented	programming	(OOP):	You	learned	about	the
importance	of	OOP	and	the	reasons	why	all	modern	code	should	use
this	methodology.

Objects:	You	learned	about	OOP	objects	and	how	they	correspond	to
real-world	objects.	You	also	learned	about	abstract	objects	that	do
not	correspond	to	real-world	objects.

Classes:	You	learned	that	a	class	determines	the	types	of	data
(properties)	and	the	methods	that	each	object	will	have.	Every	object
needs	to	have	a	class.	It	is	the	blueprint	for	the	object.

Creating	a	class:	You	learned	how	to	map	out	the	properties	and
methods	of	your	classes.

Creating	a	class	file:	You	used	Xcode	to	create	a	class	file.

Editing	a	file:	You	edited	the	Swift	file	to	add	your	properties	and
methods.

Exercises
Try	creating	the	class	files	for	the	rest	of	the	classes	you	mapped	out.

Map	out	an	Author	class.	Choose	the	kind	of	information	you
would	need	to	store	about	an	author.

For	the	daring	and	advanced:

Try	creating	a	superclass	called	PrintedMaterials.	Map	out	the
properties	that	a	class	might	have.

Create	classes	for	the	other	types	of	printed	materials	a	store	might
carry.

Chapter				6

Learning	Swift	and	Xcode
For	the	most	part,	all	programming	languages	perform	the	typical	tasks	any	computer
needs	to	do—store	information,	compare	information,	make	decisions	about	that
information,	and	perform	some	action	based	on	those	decisions.	The	Swift	language
makes	these	tasks	easier	to	understand	and	accomplish.	The	real	trick	with	Swift	(actually,
the	trick	with	most	programming	languages)	is	to	understand	the	symbols	and	keywords
used	to	accomplish	those	tasks.	This	chapter	continues	the	examination	of	Swift	and
Xcode	so	you	can	become	even	more	familiar	with	them.

A	Newcomer
As	you	may	know,	Swift	has	not	been	around	for	long.	Development	of	the	Swift	language
began	about	four	years	ago	by	Chris	Lattner,	and	on	September	9,	2014,	Swift	1.0	was
officially	released.	Swift	borrows	many	ideas	from	Objective-C,	but	it	also	incorporates
many	features	used	by	modern	programming	languages.	Swift	was	designed	from	the
ground	up	to	be	accessible	to	the	average	programmer.

Currently,	there	are	two	main	types	of	programming	languages.	Compiled	languages	such
as	Objective-C	and	C++	are	known	for	being	rigid	and	requiring	certain	syntax.	Compiled
languages	are	also	significantly	faster	in	execution.	Interpreted	languages,	such	as	Ruby,
PHP,	and	Python,	are	known	for	being	easier	to	learn	and	code	but	slower	in	their
execution.	Swift	is	a	language	that	bridges	the	gap	between	the	two.	Swift	incorporates	the
flexibility	that	makes	interpreted	languages	so	popular	with	the	performance	required	for
demanding	applications	and	games.	In	fact,	Apple	claims	that	Swift	applications	will
perform	faster	than	those	written	in	Objective-C.	In	some	of	Apple’s	tests,	Swift
performed	almost	four	times	faster	than	Python	and	40	percent	faster	than	Objective-C.

Understanding	the	Language	Symbols
Understanding	symbols	is	a	basic	part	of	any	programming	language.	Symbols	are
punctuation	used	to	portray	specific	meanings	in	source	code.	Understanding	the	symbols
of	a	language	is	required	to	be	able	to	use	the	language.	Here	are	some	of	the	symbols	and
language	constructs	used	in	Swift,	most	of	which	you’ve	already	encountered	in	one	way
or	another:

{:	This	is	the	begin	brace.	It’s	used	to	start	what’s	commonly	referred
to	as	a	block	of	code.	Blocks	are	used	to	define	and	surround	a
section	of	code	and	define	its	scope.

}:	This	is	the	end	brace.	It’s	used	to	end	a	block	of	code.	Wherever
there	is	a	begin	brace	({),	there	must	always	be	an	accompanying

end	brace	(}).

[]:	These	are	the	open	and	close	brackets.	They	are	used	in	the
declaration	and	consumption	of	arrays.

func	methodName()	->	String:	This	is	how	a	Swift
function	is	defined.	The	word	methodName,	of	course,	can
represent	any	name.	The	word	String	can	also	change.	It
represents	what	type	of	information	the	method	returns.	In	this
example,	String	indicates	the	method	will	return	a	string,	or	a
group	of	characters	(data	types	were	introduced	in	Chapter	3	and	will
be	covered	in	more	depth	in	later	chapters).	This	will	be	discussed
more	later	in	the	chapter.

Figure	6-1	shows	an	example	of	Swift	code.

Figure	6-1.	Example	of	Swift	code

Line	1	represents	a	Swift	function.	The	empty	parentheses,	(),	indicate	that	this	function
does	not	receive	any	variables.	The	fact	that	the	parentheses	are	not	followed	by	->
signifies	that	this	function	does	not	return	any	type	of	data	and,	if	invoked,	would	not
return	a	value	to	the	caller.

The	end	of	line	1	and	line	4	are	the	braces	that	define	a	block	of	code.	This	block	is	what
defines	the	method.	Every	method	has	at	least	one	block.

Line	2	creates	a	constant	named	hello.	As	you	learned	in	previous	chapters,	a	constant	is
a	value	that	cannot	change	or	is	constant.	The	value	of	the	constant	hello	is	assigned
“Hello	World!”	Because	you	assign	hello	to	a	String	value,	hello	becomes	a
String	and	can	use	any	method	related	to	Strings	(recall	that	you	first	saw	strings	in
Chapter	3).	Line	3	could	be	rewritten	as	follows:

let	hello:	String	=	"Hello	World!"

Line	3	is	a	call	to	the	println	function.	You	pass	the	method	the	object	in	order	to	print
the	hello	String	object.

Although	it	does	look	a	little	cryptic	to	someone	who	is	just	learning	Swift,	the	simple	and
terse	syntax	doesn’t	take	too	much	time	to	learn.

Implementing	Objects	in	Swift
Swift	was	built	from	the	ground	up	to	be	object-oriented.	It	incorporates	the	best	parts	of
Objective-C	without	the	constraints	of	being	compatible	with	C.	It	also	takes	some	of	the

best	features	of	a	scripted	language.	The	following	are	some	of	the	concepts	that	make
Swift	object-oriented.	Don’t	worry	if	some	of	these	terms	seem	unfamiliar;	they	will	be
discussed	in	later	chapters	(Chapters	7	and	8	cover	the	basics).

Pretty	much	everything	is	an	object.

Objects	contain	instance	variables.

Objects	and	instance	variables	have	a	defined	scope.

Classes	hide	an	object’s	implementation.

Note		As	you	saw	in	Chapter	5,	the	term	class	is	used	to	represent,	generically,
the	definition	or	type	of	an	object.	An	object	is	created	from	the	class.	For
example,	an	SUV	is	a	class	of	vehicle.	A	class	is	a	blueprint	of	sorts.	A	factory
builds	SUVs.	The	results	are	SUV	objects	that	people	drive.	You	can’t	drive	a
class,	but	you	can	drive	an	object	built	from	a	class.

So,	how	do	these	concepts	translate	to	Swift?	Swift	is	flexible	in	the	implementation	of
classes.

Note		Even	though	in	Swift	a	single	file	may	contain	many	different	classes,	a
programmer	will	want	to	separate	the	code	into	different	files	to	make	access
easier.

Let’s	look	at	a	complete	definition	of	a	Swift	class	called	HelloWorld	(Figure	6-2).

Figure	6-2.	HelloWorld	class

In	the	preceding	example,	a	class	called	HelloWorld	is	being	defined.	This	class	has
only	one	method	defined:	logMessage.	What	do	all	these	strange	symbols	mean?	Using
the	line	numbers	as	a	reference,	you	can	review	this	code	line	by	line.

Line	1	contains	a	compiler	directive,	import	Foundation.	For	this	little	program	to
know	about	certain	other	objects,	you	need	to	have	the	compiler	read	other	interface	files.
In	this	case,	the	Foundation	file	defines	the	objects	and	interfaces	to	the	Foundation
framework.	This	framework	contains	the	definition	of	most	non-user-interface	base
classes	of	the	iOS	and	Mac	OS	X	systems.	You	will	not	be	using	any	Foundation
framework–specific	objects	in	this	example,	but	it	is	a	default	part	of	any	new	Swift	file.

The	actual	start	of	the	object	is	on	line	4,	as	follows:

class	HelloWorld	{

HelloWorld	is	the	class.	If	you	wanted	HelloWorld	to	be	a	subclass	of	a	logging
class	you	had	created,	such	as	LogFile,	you	would	change	the	declaration	as	follows:

class	HelloWorld:	LogFile		{

Line	6	contains	a	method	definition	for	this	object,	as	follows:

func	logMessage()	{

When	you’re	defining	a	method,	you	must	decide	whether	you	want	the	method	to	be	a
type	or	an	instance	method.	In	the	case	of	the	HelloWorld	object,	you	are	using	the
default	method	type,	which	is	an	instance.	This	method	can	be	used	after	the	object	is
created.	If	the	word	class	is	added	before	the	func,	the	method	can	be	used	before	the
object	is	created,	but	you	will	not	have	access	to	variables	in	the	object.	If	you	changed
logMessage	to	a	type	method,	it	would	be	as	follows:

class	func	logMessage()	{

Lines	7	and	8	contain	the	body	of	the	method.	You	learned	about	the	details	of	the
statements	earlier	in	the	chapter.

That’s	the	complete	description	of	class	HelloWorld;	there’s	not	a	whole	lot	here.	More
complicated	objects	simply	have	more	methods	and	more	variables.

But	wait,	there	is	more.	Now	that	you	have	a	new	Swift	class	defined,	how	is	it	used?
Figure	6-3	shows	another	piece	of	code	that	uses	the	newly	created	class.

Figure	6-3.	Calling	a	Swift	method

The	first	line	defines	a	constant	called	myHelloWorld.	It	then	assigns	the	constant	to	an
instance	of	the	HelloWorld	class.	The	second	line	simply	calls	the	logMessage
method	of	the	myHelloWorld	object.	Those	who	have	spent	time	in	Objective-C	will
quickly	see	how	much	shorter	and	efficient	both	the	class	declaration	and	the	object
creation	are	in	Swift.

Note		Instantiation	makes	a	class	a	real	object	in	the	computer’s	memory.	A
class	by	itself	is	not	really	usable	until	there	is	an	instance	of	it.	Using	the	SUV
example,	an	SUV	means	nothing	until	a	factory	builds	one	(instantiates	the
class).	Only	then	can	the	SUV	be	used.

Method	calls	can	also	accept	multiple	arguments.	Consider,	for	example,
myCarObject.switchRadioBandTo(FM,	104.7).	The	method	here
would	be	switchRadioBandTo.	The	two	arguments	are	contained	in	the
parentheses.	Being	consistent	in	naming	methods	is	critical.

Writing	Another	Program	in	Xcode
When	you	first	open	Xcode,	you’ll	see	the	screen	shown	in	Figure	6-4.

Figure	6-4.	Xcode	opening	screen

You	should	always	keep	the	screen	in	Figure	6-3	visible	at	the	launch	of	Xcode.	Until	you
are	more	comfortable	with	Xcode,	keep	the	“Show	this	window	when	Xcode	launches”
checkbox	selected.	This	window	allows	you	to	select	the	most	recently	created	projects	or
create	a	new	project	from	scratch.

Creating	the	Project
You	are	going	to	start	a	new	project,	so	click	the	“Create	a	new	Xcode	project”	icon.
Whenever	you	want	to	start	a	new	iOS	or	Mac	OS	X	application,	library,	or	anything	else,
use	this	icon.	Once	a	project	has	been	started	and	saved,	the	project	will	appear	in	the
Recent	list	on	the	right	of	the	display.

For	this	Xcode	project,	you	will	choose	something	simple.	Make	sure	the	iOS	Application
is	selected.	Then	select	Single	View	Application,	as	shown	in	Figure	6-5.	Then	simply
click	the	Next	button.

Figure	6-5.	Choosing	a	new	project	from	a	list	of	templates

There	are	several	types	of	templates.	These	templates	make	it	easier	to	start	a	project	from
scratch	in	that	they	provide	a	starting	point	by	automatically	creating	simple	source	files.

Once	you’ve	chosen	the	template	and	clicked	the	Next	button,	Xcode	presents	you	with	a
dialog	box	asking	for	the	project’s	name	and	some	other	information,	as	shown	in	Figure
6-6.	Type	a	product	name	of	Chapter	6.	The	organization	identifier	needs	to	have	some
value,	so	we	used	com.innovativeware.	Also	make	sure	the	Devices	drop-down	is
set	to	iPhone.

Figure	6-6.	Setting	up	the	product	name,	company,	and	type

Once	you’ve	supplied	all	the	information,	click	the	Next	button.	Xcode	will	ask	you	where
to	save	the	project.	You	can	save	it	anywhere,	but	the	desktop	is	a	good	choice	because	it’s
always	visible.

Once	you’ve	picked	where	to	save	the	project,	the	main	Xcode	screen	will	appear	(see
Figure	6-7).	In	the	leftmost	pane	is	the	list	of	source	files.	The	right	two-thirds	of	the
screen	is	dedicated	to	the	context-sensitive	editor.	Click	a	source	file,	and	the	editor	will
show	the	source	code.	Clicking	a	.storyboard	file	will	show	the	Screen	Interface
editor.

Figure	6-7.	The	Xcode	7	main	screen

The	first	app	is	going	to	be	simple.	This	iPhone	app	will	contain	a	button.	When	the	button
is	clicked,	your	name	will	appear	on	the	screen.	So,	let’s	start	by	first	looking	more	closely
at	some	of	the	stub	source	code	that	Xcode	built	for	you.	The	nice	thing	about	Xcode	is
that	it	will	create	a	stub	application	that	will	execute	without	any	modification.	Before	you
start	adding	code,	let’s	look	at	the	main	toolbar	of	Xcode,	as	shown	in	Figure	6-8.

Figure	6-8.	The	Xcode	7	toolbar

At	first	glance,	there	are	three	distinct	areas	of	the	toolbar.	The	left	area	is	used	to	run	and
debug	the	application.	The	middle	area	displays	status	as	a	summary	of	compiler	errors
and	warnings.	The	far-right	area	contains	a	series	of	buttons	that	customize	the	editing
view.

As	shown	in	Figure	6-9,	the	left	portion	of	the	toolbar	contains	a	Play	button	that	will
compile	and	run	the	application.	If	the	application	is	running,	the	Stop	button	will	not	be
grayed	out.	Since	it’s	grayed	out,	you	know	the	application	is	not	running.	The	scheme
selection	can	be	left	alone	for	now.	Schemas	will	be	discussed	in	more	detail	in	Chapter
13.

Figure	6-9.	Close-up	of	the	left	portion	of	the	Xcode	toolbar

The	right	side	of	the	Xcode	toolbar	contains	buttons	that	change	the	editor.	The	three
buttons	represent	the	Standard	editor	(selected),	the	Assistant	editor,	and	the	Version
editor.	For	now,	just	click	the	Standard	editor	button,	as	shown	in	Figure	6-10.

Figure	6-10.	Close-up	of	the	right	portion	of	the	Xcode	toolbar

Next	to	the	editor	choices	are	a	set	of	View	buttons.	These	buttons	can	be	toggled	on	and
off.	For	example,	the	one	chosen	in	Figure	6-10	represents	the	current	view	shown	in
Figure	6-7,	a	list	of	the	program	files	on	the	left	third	of	the	screen,	the	main	editor	in	the
middle	third,	and	the	Utilities	in	the	right	portion	of	the	screen.	Any	combination,	or	none,
can	be	chosen	to	help	customize	the	main	workspace	window.	The	last	button	opens	the
Utilities	area.	Chapter	13	discusses	this	button.	For	now,	let’s	get	back	to	your	first	iPhone
app.

Click	the	ViewController.swift	file,	as	shown	in	Figure	6-11.	The	editor	shows
some	Swift	code	that	defines	a	ViewController	class.

Figure	6-11.	Looking	at	the	source	code	in	the	Xcode	editor

You	will	notice	two	functions	in	the	code.	viewDidLoad	is	called	immediately	after	a
view	is	loaded	and	can	be	used	for	setting	up	the	view.	This	is	a	good	place	to	put	code
that	sets	up	labels,	buttons,	colors,	and	so	on.	didReceiveMemoryWarning	is	called
when	your	application	is	getting	low	on	memory.	You	can	use	this	function	to	decrease	the
amount	of	memory	required	by	your	application.

Note		For	now,	you’re	simply	going	to	add	a	few	lines	of	code	and	see	what
they	do.	It’s	not	expected	that	you	understand	what	this	code	means	right	now.
What’s	important	is	simply	going	through	the	motions	to	become	more	familiar

with	Xcode.	Chapter	7	goes	into	more	depth	about	what	makes	up	a	Swift
program,	and	Chapter	10	goes	into	more	depth	about	building	an	iPhone
interface.

Next,	you’ll	add	a	few	lines	of	code	into	this	file,	as	shown	in	Figure	6-12.	Line	13	defines
an	iPhone	label	on	the	screen	where	you	can	put	some	text.	Line	15	defines	the	method
showName.	You’ll	be	calling	this	method	in	order	to	populate	the	iPhone	label.	A	label	is
nothing	more	than	an	area	on	the	screen	where	you	can	put	some	text	information.

Figure	6-12.	Code	added	to	the	ViewController.swift	file

Caution		Type	the	code	exactly	as	shown	in	the	example,	including	case.	For
instance,	UILabel	can’t	be	uilabel	or	UILABEL.	Swift	is	a	case-sensitive
language,	so	UILabel	is	completely	different	from	uilabel.

You	will	notice	that	the	code	you	added	has	@IBOutlet	and	@IBAction	in	front	of
them.	These	attributes	are	necessary	when	connecting	objects	with	the	interface	designer.
IBOutlet	allows	you	to	control	an	interface	object	with	code.	IBAction	allows	you
to	execute	code	when	something	happens	in	the	interface	such	as	tapping	a	button.

Note		IBOutlet	and	IBAction	both	start	with	IB,	which	is	an	acronym
from	Interface	Builder.	Interface	Builder	was	the	tool	used	by	NeXT	and	then
Apple	for	building	user	interfaces.

You	now	have	the	necessary	code	in	place,	but	you	don’t	yet	have	an	interface	on	the
iPhone.	Next,	you’re	going	to	edit	the	interface	and	add	two	interface	objects	to	your	app.

To	edit	the	iPhone’s	interface,	you	need	to	click	the	Main.storyboard	file	once.	The
.storyboard	file	contains	all	the	information	about	a	single	window	or	view.	Xcode	7
also	supports	.xib	(pronounced	zib)	files.

Note		Each	.xib	file	represents	one	screen	on	an	iPhone	or	iPad.	Apps	that
have	multiple	views	will	have	multiple	.xib	files,	but	many	different	views
can	be	stored	in	each	storyboard	file.

You	will	use	Xcode’s	interface	editor	to	connect	a	UI	object,	such	as	a	Label	object,	to	the
code	you	just	created.	Connecting	is	as	easy	as	clicking	and	dragging.

Click	the	last	view	button	in	the	upper-right	part	of	the	screen,	as	shown	in	Figure	6-13.
This	opens	the	Utilities	view	for	the	interface.	Among	other	things,	this	Utilities	view
shows	you	the	various	interface	objects	you	can	use	in	your	app.	You’re	going	to	be
concerned	with	only	the	right-most	objects:	Button	and	Label.	Figure	6-14	shows	the
Object	Library.	There	are	other	libraries	available,	but	for	now	you	will	be	using	only	the
third	one	from	the	left.

Figure	6-13.	The	iPhone	interface	you’re	going	to	modify

Figure	6-14.	The	Object	Library

The	first	step	is	to	click	the	Button	object	in	the	Utilities	window.	Next,	drag	the	object	to
the	iPhone	view,	as	shown	in	Figure	6-15.	Don’t	worry;	dragging	the	object	doesn’t
remove	it	from	the	list	of	objects	in	the	Utilities	view.	Dragging	it	creates	a	new	copy	of
that	object	on	the	iPhone	interface.

Figure	6-15.	Moving	a	Button	object	onto	the	iPhone	view

Next,	double-click	the	Button	object	that	was	just	added	to	the	iPhone	interface.	This
allows	you	to	change	the	title	of	the	button,	such	as	to	Name,	as	shown	in	Figure	6-16.
Many	different	interface	objects	work	just	like	this.	Simply	double-click,	and	the	title	of
the	object	can	be	changed.	This	can	also	be	done	in	the	actual	code,	but	it’s	much	simpler
to	do	in	Interface	Builder.

Figure	6-16.	Modifying	the	Button	object’s	title

Once	the	title	has	been	changed,	drag	a	Label	object	to	right	below	the	button,	as	shown	in
Figure	6-17.

Figure	6-17.	Adding	a	Label	object	to	the	iPhone	interface

For	now,	you	can	leave	the	label’s	text	as	“Label”	since	this	makes	it	easy	to	find	on	the
interface.	If	you	clear	the	label’s	text,	the	object	will	still	be	there,	but	there	is	nothing
visible	to	click	in	order	to	select	it.	Expand	the	size	of	the	label	by	dragging	the	center
white	square	to	the	right,	as	shown	in	Figure	6-18.

Figure	6-18.	Expanding	the	label’s	size

Now	that	you	have	a	button	and	the	label,	you	can	connect	these	visual	objects	to	your
program.	Start	by	right-clicking	(or	Control-clicking)	the	Button	control.	This	brings	up	a
connection	menu,	as	shown	in	Figure	6-19.

Figure	6-19.	Connection	menu	for	the	Button	object

Next,	click	and	drag	from	the	Touch	Up	Inside	connection	circle	to	the	View	Controller
icon,	as	shown	in	Figure	6-20.	Touch	Up	Inside	means	the	user	clicked	inside	the	Button
object.	Dragging	the	connection	to	the	View	Controller	connects	the	Touch	Up	Inside
event	to	the	ViewController	object.	This	causes	the	object	to	be	notified	whenever
the	Button	object	is	clicked.

Figure	6-20.	Connecting	the	Touch	Up	Inside	event	to	the	object

Once	the	connection	is	dropped,	a	list	of	methods	that	can	be	used	in	your	connection	is
displayed,	as	shown	in	Figure	6-21.	In	this	example,	there	is	only	one	method,	showName
:.	Selecting	the	showName:	method	connects	the	Touch	Up	Inside	event	to	the	object.

Figure	6-21.	Selecting	the	method	to	handle	the	Touch	Up	Inside	event

Once	the	connection	has	been	made,	the	details	are	shown	on	the	button’s	connection
menu,	as	shown	in	Figure	6-22.

Figure	6-22.	The	connection	is	now	complete

Next,	you	create	a	connection	for	the	Label	object.	In	this	case,	you	don’t	care	about	the
Label	events;	instead,	you	want	to	connect	the	ViewController’s	nameLabel	outlet
to	the	object	on	the	iPhone	interface.	This	connection	basically	tells	the	object	that	the
label	you	want	to	set	text	on	is	on	the	iPhone	interface.

Start	by	right-clicking	the	Label	object	on	the	iPhone	interface.	This	brings	up	the
connection	menu	for	the	Label	object,	as	shown	in	Figure	6-23.	There	are	not	as	many
options	for	a	Label	object	as	there	were	for	the	Button	object.

Figure	6-23.	Connection	menu	for	the	Label	object

As	mentioned,	you	are	not	here	to	connect	an	event.	Instead,	you	connect	what’s	referred
to	as	a	referencing	outlet.	This	connects	a	screen	object	to	a	variable	in	your
ViewController	object.	Just	like	with	the	button,	you	should	drag	the	connection	to
the	View	Controller	icon,	as	shown	in	Figure	6-24.

Figure	6-24.	Connecting	the	referencing	outlet	to	the	object

Once	the	connection	is	dropped	on	the	View	Controller	icon,	a	list	of	outlets	in	your
ViewController	object	will	be	displayed,	as	shown	in	Figure	6-25.	Of	the	two
choices,	you	want	to	choose	nameLabel.	This	is	the	name	of	the	variable	in	the
ViewController	object	you	are	using.

Figure	6-25.	Selecting	the	object’s	variable	to	complete	the	connection

Once	you’ve	chosen	nameLabel,	you’re	ready	to	run	your	program.	Click	the	Run
button	(which	looks	like	a	Play	button)	at	the	top-left	corner	of	the	Xcode	window	(see
Figure	6-6).	This	will	automatically	save	your	files	and	start	the	application	in	the	iPhone
Simulator,	as	shown	in	Figure	6-26.

Figure	6-26.	The	app	running,	before	and	after	the	button	is	clicked

By	clicking	the	Name	button,	the	label’s	text	will	change	from	its	default	value	of	“Label”
to	“My	Name	is	Brad!”	or	whatever	value	you	entered.	If	you	want	to,	go	back	into	the
interface	and	clear	the	default	label	text.

Summary
The	examples	in	this	chapter	were	simple,	but	ideally	they’ve	whetted	your	appetite	for
more	complex	applications	using	Swift	and	Xcode.	In	later	chapters,	you	can	expect	to
learn	more	about	object-oriented	programming	and	more	about	what	Swift	can	do.	Pat
yourself	on	the	back	because	you’ve	learned	a	lot	already.	Here	is	a	summary	of	the	topics
discussed	in	this	chapter:

The	origins	and	brief	history	of	the	Swift	language

Some	common	language	symbols	used	in	Swift

A	Swift	class	example

Using	Xcode	a	bit	more,	including	discussing	the
HelloWorld.swift	source	file

Connecting	visual	interface	objects	with	methods	and	variables	in
your	application	object

Exercises
Clear	the	default	text	of	“Label”	in	the	program	and	rerun	the
example.

Change	the	size	of	the	Label	object	on	the	interface	to	be	smaller	in
width.	How	does	that	affect	your	text	message?

Delete	the	referencing	outlet	connection	of	the	label	and	rerun	the
project.	What	happens?

If	you	think	you	have	the	hang	of	this,	add	a	new	button	and	label	to
the	ViewController	object	and	to	the	interface.	Change	the	label
from	displaying	your	name	to	displaying	something	else.

Chapter				7

Swift	Classes,	Objects,	and	Methods
If	you	haven’t	already	read	Chapter	6,	please	do	so	before	reading	this	one	because	it
provides	a	great	introduction	to	some	of	the	basics	of	Swift.	This	chapter	builds	on	that
foundation.	By	the	end	of	this	chapter,	you	can	expect	to	have	a	greater	understanding	of
the	Swift	language	and	how	to	use	the	basics	to	write	simple	programs.	The	best	way	to
learn	is	to	take	small	programs	and	write	(or	rewrite)	them	in	Swift	just	to	see	how	the
language	works.

This	chapter	covers	what	composes	a	Swift	class	and	how	to	interact	with	Swift	objects
via	methods.	It	uses	a	simple	radio	station	class	as	an	example	of	how	a	Swift	class	is
written.	This	will	impart	an	understanding	of	how	to	use	a	Swift	class.	This	chapter	also
teaches	you	how	to	formulate	a	design	for	objects	that	are	needed	to	solve	a	problem.	The
chapter	touches	on	how	to	create	custom	objects,	as	well	as	how	to	use	existing	objects
provided	in	the	foundation	classes.

This	chapter	expands	on	Chapter	6’s	topics	and	introduces	some	of	the	concepts	described
in	detail	in	Chapter	8.

Creating	a	Swift	Class
Classes	are	simple	to	create	in	Swift.	Generally	a	class	will	be	contained	in	its	own	file,
but	a	single	file	can	hold	many	classes	if	desired.

Here	is	a	sample	of	the	first	line	from	a	class’s	declaration:

class	RadioStation

Here,	the	class	name	is	RadioStation.	Swift	classes,	by	default,	do	not	inherit	from	a
superclass.	If	you	want	to	make	your	Swift	class	inherit	from	another	class,	you	can	do
this	like	so:

class	RadioStation:	Station

In	this	example,	RadioStation	is	now	a	subclass	of	Station	and	will	inherit	all	of
the	properties	and	methods	of	Station.	Listing	7-1	shows	the	full	definition	of	a	class.

Listing	7-1.	A	Swift	class

	1	import	UIKit
	2
	3	class	RadioStation	{
	4
	5					var	name:	String
	6					var	frequency:	Double

	7
	8					init()	{
	9									name	=	"Default"
10									frequency	=	100
11					}
12
13					class	func	minAMFrequency()	->	Double	{
14									return	520.0
15					}
16
17					class	func	maxAMFrequency()	->	Double	{
18									return	1610.0
19					}
20
21					class	func	minFMFrequency()	->	Double	{
22									return	88.3
23					}
24
25					class	func	maxFMFrequency()	->	Double	{
26									return	107.9
27					}
28
29					func	band()	->	Int	{
30									if	frequency	>=	RadioStation.minFMFrequency()	&&	
frequency	<=	RadioStation.maxFMFrequency()	{
31													return	1	//FM
32									}	else	{
33													return	0	//AM
34									}
35					}
36
37	}

Instance	Variables
Listing	7-1	shows	a	sample	class	with	two	different	properties:	name	and	frequency.
Line	1	imports	the	UIKit	class	definitions	(more	on	that	in	a	bit).	Line	3	starts	the
definition	of	the	class	by	defining	its	name	(sometimes	called	the	type).	Lines	5	to	6	define
the	properties	for	the	RadioStation	class.

Whenever	the	RadioStation	class	is	instantiated,	the	resulting	RadioStation
object	has	access	to	these	properties,	which	are	only	for	specific	instances.	If	there	are	ten
RadioStation	objects,	each	object	has	its	own	variables	independent	of	the	other
objects.	This	is	also	referred	to	as	scope,	in	that	the	object’s	variables	are	within	the	scope
of	each	object.

Methods
Almost	every	object	has	methods.	In	Swift,	the	common	concept	to	interact	with	an	object
is	calling	a	method	on	an	object,	like	so:

myStation.band()

The	preceding	line	will	call	a	method	name	band	on	an	instance	of	the	RadioStation
class	methods	can	also	have	parameters	passed	along	with	them.	Why	pass	parameters?
Parameters	are	passed	for	several	reasons.	First	(and	most	common),	the	range	of
possibilities	is	too	large	to	write	as	separate	methods.	Second,	the	data	you	need	to	store	in
your	object	is	variable—like	a	radio	station’s	name.	In	the	following	example,	you	will	see
that	it	isn’t	practical	to	write	a	method	for	every	possible	radio	frequency;	instead,	the
frequency	is	passed	as	a	parameter.	The	same	applies	to	the	station	name.

myStation.setFrequency(104.7)

The	method	name	is	setFrequency.	Method	calls	can	have	several	parameters,	as	the
following	example	illustrates:

myStation	=	RadioStation.init(name:	"KZZP",	frequency:	
104.7)

In	the	preceding	example,	the	method	call	consists	of	two	parameters:	the	station	name
and	its	frequency.	What’s	interesting	about	Swift	relative	to	other	languages	is	that	the
methods	are	essentially	named	parameters.	If	this	were	a	C++	or	Java	program,	the	call
would	be	as	follows:

myObject	=	new	RadioStation("KZZP",	104.7);

While	a	RadioStation	object’s	parameters	might	seem	obvious,	having	named
parameters	can	be	a	bonus	because	they	more	or	less	state	what	the	parameters	are	used
for	or	what	they	do.

Using	Class	Methods
A	class	doesn’t	always	have	to	be	instantiated	to	be	used.	In	some	cases,	classes	have
methods	that	can	actually	perform	some	simple	operations	and	return	values	before	a	class
is	instantiated.	These	methods	are	called	type	methods.	In	Listing	7-1,	the	method	names
that	start	with	class	are	class	methods.

Class	methods	have	limitations.	One	of	their	biggest	limitations	is	that	none	of	the
instance	variables	can	be	used.	Being	unable	to	use	instance	variables	makes	sense	since
you	haven’t	instantiated	anything.	A	class	method	can	have	its	own	local	variables	within
the	method	itself	but	can’t	use	any	of	the	variables	defined	as	instance	variables.

A	call	to	a	class	method	would	look	like	this:

RadioStation.minAMFrequency()

Notice	that	the	call	is	similar	to	how	a	method	is	called	on	an	instantiated	object.	The	big
difference	is	that	instead	of	an	instance	variable,	the	class	name	is	used.	Class	methods	are
used	quite	extensively	in	the	Mac	OS	X	and	iOS	frameworks.	They	are	used	mostly	for
returning	some	fixed	or	well-known	type	of	value	or	to	return	a	new	instance	of	an	object.
These	types	of	class	methods	are	referred	to	as	initializers.	Here	are	some	initializer
method	examples:
1.		NSDate.timeIntervalSinceReferenceDate()	//	Returns

a	number
				2.		NSString(format:“http://%@”,	“1000”)		//	Returns	a	new
NSString	object
				3.		Dictionary<String,	String>()//Returns	a	new	Dictionary
object.

All	of	the	preceding	messages	are	class	methods	being	called.

Line	1	simply	returns	a	value	that	represents	the	number	of	seconds	since	January	1,	2001,
which	is	the	reference	date.

Line	2	returns	a	new	NSString	object	that	has	been	formatted	and	has	a	value	of
http://1000.

Line	3	is	a	form	that	is	commonly	used	because	it	actually	allocates	a	new	object.
Typically,	the	line	is	not	used	by	itself,	but	in	a	line	like	this:

var	myDict	=	Dictionary<String,	String>()

So,	when	would	you	use	a	class	method?	As	a	general	rule,	if	the	method	returns
information	that	is	not	specific	to	any	particular	instance	of	the	class,	make	the	method	a
class	method.	For	example,	the	minAMFrequency	in	the	preceding	example	would	be
the	same	for	all	instances	of	any	RadioStation	object—this	is	a	great	candidate	for	a
class	method.	However,	the	station’s	name	or	its	assigned	frequency	would	be	different	for
each	instance	of	the	class.	These	should	not	(and	indeed	could	not)	be	class	methods.	The
reason	for	this	is	that	class	methods	cannot	use	any	of	the	instance	variables	defined	by	the
class.

Using	Instance	Methods
Instance	methods	(lines	29	to	35	in	Listing	7-1)	are	available	only	once	a	class	has	been
instantiated.	Here’s	an	example:

1

2

3

var	myStation:	RadioStation									//	This	declares	a	variable	to	hold	the
RadioStation	Object.

myStation	=	RadioStation()										//	This	creates	a	new	object.

var	band	=	myStation.band()									//	This	method	returns	the	Band	of	the
Station.

Line	3	calls	a	method	on	the	RadioStation	object.	The	method	band	returns	a	1	for
FM	and	a	0	for	AM.	An	instance	method	is	any	method	that	does	not	contain	the	class
declaration	before	it.

Using	Your	New	Class
You’ve	created	a	simple	RadioStation	class,	but	by	itself	it	doesn’t	accomplish	a
whole	lot.	In	this	section,	you	will	create	the	Radio	class	and	have	it	maintain	a	list	of
RadioStation	classes.

Creating	Your	Project
Let’s	start	Xcode	(see	Figure	7-1)	and	create	a	new	project	named	RadioStations.

Figure	7-1.	Open	Xcode	so	you	can	create	a	new	project

1.	 Launch	Xcode	and	select	“Create	a	new	Xcode	project.”

2.	 Make	sure	you	choose	an	iOS	application	and	select	the	Single
View	Application	template,	as	shown	in	Figure	7-2.

Figure	7-2.	Selecting	a	template	in	the	new	project	window

3.	 Once	you’ve	selected	the	template,	click	the	Next	button.

4.	 Set	the	product	name	(application	name)	to	RadioStations.

5.	 Set	the	company	identifier	(a	pretend	company	will	do)	and	set	the
device	family	to	iPhone	(as	shown	in	Figure	7-3).	Make	sure	Swift
is	selected	in	the	Language	drop-down	list.

Figure	7-3.	Naming	the	new	iPhone	application

6.	 Click	the	Next	button,	and	Xcode	will	ask	you	where	you	want	to

save	your	new	project.	You	can	save	the	project	on	your	desktop	or
anywhere	in	your	home	folder.	Once	you’ve	made	your	choice,
simply	click	the	Create	button.

7.	 Once	you’ve	clicked	the	Create	button,	the	Xcode	workspace
window	should	be	visible,	as	shown	in	Figure	7-4.

Figure	7-4.	The	workspace	window	in	Xcode

Adding	Objects
Now	you	can	add	your	new	objects.

1.	 First,	create	your	RadioStation	object.	Right-click	the
RadioStations	project	and	select	New	File	(as	shown	in	Figure	7-5).

Figure	7-5.	Adding	a	new	file

2.	 The	next	screen,	shown	in	Figure	7-6,	asks	for	the	new	file	type.
Simply	choose	Swift	File	from	the	Source	group,	and	then	click

Next.

Figure	7-6.	Selecting	the	new	file	type

3.	 The	next	screen	asks	you	where	to	create	the	files	and	what	you
want	to	name	the	file.	Enter	RadioStation	for	the	file	name	and
then	simply	click	the	Create	button,	since	the	location	in	which
Xcode	chooses	to	save	the	files	is	within	the	current	project,	as
shown	in	Figure	7-7.

Figure	7-7.	Choosing	where	to	create	your	new	files

4.	 Your	project	window	should	now	look	like	Figure	7-8.	Click	the

RadioStation.swift	file.	Notice	that	the	stub	of	your	new
RadioStation	class	is	already	present.	Now,	fill	in	the	empty
class	so	it	looks	like	Listing	7-1,	your	RadioStation	Swift	file.

Figure	7-8.	Your	newly	created	file	in	the	workspace	window

Writing	the	Class
Now	that	you	have	created	your	project	and	your	new	RadioStation.swift	file,	you
are	ready	to	begin	creating	your	class.

1.	 The	class	file	you’ll	use	here	is	the	same	one	you	used	at	the
beginning	of	this	chapter	and	it	will	work	perfectly	for	the	radio
station	application.	Click	the	RadioStation.swift	file,	and
enter	the	code	in	your	class,	as	shown	in	Figure	7-9.

Figure	7-9.	The	RadioStation	class	file

We	will	come	back	to	a	few	items	in	Figure	7-9	and	explain	them
further	in	a	moment;	however,	with	the	RadioStation	class
defined,	you	can	now	write	the	code	that	will	actually	use	it.

2.	 Click	the	ViewController.swift	file.	You’ll	need	to	define	a
few	variables	for	this	class	to	use,	as	shown	in	Figure	7-10.

Figure	7-10.	Adding	a	RadioStation	object	to	the	View	Controller

Lines	13	to	15	are	going	to	be	used	by	your	iOS	interface	to	show	some	values	on	the
screen	(more	on	these	later).	Line	17	defines	the	variable	myStation	of	type
RadioStation.	Lines	19	to	24	contain	the	required	init	method.	In	Swift,	classes	do
not	require	an	initializer	method,	but	it	is	a	good	place	to	set	the	default	values	of	your
object.	This	method	sets	up	the	variables	used	in	that	class.	Also,	don’t	forget	to	include
the	curly	braces	({	…	}).

Creating	the	User	Interface
Next,	the	main	window	has	to	be	set	up	in	order	to	display	your	station	information.

1.	 Click	the	Main.storyboard	file.	This	file	produces	the	main
iPhone	screen.	Click	the	Object	Library	icon,	as	shown	in	Figure	7-
11.

Figure	7-11.	Adding	a	Label	object	to	your	iPhone	screen

2.	 Drag	and	drop	three	Label	objects	onto	the	screen,	as	shown	in
Figure	7-12.	The	labels	can	be	aligned	in	any	manner,	or	as	shown
in	Figure	7-12.

Figure	7-12.	All	three	Label	objects	on	the	iPhone	screen

3.	 You’re	going	to	need	space,	however.	Once	the	Label	objects	are	on
the	iPhone	screen,	double-click	each	Label	object	in	order	to	change

its	text	so	that	the	iPhone	screen	looks	something	like	Figure	7-12.

4.	 Next,	add	a	Button	object	to	the	screen,	as	shown	in	Figure	7-13.
This	button,	when	clicked,	will	cause	the	screen	to	be	updated	with
your	radio	station	information.

Figure	7-13.	Adding	a	Button	object	to	the	screen

5.	 Just	like	with	the	Label	object,	simply	double-click	the	Button
object	in	order	to	change	its	Title	to	My	Station.	The	button	should
automatically	resize	to	fit	the	new	title.

6.	 Next,	you	need	to	add	the	Label	fields	that	will	hold	the	radio
station	information.	These	fields	are	situated	just	after	the	existing
Label	objects,	as	shown	in	Figure	7-14.	Once	the	Label	object	is
placed,	it	needs	to	be	resized	so	that	it	can	show	more	text,	as
shown	in	Figure	7-15.

Figure	7-14.	Adding	another	Label	object

Figure	7-15.	Stretching	the	Label	object

Note		Stretching	the	Label	object	allows	the	Label’s	text
to	contain	a	reasonably	long	string.	If	you	didn’t	resize
the	Label	object,	the	text	would	be	cut	off	(since	it
wouldn’t	fit),	or	the	font	size	would	get	smaller.1

7.	 Repeat	adding	and	sizing	a	Label	object	next	to	the	existing
Frequency	and	Band	Labels,	as	shown	in	Figure	7-16.	It’s	okay	to
leave	the	default	text	of	the	label	set	to	“Label”	for	now.

Figure	7-16.	Adding	another	Label	object

Hooking	Up	the	Code
Now	that	all	the	user	interface	objects	are	in	place,	you	can	begin	to	hook	up	these
interface	elements	to	the	variables	in	your	program.	As	you	saw	in	Chapter	6,	you	do	this
by	connecting	the	user	interface	objects	with	the	objects	in	your	program.

1.	 Start	by	connecting	the	Label	object	by	station	name	to	your
variable,	as	shown	in	Figure	7-17.	Right-click	(or	Control-click)	the
View	Controller	object	and	drag	it	to	the	Label	object	next	to	the
“Station	Name”	text	to	bring	up	the	list	of	outlets.

Figure	7-17.	Creating	a	connection

2.	 When	the	connection	is	dropped	from	the	View	Controller	icon,
another	small	menu	will	be	shown.	Click	the	instance	variable	name
that	you	want	to	display	in	this	Label	object—in	this	case,	you	want
the	stationName	instance	variable,	as	shown	in	Figure	7-18.

Figure	7-18.	Connecting	the	Label	to	your	stationName	variable

3.	 Now,	the	interface	Label	object	is	connected	to	the	stationName
instance	variable.	Whenever	you	set	the	instance	variable’s	value,
the	screen	will	also	be	updated.	Repeat	the	previous	connection
steps	for	Frequency	and	Band.

To	hook	up	your	button,	you	need	a	method	in	the
ViewController	class	to	handle	this.	You	could	go	to	the
ViewController.swift	file	and	add	it	there.	There	is	also	a

shortcut	to	adding	@IBOutlet	methods.	In	the	Xcode	toolbar,
click	the	Assistant	Editor	icon	shown	in	Figure	7-19	(it	looks	like
two	circles).

Figure	7-19.	The	Assistant	Editor	icon

After	clicking	the	Assistant	Editor	icon,	a	second	window	will	pop
open	showing	the	ViewController	source.	Right-click	and	drag
the	button	to	the	code	window,	as	shown	in	Figure	7-20.

Figure	7-20.	Using	the	Assistant	editor	to	create	your	method

4.	 When	you	release	the	mouse,	a	little	window	will	pop	up,	as	shown
in	Figure	7-21.	Make	sure	to	change	the	Connection	type	to	Action.

Figure	7-21.	Creating	the	action

Select	Action	and	set	the	name	to	buttonClick.	Xcode	will	now	create	your	method
for	you.

Finish	your	method	by	adding	the	code	shown	in	Figure	7-22.

Figure	7-22.	Finished	buttonClick	method

Let’s	walk	through	the	code	you	just	added.	First,	on	line	37,	you’ll	notice	the	IBAction
type.	This	lets	Xcode	know	that	this	method	can	be	called	as	a	result	of	an	action.	So,
when	you	go	to	connect	an	action	to	your	application,	you	will	see	this	method.

Lines	38	and	39	both	set	the	text	fields	to	the	values	found	in	your	RadioStation
class.	Line	38	is	as	follows:

	stationName.text	=	myStation.name

The	stationName	variable	is	what	you	just	connected	to	the	user	interface	Label
object,	and	myStation.name	is	used	to	return	the	name	of	the	station.

Line	39	effectively	does	the	same	thing	as	line	38,	but	you	have	to	first	convert	the	double
value	(the	station’s	frequency)	to	a	String.	The	@”%.1f	means	that	you	convert	a
floating-point	value	and	should	see	only	one	digit	after	the	decimal	point.

Lines	41	to	45	make	use	of	both	the	instance	variables	and	the	class	methods	of	the
RadioStation	class.	Here,	you	simply	call	the	method	band()	on	the	myStation
object.	If	so,	the	station	is	an	FM	station	and	band()	will	return	a	1;	otherwise,	assume
it’s	the	AM	band.	Lines	42	and	44	show	the	band	value	on	the	screen.

Tip		The	Button	sends	the	Touch	Up	Inside	event	whenever	a	user	touches	the
inside	of	the	button	and	then	releases—not	until	the	users	lifts	their	finger	is	the
event	actually	sent.

Running	the	Program
Once	the	connection	has	been	made,	you’re	ready	to	run	and	test	your	program!	To	do
this,	simply	click	the	Run	button	at	the	top	left	of	the	Xcode	window,	as	shown	in	Figure
7-23.

Figure	7-23.	Click	the	Play	button	to	run	your	program

If	there	are	no	compile	errors,	the	iPhone	Simulator	should	come	up,	and	you	should	see
your	application.	Simply	click	the	My	Station	button,	and	the	radio	station	information
will	be	displayed,	as	shown	in	Figure	7-24.

Figure	7-24.	Showing	your	radio	station	information

If	things	don’t	quite	look	or	work	right,	retrace	your	steps	and	make	sure	all	the	code	and
connections	described	in	this	chapter	are	in	place.

Taking	Class	Methods	to	the	Next	Level
In	your	program,	you	haven’t	taken	advantage	of	all	the	class	methods	for
RadioStation,	but	this	chapter	does	describe	what	a	class	method	is	and	how	it	is
used.	Use	that	knowledge	to	try	a	few	of	the	exercises	mentioned	at	the	end	of	this	chapter.
Just	play	around	with	this	simple	working	program	by	adding	or	changing	class	or

instance	methods	to	get	an	idea	of	how	they	work.

Accessing	the	Xcode	Documentation
There	is	a	wealth	of	information	provided	in	the	Xcode	developer	documentation.	When
Xcode	is	opened,	select	Help	 	Documentation	and	API	Reference	(see	Figure	7-25)	to
open	the	Documentation	window.

Figure	7-25.	The	Xcode	Help	menu

Once	it’s	opened,	the	search	window	can	be	used	to	look	up	any	of	the	Swift	classes
you’ve	used	in	this	chapter,	including	the	String	class	documentation,	as	shown	in
Figure	7-26.

Figure	7-26.	Xcode	documentation

There	are	several	different	things	to	discover	about	the	String	class	shown	in	Figure	7-
26.	Go	through	the	documentation	and	the	various	companion	guides	that	Apple	provides.

This	will	give	you	a	more	thorough	understanding	of	the	various	classes	and	the	various
methods	supported	by	them.

Summary
Once	again,	congratulate	yourself	for	being	able	to	single-handedly	stuff	your	brain	with	a
lot	of	information!	Here	is	a	summary	of	what	was	covered	in	this	chapter:

Swift	classes	review

Class	methods

Instance	methods

Creating	a	class

Limitations	of	using	class	methods	versus	instance	methods

Initializing	the	class	and	making	use	of	the	instance	variables

Making	use	of	your	new	RadioStation	object

Building	an	iPhone	app	that	uses	your	new	object

Connecting	interface	classes	to	instance	variables

Connecting	user	interface	events	to	methods	in	your	class

Exercises
Change	the	code	that	creates	your	RadioStation	class	and	make
the	station’s	name	much	longer	than	what	can	appear	on	the	screen.
What	happens?

Change	the	current	button	and	add	a	new	button.	Label	the	buttons
FM	and	AM.	If	the	user	clicks	the	FM	button,	show	an	FM	station.	If
the	user	clicks	the	AM	button,	display	an	AM	station.	(Hint:	you’ll
need	to	add	a	second	RadioStation	object	to	the
ViewController.swift	file.)

Clean	up	the	interface	a	little	by	making	sure	that	the	user	doesn’t	see
the	text	“Label”	when	the	iPhone	application	first	starts.

Fix	the	issue	by	using	the	interface	tool.

How	could	you	fix	this	by	adding	code	to	the	application
instead?

Add	more	validation	to	the	@IBAction	func
buttonClick(sender:	AnyObject)	method.	Right	now,	it
validates	FM	ranges	but	not	AM	ranges.	Fix	the	code	so	that	it	also
validates	an	AM	range.

If	the	radio	station	frequency	is	out	of	bounds,	use	the
existing	labels	to	display	some	type	of	error	message.

1By	using	either	code	or	Interface	Builder,	you	can	customize	how	the	Label	object	reacts	to	text	that	is	too	large	to	fit.
The	behavior	described	is	based	on	typical	defaults	for	the	Label	object.

Chapter				8

Programming	Basics	in	Swift
Swift	is	an	elegant	language.	It	mixes	the	efficiency	of	a	compiled	language	with	the
flexibility	and	modern	features	of	many	scripting	languages.

This	chapter	introduces	some	of	the	more	common	concepts	of	Swift,	such	as	properties
and	collection	classes.	It	also	shows	how	properties	are	used	from	within	Xcode	when
dealing	with	user	interface	elements.	This	sounds	like	a	lot	to	accomplish,	but	Swift,	the
Foundation	framework,	and	the	Xcode	tool	provide	a	wealth	of	objects	and	methods	and	a
way	to	build	applications	with	ease.

Using	let	vs.	var
If	you	have	spent	much	time	with	Swift,	you	have	seen	the	word	var	appear	before
variable	declarations.	You	may	also	have	seen	let	before	other	declarations.	The	word
var	is	used	to	define	a	variable,	while	the	word	let	is	used	to	define	a	constant.	This
means	that	if	you	declare	a	value	with	let,	you	will	not	be	able	to	change	the	value.	The
following	code	defines	a	constant:

let	myName	=	"Brad"

Once	you	define	a	constant,	you	cannot	change	the	value.

Caution		Xcode	7	will	now	warn	you	if	you	declare	a	variable	and	never	change
its	value.	It	will	recommend	using	let	instead	of	var.

myName	=	"John"

This	will	give	you	an	error.	It	you	want	to	create	a	mutable	or	changeable	variable,	you
need	to	use	var.	For	example,	you	can	do	the	following:

var	myName	=	"Brad"

myName	=	"John"

This	will	not	give	you	any	errors	because	myName	is	now	a	variable.	This	does	not	relate
to	only	Strings	and	Ints,	but	it	can	also	be	used	with	collections	and	other	more
complex	objects.

Variables	give	you	more	flexibility,	so	why	would	anyone	ever	want	to	use	a	constant?
The	quick	answer	is	performance.	If	you	know	that	you	have	a	value	that	will	not	change,
the	compiler	can	optimize	that	value	as	a	constant.

Understanding	Collections
Understanding	collections	is	a	fundamental	part	of	learning	Swift.	In	fact,	collection
objects	are	fundamental	constructs	of	nearly	every	modern	object-oriented	language
library	(sometimes	they	are	referred	to	as	containers).	Simply	put,	a	collection	is	a	type	of
class	that	can	hold	and	manage	other	objects.	The	whole	purpose	of	a	collection	is	that	it
provides	a	common	way	to	store	and	retrieve	objects	efficiently.

There	are	several	types	of	collections.	While	they	all	fulfill	the	same	purpose	of	being	able
to	hold	other	objects,	they	differ	mostly	in	the	way	objects	are	retrieved.	The	most
common	collections	used	in	Swift	are	the	array	and	the	dictionary.

Both	of	these	collections	can	be	created	as	constants	or	regular	variables.	If	you	create	a
collection	as	a	constant,	you	must	fill	it	with	the	objects	at	the	time	of	creation.	It	cannot
be	modified	after	that	point.

Using	Arrays
The	Array	class	is	like	any	other	collection,	in	that	it	allows	the	programmer	to	manage	a
group	of	objects.	An	array	is	an	ordered	collection,	which	means	that	objects	are	entered
in	an	array	in	a	certain	order	and	retrieved	in	the	same	order.

Note		There	are	some	methods	for	working	with	arrays	that	allow	you	to	change
the	order	of	the	objects	or	to	add	an	object	at	a	specific	location	in	the	array.

The	Array	class	allows	an	object	to	be	retrieved	by	its	index	in	the	array.	An	index	is	the
numeric	position	that	an	object	would	occupy	in	the	array.	For	example,	if	there	are	three
elements	in	the	array,	the	objects	can	be	referenced	with	an	index	from	0	to	2.	Like	with
most	things	in	Swift	and	other	programming	languages,	an	index	starts	at	0,	not	1.	See
Listing	8-1.

Listing	8-1.	Accessing	objects	in	an	array

1				var	myArray:	[String]	=	["One",	"Two",	"Three"]
2				print	(myArray[0])
3				print	(myArray[1])
4				print	(myArray[2])

As	you	can	see,	objects	in	the	array	can	be	retrieved	via	the	index.	The	index	starts	at	0
and	can’t	exceed	the	size	of	the	array	minus	1.	You	can	easily	calculate	the	size	of	the
array	by	sending	a	count	message	to	the	Array	object,	as	shown	here:

var	entries	=	myArray.count

In	fact,	every	collection	type,	in	other	words,	Array	and	Dictionary,	will	respond	to
the	count	message.

Adding	items	to	the	end	of	an	array	is	simple.	You	can	just	call	the	append	method	on
the	array.	See	Listing	8-2.

Listing	8-2.	Adding	objects	to	an	array

1				var	myArray:	[String]	=	["One",	"Two",	"Three"]
2				myArray.append("Four")
3				myArray.append("Five")
4				myArray.append("Six")

Swift	provides	you	with	many	different	methods	for	adding	items	to	an	array.	If	you	want
to	add	multiple	objects	to	an	array,	you	can	use	the	standard	+=	(often	called	plus	equals)
operator.	Listing	8-3	creates	an	array	and	then	adds	three	more	String	objects	to	the
array	on	line	2.	Notice	the	new	values	are	in	brackets	instead	of	parentheses.

Listing	8-3.	Adding	multiple	objects	to	an	array

1				var	myArray:	[String]	=	["One",	"Two",	"Three"]
2				myArray	+=	["Four",	"Five",	"Six"]

As	discussed	earlier,	an	array	is	actually	ordered.	The	order	of	the	objects	in	your	array	is
important.	There	may	be	times	where	you	need	to	add	an	item	at	a	certain	position	in	the
array.	You	can	accomplish	this	with	the	insert(atIndex:)	method,	as	shown	in
Listing	8-4.

Listing	8-4.	Adding	a	string	to	the	beginning	of	an	array

1				var	myArray:	[String]	=	["Two",	"Three"]
2				myArray.insert("One",	atIndex:	0)

The	array	now	contains	One,	Two,	Three.

Accessing	items	in	an	array	is	simple.	You	can	use	standard	square	brackets	to	access	an
object	at	a	certain	position.	For	example,	myArray[0]	would	give	you	the	first	object	in
the	array.	If	you	want	to	loop	through	each	of	the	items	in	the	array,	you	can	use
something	called	fast	enumeration.	Listing	8-5	is	an	example	of	fast	enumeration.

Listing	8-5.	Fast	enumeration

1				var	myArray:	[String]	=	["One",	"Two",	"Three"]
2				for	myString	in	myArray	{
3									print(myString)
4				}

The	magic	happens	in	line	2	of	Listing	8-5.	You	tell	Swift	to	assign	each	value	of
myArray	to	a	new	variable	called	myString.	You	can	then	do	whatever	you	want	to	do
with	myString.	In	this	case,	you	just	print	it.	It	will	go	through	all	of	the	objects	in	the
array	without	you	having	to	know	the	total	number	of	objects.	This	is	a	fast	and	effective
way	to	pull	items	out	of	an	array.

Removing	objects	from	an	array	is	simple	too.	You	can	use	the	removeAtIndex

method,	as	shown	in	Listing	8-6.

Listing	8-6.	Removing	an	object

1				var	myArray:	[String]	=	["One",	"Two",	"Three"]
2				myArray.removeAtIndex(1)
3				for	myString	in	myArray	{
4									print(myString)
5				}

The	output	from	Listing	8-6	will	be	One,	Three.	This	is	because	you	removed	the
object	with	the	index	of	1.	Remember,	this	is	the	second	object	in	the	array	because	array
indexes	always	begin	at	0.

You	have	seen	how	flexible	Swift	is	in	letting	you	interact	with	arrays.	They	are	powerful
collections	that	you	will	use	on	a	regular	basis	as	a	programmer.	This	section	covered	the
basics	of	arrays,	but	there	are	many	more	things	arrays	can	do.

Using	the	Dictionary	Class
The	Swift	Dictionary	class	is	also	a	useful	type	of	collection	class.	It	allows	the
storage	of	objects,	just	like	the	Array	class,	but	Dictionary	is	different	in	that	it
allows	a	key	to	be	associated	with	the	entry.	For	example,	you	could	create	a	dictionary
that	stores	a	list	of	attributes	about	someone	such	as	a	firstName,	lastName,	and	so
on.	Instead	of	accessing	the	attributes	with	an	index	like	with	an	array,	the	dictionary
could	use	a	String	like	“firstName”.	However,	all	keys	must	be	unique—that	is,
“firstName”	cannot	exist	more	than	once.	Depending	on	your	program,	finding	unique
names	is	normally	not	a	problem.

Here’s	an	example	of	how	you	create	a	dictionary:

var	person:	[String:	String]	=	["firstName":	"John",	
"lastName":	"Doe"]

This	creates	a	simple	dictionary	called	person.	The	next	part	of	the	declaration	tells	the
dictionary	what	kinds	of	objects	the	keys	and	the	values	will	be.	In	this	case,	the	keys	are
Strings,	and	the	values	are	Strings.	You	then	add	two	keys	to	the	dictionary.	The	first
key	is	firstName,	and	that	key	has	a	value	of	John.	The	second	key	is	lastName,
and	that	has	a	value	of	Doe.	You	can	access	the	values	in	the	dictionary	by	using	a	similar
notation	to	arrays.

print(person["firstName"])

This	code	will	print	the	name	Optional(“John”)	since	that	is	the	value	for	the	key
firstName.	The	Optional	appears	in	the	previous	example	because	the	value	of	a
key	in	a	dictionary	is	an	optional	value.	You	can	use	the	same	style	of	code	to	change	the
values	in	a	dictionary.	Let’s	say,	for	this	example,	that	John	now	likes	to	go	by	Joe	instead.
You	can	change	the	value	in	the	dictionary	with	a	simple	line	of	code.

person["firstName"]	=	"Joe"

You	can	add	a	new	key	to	a	dictionary	with	the	same	notation.

person["gender"]	=	"Male"

If	you	decide	you	want	to	remove	a	key	from	a	dictionary,	such	as	the	gender	key	you
just	added,	you	can	do	so	by	setting	the	key	to	nil.

person["gender"]	=	nil

Now	the	dictionary	will	contain	only	firstName	and	lastName.	Remember	that
dictionaries	are	not	ordered.	You	cannot	rely	on	the	order,	but	there	will	be	times	when
you	need	to	iterate	over	a	dictionary.	This	is	done	in	a	manner	similar	to	arrays.	The	main
difference	is	that	in	an	array,	you	assign	one	variable,	while	in	a	dictionary,	you	need	to
assign	the	key	and	the	value.	See	Listing	8-7.

Listing	8-7.	Iterating	over	a	dictionary

1				var	person:	[String:	String]	=	["firstName":	"John",	
"lastName":	"Doe"]
2				for	(myKey,	myValue)	in	person	{
3									print(myKey	+	":	"	+	myValue)
4				}

This	example	will	print	the	following:

firstName:	John
lastName:	Doe

Dictionaries	are	a	great	way	to	organize	data	that	does	not	need	to	be	ordered.	It	is	also	a
great	way	to	look	up	data	based	on	a	certain	key.	They	are	very	flexible	in	Swift	and
should	be	used	to	organize	and	optimize	your	code.

Creating	the	BookStore	Application
You	are	going	to	create	an	app	that	will	demonstrate	how	to	use	arrays.	You	will	create	a
UITableView	and	use	an	array	to	populate	the	UITableView	with	data.	Let’s	start	by
creating	the	base	application	project.	Open	Xcode	and	select	a	new	Master-Detail
Application	project,	as	shown	in	Figure	8-1.	In	this	project,	you	will	create	a	few	simple
objects	for	what	is	to	become	your	bookstore	application:	a	Book	object	and	the
BookStore	object.	You’ll	visit	instance	variables	again	and	see	how	to	get	and	set	the
value	of	one	during	this	project.	Lastly,	you’ll	put	the	bookstore	objects	to	use,	and	you’ll
learn	how	to	make	use	of	objects	once	you’ve	created	them.

Figure	8-1.	Creating	the	initial	project	based	on	the	Master-Detail	Application	template

1.	 Click	the	Next	button	and	name	the	project	BookStore,	as	shown	in
Figure	8-2.	The	company	name	is	required—you	can	use	any
company	name,	real	or	otherwise.	The	example	uses	com.inn,
which	is	perfectly	fine.	Make	sure	the	device	family	is	iPhone	and
that	the	Language	is	set	to	Swift.	Do	not	check	the	Use	Core	Data
checkbox.

Note		This	type	of	app	would	be	a	good	candidate	for
using	Core	Data,	but	Core	Data	is	not	introduced	until
Chapter	11.	You	will	use	an	array	for	data	storage	in	this
app.

Figure	8-2.	Selecting	the	product	(application)	name	and	options

2.	 Once	everything	is	filled	out,	click	the	Next	button.	Xcode	will
prompt	you	to	specify	a	place	to	save	the	project.	Anywhere	you
can	remember	is	fine—the	desktop	is	a	good	place.

3.	 Once	you	decide	on	a	location,	click	the	Create	button	to	create	the
new	project.	This	will	create	the	boilerplate	BookStore	project,
as	shown	in	Figure	8-3.

Figure	8-3.	The	source	listing	of	the	boilerplate	project

4.	 Click	the	plus	(+)	sign	at	the	lower	left	of	the	screen	in	the
Navigator	area	to	add	a	new	object	to	the	project.	Choose	File.	Then
choose	Source	under	the	iOS	section	on	the	left	and	choose	Swift

File	on	the	right,	as	shown	in	Figure	8-4.	It’s	also	possible	to	right-
click	(or	Control-click)	the	Navigation	area	and	then	select	the	New
File	menu	option.	There	is	no	difference	between	this	approach	and
clicking	the	plus	sign—do	whatever	feels	more	natural.

Figure	8-4.	Creating	a	new	Swift	file

5.	 You’re	choosing	a	plain	Swift	file,	which	will	create	a	new	empty
Swift	file	that	you’re	going	to	use	for	the	Book	class.	After
selecting	this,	click	the	Next	button.

6.	 Xcode	will	ask	you	what	to	name	your	file.	Use	the	name	Book.
Xcode	will	also	ask	to	which	folder	it	should	save	the	new	file.	To
keep	things	simple,	choose	the	BookStore	folder	in	your	project.
This	is	where	all	the	other	class	files	for	the	project	are	stored.

7.	 Double-click	the	BookStore	folder	and	then	click	the	Create
button.	You’ll	see	the	main	edit	window	for	Xcode	and	the	new	file,
Book.swift,	in	the	Navigator	area,	as	shown	in	Figure	8-5.

Figure	8-5.	The	empty	Swift	file

8.	 Repeat	the	previous	steps	and	create	a	second	object	called
BookStore.	This	will	create	a	BookStore.swift	file.	You’ll
be	using	this	class	later	in	this	chapter.	For	now,	you’ll	concentrate
on	the	Book	class.

9.	 Click	the	Book.swift	file	and	let’s	start	defining	your	new	class!

Creating	Your	Class
You	will	notice	that	Xcode	does	not	give	you	a	new	class	when	you	create	a	Swift	file.	In
Objective-C,	Xcode	used	to	create	the	.h	and	.m	files	for	you.	Swift	is	more	flexible,	and
it	is	not	necessary	to	have	only	one	class	per	file.	Xcode	allows	you	to	add	the	classes	as
you	want.

Note		It	is	still	a	good	idea	to	keep	your	Swift	classes	in	separate	files.	This
makes	organizing	and	finding	classes	easier,	especially	when	you’re	dealing
with	large	projects.

Let’s	create	the	Book	class.	Type	the	following	code	into	the	Book.swift	file:

class	Book	{

}

Now	you	have	your	class,	as	shown	in	Figure	8-6.	That	is	all	you	need	to	do	to	create	a
class.

Figure	8-6.	The	empty	Book	class

Introducing	Properties
The	class	is	simply	called	Book.	True,	you	have	a	class,	but	it	doesn’t	store	anything	at
this	point.	For	this	class	to	be	useful,	it	needs	to	be	able	to	hold	some	information,	which
is	done	with	properties.	When	an	object	is	used,	it	has	to	be	instantiated.	Once	the	object	is
instantiated,	it	has	access	to	its	properties.	These	variables	are	available	to	the	object	as
long	as	the	object	stays	in	scope.	As	you	know	from	Chapter	7,	scope	defines	the	context
in	which	an	object	exists.	In	some	cases,	an	object’s	scope	may	be	the	life	of	the	program.
In	other	cases,	the	scope	might	be	just	a	function	or	method.	It	all	depends	on	where	the
object	is	declared	and	how	it’s	used.	Scope	will	be	discussed	more	later.	For	now,	let’s	add
some	properties	to	the	Book	class	to	make	it	more	useful.

Listing	8-8.	Adding	instance	variables	to	the	Book.h	file

1				//
2				//		Book.swift
3				//		myBookStore
4				//
5				//		Created	by	Thorn	on	8/8/15.
6				//		Copyright	(c)	2015	Inn.	All	rights	reserved.
7				//
8
9				import	Foundation
10				class	Book	{
11								var	title:	String	=	""
12								var	author:	String	=	""
13								var	description:	String	=	""
14
15				}

Listing	8-8	shows	the	same	Book	object	from	before,	but	now	there	are	three	new
properties	placed	inside	the	brackets,	on	lines	11	to	13.	These	are	all	String	objects,
which	means	they	can	hold	text	information	for	the	Book	object.	So,	the	Book	object
now	has	a	place	to	store	title,	author,	and	description	information.

Accessing	Variables
Now	that	you	have	some	properties,	how	can	you	use	them?	How	are	they	accessed?.
Unfortunately,	simply	declaring	a	property	doesn’t	necessarily	give	you	access	to	it.	There
are	two	ways	to	access	these	variables.

One	way,	of	course,	is	within	the	Book	object.

The	second	way	is	from	outside	the	object—that	is,	another	part	of
the	program	that	uses	the	Book	object.

If	you	are	writing	the	code	for	a	method	within	the	Book	object,	accessing	its	property	is
quite	simple.	For	example,	you	could	simply	write	the	following:

title	=	"Test	Title"

From	outside	the	object,	you	can	still	access	the	title	variable.	This	is	done	through	the
use	of	dot	notation.

myBookObject.title	=	"Test	Title"

Finishing	the	BookStore	Program
With	the	understanding	of	properties,	you	are	going	to	now	venture	forth	to	create	the
actual	bookstore	program.	The	idea	is	simple	enough—create	a	class	called	BookStore
that	will	be	stocked	with	a	few	Book	objects.

Creating	the	View
Let’s	start	by	first	getting	the	view	ready.	If	you	need	a	refresher	on	how	to	build	an
interface	in	Xcode,	refer	to	Chapter	6.

1.	 Click	the	Main.storyboard	file	in	the	Navigator	area.	You	will
see	five	scenes	in	the	Main.storyboard	file.	Navigate	to	the
right	to	find	the	detail	scene.	This	will	display	Xcode’s	Interface
Builder,	as	shown	in	Figure	8-7.

Figure	8-7.	Preparing	the	Bookstore’s	Detail	View

2.	 By	default,	when	you	create	a	blank	Master-Detail	application,
Xcode	adds	a	label	with	the	text	“Detail	View	content	goes	here.”
Select	and	delete	this	Label	object	because	you	are	going	to	add
your	own.	You’re	going	to	add	some	new	fields	to	display	some
details	about	a	selected	book.	Since	you	deleted	this	control,	you
also	need	to	remove	the	code	that	references	it.

a.	 In	the	DetailViewController.swift	file,
remove	the	following	line:

@IBOutlet	weak	var	
detailDescriptionLabel:	UILabel!

b.	 In	the	var	detailItem:	AnyObject?
method,	remove	the	following	line:

self.configureView()

c.	 In	the	DetailViewController.swift	file,	in
the	method	named	configureView,	remove	the
following	lines:

//	Update	the	user	interface	for	
the	detail	item.
if	let	detail:	AnyObject	=	
self.detailItem	{
				if	let	label	=	
self.detailDescriptionLabel	{
								label.text	=	
detail.valueForKey("timeStamp")!.description
				}

}

Your	DetailViewController.swift	file	should	now	look
like	Figure	8-8.

Figure	8-8.	Modified	DetailViewController

3.	 Drag	some	Label	objects	from	the	Object	Library	onto	the	Detail
View,	as	shown	in	Figure	8-9.	Make	sure	that	the	lower	Label
controls	are	wider	than	the	default.	This	is	so	that	they	can	hold	a
fairly	large	amount	of	text.	The	two	Label	objects	with	the	text
“Label”	in	them	are	the	ones	you’re	going	to	hook	up	to	hold	two	of
the	values	from	the	Book	object:	Title	and	Author.

Figure	8-9.	Adding	some	Label	objects

Adding	Properties
Next,	you’ll	add	some	properties	to	the	DetailViewController	class.	These
properties	will	correspond	to	the	Detail	View’s	Label	objects.

1.	 Click	the	Assistant	Editor	icon	(it	looks	like	two	circles)	in	the	top-
right	corner	of	Xcode	to	open	the	Assistant	editor.	Make	sure	the
DetailViewController.swift	file	is	showing	in	the	editor.

2.	 Hold	the	Control	key	and	drag	the	first	blank	Label	control	to	the
code	on	the	right	side,	as	shown	in	Figure	8-10.	Name	the	first	one
titleLabel	(see	Figure	8-11)	and	click	Connect,	and	then	repeat
the	process	with	the	second	one,	naming	it	authorLabel.	This
will	add	two	variables	to	your	DetailViewController	class,
as	seen	in	Listing	8-9,	and	hook	them	to	the	Label	controls	in	the
interface.

Figure	8-10.	Creating	variables

Figure	8-11.	Naming	the	new	variable

Listing	8-9.	Modifying	the	DetailViewController.swift	file	to	include	the	new	labels

1								@IBOutlet	weak	var	titleLabel:	UILabel!
2								@IBOutlet	weak	var	authorLabel:	UILabel!

Adding	a	Description
Now	you	need	to	add	the	description	to	the	view.	The	description	is	a	little	different	in	that
it	can	span	multiple	lines.	For	this,	you’re	going	to	use	the	Text	View	object.

1.	 Start	by	adding	the	“Description:”	label	to	the	view,	as	shown	in

Figure	8-12.

Figure	8-12.	Adding	a	new	Label	object	for	the	description

2.	 Next,	add	the	Text	View	object	to	the	Detail	View,	as	shown	in
Figure	8-13.	The	advantage	the	Text	View	object	has	is	that	it’s	easy
to	display	multiple	lines	of	text.	While	the	Label	object	can	display
multiple	lines,	it’s	not	as	clean	as	the	Text	View	object.

Figure	8-13.	Adding	a	Text	View	to	the	Detail	View

Note		By	default,	the	Text	View	control	is	filled	with	all
kinds	of	seemingly	random	text.	This	text	is	called	Lorem
Ipsum	text.	If	you	ever	need	to	fill	up	a	page	with	text,
you	can	find	any	number	of	Lorem	Ipsum	generators	on
the	Web.	As	for	the	Text	View	control,	the	text	can	stay
as	it	is	since	you’ll	remove	it	during	runtime.	Plus,	if	it’s
cleared,	it	becomes	a	little	more	difficult	spotting	exactly
where	the	Text	View	control	is	on	the	screen—it’s	white
on	white!

3.	 For	the	program	to	take	advantage	of	the	Text	View,	you’ll	need	to
create	an	outlet	for	it,	just	like	you	did	for	the	title	and	description.
Simply	Control-drag	the	Text	View	to	your
DetailViewController	file,	as	you	did	earlier.	Name	this
variable	descriptionTextView.	The	finished	variable	portion
of	DetailViewController	will	look	like	Listing	8-10.

Listing	8-10.	Adding	an	outlet	for	the	text	view	to	hold	a	description

1				import	UIKit
2
3				class	DetailViewController:	
UIViewController	{
4
5								@IBOutlet	weak	var	titleLabel:	
UILabel!
6								@IBOutlet	weak	var	authorLabel:	
UILabel!
7
8								@IBOutlet	weak	var	
descriptionTextView:	UITextView!

4.	 Notice	that	the	type	is	UITextView	instead	of	UILabel—this	is
important.

Caution		As	mentioned,	it’s	important	to	make	the	descriptionTextView
property	a	UITextView	type.	If,	for	example,	it	were	accidentally	made	a
UILabel	object,	when	trying	to	connect	the	Text	View	from	the	screen	to	the
outlet,	Xcode	wouldn’t	be	able	to	find	the	descriptionTextView	outlet.
Why?	Xcode	knows	that	the	control	is	a	UITextView	and	is	looking	for	an
outlet	that	is	of	type	UITextView.

Creating	a	Simple	Data	Model	Class
For	the	application	to	work,	it	needs	to	have	some	data	to	display.	To	do	this,	you’re	going

to	use	the	BookStore	object	you	created	earlier	as	the	data	model	class.	There’s	nothing
different	about	a	data	model	class	except	that	its	whole	purpose	is	to	allow	an	application
to	access	data	via	an	object.

Modify	the	BookStore.swift	file	to	look	like	Listing	8-11.

Listing	8-11.	Modifying	the	BookStore.swift	class	to	include	an	array

1				//
2				//		BookStore.swift
3				//		myBookStore
4				//
5				//		Created	by	Thorn	on	8/8/15.
6				//		Copyright	(c)	2015	mycompany.com.	All	rights	
reserved.
7				//
8
9				import	Foundation
10
11				class	BookStore	{
12								var	theBookStore:	[Book]	=	[]
13				}

On	line	12,	you	add	a	variable	that	will	hold	the	list	of	books;	the	property	is	simply
named	theBookStore.	Note	that	theBookStore	is	an	array,	which	will	allow	you	to
add	a	series	of	objects,	in	this	case,	a	set	of	Book	objects.

Next,	let’s	add	the	code	to	the	Swift	file,	BookStore.swift,	as	shown	in	Listing	8-12.

Listing	8-12.	Implementing	the	BookStore	data	object

1				//
2				//		BookStore.swift
3				//		myBookStore
4				//
5				//		Created	by	Thorn	on	8/8/15.
6				//		Copyright	(c)	2015	Inn.	All	rights	reserved.
7				//
8
9				import	Foundation
10
11				class	BookStore	{
12								var	theBookStore:	[Book]	=	[]
13
14								init()	{
15												var	newBook	=	Book()
16												newBook.title	=	"Swift	for	Absolute	Beginners"
17												newBook.author	=	"Bennett	and	Lees"
18												newBook.description	=	"iOS	Programming	made	

easy."
19												theBookStore.append(newBook)
20
21												newBook	=	Book()
22												newBook.title	=	"A	Farewell	To	Arms"
23												newBook.author	=	"Ernest	Hemingway"
24												newBook.description	=	"The	story	of	an	affair	
between	an	English	nurse	and	an	American	soldier	on	the	
Italian	front	during	World	War	I."
25
26												theBookStore.append(newBook)
27								}
28				}

In	Listing	8-12,	lines	14	to	27	define	the	init	method	of	the	object,	which	is	called
whenever	the	object	is	first	initialized.	In	this	method,	you	initialize	the	two	books	you
plan	to	add	to	your	bookstore.	Line	15	is	where	the	first	Book	object	is	allocated	and
initialized.	Lines	16	to	18	add	a	title,	author,	and	description	to	your	first	book.	Finally,
line	19	adds	the	new	Book	object	to	the	theBookStore	array.	The	important	thing	to
note	here	is	that	once	the	object	is	added	to	the	array,	the	code	can	forget	about	it;	the
array	now	owns	that	object.	Because	of	this,	line	21	is	not	a	problem.

Line	21	allocates	a	new	Book	object	overwriting	the	old	value.	This	tells	the	compiler	that
you’re	no	longer	interested	in	using	the	old	value.

Lines	22	to	26	simply	initialize	and	add	the	second	book	to	the	array.

That’s	it!	That’s	all	you	need	to	define	a	simple	data	model	class.	Next,	you	need	to
modify	MasterViewController	to	access	this	class	so	that	it	can	start	displaying
some	data.

Modifying	MasterViewController
The	simple	application	has	two	view	controllers:	the	main	view	controller,	which	is	called
MasterViewController,	and	a	secondary	one	called	DetailViewController.
View	controllers	are	objects	that	simply	control	the	behavior	of	a	view.	For	the	application
to	start	displaying	data	from	the	data	model,	you	need	to	first	modify
MasterViewController—this	is	where	the	navigation	of	the	application	begins.	The
following	code	is	already	in	place	in	the	template	that	Xcode	has	provided.	You’re	just
going	to	modify	it	to	add	your	data	model.

First	you’ll	need	to	modify	the	MasterViewController.swift	file.	You	need	to
add	a	variable	to	hold	the	Bookstore	object.	Listing	8-13	shows	that	the	instance
variable	is	added	as	a	property	on	line	15.

Listing	8-13.	Adding	the	BookStore	object

	1	//
	2	//		MasterViewController.swift

	3	//		Chapter	8.1
	4	//
	5	//		Created	by	Thorn	on	8/8/15.
	6	//		Copyright	(c)	2015	Inn.	All	rights	reserved.
	7	//
	8
	9	import	UIKit
10
11
12	class	MasterViewController:	UITableViewController	{
13
14					var	objects	=	[AnyObject]()
15					var	myBookStore:	BookStore	=	BookStore()

Now	that	the	BookStore	object	is	initialized,	you	need	to	tell
MasterViewController	how	to	display	the	list	of	books—not	the	detail,	just	the
book	titles.	To	do	this,	you’ll	need	to	modify	a	few	methods.	Fortunately,	Xcode	has
provided	a	nice	template,	so	the	modifications	are	small.

MasterViewController	is	a	subclass	of	what’s	called	a
UITableViewController	class,	which	displays	rows	of	data	to	the	screen.	In	this
case,	these	are	rows	of	book	titles	(well,	just	two	for	this	simple	program	but	a	list
nonetheless).

There	are	three	main	methods	that	control	what	and	how	data	is	displayed	in	a
UITableViewController.

The	first	isnumberOfSectionsInTableView(_:):	Since	the	application
has	only	one	list,	or	section,	this	method	returns	1.

The	second	istableView(_:numberOfRowsInSection:):	In	this
program,	you	return	the	number	of	books	in	the	bookstore	array.
Since	this	is	the	only	section,	the	code	is	straightforward.

The	third	method	istableView(_:cellForRowAtIndexPath:):	This
method	is	called	for	each	row	that	is	to	be	displayed	on	the	screen,
and	it’s	called	one	row	at	a	time.

Listing	8-14	details	the	changes	you	need	to	make	to	get	the	list	of	books	displaying	on	the
view.	The	changes	start	on	line	63	in	the	source	file.

Listing	8-14.	Setting	up	the	view	to	display	the	books

63	override	func	numberOfSectionsInTableView(tableView:	
UITableView)	->	Int	{
64									return	1
65					}
66
67					override	func	tableView(tableView:	UITableView,	

numberOfRowsInSection	section:	Int)	->	Int	{
68									return	myBookStore.theBookStore.count
69					}
70
71					override	func	tableView(tableView:	UITableView,	
cellForRowAtIndexPath	indexPath:	NSIndexPath)	->	
UITableViewCell	{
72									let	cell	
=	tableView.dequeueReusableCellWithIdentifier("Cell",	
forIndexPath:	indexPath)
73									cell.textLabel!.text	
=	myBookStore.theBookStore[indexPath.row].title
74									cell.accessoryType	
=	UITableViewCellAccessoryType.DisclosureIndicator
75									return	cell
76					}

Out	of	all	of	this	code,	you	need	to	modify	only	a	few	lines.	Everything	else	can	stay	the
way	it	is.	This	is	one	of	the	advantages	of	using	the	Xcode	templates.	Line	68	simply
returned	1;	you	needed	to	change	it	so	that	it	now	returns	the	count	of	items	in	the
BookStore	class.

Line	73	looks	a	little	more	complicated.	Basically,	each	line	of	the	UITableView	is
what	is	called	a	cell	(a	UITableViewCell	to	be	specific).	Line	73	sets	the	text	of	the
cell	to	the	title	of	a	book.	Let’s	look	at	that	code	a	little	more	specifically:

cell.textLabel!.text	
=	myBookStore.theBookStore[indexPath.row].title

First,	myBookStore	is	the	BookStore	object,	which	is	pretty	clear.	You’re	referencing
the	array	in	the	BookStore	object	called	theBookStore.	Since	theBookStore	is
an	array,	you	can	access	the	book	you	want	in	brackets	in	the	indexPath.row.	The
value	indexPath.row	specifies	which	row	you’re	interested	in—indexPath.row
will	always	be	less	than	the	total	count	minus	1.	So,	calling
myBookStore.theBookStore[indexPath.row]	returns	a	Book	object.	The	last
part,	.title,	accesses	the	title	property	from	the	returned	Book	object.	The
following	code	is	equivalent	to	what	you	just	did	in	one	line:

1				var	book:	Book
2				book	=	myBookStore.theBookStore[indexPath.row]
3				cell.textLabel!.text	=	book.title

Now,	you	should	be	able	to	build	and	run	the	application	and	see	the	two	books	you
created	in	the	data	model,	as	shown	in	Figure	8-14.

Figure	8-14.	Running	the	application	for	the	first	time

But,	you’re	not	done	yet.	You	need	to	make	the	application	display	the	book	when	you
click	one	of	them.	To	make	this	happen,	you	need	to	make	one	last	modification	to
MasterViewController.

The	method	tableView(_:didSelectRowAtIndexPath:)	is	called	whenever	a
row	is	touched	on	the	screen.	Listing	8-15	shows	the	small	changes	you	need	to	make	in
order	to	hook	the	Detail	View	to	the	book	data.

Listing	8-15.	Selecting	the	book	when	touched

46	override	func	prepareForSegue(segue:	UIStoryboardSegue,	
sender:	AnyObject?)	{
47									if	segue.identifier	==	"showDetail"	{
48													if	let	indexPath	

=	self.tableView.indexPathForSelectedRow	{
49																	let	selectedBook:Book	
=	myBookStore.theBookStore[indexPath.row]

50																	let	controller	
=	(segue.destinationViewController	as!	
UINavigationController).topViewController	as!	
DetailViewController
51																	controller.detailItem	=	selectedBook
52																	
controller.navigationItem.leftBarButtonItem	
=	self.splitViewController?.displayModeButtonItem()
53																	
controller.navigationItem.leftItemsSupplementBackButton	
=	true
54													}
55									}
56					}

If	line	49	looks	similar	to	line	73	in	Listing	8-14,	that’s	because	it’s	basically	the	same
thing.	Based	on	indexPath.row,	you	select	the	specific	book	from	the	BookStore
object	and	save	it	in	a	variable	called	selectedBook.

On	line	51,	you	take	selectedBook	and	store	it	in	a	property	called	detailItem	that
is	already	part	of	the	existing	DetailViewController	class.	That’s	all	you	need	to
do	in	MasterViewController.	You’ve	basically	passed	off	the	book	to
DetailViewController.	You’re	almost	done.	Now	you	need	to	make	a	few	small
modifications	to	the	DetailViewController	so	that	it	displays	the	Book	object
properly.

Modifying	the	DetailViewController
Earlier	in	this	chapter,	you	modified	the	DetailViewController	so	that	it	would
display	some	detail	information	about	a	book.	In	the	code	you	just	finished,	you	modified
the	MasterViewController	so	that	it	passes	the	selected	book	to	the
DetailViewController.	Now	all	that	remains	is	to	simply	move	the	information
from	the	Book	object	in	the	DetailViewController	to	the	appropriate	fields	on	the
screen.	All	of	this	is	done	in	one	method—configureView—as	seen	in	Listing	8-16.

Listing	8-16.	Moving	the	Book	object	data	to	the	Detail	View

24								func	configureView()	{
25												if	let	detail:	AnyObject	=	self.detailItem	{
26																var	myBook	=	detail	as!	Book
27																titleLabel.text	=	myBook.title
28																authorLabel.text	=	myBook.author
29																descriptionTextView.text	
=	myBook.description

30											}
31						}

The	configureView	method	is	one	of	many	convenience	methods	included	in	the
Xcode	template	and	is	called	whenever	the	DetailViewController	is	being
initialized.	This	is	where	you	will	move	your	selected	Book	object’s	information	to	the
fields	in	the	view.

Lines	27	to	29	in	the	DetailViewController.swift	file	is	where	you	move	the
information	from	the	Book	object	to	the	view.	If	you	recall,	line	51	in	Listing	8-15	set	the
selected	book	into	a	property	on	the	DetailViewController	called	detailItem.
Lines	25	to	26	pull	that	item	out	into	a	Book	object	called	myBook.

Lines	36	to	38	simply	move	each	of	the	Book	object’s	properties	to	the	view	controls	you
built	earlier	in	the	chapter.	That’s	all	you	need	to	do	in	this	class.	If	you	build	and	run	the
project	and	click	one	of	the	books,	you	should	see	something	like	Figure	8-15.

Figure	8-15.	Viewing	the	book	details	for	the	first	time

Summary
You’ve	reached	the	end	of	this	chapter!	Here	is	a	summary	of	the	topics	covered:

Understanding	collection	classes:	Collection	classes	are	a	powerful
set	of	classes	that	come	with	Foundation	and	allow	you	to	store	and
retrieve	information	efficiently.

Using	properties:	Properties	are	variables	that	are	accessible	once	the
class	has	been	instantiated.

Looping	with	for…in:	This	feature	offers	a	new	way	to	iterate

through	an	enumerated	list	of	items.

Building	a	Master-Detail	application:	You	used	Xcode	and	the
Master-Detail	Application	template	to	build	a	simple	bookstore
program	to	display	books	and	the	details	of	an	individual	book.

Creating	a	simple	data	model:	Using	the	collection	classes	you
learned	about,	you	used	an	array	to	construct	a	BookStore	object
and	used	it	as	a	data	source	in	the	bookstore	program.

Connecting	data	to	the	view:	You	connected	the	Book	object’s	data
to	the	interface	fields	using	Xcode.

Exercises
Add	more	books	to	the	bookstore	using	the	original	program	as	a
guide.

On	the	Master	Scene,	remove	the	Edit	button	as	we	will	not	be	using
it	in	this	app.

Enhance	the	Book	class	so	it	can	store	another	attribute—a	price	or
ISBN,	for	example.

Modify	the	DetailViewController	so	that	the	new	fields	are
displayed.	Remember	to	connect	an	interface	control	to	an	instance
variable.

Change	the	BookStore	object	so	that	a	separate	method	is	called	to
initialize	the	list	of	Book	objects	(instead	of	putting	it	all	in	the
init	method).

There	is	another	attribute	to	a	UITableViewCell	called	the
detailTextLabel.	Try	to	make	use	of	it	by	setting	its	text
property	to	something.

Using	Xcode	to	modify	the	interface,	play	with	changing	the
background	color	of	the	DetailViewController	in	the
storyboard	file.

For	a	tougher	challenge:

Sort	the	books	in	the	BookStore	object	so	they	appear	in
ascending	order	on	the	MasterDetailView.

Chapter				9

Comparing	Data
In	this	chapter,	we	will	discuss	one	of	the	most	basic	and	frequent	operations	you	will
perform	as	you	program:	comparing	data.	In	the	bookstore	example,	you	may	need	to
compare	book	titles	if	your	clients	are	looking	for	a	specific	book.	You	may	also	need	to
compare	authors	if	your	clients	are	interested	in	purchasing	books	by	a	specific	author.
Comparing	data	is	a	common	task	performed	by	developers.	Many	of	the	loops	you
learned	about	in	the	previous	chapter	will	require	you	to	compare	data	so	that	you	know
when	your	code	should	stop	looping.

Comparing	data	in	programming	is	like	using	a	scale.	You	have	one	value	on	one	side	and
another	value	on	the	other	side.	In	the	middle,	you	have	an	operator.	The	operator
determines	what	kind	of	comparison	is	being	done.	Examples	of	operators	are	“greater
than,”	“less	than,”	or	“equal	to.”

The	values	on	either	side	of	the	scale	are	usually	variables.	You	learned	about	the	different
types	of	variables	in	Chapter	3.	In	general,	the	comparison	functions	for	different	variables
will	be	slightly	different.	It	is	imperative	that	you	become	familiar	with	the	functions	and
syntax	to	compare	data	because	this	will	form	the	basis	of	your	development.

For	the	purposes	of	this	chapter,	we	will	use	an	example	of	a	bookstore	application.	This
application	will	allow	users	to	log	in	to	the	application,	search	for	books,	and	purchase
them.	We	will	cover	the	different	ways	of	comparing	data	to	show	how	they	would	be
used	in	this	type	of	application.

Revisiting	Boolean	Logic
In	Chapter	4,	we	introduced	Boolean	logic.	Because	of	its	prevalence	in	programming,	we
will	revisit	this	subject	in	this	chapter	and	go	into	more	detail.

The	most	common	comparison	that	you	will	program	your	application	to	perform	is
comparisons	using	Boolean	logic.	Boolean	logic	usually	comes	in	the	form	of	if/then
statements.	Boolean	logic	can	have	only	one	of	two	answers:	yes	or	no.	The	following	are
some	good	examples	of	Boolean	questions	that	you	will	use	in	your	applications:

Is	5	larger	than	3?

Does	now	have	more	than	five	letters?

Is	6/1/2010	later	than	today?

Notice	that	there	are	only	two	possible	correct	answers	to	these	questions:	yes	and	no.	If
you	are	asking	a	question	that	could	have	more	than	these	two	answers,	that	question	will
need	to	be	worded	differently	for	programming.

Each	of	these	questions	will	be	represented	by	an	if/then	statement	(for	example,	“If	5
is	greater	than	3,	then	print	a	message	to	the	user”).	Each	if	statement	is	required	to	have
some	sort	of	relational	operator.	A	relational	operator	can	be	something	like	“is	greater
than”	or	“is	equal	to.”

To	start	using	these	types	of	questions	in	your	programs,	you	will	first	need	to	become
familiar	with	the	different	relational	operators	available	to	you	in	the	Swift	language.	We
will	cover	them	first.	After	that,	you	will	learn	how	different	variables	can	behave	with
these	operators.

Using	Relational	Operators
Swift	uses	five	standard	comparison	operators.	These	are	the	standard	algebraic	operators
with	only	one	real	change:	in	the	Swift	language,	as	in	most	other	programming
languages,	the	“equal	to”	operator	is	made	by	two	equals	signs	(==).	Table	9-1	describes
the	operators	available	to	you	as	a	developer.

Table	9-1.	Comparison	Operators

OperatorDescription

> Greater	than

< Less	than

>= Greater	than	or	equal	to

<= Less	than	or	equal	to

== Equal	to

Note		A	single	equals	sign	(=)	is	used	to	assign	a	value	to	a	variable.	Two	equals
signs	(==)	are	needed	to	compare	two	values.	For	example,	if(x=9)	will
assign	the	value	of	9	to	the	variable	x	and	return	yes	if	9	is	successfully
assigned	to	x,	which	will	be	in	most,	if	not	all,	of	the	cases.	if(x==9)	will	do
a	comparison	to	see	whether	x	equals	9.	Xcode	now	throws	an	error	if	you	try	to
assign	a	value	to	a	variable	in	an	if	statement.

Comparing	Numbers
One	of	the	difficulties	developers	have	had	in	the	past	was	dealing	with	different	data
types	in	comparisons.	Earlier	in	this	book,	we	discussed	the	different	types	of	variables.
You	may	remember	that	1	is	an	integer.	If	you	wanted	to	compare	an	integer	with	a	float
such	as	1.2,	this	could	cause	some	issues.	Thankfully,	Swift	helps	with	this.	In	Swift,	you
can	compare	any	two	numeric	data	types	without	having	to	typecast.	(Typecasting	is	still

sometimes	needed	when	dealing	with	other	data	types,	which	we	cover	later	in	the
chapter.)	This	allows	you	to	write	code	without	worrying	about	the	data	types	that	need	to
be	compared.

Note		Typecasting	is	the	conversion	of	an	object	or	variable	from	one	type	to
another.

In	the	bookstore	application,	you	will	need	to	compare	numbers	in	many	ways.	For
example,	let’s	say	the	bookstore	offers	a	discount	for	people	who	spend	more	than	$30	in	a
single	transaction.	You	will	need	to	add	the	total	amount	the	person	is	spending	and	then
compare	this	to	$30.	If	the	amount	spent	is	larger	than	$30,	you	will	need	to	calculate	the
discount.	See	the	following	example:

var	discountThreshold	=	30
var	discountPercent	=	0
var	totalSpent	=	calculateTotalSpent()

if(totalSpent	>	discountThreshold)	{
				discountPercent	=	10
}

Let’s	walk	through	the	code.	First,	you	declare	the	variables	(discountThreshhold,
discountPercent,	and	totalSpent)	and	assign	a	value	to	them.	Notice	you	do	not
need	to	specify	the	type	of	number	for	the	variables.	The	type	will	be	assigned	when	you
assign	it	a	value.	You	know	that	discountThreshold	and	discountPercent	will
not	contain	decimals,	so	the	compiler	will	create	them	as	Ints.	In	this	example,	you	can
assume	you	have	a	function	called	calculateTotalSpent,	which	will	calculate	the
total	spent	in	this	current	order.	You	then	simply	check	to	see	whether	the	total	spent	is
larger	than	the	discount	threshold;	if	it	is,	you	set	the	discount	percent.	If	we	wanted	a
customer	who	spent	exactly	$30	to	get	the	same	discount,	we	could	use	a	>=	instead	of	a
>.	Also	notice	that	it	was	not	necessary	to	tell	the	code	to	convert	the	data	when
comparing	the	different	numeric	data	types.	As	mentioned	earlier,	Swift	handles	all	this.

Another	action	that	requires	the	comparison	of	numbers	is	looping.	As	discussed	in
Chapter	4,	looping	is	a	core	action	in	development,	and	many	loop	types	require	some	sort
of	comparison	to	determine	when	to	stop.	Let’s	take	a	look	at	a	for	loop:

var	numberOfBooks:	Int
numberOfBooks	=	50

for	var	y	=	1;	y	<=	numberOfBooks;	y++	{
				doSomething()
}

In	this	example,	you	iterate,	or	loop,	through	the	total	number	of	books	in	the	bookstore.
The	for	statement	is	where	the	interesting	stuff	starts	to	happen.	Let’s	break	it	down.

The	following	portion	of	the	code	is	declaring	y	as	a	variable	and	then	assigning	it	a

starting	value	of	1:

var	y	=	1;

The	following	portion	is	telling	the	computer	to	check	to	see	whether	the	counting
variable	y	is	less	than	or	equal	to	the	total	number	of	books	you	have	in	the	store.	If	y
becomes	larger	than	the	number	of	books,	the	loop	will	no	longer	run.

y	<=	numberOfBooks;

The	following	portion	of	code	increases	y	by	1	every	time	the	loop	is	run.

y++

Creating	an	Example	Xcode	App
Now	let’s	create	an	Xcode	application	so	you	can	start	comparing	numeric	data.

1.	 Launch	Xcode.	From	the	Finder,	go	to	the	Applications	folder.	Drag
the	folder	to	the	Dock	because	you	will	be	using	it	throughout	the
rest	of	this	book.	See	Figure	9-1.

Figure	9-1.	Launching	Xcode

2.	 Click	“Create	a	New	Xcode	Project”	to	open	a	new	window.	On	the
left	side	of	that	window,	under	iOS,	select	Application.	Then	select
Single	View	Application	on	the	right	side.	Click	Next,	as	shown	in
Figure	9-2.

Figure	9-2.	Creating	a	new	project

Note		The	Single	View	Application	template	is	the	most
generic	and	basic	of	the	iOS	application	types.

3.	 On	the	next	page,	enter	the	name	of	your	application.	Here	we	used
Comparison	as	the	name,	but	you	can	choose	any	name	you	like.
This	is	also	the	window	where	you	select	which	device	you	would
like	to	target.	Leave	it	as	iPhone	for	now,	as	shown	in	Figure	9-3.

Figure	9-3.	Selecting	the	project	type	and	name

Note			Xcode	projects,	by	default,	are	saved	in	the
Documents	folder	in	your	user	home.

4.	 Once	the	new	project	is	created,	you	will	see	the	standard	Xcode
window.	Select	the	arrow	next	to	the	Comparison	folder	to
expand	it	if	it	is	not	already	expanded.	You	will	see	several	files.
The	main	file	for	your	project	is	called	AppDelegate.swift.
You	will	also	see	a	ViewController.swift	file.	This	file	is
the	source	that	controls	the	single	window	that	is	created	by	default
for	you	in	this	type	of	app.	For	the	purposes	of	these	examples,	you
will	be	focusing	on	the	AppDelegate.swift	file.

5.	 Click	the	AppDelegate.swift	file.	You	will	see	the	following
code:

func	application(application:	UIApplication,	
didFinishLaunchingWithOptions
																											launchOptions:	
[NSObject:	AnyObject]?)	->	Bool	{
								//	Override	point	for	customization	
after	application	launch.
								return	true
				}

6.	 The	method	application:
didFinishLaunchingWithOptions	is	called	after	each	time
the	application	is	launched.	At	this	point,	your	application	will
launch	and	display	a	window.	You	will	add	a	little	Hello	World
to	your	application.	Before	the	line	return	true,	you	need	to
add	the	following	code:

NSLog("Hello	World")

This	line	creates	a	new	String	with	the	contents	Hello	World	and	passes	it	to	the
NSLog	function	that	is	used	for	debugging.

Note		The	NSLog	method	is	available	to	Objective-C	and	Swift.	It	is	commonly
used	for	debugging	an	application	because	you	can	show	information	easily	in
the	Debug	area.

Let’s	run	the	application	to	see	how	it	works:

1.	 Click	the	Run	button	in	the	default	toolbar.

2.	 The	iOS	simulator	will	launch.	This	will	just	display	a	window.
Back	in	Xcode,	a	Console	window	will	appear	at	the	bottom	of	the
screen,	as	shown	in	 	Figure	9-4.	You	can	always	toggle	this

window	by	selecting	View	 	Debug	Area	 	Show/Hide	Debug
Area.

Figure	9-4.	Debugger	window

You	will	now	see	a	line	of	text	in	your	debugger.	The	first	part	of	the	line	shows	the	date,
time,	and	name	of	the	application.	The	Hello	World	part	was	generated	by	the	NSLog
line	that	you	added.

1.	 Go	back	to	Xcode	and	open	the	AppDelegate.swift	file.

2.	 Go	to	the	beginning	of	the	line	that	begins	with	NSLog.	This	is	the
line	that	is	responsible	for	printing	the	Hello	World	section.	You
are	going	to	comment	out	this	line	by	placing	two	forward	slashes
(//)	in	front	of	the	line	of	code.	Commenting	out	code	tells	Xcode
to	ignore	it	when	it	builds	and	runs	the	application.	In	other	words,
code	that	is	commented	out	will	not	run.

3.	 Once	you	comment	out	the	line	of	code,	you	will	no	longer	see	the
line	in	bold	if	you	run	the	program	because	the	application	is	no
longer	outputting	any	line.

4.	 For	the	application	to	output	the	results	of	your	comparisons,	you
will	have	to	add	one	line,	as	shown	here:

NSLog("The	result	is	%@",	(6	>	5	?	"True"	
:	"False"))

Note		The	previous	code,	(6>5	?	“True”	:
“False”),	is	called	a	ternary	operation.	It	is	essentially
just	a	simplified	way	of	writing	an	if/else	statement.

5.	 Place	this	line	in	your	code.	This	line	is	telling	your	application	to
print	The	result	is.	Then	it	will	print	True	if	6	is	greater
than	5,	or	it	will	print	False	if	5	is	greater	than	6.

Because	6	is	greater	than	5,	it	will	print	True.

You	can	change	this	line	to	test	any	of	the	examples	you	have	put	together	thus	far	in	this
chapter	or	any	of	the	examples	you	will	do	later.

Let’s	try	another	example.

var	i	=	5
var	y	=	6
NSLog("The	result	is	%@",	(y	>	i	?	"True"	:	"False"))

In	this	example,	you	create	a	variable	and	assign	its	value	to	5.	You	then	create	another
variable	and	assign	the	value	to	6.	You	then	change	the	NSLog	example	to	compare	the
variables	i	and	y	instead	of	using	actual	numbers.	When	you	run	this	example,	you	will
get	the	result	shown	in	Figure	9-5.

Figure	9-5.	NSLog	output

Note		You	may	get	compiler	warnings	when	using	this	code.	The	compiler	will
tell	you	that	the	false	portion	of	the	ternary	operator	will	never	be	executed.	The
compiler	can	look	at	the	values	while	you	are	typing	the	code	and	know	that	the
comparison	will	be	true.

You	will	now	explore	other	kinds	of	comparisons,	and	then	you	will	come	back	to	the
application	and	test	some	of	them.

Using	Boolean	Expressions
A	Boolean	expression	is	the	easiest	of	all	comparisons.	Boolean	expressions	are	used	to
determine	whether	a	value	is	true	or	false.	Here’s	an	example:

var	j	=	5
if		j	>	0	{
				some_code()
}

The	if	statement	will	always	evaluate	to	true	because	the	variable	j	is	greater	than
zero.	Because	of	that,	the	program	will	run	the	some_code()	method.

Note			In	Swift,	if	a	variable	is	optional	and	therefore	not	assigned	a	value,	you
should	use	a	question	mark	after	the	variable	declaration.	For	example,	var	j
becomes	var	j:Int?.

If	you	change	the	value	of	j,	the	statement	will	evaluate	to	false	because	j	is	now	0.
This	can	be	used	with	Bool	and	number	variables.

var	j	=	0
if	j	>	0	{

				some_code()
}

Placing	an	exclamation	point	in	front	of	a	Boolean	expression	will	change	it	to	the
opposite	value	(a	false	becomes	a	true,	and	a	true	becomes	a	false).	This	line
now	asks	“If	not	j>0,”	which,	in	this	case,	is	true	because	j	is	equal	to	0.	This	is	an
example	of	using	an	integer	to	act	as	a	Boolean	variable.	As	discussed	earlier,	Swift	also
has	variables	called	Bool	that	have	only	two	possible	values:	true	or	false.

var	j	=	0
if	!(j	>	0)	{
				some_code()
}

Note		Swift,	like	many	other	programming	languages,	uses	true	or	false
when	assigning	a	value	to	a	Boolean	variable.

Let’s	look	at	an	example	related	to	the	bookstore.	Say	you	have	a	frequent	buyers’	club
that	entitles	all	members	to	a	15	percent	discount	on	all	books	they	purchase.	This	is	easy
to	check.	You	simply	set	the	variable	clubMember	to	true	if	the	person	is	a	member
and	false	if	he	or	she	is	not.	The	following	code	will	apply	the	discount	only	to	club
members:

var	discountPercent	=	0
var	clubMember:	Bool	=	false

if(clubMember)	{
				discountPercent	=	15
}

Comparing	Strings
Strings	are	a	difficult	data	type	for	most	C	languages.	In	ANSI	C	(or	standard	C),	a	string
is	just	an	array	of	characters.	Objective-C	took	the	development	of	the	string	even	further
and	made	it	an	object	called	NSString.	Swift	has	taken	the	String	class	even	further
and	made	it	easier	to	work	with.	Many	more	properties	and	methods	are	available	to	you
when	working	with	an	object.	Fortunately	for	you,	String	has	many	methods	for
comparing	data,	which	makes	your	job	much	easier.

Let’s	look	at	an	example.	Here,	you	are	comparing	passwords	to	see	whether	you	should
allow	a	user	to	log	in:

var	enteredPassword	=	"Duck"
var	myPassword	=	"duck"

var	continueLogin	=	false

if	enteredPassword	==	myPassword	{
				continueLogin	=	true
}

The	first	line	just	declares	a	String	and	sets	it	value	to	Duck.	The	next	line	declares
another	string	and	sets	its	value	to	duck.	In	your	actual	code,	you	will	need	to	get	the
enteredPassword	string	from	the	user.

The	next	line	is	the	part	of	the	code	that	actually	does	the	work.	You	simply	ask	the	strings
if	they	are	equal	to	each	other.	The	example	code	will	always	be	false	because	of	the
capital	“D”	in	the	enteredPassword	versus	the	lowercase	“d”	in	the	myPassword.

There	are	many	other	different	comparisons	you	might	have	to	perform	on	strings.	For
example,	you	may	want	to	check	the	length	of	a	certain	string.	This	is	easy	to	do.

var	enteredPassword	=	"Duck"
var	myPassword	=	"duck"
var	continueLogin	=	false
if	enteredPassword.characters.count	>	5	{
				continueLogin	=	true
}

Note		count	is	a	global	function	that	can	be	used	to	count	strings,	arrays,	and
dictionaries.

This	code	checks	to	see	whether	the	entered	password	is	longer	than	five	characters.

There	will	be	other	times	when	you	will	have	to	search	within	a	string	for	some	data.
Fortunately,	Swift	makes	this	easy	to	do.	String	provides	a	function	called
rangeOfString,	which	allows	you	to	search	within	a	string	for	another	string.	The
function	rangeOfString	takes	only	one	argument,	which	is	the	string	for	which	you
are	searching.

var	searchTitle:	String
var	bookTitle:	String
searchTitle	=	"Sea"
bookTitle	=	"2000	Leagues	Under	the	Sea"

if	bookTitle.rangeOfString(searchTitle)	!=	nil	{
					addToResults()
}

This	code	is	similar	to	other	examples	you	have	examined.	This	example	takes	a	search
term	and	checks	to	see	whether	the	book	title	has	that	same	search	term	in	it.	If	it	does,	it
adds	the	book	to	the	results.	This	can	be	adapted	to	allow	users	to	search	for	specific	terms
in	book	titles,	authors,	or	even	descriptions.

For	a	complete	listing	of	the	methods	supported	by	String,	see	the	Apple
documentation	at

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/StringsAndCharacters.html

Using	the	switch	Statement
Up	to	this	point,	you’ve	seen	several	examples	of	comparing	data	by	simply	using	the	if
statement.

if	some_value	==	SOME_CONSTANT	{
				...
}	else	if	some_value	==	SOME_OTHER_CONSTANT	{
				...
}	else	if	some_value	==	YET_SOME_OTHER_CONSTANT	{
				...
}

If	you	need	to	compare	a	variable	to	several	constant	values,	you	can	use	a	different
method	that	can	simplify	the	comparison	code:	the	switch	statement.

Note		In	Objective-C,	you	could	only	use	integers	to	compare	in	a	switch
statement.	Swift	allows	developers	more	freedom	in	using	the	switch
statement.

The	switch	statement	allows	you	to	compare	one	or	more	values	in	an	original	variable.

var	customerType	=	"Repeat"

switch		customerType	{			//	The	switch	statement	followed	by	
a	begin	brace
case	"Repeat":											//	Equivalent	to	if	(customerType	
==	"Repeat")
			...																			//	Call	functions	and	put	any	other	
statements	here	after	the	case.
			...
case	"New":
				...
				...
case	"Seasonal":																			...
				...
default:													//	Default	is	required	in	Swift

}		//	End	of	the	switch	statement.

The	switch	statement	is	powerful,	and	it	simplifies	and	streamlines	comparisons	of	a
Boolean	operator	to	several	different	values.

In	Swift,	the	switch	statement	is	a	powerful	statement	that	can	be	used	to	simplify
repeated	if/else	statements.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/StringsAndCharacters.html

Comparing	Dates
Dates	are	a	fairly	complicated	variable	type	in	any	language,	and	unfortunately,	depending
on	the	type	of	application	you	are	writing,	they	are	common.	Swift	does	not	have	its	own
native	Date	type.	This	means	developers	have	to	use	the	Cocoa	date	type	NSDate.	The
NSDate	class	has	a	lot	of	nice	methods	that	make	comparing	dates	easy.	We	will	focus	on
the	compare	function.	The	compare	function	returns	an	NSComparisonResult,
which	has	three	possible	values:	OrderedSame,	OrderedDescending,	and
OrderedAscending.

//	Today's	Date
var	today:	NSDate	=	NSDate()

//	Sale	Date	=	Tomorrow
let	timeToAdd:	NSTimeInterval	=	60*60*24
var	saleDate:	NSDate	
=	today.dateByAddingTimeInterval(timeToAdd)

var	saleStarted	=	false
let	result:	NSComparisonResult		=	today.compare(saleDate)

switch	result	{
case	NSComparisonResult.OrderedAscending:
				//	Sale	Date	is	in	the	future
				saleStarted	=	false
case	NSComparisonResult.OrderedDescending:
				//	Sale	Start	Date	is	in	the	past	so	sale	is	on
				saleStarted	=	true
default:
				//	Sale	Start	Date	is	now
				saleStarted	=	true
}

This	may	seem	like	a	lot	of	work	just	to	compare	some	dates.	Let’s	walk	through	the	code
and	see	whether	you	can	make	sense	of	it.

var	today:	NSDate	=	NSDate()
let	timeToAdd:	NSTimeInterval	=	60*60*24
var	saleDate:	NSDate	
=	today.dateByAddingTimeInterval(timeToAdd)

Here,	you	declare	two	different	NSDate	objects.	The	first	one,	named	today,	is
initialized	with	the	system	date	or	your	device	date.	Before	creating	the	second	date,	you
need	to	add	some	time	to	the	first	date.	You	do	this	by	creating	an	NSTimeInterval.
This	is	a	number	in	seconds.	To	add	a	day,	you	add	60*60*24.	The	second	date,	named
saleDate,	is	initialized	with	a	date	some	time	in	the	future.	You	will	use	this	date	to	see
whether	this	sale	has	begun.	We	will	not	go	into	detail	about	the	initialization	of	NSDate

objects.

Note		In	most	programming	languages,	dates	are	dealt	with	in	a	specific	pattern.
They	usually	start	with	the	four-digit	year	followed	by	a	hyphen,	then	a	two-
digit	month	followed	by	a	hyphen,	and	then	a	two-digit	day.	If	you	are	using	a
data	format	with	a	time,	this	data	is	usually	presented	in	a	similar	manner.	Times
are	usually	presented	with	the	hour,	minute,	and	second,	each	separated	by	a
colon.	Swift	inherits	time	zone	support	from	Cocoa.

The	results	of	using	the	compare	function	of	an	NSDate	object	is	an
NSComparisonResult.	You	have	to	declare	an	NSComparisonResult	to	capture
the	output	from	the	compare	function.

let	result:	NSComparisonResult	=	today.compare(saleDate)

This	simple	line	runs	the	comparison	of	the	two	dates.	It	places	the	resulting
NSComparisonResult	into	the	variable	called	result.

switch	result	{
case	NSComparisonResult.OrderedAscending:
				//	Sale	Date	is	in	the	future
				saleStarted	=	false
case	NSComparisonResult.OrderedDescending:
				//	Sale	Start	Date	is	in	the	past	so	sale	is	on
				saleStarted	=	true
default:
				//	Sale	Start	Date	is	now
				saleStarted	=	true
}

Now	you	need	to	find	out	what	value	is	in	the	variable	result.	To	accomplish	this,	you
perform	a	switch	statement	that	compares	the	result	to	the	three	different	options	for
NSComparisonResult.	The	first	line	finds	out	whether	the	sale	date	is	greater	than
today’s	date.	This	means	that	the	sale	date	is	in	the	future,	and	thus	the	sale	has	not	started.
You	then	set	the	variable	saleStarted	to	false.	The	next	line	finds	out	whether	the
sale	date	is	less	than	today.	If	it	is,	then	the	sale	has	started,	and	you	set	the
saleStarted	variable	to	true.	The	next	line	just	says	default.	This	captures	all
other	options.	You	know,	though,	that	the	only	other	option	is	OrderedSame.	This
means	the	two	dates	are	the	same,	and	thus	the	sale	is	just	beginning.

There	are	other	methods	that	you	can	use	to	compare	NSDate	objects.	Each	of	these
methods	will	be	more	efficient	at	certain	tasks.	We	have	chosen	the	compare	method
because	it	will	handle	most	of	your	basic	date	comparison	needs.

Note		Remember	that	an	NSDate	holds	both	a	date	and	a	time.	This	can	affect
your	comparisons	with	dates	because	it	compares	not	only	the	date	but	also	the
time.

Combining	Comparisons
As	discussed	in	Chapter	4,	you’ll	sometimes	need	something	more	complex	than	a	single
comparison.	This	is	where	logical	operators	come	in.	Logical	operators	enable	you	to
check	for	more	than	one	requirement.	For	example,	if	you	have	a	special	discount	for
people	who	are	members	of	your	book	club	and	who	spend	more	than	$30,	you	can	write
one	statement	to	check	this.

var	totalSpent	=	31
var	discountThreshhold	=	30
var	discountPercent	=	0
var	clubMember	=	true

if	totalSpent	>	discountThreshhold	&&	clubMember	{
				discountPercent	=	15
}

We	have	combined	two	of	the	examples	shown	earlier.	The	new	comparison	line	reads	as
follows:	“If	totalSpent	is	greater	than	discountThreshold	AND	clubMember
is	true,	then	set	the	discountPercent	to	15.”	For	this	to	return	true,	both	items
need	to	be	true.	You	can	use	||	instead	of	&&	to	signify	“or.”	You	can	change	the	previous
line	to	this:

if	totalSpent	>	discountThreshhold	||	clubMember		{
								discountPercent	=	15
}

Now	this	reads	as	follows:	“If	totalSpent	is	greater	than	discountThreshold	OR
clubMember	is	true,	then	set	the	discount	percent.”	This	will	return	true	if	either	of
the	options	is	true.

You	can	continue	to	use	the	logical	operations	to	string	as	many	comparisons	together	as
you	need.	In	some	cases,	you	may	need	to	group	comparisons	using	parentheses.	This	can
be	more	complicated	and	is	beyond	the	scope	of	this	book.

Summary
You’ve	reached	the	end	of	the	chapter!	Here	is	a	summary	of	the	topics	that	were	covered:

Comparisons:	Comparing	data	is	an	integral	part	of	any	application.

Relational	operators:	You	learned	about	the	five	standard	relational
operators	and	how	each	is	used.

Numbers:	Numbers	are	the	easiest	pieces	of	information	to	compare.
You	learned	how	to	compare	numbers	in	your	programs.

Examples:	You	created	a	sample	application	where	you	could	test
your	comparisons	and	make	sure	that	you	are	correct	in	your	logic.
Then,	you	learned	how	to	change	the	application	to	add	different
types	of	comparisons.

Boolean:	You	learned	how	to	check	Boolean	values.

Strings:	You	learned	how	strings	behave	differently	from	other	pieces
of	information	you	have	tested.

Dates:	You	learned	how	difficult	it	can	be	to	compare	dates	and	that
you	must	be	careful	to	make	sure	you	are	getting	the	response	you
desire.

Exercises
Modify	the	example	application	to	compare	some	string	information.
This	can	be	in	the	form	of	a	variable	or	a	constant.

Write	a	Swift	application	that	determines	whether	the	following
years	are	leap	years:	1800,	1801,	1899,	1900,	2000,	2001,	2003,	and
2010.	Output	should	be	written	to	the	console	in	the	following
format:	The	year	2000	is	a	leap	year	or	The	year
2001	is	not	a	leap	year.	See
http://en.wikipedia.org/wiki/Leap_year	for
information	on	determining	whether	a	year	is	a	leap	year.

http://en.wikipedia.org/wiki/Leap_year

Chapter				10

Creating	User	Interfaces
Interface	Builder	enables	iOS	developers	to	easily	create	their	user	interfaces	using	a
powerful	graphical	user	interface.	It	provides	the	ability	to	build	user	interfaces	by	simply
dragging	objects	from	Interface	Builder’s	library	to	the	editor.

Interface	Builder	stores	your	user	interface	design	in	one	or	more	resource	files,	called
storyboards	and	XIBs.	These	resource	files	contain	the	interface	objects,	their	properties,
and	their	relationships.

To	build	a	user	interface,	simply	drag	objects	from	Interface	Builder’s	Object	Library	pane
onto	your	view	or	scene.	Actions	and	outlets	are	two	key	components	of	Interface	Builder
that	help	you	streamline	the	development	process.

Your	objects	trigger	actions	in	your	views,	and	the	actions	are	connected	to	your	methods
in	the	app’s	code.	Outlets	are	declared	in	your	.swift	file	and	are	connected	to	specific
controls	as	properties.	See	Figure	10-1.

Figure	10-1.	Interface	Builder

Note		Interface	Builder	was	once	a	stand-alone	application	that	developers	used
to	design	their	user	interfaces.	Starting	with	Xcode	4.0,	Interface	Builder	has
been	integrated	into	Xcode.

Understanding	Interface	Builder
Interface	Builder	saves	the	user	interface	file	as	a	bundle	that	contains	the	interface	objects
and	relationships	used	in	the	application.	These	bundles	previously	had	the	file	extension
.nib.	Version	3.0	of	Interface	Builder	used	a	new	XML	file	format,	and	the	file	extension
changed	to	.xib.	However,	developers	still	call	these	files	nib	files.	Later	Apple
introduced	storyboards.	Storyboards	enable	you	to	have	all	of	your	views	in	one	file	with	a
.storyboard	extension.

Unlike	most	other	graphical	user	interface	applications,	XIBs	and	storyboards	are	often
referred	to	as	freeze-dried	because	they	contain	the	archived	objects	themselves	and	are
ready	to	run.

The	XML	file	format	is	used	to	facilitate	storage	with	source	control	systems	such	as
Subversion	and	Git.

In	the	next	section,	we’ll	discuss	an	app	design	pattern	called	Model-View-Controller.
This	design	pattern	enables	developers	to	more	easily	maintain	code	and	reuse	objects
over	the	life	of	an	app.

The	Model-View-Controller	Pattern
Model-View-Controller	(MVC)	is	the	most	prevalent	design	pattern	used	in	iOS
development,	and	learning	about	it	will	make	your	life	as	a	developer	much	easier.	MVC
is	used	in	software	development	and	is	considered	an	architectural	pattern

Architectural	patterns	describe	solutions	to	software	design	problems	that	developers	can
use	in	their	code.	The	MVC	pattern	is	not	unique	to	iOS	developers;	it	is	being	adopted	by
many	makers	of	integrated	development	environments	(IDEs),	including	those	running	on
Windows	and	Linux	platforms.

Software	development	is	considered	an	expensive	and	risky	venture	for	businesses.
Frequently,	apps	take	longer	than	expected	to	write,	come	in	over	budget,	and	don’t	work
as	promised.	Object-oriented	programming	(OOP)	produced	a	lot	of	hype	and	gave	the
impression	that	companies	would	realize	savings	if	they	adopted	its	methodology,
primarily	because	of	the	reusability	of	objects	and	easier	maintainability	of	the	code.
Initially,	this	didn’t	happen.

When	engineers	looked	at	why	OOP	wasn’t	living	up	to	these	expectations,	they
discovered	a	key	shortcoming	with	how	developers	were	designing	their	objects:
developers	were	frequently	mixing	objects	in	such	a	way	that	the	code	became	difficult	to
maintain	as	the	application	matured,	the	code	moved	to	different	platforms,	or	hardware
displays	changed.

Objects	were	often	designed	so	that	if	any	of	the	following	changed,	it	was	difficult	to
isolate	the	objects	that	were	impacted:

Business	rules

User	interfaces

Client-server	or	Internet-based	communication

Objects	can	be	broken	down	into	three	task-related	categories.	It	is	the	responsibility	of
the	developer	to	ensure	that	each	of	these	categories	keeps	their	objects	from	drifting
across	other	categories.

As	objects	are	categorized	in	these	groups,	apps	can	be	developed	and	maintained	more
easily	over	time.	The	following	are	examples	of	objects	and	their	associated	MVC
category	for	an	iPhone	banking	application:

Model

Account	balances

User	encryption

Account	transfers

Account	login

View

Account	balances	table	cell

Account	login	spinner	control

Controller

Account	balance	view	controller

Account	transfer	view	controller

Logon	view	controller

The	easiest	way	to	remember	and	classify	your	objects	in	the	MVC	design	pattern	is	the
following:

Model:	Unique	business	or	application	rules	or	code	that	represent
the	real	world

View:	Unique	user	interface	code

Controller:	Anything	that	controls	or	communicates	with	the	model
or	view	objects

Figure	10-2	represents	the	MVC	paradigm.

Figure	10-2.	MVC	paradigm

Neither	Xcode	nor	Interface	Builder	forces	developers	to	use	the	MVC	design	pattern.	It	is
up	to	the	developers	to	organize	their	objects	in	such	a	way	to	use	this	design	pattern.

It	is	worth	mentioning	that	Apple	strongly	embraces	the	MVC	design	pattern,	and	all	of
the	frameworks	are	designed	to	work	in	an	MVC	world.	This	means	that	if	you	also
embrace	the	MVC	design	pattern,	working	with	Apple’s	classes	will	be	much	easier.	If
you	don’t,	you’ll	be	swimming	upstream.

Human	Interface	Guidelines
Before	you	get	too	excited	and	begin	designing	dynamic	user	interfaces	for	your	app,	you
need	to	learn	some	of	the	ground	rules.	Apple	has	developed	one	of	the	most	advanced
operating	systems	in	the	world	with	iOS	9.	Additionally,	Apple’s	products	are	known	for
being	intuitive	and	user-friendly.	Apple	wants	users	to	have	the	same	experience	from	one
app	to	the	next.

To	ensure	a	consistent	user	experience,	Apple	provides	developers	with	guidelines	on	how
their	apps	should	look	and	feel.	These	guidelines,	called	the	Human	Interface	Guidelines
(HIG),	are	available	for	the	Mac,	iPhone,	iPad,	and	Apple	Watch.	You	can	download	these
documents	at	http://developer.apple.com,	as	shown	in	Figure	10-3.

http://developer.apple.com

Figure	10-3.	Apple’s	Human	Interface	Guidelines	for	iOS	devices

Note		Apple’s	HIG	is	more	than	recommendations	or	suggestions.	Apple	takes	it
very	seriously.	While	the	HIG	doesn’t	describe	how	to	implement	your	user
interface	designs	in	code,	it	is	great	for	understanding	the	proper	way	to
implement	your	views	and	controls.

The	following	are	some	of	the	top	reasons	apps	are	rejected	in	Apple’s	iTunes	App	Store:

The	app	crashes.

The	app	violates	the	HIG.

The	app	uses	Apple’s	private	APIs.

The	app	doesn’t	function	as	advertised	on	the	iTunes	App	Store.

Many	new	iOS	developers	find	this	out	the	hard	way,	but	if	you	follow	the	HIG	from	day
one,	your	iOS	development	will	be	a	far	more	pleasurable	experience.

Creating	an	Example	iPhone	App	with

Interface	Builder
Let’s	get	started	by	building	an	iPhone	app	that	generates	and	displays	a	random	number,
as	shown	in	Figure	10-4.	This	app	will	be	similar	to	the	app	you	created	in	Chapter	4,	but
you’ll	see	how	much	more	interesting	the	app	becomes	with	an	iOS	user	interface	(UI).

Figure	10-4.	Completed	iOS	random	number	generator	app

Note		You	can	read,	learn,	and	follow	the	HIG	before	you	develop	your	app,	or
you	can	read,	learn,	and	follow	the	HIG	after	your	app	gets	rejected	by	Apple
and	you	have	to	rewrite	part	or	all	of	it.	Either	way,	all	iOS	developers	will	end
up	becoming	familiar	with	the	HIG.

1.	 Open	Xcode	and	select	Create	a	New	Project.	Make	sure	you	select
Single	View	Application	for	iOS,	then	click	Next,	as	shown	in
Figure	10-5.

Figure	10-5.	Creating	an	iPhone	app	based	on	the	Single	View	Application	template

2.	 Name	your	project	RandomNumber,	select	Swift	for	the	language
and	iPhone	for	the	Device,	click	Next,	and	save	your	project,	as
shown	in	Figure	10-6.

Figure	10-6.	Naming	your	iPhone	project

3.	 Your	project	files	and	settings	are	created	and	displayed,	as	shown
in	Figure	10-7.

Figure	10-7.	Source	files

Although	you	have	only	one	controller	in	this	project,	it’s	good
programming	practice	to	make	your	MVC	groups	at	the	beginning
of	your	development.	This	helps	remind	you	to	keep	the	MVC
paradigm	and	not	put	all	of	your	code	unnecessarily	in	your
controller.

4.	 Right-click	the	RandomNumber	folder	and	then	select	New
Group,	as	shown	in	Figure	10-8.

Figure	10-8.	Creating	new	groups

5.	 Create	a	Models	group,	a	Views	group,	and	a	Controllers	group.

6.	 Drag	the	ViewController.swift	file	to	the	Controllers
group.	Drag	the	Main.storyboard	and
LaunchScreen.storyboard	files	to	the	Views	group.	Having
these	groups	reminds	you	to	follow	the	MVC	design	pattern	as	you
develop	your	code	and	prevents	you	from	placing	all	of	your	code
in	the	controllers,	as	shown	in	Figure	10-9.

Figure	10-9.	MVC	groups	with	controller	and	storyboard	files	organized

Developers	have	found	it	helpful	to	keep	their	storyboard	and	XIB
files	with	their	controllers	as	their	projects	grow.	It	is	not
uncommon	to	have	dozens	of	controllers	and	XIB	files	in	your
project.	Keeping	them	together	helps	keep	everything	organized.
Using	storyboards	resolves	many	of	the	issues	of	having	lots	of
XIBs.

7.	 Click	the	Main.storyboard	file	to	open	Interface	Builder.

Using	Interface	Builder
The	most	common	way	to	launch	Interface	Builder	and	begin	working	on	your	view	is	to
click	the	storyboard	or	XIB	file	related	to	the	view,	as	shown	in	Figure	10-10.

Figure	10-10.	Interface	Builder	in	the	workspace	window

When	Interface	Builder	opens,	you	can	see	your	scenes	displayed	on	the	canvas.	You	are
now	able	to	design	your	user	interface.	First	you	need	to	understand	some	of	the
subwindows	within	Interface	Builder.

The	Document	Outline
The	storyboard	shows	all	the	objects	that	your	view	contains.	The	following	are	some
examples	of	these	objects:

Buttons

Labels

Text	fields

Web	views

Map	views

iAd	banner	views

Picker	views

Table	views

Note		You	can	expand	the	width	of	the	Document	Outline	to	see	a	detailed	list
of	all	your	objects,	as	shown	in	Figure	10-11.	To	get	more	real	estate	for	the
canvas,	you	can	shrink	or	hide	your	file	navigator.

Figure	10-11.	The	Document	Outline:’s	width	is	expanded	to	show	a	detailed	view	of	all	the	objects	in	your	storyboard

The	Library
The	Library	is	where	you	can	exploit	your	creativity.	It’s	a	smorgasbord	of	objects	that
you	can	drag	and	drop	into	the	View.

The	Library	pane	can	grow	and	shrink	by	moving	the	window	splitter
in	the	middle	of	the	view,	as	shown	in	Figure	10-12.

Figure	10-12.	Expand	the	Library	pane	to	see	more	controls	and	slide	the	splitter	to	resize	the	window	with	the	mouse

For	Cocoa	Touch	objects,	the	Library	contains	the	following	(see	Figure	10-13):

Controls

Data	views

Gesture	recognizers

Objects	and	controllers

Window	and	bars

Figure	10-13.	Various	Cocoa	Touch	objects	in	the	Library	pane

Inspector	Pane	and	Selector	Bar
The	Inspector	pane	enables	you	to	change	the	properties	of	the	controls	to	make	your
objects	follow	your	command.	The	Inspector	pane	has	six	tabs	across	the	top,	as	shown	in
Figure	10-14.

File	inspector

Quick	Help	inspector

Identity	inspector

Attributes	inspector

Size	inspector

Connections	inspector

Figure	10-14.	The	Identity	Inspector	and	Selector	Bar

Creating	the	View
The	random	number	generator	will	have	three	objects	in	the	view:	one	label	and	two
buttons.	One	button	will	generate	the	seed,	another	button	will	generate	the	random
number,	and	the	label	shows	the	random	number	generated	by	the	app.

1.	 Drag	a	label	from	the	Library	Pane	Controls	section	to	the	View
window.

2.	 Drag	two	buttons	from	the	Library	window	to	the	View	window.

3.	 Click	the	top	button	and	change	its	title	to	Seed	Random	Number
Generator.

4.	 Click	the	bottom	button	and	change	its	title	to	Generate	Random
Number,	as	shown	in	Figure	10-15.

Figure	10-15.	Placing	objects	in	the	view

Now	you	get	to	use	a	great	feature	of	Xcode.	You	can	quickly	and
easily	connect	your	outlets	and	actions	to	your	code.	Xcode	actually
goes	one	step	further;	it	will	create	some	of	the	code	for	you.	All
you	have	to	do	is	drag	and	drop.

5.	 Click	the	Assistant	Editor	icon	at	the	top	right	of	the	screen.	This
will	display	the	associated	.swift	file	for	the	view	selected	in	the
storyboard	or	the	XIB	file,	as	shown	in	Figure	10-16.

Figure	10-16.	Using	the	Assistant	editor	to	display	the	.swift	file

Note		If	the	correct	associated	.swift	file	doesn’t	appear	when	you	click	the
Assistant	Editor	icon,	make	sure	you	selected	and	highlighted	the	view.

Using	Outlets
Now	you	can	connect	your	label	to	your	code	by	creating	an	outlet.

1.	 Control-drag	from	the	label	in	the	view	to	the	top	of	your	class	file,
as	shown	in	Figure	10-17.

Figure	10-17.	Control-dragging	to	create	the	code	for	the	randomNumber	outlet

A	pop-up	window	will	appear.	This	enables	you	to	name	and
specify	the	type	of	outlet.

2.	 Complete	the	pop-up	as	shown	in	Figure	10-18	and	click	the

Connect	button.

Figure	10-18.	Pop-up	for	randomNumber	outlet

The	code	is	created	for	the	outlet,	and	the	outlet	is	now	connected	to	the	Label	object	in
your	Main.storyboard	file.	The	shaded	circle	next	to	line	15	indicates	the	outlet	is
connected	to	an	object	in	the	Main.storyboard	file,	as	shown	in	Figure	10-19.

Figure	10-19.	Outlet	property	code	generated	and	connected	to	the	Label	object

There	is	a	declaration	that	may	be	new	to	you	called	IBOutlet,	commonly	referred	to
simply	as	an	outlet.	Outlets	signal	to	your	controller	that	this	property	is	connected	to	an
object	in	Interface	Builder.	IBOutlet	will	enable	Interface	Builder	to	see	the	outlet	and

enable	you	to	connect	the	property	to	the	object	in	Interface	Builder.

Using	the	analogy	of	an	electrical	wall	outlet,	these	property	outlets	are	connected	to
objects.	Using	Interface	Builder,	you	can	connect	these	properties	to	the	appropriate
object.	When	you	change	the	properties	of	a	connected	outlet,	the	object	that	it	is
connected	to	will	automatically	change.

Using	Actions
User	interface	object	events,	also	known	as	actions,	trigger	methods.

Now	you	need	to	connect	the	object	actions	to	the	buttons.

1.	 Control-drag	from	the	Seed	Random	Number	Generator	button	to
the	bottom	of	your	class.	Complete	the	pop-up	as	indicated	in
Figure	10-20	and	click	the	Connect	button.	Make	sure	you	change
the	connection	to	an	action	and	not	an	outlet.

Figure	10-20.	Completing	the	pop-up	for	the	Seed	method

2.	 Repeat	the	previous	steps	for	the	Generate	Random	Number	button
(see	Figure	10-21).

Figure	10-21.	Generate	and	Seed	actions	connected	to	their	Button	objects

The	Class
All	that	is	left	is	to	complete	the	code	for	your	outlet	and	actions	in	the	.swift	file	for
the	controller.

Open	the	ViewController.swift	file	and	complete	the	seed	and	generate
methods,	as	shown	in	Figure	10-22.

Figure	10-22.	The	seed	and	generate	methods	completed

There	is	some	code	you	should	examine	a	bit	further.	The	following	line	seeds	the	random
generator	so	that	you	get	a	random	number	each	time	you	run	the	app.	There	are	easier
ways	of	to	do	this,	but	for	the	purposes	of	this	section,	you	just	want	to	see	how	actions
and	outlets	work.

srandom(CUnsignedInt(time(nil)))

In	the	following	code,	the	property	text	sets	the	UILabel	value	in	your	view.	The
connection	you	established	in	Interface	Builder	from	your	outlet	to	the	Label	object	does
all	the	work	for	you.

randomNumber.text

There	are	just	two	more	things	you	need	to	do	now.	Select	Main.storyboard	and	then
click	Show	the	File	Inspector	in	the	Inspector	Pane	toolbar.	Deselect	Use	Auto	Layout.	A
message	box	will	appear;	click	Disable	Size	Classes.	This	will	enable	you	to	easily	view
your	controls	on	your	iPhone	simulator,	as	shown	in	Figure	10-23.

Figure	10-23.	Disabling	Auto	Layout

Lastly,	center	your	objects	in	the	view	and	expand	your	Label	object.	Also,	select	the
center	alignment	property	for	the	label.	This	will	center	your	text	in	the	Label	object,	as
shown	in	Figure	10-24.

Figure	10-24.	Centering	your	objects

That’s	it!

To	run	your	iPhone	app	in	the	iPhone	simulator,	click	the	Play	button.	Your	app	should
launch	in	the	simulator,	as	shown	in	Figure	10-25.

Figure	10-25.	The	completed	random	number	generator	app	running	in	the	iOS	simulator

To	seed	the	random	function,	tap	the	Seed	Random	Number	Generator	button.	To	generate
the	random	number,	tap	the	Generate	Random	Number	button.

Summary
Great	job!	Interface	Builder	saves	you	a	lot	of	time	when	creating	user	interfaces.	You
have	a	powerful	set	of	objects	to	use	in	your	application	and	are	responsible	for	a	minimal
amount	of	coding.

Interface	Builder	handles	many	of	the	details	you	would	normally	have	to	deal	with.

You	should	be	familiar	with	the	following	terms:

Storyboard	and	XIB	files

Model-View-Controller

Architectural	patterns

Human	Interface	Guidelines	(HIG)

Outlets

Actions

Exercises
Extend	the	random	number	generator	app	to	show	a	date	and	time	in
a	Label	object	when	the	app	starts.

After	showing	a	date	and	time	label,	add	a	button	to	update	the	data
and	time	label	with	the	new	time.

Chapter				11

Storing	Information
As	a	developer,	there	will	be	many	different	situations	when	you	will	need	to	store	data.
Users	will	expect	your	application	(app)	to	remember	preferences	and	other	information
each	time	they	launch	it.	Previous	chapters	discussed	the	BookStore	app.	With	this	app,
users	will	expect	your	application	to	remember	all	of	the	books	in	the	bookstore.	Your
application	will	need	a	way	to	store	this	information,	retrieve	it,	and	possibly	search	and
sort	this	data.	Working	with	data	can	sometimes	be	difficult.	Fortunately,	Apple	has
provided	methods	and	frameworks	to	make	this	process	easier.

This	chapter	discusses	two	different	formats	in	which	data	will	need	to	be	stored.	It
discusses	how	to	save	a	preference	file	for	an	iOS	device	and	then	how	to	use	a	SQLite
database	in	your	application	to	store	and	retrieve	data.

Storage	Considerations
There	are	some	major	storage	differences	between	the	Mac	and	the	iPhone,	and	these
differences	will	affect	how	you	work	with	data.	Let’s	start	by	discussing	the	Mac	and	how
you	will	need	to	develop	for	it.

On	the	Mac,	by	default,	applications	are	stored	in	the	Applications	folder.	Each	user
has	their	own	home	folder	where	preferences	and	information	related	to	that	user	are
stored.	Not	all	of	the	users	will	have	access	to	write	to	the	Applications	folder	or	to
the	application	bundle	itself.

On	the	iPhone	and	iPad,	developers	do	not	need	to	deal	with	different	users.	Every	person
who	uses	the	iPhone	has	the	same	permissions	and	the	same	folders.	There	are	some	other
factors	to	consider	with	the	iPhone,	though.	Every	application	on	an	iOS	device	is	in	its
own	sandbox.	This	means	that	files	written	by	an	application	can	be	seen	and	used	only	by
that	individual	application.	This	makes	for	a	more	secure	environment	for	the	iPhone,	but
it	also	presents	some	changes	in	the	way	you	work	with	data	storage.

Preferences
There	are	some	things	to	consider	when	deciding	where	to	store	certain	kinds	of
information.	The	easiest	way	to	store	information	is	within	the	preferences	file,	but	this
method	has	some	downsides.

All	of	the	data	is	both	read	and	written	at	the	same	time.	If	you	are
going	to	be	writing	often	or	writing	and	reading	large	amounts	of
data,	this	could	take	time	and	slow	down	your	application.	As	a
general	rule,	your	preferences	file	should	never	be	larger	than

100KB.	If	your	preferences	file	starts	to	become	larger	than	100KB,
consider	using	Core	Data	as	a	way	to	store	your	information.

The	preferences	file	does	not	provide	many	options	when	it	comes	to
searching	and	ordering	information.

The	preferences	file	is	really	nothing	more	than	a	standardized	XML	file	with
accompanying	classes	and	methods	to	store	application-specific	information.	A	preference
would	be,	for	example,	the	sorting	column	and	direction	(ascending/descending)	of	a	list.
Anything	that	is	generally	customizable	within	an	app	should	be	stored	in	a	preferences
file.

Caution		Sensitive	data	should	not	be	stored	in	the	preference	file	or	in	a
database	without	additional	encryption.	Luckily,	Apple	provides	a	way	to	store
sensitive	information.	It	is	called	the	keychain.	Securing	data	in	the	keychain	is
beyond	the	scope	of	this	book.

Writing	Preferences
Apple	has	provided	developers	with	the	NSUserDefaults	class;	this	class	makes	it
easy	to	read	and	write	preferences	for	iOS	and	Mac	OS	X.	The	great	thing	is	that,	in	this
case,	you	can	use	the	same	code	for	iOS	and	Mac	OS	X.	The	only	difference	between	the
two	implementations	is	the	location	of	the	preferences	file.

Note		For	Mac	OS	X,	the	preferences	file	is	named
com.yourcompany.applicationname.plist	and	is	located	in	the
/Users/username/Library/Preferences	folder.	On	iOS,	the
preferences	file	is	located	in	your	application	bundle	in	the
/Library/Preferences	folder.

All	you	need	to	do	to	write	preferences	is	to	create	an	NSUserDefaults	object.	This	is
done	with	the	following	line:

var	prefs:	NSUserDefaults	
=	NSUserDefaults.standardUserDefaults()

This	instantiates	the	prefs	object	so	you	can	use	it	to	set	preference	values.	Next,	you
need	to	set	the	preference	keys	for	the	values	that	you	want	to	save.	The	BookStore	app
example	will	be	used	to	demonstrate	specific	instructions	throughout	this	chapter.	When
running	a	bookstore,	you	might	want	to	save	a	username	or	password	in	the	preferences.
You	also	might	want	to	save	things	such	as	a	default	book	category	or	recent	searches.	The
preferences	file	is	a	great	place	to	store	this	type	of	information	because	this	is	the	kind	of
information	that	needs	to	be	read	only	when	the	application	is	launched.

Also,	on	iOS,	it	is	often	necessary	to	save	your	current	state.	If	a	person	is	using	your
application	and	then	gets	a	phone	call,	you	want	to	be	able	to	bring	them	back	to	the	exact
place	they	were	in	your	application	when	they	are	done	with	their	phone	call.	This	is	less

necessary	now	with	the	implementation	of	multitasking,	but	your	users	will	still	appreciate
it	if	your	application	remembers	what	they	were	doing	the	next	time	they	launch	it.

Once	you	have	instantiated	the	object,	you	can	just	call	setObjectforKey	to	set	an
object.	If	you	wanted	to	save	the	username	of	sherlock.holmes,	you	would	call	the
following	line	of	code:

prefs.setObject("sherlock.holmes",	forKey:	"username")

You	can	use	setInteger,	setDouble,	setBool,	setFloat,	and	setURL	instead
of	setObject,	depending	on	the	type	of	information	you	are	storing	in	the	preferences
file.	Let’s	say	you	store	the	number	of	books	a	user	wants	to	see	in	the	list.	Here	is	an
example	of	using	setInteger	to	store	this	preference:

	prefs.setInteger(10,	forKey:	"booksInList")

After	a	certain	period	of	time,	your	app	will	automatically	write	changes	to	the	preferences
file.	You	can	force	your	app	to	save	the	preferences	by	calling	the	synchronize
function,	but	this	should	only	be	used	if	you	cannot	wait	for	the	next	synchronization
interval	such	as	if	you	app	is	going	to	exit.	To	call	the	synchronize	function,	you
would	write	the	following	line:

prefs.synchronize()

With	just	three	lines	of	code,	you	are	able	to	create	a	preference	object,	set	two	preference
values,	and	write	the	preferences	file.	It	is	an	easy	and	clean	process.	Here	is	all	of	the
code:

var	prefs:	NSUserDefaults	
=	NSUserDefaults.standardUserDefaults()
prefs.setObject("sherlock.holmes",	forKey:	"username")
prefs.setInteger(10,	forKey:	"booksInList")

Reading	Preferences
Reading	preferences	is	similar	to	writing	preferences.	Just	like	with	writing,	the	first	step
is	to	obtain	the	NSUserDefaults	object.	This	is	done	in	the	same	way	as	it	was	done	in
the	writing	process:

var	prefs:	NSUserDefaults	
=	NSUserDefaults.standardUserDefaults()

Now	that	you	have	the	object,	you	are	able	to	access	the	preference	values	that	are	set.	For
writing,	you	use	the	setObject	syntax;	for	reading,	you	use	the	stringForKey
method.	You	use	the	stringForKey	method	because	the	value	you	put	in	the
preference	was	a	String.	In	the	writing	example,	you	set	preferences	for	the	username
and	for	the	number	of	books	in	the	list	to	display.	You	can	read	those	preferences	by	using
the	following	simple	lines	of	code:

var	username	=	prefs.stringForKey("username")
var	booksInList	=	prefs.integerForKey("booksInList")

Pay	close	attention	to	what	is	happening	in	each	of	these	lines.	You	start	by	declaring	the
variable	username,	which	is	a	String.	This	variable	will	be	used	to	store	the
preference	value	of	the	username	you	stored	in	the	preferences.	Then,	you	just	assign	it	to
the	value	of	the	preference	username.	You	will	notice	that	in	the	read	example	you	do
not	use	the	synchronize	function.	This	is	because	you	have	not	changed	the	values	of
the	preferences;	therefore,	you	do	not	need	to	make	sure	they	are	written	to	a	disk.

Databases
You	have	learned	how	to	store	some	small	pieces	of	information	and	retrieve	them	at	a
later	point.	What	if	you	have	more	information	that	needs	to	be	stored?	What	if	you	need
to	conduct	a	search	within	this	information	or	put	it	in	some	sort	of	order?	These	kinds	of
situations	call	for	a	database.

A	database	is	a	tool	for	storing	a	significant	amount	of	information	in	a	way	that	it	can	be
easily	searched	or	retrieved.	When	using	a	database,	usually	small	chunks	of	the	data	are
retrieved	at	a	time	rather	than	the	entire	file.	Many	applications	you	use	in	your	daily	life
are	based	on	databases	of	some	sort.	Your	online	banking	application	retrieves	your
account	activity	from	a	database.	Your	supermarket	uses	a	database	to	retrieve	prices	for
different	items.	A	simple	example	of	a	database	is	a	spreadsheet.	You	may	have	many
columns	and	many	rows	in	your	spreadsheet.	The	columns	in	your	spreadsheet	represent
different	types	of	information	you	want	to	store.	In	a	database,	these	are	considered
attributes.	The	rows	in	your	spreadsheet	would	be	considered	different	records	in	your
database.

Storing	Information	in	a	Database
Databases	are	usually	an	intimidating	subject	for	a	developer;	most	developers	associate
databases	with	enterprise	database	servers	such	as	Microsoft	SQL	Server	or	Oracle.	These
applications	can	take	time	to	set	up	and	require	constant	management.	For	most
developers,	a	database	system	like	Oracle	would	be	too	much	to	handle.	Luckily,	Apple
has	included	a	small	database	engine	called	SQLite	in	iOS	and	OS	X.	This	allows	you	to
gain	many	of	the	features	of	complex	database	servers	without	the	overhead.

SQLite	will	provide	you	with	a	lot	of	flexibility	in	storing	information	for	your
application.	It	stores	the	entire	database	in	a	single	file.	It	is	fast,	reliable,	and	easy	to
implement	in	your	application.	The	best	thing	about	the	SQLite	database	is	that	there	is	no
need	to	install	any	software;	Apple	has	taken	care	of	that	for	you.

However,	SQLite	does	have	some	limitations	that,	as	a	developer,	you	should	be	aware	of.

SQLite	was	designed	to	be	used	as	a	single-user	database.	You	will
not	want	to	use	SQLite	in	an	environment	where	more	than	one

person	will	be	accessing	the	same	database.	This	could	lead	to	data
loss	or	corruption.

In	the	business	world,	databases	can	grow	to	become	very	large.	It	is
not	surprising	for	a	database	manager	to	handle	databases	as	large	as
half	a	terabyte,	and	in	some	cases	databases	can	become	much	larger
than	that.	SQLite	should	be	able	to	handle	smaller	databases	without
any	issues,	but	you	will	begin	to	see	performance	issues	if	your
database	starts	to	get	too	large.

SQLite	lacks	some	of	the	backup	and	data	restore	features	of	the
enterprise	database	solutions.

For	the	purposes	of	this	chapter,	you	will	focus	on	using	SQLite	as	your	database	engine.
If	any	of	the	mentioned	limitations	are	present	in	the	application	you	are	developing,	you
may	need	to	look	into	an	enterprise	database	solution,	which	is	beyond	the	scope	of	this
book.

Note		SQLite	(pronounced	“sequel-lite”)	gets	its	name	from	Structured	Query
Language	(SQL,	pronounced	“sequel”).	SQL	is	the	language	used	to	enter,
search,	and	retrieve	data	from	a	database.

Apple	has	worked	hard	to	iron	out	a	lot	of	the	challenges	of	database	development.	As	a
developer,	you	will	not	need	to	become	familiar	with	SQL	because	Apple	has	taken	care
of	the	direct	database	interaction	for	you	through	a	framework	called	Core	Data	that
makes	interacting	with	the	database	much	easier.	Core	Data	has	been	adapted	by	Apple
from	a	NeXT	product	called	Enterprise	Object	Framework,	and	working	with	Core	Data	is
a	lot	easier	than	interfacing	directly	with	the	SQLite	database.	Directly	accessing	a
database	via	SQL	is	beyond	the	scope	of	this	book.

Getting	Started	with	Core	Data
Let’s	start	by	creating	a	new	Core	Data	project.

1.	 Open	Xcode	and	select	File	 	New	Project.	To	create	an	iOS	Core
Data	project,	select	Application	from	the	menu	on	the	left.	It	is
located	underneath	the	iOS	header.	Then	select	Single	View
Application,	as	shown	in	Figure	11-1.

Figure	11-1.	Creating	a	new	project

2.	 Click	the	Next	button	when	you’re	done.	The	next	screen	will	allow
you	to	enter	the	name	you	want	to	use.	For	the	purposes	of	this
chapter,	you	will	use	the	name	BookStore.

3.	 Near	the	bottom,	you	will	see	the	checkbox	called	Use	Core	Data.
Make	sure	this	is	checked	and	then	click	Next,	as	shown	in	Figure
11-2.

Figure	11-2.	Using	Core	Data

Note		Core	Data	can	be	added	to	any	project	at	any	point.
Checking	that	box	when	creating	a	project	will	add	the
Core	Data	frameworks	and	a	default	data	model	to	your
application.

4.	 Select	a	location	to	save	the	project	and	click	Create.

Once	you	are	done	with	that,	your	new	project	will	open.	It	will	look	similar	to	a	standard
application,	except	now	you	will	have	a	BookStore.xcdatamodeld	file.	This	file	is
called	a	data	model	and	will	contain	the	information	about	the	data	that	you	will	be	storing
in	Core	Data.

The	Model
In	your	BookStore	folder	on	the	right,	you	will	see	a	file	called
BookStoreCoreData.xcdatamodeld.	This	file	will	contain	information	about	the
data	you	want	stored	in	the	database.	Click	the	model	file	to	open	it.	You	will	see	a
window	similar	to	the	one	shown	in	Figure	11-3.

Figure	11-3.	The	blank	model

The	window	is	divided	into	four	sections.	On	the	left	you	have	your	entities.	In	more
common	terms,	these	are	the	objects	or	items	that	you	want	to	store	in	the	database.

The	top-right	window	contains	the	entity’s	attributes.	Attributes	are	pieces	of	information
about	the	entities.	For	example,	a	book	would	be	an	entity,	and	the	title	of	the	book	would
be	an	attribute	of	that	entity.

Note		In	database	terms,	entities	are	your	tables,	and	the	attributes	of	the	entities
are	called	columns.	The	objects	created	from	those	entities	are	referred	to	as
rows.

The	middle	window	on	the	right	will	show	you	all	the	relationships	of	an	entity.	A
relationship	connects	one	entity	to	another.	For	example,	you	will	create	a	Book	entity
and	an	Author	entity.	You	will	then	relate	them	so	that	every	book	can	have	an	author.
The	bottom-right	portion	of	the	screen	will	deal	with	fetched	properties.	Fetched
properties	are	beyond	the	scope	of	this	book,	but	they	allow	you	to	create	filters	for	your
data.

Let’s	create	an	entity.

1.	 Click	the	plus	sign	in	the	bottom-left	corner	of	the	window,	or	select
Editor	 	Add	Entity	from	the	menu,	as	shown	in	Figure	11-4.

Figure	11-4.	Adding	a	new	entity

2.	 On	the	left	side,	name	the	entity	Book.

Note		You	must	capitalize	your	entities’	names.

3.	 Now	let’s	add	some	attributes.	Attributes	would	be	considered	the
details	of	a	book,	so	you	will	store	the	title,	author,	price,	and	year
the	book	was	published.	Obviously,	in	your	own	applications,	you
may	want	to	store	more	information,	such	as	the	publisher,	page
count,	and	genre,	but	you	want	to	start	simple.	Click	the	plus	sign	at
the	bottom	right	of	the	window,	or	select	Editor	 	Add	Attribute,
as	shown	in	Figure	11-5.	If	you	do	not	see	the	option	to	add	an
attribute,	make	sure	you	have	selected	the	Book	entity	on	the	left
side.

Figure	11-5.	Adding	a	new	attribute

4.	 You	will	be	given	only	two	options	for	your	attribute,	the	name	and
the	data	type.	Let’s	call	this	attribute	title.	Unlike	entities,	attribute
names	must	be	lowercase.

5.	 Now,	you	will	need	to	select	a	data	type.	Selecting	the	correct	data
type	is	important.	It	will	affect	how	your	data	is	stored	and	retrieved
from	the	database.	The	list	has	12	items	in	it	and	can	be	daunting.
We	will	discuss	the	most	common	options	and,	as	you	become	more
familiar	with	Core	Data,	you	can	experiment	with	the	other	options.
The	most	common	options	are	String,	Integer	32,	Decimal,	and
Date.	For	the	title	of	the	book,	select	String.

String:	This	is	the	type	of	attribute	used	to	store	text.	This	should	be
used	to	store	any	kind	of	information	that	is	not	a	number	or	a	date.
In	this	example,	the	book	title	and	author	will	be	strings.

Integer	32:	There	are	three	different	integer	values	possible	for	an
attribute.	Each	of	the	integer	types	differ	only	in	the	minimum	and
maximum	values	possible.	Integer	32	should	cover	most	of	your
needs	when	storing	an	integer.	An	integer	is	a	number	without	a
decimal.	If	you	try	to	save	a	decimal	in	an	integer	attribute,	the
decimal	portion	will	be	truncated.	In	this	example,	the	year
published	will	be	an	integer.

Decimal:	A	decimal	is	a	type	of	attribute	that	can	store	numbers
with	decimals.	A	decimal	is	similar	to	a	double	attribute,	but	they
differ	in	their	minimum	and	maximum	values	and	precision.	A
decimal	should	be	able	to	handle	any	currency	values.	In	this
example,	you	will	use	a	decimal	to	store	the	price	of	the	book.

Date:	A	date	attribute	is	exactly	what	it	sounds	like.	It	allows	you	to
store	a	date	and	time	and	then	performs	searches	and	lookups	based
on	these	values.	You	will	not	use	this	type	in	this	example.

6.	 Let’s	create	the	rest	of	the	attributes	for	the	book.	Now,	add	price.
It	should	be	a	decimal.	Add	the	year	the	book	was	published.	For
two-word	attributes,	it	is	standard	to	make	the	first	word	lowercase
and	the	second	word	start	with	a	capital	letter.	For	example,	an	ideal
name	for	the	attribute	for	the	year	the	book	was	published	would	be
yearPublished.	Select	Integer	32	as	the	attribute	type.	Once
you	have	added	all	of	your	attributes,	your	screen	should	look	like
Figure	11-6.

Note		Attribute	names	cannot	contain	spaces.

Figure	11-6.	The	finished	Book	entity

Note		If	you	are	used	to	working	with	databases,	you	will	notice	that	you	did	not
add	a	primary	key.	A	primary	key	is	a	field	(usually	a	number)	that	is	used	to
uniquely	identify	each	record	in	a	database.	In	Core	Data	databases,	there	is	no
need	to	create	primary	keys.	The	Framework	will	manage	all	of	that	for	you.

Now	that	you	have	finished	the	Book	entity,	let’s	add	an	Author	entity.

1.	 Add	a	new	entity	and	call	it	Author.

2.	 To	this	entity,	add	lastName	and	firstName,	both	of	which	are
considered	strings.

Once	this	is	done,	you	should	have	two	entities	in	your	relationship	window.	Now	you
need	to	add	the	relationships.

1.	 Click	the	Book	entity,	and	then	click	and	hold	on	the	plus	sign	that
is	located	on	the	bottom	right	of	the	screen.	Select	Add
Relationship,	as	shown	in	Figure	11-7.	(You	can	also	click	the	plus

under	the	Relationships	section	of	the	Core	Data	model.

Figure	11-7.	Adding	a	new	relationship

2.	 You	will	be	given	the	opportunity	to	name	your	relationship.	You
usually	give	a	relationship	the	same	name	as	the	entity	to	which	it
derived	from.	Type	in	author	as	the	name	and	select	Author	from
the	Destination	drop-down	menu.

3.	 You	have	created	one	half	of	your	relationship.	To	create	the	other
half,	click	the	Author	entity.	Click	the	plus	sign	located	at	the
bottom	right	of	the	screen	and	select	Add	Relationship.	You	will	use
the	entity	name	that	you	are	connecting	to	as	the	name	of	this
relationship,	so	you	will	call	it	books.	(You	are	adding	an	s	to	the
relationship	name	because	an	author	can	have	many	books.)	Under
Destination,	select	Book,	and	under	Inverse,	select	the	relationship
you	made	in	the	previous	step.	In	the	Utilities	window	on	the	right
side	of	the	screen,	select	the	Data	Model	Inspector.	Select	To	Many
for	the	type	of	the	relationship.	Your	model	should	now	look	like
Figure	11-8.

Figure	11-8.	The	final	relationship

Note		Sometimes	in	Xcode,	when	working	with	models,	it	is	necessary	to	press
the	Tab	key	for	the	names	of	entities,	attributes,	and	relationships	to	update.
This	little	quirk	can	be	traced	all	the	way	back	to	WebObjects	tools.

Now	you	need	to	tell	your	code	about	your	new	entity.	To	do	this,	hold	down	Shift	and
select	the	Book	entity	and	the	Author	entity	and	then	select	Editor	 	Create
NSManagedObject	Subclass	from	the	Application	menu.	Your	screen	should	look	like
Figure	11-9.

Figure	11-9.	Adding	the	managed	objects	to	your	project

This	screen	allows	you	to	select	the	data	model	you	would	like	to	create	managed	objects
for.	In	this	case,	you	have	only	a	single	data	model.	In	some	complicated	applications,	you
may	have	more	than	one.	Managed	objects	represent	instances	of	an	entity	from	your	data
model.	Select	the	BookStore	data	model	and	click	Next.

You	will	now	be	presented	with	a	screen	to	select	the	entities	to	create	managed	objects,	as
seen	in	Figure	11-10.	Select	both	and	click	Next.

Figure	11-10.	Select	the	entities	to	create	managed	objects

Select	the	storage	location	and	add	it	to	your	project,	as	seen	in	Figure	11-11.	You	need	to
select	the	Options	button	on	the	bottom	to	see	more	information.	Make	sure	your	language
is	set	to	Swift.	By	default,	it	is	still	Objective-C.	You	should	not	need	to	change	any	other
defaults	on	this	page.	Then	click	Create.	You	will	notice	that	four	files	have	been	added	to
your	project.	Book+CoreDataProperties.swift	and
Author+CoreDataProperties.swift	contain	the	information	about	the	book	and
author	entities	you	just	created.	Book.swift	and	Author.swift	will	be	used	for
logic	relating	to	your	new	entities.	These	files	will	need	to	be	used	to	access	the	entities
and	attributes	you	added	to	your	data	model.	These	files	are	fairly	simple	because	Core
Data	will	do	most	of	the	work	with	them.	You	should	also	notice	that	if	you	go	back	to
your	model	and	click	Book,	it	will	have	a	new	class	in	the	Data	Model	Inspector.	Instead
of	an	NSManagedObject,	it	will	have	a	Book	class.

Figure	11-11.	Select	the	save	location	for	your	new	managed	objects

Let’s	look	at	some	of	the	contents	of	Book+CoreDataProperties.swift:

import	Foundation
import	CoreData

extension	Book		{

				@NSManaged	var	title:	String?
				@NSManaged	var	price:	NSDecimalNumber?
				@NSManaged	var	yearPublished:	NSNumber?
				@NSManaged	var	author:	Author?

}

You	will	see	that	the	file	starts	by	including	the	Core	Data	framework.	This	allows	Core
Data	to	manage	your	information.	This	file	contains	an	extension	to	the	Book	class.	An
extension	allows	you	to	add	new	properties	and	functionality	to	an	existing	class.	By
creating	the	Book	class	and	the	Book+CoreDataProperties.swift	file,	Xcode
allows	the	developer	to	separate	the	attributes	from	the	basic	logic.	The	superclass	for	the

new	Book	object	is	NSManagedObject.	NSManagedObject	is	an	object	that
handles	all	of	the	Core	Data	database	interaction.	It	provides	the	methods	and	properties
you	will	be	using	in	this	example.	Later	in	the	file,	you	will	see	the	three	attributes	and	the
one	relationship	you	created.

Managed	Object	Context
You	have	created	a	managed	object	class	called	Book.	The	nice	thing	with	Xcode	is	that	it
will	generate	the	necessary	code	to	manage	these	new	data	objects.	In	Core	Data,	every
managed	object	should	exist	within	a	managed	object	context.	The	context	is	responsible
for	tracking	changes	to	objects,	carrying	out	undo	operations,	and	writing	the	data	to	the
database.	This	is	helpful	because	you	can	now	save	a	bunch	of	changes	at	once	rather	than
saving	each	individual	change.	This	speeds	up	the	process	of	saving	the	records.	As	a
developer,	you	do	not	need	to	track	when	an	object	has	been	changed.	The	managed	object
context	will	handle	all	of	that	for	you.

Setting	Up	the	Interface
The	following	steps	will	assist	you	in	setting	up	your	interface:

1.	 In	the	BookStore	folder	in	your	project,	you	should	have	a
Main.storyboard	file.	Click	this	file	and	Xcode	will	open	it	in
the	editing	window,	as	shown	in	Figure	11-12.

Figure	11-12.	Creating	the	interface

2.	 There	should	be	a	blank	window.	To	add	some	functionality	to	your

window,	you	need	to	add	some	objects	from	the	Object	Library.
Type	table	into	the	search	field	on	the	bottom	right	of	the	screen.
This	should	narrow	the	objects,	and	you	should	see	Table	View
Controller	and	Table	view.	Drag	the	Table	view	to	the	view,	as
shown	in	Figure	11-13.

Figure	11-13.	Adding	the	Table	view

3.	 You	now	have	a	Table	view.	You	will	need	to	stretch	the	Table	view
to	fill	your	view.	To	create	cells	in	your	Table	view,	you	need	to	add
a	UITableViewCell.	Search	for	cell	in	your	Object	Library,	and
drag	a	Table	view	cell	to	your	table.	You	now	have	a	table	and	a	cell
on	your	view,	as	shown	in	Figure	11-14.

Figure	11-14.	Adding	the	Table	view	cell

4.	 Select	the	cell,	and	in	the	Attributes	Inspector	on	the	right	side,	set
Style	to	Basic.	Also,	set	the	identifier	to	Cell.	The	identifier	is	used
for	when	your	Table	view	contains	multiple	styles	of	cells.	You	will
need	to	differentiate	them	with	unique	identifiers.	For	most	of	your
projects,	you	can	set	this	to	Cell	and	not	worry	about	it,	as	shown	in
Figure	11-15.

Figure	11-15.	Changing	the	style	of	the	cell

5.	 When	using	a	Table	view,	it	is	usually	a	good	idea	to	put	it	in	a
Navigation	Controller.	You	will	be	using	the	Navigation	Controller
to	give	you	space	to	put	an	Add	button	on	your	Table	view.	To	add	a
Navigation	Controller,	select	your	View	Controller	in	the	Scene
box,	which	is	the	window	to	the	left	of	your	storyboard	that	shows
your	View	Controllers	(your	View	Controller	will	have	a	yellow
icon	next	to	it).	From	the	Application	menu,	select	Editor	
Embed	In	 	Navigation	Controller,	as	shown	in	Figure	11-16.

Figure	11-16.	Embedding	a	Navigation	Controller

6.	 You	will	now	have	a	navigation	bar	at	the	top	of	your	view.	You
will	now	add	a	button	to	the	bar.	This	type	of	button	is	called	a
UIBarButtonItem.	Search	for	bar	button	in	your	Object	Library
and	drag	a	Bar	Button	item	to	the	top	right	of	your	view	on	the
navigation	bar,	as	shown	in	Figure	11-17.

Figure	11-17.	Adding	a	Bar	Button	item	to	the	navigation	bar

7.	 Select	the	Bar	Button	item	and	change	the	System	item	from

Custom	to	Add.	This	will	change	the	look	of	your	Bar	Button	item
from	the	word	Item	to	a	plus	icon,	as	shown	in	Figure	11-18.

Figure	11-18.	Changing	the	Bar	Button	item

8.	 Now	you	have	created	the	interface,	you	need	to	hook	it	up	to	your
code.	Hold	down	the	Control	key	and	drag	your	Table	view	to	the
View	Controller	in	the	Document	Outline,	as	shown	in	Figure	11-
19.

Figure	11-19.	Connecting	the	Table	view

9.	 A	pop-up	will	appear	allowing	you	to	select	either	the	data	source

or	the	delegate,	as	shown	in	Figure	11-20.	You	will	need	to	assign
both	to	the	View	Controller.	The	order	in	which	you	select	the	items
does	not	matter,	but	you	will	have	to	Control-drag	the	Table	view
twice.

Figure	11-20.	Hooking	up	the	Table	view

10.	 Now	your	Table	view	should	be	ready	to	go.	You	need	to	hook	up
your	button	to	make	it	do	something.	In	the	top	right	of	your	Xcode
window,	click	the	Assistant	Editor	button	(it	looks	like	two	circles).
This	will	open	your	code	on	the	right	side	and	your	storyboard	on
the	left	side.	Now	Control-drag	your	Add	button	to	the	View
Controller	code	on	the	right,	as	shown	in	Figure	11-21.

Figure	11-21.	Adding	an	action	for	your	Button	object

11.	 It	does	not	matter	where	you	place	the	Add	button	in	your	code	as
long	as	it	is	in	your	class	and	outside	of	any	methods.	It	should	be

after	your	class	properties	just	for	organization.	When	you	let	go,
you	will	be	prompted	for	the	type	of	connection	you	are	creating.
Set	Connection	to	Action.	Then	add	a	name	for	your	new	method,
such	as	addNew,	as	shown	in	Figure	11-22.

Figure	11-22.	Changing	the	type	and	name	of	the	connection

12.	 You	also	need	to	create	an	outlet	for	your	Table	view.	Drag	your
Table	view	from	the	View	Controller	scene	to	the	top	of	the	code
(just	under	the	class	definition,	as	seen	in	Figure	11-23).	Make	sure
the	connection	is	set	to	Outlet	and	name	the	Table	view
myTableView.	You	will	need	this	outlet	later	to	tell	your	Table
view	to	refresh.

Figure	11-23.	Creating	an	outlet	for	the	Table	view

The	interface	is	complete	now,	but	you	still	need	to	add	the	code	to	make	the	interface	do
something.	Go	back	to	the	Standard	editor	(click	the	list	icon	to	the	left	of	the	two	circles
icon	in	the	top	right	of	the	Xcode	toolbar)	and	select	the	ViewController.swift	file
from	the	file	list	on	the	left	side.	Because	you	now	have	a	Table	view	you	have	to	worry
about,	you	need	to	tell	your	class	that	it	can	handle	a	Table	view.	Change	your	class
declaration	at	the	top	of	your	file	to	the	following:

class	ViewController:	UIViewController,	UITableViewDelegate,	
UITableViewDataSource	{

You	added	UITableViewDelegate	and	UITableViewDataSource	to	your
declaration.	This	tells	your	controller	that	it	can	act	as	a	table	view	delegate	and	data
source.	These	are	called	protocols.	Protocols	tell	an	object	that	they	must	implement
certain	methods	to	interact	with	other	objects.	For	example,	to	conform	to	the
UITableViewDataSource	protocol,	you	need	to	implement	the	following	method:

func	tableView(tableView:	UITableView,	numberOfRowsInSection	
section:	Int)	->	Int

Without	this	method,	the	Table	view	will	not	know	how	many	rows	to	draw.

Before	continuing,	you	need	to	tell	your	ViewController.swift	file	about	Core
Data.	To	do	this,	you	add	the	following	line	to	the	top	of	the	file	just	under	import
UIKit:

import	CoreData

You	also	need	to	add	a	managed	object	context	to	your	ViewController	class.	Add
the	following	line	right	after	the	class	ViewController	line:

var	managedObjectContext:	NSManagedObjectContext!

Now	that	you	have	a	variable	to	hold	your	NSManagedObjectContext,	you	need	to
instantiate	it	so	you	can	add	objects	to	it.	To	do	this,	you	need	to	add	the	following	lines	to
your	override	func	viewDidLoad()	method:

let	appDelegate:	AppDelegate	=	UIApplication.sharedApplication().delegate	

as!	AppDelegate

managedObjectContext	=	appDelegate.managedObjectContext	as	

NSManagedObjectContext

The	first	line	creates	a	constant	that	points	to	your	application	delegate.	The	second	line
points	your	managedObjectContext	variable	to	the	application	delegate’s
managedObjectContext.	It	is	usually	a	good	idea	to	use	the	same	managed	object
context	throughout	your	app.

The	first	new	method	you	are	going	to	add	is	one	to	query	your	database	records.	Call	this
method	loadBooks.

	1	func	loadBooks()	->	[AnyObject]{
	2														let	fetchRequest	
=	NSFetchRequest(entityName:	"Book")
	3														var	result	=	[AnyObject]()
	4														do	{
	5																		result	=	try	
managedObjectContext!.executeFetchRequest(fetchRequest)
	6															}	catch	let	error	as	NSError	{

	7																								NSLog("My	Error:	%@",	error)
	8															}
	9															return	result
10	}

This	code	is	a	little	more	complex	than	what	you	have	seen	before,	so	let’s	walk	through
it.	Line	1	declares	a	new	function	called	loadBooks,	which	returns	an	array	of
AnyObject.	This	means	you	will	receive	an	array	that	can	contain	any	type	of	objects
you	want.	In	this	case,	the	objects	will	be	Book.	You	then	return	the	array	once	you	have
it	loaded.

You	will	now	need	to	add	the	data	source	methods	for	your	Table	view.	These	methods	tell
your	Table	view	how	many	sections	there	are,	how	many	rows	are	in	each	section,	and
what	each	cell	should	look	like.	Add	the	following	code	to	your
ViewController.swift	file:

1	func	numberOfSectionsInTableView(tableView:	UITableView)	-
>	Int	{
	2									return	1
	3					}
	4
	5
	6					func	tableView(tableView:	UITableView,	
numberOfRowsInSection	section:	Int)	->	Int	{
	7									return	loadBooks().count
	8					}
	9
10					func	tableView(tableView:	UITableView,	
cellForRowAtIndexPath	indexPath:	NSIndexPath)	
							->	UITableViewCell	{
11									let	cell	
=	tableView.dequeueReusableCellWithIdentifier("Cell")	as	
UITableViewCell?
12									let	book:	Book	=	loadBooks()[indexPath.row]	as!	
Book
13									cell?.textLabel!.text	=	book.title
14									return	cell!
15					}

In	line	2,	you	tell	your	Table	view	that	it	will	contain	only	a	single	section.	In	line	7,	you
call	a	count	on	your	array	of	Book	for	the	number	of	rows	in	your	Table	view.	In	lines	11
to	14,	you	create	your	cell	and	return	it.	Line	11	creates	a	cell	for	you	to	use.	This	is
standard	code	for	creating	a	cell.	The	identifier	allows	you	to	have	more	than	one	type	of
cell	in	a	Table	view,	but	that	is	more	complex.	Line	12	grabs	your	Book	object	from	your
loadBooks()	array.	Line	13	assigns	the	book	title	to	your	textLabel	in	the	cell.	The
textLabel	is	the	default	label	in	the	cell.	This	is	all	you	need	to	do	to	display	the	results
of	your	loadBooks	method	in	the	Table	view.	You	still	have	one	problem.	You	do	not

have	any	books	in	your	database	yet.

To	fix	this	issue,	you	will	add	code	to	the	addNew	method	you	created	earlier.	Add	the
following	code	inside	the	addNew	method	you	created:

1					@IBAction	func	addNew(sender:	AnyObject)	{
2									let	book:	Book	
=	NSEntityDescription.insertNewObjectForEntityForName
																												("Book",	inManagedObjectContext:	
managedObjectContext)	as!	Book
	3									book.title	=	"My	Book"	
+	String(loadBooks().count)
	4									do	{
	5													try	managedObjectContext!.save()
	6									}	catch	let	error	as	NSError	{
	7													NSLog("My	Error:	%@",	error)
	8									}
	9									myTableView.reloadData()
10					}
11	}

Line	2	creates	a	new	Book	object	for	your	book	in	the	database	from	the	Entity	name
and	inserts	that	object	into	the	managedObjectContext	you	created	before.
Remember	that	once	the	object	is	inserted	into	the	managed	object	context,	its	changes	are
tracked,	and	it	can	be	saved.	Line	3	sets	the	book	title	to	My	Book	and	then	sets	the
number	of	items	in	the	array.	Obviously,	in	real	life,	you	would	want	to	set	this	to	a	name
either	given	by	the	user	or	from	some	other	list.	Lines	4-8	save	the	managed	object
context.

In	Swift	2.0,	error	handling	has	been	changed.	Now	you	try	and	then	throw	an	error	when
you	perform	an	operation	that	might	cause	an	error.	Line	9	tells	the	UITableView	to
reload	itself	to	display	the	newly	added	Book.	Now	build	and	run	the	application.	Click
the	+	button	several	times.	You	will	add	new	Book	objects	to	your	object	store,	as	shown
in	Figure	11-24.	If	you	quit	the	app	and	relaunch	it,	you	will	notice	that	the	data	is	still
there.

Figure	11-24.	The	final	app

This	was	a	cursory	introduction	to	Core	Data	for	iOS.	Core	Data	is	a	powerful	API,	but	it
can	also	take	a	lot	of	time	to	master.

Summary
Here	is	a	summary	of	the	topics	this	chapter	covered:

Preferences:	You	learned	to	use	NSUserDefaults	to	save	and
read	preferences	from	a	file,	on	both	iOS	and	OS	X.

Databases:	You	learned	what	a	database	is	and	why	using	one	can	be
preferable	to	saving	information	in	a	preferences	file.

Database	engine:	You	learned	about	the	database	engine	that	Apple
has	integrated	into	OS	X	and	iOS	and	its	advantages	and	limitations.

Core	Data:	Apple	provided	a	framework	for	interfacing	with	the
SQLite	database.	This	framework	makes	the	interface	much	easier	to

use.

Bookstore	application:	You	created	a	simple	Core	Data	application
and	used	Xcode	to	create	a	data	model	for	your	bookstore.	You	also
learned	how	to	create	a	relationship	between	two	entities.	Finally,
you	used	Xcode	to	create	a	simple	interface	for	your	Core	Data
model.

Exercises
Add	a	new	view	to	the	app	for	allowing	the	user	to	enter	the	name	of
a	book.

Provide	a	way	to	remove	a	book	from	the	list.

Create	an	Author	object	and	add	it	to	a	Book	object.

Chapter				12

Protocols	and	Delegates
Congratulations!	You	are	acquiring	the	skills	to	become	an	iOS	developer!	However,	iOS
developers	need	to	understand	two	additional	topics	in	order	to	be	successful:	protocols
and	delegates.	It	is	not	uncommon	for	new	developers	to	get	overwhelmed	by	these	topics,
which	is	why	we	introduced	the	foundational	topics	of	the	Swift	language	first.	After
reading	this	chapter,	you	will	see	that	protocols	and	delegates	are	really	useful	and	not
hard	to	understand	and	implement.

Multiple	Inheritance
We	discussed	object	inheritance	in	Chapter	2.	In	a	nutshell,	object	inheritance	means	that	a
child	can	inherit	all	the	characteristics	of	its	parent,	as	shown	in	Figure	12-1.

Figure	12-1.	Typical	Swift	inheritance

C++,	Perl,	and	Python	all	have	a	feature	called	multiple	inheritance,	which	enables	a	class
to	inherit	behaviors	and	features	from	more	than	one	parent,	as	shown	in	Figure	12-2.

Figure	12-2.	Multiple	inheritance

Problems	can	arise	with	multiple	inheritance	because	it	allows	for	ambiguities	to	occur.
Therefore,	Swift	does	not	implement	multiple	inheritances.	Instead,	it	implements
something	called	a	protocol.

Understanding	Protocols
Apple	defines	a	protocol	as	a	list	of	function	declarations,	unattached	to	a	class	definition.
A	protocol	is	similar	to	a	class	with	the	exception	that	a	protocol	doesn’t	provide	an
implementation	for	any	of	the	requirements;	it	describes	only	what	an	implementation
should	look	like.

The	protocol	can	be	adopted	by	a	class	to	provide	an	actual	implementation	of	those
requirements.	Any	type	that	satisfies	the	requirements	of	a	protocol	is	said	to	conform	to
that	protocol.

Protocol	Syntax
Protocols	are	defined	like	classes	are,	as	shown	in	Listing	12-1.

Listing	12-1.	Protocol	definition

protocol	RandomNumberGenerator	{

				var	mustBeSettable:	Int	{	get	set	}
				var	doesNotNeedToBeSettable:	Int	{	get	}

				func	random()	->	Double9
}

If	a	class	has	a	superclass,	you	list	the	superclass	name	before	any	protocols	it	adopts,
followed	by	a	comma,	as	shown	in	Listing	12-2.

Listing	12-2.	Protocol	listed	after	superclass

class	MyClass:	MySuperclass,	RandomNumberGenerator,	
AnotherProtocol	{
				//	class	definition	goes	here
}

The	protocol	also	specifies	whether	each	property	must	have	a	gettable	or	gettable	and
settable	implementation.	A	gettable	property	is	read-only,	whereas	a	gettable	and	settable
property	is	not	(shown	earlier	in	Listing	12-1).

Properties	are	always	declared	as	variable	properties,	prefixed	with	var.	Gettable	and
settable	properties	are	indicated	by	{	get	set	}	after	their	type	declaration,	and
gettable	properties	are	indicated	by	{	get	}.

Delegation
Delegation	is	a	design	pattern	that	enables	a	class	or	structure	to	hand	off	(or	delegate)
some	of	its	responsibilities	to	an	instance	of	another	type.	This	design	pattern	is
implemented	by	defining	a	protocol	that	encapsulates	the	delegated	responsibilities.
Delegation	can	be	used	to	respond	to	a	particular	action	or	to	retrieve	data	from	an
external	source	without	needing	to	know	the	underlying	type	of	that	source.

Listing	12-3	defines	two	protocols	for	use	with	a	random	number	guessing	game.

Listing	12-3.	Protocol	definitions

protocol	RandomNumberGame	{
				var	machine:	Machine	{	get	}
				func	play()
}
protocol	RandomNumberGameDelegate	{
				func	gameDidStart(game:	RandomNumberGame)
				func	game(game:	RandomNumberGame,	
didStartNewTurnWithGuess	randomGuess:	Int)
				func	gameDidEnd(game:	RandomNumberGame)
}

The	RandomNumberGame	protocol	can	be	adopted	by	any	game	that	involves	random
number	generating	and	guessing.	The	RandomNumberGameDelegate	protocol	can	be
adopted	by	any	type	of	class	to	track	the	progress	of	a	RandomNumberGame	protocol.

Protocol	and	Delegation	Example
This	section	shows	you	how	to	create	a	more	sophisticated	random	number	guessing	app
to	illustrate	how	to	use	protocols	and	delegation.	The	app’s	home	view	displays	the	user’s
guess	and	whether	the	guess	was	high,	low,	or	correct,	as	shown	in	Figure	12-3.

Figure	12-3.	Guessing	game	app	home	view

When	the	users	tap	the	Guess	Random	Number	link,	they	are	taken	to	an	input	screen	to
enter	their	guess,	as	shown	in	Figure	12-4.

Figure	12-4.	Guessing	game	app	user	input	view

When	the	users	enter	their	guess,	the	delegate	method	passes	the	guess	back	to	the	home
view,	and	the	home	view	displays	the	result.

Getting	Started
Follow	these	steps	to	create	the	app:

1.	 Create	a	new	Swift	project	based	on	the	Single	View	Application
template,	name	it	RandomNumberDelegate,	and	save	it,	as
shown	in	Figure	12-5.

Figure	12-5.	Creating	the	project

2.	 Select	the	Main.storyboard	file,	and	from	the	File	Inspector,
uncheck	the	Use	Auto	Layout	option.	Then	click	the	Disable	Size
Classes	button.	This	will	enable	you	to	focus	on	just	one	device,
the	iPhone,	and	not	worry	about	Auto	Layout,	as	shown	in	Figure
12-6.

Figure	12-6.	Turning	off	Auto	Layout

3.	 From	the	Document	Outline,	select	View	Controller.	Then	select
Editor	 	Embed	In	 	Navigation	Controller.	This	embeds	your
scene	in	a	Navigation	Controller	and	enables	you	to	easily
transition	back	and	forth	to	new	scenes,	as	shown	in	Figure	12-7.

Figure	12-7.	Embedding	the	View	Controller	in	a	Navigation	Controller

4.	 In	the	View	Controller,	add	two	Label	objects	and	two	Button
objects	along	with	four	Outlet	objects,	which	will	control	the	view,
as	shown	in	Figure	12-8	and	Listing	12-4.

Figure	12-8.	Outlets	necessary	to	control	the	view

Listing	12-4.	IBAction	function

47					//	event	triggered	by	playAgain	Button
48					@IBAction	func	playAgainAction(sender:	
AnyObject)	{
49									createRandomNumber()
50									playAgainButtonOutlet.hidden	
=	true	//	only	show	the	button	when	the	user	
guessed	the	right	#
51									guessButtonOutlet.hidden	=	false	
//	show	the	button
52									outComeLabelOutlet.text	=	""
53									userGuessLabelOutlet.text	=	"New	
Game"
54									previousGuess	=	""
55					}

5.	 Add	the	code	in	Listing	12-5	for	the	functions	to	handle	when	the
user	guesses	a	number	and	to	handle	creating	a	random	number.

Listing	12-5.	User	guess	delegate	function	and
createRandomNumber	function

57	//	function	called	from	the	
GuessInputViewController	when	the	user	taps	
on		the	Save	Button	button
58					func	userDidFinish(controller:	
GuessInputViewController,	guess:	String)	{
59									userGuessLabelOutlet.text	=	"The	
guess	was	"	+	guess
60									previousGuess	=	guess
61									var	numberGuess	=	Int(guess)
62									if	(numberGuess	>	randomNumber){
63																	outComeLabelOutlet.text	
=	"Guess	too	high"
64									}
65									else	if	(numberGuess	<	
randomNumber)	{
66													outComeLabelOutlet.text	
=	"Guess	too	low"
67									}
68									else	{
69													outComeLabelOutlet.text	
=	"Guess	is	correct"
70													playAgainButtonOutlet.hidden	
=	false	//	show	the	play	again	button
71													guessButtonOutlet.hidden	
=	true	//	hide	the	guess	again	number
72									}
73									//	pops	the	
GuessInputViewController	off	the	stack
74									
controller.navigationController?.popViewControllerAnimated(true)
75					}
76					//	creates	the	random	number
77					func	createRandomNumber()	{
78									randomNumber	
=	Int(arc4random_uniform(100))	//	get	
a	random	number	between	0-100
79									print("The	random	number	is:	\
(randomNumber)")	//	lets	us	cheat
80									return
81					}

6.	 Declare	and	initialize	the	two	variables	on	lines	13	and	14	in	Listing
12-6.

Listing	12-6.	Variable	declarations	and	intializations

11	class	ViewController:	UIViewController,	
GuessDelegate	{
12
13					var	previousGuess	=	""

14					var	randomNumber	=	0

15
16
17					@IBOutlet	weak	var	
userGuessLabelOutlet:	UILabel!
18					@IBOutlet	weak	var	outComeLabelOutlet:	
UILabel!
19					@IBOutlet	weak	var	
playAgainButtonOutlet:	UIButton!
20					@IBOutlet	weak	var	guessButtonOutlet:	
UIButton!!

7.	 Modify	the	function	viewDidLoad()	to	handle	how	the	view
should	look	when	it	first	appears	and	create	the	random	number	to
guess,	as	shown	in	Listing	12-7.

Listing	12-7.	viewDidLoad	function

32		override	func	viewDidLoad()	{
33									super.viewDidLoad()
34									//	Do	any	additional	setup	after	
loading	the	view,	typically	from	a	nib.
35									self.createRandomNumber()

36									playAgainButtonOutlet.hidden	=	true

37									outComeLabelOutlet.text	=	""
38
39					}

8.	 Now	you	need	to	create	a	view	to	enable	the	users	to	enter	their
guesses.	In	the	Storyboard.swift	file,	drag	a	new	View
Controller	next	to	the	home	View	Controller	and	create	a	label,	a
text	field,	and	a	button.	For	the	Text	Field	object,	in	the	Placeholder
property,	type	Number	between	0-100,	as	shown	in	Figure	12-9.

Figure	12-9.	Create	the	Guess	View	Controller	and	objects

9.	 You	need	to	create	a	class	for	the	Guess	Input	View	Controller.
Create	a	Swift	file	and	save	it	as
GuessInputViewController.swift.	Select	File	 	New	
File.	Then	choose	iOS	 	Source	 	Cocoa	Touch	Class	and	name
the	class	GuessInputViewController.	It’s	subclassed	from
UIViewController,	as	shown	in	Figure	12-10.

Figure	12-10.	Create	the	GuessInputViewController.swift	file

10.	 Let’s	associate	the	GuessInputViewController	class	with
the	Guess	View	Controller	created	in	Step	8.	From	the
Main.storyboard	file,	select	the	Guess	Input	View
Controller,	select	the	Identity	Inspector,	and	select	or	type
GuessInputViewController	in	the	Class	field,	as	shown	in
Figure	12-11.

Figure	12-11.	Creating	the	GuessInputViewController.swift	file

Now	let’s	create	and	connect	the	actions	and	outlets	in	the
GuessInputViewController	class,	as	shown	in	Listing	12-8.

Note		To	see	the	bound	rectangles	around	your	controls	in
your	storyboard,	as	shown	in	Figure	12-11,	select	Editor	
	Canvas	 	Show	Bounds	Rectangle.

Listing	12-8.	Class	listing

9	import	UIKit
10
11	//	protocol	used	to	send	data	back	the	
home	view	controller’s	userDidFinish
12	protocol	GuessDelegate	{
13					func	userDidFinish(controller:	
GuessInputViewController,	guess:	String)
14	}
15
16	class	GuessInputViewController:	
UIViewController,		UITextFieldDelegate	{
17
18					var	delegate:	GuessDelegate?	=	nil
19					var	previousGuess:	String	=	""
20
21
22					@IBOutlet	weak	var	guessLabelOutlet:	
UILabel!
23					@IBOutlet	weak	var	guessTextOutlet:	
UITextField!
24
25					override	func	viewDidLoad()	{
26									super.viewDidLoad()
27

28									//	Do	any	additional	setup	after	
loading	the	view.
29									if(!previousGuess.isEmpty){
30													guessLabelOutlet.text	=	"Your	
previous	guess	was	\(previousGuess)"
31									}
32									
guessTextOutlet.becomeFirstResponder()
33					}
34
35					override	func	
didReceiveMemoryWarning()	{
36									super.didReceiveMemoryWarning()
37									//	Dispose	of	any	resources	that	
can	be	recreated.
38					}
39
40					@IBAction	func	saveGuessAction(sender:	
AnyObject)	{
41									if	(delegate	!=	nil){
42													delegate!.userDidFinish(self,	
guess:	guessTextOutlet.text!)
43									}
44					}

11.	 You	are	almost	done.	You	need	to	connect	the	scene	with	a	segue.	A
segue	enables	you	to	transition	from	one	scene	to	another.	Control-
drag	from	the	Guess	Random	Number	button	to	the	Guess	Input
View	Controller	and	select	push	as	the	type	of	Action	Segue,	as
shown	in	Figure	12-12.

Figure	12-12.	Creating	the	segue	that	transitions	scenes	when	the	Guess	Random	Number
button	is	tapped

12.	 Now	you	need	to	give	the	segue	an	identifier.	Click	the	segue	arrow,
select	the	Attributes	Inspector,	and	name	the	segue
MyGuessSegue,	as	shown	in	Figure	12-13.

Figure	12-13.	Creating	the	segue	identifier

Note		Make	sure	you	press	Return	when	you	type	the
segue	identifier.	Xcode	may	not	pick	up	the	property

change	if	you	don’t	press	Return.

Now	you	need	to	write	the	code	to	handle	the	segue.	In	the
ViewController	class,	add	the	code	in	Listing	12-9.

Listing	12-9.	prepareForSegue	function

24	override	func	prepareForSegue(segue:	
UIStoryboardSegue,	sender:	AnyObject?)	{
25									if	segue.identifier	==	
"MyGuessSegue"{
26													let	vc	
=	segue.destinationViewController	as!	
GuessInputViewController
27													vc.previousGuess	
=	previousGuess	//	passes	the	last	guess	the	
previousGuess	property	in	the	
															GuessInputViewController
28													vc.delegate	=	self
29									}
30					}

When	the	user	taps	the	Guess	Random	Number	button,	the	segue
gets	called,	and	the	function	prepareForSegue	gets	called.	You
first	check	to	see	whether	it	was	the	MyGuessSegue	segue.	You
then	populate	the	vc	variable	with	the
GuessInputViewController.

Lines	27	and	28	pass	the	previousGuess	number	and	delegate
to	the	GuessInputViewController.

13.	 Finally,	if	you	haven’t	added	the	GuessDelegate	delegate	to	the
ViewController	class,	do	it	now,	as	shown	in	Listing	12-10.

Listing	12-10.	ViewController	class	with	GuessDelegate	listed

11	class	ViewController:	UIViewController,	GuessDelegate	{
12
13					var	previousGuess	=	""
14					var	randomNumber	=	0

How	It	Works
Here	is	how	the	code	works:

When	the	user	taps	the	Guess	Random	Number	link,
prepareForSegue	is	called.	See	line	24	in	Listing	12-9.

Because	the	ViewController	conforms	to	the
GuessDelegate	(see	line	11	in	Listing	12-10),	you	can	pass
self	to	the	delegate	in	GuessInputViewController.

The	GuessInputViewController	scene	is	displayed.

When	the	user	guesses	a	number	and	taps	Save	Guess,	the
saveGuessAction	is	called	(see	line	40	in	Listing	12-8).

Since	you	passed	ViewController	to	the	delegate,	it	can	pass	the
guess	back	in	the	ViewController.swift	file	(see	line	42	in
Listing	12-8).

Now	you	can	determine	whether	the	user	guessed	the	correct	answer
and	pop	the	GuessInputViewController	view	from	the	stack
(see	line	74	in	Listing	12-5).

Summary
This	chapter	covered	why	multiple	inheritance	is	not	used	in	Swift	and	how	protocols	and
delegates	work.	When	you	think	of	delegates,	think	of	helper	classes.	When	your	class
conforms	to	a	protocol,	the	delegate’s	functions	help	your	class.

You	should	be	familiar	with	the	following	terms:

Multiple	inheritance

Protocols

Delegates

Exercise
Change	the	random	number	the	computer	guesses	from	0-100	to	0-
50.

In	the	main	scene,	display	how	many	guesses	the	user	has	made
trying	to	guess	the	random	number.

In	the	main	scene,	display	how	many	games	the	user	has	played.

Chapter				13

Introducing	the	Xcode	Debugger
Not	only	is	Xcode	provided	free	of	charge	on	Apple’s	developer	site	and	the	Mac	App
Store,	but	it	is	a	great	tool.	Aside	from	being	able	to	use	it	to	create	the	next	great	Mac,
iPhone,	iPad,	and	Apple	Watch	apps,	Xcode	has	a	debugger	built	right	into	the	tool.

What	exactly	is	a	debugger?	Well,	let’s	get	something	straight—programs	do	exactly	what
they	are	written	to	do,	but	sometimes	what	is	written	isn’t	exactly	what	the	program	is
really	meant	to	do.	This	can	mean	the	program	crashes	or	just	doesn’t	do	something	that	is
expected.	Whatever	the	case,	when	a	program	doesn’t	work	as	planned,	the	program	is
said	to	have	bugs.	The	process	of	going	through	the	code	and	fixing	these	problems	is
called	debugging.

There	is	still	some	debate	as	to	the	real	origin	of	the	term	bug,	but	one	well-documented
case	from	1947	involved	the	late	Rear	Admiral	Grace	Hopper,	a	Naval	reservist	and
programmer	at	the	time.	Hopper	and	her	team	were	trying	to	solve	a	problem	with	the
Harvard	Mark	II	computer.	One	team	member	found	a	moth	in	the	circuitry	that	was
causing	the	problem	with	one	of	the	relays.	Hopper	was	later	quoted	as	saying,	“From	then
on,	when	anything	went	wrong	with	a	computer,	we	said	it	had	bugs	in	it.”1

Regardless	of	the	origin,	the	term	stuck,	and	programmers	all	over	the	world	use
debuggers,	such	as	the	one	built	into	Xcode,	to	help	find	bugs	in	programs.	But	people	are
the	real	debuggers;	debugging	tools	merely	help	programmers	locate	problems.	No
debugger,	whatever	the	name	might	imply,	fixes	problems	on	its	own.

This	chapter	highlights	some	of	the	more	important	features	of	the	Xcode	debugger	and
explains	how	to	use	them.	Once	you	are	finished	with	this	chapter,	you	should	have	a	good
enough	understanding	of	the	Xcode	debugger	and	of	the	debugging	process	in	general	to
allow	you	to	search	for	and	fix	the	majority	of	programming	issues.

Getting	Started	with	Debugging
If	you’ve	ever	watched	a	movie	in	slow	motion	just	so	you	can	catch	a	detail	you	can’t	see
when	the	movie	is	played	at	full	speed,	you’ve	used	a	tool	to	do	something	a	little	like
debugging.	The	idea	that	playing	the	movie	frame	by	frame	will	reveal	the	detail	you	are
looking	for	is	the	same	sort	of	idea	you	apply	when	debugging	a	program.	With	a
program,	sometimes	it	becomes	necessary	to	slow	things	down	a	bit	to	see	what’s
happening.	The	debugger	allows	you	to	do	this	using	two	main	features:	setting	a
breakpoint	and	stepping	through	the	program	line	by	line—more	on	these	two	features	in	a
bit.	Let’s	first	look	at	how	to	get	to	the	debugger	and	what	it	looks	like.

First	you	need	to	load	an	application.	The	examples	in	this	chapter	use	the	BookStore
project	from	Chapter	8,	so	open	Xcode	and	load	the	BookStore	project.

Second,	make	sure	the	Debug	build	configuration	is	chosen	for	the	Run	scheme,	as	shown
in	Figure	13-1.	To	edit	the	current	scheme,	choose	Product	 	Scheme	 	Edit	Scheme
from	the	main	menu.	Debug	is	the	default	selection,	so	you	probably	won’t	have	to	change
this.	This	step	is	important	because	if	the	configuration	is	set	to	Release,	debugging	will
not	work	at	all.

Figure	13-1.	Selecting	the	Debug	configuration

While	this	book	won’t	discuss	Xcode	schemes,	just	know	that	by	default	Xcode	provides
both	a	Release	configuration	and	a	Debug	configuration	for	any	Mac	OS	X	or	iOS	project
you	create.	The	main	difference	as	it	pertains	to	this	chapter	is	that	a	Release	configuration
doesn’t	add	any	program	information	that	is	necessary	for	debugging	an	application,
whereas	the	Debug	configuration	does.

Setting	Breakpoints
To	see	what’s	going	on	in	a	program,	you	need	to	make	the	program	pause	at	certain
points	that	you	as	a	programmer	are	interested	in.	A	breakpoint	allows	you	to	do	this.	In
Figure	13-2,	there	is	a	breakpoint	on	line	24	of	the	program.	To	set	this,	simply	place	the
cursor	over	the	line	number	(not	the	program	text,	but	the	number	24	to	the	left	of	the
program	text)	and	click	once.	You	will	see	a	small	blue	arrow	behind	the	line	number.	This
lets	you	know	that	a	breakpoint	is	set.

Figure	13-2.	Your	first	breakpoint

If	line	numbers	are	not	being	displayed,	simply	choose	Xcode	 	Preferences	from	the
main	menu,	click	the	Text	Editing	tab,	and	select	the	Line	Numbers	checkbox.

You	can	also	remove	the	breakpoint	by	dragging	the	breakpoint	to	the	left	or	right	of	the
line	number	column	and	then	dropping	it.	In	Figure	13-3,	the	breakpoint	has	been	dragged
to	the	left	of	the	column.	During	the	drag-and-drop	process,	the	breakpoint	will	turn	into	a
puff	of	smoke.	You	can	also	right-click	(or	Control-click)	the	breakpoint,	and	you	will	be
given	the	option	to	delete	or	disable	a	breakpoint.	Disabling	a	breakpoint	is	convenient	if
you	think	you	might	need	it	again	in	the	future.

Figure	13-3.	Right-clicking	a	breakpoint

Setting	and	deleting	breakpoints	are	pretty	straightforward	tasks.

Using	the	Breakpoint	Navigator
With	small	projects,	knowing	where	all	the	breakpoints	are	isn’t	necessarily	difficult.
However,	once	a	project	gets	larger	than,	say,	your	small	BookStore	application,

managing	all	the	breakpoints	could	be	a	little	more	difficult.	Fortunately,	Xcode	provides	a
simple	method	to	list	all	the	breakpoints	in	an	application;	it’s	called	the	Breakpoint
Navigator.	Just	click	the	Breakpoint	Navigator	icon	in	the	navigation	selector	bar,	as
shown	in	Figure	13-4.

Figure	13-4.	Accessing	the	Breakpoint	Navigator	in	Xcode

Once	you’ve	clicked	the	icon,	the	navigator	will	list	all	the	breakpoints	currently	defined
in	the	application.	From	here,	clicking	a	breakpoint	will	take	you	to	the	source	file	with
the	breakpoint.	You	can	also	easily	delete	and	disable	breakpoints	from	here.

To	disable/enable	a	breakpoint	in	the	Breakpoint	navigator,	click	the	blue	breakpoint	icon
in	the	list	(or	wherever	it	appears).	Don’t	click	the	line;	it	has	to	be	the	little	blue	icon,	as
shown	in	Figure	13-5.

Figure	13-5.	Using	the	Breakpoint	Navigator	to	enable/disable	a	breakpoint

It	is	sometimes	handy	to	disable	a	breakpoint	instead	of	deleting	it,	especially	if	you	plan
to	put	the	breakpoint	back	in	the	same	place	again.	The	debugger	will	not	stop	on	these
faded	breakpoints,	but	they	remain	in	place	so	they	can	be	conveniently	enabled	and	act	as
a	marker	to	an	important	area	in	the	code.

It’s	also	possible	to	delete	breakpoints	from	the	Breakpoint	Navigator.	Simply	select	one
or	more	breakpoints	and	press	the	Delete	key.	Make	sure	you	select	the	correct
breakpoints	to	delete	since	there	is	no	undo	feature.

It’s	also	possible	to	select	the	file	associated	with	the	breakpoints.	In	this	case,	if	you
delete	the	file	listed	in	the	Breakpoint	Navigator	and	press	Delete,	all	breakpoints	in	that
file	will	be	deleted.

Note	that	breakpoints	are	categorized	by	the	file	that	they	appear	in.	In	Figure	13-5,	the
files	are	DetailViewController.swift	and
MasterViewController.swift,	with	the	breakpoints	listed	below	those	file
names.	Figure	13-6	shows	an	example	of	what	a	file	looks	like	with	more	than	a	single
breakpoint.

Figure	13-6.	A	file	with	several	breakpoints

Debugging	Basics
Set	a	breakpoint	on	the	statement	shown	in	Figure	13-2.	Next,	as	shown	in	Figure	13-7,
click	the	Run	button	to	compile	the	project	and	start	running	it	in	the	Xcode	debugger.

Figure	13-7.	The	Build	and	Debug	buttons	in	the	Xcode	toolbar

Once	the	project	builds,	the	debugger	will	start.	The	screen	will	show	the	debugging
windows,	and	the	program	will	stop	execution	on	the	line	statement,	as	shown	in	Figure
13-8.

The	Debugger	view	adds	some	additional	windows.	The	following	are	the	different	parts
of	the	Debugger	view	shown	in	Figure	13-8:

Figure	13-8.	The	Debugger	view	with	execution	stopped	on	line	24

Debugger	controls	(circled	in	Figure	13-8)	The	debugging	controls
can	pause,	continue,	step	over,	step	into,	and	step	out	of	statements	in
the	program.	The	stepping	controls	are	used	most	often.	The	first
button	on	the	left	is	used	to	show	or	hide	the	debugger	view.	In
Figure	13-8,	the	debugger	view	is	shown.

Variables:	The	Variables	view	displays	the	variables	currently	in
scope.	Clicking	the	little	triangle	just	to	the	left	of	a	variable	name
will	expand	it.

Console:	The	output	window	will	show	useful	information	in	the
event	of	a	crash	or	exception.	Also,	any	NSLog	or	print	output
goes	here.

Debug	navigator:	The	stack	trace	shows	the	call	stack	as	well	as	all
the	threads	currently	active	in	the	program.	The	stack	is	a
hierarchical	view	of	what	methods	are	being	called.	For	example,
main	calls	UIApplicationMain,	and	UIApplicationMain
calls	the	UIViewController	class.	These	method	calls	“stack”
up	until	they	finally	return.

Working	with	the	Debugger	Controls
As	mentioned	previously,	once	the	debugger	starts,	the	view	changes.	What	appears	are
the	debugging	controls	(circled	in	Figure	13-8).	The	controls	are	fairly	straightforward	and
are	explained	in	Table	13-1.

Table	13-1.	Xcode	Debugging	Controls

Control Description

Clicking	the	Stop	button	will	stop	the	execution	of	the	program.	If	the	iPhone	or	iPad	emulator	is
running	the	application,	it	will	also	stop	as	if	the	user	clicked	the	Home	button	on	the	device.
Clicking	the	Run	button	(looks	like	a	Play	button)	starts	debugging.	If	the	application	is	currently
in	debug	mode,	clicking	the	Run	button	again	will	restart	debugging	the	application	from	the
beginning;	it’s	like	stopping	and	then	starting	again.

Clicking	this	causes	the	program	to	continue	execution.	The	program	will	continue	running	until	it
ends,	the	Stop	button	is	clicked,	or	the	program	runs	into	another	breakpoint.

When	the	debugger	stops	on	a	breakpoint,	clicking	the	Step	Over	button	will	cause	the	debugger	to
execute	the	current	line	of	code	and	stop	at	the	next	line	of	code.

Clicking	the	Step	In	button	will	cause	the	debugger	to	go	into	the	specified	function	or	method.
This	is	important	if	there	is	a	need	to	follow	code	into	specific	methods	or	functions.	Only
methods	for	which	the	project	has	source	code	can	be	stepped	into.

The	Step	Out	button	will	cause	the	current	method	to	finish	executing,	and	the	debugger	will	go
back	to	the	caller.

Using	the	Step	Controls
To	practice	using	the	step	controls,	let’s	step	into	a	method.	As	the	name	implies,	the	Step
In	button	follows	program	execution	into	the	method	or	function	that	is	highlighted.	Select
the	DetailViewController.swift	file	on	the	left	side.	Then	set	a	breakpoint	on
line	36,	which	is	the	call	to	self.configureView().	Click	the	Run	button	and	select
a	book	from	the	list.	Your	screen	should	look	similar	to	Figure	13-9.

Figure	13-9.	The	debugger	stopped	on	line	38

Click	the	Step	Into	button,	 	which	will	cause	the	debugger	to	go	into	the
configureView()	method	of	the	DetailViewController	object.	The	screen
should	look	like	Figure	13-10.

Figure	13-10.	Stepping	into	the	configureView	method	of	the	DetailViewController	object

The	control	Step	Over,	 ,	continues	execution	of	the	program	but	doesn’t	go	into	a

method.	It	simply	executes	the	method	and	continues	to	the	next	line.	Step	Out,	 ,	is
a	little	like	the	opposite	of	Step	In.	If	the	Step	Out	button	is	clicked,	the	current	method
continues	execution	until	it	finishes.	The	debugger	then	returns	to	the	line	before	Step	In
was	clicked.	For	example,	if	the	Step	In	button	is	clicked	on	the	line	shown	in	Figure	13-9
and	then	the	Step	Out	button	is	clicked,	the	debugger	will	return	to	the	viewDidLoad()
method	of	the	DetailViewController.swift	file	on	the	statement	shown	in
Figure	13-9	(line	36	in	the	example),	which	was	the	line	where	Step	In	was	clicked.

Looking	at	the	Thread	Window	and	Call	Stack
As	mentioned	earlier,	the	Debug	navigator	displays	the	current	thread.	However,	it	also
displays	the	call	stack.	If	you	look	at	the	difference	between	Figures	13-9	and	13-10	as	far
as	the	thread	window	goes,	you	can	see	that	Figure	13-10	has	the	configureView
method	listed	because	DetailViewController	calls	the	configureView	method.

Now,	the	call	stack	is	not	simply	a	list	of	functions	that	have	been	called;	rather,	it’s	a	list
of	functions	that	are	currently	being	called.	That’s	an	important	distinction.	Once	the
configureView	method	is	finished	and	returns	(line	31),	configureView	will	no

longer	appear	in	the	call	stack.	You	can	think	of	a	call	stack	almost	like	a	breadcrumb	trail.
The	trail	shows	you	how	to	get	back	to	where	you	started.

Debugging	Variables
It	is	possible	to	view	some	information	about	a	variable	(other	than	its	memory	address)
by	hovering	over	the	variable	in	the	code.	When	you	get	to	where	the	value	of	a	variable
has	been	assigned	in	the	local	scope,	you	will	see	the	variable	in	the	bottom	Variables
view.	In	Figure	13-11,	you	can	see	the	newBook	variable,	and	it	has	a	title	of	Swift	for
Absolute	Beginners.	You	can	also	see	that	there	is	no	author	or	description	assigned.	In
debugging,	when	you	are	stopped	on	a	line,	it	is	before	the	line	is	executed.	This	means
that	even	though	you	are	paused	on	the	line	to	assign	the	author	property,	it	has	not
been	assigned	yet.

Figure	13-11.	Viewing	a	variable	value

Position	the	cursor	over	any	place	the	newBook	variable	appears	and	click	the	disclosure
triangle	to	display	the	Book	object.	You	should	see	what	is	displayed	in	Figure	13-12.

Figure	13-12.	Hovering	over	the	newBook	variable	reveals	some	information

Hovering	over	the	newBook	variable	reveals	its	information.	In	Figure	13-12,	you	can
see	the	newBook	variable	expanded.

Dealing	with	Code	Errors	and	Warnings
While	coding	errors	and	warnings	aren’t	really	part	of	the	Xcode	debugger,	fixing	them	is
part	of	the	entire	debugging	process.	Before	a	program	can	be	run	(with	or	without	the
debugger),	all	errors	must	be	fixed.	Warnings	won’t	stop	a	program	from	building,	but
they	could	cause	issues	during	program	execution.	It’s	best	not	to	have	warnings	at	all.

Errors
Let’s	take	a	look	at	a	couple	of	types	of	errors.	To	start,	let’s	add	an	error	to	the	code.	On
line	15	of	the	MasterViewController.swift	file,	change	the	following:

var	myBookStore:	BookStore	=	BookStore()

to	the	following:

var	myBookStore:	BookStore	=	BookStore[]

Save	the	changes	and	then	build	the	project	by	pressing	 +B.	There	will	be	an	error,	as
shown	in	Figure	13-13,	that	may	show	up	immediately	or	after	the	build.

Figure	13-13.	Viewing	the	error	in	Xcode

Next,	move	over	to	the	Issue	Navigator	window,	as	shown	in	Figure	13-14,	by	clicking	the
triangle	with	the	exclamation	point.	This	view	shows	all	the	errors	and	warnings	currently
in	the	program—not	just	the	current	file,	MainViewController.swift,	but	all	the
files.	Errors	are	displayed	as	a	white	exclamation	point	inside	a	red	octagon.	In	this	case,
you	have	one	error.	If	the	error	doesn’t	fit	on	the	screen	or	is	hard	to	read,	simply	hover
over	the	error	on	the	Issue	Navigator,	and	the	full	error	will	be	displayed.

Figure	13-14.	Viewing	the	Issue	Navigator

Generally,	the	error	points	to	the	problem.	In	the	previous	case,	the	BookStore	object
was	initialized	as	an	array	rather	than	as	an	object.

Go	ahead	and	fix	the	error	by	changing	[]	to	().

Warnings
Warnings	indicate	potential	problems	with	the	program.	As	mentioned,	warnings	won’t
stop	a	program	from	building	but	may	cause	issues	during	program	execution.	It’s	outside
the	scope	of	this	book	to	cover	those	warnings	that	may	or	may	not	cause	problems	during
program	execution;	however,	it’s	good	practice	to	eliminate	all	warnings	from	a	program.

Add	the	following	code	to	the	MasterViewController.swift	viewDidLoad
method:

if	(false){
			print("False")
}

The	print	command	will	never	be	executed	because	false	will	never	be	equal	to
true.	Build	the	project	by	pressing	 +B.	A	warning	will	be	displayed,	as	shown	in
Figure	13-15.

Figure	13-15.	Viewing	the	warnings	in	the	Issue	Navigator

Clicking	the	first	warning	in	the	Issue	Navigator	will	show	you	the	code	that	is	causing	the
first	problem,	as	shown	in	Figure	13-16.

Figure	13-16.	Viewing	your	first	warning

In	the	main	window,	you	can	see	the	warning.	In	fact,	this	warning	gives	you	a	clue	as	to
the	problem	with	the	code.	The	warning	states	the	following:

“Will	never	be	executed”

This	is	a	simple	example	of	a	warning.	You	can	receive	warnings	for	many	things	such	as
unused	variables,	incomplete	delegate	implementations,	and	unexecutable	code.	It	is	good
practice	to	clean	up	the	warnings	in	your	code	to	avoid	issues	down	the	road.

Summary
This	chapter	covered	the	high-level	features	of	the	free	Apple	Xcode	debugger.	Regardless
of	price,	Xcode	is	an	excellent	debugger.	Specifically,	in	this	chapter,	you	learned	the
following:

The	origins	of	the	term	bug	and	what	a	debugger	is

The	high-level	features	of	the	Xcode	debugger,	including	breakpoints
and	stepping	through	a	program

How	to	use	the	debugging	controls	called	Continue,	Step	Over,	Step
In,	and	Step	Out

Working	with	the	various	debugger	views,	including	threads	(call
stack),	Variables	view,	Text	editor,	and	Console	Output

Looking	at	program	variables

Dealing	with	errors	and	warnings

1Michael	Moritz,	Alexander	L.	Taylor	III,	and	Peter	Stoler,	“The	Wizard	Inside	the	Machine,”	Time,	Vol.123,	no.	16:	pp.
56–63.

Chapter				14

A	Swift	iPhone	App
In	Chapter	8,	you	created	a	basic	bookstore	iPhone	app	with	Swift.	In	this	chapter,	you
will	add	some	features	to	the	app	to	make	it	a	bit	more	functional	and	use	many	of	the
technologies	you	have	learned	in	this	book,	such	as	creating	a	class,	using	delegates	and
protocols,	and	using	actions	and	outlets.	You’ll	also	learn	about	some	new	techniques	such
as	switches,	UIAlertViewController,	and	landmarks.

Let’s	Get	Started
The	bookstore	example	in	Chapter	8	enabled	you	to	view	books	in	your	bookstore	in	a
TableView	and	then	tap	the	book	to	see	its	details.	In	this	chapter,	you	will	add	the
following	capabilities	to	the	Chapter	8	bookstore	app:

Adding	a	book

Deleting	a	book

Modifying	a	book

See	Figures	14-1	and	14-2.

Figure	14-1.	Add	book	functionality

Figure	14-2.	Adding	edit	and	delete	functionality	along	with	using	a	UISwitch

Using	the	app	you	created	in	Chapter	8,	add	a	Button	Bar	item	by	dragging	the	Button	Bar
Item	object	to	the	right	button	bar	location	in	the	Main.storyboard	file.	Change	the
Button	Bar	item’s	title	to	Add.	This	will	change	the	button	bar’s	title	to	Add,	as	shown	in
Figure	14-3.

Figure	14-3.	Adding	a	Button	Bar	item	to	your	view

Modify	and	add	the	code	that	will	handle	a	showDetail	method	and	a
addBookSegue	segue	in	the	MasterViewController.swift	file,	starting	at	line
51	in	Listing	14-1.	The	code	will	transition	to	the	scene	that	will	add	a	book	to	the	list	and
pass	the	view	to	a	delegate.	The	next	step	is	to	define	the	AddBookViewController.

Listing	14-1.	The	prepareForSegue	function

40		//	MARK:	-	Segues
41
42	override	func	prepareForSegue(segue:	UIStoryboardSegue,	
sender:	AnyObject?)	{
43									if	segue.identifier	==	"showDetail"	{
44													if	let	indexPath	
=	self.tableView.indexPathForSelectedRow	{
45																	let	selectedBook:Book	
=	myBookStore.theBookStore[indexPath.row]

46																	let	vc	=	segue.destinationViewController	
as!	DetailViewController
47																	vc.detailItem	=	selectedBook
48																	vc.delegate	=	self
49													}
50									}
51									else	if	segue.identifier	==	"addBookSegue"	{
52													let	vc	=	segue.destinationViewController	as!	
AddBookViewController
53													vc.delegate	=	self
54									}
55					}

Note		Something	new	in	Swift	is	on	line	40:	“//	MARK:	-	Segues”.	//
MARK:	is	called	a	landmark.	It	is	replacement	of	the	pragma	mark,	which	is
used	in	Objective-C.	Landmarks	help	break	up	the	code	in	the	jump	bar	and
enable	you	to	quickly	get	to	sections	of	code	indicated	by	the	landmark.	When
you	type	something	following	//	MARK:,	Xcode	places	the	landmark	in	the
jump	bar’s	drop-down,	as	shown	in	Figure	14-4.	If	you	just	type	//	MARK:	-,
Xcode	adds	a	line	separator	in	the	jump	bar	drop-down.	Swift	also	supports	//
TODO:	and	//	FIXME:	landmarks	to	annotate	your	code	and	lists	them	in	the
jump	bar.

Figure	14-4.	Swift’s	new	landmarks

Now	add	the	new	view	controller	AddBookViewController	mentioned	in	line	52	in
Listing	14-1.	Add	a	View	Controller	object	to	the	storyboard	by	dragging	a	View
Controller	to	the	Main.storyboard	file.	Then	add	the	objects	in	Figure	14-5	to	enable
the	user	to	add	a	new	book.	Feel	free	to	move	the	scenes	around	to	make	it	clear	how	they
relate	to	each	other,	as	shown	in	Figure	14-5.

Figure	14-5.	Adding	the	AddBookViewController	and	objects

Add	a	Push	Segue	object	from	the	Add	Button	Bar	item	to	the	new	View	Controller	by
Control-dragging	dragging	or	right-clicking	and	dragging	from	the	Add	Button	Bar	item
to	the	new	View	Controller,	as	shown	Figure	14-6.

Figure	14-6.	Add	a	Show	Segue	object	to	the	new	View	Controller

Label	the	Segue	object	by	clicking	the	segue	arrow	and	labeling	the	identifier	as
addBookSegue,	as	shown	in	Figure	14-7.

Figure	14-7.	Naming	the	Segue	object	addBookSegue

Now	you	need	to	create	a	Swift	class	to	go	with	the	new	View	Controller.	Create	a	new
file	and	Cocoa	class	and	name	it	AddBookViewController,	as	shown	in	Figure	14-8.
Make	sure	you	select	a	subclass	of	UIViewController.

Figure	14-8.	Adding	the	AddBookViewController	class

Now	you	have	to	associate	the	new	AddBookViewController	class	to	the	new	View
Controller.	Select	the	View	Controller,	and	in	the	Identity	Inspector,	type
AddBookViewController	for	the	class,	as	shown	in	Figure	14-9.

Figure	14-9.	Associating	the	AddBookViewController	class	to	the	new	View	Controller

Set	the	title	of	the	view	to	Add	Book	by	double-clicking	on	the	Navigation	Bar.	Open	the
AddBookViewController.swift	file	and	add	the	code	shown	in	Listing	14-2.

Listing	14-2.	The	AddBookViewController.swift	file

9	import	UIKit
10
11	protocol	BookStoreDelegate	{
12					func	newBook(controller:	AnyObject,	newBook:	Book)
13					func	editBook(controller:	AnyObject,	editBook:	Book)
14					func	deleteBook(controller:	AnyObject)
15	}
16
17
18	class	AddBookViewController:	UIViewController	{
19					var	book	=	Book()
20					var	delegate:	BookStoreDelegate?	=	nil
21					var	read	=	false
22					var	editBook	=	false
23

24					@IBOutlet	weak	var	titleText:	UITextField!
25					@IBOutlet	weak	var	authorText:	UITextField!
26					@IBOutlet	weak	var	pagesText:	UITextField!
27					@IBOutlet	weak	var	switchOutlet:	UISwitch!
28
29					@IBOutlet	weak	var	descriptionText:	UITextView!
30
31
32					override	func	viewDidLoad()	{
33									super.viewDidLoad()
34									if(editBook	==	true){
35													self.title	=	"Edit	Book"
36													titleText.text	=	book.title
37													authorText.text	=	book.author
38													pagesText.text	=	String(book.pages)
39													descriptionText.text	=	book.description
40													if	(book.readThisBook){
41																	switchOutlet.on	=	true
42													}
43													else	{
44																switchOutlet.on	=	false
45													}
46									}
47
48					}
49
50					override	func	didReceiveMemoryWarning()	{
51									super.didReceiveMemoryWarning()
52									//	Dispose	of	any	resources	that	can	be	
recreated.
53					}
54
55
56					@IBAction	func	saveBookAction(sender:	UIButton)	{
57									book.title	=	titleText.text!
58									book.author	=	authorText.text!
59									book.description	=	descriptionText.text
60									book.pages	=	Int(pagesText.text!)!
61									if(switchOutlet.on)	{
62											book.readThisBook	=	true
63									}
64									else	{
65											book.readThisBook	=	false
66									}
67									if	(editBook)	{
68													delegate!.editBook(self,	editBook:book)

69									}
70									else	{
71													delegate!.newBook(self,	newBook:book)
72									}
73					}
74	}

To	the	Book	class,	add	two	properties:	pages	and	readThisBook.	These	are	shown	in
lines	15	and	16	in	Listing	14-3.

Listing	14-3.	Book	Class	changes

11	class	Book	{
12					var	title:	String	=	""
13					var	author:	String	=	""
14					var	description:	String	=	""
15					var	pages:	Int	=	0
16					var	readThisBook:	Bool	=	false
17	}

Switches
Connect	the	outlets	in	the	AddBookViewController	class	by	dragging	them	from
their	open	circles	to	the	controls,	as	shown	in	Figure	14-10.

Figure	14-10.	Connecting	the	outlets

Connect	the	saveBookAction	action	by	dragging	the	outlet	circle	to	the	Save	Book
button,	as	shown	in	Figure	14-11.

Figure	14-11.	Connecting	the	saveBookAction

In	the	DetailViewController	class,	add	the	code	shown	in	Listing	14-4.

Listing	14-4.	New	properties

20				@IBOutlet	weak	var	pagesOutlet:	UILabel!
21				@IBOutlet	weak	var	switchOutlet:	UISwitch!
22
23					var	delegate:	BookStoreDelegate?	=	nil

24
25					var	myBook	=	Book()

Alert	View	Controllers
Add	the	controls	for	Pages,	Read,	and	Edit	for	the	DetailViewController.	Connect
the	outlets	by	dragging	the	open	circles	to	their	controls,	as	shown	in	Figure	14-12.

Figure	14-12.	Adding	the	Pages	and	Read	outlets

The	Read	switch	is	disabled	in	this	view	by	unchecking	the	Enabled	property	in	the
Attributes	Inspector.

Add	the	code	for	displaying	an	AlertViewController	when	the	Delete	Button	Bar	is
tapped,	as	shown	in	Listing	14-5.

Listing	14-5.	Displaying	an	UIAlertViewController

52	@IBAction	func	deleteBookAction(sender:	UIBarButtonItem)	
{
53									let	alertController	=	UIAlertController(title:	
"Warning",	message:	"Delete	this	book?",	
											preferredStyle:	.Alert)
54									let	noAction	=	UIAlertAction(title:	"No",	style:	
.Cancel)	{	(action)	in
55													print("Cancel")
56									}
57									alertController.addAction(noAction)
58
59									let	yesAction	=	UIAlertAction(title:	"Yes",	
style:	.Destructive)	{	(action)	in
60												self.delegate!.deleteBook(self)
61									}
62									alertController.addAction(yesAction)
63
64									self.presentViewController(alertController,	

animated:	false,	completion:	nil)
65					}

Add	the	Delete	Button	Bar	item	to	the	right	navigation	location	and	connect	it	to	the
action,	as	shown	in	Figure	14-13.

Figure	14-13.	Adding	the	Delete	Right	Button	Bar	item	and	action

The	UIAlertViewController	will	warn	the	user	that	the	book	currently	displayed	in
the	DetailViewController	is	about	to	be	deleted	and	will	enable	the	user	to	decide
whether	to	delete	it.	The	UIAlertViewController	has	two	buttons:	Yes	and	No.
When	the	user	taps	the	Delete	right	Button	Bar	item,	the	UIAlertViewController
will	be	as	shown,	in	Figure	14-14,	when	you	are	done.

Figure	14-14.	UIAlertViewController	being	displayed

When	the	user	taps	Yes	to	delete	the	book,	you	want	to	call	a	deleteBook	delegate
method	as	described	in	the	MasterViewController	class.	You	add	the	delegate
property	that	will	store	the	MasterViewController	view	in	Listing	14-6.

Listing	14-6.	Adding	the	BookStoreDelegate

11	class	MasterViewController:	UITableViewController,	
BookStoreDelegate	{

Let’s	now	talk	about	the	three	delegate	methods:	newBook,	deleteBook,	and
editBook,	as	defined	in	the	AddBookViewController	class	in	Listing	14-2	(lines
11	to	15).	Add	these	three	functions	at	the	end	MasterViewController	class,	as
shown	in	Listing	14-7.

Listing	14-7.	Conforming	to	the	protocol

91	//	MARK:	-	Delegate	Methods	conforming	to	the	
BookStoreDelegate	as	defined	in	the	
															AddBookViewController

	92					func	newBook(controller:	AnyObject,	newBook:	Book)	{
	93									myBookStore.theBookStore.append(newBook)
	94									self.tableView.reloadData()
	95									let	myController	=	controller	as!	
AddBookViewController
	96									
myController.navigationController?.popToRootViewControllerAnimated(true)
	97					}
	98
	99					func	deleteBook(controller:	AnyObject){
100									let	indexPath	
=	self.tableView.indexPathForSelectedRow
101									var	row	=	indexPath?.row
102									myBookStore.theBookStore.removeAtIndex(row!)
103									self.tableView.reloadData()
104									let	myController	=	controller	as!	
DetailViewController
105									
myController.navigationController?.popToRootViewControllerAnimated(true)
106					}
107
108					func	editBook(controller:	AnyObject,	editBook:	Book)
{
109									let	indexPath	
=	self.tableView.indexPathForSelectedRow
110									var	row	=	indexPath?.row
111									myBookStore.theBookStore.insert(editBook,	
atIndex:	row!)
112									myBookStore.theBookStore.removeAtIndex(row!	+	1)
113									self.tableView.reloadData()
114									let	myController	=	controller	as!	
AddBookViewController
115									
myController.navigationController?.popToRootViewControllerAnimated(true)
116					}

The	function	newBook	adds	a	new	book	to	the	bookstore;	appending	the	array	with	the
newBook	does	this,	as	shown	in	line	93.	Line	94	then	reloads	the	Table	view	by	calling
all	the	Table	view	delegate	methods:

numberOfSectionsInTableView
numberOfRowsInSection
cellForRowAtIndexPath

Finally,	you	pop	the	DetailViewController	from	the	navigation	stack	by	calling
popToRootViewControllerAnimated(true).	Popping	the	view	from	the
navigation	stack	means	the	view	is	removed	similarly	to	tapping	the	Back	button.

The	function	deleteBook	removes	the	book	from	the	bookStore	array.	First	you
determine	which	row	was	selected	in	the	tableView	and	use	that	index	to	delete	the
book	in	the	array	by	calling	removeAtIndex(row!),	as	shown	on	line	102.

The	function	editBook	enables	the	user	to	edit	an	existing	book	in	the	bookStore
array.	To	do	this,	the	function	inserts	the	edited	book	in	the	array	at	the	row	that	was
selected,	as	shown	on	line	111.	Then	the	function	deletes	the	original	book	that	was
pushed	down	one	index	when	you	inserted	the	book	in	the	array,	as	shown	on	line	112.

Now	add	the	Edit	button	to	the	bottom	of	the	DetailViewController	and	add	a
Show	Segue	object	from	the	edit	button	to	the	AddBookViewController,	as	shown
in	Figure	14-15.

Figure	14-15.	Adding	the	Segue	object

Select	the	Segue	object	you	just	created,	select	the	Attributes	Inspector,	and	name	the
identifier	editDetail.	See	Figure	14-16.

Figure	14-16.	Naming	the	Segue’s	identifier

Add	the	prepareForSegue	function	shown	in	Listing	14-8	to	the	bottom	of	the
DetailViewController.swift	file.

Listing	14-8.	Add	the	prepareForSegue

81	override	func	prepareForSegue(segue:	UIStoryboardSegue,	
sender:	AnyObject?)	{
82									if	segue.identifier	==	"editDetail"	{
83													let	vc	=	segue.destinationViewController	as!	
AddBookViewController
84													vc.delegate	=	delegate
85													vc.editBook	=	true
86													vc.book	=	myBook
87									}
88					}

Finally,	modify	the	configureView	function	in	the	DetailViewController	to
properly	populate	the	pages	and	switch	outlets,	as	shown	in	Listing	14-9.

Listing	14-9.	Modify	the	configureView

29		func	configureView()	{
30					if	let	detail:	AnyObject	=	self.detailItem	{
31									myBook	=	detail	as!	Book
32									titleLabel.text	=	myBook.title
33									authorLabel.text	=	myBook.author
34									descriptionTextView.text	=	myBook.description
35									pagesOutlet.text	=	String(myBook.pages)
36									if(myBook.readThisBook){
37														switchOutlet.on	=	true
38										}
39										else	{
40															switchOutlet.on	=	false
41											}
42								}
43					}

App	Summary
Compile	and	run	the	app.	You	should	set	breakpoints	at	the	delegate	functions	to	watch
the	program	flow.	It	is	a	great	app	to	see	how	delegates	can	be	used	to	pass	information
from	one	view	to	another.

Additionally,	you	can	add	functionality	to	the	app	to	make	the	information	persistent	by
using	Core	Data	or	NSUserDefaults.

Exercises
Add	more	books	to	the	bookstore	using	the	original	program	as	a
guide.

Enhance	the	Book	class	so	it	can	store	another	attribute—a	price	or
ISBN,	for	example.

Add	persistence	to	the	app	by	using	Core	Data	or
NSUserDefaults.

Chapter				15

Apple	Watch	and	watchKit
In	September	2014,	Apple	announced	the	Apple	Watch,	which	it	considers	to	be	the	next
chapter	in	Apple’s	history.	This	watch	not	only	handles	phone	calls	and	text	messages,	but
is	also	tied	to	the	wearer’s	health	by	tracking	heart	rate	and	exercise.	At	the	same	time,
Apple	announced	WatchKit,	a	framework	designed	for	developing	apps	for	the	Apple
Watch.	WatchKit	will	be	very	familiar	to	developers	already	familiar	with	UIKit.

Initially,	the	Apple	Watch	had	some	serious	limitations	with	development.	The	watch
acted	as	an	additional	screen	for	an	iPhone	app.	This	required	the	watch	to	be	close	to	the
phone	to	function	and	also	caused	apps	to	run	slowly.	In	June	2015,	Apple	announced
watchOS	2.0.	This	new	update	included	many	new	features,	but	the	biggest	one	for
developers	was	the	ability	to	create	apps	that	had	code	that	ran	on	the	Apple	Watch	instead
of	on	the	phone.	Developers	were	able	to	create	stand-alone	apps	that	performed	much
better	and	were	more	responsive.

Considerations	When	Creating	a	watchOS
App
One	of	the	great	things	about	developing	for	the	watchOS	is	that	all	of	the	development	is
done	in	Swift	or	Objective-C	just	like	with	other	iOS	devices.	The	Apple	Watch	does	have
some	different	things	that	you	need	to	consider	before	you	jump	into	development.

The	Apple	Watch	screen	is	very	small.	You	are	limited	to	38mm	or
42mm,	depending	on	the	size	of	the	watch.	This	means	you	will	not
have	a	lot	of	space	for	unnecessary	UI	elements.	Your	interface	will
need	to	be	compact	and	well	organized.	Also,	due	to	the	two	sizes
being	close	in	size,	you	have	to	create	one	interface	and	have	it	look
good	on	either	size.

Sharing	data	between	the	phone	and	the	watch	requires	some
planning.	In	watchOS	2.0,	Apple	added	new	methods	to	make	data
sharing	easier	than	it	used	to	be.	Primarily,	Apple	has	introduced	the
WCSession	class.	The	use	of	this	class	is	beyond	the	scope	of	this
book.

WatchKit	for	watchOS	2.0	provides	many	different	ways	to	interact
with	users	not	only	through	apps,	but	also	through	glances,
actionable	notifications,	and	complications.	Well-written	apps	can
take	advantage	of	multiple	interactions	where	it	makes	sense.	These
interactions	are	beyond	the	scope	of	this	book.

Creating	an	Apple	Watch	App
The	first	step	is	to	create	a	new	project	in	Xcode	7.	On	the	left	side,	select	Application
under	the	watchOS	header	as	the	project	type.	Then	select	iOS	App	with	WatchKit	App,
as	shown	in	Figure	15-1.

Figure	15-1.	Creating	the	watchOS	app

Next,	you	will	be	given	the	option	of	naming	your	project.	We	called	the	one	in	this
chapter	BookStore.	You	will	also	notice	that	a	watchOS	app	has	different	options	than	a
standard	iOS	app.	We	will	not	be	using	any	of	these	additional	layouts	in	the	current	app,
so	make	sure	they	are	all	unchecked,	as	shown	in	Figure	15-2.

Figure	15-2.	watchOS	options

Note		The	WatchKit	provides	additional	interaction	types	that	not	available	in
iOS	apps.	Glances	are	quick	looks	into	your	app.	For	example,	a	bookstore	app
might	have	a	glance	that	shows	the	best	sellers.	Glances	use	a	special	interface
on	the	watch.	Complications	allow	your	app	to	provide	simple	information	on
the	watch	face	itself.

Xcode	will	then	prompt	you	to	save	your	project.	Once	you’ve	saved	it,	you	will	be
presented	with	your	new	project.	On	the	left	side,	you	will	notice	two	additional	targets	in
your	project.	One	is	the	BookStore	WatchKit	app,	which	contains	the	interface	(storyboard
and	assets)	for	your	app.	The	second	new	target	is	the	BookStore	WatchKit	extension.
This	will	contain	all	of	the	code	for	your	app	to	run	on	watchOS.	See	Figure	15-3.

Figure	15-3.	New	targets

Click	on	the	Interface.storyboard	in	the	BookStore	WatchKit	app	target	and	you
should	see	a	screen	similar	to	Figure	15-4.	This	is	your	empty	watchOS	app	storyboard.
You	will	notice	the	size	is	significantly	smaller	than	a	standard	iOS	storyboard.

Figure	15-4.	Interface	storyboard

Since	you	are	going	to	create	a	list	of	books	for	the	watchOS	app,	you	need	to	add	a	table
to	the	storyboard.	On	the	bottom	right,	search	for	table	and	drag	the	table	into	the
storyboard,	as	shown	in	Figure	15-5.

Figure	15-5.	Adding	a	table

Xcode	will	now	give	you	a	Table	Row	as	part	of	the	table.	This	is	similar	to	the	prototype
rows	you	used	for	creating	table	views	in	your	iOS	apps.	You	need	to	create	a	class	to
control	it,	but	for	now,	you	will	add	a	label	to	it.	Search	for	a	label	in	the	Object	Library
and	drag	one	onto	the	row.	See	Figure	15-6.

Figure	15-6.	Adding	a	label	to	the	table	row

By	default,	the	label	will	be	located	in	the	top-left	corner	of	the	Table	Row.	Check	the
Attribute	Inspector	to	make	sure	the	size	and	width	can	grow	to	fit	the	content.	See	Figure
15-7.	This	will	help	ensure	that	your	app	runs	well	on	both	sizes	of	Apple	Watches.

Figure	15-7.	Expanding	the	label

Now	the	label	will	expand	to	fit	the	entire	row.	By	default,	however,	the	label	will	only
show	one	line	of	text.	Since	you	are	adding	book	titles,	you	may	need	multiple	lines	to	fit
all	of	the	text	you	want	to	add.	With	the	label	selected,	look	in	the	Attributes	selector	on
the	right	side.	Find	the	Lines	attribute	and	set	it	to	0,	as	shown	in	Figure	15-8.	Setting	the
number	of	lines	to	0	tells	Xcode	that	it	can	use	as	many	lines	as	needed.

Figure	15-8.	Setting	the	Lines	attribute

Now	you	need	to	add	some	code	to	get	the	user	interface	working.	On	the	left	side,	expand
the	BookStore	WatchKit	extension	folder	and	select	the
InterfaceController.swift	file,	as	shown	in	Figure	15-9.	The
InterfaceController	is	the	default	controller	for	the	initial	scene	in	a	WatchKit
storyboard.

Figure	15-9.	Opening	the	InterfaceController.swift	file

You	will	notice	the	default	methods	in	the	new	controller	file	are	different	than	they	were
for	a	standard	UIViewController.	willActivate()	is	equivalent	to
viewWillAppear().

The	first	thing	you	need	to	do	is	add	a	class	definition	for	a	row.	To	do	this,	add	the
following	code	to	the	bottom	of	the	file	outside	of	the	close	brace	(})	for	the
InterFaceController	class.

1			class	BookRow:	NSObject	{
2							@IBOutlet	weak	var	bookLabel:	WKInterfaceLabel!
3
4			}

Line	1	declares	a	new	class	caled	BookRow.	It	is	a	subclass	of	NSObject.	Line	2	creates
a	property	called	bookLabel.	bookLabel’s	class	is	WKInterfaceLabel.	This	is
similar	to	a	UILabel	that	you	have	used	before,	but	it	works	with	WatchKit.

Note		Swift	allows	for	multiple	classes	to	be	declared	in	the	same	Swift	file.
This	works	well	when	you	are	only	using	that	class	with	the	other	classes	in	the
file.	In	this	case,	we	are	only	going	to	use	the	row	class	with	the
InterfaceController	class.

The	InterfaceController.swift	file	will	now	look	like	Figure	15-10.

Figure	15-10.	Modified	InterfaceController.swift	file

You	can	now	connect	the	outlets	to	the	interface.	Select	Interface.storyboard.
Now	select	the	Assistant	Editor	by	selecting	the	icon	with	two	circles	in	the	top	right	of
the	Xcode	window,	as	shown	in	Figure	15-11.

Figure	15-11.	Opening	the	Assistant	Editor

With	the	Assistant	Editor,	Xcode	provides	a	quick	way	for	developers	to	create	objects
and	associate	them	with	outlets	in	the	interface.	You	will	first	need	to	create	a	table
property	representing	the	Table	view.	Control-drag	from	the	table	in	the	Interface
Controller	scene	into	the	InterfaceController	class	on	the	right,	as	shown	in
Figure	15-12.

Figure	15-12.	Control-drag	to	create	an	outlet

Once	you	release	the	table	object	on	the	InterfaceController	class,	Xcode	will
prompt	you	to	enter	the	type	of	outlet	you	are	creating.	Leave	the	defaults	as	is,	except
change	the	Name	to	mainTable,	as	shown	in	Figure	15-13.

Figure	15-13.	Naming	your	outlet

Select	the	“lines	of	text”	icon	in	the	top	right	of	the	Xcode	window	to	return	to	the
Standard	Editor.	Under	the	Interface	Controller	Scene,	select	the	Table	Row	Controller,	as
shown	in	Figure	15-14.

Figure	15-14.	Selecting	the	Table	Row	Controller

Set	the	class	of	the	Table	Row	Controller	by	selecting	the	Identity	Inspector	on	the	right
side	and	selecting	BookRow	in	the	Class	drop-down	menu,	as	shown	in	Figure	15-15.

Figure	15-15.	Changing	the	table	row	class	to	BookRow

Now	that	your	app	knows	the	type	of	table	row	you	are	using	in	your	code,	you	need	to
add	an	identifier	for	the	row.	This	helps	in	the	case	you	have	multiple	row	types	for	a
single	table.	Select	the	Attributes	Inspector	and	enter	MyBookRow	as	the	identifier,	as
shown	in	Figure	15-16.

Figure	15-16.	Changing	the	table	row	identifier

You	can	now	hook	up	the	WKInterfaceLabel	you	created	earlier.	Under	the	Interface
Controller	Scene,	control-drag	from	the	book	row	to	the	label,	as	shown	in	Figure	15-17.

Figure	15-17.	Control-dragging	from	the	row	to	the	label

You	will	be	prompted	to	select	an	outlet	from	the	available	outlets,	as	shown	in	Figure	15-
18.	There	is	currently	only	one	available	outlet,	so	select	bookLabel.

Figure	15-18.	Connecting	the	bookLabel	outlet

Your	table	and	label	are	now	all	hooked	up.	Now	you	need	some	data	to	display.	You	are
going	to	reuse	some	data	you	created	in	Chapter	8.	Using	the	Finder	on	your	Mac,	drag	the
Book.swift	and	BookStore.swift	files	from	the	Chapter	8	folder	into	the
BookStore	WatchKit	extension	folder	in	Xcode.	Check	the	“Copy	Items	If	Needed”
checkbox	to	copy	the	files	to	the	new	project.	Once	you	are	done,	you	will	have	the
Book.swift	and	BookStore.swift	files	in	your	target,	as	shown	in	Figure	15-
19.

Figure	15-19.	Adding	in	the	data	files

You	have	the	data	and	interface	complete.	You	now	need	to	hook	them	up	so	the	interface

knows	about	the	data.	You	need	to	declare	a	new	property	that	will	hold	the	BookStore
object.	Under	your	declaration	of	the	mainTable	object	in	the
InterfaceController.swift	file,	you	need	to	add	the	following	line:

var	myBookStore:	BookStore!

This	creates	a	property	of	type	BookStore	called	myBookStore	and	initializes	it	to	an
instance	of	BookStore.

We	will	use	the	configureTable()	method	to	set	up	the	table.	Add	the	following
code	to	the	class,	outside	of	any	of	the	other	methods:

1					func	configureTable()	{

2									mainTable.setNumberOfRows(myBookStore.theBookStore.count,	

withRowType:	"MyBookRow")

3									for	index	in	0…(myBookStore.theBookStore.count	-	1)	{

4													if	let	myRow	=	mainTable.rowControllerAtIndex(index)	as?	

BookRow	{

5																	

myRow.bookLabel.setText(myBookStore.theBookStore[index].title)

6													}

7									}

8					}

Line	1	declares	the	new	method.	Line	2	sets	the	number	of	rows	in	the	table	to	the	number
of	books	in	the	bookstore.	You’ll	use	myBookStore.theBookStore.count	to	get
that	number.	We	also	tell	the	table	which	row	identifier	to	use	with	the	table.	Line	3	is	a
loop	that	assigns	index	to	0	and	goes	until	it	gets	assigned	to	the	number	of	books	–	1.
The	reason	you	subtract	1	from	the	number	of	books	is	because	Swift	(and	most	modern
programming	languages)	starts	its	arrays	with	0.	This	means	if	you	have	an	array	with	two
items,	the	items	will	be	in	positions	0	and	1.	If	you	try	to	look	at	position	2,	you	will
receive	an	error.

Line	4	tries	to	create	a	new	row	for	the	table	using	the	index	variable	you	created	in	the
previous	line.	Line	5	takes	the	row	and	assigns	the	Book	title	to	bookLabel.	After
entering	those	lines,	the	InterfaceController.swift	file	will	look	like	Figure	15-
20.

Figure	15-20.	InterfaceController.swift	file

You	now	have	enough	in	place	to	run	the	app.	From	the	target	menu,	select	BookStore
WatchKitApp	and	then	select	the	size	of	the	Apple	Watch	you	would	like	the	simulator	to
use,	as	shown	in	Figure	15-21.	If	this	is	your	first	time	launching	the	Watch	Simulator,	it
may	take	some	time	and	ask	for	permissions	on	the	Phone	simulator	before	the	app	will
run	successfully.

Figure	15-21.	Selecting	the	WatchKit	target

Once	the	app	is	launched,	you	will	see	a	watch	screen	with	the	two	books	in	the
myBookStore	object.	You	can	go	back	to	the	BookStore.swift	file	and	add	more
books	if	you	want	to	play	around	with	the	scrolling.	The	app	should	look	like	Figure	15-
22.

Figure	15-22.	First	WatchKit	app	launch

Adding	More	Functionality
In	the	last	section,	you	created	a	WatchKit	app,	but	it’s	very	limited	in	functionality.	In
this	section,	you	will	add	a	new	scene	to	the	app	to	show	book	detail	when	a	book	is
selected.	Because	you	will	be	adding	a	scene,	you	will	use	an	additional	controller	file.
Right-click	on	the	BookStore	WatchKit	extension	folder	and	select	New	File,	as	shown	in
Figure	15-23.

Figure	15-23.	Adding	new	controller	file

Make	sure	the	new	file	is	a	Swift	file	and	name	it	DetailController.swift.	It
should	now	appear	in	your	file	list.	Add	the	following	code	after	the	import
Foundation	line.

10						import	WatchKit
11
12
13						class	DetailController:	WKInterfaceController	{
14											@IBOutlet	var	labelTitle:	WKInterfaceLabel!

15											@IBOutlet	var	labelAuthor:	WKInterfaceLabel!
16											@IBOutlet	var	labelDescription:	
WKInterfaceLabel!
17
18											var	book:	Book!
19
20											override	func	awakeWithContext(context:	
AnyObject?)	{
21																super.awakeWithContext(context)
22																if	let	book	=	context	as?	Book	{
23																					labelTitle.setText(book.title)
24																					labelAuthor.setText(book.author)
25																					
labelDescription.setText(book.description)
26																}
27											}
28						}

Line	10	imports	the	WatchKit	framework.	This	is	necessary	when	dealing	with	any
WatchKit	classes	such	as	WKInterfaceController	or	WKInterfaceLabel.	Line
13	declares	a	new	WKInterfaceController	subclass	called	DetailController.
Lines	14-16	create	the	labels	you	will	be	using	to	display	the	book	information.	Line	18
declares	the	Book	property	called	book.	Line	20	is	the	awakeWithContext	method.
It	is	passed	an	object	called	context,	which	is	of	type	AnyObject.	This	is	where	the
Book	object	will	be	passed.	Line	22	takes	the	context	and	assigns	it	to	a	book	object.
Lines	23-25	take	the	pieces	of	information	from	the	book	and	assigns	them	to	the	labels.

You	now	need	to	add	the	following	method	to	the	InterfaceController	class.

override	func	contextForSegueWithIdentifier(segueIdentifier:	
String,	inTable	table:	WKInterfaceTable,	rowIndex:	Int)	->	
AnyObject?	{
								return	myBookStore.theBookStore[rowIndex]
				}

This	method	passes	the	book	to	the	DetailController	when	it	receives	the
rowIndex	of	the	selected	row.	Now	you	need	to	create	the	interface.	Select
Interface.storyboard	on	the	left	side.	Drag	an	Interface	Controller	from	the
Object	Library	to	the	storyboard	as	shown	in	Figure	15-24.

Figure	15-24.	Adding	new	controller	file

Select	the	second	Interface	Controller	Scene	and	set	the	Custom	Class	to	DetailController,
as	shown	in	Figure	15-25.

Figure	15-25.	Setting	the	new	controller	class

Now	drag	three	label	objects	onto	the	interface.	These	labels	will	be	for	the	book	title,
author,	and	description.	See	Figure	15-26.

Figure	15-26.	New	labels

Now	you	need	to	connect	the	outlets	of	the	new	labels.	Control-drag	from	the	Detail
Controller	Scene	to	each	of	the	labels	and	assign	them	to	their	respective	property.	See
Figure	15-27.

Figure	15-27.	Connecting	the	outlets

The	data	should	all	be	displaying	now.	You	need	to	create	the	segue	and	test	the	app	once
again.	Control-drag	from	the	MyBookRow	under	the	Interface	Controller	Scene	to	the
Detail	Controller.	You	will	be	prompted	to	select	the	type	of	segue.	Select	push.	See
Figure	15-28.

Figure	15-28.	Creating	the	segue

Now	run	the	app	and	select	a	row.	You	should	see	the	detail	controller	you	just	created,	as
shown	in	Figure	15-29.

Figure	15-29.	Detail	view	scene

Summary
This	chapter	covered	an	introduction	to	developing	for	the	Apple	Watch.	Specifically,	in
this	chapter,	you	learned	the	following:

How	to	create	a	new	WatchKit	app

How	to	use	the	WatchKit	controls	WKInterfaceController,
WKInterfaceTable,	and	WKInterfaceLabel

How	to	create	multiple	scenes	and	add	segues	between	them

How	to	handle	passing	data	from	one	scene	to	the	next

Exercises
Set	up	the	labels	on	the	detail	scene	to	display	all	of	the	data.

Add	more	books	to	your	BookStore	so	you	can	play	with	the
scrolling	in	the	app.

Chapter				16

A	Swift	HealthKit	iPhone	App
HealthKit	enables	iOS	developers	to	integrate	health	and	fitness	devices	with	their	app	and
integrate	the	data	with	Apple’s	easy-to-read	dashboard.	HealthKit	enables	health	and
fitness	apps	on	an	iOS	device	to	work	together	and	report	device	data	in	the	Health	app
dashboard.	See	Figure	16-1.

Figure	16-1.	The	Health	app’s	dashboard

HealthKit	is	the	accompanying	developer	SDK	included	in	iOS	8	and	newer.	The	SDK
enables	other	applications	to	access	health	data	with	the	user’s	permission.	For	example,	a
blood	pressure	application	could	share	its	information	with	the	user’s	doctor.

A	number	of	companies	support	HealthKit,	including	Polar,	EPIC,	Mayo	Clinic,	and
RunKeeper.

Note		To	work	through	this	example,	you’ll	need	an	active	developer	account.
You	won’t	be	able	to	enable	the	HealthKit	Capability	and	access	the	HealthKit
store	without	one.

Introduction	to	Core	Bluetooth

The	Core	Bluetooth	framework	lets	your	iOS	apps	communicate	with	Bluetooth’s	low
energy	devices	(Bluetooth	LE	or	BLE,	for	short).	BLE	devices	include	heart	rate	monitors,
digital	scales,	digital	thermostats,	and	more.

The	Core	Bluetooth	framework	is	an	abstraction	of	the	Bluetooth	LE	specification	and
defines	a	set	of	protocols	for	communicating	with	the	Bluetooth	LE	devices.

Along	with	learning	about	HealthKit	in	this	chapter,	you’ll	learn	about	the	key	concepts	of
the	Core	Bluetooth	framework,	including	how	to	use	the	framework	to	discover,	connect
to,	and	retrieve	data	from	BLE-compatible	devices.	You	will	learn	these	skills	by	building
a	heart	rate	monitoring	application	that	communicates	with	a	BLE	heart	monitor	and
displays	the	information	on	an	animated	user	interface	along	with	storing	the	information
in	Apple’s	Health	app.

The	heart	rate	monitor	we	use	in	this	example	is	the	Polar	H7	Bluetooth	Smart	Heart	Rate
Sensor	that	can	be	purchased	from	Amazon.com.	If	you	don’t	have	one	of	these	devices,
you	can	still	follow	along	with	the	tutorial,	but	you’ll	need	to	modify	the	code	for
whatever	BLE	device	you	have.

Central	and	Peripheral	Devices
There	are	two	major	components	involved	in	BLE	communication;	the	central	and	the
peripheral.	See	Figure	16-2.

The	central	is	the	boss	that	wants	information	from	one	or	more
workers	in	order	to	accomplish	a	specific	task.

The	peripheral	is	the	worker	that	sends	and	receives	data	that	is
consumed	by	the	central	devices.	The	peripheral	has	the	data	the
central	wants.

Figure	16-2.	Understanding	central	and	peripheral	devices

Peripheral	Advertising
Advertising	is	the	primary	way	that	peripherals	make	their	presence	known	via	BLE.

In	addition	to	advertising	their	existence,	advertising	packets	can	also	contain	some	data,
such	as	the	peripheral’s	name.	The	packets	can	even	contain	some	extra	data	related	to
what	the	peripheral	collects.	For	the	heart	rate	monitor	application,	the	packets	also
provide	heartbeats	per	minute	information.

The	central	scans	for	these	advertising	packets,	identifies	any	peripherals	it	finds	relevant,
and	connects	to	individual	devices	for	more	information.

Peripheral	Data	Structure
Advertising	packets	are	very	small	and	cannot	contain	large	amounts	of	data,	so	to	get
more	data,	a	central	needs	to	connect	to	a	peripheral	to	obtain	all	of	the	data	available.

Once	the	central	connects	to	a	peripheral,	it	needs	to	choose	the	data	it	is	interested	in.
With	BLE,	data	is	organized	into	services	and	characteristics:

A	service	is	a	collection	of	data	and	associated	behaviors	describing	a
specific	function	or	feature	of	a	device.	A	device	can	have	more	than
one	service.	The	heart	rate	monitor	exposing	heart	rate	data	from	the
monitor’s	heart	rate	sensor	is	a	great	example	of	this.

A	characteristic	provides	additional	details	about	a	peripheral’s
service.	A	service	can	have	more	than	one	characteristic.	The	heart
rate	service,	for	example,	may	contain	a	characteristic	that	describes

the	intended	body	location	of	the	device’s	heart	rate	sensor	and	an
additional	characteristic	that	transmits	heart	rate	measurement	data.

Once	a	central	has	established	a	connection	to	a	peripheral,	it	is	free	to	discover	the	full
range	of	services	and	characteristics	of	the	peripheral,	and	to	read	or	write	the
characteristic	values	of	the	available	services.

CBPeripheral,	CBService,	and	CBCharacteristic
A	peripheral	is	represented	by	the	CBPeripheral	object,	while	the	services	relating	to	a
specific	peripheral	are	represented	by	CBService	objects.	See	Figure	16-3.

Figure	16-3.	Structure	of	a	peripheral’s	services	and	characteristics	object	hierarchy

The	characteristics	of	a	peripheral’s	service	are	represented	by	CBCharacteristic
objects,	which	are	defined	as	attribute	types	containing	a	single	logical	value.

Each	service	and	characteristic	you	create	must	be	identified	by	a	universally	unique
identifier,	or	UUID.	UUIDs	can	be	16-	or	128-bit	values,	but	if	you	are	building	your
client-server	(central-peripheral)	application,	you’ll	need	to	create	your	own	128-bit
UUIDs.	Also,	make	sure	the	UUIDs	don’t	collide	with	other	potential	services	in	close
proximity	to	your	device.

Let’s	Get	Started	and	Build	the	App
We	are	going	to	build	a	simple	heart	rate	monitor	app	that	works	with	a	Bluetooth	Low
Energy	(BLE)	heart	rate	monitor.	In	the	process	of	building	this	app,	you	will	learn	a	lot
about	HealthKit	and	Bluetooth	Low	Energy	(BLE),	such	as:

How	set	up	your	heart	rate	monitor

How	to	request	permissions	to	access	and	store	HealthKit	data

How	to	read	Bluetooth	Low	Energy	(BLE)	data	and	format	it	to

show	in	the	Health	app

How	the	Core	Bluetooth	Framework	works

How	to	display	information	from	the	heart	rate	BLE	monitor	(see
Figure	16-4)

Figure	16-4.	The	Heart	Rate	Monitor	app

1.	 Create	a	Single	View	Application,	as	shown	in	Figure	16-5.

Figure	16-5.	Creating	a	single	view	application

2.	 Name	your	app	and	save	the	project,	as	shown	in	Figure	16-6.

Figure	16-6.	Naming	the	project

3.	 Change	the	bundle	identifier	to	the	identifier	you	are	going	to	use	to
submit	to	the	App	Store	and	include	the
HealthKit.framework.	Also,	select	your	developer	team,	as
shown	in	Figure	16-7.

Figure	16-7.	Adding	your	own	bundle	identifier,	team,	and	HealthKit.framework

4.	 In	order	use	HealthKit,	you	need	to	add	the	HealthKit	entitlement.
Change	the	project’s	capabilities	to	add	HealthKit,	as	shown	in
Figure	16-8.

Figure	16-8.	Including	the	HealthKit	capabilities	in	the	project

5.	 The	app	doesn’t	automatically	get	access	to	the	HealthKit	data,	so	it
first	needs	to	ask	permission.	Open	the
ViewController.swift	file	to	add	all	of	the	related	code	this
app	needs.

6.	 Import	the	Core	Bluetooth	and	HealthKit	frameworks,	add	the	Core
Bluetooth	delegate	protocols,	and	declare	the	instance	variables,	as
shown	in	Listing	16-1.	The	ViewController	needs	to	implement	the
CBCentralManagerDelegate	protocol	to	enable	the	delegate
to	monitor	the	discovery,	connectivity,	and	retrieval	of	peripheral
BLE	devices.	The	ViewController	also	needs	to	implement	the
CBPeripheralDelegate	protocol	so	it	can	monitor	the
discovery,	exploration,	and	interaction	of	a	remote	peripheral’s
services	and	properties.

Listing	16-1.	Adding	Core	Bluetooth,	HealthKit,	and	instance
variables

1	//
2	//		ViewController.swift
3	//		HeartRateMonitor
4	//
5	//		Created	by	Gary	Bennett	on	9/10/15.
6	//		Copyright	(c)	2016	xcelMe.	All	rights	

reserved.
7	//
8
9	import	UIKit
10	import	CoreBluetooth
11	import	HealthKit
12
13	class	ViewController:	UIViewController,	
CBCentralManagerDelegate,	
CBPeripheralDelegate	{
14
15
16
17					var	heartRate:	UInt16	=	0
18					let	healthKitStore:	HKHealthStore	
=	HKHealthStore()
19					var	centralManager:	CBCentralManager!
20					var	connectingPeripheral:	
CBPeripheral!
21					var	pulseTime:	NSTimer!

The	core	of	the	HealthKit	Framework	is	the	HKHealthStore
class,	as	shown	on	line	18	in	Listing	16-1.	Now	that	you’ve	created
an	instance	of	HKHealthStore,	the	next	step	is	to	request
authorization	to	use	it.

The	users	are	the	masters	of	their	data,	and	they	control	which
metrics	you	can	track.	This	means	you	don’t	request	global	access
to	the	HealthKit	store.	Instead,	you	request	access	to	the	specific
types	of	objects	the	app	needs	to	read	or	write	to	the	store.

7.	 Add	the	Heart.png	and	Human.png	files	from	the	Chapter	16
project	to	this	project.	Then	create	the	outlets	for	the	labels,	as
shown	in	Figure	16-9.

Note		You	can	refer	to	the	Chapter	16	project	that	can	be
downloaded	from	forum.xcelme.com	as	described	in
the	Introduction.	It	includes	the	PNG	files	used	for	the
app	as	well	as	showing	you	the	auto-layout	constraints	if
you	need	help.

Figure	16-9.	Creating	the	HealthKitStore	object	and	setting	the	variables

8.	 Add	the	viewDidAppear	method	as	shown	in	Listing	16-2.	You
need	to	instantiate	the	centralManager	and	request
authorization	to	the	HealthKit	store.

Listing	16-2.	Add	the	init	as	shown

27					override	func	viewDidAppear(animated:	
Bool)	{
28									centralManager	
=	CBCentralManager(delegate:	self,	queue:	
dispatch_get_main_queue())
29									self.	
requestAuthorizationForHealthStore	()
30									self.heartRate	=	0
31					}

9.	 Add	the	centralManagerDidUpdateState	function	as
shown	in	Listing	16-3.	This	ensures	that	the	device	is	BLE
compliant	and	it	can	be	used	as	the	central	device	object	of	the
CBCentralManager.	If	the	state	of	the	central	manager	is
powered	on,	the	app	will	receive	a	state	of
CBCentralManagerStatePoweredOn.	If	the	state	changes	to
CBCentralManagerStatePoweredOff,	all	peripheral
objects	that	have	been	obtained	from	the	central	manager	become
invalid	and	must	be	rediscovered.

Listing	16-3.	Add	the	centralManagerDidUpdateState	function

39	func	centralManagerDidUpdateState(central:	
CBCentralManager){
40
41									switch	central.state	{
42									case	.PoweredOn:

43													print("poweredOn")
44
45													let	serviceUUIDs	
=	[CBUUID(string:"180D")]
46													let	lastPeripherals
															=	centralManager.retrieveConnectedPeripheralsWithServices(serviceUUIDs)
47													print(lastPeripherals.count)
48													if	lastPeripherals.count	>	0	{
49																	connectingPeripheral	
=	lastPeripherals.last
50																	
connectingPeripheral.delegate	=	self
51																	
centralManager.connectPeripheral(connectingPeripheral,
	options:	nil)
52																	connectedOutlet.text	
=	"Connected"
53													}
54													else	{
55																	
centralManager.scanForPeripheralsWithServices(serviceUUIDs,
	options:	nil)
56																	connectedOutlet.text	
=	"Disconnected"
57													}
58
59									default:
60													print(central.state)
61									}
62
63
64					}
65

10.	 The	next	step	is	to	determine	if	you	have	established	a	connection
to	the	heart	rate	monitor.	Add	the	didDiscoverPeripheral
and	didDiscoverServices	functions.	When	you	establish	a
local	connection	to	a	peripheral,	the	central	manager	object	calls	the
didConnectPeripheral	method	of	its	delegate	object.

In	the	implementation,	we	first	set	the	view	controller	to	be	the
delegate	of	the	peripheral	object	so	that	it	can	notify	the	view
controller.	If	no	error	occurs,	we	next	ask	the	peripheral	to	discover
the	services	associated	with	the	device.	Then	we	determine	the
peripheral’s	current	state	to	see	if	we	have	established	a	connection.

Listing	16-4.	Add	the	didDiscoverPeripheral	and

didDiscoverServices	functions

66					func	centralManager(central:	
CBCentralManager,	didDiscoverPeripheral	
peripheral:	CBPeripheral,	advertisementData:	
[String	:	AnyObject],	RSSI:	NSNumber)	{
67
68									connectingPeripheral	=	peripheral
69									connectingPeripheral.delegate	
=	self
70									
centralManager.connectPeripheral(connectingPeripheral,
	options:	nil)
71									connectedOutlet.text	=	"Connected"
72					}
73
74					func	centralManager(central:	
CBCentralManager,	didConnectPeripheral	
peripheral:								CBPeripheral)	{
75
76									peripheral.discoverServices(nil)
77					}

79					func	peripheral(peripheral:	
CBPeripheral,	didDiscoverServices	error:	
NSError?)	{
80
81									if	let	actualError	=	error{
82													print("\(actualError)")
83									}
	84									else	{
	85													for	service	in	
peripheral.services	as	[CBService]!	{
	86																	
peripheral.discoverCharacteristics(nil,	
forService:	service)
	87													}
	88									}
	89					}
	90

11.	 Now	add	the	didDiscoverCharacteristicsForService
function,	as	shown	in	Listing	16-5.

This	function	lets	you	determine	the	characteristics	the	service	has.
First,	we	check	if	the	service	is	the	heart	rate	service.	Then,	we
iterate	through	the	characteristics	array	and	determine	if	any	of	the

characteristics	are	a	heart	rate	monitor	notification	characteristic.	If
so,	we	subscribe	to	this	characteristic,	which	tells	the
CBCentralManager	to	notify	us	when	the	characteristic	changes.

If	the	characteristic	is	the	body	location	characteristic,	there	is	no
need	to	subscribe.	You	just	read	the	value.

If	the	service	is	the	device	info	service,	look	for	the	manufacturer
name	and	read	it.

Listing	16-5.	Add	the	didDiscoverCharacteristicsForService
function

	91					func	peripheral(peripheral:	
CBPeripheral,	
didDiscoverCharacteristicsForService	
								service:	CBService,	error:	NSError?)	
{
	92
	93									if	let	actualError	=	error	{
	94													print("\(actualError)")
	95									}
	96									else	{
	97
	98													if	service.UUID	==	
CBUUID(string:"180D")	{
	99																	for	characteristic	in	
(service.characteristics	as	
																				[CBCharacteristic]?)!																
	
																{
100																					switch	
characteristic.UUID.UUIDString	{
101
102																					case	"2A37":
103																									//	Set	
notification	on	heart	rate	measurement
104																									print("Found	
a	Heart	Rate	Measurement	Characteristic")
105																									
peripheral.setNotifyValue(true,	
forCharacteristic:	characteristic)
106
107																					case	"2A38":
108																									//	Read	body	
sensor	location
109																									print("Found	
a	Body	Sensor	Location	Characteristic")

110																									
peripheral.readValueForCharacteristic(characteristic)
111
112																					case	"2A39":
113																									//	Write	heart	
rate	control	point
114																									print("Found	
a	Heart	Rate	Control	Point	Characteristic")
115
116																									var	rawArray:
[UInt8]	=	[0x01];
117																									let	data	
=	NSData(bytes:	&rawArray,	length:	
rawArray.count)
118																									
peripheral.writeValue(data,	
forCharacteristic:	characteristic,	
																												type:	
CBCharacteristicWriteType.WithoutResponse)
119
120																					default:
121																									print("")
122																					}
123
124																	}
125													}
126									}
127					}

To	understand	how	to	interpret	the	data	from	a	BLE	characteristic,
you	need	to	check	the	Bluetooth	specification.	For	this	example,
visit
https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?
u=org.bluetooth.characteristic.heart_rate_measurement.xml

A	heart	rate	measurement	consists	of	a	number	of	flags,	followed	by
the	heart	rate	measurement	itself,	energy	information,	and	other
data.

Add	the	update	function	shown	in	Listing	16-6.	The	update
function	is	called	each	time	the	peripheral	sends	new	data.

The	update	function	converts	the	contents	of	the	characteristic
value	to	a	data	object.	Next,	you	get	the	byte	sequence	of	the	data
object.	Then,	you	calculate	the	bpm	variable,	which	will	store	the
heart	rate	information.

To	calculate	the	BPM,	we	obtain	the	first	byte	at	index	0	in	the

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml

array	as	defined	by	buffer[0]	and	mask	out	all	but	the	first	bit.
The	result	returned	will	either	be	0,	which	means	that	the	first	bit	is
not	set,	or	1	if	it	is	set.	If	the	first	bit	is	not	set,	retrieve	the	BPM
value	at	the	second	byte	location	at	index	1	in	the	array	and	convert
it	to	a	16-bit	value	based	on	the	host’s	native	byte	order.

12.	 Add	the	pulse	function.	Output	the	value	of	BPM	to	your
bpmOutlet	UILabel.	Set	up	a	timer	object	that	calls	pulse	at
0.8-second	intervals;	this	performs	the	basic	animation	that
simulates	the	beating	of	a	heart	through	the	use	of	Core	animation,
as	shown	in	Listing	16-7.

Listing	16-6.	Add	the	update	function

129	func	update(heartRateData:NSData){
130									var	buffer	=	[UInt8](count:	
heartRateData.length,	repeatedValue:	0x00)
131									heartRateData.getBytes(&buffer,	
length:	buffer.count)
132
133									var	bpm:	UInt16?
134									if	(buffer.count	>=	2){
135													if	(buffer[0]	&	0x01	==	0){
136																	bpm	=	UInt16(buffer[1]);
137													}else	{
138																	bpm	=	UInt16(buffer[1])	
<<	8
139																	bpm	=		bpm!	
|	UInt16(buffer[2])
140													}
141									}
142
143									if	let	actualBpm	=	bpm{
144													print("actualBpm	\
(actualBpm)")
145													self.bpmOutlet.text	
=	String(actualBpm)
146
147													let	rate	=	60.0	
/	Float(self.heartRate)
148													print("\(rate)")
149													
self.saveHeartRateIntoHealthStore(Double(actualBpm))
150
151													let	oldBpm	=	self.heartRate
152													self.heartRate	=	actualBpm
153													if	(oldBpm	==	0)	{

154																	pulse()
155																	self.pulseTime	
=	NSTimer.scheduledTimerWithTimeInterval(0.8,	
target:	self,
156																					selector:	"pulse",	
userInfo:	nil,	repeats:	false)
157													}
158
159									}else	{
160													print("bpm	\(bpm)")
161													self.bpmOutlet.text	=	"\
(bpm)"
162									}
163					}

Listing	16-7.	The	pulse	function

165	func	pulse()	{
166									let	pulseAnimation	
=	CABasicAnimation(keyPath:	
"transform.scale")
167
168									pulseAnimation.toValue	
=	NSNumber(float:	1.2)
169									pulseAnimation.fromValue	
=	NSNumber(float:	1.0)
170
171
172									pulseAnimation.duration	=	0.2
173									pulseAnimation.repeatCount	=	1
174									pulseAnimation.autoreverses	
=	true
175									pulseAnimation.timingFunction	
=	CAMediaTimingFunction(name:	
												kCAMediaTimingFunctionEaseIn)
176									
heartView.layer.addAnimation(pulseAnimation,	
forKey:	"scale")
177									let	rate	=	60.0	
/	Float(self.heartRate)
178									self.pulseTime	
=	NSTimer.scheduledTimerWithTimeInterval(NSTimeInterval(rate),
	target:													self,	selector:	"pulse",	
userInfo:	nil,	repeats:	false)
179					}

13.	 Now	add	the	didUpdateValueForCharacteristic

function,	as	shown	in	Listing	16-8.	The
didUpdateValueForCharacteristic	function	will	be
called	when	CBPeripheral	reads	a	value	or	updates	a	value
periodically.	We	need	to	implement	this	method	to	check	to	see
which	characteristic’s	value	has	been	updated,	and	then	call	one	of
the	helper	methods	to	read	in	the	value.

Listing	16-8.	Add	the	didUpdateValueForCharacteristic	function

181					func	peripheral(peripheral:	
CBPeripheral,	didUpdateValueForCharacteristic	
characteristic:									CBCharacteristic,	
error:	NSError?)	{
182									if	let	actualError	=	error{
183													print("\(actualError)")
184
185									}	else	{
186													switch	
characteristic.UUID.UUIDString	{
187													case	"2A37":
188																	
update(characteristic.value!)
189													default:
190																	print("")
191													}
192									}
193					}

14.	 Add	the	saveHeartRateIntoHealthStore	function,	as
shown	in	Listing	16-9.

In	this	function,	you	first	create	a	sample	object	using
HKQuantitySample.	In	order	to	create	this	sample,	you	need:

A	Quantity	type	object,	like
HKQuantityType,	initialized	using	the
proper	sample	type.

A	Quantity	sample,	like	HKQuantity’s	start
and	end	date,	which	in	this	case	is	the	current
date	and	time	in	both	cases.

Listing	16-9.	Add	the	saveHeartRateIntoHealthStore	function

195	//	healthkit	info
196					private	func	
saveHeartRateIntoHealthStore(height:Double)	-
>	Void

197					{
198									//	Save	the	user’s	heart	rate	
into	HealthKit.
199									let	heartRateUnit:	HKUnit	
=	HKUnit.countUnit().unitDividedByUnit(HKUnit.minuteUnit())
200									let	heartRateQuantity:	HKQuantity	
=	HKQuantity(unit:	heartRateUnit,	
doubleValue:													height)
201
202									let	heartRate	:	HKQuantityType	
=											HKQuantityType.quantityTypeForIdentifier(HKQuantityTypeIdentifierHeartRate)!
203									let	nowDate:	NSDate	=	NSDate()
204
205									let	heartRateSample:	
HKQuantitySample	=	HKQuantitySample(type:	
heartRate
206													,	quantity:	
heartRateQuantity,	startDate:	nowDate,	
endDate:	nowDate)
207
208									
self.healthKitStore.saveObject(heartRateSample)
	{	(success:Bool,	error:NSError?)	->	
												Void	in
209													print("done")
210									}
211					}

15.	 Add	the	requestAuthorizationForHealthStore
function	as	shown	in	Listing	16-10.	You’re	creating	a	Set	with	all
the	types	you	need	to	read	from	the	HealthKit	store.	Characteristics
(blood	type,	sex,	and	birthday),	samples	(body	mass	and	height),
and	workouts.

Then	you	check	if	the	HealthKit	store	is	available.	For	universal	apps,	this	is	crucial
because	HealthKit	may	not	be	available	on	every	device.	Finally,	the	app	performs	the
actual	authorization	request;	it	invokes	requestAuthorizationToShareTypes
with	the	previously	defined	types	for	reads.	Now	that	your	code	knows	how	to	request
authorization,	you	need	to	create	a	way	for	your	app	to	invoke	it.

Listing	16-10.	Add	the	requestAuthorizationForHealthStore	function

208					private	func	requestAuthorizationForHealthStore()	{
209
210									let	dataTypesToRead	=	Set(arrayLiteral:
211													
HKObjectType.characteristicTypeForIdentifier(HKCharacteristicTypeIdentifier

	DateOfBirth)!,
212													
HKObjectType.quantityTypeForIdentifier(HKQuantityTypeIdentifierBodyMass)!,
213													
HKObjectType.quantityTypeForIdentifier(HKQuantityTypeIdentifierHeight)!
214)
215
216									//Requesting	the	authorization
217									
healthKitStore.requestAuthorizationToShareTypes(nil,	
readTypes:	dataTypesToRead)	
												{	(success,	error)	->	Void	in
218													if(success)
219													{
220																	print("success")
221													}
222									}
223					}
224

App	Summary
You	are	done	adding	code,	so	run	the	app.	When	the	app	starts,	it	asks	permission	to
access	the	HealthKit	store.	If	this	is	the	first	time	the	app	has	run,	HealthKit	store	asks	the
user	for	permission,	as	shown	in	Figure	16-10.

Figure	16-10.	HealthKit	asking	the	user	permission	to	access	the	app

As	the	app	runs	and	is	displaying	data,	it	is	also	storing	data	in	the	HealthKit	store.	You
can	see	that	data	by	opening	the	Health	App,	as	shown	in	Figure	16-11.

Figure	16-11.	The	heart	rate	data	being	stored	in	the	HealthKit	store

If	you	want	to	view	the	heart	rate	data	in	the	Health	app’s	dashboard	(Figure	16-12),	you
need	to	enable	the	Show	on	Dashboard	switch,	as	shown	in	Figure	16-11.

Figure	16-12.	The	heart	rate	data	being	displayed	in	the	dashboard

What’s	Next?
You	did	it!	You	should	have	a	great	foundation	to	write	outstanding	apps.	The	best	place
to	start	is	with	your	own	idea	for	an	app.	Start	writing	it	today.	You	are	going	to	have	lots
of	questions.	That	is	how	you	are	going	to	continue	to	learn.	Keep	moving	forward	and
don’t	stop,	no	matter	if	you	get	discouraged	sometimes.

If	you	do	get	discouraged,	visit	www.xcelMe.com/forum.	There	are	great	resources
on	this	site	for	finding	answers	to	your	questions.	There	is	a	topic	for	this	book	and	each
chapter	in	the	book.	Feel	free	to	post	your	own	questions.	The	authors	of	this	book	help
answer	the	posts.	Also,	there	are	free	videos	on	www.xcelMe.com.	In	the	live	sessions,
you	can	ask	questions	to	Gary	Bennett.	Just	click	the	Free	Videos	tab	at	the	top	of	the
page,	as	shown	in	Figure	16-13.

http://www.xcelMe.com/forum
http://www.xcelMe.com

Figure	16-13.	Free	live	Swift	2.0	training	videos	and	forum

Good	luck	and	have	fun!

Exercises
Enable	the	app	to	read	data	from	the	HealthKit	store

Enable	the	app	to	connect	and	disconnect	to	the	heart	rate	monitor

Enable	the	users	to	set	visual	and	audible	alarms	when	their	heart
rate	gets	too	high

Index
		A

Apple	Developer	Program

Apple	Watch	and	watchKit

creation

adding	label

adding	table

Assistant	Editor

bookLabel	outlet

BookRow

BookStore

BookStore	WatchKit	app

control-dragging

data	files

expanding	label

InterfaceController	class

InterfaceController.swift	file

Interface	storyboard

lines	attribute

myBookStore

new	targets

Table	Row	Controller

table	row	identifier

WatchKit	app	launch

WatchKit	target

watchOS	options

Xcode	7

functionality

Detail	Controller	Scene

DetailController.swift

detail	view	scene

new	controller	class

new	controller	file

new	labels

segue

watchOS	app

Apps	design

condition-controlled	loop

count-controlled	loop

flowchart

forced	unwrapping

infinite	loop

optionals

implicitly	unwrapped

optional	binding

pseudocode

conditional	operators

definition

logical	operators

arc4random_uniform()function

		B
Balsamiq

Bluetooth’s	low	energy	(BLE)	device

bundle	identifier

central	device

centralManagerDidUpdateState	function

didDiscoverCharacteristicsForService	function

didDiscoverPeripheral	function

didDiscoverServices	function

HealthKit	capabilities

HealthKit.framework

HealthKitStore	object

heart	rate	data

Heart	Rate	Monitor	app

peripheral	device

advertising

CBCharacteristic	object

CBPeripheral	object

CBService	object

data	structure

project	naming

pulse	function

requestAuthorizationForHealthStore	function

saveHeartRateIntoHealthStore	function

single	view	application

training	videos	and	forum

update	function

user	permission

ViewController.swift	file

viewDidAppear	method

Bookstore	app

access	variables

add	book	function

add	description

add	properties

addBookSegue

AddBookViewController

identifying	addBook	Segue

identity	inspector

landmarks

objects

pages	and	readThisBook

Show	Segue	object

swift	class	creation

swift	file	and	adding	code

alert	view	controllers

adding	delegate	method

adding	pages	and	read	outlets

adding	segue	object

delete	button	bar

modifying	configureView

prepareForSegue	function

segue’s	identifier

UIAlertViewController

boilerplate	project

button	bar	item

class	creation

data	model	class

DetailViewController

edit	and	delete	function

instance	variables

master-detail	application

MasterViewControlle

product	application

Swift	file

switches

view	creation

BookStoreCoreData.xcdatamodeld

attributes

date

decimal

integer	32

string

Data	Model	Inspector

entity

fetched	properties

interface	creation

Assistant	Editor	button

Attributes	Inspector

Bar	Button	Item

code	implementation

connection	setup

Document	Outline

hook	up

identifier

Navigation	Controller

Table	View

UIBarButtonItem

UITableViewCell

managed	objects

NSManagedObject

relationships

Boolean	logic

AND	operator

comparison	operators

NAND	operator

NOR	operator

NOT	operator

OR	operator

XOR	operator

Breakpoint	navigator

Bugs

		C
Classes

instance	variables

methods

initializers

instance

type

RadioStations

action	creation

adding	objects

Assistant	Editor	icon

buttonClick	method

class	methods

company	identifier

connections

execution

iPhone	application

Label	object

single	view	application

stationName	instance	variable

user	interface	creation

workspace	window

writing	class

Xcode	documentation

help	menu

string	class

Comparing	data

Boolean	expression

Bool	and	number	variables

comparing	strings

some_code()	method

Boolean	logic

comparing	numbers

comparison	operators

switch	statement

combining	comparisons

if	statement

NSComparisonResult

NSDate	class

variable

Xcode	app

AppDelegate.swift	file

debugger	window

didFinishLaunchingWithOptions

Launch	Xcode

NSLog	function

NSLog	output

project	type	and	name

Single	View	Application

configureView()	method

		D,	E

Data

bits

Apple’s	A8	processor

definition

Moore’s	law

bytes

constant

explicit	variables

hexadecimal	system

implicit	variables

optionals

playground

types

Unicode

Data	storage

database

Core	Data,	iOS	(See	Also	BookStoreCoreData.xcdatamodeld)

definition

SQLite	(See	SQLite)

iPhone

Mac

preferences	file

reading	preferences

writing	preferences

Debugging

controls

definition

NSLog	function

OOP

variables

with	Xcode	debugger

Debug	navigator

Delegation

definition

guessing	game	app

auto	layout

class	listing

GuessInputViewController

home	view

IBAction	function

intializations

outlet	objects

prepareForSegue	function

project	creation

RandomNumber	function

segue	identifier

user	input	view

variable	declarations

View	Controller

viewDidLoad	function

didUpdateValueForCharacteristic	function

		F,	G
Find	navigator

		H
HealthKit	iPhone	app

Core	Bluetooth	framework	See	(Bluetooth’s	low	energy	(BLE)	device)

Health	app	dashboard

Human	Interface	Guidelines	(HIG)

		I,	J,	K
Integrated	development	environment	(IDE)

Interface	Builder

actions	and	outlets

HIGs

iPhone	app

actions

disable	autolayout

document	outline

inspector	pane

iPhone	simulator

Library

naming

new	group	creation

objects	centering

outlets

random	number	generator

seed	and	generate	methods

selector	bar

single	view	application

source	files

storyboard	resolvers

view	creation

MVC	pattern

architectural

objects

OOP

schematic	representation

software	development

storyboard/XIB	file

workspace	window

XML	file	format

iOS	developer

algorithm

bugs

computer	program

debugging

design	requirements

iTunes	App	Store

object-oriented	programming

OmniGraffle

playground	interface

quality	assurance

testing

UI

Woodforest	mobile	banking

Issue	navigator

		L
Language	symbols

logMessage	method

		M
MasterViewController.swift	viewDidLoad	method

Model-View-Controller	(MVC)

architectural	patterns

objects

OOP

schematic	representation

software	development

		N
NSUserDefaults	class

		O
Objective-C

Object-oriented	programming	(OOP)

class

Book	class

Bookstore	class

customer	class

definition

implementation

instance

planning	methods

Sale	class

debugging

eliminate	redundant	code

inheritance

interface

methods

object

definition

methods

properties

playground	applications

polymorphism

principles

properties

replacement

state

UITableView	object

Objects	implementation

OmniGraffle

OOP.	See	Object-oriented	programming	(OOP)

		P
Preferences	file

Programming

Array	class

bookstore	application

access	variables

add	description

add	properties

boilerplate	project

class	creation

data	model	class

DetailViewController

instance	variables

master-detail	application

MasterViewController

product	application

Swift	file

view	creation

collection

Dictionary	class

let	vs.	var

Project	navigator

Protocols

definition

guessing	game	app

auto	layout

class	listing

GuessInputViewController

home	view

IBAction	function

intializations

outlet	objects

prepareForSegue	function

project	creation

RandomNumber	function

segue	identifier

user	input	view

variable	declarations

View	Controller

viewDidLoad	function

multiple	inheritance

syntax

		Q
Quality	assurance	(QA)

		R
Relational	operators

comparing	numbers

comparison	operators

Xcode	app

AppDelegate.swift	file

debugger	window

didFinishLaunchingWithOptions

Launch	Xcode

NSLog	function

NSLog	output

project	type	and	name

Single	View	Application

removeAtIndex	method

Report	navigator

		S
showName	method

some_code()	method

SQLite

stringForKey	method

Swift	app

code	refactoring

design	requirements

else	if	statement

nest	if	statements

newline	character

output

random	number	generator

Switch	statement

combining	comparisons

if	statement

NSComparisonResult

NSDate	class

variable

Symbol	navigator

synchronize	function

		T
Test	navigator

		U,	V
UITableView	object

Unified	Modeling	Language	(UML)

User	interfaces	(UI)

creating	See	Also	(Interface	Builder)

design

Xcode

		W
Woodforest

Woodforest	mobile	banking

		X,	Y,	Z
Xcode

assistant	editor

installation

Interface	Builder

launch

navigator	selector	bar

opening	screen

playground	window

project	creation

@IBOutlet	and	@IBAction

app	running

Button	object

button’s	connection	menu

context-sensitive	editor

didReceiveMemoryWarning

iOS	Application

iPhone	interface	objects

Label	object

label’s	size	expantion

main	screen

Main.storyboard	file

Object	Library

object’s	variable	selection

referencing	outlet

Setting	up

showName	method

storyboard	file

templates	list

toolbars

Touch	Up	Inside

View	buttons

ViewController.swift	file

viewDidLoad

project	editor

source	editor

standard	editor

user	interface

version	editor

workspace	window

Xcode	debugger

BookStore	project

Breakpoint	Navigator

breakpoint	settings

Build	and	Debug	buttons

code	errors

code	warnings

console

Debug	build	configuration

debugging	controls

definition

interrupted	program	execution

Issue	navigator

stack	trace

step	control

configureView()	method

debugging	variables

self.configureView()

Step	Into	button

Step	Out	button

thread	window	and	call	stack

Variables	view

Xcode	documentation

help	menu

string	class

Xcode	playground	IDE

editor	area

results	area

	Title
	Copyright
	Dedication
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Becoming a Great iOS Developer
	Thinking Like a Developer
	Completing the Development Cycle
	Introducing Object-Oriented Programming
	Working with the Playground Interface
	Summary
	What’s Next
	Exercises

	Chapter 2: Programming Basics
	Touring Xcode
	Exploring the Workspace Window
	Navigating Your Workspace
	Editing Your Project Files

	Creating Your First Swift Playground Program
	Installing and Launching Xcode 7
	Using Xcode 7

	Xcode Playground IDE: Editor and Results Areas
	Summary
	Exercise

	Chapter 3: It’s All About the Data
	Numbering Systems Used in Programming
	Bits
	Bytes
	Hexadecimal
	Unicode

	Data Types
	Declaring Constants and Variables
	Optionals
	Using Variables in Playgrounds
	Summary
	Exercises

	Chapter 4: Making Decisions, Program Flow, and App Design
	Boolean Logic
	Truth Tables
	Comparison Operators

	Designing Apps
	Pseudocode
	Optionals and Forced Unwrapping
	Flowcharting
	Designing and Flowcharting an Example App
	The App’s Design
	Using Loops to Repeat Program Statements

	Coding the Example App in Swift
	Nested if Statements and else if Statements
	Removing Extra Characters
	Improving the Code Through Refactoring
	Running the App
	Design Requirements

	Summary
	Exercises

	Chapter 5: Object-Oriented Programming with Swift
	The Object
	What Is a Class?
	Planning Classes
	Planning Properties
	Planning Methods
	Implementing the Classes

	Inheritance
	Why Use OOP?
	OOP Is Everywhere
	Eliminate Redundant Code
	Ease of Debugging
	Ease of Replacement

	Advanced Topics
	Interface
	Polymorphism

	Summary
	Exercises

	Chapter 6: Learning Swift and Xcode
	A Newcomer
	Understanding the Language Symbols
	Implementing Objects in Swift
	Writing Another Program in Xcode
	Creating the Project

	Summary
	Exercises

	Chapter 7: Swift Classes, Objects, and Methods
	Creating a Swift Class
	Instance Variables
	Methods

	Using Your New Class
	Creating Your Project
	Adding Objects
	Writing the Class
	Creating the User Interface
	Hooking Up the Code
	Running the Program
	Taking Class Methods to the Next Level

	Accessing the Xcode Documentation
	Summary
	Exercises

	Chapter 8: Programming Basics in Swift
	Using let vs. var
	Understanding Collections
	Using Arrays
	Using the Dictionary Class
	Creating the BookStore Application
	Creating Your Class
	Introducing Properties
	Accessing Variables

	Finishing the BookStore Program
	Creating the View
	Adding Properties
	Adding a Description
	Creating a Simple Data Model Class
	Modifying MasterViewController
	Modifying the DetailViewController

	Summary
	Exercises

	Chapter 9: Comparing Data
	Revisiting Boolean Logic
	Using Relational Operators
	Comparing Numbers
	Creating an Example Xcode App

	Using Boolean Expressions
	Comparing Strings

	Using the switch Statement
	Comparing Dates
	Combining Comparisons

	Summary
	Exercises

	Chapter 10: Creating User Interfaces
	Understanding Interface Builder
	The Model-View-Controller Pattern
	Human Interface Guidelines
	Creating an Example iPhone App with Interface Builder
	Using Interface Builder
	The Document Outline
	The Library
	Inspector Pane and Selector Bar
	Creating the View
	Using Outlets
	Using Actions
	The Class

	Summary
	Exercises

	Chapter 11: Storing Information
	Storage Considerations
	Preferences
	Writing Preferences
	Reading Preferences

	Databases
	Storing Information in a Database
	Getting Started with Core Data
	The Model
	Managed Object Context
	Setting Up the Interface

	Summary
	Exercises

	Chapter 12: Protocols and Delegates
	Multiple Inheritance
	Understanding Protocols
	Protocol Syntax
	Delegation
	Protocol and Delegation Example
	Getting Started
	How It Works
	Summary
	Exercise

	Chapter 13: Introducing the Xcode Debugger
	Getting Started with Debugging
	Setting Breakpoints
	Using the Breakpoint Navigator
	Debugging Basics
	Working with the Debugger Controls

	Using the Step Controls
	Looking at the Thread Window and Call Stack
	Debugging Variables

	Dealing with Code Errors and Warnings
	Errors
	Warnings

	Summary

	Chapter 14: A Swift iPhone App
	Let’s Get Started
	App Summary
	Exercises

	Chapter 15: Apple Watch and watchKit
	Considerations When Creating a watchOS App
	Creating an Apple Watch App
	Adding More Functionality
	Summary
	Exercises

	Chapter 16: A Swift HealthKit iPhone App
	Introduction to Core Bluetooth
	Central and Peripheral Devices
	Peripheral Advertising
	Peripheral Data Structure

	Let’s Get Started and Build the App
	App Summary
	What’s Next?
	Exercises

	Index

