for Absolute Beginners

SECOND EDITION

Gary Bennett | Brad Lees

APIess”

Swift 2 for Absolute Beginners

Gary Bennett
Brad Lees
APIESS®

Swift 2 for Absolute Beginners
Copyright © 2015 by Gary Bennett and Brad Lees

This work is subject to copyright. All rights are reserved by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation,
reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms
or in any other physical way, and transmission or information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied
specifically for the purpose of being entered and executed on a computer system, for
exclusive use by the purchaser of the work. Duplication of this publication or parts
thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be
obtained from Springer. Permissions for use may be obtained through RightsLink at
the Copyright Clearance Center. Violations are liable to prosecution under the
respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1489-3
ISBN-13 (electronic): 978-1-4842-1488-6

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we
use the names, logos, and images only in an editorial fashion and to the benefit of the
trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at
the date of publication, neither the authors nor the editors nor the publisher can
accept any legal responsibility for any errors or omissions that may be made. The
publisher makes no warranty, express or implied, with respect to the material
contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Development Editor: Douglas Pundick
Technical Reviewer: Stefan Kaczmarek

Editorial Board: Steve Anglin, Louise Corrigan, James DeWolf, Jonathan
Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Susan McDermott, Matthew Moodie, Jeffrey Pepper, Douglas
Pundick, Ben Renow-Clarke, Gwenan Spearing, Steve Weiss

Coordinating Editors: Kevin Walter and Mark Powers

Copy Editor: Kezia Endsley

Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New
York, 233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER,
fax (201) 348-4505, e-mail orders-ny@springer-sbm. com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the

sole member (owner) is Springer Science + Business Media Finance Inc (SSBM
Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
WWW.apress.Ccom.

Apress and friends of ED books may be purchased in bulk for academic, corporate,
or promotional use. eBook versions and licenses are also available for most titles. For
more information, reference our Special Bulk Sales—eBook Licensing web page at
www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text
is available to readers at www.apress.com/9781484214893 or

http://forum.xcelme.com. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also

access source code at SpringerLink in the Supplementary Material section for each
chapter.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781484214893
http://http://forum.xcelme.com
http://www.apress.com/source-code/

Gary would like to dedicate this book to wife Stefanie and children,
Michael, Danielle, Michelle, and Emily, for always supporing him.

Brad would like to dedicate this book to his wife Natalie, for always
supporting him. He couldn’t do it without her.

Contents at a Glance

About the Authors
About the Technical Reviewer
Acknowledgments
Introduction
Chapter 1: Becoming a Great iOS Developer
Chapter 2: Programming Basics
Chapter 3: It’s All About the Data
Chapter 4: Making Decisions, Program Flow, and App Design
Chapter 5: Object-Oriented Programming with Swift
Chapter 6: Learning Swift and Xcode
Chapter 7: Swift Classes, Objects, and Methods
Chapter 8: Programming Basics in Swift
Chapter 9: Comparing Data
Chapter 10: Creating User Interfaces
Chapter 11: Storing Information
Chapter 12: Protocols and Delegates
Chapter 13: Introducing the Xcode Debugger
Chapter 14: A Swift iPhone App
Chapter 15: Apple Watch and watchKit
Chapter 16: A Swift HealthKit iPhone App

Index

Contents

About the Authors
About the Technical Reviewer
Acknowledgments
Introduction
Chapter 1: Becoming a Great iOS Developer
Thinking Like a Developer
Completing the Development Cycle
Introducing Object-Oriented Programming
Working with the Playground Interface
Summary
What’s Next
Exercises
Chapter 2: Programming Basics

Touring Xcode

Exploring the Workspace Window
Navigating Your Workspace
Editing Your Project Files

Creating Your First Swift Playground Program

Installing and Launching Xcode 7
Using Xcode 7

Xcode Playground IDE: Editor and Results Areas
Summary
Exercise

Chapter 3: It’s All About the Data

Numbering Systems Used in Programming
Bits
Bytes
Hexadecimal

Unicode

Data Types
Declaring Constants and Variables
Optionals
Using Variables in Playgrounds
Summary
Exercises
Chapter 4: Making Decisions, Program Flow, and App Design

Boolean Logic
Truth Tables
Comparison Operators
Designing Apps
Pseudocode
Optionals and Forced Unwrapping
Flowcharting
Designing and Flowcharting an Example App
The App’s Design
Using Loops to Repeat Program Statements

Coding the Example App in Swift

Nested if Statements and else if Statements
Removing Extra Characters

Improving the Code Through Refactoring
Running the App

Design Requirements
Summary
Exercises

Chapter 5: Object-Oriented Programming with Swift
The Object
What Is a Class?

Planning Classes

Planning Properties
Planning Methods

Implementing the Classes

Inheritance

Why Use OOP?

OOP Is Everywhere
Eliminate Redundant Code
Ease of Debugging

Ease of Replacement

Advanced Topics

Interface

Polymorphism
Summary
Exercises

Chapter 6: Learning Swift and Xcode
A Newcomer
Understanding the Language Symbols
Implementing Objects in Swift

Writing Another Program in Xcode

Creating the Project
Summary
Exercises
Chapter 7: Swift Classes, Objects, and Methods
Creating a Swift Class

Instance Variables

Methods

Using Your New Class
Creating Your Project
Adding Objects
Writing the Class
Creating the User Interface
Hooking Up the Code
Running the Program

Taking Class Methods to the Next Level

Accessing the Xcode Documentation
Summary

Exercises

Chapter 8: Programming Basics in Swift
Using let vs. var
Understanding Collections
Using Arrays
Using the Dictionary Class
Creating the BookStore Application

Creating Your Class
Introducing Properties

Accessing Variables

Finishing the BookStore Program

Creating the View

Adding Properties

Adding a Description

Creating a Simple Data Model Class
Modifying MasterViewController
Modifying the Detail ViewController

Summary
Exercises

Chapter 9: Comparing Data
Revisiting Boolean Logic

Using Relational Operators

Comparing Numbers

Creating an Example Xcode App

Using Boolean Expressions
Comparing Strings
Using the switch Statement

Comparing Dates

Combining Comparisons

Summary
Exercises
Chapter 10: Creating User Interfaces

Understanding Interface Builder

The Model-View-Controller Pattern
Human Interface Guidelines

Creating an Example iPhone App with Interface Builder

Using Interface Builder

The Document Outline

The Library

Inspector Pane and Selector Bar
Creating the View

Using Outlets

Using Actions

The Class

Summary
Exercises

Chapter 11: Storing Information
Storage Considerations

Preferences

Writing Preferences

Reading Preferences
Databases
Storing Information in a Database
Getting Started with Core Data
The Model

Managed Object Context
Setting Up the Interface

Summary
Exercises
Chapter 12: Protocols and Delegates
Multiple Inheritance
Understanding Protocols
Protocol Syntax
Delegation

Protocol and Delegation Example

Getting Started
How It Works
Summary

Exercise

Chapter 13: Introducing the Xcode Debugger

Getting Started with Debugging

Setting Breakpoints

Using the Breakpoint Navigator
Debugging Basics

Working with the Debugger Controls

Using the Step Controls

Looking at the Thread Window and Call Stack
Debugging Variables

Dealing with Code Errors and Warnings

Errors

Warnings
Summary
Chapter 14: A Swift iPhone App
Let’s Get Started
App Summary
Exercises

Chapter 15: Apple Watch and watchKit

Considerations When Creating a watchOS App

Creating an Apple Watch App
Adding More Functionality
Summary

Exercises

Chapter 16: A Swift HealthKit iPhone App

Introduction to Core Bluetooth

Central and Peripheral Devices

Peripheral Advertising

Peripheral Data Structure

Let’s Get Started and Build the App
App Summary

What’s Next?

Exercises

Index

About the Authors

Gary Bennett is president of xcelMe . com, which provides iOS programming courses
online. By day, Gary develops iOS apps professionally, and by night, he teaches iOS
programming. For more than six years, Gary has taught thousands of students how to
develop iPhone/iPad apps and has several popular apps in the iTunes App Store. Gary has
a bachelor’s degree in computer science and has worked for 25 years in the technology
and defense industries. He served 10 years in the U.S. Navy as a nuclear engineer aboard
two nuclear submarines. After leaving the Navy, Gary worked for several companies as a
software developer, CIO, and president. As CIO, he helped take VistaCare public in 2002.
Gary also coauthored two editions of Objective-C for Absolute Beginners and iPhone Cool
Projects for Apress. He lives in Scottsdale, Arizona, with his wife Stefanie and their four
children.

http://www.xcelMe.com

Brad Lees has more than 16 years of experience in application development and server
management. He has specialized in creating and initiating software programs in financial
institutions, credit card processing, point-of-sale systems, and real estate development.

His professional career highlights have been lead iOS developer at Apriva, owner of
Innovativeware, product development manager for Smarsh, and vice president of
application development for iNation. Brad also coauthored two editions of Objective-C for
Absolute Beginners.

A graduate of Arizona State University, Brad resides in Phoenix with his wife Natalie with
their five children.

About the Technical Reviewer

Stefan Kaczmarek has more than 15 years of software development experience
specializing in mobile applications, large-scale software systems, project management,
network protocols, encryption algorithms, and audio/video codecs. As chief software
architect and cofounder of SKJM, LLC, Stefan developed a number of successful mobile
applications including iCam (which has been featured on CNN, Good Morning America,
and The Today Show, and which was chosen by Apple to be featured in the “Dog Lover”
iPhone 3GS television commercial) and iSpy Cameras (which held the #1 Paid iPhone
App ranking in a number of countries around the world including the United Kingdom,
Ireland, Italy, Sweden, and South Korea). Stefan resides in Phoenix, Arizona with his wife
Veronica and their two children.

Acknowledgments

We would like to thank Apress for all their help in making this book possible. Specifically,
we would like to thank Kevin Walter, our coordinating editor, and Michelle Lowman, our
acquisitions editor, for helping us stay focused and overcoming many obstacles. Without
Kevin and Michelle, this book would not have been possible.

Special thanks to Douglas Pundick, our development editor, for all his suggestions during
the editorial review process to help make this a great book. Thanks to Kezia Endsley, the
copy editor, who made the book look great.

Introduction

Over the past three years, we’ve heard the following countless times:

“I’ve never programmed before, but I have a great idea for an
iPhone/iPad app.”

“Can I really learn to program the iPhone or iPad?”

To the latter we answer, “Yes, but you have to believe you can.” Only you are going to tell
yourself you can’t do it.

For the Newbie

This book assumes you have never programmed before. The book is also written for
someone who may have programmed before but never using object-oriented programming
(OOP) languages. There are several Swift books out there, but all of these books assume
you have programmed before and know OOP and computer logic. We wanted to write a
book that takes readers from knowing little or nothing about computer programming and
logic to being able to program in Swift. After all, Swift is a native programming language
for the iPhone, iPad, and Mac.

Over the past six years, we have taught thousands of students at xce1Me . com to be
iPhone/iPad (i0S) developers. Many of our students have developed some of the most
successful iOS apps in their category in the iTunes App Store. We have incorporated what
we have learned in our first two courses—Introduction to Object-Oriented Programming
and Logic and Swift for iPhone/iPad Developers—into this book.

For the More Experienced

Many developers who programmed years ago or programmed in a non-OOP language
need a background in OOP and logic before they dive into Swift. This book is for you. We
gently walk you through OOP and how it is used in iOS development to help make you a
successful iOS developer.

How This Book Is Organized

You’ll notice that we are all about successes in this book. We introduce the OOP and logic
concepts in playgrounds and then move those concepts to Xcode and Swift. Many students
are visual learners or learn by doing. We use both techniques. We’ll walk you through
topics and concepts with visual examples and then take you through step-by-step
examples that reinforce the concepts.

We often repeat topics in different chapters to reinforce what you have learned and apply
these skills in new ways. This enables new programmers to reapply development skills

http://www.xcelMe.com

and feel a sense of accomplishment as they progress. Don’t worry if you feel you haven’t
mastered a topic. Keep moving forward!

The Formula for Success

Learning to program is an interactive process between your program and you. Just like
learning to play an instrument, you have to practice. You must work through the examples
and exercises in this book. Understanding the concept doesn’t mean you know how to
apply it and use it.

You will learn a lot from this book. You will learn a lot from working through the
exercises in this book. However, you will really learn when you debug your programs.
Spending time walking through your code and trying to find out why it is not working the
way you want is an unparalleled learning process. The downside of debugging is that a
new developer can find it frustrating. If you have never wanted to throw your computer
out the window, you will. You will question why you are doing this and whether you are
smart enough to solve the problem. Programming is humbling, even for the most
experienced developer.

Like a musician, the more you practice, the better you get. By practicing, we mean
programming! You can do some amazing things as a programmer. The world is your
oyster. Seeing your app in the iTunes App Store is one of the most satisfying
accomplishments. However, there is a price, and that price is time spent coding and
learning.

Having taught many students to become iOS developers, we have put together a formula
for what makes students successful. Here is our formula for success:

Believe you can do it. You’ll be the only one who says you can’t do
this. So, don’t tell yourself that.

Work through all the examples and exercises in this book.

Code, code, and keep coding. The more you code, the better you’ll
get.

Be patient with yourself. If you were fortunate enough to have been a
4.0 student who could memorize material just by reading it, this will
not happen with Swift coding. You are going to have to spend time
coding.

You learn by reading this book. You really learn by debugging your
code.

Use the free xcelMe . com webinars and YouTube videos
mentioned at the end of this introduction. The free live and recorded
training videos will be invaluable in quickly becoming a successful
i0OS developer.

Don’t give up!

http://www.xcelMe.com

The Development Technology Stack

We will walk you through the development process for your iOS apps and what
technology you need. However, briefly looking at all the technology pieces together is
helpful. These are the key iOS development technologies you will need to know in order
to build a successful app and get it on the App Store:

Apple’s developer web site

iTunes Connect

Xcode

Swift

Object-oriented programming and logic

Debugging

Performance tuning

We know this is a lot of technology. Don’t worry, we will go through it, and you will
become comfortable using it.

Required Software, Materials, and
Equipment

One of the great things about developing iOS apps is that everything you need to develop
your app is free.

Xcode

Swift

0OSX 10.10 Yosemite

Integrated development environment

iPhone and iPad simulators

All you need to get started is a Mac and knowledge of where to download everything. We
will cover this.

Operating System and IDE

When developing iOS apps, you have to use Xcode and Mac OS X. You can download
both of these for free from the Mac App Store.

05 X Yosemita
Utiliziors

w3

e -
Phobography

MainStage 3
hilusie

WH AW G P

Bocks Authar
Productivety

o o

Aperture

Preatogranhy

ok B0 Alating
STasuiw

* 6

iHHH

&

@
ho = \‘n.'

=

105 X Server
Ui

Fl)

Final Cut Pro

W

FaceTime

Bocay M

3

*x B

Foatured Top Charts

A 9 ¢

Catogorios Purchinses Uipdates

GarageBand

Music
WHhEFR 185 Flate:

Keynate
Productivity
ook AT 174 Aating

Motion

Compressor
Videa

TR W H W 35 Falogs

LAl

Software Development Kits

Apple Remate Desitop

You will need to register as an iOS developer. You can do this for free at
http://developer.apple.com/iphone.

When you are ready to upload your app to the iTunes App Store, you will need to pay $99

Clos ¥ yosemite

Sort By: Foatunes

Ban By: Foatuned

Bori By: Foalunsd

Sort By: | Foatuned
Logic Pro X
Mhusic

Lt 8 8 1 237 FAmtin

Sort By: Foatuned

Appile Configurator
LAt
ek il 5 iatng

per year in order to access iTunes Connect and upload your apps to the App Store.

€

http://developer.apple.com/iphone

‘ DEVE|OpE!’ Technologies Resources Programs Support Member Center

10S Dev Center 105 Dev Center
Hi, Guest Register Login
Access additional resources in the iOS Dev Center. LD
Sign in with the Apple 1D you used to register as an Apple Developer, or register for free today.
Development Resources i0S Developer Program
Documentation and Videos Featured Content App Review
Prepare your apps for the
ii i05 Developer Library & OS5 B for Developers review process.
VYiew the latest decumentation and sample & 105 Design Resources Learn more »
code for iOS 8.
& Xcode Continuous Integration Guide
ST W Start Developing i0S Apps Today App Store Resource Center
Guides s Technical Notes i — Get information on o
» Reference = Technical Q&As PP Listriout = distributing your app on |®i
= Refease Notes W Developing Apps for iPad the App Stare. Sign in »
m 05 App Programming Guide
W (05 Human Interface Guidelines
Development Videos Nl ar Updalt_s
« I057 Tech Talks = WWDC 2014 W Programming with Objective-C Stay up-to-date with the !

latest Apple developer news

m Pr 3 ng with Swif
ogramming with Swift and updates. Learn more »

Downloads

Xcode 6
Download the complete developer toolset for building Mac, iPhone, and iPad apps, including the
Xcode IDE, performance analysis tools, I0S Simulator, and the latest 05 X and iOS SDKs.

Custom B2B Apps Swift Programming Language Apps We Can't Live Without Promote Your Apps

Sell custom business apps directly to Learn about the new programming Watch how developers have changed Use the App Store badge and Apple
your customers who have a Volume anguage for |05 and OF X. the way we all interact, leamn product images (o promole your apps
Purchase F"ch'amacr.o‘.n[entertain, work, and live. on the App Store.,

£ Download on the
L App Store

Dual Monitors

We recommend developers have a second monitor connected to their computers. It is great
to step through your code and watch your output window and iOS simulator at the same
time on dual independent monitors.

Apple hardware makes this easy. Just plug your second monitor into the display port of
any Mac, with the correct Mini DisplayPort adapter, and you have two monitors working
independently of one another. Note that dual monitors are not required. You will just have
to organize your open windows to fit on your screen if you don’t.

% i ASUS V8247 (2) [a] Q)

To rearrange the displays, drag them to the desired position.
To relocate the menu bar, drag it to a different display.

| Mirror Displays

e

AirPlay Display: No Devices Detected <

Show mirroring options in the menu bar when available Gather Windows ?

FREE LIVE WEBINARS, Q&A, AND YOUTUBE VIDEOS

Every Monday night at 5:30 p.m. Pacific time, we have live webinars and discuss a
topic from the book or a timely item of interest. These webinars are free, and you can
register for them at www.xcelme.com/latest-videos/.

http://www.xcelme.com/latest-videos/

®
il

XC@lme.com

in ¥ f
HOME COURSES SCHEDULE CONSULTING ASOUT FAQ FREEVIDEDS

Me

XCEL DIFFERENT

Free Swift i0S Webinars

Every Monday night at 5:30 PM Pacific ime xcelMe.com |s providing FREE webinars.

Gary Bennett discusses Swift, xCode, Interface Builder, I0S, Maker topics, and answers your programming questions.
Webinars are recorded and available on his YouTube channel.

Makea sure you subscribe to his channel to be notified when new videos are uploaded.

To register for the FREE webinar, dick HERE.
Once registered you will recelve an email confirming registration with information you need to join the Webinar.

Upcoming Live Swift Tutorials

Mon, Jan 12, 2015 5:30 PM - 5:45 PM PET Introduction and Chapter 1 — Using Swift Playgrounds
Maon, Jan 18, 2015 5:30 PM - 545 PM PST Chapler 1 - More on Swift Flaygrounds

Maon, Jan 12, 2015 5:30 PM - 5:45 PM PST Chapter 2 = Programming Basics

Mon, Jan 19, 2015 5:30 PM - 5:45 PM PST Chapter 3 — It's all About the Data

Mon, Jan 26, 2015 5:30 PM - 5:45 PM PST Chapter 4 — Making Decisions, Program Flow, and App Design
Maon, Feb 2, 2015 5:30 PM = 5:45 PM PST Chapter 5 — Object-Oriented Programming with Swift
Mon, Fab 9, 2015 5:30 PM - 5:45 PM PST Chapter 6 — Learning Swift and Xcode

Maon, Fab 16, 2015 5:30 PM - 5:45 PM PST Chapter 7 — Swift Classes, Objects, and Mathods
Maon, Fab 23, 2015 5:30 PM = 5:45 PM PST Chapter 8 — Programming Basics In Swift

Meon, Mar 2, 2015 5:30 PM - 5:45 PM FPST Chapter 8 - Comparing Data

Meon, Mar 9, 2015 5:30 PM - 5:45 PM PDT Chapter 10 - Creating User Interfaces

Mon, Mar 16, 2015 5:30 PM = 5:45 PM PDT Chapter 11 — Storing Information

Mon, Mar 23, 2015 5:30 PM - 5:45 PM PDT Chapter 12 = Protocols and Delegates

Man, Mar 30, 2015 5:30 PM - 5:45 PM PDT Chapter 13 - Introducing the Xcode Debugger

Mon, Apr 8, 2015 5:30 PM = 5:45 PM PDT Chaptaer 14 = A Swift iPhone App

At the end of the webinars, we do a Q&A. You can ask a question on the topic
discussed or on any topic in the book.

Additionally, all these webinars are recorded and available on YouTube. Make sure
you subscribe to the YouTube channel so you are notified when new recordings are
uploaded.

Free Book Forum

We have developed an online forum for this book at http://forum.xcelme. com,
where you can ask questions while you are learning Swift and get answers from the
authors. Also, Apple makes frequent changes to the programming language and SDK. We
try our best to make sure any changes affecting the book are updated on the forum along
with any significant text or code changes.

You can download the source code from the chapters on this forum too.

http://forum.xcelme.com

ea® < m @ forum.xcelme.com

Latest Vidoos | Xcelme

xcelMe.com

xcelMe Training Center And Interactive Deweloper Forum,

{7 Board index
ﬂ:lu:«centnﬂ Panel = View your posts

It is currently Mon Dec 15, 2014 2:18 pm
[Moderator Control Panel |

View unanswered posts « { SEARCH_UNREAD } = View new posts = View active topécs
FORLUE TOMCS POSTS

How To Access Your Course Webinars And How To Use The Forum

Now students need to download the attached pdf and follow instructions to register for your weobinars after you purchase the class.
Additionaily, there are directions and updates on how to access your course and forum, post questions, navigate the message board, watch
training videos, etc.

3 12

This forum contains all the questions readers may have for each chapter and and chapter or code changes.
b Moderator: gary.bennett

 Book - Dbjective-&-ferdbsaluto Reginnars: (2nd Editinn) iBhono-ant-Mec-PTogfmming Made Easy = =
B This forum contains all the assignments and questions readers may hawve for each chapber 4

Mederator: gary.bennett

Free Live Webinars for iPhone Developers

This forum lists the schedule for upcoming live webinars for iPhone developers. Webinars are live and have limited seats. Current and
9 former students get first notifications. Seats for all others is first-come-first serve.

The sessions are recorded and will be made available to current and former students on this forum,

Moderator: gary.bennett

Current Student & Alumni Recorded Webinars and More

This Forum |s for current and former students

Moderator: gary.bennett

Student/Instructor AppStore Applications
@' Applications that xcelme instructors and students have successfully posted on iTunes AppStore,

Maderator: gary.bennett

Swift Course 1 - Intro to OOP and Logic
9 Swift Course 1 - Intro te ODP and Logic

Moderator: gary.bennett

Swift Course 2 - Swift for i05 Developers

Swift Course 2 - Swift for i0S Developers

Moderator: gary.bennett

. Swift Course 3 - Cocoa Touch for i05 Developers

Moderatar
< . Book -> Swift for Absolute Beginners: iPhone and Mac Programming Made Easy

38 61

11 14

11 11

Swift Course 3 - Cocoa Touch for IDS Developers
Moderstor: gary.bennett

Swift Course 4 - {Phone and iPad Programming Part 1
Swift Course 4 - (Phone and iPad Programming Part 1

Chapter 1

Becoming a Great iOS Developer

Now that you’re ready to become a software developer and have read the introduction of
this book, you need to become familiar with several key concepts. Your computer program
will do exactly what you tell it to do—no more and no less. It will follow the
programming rules that were defined by the operating system and the Swift programming
language. Your program doesn’t care if you are having a bad day or how many times you
ask it to perform something. Often, what you think you’ve told your program to do and
what it actually does are two different things.

Key To Success If you haven’t already, take a few minutes to read the
introduction of this book. The introduction shows you where to go to access the
free webinars, forums, and YouTube videos that go with each chapter. Also,
you’ll better understand why this book uses the Swift playground programming
environment and how to be successful in developing your iOS apps.

Depending on your background, working with something absolutely black and white may
be frustrating. Many times, programming students have lamented, “That’s not what I
wanted it to do!” As you begin to gain experience and confidence in programming, you’ll
begin to think like a programmer. You will understand software design and logic, and you
will experience having your programs perform exactly as you want and the satisfaction
associated with this.

Thinking Like a Developer

Software development involves writing a computer program and then having a computer
execute that program. A computer program is the set of instructions that you want the
computer to perform. Before beginning to write a computer program, it is helpful to list
the steps that you want your program to perform in the order you want them
accomplished. This step-by-step process is called an algorithm.

If you want to write a computer program to toast a piece of bread, you would first write an
algorithm. This algorithm might look something like this:

1. Take the bread out of the bag.
2. Place the bread in the toaster.
3. Press the toast button.

4. Wait for the toast to pop up.
5

. Remove the toast from the toaster.

At first glance, this algorithm seems to solve the problem. However, the algorithm leaves

out many details and makes many assumptions. Here are some examples:

What kind of toast does the user want? Does the user want white
bread, wheat bread, or some other kind of bread?

How does the user want the bread toasted? Light or dark?

What does the user want on the bread after it is toasted: butter,
margarine, honey, or strawberry jam?

Does this algorithm work for all users in their cultures and
languages? Some cultures may have another word for toast or not
know what toast is.

Now, you might be thinking this is getting too detailed for making a simple toast program.
Over the years, software development has gained a reputation of taking too long, costing
too much, and not being what the user wants. This reputation came to be because
computer programmers often start writing their programs before they have actually
thought through their algorithms.

The key ingredients to making successful applications are design requirements. Design
requirements can be formal and detailed or simple like a list on a piece of paper. Design
requirements are important because they help the developer flesh out what the application
should do and not do when complete. Design requirements should not be completed in a
programmer’s vacuum, but should be produced as the result of collaboration between
developers, users, and customers.

Another key ingredient to your successful app is the user interface (UI) design. Apple
recommends you spend more than 50 percent of the entire development process focusing
on the UI design. The design can be done using simple pencil and paper or using Xcode’s
storyboard feature to lay out your screen elements. Many software developers start with
the UI design, and after laying out all the screen elements and having many users look at
paper mock-ups, they then write the design requirements from their screen layouts.

Note If you take anything away from this chapter, take away the importance of
considering design requirements and user interface design before starting
software development. This is the most effective (and least expensive) use of
time in the software development cycle. Using a pencil and eraser is a lot easier
and faster than making changes to code because you didn’t have others look at
the designs before starting to program.

After you have done your best to flesh out all the design requirements, laid out all the user
interface screens, and had the clients or potential customers look at your design and give
you feedback, you can begin coding. Once coding begins, design requirements and user
interface screens can change, but the changes are typically minor and easily
accommodated by the development process. See Figures 1-1 and 1-2.

il ATET 7:54 PM
~Login Accounts
Balances Transfer Money Pay Bills
Savings (xx1772)
Busingss Amcunts hvailable Balance £1234.21 }
: . Fresent Balance g2123.22
Business Checking (xx4327)
Available Balance $2100.22
Present Balance $4201.35 IRA (xx177) :
) Available Balance $1234.21 7/
Business Savings (xx1234) Present Balance $2123.22
Available Balance $1234.21
Car Loan (xx172)
P t Bal 2123.
rant R e Outstanding Principle $1234.21
Next Payment Amount $2123.22
Personal Accounts Due Date 08/17/2009
Last Pay Amount $452.99
Checking (xx3423) Last Pay Date 07/17/2009
Available Balance
Present Balance

Home Locations Contact Us FAQ Log Out

Home Equity Loan (xx7672)

Outstanding Principle §12,34.21

Next Payment Amount $2123.22

. Due Date 08/17/2009 ¢
(_' Last Pay Amount $452.99
Last Pay Date 07/17/2008

Figure 1-1. This is a UI mock-up of the account balance screen for an iPhone mobile banking app before development
begins on the original iPhone in 2010. This UI design mock-up was completed using OmniGradffle

Accounts Log Off

Checking & Savings

Checking (...1175)

Current Balance: $9,103.29
Available Balance: $9,103.29

Checking (...3859)

Current Balance: $21.87
Available Balance: $21.87

Checking (...4982)

Current Balance: $1.74
Available Balance: $11.74

Checking (...5884)

Current Balance: $78,709.76
Available Balance: $78,563.71
Savings (...5114)
Current Balance: $1.08
Available Balance: $1.08
A S $ (8] =
{om Accounts f o :

Figure 1-2. This is a completed iPhone mobile banking application as it appeared on the App Store dfter several
revisions in 2015. This app is called Woodforest Mobile Banking

Figure 1-1 shows a mock-up of a mobile banking app screen prior to development.

Developing mock-up screens along with design requirements forces developers to think
through many of the application’s usability issues before coding begins. This enables the
application development time to be shortened and makes for a better user experience and
better reviews on the App Store. Figure 1-2 shows how the view for the mobile banking
app appears when completed.

Completing the Development Cycle

Now that you have the design requirements and user interface designs and have written
your program, what’s next? After programming, you need to make sure your program
matches the design requirements and user interface design and ensure that there are no
errors. In programming vernacular, errors are called bugs. Bugs are undesired results of
your programming and must be fixed before the app is released to the App Store. The
process of finding bugs in programs and making sure the program meets the design
requirements is called testing. Typically, someone who is experienced in software testing
methodology and who didn’t write the app performs this testing. Software testing is
commonly referred to as quality assurance (QA).

Note When an application is ready to be submitted to the App Store, Xcode
gives the file an . app or . ipa extension, for example, appName . app. That
is why iPhone, iPad, and Mac applications are called apps. This book uses
program, application, and app to mean the same thing.

During the testing phase, the developer will need to work with the QA staff to determine
why the application is not working as designed. The process is called debugging. It
requires the developer to step through the program to find out why the application is not
working as designed. Figure 1-3 shows the complete software development cycle.

Figure 1-3. The typical software development cycle

Frequently during testing and debugging, changes to the requirements (design) must occur
to make the application more usable for the customers. After the design requirements and
user interface changes are made, the process starts again.

At some point, the application that everyone has been working so hard on must be shipped
to the App Store. Many considerations are taken into account as to when in the cycle this
happens:

Cost of development
Budget
Stability of the application

Return on investment

There is always the give and take between developers and management. Developers want
the app to be perfect, and management wants to start realizing revenue from the
investment as soon as possible. If the release date were left up to the developers, the app
would likely never ship to the App Store. Developers would continue to tweak the app
forever, making it faster, more efficient, and more usable. At some point, however, the
code needs to be pried from the developers’ hands and uploaded to the App Store so it can
do what it was meant to do.

Introducing Object-Oriented
Programming

As discussed in detail in the introduction, playgrounds enable you to focus on object-
oriented programming (OOP) without having to cover all the Swift programming syntax
and complex Xcode development environment in one big step. Instead, you can focus on
learning the basic principles of OOP and using those principles quickly to write your first
programs.

For decades, developers have been trying to figure out a better way to develop code that is
reusable, manageable, and easily maintained over the life of a project. OOP was designed
to help achieve code reuse and maintainability while reducing the cost of software
development.

OOP can be viewed as a collection of objects in a program. Actions are performed on
these objects to accomplish the design requirements.

An object is anything that can be acted on. For example, an airplane, person, or
screen/view on the iPad can all be objects. You may want to act on the plane by making
the plane bank. You may want the person to walk or to change the color of the screen of an
app on the iPad.

Playgrounds execute your code as you complete each line, such as the one shown in
Figure 1-4. When you run your playground applications, the user can apply actions to the
objects in your application. Xcode is an integrated development environment (IDE) that

enables you to run your application from within your programming environment. You can
test your applications on your computer first before running them on your iOS devices by
running the apps in Xcode’s simulator, as shown in Figure 1-5.

.
"My 7, 2005, 5:00 A

H01E5-05-07 1220000 + 0000

m let imdge = tiselire[naySeventh] w258 M 258

W et view = UIView{frome: CGRecti{x: @, y: @, width: tiseline.count = 75, helght: 751) Uiy
w for (position, image} in timeline.emmerate() {
iet imegeView = UlTsageVimd{frame; (GRectix: position = 75, y: &, width: 75, height: 751) {14 gimes)
imageView. image = image 77 Ullsage(named: “Nolmage. jpg”] {14 times)
' 3 i, pddSuby iewl imageView) 14 gimes)
vie UV

Refining the Index

The timeline collection sufficiently implements the syntactic, semantic, and performance requirements of the CollectionType protocol. However, we've missed
Ul o Some easy perfarmance enhancements and additional funclionality. By continually refineng the DateIndex structure, we can drastically improve
performance and opt in to additional functionality.

The first of these refinements is the BldirectionalIndexType protocol The Bidirect ionalIndexType protocol inherits from the ForwardIndexType
protocol and adds one method, predecessory). The predeces sor method mirrors the Successor method-inchuding the semantic and performance
requirements-and decrements the index by ane. Lising the samse constant tme NSCalendar method, the extension belaw adopts BidirectionallndexType
and implements the predecessor mathed,

By adopting the Bidirect iona LIndexType protocod, the timefine collection gains access to the default implementation of reverse(), which provides an
eificient reverse view info the collection,

« gatensieon Datelsdez: BioirectisnsllndexTyps {
x func predecessor{) -» Datelndex {
let previcusDay = calesdar.dateByhddinglinit{.Day, valwe: =1, toDate: date, options: (1)t
return DateIndex(previousDay]
v)
}

Figure 1-4. There are multiple objects in this playground view

Carrier & 7:48 PM -

o T

—] iPad Air
(] Thunderbolt Display
(] Mac Pro

Delete List

Figure 1-5. This sample iPhone app contains a table object to organize a list of tech toys. Actions such as “rotate left”
or “user did select row 3” can be applied to this object

Actions that are performed on objects are called methods. Methods manipulate objects to

accomplish what you want your app to do. For example, for a jet object, you might have
the following methods:

goUp

goDown

bankLeft
turnOnAfterburners
lowerLandingGear

The table object in Figure 1-5 is actually called UITableView when you use it in a
program, and it could have the following methods:

numberOfRowsInSection
cellForRowAtIndexPath
canEditRowAtIndexPath
commitEditingStyle
didSelectRowAtIndexPath

Most objects have data that describes those objects. This data is defined as properties.

Each property describes the associated object in a specific way. For example, the jet
object’s properties might be as follows:

altitude = 10,000 feet
heading = North

speed = 500 knots

pitch = 10 degrees

yaw = 20 degrees
latitude = 33.575776
longitude = -111.875766

For the UITableView object in Figure 1-5, the following might be the properties:

backGroundColor = Red
selectedRow = 3
animateView = No

An object’s properties can be changed at any time when your program is running, when
the user interacts with the app, or when the programmer designs the app to accomplish the
design requirements. The values stored in the properties of an object at a specific time are
collectively called the state of an object.

State is an important concept in computer programming. When teaching students about
state, we ask them to go over to a window and find an airplane in the sky. We then ask
them to snap their fingers and make up some of the values that the plane’s properties
might have at that specific time. Those values might be as follows:

altitude = 10,000 feet
latitude = 33.575776
longitude = -111.875766

Those values represent the state of the object at the specific time that they snapped their
fingers.

After waiting a couple minutes, we ask the students to find that same plane, snap their
fingers again, and record the plane’s possible state at that specific point in time.

The values of the properties might then be something like the following:

altitude = 10,500 feet
latitude = 33.575665
longitude = -111.875777

Notice how the state of the object changes over time.

Working with the Playground Interface

Playgrounds offer a great approach in using the concepts just discussed without all the
complexity of learning Xcode and the Swift language at the same time. It takes only a few

minutes to familiarize yourself with the playground interface and begin writing a program.

Technically speaking, the playground interface is not a true IDE like you will be using to
write your iOS apps, but it is pretty close and much easier to learn in. A true IDE
combines code development, user interface layout, debugging tools, documentation, and
simulator/console launching for a single application; see Figure 1-6. However,
playgrounds offer a similar look, feel, and features to the Xcode IDE you develop apps
with.

105 Simulator - iPhone B - iIFhone 6 / 105 8.1 (12B411)
. Liter Carner F B:57 PM - Pr——
README. e
v 0 Lister 105 App The °ListDocumes le document
v 1 M Ap il o Color . -
Main prorytoand ~
Launch.xib
- AppOwtegato swil o [Cranges
> import UIKit
Vierar Conilrolin impart Listerkit
+ UsiDocumen....ontmolles swi Milk
+ BewlistDosu.. ontrober, swift class La-swucumnlwlhcorll roll gate,
LisiViewControler swilt U1 D ru fencDelegate, ULIDY
Vieras / MA Bread
Supporting Fikes
Today Widget struct HEIHSTUFYBDEI’G {
erarb Fra et 4 struct ViewControllerIdo
o L static let listViewl
Lister 03X App static let listViewd : troller
Shaned Listerkit Framewar Code }
Shamed Liter Rotcwiced
mported Frarmiwoni struct Tah'le‘.l’mh{cUIdel
Products static let LlistDocul
}
SLruct Seqweluenuf iers
stat let newListe
static let showl istl View & " =
+ t = 1 i gt W Controller - A costrofer i
ta et showlistl romUserActivity orkl D36 el v
) } management model in (05
Havigation Contralier - A
< ConSoller Sl MINIGEN FAVGETON
Ergugh & hlirarchy of wiews.
var listController: ListCond
didset {
i Rl Tabés View Controller - &
} controder Al manages & tabie view.
}
2 Tab Bar Controfier
ivate var pendingUserActiy Delete List it _:.f_q:." T
] FedrRdanl LD Bad Reda
Spiit View Controller - 4
WiEFT e wiewDidload() { e
super.viewDidLoad() AL N A TN W COTET]

Figure 1-6. The Xcode IDE with the iPhone simulator

In the next chapter, you will go through the playground interface and write your first
program.

Summary

Congratulations, you have finished the first chapter of this book. It is important that you
have an understanding of the following terms because they will be reinforced throughout
this book:

Computer program

Algorithm

Design requirements

User interface

Bug

Quality assurance (QA)

Debugging

Object-oriented programming (OOP)
Object

Property

Method

State of an object

Integrated development environment (IDE)

What’s Next

The next 15 chapters provide the information you need to learn Swift and write iOS
applications. Terms and concepts are introduced and reinforced over and over so you will
begin to get more comfortable with them. Keep going and be patient with yourself.

Exercises

Answer the following questions:

Why is it so important to spend time on your user requirements?

What is the difference between design requirements and an
algorithm?

What is the difference between a method and a property?
What is a bug?
What is state?

Write an algorithm for how a soda machine works from the time a
coin is inserted until a soda is dispensed. Assume the price of a soda
is 80 cents.

Write the design requirements for an app that will run the soda
machine.

Chapter 2

Programming Basics

This chapter focuses on the building blocks that are necessary to become a great Swift
programmer. This chapter covers how to use the playground user interface, how to write
your first Swift program, and how to use the Xcode integrated development environment
(IDE).

Note We will introduce you to using playgrounds, which will enable you to
program right away without worrying about the complexities of Xcode. We
have used this approach for the last six years, teaching Objective-C and Swift,
and know that it helps you learn the concepts quickly, without discouragement,
and gives you a great foundation to build upon.

Touring Xcode

Xcode and playgrounds make writing Swift code incredibly simple and fun. Type a line of
code, and the result appears immediately. If your code runs over time, for instance through
a loop, you can watch its progress in the timeline area. When you’ve perfected your code
in the playground, simply move that code into your Swift iOS project. With Xcode
playgrounds, you can do the following:

Design a new algorithm, watching its results every step of the way

Create new tests, verifying that they work before promoting them
into your test suite

Experiment with new APIs to hone your Swift coding skills

First you’ll need to learn a little more about the Xcode user interface. When you open an
Xcode iOS project, you are presented with a screen that looks like Figure 2-1.

= L L O g W A Varm Carava [o
BAct fi ptkrbalie waer: UIBULLE | -\ P p—
. - -
if isFL ;Fu:n cbl) I -n
-resignFirstRespondarl) -
}

(rawialue: sender. taghl

f 1f & Buttos wad previously selected, we
et oldbutton = i
tton b, Sarder

5.0
® UIColor. LightGrayColori).C0lolar

“wepr i
o
3 =
tios Tusc sawe{senders AnyObject) { s
1t List = i) =
List.
createlistInfoforList(list, withNese: eaTitlel} I._L.-"'*- hn
dississViewControllerAninated(true, completion: mill
] oo
o4 c cancelisender: AnyDbject) { A
dl issViewConirollerAnisated({true, completion: nil)
} —
o B
MARK: Tooch Handlimg = B
Lde towchesBegani touches: SetliITouchs, withEvent event: UIfvent¥) { _b
ver. touchesBegani touches, withEvent: ewent)
&=
Lot possibleTouch = towches.first
e e
1 m:r*-mnbrrnm[o
e '\.liﬂaa ?&5 touch.view |= {
- resignFirs R.rpa aerl)
¥
}
3 {]| Gt et 2oy
§MRRK:

fune t :F eld{textFinld: UlText F eld, ;Io.. s(non.gc(rm-qgwr, nRange range: NSRange, roplacesentString strimg: Steingl == Boal { {} L e e
et teat = bextField.t { ¥

Figure 2-1. Xcode Integrated Developer Enviroment with a Swift project

The Xcode user interface is set up to help you efficiently write your Swift applications.
The user interface for playgrounds is similar to the user interface for an iOS application.
You will now explore the major sections of Xcode’s IDE workspace and playgrounds.

Exploring the Workspace Window

The workspace window, shown in Figure 2-2, enables you to open and close files, set your
application preferences, develop and edit an app, and view the text output and error
console.

Nawigator selector Bar Toolhs - 1 Jumip bars
— _]._‘ i__ — _.l T o SR] boupmictor iyt i
| F
i S e
(Mavigator) " Editor (" vy s
\ I \
a] IK Area ;_I \ Area J
[ey
selecton bar
,—
tar Library
g -
I"f Debug \LI-
Area |

Pt b Dty bae
Figure 2-2. Xcode’s workspace window

The workspace window is your primary interface for creating and managing projects. The
workspace window automatically adapts itself to the task at hand, and you can further
configure the window to fit your work style. You can open as many workspace windows
as you need.

The workspace window has four main areas: Editor, Navigator, Debug, and Utilities.

When you select a project file, its contents appear in the Editor area, where Xcode opens
the file in the appropriate editor.

You hide or show the other three areas by using buttons in the view selector in the toolbar.

] Clicking this button shows or hides the Navigator area. This is where you view and
maneuver through files and other facets of your project.

- Clicking this button shows or hides the Debug area. This is where you control
program execution and debug code.

L1 Clicking this button shows or hides the Utilities area. You use the Utilities area for
several purposes, most commonly to view and modify attributes of a file and to add ready-
made resources to your project.

Navigating Your Workspace

You can access files, symbols, unit tests, diagnostics, and other facets of your project from
the Navigator area. In the navigator selector bar, you choose the navigator suited to your
task. The content area of each navigator gives you access to relevant portions of your
project, and each navigator’s filter bar allows you to restrict the content that is displayed.

Choose from these options in the navigator selector bar:

E Project navigator. Add, delete, group, and otherwise
manage files in your project, or choose a file to view or edit its
contents in the editor area.

ﬁ Symbol navigator. Browse the class hierarchy of the
symbols in your project.

{:l' Find navigator. Use search options and filters to quickly
find any string within your project.

Issue navigator. View issues such as diagnostics, warnings,
and errors found when opening, analyzing, and building your
project.

Test navigator. Create, manage, run, and review unit tests.

== Debug navigator. Examine the running threads and
associated stack information at a specified point of time during

program execution.

o Breakpoint navigator. Fine-tune breakpoints by specifying
characteristics such as triggering conditions.

@ Report navigator. View the history of your builds, app
console output, continuous integration, and source control tasks.

Editing Your Project Files

Most development work in Xcode occurs in the Editor area, which is the main area that is
always visible within the workspace window. The editors you will use most often are as
follows:

Source editor: Write and edit Swift source code.

Interface Builder: Graphically create and edit user interface files (see
Figure 2-3).

Project editor: View and edit how your apps should be built, such by
specifying build options, target architectures, and app entitlements.

(5] Mrep + g B jod b

Figure 2-3. Xcode’s Interface Builder showing a storyboard file

When you select a file, Xcode opens the file in an appropriate editor. In Figure 2-3, the file
Main.storyboard is selected in the Project navigator, and the file is open in Interface
Builder.

The editor offers three controls:

(i

Clicking this button opens the Standard editor. You will see a single editor pane
with the contents of the selected file.

(7
Clicking this button opens the Assistant editor. You will see a separate editor pane
with content logically related to that in the Standard editor pane.

; =

Clicking this button opens the Version editor. You will see the differences between
the selected file in one pane and another version of that same file in a second pane.

Creating Your First Swift Playground
Program

Now that you have learned a little about Xcode, it’s time to write your first Swift
playground program and begin to understand the Swift language, Xcode, and some syntax.
First you have to install Xcode.

Installing and Launching Xcode 7

Xcode 7 is available for download from the Mac App Store for free, as shown in Figure 2-

4, and from the Apple Developer Center, as shown in Figure 2-5.

Xeode includes everything developers need 10 create great applications for Mac, iPhone, IPad, and Apple Watch. Xeode provides developers a unified workfiow for user
interface design, coding. testing, and debugging. The Xcode IDE combined with the Cocoa frameworks and Swift programming language make developing apps easier and
more fun than ever before.

...More
What's New in Version 7.0
Xcode 7 includes Swift 2 and SDKs for iI05 9, watchDS 2, and OS5 X 10.11 El Capitan,

B Ncode Fie Edi View Find Mevoels Editer Procduct Debug Sowce Combol Window Help

_ —— ‘--L. = S
(=i |
£ L]
|
Al L]
e bl L L | .
e
PP
¥
5 o By n
B ek U ety TR L e S & RS W el a8 ™
T gt Te i Tl o ewuiiey e M e Ten b 8
o g
sadiaapnll {
\ Amageliag st e 51 I.'F.lﬂ‘\-ll'.l'lultii"ﬂhﬂ".“' Ml Ll kel L
o Ly - =] g = AL SR E P L “, ATysmn “ELRERT) aaR (R risga Gariegd]
e i " whager i players {
. | Uiy g e P oLt baagE = UTIRag D Pl [imaga 116 {
Peisats {m“ wiege Ly ot | o |

| Compact - Ay M E

HPafd@rOrOeRO®

| [i B

Figure 2-4. Xcode 7 is available for download from the Mac App Store for free

[Developer Technologies Resources Programs Support Member Center Q

Apple Developer Program Whats Included How Itworks (IR

. Finder Fle (03 Yeew Go Window beip

Figure 2-5. The Apple Developer Program

Note This package has everything you need to write iOS apps. To develop iOS
apps, you will need to apply for the Apple Developer Program and pay $99
when you’re ready to submit to the App Store. See
http://developer.apple.com. In 2015, Apple combined the iOS,
watchOS, Mac OS X, and Safari developer programs into one program called
the Apple Developer Program.

Now that you have installed Xcode, let’s begin writing a Swift playground.

Launch Xcode and click “Get started with a playground,” as shown in Figure 2-6.

http://developer.apple.com

Welcome 1o Xcode

Version 7.0 (7A220)

. Get started with a playground
be? Explore new ideas quickly and easily.

TB Create a new Xcode project
%] Start building a new iPhone, iPad or Mac application.

XI Check out an existing project
Start working on something from an SCM repository.

Show this window when Xcode launches

Figure 2-6. Creating your first Swift playground

Using Xcode 7

After launching Xcode, follow these steps:

1. Let’s name the playground HelloWorld and select iOS as the
platform, as shown in Figure 2-7. Then click Next and save your
app in the folder of your choice.

f Choose options for your new playground:

Name ' I;efluWorlci
atform: i0S B

Cancel Previous m

Figure 2-7. Name your playground HelloWorld and select iOS as the platform

Xcode does a lot of work for you and creates a playground file with code ready for you to

use. It also opens your playground file in your Xcode editor so you can start, as shown in
Figure 2-8.

o

// Playground - noun: a place where people can play

l- import UIKit
var str = "Hello, playground” "Hello, playground'
str = "Hello World" "Hello World"
Hello World
print(str) "Hello World\n"

Figure 2-8. The playground window
You now need to become familiar with the Xcode playground IDE. Let’s look at two of
the most often used features.

The Editor area

The Results area

Xcode Playground IDE: Editor and
Results Areas

The Editor area is the business end of the Xcode playground IDE—where your dreams are
turned into reality. It is where you write your code. As you write your code, you will
notice it change color. Sometimes, Xcode will even try to autocomplete words for you.
The colors have meanings that will become apparent as you use the IDE. The Editor area
is also where you debug your apps.

Note Even if we’ve mentioned it already, it is worth saying again: you will
learn Swift programming by reading this book, but you will really learn Swift
by debugging your apps. Debugging is where developers learn and become
great developers.

Let’s add a line of code to see the power of Swift playgrounds. Add line 6 shown in Figure

2-8. As soon as you enter the line of code, Xcode automatically executes the line and
shows the result, “Hello World.”

When you write Swift code, everything is important—commas, capitalization, and
parentheses. The collection of rules that enable the compiler to compile your code to an
executable app is called syntax.

Line 5 creates a string variable called st r and assigns “Hello, playground” to the variable
str.

Line 6 reassigns “Hello World” to the variable str.

Let’s create a syntax error by entering line 8 shown in Figure 2-9.

-

// Playground — noun: a place where people can play
import UIKit

var str = "Hello, playground"
tr = "Hello World"

Error lcon —l

0 & print(stz)
h A

Editor Results

Results
updated as

we type

Error Location

Figure 2-9. The playground with a syntax error caught by the Swift compiler

On line 8, print is a function that will print the contents of its parameters in the Results

area. As you enter code, the Results area automatically updates with the results for each
line of code that you entered.

Now, let’s fix the app by spelling the st r variable correctly, as shown in Figure 2-10.

2

// Playground - noun: a place where people can play

import UIKit

var str = "Hello, playground" ‘Hello, playground'
r = "Hello World" 'Hello World
Hello World
print(str) 'Hello World\n
Error Fixed Result Automatically Updated

Figure 2-10. Syntax error fixed

Feel free to play around and change the text that is printed. Have fun!

Summary

In this chapter, you built your first basic Swift playground. We also covered new Xcode
terms that are key to your understanding of Swift.

Key to Success As mentioned in the introduction of the book, you can visit
http://www.xcelme.com/ and click the Free Videos tab to view videos
related to this chapter. The videos will help you understand more about Xcode,
IDEs, and playgrounds. Also visithttp://forum.xcelme.com/ to ask
questions about these concepts.

The concepts that you should understand are as follows:

Playground
Editor area

Results area

http://www.xcelme.com/
http://forum.xcelme.com/

Exercise

Extend your playground by adding a line of code that prints any text
of your choosing.

Chapter 3
It’s All About the Data

As you probably know, data is stored as zeros and ones in your computer’s memory.
However, zeros and ones are not very useful to developers or app users, so you need to
know how your program uses data and how to work with the data that is stored.

In this chapter, you look at how data is stored on computers and how you can manipulate
that data. You then use playgrounds to learn more about data storage.

Numbering Systems Used in
Programming

Computers work with information differently than humans do. This section covers the
various ways information is stored, tallied, and manipulated by devices such as your
iPhone and iPad.

Bits

A bit is defined as the basic unit of information used by computers to store and manipulate
data. A bit has a value of either 0 or 1. When computers were first introduced, transistors
and microprocessors didn’t exist. Data was manipulated and stored by vacuum tubes being
turned on or off. If the vacuum tube was on, the value of the bit was 1, and if the vacuum
tube was off, the value was 0. The amount of data a computer was able to store and
manipulate was directly related to how many vacuum tubes the computer had.

The first recognized computer was called the Electronic Numerical Integrator and
Computer (ENIAC). It took up more than 136 square meters and had 18,000 vacuum
tubes. It was about as powerful as your handheld calculator.

Today, computers use transistors to store and manipulate data. The power of a computer
processor largely depends on how many transistors are placed on its chip or central
processing unit (CPU). Like the vacuum tube, transistors have an off or on state. When the
transistor is off, its value is 0. When the transistor is on, its value is 1. Apple’s A8
processor, which was introduced with the iPhone 6, has a dual-core ARM processor with
more than 2 billion transistors (see Figure 3-1). This was up from 200 million transistors
from the A5 processor and up from 149 million transistors on the A4 processor that was in
the iPhone 4 and the first iPad.

Figure 3-1. Apple’s proprietary A8 processor (Source: Wikipedia)

Moore’s Law

The number of transistors on your iPhone’s or iPad’s processor is directly related to your
device’s processing speed, graphics performance, memory capacity, and the sensors
(accelerometer, gyroscope) available in the device. The more transistors there are, the
more powerful your device is.

In 1965, the cofounder of Intel, Gordon E. Moore, described the trend of transistors in a
processor. He observed that the number of transistors in a processor doubled every 18
months from 1958 to 1965 and would likely continue “for at least 18 months.” The
observation became famously known as Moore’s law and has proven accurate for more
than 55 years (see Figure 3-2).

Microprocessor Transistor Counts 1971-2011 & Moore's Law

W-Cors SPARC T3

S Coow Cosa O

2,600,000,000 4 o @73 Con Yaom Weamare-£%
Oy Dy Marars Ji L ¥ oz r_‘ﬁ'.ﬁ:::'
AN R VE E Ehaioien s1M
1,000,000,000 ot s H SR b
Faram 2 ol PVH ot b faa- o Oigfwas JAN)
AT o\ [Coww 07 10wt
G 2 Do
raram i@ t::'-? *
100,000,000 ® 200 5
Paow'd g A bl L CES
— AMD KE
g 10,000,000 g 8 retenn
Pgr d w1
8 WAMD EY
o & Perdar
o
1]
LR L2y]
i 1,000,000 - o
&
i: Irr @
WETL
100,000
LS]
A
LLat @ P HIAN
[24 11
1ﬁ,mﬁ [£ " L]
. . -l
5
[T] ' ST

2,300 - e LR

T T

I T
1971 1980 1980 2000 201

Date of introduction
Figure 3-2. Moore’s law (Source: Wikipedia)

Note There is a downside to Moore’s law, and you have probably felt it in your
wallet. The problem with rapidly increasing processing capability is that it
renders technology obsolete quickly. So, when your iPhone’s two-year cell
phone contract is up, the new iPhones on the market will be twice as powerful
as the iPhone you had when you signed up. How convenient for everyone!

Bytes

A byte is another unit used to describe information storage on computers. A byte is
composed of 8 bits and is a convenient power of 2. Whereas a bit can represent up to two

different values, a byte can represent up to 28, or 256, different values. A byte can contain
values from 0 to 255.

Note In Chapter 13, we discuss Base-2, Base-10, and Base-16 number systems
in more detail. However, we will introduce these systems in this chapter so you
can understand data types.

The binary number system represents the numerical symbols 0 and 1. To illustrate how the
number 71 would be represented in binary, you can use a simple table of 8 bits (1 byte),
with each bit represented as a power of 2. To convert the byte value 01000111 to decimal,
simply add up the on bits, as shown in Table 3-1.

Table 3-1. The Number 71 Represented as a Byte (64 + 4 +2 + 1)
Table 3-1. The Number 71 Represented as a Byte (64 + 4 + 2 + 1)

Power to 2 27 29 25 2 22 2 2 g
Value for “on™ bit 128 64 32 16 8 4 2 1
Actual bit a0 1 0 0 0 1 1 1

To represent the number 22 in binary, turn on the bits that add up to 22, or 00010110, as
shown in Table 3-2.

Table 3-2. The Number 22 Represented as a Byte (16 + 4 + 2)
Table 3-2. The Number 22 Represented as a Byte (16 +4 + 2)

Power to 2 & 29 2 24 22 2 21 20
Value for “on™ bit 128 64 32 16 8 4 2
Actual bit 0 a 0 1 0 1 1 0

To represent the number 255 in binary, turn on the bits that add up to 255, or 11111111, as
shown in Table 3-3.

Table 3-3. The Number 255 Represented as a Byte (128 + 64 +32 + 16 + 8+4 +2 + 1)
Table 3-3. The Number 255 Represented as a Byte (128 + 64 + 32 + 16+ 8 +4 + 2+ 1)
Power to 2 P 28 2 2 P .t 21 21

Value for “on™ bit 128 64 32 16 8 4 2 1
Actual bit 1 1 1 1 1 1 1 1

To represent the number 0 in binary, turn on the bits that add up to 0, or 00000000, as
shown in Table 3-4.

Table 3-4. The Number 0 Represented as a Byte
Table 3-4. The Number 0 Represented as a Byte

Power to 2 P 2% 2° 2 23 22 2 20
Value for “on™ bit 128 B4 32 16 8 4 2 1
Actual bit 0 0 0 0 0 0 0 0

Hexadecimal

Often, it will be necessary to represent characters in another format that is recognized by
computers, namely, the hexadecimal format. You will encounter hexadecimal numbers
when you are debugging your apps. The hexadecimal system is a base-16 number system.
It uses 16 distinct symbols: 0 to 9 to represent the values 0 to 9 and A to F to represent the
values 10 to 15. For example, the hexadecimal number 2AF3 is equal in decimal to (2 %

163) + (10 x 16%) + (15 x 161) + (3 x 169), or 10,995. Figure 3-3 shows the ASCII table of
characters. Because 1 byte can represent 256 characters, this works well for Western
characters. For example, hexadecimal 20 represents a space. Hexadecimal 7D represents a
right curly brace (}).

Dac Hxct Char Dec Hy Oct Himi Chr |Dec Hx Oct Himi Chr] Dec Hx Oct Himl Chr
0 0 000 HUL {nmll) 32 20 040 &F32; Space| 64 40 100 «#64: ¢ | 95 60 140 £#96;
1l 1 001 50H (statt of heading) 33 21 041 «#33; | 65 41 101 «§65; A | 97 61 14l «§97; =&
& 2 002 5TX {start of text) 34 2% 042 «F34; " 66 42 102 «F66; B | 98 62 142 «#98; b
3 3 003 ETH {end of rext) 35 23 043 4H35; § 67 43 103 &«F67; C 99 B3 143 «F99; ©
4 4 004 EOT (end of cransmission) 36 24 044 «F36; 3 68 44 104 «F68: D |100 64 144 4§100; d
5 5 005 ENC {(enguiry) 37 25 045 &F37; % 65 45 105 E L 1101 65 145 &#l0l; ¢
6 6 006 ACK [acknowledge) 38 26 046 #§38; ¢ 70 46 106 «F70; F |10Z 66 146 f C
7 7 007 BEL (bell) 39 27 047 «E39; ' 71 47 107 s#71; G |103 67 147 g: ¢
8 & 010 BS (backspace) 40 28 050 «#40; 72 48 110 s#72; H [104 68 150 s#104; b
9 8 011 TaF (horizontal tab) 4l 29 051 ef4dl;) 73 49 111 «F73; I |105 B9 151 4#105; 1
10 & OLZ LF (WL line feed, new line)| 42 24 D52 &§d2; * T4 4k 112 &¥74; 7 |106 64 152 &§106:; 3
il B 013 VT (wvertical tab) 43 2B 053 «#43; + 75 4B 113 &«F75; K |107 6B 153 «#107; K
12 C 014 FF (NP form feed, new page)| 44 2C D54 «#44; | 76 4C 114 #§76: L |103 6C 154 s#108; |
13 D 015 CR (carriage return) 45 2D 055 «#¥45;: - 77 4D 115 «#77; M |109 6D 155 m: m
14 E 016 50 ({shift out) 46 2E 056 46 . 78 4E 116 «F78: R |110 6E 156 «#llD: n
15 F 017 51 (shifc in) 47 2F 057 &f47; / T9 4AF 117 O: 0 |11l 6F 157 &#Flll: o
16 10 020 DLE (daca link escape) 43 30 080 &F48: 0 80 50 120 «#§80; P |11Z 70 160 &#llzZ:
17 11 021 DCL {(device control 1) 49 31 DEl 1 1 81 51 121 «#81; O |13 71 lel &«#113: g
18 12 022 DCZ (device control 2) 50 3% 062 «#50; Z 82 52 122 «F82; R |114 72 162 sfll4: ©
15 13 023 DC3 (device control 3) 51 33 063 «f5k: 5 83 53 123 s#83; 5 |115 73 183 &BllS5; =
20 14 024 DC4 (device control 4) 52 34 064 &F52; 4 84 54 124 «#84; T |116 74 164 &Fll6; ©
21 15 025 NAE (negative acknowledge) 53 35 065 &F53; 5 85 55 125 «#85; U |117 75 165 &FL17; u
22 16 026 SVH (swnchronous idle) 54 36 066 «#54; 6 86 56 126 «F86; V |1L§ 75 166 &FllE; v
23 17 027 ETE (end of trans. block) 55 37 067 «#55; 7 87 57 127 «F87; W |119 77 167 &FLl9: W
24 18 030 CAN (cancel} 56 38 070 =#56; 8 88 56 130 «#88; X 1120 78 170 «Fl20; =
25 19 031 EM (end of medium) 57 39 071 &«¥57; % 89 59 131 «#89; ¥ |121 79 171 &F121: ¥
26 1A 032 5UB (substicute) 58 3A 072 &F58; : a0 SA 152 «#90; Z |12Z TA 172 &F122; =
27 1B 033 ESC (escape) 59 3B 073 «#59; ; 91 5B 133 «#591; [|123 7B 173 { |
28 1C 034 F& (file sepacrator) 60 3C 074 «860; < 92 5C 134 «#92; \ [124 TC 174 #1234 |
23 1b 035 G {group separator) 61 3D 075 «f6l; = 93 SD 135 «F93;] 125 70 175 &#ld5: |
30 1E 036 RS (record separator) 62 3E 076 &N62; > 94 SE 136 ^ ~ [126 TE 176 £W126;
31 IF 037 U5 {unit separacor) 63 3F 077 ? 7 95 5F 137 «§95; _ |127 7F 177 &F127; DEL
Seource: www. LookupTables.com
122 ¢ 14 E 161 i 177 ¢ 193 L 2090 = 225 5 241 =
120 & 145 = 162 6 178 B 194 + 20 226 © 242 =
130 ¢ 146 & 163 4 179 | 195 } 21 L 27T = 243 <«
131 & 14 & 164 £ 180 196 - 212 & 228 244 [
132 4 148 & 165 N 181 4 197 + 23 g 2 5 245)
133 & 149 & 166 ° 122 4 198 F 214 230 o 246 -
134 & 150 © 167 ¢ 183 4 090 P 9sl S 3l x W =
135 5 131 14 168 ¢ 124 4 200 Lk 216 % 232 & 248 -
136 & 152 _ 169 185 § 201 ¢ 27 J 233 ® 249
137 ¢ 153 0 170 - 186 | 202 & 28 . 34 O 2%
138 ¢ 154 U 171 % 187 3§ 203 219 @ B 8 251 Ao
139 1 156, £ 172 % 188 & 204 | 220 g 236 o 252
140 1 157 % 17F ™5 189 4 205 = 221 | 37 23
141 i 158 174 « 190 4 06 &£ 22 | 238 = 254 =
142 A 159 ¢ 175 =» L) B 207 & 223 =m 239 A 255
o :
143 A 160 4 176 0 192 L 208 L 24 o 240 =

Source: www.LookupTables.com

Figure 3-3. ASCII characters

Unicode

Representing characters with a byte worked well for computers until about the 1990s,
when the personal computer became widely adopted in non-Western countries where
languages have more than 256 characters. Instead of a 1-byte character set, Unicode can
have up to a 4-byte character set.

To facilitate faster adoption, the first 256 code points are identical to the ASCII character
table. Unicode can have different character encodings. The most common encoding used
for Western text is called UTF-8. As an iPhone developer, you will probably use this
character encoding the most.

Data Types

Now that we’ve discussed how computers manipulate data, we will cover an important
concept called data types. Humans can generally just look at data and the context in which
it is being used to determine what type of data it is and how it will be used. Computers
need to be told how to do this. So, the programmer needs to tell the computer the type of
data it is being given. Here’s an example: 2 + 2 = 4.

The computer needs to know you want to add two numbers together. In this example, they
are integers. You might first believe that adding these numbers is obvious to even the most
casual observer, let alone a sophisticated computer. However, it is common for users of
iOS apps to store data as a series of characters, not a calculation. For example, a text
message might read “Everyone knows that 2 + 2 =4.”

In this case, the example is a series of characters called a string. A data type is simply the
declaration to your program that defines the data you want to store. A variable is used to
store your data and is declared with an associated data type. All data is stored in a
variable, and the variable has to have a variable type. For example, in Swift, the following
are variable declarations with their associated data types:

var x: Int = 10
var y: Int = 2
var z: Int = 0
var submarineName: Int = "USS Nevada SSBN-733"

Data types cannot be mixed with one another. You cannot do the following:

z = X + submarineName

Mixing data types will cause either compiler warnings or compiler errors, and your app
will not run.

Table 3-5 gives examples of the basic data types in Swift.

Table 3-5. Swift Data Types

Type Examples

Int 1, 5,10, 100

Float or Double 1.0,2.222, 3.14159

Bool true, false
String “Star Wars”,“Star Trek”
ClassName UIView, UILabel, and so on

Declaring Constants and Variables

Swift constants and variables must be declared before they are used. You declare constants
with the 1et keyword and variables with the var keyword. Constants never change

during the program, but variables do change during the program.
There are two ways to declare variables: explicit and implicit.

Here is the syntax for explicit variables:

var name: type = value
var firstNumber: Int = 5

However, declaring the type is normally optional, and removing the type shortens the code
and makes it easier, because there is less code to type and maintain.

Here is the syntax for implicit variables:

var _name = value
var firstNumber = 5

You can use implicit most of the time because Swift is smart enough to figure out
what the variable is by what you assign to it.

If a variable isn’t going to change, then you should declare it as a constant. Constants
never change. Constants start with the keyword 1et, as shown here:

let secondNumber = 10

To best understand how variables and constants are declared, here are two examples:

let maximumNumberOfStudents = 30
var currentNumberOfStudents = 5

This code can be read as follows: “Declare a new constant called
maximumNumberOfStudents, and give it a value of 30. Then, declare a new variable

called currentNumberOfStudents, and give it an initial value of 5.”

In this example, the maximum number of students is declared as a constant because the
maximum value never changes. The current number of students is declared as a variable
because this value must be incremented or decremented after the student enrollment
changes.

Most data you will use in your programs can be classified into four different kinds—
Booleans, numbers, strings, and objects. We will discuss how to work with numbers and
object data types in the remainder of this chapter. In Chapter 4, we will talk more about
Boolean data types when you learn how to write apps with decision making.

Note Localizing your app is the process of writing your app so users can buy
and use it in their native language. This process is too advanced for this book,
but it is a simple one to complete when you plan from the beginning. Localizing
your app greatly expands the total number of potential customers and revenue
for your app without your having to rewrite it for each language. Be sure to
localize your app. It is not hard to do and can easily double or triple the number
of people who buy it. For more information on localizing your app, visit Apple’s
“Build Apps for the World” site:
https://developer.apple.com/internationalization/.

Optionals

Swift introduces an important concept called optionals that developers need to understand.
Even for experienced iOS developers, this concept is new. Optionals are not a hard topic
to understand, but they take some time to get used to.

Use optionals when a value may be absent. An optional says the following:
There is a value assigned to a variable or there is no value.

There are times when a constant or variable might not have a value. Listing 3-1 shows an
example of the integer initializer called Int (), which converts a St ring value to an

Int.

Listing 3-1. Converting a string to an integer

1 var myString = "42"

2 let somelnteger = Int (myString)

3 // somelnteger is inferred to be of type "Int?", or
"optional Int"

The constant someInteger is assigned the integer value 42. someInteger is also
assigned the type of Int 2. The question mark indicates that it is an optional type,
meaning that the variable or constant’s value may be absent. See Listing 3-2.

Listing 3-2. Unable to convert a string to an integer

https://developer.apple.com/internationalization/

1 var myString = "Hello World"
2 let somelInteger = Int (myString)
3 // somelnteger's value is now absent

Line 2 in Listing 3-2 has a problem. It is not possible to convert “Hello World” from a
Stringtoan Int. So, the value of someInteger is said to be absent or ni1, because
on line 2, someInteger is inferred to be an optional Int.

Note Objective-C programmers may have used ni1 to return an object from a
method, with ni 1 meaning “the absence of a valid object.” This works for
objects but not well for structures, basic C types, or enumeration values.
Objective-C methods typically return a special value, like NSNotFound
indicating the absence of a valid object. This assumes that the method’s caller
knows the special value to test against. Optionals indicate the absence of a value
for any type at all, without using special constants.

The Integer Int () initializer might fail to return a value, so the method returns an
optional Int, rather than an ITnt. Again, the question mark indicates that the value it
contains is optional, meaning that it might contain some Int value, or it may contain no
value at all. The value is either some Int or is nothing at all.

Swift’s ni1 is not the same as nil in Objective-C. With Objective-C, ni1 is a pointer to
a nonexistent object. In Swift, ni1 is not a pointer; it is the absence of a value. Optionals
of any type can be set to ni 1, not just object types.

In Chapter 4, you will learn how to unwrap optionals and check for the object of a valid
object.

Using Variables in Playgrounds
Now that you have learned about data types, let’s write your code in a playground that
adds two numbers and displays the sum.

1. Open Xcode and select “Get started with a playground,” as shown
in Figure 3-4.

Welcome to Xcode

B
i

—
Ac

LY

X

Version 7.0 (7TA220)

Get started with a playground
Explore new ideas quickly and easily.

Create a new Xcode project
Start building a new iPhone, iPad or Mac application.

Check out an existing project
Start working on something from an SCM repaository.

Show this window when Xcode launches

Figure 3-4. Creating a playground

2. Name your playground DataTypes, as shown in Figure 3-5. Press
next and select a directory to save your playground.

Choose options for your new playground:

Name DataTypes

Platform: i0S

<>

Cancel

N Previous _ Next

Figure 3-5. Naming your playground

3. When your playground is created, two lines of code are already
placed in your code for you, as shown in Figure 3-6.

Ready

@ DataTypes

//: Playground - noun: a place where people can play
3 import UIKit

var str = "Hello, playground" "Hello, playground"

Figure 3-6. Two lines of code

4. Enter the code of this playground, as shown in Listing 3-3.

Listing 3-3. Playground adding

// Playground - noun: a place where people can play

import UIKit

var str = "Hello, playground"
var firstNumber = 2
var secondNumber = 3

var totalSum = firstNumber + secondNumber

firstNumber = firstNumber + 1
secondNumber = secondNumber + 1
totalSum = firstNumber + secondNumber

30

17
18 print ("totalSum = \ (totalSum)")

Your playground should look like Figure 3-7.

eace Ready | Today at 2:14 PM - 1 E
DataTypes.playground
B 8 Q4 &M m DataTypes
» @ DataTypes 1 ff Playground = noun: a place where people
can play
import UIKit
var str = "Hello, playground" "Hello, playground"”
var firstNumber = 2 2
var secondNumber = 3 3
var totalSum = firstNumber + secondNumber 5
I = MU + 1 3
k = condNumber + 1 4
= - ndNL 7
print{"totalSum = \(totalSum)}") "totalSum = 7\n"
= D= | = | a0

Figure 3-7. Playground displaying the results of your Swift app

One of the neat features of playgrounds is that as you type in your code, Swift executes
the line of code as you enter it so you can immediately view the results.

The // used in Swift programming enables programmers to make comments about their

code. Comments are not compiled by your applications and are used as notes for the
programmer or, more importantly, for programmers who follow the original developer.
Comments help both the original developer and later developers understand how the app
was developed.

Sometimes, it is necessary for comments to span several lines or just part of a line. This
can be accomplished with /* and * /. All the text between /* and */ is treated as
comments and is not compiled.

print is a function that can take one parameter and print its contents.

Note If your editor doesn’t have the same menus or gutter (the left column that
contains the line numbers of the program) you saw in the previous screenshots,
you can turn these settings on in Xcode preferences. You can open Xcode
preferences by clicking the Xcode menu in the menu bar and then selecting
Preferences.

Summary

In this chapter, you learned how data is used by your apps. You saw how to initialize
variables and how to assign data to them. We explained that when variables are declared,
they have a data type associated with them and that only data of the same type can be
assigned to variables. The differences between variables and constants was also discussed,
and we also introduced optionals.

Exercises

Write code within a Swift playground that multiplies two integers
and displays the result.

Write code within a Swift playground that squares a float. Display
the resulting float.

Write code within a Swift playground that subtracts two floats, with
the result being stored as an integer. Note that rounding does not
occur.

Chapter 4

Making Decisions, Program Flow, and
App Design

One of the great things about being an iOS developer is you get to tell your devices
exactly what you want them to do and they do it—your devices will do tasks over and
over again without getting tired. That’s because iOS devices don’t care how hard they
worked yesterday, and they don’t let feelings get in the way. These devices don’t need
hugs.

There is a downside to being a developer: you have to think of all the possible outcomes
when it comes to your apps. Many students love having this kind of control. They enjoy
focusing on the many details of their apps; however, it can be frustrating having to handle
so many details. As mentioned in the introduction to this book, there is a price to pay for
developing apps, and that price is time. The more time you spend developing and
debugging, the better you will get with all the details, and the better your apps will
perform. You have to pay this price to become a successful developer.

Computers are black and white; there are no shades of gray. Your devices produce results,
many of which are based on true and false conditions.

In this chapter, you learn about computer logic and controlling the flow of your apps.
Processing information and arriving at results are at the heart of all apps. Your apps need
to process data based on values and conditions. To do this, you need to understand how
computers perform logical operations and execute code based on the information your
apps have acquired.

Boolean Logic

Boolean logic is a system for logical operations. Boolean logic uses binary operators such
as AND and OR and the unary operator NOT to determine whether your conditions have

been met. Binary operators take two operands. Unary operators take one operand.

We just introduced a couple of new terms that can sound confusing; however, you
probably use Boolean logic every day. Let’s look at a couple of examples of Boolean logic
with the binary operators AND and OR in a conversation parents sometimes have with their

teenage children:
“You can go to the movies tonight if your room is clean AND the dishes are put away.”
“You can go to the movies tonight if your room is clean OR the dishes are put away.”

Boolean operators’ results are either TRUE or FALSE. In Chapter 3, we briefly introduced
the Boolean data type. A variable that is defined as Boolean can contain only the values
TRUE and FALSE.

var seeMovies: Bool = false

In the preceding example, the AND operator takes two operands: one to the left and one to
the right of the AND. Each operand can be evaluated independently with a TRUE or
FALSE.

For an AND operation to yield a TRUE result, both sides of the AND have to be TRUE. In
the first example, the teenager has to clean his or her room AND have the dishes done. If
either one of the conditions is FALSE, the result is FALSE—no movies for the teenager.

For an OR operation to yield a TRUE result, only one operand has to be TRUE, or both
conditions can be TRUE to yield a TRUE result. In the second example, just a clean
bedroom would result in the ability to go to the movies.

Note In Objective-C and other programming languages, Boolean variables can
hold integer variables; O represents FALSE, and any nonzero value represents

TRUE. Swift’s strong type checking doesn’t allow this. Boolean variables in
Swift can be assigned only true or false.

A NOT statement is a unary operator. It takes just one operand to yield a Boolean result.
Here’s an example:

“You can NOT go to the movies.”

This example takes one operand. The NOT operator turns a TRUE operand to a FALSE and
a FALSE operand to a TRUE. Here, the result is a FALSE.

AND, OR, and NOT are three common Boolean operators. Occasionally, you need to use
more complex operators. XOR, NAND, and NOR are common operations for iOS
developers.

The Boolean operator XOR means exclusive-or. An easy way to remember how the XOR
operator works is the XOR operator will return a TRUE result if only one argument is
TRUE, not both.

Swift does not have these operators built in, but consider that NAND and NOR mean NOT
AND and NOT OR. After evaluating the AND or OR argument and the results, simply
negate the results.

Truth Tables

You can use a tool to help you evaluate all the Boolean operators called a truth table, and
it is a mathematical table used in logic to evaluate Boolean operators. They are helpful
when trying to determine all the possibilities of a Boolean operator. Let’s look at some
common truth tables for AND, OR, NOT, XOR, NAND, and NOR.

In an AND truth table, there are four possible combinations of TRUE and FALSE.

TRUE AND TRUE = TRUE

TRUE AND FALSE = FALSE
FALSE AND TRUE = FALSE

FALSE AND FALSE =FALSE

Placing these combinations in a truth table results in Table 4-1.

Table 4-1. An AND Truth Table

A B AAND B

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

An AND truth table produces a TRUE result only if both of its operands are TRUE.

Table 4-2 illustrates an OR truth table and all possible operands.

Table 4-2. An OR Truth Table

A B AORB

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

An OR truth table produces a TRUE result if one or both of its operands are TRUE.
Table 4-3 illustrates a NOT truth table and all possible operands.

Table 4-3. A NOT Truth Table

A NOT A

TRUE FALSE

FALSE TRUE

A NOT flips the bit or negates the original operand’s Boolean value.

Table 4-4 illustrates an XOR (or exclusive-or) truth table and all possible operands.

Table 4-4. An XOR Truth Table

A B

AXORB

TRUE TRUE

TRUE FALSE
FALSE TRUE

FALSE FALSE

FALSE

TRUE

TRUE

FALSE

The operator XOR yields a TRUE result if only one of the operands is TRUE.
Table 4-5 illustrates a NAND truth table and all possible operands.

Table 4-5. A NAND Truth Table

A B

ANAND B

TRUE TRUE

TRUE FALSE
FALSE TRUE

FALSE FALSE

FALSE

TRUE

TRUE

TRUE

Table 4-6 illustrates a NOR truth table and all possible operands.

Table 4-6. A NOR Truth Table

A B

ANORB

TRUE TRUE

TRUE FALSE
FALSE TRUE

FALSE FALSE

FALSE

FALSE

FALSE

TRUE

The easiest way to look at the NAND and NOR operators is to simply negate the results
from the AND and OR truth tables, respectively.

Comparison Operators

In software development, you can compare different data items using comparison
operators. These operators produce a logical TRUE or FALSE result. Table 4-7 shows the

list of comparison operators.

Table 4-7. Comparison Operators

Operator Definition

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to

== Exactly equal to

I= Not equal to

Note If you’re constantly forgetting which way the greater than and less than
signs go, use a crutch we learned in grade school: if the greater than and less
than signs represent the mouth of an alligator, the alligator always eats the
bigger value. It may sound silly, but it works.

Designing Apps

Now that we’ve introduced Boolean logic and comparison operators, you can start
designing your apps. Sometimes it’s important to express all or parts of your apps to
others without having to write the actual code.

Writing pseudocode helps a developer think out loud and brainstorm with other developers
regarding sections of code that are of concern. This helps to analyze problems and
possible solutions before coding begins.

Pseudocode

Pseudocode refers to writing code that is a high-level description of an algorithm you are
trying to solve. Pseudocode does not contain the necessary programming syntax for
coding; however, it does express the algorithm that is necessary to solve the problem at
hand.

Pseudocode can be written by hand on paper (or a whiteboard) or typed on a computer.

Using pseudocode, you can apply what you know about Boolean data types, truth tables,
and comparison operators. Refer to Listing 4-1 for some pseudocode examples.

Listing 4-1. Pseudocode Examples Using Conditional Operators in if-then-else Code

X = 5
y = 6
isComplete = TRUE

if x <y
{

// in this example, x is less than 6
do stuff

}

else

{
do other stuff

}

if isComplete == TRUE

{ // 1in this example, isComplete is equal to TRUE
do stuff

}

else

{
do other stuff

}

// another way to check isComplete == TRUE
if isComplete

{
// 1in this example, 1isComplete 1is TRUE

do stuff
}

// two ways to check if a value is false
1f isComplete == FALSE
{
do stuff
}
else

{

// 1in this example, isComplete is TRUE so the else block will be
executed

do other stuff
}

// another way to check isComplete == FALSE
if !isComplete
{

do stuff

else

{
// 1in this example, 1isComplete is TRUE so the else block will be
executed

do other stuff

Note Pseudocode is for expressing and teaching coding ideas. Pseudocode will
not execute!

Note that ! switches the value of the Boolean it’s applied to; so, using ! makes a TRUE
value into a FALSE and makes a FALSE value into a TRUE.

Often, it is necessary to combine your comparison tests. A compound relationship test is
one or more simple relationship tests joined by either && or | | (two pipe characters).

&& and | | are verbalized as logical AND and logical OR, respectively. The pseudocode in
Listing 4-2 illustrates logical AND and logical OR operators.

Listing 4-2. Using && and || Logical Operators Pseudocode

X = 5
y =6
isComplete = TRUE

// using the logical AND

if x < y && isComplete == TRUE

{
// in this example, x is less than 6 and isComplete == TRUE
do stuff

}

if x < y || isComplete == FALSE

{

// in this example, x 1is less than 6.
// 0Only one operand has to be TRUE for an OR to result in a TRUE.
// See Table 4-2 A OR Truth Table

do stuff
}

// another way to test for TRUE

1f x < y && 1isComplete

{
// in this example, x 1is less than 6 and isComplete == TRUE
do stuff

}

// another way to test for FALSE
1f x <y && !isComplete

{

do stuff
}

else

{
// 1isComplete == TRUE
do other stuff

}

Optionals and Forced Unwrapping

Chapter 3 introduced optionals. Optionals are variables that might not contain a value.
Since optionals may not contain a value, you need to check for that before you access
them.

You start by using an i f statement to determine whether the optional contains a value by
comparing the optional against ni1. If the optional has a value, it is considered to be “not
equal to” ni1, as shown in Listing 4-3.

Line 4 in Listing 4-3 checks to see whether the optional variable is not equal to ni1. In
this example, the someInteger value is absent, and it is equal to ni1, so line 8 code is
executed.

Listing 4-3. Checking Whether an Optional Has a Value

1 var myString = "Hello world"

2 let somelInteger = Int (myString)

3 // somelnteger’s value is now absent

4 if somelInteger != nil {

5 print ("someInteger contains an integer value.")

6 }

1 else {

8 print ("someInteger doesn’t contain an integer value.")
9 }

Now that you have added a check to make sure your optional does or doesn’t contain a
value, you can access its value by adding an exclamation mark (!) to the end of the
optional’s name. The ! means you have checked to ensure the optional variable has a
value and use it. This is called forced unwrapping of the optional’s value. See Listing 4-4.

Listing 4-4. Forced Unwrapping

var myString = "42"

let somelInteger = Int (myString)

// somelInteger contains a value

if somelInteger != nil {
5 print ("someInteger contains a value. Here it is: \
somelnteger!)")

}

DS w N

(
6

7 else {
8 print ("somelInteger doesn’t contain an integer value.")
9

}

Note Displaying the contents of a variable in a print function is done with \
(youVariable!).

Optional Binding

You can find out whether an optional contains a value and, if so, assign a temporary
constant or variable to that value in a single action. See Listing 4-5. This is called optional
binding. Optional binding can be used with i f and while statements to determine
whether an optional has a value and, if so, extract the value to a constant or variable.

Listing 4-5. Optional Binding Syntax to a Constant

1 let someOptional: String? = "hello world"

2 if let constantName = someOptional ({

3 print ("constantName contains a value, Here it is: \
(constantName) ")

4 1}

If you want to assign the optional to a variable so you can manipulate that variable, you
can assign the optional to a var, as shown in Listing 4-6.

Listing 4-6. Optional Binding Syntax to a Variable

1 let someOptional: String? = "hello world"

2 if var variableName = someOptional ({

3 print ("variableName contains a value, Here it is: \
(variableName) ")

4}

Notice in Listings 4-5 and 4-6 you didn’t need to use the !. If the conversion was
successful, the variable or constant was initialized with the value contained within the
optional, so the ! was not necessary.

Implicitly Unwrapped Optionals

There are instances after the value is first set when you know that an optional will always
have a value. In these instances, it’s useful to remove the need to check and unwrap an
optional every time it needs to be accessed. These kinds of optionals are called implicitly
unwrapped optionals.

Because of the program’s structure, you know that the optional has a value, so you can
give permission for the optional to be safely unwrapped whenever it needs to be accessed.
The ! is not needed every time you use it; instead, you place an ! after the optional’s type

when you declare it. Listing 4-7 shows the comparison between an optional String and

an implicitly unwrapped optional String.

Listing 4-7. Comparison of an Optional String and an Implicitly Unwrapped Optional
String

1 var optionalString: String? = "My optional string."

2 var forcedUnWrappedString: String = optionalString! //
requires an !

3

4 var nextOptionalString: String! = "An implicitly unwrapped
optional."

5 var implicitUnwrappedString: String = nextOptionalString
// no need for an !

Note The following will trigger runtime exceptions: trying to access implicitly
unwrapped optionals when they don’t contain a value and attempting to unwrap
an optional that does not contain a value.

Flowcharting

After the design requirements are finalized, you can create pseudocode sections of your
app to solve complex development issues. Flowcharting is a common method of
diagramming an algorithm. An algorithm is represented as different types of boxes
connected by lines and arrows. Developers often use flowcharting to express code
visually, as shown in Figure 4-1.

Process — I'Et::lT:t —

Process Disk :>

Process

Figure 4-1. Sample flowchart showing common figures and their associated names

Flowcharts should always have a start and a stop. Branches should never come to an end
without a stop. This helps developers make sure all of the branches in their code are
accounted for and that they cleanly stop execution.

Designing and Flowcharting an Example App

We have covered a lot of information about decision-making and program flow. It’s time
to do what programmers do best: write apps!

The app you have been assigned to write generates a random number between 0 and 100
and asks the user to guess the number. Users have to do this until the number is guessed.
When users guess the correct answer, they will be asked if they want to play again.

The App’s Design

Using your design requirements, you can make a flowchart for your app. See Figure 4-2.

Star

_—P

getRandomhumber
roundRandomiumber
printRangomiNumber

b

Ask user to guess
number between K<t

0-100 f}.

b

Guess correc1?

JL Yes

Display quess | |
too high | *

AsSK user If thay wam ::H
to continue playing too low

Stop
Figure 4-2. Flowchart for guessing a random number app

Reviewing Figure 4-2, you’ll notice that as you approach the end of a block of logic in
your flowchart, there are arrows that go back to a previous section and repeat that section
until some condition is met. This is called looping. It enables you to repeat sections of
programming logic—without having to rewrite those sections of code over—until a
condition is met.

Using Loops to Repeat Program Statements

A loop is a sequence of program statements that is specified once but can be repeated
several times in succession. A loop can repeat a specified number of times (count-

controlled) or until some condition (condition-controlled) occurs.

In this section, you’ll learn about count-controlled loops and condition-controlled loops.
You will also learn how to control your loops with Boolean logic.

Count-Controlled Loops

A count-controlled loop repeats a specified number of times. In Swift, this is a for loop.
A for loop has a counter variable, which enables the developer to specify the number of
times the loop will be executed. See Listing 4-8.

Listing 4-8. A Count-Controlled Loop

var 1 = 0

for i; 1 < 10; i++ {
print ("The index is: \(i)")
}

//....continue

The loop in Listing 4-8 will loop ten times. The variable i starts at zero and increments at
the end of the } by one. The incrementing is done by the i++ in the for statement; i++
isequivalentto i = i + 1.Then i is incremented by one to ten and checked to see
whether it is less than ten. This for loop will exit when i = 10 and the } is reached.

Note It is common for developers to confuse the number of times they think
their loops will repeat. If the loop started at 1 in Listing 4-8, the loop would
repeat nine times instead of ten.

In Swift, for loops can have their counter variables declared in the for loop declaration.
See Listing 4-9.
Listing 4-9. Counter Variable Initialized in the for Loop Declaration
for var 1 = 0; 1 < 10; 1++ {
print ("The index is: \(i)")

}

//....continue

You use the for-in loop to iterate over collections of items, such as ranges of numbers,
items in an array, or characters in a string.

Listing 4-10 prints a few entries in the ten times table.

Listing 4-10. Counter Variable Initialized in the for Loop Declaration

for index in 1..10 {
print ("\ (index) times 10 is \ (index * 10)")
}

//....continue

Condition-Controlled Loops

Swift has the ability to repeat a loop until some condition changes. You may want to
repeat a section of your code until a false condition is reached with one of your variables.
This type of loop is called a while loop. Awhile loop is a control flow statement that

repeats based on a given Boolean condition. You can think of a while loop as a repeating
if statement. See Listing 4-11.

Listing 4-11. A Swift while Loop Repeating

var 1sTrue = true
while isTrue

{
// do something

isTrue = false // a condition occurs that sometimes sets
isTrue to FALSE

}

//....continue

The while loop in Listing 4-11 first checks whether the variable 1 sTrue is true—
which it is—so the { 1loop body} is entered where the code is executed. Eventually,
some condition is reached that causes i sTrue to become false. After completing all
the code in the loop body, the condition (i sTrue) is checked once more, and the loop is
repeated. This process is repeated until the variable 1 sTrue is setto false.

Infinite Loops

An infinite loop repeats endlessly, either because of the loop not having a condition that
causes termination or because of the loop having a terminating condition that can never be
met.

Generally, infinite loops can cause apps to become unresponsive. They are the result of a
side effect of a bug in either the code or the logic.

Listing 4-12 is an example of an infinite loop caused by a terminating condition that can
never be met. The variable x will be checked with each iteration through the while loop

but will never be equal to 5. The variable x will always be an even number because it was
initialized to zero and incremented by two in the loop. This will cause the loop to repeat
endlessly. See Listing 4-13.

Listing 4-12. An Example of an Infinite Loop
var x = 0
| =

while x

{

5

// do something
X =X + 2

}

//....continue

Listing 4-13. An Example of an Infinite Loop Caused by a Terminating Condition That
Can Never Be Met

while true

{

// do something forever

}

//....continue

Coding the Example App in Swift

Using your requirements and what you learned, try writing your random number generator
in Swift.

To program this app, you have to leave the playground and do this as a Mac Console app.
Unfortunately, at this time, a playground doesn’t enable you to interact with a running app,
so you can’t capture keyboard input.

Note You can download the complete random number generator app at
http://forum.xcelme.com. The code is in the topic of Chapter 4.

Your Swift app will run from the command line because it asks the user to guess a random
number.

1. Open Xcode and start a new project. Choose the Command Line
Tool project. See Figure 4-3.

Choose a template for your new project:

i0s /7\ % =
Application ,// 2 .l |

)"
Framework & Library

Other Cocoa Game Command Line
Application Tool
0S X
Application

Framework & Library
System Plug-in
Other

Command Line Tool

This template creates a command-line tool.

Cancel Next

Figure 4-3. Starting a new Command Line Tool project

2. Call your project RandomNumber (see Figure 4-4). Ensure that
the Language drop-down is Swift. Save the project anywhere you
prefer on your hard drive.

http://forum.xcelme.com

Choose options for your new project:

Product Mame: RandomNumber
Organization Name: Gary Bennett
Organization Identifier: com
Bundie Identifier: com.RandomNumber

Language: Swift

<3

Cancel Previous Next

Figure 4-4. Project options for RandomNumber

3. Openthemain.swift file. Write the code in Listing 4-14.

Listing 4-14. Source Code for Your Random Number Generator App
//

// main.swift
// Guess

import Foundation

O J o Ul Wb

var randomNumber =
var userGuess:Int?
10 wvar continueGuessing
11 var keepPlaying = true
12 wvar input = ""

1

N©)

1
= true

13
14 while (keepPlaying) {
15 randomNumber = Int (arc4random uniform(101l)) //get

a random number between 0-100

16 print ("The random number to guess is: \
(randomNumber)") ;

17 while (continueGuessing) {

18 print ("Pick a number between 0 and 100. ")
19 input = NSString(data:

NSFileHandle.fileHandleWithStandardInput () .availableData,
encoding:NSUTF8StringEncoding) ! as String //get keyboard
input

20 input

= input.stringByReplacingOccurrencesOfString ("\n",
withString: "", options:
NSStringCompareOptions.LiteralSearch, range: nil) //strip
off the /n

21 userGuess = Int (input)

22 1f (userGuess == randomNumber) {

23 continueGuessing = false

24 print ("Correct number!");

25 }

26 //nested 1f statement

277 else 1f (userGuess > randomNumber) {
28 //user guessed too high

29 print ("Your guess 1s too high");
30 }

31 else(

32 // no reason to check if userGuess <
randomNumber. It has to be.

33 print ("Your guess 1is too low");
34 }

35 }

36 print ("Play Again? Y or N");

37 input = NSString(data:

NSFileHandle.fileHandleWithStandardInput () .availableData,
encoding:NSUTF8StringEncoding) ! as String

38 input

= input.stringByReplacingOccurrencesOfString ("\n",
withString: "", options:
NSStringCompareOptions.LiteralSearch, range: nil)

39

40 if (input == "N" || input == "n") {
41 keepPlaying = false

42 }

43 continueGuessing = true

44 '}

In Listing 4-14, there is new code that we haven’t discussed before. The first new line of
code (line 15) is as follows:

randomNumber = Int (arc4random uniform(101))

This line will produce a random number between 0 and 100;
arc4random uniform() is a function that returns a random number.

The next line of new code is on line 19:

input = NSString(data:
NSFileHandle.fileHandleWithStandardInput () .availableData,
encoding:NSUTF8StringEncoding) !

This enables you to get keyboard input for the user. We will talk about this syntax in later
chapters.

The next new line of code is on line 21:

userGuess = Int (input)

Int takes a string initializer and converts it to an integer.

Nested if Statements and else if Statements

Sometimes, it is necessary to nest i f statements. This means that you need to have i f
statements nested inside an existing i f statement. Additionally, it is sometimes necessary
to have a comparison as the first step in the e1se section of the i f statement. This is
called an else 1if statement (recall line 27 in Listing 4-14).

else 1if (userGuess > randomNumber)

Removing Extra Characters

Line 20 in Listing 4-14 is as follows:

input = input.stringByReplacingOccurrencesOfString("\n",
withString: "", options:
NSStringCompareOptions.LiteralSearch, range: nil) //strip
off the /n

Reading keyboard input can be difficult. In this case, it leaves a remnant at the end of your
string, \n, and you need to remove it. This is a newline character that is generated when

the users press the Return key on their keyboards.

Improving the Code Through Refactoring

Often, after you get your code to work, you examine the code and find more efficient ways
to write it. The process of rewriting your code to make it more efficient, maintainable, and
readable is called code refactoring.

As you review your code in Swift, you will often notice that you can eliminate some
unnecessary code.

Note As developers, we have found that the best line of code is the line that
you don’t have to write—less code means less to debug and maintain.

Running the App

To run your app, click the Play button at the top left of your screen in your Swift project.
See Figure 4-5.

[] & b B msrocrburaar B ey s Emgmbiunde s Berdsmbourssr Succssded | Today st 1 19 P

]
ez Rprombsrmer [mam [
e st a
B
& e gt .
S Gue
import Foundation
var randosNumber = 1
var userGuess:Int? = 1
var centinuebuessing = true
var keepPlaying = true
ar input = **
dhile [keer b {
b = Int{arcdrandom_uniferm({181))} //get a random nusber betwesn B-100
print{“The random number to guess is: \| i |l 1
while (t
print (P unber between 8 and 188, *)
t (data: NSFileHandle.fileHandleWithStandardInputi).availableData, encoding:NSUTFAStringEncoding)? as String /fget

', options: WSStringCospareOptions.LiteralSearch, range:

ff no reason to check 1f userGo
print{“Your guess is too low");

}
}
print {“Play Again? ¥ or N")j
ngl! as Strimg

t = NSString(data: NSFileHandle,filelandleWithStandardInput({).availableData, encoding:NSUTFBStringEncoding)!
b= t.streinnfvReniacinaficruereneashiiStrinal“n" . withStrinn: "™. antinng: NSSErinaCnsnarelntions.) iteralSparch. ranne: nill
=
Optional (1234)

The random number to guess is: 65
Pick a number between @ and 108.
64

Your guess is too low

Pick a number between @ and 108.
1]

Your guess is too high

Pick a number between @ and 108.
65

Correct number!
Play Again? ¥ or N
Y

The random nusber to guess is: 17
Pick a number between @ and 100.
17

Correct number!

Play Again? Y or N

M

Program ended with exit code: @

Figure 4-5. The console output of the Swift random number generator app

Note If you’re not seeing the output console when you run your app, make sure
you have selected the same options at the top-right and bottom-right corners of
the editor (choose View » Debug Area » Activate Console). See Figure 4-5.

Design Requirements

As discussed in Chapter 1, the most expensive process in the software development
lifecycle is writing code. The least expensive process in the software development
lifecycle is gathering the requirements for your application; yet, this latter process is the
most overlooked and least used in software development.

Design requirements usually begin by asking clients, customers, and/or stakeholders how
the application should work and what problems it should solve.

With respect to apps, requirements can include long or short narrative descriptions, screen
mock-ups, and formulas. It is far easier to open your word processor and change the
requirements and screen mock-ups before coding begins than it is to modify an iOS app.
The following is the design requirement for one view of an iPhone mobile banking app:

View: Accounts view.

Description: Displays the list of accounts the user has. The list of
accounts will be in the following sections: Business Accounts,
Personal Accounts and Car Loans, IRA, and Home Equity Loans.

Cells: Each cell will contain the account name, the last four digits of
the account, the available balance, and the present balance.

A picture is worth a thousand words. Screen mock-ups are helpful to developers and users
because they can show how the views will look when they are completed. There are many
tools that can quickly design mock-ups; one of these tools is OmniGraffle. See Figure 4-6
for an example of a screen mock-up used for design requirements generated by
OmniGraffle.

|5 CANVASES : | -] o | B #
- I 3 o T 3 17 I P Ts
Cxp pags
Account Pay
Canvas 14 = -
2 e paga 14 : «ill ATET = 7:54 PM
- " tes _Account --
H: CONTENTS fE== == max =, o= A -
= =g Balances Transfer Money Pay Bills
& Layer 1 F5 / avings (xx1772))
(% Adjustable Arrow Business Accounts vailabie Balance s1zaa.21)
in /Present Balance $2123.22
oF Group r Business Checking (xx4327)
= !)
0 Gro Available Balance s2n00.22 J
05 R Prosant Balance $4201.35 IRA (xx177)
5o Group Available Balance stz)
50 Group iuslgasﬁzﬁaﬂngs (xx1234) S Frosent Epinco |ne
1 - ailable Balance 1 13
G0 Group o st Ja Car Loan (xx172)
Outstanding Principle 5123421
A Text: Personal Accounts Meod Paymant Amount 223z
20 Group] Personal Accounts / Due Date an72og)
."_"." i Last Pay Amaurd S482.99
=0 Group = Checking (xx3423) fif Last Pay Dase 0772009
) i Aovitabl Balance sawp0ze’)
3 Rectangle Prosont Balanco s.tsm.gj
A Text: Modified by: Gary B - :
A Text: Wed Jul 14 2010 Home Locations Contact Us FAQ Log Owm
= seadh ikt Home Equity Loan (xxT872)
A Text: Page 14 of 23 - Outstangng Principlo £12,34.21
. : E Maxt Paymant Ameurt smziz
,_',L Text: Business Accounts 3 Due Date oan72o08 [
5o Group Last Pay Amount 5452.99
List Pay Db 772008
B Rectangle -
A Text: Native 2
A Text: Account Page
Rectangle Native
=TS
ol Group -
Modified by: Gary Bennett Page 14 of 23 Wed Jul 14 2010

Figure 4-6. Screen mock-up for a mobile banking app using OmniGradffle and the Ultimate iPhone Stencil plug-in. This
mock-up was done for the original Woodforest Banking app in 2010

Many developers believe that design requirements take too long and are unnecessary.
There is a lot of information presented on the Accounts screen in Figure 4-6. Many
business rules can determine how information is displayed to the users, along with all of

the error handling when things go bad. When designing your app, working with all the

business stakeholders at the beginning of the development process is critical to getting it
right the first time.

Figure 4-7 is an example of all stakeholders being involved in your app’s development.
Having all stakeholders involved in every view from the beginning will eliminate multiple
rewrites and application bugs.

App 81om » Finance » Woodforest Financial Group

Woodforest Mobile Banking =

Woodforest Financial Group >
Details ' Ratings and Reviews Related

iPhone Screenshots

& Transfers Transter og Off Mobile Deposit Log Off

Checking & Savings

Schedule Accound Transler Choosa an Oplion

Anmonmmis;g;_“

£ Checking (...1175) Frome: Chesking .. 1175) = Make a Deposil
&) Accounts Curent Balance: 59,1032
Rating: 4+ Fraitable atance: £9,100.39 To: hinciiig [& Deposit Hi
. Translers "
- i Checking (...3658)
LINKS - Curent Balanse Lt 0080
Pay Bills Avalablo Balance:
Privacy Policy Memo: Wty Savings
Developer Wetdits @ Mobile Deposit Checking (...4982)
Curan Balanse: Trarmier By: Fabeuary 13, 2014
« Locations Adiably Balance:
Woodlonsst National Bank 2013 e TR Cotun: \Waaidy
Checking (...5884)
B G Caras Curvont Ratancs Hambiar OF Tamos:
HAowadablo Batance:
€. ContactUs _—
‘. st oW m m
) Frequently Asked Questions Current Balance. ;' x
1

& 2014 Woodiores! National Bark
Mamibar FOIC

[i =

S s]

Awakablo Bakance:

Figure 4-7. Woodforest Mobile Banking app as it appeared on the App Store in 2015; compare this with the app

requirements Accounts screen in Figure 4-6

Additionally, Apple recommends that developers spend at least 50 percent of their
development time on the user interface’s design and development.

Balsamiq also has great tools for laying out your iOS app’s look. See Figure 4-8.

Unleash Your Creativity!

Balsamiq Mockups is a rapid wireframing tool
that helps you Work Faster & Smarter. It
reproduces the experience of sketching on a
whiteboard, but using a computer.

Making mockups is fast. You'll generate more
ideas, so you can throw out the bad ones and
discover the best solutions.

Quick Add User Interface Library
Build a user interface at the Tons of Ul elements.
speed of thought. Just drag and drop!

Get Honest Feedback

Improve your designs by getting immediate and

meaningful feedback. Sketch-style wireframes
help focus the conversation on content and
interaction, not minute details (those can come
later).

Sketch-Style Controls Clean Wireframes Option
They look like sketches on MNeed to present your
purpose! It encourages work? Switch to the
brainstorming. clean wireframe skin!

Summary

AND
OR
XOR
NAND

balsamig.com

button|

puoon |
Button Bar [Tab Bar

Help Button

Multiline Button

Pointy Button / iPhone Button
Radio Button

Radio Button Group

B Cot i Tasay 00 e
et 5 Freudy Fire (i

B Ciratary v o
e 8 1 Doy Somatio g

} shide 10 unlock

Figure 4-8. Balsamiq.com web site for creating wireframe mock-ups

This chapter covered a lot of important information on how to control your applications;
program flow and decision making are essential to every iOS app. Make sure you have
completed the Swift example in this chapter. You might review these examples and think
you understand everything without having to write this app. This will be a fatal mistake
that will prevent you from becoming a successful iOS developer. You must spend time
coding this example. Developers learn by doing, not by reading.

The terms in this chapter are important. You should be able to describe the following:

NOR

NOT

Truth tables

Negation

All comparison operators
Application requirement
Logical AND (&&)

Logical OR (] |)

Optionals and forced unwrapping
Optional binding

Implicitly unwrapped optionals
Flowchart

Loop

Count-controlled loops

For loop

Condition-controlled loops
Infinite loops

while loops

Nested if statements

Code refactoring

Exercises

Extend the random number generator app to print to the console how
many times the user guessed before guessing the correct random
number.

Extend the random number generator app to print to the console how
many times the user played the app. Print this value to the console
when the user quits the app.

Chapter 5
Object-Oriented Programming with Swift

Over the past 15 years, the programming world focused on the development paradigm of
object-oriented programming (OOP). Most modern development environments and
languages implement OOP. Put simply, OOP forms the basis of everything you develop
today.

You may be asking yourself why we waited until Chapter 5 to present OOP using Swift if
it is the primary development style of today. The simple answer is that it is not an easy
concept for new developers. This chapter will go into detail about the different aspects of
OOP and how they affect your development.

Implementing OOP into your applications correctly will take some front-end planning, but
you will save yourself a lot of time throughout the life of your projects. OOP has changed
the way development is done. In this chapter, you will learn what OOP is. OOP was
initially discussed in the first chapter of this book, but this chapter will go into more detail
about it. You will revisit what objects are and how they relate to physical objects you find
in the world. You will look into what classes are and how they relate to objects. You will
also learn the steps you need to take when planning your classes and some visual tools you
can use to accomplish these steps. When you have read this chapter and have worked
through the exercises, you will have a better understanding of what OOP is and why it is
necessary for you as a developer.

At first, objects and object-oriented programming may seem difficult to understand, but
the hope is that as you progress through this chapter, they will begin to make sense.

The Object

As discussed in Chapter 1, OOP is based on objects. Some of the discussion about objects
will be a review, but it will also go into more depth. An object is anything that can be
acted upon. To better understand what a programming object is, you will first look at some
items in the physical world around you. A physical object can be anything around you that
you can touch or feel. Take, for example, a television. Some characteristics of a television
include type (plasma, LCD, or CRT), size (40 inches), brand (Sony or Vizio), weight, and
cost. Televisions also have functions. They can be turned on or off. You can change the
channel, adjust the volume, and change the brightness.

Some of these characteristics and functions are unique to televisions, and some are not.
For example, a couch in your house would probably not have the same characteristics as a
television. You would want different information about a couch, such as material type,
seating capability, and color. A couch might have only a few functions, such as converting
to a bed or reclining.

Now let’s talk specifically about objects as they relate to programming. An object is a

specific item. It can describe something physical like a book, or it could be something
such as a window for your application. Objects have properties and methods. Properties
describe certain things about an object such as location, color, or name. Conversely,
methods describe actions the object can perform such as close or recalculate. In this
example, a TV object would have type, size, and brand properties, while a Couch
object would have properties such as color, material, and comfort level.In
programming terms, a property is a variable that is part of an object. For example, a TV
would use a string variable to store the brand and an integer to store the height.

Objects also have commands the programmer can use to control them. The commands are
called methods. Methods are the way that other objects interact with a certain object. For
example, with the television, a method would be any of the buttons on the remote control.
Each of those buttons represents a way you can interact with your television. Methods can
and often are used to change the values of properties, but methods do not store any values
themselves.

As described in Chapter 1, objects have a state, which is basically a snapshot of an object
at any given point in time. A state would be the values of all the properties at a specific
time.

In previous chapters, you saw the example of the bookstore. A bookstore contains many
different objects. It contains book objects that have properties such as title,

author, page count, and publisher. It also contains magazines with properties
suchas title, issue, genre, and publisher. A bookstore also has some
nontangible objects such as a sale. A sale object would contain information about the
books purchased, the customer, the amount paid, and the payment type. A sale object
might also have some methods that calculate tax, print the receipt, or void the sale. A
sale object does not represent a tangible object, but it is still an object and is necessary
for creating an effective bookstore.

Because the object is the basis of OOP, it is important to understand objects and how to
interact with them. You will spend the rest of the chapter learning about objects and some
of their characteristics.

What Is a Class?

We cannot discuss OOP without discussing what a class is. A class defines which
properties and methods an object will have. A class is basically a cookie cutter that can be
used to create objects that have similar characteristics. All objects of a certain class will
have the same properties and the same methods. The values of those properties will
change from object to object.

A class is similar to a species in the animal world. A species is not an individual animal,
but it does describe many similar characteristics of the animal. To understand classes
more, let’s look at an example of classes in nature. The Dog class has many properties that
all dogs have in common. For example, a dog may have a name, an age, an owner, and a
favorite activity. An object that is of a certain class is called an instance of that class. If

you look at Figure 5-1, you can see the difference between the class and the actual objects
that are instances of the class. For example, Lassie is an instance of the Dog class. In

Figure 5-1, you can see a Dog class that has four properties (Breed, Age, Owner, and
Favorite Activity). Inreal life, a dog will have many more properties, but these
four are for this demonstration.

Class Objects

Lassie

[Breed: Collie

Age: 5

Owner: Jeff

:avnrite Activity: Helping People

» s Spot

Breed Breed: Dalmation

Age = t---—-- > Age: 2

Owner Owner: Fire Department

Favorite Activity i Favorite Activity: Riding in a Fire Truck

r Scooby Doo
Breed: Great Dane
Age: 10
Owner: Shaggy
Favorite Activity: Eating Scooby Snacks

Figure 5-1. An example of a class and its individual objects

Planning Classes

Planning your classes is one of the most important steps in your development process.
While it is possible to go back and add properties and methods after the fact (and you will
definitely need to do this), it is important that you know which classes are going to be
used in your application and which basic properties and methods they will have. Spending
time planning your different classes is important at the beginning of the process.

Planning Properties

Let’s look at the bookstore example and some of the classes you need to create. First, it is
important to create a Bookstore class. ABookstore class contains the blueprint of
the information each Bookstore object stores, such as the bookstore’s name, address,
phone number, and logo (see Figure 5-2). Placing this information in a class rather than
hard-coding it in your application will allow you to easily make changes to this
information in the future. You will learn the reasons for using OOP methodologies later in
this chapter. Also, if your bookstore becomes a huge success and you decide to open
another one, you will be prepared because you can create another object of class

Bookstore.

Bookstore
Name
Addressi
Address?2
City
State
Zip
Phone Number
Logo

Figure 5-2. The Bookstore class

Let’s also plan a Customer class (see Figure 5-3). Notice how the name has been broken
into First Name and Last Name. This is important to do. There will be times in your

project when you may want to use only the first name of a customer, and it would be hard
to separate the first name from the last if you didn’t plan ahead. Let’s say you want to send
a letter to a customer letting them know about an upcoming sale. You do not want your
greeting to say, “Dear John Doe.” It would look much more personal to say, “Dear John.”

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre

Figure 5-3. The Customer class

You will also notice how the address is broken into its different parts instead of grouping it
all together. The Address Line 1,Address Line 2,City, State, and Zip are

separate. This is important and will be used in your application. Let’s go back to the letter
you want to send to customers about an upcoming sale.

You might not want to send it to all of the customers who live in different states. By
separating the address, you can easily filter out those customers you do not want to
include in your mailings.

We have also added the attribute of Favorite Book Genre tothe Customer class.
We added this to show you how you can keep many different types of information in each

class. This field may come in handy if you have a new mystery title coming out and you
want to send an e-mail alerting customers who are especially interested in mysteries. By
storing this type of information, you will be able to specifically target different portions of
your customer base.

A Book class is also necessary to create the bookstore (see Figure 5-4). You will store
information about the book such as author, publisher, genre, page count, and edition
number (in case there are multiple editions). The Book class will also have the price for
the book.

Book
Author
Publisher
Genre
Year Published
Number of Pages
Edition
Price

Figure 5-4. The Book class

You can add another class called Sale (see Figure 5-5). This class is more abstract than
the other classes discussed because it does not describe a tangible object. You will notice
how we have added a reference to a customer and a book to the Sale class. Because the
Sale class will track sales of books, you need to know which book was sold and to which
customer.

Sale
Customer
Book
Date
Time
Amount
Payment Type

Figure 5-5. The Sale class

Now that you know the properties of the classes, you need to look at some methods that
each of the classes will have.

Planning Methods

You will not add all of the methods now, but the more planning you can do at the
beginning, the easier it will be for you later. Not all of your classes will have many
methods. Some may not have any methods at all.

‘ Note When planning your methods, remember to have them focus on a specific

task. The more specific the method, the more likely it is that it can be reused.

For the time being, you will not add any methods to the Book class or the Bookstore
class. You will focus on your other two classes.

For the Customer class, you will add methods to list the purchase history of that client.

There may be other methods that you will need to add in the future, but you will add just
that one for now. Your completed Customer class diagram should look like Figure 5-6.

The line near the bottom separates the properties from the methods.

Customer
First Name
Last Name
Address Line 1
Address Line 2
City
State
Zip
Phone Number
Email Address
Favorite Book Genre
List Purchase History |

Figure 5-6. The completed Customer class

For the Sales class, we have added three methods. We added Charge Credit
Card, Print Invoice, and Checkout (see Figure 5-7). For the time being, you do

not need to know how to implement these methods, but you need to know that you are
planning on adding them to your class.

Sale

Customer

Book

Date

Time

Amount
| Payment Type
Charge Credit Card
Print Invoice
Checkout

Figure 5-7. The completed Sale class

Now that you have finished mapping out the classes and the methods you are going to add
to them, you have the beginnings of a Unified Modeling Language (UML) diagram.

Basically, this is a diagram used by developers to plan their classes, properties, and
methods. Starting your development process by creating such a diagram will help you
significantly in the long run. An in-depth discussion of UML diagrams is beyond the
scope of this book. If you would like more information about this subject,
smartdraw.com has a great in-depth overview of them; see
http://www.smartdraw.com/uml-diagram/. Omnigroup
(www.omnigroup.com) provides a great UML diagram program for Mac OS X called
Omnigraffle.

Figure 5-8 shows the complete diagram.

Bookstore - Sale
Name Customer
Address1 Book
Address2 Date
City Time
State Amount
Zip Payment Type
Phone Number Charge Credit Card
Logo Print Invoice
Checkout
Book | Customer

Author First Name

Publisher Last Name

Genre Address Line 1

Year Published Address Line 2

Number of Pages City

Edition State

Price Zip
Phone Number
Email Address
Favorite Book Genre
List Purchase History

Figure 5-8. The completed UML diagram for the bookstore

Implementing the Classes

Now that you understand the objects you are going to be creating, you need to create your
first object. To do so, you will start with a new project.

1. Launch Xcode. Select File » New » Project.

2. Select iOS on the left side. On the right side, select Master-Detail
Application. For what you are doing in this chapter, you could have
selected any of the application types (see Figure 5-9). Click Next.

http://smartdraw.com
http://www.smartdraw.com/uml-diagram/
http://www.omnigroup.com

Choose a template for your new project:

i0s
Application - 00O 1 e
Framework & Library
Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application Application
Application
; T
Framework & Library %}'
0s X
n— Game
Application

Framework & Library
System Plug-in
Other

Master-Detail Application

This template provides a starting point for a master-detail application. It provides a user
interface configured with a navigation controller to display a list of items and also a split view
on iPad.

Cancel - T

Figure 5-9. Creating a new project

Enter a product name for your project. We will use the name of
BookStore. You will also have to enter a company name and a
company identifier. The company identifier is usually
com.companyname (i.e., com. innovativeware). Leave the
checkboxes on this screen as they appear by default. You will not be
worrying about Core Data right now; it’s discussed in Chapter 11.
Also, leave the current language selection set to Swift. Click Next
to select a location to save your project and then save your project.
You can use the name BookStore or any other project name you
want.

Select the BookStore project from the Project navigator on the
left side of the screen (see Figure 5-10). This is where the majority
of your code will reside.

* {01 BookStoroTosts
» [BookSteceliTeats
* [Produsts

oy BookStere | g iPrens B
BR a4 B o B B
0

BockStore: Ready | Today at 3:37 PM

B Docksiene

My BockStoee & Genaes Capaities Resource Tegs Infe Buid Settings

¥ dentity

Bunae lsentfer com gy BaaiSione
Version 10
Buld 1
Team Nono B

o codie signing identities found

¥ Deploymant info

g

]

:
EoD

Status Bar Style | Detaw 5]

ik
Rea

¥ Applcons and Launch Images

Appicons Soures | Appican]
Launch images Source Use Asset Cataiog

Lounch Sereen File LaunchScraen [~

¥ Embedded Binaries

Figure 5-10. Selecting the bookStore folder

5. Select File » New » File.

1]

oD ®
Identiny and Tyse
hama BookSiore

Lecatien | A
DockSrar xeoceprn]
Fal Path [Users/brachwiess/Sourcel

BookStormcodeprn] @

On Demass Resserce Tags

Project Document

:::::::::::

‘Cocoa Toweh Glass - & Coosa
(G Jeiptivn

£ TestCosoClass - & cue
B ersiemang s st tent

I Test Case Class - A class
B irsiemensng s swa o

6. From the pop-up window, select Source under the iOS header and
then click the Swift File on the right side (see Figure 5-11). Then

click Next.

Choose a template for your new file:

i0s
i Source
l User Interface
Core Data
Apple Watch
Resource
Other
watchOS
Source
User Interface
Core Data
Resource
Other
0S X
Source
User Interface
Core Data

Dacaurcn.

Cancel

Cocoa Touch
Class

Test Case Class

> m

Objective-C File

Cr+ NN

C++ File Metal File

Swift File
An empty Swift file.

Figure 5-11. Creating a new Swift file

Ul Test Case
Class

h

Header File

Playground

C

C File

7. You will now be given the opportunity to name your file (see Figure
5-12). For this exercise, you will create the Customer class. For

now, name the file Customer. Click Create.

Choose a template for
i0s
Source
User Interface
Core Data
Apple Watch
Resource
Other
watchOS
Source
User Interface
Core Data
Resource
Other
0S X
Source
User Interface

Core Data

Cancel

Save As: Customer

Tags:
Where: BookStore
Group |5 BookStore

Targets A, BookStore
BookStoreTests
BookStoreUITests

Swift File

An empty Swift file.

Figure 5-12. Creating the file

Playground

o

Cancel

Previous

Note For ease of use and for understanding your code,
remember that class names should always be capitalized
in Swift. Object names should always start lowercase. For
example, Book would be an appropriate name for a class,
and book would be a great name for an object based on
the Book class. For a two-word object, such as the
book’s author, an appropriate name would be
bookAuthor. This type of capitalization is called lower
camel case.

8. Now look in your main project folder; you should have a new file.
It is called Customer.swift.

Note If you had created a class in Objective-C,
Customer.h and Customer .m files would have been
created. The . h file is the header file that contains
information about your class. The header file lists all of
the properties and methods in your class, but it does
actually contain the code related to them. The .m file is
the implementation file, which is where you write the
code for your methods. In Swift, the entire class is
contained in a single file.

9. The Customer.swift file should now be selected, and you will
see the window shown in Figure 5-13. Notice it does not contain a

lot of information currently. The first part, with the double slashes
(/ /), consists of comments and is not considered part of the code.
Comments allow you to tell those who might read your code what
each portion of code is meant to accomplish. All you have done this
far in Swift is create a file. You now need to add the code to the file
to actually create a class. In your Swift file, type the following:

class Customer {

[] e » By BoockStore | g IProne €
BRAaAs ¢ HOo B B|ML & BoskSess
v 3 BockSiore
. Customer.swift
¥ BoziiSione

o AppDelegats, swill

rport Foundation

lass Customer {

¥

LaunchEcreen sorybodrd
o st

> BockSioeTesis

> Bz SroreinTosts

* [Products

BookStore: Ready | Today at 3245 Pl

« Customerswilt | Mo Selection

Figure 5-13. Your empty customer class

This is all that is needed to create a Customer class.

O ®
identity and Type
fama | Customesswh
Typa Default - Swilt Souroe
wocation Relative 16 Grewn
s bommer gwil}

Full Path JUsers/bradwiessrSource)
DeckSrarnCuttemanwaily O

OA Damia REssats This

Target Membership
B o DosxSnan
BooxS s Tests
BookStoreUiTests
Text Sertings
Tex: Encuding Unicode [WTF-8)
Line Endings = Default - O5 X/ Unix [LF)
hent Liing | Soated

Wiy &l &
Ta roers

& Wrap lines

Snuree Contral

Fempasinany
O

s Cocoa Towch Class - A Cocsa
Touch clast

g Test Cane Class - & tuss
LY eplengnang 9 o ieet

e Ul Test Case Class - & cliss
=) FTOIEIMAING 3 a1 Te5!

B

«@O|m|

Note In Swift, a class does not need to be in its own file. Many classes can be
defined in a single Swift file, but this can be difficult to maintain when your
project contains a lot of classes. It is usually cleaner and more organized to have
a separate file for each class.

Now let’s transfer the properties from the UML diagram to the actual class.

Tip Properties should always start with a lowercase letter. There can be no
spaces in a property name.

For the first property, First Name, add this line to your file:

var firstName = ""

This creates an object in your class called £irstName. Notice you did not tell Swift
what type of property £irstName is. In Swift, you can declare a property and not
specify the type, and a property can be assigned a type based on the value we initially
assign it. By giving the property an initial value of ", you tell the Swift compiler to make
firstName a String. In Swift, all non-optional properties require a default value either

when they are declared or in the class initializer. We will discuss optionals later in this
book.

Note In Objective-C, all properties are required to declare a type. For example,
to create the same firstName property, you would use the following code:

NSString *firstName;

This declares an NSString with the name firstName. In Swift, you can
declare only a variable and allow the system to determine the type.

Since all of the properties will be vars, you just need to repeat the same procedure for the
other ones. When that is complete, your Swift file should look like Figure 5-14.

B = a A & == o B (8|« & BookStore) [l Customer.swift) [E] Customer
¥ |E] BookStore 1| #/)
2 JJ Customer.swift
B Customer.swift 3 // BookStore
v BookStore A
: f/ Created by Brad Lees on B/27/15.
» AppDelegate.swift // Copyright © 2815 Brad Lees. All rights reserved.
s MasterViewController.swift !
» DetailViewController.swift import Foundation

Main.storyboard class Customer {

)| Assets,xcassets i var firsthame = ™
13 var lastName = "

LaunchScreen.storyboard var addressLinel = "»

Info.plist 15 var addressLing2 = ""
- Var Cit'_lf = (TR
BookStoreTests var state = "*
> | | BookStoreUlTests 1 var zip = "
= 1 var phoneNumber = "
Products 2 var emailAddress = "'

var favoriteGenre = "

Figure 5-14. The Customer class interface with properties

Now that the class declaration is complete, you will need to add your method. Methods
should be contained in the same class file and location as the properties. You will add a
new method that returns an array. This code will look as follows:

func listPurchaseHistory () -> [String] {

return ["Purchase 1", "Purchase 2"]

}

This code might seem a little confusing. The empty parentheses tell the compiler that you
are not passing any parameters to the method. The -> tells the system what you return

from your method. [String] tells you that you are returning an array of strings. In the
final version, you will actually want to return purchase objects, but you are using String

for now. This code will not yet compile because you do not return an array, so you added a
return of a simple array. That is all that needs to be done in the Swift file to create the
class. Figure 5-15 shows the final Swift file.

B 2 Q A & &2 o B |8 < & BookStore) [Customer.swift) [Customer
v 5 BookStore '/
- . f/f Customer.swift
& Customer.swift // BookStore

F g

// Created by Brad Lees on 6/27/15.

»| AppDelegate.swift // Copyright © 2815 Brad Lees. All rights reserved.
1/

v BookStore

» MasterViewController.swift
x| DetailViewController.swift import Foundation

Main.storyboard class Customer {

5| Assets.xcassets var firstName = ""
var lastName = "“

Launchscrecn.stof{.‘boarc var addressLinel wn

Info.plist var addressLine2
var city = ""
> BookStoreTests var state = "
» | BookStoreUlTests var zip = "
var phoneNumber = ""
P (| Products var emailAddress = ""

var favoriteGenre = ""

func listPurchaseHistory() -> [String] {
return ["Purchase 1", "Purchase 2"]
H

Figure 5-15. The finished Customer class Swift file

Inheritance

Another major quality of OOP is inheritance. Inheritance in programming is similar to
genetic inheritance. You might have inherited your eye color from your mother or hair
color from your father, or vice versa. Classes can, in a similar way, inherit properties and
methods from their parent classes, but unlike genetics, you do not inherit the values of
those properties. In OOP, a parent class is called a superclass, and a child class is called a
subclass.

Note In Swift, there is no superclass unless specifically stated.

You could, for example, create a class of printed materials and use subclasses for books,
magazines, and newspapers. Printed materials can have many things in common, so you
could define properties in the superclass of printed materials and not have to redundantly
define them in each individual class. By doing this, you further reduce the amount of
redundant code that is necessary for you to write and debug.

In Figure 5-16, you will see a layout for the properties of a Printed Material
superclass and how that will affect the subclasses of Book, Magazine, and
Newspaper. The properties of the Printed Material class will be inherited by the

subclasses, so there is no need to define them explicitly in the class. You will notice that
the Book class now has significantly fewer properties. By using a superclass, you will

significantly reduce the amount of redundant code in your programs.

Book
Author
Genre
Edition
"j'rlnted Material |

Title

Publish Date <! Issum:gazlne

Page Count il

Price

Publisher |
| Newspaper
Date

Figure 5-16. Properties of the super- and subclasses

Why Use OOP?

Throughout this chapter, we have discussed what OOP is and have even discussed how to
create classes and objects. However, it’s also important to discuss why you want to use
OOQRP principles in your development.

If you take a look at the popular programming languages of the day, all of them use the
OORP principles to a certain extent. Swift, Objective-C, C++, Visual Basic, C#, and Java all
require the programmer to understand classes and objects to successfully develop in those
languages. In order to become a developer in today’s world, you need to understand OOP.
But why use it?

OOP Is Everywhere

Just about any development you choose to do today will require you to understand object-
oriented principles. On Mac OS X and in iOS, everything you interact with will be an
object. For example, simple windows, buttons, and text boxes are all objects and have
properties and methods. If you want to be a successful programmer, you need to
understand OOP.

Eliminate Redundant Code

By using objects, you can reduce the amount of code you have to retype. If you write code
to print a receipt when a customer checks out, you will want that same code available
when you need to reprint a receipt. If you placed your code to print the receipt in the
Sales class, you will not have to rewrite this code again. This not only saves you time
but often helps you eliminate mistakes. If you do not use OOP and there is a change to the
invoice (even something as simple as a graphic change), you have to make sure you make
the change in your desktop and mobile applications. If you miss one of them, you run the

risk of having the two interfaces behave differently.

Ease of Debugging

By having all of the code relating to a book in one class, you know where to look when
there is a problem with the book. This may not sound like such a big deal for a little
application, but when your application gets to hundreds of thousands or even millions of
lines of code, it will save you a lot of time.

Ease of Replacement

If you place all of your code in a class, then as things change in your application, you can
change out classes and give your new class completely different functionality. However,
the modified class can still interact with the rest of the application in the same way as your
current class. This is similar to car parts. If you want to replace a muffler on a car, you do
not need to get a new car. If you have code related to your invoice scattered all over the
place, it makes it much more difficult to change items about a class.

Advanced Topics

We have discussed the basics of OOP throughout this chapter, but there are some other
topics that are important to your understanding.

Interface

As discussed in this chapter, the way the other objects interact is with methods. In Swift,
you can set access levels on your methods. Declaring a method private will make it
accessible only to objects derived from it. By default, Swift methods are internal and can
be accessed by any object or method in the current module. This is often called the
interface because it tells other objects how they can interact with your objects.
Implementing a standard interface throughout your application will allow your code to
interact with different objects in similar ways. This will significantly reduce the amount of
object-specific code you need to write.

Polymorphism

Polymorphism is the ability of an object of one class to appear and be used as an object of
another class. This is usually done by creating methods and properties that are similar to
those of another class. A great example of polymorphism that you have been using is the
bookstore. In the bookstore, you have three similar classes: Book, Magazine, and
Newspaper. If you wanted to have a big sale for your entire inventory, you could go
through all of the books and mark them down. Then you could go through all of the
magazines and mark them down and then go through all of the newspapers and mark them
down. That would be more work than you would need to do. It would be better to make

sure all of the classes have a markdown method. Then you could call that on all of the
objects without needing to know which class they were as long as they were subclasses of
a class that contained the methods needed. This would save a bunch of time and coding.

As you are planning your classes, look for similarities and for methods that might apply to
more than one type of class. This will save you time and speed up your application in the
long run.

Summary

You'’ve finally reached the end of the chapter! Here is a summary of the things that were
covered:

Object-oriented programming (OOP): You learned about the
importance of OOP and the reasons why all modern code should use
this methodology.

Objects: You learned about OOP objects and how they correspond to
real-world objects. You also learned about abstract objects that do
not correspond to real-world objects.

Classes: You learned that a class determines the types of data
(properties) and the methods that each object will have. Every object
needs to have a class. It is the blueprint for the object.

Creating a class: You learned how to map out the properties and
methods of your classes.

Creating a class file: You used Xcode to create a class file.

Editing a file: You edited the Swift file to add your properties and
methods.

Exercises

Try creating the class files for the rest of the classes you mapped out.

Map out an Author class. Choose the kind of information you
would need to store about an author.

For the daring and advanced:

Try creating a superclass called PrintedMaterials. Map out the
properties that a class might have.

Create classes for the other types of printed materials a store might
carry.

Chapter 6

Learning Swift and Xcode

For the most part, all programming languages perform the typical tasks any computer
needs to do—store information, compare information, make decisions about that
information, and perform some action based on those decisions. The Swift language
makes these tasks easier to understand and accomplish. The real trick with Swift (actually,
the trick with most programming languages) is to understand the symbols and keywords
used to accomplish those tasks. This chapter continues the examination of Swift and
Xcode so you can become even more familiar with them.

A Newcomer

As you may know, Swift has not been around for long. Development of the Swift language
began about four years ago by Chris Lattner, and on September 9, 2014, Swift 1.0 was
officially released. Swift borrows many ideas from Objective-C, but it also incorporates
many features used by modern programming languages. Swift was designed from the
ground up to be accessible to the average programmer.

Currently, there are two main types of programming languages. Compiled languages such
as Objective-C and C++ are known for being rigid and requiring certain syntax. Compiled
languages are also significantly faster in execution. Interpreted languages, such as Ruby,
PHP, and Python, are known for being easier to learn and code but slower in their
execution. Swift is a language that bridges the gap between the two. Swift incorporates the
flexibility that makes interpreted languages so popular with the performance required for
demanding applications and games. In fact, Apple claims that Swift applications will
perform faster than those written in Objective-C. In some of Apple’s tests, Swift
performed almost four times faster than Python and 40 percent faster than Objective-C.

Understanding the Language Symbols

Understanding symbols is a basic part of any programming language. Symbols are
punctuation used to portray specific meanings in source code. Understanding the symbols
of a language is required to be able to use the language. Here are some of the symbols and
language constructs used in Swift, most of which you’ve already encountered in one way
or another:

{: This is the begin brace. It’s used to start what’s commonly referred
to as a block of code. Blocks are used to define and surround a
section of code and define its scope.

} : This is the end brace. It’s used to end a block of code. Wherever
there is a begin brace ({), there must always be an accompanying

end brace (}).

[1: These are the open and close brackets. They are used in the
declaration and consumption of arrays.

func methodName () -> String: This is how a Swift
function is defined. The word methodName, of course, can
represent any name. The word St ring can also change. It
represents what type of information the method returns. In this
example, St ring indicates the method will return a string, or a
group of characters (data types were introduced in Chapter 3 and will
be covered in more depth in later chapters). This will be discussed
more later in the chapter.

Figure 6-1 shows an example of Swift code.

B o« 5 Chapiest Crapters | [ViesControdlerawify |+ Mo Selecton

func logMessage() {
let hello = "Hello World!"
println(hello)

Figure 6-1. Example of Swift code

Line 1 represents a Swift function. The empty parentheses, (), indicate that this function
does not receive any variables. The fact that the parentheses are not followed by —>

signifies that this function does not return any type of data and, if invoked, would not
return a value to the caller.

The end of line 1 and line 4 are the braces that define a block of code. This block is what
defines the method. Every method has at least one block.

Line 2 creates a constant named hel1lo. As you learned in previous chapters, a constant is
a value that cannot change or is constant. The value of the constant hel1lo is assigned
“Hello World!” Because you assign hello toa String value, hello becomes a
String and can use any method related to St rings (recall that you first saw strings in
Chapter 3). Line 3 could be rewritten as follows:

let hello: String = "Hello World!"

Line 3 is a call to the print1n function. You pass the method the object in order to print
the hello String object.

Although it does look a little cryptic to someone who is just learning Swift, the simple and
terse syntax doesn’t take too much time to learn.

Implementing Objects in Swift

Swift was built from the ground up to be object-oriented. It incorporates the best parts of
Objective-C without the constraints of being compatible with C. It also takes some of the

best features of a scripted language. The following are some of the concepts that make
Swift object-oriented. Don’t worry if some of these terms seem unfamiliar; they will be
discussed in later chapters (Chapters 7 and 8 cover the basics).

Pretty much everything is an object.

Objects contain instance variables.

Objects and instance variables have a defined scope.

Classes hide an object’s implementation.

Note As you saw in Chapter 5, the term class is used to represent, generically,
the definition or type of an object. An object is created from the class. For
example, an SUV is a class of vehicle. A class is a blueprint of sorts. A factory
builds SUVs. The results are SUV objects that people drive. You can’t drive a
class, but you can drive an object built from a class.

So, how do these concepts translate to Swift? Swift is flexible in the implementation of
classes.

Note Even though in Swift a single file may contain many different classes, a
programmer will want to separate the code into different files to make access
easier.

Let’s look at a complete definition of a Swift class called He11loWor1ld (Figure 6-2).

1 import Foundation

+ class HelloWorld {

func logMessage() {
let hello = "Hello World!"
println(hello)

1}
Figure 6-2. HelloWorld class
In the preceding example, a class called Hel1loWor1d is being defined. This class has

only one method defined: 1ogMessage. What do all these strange symbols mean? Using
the line numbers as a reference, you can review this code line by line.

Line 1 contains a compiler directive, import Foundation. For this little program to
know about certain other objects, you need to have the compiler read other interface files.
In this case, the Foundation file defines the objects and interfaces to the Foundation
framework. This framework contains the definition of most non-user-interface base
classes of the iOS and Mac OS X systems. You will not be using any Foundation
framework—specific objects in this example, but it is a default part of any new Swift file.

The actual start of the object is on line 4, as follows:

class HelloWorld {

HelloWorld is the class. If you wanted Hel1loWor1ld to be a subclass of a logging
class you had created, such as LogFi1le, you would change the declaration as follows:

class HelloWorld: LogFile {

Line 6 contains a method definition for this object, as follows:

func logMessage () {

When you’re defining a method, you must decide whether you want the method to be a
type or an instance method. In the case of the He11oWor1d object, you are using the

default method type, which is an instance. This method can be used after the object is
created. If the word class is added before the func, the method can be used before the

object is created, but you will not have access to variables in the object. If you changed
logMessage to a type method, it would be as follows:

class func logMessage () {

Lines 7 and 8 contain the body of the method. You learned about the details of the
statements earlier in the chapter.

That’s the complete description of class He11oWor1d; there’s not a whole lot here. More
complicated objects simply have more methods and more variables.

But wait, there is more. Now that you have a new Swift class defined, how is it used?
Figure 6-3 shows another piece of code that uses the newly created class.

let myHelloWorld = HelloWorld()
myHelloWorld. logMessage()

Figure 6-3. Calling a Swift method

The first line defines a constant called myHe1loWor1d. It then assigns the constant to an
instance of the He1l1oWor1d class. The second line simply calls the 1ogMessage
method of the myHe11loWor1d object. Those who have spent time in Objective-C will

quickly see how much shorter and efficient both the class declaration and the object
creation are in Swift.

Note Instantiation makes a class a real object in the computer’s memory. A
class by itself is not really usable until there is an instance of it. Using the SUV
example, an SUV means nothing until a factory builds one (instantiates the
class). Only then can the SUV be used.

Method calls can also accept multiple arguments. Consider, for example,
myCarObject.switchRadioBandTo (FM, 104.7).The method here

would be switchRadioBandTo. The two arguments are contained in the
parentheses. Being consistent in naming methods is critical.

Writing Another Program in Xcode

When you first open Xcode, you’ll see the screen shown in Figure 6-4.

W@|C0me J[O XCOde No Recent Projects

1 Get started with a playground
Explore new ideas quickly and easily.

y Create a new Xcode project
| Start building a new iPhone, iPad or Mac application,

< Check out an existing project
LAY start working on something from an SCM repository.

Show this window when Xcode launches Open another project...

Figure 6-4. Xcode opening screen

You should always keep the screen in Figure 6-3 visible at the launch of Xcode. Until you
are more comfortable with Xcode, keep the “Show this window when Xcode launches”
checkbox selected. This window allows you to select the most recently created projects or
create a new project from scratch.

Creating the Project

You are going to start a new project, so click the “Create a new Xcode project” icon.
Whenever you want to start a new iOS or Mac OS X application, library, or anything else,
use this icon. Once a project has been started and saved, the project will appear in the
Recent list on the right of the display.

For this Xcode project, you will choose something simple. Make sure the iOS Application
is selected. Then select Single View Application, as shown in Figure 6-5. Then simply
click the Next button.

Choose a template for your new project:

i0s
Application - e 1 . o
Framework & Library
Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application Application

Application

Framework & Library e
08 X =k

Application Game

Framework & Library

System Plug-in

Other
Single View Application
This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.
Cancel Next

Figure 6-5. Choosing a new project from a list of templates

There are several types of templates. These templates make it easier to start a project from
scratch in that they provide a starting point by automatically creating simple source files.

Once you’ve chosen the template and clicked the Next button, Xcode presents you with a
dialog box asking for the project’s name and some other information, as shown in Figure
6-6. Type a product name of Chapter 6. The organization identifier needs to have some
value, so we used com. innovativeware. Also make sure the Devices drop-down is
set to iPhone.

Choose options for your new project:

Product Name: Chapter6
Organization Name: Developer

Organization Identifier: com.innovativeware

Bundie Identifier: com.innovativeware.Chapter6

Language: Swift B
Devices: iPhone _ﬂ
Use Core Data
Include Unit Tests
Include Ul Tests
Cancel Previous

Figure 6-6. Setting up the product name, company, and type

Once you’ve supplied all the information, click the Next button. Xcode will ask you where
to save the project. You can save it anywhere, but the desktop is a good choice because it’s
always visible.

Once you’ve picked where to save the project, the main Xcode screen will appear (see
Figure 6-7). In the leftmost pane is the list of source files. The right two-thirds of the
screen is dedicated to the context-sensitive editor. Click a source file, and the editor will
show the source code. Clicking a . storyboard file will show the Screen Interface

editor.

ece P =y Cinsgners | W iPhena B Chapters: Ready | Todsy at 7:35 A Le Rt B ==

& Chapterd O @
] i Crapaes s 0 Capabiies Resouren Tags infn BuTd Sertings Buid Frases Buid Rules Sehuciey Sl -TYpS
tame Cragient
¥ identity
seatan
Srapted siadoany
Fall Path fUsers/bradwiees/Drepbon)
Apress Swift 2.0/Coded
Crapsendy
Cragiend xoodepne]

Bune ldenmifer cominnovativewsne Casgtend
Wersion L
Budd 1

I ©n Demand Rescurce Tags
Team Mono =]

Ho codo signing identitios kound
% e i Braject Dacument

Preject Format | Mooow 1I-compatibie]

Fix ls30a
ar on Dewlene
¥ Deployment info

. Text Settings
Deploymenn Taget %]

: noent Laing | Spaees |~
Devioes Phone =] R e
i Telo noent
M nterface | MEn b a
Wrag lings
Dovic Drignastion
Soures Contral
Repasitary -
Tyoe -
Famraes Rranch .
Snss Bar Srple | Dedpu [<] 0

=y Cocoa Toush Class - & Cocea
Toach class

¥ App leons sad Lounch Images
= Test Casn Class - & class

App ieens Soures | Appitan Be B ETplenLng 8 unh tet

Launch images Source Uz Assat Catalog
ey Ul Test Case Class - & ctss
Launch Seneen File LaunehSercon [~} BN mplementng 2w ten

T Embedded Binaries
Figure 6-7. The Xcode 7 main screen

The first app is going to be simple. This iPhone app will contain a button. When the button
is clicked, your name will appear on the screen. So, let’s start by first looking more closely
at some of the stub source code that Xcode built for you. The nice thing about Xcode is
that it will create a stub application that will execute without any modification. Before you
start adding code, let’s look at the main toolbar of Xcode, as shown in Figure 6-8.

| o] [3 oAy Chagtent |l IPhona & Chaptord: fesdy | Today 81 7126 AM ool O

Figure 6-8. The Xcode 7 toolbar

At first glance, there are three distinct areas of the toolbar. The left area is used to run and
debug the application. The middle area displays status as a summary of compiler errors
and warnings. The far-right area contains a series of buttons that customize the editing
view.

As shown in Figure 6-9, the left portion of the toolbar contains a Play button that will
compile and run the application. If the application is running, the Stop button will not be
grayed out. Since it’s grayed out, you know the application is not running. The scheme
selection can be left alone for now. Schemas will be discussed in more detail in Chapter
13.

O O } 7& Chapter6 ; 4§ iPhone 6

l

Figure 6-9. Close-up of the left portion of the Xcode toolbar

The right side of the Xcode toolbar contains buttons that change the editor. The three
buttons represent the Standard editor (selected), the Assistant editor, and the Version
editor. For now, just click the Standard editor button, as shown in Figure 6-10.

HUR=A B |

I

Figure 6-10. Close-up of the right portion of the Xcode toolbar

Next to the editor choices are a set of View buttons. These buttons can be toggled on and
off. For example, the one chosen in Figure 6-10 represents the current view shown in
Figure 6-7, a list of the program files on the left third of the screen, the main editor in the
middle third, and the Utilities in the right portion of the screen. Any combination, or none,
can be chosen to help customize the main workspace window. The last button opens the
Utilities area. Chapter 13 discusses this button. For now, let’s get back to your first iPhone

app.
Click the ViewController.swift file, as shown in Figure 6-11. The editor shows
some Swift code that defines a ViewController class.

[] 2 p oMy Chapter | il Poone & Chagtarhi: Ready | Tedsy ut 7:15 AM & & |

L4 B Cragnond Cragtord | o ViewControled.bwifl | No Seloction 0O &
sssntity £8a Type

Mame | ViewControlier swift

ad : BFIAF15. Tree | Detauh - Swilt Source =]
yright © 2015 Develoger. ALl rights reserved,
Lecaton | Redative to Group h

Wi TSRS WAL =
Full Paen fUsers/oradwioes) Dropibon |

SO o class ViewCoentroiilers UIViewController { Apress Swift 2.0/Codel
ria plit ChapteriCmaptons/
Tag e viewDidioadi() { WewControterswilt

uper.vilewdidLoad [}

rEUITests 5 4/ bo sny soditiorsl setup after lcading the view, typically from & nib On Damand Reseurce Tags

ort UTKEL

ChapterfiTests

de func didReceivedemoryarning()
super.disfece iveesarysarning ()
1) Dispess of -any: retcaroes. that

1

se b recreated, Target Mambershis
B o Crapters
ChapterBTesis

Cocoa Teuch Class - 4 Coton
Towth chass

Tost Caso Class - Aclsss
| iEoMrmenting & un it

gy I Test Coso Cluss - A elss
| implementing & un oew

Figure 6-11. Looking at the source code in the Xcode editor

You will notice two functions in the code. viewDidLoad is called immediately after a
view is loaded and can be used for setting up the view. This is a good place to put code
that sets up labels, buttons, colors, and so on. didReceiveMemoryWarning is called
when your application is getting low on memory. You can use this function to decrease the
amount of memory required by your application.

Note For now, you’re simply going to add a few lines of code and see what
they do. It’s not expected that you understand what this code means right now.
What’s important is simply going through the motions to become more familiar

with Xcode. Chapter 7 goes into more depth about what makes up a Swift
program, and Chapter 10 goes into more depth about building an iPhone
interface.

Next, you’ll add a few lines of code into this file, as shown in Figure 6-12. Line 13 defines
an iPhone label on the screen where you can put some text. Line 15 defines the method
showName. You’ll be calling this method in order to populate the iPhone label. A label is

nothing more than an area on the screen where you can put some text information.

/i

// ViewController.swift

// Chapter6

f/

// Created by Thorn on 6/38/15.

// Copyright © 2015 Developer. All rights reserved.
//

import UIKit

class ViewController: UIViewController {

@IBOutlet weak var namelLabel: UILabel!

15 @IBAction func showName(sender: AnyObject) {
16 nameLabel.text = "My Name is Brad!"

}

19 override func viewDidLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

[S S T N I
P B -

override func didReceiveMemoryWarning() {
25 super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

]

En }
Figure 6-12. Code added to the ViewController.swift file

Caution Type the code exactly as shown in the example, including case. For
instance, UILabel can’t be uilabel or UILABEL. Swift is a case-sensitive

language, so UILabel is completely different from uilabel.

You will notice that the code you added has @ITBOutlet and @IBAction in front of

them. These attributes are necessary when connecting objects with the interface designer.
IBOutlet allows you to control an interface object with code. IBAction allows you

to execute code when something happens in the interface such as tapping a button.

Note IBOutlet and IBAction both start with IB, which is an acronym

from Interface Builder. Interface Builder was the tool used by NeXT and then
Apple for building user interfaces.

You now have the necessary code in place, but you don’t yet have an interface on the
iPhone. Next, you’re going to edit the interface and add two interface objects to your app.

To edit the iPhone’s interface, you need to click the Main.storyboard file once. The
.storyboard file contains all the information about a single window or view. Xcode 7
also supports . xib (pronounced zib) files.

Note Each . xib file represents one screen on an iPhone or iPad. Apps that
have multiple views will have multiple . xib files, but many different views
can be stored in each storyboard file.

You will use Xcode’s interface editor to connect a Ul object, such as a Label object, to the
code you just created. Connecting is as easy as clicking and dragging.

Click the last view button in the upper-right part of the screen, as shown in Figure 6-13.
This opens the Utilities view for the interface. Among other things, this Utilities view
shows you the various interface objects you can use in your app. You’re going to be
concerned with only the right-most objects: Button and Label. Figure 6-14 shows the
Object Library. There are other libraries available, but for now you will be using only the
third one from the left.

L] [] | oy Chragters | Wl iPhane & Chagierh: Ready | Today at 7131 AM r BT A | J
B o A © @ ol o< 5 Crapaere Cragiond sz sorgboard | [l Matn.storgboard (Base) | Mo Selection DS @m ¢ 0 &
v [Crastend b [view Contraller Seene igentisy and Typs
Chapher g Main, sloryloacd
« AppDeiegate swift View Contredlar Type | Defaut - interiace Buider. o
» WiewConaretier swili -

nocaion v
Dase 'proy Main storyboand
Fal Puth JUsers/bradwieesOvopbon)
Apress Swift 20NCose)
Craptond/Chapters!
Dais prol/Manilerybosid ©

Qn Qamand Rapearce Tage

Intertace Bulider Document
Opets . Defaut (701 ﬂ
Budastoe Pt Deplopmen Tasg H
View i 105 10 and Later B
B Use Auto Layout
B Use Size Classes
Use 05 Launch Soreen

Glogal Tint | I | Crofault u
LocaRration
B - Basc

Engligh Locarzave Birngs o

= Cocod Towch Class - & Cocm
o Touch class

] Test Caso Class - & clasi
§ Wmpltnensng @ ot test

gey Ui Tost Case Claas - & clasy
§ epiemeng & Ui 1ET

e = O Ay nAmy BB o] bad

Figure 6-13. The iPhone interface you’re going to modify

0@ B

View Controller - A controller that
manages a view.

Storyboard Reference - Provides a
placehoclder for a view controller in an
external storyboard.

controller that manages navigation

(Navigation Controller - A
through a hierarchy of views.

Table View Controller - A
controller that manages a table view.

Figure 6-14. The Object Library

The first step is to click the Button object in the Utilities window. Next, drag the object to
the iPhone view, as shown in Figure 6-15. Don’t worry; dragging the object doesn’t
remove it from the list of objects in the Utilities view. Dragging it creates a new copy of
that object on the iPhone interface.

aoe »

B Qs ©BEOCE

v [Chapterts
¥ [Cirapaend
« AppDolegatn patt
« WewConiroferswift
Wi ararybaard
T AssoinaTanLly
LaunchScreen storyboard
Infio gt
13 ChaplomliTests
|7 CraptenbUITests

* Procuss

Figure 6-15. Moving a Button object onto the iPhone view

=
1]

ol

iy Chaptess | [l iPhons &

- R =]

v [view Controfier Score
w () Voaw Camrater
=1 Top Loyout Guide
| Dottons Livout Gulde
v || Viaw
0 | Buatten
7B First Resperaor
[E Exa
Saoryoeard Engry Point

Chapoest: Ready | Today at 7:33 AM

Chapeert - [Mainmorbosed | [l Main.stor. aed (Davel

B Virw Conteolnr Sene

E

Wigw Controlier

View || B| Dutien

Name|

[8]

wliny o Any

B & ol sl B

Dheamoc Dl e
iderizy and Tyse
warse ainsoeryboand
Ty | Dafaedt - Interlace Buldor B
Loewtien HEstive
Daso iprniiain soryEosnd
Full Path [Usens/Doad winas Dropban)
Apdasd Swill 20/Cods]

Chapterf{Chapiens
Doz praiiiain, glorpbaard ©

On Demand Ressurca Tags

| inperiace Bulider Document

Opensin Dedsu (700 ﬁ
Bulds e Project Deployment Tag ﬁ
Wiew o8 | 05 7.0 and Later -]
18 Use huto Layout
8 use Size Classes
Use a5 Launch Soreen

Gicksi Tint | N Dedouht B

| Lecamrsvion

O e O

BULLON - WCECERtS IOUEN EVENTS B0

™ Bution seeds an scticn message ma carget

ebiect when TS Boged.

Bar Bution lhem - Represems an
@ | mem ons Urtosibar or
LA BRI T DT

Fived Space Bar Button liem
bermimied Represens a Soed space ibem on 3
LAToomar object

Floxibls Space Bar Button itam -
dieid Represenis 2 Sewible space fiemona
U Toakar otyect

&) button =]

Next, double-click the Button object that was just added to the iPhone interface. This
allows you to change the title of the button, such as to Name, as shown in Figure 6-16.
Many different interface objects work just like this. Simply double-click, and the title of
the object can be changed. This can also be done in the actual code, but it’s much simpler
to do in Interface Builder.

Figure 6-16. Modifying the Button object’s title

Once the title has been changed, drag a Label object to right below the button, as shown in
Figure 6-17.

Identity and Type

Name Main.storyboard

Type | Default - Interface Builder... %

=)
=

Location Relative to Group
Base.|proj/Main.storyboard

Full Path [Users/bradwiees/Dropbox/
Apress Swift 2.0/Code/
Chapter6/Chaptert/
Base.lproj/Main.storyboard ©

- On Demand Resource Tags

Name
| Interface Bullder Documeant

ﬁ_a%eg Opens in | Default (7,00 ﬁ
(= v A = Builds for Project Deployment Targ... ﬁ

View as | i0S 7.0 and Later ﬁ

Use Auto Layout
) Use Size Classes
| Use as Launch Screen

Global Tint | NN Default i

| Localization

DO e O

Label - A variably sized amount of
Label static text.

O wAny »Any B3 1B iol taf| B @ label o

Figure 6-17. Adding a Label object to the iPhone interface

For now, you can leave the label’s text as “Label” since this makes it easy to find on the
interface. If you clear the label’s text, the object will still be there, but there is nothing
visible to click in order to select it. Expand the size of the label by dragging the center
white square to the right, as shown in Figure 6-18.

N
W: 265.0 E
H: 21.0 §

L

Figure 6-18. Expanding the label’s size

ame

Now that you have a button and the label, you can connect these visual objects to your
program. Start by right-clicking (or Control-clicking) the Button control. This brings up a
connection menu, as shown in Figure 6-19.

action

Outlet Collections
gestureRecognizers
Sent Events

Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
Touch Cancel

Touch Down

Touch Down Repeat

Touch Drag Enter
Touch Drag Exit
Touch Drag Inside

Touch Drag Outside

Touch Up Inside

Touch Up Outside

Value Changed

Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

O O 0000000000 O0O0O00O0 O O

Figure 6-19. Connection menu for the Button object

Next, click and drag from the Touch Up Inside connection circle to the View Controller
icon, as shown in Figure 6-20. Touch Up Inside means the user clicked inside the Button
object. Dragging the connection to the View Controller connects the Touch Up Inside
event to the ViewController object. This causes the object to be notified whenever
the Button object is clicked.

@ cede File Edit View Find Mawvigste Editor Produet Debug Source Conirol Window Help £ 8T NE Twe73AM Q =
A Chagrers | g

TR v [B View Contrelier Scene Idenity and Type
L (= Viow Comrcier Y| = : reama Main sreryDang
Top Layout Quide » B Tyee Dedicit - Weterfacs Duilder... &
Batfzes Lot Guide - i B
¥ || View
| M Bt proifMain.sioryDoard
e
Ful Path [Ugersiersdwises Dregbon)
L LY Apress Swil 2.0/Codo)
0 First Rosponder CrapterBiChagtens)
B exit Beso. rofMainstonrpoard O
3
Sheryooand Entry Pl
2 On Demand Resaures Tag
3
interface Dulider Decument -
Bpens i Dedouh (201
Suics for Prject Deplopement Targ.
View a3 105 70 and Laer . ;,"
7 50 Auts Lingut
« Upse Size Classes
Use a3 Launch Soreen
cilobal Tier I | Dofsult =
(T
Labal - & variably tioed aroent ot
Label (0l
= | H] < Any Ay B ol bal | B @) e o

40007 "a B BROTROM®AT D W

Figure 6-20. Connecting the Touch Up Inside event to the object

Once the connection is dropped, a list of methods that can be used in your connection is
displayed, as shown in Figure 6-21. In this example, there is only one method, showName

:. Selecting the showName : method connects the Touch Up Inside event to the object.

00 &) Chapter6 Chapter6) & A

= View Controller Scene

v
— | Top Layout Guide
i___ Bottom Layout Guide
v View

B | Name

'L | Labet
0§ First Responder
E Exit

» Storyboard Entry Point

Figure 6-21. Selecting the method to handle the Touch Up Inside event

Once the connection has been made, the details are shown on the button’s connection
menu, as shown in Figure 6-22.

Q

¥ Triggered Segues
action

¥ Outlet Collections
gestureRecognizers

¥ Sent Events
Did End On Exit
Editing Changed
Editing Did Begin
Editing Did End
Primary Action Triggered
Touch Cancel
Touch Down
Touch Down Repeat
Touch Drag Enter
Touch Drag Exit
Touch Drag Inside
Touch Drag Outside
Touch Up Inside x View Controller

showName:

Touch Up Outside

Value Changed

Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

O O 00 @O00000000000O0 O O

Figure 6-22. The connection is now complete

Next, you create a connection for the Label object. In this case, you don’t care about the
Label events; instead, you want to connect the ViewController’s nameLabel outlet
to the object on the iPhone interface. This connection basically tells the object that the
label you want to set text on is on the iPhone interface.

Start by right-clicking the Label object on the iPhone interface. This brings up the
connection menu for the Label object, as shown in Figure 6-23. There are not as many
options for a Label object as there were for the Button object.

Outlet Collections
gestureRecognizers
Referencing Outlets

New Referencing Outlet
Referencing Outlet Collections
New Referencing Outlet Collection

Figure 6-23. Connection menu for the Label object

As mentioned, you are not here to connect an event. Instead, you connect what’s referred
to as a referencing outlet. This connects a screen object to a variable in your
ViewController object. Just like with the button, you should drag the connection to
the View Controller icon, as shown in Figure 6-24.

& Xcode File Edit View Find Mavigste Editor Product Debug Source Conirol Window Help 82T el TueZdlaM Q =

| #iy Chaprers) B

) Chagtert v [B] View Gentrelier Scame idesity and Type

) Y Famg Man storyboand
’ Tyee | Dedscit - irterface Duilder.. &

location F

BaseoroiMain.stonyboard
Full Path [UderifErsdwisa s/ Didobon)

Apress Swifi 20/Code)

CRapLErBIChapsng)

Dano. oroiibain.sionyboard O

On Demand Resaurce Tags

MName

¥ Use Size Classes
Use 23 Launch Soreen

Glsbal Tt BN Default <

Lacafization

Labal - & variably ioed aroent ot
Label Jof e

= | 1] <y Ay B ol pad (=) bl o
B>0007 s BARO%O®EN 0¥

Figure 6-24. Connecting the referencing outlet to the object

Once the connection is dropped on the View Controller icon, a list of outlets in your
ViewController object will be displayed, as shown in Figure 6-25. Of the two

choices, you want to choose nameLabel. This is the name of the variable in the
ViewController object you are using.

v [E] View Controller Scene

namelLabel

view
— | Bottom Layout Guide

v View
Figure 6-25. Selecting the object’s variable to complete the connection

Once you’ve chosen nameLabel, you’re ready to run your program. Click the Run
button (which looks like a Play button) at the top-left corner of the Xcode window (see
Figure 6-6). This will automatically save your files and start the application in the iPhone
Simulator, as shown in Figure 6-26.

@ Smulator - Phona 6 - Phone 6 [0S 5.0 (13A42800) L] Simuilator - iPhorss B < iPhona B [105 8.0 (13A42800)
Name Name
Label My Name is Brad!

Figure 6-26. The app running, before and after the button is clicked

By clicking the Name button, the label’s text will change from its default value of “Label”
to “My Name is Brad!” or whatever value you entered. If you want to, go back into the
interface and clear the default label text.

Summary

The examples in this chapter were simple, but ideally they’ve whetted your appetite for
more complex applications using Swift and Xcode. In later chapters, you can expect to
learn more about object-oriented programming and more about what Swift can do. Pat
yourself on the back because you’ve learned a lot already. Here is a summary of the topics
discussed in this chapter:

The origins and brief history of the Swift language
Some common language symbols used in Swift
A Swift class example

Using Xcode a bit more, including discussing the
HelloWorld.swift source file

Connecting visual interface objects with methods and variables in
your application object

Exercises

Clear the default text of “Label” in the program and rerun the
example.

Change the size of the Label object on the interface to be smaller in
width. How does that affect your text message?

Delete the referencing outlet connection of the label and rerun the
project. What happens?

If you think you have the hang of this, add a new button and label to
the ViewController object and to the interface. Change the label

from displaying your name to displaying something else.

Chapter 7
Swift Classes, Objects, and Methods

If you haven’t already read Chapter 6, please do so before reading this one because it
provides a great introduction to some of the basics of Swift. This chapter builds on that
foundation. By the end of this chapter, you can expect to have a greater understanding of
the Swift language and how to use the basics to write simple programs. The best way to
learn is to take small programs and write (or rewrite) them in Swift just to see how the
language works.

This chapter covers what composes a Swift class and how to interact with Swift objects
via methods. It uses a simple radio station class as an example of how a Swift class is
written. This will impart an understanding of how to use a Swift class. This chapter also
teaches you how to formulate a design for objects that are needed to solve a problem. The
chapter touches on how to create custom objects, as well as how to use existing objects
provided in the foundation classes.

This chapter expands on Chapter 6’s topics and introduces some of the concepts described
in detail in Chapter 8.

Creating a Swift Class

Classes are simple to create in Swift. Generally a class will be contained in its own file,
but a single file can hold many classes if desired.

Here is a sample of the first line from a class’s declaration:

class RadioStation

Here, the class name is RadioStation. Swift classes, by default, do not inherit from a

superclass. If you want to make your Swift class inherit from another class, you can do
this like so:

class RadioStation: Station

In this example, RadioStation is now a subclass of Station and will inherit all of
the properties and methods of Station. Listing 7-1 shows the full definition of a class.

Listing 7-1. A Swift class

1 import UIKit
2
3 class RadioStation {

4
5 var name: String
6 var frequency: Double

7

8 init () {

9 name = "Default"

10 frequency = 100

11 }

12

13 class func minAMFrequency () -> Double {
14 return 520.0

15 }

16

17 class func maxAMFrequency () -> Double {
18 return 1610.0

19 }

20

21 class func minFMFrequency () —-> Double {
22 return 88.3

23 }

24

25 class func maxFMFrequency () -> Double {
26 return 107.9

27 }

28

29 func band() -> Int {

30 if frequency >= RadioStation.minFMFrequency () &&
frequency <= RadioStation.maxFMFrequency () {
31 return 1 //FM

32 } else {

33 return 0 //AM

34 }

35 }

36

37 }

Instance Variables

Listing 7-1 shows a sample class with two different properties: name and frequency.
Line 1 imports the UTK1t class definitions (more on that in a bit). Line 3 starts the

definition of the class by defining its name (sometimes called the type). Lines 5 to 6 define
the properties for the RadioStation class.

Whenever the RadioStation class is instantiated, the resulting RadioStation
object has access to these properties, which are only for specific instances. If there are ten
RadioStation objects, each object has its own variables independent of the other
objects. This is also referred to as scope, in that the object’s variables are within the scope
of each object.

Methods

Almost every object has methods. In Swift, the common concept to interact with an object
is calling a method on an object, like so:

myStation.band()

The preceding line will call a method name band on an instance of the RadioStation
class methods can also have parameters passed along with them. Why pass parameters?
Parameters are passed for several reasons. First (and most common), the range of
possibilities is too large to write as separate methods. Second, the data you need to store in
your object is variable—like a radio station’s name. In the following example, you will see
that it isn’t practical to write a method for every possible radio frequency; instead, the
frequency is passed as a parameter. The same applies to the station name.

myStation.setFrequency (104.7)

The method name is setFrequency. Method calls can have several parameters, as the
following example illustrates:

myStation = RadioStation.init (name: "KZZP", frequency:
104.7)

In the preceding example, the method call consists of two parameters: the station name
and its frequency. What’s interesting about Swift relative to other languages is that the
methods are essentially named parameters. If this were a C++ or Java program, the call
would be as follows:

myObject = new RadioStation ("KzZzZP", 104.7);

While a RadioStation object’s parameters might seem obvious, having named
parameters can be a bonus because they more or less state what the parameters are used
for or what they do.

Using Class Methods

A class doesn’t always have to be instantiated to be used. In some cases, classes have
methods that can actually perform some simple operations and return values before a class
is instantiated. These methods are called type methods. In Listing 7-1, the method names
that start with class are class methods.

Class methods have limitations. One of their biggest limitations is that none of the
instance variables can be used. Being unable to use instance variables makes sense since
you haven’t instantiated anything. A class method can have its own local variables within
the method itself but can’t use any of the variables defined as instance variables.

A call to a class method would look like this:

RadioStation.minAMFrequency ()

Notice that the call is similar to how a method is called on an instantiated object. The big
difference is that instead of an instance variable, the class name is used. Class methods are
used quite extensively in the Mac OS X and iOS frameworks. They are used mostly for
returning some fixed or well-known type of value or to return a new instance of an object.
These types of class methods are referred to as initializers. Here are some initializer
method examples:

1. NSDate.timeIntervalSinceReferenceDate() // Returns
a number

2. NSString(format:“http://%@”, “1000”) // Returns a new
NSString object

3. Dictionary<String, String>()//Returns a new Dictionary
object.

All of the preceding messages are class methods being called.

Line 1 simply returns a value that represents the number of seconds since January 1, 2001,
which is the reference date.

Line 2 returns a new NSString object that has been formatted and has a value of
http://1000.

Line 3 is a form that is commonly used because it actually allocates a new object.
Typically, the line is not used by itself, but in a line like this:

var myDict = Dictionary<String, String>()

So, when would you use a class method? As a general rule, if the method returns
information that is not specific to any particular instance of the class, make the method a
class method. For example, the minAMFrequency in the preceding example would be
the same for all instances of any RadioStation object—this is a great candidate for a
class method. However, the station’s name or its assigned frequency would be different for
each instance of the class. These should not (and indeed could not) be class methods. The
reason for this is that class methods cannot use any of the instance variables defined by the
class.

Using Instance Methods

Instance methods (lines 29 to 35 in Listing 7-1) are available only once a class has been
instantiated. Here’s an example:

var myStation: RadioStation // This declares a variable to hold the
1 RadioStation Object.

2 myStation = RadioStation () // This creates a new object.
3 wvar band = myStation.band() // This method returns the Band of the
Station.

Line 3 calls a method on the RadioStation object. The method band returns a 1 for

FM and a 0 for AM. An instance method is any method that does not contain the class
declaration before it.

Using Your New Class

You’ve created a simple RadioStation class, but by itself it doesn’t accomplish a
whole lot. In this section, you will create the Radi o class and have it maintain a list of

RadioStation classes.

Creating Your Project

Let’s start Xcode (see Figure 7-1) and create a new project named RadioStations.

No Recent Projects

r‘» Get started with a playground
‘_" | Explore new ideas quickly and easily.

{ L Create a new Xcode project
Start building a new iPhone, iPad or Mac application.

"'{;}3 Check out an existing project
e Start working on something from an SCM repository.

Show this window when Xcode launches Open another project...
Figure 7-1. Open Xcode so you can create a new project
1. Launch Xcode and select “Create a new Xcode project.”

2. Make sure you choose an iOS application and select the Single
View Application template, as shown in Figure 7-2.

Choose a template for your new project:

i0s

Application - aGE 1 =

Framework & Library

Master-Detail Page-Based Single View Tabbed

watchOS Application Application Application Application

Application

Framework & Library i

7

0sS X

Application Game

Framework & Library
System Plug-in
Other

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Figure 7-2. Selecting a template in the new project window
Once you’ve selected the template, click the Next button.

4. Set the product name (application name) to RadioStations.

5. Set the company identifier (a pretend company will do) and set the
device family to iPhone (as shown in Figure 7-3). Make sure Swift
is selected in the Language drop-down list.

Choose options for your new project:

Product Name: RadioStations
Organization Name: Innovativeware

Organization Identifier: com.innovativeware

Bundle Identifier: com.innovativeware.RadioStations
Language: Swift a
Devices: iPhone E

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous | (LS

Figure 7-3. Naming the new iPhone application

6. Click the Next button, and Xcode will ask you where you want to

save your new project. You can save the project on your desktop or
anywhere in your home folder. Once you’ve made your choice,
simply click the Create button.

7. Once you’ve clicked the Create button, the Xcode workspace
window should be visible, as shown in Figure 7-4.

@ce p B A RedioSutions) W) Prone 8 RadioStations: Ready | Today at 8:03 AM o =
BRQ&HOE =B B B Radiostations. 0D®
O A Reciesustions T Ganors Capabities Resoures Tags Inf Bud Sattings Bud Prases Busid Rules Bdensity nd Type
tame | RaclioStatons
Identity

Lecation A
RacaStatons sodepra)

Bundio identifior com.infavativewsno, Radiestations Full Pash fUsersforadwioes/ Dropbo !
7

= Apress Swilt 2.0/Code
% Versicer |10 Chapter 7/RadioStations|

T Recinfrations asodeprs] O
o plist

©n Demand Resource Tags

Toam | Nono B

Ha codie signing identities found

s B
Deployment Target ﬁ
Devices Phong i.] ‘E:
Maln innorisce | Msin B s
Dewice Drientation ﬂn-ﬂ.._,-. e
8 Lo Lot e
8 Landscaps Right AL
B @
Apgicens Source | Apph B i
" e
Figure 7-4. The workspace window in Xcode
o o
Adding Objects
Now you can add your new objects.
1. First, create your RadioStation object. Right-click the
RadioStations project and select New File (as shown in Figure 7-5).
| [] @ | 3 #\ RadioStations) il iPhone § RadioStations: Ready | Today at 6:03 AM
B R Q M © & o @ | [RadioStations
v [E Re Show in Finder . # RadioStations & Genera Capabilities Resource Tags Info Build Settings Build Phases B
¥ Open with External Editor)
ODEI"I As > ¥ Identity

Show File Inspector
Bundle ldentifier com.innovativeware.RadioStations

Add Files to "RadioStations”.. Version |10
Bulld 1
> .
» | MNewGroup Team None ed
> New Group from Selection

No code signing identities found
Sort by Name § akete st
Sort by Type

Fix Issue
Find in Selected Groups...

Source Control L i

Project Navigator Help > Deployment Target
T

Devices iPhone

oo

Main Interface Main

Device Orientation @ Portrait

Figure 7-5. Adding a new file

2. The next screen, shown in Figure 7-6, asks for the new file type.
Simply choose Swift File from the Source group, and then click

Next.

Choose a template for your new file:

i0s
Source
User Interface
Core Data
Apple Watch
Resource
Other

watchOS
Source
User Interface
Core Data
Resource
Other

0S X
Source
User Interface
Core Data

_Daenuirsn.

Cancel

Cocoa Touch Ul Test Gase Unit Test Case Playground
Class Class Class
3 m h ¢
Swift File Objective-C File Header File C File
Cr N\
C++ File Metal File
Swift File
An empty Swift file.
Next

Figure 7-6. Selecting the new file type

3. The next screen asks you where to create the files and what you
want to name the file. Enter RadioStation for the file name and
then simply click the Create button, since the location in which
Xcode chooses to save the files is within the current project, as

shown in Figure 7-7.

Save As: RadioStatiorﬂ_

Tags:

Where: |

Group [RadioStations

| RadioStations

Targets #% RadioStations
RadioStationsTests
RadioStationsUITests

- -

Cancel

Figure 7-7. Choosing where to create your new files

e

eate

4. Your project window should now look like Figure 7-8. Click the

RadioStation.swift file. Notice that the stub of your new
RadioStation class is already present. Now, fill in the empty
class so it looks like Listing 7-1, your RadioStation Swift file.

[] ® 28 ﬁﬂadioswtions @8 iPhone 6 RadioStations: Ready | Today at 6:04 AM
B 2 a A & == B B« [RadioStations) [l RadioStation.swift) No Selection
v [& RadioStations / i
. - < . // RadioStation.swift
4 RadioStation.swift // RadioStations
. - I
v
fadioSittons /! Created by Thorn on 7/6/15.
»| AppDelegate.swift // Copyright © 2015 Innovativeware. All rights reserved.
I

»| ViewController.swift
Main.storyboard import Foundation
4| Assets.xcassets
LaunchScreen.storyboard
Info.plist
RadioStationsTests
RadioStationsUITests

Products

Figure 7-8. Your newly created file in the workspace window

Writing the Class

Now that you have created your project and your new RadioStation.swift file, you
are ready to begin creating your class.

1. The class file you’ll use here is the same one you used at the
beginning of this chapter and it will work perfectly for the radio
station application. Click the RadioStation.swift file, and

enter the code in your class, as shown in Figure 7-9.

1./

2 // RadioStation.swift

1 J// RadioStations

s S

5 // Created by Thorn on 7/6/15.

& J// Copyright © 2815 Innovativeware. All rights reserved.
Fi

7 dimport UIKit
1 class RadioStation {

var name: String
var frequency: Double

initl) {
name="Default"
frequency=188

class func minAMFrequency() -> Double {
return 520.0

class func maxAMFrequency() —> Double {
return 1610.@
}

class func minFMFrequency() —= Double {
return 88.3
¥

class func maxFMFrequency() -> Double {
return 107.9

func band{) ->Int {
if frequency »= RadioStation.minFMFrequency() & frequency <= RadioStation.maxFMFrequency() {
return 1 //FM
} else {
return @ //AM

Figure 7-9. The RadioStation class file

We will come back to a few items in Figure 7-9 and explain them
further in a moment; however, with the RadioStation class
defined, you can now write the code that will actually use it.

Click the ViewController.swift file. You’ll need to define a
few variables for this class to use, as shown in Figure 7-10.

BT 4
2| A
3 //
v Af
5 //
6 1/
il AL

ViewController.swift
RadioStations

Created by Thorn on 7/6/15.
Copyright © 20815 Innovativeware. All rights reserved.

3 import UIKit

1 class ViewController: UIViewController {

%)

f%iEOLtle: var stationName: UILabel! ﬂ\
@IBOutlet var stationFrequency: UILabel!
@IB0utlet var stationBand: UIlLabel!

var myStation: RadioStation

required init?(coder aDecoder: NSCoder) {
myStation = RadioStation();
myStation.frequency = 102.5
myStation.name = "KNIX"
super.init(coder: aDecoder)

}

e J/

override func viewDidLoad() {
super.viewDidLoad ()
// Do any additional setup after loading the view, typically from a nib.

}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

Figure 7-10. Adding a RadioStation object to the View Controller

Lines 13 to 15 are going to be used by your iOS interface to show some values on the
screen (more on these later). Line 17 defines the variable myStation of type

RadioStation. Lines 19 to 24 contain the required init method. In Swift, classes do

not require an initializer method, but it is a good place to set the default values of your
object. This method sets up the variables used in that class. Also, don’t forget to include

the curly braces ({

b

Creating the User Interface

Next, the main window has to be set up in order to display your station information.

1. Click the Main.storyboard file. This file produces the main
iPhone screen. Click the Object Library icon, as shown in Figure 7-

11.

ane » B iy RecioSiations | B Phone 5 Running RadioStations cn ifhone & B s0DO3 0

BRAQAHCEoc @ |B L [RadioStations | [RacioStations | Main.storybosrd | [l Main.storyboard [Base) | Mo Selection Dem@m ¢ 0 @
¥ [& Radistations + [View Controlier Scena Masitey wrid Tave
. RadioStatonswit N Nara | Main stonybosed
: ew Controbier
¥ || RadioStations Type | Detaut - inserface Duscer..)
+ AppDeigate. st -
Location | Relative 1o Groug =]

B ViewControlier swift
- ’ -

LaunchSoreen. ssoryboand Chapter TRssiciations)
RagoStations

1 Dew Region Users/bradwites/Droptox)
» || RadioStationsTosts
. : kress Swin 2 0iCodel
» || RadioStationsUilTasts Chapter TBadicsanions
» | Products RagoSutions/Base.jpeny/
Mae stoeybased -]
Localization
B o Base
English Locallzabie Strings 3

Target Mmbership
B A RadisSutons
RadiaStaransTests
| RagiaSrensUiTests
Text Settings

ingent Lising | Spaces B

Wicrhe. B o

Label - & variably sized amous: of
Label 5k

ingwen

= o whny = hny 25 =
e OE| = = 0 L@ | | RediaStatens B (@ taef]

Figure 7-11. Adding a Label object to your iPhone screen

2. Drag and drop three Label objects onto the screen, as shown in
Figure 7-12. The labels can be aligned in any manner, or as shown
in Figure 7-12.

108NURY AN 1Ype
m B | Name Main.storyboard
- | Type | Default - Interface Build... [
Location . Rolative to Group
Basa.lproj/
Main.storyboard
Full Path /Users/bradlees/Dropbox/
Station Name: Apress Swift 2.0/Code/
Chapter 7/RadioStations/
RadioStations/Base.lproj/
Main.storyboard
Frequency:
[On Demand Resource Tags
Band:
[Interface Builder Document
Opens in Default (7.0) B
Builds for | Project Deployment Tar. .. n
View as | i0S 7.0 and Later B
[Use Auto Layout
Use Size Classes
Use as Launch Screen
Global Tint | EEEE | Defautt B
| Localization
[/] Base
3 English Localizable Strings &
| Targat Membership
&y RadioStations
("] RadioStationsTests
"] RadioStationsUiTests
Source Control
Repository -
D O0@O
objects and controllers not directly
avallable in Interface Builder.
| Label - A variably sized amount of
Label satic tex.
Button - Intercepts touch events and
Button sengs an action message to a target
object when it's tapped.
. Segmented Control - Displays
(] whny hAny ER IS o] s | BB | ®

Figure 7-12. All three Label objects on the iPhone screen

3. You’'re going to need space, however. Once the Label objects are on
the iPhone screen, double-click each Label object in order to change

its text so that the iPhone screen looks something like Figure 7-12.

4. Next, add a Button object to the screen, as shown in Figure 7-13.
This button, when clicked, will cause the screen to be updated with
your radio station information.

v [View Controller Scene Identity and Type
Wiew Cantrolier I = B - Hame Main,storyboard
—| Top Layout Guide | o) | Type | Default - Interface Buider... B
Bottom Layout Guide — e R 6
View

Base.iproj/Main storyboard

L | Statices Name:
Full Path [Usaers{bradwiees/Oropbox/

L} Frwquancy! Apress Swift 2.0/Coda/

L Band: Chapter 7/RadioStations/

B Button Station Name: s;r:iins‘lm'c:’nojrsasc.lm,l
in.staryboard o

T First Responder
[e

Storyboard Entry Point Frequency: n Demand Resourcs Togs
Tyl ¥

Band:

Interface Bulldsr Document
Opens in | Default (701

Busas for | Project Depiayment Targ

[o] o] 4]

View as | 105 7.0 and Later
Uze Auto Layout
Ut Size Classos

oo
D.,:_:I:I
ooo

Use as Launch Screen
Global Tin: | EEEE | Default B
Localization
Base
English Localizable Strings &

0O @ o

Button - inercepts touch events and
Buttorn sends an sctien message 1o 4 targer
object when it's tapped,

Bar Button Item - Represents an
Item | kemona UiTooiar oo
LINSvigation om coject

Fixed Space Bar Button Item -
frrrveena] Represems o fixed space item on &
uiTeoloar object

E (] wAny b Any Bl 2 iof tad| B @ button o

Figure 7-13. Adding a Button object to the screen

5. Just like with the Label object, simply double-click the Button
object in order to change its Title to My Station. The button should
automatically resize to fit the new title.

6. Next, you need to add the Label fields that will hold the radio
station information. These fields are situated just after the existing
Label objects, as shown in Figure 7-14. Once the Label object is
placed, it needs to be resized so that it can show more text, as
shown in Figure 7-15.

@ i Name Main.storyboard
Typa | Defautt - Interface Build... [

Location Relative 10 Group ¥
Base.lproj/
Main.storyboard

Full Path /MUsers/bradices/Dropbox/

Label Apress Swit 2.0/Code/
Chapter 7/RadioStations/

RadioStations/Base.lproj/
Main.storyboard (]

Station Name:

Frequency:
[On Demand Resource Tags

Band:

| Interface Builder Document
Opens in | Default (7.0}]
Bulds or Project Deployment Tor... [
Viewas | i0570andlater [
B Use Auto Layout

Use Size Classes
| Use as Launch Screen

Giobal Tint | | Defautt 2]

My Station

| Localization
! Base
"1 | 7 English Localizable Strings &

| Target Membership
8 ﬁﬁn.dlbsmi-ons
(71 [l RadioStationsTests
71 [7) RadioStationsUlTests
‘Source Control
Aepository —
DGO

T 35S T oIS TGty
| avadable in Interface Builder,

Button - Intercepts touch avents and
Button sends an action message to a target
oject when s tagped.

) Béwmotod Covilrol - Displens

Figure 7-14. Adding another Label object

Station Name:

Frequency:

Band:

My Station

Figure 7-15. Stretching the Label object

Note Stretching the Label object allows the Label’s text
to contain a reasonably long string. If you didn’t resize
the Label object, the text would be cut off (since it

wouldn’t fit), or the font size would get smaller.!

7. Repeat adding and sizing a Label object next to the existing
Frequency and Band Labels, as shown in Figure 7-16. It’s okay to
leave the default text of the label set to “Label” for now.

%.

Station Mame: Label
Freguency: Label

Band: Label

Figure 7-16. Adding another Label object

Hooking Up the Code

Now that all the user interface objects are in place, you can begin to hook up these
interface elements to the variables in your program. As you saw in Chapter 6, you do this
by connecting the user interface objects with the objects in your program.

1. Start by connecting the Label object by station name to your
variable, as shown in Figure 7-17. Right-click (or Control-click) the
View Controller object and drag it to the Label object next to the
“Station Name” text to bring up the list of outlets.

v [View Controller Scene

¥ {8 View Controller D s

— | Toptauout Guide

=

- | Bottom Layout Guide
» View
({§ First Responder
= Exit
Storyboard Entry Peint
Station Name: — tabel

Frequency: Label

Band: Label

Button

Figure 7-17. Creating a connection

. When the connection is dropped from the View Controller icon,
another small menu will be shown. Click the instance variable name
that you want to display in this Label object—in this case, you want
the stationName instance variable, as shown in Figure 7-18.

0o =

Station Name: Label

Qutlets
stationBand

Ffequency: Labe| stationFrequency
stationName

view

Band: Label

Button

Figure 7-18. Connecting the Label to your stationName variable

Now, the interface Label object is connected to the stationName
instance variable. Whenever you set the instance variable’s value,
the screen will also be updated. Repeat the previous connection
steps for Frequency and Band.

To hook up your button, you need a method in the
ViewController class to handle this. You could go to the

ViewController.swift file and add it there. There is also a

shortcut to adding @TBOut let methods. In the Xcode toolbar,
click the Assistant Editor icon shown in Figure 7-19 (it looks like
two circles).

ase » oy RadiStatons | @ Phone & Finished funing RadisStations on iPhoat 6 - g i efi=1s

Figure 7-19. The Assistant Editor icon

After clicking the Assistant Editor icon, a second window will pop
open showing the ViewController source. Right-click and drag
the button to the code window, as shown in Figure 7-20.

& ff Copyright © 2¢ld lnnovativeware. ALL rights reserved.
i) E £
import UIKit

11 class ViewController: UIViewController {

21B80utlet wvar stationMame: UILabel!
2IB0utlet war stationFrequency: UILabel!
@IB0utlet wvar stationBand: UILabel!

Station Name: Label T
var myStation: RadioStation

19 required init(coder aDecoder: NSCoder) {
Frequency: Label myStation = RadioStation();

1 myStation. frequency = 125.5
tion.n = YKNIX

Band: Label 23 ; super. i

my

nit{coder: aDecoder)

override func viewDidLoad() {
super.viewDidLoad()
/f Do any additional setup after loading the view, typically from a nib.

Buttem__ override func didReceiveMemoryWwarning() {
oo o - 3 super.didReceiveMemoryWarning()
3 // Dispose of any resources that can be recreated.
: }
s 0'_" et 1 3
Insert Outlet, Action, or Outlet Collection

= }

Figure 7-20. Using the Assistant editor to create your method

4. When you release the mouse, a little window will pop up, as shown
in Figure 7-21. Make sure to change the Connection type to Action.

L ap

Connection | Action E
Object View Controller B
Name | buttonClick a5

Type | AnyObject E

Event | Touch Up Inside

G
(-

Arguments | Sender Il

Cancel Connect

Figure 7-21. Creating the action

Select Action and set the name to buttonC11ick. Xcode will now create your method
for you.

Finish your method by adding the code shown in Figure 7-22.

@IBAction func buttonClick(sender: AnyObject) {
stationName.text = myStation.name

stationFrequency.text = String(format: “%.1f", myStation.frequency)
if myStation.band() == 1 {
stationBand.text = "FM"
} else {
stationBand.text = "AM"
}

Figure 7-22. Finished buttonClick method

Let’s walk through the code you just added. First, on line 37, you’ll notice the TBAction

type. This lets Xcode know that this method can be called as a result of an action. So,
when you go to connect an action to your application, you will see this method.

Lines 38 and 39 both set the text fields to the values found in your RadioStation
class. Line 38 is as follows:

stationName.text = myStation.name

The stationName variable is what you just connected to the user interface Label
object, and myStation.name is used to return the name of the station.

Line 39 effectively does the same thing as line 38, but you have to first convert the double
value (the station’s frequency) to a String. The @”% . 1f means that you convert a

floating-point value and should see only one digit after the decimal point.

Lines 41 to 45 make use of both the instance variables and the class methods of the
RadioStation class. Here, you simply call the method band () onthe myStation
object. If so, the station is an FM station and band () will return a 1; otherwise, assume
it’s the AM band. Lines 42 and 44 show the band value on the screen.

Tip The Button sends the Touch Up Inside event whenever a user touches the
inside of the button and then releases—not until the users lifts their finger is the
event actually sent.

Running the Program

Once the connection has been made, you’re ready to run and test your program! To do
this, simply click the Run button at the top left of the Xcode window, as shown in Figure
7-23.

@O0) /A RadioStations) Ji§ iPhone 6

Figure 7-23. Click the Play button to run your program

If there are no compile errors, the iPhone Simulator should come up, and you should see
your application. Simply click the My Station button, and the radio station information
will be displayed, as shown in Figure 7-24.

iPhone 6 - iIPhone 6 / 105 9.0 (13A340)
Carrier ¥ 8:27 AM L0

Station Name: KNIX

Frequency: 102.5

Band: FM

My Station

Figure 7-24. Showing your radio station information

If things don’t quite look or work right, retrace your steps and make sure all the code and
connections described in this chapter are in place.

Taking Class Methods to the Next Level

In your program, you haven’t taken advantage of all the class methods for
RadioStation, but this chapter does describe what a class method is and how it is
used. Use that knowledge to try a few of the exercises mentioned at the end of this chapter.
Just play around with this simple working program by adding or changing class or

instance methods to get an idea of how they work.

Accessing the Xcode Documentation

There is a wealth of information provided in the Xcode developer documentation. When
Xcode is opened, select Help » Documentation and API Reference (see Figure 7-25) to
open the Documentation window.

Source Control Window m

ioStations on iPhone 6

B ViewController.swift » [} buttont

All rights reserved.

Search |

' 030 |

ew

Documentation and API Reference

Xcode Overview
Release Notes
What's New in Xcode

~g87 T
A3/

Quick Help for Selected Item

Search Documentation for Selected Text
] ¥TIMpOTrT UIKRIT

Figure 7-25. The Xcode Help menu

Once it’s opened, the search window can be used to look up any of the Swift classes
you’ve used in this chapter, including the St ring class documentation, as shown in

Figure 7-26.

ece < LI} =

Introdisction
Strirgs
¥ Creating ard Corvoriing Siring Ob.
* Creating Strings.
NSString from © Strings and._
Variabie Sirings
Sarings to Preseni to the Liser
Combining and Extracting Strings
Gatting C Strings
Conwersion Summary
* Formaiiting Siring Objecks
Formatting Basics
Srings and Non-ASCH Crarsciers
HELeg and MSLogw
¥ Sarieg Formai Specifiers
Formal Spaciion
Pratie Dupanaencss
¥ Reading Siriags From and Writing.
* Reaging From Fies ang URLs
REOING BALS W & koW 80
RESGNG G458 WiEN 2 LR
WWiritng te Fles and LRLs
Summsary
v Searching, Comparing, snd Satin
W Soareh B COMBSEon MEtRes
Searching strings
Camparing and saming sarings
Seareh srel Compariann Optisns
¥ Exaergigs
Case-insensicve Soanch for P
Comparing Srings.
Serting gtrngs Mo Finder
¥ Werds, Paragrephs, snd Ling Bresks
‘Werd Boundatios
Ling s Pacagraph Separater
Separsting & Sng "By Paragra
Crarscsers and Geaphome Clatans
¥ Character Sate
Character Sat Dasics
Creatng Charadior Solt
Parformance con’derations
Croating 3 character st file
Sandard CRaractor Sets and Un

Q- String

Mext

Introduction to String Programming Guide for Cocoa

important: This is a preliminary document for an APl or technology in development. Apple is supplying this information to help you plan for the adoption of the technologies
and programming interfzces described herein for use on Apple-branded products. This information is subject to change, and software implernented according to this
document should be tested with fnal cperating system softwase and final documentation. Newer versions of this document may be provided with future betas of the AP or
technology.

String Programming Cutde for Cocoa describes how to create, search, concatenate, and draw strings. It also describes character sets, which let you search a string for characters
ina group, and scanners, which convert numbers to strings and vice versa.

Who Should Read This Document

You should read this document if you need to work directly with strings or character sets.

Organization of This Document

This document containg the following antieles:
» Strings deseribes the characteristies of string objects in Cocoa.

Creating and Corverting String Objects explains the ways in which RiString and its subclass Biutablebtr ing create string objects and convert thelr contents to and from
the various character encodings they support.

* Formatting String Objects describes how to format ¥EString objects.

& String Format Specifiers deseribes printf=-4tyle format specifiers supported by B85k elng.

« Reading Strings From and Writing Strings To Files and URLs describes how to read strings from and write strings to files and URLs.

» Searching, Comparing, and Sarting Strings deseribes methods for finding characters and substrings within strings and for comparing one string to another.
« Waords, Paragraphs, and Line Breaks describes how words, paragraphs, and line breaks are determined.

= Characters and Grapheme Clusters describes how you can break strings down into user-perceived characters,

Character Sots explains how to use character set objects, and how to use HECharasterSot methods to create standard and custom character sats.

= Scanners describes Nsscanner objects, which interpret and convernt the characters of an ¥5string object inte number and string values.

= String Représentations of File Paths describes the ¥83tring methods that manipulate strings as file-system paths,

* Drawing Strings discusses the methods of the Bsstring class that support drawing directly in an ¥Eview object

=

Figure 7-26. Xcode documentation

There are several different things to discover about the St ring class shown in Figure 7-
26. Go through the documentation and the various companion guides that Apple provides.

This will give you a more thorough understanding of the various classes and the various
methods supported by them.

Summary

Once again, congratulate yourself for being able to single-handedly stuff your brain with a
lot of information! Here is a summary of what was covered in this chapter:
Swift classes review
Class methods
Instance methods
Creating a class
Limitations of using class methods versus instance methods
Initializing the class and making use of the instance variables
Making use of your new RadioStation object

Building an iPhone app that uses your new object
Connecting interface classes to instance variables

Connecting user interface events to methods in your class

Exercises

Change the code that creates your RadioStation class and make
the station’s name much longer than what can appear on the screen.
What happens?

Change the current button and add a new button. Label the buttons
FM and AM. If the user clicks the FM button, show an FM station. If
the user clicks the AM button, display an AM station. (Hint: you’ll
need to add a second RadioStation object to the

ViewController.swift file.)

Clean up the interface a little by making sure that the user doesn’t see
the text “Label” when the iPhone application first starts.

Fix the issue by using the interface tool.

How could you fix this by adding code to the application
instead?

Add more validation to the @IBAction func

buttonClick (sender: AnyObject) method. Right now, it
validates FM ranges but not AM ranges. Fix the code so that it also
validates an AM range.

If the radio station frequency is out of bounds, use the
existing labels to display some type of error message.

1By using either code or Interface Builder, you can customize how the Label object reacts to text that is too large to fit.
The behavior described is based on typical defaults for the Label object.

Chapter 8

Programming Basics in Swift

Swift is an elegant language. It mixes the efficiency of a compiled language with the
flexibility and modern features of many scripting languages.

This chapter introduces some of the more common concepts of Swift, such as properties
and collection classes. It also shows how properties are used from within Xcode when
dealing with user interface elements. This sounds like a lot to accomplish, but Swift, the
Foundation framework, and the Xcode tool provide a wealth of objects and methods and a
way to build applications with ease.

Using let vs. var

If you have spent much time with Swift, you have seen the word var appear before
variable declarations. You may also have seen 1et before other declarations. The word
var is used to define a variable, while the word 1et is used to define a constant. This
means that if you declare a value with 1et, you will not be able to change the value. The
following code defines a constant:

let myName = "Brad"

Once you define a constant, you cannot change the value.

Caution Xcode 7 will now warn you if you declare a variable and never change
its value. It will recommend using 1et instead of var.

myName = "John"

This will give you an error. It you want to create a mutable or changeable variable, you
need to use var. For example, you can do the following:

var myName = "Brad"
myName = "John"

This will not give you any errors because myName is now a variable. This does not relate
to only Strings and Ints, but it can also be used with collections and other more
complex objects.

Variables give you more flexibility, so why would anyone ever want to use a constant?
The quick answer is performance. If you know that you have a value that will not change,
the compiler can optimize that value as a constant.

Understanding Collections

Understanding collections is a fundamental part of learning Swift. In fact, collection
objects are fundamental constructs of nearly every modern object-oriented language
library (sometimes they are referred to as containers). Simply put, a collection is a type of
class that can hold and manage other objects. The whole purpose of a collection is that it
provides a common way to store and retrieve objects efficiently.

There are several types of collections. While they all fulfill the same purpose of being able
to hold other objects, they differ mostly in the way objects are retrieved. The most
common collections used in Swift are the array and the dictionary.

Both of these collections can be created as constants or regular variables. If you create a
collection as a constant, you must fill it with the objects at the time of creation. It cannot
be modified after that point.

Using Arrays

The Array class is like any other collection, in that it allows the programmer to manage a
group of objects. An array is an ordered collection, which means that objects are entered
in an array in a certain order and retrieved in the same order.

Note There are some methods for working with arrays that allow you to change
the order of the objects or to add an object at a specific location in the array.

The Array class allows an object to be retrieved by its index in the array. An index is the
numeric position that an object would occupy in the array. For example, if there are three
elements in the array, the objects can be referenced with an index from 0 to 2. Like with
most things in Swift and other programming languages, an index starts at 0, not 1. See
Listing 8-1.

Listing 8-1. Accessing objects in an array
var myArray: [String] = ["One", "Two", "Three"]
print (myArray[0])

print (myArray[1l])
print (myArray([2])

DS w N

As you can see, objects in the array can be retrieved via the index. The index starts at 0
and can’t exceed the size of the array minus 1. You can easily calculate the size of the
array by sending a count message to the Array object, as shown here:

var entries = myArray.count

In fact, every collection type, in other words, Array and Dictionary, will respond to
the count message.

Adding items to the end of an array is simple. You can just call the append method on
the array. See Listing 8-2.

Listing 8-2. Adding objects to an array

var myArray: [String] = ["One", "Two", "Three"]
myArray.append ("Four")
myArray.append ("Five")
myArray.append ("Six")

S w N

Swift provides you with many different methods for adding items to an array. If you want
to add multiple objects to an array, you can use the standard += (often called plus equals)
operator. Listing 8-3 creates an array and then adds three more St ring objects to the
array on line 2. Notice the new values are in brackets instead of parentheses.

Listing 8-3. Adding multiple objects to an array

1 var myArray: [String] = ["One", "Two", "Three"]
2 myArray += ["Four", "Five", "Six"]

As discussed earlier, an array is actually ordered. The order of the objects in your array is
important. There may be times where you need to add an item at a certain position in the
array. You can accomplish this with the insert (atIndex:) method, as shown in
Listing 8-4.

Listing 8-4. Adding a string to the beginning of an array

1 var myArray: [String] = ["Two", "Three"]
2 myArray.insert ("One", atIndex: 0)

The array now contains One, Two, Three.

Accessing items in an array is simple. You can use standard square brackets to access an
object at a certain position. For example, myArray [0] would give you the first object in
the array. If you want to loop through each of the items in the array, you can use
something called fast enumeration. Listing 8-5 is an example of fast enumeration.

Listing 8-5. Fast enumeration

var myArray: [String] = ["One", "Two", "Three"]
for myString in myArray {
print (myString)

DS w N

}

The magic happens in line 2 of Listing 8-5. You tell Swift to assign each value of
myArray to a new variable called myString. You can then do whatever you want to do

with myString. In this case, you just print it. It will go through all of the objects in the

array without you having to know the total number of objects. This is a fast and effective
way to pull items out of an array.

Removing objects from an array is simple too. You can use the removeAtIndex

method, as shown in Listing 8-6.

Listing 8-6. Removing an object

var myArray: [String] = ["One", "Two", "Three"]
myArray.removeAtIndex (1)
for myString in myArray {

print (myString)

g b w N

}

The output from Listing 8-6 will be One, Three. This is because you removed the

object with the index of 1. Remember, this is the second object in the array because array
indexes always begin at 0.

You have seen how flexible Swift is in letting you interact with arrays. They are powerful
collections that you will use on a regular basis as a programmer. This section covered the
basics of arrays, but there are many more things arrays can do.

Using the Dictionary Class

The Swift Dictionary class is also a useful type of collection class. It allows the
storage of objects, just like the Array class, but Dictionary is different in that it
allows a key to be associated with the entry. For example, you could create a dictionary
that stores a list of attributes about someone such as a firstName, lastName, and So

on. Instead of accessing the attributes with an index like with an array, the dictionary
could use a String like “firstName”. However, all keys must be unique—that is,

“firstName” cannot exist more than once. Depending on your program, finding unique
names is normally not a problem.

Here’s an example of how you create a dictionary:

var person: [String: String] = ["firstName": "John",
"lastName": "Doe"]

This creates a simple dictionary called person. The next part of the declaration tells the

dictionary what kinds of objects the keys and the values will be. In this case, the keys are
Strings, and the values are St rings. You then add two keys to the dictionary. The first

key is firstName, and that key has a value of John. The second key is 1astName,
and that has a value of Doe. You can access the values in the dictionary by using a similar
notation to arrays.

print (person["firstName"])

This code will print the name Optional (“John”) since that is the value for the key
firstName. The Optional appears in the previous example because the value of a

key in a dictionary is an optional value. You can use the same style of code to change the
values in a dictionary. Let’s say, for this example, that John now likes to go by Joe instead.
You can change the value in the dictionary with a simple line of code.

person["firstName"] = "Joe"

You can add a new key to a dictionary with the same notation.

person["gender"] = "Male"

If you decide you want to remove a key from a dictionary, such as the gender key you
just added, you can do so by setting the key to ni 1.

person["gender"] = nil

Now the dictionary will contain only firstName and 1astName. Remember that
dictionaries are not ordered. You cannot rely on the order, but there will be times when
you need to iterate over a dictionary. This is done in a manner similar to arrays. The main
difference is that in an array, you assign one variable, while in a dictionary, you need to
assign the key and the value. See Listing 8-7.

Listing 8-7. Iterating over a dictionary

1 var person: [String: String] = ["firstName": "John",
"lastName": "Doe"]

2 for (myKey, myValue) in person {

3 print (myKey + ": " + myValue)

4 }

This example will print the following:

firstName: John
lastName: Doe

Dictionaries are a great way to organize data that does not need to be ordered. It is also a
great way to look up data based on a certain key. They are very flexible in Swift and
should be used to organize and optimize your code.

Creating the BookStore Application

You are going to create an app that will demonstrate how to use arrays. You will create a
UITableView and use an array to populate the UITableView with data. Let’s start by
creating the base application project. Open Xcode and select a new Master-Detail
Application project, as shown in Figure 8-1. In this project, you will create a few simple
objects for what is to become your bookstore application: a Book object and the
BookStore object. You’ll visit instance variables again and see how to get and set the
value of one during this project. Lastly, you’ll put the bookstore objects to use, and you’ll
learn how to make use of objects once you’ve created them.

Choose a template for your new project:

ios
Application
Framework & Library
watchOS
Application
Framework & Library
OS X
Application
Framework & Library
System Plug-in
Other

Cancel

= 1

®*00 x was

Master-Detail Page-Based Single View Tabbed
Application Application Application Application
-

ﬁ;’

Game

Master-Detail Application

This template provides a starting point for a master-detail application, using a split view
controller to display a list of items and a detail view.

Figure 8-1. Creating the initial project based on the Master-Detail Application template

1. Click the Next button and name the project BookStore, as shown in
Figure 8-2. The company name is required—you can use any
company name, real or otherwise. The example uses com. inn,
which is perfectly fine. Make sure the device family is iPhone and
that the Language is set to Swift. Do not check the Use Core Data
checkbox.

Note This type of app would be a good candidate for
using Core Data, but Core Data is not introduced until
Chapter 11. You will use an array for data storage in this

app.

Chnnea antinne far vnur new nroject:
Your new product’s bundle identifier

Product Name: | BookStord
Organization Name: Inn

Organization Identifier: com.inn

Bundie Identifier: com.inn.BookStore
Language: Swift E
Devices: iPhone E

Use Core Data
Include Unit Tests
Include Ul Tests

Nex|

Cancel Previous

Figure 8-2. Selecting the product (application) name and options

Once everything is filled out, click the Next button. Xcode will
prompt you to specify a place to save the project. Anywhere you
can remember is fine—the desktop is a good place.

Once you decide on a location, click the Create button to create the
new project. This will create the boilerplate BookStore project,

as shown in Figure 8-3.
ece » i DosiSton | [Phona & BookStare: Ready | Tocay 3t 6:16 PM Lo Ao =

0 o Dockstons s o Capablities Rarscrarco Tagh wda Buid Settings Bula Phsses Buid Ry Memtity = Type

Locasion

” - BooSiore scodepro]
Bundio briifier | com.inn BookStinn Full Fanh fUsers/oradwiees/Diropbox)

Wersion 1.0 Apress Swilt 2ACadel
chy

¥ Deploymant Info

-]
Stats No changes
] DnDeao
¥ App lcons and Launch Images
App eond Souics | Appless Be
Launch Images Sourca Use Asset Catalog
Lawteh Seroen Filg | LaunchScrean B

Figure 8-3. The source listing of the boilerplate project

Click the plus (+) sign at the lower left of the screen in the
Navigator area to add a new object to the project. Choose File. Then
choose Source under the iOS section on the left and choose Swift

File on the right, as shown in Figure 8-4. It’s also possible to right-
click (or Control-click) the Navigation area and then select the New
File menu option. There is no difference between this approach and
clicking the plus sign—do whatever feels more natural.

Choose a template for your new file:

i0S
Source) @
User Interface
Core Data Cocgf Touch Ul Test Case Unit Test Case Playground
ass Class Class
Apple Watch
Resource
Other . m h C
watchOS Objective-C File Header File C File
Source
User Interface
Core Data C+-|- IQ\
Resource
Other C++ File Metal File
0s X
Source Swift File
User Interface An empty Swift file.
Core Data

Dasaiiran

Cancel

Figure 8-4. Creating a new Swift file

. You’re choosing a plain Swift file, which will create a new empty
Swift file that you’re going to use for the Book class. After

selecting this, click the Next button.

. Xcode will ask you what to name your file. Use the name Book.
Xcode will also ask to which folder it should save the new file. To
keep things simple, choose the BookStore folder in your project.
This is where all the other class files for the project are stored.

. Double-click the BookStore folder and then click the Create
button. You’ll see the main edit window for Xcode and the new file,
Book.swift, in the Navigator area, as shown in Figure 8-5.

eent

uuuuuuuuuuuu

Figure 8-5. The empty Swift file
8. Repeat the previous steps and create a second object called
BookStore. This will create a BookStore.swift file. You’ll

be using this class later in this chapter. For now, you’ll concentrate
on the Book class.

9. Click the Book.swift file and let’s start defining your new class!

Creating Your Class

You will notice that Xcode does not give you a new class when you create a Swift file. In
Objective-C, Xcode used to create the .h and .m files for you. Swift is more flexible, and
it is not necessary to have only one class per file. Xcode allows you to add the classes as
you want.

Note It is still a good idea to keep your Swift classes in separate files. This
makes organizing and finding classes easier, especially when you’re dealing
with large projects.

Let’s create the Book class. Type the following code into the Book . swift file:

class Book {

}

Now you have your class, as shown in Figure 8-6. That is all you need to do to create a
class.

B34 | < %] BookStore BookStore) M BookStore.swift) [©] Book

//

// BookStore.swift

// BookStore

//

// Created by Thorn on 8/8/15.

// Copyright © 2815 Inn. All rights reserved.
/7

import Foundation

class Book {

|
}

Figure 8-6. The empty Book class

Introducing Properties

The class is simply called Book. True, you have a class, but it doesn’t store anything at
this point. For this class to be useful, it needs to be able to hold some information, which
is done with properties. When an object is used, it has to be instantiated. Once the object is
instantiated, it has access to its properties. These variables are available to the object as
long as the object stays in scope. As you know from Chapter 7, scope defines the context
in which an object exists. In some cases, an object’s scope may be the life of the program.
In other cases, the scope might be just a function or method. It all depends on where the
object is declared and how it’s used. Scope will be discussed more later. For now, let’s add
some properties to the Book class to make it more useful.

Listing 8-8. Adding instance variables to the Book.h file

1 //

2 // Book.swift

3 // myBookStore

4 //

5 // Created by Thorn on 8/8/15.

6 // Copyright (c) 2015 Inn. All rights reserved.
7 //

8

9 import Foundation

10 class Book {

11 var title: String = ""

12 var author: String = ""

13 var description: String = ""
14

[
1
——

Listing 8-8 shows the same Book object from before, but now there are three new
properties placed inside the brackets, on lines 11 to 13. These are all St ring objects,
which means they can hold text information for the Book object. So, the Book object
now has a place to store title, author, and description information.

Accessing Variables

Now that you have some properties, how can you use them? How are they accessed?.
Unfortunately, simply declaring a property doesn’t necessarily give you access to it. There
are two ways to access these variables.

One way, of course, is within the Book object.
The second way is from outside the object—that is, another part of
the program that uses the Book object.
If you are writing the code for a method within the Book object, accessing its property is

quite simple. For example, you could simply write the following:

title = "Test Title"

From outside the object, you can still access the t it 1e variable. This is done through the
use of dot notation.

myBookObject.title = "Test Title"

Finishing the BookStore Program

With the understanding of properties, you are going to now venture forth to create the
actual bookstore program. The idea is simple enough—create a class called BookStore

that will be stocked with a few Book objects.

Creating the View

Let’s start by first getting the view ready. If you need a refresher on how to build an
interface in Xcode, refer to Chapter 6.

1. Click the Main.storyboard file in the Navigator area. You will
see five scenes in the Main.storyboard file. Navigate to the

right to find the detail scene. This will display Xcode’s Interface
Builder, as shown in Figure 8-7.

0 Any Ay 4B ksl =

Figure 8-7. Preparing the Bookstore’s Detail View

. By default, when you create a blank Master-Detail application,
Xcode adds a label with the text “Detail View content goes here.”
Select and delete this Label object because you are going to add
your own. You're going to add some new fields to display some
details about a selected book. Since you deleted this control, you
also need to remove the code that references it.

a. Inthe DetailViewController.swift file,
remove the following line:

@IROutlet weak var
detailDescriptionLabel: UILabel!

b. Inthe var detailItem: AnyObject?
method, remove the following line:

self.configureView ()

c. Inthe DetailViewController.swift file, in
the method named configureView, remove the
following lines:

// Update the user interface for
the detail item.
if let detail: AnyObject =
self.detailltem {

1f let label =
self.detailDescriptionLabel {

label.text =

detail.valueForKey ("timeStamp") !.description

}

Your DetailViewController.swift file should now look
like Figure 8-8.

B] & |2] BookStore BookStore) [DetailViewController.swift) [[] configureView()

[/
2 [/ DetailViewController.swift
i // BookStore
v
5 [/ Created by Brad Lees on 8/8/15.
& // Copyright © 2815 Inn. All rights reserved.
AR

7 import UIKit
1 class DetailViewController: UIViewController {
var detailltem: AnyObject? {
didSet {

¥
j

func configureView() {
}
override func viewDidlLoad() {
super.viewDidLoad()
// Do any additional setup after loading the view, typically from a nib.

self.configureView()
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

Figure 8-8. Modified DetailViewController

Drag some Label objects from the Object Library onto the Detail
View, as shown in Figure 8-9. Make sure that the lower Label
controls are wider than the default. This is so that they can hold a
fairly large amount of text. The two Label objects with the text
“Label” in them are the ones you’re going to hook up to hold two of
the values from the Book object: Title and Author.

Detail

Title:
Label

Author:
tria bel
[m]

coo

Figure 8-9. Adding some Label objects

Adding Properties

Next, you’ll add some properties to the DetailViewController class. These
properties will correspond to the Detail View’s Label objects.

1. Click the Assistant Editor icon (it looks like two circles) in the top-
right corner of Xcode to open the Assistant editor. Make sure the
DetailViewController.swift file is showing in the editor.

2. Hold the Control key and drag the first blank Label control to the
code on the right side, as shown in Figure 8-10. Name the first one
titleLabel (see Figure 8-11) and click Connect, and then repeat
the process with the second one, naming it authorLabel. This
will add two variables to your DetailViewController class,
as seen in Listing 8-9, and hook them to the Label controls in the
interface.

1 1
» [E Master Scene £ DetailWiewlontroller.swift
1 // BookStore

v [F Detail Scene & B W
v & Dol z i Af Created by Brad Lees on B/8/15.
4 & ff Copyright & 2815 Inn. ALL rights reserved.
T Tep Layout Guide ¥ | A
| Bottom Layout Guide Detail froort UIREE
L Wiew 1
L Tithe: 1t elass DerailWiewController: UIViewController {
LL { ol Lk g Insert Outiet or Outlet Collection
L | Author: 1 var detailltem: AnyObject? =
L|Labe - digset {
% Dl Title: — 1 }
TH First Respander N - o a 18 }
[Exit 4 abei g pe
(=] (=] a func configureView(} {
» [split View Contreller Scene 3
¥ [Master Scene Author: override func viewDidioad() {
2 super.viewDidLoad()
» [E Navigation Controller Scene Label z £ Do any additional setup after lodding the wiew, typit

nib.
seli.configureView(])

override func didReceiveMemoryWarning() {
super.didhece iveMemoryWarning()
£ Dispose of any resources that can be recreated.

Figure 8-10. Creating variables

Jd

[/

Connection | Outlet 1
9 impc
Object Detail 10
: 11 clas
Name l_tltIeLabeI \ .

_I

Type @ UlLabel v

Storage | Weak C| #S

16
Cancel Connect 17
O 19

5 5 I
(] (]

Figure 8-11. Naming the new variable

Listing 8-9. Modifying the DetailViewController.swift file to include the new labels
1 @IBOutlet weak var titlelLabel: UILabel!
2 @IBOutlet weak var authorlLabel: UILabel!

Adding a Description

Now you need to add the description to the view. The description is a little different in that
it can span multiple lines. For this, you’re going to use the Text View object.

1. Start by adding the “Description:” label to the view, as shown in

Figure 8-12.

i

mb
0]

Detail

Title:
Label

Author:
Label

Description:

Figure 8-12. Adding a new Label object for the description

Next, add the Text View object to the Detail View, as shown in
Figure 8-13. The advantage the Text View object has is that it’s easy
to display multiple lines of text. While the Label object can display
multiple lines, it’s not as clean as the Text View object.

aoe p B oy BeckSeoen | Phocae B BockSiorm: Ready | Today at il PM
bR QA HE o B B < & BookSere Boskgrere | [l Mainstoryboars |) Main steeybosed (Base) | B Dewd Sceve Detad View Tent View
v [Besksre » [Master Scane
[Booksiom
+ AppDeiegate swit o

+ MastorviewControter,swit ¥) Dt | @ B
= o Laysut Guise I = |
Beriom Layout Guide
¥ Rl iew Detail
L T
L o Lave
L untner:
.+ Book gmint L Austhor Labe
B BookSicreswitt b Deseripion
(171 BockStomTess] Tt View Title:
5] Deta
(1] BockStoreUTests Label
» [Products W i Rty
(o=
- Wiew Controlier Scene
B o i Author:
» [Mastar Scane Label G| B | Ot B
» [Navigation Centrollar Scane \ Fort | System 140 mic
: - el = ®™ = —
Description:
n o a seranier @ Eonaole [Sefectabie
Larem ipsumn dolor sit er elit lamet, Desecrion (| Links. Addresses.
eonsectelau cillium adipisicing pecuy, sed do Proce Nrsery
ewusmed tempor incididunt ut labore ot dolore Everts
Omagna aligua, Ut enim ad minim veniam, quis 0 B
nostrud exercitation ullameo laboris nist ut Capmaizaion | _Semences

aliquip ex ea commodo consequat. Duis aute DO @® o
irure dodor in reprehenderit in voluptate velt
o a- a et View - Ciiglars musiis s
of COTATIe DXL 30D LENGS a0 BTN
TG 10 2 1Hrge 6BHET ahen B4

o Ay LAY B S ol tal| B @i o

Figure 8-13. Adding a Text View to the Detail View

Note By default, the Text View control is filled with all
kinds of seemingly random text. This text is called Lorem
Ipsum text. If you ever need to fill up a page with text,
you can find any number of Lorem Ipsum generators on
the Web. As for the Text View control, the text can stay
as it is since you’ll remove it during runtime. Plus, if it’s
cleared, it becomes a little more difficult spotting exactly
where the Text View control is on the screen—it’s white
on white!

3. For the program to take advantage of the Text View, you’ll need to
create an outlet for it, just like you did for the title and description.
Simply Control-drag the Text View to your
DetailViewController file, as you did earlier. Name this
variable descriptionTextView. The finished variable portion
of DetailViewController will look like Listing 8-10.

Listing 8-10. Adding an outlet for the text view to hold a description
import UIKit

class DetailViewController:
IViewController {

@IBOutlet weak var titlelLabel:
ILabel!

@IBOutlet weak var authorLabel:
ILabel!

o JoC udhCdwbdNdPRr

@IROutlet weak var
descriptionTextView: UlITextView!

4. Notice that the type is UITextView instead of UL Label—this is
important.

Caution As mentioned, it’s important to make the descriptionTextView
property a UITextView type. If, for example, it were accidentally made a
UILabel object, when trying to connect the Text View from the screen to the
outlet, Xcode wouldn’t be able to find the descriptionTextView outlet.
Why? Xcode knows that the control is a UITextView and is looking for an
outlet that is of type UITextView.

Creating a Simple Data Model Class

For the application to work, it needs to have some data to display. To do this, you’re going

to use the BookStore object you created earlier as the data model class. There’s nothing

different about a data model class except that its whole purpose is to allow an application
to access data via an object.

Modify the BookStore.swift file to look like Listing 8-11.

Listing 8-11. Modifying the BookStore.swift class to include an array

1 //

2 // BookStore.swift

3 // myBookStore

4 //

5 // Created by Thorn on 8/8/15.

6 // Copyright (c) 2015 mycompany.com. All rights
reserved.

7 //

8

9 import Foundation

10

11 class BookStore {

12 var theBookStore: [Book] = []
13 }

On line 12, you add a variable that will hold the list of books; the property is simply
named theBookStore. Note that theBookStore is an array, which will allow you to
add a series of objects, in this case, a set of Book objects.

Next, let’s add the code to the Swift file, BookStore.swift, as shown in Listing 8-12.

Listing 8-12. Implementing the BookStore data object

1 //

2 // BookStore.swift

3 // myBookStore

4 //

5 // Created by Thorn on 8/8/15.

6 // Copyright (c) 2015 Inn. All rights reserved.
7 //

8

9 import Foundation

10

11 class BookStore {

12 var theBookStore: [Book] = []

13

14 init () {

15 var newBook = Book ()

16 newBook.title = "Swift for Absolute Beginners"
17 newBook.author = "Bennett and Lees"

18 newBook.description = "i0S Programming made

easy."

19 theBookStore.append (newBook)

20

21 newBook = Book ()

22 newBook.title = "A Farewell To Arms"

23 newBook.author = "Ernest Hemingway"

24 newBook.description = "The story of an affair

between an English nurse and an American soldier on the
Ttalian front during World War I."

25

26 theBookStore.append (newBook)

27 }

28 }

In Listing 8-12, lines 14 to 27 define the init method of the object, which is called
whenever the object is first initialized. In this method, you initialize the two books you
plan to add to your bookstore. Line 15 is where the first Book object is allocated and
initialized. Lines 16 to 18 add a title, author, and description to your first book. Finally,
line 19 adds the new Book object to the theBookStore array. The important thing to

note here is that once the object is added to the array, the code can forget about it; the
array now owns that object. Because of this, line 21 is not a problem.

Line 21 allocates a new Book object overwriting the old value. This tells the compiler that
you’re no longer interested in using the old value.

Lines 22 to 26 simply initialize and add the second book to the array.

That’s it! That’s all you need to define a simple data model class. Next, you need to
modify MasterViewController to access this class so that it can start displaying

some data.

Modifying MasterViewController

The simple application has two view controllers: the main view controller, which is called
MasterViewController, and a secondary one called DetailViewController.

View controllers are objects that simply control the behavior of a view. For the application
to start displaying data from the data model, you need to first modify
MasterViewController—this is where the navigation of the application begins. The

following code is already in place in the template that Xcode has provided. You’re just
going to modify it to add your data model.

First you’ll need to modify the MasterViewController.swift file. You need to
add a variable to hold the Bookstore object. Listing 8-13 shows that the instance
variable is added as a property on line 15.

Listing 8-13. Adding the BookStore object

1 //
2 // MasterViewController.swift

3 // Chapter 8.1

4 //

5 // Created by Thorn on 8/8/15.

6 // Copyright (c) 2015 Inn. All rights reserved.
7 //

8

9 import UIKit

10

11

12 class MasterViewController: UlITableViewController {
13

14 var objects = [AnyObject] ()

15 var myBookStore: BookStore = BookStore()

Now that the BookStore object is initialized, you need to tell
MasterViewController how to display the list of books—not the detail, just the

book titles. To do this, you’ll need to modify a few methods. Fortunately, Xcode has
provided a nice template, so the modifications are small.

MasterViewController is a subclass of what’s called a
UITableViewController class, which displays rows of data to the screen. In this

case, these are rows of book titles (well, just two for this simple program but a list
nonetheless).

There are three main methods that control what and how data is displayed in a
UITableViewController.

The first isnumberOfSectionsInTableView(_:): Since the application
has only one list, or section, this method returns 1.

The second istableView(_:numberOfRowsInSection:): In this
program, you return the number of books in the bookstore array.
Since this is the only section, the code is straightforward.

The third method istableView(_:cellForRowAtIndexPath:): This
method is called for each row that is to be displayed on the screen,
and it’s called one row at a time.

Listing 8-14 details the changes you need to make to get the list of books displaying on the
view. The changes start on line 63 in the source file.

Listing 8-14. Setting up the view to display the books

63 override func numberOfSectionsInTableView (tableView:
UITableView) —-> Int {

64 return 1

65 }

66

67 override func tableView (tableView: UlTableView,

numberOfRowsInSection section: Int) -> Int {

68 return myBookStore.theBookStore.count

69 }

70

71 override func tableView(tableView: UITableView,

cellForRowAtIndexPath indexPath: NSIndexPath) ->
UITableViewCell {

72 let cell

= tableView.dequeueReusableCellWithIdentifier ("Cell",
forIndexPath: indexPath)

73 cell.textLabel! .text
= myBookStore.theBookStore[indexPath.row].title
74 cell.accessoryType

= UlITableViewCellAccessoryType.DisclosurelIndicator
75 return cell
76 }

Out of all of this code, you need to modify only a few lines. Everything else can stay the
way it is. This is one of the advantages of using the Xcode templates. Line 68 simply
returned 1; you needed to change it so that it now returns the count of items in the
BookStore class.

Line 73 looks a little more complicated. Basically, each line of the UITableView is
what is called a cell (a UITableViewCell to be specific). Line 73 sets the text of the
cell to the title of a book. Let’s look at that code a little more specifically:

cell.textLabel!.text
= myBookStore.theBookStore[indexPath.row].title

First, nyBookStore is the BookStore object, which is pretty clear. You’re referencing
the array in the BookStore object called theBookStore. Since theBookStore is
an array, you can access the book you want in brackets in the indexPath. row. The
value indexPath. row specifies which row you’re interested in—indexPath.row
will always be less than the total count minus 1. So, calling
myBookStore.theBookStore[indexPath.row] returns a Book object. The last
part, . title, accesses the title property from the returned Book object. The
following code is equivalent to what you just did in one line:

1 var book: Book
2 book = myBookStore.theBookStore[indexPath.row]
3 cell.textLabel!.text = book.title

Now, you should be able to build and run the application and see the two books you
created in the data model, as shown in Figure 8-14.

iPhone 6 - iPhone 6 [i0S 9.0 (13A4325c)
Carrier ¥ 7:01 PM -

|

Edit Master
Swift for Absolute Beginners

A Farewell to Arms

Figure 8-14. Running the application for the first time

But, you’re not done yet. You need to make the application display the book when you
click one of them. To make this happen, you need to make one last modification to
MasterViewController.

The method tableView (:didSelectRowAtIndexPath:) is called whenever a

row is touched on the screen. Listing 8-15 shows the small changes you need to make in
order to hook the Detail View to the book data.

Listing 8-15. Selecting the book when touched

46 override func prepareForSegue (segue: UIStoryboardSegue,
sender: AnyObject?) {

477 1f segue.identifier == "showDetail" {

48 if let indexPath

= self.tableView.indexPathForSelectedRow {

49 let selectedBook:Book
= myBookStore.theBookStore[indexPath.row]
50 let controller

= (segue.destinationViewController as!
UINavigationController) .topViewController as!
DetailViewController

51 controller.detailItem = selectedBook

52

controller.navigationItem.leftBarButtonItem

= self.splitViewController?.displayModeButtonItem/()
53
controller.navigationItem.leftItemsSupplementBackButton
= true

54 }

55 }

56 }

If line 49 looks similar to line 73 in Listing 8-14, that’s because it’s basically the same
thing. Based on indexPath. row, you select the specific book from the BookStore
object and save it in a variable called selectedBook.

On line 51, you take selectedBook and store it in a property called detailItem that
is already part of the existing DetailViewController class. That’s all you need to
doin MasterViewController. You’ve basically passed off the book to
DetailViewController. You’re almost done. Now you need to make a few small
modifications to the DetailViewController so that it displays the Book object

properly.
Modifying the DetailViewController

Earlier in this chapter, you modified the DetailViewController so that it would

display some detail information about a book. In the code you just finished, you modified
the MasterViewController so that it passes the selected book to the

DetailViewController. Now all that remains is to simply move the information
from the Book object in the DetailViewController to the appropriate fields on the
screen. All of this is done in one method—configurevView—as seen in Listing 8-16.

Listing 8-16. Moving the Book object data to the Detail View

24 func configureView () {

25 1f let detail: AnyObject = self.detailltem {
26 var myBook = detail as! Book

277 titlelabel.text = myBook.title

28 authorLabel.text = myBook.author

29 descriptionTextView.text

= myBook.description

30 }
31 }

The configureView method is one of many convenience methods included in the
Xcode template and is called whenever the DetailViewController is being
initialized. This is where you will move your selected Book object’s information to the
fields in the view.

Lines 27 to 29 in the DetailViewController.swift file is where you move the
information from the Book object to the view. If you recall, line 51 in Listing 8-15 set the
selected book into a property on the DetailViewController called detailItemn.
Lines 25 to 26 pull that item out into a Book object called myBook.

Lines 36 to 38 simply move each of the Book object’s properties to the view controls you

built earlier in the chapter. That’s all you need to do in this class. If you build and run the
project and click one of the books, you should see something like Figure 8-15.

iPhone 6 - iPhone 6 [i0S 9.0 (13A4325c)
Carrier = 7:06 PM -

€ Master Detail

Title:
A Farewell to Arms

Author:
Ernest Hemingway

Description:

The story of an afair between an English nurse
and an American soldier on the Italian front
during World Ward 1.

Figure 8-15. Viewing the book details for the first time

Summary

You’ve reached the end of this chapter! Here is a summary of the topics covered:

Understanding collection classes: Collection classes are a powerful
set of classes that come with Foundation and allow you to store and
retrieve information efficiently.

Using properties: Properties are variables that are accessible once the
class has been instantiated.

Looping with for..in: This feature offers a new way to iterate

through an enumerated list of items.

Building a Master-Detail application: You used Xcode and the
Master-Detail Application template to build a simple bookstore
program to display books and the details of an individual book.

Creating a simple data model: Using the collection classes you
learned about, you used an array to construct a BookStore object

and used it as a data source in the bookstore program.

Connecting data to the view: You connected the Book object’s data
to the interface fields using Xcode.

Exercises

Add more books to the bookstore using the original program as a
guide.

On the Master Scene, remove the Edit button as we will not be using
it in this app.

Enhance the Book class so it can store another attribute—a price or
ISBN, for example.

Modify the DetailViewController so that the new fields are

displayed. Remember to connect an interface control to an instance
variable.

Change the BookStore object so that a separate method is called to
initialize the list of Book objects (instead of putting it all in the
init method).

There is another attribute to a UITableViewCell called the
detailTextLabel. Try to make use of it by setting its text
property to something.

Using Xcode to modify the interface, play with changing the
background color of the DetailViewController in the

storyboard file.
For a tougher challenge:

Sort the books in the BookStore object so they appear in
ascending order on the MasterDetailView.

Chapter 9

Comparing Data

In this chapter, we will discuss one of the most basic and frequent operations you will
perform as you program: comparing data. In the bookstore example, you may need to
compare book titles if your clients are looking for a specific book. You may also need to
compare authors if your clients are interested in purchasing books by a specific author.
Comparing data is a common task performed by developers. Many of the loops you
learned about in the previous chapter will require you to compare data so that you know
when your code should stop looping.

Comparing data in programming is like using a scale. You have one value on one side and
another value on the other side. In the middle, you have an operator. The operator
determines what kind of comparison is being done. Examples of operators are “greater
than,” “less than,” or “equal to.”

The values on either side of the scale are usually variables. You learned about the different
types of variables in Chapter 3. In general, the comparison functions for different variables
will be slightly different. It is imperative that you become familiar with the functions and
syntax to compare data because this will form the basis of your development.

For the purposes of this chapter, we will use an example of a bookstore application. This
application will allow users to log in to the application, search for books, and purchase
them. We will cover the different ways of comparing data to show how they would be
used in this type of application.

Revisiting Boolean Logic

In Chapter 4, we introduced Boolean logic. Because of its prevalence in programming, we
will revisit this subject in this chapter and go into more detail.

The most common comparison that you will program your application to perform is
comparisons using Boolean logic. Boolean logic usually comes in the form of i f/then

statements. Boolean logic can have only one of two answers: yes or no. The following are
some good examples of Boolean questions that you will use in your applications:

Is 5 larger than 3?

Does now have more than five letters?

Is 6/1/2010 later than today?
Notice that there are only two possible correct answers to these questions: yes and no. If

you are asking a question that could have more than these two answers, that question will
need to be worded differently for programming.

Each of these questions will be represented by an i f/then statement (for example, “If 5
is greater than 3, then print a message to the user”). Each i f statement is required to have
some sort of relational operator. A relational operator can be something like “is greater
than” or “is equal to.”

To start using these types of questions in your programs, you will first need to become
familiar with the different relational operators available to you in the Swift language. We
will cover them first. After that, you will learn how different variables can behave with
these operators.

Using Relational Operators

Swift uses five standard comparison operators. These are the standard algebraic operators
with only one real change: in the Swift language, as in most other programming
languages, the “equal to” operator is made by two equals signs (==). Table 9-1 describes

the operators available to you as a developer.

Table 9-1. Comparison Operators

OperatorDescription

> Greater than

< Less than

>= Greater than or equal to
<= Less than or equal to
== Equal to

Note A single equals sign (=) is used to assign a value to a variable. Two equals
signs (==) are needed to compare two values. For example, i f (x=9) will
assign the value of 9 to the variable x and return yes if 9 is successfully
assigned to x, which will be in most, if not all, of the cases. i f (x==9) will do
a comparison to see whether x equals 9. Xcode now throws an error if you try to
assign a value to a variable in an i f statement.

Comparing Numbers

One of the difficulties developers have had in the past was dealing with different data
types in comparisons. Earlier in this book, we discussed the different types of variables.
You may remember that 1 is an integer. If you wanted to compare an integer with a float
such as 1.2, this could cause some issues. Thankfully, Swift helps with this. In Swift, you
can compare any two numeric data types without having to typecast. (Typecasting is still

sometimes needed when dealing with other data types, which we cover later in the
chapter.) This allows you to write code without worrying about the data types that need to
be compared.

Note Typecasting is the conversion of an object or variable from one type to
another.

In the bookstore application, you will need to compare numbers in many ways. For
example, let’s say the bookstore offers a discount for people who spend more than $30 in a
single transaction. You will need to add the total amount the person is spending and then
compare this to $30. If the amount spent is larger than $30, you will need to calculate the
discount. See the following example:

var discountThreshold 30

var discountPercent = 0
var totalSpent = calculateTotalSpent()

if (totalSpent > discountThreshold) {
discountPercent = 10

}

Let’s walk through the code. First, you declare the variables (discountThreshhold,
discountPercent, and totalSpent) and assign a value to them. Notice you do not
need to specify the type of number for the variables. The type will be assigned when you
assign it a value. You know that discountThreshold and discountPercent will
not contain decimals, so the compiler will create them as Ints. In this example, you can
assume you have a function called calculateTotalSpent, which will calculate the

total spent in this current order. You then simply check to see whether the total spent is
larger than the discount threshold; if it is, you set the discount percent. If we wanted a
customer who spent exactly $30 to get the same discount, we could use a >= instead of a

>. Also notice that it was not necessary to tell the code to convert the data when
comparing the different numeric data types. As mentioned earlier, Swift handles all this.

Another action that requires the comparison of numbers is looping. As discussed in
Chapter 4, looping is a core action in development, and many loop types require some sort
of comparison to determine when to stop. Let’s take a look at a for loop:

var numberOfRooks: Int
numberOfBooks = 50

for var y = 1; y <= numberOfBooks; y++ {
doSomething ()
}

In this example, you iterate, or loop, through the total number of books in the bookstore.
The for statement is where the interesting stuff starts to happen. Let’s break it down.

The following portion of the code is declaring y as a variable and then assigning it a

starting value of 1:

var y = 1;

The following portion is telling the computer to check to see whether the counting
variable vy is less than or equal to the total number of books you have in the store. If v
becomes larger than the number of books, the loop will no longer run.

y <= numberOfBooks;

The following portion of code increases y by 1 every time the loop is run.

y++

Creating an Example Xcode App

Now let’s create an Xcode application so you can start comparing numeric data.

1. Launch Xcode. From the Finder, go to the Applications folder. Drag
the folder to the Dock because you will be using it throughout the
rest of this book. See Figure 9-1.

Favorites
:,: Dropbox
E All My Files
¢’} iCloud Drive
@) Airbrop
#% Applications
=] Desktop
E-LJ Documents
0 Downloads
Shared
] Brad's Mac Pro
7 Lees Retina
Tags
® Red

2 _Oranan

Name N

W Applications

=v| s Bmio) s #-] & | © T

Date Modified Size

7. Maps Today, 12:45 PM

€ Messages £

B Mission Control
Notes

& Photo Booth

& Photos

= Pixelmator

=3 Preview

@ QuickTime Player

i} Reminders

@ Safari

© Skitch
Stickies

& system Preferences

! TextEdit

@ Time Machine

2 Utilities

A Ve

#' Xcode

apPM

May 19, 2015, 9:08 AM

Figure 9-1. Launching Xcode

2. Click “Create a New Xcode Project” to open a new window. On the
left side of that window, under iOS, select Application. Then select
Single View Application on the right side. Click Next, as shown in

Figure 9-2.

Choose a template for your new project:
i0s
Application
Framework & Library

Watch OS

Master-Detail
Application

Application
Framework & Library

0s X

=
x
Application Game
Framework & Library
System Plug-in

Other

1

®00 x sos
Page-Based Single View Tabbed
Application Application Application

Single View Application

This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.

Cancel

Figure 9-2. Creating a new project

Note The Single View Application template is the most
generic and basic of the iOS application types.

On the next page, enter the name of your application. Here we used
Comparison as the name, but you can choose any name you like.
This is also the window where you select which device you would
like to target. Leave it as iPhone for now, as shown in Figure 9-3.

Choose options for your new project:

Product Name:
Organization Name:

Organization Identifier:

Bundle Identifier:
Language:

Devices:

Cancel

Comparison|
Innovativeware

com.innovativeware
com.innovativeware.Comparison

Swift

iPhone

Use Core Data
Include Unit Tests
Include Ul Tests

Previous

Figure 9-3. Selecting the project type and name

Note Xcode projects, by default, are saved in the
Documents folder in your user home.

4. Once the new project is created, you will see the standard Xcode

window. Select the arrow next to the Comparison folder to
expand it if it is not already expanded. You will see several files.
The main file for your project is called AppDelegate.swift.
You will also see a ViewController.swift file. This file is
the source that controls the single window that is created by default
for you in this type of app. For the purposes of these examples, you
will be focusing on the AppDelegate.swift file.

Click the AppDelegate.swift file. You will see the following
code:

func application (application: UIApplication,
didFinishLaunchingWithOptions
launchOptions:
[NSObject: AnyObject]?) -> Bool {
// Override point for customization
after application launch.
return true

}

The method application:
didFinishLaunchingWithOptions is called after each time

the application is launched. At this point, your application will
launch and display a window. You will add a little He11o World

to your application. Before the line return true, you need to
add the following code:

NSLog ("Hello World")

This line creates a new String with the contents Hello World and passes it to the
NSLog function that is used for debugging.

Note The NSLog method is available to Objective-C and Swift. It is commonly

used for debugging an application because you can show information easily in
the Debug area.

Let’s run the application to see how it works:

1.
2.

Click the Run button in the default toolbar.

The iOS simulator will launch. This will just display a window.
Back in Xcode, a Console window will appear at the bottom of the
screen, as shown in » Figure 9-4. You can always toggle this

= = [

window by selecting View » Debug Area » Show/Hide Debug
Area.

ih | <7 Comparison

2015-08-81 14:03:30.528 Comparison[794:17633] Hello World

All Qutput &

Figure 9-4. Debugger window

You will now see a line of text in your debugger. The first part of the line shows the date,
time, and name of the application. The Hel1lo World part was generated by the NSLog
line that you added.

1.
2.

Go back to Xcode and open the AppDelegate.swift file.

Go to the beginning of the line that begins with NSLog. This is the
line that is responsible for printing the He11o World section. You
are going to comment out this line by placing two forward slashes
(/ /) in front of the line of code. Commenting out code tells Xcode

to ignore it when it builds and runs the application. In other words,
code that is commented out will not run.

Once you comment out the line of code, you will no longer see the
line in bold if you run the program because the application is no
longer outputting any line.

For the application to output the results of your comparisons, you
will have to add one line, as shown here:

NSLog ("The result is %@", (6 > 5 ? "True"
"False"))

Note The previous code, (6>5 ? “True”
“False”), is called a ternary operation. It is essentially
just a simplified way of writing an 1 f/else statement.

Place this line in your code. This line is telling your application to
print The result is. Then it will print True if 6 is greater

than 5, or it will print False if 5 is greater than 6.

Because 6 is greater than 5, it will print True.

You can change this line to test any of the examples you have put together thus far in this
chapter or any of the examples you will do later.

Let’s try another example.

var 1 = 5
var y = 6
NSLog ("The result is %@", (y > i ? "True" : "False"))

In this example, you create a variable and assign its value to 5. You then create another
variable and assign the value to 6. You then change the NSLog example to compare the

variables 1 and y instead of using actual numbers. When you run this example, you will
get the result shown in Figure 9-5.

=l ®» [0 | <7 Comparison

2015-08-01 14:14:02.646 Comparison[890:21314] The Result is True

Figure 9-5. NSLog output

Note You may get compiler warnings when using this code. The compiler will
tell you that the false portion of the ternary operator will never be executed. The
compiler can look at the values while you are typing the code and know that the
comparison will be true.

You will now explore other kinds of comparisons, and then you will come back to the
application and test some of them.

Using Boolean Expressions

A Boolean expression is the easiest of all comparisons. Boolean expressions are used to
determine whether a value is true or false. Here’s an example:

var 7 = 5
if 3 > 0 {
some code ()

}

The if statement will always evaluate to t rue because the variable j is greater than
zero. Because of that, the program will run the some code () method.

Note In Swift, if a variable is optional and therefore not assigned a value, you
should use a question mark after the variable declaration. For example, var j

becomes var J:Int?.

If you change the value of j, the statement will evaluate to false because 7 is now 0.
This can be used with Bool and number variables.

var] = 0
if 3 > 0 {

some code ()

}

Placing an exclamation point in front of a Boolean expression will change it to the
opposite value (a false becomes a true, and a t rue becomes a false). This line
now asks “If not j>0,” which, in this case, is t rue because j is equal to 0. This is an
example of using an integer to act as a Boolean variable. As discussed earlier, Swift also
has variables called Boo1 that have only two possible values: true or false.

var 7 = 0
if (3 > 0) {
some code ()

Note Swift, like many other programming languages, uses true or false
when assigning a value to a Boolean variable.

Let’s look at an example related to the bookstore. Say you have a frequent buyers’ club
that entitles all members to a 15 percent discount on all books they purchase. This is easy
to check. You simply set the variable c1ubMember to t rue if the person is a member

and false if he or she is not. The following code will apply the discount only to club
members:

var discountPercent = 0
var clubMember: Bool = false

if (clubMember) {
discountPercent = 15

}

Comparing Strings

Strings are a difficult data type for most C languages. In ANSI C (or standard C), a string
is just an array of characters. Objective-C took the development of the string even further
and made it an object called NSString. Swift has taken the St ring class even further

and made it easier to work with. Many more properties and methods are available to you
when working with an object. Fortunately for you, St ring has many methods for

comparing data, which makes your job much easier.

Let’s look at an example. Here, you are comparing passwords to see whether you should
allow a user to log in:

var enteredPassword = "Duck"
var myPassword = "duck"

var continuelLogin = false

if enteredPassword == myPassword {
continuelogin = true

}

The first line just declares a St ring and sets it value to Duck. The next line declares
another string and sets its value to duck. In your actual code, you will need to get the
enteredPassword string from the user.

The next line is the part of the code that actually does the work. You simply ask the strings
if they are equal to each other. The example code will always be false because of the

capital “D” in the enteredPassword versus the lowercase “d” in the myPassword.

There are many other different comparisons you might have to perform on strings. For
example, you may want to check the length of a certain string. This is easy to do.

var enteredPassword = "Duck"

var myPassword = "duck"

var continuelLogin = false

if enteredPassword.characters.count > 5 {
continuelLogin = true

Note count is a global function that can be used to count strings, arrays, and
dictionaries.

This code checks to see whether the entered password is longer than five characters.

There will be other times when you will have to search within a string for some data.
Fortunately, Swift makes this easy to do. St ring provides a function called

rangeOfString, which allows you to search within a string for another string. The
function rangeOfString takes only one argument, which is the string for which you
are searching.

var searchTitle: String
var bookTitle: String

searchTitle = "Sea"

bookTitle = "2000 Leagues Under the Sea"

if bookTitle.rangeOfString(searchTitle) != nil {
addToResults ()

}

This code is similar to other examples you have examined. This example takes a search
term and checks to see whether the book title has that same search term in it. If it does, it
adds the book to the results. This can be adapted to allow users to search for specific terms
in book titles, authors, or even descriptions.

For a complete listing of the methods supported by String, see the Apple
documentation at

https://developer.apple.com/library/ios/documentation/Swift/C

Using the switch Statement

Up to this point, you’ve seen several examples of comparing data by simply using the 1 £
statement.

1f some_value == SOME CONSTANT {
} else if some_value == SOME OTHER CONSTANT {
} else if some_value == YET SOME OTHER CONSTANT {

}

If you need to compare a variable to several constant values, you can use a different
method that can simplify the comparison code: the switch statement.

Note In Objective-C, you could only use integers to compare in a switch
statement. Swift allows developers more freedom in using the switch
statement.

The switch statement allows you to compare one or more values in an original variable.

var customerType = "Repeat"

switch customerType { // The switch statement followed by
a begin brace

case "Repeat": // Equivalent to if (customerType
== "Repeat")

.. // Call functions and put any other
statements here after the case.

case "New":

case "Seasonal":

default: // Default is required in Swift
} // End of the switch statement.

The switch statement is powerful, and it simplifies and streamlines comparisons of a
Boolean operator to several different values.

In Swift, the switch statement is a powerful statement that can be used to simplify
repeated i f/else statements.

https://developer.apple.com/library/ios/documentation/Swift/Conceptual/Swift_Programming_Language/StringsAndCharacters.html

Comparing Dates

Dates are a fairly complicated variable type in any language, and unfortunately, depending
on the type of application you are writing, they are common. Swift does not have its own
native Date type. This means developers have to use the Cocoa date type NSDate. The
NSDate class has a lot of nice methods that make comparing dates easy. We will focus on
the compare function. The compare function returns an NSComparisonResult,
which has three possible values: OrderedSame, OrderedDescending, and
OrderedAscending.

// Today's Date
var today: NSDate = NSDate ()

// Sale Date = Tomorrow

let timeToAdd: NSTimelInterval = 60*60%*24
var saleDate: NSDate

= today.dateByAddingTimeInterval (timeToAdd)

var saleStarted = false
let result: NSComparisonResult = today.compare (saleDate)

switch result {
case NSComparisonResult.OrderedAscending:
// Sale Date is in the future
saleStarted = false
case NSComparisonResult.OrderedDescending:
// Sale Start Date is in the past so sale is on
saleStarted = true
default:
// Sale Start Date is now
saleStarted = true

}

This may seem like a lot of work just to compare some dates. Let’s walk through the code
and see whether you can make sense of it.

var today: NSDate = NSDate ()

let timeToAdd: NSTimelnterval = 60*60*24
var saleDate: NSDate

= today.dateByAddingTimeInterval (timeToAdd)

Here, you declare two different NSDate objects. The first one, named today, is

initialized with the system date or your device date. Before creating the second date, you
need to add some time to the first date. You do this by creating an NSTimeInterval.

This is a number in seconds. To add a day, you add 60*60*24. The second date, named
saleDate, is initialized with a date some time in the future. You will use this date to see
whether this sale has begun. We will not go into detail about the initialization of NSDate

objects.

Note In most programming languages, dates are dealt with in a specific pattern.
They usually start with the four-digit year followed by a hyphen, then a two-
digit month followed by a hyphen, and then a two-digit day. If you are using a
data format with a time, this data is usually presented in a similar manner. Times
are usually presented with the hour, minute, and second, each separated by a
colon. Swift inherits time zone support from Cocoa.

The results of using the compare function of an NSDate object is an
NSComparisonResult. You have to declare an NSComparisonResult to capture
the output from the compare function.

let result: NSComparisonResult = today.compare (saleDate)

This simple line runs the comparison of the two dates. It places the resulting
NSComparisonResult into the variable called result.

switch result {
case NSComparisonResult.OrderedAscending:
// Sale Date is in the future
saleStarted = false
case NSComparisonResult.OrderedDescending:
// Sale Start Date is in the past so sale is on
saleStarted = true
default:
// Sale Start Date is now
saleStarted = true

}

Now you need to find out what value is in the variable result. To accomplish this, you
perform a switch statement that compares the result to the three different options for
NSComparisonResult. The first line finds out whether the sale date is greater than

today’s date. This means that the sale date is in the future, and thus the sale has not started.
You then set the variable saleStarted to false. The next line finds out whether the

sale date is less than today. If it is, then the sale has started, and you set the
saleStarted variable to t rue. The next line just says default. This captures all

other options. You know, though, that the only other option is OrderedSame. This
means the two dates are the same, and thus the sale is just beginning.

There are other methods that you can use to compare NSDate objects. Each of these
methods will be more efficient at certain tasks. We have chosen the compare method
because it will handle most of your basic date comparison needs.

Note Remember that an NSDate holds both a date and a time. This can affect

your comparisons with dates because it compares not only the date but also the
time.

Combining Comparisons

As discussed in Chapter 4, you’ll sometimes need something more complex than a single
comparison. This is where logical operators come in. Logical operators enable you to
check for more than one requirement. For example, if you have a special discount for
people who are members of your book club and who spend more than $30, you can write
one statement to check this.

var totalSpent = 31

var discountThreshhold = 30
var discountPercent = 0

var clubMember = true

if totalSpent > discountThreshhold && clubMember ({
discountPercent = 15

}

We have combined two of the examples shown earlier. The new comparison line reads as
follows: “If totalSpent is greater than discountThreshold AND clubMember

is true, then set the discountPercent to 15.” For this to return t rue, both items
need to be true. You can use | | instead of & & to signify “or.” You can change the previous
line to this:

if totalSpent > discountThreshhold || clubMember {
discountPercent = 15

}

Now this reads as follows: “If totalSpent is greater than discountThreshold OR
clubMember is true, then set the discount percent.” This will return t rue if either of
the options is true.

You can continue to use the logical operations to string as many comparisons together as
you need. In some cases, you may need to group comparisons using parentheses. This can
be more complicated and is beyond the scope of this book.

Summary

You’ve reached the end of the chapter! Here is a summary of the topics that were covered:

Comparisons: Comparing data is an integral part of any application.

Relational operators: You learned about the five standard relational
operators and how each is used.

Numbers: Numbers are the easiest pieces of information to compare.
You learned how to compare numbers in your programs.

Examples: You created a sample application where you could test
your comparisons and make sure that you are correct in your logic.
Then, you learned how to change the application to add different
types of comparisons.

Boolean: You learned how to check Boolean values.

Strings: You learned how strings behave differently from other pieces
of information you have tested.

Dates: You learned how difficult it can be to compare dates and that
you must be careful to make sure you are getting the response you
desire.

Exercises

Modify the example application to compare some string information.
This can be in the form of a variable or a constant.

Write a Swift application that determines whether the following
years are leap years: 1800, 1801, 1899, 1900, 2000, 2001, 2003, and
2010. Output should be written to the console in the following
format: The year 2000 is a leap year or The year

2001 is not a leap year. See
http://en.wikipedia.org/wiki/Leap year for
information on determining whether a year is a leap year.

http://en.wikipedia.org/wiki/Leap_year

Chapter 10

Creating User Interfaces

Interface Builder enables iOS developers to easily create their user interfaces using a
powerful graphical user interface. It provides the ability to build user interfaces by simply
dragging objects from Interface Builder’s library to the editor.

Interface Builder stores your user interface design in one or more resource files, called
storyboards and XIBs. These resource files contain the interface objects, their properties,
and their relationships.

To build a user interface, simply drag objects from Interface Builder’s Object Library pane
onto your view or scene. Actions and outlets are two key components of Interface Builder
that help you streamline the development process.

Your objects trigger actions in your views, and the actions are connected to your methods
in the app’s code. Outlets are declared in your . swift file and are connected to specific

controls as properties. See Figure 10-1.

* 4

5. RondomMumber - airol
T 8 3 rges, 08 50K 8 & View Controllor Gcans
¥ RandomMNumber Wiew Conftrolbiar

¥ Mode!

v |19 view

B Main.storyboard

v | | Viow
B 'Soed Random Hu
B Genaal Lo FLansism.,.
L Looal -
¥ 7] Contrefier -\:" Fira? Feapandor
& VerwControlor awilt [e
o AppDNAGGHDD, Fwilt
) Imapes xoasaets
v Supporting Files
Indo. pilist
> RandomNumberTests
. Products

Generate Random Number

Label

Label Button

n 2 Text -

Figure 10-1. Interface Builder

Note Interface Builder was once a stand-alone application that developers used
to design their user interfaces. Starting with Xcode 4.0, Interface Builder has
been integrated into Xcode.

Understanding Interface Builder

Interface Builder saves the user interface file as a bundle that contains the interface objects
and relationships used in the application. These bundles previously had the file extension
.nib. Version 3.0 of Interface Builder used a new XML file format, and the file extension
changed to . xib. However, developers still call these files nib files. Later Apple
introduced storyboards. Storyboards enable you to have all of your views in one file with a
. storyboard extension.

Unlike most other graphical user interface applications, XIBs and storyboards are often
referred to as freeze-dried because they contain the archived objects themselves and are
ready to run.

The XML file format is used to facilitate storage with source control systems such as
Subversion and Git.

In the next section, we’ll discuss an app design pattern called Model-View-Controller.
This design pattern enables developers to more easily maintain code and reuse objects
over the life of an app.

The Model-View-Controller Pattern

Model-View-Controller (MVC) is the most prevalent design pattern used in iOS
development, and learning about it will make your life as a developer much easier. MVC
is used in software development and is considered an architectural pattern

Architectural patterns describe solutions to software design problems that developers can
use in their code. The MVC pattern is not unique to iOS developers; it is being adopted by
many makers of integrated development environments (IDEs), including those running on
Windows and Linux platforms.

Software development is considered an expensive and risky venture for businesses.
Frequently, apps take longer than expected to write, come in over budget, and don’t work
as promised. Object-oriented programming (OOP) produced a lot of hype and gave the
impression that companies would realize savings if they adopted its methodology,
primarily because of the reusability of objects and easier maintainability of the code.
Initially, this didn’t happen.

When engineers looked at why OOP wasn’t living up to these expectations, they
discovered a key shortcoming with how developers were designing their objects:
developers were frequently mixing objects in such a way that the code became difficult to
maintain as the application matured, the code moved to different platforms, or hardware
displays changed.

Objects were often designed so that if any of the following changed, it was difficult to
isolate the objects that were impacted:

Business rules

User interfaces

Client-server or Internet-based communication

Objects can be broken down into three task-related categories. It is the responsibility of
the developer to ensure that each of these categories keeps their objects from drifting
across other categories.

As objects are categorized in these groups, apps can be developed and maintained more
easily over time. The following are examples of objects and their associated MVC
category for an iPhone banking application:

Model
Account balances
User encryption
Account transfers
Account login
View
Account balances table cell
Account login spinner control
Controller

Account balance view controller
Account transfer view controller
Logon view controller

The easiest way to remember and classify your objects in the MVC design pattern is the
following:

Model: Unique business or application rules or code that represent
the real world

View: Unique user interface code

Controller: Anything that controls or communicates with the model

or view objects

Figure 10-2 represents the MVC paradigm.

Figure 10-2. MVC paradigm

Neither Xcode nor Interface Builder forces developers to use the MVC design pattern. It is
up to the developers to organize their objects in such a way to use this design pattern.

It is worth mentioning that Apple strongly embraces the MVC design pattern, and all of
the frameworks are designed to work in an MVC world. This means that if you also
embrace the MVC design pattern, working with Apple’s classes will be much easier. If
you don’t, you’ll be swimming upstream.

Human Interface Guidelines

Before you get too excited and begin designing dynamic user interfaces for your app, you
need to learn some of the ground rules. Apple has developed one of the most advanced
operating systems in the world with iOS 9. Additionally, Apple’s products are known for
being intuitive and user-friendly. Apple wants users to have the same experience from one
app to the next.

To ensure a consistent user experience, Apple provides developers with guidelines on how
their apps should look and feel. These guidelines, called the Human Interface Guidelines
(HIG), are available for the Mac, iPhone, iPad, and Apple Watch. You can download these
documents at http://developer.apple.com, as shown in Figure 10-3.

http://developer.apple.com

Q5 Developer Library

i0S Human Interface Guidelines

Ul Design Basics

Designing for i0S

I0S App Anatomy
Adaptivity and Layout
Starting and Stopping
Navigation

Modal Contexts
Interactivity and Feedback
Animation

Branding

Color and Typography
lcons and Graphics
Terminology and Wording
Integrating with i0S

Design Strategies

i0S Technologies

Ul Elements

lcon and Image Design

Revision History

iBooks

On This Paga -~

Designing for iOS

i0OS embodies the following themes:

» Deference. The Ul helps people understand and interact with the content, but never competes with it.

« Clarity. Text is legible at every size, icons are precise and lucid, adernments are subtle and appropriate,
and a sharpened focus on functionality motivates the design.

« Depth. Visual layers and realistic motion impart vitality and heighten people’s delight and understanding.

Wednesday Today

MNow 9AM 10AM 11AM

> ® B ¢
83 63 64
Thursday

Friday

Saturday

Sunday

Monday

Figure 10-3. Apple’s Human Interface Guidelines for iOS devices

Note Apple’s HIG is more than recommendations or suggestions. Apple takes it
very seriously. While the HIG doesn’t describe how to implement your user
interface designs in code, it is great for understanding the proper way to
implement your views and controls.

The following are some of the top reasons apps are rejected in Apple’s iTunes App Store:

The app crashes.

The app violates the HIG.

The app uses Apple’s private APIs.

The app doesn’t function as advertised on the iTunes App Store.

Many new iOS developers find this out the hard way, but if you follow the HIG from day
one, your iOS development will be a far more pleasurable experience.

Creating an Example iPhone App with

Interface Builder

Let’s get started by building an iPhone app that generates and displays a random number,
as shown in Figure 10-4. This app will be similar to the app you created in Chapter 4, but
you’ll see how much more interesting the app becomes with an iOS user interface (UI).

iOS Simulator - iPhone 5 - iPhone 5/ i0S 8.1 {...
Carrier ¥ 9:45 PM B

Seed Random Number Generator

Generate Random Number

67

Figure 10-4. Completed iOS random number generator app

Note You can read, learn, and follow the HIG before you develop your app, or
you can read, learn, and follow the HIG after your app gets rejected by Apple
and you have to rewrite part or all of it. Either way, all iOS developers will end
up becoming familiar with the HIG.

1. Open Xcode and select Create a New Project. Make sure you select
Single View Application for iOS, then click Next, as shown in
Figure 10-5.

Choose a template for your new project:

Application - SEE 1 i
Framework & Library
Master-Detail Page-Based Single View Tabbed

watchOS Application Application Application Application

Application

: L) -

Framework & Library % ~°f E&
08 X e

Application Game Cocoa Touch Cocpa '!_'ouch

Framework Static Library

Framework & Library

System Plug-in

Other
Single View Application
This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard or nib file that contains the view.
Cancel

Figure 10-5. Creating an iPhone app based on the Single View Application template

Name your project RandomNumber, select Swift for the language
and iPhone for the Device, click Next, and save your project, as
shown in Figure 10-6.

Choose options for your new project:

Product Name: RandomNumber
Organization Name: xcelMe
Organization Identifier: com

Bundle Identifier: com.RandomMNumber

<>

Language: Swift

<>

Devices: iPhone

Use Core Data
! Include Unit Tests
v| Include Ul Tests

Cancel Previous Next

Figure 10-6. Naming your iPhone project

Your project files and settings are created and displayed, as shown
in Figure 10-7.

¥ App lcsns and Lawnch Imagas

¥ Embadded Baries

* Liked Frameworks snd Libwaries

Figure 10-7. Source files

Besource Tags Infa Bula Setting: Bue Phases B Bules emtity end Type
neame | Rancombiumber
rcson
Duncia dartt o ® prancwet
o o et FetPin UseraligboeretyCaskoa]
U, Bets Raratmbister
Randsmbumber soadeproi ©
Bute
0% Demund mesturce Tags
Tesm 3o

Deployment Terget

Main infertace

Devico Origetution ¥ B

‘Saaus Bae Sty

Starybaard Reference.
plicohotne S 3 viw cordsoler an 8
App leons Sourcs | Appicen et wooey
Launch imagen Sowed | Ube Astot Catalog
< Havigation Costreller
g i ESATETE ThIE AL FRgbR
Rsunch Sereon Fite | LsurenSenper koo

Callection View Contralier - 2
B

Although you have only one controller in this project, it’s good

programming practice to make

your MV C groups at the beginning

of your development. This helps remind you to keep the MVC
paradigm and not put all of your code unnecessarily in your

controller.

Right-click the RandomNumber folder and then select New

Group, as shown in Figure 10-8.

@ 0@ B B A RunconNemee) g Froc Randsmiiumber- Ready | Testerdsy at 633 At @ =
Rsnsemiiumber xzooto;
BRAOANS B O B B Rarcombumber o ®
== 5] [Resouwca Tags o Bt Settngs B Phases - ety and Trs
N Rarmumoer
- Appbelegataswitt | SNGW in Finder v \dentity
" Mowtarmratersai | | OPEN with Extemnal Edizor seaon Reiatie 10 O
; Open As . Randemsiumber
[rree— ¥ R n
L Shaw File Inspector i i e (erslweanratDesk
5 At zeasnets R ieesiifenss |
LaschScmnatont] New File.. [P
et s Ackd Fies 1 “RandomNumber™.. Lot 2t settieas
L ——
» 5 Ractorerrisarttpaty| OO0 Toam | Nonw B i v, S
v 4l
»Brdusn e Group 5 reee:
ew Group from Sasection * Dapleymant infe. RET
Sort by Name Deegiopmast Targed
bort by Tvve Owviken Prore B
Find in Selected Groups... i e ks B
Source Control >
sl Bevse Besetiten B Rertist
Project Navigstor Help > Upiion Dowes
— 8 Landscipe Left
B Langacace Rig
Stans Bar Siye | Delet B 1 {1 @ [
oo status mar
. View Contratles - & corirsans s
Rrauires 11 scraen raragus 3 viem
¥ Appicans med Launch images
sgp keons Seurce | Aopicon Be
Lwrsen images Source Use Asset Catsicg TR
Navigation Contralior
s Sewm e o B P e

* Embedded Dinscies

¥ Linked Frameworks sad Librarios

Figure 10-8. Creating new groups

S View Cantrolier - &

TOMEOLLE b COnTONE T
S HETL 85 A it SR
Paga View Contraller - Fréssats o
Erguans o v coninebons 1
ween

5. Create a Models group, a Views group, and a Controllers group.

6. Dragthe ViewController.swift file to the Controllers
group. Drag the Main.storyboard and
LaunchScreen.storyboard files to the Views group. Having

these groups reminds you to follow the MVC design pattern as you
develop your code and prevents you from placing all of your code
in the controllers, as shown in Figure 10-9.

[] @® ’ A RandomNumber 4§ iPhone Bs Plus RandomMumber | Build RandomMNumber: Succeeded | Today at 2:02 PM

Main.storyboard
B 82 Q & © I = o< . RandomMumber RandomNumber Views Main.storyboard Main.storyboard (Bz
¥ & RandomNumber ¥ [View Controller Scene

v RandomMNumber v View Controller

¥ 8 Models Top Layout Guide
v Views Bottam Layout Guide
B Main.storyboard v View
LaunchScreen.xib B Seed Random Number Generator
v Controllers B Generate Random Number

L | Random Number Label
> Cur‘-straints
11 First Responder
=] Exit

= ViewController.swift
s+ AppDelegate.swift
Images.xcassets
A/ Supporting Files Storyboard Entry Point
Info.plist
> RandomNumberTests

> Products

Figure 10-9. MVC groups with controller and storyboard files organized

Developers have found it helpful to keep their storyboard and XIB
files with their controllers as their projects grow. It is not
uncommon to have dozens of controllers and XIB files in your
project. Keeping them together helps keep everything organized.
Using storyboards resolves many of the issues of having lots of
XIBs.

7. Click the Main.storyboard file to open Interface Builder.

Using Interface Builder

The most common way to launch Interface Builder and begin working on your view is to
click the storyboard or XIB file related to the view, as shown in Figure 10-10.

Edi f -"
o

- 5] iy Ay B ol B s

Figure 10-10. Interface Builder in the workspace window

When Interface Builder opens, you can see your scenes displayed on the canvas. You are
now able to design your user interface. First you need to understand some of the
subwindows within Interface Builder.

The Document Outline

The storyboard shows all the objects that your view contains. The following are some
examples of these objects:

Buttons

Labels

Text fields

Web views

Map views

iAd banner views

Picker views

Table views

Note You can expand the width of the Document Outline to see a detailed list
of all your objects, as shown in Figure 10-11. To get more real estate for the
canvas, you can shrink or hide your file navigator.

de
st

] a [iy Randomsiumbes | gl Frone &
BRase=Eo @ |8 < 5 Rarsembusber
v 5 mardombamin w [l view Cantratier Scans
¥ Randembumper w {5 View Cox
v o TagiL
w View [
LaunchSornen moryterd 5 Frwt Responder
¥ | | Conteolier Bea
Stontaind Eniry P

! ViewControber. pwift
- Apoletegate meif:
¥ asets scameoy
triopint
1 RargomMumber s
» RandombiumberUl Touta
Bl Progucts

Randambusber: Resty | Taday ot 42374
[

Ransembiumber Wiew biain snarybeare

STOrY TS

hasin sterybosed [Base) | [View Cosmelier Sears

Wit Comiralen

ew

o

Any ~Any

O&® @ ¢ 0 &
\amtity snd Type
same Mo sioryheand

Tros | Defautt - interison Buicer. [B)
;;;;;; tren
Tt prayasin pirpboard
Pl B Usornigwernes Desktend

[e]

inbetface Dellkdor Document
Opeesie | Defat (72 1~
s o | Project Depleyrnent Targ a
iew b4 IS 70 andl Laner B
B Use &uto Layouwn
B use Size Clarises
B8 3 Langh Soreen

Oloos Fiet | | Detan =]
1@ 0o

Wiew Comiralier - & corroler mat
PSS & W

Sraeybsard Referende - 1ded 3
PASCERIAR %04 A vIEW COATASEET I M
enterral wioryboid

Havigation Comtroflor - &
< TR T PAPIGES FRVEATEN
RGN & PEBICITY CF viiwS.

Tableo Visw Controlier - &
SorAPSEeT IS MATIGES & Bt v

Collegtion View Controlier - &
DOFTAEEE TR MLANIQRS 3 CORETT
com

Tab Bar Conlrolier « & sontster
IR MANSGES & 807 81 Witw SSPINIMIY
thast negeasens (a8 Bar iR,

h .
TOMGIEaE Vet DRI T
PRBPES HEAT 0 W viw £8RTAAL

Page View Controlier - meseeti s
Becubite o view SOnSElON &b
PR

Figure 10-11. The Document Outline:’s width is expanded to show a detailed view of all the objects in your storyboard

The Library

The Library is where you can exploit your creativity. It’s a smorgasbord of objects that
you can drag and drop into the View.

The Library pane can grow and shrink by moving the window splitter

in the middle of the view, as shown in Figure 10-12.

View Controller - A controller that
manages a view.

Storyboard Reference - Provides a
placehoclder for a view controller in an
external storyboard.

contrelier that manages navigation

, (. Navigation Controller - A
through a hierarchy of views.

Table View Controller - A
controller that manages a table view.

Collection View Controller - A
controller that manages a collection
view.

Tab Bar Controller - A controller
that manages a set of view controllers
that represent tab bar items.

Split View Controller - A
composite view controller that
manages left and right view controll...

Page View Controller - Presents a
seguence of view controllers as

pages.

38 @ se

Figure 10-12. Expand the Library pane to see more controls and slide the splitter to resize the window with the mouse

For Cocoa Touch objects, the Library contains the following (see Figure 10-13):

Controls

Data views

- Gesture recognizers
~ Objects and controllers

~ Window and bars

D {} @ &

Figure 10-13. Various Cocoa Touch objects in the Library pane

Inspector Pane and Selector Bar

The Inspector pane enables you to change the properties of the controls to make your
objects follow your command. The Inspector pane has six tabs across the top, as shown in
Figure 10-14.

File inspector

Quick Help inspector

Identity inspector

Attributes inspector

Size inspector

Connections inspector

@ 3 v 0 @

View
Mode | Scale To Fil
Semantic Unspecified
Tag
interaction @ User Interaction Enabled
| Multiple Touch
Alpha
Background | C—1 | White Color

Tint SN Default
orawing) Opagque Hidden
Clears Graphics Context
Clip Subviews
E Autoresize Subviews
Stretching o<
X Y
12
Width Height
0D O @
A
Button [Text = i
et
— | | e |
®

@

Figure 10-14. The Identity Inspector and Selector Bar

B])

oa .

Label

-?i

Creating the View

The random number generator will have three objects in the view: one label and two
buttons. One button will generate the seed, another button will generate the random
number, and the label shows the random number generated by the app.

1. Drag a label from the Library Pane Controls section to the View
window.

2. Drag two buttons from the Library window to the View window.

3. Click the top button and change its title to Seed Random Number
Generator.

4. Click the bottom button and change its title to Generate Random
Number, as shown in Figure 10-15.
|5 RandomMNumber Ran...ber View Mai...ard Mal..ase) Ej\l’ic. Lo View Contraller View | { > D ':f‘; =) ‘*','” || <)

Identity and Type
Name Main.storyboard

v [& view Controller Scens

A View Controller

v [View Type | Defoult - intertace Buider... BJ
B | $eed Rondom Number Generator 1] = ocatice| Relativot
B | Generate Random Number == FETE . "
" aiit J— Baso.lproj/Main.storyboard
== L ar‘..c:‘;! Number Full Path [Users/gwbennett/Dropbox/
V0 First Responder Apress Book/Swift 2nd
=] Exit Edition/Chapter 10/
RandomMNumber/

Storyboard Entry Point 2 .
RandomNumber/Base.lprojf

Main.storyboard

|Seed Random Number Generator O Demen hegouca Tade

Interface Bullder Document

1a L Piadadie £2.00 m

éGenerate Random Number| e 0D 0® O

View Controller - A contralier that
manages a view,

Label
Storyboard Reference - Provides a
placeholder for a view controlier in an
external S'.Of'r'DDJ rd.

contralier that manages navigation

< Navigation Controller - A
through a hierarchy of wiews.

Table View Centroller - A
controlier that manages a table view,

Collection View Controller - 4
comtrolier that manages @ collection
view,

Tab Bar Controller - A contrclier
hat Manages o st of view contrallers
that represent tab bar items,

- (] 7 =

Figure 10-15. Placing objects in the view

Now you get to use a great feature of Xcode. You can quickly and
easily connect your outlets and actions to your code. Xcode actually
goes one step further; it will create some of the code for you. All
you have to do is drag and drop.

5. Click the Assistant Editor icon at the top right of the screen. This
will display the associated . swift file for the view selected in the

storyboard or the XIB file, as shown in Figure 10-16.

svs YieControllar GIViewController 4 i farmars sma Fag
unt viewbidiead() { o A
sugas, vhewdiboadl } oot
]
Lol o
e -
P
Figure 10-16. Using the Assistant editor to display the .swift file
Note If the correct associated . swift file doesn’t appear when you click the
Assistant Editor icon, make sure you selected and highlighted the view.
[J
Using Outlets
Now you can connect your label to your code by creating an outlet.
1. Control-drag from the label in the view to the top of your class file,
as shown in Figure 10-17.
£
: f/ ViewController,swift
3 // RandomNumber
3 B A
5 // Created by Gary Bennett on 7/2/15.
- t ff Copyright (c) 2015 xcelMe. All rights reserved.
I
import UIKit
Seed Random Number Generator 2 class ViewController: UIViewController {
Generate Random Mumber 3 over;ig:rfugzngiztzgﬂjﬂﬁt') o
1 // Do any additional setup after loading the view, typically from
a nib.
_ }
§ Lahet 8

override func didReceiveMemoryWarning() {
super, didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}

Figure 10-17. Control-dragging to create the code for the randomNumber outlet

A pop-up window will appear. This enables you to name and
specify the type of outlet.

2. Complete the pop-up as shown in Figure 10-18 and click the

Connect button.

1 £
2 Viewlontroller.swift
1 f/ RandomNumber
5 // Created by Gary Bennett on 7/2/15.
- | & ff Copyright (c) 2015 xcelMe. All rights reserved.
i

% import UIKit

Connection | Outlet

Saed Randon ! class ViewController: UIViewController {
Object View Contralar (]
Hame | randomMumberLabe]
Type | UnLaoe: -]
S Stoeugt [etk | override func viewDidLoad() {
ciadsis — — super.viewDidLoad()
— et) // Do any additional setup after loading the view, typically from
a nib.
¥
o g
e LaEel 2

override func didReceiveMemorywWarning() {
super.didReceiveMemoryWarning()
/{ Dispose of any resources that can be recreated,

}

Figure 10-18. Pop-up for randomNumber outlet

The code is created for the outlet, and the outlet is now connected to the Label object in
your Main.storyboard file. The shaded circle next to line 15 indicates the outlet is
connected to an object in the Main.storyboard file, as shown in Figure 10-19.

1 S

2 /f ViewController.swift

i /f RandomMumber
B O

5 Jff Created by Gary Bennett om 7/2/15.
— & // Copyright (c) 2015 xcelMe. All rights reserved.
b

=l

? import UIKit
Seed Random Number Generator 12 class ViewController: UIViewController {

#15 @IB0utlet weak var randombumberLabel: UILabel!
Generate Random Number override func viewDidLoad{) {
super,viewDidLoad()
// Do any additional setup after loading the view, typically from
a nib.

ooo

La:g';ez 5 20 }

s override func didReceiveMemoryWarning() {
23 super,didRece iveMemoryWarning()
2 S/ Dispose of any resources that can be recreated.

Figure 10-19. Outlet property code generated and connected to the Label object

There is a declaration that may be new to you called IBOutlet, commonly referred to

simply as an outlet. Outlets signal to your controller that this property is connected to an
object in Interface Builder. IBOutlet will enable Interface Builder to see the outlet and

enable you to connect the property to the object in Interface Builder.

Using the analogy of an electrical wall outlet, these property outlets are connected to
objects. Using Interface Builder, you can connect these properties to the appropriate
object. When you change the properties of a connected outlet, the object that it is
connected to will automatically change.

Using Actions

User interface object events, also known as actions, trigger methods.

Now you need to connect the object actions to the buttons.

1. Control-drag from the Seed Random Number Generator button to
the bottom of your class. Complete the pop-up as indicated in
Figure 10-20 and click the Connect button. Make sure you change
the connection to an action and not an outlet.

I
2 Jf ViewController.swift
// RandomNumber
s = | 7,
= — // Created by Gary Bennett on 7/2/15.

— [/ Copyright (c) 2815 xcelMe. All rights reserved.
it
5 import UIKit
fsﬂedpar.dnmmldmherr,nnemm; ? class ViewController: UIViewController {
o o o
@IB0utlet weak var randomNumberLabel: UILabel!
Generate Random Number override func viewbidload()- 4
super, viewDidLoad(}
// Do any additional setup after loading the wview, typically from
a nib.
Label 20 }
I ; override func didReceiveMemoryWarning() {
Action ! super.didReceiveMemoryWarning()
View Controligr } // Dispose of any resources that can be recreated.
seecAton }
Type | UiBution [+]
tvert | Touch Up Inside
Aguments | Sonder
Cancel Comnect }
1 o

Figure 10-20. Completing the pop-up for the Seed method

2. Repeat the previous steps for the Generate Random Number button
(see Figure 10-21).

2 ff ViewController.swift
// RandomNumber

| 5 // Created by Gary Bennett on 7/2/15.
o & ff Copyright (c) 2015 xcelMe. ALl rights reserved.

7 import UIKit
Seed Random Mumber Generator 12 class ViewController: UIViewController {

16 @IB0utlet weak var randomNumberLabel: UILabel!

o O o
el Raryhom Hombae: 17 override func viewDidLoad() {
18 super.viewDidLoad()
f/ Do any additional setup after loading the wview, typically from
a nib.

Label 20 H

override func didReceiveMemaryWarning() {
super.didReceiveMemoryWarning()
ff Dispose of any resources that can be recreated.

@27 @IBAction func seedAction(sender: UIButton) {

& 31 @IBAction func generateAction{sender: UIButton) {

Figure 10-21. Generate and Seed actions connected to their Button objects

The Class

All that is left is to complete the code for your outlet and actions in the . swift file for
the controller.

Open the ViewController.swift file and complete the seed and generate
methods, as shown in Figure 10-22.

25 ¥
® 27 @IBAction func seedAction(sender: UIButton) {
28 srandom(CUnsignedInt(time(nil)))
29 randomNumberLabel.text = "Generator seended"
30 }
2
® 33 @IBAction func generateAction(sender: UIButton) {
34 let generated = (random() % 100) + 1
35 randomNumberLabel.text = "\(generated)"
ak }
37]-l
3

Figure 10-22. The seed and generate methods completed

There is some code you should examine a bit further. The following line seeds the random
generator so that you get a random number each time you run the app. There are easier
ways of to do this, but for the purposes of this section, you just want to see how actions
and outlets work.

srandom (CUnsignedInt (time (nil)))

In the following code, the property text sets the UTILabel value in your view. The
connection you established in Interface Builder from your outlet to the Label object does

all the work for you.

randomNumber. text

There are just two more things you need to do now. Select Main.storyboard and then
click Show the File Inspector in the Inspector Pane toolbar. Deselect Use Auto Layout. A
message box will appear; click Disable Size Classes. This will enable you to easily view
your controls on your iPhone simulator, as shown in Figure 10-23.

1_asn)) [view Cc
Enable Size Classes?

Cnspling 2o Clodson wil onabis Autd Layout 30d
corvert seguees 10 thelr adaplive equivalents.

e ViewConbroler swft | Mo Selection

aller.swift
per

Documents that wse s casses e -only compatle

Seed A with Xeode & or bigher,
Add sugpested constraints
Cancel
Gar

Label

Figure 10-23. Disabling Auto Layout

2 class

y Gary Bennett on 7/2/15.
{c) 2015 xcelMe. All rights reserved.

ViewController: UIViewController {

@IBdutlet weak var randomNumberLabel: UILabel!

override func viewDidlLoad() {
super.viewDidLoad()
/¢ Do any additional setup after loading the view,
a nib.
! Chaek “Use Sipe Classas”
override func didReceiveMemoryWarning() {
super.didReceiveMemaryWarning()
{/f Dispose of any resources that can be recreated.

}

@IBAction func seedAction(sender: UIButton) {
srandom{CUnsignedInt{time(nil)})
randomMumberlLabel.text = "Generator seended"

}

@IBAction func generateAction({sender: UIButton) {
let generated = (random() % 100} + 1
randomMumberLabel.text = "\(generated)"

}

typically from

Doemdide
identity and Type
Mamg g tarybosed

Type | Dafaclt - Inferdace Bulder £

Location Fo'stive 1o
a0 iproyMEn.1torybosnd

Full Path [Users/gwionnotiOvooton
Apeoss BookiSwift Jrd
CaiterChapter 10/
Rangcentumiber]
RandomNumberBase iprol!
Ma'r stonyboand =]

©n Demand Ressseco Tags

imerface ulider Decument

Dpens in | Befoutt [70) bt
Buids fee . Project Doployrent Tang. -
Wi k| 05 70 and Lator -
Use Ao Layout
Use Size Classes
s as Lawnch Screen

giobal Tint | NN | Defaut =]
Locailzatien
] Base
ErgFsh Localzable Sirings &
Target Mamberskip

B & RardomMumeer

B &0

View Controler - & contrelier that
Manages 3 view

Storyboard Reference - Prowces a
placenides 101 2 view coatroler in an
exterral storyboard

Lastly, center your objects in the view and expand your Label object. Also, select the
center alignment property for the label. This will center your text in the Label object, as

shown in Figure 10-24.

v [Wetw Corsiates Stena

Figure 10-24. Centering your objects
That’s it!

rt UIKit

155 Viewlon

randomiu=ber:

viewDidlead() {

Label

roller:

viewDi

dLos

Ve

To run your iPhone app in the iPhone simulator, click the Play button. Your app should
launch in the simulator, as shown in Figure 10-25.

Simulator - iPhone 6 - iPhone 6 [105 9.0 (13A4280e)
Carrier = 6:09 PM -—

Seed Random Number Generator

Generate Random Number

60

Figure 10-25. The completed random number generator app running in the iOS simulator

To seed the random function, tap the Seed Random Number Generator button. To generate
the random number, tap the Generate Random Number button.

Summary

Great job! Interface Builder saves you a lot of time when creating user interfaces. You
have a powerful set of objects to use in your application and are responsible for a minimal
amount of coding.

Interface Builder handles many of the details you would normally have to deal with.

You should be familiar with the following terms:

Storyboard and XIB files

Model-View-Controller
Architectural patterns

Human Interface Guidelines (HIG)
Outlets

Actions

Exercises

Extend the random number generator app to show a date and time in
a Label object when the app starts.

After showing a date and time label, add a button to update the data
and time label with the new time.

Chapter 11

Storing Information

As a developer, there will be many different situations when you will need to store data.
Users will expect your application (app) to remember preferences and other information
each time they launch it. Previous chapters discussed the BookStore app. With this app,
users will expect your application to remember all of the books in the bookstore. Your
application will need a way to store this information, retrieve it, and possibly search and
sort this data. Working with data can sometimes be difficult. Fortunately, Apple has
provided methods and frameworks to make this process easier.

This chapter discusses two different formats in which data will need to be stored. It
discusses how to save a preference file for an iOS device and then how to use a SQLite
database in your application to store and retrieve data.

Storage Considerations

There are some major storage differences between the Mac and the iPhone, and these
differences will affect how you work with data. Let’s start by discussing the Mac and how
you will need to develop for it.

On the Mac, by default, applications are stored in the Applications folder. Each user
has their own home folder where preferences and information related to that user are
stored. Not all of the users will have access to write to the Applications folder or to
the application bundle itself.

On the iPhone and iPad, developers do not need to deal with different users. Every person
who uses the iPhone has the same permissions and the same folders. There are some other
factors to consider with the iPhone, though. Every application on an iOS device is in its
own sandbox. This means that files written by an application can be seen and used only by
that individual application. This makes for a more secure environment for the iPhone, but
it also presents some changes in the way you work with data storage.

Preferences

There are some things to consider when deciding where to store certain kinds of
information. The easiest way to store information is within the preferences file, but this
method has some downsides.

All of the data is both read and written at the same time. If you are
going to be writing often or writing and reading large amounts of
data, this could take time and slow down your application. As a
general rule, your preferences file should never be larger than

100KB. If your preferences file starts to become larger than 100KB,
consider using Core Data as a way to store your information.

The preferences file does not provide many options when it comes to
searching and ordering information.

The preferences file is really nothing more than a standardized XML file with
accompanying classes and methods to store application-specific information. A preference
would be, for example, the sorting column and direction (ascending/descending) of a list.
Anything that is generally customizable within an app should be stored in a preferences
file.

Caution Sensitive data should not be stored in the preference file or in a
database without additional encryption. Luckily, Apple provides a way to store
sensitive information. It is called the keychain. Securing data in the keychain is
beyond the scope of this book.

Writing Preferences

Apple has provided developers with the NSUserDefaults class; this class makes it
easy to read and write preferences for iOS and Mac OS X. The great thing is that, in this
case, you can use the same code for iOS and Mac OS X. The only difference between the
two implementations is the location of the preferences file.

Note For Mac OS X, the preferences file is named
com.yourcompany.applicationname.plist and is located in the
/Users/username/Library/Preferences folder. On iOS, the
preferences file is located in your application bundle in the
/Library/Preferences folder.

All you need to do to write preferences is to create an NSUserDefaults object. This is
done with the following line:

var prefs: NSUserDefaults
= NSUserDefaults.standardUserDefaults ()

This instantiates the pre fs object so you can use it to set preference values. Next, you
need to set the preference keys for the values that you want to save. The BookStore app
example will be used to demonstrate specific instructions throughout this chapter. When
running a bookstore, you might want to save a username or password in the preferences.
You also might want to save things such as a default book category or recent searches. The
preferences file is a great place to store this type of information because this is the kind of
information that needs to be read only when the application is launched.

Also, on iOS, it is often necessary to save your current state. If a person is using your
application and then gets a phone call, you want to be able to bring them back to the exact
place they were in your application when they are done with their phone call. This is less

necessary now with the implementation of multitasking, but your users will still appreciate
it if your application remembers what they were doing the next time they launch it.

Once you have instantiated the object, you can just call setObjectforKey to set an
object. If you wanted to save the username of sherlock.holmes, you would call the
following line of code:

prefs.setObject ("sherlock.holmes", forKey: "username")

You can use setInteger, setDouble, setBool, setFloat, and setURL instead
of setObject, depending on the type of information you are storing in the preferences
file. Let’s say you store the number of books a user wants to see in the list. Here is an
example of using setInteger to store this preference:

prefs.setInteger (10, forKey: "booksInList")

After a certain period of time, your app will automatically write changes to the preferences
file. You can force your app to save the preferences by calling the synchronize
function, but this should only be used if you cannot wait for the next synchronization
interval such as if you app is going to exit. To call the synchronize function, you
would write the following line:

prefs.synchronize ()

With just three lines of code, you are able to create a preference object, set two preference
values, and write the preferences file. It is an easy and clean process. Here is all of the
code:

var prefs: NSUserDefaults

= NSUserDefaults.standardUserDefaults ()
prefs.setObject ("sherlock.holmes", forKey: "username")
prefs.setInteger (10, forKey: "booksInList")

Reading Preferences

Reading preferences is similar to writing preferences. Just like with writing, the first step
is to obtain the NSUserDefaults object. This is done in the same way as it was done in

the writing process:

var prefs: NSUserDefaults
= NSUserDefaults.standardUserDefaults ()

Now that you have the object, you are able to access the preference values that are set. For
writing, you use the setObject syntax; for reading, you use the stringForKey

method. You use the st ringForKey method because the value you put in the
preference was a St ring. In the writing example, you set preferences for the username

and for the number of books in the list to display. You can read those preferences by using
the following simple lines of code:

var username = prefs.stringForKey ("username")
var booksInList = prefs.integerForKey ("booksInList")

Pay close attention to what is happening in each of these lines. You start by declaring the
variable username, which is a St ring. This variable will be used to store the
preference value of the username you stored in the preferences. Then, you just assign it to
the value of the preference username. You will notice that in the read example you do
not use the synchronize function. This is because you have not changed the values of
the preferences; therefore, you do not need to make sure they are written to a disk.

Databases

You have learned how to store some small pieces of information and retrieve them at a
later point. What if you have more information that needs to be stored? What if you need
to conduct a search within this information or put it in some sort of order? These kinds of
situations call for a database.

A database is a tool for storing a significant amount of information in a way that it can be
easily searched or retrieved. When using a database, usually small chunks of the data are
retrieved at a time rather than the entire file. Many applications you use in your daily life
are based on databases of some sort. Your online banking application retrieves your
account activity from a database. Your supermarket uses a database to retrieve prices for
different items. A simple example of a database is a spreadsheet. You may have many
columns and many rows in your spreadsheet. The columns in your spreadsheet represent
different types of information you want to store. In a database, these are considered
attributes. The rows in your spreadsheet would be considered different records in your
database.

Storing Information in a Database

Databases are usually an intimidating subject for a developer; most developers associate
databases with enterprise database servers such as Microsoft SQL Server or Oracle. These
applications can take time to set up and require constant management. For most
developers, a database system like Oracle would be too much to handle. Luckily, Apple
has included a small database engine called SQLite in iOS and OS X. This allows you to
gain many of the features of complex database servers without the overhead.

SQLite will provide you with a lot of flexibility in storing information for your
application. It stores the entire database in a single file. It is fast, reliable, and easy to
implement in your application. The best thing about the SQLite database is that there is no
need to install any software; Apple has taken care of that for you.

However, SQLite does have some limitations that, as a developer, you should be aware of.

SQLite was designed to be used as a single-user database. You will
not want to use SQLite in an environment where more than one

person will be accessing the same database. This could lead to data
loss or corruption.

In the business world, databases can grow to become very large. It is
not surprising for a database manager to handle databases as large as
half a terabyte, and in some cases databases can become much larger
than that. SQLite should be able to handle smaller databases without
any issues, but you will begin to see performance issues if your
database starts to get too large.

SQLite lacks some of the backup and data restore features of the
enterprise database solutions.

For the purposes of this chapter, you will focus on using SQLite as your database engine.
If any of the mentioned limitations are present in the application you are developing, you
may need to look into an enterprise database solution, which is beyond the scope of this
book.

Note SQLite (pronounced “sequel-lite”) gets its name from Structured Query
Language (SQL, pronounced “sequel”). SQL is the language used to enter,
search, and retrieve data from a database.

Apple has worked hard to iron out a lot of the challenges of database development. As a
developer, you will not need to become familiar with SQL because Apple has taken care
of the direct database interaction for you through a framework called Core Data that
makes interacting with the database much easier. Core Data has been adapted by Apple
from a NeXT product called Enterprise Object Framework, and working with Core Data is
a lot easier than interfacing directly with the SQLite database. Directly accessing a
database via SQL is beyond the scope of this book.

Getting Started with Core Data

Let’s start by creating a new Core Data project.

1. Open Xcode and select File » New Project. To create an iOS Core
Data project, select Application from the menu on the left. It is
located underneath the iOS header. Then select Single View
Application, as shown in Figure 11-1.

Choose a template for your new project:

i0s
Application - o 1 T
Framework & Library
Master-Detail Page-Based Single View Tabbed
watchOS Application Application Application Application
Application
; o
Framework & Library
x
0s X
Application Game

Framewaork & Library
System Plug-in

Other
Single View Application
This template provides a starting point for an application that uses a single view. It provides
a view controller to manage the view, and a storyboard er nib file that contains the view.
Cancel

Figure 11-1. Creating a new project

Click the Next button when you’re done. The next screen will allow
you to enter the name you want to use. For the purposes of this
chapter, you will use the name BookStore.

Near the bottom, you will see the checkbox called Use Core Data.
Make sure this is checked and then click Next, as shown in Figure
11-2.

Choose options for your new project:

Product Name: ABookStore
Organization Name: Inn

Organization Identifier: com.inn

Bundle Identifier: com.inn.BookStore
Language: Swift E
Devices: iPhone a

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous

Figure 11-2. Using Core Data

Note Core Data can be added to any project at any point.
Checking that box when creating a project will add the
Core Data frameworks and a default data model to your
application.

4. Select a location to save the project and click Create.

Once you are done with that, your new project will open. It will look similar to a standard
application, except now you will have a BookStore.xcdatamodeld file. This file is

called a data model and will contain the information about the data that you will be storing
in Core Data.

The Model

In your BookStore folder on the right, you will see a file called
BookStoreCoreData.xcdatamodeld. This file will contain information about the

data you want stored in the database. Click the model file to open it. You will see a
window similar to the one shown in Figure 11-3.

& e » Ay BookStore | BB Phene 8 Indeaing | Processin g Files O |

B R O > E B £ B BeckSwne BockSeeg BookSIecD datamedy i BoskFieng wedstamadnl 1) (@ Detwun O & &

¥ Entities

Do S0 weoatermase 2

Of Defmind Ressures Tigh

e Dt Mot
e afies
Tools varsion

Miinimum - Aulomatic [Noode 701 1~]

Taeget Momberihip

= Q. © m

Ourine Style Add Enticy T Exfrer Style

Figure 11-3. The blank model

The window is divided into four sections. On the left you have your entities. In more
common terms, these are the objects or items that you want to store in the database.

The top-right window contains the entity’s attributes. Attributes are pieces of information
about the entities. For example, a book would be an entity, and the title of the book would
be an attribute of that entity.

Note In database terms, entities are your tables, and the attributes of the entities
are called columns. The objects created from those entities are referred to as
rows.

The middle window on the right will show you all the relationships of an entity. A
relationship connects one entity to another. For example, you will create a Book entity
and an Author entity. You will then relate them so that every book can have an author.

The bottom-right portion of the screen will deal with fetched properties. Fetched
properties are beyond the scope of this book, but they allow you to create filters for your
data.

Let’s create an entity.

1. Click the plus sign in the bottom-left corner of the window, or select
Editor » Add Entity from the menu, as shown in Figure 11-4.

ace » A BockSioen |) Proce B BechSiore: Ready | Today at 11:00 AM

MR a > E B £ B Bocksiene BoskSnen BosiSreco xedatamaceld | [l BosaSiene xedstamodel) [l Emity

* Fosched Properties

a4 ©. o -

Outine Style Asa Entry Add Aripute Eeinor Sty e

Figure 11-4. Adding a new entity
2. On the left side, name the entity Book.

Note You must capitalize your entities’ names.

3. Now let’s add some attributes. Attributes would be considered the
details of a book, so you will store the title, author, price, and year
the book was published. Obviously, in your own applications, you
may want to store more information, such as the publisher, page
count, and genre, but you want to start simple. Click the plus sign at
the bottom right of the window, or select Editor » Add Attribute,
as shown in Figure 11-5. If you do not see the option to add an
attribute, make sure you have selected the Book entity on the left
side.

{0

BB« ; BookStore BookStore BookStore.xcdatamodeld & BookStore.xcdatamodel @ Book m attribute
ENTUHES ¥ Attributes
I3 Book
m attribute Undefined
CONEIGURA
(® Default

4+ -

¥ Relationships

+

¥ Fetched Properties

Figure 11-5. Adding a new attribute

. You will be given only two options for your attribute, the name and
the data type. Let’s call this attribute title. Unlike entities, attribute
names must be lowercase.

. Now, you will need to select a data type. Selecting the correct data
type is important. It will affect how your data is stored and retrieved
from the database. The list has 12 items in it and can be daunting.
We will discuss the most common options and, as you become more
familiar with Core Data, you can experiment with the other options.
The most common options are String, Integer 32, Decimal, and
Date. For the title of the book, select String.

String: This is the type of attribute used to store text. This should be
used to store any kind of information that is not a number or a date.
In this example, the book title and author will be strings.

Integer 32: There are three different integer values possible for an
attribute. Each of the integer types differ only in the minimum and
maximum values possible. Integer 32 should cover most of your
needs when storing an integer. An integer is a number without a
decimal. If you try to save a decimal in an integer attribute, the
decimal portion will be truncated. In this example, the year
published will be an integer.

Decimal: A decimal is a type of attribute that can store numbers
with decimals. A decimal is similar to a double attribute, but they
differ in their minimum and maximum values and precision. A
decimal should be able to handle any currency values. In this
example, you will use a decimal to store the price of the book.

Date: A date attribute is exactly what it sounds like. It allows you to
store a date and time and then performs searches and lookups based
on these values. You will not use this type in this example.

6. Let’s create the rest of the attributes for the book. Now, add price.
It should be a decimal. Add the year the book was published. For
two-word attributes, it is standard to make the first word lowercase
and the second word start with a capital letter. For example, an ideal
name for the attribute for the year the book was published would be
yearPublished. Select Integer 32 as the attribute type. Once
you have added all of your attributes, your screen should look like
Figure 11-6.

Note Attribute names cannot contain spaces.

¥ Attributes

& Book
T N yearPublished Integer 32

CONFIGURATIONS [price Double s
@ Default B tive String &

o e

¥ Relationships
Cal
+

¥ Fatched Properties

Figure 11-6. The finished Book entity

Note If you are used to working with databases, you will notice that you did not
add a primary key. A primary key is a field (usually a number) that is used to
uniquely identify each record in a database. In Core Data databases, there is no
need to create primary keys. The Framework will manage all of that for you.

Now that you have finished the Book entity, let’s add an Author entity.

1. Add a new entity and call it Author.

2. To this entity, add 1astName and firstName, both of which are
considered strings.

Once this is done, you should have two entities in your relationship window. Now you
need to add the relationships.

1. Click the Book entity, and then click and hold on the plus sign that

is located on the bottom right of the screen. Select Add
Relationship, as shown in Figure 11-7. (You can also click the plus

under the Relationships section of the Core Data model.

¥ Attributes
B Author

3 Book siribute A
S @ price Double $
title String %
CONFIGURATIONS m yearPublished Integer 32]
(® Default o
¥ Relationships
tionship . froas
relationship No Value No Inverse
+ —
¥ Fetched Properties
-~
+
= - [+ ©
Qutline Style Add Entity Add Relationship Editor Style

Figure 11-7. Adding a new relationship

. You will be given the opportunity to name your relationship. You
usually give a relationship the same name as the entity to which it
derived from. Type in author as the name and select Author from
the Destination drop-down menu.

. You have created one half of your relationship. To create the other
half, click the Author entity. Click the plus sign located at the
bottom right of the screen and select Add Relationship. You will use
the entity name that you are connecting to as the name of this
relationship, so you will call it beoks. (You are adding an s to the
relationship name because an author can have many books.) Under
Destination, select Book, and under Inverse, select the relationship
you made in the previous step. In the Utilities window on the right
side of the screen, select the Data Model Inspector. Select To Many
for the type of the relationship. Your model should now look like
Figure 11-8.

ENTITIES
@ Author

¥ Attributes

& Book i
o N B firstname String =
FETCH REQUESTS

B 12stiame String s
CONFIGURATIONS
(® Default 2

¥ Relationships

O books Book author

+_

¥ Fetched Properties

114

a: o © -
, ;

Outline Style Add Entity Add Relationship Editor Style

Figure 11-8. The final relationship

Note Sometimes in Xcode, when working with models, it is necessary to press
the Tab key for the names of entities, attributes, and relationships to update.
This little quirk can be traced all the way back to WebObjects tools.

Now you need to tell your code about your new entity. To do this, hold down Shift and
select the Book entity and the Author entity and then select Editor » Create
NSManagedObject Subclass from the Application menu. Your screen should look like
Figure 11-9.

Select the data models with entities you would like to manage

Select Data Model

v BookStore

Cancel — N

Figure 11-9. Adding the managed objects to your project

This screen allows you to select the data model you would like to create managed objects
for. In this case, you have only a single data model. In some complicated applications, you
may have more than one. Managed objects represent instances of an entity from your data
model. Select the BookStore data model and click Next.

You will now be presented with a screen to select the entities to create managed objects, as
seen in Figure 11-10. Select both and click Next.

Select the entities you would like to manage

Select Entity
Book
o Author
Cancel Previous

Figure 11-10. Select the entities to create managed objects

Select the storage location and add it to your project, as seen in Figure 11-11. You need to
select the Options button on the bottom to see more information. Make sure your language
is set to Swift. By default, it is still Objective-C. You should not need to change any other
defaults on this page. Then click Create. You will notice that four files have been added to
your project. Book+CoreDataProperties.swift and
Author+CoreDataProperties.swift contain the information about the book and
author entities you just created. Book.swift and Author.swift will be used for
logic relating to your new entities. These files will need to be used to access the entities
and attributes you added to your data model. These files are fairly simple because Core
Data will do most of the work with them. You should also notice that if you go back to
your model and click Book, it will have a new class in the Data Model Inspector. Instead
of an NSManagedObject, it will have a Book class.

) e = gE v BookStore v th Q
Finorites Bl BookStore Zl |7 BookStore o
BookStore.xcodeproj]
bonsie 1 BookStoreTests o>
:} Dropbox 7| BookStoreUlTests o
¢ iCloud Drive
¥ Applications
(=] Desktop
fﬁj Documents
0 Downloads
Shared
[*] Brad’s Mac Pro
@ |ees
Language Swift E
Options Use scalar properties for primitive data types
Group [B BookStore E
Targets A BookStore
BookStoreTests
BookStoreUITests
New Folder Options Cancel Create

Figure 11-11. Select the save location for your new managed objects

Let’s look at some of the contents of Book+CoreDataProperties.swift:

import Foundation
import CoreData

extension Book {

@NSManaged var title: String?
@NSManaged var price: NSDecimalNumber?
@NSManaged var yearPublished: NSNumber?
@NSManaged var author: Author?

}

You will see that the file starts by including the Core Data framework. This allows Core
Data to manage your information. This file contains an extension to the Book class. An

extension allows you to add new properties and functionality to an existing class. By
creating the Book class and the Book+CoreDataProperties.swift file, Xcode

allows the developer to separate the attributes from the basic logic. The superclass for the

new Book object is NSManagedObject. NSManagedObject is an object that
handles all of the Core Data database interaction. It provides the methods and properties
you will be using in this example. Later in the file, you will see the three attributes and the
one relationship you created.

Managed Object Context

You have created a managed object class called Book. The nice thing with Xcode is that it
will generate the necessary code to manage these new data objects. In Core Data, every
managed object should exist within a managed object context. The context is responsible
for tracking changes to objects, carrying out undo operations, and writing the data to the
database. This is helpful because you can now save a bunch of changes at once rather than
saving each individual change. This speeds up the process of saving the records. As a
developer, you do not need to track when an object has been changed. The managed object
context will handle all of that for you.

Setting Up the Interface

The following steps will assist you in setting up your interface:

1. In the BookStore folder in your project, you should have a
Main.storyboard file. Click this file and Xcode will open it in
the editing window, as shown in Figure 11-12.

View Controller

T First Responder View Controller

[Exit -

Storyboard Entry Point

Figure 11-12. Creating the interface

2. There should be a blank window. To add some functionality to your

window, you need to add some objects from the Object Library.
Type table into the search field on the bottom right of the screen.
This should narrow the objects, and you should see Table View
Controller and Table view. Drag the Table view to the view, as
shown in Figure 11-13.

v [view Controller Seane Identity and Type
View Controlier f o5 | Name Main storyboard
P =
—| Top Layout Gulde 18 'Dﬁ = J Type Default - Interface Builder... o
Bottom Layout Guide - Location| Relative 20 G
View e
Base.lore{/Man.storyboard
Table View il ald

Full Path [Users/bradwlees/Dropbox)

O Baporsier Apress Switt 2.0/Code/
B ext Chapter 1/BookStore/
Storyboard Entry Paint BookStore/Base.iproif
Main.storyboargd [+

On Demand Resource Tags

Interface Bulider Document
Opens in | Default (7.0)

Buids for | Project Deployment Targ

|] < <

View a5 | 105 7.0 and Later
8 Use Auto Layout
Use Size Classes
Use as Launch Scroen

Giobal Tint | S Default

]

Localization
B = Bosc
Engiish Localizable Strings 3

D 0@ O

Table View Controllor - A
controlier that managas a tabie viow.

Table View - Displays cata in a list
of plain, sectioned, of grouped rows.

Table View Cell - Detines the
atuibutes 3nd behaviar of cells [rows)
in & table view.

= (m] whAny hAny EB 2 0| tai| B2 Brable]

Figure 11-13. Adding the Table view

You now have a Table view. You will need to stretch the Table view
to fill your view. To create cells in your Table view, you need to add
aUITableViewCell. Search for cell in your Object Library, and
drag a Table view cell to your table. You now have a table and a cell
on your view, as shown in Figure 11-14.

v [view Controller Scena Table View Cell
Set the active scheme i = 1 Syle Basic H
Top Layout Guide » E g B
— | Bottom Layout Guide Prototype Cells -
v View dentifier
¥ || Table View Title Selection Default

¥ [Table View Cell
»> Content View

=] 1 Accossory Nooe

ooo

T First Responder SEESCL] Hoo

=5 Exit indentation [[t 1058
Storyboard Entry Poist Level Wiath

& Indent While Editing
Shaws Re-order Controls

Separator Default Insets B
View

Mode | Scale To Fi 2]

Semantic Unspecified E

Tag ol
interaction £ User Inferaction Enabled
Multipie Touch
Aipha 1
Background =1 Defauit
Tint EEEE Default

(o] o 1o

Crawing @ Opaque Hidden
G 0 e o

Table View Controller - A
conirclier that Manages a tabbe view,

Table View - Cisplays gatain 2 list
of plain, Sectioned, of grouped rows.

Table View Cell - Defines the
attributes and behavior of cells frows)
in @ table view.

(] <Ay hAny B lof bal| B (@ table o

Figure 11-14. Adding the Table view cell

. Select the cell, and in the Attributes Inspector on the right side, set
Style to Basic. Also, set the identifier to Cell. The identifier is used
for when your Table view contains multiple styles of cells. You will
need to differentiate them with unique identifiers. For most of your
projects, you can set this to Cell and not worry about it, as shown in
Figure 11-15.

h @& 8 ¢ B ©

Table View Cell

Style Basic E
e B
Identifier | Cell

Selection Default
Accessory None

Editing Acc. None

o B

indentation ollc 10
Level width

Indent While Editing
Shows Re-order Controls

Separator Default Insets

>

Figure 11-15. Changing the style of the cell

. When using a Table view, it is usually a good idea to put it in a
Navigation Controller. You will be using the Navigation Controller
to give you space to put an Add button on your Table view. To add a
Navigation Controller, select your View Controller in the Scene
box, which is the window to the left of your storyboard that shows
your View Controllers (your View Controller will have a yellow
icon next to it). From the Application menu, select Editor »
Embed In » Navigation Controller, as shown in Figure 11-16.

Edit View Find Navigate JEEIEI Product Debug Source Control Window Help p—2 v}
: Canvas >
™ BookStore | g iPhone 6 % 126 AM
A | Size Class :
& E o B B« g Lids Dot Oilia B Main.storyboard (Base)) [l View Controller Scene | () View Controller
v [viewcon Reveal in Document Outline
*roperties.swift v View €
v :Ilgn : D ® B
RES rrange 1 -
aProperties.swift — | Bott i (-
v Clvies Size to Fit Content %= |Cells
M T v Snap to Guides
swift © Guides 3
r.swift & R.
i = exit
s
- Storybt Tt :
[o Localization Locking >
' Automatically Refresh Views Navigation Controller
atamodield Tab Bar Controller
s
Resolve Auto Layout Issues >

Refactor to Storyboard...
1

Figure 11-16. Embedding a Navigation Controller

6. You will now have a navigation bar at the top of your view. You
will now add a button to the bar. This type of button is called a
UIBarButtonItem. Search for bar button in your Object Library
and drag a Bar Button item to the top right of your view on the
navigation bar, as shown in Figure 11-17.

Bar Button Item

® E Style Bordered E
[—) System Item = Custom ?;
Tint == | Default]
Item
Bar Item
Prototype Cells e e
Title Image V]
Tag 0JiS
Enabled
O eo

Bar Button Item - Represents an
Item | item on a WiToolbar or
UiNavigationitem object.

Fixed Space Bar Button Item -
[resnunasy | Represents a fixed space itemona
UiTeolbar cbject.

Flexible Space Bar Button Item -
4 Represents a flexible space item on a
UiToolbar object.

O wAny hAny E3 & tof tad| BE (@ bar button 9

Figure 11-17. Adding a Bar Button item to the navigation bar

7. Select the Bar Button item and change the System item from

Custom to Add. This will change the look of your Bar Button item
from the word Item to a plus icon, as shown in Figure 11-18.

D e 8 ¢ B

Bar Button Item

Style Bordered
System Item Add
Tint =] Default

3
e

ofo

A"
Bar Item
Title
.
Tag 03

Enabled

Figure 11-18. Changing the Bar Button item

8. Now you have created the interface, you need to hook it up to your
code. Hold down the Control key and drag your Table view to the

View Controller in the Document Outline, as shown in Figure 11-
19.

B8 | < [Bookstore)| ") BookStore)) Mai..oard } [Mai..Base)

2] Vie..cene) Vie...troller) | < | Navi...ltem Right Bar Button Ite
v [E View Controller Scene

-
(" ¥ [View Controller) w B
' | Top Layout Guide
,‘-__ Bottom Layout Guide

v | _\WView
v [T Table View
v [El cell Prototype Cells
> Content View
¥ | ¢ | Navigation Item Title

Left Bar Button Items
v Right Bar Button ltems

-f'fi First Responder
= Exit
v Navigation Controller Scene
¥ (£ Navigation Controller
Mavigation Bar

§ First Responder

= exit |
Storyboard Entry Point
Relationship “root view controller”...

Figure 11-19. Connecting the Table view

9. A pop-up will appear allowing you to select either the data source

10.

11.

or the delegate, as shown in Figure 11-20. You will need to assign
both to the View Controller. The order in which you select the items
does not matter, but you will have to Control-drag the Table view
twice.

a8 | € 5] BookStore ;| | BookStore)) Mai..oard) [Mai...Bas

v View Controller Scene

3 Outlets
dataSource

delegate

v ||| view
v |- | Table View
v [= cell Prototype Cells
> | Content View
¥ | < | Navigation Item Title
Left Bar Button items
v Right Bar Button Items

0@ First Responder
[=} Exit

Figure 11-20. Hooking up the Table view

Now your Table view should be ready to go. You need to hook up
your button to make it do something. In the top right of your Xcode
window, click the Assistant Editor button (it looks like two circles).
This will open your code on the right side and your storyboard on
the left side. Now Control-drag your Add button to the View
Controller code on the right, as shown in Figure 11-21.

BookStore: Reacly | Today at 11:32 AM = 4 B = |

=] B < Right B._n Items |~ Add | B2 & Automatic | . ViewControlier.swift 1 No Selection - ODe @ ¢ 01
I [Bar Button Item
ntroller Scene 3 2 ff ViewController.swift
Canrtralier {/ BookStore Style Bordered a

s * —_— £
B Layout Guide (- // Created by Brad Lees on B/B/15. System ftem Add B
ittom Layout Guide Z & a’.; Copyright © 2015 Inn. ALl rights reserved. Tint | =1 | Defautt E
& 1

Table View import UIKit Bar Item

cell L , U 1 Title

» [l Content View \ 1t class ViewController: UIViewController { T
wigation Item override func viewdidLoad() { s o [~
Left Bar Button tems [B super, viewDidLoad() Tag 03

i . 1 // Do any additienal setup after loading the view,

Right Bar Button ltems ¥ typically from a nib. Enablad

Add o }

L nder b :

POy 1 override func didReceiveMemoryWarning() {

1 super.didReceiveMeroryWarning ()
g /# Dispose of any resources that can be recreated.
lon Controller Scene 7 b
jation Controller P — m ¥
Insert Outlat, Action, or Outlet Collection

wigation Bar %}]
Qesponder 5
board Entry Point
anship "root view controller”...

Figure 11-21. Adding an action for your Button object

It does not matter where you place the Add button in your code as
long as it is in your class and outside of any methods. It should be

12

¥] View Contreoller Scone
¥ iew Controdles
Top Layout Gulde
Batlom Layout Guida
L4 View
P "TaninMWiew
® ¢ MNavigation ftom
T First Responde
[E Exit

L | Navigation Controller Scone

after your class properties just for organization. When you let go,
you will be prompted for the type of connection you are creating.
Set Connection to Action. Then add a name for your new method,
such as addNew, as shown in Figure 11-22.

l 18 override func didReceiveMs

L
Connection | Action 2

r Scene b }
er Object View Controller .

Name | addNew 2}

Type | AnyObject ﬁ f
Cancel Connect

oint :

iew controller”...

Figure 11-22. Changing the type and name of the connection

super.didReceiveMemory
// Dispose of any rest

. You also need to create an outlet for your Table view. Drag your

Table view from the View Controller scene to the top of the code
(just under the class definition, as seen in Figure 11-23). Make sure
the connection is set to Outlet and name the Table view
myTableView. You will need this outlet later to tell your Table

view to refresh.

i B

£

A Created by Tharm on BSB/S15.

i

/ Copyright o 2015 Inn. ALL

rights reserved.

i rt UIKit
wort CoreData
Protatype Cells
class ViewController: UIViewController {

Title

Figure 11-23. Creating an outlet for the Table view

Insert Outlet or Outlet Collection

vir manbgedobjectContext: NSManagedibiectantext!;

override func viewDidLoad() {
super.viewDidload()

let appDelagate;: A egate = ULApplication.
sharedApplica .delegate as! AppDelegate
sinagedir applelegate.
i 8% NSManagedDbjectContext

erride func didReceiveMesorywarning(] {
super.didReceiveMesoryWarning()
A Dispose of any resources that can be recreated.

Tabls View
Corent - Dynamic Prototypes =
Profctype Calls 14e

Siyle Plain

Separator Default

3 Default

L+ L IRE I 4

Separaior Inset Dedault

Selection Sangio Selaction

L+]

Editing Mo Splection During Editing <

« Show Sedection on Touch

g o Limet a2 |
Text [—1 Deafault =
Background 1 Default s
MNormal
= Default
Tracking
Sorall View
Styls Dofault =

Serll indicators « Shows Horlzontal Indicator
+ Shows Vertical indicator
Scrolling | Scrolliing Enabled
Paging Enabled
Derection Lock Enabled

The interface is complete now, but you still need to add the code to make the interface do
something. Go back to the Standard editor (click the list icon to the left of the two circles
icon in the top right of the Xcode toolbar) and select the ViewController.swift file
from the file list on the left side. Because you now have a Table view you have to worry
about, you need to tell your class that it can handle a Table view. Change your class
declaration at the top of your file to the following:

class ViewController: UIViewController, UITableViewDelegate,
UITableViewDataSource {

You added UITableViewDelegate and UITableViewDataSource to your

declaration. This tells your controller that it can act as a table view delegate and data
source. These are called protocols. Protocols tell an object that they must implement
certain methods to interact with other objects. For example, to conform to the
UITableViewDataSource protocol, you need to implement the following method:

func tableView (tableView: UITableView, numberOfRowsInSection
section: Int) -> Int

Without this method, the Table view will not know how many rows to draw.

Before continuing, you need to tell your ViewController.swift file about Core
Data. To do this, you add the following line to the top of the file just under import
UIKit:

import CoreData

You also need to add a managed object context to your ViewController class. Add
the following line right after the class ViewController line:

var managedObjectContext: NSManagedObjectContext!

Now that you have a variable to hold your NSManagedObjectContext, you need to

instantiate it so you can add objects to it. To do this, you need to add the following lines to
your override func viewDidLoad () method:

let appDelegate: AppDelegate = UIApplication.sharedApplication().delegate
as! AppDelegate

managedObjectContext = appDelegate.managedObjectContext as
NSManagedObjectContext

The first line creates a constant that points to your application delegate. The second line
points your managedObjectContext variable to the application delegate’s

managedObjectContext. It is usually a good idea to use the same managed object
context throughout your app.

The first new method you are going to add is one to query your database records. Call this
method 1oadBooks.

1 func loadBooks () -> [AnyObject] {
2 let fetchRequest
= NSFetchRequest (entityName: "Book")
3 var result = [AnyObject] ()
4 do {
5 result = try
managedObjectContext! .executeFetchRequest (fetchRequest)
6 } catch let error as NSError {

NSLog ("My Error: %@", error)
}

return result

o W 00

10}

This code is a little more complex than what you have seen before, so let’s walk through
it. Line 1 declares a new function called 1 cadBooks, which returns an array of
AnyObject. This means you will receive an array that can contain any type of objects
you want. In this case, the objects will be Book. You then return the array once you have
it loaded.

You will now need to add the data source methods for your Table view. These methods tell
your Table view how many sections there are, how many rows are in each section, and
what each cell should look like. Add the following code to your
ViewController.swift file:

1 func numberOfSectionsInTableView (tableView: UITableView) -
> Int {

2 return 1

3 }

4

5

o func tableView (tableView: UITableView,
numberOfRowsInSection section: Int) -> Int {
7 return loadBooks () .count

8 }

9

10 func tableView (tableView: UITableView,

cellForRowAtIndexPath indexPath: NSIndexPath)
-> UITableViewCell {
11 let cell
= tableView.dequeueReusableCellWithIdentifier ("Cell") as
UITableViewCell?

12 let book: Book = loadBooks () [indexPath.row] as!
Book

13 cell?.textlLabel!.text = book.title

14 return cell!

15 }

In line 2, you tell your Table view that it will contain only a single section. In line 7, you
call a count on your array of Book for the number of rows in your Table view. In lines 11

to 14, you create your cell and return it. Line 11 creates a cell for you to use. This is
standard code for creating a cell. The identifier allows you to have more than one type of
cell in a Table view, but that is more complex. Line 12 grabs your Book object from your

loadBooks () array. Line 13 assigns the book title to your textLabel in the cell. The
textLabel is the default label in the cell. This is all you need to do to display the results
of your 1oadBooks method in the Table view. You still have one problem. You do not

have any books in your database yet.

To fix this issue, you will add code to the addNew method you created earlier. Add the
following code inside the addNew method you created:

1 @IBAction func addNew (sender: AnyObject) {

2 let book: Book

= NSEntityDescription.insertNewObjectForEntityForName
("Book", inManagedObjectContext:

managedObjectContext) as! Book

3 book.title = "My Book"

+ String(loadBooks () .count)

4 do {

5 try managedObjectContext!.save ()
6 } catch let error as NSError {

7 NSLog ("My Error: %Q@", error)

8 }

9 myTableView.reloadData ()

10 }

11 }

Line 2 creates a new Book object for your book in the database from the Ent ity name
and inserts that object into the managedObjectContext you created before.
Remember that once the object is inserted into the managed object context, its changes are
tracked, and it can be saved. Line 3 sets the book title to My Book and then sets the

number of items in the array. Obviously, in real life, you would want to set this to a name
either given by the user or from some other list. Lines 4-8 save the managed object
context.

In Swift 2.0, error handling has been changed. Now you try and then throw an error when
you perform an operation that might cause an error. Line 9 tells the UITableView to

reload itself to display the newly added Book. Now build and run the application. Click
the + button several times. You will add new Book objects to your object store, as shown

in Figure 11-24. If you quit the app and relaunch it, you will notice that the data is still
there.

iPhone 5s - iPhone 5s [i0S 9.0 (13A4...

Carrier ¥ 12:05 PM -
L
My Book1
My Book?2
My Book3
My Book4

Figure 11-24. The final app

This was a cursory introduction to Core Data for iOS. Core Data is a powerful API, but it
can also take a lot of time to master.

Summary

Here is a summary of the topics this chapter covered:

Preferences: You learned to use NSUserDefaults to save and
read preferences from a file, on both iOS and OS X.

Databases: You learned what a database is and why using one can be
preferable to saving information in a preferences file.

Database engine: You learned about the database engine that Apple
has integrated into OS X and iOS and its advantages and limitations.

Core Data: Apple provided a framework for interfacing with the
SQLite database. This framework makes the interface much easier to

use.

Bookstore application: You created a simple Core Data application
and used Xcode to create a data model for your bookstore. You also
learned how to create a relationship between two entities. Finally,
you used Xcode to create a simple interface for your Core Data
model.

Exercises

Add a new view to the app for allowing the user to enter the name of
a book.

Provide a way to remove a book from the list.

Create an Author object and add it to a Book object.

Chapter 12

Protocols and Delegates

Congratulations! You are acquiring the skills to become an iOS developer! However, iOS
developers need to understand two additional topics in order to be successful: protocols
and delegates. It is not uncommon for new developers to get overwhelmed by these topics,
which is why we introduced the foundational topics of the Swift language first. After
reading this chapter, you will see that protocols and delegates are really useful and not
hard to understand and implement.

Multiple Inheritance

We discussed object inheritance in Chapter 2. In a nutshell, object inheritance means that a
child can inherit all the characteristics of its parent, as shown in Figure 12-1.

Object A

Object B

Figure 12-1. Typical Swift inheritance

C++, Perl, and Python all have a feature called multiple inheritance, which enables a class
to inherit behaviors and features from more than one parent, as shown in Figure 12-2.

Object B @ Object D

Object E

Figure 12-2. Multiple inheritance

Problems can arise with multiple inheritance because it allows for ambiguities to occur.
Therefore, Swift does not implement multiple inheritances. Instead, it implements
something called a protocol.

Understanding Protocols

Apple defines a protocol as a list of function declarations, unattached to a class definition.
A protocol is similar to a class with the exception that a protocol doesn’t provide an
implementation for any of the requirements; it describes only what an implementation
should look like.

The protocol can be adopted by a class to provide an actual implementation of those
requirements. Any type that satisfies the requirements of a protocol is said to conform to
that protocol.

Protocol Syntax

Protocols are defined like classes are, as shown in Listing 12-1.

Listing 12-1. Protocol definition

protocol RandomNumberGenerator {

var mustBeSettable: Int { get set }
var doesNotNeedToBeSettable: Int { get }

func random () -> Double9

}

If a class has a superclass, you list the superclass name before any protocols it adopts,
followed by a comma, as shown in Listing 12-2.

Listing 12-2. Protocol listed after superclass

class MyClass: MySuperclass, RandomNumberGenerator,
AnotherProtocol {
// class definition goes here

}

The protocol also specifies whether each property must have a gettable or gettable and
settable implementation. A gettable property is read-only, whereas a gettable and settable
property is not (shown earlier in Listing 12-1).

Properties are always declared as variable properties, prefixed with var. Gettable and
settable properties are indicated by { get set |} after their type declaration, and
gettable properties are indicated by { get }.

Delegation

Delegation is a design pattern that enables a class or structure to hand off (or delegate)
some of its responsibilities to an instance of another type. This design pattern is
implemented by defining a protocol that encapsulates the delegated responsibilities.
Delegation can be used to respond to a particular action or to retrieve data from an
external source without needing to know the underlying type of that source.

Listing 12-3 defines two protocols for use with a random number guessing game.

Listing 12-3. Protocol definitions

protocol RandomNumberGame {
var machine: Machine { get }
func play ()
}
protocol RandomNumberGameDelegate {
func gameDidStart (game: RandomNumberGame)
func game (game: RandomNumberGame,
didStartNewTurnWithGuess randomGuess: Int)
func gameDidEnd (game: RandomNumberGame)

}

The RandomNumbe rGame protocol can be adopted by any game that involves random
number generating and guessing. The RandomNumberGameDelegate protocol can be
adopted by any type of class to track the progress of a RandomNumberGame protocol.

Protocol and Delegation Example

This section shows you how to create a more sophisticated random number guessing app
to illustrate how to use protocols and delegation. The app’s home view displays the user’s
guess and whether the guess was high, low, or correct, as shown in Figure 12-3.

IProne O - aPhonie B | o G.A0 L dane]
Carrier ¥ 11:15 AM L

The guess was 40

Guess too low

Guess Random NMumber

Figure 12-3. Guessing game app home view

When the users tap the Guess Random Number link, they are taken to an input screen to
enter their guess, as shown in Figure 12-4.

iFhone 8 - iPhona B [105 8.0 [13A4325:) I

Carrier &+ 11:18 AM -

£ Back Guess

Your previous guess was 40

Save Guess

7 8 9
0 &) |

Figure 12-4. Guessing game app user input view

When the users enter their guess, the delegate method passes the guess back to the home
view, and the home view displays the result.

Getting Started

Follow these steps to create the app:

1. Create a new Swift project based on the Single View Application
template, name it RandomNumberDelegate, and save it, as
shown in Figure 12-5.

Choose options for your new project:

Product Name: RandomMumberDelegate
Organization Name: xcelMd
Organization Identifier: com
Bundle Identifier: com.RandomNumberDelegate
Language: Swift T}
Devices: iPhone ﬁ

Use Core Data
Include Unit Tests
Include Ul Tests

Cancel Previous

Figure 12-5. Creating the project

Select the Main. storyboard file, and from the File Inspector,
uncheck the Use Auto Layout option. Then click the Disable Size
Classes button. This will enable you to focus on just one device,
the iPhone, and not worry about Auto Layout, as shown in Figure
12-6.

Ay Ramcomicmsaeimgais | [§ 08 Device [

Figure 12-6. Turning off Auto Layout

From the Document Outline, select View Controller. Then select
Editor » Embed In » Navigation Controller. This embeds your
scene in a Navigation Controller and enables you to easily
transition back and forth to new scenes, as shown in Figure 12-7.

Xeode File Edit View Find Navigate I Product Debug Source Control Window Help L= RN

poe » oy RandomNumivorDeiopates | Loign = RandoemiumberDologates: Ready | Tocay at 4:38 PM
Arrange 3
Resolve Auto Layout ssues 3 Mains storybosrd
O R8 aA ¢ BE o B < Pin » whoiegates | [l Main storyboard + [lj Mainstoryboard Base) - [l view Controtior Scene |) View Contrabior
e imbema) TS Embodin > |
¥ |7 RangemtlumberDetogates T view
- AepDolgat et v
+ VewCantrotar swift BBt) sealization Locking » Tab Bar Controller
[Mainsoryboan 1= Bt
BS nagos xcassits Canvas >
LaunchScreen.xib Simulated Screen > m ® B

» [Supporting Filss
+ 5 RandomhumbarDelegatoaTeats
+ [Prochucts
Hide Document Outline

Reveal in Document Outline

' Automatically Refresh Views

Figure 12-7. Embedding the View Controller in a Navigation Controller

4. In the View Controller, add two Label objects and two Button
objects along with four Outlet objects, which will control the view,
as shown in Figure 12-8 and Listing 12-4.

> = -

o I S Cugutes | (58 Rure.gutin ¢ [, Wiy . [Wit] Vi Cuctostoe o) Vi Citouties s ——

Ha groesies yet

Label

dSeque, seeder: AnyDbjecti) {

Figure 12-8. Outlets necessary to control the view

Listing 12-4. IBAction function

47 // event triggered by playAgain Button
48 @IBAction func playAgainAction (sender:
AnyObject) {

49 createRandomNumber ()

50 playAgainButtonOutlet.hidden

= true // only show the button when the user
guessed the right #

51 guessButtonOutlet.hidden = false
// show the button

52 outComelLabelOutlet.text = ""

53 userGuessLabelOutlet.text = "New
Game"

54 previousGuess = ""

55 }

5. Add the code in Listing 12-5 for the functions to handle when the
user guesses a number and to handle creating a random number.

Listing 12-5. User guess delegate function and
createRandomNumber function

57 // function called from the
GuessInputViewController when the user taps
on the Save Button button

58 func userDidFinish (controller:
GuessInputViewController, guess: String) {
59 userGuessLabelOutlet.text = "The
guess was " + guess

60 previousGuess = guess

ol var numberGuess = Int (guess)

62 if (numberGuess > randomNumber) {
63 outComelLabelOutlet. text
= "Guess too high"

64 }

65 else if (numberGuess <
randomNumber) {

66 outComelLabelOutlet. text

= "Guess too low"

67 }

08 else {

69 outComelLabelOutlet. text

= "Guess 1s correct"

70 playAgainButtonOutlet.hidden
= false // show the play again button

71 guessButtonOutlet.hidden

= true // hide the guess again number

72 }

73 // pops the

GuessInputViewController off the stack

74
controller.navigationController?.popViewControlle
75 }

76 // creates the random number

77 func createRandomNumber () {

78 randomNumber

= Int (arc4random uniform(100)) // get

a random number between 0-100

79 print ("The random number is: \
(randomNumber)") // lets us cheat

80 return

81 }

6. Declare and initialize the two variables on lines 13 and 14 in Listing
12-6.

Listing 12-6. Variable declarations and intializations

11 class ViewController: UIViewController,
GuessDelegate {

12

13 var previousGuess = ""

14 var randomNumber = 0

15

16

17 @IBOutlet weak var
userGuesslLabelOutlet: UILabel!

18 @IBOutlet weak var outComeLabelOutlet:
UILabel!

19 @IBOutlet weak wvar
playAgainButtonOutlet: UIButton!

20 @IBOutlet weak var guessButtonOutlet:
UIButton!!

. Modify the function viewDidLoad () to handle how the view

should look when it first appears and create the random number to
guess, as shown in Listing 12-7.

Listing 12-7. viewDidLoad function

32 override func viewDidLoad () {

33 super.viewDidLoad ()

34 // Do any additional setup after
loading the view, typically from a nib.

35 self.createRandomNumber ()

36 playAgainButtonOutlet.hidden = true

37 outComeLabelOutlet.text = ""

38

39 }

. Now you need to create a view to enable the users to enter their
guesses. In the Storyboard. swift file, drag a new View
Controller next to the home View Controller and create a label, a
text field, and a button. For the Text Field object, in the Placeholder
property, type Number between 0-100, as shown in Figure 12-9.

10.

Figure 12-9. Create the Guess View Controller and objects

You need to create a class for the Guess Input View Controller.
Create a Swift file and save it as
GuessInputViewController.swift. Select File » New »
File. Then choose iOS » Source » Cocoa Touch Class and name
the class GuessInputViewController. It’s subclassed from
UIViewController, as shown in Figure 12-10.

Choase options for your new Fle:

tontrolier B

Class: GuessinpuiViewControlier

Subciass of: | UiViewControlier

Cancel Pravious Pt

Figure 12-10. Create the GuessInputViewController.swift file

Let’s associate the GuessInputViewController class with
the Guess View Controller created in Step 8. From the
Main.storyboard file, select the Guess Input View
Controller, select the Identity Inspector, and select or type
GuessInputViewController in the Class field, as shown in
Figure 12-11.

tontrelier

No guesses yet Make a guess
Latyal

Guess Random Number

Figure 12-11. Creating the GuessInputViewController.swift file

Now let’s create and connect the actions and outlets in the
GuessInputViewController class, as shown in Listing 12-8.

T

Note To see the bound rectangles around your controls in
your storyboard, as shown in Figure 12-11, select Editor
» Canvas » Show Bounds Rectangle.

Listing 12-8. Class listing

9 import UIKit

10

11 // protocol used to send data back the
home view controller’s userDidFinish
12 protocol GuessDelegate {

13 func userDidFinish (controller:
GuessInputViewController, guess: String)
14 }

15

16 class GuessInputViewController:
UIViewController, UlTextFieldDelegate {

17

18 var delegate: GuessDelegate? = nil
19 var previousGuess: String = ""

20

21

22 @IBOutlet weak var guessLabelOutlet:
UILabel!

23 @IBOutlet weak var guessTextOutlet:
UlTextField!

24

25 override func viewDidLoad() {

26 super.viewDidLoad ()

27

11.

28 // Do any additional setup after
loading the view.

29 1f (!previousGuess.isEmpty) {

30 guessLabelOutlet.text = "Your
previous guess was \ (previousGuess)"

31 }

32

guessTextOutlet.becomeFirstResponder ()

33 }

34

35 override func
didReceiveMemoryWarning () {

36 super.didReceiveMemoryWarning ()
37 // Dispose of any resources that
can be recreated.

38 }

39

40 @IBAction func saveGuessAction (sender:
AnyObject) {

41 if (delegate !'= nil) {

42 delegate! .userDidFinish (self,
guess: guessTextOutlet.text!)

43 }

44 }

You are almost done. You need to connect the scene with a segue. A
segue enables you to transition from one scene to another. Control-
drag from the Guess Random Number button to the Guess Input
View Controller and select push as the type of Action Segue, as
shown in Figure 12-12.

s E Guess
13 —
| No guesses yet Make a guess
Label

o o a

cGuess Random Nusber

o o a -

Save Guess
Play Again?

Figure 12-12. Creating the segue that transitions scenes when the Guess Random Number
button is tapped

12. Now you need to give the segue an identifier. Click the segue arrow,
select the Attributes Inspector, and name the segue
MyGuessSegue, as shown in Figure 12-13.

Main.storyboard
storyboard (Basa) | [View Controlior Scene MyGuessSegue < > bemoidoe
Storybeard Seque
igentitier | MiyGuessSogue
Segue Chass
Segue Mockle
. - Sogon | Push
View Controller ® B Destination Current

II
]i
<]
>
B
4

No guesses yet Make a guess
Label

Guess Random Number

| | Save Guess
Play Again?
| |

Figure 12-13. Creating the seque identifier

Note Make sure you press Return when you type the
segue identifier. Xcode may not pick up the property

change if you don’t press Return.

Now you need to write the code to handle the segue. In the
ViewController class, add the code in Listing 12-9.

Listing 12-9. prepareForSegue function

24 override func prepareForSegue (segue:
UIStoryboardSegue, sender: AnyObject?) {

25 if segue.identifier ==
"MyGuessSegue" {
26 let vc

= segue.destinationViewController as'!

GuessInputViewController

27 vc.previousGuess

= previousGuess // passes the last guess the

previousGuess property in the
GuessInputViewController

28 vc.delegate = self

29 }

30 }

When the user taps the Guess Random Number button, the segue
gets called, and the function prepareForSegue gets called. You

first check to see whether it was the MyGuessSegue segue. You
then populate the vc variable with the
GuessInputViewController.

Lines 27 and 28 pass the previousGuess number and delegate
to the GuessInputViewController.

13. Finally, if you haven’t added the GuessDelegate delegate to the
ViewController class, do it now, as shown in Listing 12-10.

Listing 12-10. ViewController class with GuessDelegate listed

11 class ViewController: UIViewController, GuessDelegate {
12

13 var previousGuess = ""

14 var randomNumber = 0

How It Works

Here is how the code works:

When the user taps the Guess Random Number link,
prepareForSegue is called. See line 24 in Listing 12-9.

Because the ViewController conforms to the
GuessDelegate (see line 11 in Listing 12-10), you can pass
self to the delegate in GuessInputViewController.

The GuessInputViewController scene is displayed.

When the user guesses a number and taps Save Guess, the
saveGuessAction is called (see line 40 in Listing 12-8).

Since you passed ViewController to the delegate, it can pass the
guess back in the ViewController. swift file (see line 42 in
Listing 12-8).

Now you can determine whether the user guessed the correct answer
and pop the GuessInputViewController view from the stack

(see line 74 in Listing 12-5).

Summary

This chapter covered why multiple inheritance is not used in Swift and how protocols and
delegates work. When you think of delegates, think of helper classes. When your class
conforms to a protocol, the delegate’s functions help your class.

You should be familiar with the following terms:

Multiple inheritance
Protocols

Delegates

Exercise

Change the random number the computer guesses from 0-100 to 0-
50.

In the main scene, display how many guesses the user has made
trying to guess the random number.

In the main scene, display how many games the user has played.

Chapter 13
Introducing the Xcode Debugger

Not only is Xcode provided free of charge on Apple’s developer site and the Mac App
Store, but it is a great tool. Aside from being able to use it to create the next great Mac,
iPhone, iPad, and Apple Watch apps, Xcode has a debugger built right into the tool.

What exactly is a debugger? Well, let’s get something straight—programs do exactly what
they are written to do, but sometimes what is written isn’t exactly what the program is
really meant to do. This can mean the program crashes or just doesn’t do something that is
expected. Whatever the case, when a program doesn’t work as planned, the program is
said to have bugs. The process of going through the code and fixing these problems is
called debugging.

There is still some debate as to the real origin of the term bug, but one well-documented
case from 1947 involved the late Rear Admiral Grace Hopper, a Naval reservist and
programmer at the time. Hopper and her team were trying to solve a problem with the
Harvard Mark II computer. One team member found a moth in the circuitry that was
causing the problem with one of the relays. Hopper was later quoted as saying, “From then

on, when anything went wrong with a computer, we said it had bugs in it.”*

Regardless of the origin, the term stuck, and programmers all over the world use
debuggers, such as the one built into Xcode, to help find bugs in programs. But people are
the real debuggers; debugging tools merely help programmers locate problems. No
debugger, whatever the name might imply, fixes problems on its own.

This chapter highlights some of the more important features of the Xcode debugger and
explains how to use them. Once you are finished with this chapter, you should have a good
enough understanding of the Xcode debugger and of the debugging process in general to
allow you to search for and fix the majority of programming issues.

Getting Started with Debugging

If you’ve ever watched a movie in slow motion just so you can catch a detail you can’t see
when the movie is played at full speed, you’ve used a tool to do something a little like
debugging. The idea that playing the movie frame by frame will reveal the detail you are
looking for is the same sort of idea you apply when debugging a program. With a
program, sometimes it becomes necessary to slow things down a bit to see what’s
happening. The debugger allows you to do this using two main features: setting a
breakpoint and stepping through the program line by line—more on these two features in a
bit. Let’s first look at how to get to the debugger and what it looks like.

First you need to load an application. The examples in this chapter use the BookStore
project from Chapter 8, so open Xcode and load the BookStore project.

Second, make sure the Debug build configuration is chosen for the Run scheme, as shown
in Figure 13-1. To edit the current scheme, choose Product » Scheme » Edit Scheme
from the main menu. Debug is the default selection, so you probably won’t have to change
this. This step is important because if the configuration is set to Release, debugging will
not work at all.

ﬁ BookStore i iPhone 6

»)‘- F'j'“d : Info Arguments Qptions Diagnostics
Run : B
| b* Dabug Build Configuration Debug E
b j Tﬂ.fl Executable +2 BookStore.app ﬂ
X Debug executable
> _ﬁpromc
Releas Debug Process As
> a An.atyze
nch Automaticall
ngmhiw Launch @) Automatically
Reloase Wait for executable to be launched
Duplicate Scheme Manage Schemes... Shared

Figure 13-1. Selecting the Debug configuration

While this book won’t discuss Xcode schemes, just know that by default Xcode provides
both a Release configuration and a Debug configuration for any Mac OS X or iOS project
you create. The main difference as it pertains to this chapter is that a Release configuration
doesn’t add any program information that is necessary for debugging an application,
whereas the Debug configuration does.

Setting Breakpoints

To see what’s going on in a program, you need to make the program pause at certain
points that you as a programmer are interested in. A breakpoint allows you to do this. In
Figure 13-2, there is a breakpoint on line 24 of the program. To set this, simply place the
cursor over the line number (not the program text, but the number 24 to the left of the
program text) and click once. You will see a small blue arrow behind the line number. This
lets you know that a breakpoint is set.

L] a2 P oy BeckSrcre)) iPhone & BoskGions | Budd BockStore: Succuaded | Today st 704 PM

B 2 1 3 5 & BocuSuees BooRSIHE © « MISIAEWCOnToNer i WA 31 W ST ITa
v B BookStore :
¥ BookSiom -I Created by Brad Lecs on 8/8/15.
2 o Dukeguatie st ff Copyright © 2015 Imn. ALL rights reserved.
o WasterVewControSor.swift
. DessiVigwCorsrolipr wift e
class MasterViewController: UITableWiewController {

war detallvied
war objects = {hny
war myBookStore: &

de func wiewDidloadl) {
raviewiiglosd ()

abdiag the view,
& = delf.od By

uttonlien{barBet tonSystenlten:

addBution
Verslcontrollers.comnt-1) UTMawd L
'
b
e ¢ wiewdiilappear{animated: Bool) {
arsfolect ioalnl iei Lipp et 08 Lo
i L UAppesrl an Luated)
|]
e ¢ didRece iveMergryWarningdl {
tiweencryWarningl]
esources that ted.
b
fune Enseribiowdbioct (gender: Anylbject)
o) ects. thgere(NSDate(), atIngew: @)
let indexPath = NSIrdesFath{forfow: @, irSection: 81
selfa tableiow, insertRowsAtingexPathsl [indexPath], withBoulmirgtion: ,Autosatic)

{ HARK: - Segues

ontrolier?.displapodeButtonives()

Figure 13-2. Your first breakpoint

If line numbers are not being displayed, simply choose Xcode » Preferences from the
main menu, click the Text Editing tab, and select the Line Numbers checkbox.

You can also remove the breakpoint by dragging the breakpoint to the left or right of the
line number column and then dropping it. In Figure 13-3, the breakpoint has been dragged
to the left of the column. During the drag-and-drop process, the breakpoint will turn into a
puff of smoke. You can also right-click (or Control-click) the breakpoint, and you will be
given the option to delete or disable a breakpoint. Disabling a breakpoint is convenient if
you think you might need it again in the future.

self.navigationItem.leftBarButtonItem = self.editButtonItem()

let addButton = UIBarButtonItem(barButtonSystemItem: .Add, target: self, action: "insertNewObject:")
b .. = tBarButtonItem = addButton
Edit Breakpoint... tViewController {

Disable Breakpoint Lit.viewControllers
sller = {controllers(controllers.count-1] as! UINavigationController).topVie:

Delete Breakpoint

Reveal in Breakpoint Navigator (animated: Bool) {
ar serrvorrearssewecrononvaewWillAppear = self.splitViewController!.collapsed
super.viewWillAppear(animated)
}

override func didReceiveMemoryWarning() {
super.didReceiveMemoryWarning()
// Dispose of any resources that can be recreated.

}
Figure 13-3. Right-clicking a breakpoint

Setting and deleting breakpoints are pretty straightforward tasks.

Using the Breakpoint Navigator

With small projects, knowing where all the breakpoints are isn’t necessarily difficult.
However, once a project gets larger than, say, your small BookStore application,

managing all the breakpoints could be a little more difficult. Fortunately, Xcode provides a
simple method to list all the breakpoints in an application; it’s called the Breakpoint
Navigator. Just click the Breakpoint Navigator icon in the navigation selector bar, as
shown in Figure 13-4.

] ® i BookStore | [l Phone & BookStore | Build BookStore: Succeeded | Today at 7:04 PM 1
AL B Z__® = 8| € & BookStore BookStore | . DetailViewControlier.swift) No Selection
¥ 5 BookStore 1 s
- 2/t DetailViewController.swift
¥ . MasterViewController swift // BookStore

W
£/ Created by Brad Lees on B/8/15.
ff Copyright € 2815 Inn. ALl rights reserved.
i

E] viewDidLoad()
D viewwinappear(_:) line 32
¥ . DetailViewControlier.swift

=

B
[configureViewl) lina 27 = import UIKit

==

=

1~

[viewDidLoad(} line 3
m didReceiveMemory...

class DetailViewController: UIViewController {

&

@180utlet weak war titlelabel: UILabel!
@IB0utlet weak var authorLabel: UILabel!

@IBJutlet weak var descriptionTextVWiew: UITextView!

var detailltem: AnyObject? {
didset {

}
¥

func configureViewl) {
if let detail:AnyObject = self.de
var myBook: Book m detail as!
%t = myBook.t
Ltext = myBook.author
AdacrrintianTovtUisw ravr = multnnlk dacerinein

Figure 13-4. Accessing the Breakpoint Navigator in Xcode

Once you’ve clicked the icon, the navigator will list all the breakpoints currently defined
in the application. From here, clicking a breakpoint will take you to the source file with
the breakpoint. You can also easily delete and disable breakpoints from here.

To disable/enable a breakpoint in the Breakpoint navigator, click the blue breakpoint icon
in the list (or wherever it appears). Don’t click the line; it has to be the little blue icon, as
shown in Figure 13-5.

8] o b 7& BookStore i§ iPhone 6 BookStore | Build BookStore: St

B &2 Q A © =2 D B |83« \&] BookStore)| | BookStore) . DetailViewController

v [5) BookStore M7 s _
2 // DetailViewController.swift
¥ . MasterViewController.swift 1 // BookStore
; 5 e v A/
DidLoad() line 24 =
(2 viewbidLoad() line 5 f/ Created by Brad Lees on B/B8/15.

viewWil!Appear{_:) ine 32 // Copyright © 2815 Inn. All rights reserved.
¥ . DetailviewController.swift

X configureView() line 27 — import UIKit
viewDidLoad() line 35 = class DetailViewController: UIViewController {
] didReceiveMemory... 11 D

@IB0utlet weak var titleLabel: UILabel!
@IB0utlet weak var authorLabel: UILabel!

@IBOutlet weak var descriptionTextView: UITextVie

var detailltem: AnyObject? {
didSet {

}
}

func configureView() {
if let detail:AnyObject = self.detailltem {
26 var myBook: Book = detail as! Book
BE titleLabel.text = myBook.title
28 authorLabel.text = myBook.author
descriptionTextView.text = myBook.descrip
}
1

Figure 13-5. Using the Breakpoint Navigator to enable/disable a breakpoint

It is sometimes handy to disable a breakpoint instead of deleting it, especially if you plan
to put the breakpoint back in the same place again. The debugger will not stop on these
faded breakpoints, but they remain in place so they can be conveniently enabled and act as
a marker to an important area in the code.

It’s also possible to delete breakpoints from the Breakpoint Navigator. Simply select one
or more breakpoints and press the Delete key. Make sure you select the correct
breakpoints to delete since there is no undo feature.

It’s also possible to select the file associated with the breakpoints. In this case, if you
delete the file listed in the Breakpoint Navigator and press Delete, all breakpoints in that
file will be deleted.

Note that breakpoints are categorized by the file that they appear in. In Figure 13-5, the
files are DetailViewController.swift and

MasterViewController.swift, with the breakpoints listed below those file

names. Figure 13-6 shows an example of what a file looks like with more than a single
breakpoint.

(@] @ (3 B /A BookStore) i iPhone 6 BookStore | Build BookStore: Succeeded | Today

=2 O AN & = p B (B L & BookStore [| BookStore) . DetailViewController.swift) No Selectio
v [&) BookStore i Z e .
2 [/ DetailViewController.swift
¥ . MasterViewController.swift 1 // BookStore
y ’ e | LS
DidLoad() line 24
mv!ew 1_ it - 5 // Created by Brad Lees on 8/8/15.
viewWillAppear(:) line 32 & // Copyright © 2815 Inn. All rights reserved.
¥ . DetailViewController.swift = "
X configureView() line 27 — ¢ import UIKit
mviewl)idLoadu.mc 35 = 1" class DetailViewController: UIViewController {
[0 didreceiveMemory... line 41 [| -

@IB0utlet weak var titlelLabel: UILabel!
@I80utlet weak var authorLabel: UILabel!

@I80utlet weak var descriptionTextView: UITextView!

var detailltem: AnyObject? {
didSet {

}
}

func configureView() {
if let detail:AnyObject = self.detailltem {
26 var myBook: Book = detail as! Book
| 27] titleLabel.text = myBook.title
28 authorLabel.text = myBook.author

Figure 13-6. A file with several breakpoints

Debugging Basics

Set a breakpoint on the statement shown in Figure 13-2. Next, as shown in Figure 13-7,
click the Run button to compile the project and start running it in the Xcode debugger.

@ & | ;ﬂu_ BookStore) il IPhone 6 BookStore | Build BookStore: Succeeded | Today at 7:04 PM
B 2 a & & = o B |88 L [& BookStore ;| 7] BookStore | . DetallViewController.swift | No Selection
v [& BookStore b 4
&) 2 f/ DetailViewController.swift
¥ . MasterViewController.swift 1 // BookStore
jewDidLoad() line 24 4 11
mwew doad() = 5 /f Created by Brad Lees on B/B/15.
mvieWillAppearL:] ne 32 = 4 ff Copyright © 2815 Inn. ALl rights reserved.
¥ . DetailViewController.swift i’
£ contigureview() line 27 = 7 import UIKit

Figure 13-7. The Build and Debug buttons in the Xcode toolbar

Once the project builds, the debugger will start. The screen will show the debugging

windows, and the program will stop execution on the line statement, as shown in Figure
13-8.

The Debugger view adds some additional windows. The following are the different parts
of the Debugger view shown in Figure 13-8:

=) 8 » B A BookSione) g Prone & Running BockStone on #rene 6 & i i

v BookStere @

I cru

emr JAdd, target: self, action) “inserthesOtgect!™h

Debug Navigator

¢ digRereiveerarywarningll {
eRece lveHengryWarningl)

al
@3 That can be

inrecticn: @)
{ [indexPath], witRRAASASTEoR: . Autesatic)

l = B o> 2 10) DookStore | M Tewesd 1) [T 0 sastorviewControdarviewOiolosd)) -> [
" Sl 5 CaDOO0Ti 03415080 1idk

* 1 addBuiton Q00T 002 303600

j el Variables Console

ENE! s e A Dutpt S (W]

Figure 13-8. The Debugger view with execution stopped on line 24

Debugger controls (circled in Figure 13-8) The debugging controls
can pause, continue, step over, step into, and step out of statements in
the program. The stepping controls are used most often. The first
button on the left is used to show or hide the debugger view. In
Figure 13-8, the debugger view is shown.

Variables: The Variables view displays the variables currently in
scope. Clicking the little triangle just to the left of a variable name
will expand it.

Console: The output window will show useful information in the
event of a crash or exception. Also, any NSLog or print output

goes here.

Debug navigator: The stack trace shows the call stack as well as all
the threads currently active in the program. The stack is a
hierarchical view of what methods are being called. For example,
main calls UTApplicationMain, and UTApplicationMain
calls the UTViewController class. These method calls “stack”
up until they finally return.

Working with the Debugger Controls

As mentioned previously, once the debugger starts, the view changes. What appears are
the debugging controls (circled in Figure 13-8). The controls are fairly straightforward and
are explained in Table 13-1.

Table 13-1. Xcode Debugging Controls

Control Description

Clicking the Stop button will stop the execution of the program. If the iPhone or iPad emulator is
running the application, it will also stop as if the user clicked the Home button on the device.

g] Clicking the Run button (looks like a Play button) starts debugging. If the application is currently
in debug mode, clicking the Run button again will restart debugging the application from the
beginning; it’s like stopping and then starting again.

[|[> Clicking this causes the program to continue execution. The program will continue running until it
ends, the Stop button is clicked, or the program runs into another breakpoint.

P When the debugger stops on a breakpoint, clicking the Step Over button will cause the debugger to
execute the current line of code and stop at the next line of code.

Clicking the Step In button will cause the debugger to go into the specified function or method.
é This is important if there is a need to follow code into specific methods or functions. Only
methods for which the project has source code can be stepped into.

1 The Step Out button will cause the current method to finish executing, and the debugger will go
= back to the caller.

Using the Step Controls

To practice using the step controls, let’s step into a method. As the name implies, the Step
In button follows program execution into the method or function that is highlighted. Select
the DetailViewController.swift file on the left side. Then set a breakpoint on

line 36, which is the call to self.configureView (). Click the Run button and select
a book from the list. Your screen should look similar to Figure 13-9.

a (-] | 2 W oA DockStors | g Prono 6 Funnreg BeekSeor s on Phane & ra N e A | = |
H N] BooRSIOE BookSwre | [DewdviewCoesrstier switt | [configureviow()
v BockSien (%]
& cru %
) Memary 321 MB Thn. A4
Do
L L
0 Borwerk oss DeialiWiewlontroller: UIViewoniro
¥ |l Thesad 1 aTBburiet weak var titlelabel: UILabeli
l F1l 0 BaokSiore DelaliawContned _ aTBbut et weak var sutheriabel: UILabeld
I b Boscbiors Do var gescriptisnTextView: UiTextvies]
': vir setasiltem: AnyObjeet? {
A sigset {
—
L }
% '
5

e eontigureiead] {
if et detofliAmdbjest = telf. detsiiiten {
=1 myBook: -

i wiewdisLasst) {
ot v iewDidload|)

£f Boany additi setup after losding the view, typically from a nib.
|} Se it eanf dguraVied() Townad 1 brasicpoint B4

ige § digRece iveMera ryWarningd] {
didhecoiveressrynarning]

E = b &5 L L qh|=f BookSiore | J Theead 1 [0 BookStore. Deta TVaaContnotits viewDiaload (BasiSooee DetalViswlootnss) == (§

- [0 wal! = . CGO00T 5 R8e 4 1100

BE Aute = Al Qrput & 1|

Figure 13-9. The debugger stopped on line 38

4

Click the Step Into button, — which will cause the debugger to go into the
configureView () method of the DetailViewController object. The screen
should look like Figure 13-10.

@ace b W oA BookStore | [l Phone 6 Running BockSton on IFhons & & =t = S

L4) DookSton DeciStcrs | [DotatviewControiienswitt | [corfigeresiowl

] 10 DookStons. DetalvigwContnel
KT 1 BooiSune DutsBawtontia

== B & £ %!/ BookSiere | J Thread 1 0 BoviStore DetadViewC oniroler. configureiiew (BociStore. DetalViewControlier) [} -» 0
i salt L0000 ST 8400
¥ detail 0xD000Me5TalaZ Taldl

Figure 13-10. Stepping into the configureView method of the DetailViewController object

"
The control Step Over, ~ , continues execution of the program but doesn’t go into a

T

method. It simply executes the method and continues to the next line. Step Out, =, is
a little like the opposite of Step In. If the Step Out button is clicked, the current method
continues execution until it finishes. The debugger then returns to the line before Step In
was clicked. For example, if the Step In button is clicked on the line shown in Figure 13-9
and then the Step Out button is clicked, the debugger will return to the viewDidLoad ()
method of the DetailViewController.swift file on the statement shown in
Figure 13-9 (line 36 in the example), which was the line where Step In was clicked.

Looking at the Thread Window and Call Stack

As mentioned earlier, the Debug navigator displays the current thread. However, it also
displays the call stack. If you look at the difference between Figures 13-9 and 13-10 as far
as the thread window goes, you can see that Figure 13-10 has the configureview

method listed because DetailViewController calls the configureView method.

Now, the call stack is not simply a list of functions that have been called; rather, it’s a list
of functions that are currently being called. That’s an important distinction. Once the
configureView method is finished and returns (line 31), configureView will no

longer appear in the call stack. You can think of a call stack almost like a breadcrumb trail.
The trail shows you how to get back to where you started.

Debugging Variables

It is possible to view some information about a variable (other than its memory address)
by hovering over the variable in the code. When you get to where the value of a variable
has been assigned in the local scope, you will see the variable in the bottom Variables
view. In Figure 13-11, you can see the newBook variable, and it has a title of Swift for
Absolute Beginners. You can also see that there is no author or description assigned. In
debugging, when you are stopped on a line, it is before the line is executed. This means
that even though you are paused on the line to assign the author property, it has not

been assigned yet.

ece B Ay Bockisore | Phone 8 Runring Bcakitare on iPhane 6 e B
jard » G - 4 B BetkSuere Boskdian | . DeskStere vwift Mo Selection
BossStors @4 !
» Py o
E-TE T

5 My . Akl (
P

| Disic
' rt Foundation

334 BookStore {
war theBookStore: [Besk] = [

il {
s

et | o] neEwBook . 51 Thrasd T brosincii 11

Ew» b 5 £ I 0 BoouStone | §i Theesd 1) [O BaakSuane initf] = BoakSoees

N seld - e Tl DOTEScab 2a2Bl
* [l newiook = L 0007 Doy 28050
B tighe = “Hweilt for Alsoite Boginnons
wutier = ”
deseriptian -
E Atn A Oyt 1 |

Figure 13-11. Viewing a variable value

Position the cursor over any place the newBook variable appears and click the disclosure
triangle to display the Book object. You should see what is displayed in Figure 13-12.

""" T NewBook, title = "Switt for Absolute Beginners”
rViewControl... .I] ‘newBook Eithor = “Bennett and Lees"
ney’ 10k,description = "Swift programming made easy."
Master*— L 0K, ptior W prog - y
v 0x00007fe9¢hd12310

r initWit _ . “

> title = (String) "Swift for Absolute Beginners
in » author = (String) "* to Arms"

b description = (String) ** ingway" o
——— P ML UN WSS e AT AT — rire ;tD-’y of an afair between an

theBookStore.append (newBook)
..nager (serial)
1
Figure 13-12. Hovering over the newBook variable reveals some information

Hovering over the newBook variable reveals its information. In Figure 13-12, you can
see the newBook variable expanded.

Dealing with Code Errors and Warnings

While coding errors and warnings aren’t really part of the Xcode debugger, fixing them is
part of the entire debugging process. Before a program can be run (with or without the
debugger), all errors must be fixed. Warnings won’t stop a program from building, but
they could cause issues during program execution. It’s best not to have warnings at all.

Errors

Let’s take a look at a couple of types of errors. To start, let’s add an error to the code. On
line 15 of the MasterViewController.swift file, change the following:

var myBookStore: BookStore = BookStore()

to the following:

var myBookStore: BookStore = BookStore]]

Save the changes and then build the project by pressing 3&+B. There will be an error, as
shown in Figure 13-13, that may show up immediately or after the build.

¥ Boaadiere

¥ BewkSrery

. AppDoegatE swll

D Aray Trpes arw ngw writhen with The bracists sopend The slumgnd T

Figure 13-13. Viewing the error in Xcode

Next, move over to the Issue Navigator window, as shown in Figure 13-14, by clicking the
triangle with the exclamation point. This view shows all the errors and warnings currently
in the program—not just the current file, MainViewController.swift, but all the
files. Errors are displayed as a white exclamation point inside a red octagon. In this case,
you have one error. If the error doesn’t fit on the screen or is hard to read, simply hover
over the error on the Issue Navigator, and the full error will be displayed.

@ e) [| ;a\ BookStore) [iPhone & Runining BoakStore on iPhone 6 0:

=S E : D [| < |5 BookStore BookStore | [MasterViewContralier.swift | [viewDidLoadi)

s r
By File oL A Lt £ MasterViewController.swift

s £ BookStore
v-;Jﬁ:BnnxSmrn 1] u
v [MasterViewControlier,swift /4 Created by Brad Lees on B/8/15.
= f Copyright @ 2815 Inn. ALl rights reserved.
1 ‘[BookStone). Type' is not f yrig . BrvEs
convertible to ‘BookStore'
I Array types are now written with irport UIKLt
the brackets around the clemant o
type class HasterViewController: UITableViewController {
var detailViewController: DetailViewController? = nil
var ebjects = [AnyDbject]i}
o var myBookStore:BookStore = BookStore[]

func viewDidload() {
riewDidLoad(])

any additional setup after loading the view, typically from a nib.
self.navigationItem. laftBarButtonltem = self.editButtonItem()

let addButton =

BarButtonItem{barButtonSystemItem: .Add, target: sclf, action: “insertMewlbject:™)
self.navigation Barb =

htBarB = addButton

Figure 13-14. Viewing the Issue Navigator

Generally, the error points to the problem. In the previous case, the BookStore object
was initialized as an array rather than as an object.

Go ahead and fix the error by changing [] to ().

Warnings

Warnings indicate potential problems with the program. As mentioned, warnings won’t
stop a program from building but may cause issues during program execution. It’s outside
the scope of this book to cover those warnings that may or may not cause problems during
program execution; however, it’s good practice to eliminate all warnings from a program.

Add the following code to the MasterViewController.swift viewDidLoad
method:

if (false) {
print ("False")

}

The print command will never be executed because false will never be equal to
true. Build the project by pressing 6+B. A warning will be displayed, as shown in
Figure 13-15.

B 2 Q AN © 2 b @ (8] [5) BookStore)| | BookStore) [l MasterViewController
By Type | %
y y lyp 2 // MasterViewController.swift
z | 3 // BookStore
v’ﬁ_ BookStore 1 issue 1] s 7/
v ‘Mastef\ﬁewContro!!answiﬁ 5 // Created by Brad Lees on B8/B/15.
) & C ight © 2015 Inn. All right d.
v A Will never be executed : :{';’ opyrig nn rights reserve
@ Condition always evaluates to 8
false 9 import UIKit
10
11 class MasterViewController: UITableViewController {
1

(X1

var detailViewController: DetailViewController? =
var objects = [AnyObject] ()
var myBookStore:BookStore = BookStore()

p ol b b
o B W

17
18 override func viewDidLoad() {
19 super.viewDidLoad()
20 // Do any additional setup after loading the v
n self.navigationItem.leftBarButtonItem = self.e
22
3 let addButton = UIBarButtonItem(barButtonSyste
ETS self.navigationItem.rightBarButtonItem = addBu
25 if let split = self.splitViewController {
24 let controllers = split.viewControllers
27 self.detailViewController = (controllers|c
28 }
2
30 if(false) {
31 print("False")
3 }
33
3 }
3 override func viewWillAppear(animated: Bool) {
| a7 3 self.clearsSelectionOnViewWillAppear = self.sp

an crumae st kiiTTAanan el animakadl

Figure 13-15. Viewing the warnings in the Issue Navigator

Clicking the first warning in the Issue Navigator will show you the code that is causing the
first problem, as shown in Figure 13-16.

& [] [2 B A BecuSte | i Phome B RiFing BaskStars on iPhone & 1 o R | L

; iy 3 BookSione BooiSion | [MastervewControierswilt) [viewDidLoadi) % 2
w ol BookStore (1]
v e COnIolier Swilt £
D Co: 1 abways svauates fo
falsa iepart UKL
lass HasterViewlontroller: UITableViewlentroller {

view, tygically
L editBureealteal)

er{barButtonSystenltes: .Add, targeti self, actisar "inseriNesObjelti™)
andButies
\ters [controklers count=1] 881 UlNsvigationtontroller). tesiie

grinti=False™} CER g T

At wigwhilligpearianicated: Boal) {

#11elearstelect Jnlny Lewd il Lapaear
uper v ieddil ippear] aninated]

dligRece iveMoraryWarningi) {
ereivellenoryWarningl)

nc inserthesobject [sendert AnyOn) {
L ingert (WSBatel)

. #tIndex: 8

BookSiwe | M Throad 1 | 0 BookSiore. BominSaore init (BookSione BoekSoore Type)() « » BookSione BookSrere

2ald = OAB000TIe0Ed12030
{1} mewBoth - 000D G Bt 20

At 4 - i Output 3 00

Figure 13-16. Viewing your first warning

In the main window, you can see the warning. In fact, this warning gives you a clue as to
the problem with the code. The warning states the following:

“Will never be executed”

This is a simple example of a warning. You can receive warnings for many things such as
unused variables, incomplete delegate implementations, and unexecutable code. It is good
practice to clean up the warnings in your code to avoid issues down the road.

Summary

This chapter covered the high-level features of the free Apple Xcode debugger. Regardless
of price, Xcode is an excellent debugger. Specifically, in this chapter, you learned the
following:

The origins of the term bug and what a debugger is

The high-level features of the Xcode debugger, including breakpoints
and stepping through a program

How to use the debugging controls called Continue, Step Over, Step
In, and Step Out

Working with the various debugger views, including threads (call
stack), Variables view, Text editor, and Console Output

Looking at program variables

Dealing with errors and warnings

1Michalel Moritz, Alexander L. Taylor III, and Peter Stoler, “The Wizard Inside the Machine,” Time, Vol.123, no. 16: pp.
56-63.

Chapter 14
A Swift iPhone App

In Chapter 8, you created a basic bookstore iPhone app with Swift. In this chapter, you
will add some features to the app to make it a bit more functional and use many of the
technologies you have learned in this book, such as creating a class, using delegates and
protocols, and using actions and outlets. You’ll also learn about some new techniques such
as switches, UTAlertViewController, and landmarks.

Let’s Get Started

The bookstore example in Chapter 8 enabled you to view books in your bookstore in a
TableView and then tap the book to see its details. In this chapter, you will add the
following capabilities to the Chapter 8 bookstore app:

Adding a book
Deleting a book
Modifying a book

See Figures 14-1 and 14-2.

iPhone 6 - iPhone 6 [105 9.0 (13A340)
Carrier & 8:24 AM

Master
Swift for Absolute Beginners

A Farewell To Arms

Figure 14-1. Add book functionality

|

iPrvone 8 - Phone & | 105 9,0 (13A4325¢)

Carrier =+ 12:46 PM —-—
£ Master Detail
Title:

Swift for Absolute Beginners
Author:

Bennett and Lees

Pages: 200

Description:

i0S Programming made easy.

Figure 14-2. Adding edit and delete functionality along with using a UISwitch

Using the app you created in Chapter 8, add a Button Bar item by dragging the Button Bar
Item object to the right button bar location in the Main. storyboard file. Change the

Button Bar item’s title to Add. This will change the button bar’s title to Add, as shown in
Figure 14-3.

Maaster +| ¢ | Master Right Bar Button ems |~ Add O & aE 9 40 a@

Bar Button item

=

Tint| o Defaul 2]
Bar Item
Tithe
Image ﬁ
Tag {1 e
B Enabled
n B
L
Master
| Prototype Cells O 0 @O
I | Mawvigation Bar - Fravides a
Title FRERERANSE for Sitplayng 4
nawigation bar just befow the status
Mavigation Item - Heprésents a
(state of The navigation Bar, including
a e,
Bar Button ltom
Hem | asrutionitom Toolbar - Provides a mechanksm for
cisplaying & toolad ot The Borom of
the screen,
Reprosents an item in a UIToolbar or LINavigationitern, Each bar
button item behaves similary 1o a button, and has a title, image, 1
action, and target. The UiBarButtonitern class provides methods | ™ Bar Button Item - Represents an
' you can use 1o specily bar button items with system-provided Iterm | ivem an a UiToolbar or
irmages, such as the plus image., LisNavigationitem object.
Tab Bar - Provides 3 mechanksm 1of
gitplaying & tab bar a1 the Batman of
o eed | the SEroen,

Done

Tab Bar Item - Regresents an item
on 2 UITabBar object

Soarch Bar - Displays an costable
Leafeh bar, containing the search
lcon. that sends an action Messane...

Figure 14-3. Adding a Button Bar item to your view

Modify and add the code that will handle a showDetail method and a
addBookSegue segue in the MasterViewController.swift file, starting at line

51 in Listing 14-1. The code will transition to the scene that will add a book to the list and
pass the view to a delegate. The next step is to define the AddBookViewController.

Listing 14-1. The prepareForSegue function

40 // MARK: - Segues

41

42 override func prepareForSegue (segue: UIStoryboardSegue,
sender: AnyObject?) {

43 1f segue.identifier == "showDetail" {
44 if let indexPath

= self.tableView.indexPathForSelectedRow {

45 let selectedBook:Book

= myBookStore.theBookStore[indexPath.row]

if segue.identifier == "showDetail" o o .
if let indexPath = self.table
let selectedBook:Book = {

46 let vc = segue.destinationViewController
as! DetailViewController
47 vc.detailItem = selectedBook
48 vc.delegate = self
49 }
50 }
51 else if segue.identifier == "addBookSegue" {
52 let vc = segue.destinationViewController as!
AddBookViewController
53 vc.delegate = self
54 }
55 }
Note Something new in Swift is on line 40: // MARK: - Segues”. //
MARK : is called a landmark. It is replacement of the pragma mark, which is
used in Objective-C. Landmarks help break up the code in the jump bar and
enable you to quickly get to sections of code indicated by the landmark. When
you type something following // MARK:, Xcode places the landmark in the
jump bar’s drop-down, as shown in Figure 14-4. If you just type // MARK: -,
Xcode adds a line separator in the jump bar drop-down. Swift also supports / /
TODO: and // FIXME: landmarks to annotate your code and lists them in the
jump bar.
MasterViewController.swift
g8 | < B BooxStore BookStore | . MasterViewCentroterswl [8] MasterViewControlior
e RS e
self,tableView.insertRowsAtIndexPatl [swaksFromninh ":
FE & £} viewDidLoad)
// MARK: - Segques didReceiveMemoryWarning() i
i; override func prepareForSegue(segue: UI! Seguos Full Py

let ve = segue,destinatio?
ve.detailltem = selectedBool

g i i : nand
} ve.delegate = self] tableviewl_cel ForRowhtindexPath:)
[tabieviewl canEditRowatindexPathc)
else if segue. identifier == “addBool m tabloView(_:commitEditingStyle:ferfowAtindexPath:) .Mnm-
let vc = segue.destinationViewCy ook
ve.delegate = self Delegate Methods conforming to the protoceol BeokStoreDelegate as defined in the AddBookViewController J
} [newBoox(_rewBoak:) ook
m deleteBook(_:) !
} [editBook(_seditBook:) itting
| Texi Encodl
Ling Endin
o t omETUTSectionsInTableView(tableView: UITableView) —= Int {
FETUI‘D 1 indent sl
Wi
override func tableView(tableView: UITableView, numberOfRowsInSection section: Int) -= Int {
return myBookSteore.theBookStore,count
Source Cont
override func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) -» UITableViewCell H"""’:
{

let cell = tableView.degqueueReusableCellWithIdentifier{"Cell", forIndexPath: indexPath) as UITableViewCell Coxnent, Beap

cell.textLabel!.text = myBookStore.theBookStore|indexPath. row].title
cell.accessoryType = UITableViewCellAccessoryType.Disclosurelndicator
return cell

} <
override func tableView(tableView: UITableView, canEditRowAtIndexPath indexPath: NSIndexPath) -> Bool {

/f Return false if you do not want the specified item to be editable.
return true

Sa-

Figure 14-4. Swift’s new landmarks

Now add the new view controller AddBookViewController mentioned in line 52 in
Listing 14-1. Add a View Controller object to the storyboard by dragging a View
Controller to the Main. storyboard file. Then add the objects in Figure 14-5 to enable
the user to add a new book. Feel free to move the scenes around to make it clear how they

relate to each other, as shown in Figure 14-5.

7 B

Tex! Fissd Read?

Description

Save Book Butien

h—___.

Figure 14-5. Adding the AddBookViewController and objects

Add a Push Segue object from the Add Button Bar item to the new View Controller by
Control-dragging dragging or right-clicking and dragging from the Add Button Bar item

) @

Wiew Controlber - & controlier that
MANIIEE 3 WEW.

Storyboard Reference - Provides 3
placenaicier for B VW CORCIORGT in an
Exteregl Sioryboan

Mavigatlon Comtroller - &
CONPOBET (N1 MINIGES NAIGITON
IRRSLh & RERIRETY B Vigwd

Table View Contralier - &
conirelied thal manages & 1abie vitw,

Cellocticn View Comtrallar - &
controer that Mandges 3 cobection
VHEW.

Tak Bar Contrallar - & eomroiier
I MERSged & SO 01 vide SENINGlNTE
that represent tab bar iems

Eplit View Controler - &
COMPBOSIE W CORAGIGT (Rl

to the new View Controller, as shown Figure 14-6.

® E Add Book
- -
Master -+
\'.
Cells :
\)
\-\.
W z
N | |
\ | B
| | Read?
™,
.. | Description
\'\: I
Save Book

Figure 14-6. Add a Show Segue object to the new View Controller

Label the Segue object by clicking the segue arrow and labeling the identifier as
addBookSegue, as shown in Figure 14-7.

g .-.. H o=

By nE
g Fuws
Cwstigion | Ciarraret

o hemgiay

[]

(]

Master

Is

Read?

Descrnplion

-

Saven ook
Witew Comtrellar - & corvoiee tnar
A e

Srarptapdrd Rebprsss - #goao &
clntadiidar Y I view Contaier e ar
e ad e e

Mirvigatien Sanirpled - &
) v e o
S 8 Pty £ el

Figure 14-7. Naming the Segue object addBookSegue

Now you need to create a Swift class to go with the new View Controller. Create a new
file and Cocoa class and name it AddBookViewController, as shown in Figure 14-8.
Make sure you select a subclass of UTViewController.

Choose options for your new file:

Class: | AddBookViewController

Subclass of; UlViewController E
Also create XIB file
iPhone
Language: Swift E

Cancel Previous W

Figure 14-8. Adding the AddBookViewController class

Now you have to associate the new AddBookViewController class to the new View
Controller. Select the View Controller, and in the Identity Inspector, type
AddBookViewController for the class, as shown in Figure 14-9.

wdd Book Scene Add Book

B @ @3 9 0 ¢

Custom Class

Class AddBookViewConirolior €
Module “.
Ideniity

Storyboard 1D

Restaration 1D

Use Staryboand 1D

B = =

Uzer Defired Runtime Attributes

Description

Ky Path T Wihhp
Add Book

Document
Label
x
Object 1D Snk=-TF-y8Xx
Lock Irherited - (Nothing) 2]
Motes B BE W W --- [[E] -7

Read?

Save Book

O @ O

View Controller - A controlier 1hat
Marages a v,

Citaruhnnrd Bafaranca - Biridae 5

Figure 14-9. Associating the AddBookViewController class to the new View Controller

Set the title of the view to Add Book by double-clicking on the Navigation Bar. Open the
AddBookViewController.swift file and add the code shown in Listing 14-2.

Listing 14-2. The AddBookViewController.swift file

9 import UIKit

10
11
12
13
14
15
16
17
18
19
20
21
22
23

protocol
func
func
func
}

BookStoreDelegate {

newBook (controller: AnyObject, newBook: Book)
editBook (controller: AnyObject, editBook: Book)
deleteBook (controller: AnyObject)

class AddBookViewController: UIViewController {

var
var
var
var

book = Book ()

delegate: BookStoreDelegate? = nil
read = false

editBook = false

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

recreated.

53
54
55
56
57
58
59
60
6l
62
63
64
65
66
67
68

@IBOutlet weak var titleText: UlTextField!
@IBOutlet weak var authorText: UlTextField!
@IBOutlet weak var pagesText: UlTextField!
@IBOutlet weak var switchOutlet: UISwitch!

@IBOutlet weak var descriptionText: UlTextView!

override func viewDidLoad() {
super.viewDidLoad ()
if (editBook == true) {
self.title = "Edit Book"

titleText.text = book.title
authorText.text = book.author
pagesText.text = String(book.pages)
descriptionText.text = book.description
if (book.readThisBook) {

switchOutlet.on = true
}
else {
switchOutlet.on = false
}
}
override func didReceiveMemoryWarning () {

super.didReceiveMemoryWarning ()
// Dispose of any resources that can be

@IBAction func saveBookAction (sender: UIButton)

book.title = titleText.text!
book.author = authorText.text!
book.description = descriptionText.text
book.pages = Int (pagesText.text!)'!
if (switchOutlet.on) {
book.readThisBook = true
}
else {
book.readThisBook
}
if (editBook) {
delegate!.editBook (self, editBook:book)

false

69 }

70 else {

71 delegate! .newBook (self, newBook:book)
72 }

73 }

74}

To the Book class, add two properties: pages and readThisBook. These are shown in
lines 15 and 16 in Listing 14-3.

Listing 14-3. Book Class changes

11 class Book {

12 var title: String = ""

13 var author: String = ""

14 var description: String = ""
15 var pages: Int = 0

16 var readThisBook: Bool = false
17 '}

Switches

Connect the outlets in the AddBookViewController class by dragging them from
their open circles to the controls, as shown in Figure 14-10.

B e R T R W e BT R] T e f et ke B A Y B LT

func deleteBnnk{cnntrnlle?:.linyﬁbjectJ
@ E ! ¥

class AddBookViewController: UIViewController {
var baok = Book()

i var delegate:BookStoreDelegate? = nil
: var read = false;
o var editBook: = false;
\' i 2IB0utlet weak var titleText: UITextField!
® 17 @IBOut let weak var authorText: UITextField!
! 1 g 3 AIBDutlet weak war pagesText: UITextField!
a RIBJutlet weak var switchQutlet: UISwitch!

Descriplion h——-‘ 1 @IB0utlet weak var descriptionText: UITextView!

L pverride func viewDidload() {
Save Book super.viewDidload(}
4 ifleditBook == truel{
self.title = "Edit Book"
ti ext.text = bopk.title
t.text = book.au
ext = String(b a0
Text.text = book.descriptior

switchOutlet.on = false

ff Do any additional setun after loadina the

Figure 14-10. Connecting the outlets

Connect the saveBookAction action by dragging the outlet circle to the Save Book
button, as shown in Figure 14-11.

authorText.text = book.author
pagesText.text = String(book
& descriptionText.text = book.
D ® = - if (book.readThisBook){

switchOutlet.on = true

else {
switchOutlet.on = false
}

Add Book
}

// Do any additional setup after loading the
View.

}

override func didReceiveMemoryWarning() {

super.didReceiveMemoryWarning()

£/ Dispose of any resources that canm be
recreated,

Read?

Description ' " }

: . % 55 @lBaction func saveBookAction(sender: UIButton) {
Save Book : book.title = titleText.text!

book.author = authorText.text!
book.description = descriptionText,text
book,pages = Int{pagesText.text1)!
if{switchOutlet.on) {

book. readThisBook = true

else {
book. readThisBook = false

if leditBook) {
delegate! . .editBooki{self, editBook:book)

else {
) delegate!.newBook({self, newBook:book)

Figure 14-11. Connecting the saveBookAction

In the DetailViewController class, add the code shown in Listing 14-4.

Listing 14-4. New properties

20 @IBOutlet weak var pagesOutlet: UILabel!
21 @IBOutlet weak var switchOutlet: UISwitch!
22

23 var delegate: BookStoreDelegate? = nil

24

25 var myBook = Book()

Alert View Controllers

Add the controls for Pages, Read, and Edit for the DetailViewController. Connect
the outlets by dragging the open circles to their controls, as shown in Figure 14-12.

2 import UIKit

=t
=

(]
&

class DetailViewController: UIViewController {

Detail ® 15 @IBOutlet weak var titleLabel: UILabel!
| ® 16 @IBOutlet weak var auvthorLabel: UILabel!
® 17 @IBOutlet weak var descriptionTextView: UITextView!

Title:

C ? @IBOutlet weak var pagesOutlet: UILabel!
Label ® 71 @IBOutlet weak var switchOutlet: UISwitch!

Author:
Label

var delegate:BookStoreDelegate? = nil

var myBook = Book{)
Pages: | Label |

Read: i
_ - 30 var detailItem: AnyObject? {
didSet {

e // Update the view,
Description:

override func prepareForSegue(segue: UIStoryboardSegue,
sender: AnyObject?) {
if segue.identifier == "editDetail" {
39 let vc = segue.destinationViewController as!
AddBookViewController
vc.delegate = delegate
& vc.editBook = true
Edit 2 vc.book = myBook

Figure 14-12. Adding the Pages and Read outlets

The Read switch is disabled in this view by unchecking the Enabled property in the
Attributes Inspector.

Add the code for displaying an AlertViewController when the Delete Button Bar is
tapped, as shown in Listing 14-5.

Listing 14-5. Displaying an UIAlertViewController

52 @IBAction func deleteBookAction (sender: UIBarButtonItem)
{
53 let alertController = UIAlertController(title:
"Warning", message: "Delete this book?",

preferredStyle: .Alert)

54 let noAction = UIAlertAction(title: "No", style:
.Cancel) { (action) in

55 print ("Cancel")

56 }

57 alertController.addAction (noAction)

58

59 let yesAction = UIAlertAction(title: "Yes",
style: .Destructive) { (action) in

60 self.delegate! .deleteBook (self)

61 }

62 alertController.addAction (yesAction)

63

64 self.presentViewController (alertController,

animated: false, completion: nil)
65 }

Add the Delete Button Bar item to the right navigation location and connect it to the
action, as shown in Figure 14-13.

Os = Cieut ppisaily fron s aik. e

Dwtad

Pages: | Label

Figure 14-13. Adding the Delete Right Button Bar item and action

The UTIAlertViewController will warn the user that the book currently displayed in
the DetailViewController is about to be deleted and will enable the user to decide
whether to delete it. The UTAlertViewController has two buttons: Yes and No.
When the user taps the Delete right Button Bar item, the UTAlertViewController
will be as shown, in Figure 14-14, when you are done.

% X5 iPhane & - iPhone & | 105 9.0 (13A4325¢)

Warning
Delete this book?

Mo Yes

Figure 14-14. UlAlertViewController being displayed

When the user taps Yes to delete the book, you want to call a deleteBook delegate
method as described in the MasterViewController class. You add the delegate
property that will store the MasterViewController view in Listing 14-6.

Listing 14-6. Adding the BookStoreDelegate

11 class MasterViewController: UITableViewController,
BookStoreDelegate {

Let’s now talk about the three delegate methods: newBook, deleteBook, and
editBook, as defined in the AddBookViewController class in Listing 14-2 (lines
11 to 15). Add these three functions at the end MasterViewController class, as
shown in Listing 14-7.

Listing 14-7. Conforming to the protocol

91 // MARK: - Delegate Methods conforming to the
BookStoreDelegate as defined in the
AddBookViewController

92 func newBook (controller: AnyObject, newBook: Book) {

93 myBookStore.theBookStore.append (newBook)
94 self.tableView.reloadData ()
95 let myController = controller as!
AddBookViewController
96
myController.navigationController?.popToRootViewControllerAni
97 }
98
99 func deleteBook (controller: AnyObject) {
100 let indexPath
= self.tableView.indexPathForSelectedRow
101 var row = indexPath?.row
102 myBookStore.theBookStore.removeAtIndex (row!)
103 self.tableView.reloadData ()
104 let myController = controller as!
DetailViewController
105
myController.navigationController?.popToRootViewControllerAni
106 }
107
108 func editBook (controller: AnyObject, editBook: Book)
{
109 let indexPath
= self.tableView.indexPathForSelectedRow
110 var row = indexPath?.row
111 myBookStore.theBookStore.insert (editBook,
atIndex: row!)
112 myBookStore.theBookStore.removeAtIndex (row! + 1)
113 self.tableView.reloadData ()
114 let myController = controller as!
AddBookViewController
115

myController.navigationController?.popToRootViewControllerAni
116 }

The function newBook adds a new book to the bookstore; appending the array with the
newBook does this, as shown in line 93. Line 94 then reloads the Table view by calling
all the Table view delegate methods:

numberOfSectionsInTableView
numberOfRowsInSection
cellForRowAtIndexPath

Finally, you pop the DetailViewController from the navigation stack by calling
popToRootViewControllerAnimated (true). Popping the view from the
navigation stack means the view is removed similarly to tapping the Back button.

The function deleteBook removes the book from the bookStore array. First you
determine which row was selected in the tableView and use that index to delete the
book in the array by calling removeAtIndex (row!), as shown on line 102.

The function editBook enables the user to edit an existing book in the bookStore

array. To do this, the function inserts the edited book in the array at the row that was
selected, as shown on line 111. Then the function deletes the original book that was
pushed down one index when you inserted the book in the array, as shown on line 112.

Now add the Edit button to the bottom of the DetailViewController and add a
Show Segue object from the edit button to the AddBookViewController, as shown
in Figure 14-15.

| | Read? |)
Description
.\iu
’ I Save Book
L §
Add Book
|® B i
|)
Detail Delete
[Tit...
Label
Auth... '
Label !
Pages: | Labe|
~| Read: " ¢]
I
Description:
I
0o Di 0
g Ediit o
(=] - 0

Figure 14-15. Adding the Segue object

Select the Segue object you just created, select the Attributes Inspector, and name the
identifier editDetail. See Figure 14-16.

B
Obom o0 a
- Borybosrd
Add Book identifier | ediffets b
{ Segrotr O 4]
Sogue Modua B
Segue | Push E
Dessination | Current E
8 aimates
Read?
Description
Save Book
O @ O

) Long Press Cesture Recognizer -
K PEalies & eeCopeizer for 1ong press
GRSHIPES WRMED B0 IFeoieed Of TR V..

£ Navigation Bar - Provides &
Eehaeism far cisplaying &
Aavighlion Ba jaat Delow Mg Klatul

Mavigaticn item - Hegrepentt 2
< sane of B rawigatan Dar, mgiugeng

2 e
Toolbar - Frovides & mechanism for
cisplaying a fookar i the battom of

the sorees
m B
o - Bar Bution fhem - Bepresents an
It@m | oem on a UiToolbas o
Detail Delete ANl O
Tab Bar - Prindles 3 mechasism ror
SN 3 LED DAF B RS ot
it o e | ahe genges
it...
Label .* Tab Bar Ib6m - Represents an oem
2 3 L faniar object.
Auth,..
Label Soawch Dar - Driplinl o5 SRS0K
$anth Bar, conaining the Beanh
pﬂg?ﬁf Label Boor, that o af SCTon Sasape
Bearch Bas ard Search Display
= Read: Controfer - Dispiays an earnadle
7 $ea1Ch by connected 10 @ seanch O
Descriptiun' Fined Space Bar Button Meem -

Frmemim 4 Represems a foed space isem ona
UiTeokzar ohject.

Figure 14-16. Naming the Segue’s identifier

Add the prepareForSegue function shown in Listing 14-8 to the bottom of the
DetailViewController.swift file.

Listing 14-8. Add the prepareForSegue

81 override func prepareForSegue (segue: UIStoryboardSegue,
sender: AnyObject?) {

82 1f segue.identifier == "editDetail" {

83 let vc = segue.destinationViewController as!
AddBookViewController

84 vc.delegate = delegate

85 vc.editBook = true

86 vc.book = myBook

87 }

88 }

Finally, modify the configureView function in the DetailViewController to
properly populate the pages and switch outlets, as shown in Listing 14-9.

Listing 14-9. Modify the configureView

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

func configureView () {
if let detail: AnyObject = self.detailltem {

myBook = detail as! Book

titleLabel.text = myBook.title
authorLabel.text = myBook.author
descriptionTextView.text = myBook.description
pagesOutlet.text = String(myBook.pages)

if (myBook.readThisBook) {

switchOutlet.on = true
}
else {
switchOutlet.on = false

}

App Summary

Compile and run the app. You should set breakpoints at the delegate functions to watch

the program flow. It is a great app to see how delegates can be used to pass information
from one view to another.

Additionally, you can add functionality to the app to make the information persistent by
using Core Data or NSUserDefaults.

Exercises

Add more books to the bookstore using the original program as a
guide.

Enhance the Book class so it can store another attribute—a price or
ISBN, for example.

Add persistence to the app by using Core Data or
NSUserDefaults.

Chapter 15
Apple Watch and watchKit

In September 2014, Apple announced the Apple Watch, which it considers to be the next
chapter in Apple’s history. This watch not only handles phone calls and text messages, but
is also tied to the wearer’s health by tracking heart rate and exercise. At the same time,
Apple announced WatchKit, a framework designed for developing apps for the Apple
Watch. WatchKit will be very familiar to developers already familiar with UIKit.

Initially, the Apple Watch had some serious limitations with development. The watch
acted as an additional screen for an iPhone app. This required the watch to be close to the
phone to function and also caused apps to run slowly. In June 2015, Apple announced
watchOS 2.0. This new update included many new features, but the biggest one for
developers was the ability to create apps that had code that ran on the Apple Watch instead
of on the phone. Developers were able to create stand-alone apps that performed much
better and were more responsive.

Considerations When Creating a watchOS
App

One of the great things about developing for the watchOS is that all of the development is
done in Swift or Objective-C just like with other iOS devices. The Apple Watch does have
some different things that you need to consider before you jump into development.

The Apple Watch screen is very small. You are limited to 38mm or
42mm, depending on the size of the watch. This means you will not
have a lot of space for unnecessary UI elements. Your interface will
need to be compact and well organized. Also, due to the two sizes
being close in size, you have to create one interface and have it look
good on either size.

Sharing data between the phone and the watch requires some
planning. In watchOS 2.0, Apple added new methods to make data
sharing easier than it used to be. Primarily, Apple has introduced the
WCSession class. The use of this class is beyond the scope of this

book.

WatchKit for watchOS 2.0 provides many different ways to interact
with users not only through apps, but also through glances,
actionable notifications, and complications. Well-written apps can
take advantage of multiple interactions where it makes sense. These
interactions are beyond the scope of this book.

Creating an Apple Watch App

The first step is to create a new project in Xcode 7. On the left side, select Application
under the watchOS header as the project type. Then select iOS App with WatchKit App,
as shown in Figure 15-1.

Choose a template for your new project:

i0s
N
Application]
Framework & Library
i0S App with
watchOS WatchKit App

Application

Framework & Library
0SS X

Application

Framework & Library

System Plug-in

Other
i0S App with WatchKit App
This template provides a starting point for an iOS application with an associated WatchKit
Application.

cancel [Next

Figure 15-1. Creating the watchOS app

Next, you will be given the option of naming your project. We called the one in this
chapter BookStore. You will also notice that a watchOS app has different options than a
standard iOS app. We will not be using any of these additional layouts in the current app,
so make sure they are all unchecked, as shown in Figure 15-2.

Choose options for your new project:

Product Name: BookStore
Organization Name: innv

Organization Identifier: com.innv
Bundle Identifier: com.innv.BookStore

Language: Swift &

Devices: iPhone 3

Include Notification Scene
Include Glance Scene
Include Complication
Include Unit Tests

Include Ul Tests

Cancel Previous m

Figure 15-2. watchOS options

Note The WatchKit provides additional interaction types that not available in
iOS apps. Glances are quick looks into your app. For example, a bookstore app
might have a glance that shows the best sellers. Glances use a special interface
on the watch. Complications allow your app to provide simple information on
the watch face itself.

Xcode will then prompt you to save your project. Once you’ve saved it, you will be
presented with your new project. On the left side, you will notice two additional targets in
your project. One is the BookStore WatchKit app, which contains the interface (storyboard
and assets) for your app. The second new target is the BookStore WatchKit extension.
This will contain all of the code for your app to run on watchOS. See Figure 15-3.

v = BookStore
¥ | BookStore
=+ AppDelegate.swift
= ViewController.swift
Main.storyboard
1 Assets.xcassets
. LaunchScreen.storyboard
Info.plist
' BookStore WatchKit App
. Interface.storyboard
| Assets.xcassets
7 Info.plist
BookStore WatchKit Extension

3 |nterfaceController.swift

» ExtensionDelegate.swift

| Assets.xcassets

Info.plist
» | Products

Figure 15-3. New targets

Click on the Interface.storyboard in the BookStore WatchKit app target and you

should see a screen similar to Figure 15-4. This is your empty watchOS app storyboard.
You will notice the size is significantly smaller than a standard iOS storyboard.

® e b S BookSiore | [l Phone B BookSior: Ready | Today at 7-40 Al

=< o BoanStors BOOKEADNE WEIDHHIE ADD Intertace storyioded [§ Interince storyboand [Base) - No Seecton m B U &

Ieterines Controller Soane
Intertace Controter

Maén Entry Point

Interiace Contraller

@

Interiace Controller - Marages a
soreen’s interisce objcts

Glance interface Controller
Manages e Snppheation s gance
enerlace.

Notfication Interace Conirofier
- Warages an inberface for
FotACaton Categary

|] Ary Sereen Size

Figure 15-4. Interface storyboard

Since you are going to create a list of books for the watchOS app, you need to add a table
to the storyboard. On the bottom right, search for table and drag the table into the
storyboard, as shown in Figure 15-5.

Not Applicable

Interface Controller

Table - Displays cne or more rows of
data.

Any Screen Size 88 (®table (%] .
Figure 15-5. Adding a table

Xcode will now give you a Table Row as part of the table. This is similar to the prototype
rows you used for creating table views in your iOS apps. You need to create a class to
control it, but for now, you will add a label to it. Search for a label in the Object Library
and drag one onto the row. See Figure 15-6.

View

Alpha 1
Hidden

<

Size

Height Default

L4

Label Label - Displays a static text string.

Date - Displays the current date and
L THT el dte

59:59 Timer - Displays a string that counts
5 up or down to a specified time.

Any Screen Size B ®label ()

Figure 15-6. Adding a label to the table row

By default, the label will be located in the top-left corner of the Table Row. Check the
Attribute Inspector to make sure the size and width can grow to fit the content. See Figure
15-7. This will help ensure that your app runs well on both sizes of Apple Watches.

View

<>

Alpha 1

| Hidden
Installed

Position

Horizontal Left
Vertical Center
Size
Width Size To Fit Content

g Qo

Height Size To Fit Content

Figure 15-7. Expanding the label

Now the label will expand to fit the entire row. By default, however, the label will only
show one line of text. Since you are adding book titles, you may need multiple lines to fit
all of the text you want to add. With the label selected, look in the Attributes selector on
the right side. Find the Lines attribute and set it to 0, as shown in Figure 15-8. Setting the
number of lines to 0 tells Xcode that it can use as many lines as needed.

Figure 15-8. Setting the Lines attribute

Label

Text | Label
Taxt Color | =1 | Default -+
Font Body (1)
Min Scale 1w
Aignment | — = & = =
(Lines 0 C)
View
Mpha il
Hidden
+| Installed
Position
Horizontal | Left <
Vertical | Center <
Size
Width | Size To Fit Content <
Height | Size To Fit Content v

Interface Controller - Manages a
screen's interface objects.

Now you need to add some code to get the user interface working. On the left side, expand
the BookStore WatchKit extension folder and select the

InterfaceController.swift file, as shown in Figure 15-9. The
InterfaceController is the default controller for the initial scene in a WatchKit

storyboard.

¥ |E) BookStore
> BockStore
1\ BookStore WatchKit App
Interface.storyboard
54 Assels.xcassets
Info_plist
b BookStore WatchKit Extension
«| InterfaceController.swift
«| ExtensionDelegate.swift
55 Assets.xcassets
info.plist
[3 Products

L4 \2) BookStore BookStore WatchKit Extension | o InterfaceControfler.swift ; Mo Selection

/ InterfaceController.swift
/4 BookStore WatchKit Extension

// Created by Thorn on 9/1/15.
/f Copyright © 2815 innv. All rights reserved.

t WatchKit
import Foundation

3 class InterfaceController: WiInterfaceController {

override func awakeWithContext{context: AnyObject?) {
super.awakeWithContext{context)

£/ Configure interface objects here.

override func willActivate() {

ff This method is called when watch view controller is about to be visible to user

super.willActivate()
}

override func didDeactivate() {

Jf This method is called when watch view controller is no longer visible

super.didDeactivate()

Figure 15-9. Opening the InterfaceController.swift file

You will notice the default methods in the new controller file are different than they were
for a standard UTViewController. willActivate () isequivalent to

viewWillAppear ().

The first thing you need to do is add a class definition for a row. To do this, add the
following code to the bottom of the file outside of the close brace (}) for the

InterFaceController class.

class BookRow: NSObject {
@IBOutlet weak var booklLabel: WKInterfacelabel!

S w D

}

Line 1 declares a new class caled BookRow. It is a subclass of NSObject. Line 2 creates
a property called bookTL.abel. bookLabel’sclassis WKInterfaceLabel. This is
similar to a UT Label that you have used before, but it works with WatchKit.

Note Swift allows for multiple classes to be declared in the same Swift file.
This works well when you are only using that class with the other classes in the
file. In this case, we are only going to use the row class with the
InterfaceController class.

The InterfaceController.swift file will now look like Figure 15-10.
1/

// InterfaceController.swift

// BookStore WatchKit Extension

fr/

// Created by Thorn on 9/1/15.

// Copyright © 2015 innv. All rights reserved.
I

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController {

override func awakeWithContext(context: AnyObject?) {
super,awakeWithContext(context)

// Configure interface objects here.

}

override func willActivate() {
// This method is called when watch view controller is about to be visible to user
super.willActivate()

}

override func didDeactivate() {
// This method is called when watch view controller is no longer wvisible
super,didDeactivate()

}

class BookRow: NSObject {
@IB0utlet weak var bookLabel: WKInterfaceLabel!

Figure 15-10. Modified InterfaceController.swift file

You can now connect the outlets to the interface. Select Interface.storyboard.
Now select the Assistant Editor by selecting the icon with two circles in the top right of
the Xcode window, as shown in Figure 15-11.

Figure 15-11. Opening the Assistant Editor

With the Assistant Editor, Xcode provides a quick way for developers to create objects
and associate them with outlets in the interface. You will first need to create a table
property representing the Table view. Control-drag from the table in the Interface
Controller scene into the InterfaceController class on the right, as shown in
Figure 15-12.

= 2| < &S =] Interfa..ntrolier Table € B L s « InterfaceController.swift (Interface) € 2+ X
= y Custom C
¥ [H Interface Controller Scene /i InterfaceController.swift
- Interface Controlier /7 BookStore WatchKit Extension
Iy
/1 Created by Thorn on 9/1/15. ¥
v (L] Tabl&ReweController // Copyright © 2815 innv. All rights reserved.
v Group i Documen'
el Labal import WatchKit
Main Entry Point import Foundation
internal class InterfaceController : WKInterfaceController { Obit
i
3 .
w© override internal func awake’-dith(nn:
AnyObject?) —_
override internal func willActivate()
override internal func didDeactivate()
}
internal class BookRow @ NSObject { Accessibl
3 2IB0utlet weak internal var bookLabel: WKInterfacelabel! ACCR5S
}

Figure 15-12. Control-drag to create an outlet

Once you release the table object on the InterfaceController class, Xcode will
prompt you to enter the type of outlet you are creating. Leave the defaults as is, except
change the Name to mainTable, as shown in Figure 15-13.

Connection Outlet

Object [0} Interface Controller 11
Name | mainTable]

Type WKInterfaceTable o

Storage | Weak

Cancel Connect 17

| |
Figure 15-13. Naming your outlet

Select the “lines of text” icon in the top right of the Xcode window to return to the
Standard Editor. Under the Interface Controller Scene, select the Table Row Controller, as
shown in Figure 15-14.

o & " . g 3 “
4] ¥ 1t =0l i |
St the active schany, DkStore Boc..t App) B Inter..card Inter...ase) Inter...cene Inter...oller Main Table Table Row

v [&] Interface Controller Scene

v Interface Controlier
v Main Table
v Table Row Controller
v Group
i Labe

Main Entry Point

Figure 15-14. Selecting the Table Row Controller

Set the class of the Table Row Controller by selecting the Identity Inspector on the right
side and selecting BookRow in the Class drop-down menu, as shown in Figure 15-15.

Inter...cene Inter...cller Main Table Table Row Controller ¢ > O @& { 3

Custom Class

Class | |
Module | ADBannerView
AppDelegate
Document BookRow
ExtensionDelegate
GLKView

Label

Object ID Ttu-tz-KWz
Lock | Inherited - (Mothi

=
==
=3
(Ua]

Il
Il
i
|||||
H -
[

Figure 15-15. Changing the table row class to BookRow

Now that your app knows the type of table row you are using in your code, you need to
add an identifier for the row. This helps in the case you have multiple row types for a
single table. Select the Attributes Inspector and enter MyBookRow as the identifier, as

shown in Figure 15-16.

h & @ ¥

Row Controller Hide

Identifier MyBoockRow
Selectable

Figure 15-16. Changing the table row identifier

You can now hook up the WKInterfaceLabel you created earlier. Under the Interface
Controller Scene, control-drag from the book row to the label, as shown in Figure 15-17.

Dl
e

(=) Interface Controller Scene

v &) Interface Controller
v || Main Table

v (B) Book Row
ﬁsrnup

C Gitabe)

 Main Entry Point

Figure 15-17. Control-dragging from the row to the label

You will be prompted to select an outlet from the available outlets, as shown in Figure 15-
18. There is currently only one available outlet, so select bookLabel.

_ | Vidin i1dgoie
v @ Book Row
MRt Outlets

bookLabel
Main Entry Point

Figure 15-18. Connecting the bookLabel outlet

Your table and label are now all hooked up. Now you need some data to display. You are
going to reuse some data you created in Chapter 8. Using the Finder on your Mac, drag the
Book.swift and BookStore.swift files from the Chapter 8 folder into the
BookStore WatchKit extension folder in Xcode. Check the “Copy Items If Needed”
checkbox to copy the files to the new project. Once you are done, you will have the
Book.swift and BookStore.swift files in your target, as shown in Figure 15-
19.

P | | BookStore
v | | BookStore WatchKit App
| Interface.storyboard
55| Assets.xcassets
~ Info.plist
¥ | BookStore WatchKit Extension
»| Book.swift
» BookStore.swift
» InterfaceController.swift
»| ExtensionDelegate.swift
' Assets.xcassets
| Info.plist
> Products

Figure 15-19. Adding in the data files

You have the data and interface complete. You now need to hook them up so the interface

knows about the data. You need to declare a new property that will hold the BookStore
object. Under your declaration of the mainTable object in the
InterfaceController.swift file, you need to add the following line:

var myBookStore: BookStore!

This creates a property of type BookStore called myBookStore and initializes it to an
instance of BookStore.

We will use the configureTable () method to set up the table. Add the following
code to the class, outside of any of the other methods:

1 func configureTable() {

2 mainTable.setNumberOfRows (myBookStore.theBookStore.count,
withRowType: "MyBookRow")

3 for index in 0..(myBookStore.theBookStore.count - 1) {

4 if let myRow = mainTable.rowControllerAtIndex(index) as?
BookRow {

5

myRow . bookLabel.setText (myBookStore.theBookStore[index].title)

6 }

7 }

8 }

Line 1 declares the new method. Line 2 sets the number of rows in the table to the number
of books in the bookstore. You’ll use myRBookStore.theBookStore.count to get
that number. We also tell the table which row identifier to use with the table. Line 3 is a
loop that assigns index to 0 and goes until it gets assigned to the number of books — 1.

The reason you subtract 1 from the number of books is because Swift (and most modern
programming languages) starts its arrays with 0. This means if you have an array with two
items, the items will be in positions 0 and 1. If you try to look at position 2, you will
receive an error.

Line 4 tries to create a new row for the table using the i ndex variable you created in the
previous line. Line 5 takes the row and assigns the Book title to bookLabel. After
entering those lines, the InterfaceController.swift file will look like Figure 15-
20.

/’

/! InterfaceController.swift

// BookStore WatchKit Extension

f

// Created by Thorn on 9/1/15.

f// Copyright © 2815 innv. All rights reserved.
i

RS

(5]

d O

import WatchKit
import Foundation

O <O o

B = O N &~ W A =

class InterfaceController: WKInterfaceController {

@IB0utlet var mainTable: WKInterfaceTable!
var myBookStore: BookStore = BookStore()

override func awakeWithContext{context: AnyObject?) {
super.awakeWithContext(context)
2 configureTable()

2 // Configure interface objects here.
23 }

25 override func willActivate() {

26 [/ This method is called when watch view controller is about to be visible to user
super.willActivate()

}

e)

Pl B3 R

override func didDeactivate() {
// This method is called when watch view controller is no longer visible
super.didDeactivate()

}

B -0 D 0

PPUR R U)

(=]
wn

func configureTable() {

BaUE

mainTable.setNumberOfRows (myBookStore.theBookStore.count, withRowType: "MyBookRow")
for index in @...(myBookStore.theBookStore.count-1) {
if let myRow = mainTable.rowControllerAtIndex(index) as! BookRow? {
myRow. bockLabel.setText{myBookStore, theBookStore [index]).title)
}

o L
="

- G A
s

o o =& in &G

H

}

class BookRow: NSObject {
@1B0utlet weak var bookLabel: WKInterfacelLabel!
}

-
L,
e L R =k O

Figure 15-20. InterfaceController.swift file

You now have enough in place to run the app. From the target menu, select BookStore
WatchKitApp and then select the size of the Apple Watch you would like the simulator to
use, as shown in Figure 15-21. If this is your first time launching the Watch Simulator, it
may take some time and ask for permissions on the Phone simulator before the app will
run successfully.

- L% . SR | B | [P R —

;ﬁtor Product Debug Source Control

Win

— A BookStore
v & BookStore WatchKit B i0s Device + watchOS Device

- Edit Scheme...
New Scheme... §§ iPhone 6 + Apple Watch - 38mm
Manage Schemes... ¥ 8 iPhone 6 Plus + Apple Watch - 42mm
gy pooKstoTes_______

' [/
Kit A
| o |'rr,|"r Created tl\r" Thorn on g;:!‘,:-S'

Figure 15-21. Selecting the WatchKit target

Once the app is launched, you will see a watch screen with the two books in the

rface

myBookStore object. You can go back to the BookStore.swift file and add more
books if you want to play around with the scrolling. The app should look like Figure 15-

22.

Apple Wat...
2:30
Swift for Absolute
Beginners

A Farewell to Arms

Figure 15-22. First WatchKit app launch

Adding More Functionality

In the last section, you created a WatchKit app, but it’s very limited in functionality. In

this section, you will add a new scene to the app to show book detail when a book is

selected. Because you will be adding a scene, you will use an additional controller file.
Right-click on the BookStore WatchKit extension folder and select New File, as shown in

Figure 15-23.

NIV ISL ¥
10

11

Show in Finder -
i Open with External Editor 13

- — -

Open As B 12
Show File Inspector 1

17

Add Files to “BookStore”.. .

b | 21
gl | Delete 22
23

New Group 24
New Group from Selection 25

26

Sort by Name g
Sort by Type 0

30

Find in Selected Groups... 31

32

Source Control I g:

35

Project Navigator Help > -

%__TS?

gty

Figure 15-23. Adding new controller file

Make sure the new file is a Swift file and name it DetailController.swift.It
should now appear in your file list. Add the following code after the import
Foundation line.

10 import WatchKit

11

12

13 class DetailController: WKInterfaceController {

14 @IBOutlet var labelTitle: WKInterfacelabel!

15 @IBOutlet var labelAuthor: WKInterfacelabel!

16 @IBOutlet var labelDescription:
WKInterfacelLabel!

17

18 var book: Book!

19

20 override func awakeWithContext (context:
AnyObject?) {

21 super.awakeWithContext (context)

22 if let book = context as? Book {

23 labelTitle.setText (book.title)
24 labelAuthor.setText (book.author)
25

labelDescription.setText (book.description)

26 }

27 }

28 }

Line 10 imports the WatchKit framework. This is necessary when dealing with any
WatchKit classes such as WKInterfaceController orWKInterfaceLabel. Line
13 declares a new WKInterfaceController subclass called DetailController.
Lines 14-16 create the labels you will be using to display the book information. Line 18
declares the Book property called book. Line 20 is the awakeWithContext method.
It is passed an object called context, which is of type AnyObject. This is where the
Book object will be passed. Line 22 takes the context and assigns it to a book object.
Lines 23-25 take the pieces of information from the book and assigns them to the labels.

You now need to add the following method to the InterfaceController class.

override func contextForSegueWithIdentifier (segueldentifier:
String, inTable table: WKInterfaceTable, rowIndex: Int) ->
AnyObject? {

return myBookStore.theBookStore[rowIndex]

}

This method passes the book to the DetailController when it receives the
rowIndex of the selected row. Now you need to create the interface. Select
Interface.storyboard on the left side. Drag an Interface Controller from the
Object Library to the storyboard as shown in Figure 15-24.

A [P28 N -
w0 oeleCllor

Interface Controller

Label

O @ O

Interface Controller - Manages a
screen's interface objects.

Glance Interface Controller -
Manages the application‘s glance

Figure 15-24. Adding new controller file

Select the second Interface Controller Scene and set the Custom Class to DetailController,
as shown in Figure 15-25.

Custom Class

Class | hd
Module | DetailController |
InterfaceController
Document | WKInterfaceController

. | WKUserNotificationinterfac...
Label | =

x
Object ID fBm-XS-vbE

Lock Inherited - {(Nothing) [T
= ---

o

.i v

I
[l

Notes =

wr

Figure 15-25. Setting the new controller class

Now drag three label objects onto the interface. These labels will be for the book title,
author, and description. See Figure 15-26.

Accessibility

Accessibility Enabled
Label
Hint
Value
Traits Button
Link
Image
Selected

) Static Text
Search Field

Plays Sound
(1 ®

Label Label - Displays a static text string.

Figure 15-26. New labels

Now you need to connect the outlets of the new labels. Control-drag from the Detail
Controller Scene to each of the labels and assign them to their respective property. See
Figure 15-27.

= |B5 < > | |& BookStore)| | BookSt...hKit App) B

v & Detail Controller
Lol Label
bl Label

Figure 15-27. Connecting the outlets

The data should all be displaying now. You need to create the segue and test the app once
again. Control-drag from the MyBookRow under the Interface Controller Scene to the

Detail Controller. You will be prompted to select the type of segue. Select push. See
Figure 15-28.

i}

Interface Controller

v Main Table
v . MyBookRow
b Group

Main Entry Peoint

v [=) Detail Controller Scene

v Selection Segue
push
modal

Lbl Label

Figure 15-28. Creating the segue

Now run the app and select a row. You should see the detail controller you just created, as
shown in Figure 15-29.

4 5:07
Swift for Absolut...
Bennett and Lees

Swift programmi...

Figure 15-29. Detail view scene

Summary

This chapter covered an introduction to developing for the Apple Watch. Specifically, in
this chapter, you learned the following:
How to create a new WatchKit app

How to use the WatchKit controls WKInterfaceController,
WKInterfaceTable,and WKInterfacelLabel

How to create multiple scenes and add segues between them

How to handle passing data from one scene to the next

Exercises

Set up the labels on the detail scene to display all of the data.

Add more books to your BookStore so you can play with the
scrolling in the app.

Chapter 16
A Swift HealthKit iPhone App

HealthKit enables iOS developers to integrate health and fitness devices with their app and
integrate the data with Apple’s easy-to-read dashboard. HealthKit enables health and
fitness apps on an iOS device to work together and report device data in the Health app
dashboard. See Figure 16-1.

Figure 16-1. The Health app’s dashboard

HealthKit is the accompanying developer SDK included in iOS 8 and newer. The SDK
enables other applications to access health data with the user’s permission. For example, a
blood pressure application could share its information with the user’s doctor.

A number of companies support HealthKit, including Polar, EPIC, Mayo Clinic, and
RunKeeper.

Note To work through this example, you’ll need an active developer account.
You won'’t be able to enable the HealthKit Capability and access the HealthKit
store without one.

Introduction to Core Bluetooth

The Core Bluetooth framework lets your iOS apps communicate with Bluetooth’s low
energy devices (Bluetooth LE or BLE, for short). BLE devices include heart rate monitors,
digital scales, digital thermostats, and more.

The Core Bluetooth framework is an abstraction of the Bluetooth LE specification and
defines a set of protocols for communicating with the Bluetooth LE devices.

Along with learning about HealthKit in this chapter, you’ll learn about the key concepts of
the Core Bluetooth framework, including how to use the framework to discover, connect
to, and retrieve data from BLE-compatible devices. You will learn these skills by building
a heart rate monitoring application that communicates with a BLE heart monitor and
displays the information on an animated user interface along with storing the information
in Apple’s Health app.

The heart rate monitor we use in this example is the Polar H7 Bluetooth Smart Heart Rate
Sensor that can be purchased from Amazon.com. If you don’t have one of these devices,
you can still follow along with the tutorial, but you’ll need to modify the code for
whatever BLE device you have.

Central and Peripheral Devices

There are two major components involved in BLE communication; the central and the
peripheral. See Figure 16-2.

The central is the boss that wants information from one or more
workers in order to accomplish a specific task.

The peripheral is the worker that sends and receives data that is
consumed by the central devices. The peripheral has the data the
central wants.

Client Server

Client Server
Wants Data Has Data
Central Peripheral

Figure 16-2. Understanding central and peripheral devices

Peripheral Advertising

Advertising is the primary way that peripherals make their presence known via BLE.

In addition to advertising their existence, advertising packets can also contain some data,
such as the peripheral’s name. The packets can even contain some extra data related to
what the peripheral collects. For the heart rate monitor application, the packets also
provide heartbeats per minute information.

The central scans for these advertising packets, identifies any peripherals it finds relevant,
and connects to individual devices for more information.

Peripheral Data Structure

Advertising packets are very small and cannot contain large amounts of data, so to get
more data, a central needs to connect to a peripheral to obtain all of the data available.

Once the central connects to a peripheral, it needs to choose the data it is interested in.
With BLE, data is organized into services and characteristics:

A service is a collection of data and associated behaviors describing a
specific function or feature of a device. A device can have more than
one service. The heart rate monitor exposing heart rate data from the
monitor’s heart rate sensor is a great example of this.

A characteristic provides additional details about a peripheral’s
service. A service can have more than one characteristic. The heart
rate service, for example, may contain a characteristic that describes

the intended body location of the device’s heart rate sensor and an
additional characteristic that transmits heart rate measurement data.

Once a central has established a connection to a peripheral, it is free to discover the full
range of services and characteristics of the peripheral, and to read or write the
characteristic values of the available services.

CBPeripheral, CBService, and CBCharacteristic

A peripheral is represented by the CBRPeripheral object, while the services relating to a
specific peripheral are represented by CBService objects. See Figure 16-3.

a1

[CBPeripheral

e CBService

| CBCharacteristic |

-—' CBCharacteristic |

—_ CBService

Figure 16-3. Structure of a peripheral’s services and characteristics object hierarchy

The characteristics of a peripheral’s service are represented by CBCharacteristic
objects, which are defined as attribute types containing a single logical value.

Each service and characteristic you create must be identified by a universally unique
identifier, or UUID. UUIDs can be 16- or 128-bit values, but if you are building your
client-server (central-peripheral) application, you’ll need to create your own 128-bit
UUIDs. Also, make sure the UUIDs don’t collide with other potential services in close
proximity to your device.

Let’s Get Started and Build the App

We are going to build a simple heart rate monitor app that works with a Bluetooth Low
Energy (BLE) heart rate monitor. In the process of building this app, you will learn a lot
about HealthKit and Bluetooth Low Energy (BLE), such as:

How set up your heart rate monitor

How to request permissions to access and store HealthKit data

How to read Bluetooth Low Energy (BLE) data and format it to

show in the Health app
How the Core Bluetooth Framework works

How to display information from the heart rate BLE monitor (see
Figure 16-4)

Connected

Figure 16-4. The Heart Rate Monitor app

1. Create a Single View Application, as shown in Figure 16-5.

Choose a tempiate for your new project:

-1

Single View
Application

Tabbed
Application

This template provides a starting point for an application that uses a single view. It provides
a view controller 1o manage the view, and a storyboard or nib file that contains the view.

i0s
Application = —
Framework & Library
Master-Detail Page-Based
watchOS Application Application
Application
Framework & Library ﬁz,
05 X '
Application Game
Framework & Library
System Plug-in
Other
Single View Application
Cancel

Figure 16-5. Creating a single view application

2. Name your app and save the project, as shown in Figure 16-6.

Choose options for your new project:

Product Name:
Organization Name:
Organization Identifier:
Bundle Identifier:

Language:

Devices:

Cancel

Figure 16-6. Naming the project

HeartRateMonimri
xcelMe

com

com.HeartRateMonitor

Swift

iPhone

Use Core Data
Include Unit Tests
Include Ul Tests

(ol o)

Previous

3. Change the bundle identifier to the identifier you are going to use to
submit to the App Store and include the
HealthKit. framework. Also, select your developer team, as

shown in Figure 16-7.

ane »r W A HoarRaemanitee |] Garys Prane Running HeartRateMonsor on Gary's iPhong

HeartRateMon bon xsedenrs;
BRAaAcEoc B R < & HeartRateMonitor
Capabiities Rosource Tags o Buid Settings Buld Phases Buld fules
J
¥ Iidentity
= HeartAateMaon tor
b Inctlude your own Bundie Identila: Bundie Identifier com HsartateMoritor
Yersion 10
Visarateon tor T
Buile 1
Team | Accolorsed intornet Sirategios [
¥ Deployment info
Deplayenert Target B
Devices | iPrace B
Main interface Main B

Devico Orientation @ Portrai
Upside Down
1B Langscape Left
1B Landscapo Right

Status Bar Styie | Dtout B
Hide status bar
Recuires tull seresn
¥ Appicons snd Launch mages
Appleces Sowrce | Appicsn Beo
Launcn images Sowrce Use Asset Catalog

Launch Sereen File LaunchSoreen B

¥ Embedded Binaries

¥ Linked Framswarks and Librarios

@ =

S

Figure 16-7. Adding your own bundle identifier, team, and HealthKit.framework

4. In order use HealthKit, you need to add the HealthKit entitlement.
Change the project’s capabilities to add HealthKit, as shown in
Figure 16-8.

x [£) HeartRateMonitor

¥ [HealthKit framework

(] Genera Resource Tags Info Buld Settings Buid Phases Buiid Rules
>

PROJECT

b [® Push Notifications
Game Conter
Wallet

» 75| Apple Pay
In-App Purchase
Personal VPN
Maps
Keychain Sharing
Background Modes
Intar-App Audia
Associated Domains

¥ 00 App Groups

Homekit

Wiroless Accessory Configuration
Figure 16-8. Including the HealthKit capabilities in the project

. The app doesn’t automatically get access to the HealthKit data, so it
first needs to ask permission. Open the
ViewController.swift file to add all of the related code this
app needs.

. Import the Core Bluetooth and HealthKit frameworks, add the Core
Bluetooth delegate protocols, and declare the instance variables, as
shown in Listing 16-1. The ViewController needs to implement the
CBCentralManagerDelegate protocol to enable the delegate
to monitor the discovery, connectivity, and retrieval of peripheral
BLE devices. The ViewController also needs to implement the
CBPeripheralDelegate protocol so it can monitor the
discovery, exploration, and interaction of a remote peripheral’s
services and properties.

Listing 16-1. Adding Core Bluetooth, HealthKit, and instance
variables

//

// ViewController.swift

// HeartRateMonitor

//

// Created by Gary Bennett on 9/10/15.
// Copyright (c) 2016 xcelMe. All rights

o U W N

reserved.

7 //

8

9 import UIKit

10 import CoreBluetooth

11 import HealthKit

12

13 class ViewController: UIViewController,
CBCentralManagerDelegate,
CBPeripheralDelegate {

14

15

16

17 var heartRate: UIntle = 0

18 let healthKitStore: HKHealthStore

= HKHealthStore ()

19 var centralManager: CBCentralManager!
20 var connectingPeripheral:
CBPeripheral!

21 var pulseTime: NSTimer!

The core of the HealthKit Framework is the HKHealthStore
class, as shown on line 18 in Listing 16-1. Now that you’ve created
an instance of HKHealthStore, the next step is to request

authorization to use it.

The users are the masters of their data, and they control which
metrics you can track. This means you don’t request global access
to the HealthKit store. Instead, you request access to the specific
types of objects the app needs to read or write to the store.

. Add the Heart.png and Human . png files from the Chapter 16
project to this project. Then create the outlets for the labels, as
shown in Figure 16-9.

Note You can refer to the Chapter 16 project that can be
downloaded from forum.xcelme.com as described in
the Introduction. It includes the PNG files used for the
app as well as showing you the auto-layout constraints if
you need help.

[

Figure 16-9. Creating the HealthKitStore object and setting the variables

. Add the viewDidAppear method as shown in Listing 16-2. You
need to instantiate the centralManager and request
authorization to the HealthKit store.

Listing 16-2. Add the init as shown

277 override func viewDidAppear (animated:
Bool) {
28 centralManager

= CBCentralManager (delegate: self, queue:
dispatch get main queue())

29 self.
requestAuthorizationForHealthStore ()
30 self.heartRate = 0

31 }

. Add the centralManagerDidUpdateState function as
shown in Listing 16-3. This ensures that the device is BLE
compliant and it can be used as the central device object of the
CBCentralManager. If the state of the central manager is
powered on, the app will receive a state of
CBCentralManagerStatePoweredOn. If the state changes to
CBCentralManagerStatePoweredOff, all peripheral
objects that have been obtained from the central manager become
invalid and must be rediscovered.

Listing 16-3. Add the centralManagerDidUpdateState function

39 func centralManagerDidUpdateState (central:
CBCentralManager) {

40

41 switch central.state {

42 case .PoweredOn:

43 print ("poweredOn")

44
45 let serviceUUIDs
= [CBUUID(string:"180D")]
46 let lastPeripherals
= centralManager.retrieveConnected
47 print (lastPeripherals.count)
48 1f lastPeripherals.count > 0 {
49 connectingPeripheral
= lastPeripherals.last
50
connectingPeripheral.delegate = self
51

centralManager.connectPeripheral (connectingPeriph
options: nil)

52 connectedOutlet. text
= "Connected"

53 }

54 else {

55

centralManager.scanForPeripheralsWithServices (ser
options: nil)

56 connectedOutlet.text
= "Disconnected"

57 }

58

59 default:

60 print (central.state)

61 }

62

63

64 }

65

. The next step is to determine if you have established a connection
to the heart rate monitor. Add the didDiscoverPeripheral
and didDiscoverServices functions. When you establish a
local connection to a peripheral, the central manager object calls the
didConnectPeripheral method of its delegate object.

In the implementation, we first set the view controller to be the
delegate of the peripheral object so that it can notify the view
controller. If no error occurs, we next ask the peripheral to discover
the services associated with the device. Then we determine the
peripheral’s current state to see if we have established a connection.

Listing 16-4. Add the didDiscoverPeripheral and

11.

didDiscoverServices functions

66 func centralManager (central:
CBCentralManager, didDiscoverPeripheral
peripheral: CBPeripheral, advertisementData:
[String : AnyObject], RSSI: NSNumber) {

67

68 connectingPeripheral = peripheral
69 connectingPeripheral.delegate

= self

70

centralManager.connectPeripheral (connectingPeriph

options: nil)

71 connectedOutlet.text = "Connected"
72 }

73

74 func centralManager (central:
CBCentralManager, didConnectPeripheral
peripheral: CBPeripheral) {

75

76 peripheral.discoverServices (nil)
77 }

79 func peripheral (peripheral:

CBPeripheral, didDiscoverServices error:
NSError?) |

80

81 if let actualError = error{
82 print ("\ (actualError)")
83 }

84 else {

85 for service in
peripheral.services as [CBService]! {
86

peripheral.discoverCharacteristics(nil,
forService: service)

87 }

88 }

89 }

90

Now add the didDiscoverCharacteristicsForService
function, as shown in Listing 16-5.

This function lets you determine the characteristics the service has.
First, we check if the service is the heart rate service. Then, we
iterate through the characteristics array and determine if any of the

characteristics are a heart rate monitor notification characteristic. If
so, we subscribe to this characteristic, which tells the
CBCentralManager to notify us when the characteristic changes.

If the characteristic is the body location characteristic, there is no
need to subscribe. You just read the value.

If the service is the device info service, look for the manufacturer
name and read it.

Listing 16-5. Add the didDiscoverCharacteristicsForService
function

91 func peripheral (peripheral:
CBPeripheral,
didDiscoverCharacteristicsForService

service: CBService, error: NSError?)

92

93 if let actualError = error {
94 print ("\ (actualError)")
95 }

96 else {

97

98 if service.UUID ==

CBUUID (string:"180D") {

99 for characteristic in

(service.characteristics as
[CBCharacteristic]?) !

100 switch
characteristic.UUID.UUIDString {

101

102 case "2A37":

103 // Set
notification on heart rate measurement
104 print ("Found

a Heart Rate Measurement Characteristic")
105

peripheral.setNotifyValue (true,
forCharacteristic: characteristic)

106

107 case "2A38":

108 // Read body
sensor location

109 print ("Found

a Body Sensor Location Characteristic")

110
peripheral.readValueForCharacteristic (characteris
111

112 case "2A39":

113 // Write heart
rate control point

114 print ("Found

a Heart Rate Control Point Characteristic")
115

116 var rawArray:
[UInt8] = [0x01];
117 let data

= NSData (bytes: &rawArray, length:

rawArray.count)

118

peripheral.writeValue (data,

forCharacteristic: characteristic,
type:

CBCharacteristicWriteType.WithoutResponse)

119

120 default:

121 print ("")

122 }

123

124 }

125 }

126 }

127 }

To understand how to interpret the data from a BLE characteristic,

you need to check the Bluetooth specification. For this example,

visit
https://developer.bluetooth.org/gatt/characterist
u=org.bluetooth.characteristic.heart rate measure

A heart rate measurement consists of a number of flags, followed by
the heart rate measurement itself, energy information, and other
data.

Add the update function shown in Listing 16-6. The update
function is called each time the peripheral sends new data.

The update function converts the contents of the characteristic

value to a data object. Next, you get the byte sequence of the data
object. Then, you calculate the bpm variable, which will store the

heart rate information.

To calculate the BPM, we obtain the first byte at index 0 in the

https://developer.bluetooth.org/gatt/characteristics/Pages/CharacteristicViewer.aspx?u=org.bluetooth.characteristic.heart_rate_measurement.xml

array as defined by buf fer [0] and mask out all but the first bit.

The result returned will either be 0, which means that the first bit is
not set, or 1 if it is set. If the first bit is not set, retrieve the BPM
value at the second byte location at index 1 in the array and convert
it to a 16-bit value based on the host’s native byte order.

. Add the pulse function. Output the value of BPM to your
bpmOutlet UILabel. Setup a timer object that calls pulse at
0.8-second intervals; this performs the basic animation that
simulates the beating of a heart through the use of Core animation,
as shown in Listing 16-7.

Listing 16-6. Add the update function

129 func update (heartRateData:NSData) {

130 var buffer = [UInt8] (count:
heartRateData.length, repeatedValue: 0x00)
131 heartRateData.getBytes (&buffer,
length: buffer.count)

132

133 var bpm: UIntle?

134 if (buffer.count >= 2){

135 if (buffer[0] & 0x01 == 0) {
136 bpm = UIntl6 (buffer([1l]);
137 }else {

138 bpm = UIntl6 (buffer([1l])
<< 8

139 bpm = bpm!

| UIntlé (buffer(2])

140 }

141 }

142

143 1f let actualBpm = bpm{

144 print ("actualBpm \
(actualBpm)")

145 self.bpmOutlet.text

= String(actualBpm)

146

147 let rate = 60.0

/ Float (self.heartRate)

148 print ("\ (rate)")

149

self.saveHeartRateIntoHealthStore (Double (actualBp
150

151 let o0ldBpm = self.heartRate

152 self.heartRate = actualBpm

153 if (oldBpm == 0) {

154 pulse ()

155 self.pulseTime

= NSTimer.scheduledTimerWithTimeInterval (0.8,
target: self,

156 selector: "pulse",
userInfo: nil, repeats: false)

157 }

158

159 }else {

160 print ("bpm \ (bpm)")

1601l self.bpmOutlet.text = "\
(opm) "

162 }

163 }

Listing 16-7. The pulse function

165 func pulse() {

166 let pulseAnimation
= CABasicAnimation (keyPath:
"transform.scale")

167

168 pulseAnimation.toValue

= NSNumber (float: 1.2)

169 pulseAnimation.fromValue

= NSNumber (float: 1.0)

170

171

172 pulseAnimation.duration = 0.2
173 pulseAnimation.repeatCount = 1
174 pulseAnimation.autoreverses

= true

175 pulseAnimation.timingFunction

= CAMediaTimingFunction (name:
kCAMediaTimingFunctionEaselIn)

176

heartView.layer.addAnimation (pulseAnimation,

forKey: "scale")

177 let rate = 60.0

/ Float (self.heartRate)

178 self.pulseTime

= NSTimer.scheduledTimerWithTimeInterval (NSTimeln
target: self, selector: "pulse",

userInfo: nil, repeats: false)

179 }

13. Now add the didUpdateValueForCharacteristic

14.

function, as shown in Listing 16-8. The
didUpdateValueForCharacteristic function will be
called when CBPeripheral reads a value or updates a value

periodically. We need to implement this method to check to see
which characteristic’s value has been updated, and then call one of
the helper methods to read in the value.

Listing 16-8. Add the didUpdateValueForCharacteristic function

181 func peripheral (peripheral:
CBPeripheral, didUpdateValueForCharacteristic
characteristic: CBCharacteristic,
error: NSError?) {

182 if let actualError = error/{
183 print ("\ (actualError)")
184

185 } else {

186 switch
characteristic.UUID.UUIDString {

187 case "2A37":

188

update (characteristic.value!)

189 default:

190 print ("")

191 }

192 }

193 }

Add the saveHeartRateIntoHealthStore function, as
shown in Listing 16-9.

In this function, you first create a sample object using
HKQuantitySample. In order to create this sample, you need:

A Quantity type object, like
HKQuantityType, initialized using the
proper sample type.

A Quantity sample, like HKQuantity’s start

and end date, which in this case is the current
date and time in both cases.

Listing 16-9. Add the saveHeartRatelntoHealthStore function

195 // healthkit info

196 private func
saveHeartRateIntoHealthStore (height:Double) -
> Void

197 {

198 // Save the user’s heart rate

into HealthKit.

199 let heartRateUnit: HKUnit

= HKUnit.countUnit () .unitDividedByUnit (HKUnit.min
200 let heartRateQuantity: HKQuantity

= HKQuantity (unit: heartRateUnit,

doubleValue: height)

201

202 let heartRate : HKQuantityType

= HKQuantityType.quantityTypeForIdentif
203 let nowDate: NSDate = NSDate()

204

205 let heartRateSample:

HKQuantitySample = HKQuantitySample (type:
heartRate

206 , quantity:

heartRateQuantity, startDate: nowDate,
endDate: nowDate)

207
208
self.healthKitStore.saveObject (heartRateSample)
{ (success:Bool, error:NSError?) ->
Void in
209 print ("done")
210 }
211 }

15. Addthe requestAuthorizationForHealthStore
function as shown in Listing 16-10. You’re creating a Set with all

the types you need to read from the HealthKit store. Characteristics
(blood type, sex, and birthday), samples (body mass and height),
and workouts.

Then you check if the HealthKit store is available. For universal apps, this is crucial
because HealthKit may not be available on every device. Finally, the app performs the
actual authorization request; it invokes requestAuthorizationToShareTypes
with the previously defined types for reads. Now that your code knows how to request
authorization, you need to create a way for your app to invoke it.

Listing 16-10. Add the requestAuthorizationForHealthStore function

208 private func requestAuthorizationForHealthStore () {
209

210 let dataTypesToRead = Set (arrayLiteral:

211

HKObjectType.characteristicTypeForIdentifier (HKCharacteristic

DateOfBirth) !,
212
HKObjectType.quantityTypeForIdentifier (HKQuantityTypeldentifi
213
HKObjectType.quantityTypeForIdentifier (HKQuantityTypeldentifi
214)
215
216 //Requesting the authorization
217
healthKitStore.requestAuthorizationToShareTypes (nil,
readTypes: dataTypesToRead)

{ (success, error) -> Void in
218 if(success)
219 {
220 print ("success")
221 }
222 }
223 }
224

App Summary

You are done adding code, so run the app. When the app starts, it asks permission to
access the HealthKit store. If this is the first time the app has run, HealthKit store asks the
user for permission, as shown in Figure 16-10.

4 Back to Settings 9:02 AM 3 4

Don't Allow Health Access Allow

Health

“HeartRateMonitor” would like to access and
update your Health data in the categories
below.

All Categories Off

ALLOW "HEARTRATEMONITOR" TO READ
DATA:

O Date of Birth
Height

Weight

886

Figure 16-10. HealthKit asking the user permission to access the app

As the app runs and is displaying data, it is also storing data in the HealthKit store. You
can see that data by opening the Health App, as shown in Figure 16-11.

No Service & 6:58 AM 1 -

< Al Heart Rate

Month Year

Show on Dashboard

Show All Data >
Add Data Point >
Share Data >
Unit bpm
B O =%
Dashboard Health Data Sources Medical 1D

Figure 16-11. The heart rate data being stored in the HealthKit store

If you want to view the heart rate data in the Health app’s dashboard (Figure 16-12), you
need to enable the Show on Dashboard switch, as shown in Figure 16-11.

Mo Service = 6:59 AM 4 -

Dashboard

Month Year

Dashboard Health Data Sources Medical 1D

Figure 16-12. The heart rate data being displayed in the dashboard

What’s Next?

You did it! You should have a great foundation to write outstanding apps. The best place
to start is with your own idea for an app. Start writing it today. You are going to have lots
of questions. That is how you are going to continue to learn. Keep moving forward and
don’t stop, no matter if you get discouraged sometimes.

If you do get discouraged, visit www . xcelMe . com/forum. There are great resources
on this site for finding answers to your questions. There is a topic for this book and each
chapter in the book. Feel free to post your own questions. The authors of this book help
answer the posts. Also, there are free videos on www . xce1Me . com. In the live sessions,
you can ask questions to Gary Bennett. Just click the Free Videos tab at the top of the
page, as shown in Figure 16-13.

http://www.xcelMe.com/forum
http://www.xcelMe.com

in ¥ §f
xceIMe HOME COURSES SCHEDULE CONSULTING ABOUT FAQ

HCEL JFFIRENT

Quickly learn Swift,
the new iOS programming language.

Site consultan

o)

Training Forum Free Videos
Interactive Online Training Forum available to Check out our Free Video Selaction to start
all students Learning now!

Figure 16-13. Free live Swift 2.0 training videos and forum

Good luck and have fun!

Exercises

Enable the app to read data from the HealthKit store
Enable the app to connect and disconnect to the heart rate monitor

Enable the users to set visual and audible alarms when their heart
rate gets too high

Index
A

Apple Developer Program
Apple Watch and watchKit
creation
adding label
adding table
Assistant Editor
bookLabel outlet
BookRow
BookStore
BookStore WatchKit app
control-dragging
data files
expanding label
InterfaceController class
InterfaceController.swift file
Interface storyboard
lines attribute
myBookStore
new targets
Table Row Controller
table row identifier
WatchKit app launch
WatchKit target
watchOS options
Xcode 7
functionality
Detail Controller Scene
DetailController.swift
detail view scene
new controller class
new controller file
new labels
segue
watchOS app
Apps design

condition-controlled loop

count-controlled loop
flowchart
forced unwrapping
infinite loop
optionals
implicitly unwrapped
optional binding
pseudocode
conditional operators
definition
logical operators

arc4random_uniform()function

B

Balsamiq
Bluetooth’s low energy (BLE) device
bundle identifier
central device
centralManagerDidUpdateState function
didDiscoverCharacteristicsForService function
didDiscoverPeripheral function
didDiscoverServices function
HealthKit capabilities
HealthKit.framework
HealthKitStore object
heart rate data
Heart Rate Monitor app
peripheral device
advertising
CBCharacteristic object
CBPeripheral object
CBService object
data structure
project naming
pulse function
requestAuthorizationForHealthStore function
saveHeartRateIntoHealthStore function
single view application
training videos and forum
update function
user permission

ViewController.swift file

viewDidAppear method
Bookstore app
access variables
add book function
add description
add properties
addBookSegue
AddBookViewController
identifying addBook Segue
identity inspector
landmarks
objects
pages and readThisBook
Show Segue object
swift class creation
swift file and adding code
alert view controllers
adding delegate method
adding pages and read outlets
adding segue object
delete button bar
modifying configureView
prepareForSegue function
segue’s identifier
UlAlertViewController
boilerplate project
button bar item
class creation
data model class
Detail ViewController
edit and delete function
instance variables
master-detail application
MasterViewControlle
product application
Swift file
switches
view creation
BookStoreCoreData.xcdatamodeld
attributes
date

decimal

integer 32
string
Data Model Inspector
entity
fetched properties
interface creation
Assistant Editor button
Attributes Inspector
Bar Button Item
code implementation
connection setup
Document Outline
hook up
identifier
Navigation Controller
Table View
UlIBarButtonltem
UlTableViewCell
managed objects
NSManagedObject
relationships
Boolean logic
AND operator
comparison operators
NAND operator
NOR operator
NOT operator
OR operator
XOR operator
Breakpoint navigator

Bugs

C

Classes

instance variables

methods
initializers
instance
type

RadioStations
action creation

adding objects

Assistant Editor icon
buttonClick method
class methods
company identifier
connections
execution
iPhone application
Label object
single view application
stationName instance variable
user interface creation
workspace window
writing class
Xcode documentation
help menu
string class
Comparing data
Boolean expression
Bool and number variables
comparing strings
some_code() method
Boolean logic
comparing numbers
comparison operators
switch statement
combining comparisons
if statement
NSComparisonResult
NSDate class
variable
Xcode app
AppDelegate.swift file
debugger window
didFinishLaunchingWithOptions
Launch Xcode
NSLog function
NSLog output
project type and name
Single View Application

configureView() method

D, E

Data
bits
Apple’s A8 processor
definition
Moore’s law
bytes
constant
explicit variables
hexadecimal system
implicit variables
optionals
playground
types
Unicode
Data storage
database
Core Data, iOS (See Also BookStoreCoreData.xcdatamodeld)
definition
SQLite (See SQLite)
iPhone
Mac
preferences file
reading preferences
writing preferences
Debugging
controls
definition
NSLog function
OOP
variables
with Xcode debugger
Debug navigator
Delegation
definition
guessing game app
auto layout
class listing
GuessInputViewController
home view
IBAction function
intializations

outlet objects

prepareForSegue function
project creation
RandomNumber function
segue identifier

user input view

variable declarations
View Controller
viewDidLoad function

didUpdateValueForCharacteristic function

F, G

Find navigator

H

HealthKit iPhone app
Core Bluetooth framework See (Bluetooth’s low energy (BLE) device)
Health app dashboard

Human Interface Guidelines (HIG)

LJ,K

Integrated development environment (IDE)
Interface Builder

actions and outlets

HIGs

iPhone app
actions
disable autolayout
document outline
inspector pane
iPhone simulator
Library
naming
new group creation
objects centering
outlets
random number generator
seed and generate methods
selector bar
single view application
source files

storyboard resolvers

view creation
MVC pattern
architectural
objects
0]0) ¥
schematic representation
software development
storyboard/XIB file
workspace window
XML file format
iOS developer
algorithm
bugs
computer program
debugging
design requirements
iTunes App Store
object-oriented programming
OmniGraffle
playground interface
quality assurance
testing
Ul
Woodforest mobile banking

Issue navigator

L

Language symbols

logMessage method

M

MasterViewController.swift viewDidLoad method
Model-View-Controller (MVC)

architectural patterns

objects

OOP

schematic representation

software development

N

NSUserDefaults class

O

Objective-C
Object-oriented programming (OOP)
class
Book class
Bookstore class
customer class
definition
implementation
instance
planning methods
Sale class
debugging
eliminate redundant code
inheritance
interface
methods
object
definition
methods
properties
playground applications
polymorphism
principles
properties
replacement
state
UlTableView object
Objects implementation
OmniGraffle
OOP. See Object-oriented programming (OOP)

P

Preferences file
Programming
Array class
bookstore application
access variables
add description
add properties

boilerplate project

class creation
data model class
Detail ViewController
instance variables
master-detail application
MasterViewController
product application
Swift file
view creation

collection

Dictionary class

let vs. var

Project navigator
Protocols

definition

guessing game app
auto layout
class listing
GuessInputViewController
home view
IBAction function
intializations
outlet objects
prepareForSegue function
project creation
RandomNumber function
segue identifier
user input view
variable declarations
View Controller
viewDidLoad function

multiple inheritance

syntax

Q

Quality assurance (QA)

R

Relational operators
comparing numbers
comparison operators

Xcode app

AppDelegate.swift file

debugger window

didFinishLaunchingWithOptions

Launch Xcode

NSLog function

NSLog output

project type and name

Single View Application
removeAtIndex method

Report navigator

S

showName method
some_code() method
SQLite
stringForKey method
Swift app
code refactoring
design requirements
else if statement
nest if statements
newline character
output
random number generator
Switch statement
combining comparisons
if statement
NSComparisonResult
NSDate class
variable
Symbol navigator

synchronize function

T

Test navigator

UV

UlTableView object
Unified Modeling Language (UML)
User interfaces (UI)

creating See Also (Interface Builder)

design

Xcode

A%

Woodforest
Woodforest mobile banking

X, Y, Z

Xcode

assistant editor

installation

Interface Builder

launch

navigator selector bar

opening screen

playground window

project creation
@I1BOutlet and @IBAction
app running
Button object
button’s connection menu
context-sensitive editor
didReceiveMemoryWarning
iOS Application
iPhone interface objects
Label object
label’s size expantion
main screen
Main.storyboard file
Object Library
object’s variable selection
referencing outlet
Setting up
showName method
storyboard file
templates list
toolbars
Touch Up Inside
View buttons
ViewController.swift file
viewDidLoad

project editor

source editor
standard editor
user interface
version editor
workspace window
Xcode debugger
BookStore project
Breakpoint Navigator
breakpoint settings
Build and Debug buttons
code errors
code warnings
console
Debug build configuration
debugging controls
definition
interrupted program execution
Issue navigator
stack trace
step control
configureView() method
debugging variables
self.configure View()
Step Into button
Step Out button
thread window and call stack
Variables view
Xcode documentation
help menu
string class
Xcode playground IDE
editor area

results area

	Title
	Copyright
	Dedication
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Becoming a Great iOS Developer
	Thinking Like a Developer
	Completing the Development Cycle
	Introducing Object-Oriented Programming
	Working with the Playground Interface
	Summary
	What’s Next
	Exercises

	Chapter 2: Programming Basics
	Touring Xcode
	Exploring the Workspace Window
	Navigating Your Workspace
	Editing Your Project Files

	Creating Your First Swift Playground Program
	Installing and Launching Xcode 7
	Using Xcode 7

	Xcode Playground IDE: Editor and Results Areas
	Summary
	Exercise

	Chapter 3: It’s All About the Data
	Numbering Systems Used in Programming
	Bits
	Bytes
	Hexadecimal
	Unicode

	Data Types
	Declaring Constants and Variables
	Optionals
	Using Variables in Playgrounds
	Summary
	Exercises

	Chapter 4: Making Decisions, Program Flow, and App Design
	Boolean Logic
	Truth Tables
	Comparison Operators

	Designing Apps
	Pseudocode
	Optionals and Forced Unwrapping
	Flowcharting
	Designing and Flowcharting an Example App
	The App’s Design
	Using Loops to Repeat Program Statements

	Coding the Example App in Swift
	Nested if Statements and else if Statements
	Removing Extra Characters
	Improving the Code Through Refactoring
	Running the App
	Design Requirements

	Summary
	Exercises

	Chapter 5: Object-Oriented Programming with Swift
	The Object
	What Is a Class?
	Planning Classes
	Planning Properties
	Planning Methods
	Implementing the Classes

	Inheritance
	Why Use OOP?
	OOP Is Everywhere
	Eliminate Redundant Code
	Ease of Debugging
	Ease of Replacement

	Advanced Topics
	Interface
	Polymorphism

	Summary
	Exercises

	Chapter 6: Learning Swift and Xcode
	A Newcomer
	Understanding the Language Symbols
	Implementing Objects in Swift
	Writing Another Program in Xcode
	Creating the Project

	Summary
	Exercises

	Chapter 7: Swift Classes, Objects, and Methods
	Creating a Swift Class
	Instance Variables
	Methods

	Using Your New Class
	Creating Your Project
	Adding Objects
	Writing the Class
	Creating the User Interface
	Hooking Up the Code
	Running the Program
	Taking Class Methods to the Next Level

	Accessing the Xcode Documentation
	Summary
	Exercises

	Chapter 8: Programming Basics in Swift
	Using let vs. var
	Understanding Collections
	Using Arrays
	Using the Dictionary Class
	Creating the BookStore Application
	Creating Your Class
	Introducing Properties
	Accessing Variables

	Finishing the BookStore Program
	Creating the View
	Adding Properties
	Adding a Description
	Creating a Simple Data Model Class
	Modifying MasterViewController
	Modifying the DetailViewController

	Summary
	Exercises

	Chapter 9: Comparing Data
	Revisiting Boolean Logic
	Using Relational Operators
	Comparing Numbers
	Creating an Example Xcode App

	Using Boolean Expressions
	Comparing Strings

	Using the switch Statement
	Comparing Dates
	Combining Comparisons

	Summary
	Exercises

	Chapter 10: Creating User Interfaces
	Understanding Interface Builder
	The Model-View-Controller Pattern
	Human Interface Guidelines
	Creating an Example iPhone App with Interface Builder
	Using Interface Builder
	The Document Outline
	The Library
	Inspector Pane and Selector Bar
	Creating the View
	Using Outlets
	Using Actions
	The Class

	Summary
	Exercises

	Chapter 11: Storing Information
	Storage Considerations
	Preferences
	Writing Preferences
	Reading Preferences

	Databases
	Storing Information in a Database
	Getting Started with Core Data
	The Model
	Managed Object Context
	Setting Up the Interface

	Summary
	Exercises

	Chapter 12: Protocols and Delegates
	Multiple Inheritance
	Understanding Protocols
	Protocol Syntax
	Delegation
	Protocol and Delegation Example
	Getting Started
	How It Works
	Summary
	Exercise

	Chapter 13: Introducing the Xcode Debugger
	Getting Started with Debugging
	Setting Breakpoints
	Using the Breakpoint Navigator
	Debugging Basics
	Working with the Debugger Controls

	Using the Step Controls
	Looking at the Thread Window and Call Stack
	Debugging Variables

	Dealing with Code Errors and Warnings
	Errors
	Warnings

	Summary

	Chapter 14: A Swift iPhone App
	Let’s Get Started
	App Summary
	Exercises

	Chapter 15: Apple Watch and watchKit
	Considerations When Creating a watchOS App
	Creating an Apple Watch App
	Adding More Functionality
	Summary
	Exercises

	Chapter 16: A Swift HealthKit iPhone App
	Introduction to Core Bluetooth
	Central and Peripheral Devices
	Peripheral Advertising
	Peripheral Data Structure

	Let’s Get Started and Build the App
	App Summary
	What’s Next?
	Exercises

	Index

