
www.ebook3000.com

http://www.ebook3000.org

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

S 50
R 51

1st Pass Pages

1019763_FM_VOL-I.qxp 9/17/07 4:22 PM Page viii

www.ebook3000.com

User
Zone de texte
This page was intentionally left blank

http://www.ebook3000.org

S Y S T E M S A R C H I T E C T U R E

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.ebook3000.com

http://www.ebook3000.org

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.ebook3000.com

http://www.ebook3000.org

S Y S T E M S A R C H I T E C T U R E

Sixth Edition

Australia Brazil Japan Korea Mexico Singapore Spain United Kingdom United States

Stephen D. Burd
University of New Mexico

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.ebook3000.com

http://www.ebook3000.org

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

www.ebook3000.com

http://www.cengage.com/highered
http://www.ebook3000.org

Systems Architecture, Sixth Edition
Stephen D. Burd

Executive Vice President and Publisher:
Jonathan Hulbert

Executive Vice President of Editorial, Business:
Jack Calhoun

Publisher: Joe Sabatino

Senior Acquisitions Editor: Charles
McCormick, Jr.

Senior Product Manager: Kate Mason

Development Editor: Lisa M. Lord

Editorial Assistant: Nora Heink

Marketing Director: Keri Witman

Marketing Manager: Adam Marsh

Senior Marketing Communications Manager:
Libby Shipp

Marketing Coordinator: Suellen Ruttkay

Content Project Manager: PreMediaGlobal

Media Editor: Chris Valentine

Senior Art Director: Stacy Jenkins Shirley

Cover Designer: Craig Ramsdell

Cover Image: ©Getty Images

Manufacturing Coordinator: Julio Esperas

Compositor: PreMediaGlobal

© 2011 Course Technology, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced, transmitted, stored or used in any form or
by any means graphic, electronic, or mechanical, including but not
limited to photocopying, recording, scanning, digitizing, taping, Web
distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976
United States Copyright Act, without the prior written permission of
the publisher.

Some of the product names and company names used in this book
have been used for identification purposes only and may be
trademarks or registered trademarks of their respective manufacturers
and sellers.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all
requests online at cengage.com/permissions

Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2010927431

Student Edition:

ISBN-13: 978-0-538-47533-4
ISBN-10: 0-538-47533-1

Instructor’s Edition:

ISBN-13: 978-0-538-47536-5
ISBN-10: 0-538-47536-6

Course Technology
20 Channel Center Street
Boston, MA 02210
USA

Course Technology, a part of Cengage Learning, reserves the right to
revise this publication and make changes from time to time in its
content without notice.

Cengage Learning is a leading provider of customized learning
solutions with office locations around the globe, including Singapore,
the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your
local office at: www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson
Education, Ltd.

To learn more about Course Technology, visit www.cengage.com/
coursetechnology

Purchase any of our products at your local college store or at our
preferred online store www.cengagebrain.com

Printed in the United States of America
1 2 3 4 5 6 7 16 15 14 13 12 11 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.ebook3000.com

mailto:permissionrequest@cengage.com
http://www.cengage.com/global
http://www.cengage.com/
http://www.cengagebrain.com
http://www.ebook3000.org

To William I. Bullers, Jr., friend and colleague.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.ebook3000.com

http://www.ebook3000.org

CONTENTS

Preface xvii

Chapter 1 Computer Technology: Your Need to Know 1
Technology and Knowledge 1

Acquiring and Configuring Technological Devices 2
Information System Development 2

Business Modeling and Requirements Disciplines 3
Design Discipline 4
Implementation and Testing Disciplines 6
Deployment Discipline 6
Systems Evaluation and Maintenance 6

Managing Computer Resources 7
Roles and Job Titles 8

Software Developers 8
Hardware Personnel 9
System Managers 9

Computer Technology Information Sources 11
Periodical Literature 11
Technology-Oriented Web Sites 13
Vendor and Manufacturer Web Sites 14
Professional Societies 16

Summary 17
Key Terms 17
Vocabulary Exercises 18
Review Questions 18
Research Problems 18

Chapter 2 Introduction to Systems Architecture 21
Automated Computation 22

Mechanical Implementation 22
Electronic Implementation 23
Optical Implementation 24

Computer Capabilities 26
Processor 26
Storage Capacity 29
Input/Output Capability 29

Computer Hardware 29
Central Processing Unit 31
System Bus 32
Primary Storage 32

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.www.ebook3000.com

http://www.ebook3000.org

Secondary Storage 33
Input/Output Devices 34

Computer System Classes 34
Multicomputer Configurations 38
Bigger Isn t Always Better 41

The Role of Software 44
Software Types 45
System Software Layers 47
Operating Systems 48
Application Development Software 49
Economics of System and Application Development Software 49

Computer Networks 53
External Resources 53
Network Software 54
Network Communication and the Physical Network 55

Summary 56
Key Terms 57
Vocabulary Exercises 58
Review Questions 59
Research Problems 60

Chapter 3 Data Representation 61
Data Representation and Processing 61

Automated Data Processing 62
Binary Data Representation 63
Hexadecimal Notation 68
Octal Notation 70

Goals of Computer Data Representation 70
Compactness and Range 70
Accuracy 71
Ease of Manipulation 71
Standardization 72

CPU Data Types 72
Integers 72
Real Numbers 76
Character Data 81
Boolean Data 86
Memory Addresses 87

Data Structures 89
Pointers and Addresses 91
Arrays and Lists 91
Records and Files 96
Classes and Objects 97

Summary 99
Key Terms 100
Vocabulary Exercises 101

viii Contents

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Review Questions 102
Problems and Exercises 103
Research Problems 103

Chapter 4 Processor Technology and Architecture 105
CPU Operation 106
Instructions and Instruction Sets 108

Data Movement 110
Data Transformations 110
Sequence Control 115
Complex Processing Operations 115
A Short Programming Example 117
Instruction Set Extensions 119

Instruction Format 119
Instruction Length 121
RISC and CISC 121

Clock Rate 124
CPU Registers 128

General-Purpose Registers 128
Special-Purpose Registers 128

Word Size 129
Enhancing Processor Performance 131

Pipelining 131
Branch Prediction and Speculative Execution 133
Multiprocessing 135

The Physical CPU 138
Switches and Gates 138
Electrical Properties 139
Processor Fabrication 141
Current Technology Capabilities and Limitations 143

Future Trends 147
Optical Processing 148
Electro-Optical Processing 148
Quantum Processing 148

Summary 150
Key Terms 151
Vocabulary Exercises 152
Review Questions 153
Problems and Exercises 154
Research Problems 155

Chapter 5 Data Storage Technology 157
Storage Device Characteristics 158

Speed 159
Volatility 161
Access Method 161

Contents ix

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Portability 162
Cost and Capacity 162
Memory-Storage Hierarchy 163

Primary Storage Devices 164
Storing Electrical Signals 164
Random Access Memory 165
Nonvolatile Memory 167
Memory Packaging 168

Magnetic Storage 170
Magnetic Decay and Leakage 171
Areal Density 171
Media Integrity 172
Magnetic Tape 173
Magnetic Disk 177

Optical Mass Storage Devices 184
CD-ROM, DVD-ROM, and BD 187
Recordable Discs 187
Phase-Change Optical Discs 188
Magneto-Optical Drives 188

Summary 190
Key Terms 190
Vocabulary Exercises 191
Review Questions 192
Problems and Exercises 193
Research Problems 194

Chapter 6 System Integration and Performance 195
System Bus 196

Bus Clock and Data Transfer Rate 198
Bus Protocol 199
Subsidiary Buses 200

Logical and Physical Access 204
Device Controllers 207

Mainframe Channels 208
Interrupt Processing 209

Interrupt Handlers 210
Multiple Interrupts 211
Stack Processing 211
Performance Effects 212

Buffers and Caches 213
Buffers 213
Caches 217

Processing Parallelism 220
Multicore Processors 220
Multiple-Processor Architecture 223
Scaling Up and Scaling Out 224
High-Performance Clustering 225

x Contents

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Compression 227
Summary 231
Key Terms 232
Vocabulary Exercises 233
Review Questions 234
Problems and Exercises 235
Research Problems 237

Chapter 7 Input/Output Technology 239
Basic Print and Display Concepts 240

Matrix-Oriented Image Composition 240
Image Storage and Transmission Requirements 245
Image Description Languages 245

Video Display 249
Video Controllers 249
Video Monitors 251

Printers 255
Inkjet Printers 255
Laser Printers 257
Plotters 258

Manual Input Devices 258
Keyboards 258
Pointing Devices 259
Input Pads 260

Optical Input Devices 261
Mark Sensors and Bar-Code Scanners 261
Optical Scanners 263
Digital Cameras 264
Portable Data Capture Devices 264

Audio I/O Devices 265
Speech Recognition 266
Speech Generation 267
General-Purpose Audio Hardware 268

Summary 270
Key Terms 271
Vocabulary Exercises 272
Review Questions 273
Research Problems 274

Chapter 8 Data and Network Communication Technology 275
Communication Protocols 276
Encoding and Transmitting Bits 278

Carrier Waves 278
Modulation Methods 280
Analog Signals 283
Digital Signals 283
Signal Capacity and Errors 286

Contents xi

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Transmission Media 287
Speed and Capacity 289
Frequency 289
Bandwidth 291
Signal-to-Noise Ratio 293
Electrical Cabling 296
Optical Cabling 297
Amplifiers and Repeaters 298

Wireless Transmission 299
Radio Frequency Transmission 299
Light Transmission 302

Channel Organization 302
Simplex, Half-Duplex, and Full-Duplex Modes 303
Parallel and Serial Transmission 305
Channel Sharing 309

Communication Coordination 314
Clock Synchronization 314
Error Detection and Correction 317

Summary 322
Key Terms 323
Vocabulary Exercises 325
Review Questions 326
Problems and Exercises 327
Research Problems 328

Chapter 9 Computer Networks 329
Network Topology 330
Message Addressing and Forwarding 333
Media Access Control 336
Network Hardware 338

Network Interface Cards 338
Hubs 339
Switches 340
Routers 340
Wireless Access Points 341

OSI Network Layers 341
Application Layer 341
Presentation Layer 342
Session Layer 342
Transport Layer 343
Network Layer 343
Data Link Layer 343
Physical Layer 343

Internet Architecture 343
Internet Protocol 345
IPv6 347
TCP 347

xii Contents

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

UDP 348
Network Interface Layer 351

Physical Network Standards 352
Ethernet 355

Summary 358
Key Terms 359
Vocabulary Exercises 360
Review Questions 360
Research Problems 361

Chapter 10 Application Development 363
The Application Development Process 364

Systems Development Methodologies and Models 365
Tools 369

Programming Languages 369
First-Generation Languages 371
Second-Generation Languages 371
Third-Generation Languages 372
Fourth-Generation Languages 372
Fifth-Generation Languages 373
Object-Oriented Programming Languages 376
Scripting Languages 377
Programming Language Standards 377

Compilation 378
Data Declarations 379
Data Operations 379
Control Structures 380
Function Calls 382

Link Editing 384
Dynamic and Static Linking 386

Interpreters 387
Symbolic Debugging 388

Application Development Tools 392
Integrated Development Environments 393
CASE Tools 396

Summary 399
Key Terms 399
Vocabulary Exercises 400
Review Questions 401
Problems and Exercises 402
Research Problems 402

Chapter 11 Operating Systems 403
Operating System Overview 404

Operating System Functions 405
Operating System Layers 406

Resource Allocation 409
Single-Tasking Resource Allocation 409

Contents xiii

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Multitasking Resource Allocation 409
Resource Allocation Tasks 410
Real and Virtual Resources 411

Process Management 413
Process Control Data Structures 413
Threads 414

CPU Allocation 415
Thread States 416
Interrupt Processing 417
Scheduling 418

Memory Allocation 427
Physical Memory Organization 427
Single-Tasking Memory Allocation 428
Multitasking Memory Allocation 429
Memory Fragmentation 431
Noncontiguous Memory Allocation 433
Virtual Memory Management 434
Memory Protection 436
Memory Management Hardware 436

Summary 440
Key Terms 441
Vocabulary Exercises 442
Review Questions 443
Research Problems 444

Chapter 12 File and Secondary Storage Management 445
Functions and Components of File Management Systems 446

Logical and Physical Storage Views 448
File Content and Type 449

Directory Content and Structure 451
Hierarchical Directory Structure 452
Graph Directory Structure 454

Storage Allocation 455
Allocation Units 455
Storage Allocation Tables 455
Blocking and Buffering 457
An Example of Storage Allocation and File I/O 459

File Manipulation 461
File Open and Close Operations 461
Delete and Undelete Operations 461

Access Controls 462
File Migration, Backup, and Recovery 465

File Migration 465
File Backup 467
File Recovery 468

Fault Tolerance 469
Mirroring 469

xiv Contents

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

RAID 470
Storage Consolidation 473
Summary 479
Key Terms 480
Vocabulary Exercises 481
Review Questions 481
Problems and Exercises 482
Research Problems 482

Chapter 13 Internet and Distributed Application Services 483
Distributed Software Architecture 484

Client/Server Architecture 484
N-Layer Client/Server Architecture 485
Middleware 486
Peer-to-Peer Architecture 487

Network Resource Access 487
Protocol Stacks 487
Static Resource Connections 488
Dynamic Resource Connections 491

Directory Services 492
Lightweight Directory Access Protocol 492

Interprocess Communication 497
Sockets 497
Named Pipes 498
Remote Procedure Calls 499

The Internet 501
Standard Web Protocols and Services 502
The Internet as an Application Platform 506

Components and Distributed Objects 508
Component-Based Software 509
Components and Objects 510
Connection Standards and Infrastructure 510

Emerging Distribution Models 516
Software as a Service 517
Platform as a Service 518
Infrastructure as a Service 519
Risks 519

Summary 523
Key Terms 524
Vocabulary Exercises 525
Review Questions 526
Research Problems 527

Chapter 14 System Administration 529
System Administration 530

Strategic Planning 531
Hardware and Software as Infrastructure 531
Standards 532

Contents xv

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Competitive Advantage 532
The Acquisition Process 534

Determining and Stating Requirements 535
Request for Proposal 535

Determining Requirements and Evaluating Performance 537
Benchmarks 538
Measuring Resource Demand and Utilization 539

Security 542
Physical Security 543
Access Controls 543
Password Controls and Security 544
Auditing 546
Virus Protection 547
Software Updates 548
Firewalls 549

Physical Environment 551
Electrical Power 552
Heat Dissipation 553
Moisture 554
Cable Routing 554
Fire Protection 555
Disaster Planning and Recovery 555

Summary 556
Key Terms 556
Vocabulary Exercises 557
Review Questions 558
Research Problems 558

Appendix 561

Glossary 565

Index 603

xvi Contents

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PREFACE

I N T E N D E D A U D I E N C E

This book is intended for undergraduate students majoring or concentrating in
information systems (IS) or information technology (IT) and as a reference for IS/IT
professionals. It provides a technical foundation for systems design, systems imple-
mentation, hardware and software procurement, and computing resource manage-
ment. Computer hardware and system software topics that are most useful to IS/IT
students and professionals are described at an appropriate level of detail. For some
topics, readers gain enough knowledge to solve technical problems. For other topics,
they gain knowledge on communicating effectively with technical specialists.

Computer science students are exposed to computer hardware and system
software technology in many undergraduate courses. Computer science books usually
focus on a subset of the topics in this book. However, coverage of hardware and sys-
tem software in an IS/IT curriculum is usually limited. A brief overview of hardware
and system software might be provided in an introductory course, and some specific
technical topics are often covered in other courses, but there s at most one course
devoted to hardware and system software.

At this writing (May 2010), the latest curricula recommendations in IS and IT are
IS 2010 and IT 2008. Many schools are still using curricula modeled on IS 2002 (see
www.acm.org for details on these curricula). The topics covered in this book are
mapped to all three curricula as follows:

IS 2002 This book covers a superset of the requirements for IS 2002.4,
Information Technology Hardware and System Software. Additional topics
beyond those in IS 2002.4 include networks, application development soft-
ware, and system administration.
IT 2008 This book covers topics in four of the body of knowledge compo-
nents: Integrative Programming and Technologies Intersystems Communi-
cations and Overview of Programming Languages; Networking all topics;
Platform Technologies all topics except Enterprise Deployment Software;
and Systems Administration and Maintenance Operating Systems and
portions of Applications and Administrative Activities.
IT 2010 This book covers the topics and learning objectives of the IT
2010.4 core course, IT Infrastructure.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.acm.org

This book can also serve as a supplement in courses on system design and com-
puter resource management. For system design, it covers many technical topics to
address when selecting and configuring hardware and system software. For computer
resource management, it offers the broad technical foundation needed to manage
resources effectively.

R E A D E R S ’ B A C K G R O U N D K N O W L E D G E

Because target courses for this book are typically placed early in the recommended
curricula, few assumptions are made about readers background knowledge. Unlike
many computer science books, readers aren t assumed to have an extensive back-
ground in mathematics, physics, or engineering. When necessary, background infor-
mation in these areas is given in suitable depth.

In addition, readers aren t assumed to know any particular programming
language. However, classroom or practical experience with at least one language is
helpful to comprehend the discussions of CPU instruction sets, operating systems,
and application development software. Programming examples are given in several
programming languages and in pseudocode.

Detailed knowledge of a particular operating system isn t required. However, as
with programming experience, practical experience with at least one operating system
is helpful. Lengthy examples from operating systems are purposely avoided, but there
are some short examples from MS-DOS, UNIX/Linux, and recent Windows versions.

Finally, knowledge of low-level machine instructions or assembly-language pro-
gramming isn t assumed. Assembly-language instructions are described in several
chapters, but a generic assembly language is used, and no detailed coverage of
assembly-language program organization is included.

C H A N G E S I N T H I S E D I T I O N

The fifth edition was first published in 2005. Updates were needed throughout the
book to address changes since that time. The following sections summarize major
updates and additions, although most chapters include many additional minor
changes, such as updates to screen captures, hardware specifications, and standards.

Chapter 1 Updated the discussion of periodical literature and online
sources of technology information.
Chapter 2 Updated typical computer specifications; revised definitions of
computer classes; expanded the discussion of multicomputer, distributed, and
cloud computer architectures; added a Technology Focus on distributed
simulation applications; modernized the Business Focus case; and updated
the Technology Focus features on IBM POWER processors and the parallel
evolution of Intel CPUs and Microsoft operating systems.
Chapter 3 Updated the coverage of floating-point formats and Unicode
standards to the latest standards.

xviii Preface

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Updated the discussion of RISC and the Pentium Technology
Focus, added a Technology Focus on SPEC and TPC benchmarks, and
updated several sections (including the Technology Focus features) to reflect
current CPU clock rates, word sizes, fabrication technology, and multicore
architecture.
Chapter 5 Moved the discussion of memory allocation and addressing
to Chapter 11, added details of solid-state drives, updated the coverage
of memory packaging and nonvolatile memory technologies, and
modernized the coverage of magnetic tapes, magnetic disks, and optical
discs.
Chapter 6 Expanded the discussion of buses to include internal/external
subsidiary buses and serial bus technology, replaced the SCSI Technology
Focus with one on PCI, modernized coverage and examples of buffering and
caching, updated the Technology Focus about on-chip memory cache to
current Intel multicore CPUs, and expanded the coverage of compression,
including an updated Technology Focus.
Chapter 7 Reduced the coverage of older display technologies and
expanded the discussion of current display types and video adapters.
Chapter 8 Expanded the discussion of bandwidth and S/N ratio, updated
and expanded the coverage of copper and optical cabling, expanded the
coverage of wireless transmission, and updated the Technology Focus and
Business Focus.
Chapter 9 Reduced the coverage of bus and ring topologies, expanded the
discussion of switching and routing and sharpened the distinction between
them, expanded wireless network coverage (including a new Technology
Focus on WiMAX), updated the Ethernet coverage, and updated the Business
Focus.
Chapter 10 Updated the coverage of application development tools, includ-
ing related Technology Focus and Business Focus features.
Chapter 11 Revised the introductory material extensively, incorporated
and updated memory allocation and addressing material moved from
Chapter 5, and added material on hypervisors and a Technology Focus on
VMware.
Chapter 12 Updated and expanded the coverage on RAID, added material
on backup and recovery procedures, and added a Technology Focus on the
Google File System.
Chapter 13 Reorganized the chapter for improved flow of topics, expanded
the discussion of distributed architectures to include peer-to-peer architec-
tures, revised the discussion of protocol stacks to be consistent with changes
in Chapter 9, updated the Technology Focus to cover Java Platform,
Extended Edition, and added new material on cloud computing architectures,
including a Business Focus.
Chapter 14 Streamlined to eliminate repetition with expanded coverage in
other chapters, updated the Technology Focus on Windows monitoring tools,
and updated screen captures to current Windows versions.

Preface xix

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

R E S O U R C E S F O R I N S T R U C T O R S

Systems Architecture, Sixth Edition includes the following resources to support
instructors in the classroom. All the teaching tools available with this book are pro-
vided to the instructor on a single CD. They can also be accessed with your single
sign-on (SSO) account at Cengage.com.

Instructor s Manual The Instructor s Manual provides materials to help
instructors make their classes informative and interesting. It includes teach-
ing tips, discussion topics, and solutions to end-of-chapter materials.
Classroom presentations Microsoft PowerPoint presentations are available
for each chapter to assist instructors in classroom lectures or to make avail-
able to students.
ExamView® ExamView is a powerful testing software package that enables
instructors to create and administer printed, computer (LAN-based), and
Internet exams. It includes hundreds of questions corresponding to the topics
covered in this book so that students can generate detailed study guides with
page references for further review. The computer-based and Internet testing
components allow students to take exams at their computers and save
instructors time by grading each exam automatically.
Distance learning content Course Technology is proud to present online
content in WebCT and Blackboard to provide the most complete and dynamic
learning experience possible. For more information on how to bring distance
learning to your course, contact your local Cengage sales representative.

W O R L D W I D E W E B S I T E S

Two support sites for this book (instructor and student), located at www.cengage.
com/mis/burd, offer the following:

The Instructor s Manual
Figure files
End-of-chapter questions and answers
Web resource links for most book topics and research problems
Additional content on virtualization
Text updates and errata
Glossary

O R G A N I Z A T I O N

This book s chapters are organized into four groups. The first group contains two
chapters with overviews of computer hardware, software, and networks and describes
sources of technology information. The second group consists of five chapters cover-
ing hardware technology. The third group contains two chapters on data communica-
tion and computer networks. The fourth group includes five chapters covering
software technology and system administration.

xx Preface

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengage

The chapters are intended for sequential coverage, although other orderings are pos-
sible. The prerequisites for each chapter are described in the following section. Other
chapter orders can be constructed based on these prerequisites. Chapter 2 should
always be covered before other chapters, although some sections can be skipped without
loss of continuity, depending on which subsequent chapters are included or skipped.

There should be time to cover between 9 and 12 chapters in a three-credit-hour
undergraduate course. This book contains 14 chapters to offer flexibility in course
content. Topics in some chapters can be covered in other courses in a specific curric-
ulum. For example, Chapters 8 and 9 are often covered in a separate networking
course, and Chapter 14 is often included in a separate system administration course.
Instructors can choose specific chapters to best match the overall curriculum design
and teaching preferences.

C H A P T E R D E S C R I P T I O N S

Chapter 1, Computer Technology: Your Need to Know, briefly describes how
knowledge of computer technology is used in the systems development life cycle. It
also covers sources for hardware and system software information and lists recom-
mended periodicals and Web sites. It can be skipped entirely or assigned only as
background reading.

Chapter 2, Introduction to Systems Architecture, provides an overview of hard-
ware, system and application software, and networks. It describes main classes of
hardware components and computer systems and describes the differences between
application and system software. This chapter introduces many key terms and con-
cepts used throughout the book.

Chapter 3, Data Representation, describes primitive CPU data types and common
coding methods for each type. Binary, octal, and hexadecimal numbering systems and
common data structures are also discussed. Chapter 2 is a recommended prerequisite.

Chapter 4, Processor Technology and Architecture, covers CPU architecture and
operation, including instruction sets and assembly-language programming. It
describes traditional architectural features, including fetch and execution cycles,
instruction formats, clock rate, registers, and word size. It also discusses methods for
enhancing processor performance as well as semiconductor and microprocessor fabri-
cation technology. Chapters 2 and 3 are necessary prerequisites.

Chapter 5, Data Storage Technology, describes implementing primary and second-
ary storage with semiconductor, magnetic, and optical technologies. Principles of
each storage technology are described first, followed by factors affecting each technol-
ogy and guidelines for choosing secondary storage technologies. Chapters 3 and 4 are
necessary prerequisites, and Chapter 2 is a recommended prerequisite.

Chapter 6, System Integration and Performance, explains communication between
computer components and performance enhancement methods. It starts with a dis-
cussion of system bus and subsidiary bus protocols, followed by coverage of device
controllers, mainframe channels, and interrupt processing. Performance enhancement

Preface xxi

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

methods include buffering, caching, parallel and multiprocessing, and compression.
Chapters 4 and 5 are required prerequisites, and Chapters 2 and 3 are recommended
prerequisites.

Chapter 7, Input/Output Technology, describes I/O devices, including keyboards,
pointing devices, printers and plotters, video controllers and monitors, optical input
devices, and audio I/O devices. It also covers fonts, image and color representation,
and image description languages. Chapter 3 is a necessary prerequisite, and
Chapters 2, 5, and 6 are recommended prerequisites.

Chapter 8, Data and Network Communication Technology, covers data communi-
cation technology, beginning with communication protocols, analog and digital sig-
nals, transmission media, and bit-encoding methods. This chapter also explains serial
and parallel transmission, synchronous and asynchronous transmission, wired and
wireless transmission, channel-sharing methods, clock synchronization, and error
detection and correction. Chapters 2 and 3 are recommended prerequisites.

Chapter 9, Computer Networks, describes network architecture and hardware. It
starts with network topology and message forwarding, and then explains media access
control and network hardware devices, such as routers and switches. This chapter
also covers IEEE and OSI networking standards and includes an in-depth look at
Internet architecture and TCP/IP. Chapters 3, 4, and 8 are necessary prerequisites,
and Chapter 2 is a recommended prerequisite.

Chapter 10, Application Development, begins with a brief overview of the applica-
tion development process and development methodologies and tools, and then dis-
cusses programming languages, compilation, link editing, interpretation, and
symbolic debugging. The final section describes application development tools,
including CASE tools and integrated development environments (IDEs). Chapters 2,
3, and 4 are necessary prerequisites.

Chapter 11, Operating Systems, describes the functions and layers of an operating
system, explains resource allocation, and describes how an operating system manages
the CPU, processes, threads, and memory. Chapters 2, 4, and 5 are necessary prere-
quisites, and Chapter 10 is a recommended prerequisite.

Chapter 12, File and Secondary Storage Management, gives an overview of file
management components and functions, including differences between logical
and physical secondary storage access, and describes file content and structure and
directories. Next, this chapter describes storage allocation, file manipulation,
and access controls and ends with file migration, backup, recovery, fault
tolerance, and storage consolidation methods. Chapters 5 and 11 are necessary
prerequisites, and Chapter 10 is a recommended prerequisite.

Chapter 13, Internet and Distributed Application Services, begins by discussing
distributed computing and network resource access, network protocol stacks, and
directory services. This chapter also explains interprocess communication, Internet
protocols for accessing distributed resources, and component-based application

xxii Preface

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

development. Finally, it describes cloud computing models. Chapters 2, 8, and 9 are
necessary prerequisites. Chapters 4, 11, and 12 are recommended prerequisites.

Chapter 14, System Administration, gives an overview of system administration
tasks and the strategic role of hardware and software resources in an organization. It
then describes the hardware and software acquisition process. Next, the chapter dis-
cusses methods for determining requirements and monitoring performance. The next
section describes measures for ensuring system security, including access controls,
auditing, virus protection, software updates, and firewalls. The last section discusses
physical environment factors affecting computer operation. Chapters 2, 4, 8, 11, and
12 are recommended prerequisites.

Appendix, Measurement Units, summarizes common measurement units, abbrevia-
tions, and usage conventions for time intervals, data storage capacities, and data
transfer rates.

A C K N O W L E D G M E N T S

The first edition of this book was a revision of another book, Systems Architecture:
Software and Hardware Concepts, by Leigh and Ali. Some of their original work
has endured through all subsequent editions. I am indebted to Leigh, Ali, and Course
Technology for providing the starting point for all editions of this book.

I thank everyone who contributed to this edition and helped make previous editions a
success. Jim Edwards took a chance on me as an untested author for the first edition.
Kristen Duerr, Jennifer Locke, Maureen Martin, and Kate Mason shepherded the text
through later editions. Kate Mason oversaw this edition, and Lisa Lord helped make
the text much more readable. Thanks to all past and present development and produc-
tion team members. Thanks also to the peer reviewers of this edition: Angela Clark,
University of South Alabama; Raymond Hansen, Purdue University; Jim Mussulman,
Southern Illinois University Edwardsville; Barbara Ozog, Benedictine University; John
Reynolds, Grand Valley State University; and Jeffrey Sprankle, Purdue University.

I thank students in the undergraduate MIS concentration at the Anderson Schools of
Management, University of New Mexico, who have used manuscripts and editions of
this book over the past two decades. Student comments have contributed significantly
to improving the text. I also thank my department chair, Steven Yourstone, and my
faculty colleagues Ranjit Bose, Nick Flor, Peter Jurkat, Xin Luo, Laurie Schatzberg,
Josh Saiz, and Alex Seazzu for their continued support and encouragement of my
textbook-writing activities.

Finally, I d like to thank Dee, my wife, and Alex and Amelia, my children. Developing
this book as a sole author through multiple editions has been a time-consuming pro-
cess that often impinged on family time and activities. My success as an author would
not be possible without my family s love and support.

Preface xxiii

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R1
COMPUTER TECHNOLOGY:
YOUR NEED TO KNOW

C H A P T E R G O A L S

Describe the activities of information systems professionals

Describe the technical knowledge of computer hardware and system
software needed to develop and manage information systems

Identify additional sources of information for continuing education
in computer hardware and system software

The words you re reading now result, in part, from computer-based information systems. The author,

editors, production team, and distribution team all relied on computer systems to organize, produce,

and convey this information. Although many different kinds of computer information systems were

involved, they share similar technology: Each consists of computer hardware, system and application

software, data, and communication capabilities. In this chapter, you learn why you need to study

hardware and software technology if you work, or plan to work, in information systems. You also

learn about additional sources of information that can help expand and update your knowledge of

hardware and software.

TECHNOLOGY AND KNOWLEDGE

The world is filled with complex technical devices that ordinary people use every day.
Fortunately, you don t need a detailed understanding of how these devices work to use
them. Imagine needing three months of training just to use a refrigerator or needing a
detailed understanding of mechanics and electronics to drive a car. Using the earliest
computers in the 1940s took years of training, but today, even though computers are
increasingly complex and powerful, they re also easier to use. As a result, computers have
proliferated beyond their original scientific applications into businesses, classrooms, and

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

homes. If computers have become so easy to use, why do you need to know anything
about their inner technology?

Acquiring and Configuring Technological Devices
The knowledge required to purchase and configure technically complex devices is far
greater than the knowledge required to use them effectively. Many people can use complex
devices, such as cars, home theater systems, and computers, but few people feel
comfortable purchasing or configuring them. Why is this so?

When you walk into a store or visit a Web site to purchase a computer, you re con-
fronted with a wide range of choices, including processor type and speed, hard disk speed
and capacity, memory capacity, and operating system. To make an informed choice, you
must know your preferences and requirements, such as the application software you plan
to use and whether you plan to discard or upgrade the computer in a year or two. To
evaluate the alternatives and determine their compatibility with your preferences and
requirements, you must be able to comprehend technical terms (for example, gigahertz,
gigabyte, DDR, and USB), technical and sales documentation, product and technology
reviews, and the advice of friends, experts, and salespeople.

An information systems (IS) professional faces computer acquisition, upgrade, and
configuration choices that are far more complex. Large computer systems and the soft-
ware that runs on them use more complex technology than smaller ones do. There are
many more components and, therefore, more complex configuration, compatibility, and
administrative issues. Of course, the stakes are higher. Employers and users rely on the
expertise of IS professionals, and companies invest substantial sums of money based on
their recommendations. Are you (or will you be) able to meet the challenge?

INFORMATION SYSTEM DEVELOPMENT

When developing an information system, IS professionals follow a series of steps called a
systems development life cycle (SDLC). Figure 1.1 shows a modern SDLC called the
Unified Process (UP). Under the UP, an information system is built in a series of 4- to
6-week repeated steps called iterations (the vertical columns separated by dashed lines).
Although Figure 1.1 shows six iterations, the number of iterations is tailored to each
development project s specifications. Typically, the first iteration or two produces docu-
mentation and a prototype (model) system that s refined and expanded in subsequent
iterations until it becomes the final system.

2

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Each iteration includes whatever activities are needed to produce testable models or
working software. Related activities are grouped into UP disciplines. For example, the
testing discipline includes activities such as creating test data, conducting tests, and eval-
uating test results. Activities and efforts in each discipline vary across iterations, as shown
by the shaded curves in Figure 1.1. For example, in this figure, activities in iteration 1 are
drawn primarily from the business modeling, requirements, design, and deployment disci-
plines, and activities in iteration 6 are drawn primarily from the implementation, testing,
and deployment disciplines. As with the number of project iterations, the mix of activities
in each iteration is tailored to each development project. Therefore, efforts in each disci-
pline aren t always distributed across iterations exactly as shown in Figure 1.1.

The following sections explore the UP disciplines in more detail and describe the
knowledge of computer hardware and system software each one requires.

Business Modeling and Requirements Disciplines
Activities in the business modeling discipline and the requirements discipline are primar-
ily concerned with building models of the organization that will own and operate the sys-
tem, models of the system s environment, and models of system and user requirements.
The models can include narratives, organizational charts, workflow diagrams, network
diagrams, class diagrams, and interaction diagrams. The purpose of building business and
requirements models is to understand the environment in which the system will function
and the tasks the system must perform or assist users to perform.

While building business and requirements models, developers ask many questions
about the organization s needs, users, and other constituents and the extent to which
these needs are (or aren t) being met and how they ll be addressed by a new system.

FIGURE 1.1 Disciplines and iterations in the Unified Process
Courtesy of Course Technology/Cengage Learning

3

Information System Development

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Technical knowledge of computer hardware and system software is required to assess the
degree to which users needs are being met and to estimate the resources required to
address unmet needs.

For example, an analyst surveying a point-of-sale system in a retail store might pose
questions about the current system, such as the following:

How much time is required to process a sale?
Is the system easy to use?
Is enough information being gathered (for example, for marketing purposes)?
Can the hardware and network handle periods of peak sales volume (such as
during holidays)?
Can hardware and application software be supported by a different operating
system?
Are cheaper hardware alternatives available?
Could a cloud computing environment support the application software?

Answering these questions requires an in-depth understanding of the underlying
hardware and software technologies. For example, determining whether a system can
respond to periods of peak demand requires detailed knowledge of processing and storage
capabilities, operating systems, networks, and application software. Determining whether
cheaper alternatives exist requires technical knowledge of a wide range of hardware and
software options. Determining whether cloud computing could be used requires a detailed
understanding of the software environment and whether it s compatible with various cloud
computing environments.

Design Discipline
The design discipline is the set of activities for determining the structure of a specific
information system that fulfills the system requirements. The first set of design activities,
called architectural design, selects and describes the exact configuration of all hardware,
network, system software, and application development tools to support system develop-
ment and operations (see Figure 1.2). These selections affect all other design decisions
and serve as a blueprint for implementing other systems.

Specific systems design tasks include selecting the following:

Computer hardware (processing, storage, input/output [I/O], and network
components)
Network hardware (transmission lines, routers, and firewalls)
System software (operating system, database management system, Web
server software, network services, and security software and protocols)
Application development tools (programming languages, component libraries,
and integrated development environments)

4

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Collectively, these choices define an information architecture requirements and
constraints that define important characteristics of information-processing resources and
how these resources interact with one another. When actual hardware, network, and sys-
tem software components are acquired and installed, they make up an information tech-
nology infrastructure for one or more information systems. Operating and maintaining the
infrastructure is a complex and costly endeavor in most organizations.

The remaining design activities, called detailed design, are narrower in scope and con-
strained by the information architecture. Detailed design activities include the following:

File or database design (such as grouping data elements into records and
files, indexing, and sorting)
Application software design
User and external system interface design (input screen formats, report
formats, and protocols to interact with external services and systems)
Design of system backup and recovery mechanisms

FIGURE 1.2 Design activities in the Unified Process
Courtesy of Course Technology/Cengage Learning

5

Information System Development

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Technical knowledge of computer hardware and system software is most important for
performing architectural design activities. Selecting hardware and network components
requires detailed knowledge of their capabilities and limitations. When multiple hardware
and network components are integrated into a single system, the designer must evaluate
their compatibility. Hardware, network, and overall performance requirements affect the
choice of system software. The designer must also consider the compatibility of new hard-
ware, network components, and system software with existing information systems and
computing infrastructure.

Selecting appropriate development tools requires knowing the information system
requirements and capabilities of the hardware, network, and operating system. Develop-
ment tools (and the software components built with them) vary widely in their efficiency,
power, and compatibility. Tool selection also affects future system development projects.

Implementation and Testing Disciplines
The implementation discipline of the UP includes all activities for building, acquiring, and
integrating application software components. The testing discipline includes activities that
verify correct functioning of infrastructure and application software components and
ensure that they satisfy system requirements. Implementation and especially testing activ-
ities require specific knowledge of the hardware, network, and system software.

For example, developing an application software component that interacts with an
external Web service to schedule a shipment requires specific knowledge of the network
protocols used to find and interact with the service. Diagnosing an error that occurs when
the software executes requires detailed knowledge of the operating system, network
services, and network protocols for creating, transmitting, and receiving the Web service
request and response.

Deployment Discipline
The deployment discipline is the set of activities for installing and configuring infrastruc-
ture and application software components and bringing them into operation. Questions
addressed by deployment discipline activities include the following:

Who should be involved in and responsible for deploying each part of the
system?
In what order should parts of the system be deployed?
Will any parts of the new system operate in parallel with the previous system?

Technical knowledge of computer hardware and system software is needed to perform
many deployment tasks. Installing and configuring hardware, networks, and system soft-
ware is a specialized task that requires a thorough understanding of the components being
installed and the purposes for which they ll be used. Tasks such as formatting storage
devices, setting up system security, installing and configuring network services, and estab-
lishing accounting and auditing controls require considerable technical expertise.

Systems Evaluation and Maintenance
Although not a formal UP discipline, systems evaluation and maintenance is an important
group of activities that accounts for much of the long-range system cost. Over time,

6

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

problems with the system can and do happen. Errors that escaped detection during testing
and deployment might show up. For example, a Web-based order-entry system might
become overloaded because of inadequate estimates of processing volume, network con-
gestion, or capacity limits in underlying hardware or database services. Information needs
can and do change, necessitating changes to collect, process, and store additional data.

Minor system changes, such as correcting application software errors or minor pro-
cessing adjustments, are normally handled as maintenance changes. Maintenance changes
can require extensive technical knowledge, and some technical knowledge might be
needed to classify a proposed change as major or minor. Will new processing requirements
be the straw that breaks the camel s back in terms of hardware, network, or software
capacity? Do proposed changes require application development tools that aren t compat-
ible with the current system s design or configuration? The answers to these questions
determine whether the existing system will be modified or replaced by a new system.

If the existing system is to be modified, the application software components and files
to be changed are identified, modified, tested, and deployed. The technical knowledge
requirements depend heavily on the specific hardware, network, and software components
affected by the change. If a new system is required, a new systems development life cycle
is initiated.

MANAGING COMPUTER RESOURCES

So far, the need for technological knowledge has been discussed in the context of devel-
oping a single information system. However, think about the complexities and knowledge
needed to manage the thousands of computer resources in a large organization, where
many new development projects or system upgrades can be in progress at once.

In this type of environment, you must pay more attention to two critical technological
issues compatibility and future trends. Both issues are important because of the integra-
tion of computing technology in and across every function of modern organizations. For
example, accounts payable and accounts receivable programs usually share a common
hardware platform and operating system. Data from both systems is shared by a financial
reporting system, which might be a different software system running on an entirely dif-
ferent computer. Data from many sources in the organization is often stored in a common
database and accessed via an internal network or the Internet.

Managers of integrated collections of information systems and supporting infrastruc-
ture must contend with a great deal of technical complexity. They must ensure that each
new system not only operates correctly by itself, but also operates smoothly with all the
other systems in the organization. They must also make sure hardware and software
acquisitions are a good foundation for both current and future systems.

Given the rapid pace of change in computer technology, a manager must have a
broad understanding of current technology and future technology trends. Will the com-
puter purchased today be compatible with the hardware available three years from now?
Can the organization s communication network be expanded easily to meet future needs?
Should the organization invest only in tried-and-true technologies, or should it acquire
cutting-edge technologies in hopes of improving performance or gaining a competitive
advantage? Should the organization invest in buying enterprise-level software packages
to use on local hardware, or should applications be housed in a rented server farm?

7

Managing Computer Resources

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The answers to these questions require in-depth technical knowledge far more
knowledge than any one person has. Typically, managers confronted by these questions
rely on the advice of experts and other sources of information. Even so, they must have
an adequate base of technical knowledge to understand this information and advice.

ROLES AND JOB TITLES

Many people in many different jobs are called computer professionals. There s a bewilder-
ing array of job titles, specializations, and professional certifications to describe the wide
range of computer-related roles. To add to the confusion, responsibilities associated with
specific job titles vary considerably from organization to organization. The following sec-
tions attempt to classify computer professionals into groups, explain some of their com-
mon characteristics, and describe the computer hardware and system software knowledge
each group needs.

Software Developers
Software can be categorized loosely into two types: application software and system soft-
ware. End users use application software to perform specific tasks, such as processing
customer orders or developing and formatting documents and financial analyses. System
software generally hides in the background, unnoticed or barely noticed by most end
users. Examples include many parts of an operating system, database management sys-
tems, and software that protects networks against intruders. Of course, some software
doesn t fit neatly into either category.

Many software developers create application software for specific processing needs.
They have many different job titles, including programmer, systems analyst, and systems
designer. Each role contributes to a different part of the systems development life cycle. A
systems analyst performs activities in the business modeling and requirements disciplines.
A systems designer performs activities in the design discipline and sometimes the deploy-
ment discipline. A programmer builds and tests software.

Many software developers have responsibilities that match these job descriptions pre-
cisely. For example, a systems analyst is often responsible for business modeling, require-
ments, design, and management tasks for a development project. Programmers often perform
some requirements and design discipline tasks in addition to building and testing software.

The wide variety of application software causes further confusion about job titles,
activities, responsibilities, and required education and training. For example, developers
of application software that processes business transactions or provides information to
managers usually have college or technical degrees in management or business with a
specialization in information processing.

N O T E
Other names for the information processing field include management information systems, data process-
ing, and business computer systems.

8

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Developers of application software for scientific areas, such as astronomy, meteorol-
ogy, and physics, typically have degrees in mathematics or computer science. Developers
of application software for technical areas, such as robotics, flight navigation, and scien-
tific instrumentation, typically have degrees in computer science or some branch of
engineering.

All application software developers need technical knowledge of computer hardware
and system software, as described earlier in Information System Development. Software
developers in technical areas typically need in-depth hardware knowledge because of the
hardware control characteristics of many of these applications. Software developers in
scientific areas must also have in-depth hardware knowledge if the applications they
develop push the boundaries of hardware capabilities, such as simulating weather patterns
on a global scale with supercomputers.

Systems programmers develop system software, such as operating systems, compilers,
database management systems, Web servers, and network security monitors. These pro-
grammers typically have degrees in computer science or computer engineering. Organiza-
tions using a lot of computer equipment and software employ systems programmers to
perform tasks such as hardware troubleshooting and software installation and configura-
tion. Organizations that develop and market system and application development software,
such as Microsoft, Oracle, and Cisco, employ many systems programmers.

Systems programmers must have in-depth knowledge of system software as well as
computer hardware and networks because many types of system software interact directly
with computer or network hardware. For this reason, computer science and computer
engineering programs usually require students to take several different courses to learn
the subjects discussed in this book.

Hardware Personnel
Computer hardware vendors employ a variety of people for design, installation, and main-
tenance. Lower-level personnel usually have technical degrees and/or vendor-specific
training, and higher-level personnel usually have degrees in computer science or computer
engineering. Employees must have extensive knowledge of computer hardware, including
processing, data storage, I/O, and networking devices. Hardware designers need the most
in-depth knowledge, far exceeding the scope of this book.

System Managers
The proliferation of computer hardware, software, and networks in today s organizations
has created a need for many computer-related managers and administrators. The job
descriptions vary widely because of differences in organizational structure and the nature
of the organization s information systems and infrastructure. Common job titles include
computer operations manager, network administrator, database administrator, and chief
information officer.

A computer operations manager oversees the operation of a large information proces-
sing facility. These facilities usually house one or more large computer systems and all
related peripheral equipment in a central location. They often have large databases, thou-
sands of application programs, and dozens to hundreds of employees and perform a lot of
batch processing. Organizations requiring this type of computing facility include large

9

Roles and Job Titles

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

banks, credit reporting bureaus, the Social Security Administration, and the Internal Rev-
enue Service. Organizations such as Google and Electronic Data Systems also operate this
type of computing facility for themselves and for clients. Management of day-to-day
operations in these facilities is extremely complex. Scheduling, staffing, security, system
backups, maintenance, and upgrades are some important responsibilities of a computer
operations manager.

A computer operations manager can have many technical specialists on staff. Staff
members usually have considerable technical knowledge in narrow specialties, such as
data storage hardware, network configuration and security, mainframe operating systems,
and performance tuning. A computer operations manager needs a broad base of technical
knowledge to understand the organization s information systems and infrastructure and
must be capable of understanding the advice of technical staff.

Typically, the title of network administrator is applied to one of two roles. The first is
responsibility for an organization s network infrastructure, such as for an Internet service
provider or a large multinational corporation. Designing, operating, and maintaining a
large network require substantial technical expertise in computer hardware, telecommu-
nications, and system software. The role of network administrator in this environment is
an important high-level position. Technical knowledge requirements are similar to those
for a computer operations manager, although the emphasis is on network and data com-
munication technologies.

In a smaller organization, the title of network administrator is used for the manager of
a local area network. These networks connect anywhere from a half dozen to a few hun-
dred computers (mostly desktop and portable computers) and provide access to shared
databases. The network administrator can be responsible for many tasks other than oper-
ating and maintaining the network, including installing and maintaining end-user software,
installing and configuring hardware, training users, and assisting management in selecting
and acquiring software and hardware. This position is one of the most demanding in
breadth and depth of required skills and technical knowledge.

The technology for managing and accessing large collections of data, called databases,
is specialized and highly complex. This complexity, combined with managerial recognition
of the importance of data resources, has resulted in creating many positions with the title
of database administrator. This role requires both technical expertise and the ability to
help the organization make optimal use of its data resources for tasks such as market
research.

A large organization with a substantial investment in computer, network, and software
technology usually has one high-level manager with the title chief information officer
(CIO). Many of the previously defined positions (database administrator, network admin-
istrator, and computer operations manager) report to the CIO. The CIO is responsible for
the organization s computers, networks, software, and data as well as for strategic planning
and the effective use of information and computing technology.

CIOs can t possibly be experts in every aspect of computer technology related to their
organizations, but they must have a broad enough base of technical knowledge to interact
effectively with all the organization s technical specialists. They must also be aware of how
technology is changing and how best to respond to these changes to support an organiza-
tion s mission and objectives.

10

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

COMPUTER TECHNOLOGY INFORMATION SOURCES

This book gives you a foundation of technical knowledge for a career in information sys-
tem development or management. Unfortunately, this foundation can erode quickly
because computer and information technologies change rapidly. How will you keep up
with the changes?

You can use many resources to keep your knowledge current. Periodicals and Web
sites offer a wealth of information on current trends and technologies. Training courses
from hardware and software vendors can teach you the specifics of current products.
Additional coursework and self-study can keep you up to date on technologies and trends
not geared toward specific products. By far, the most important of these activities is
reading periodical literature.

Periodical Literature
The volume of literature on computer topics is huge, so IS professionals face the difficult
task of determining which sources are the most important and relevant. Because of differ-
ences in training and focus among computer professionals, sources of information oriented
toward one specialty are difficult reading for professionals in other specialties. For exam-
ple, a detailed discussion of user interaction and validation of requirement models targeted
to IS professionals might be beyond a computer scientist or engineer s training. Similarly,
detailed descriptions of optical telecommunication theory might be beyond an IS profes-
sional s training. These differences pose a problem for IS professionals who need current
information on hardware and system software technology. The following periodicals are
good information sources for IS professionals:

ACM Computing Surveys (http://surveys.acm.org) An excellent source of
information on the latest research trends in computer software and hardware.
Contains in-depth summaries of technologies or trends geared toward a read-
ership with moderate to high familiarity with computer hardware and software.
Computerworld (www.computerworld.com) A weekly magazine focusing
primarily on computer news items. Covers product releases, trade shows, and
occasional reports of technologies and trends.
Communications of the ACM (http://cacm.acm.org) A widely used source of
information about research topics in computer science. Many of the articles
are highly technical and specialized, but some are targeted to a less
research-oriented audience.
Computer (www.computer.org/computer) A widely used source of infor-
mation on computer hardware and software. Many of the articles are
research-oriented, but occasionally they cover technologies and trends for a
less technical audience.
InformationWeek (www.informationweek.com) An online magazine focus-
ing mainly on computer news items, covering a wide range of computer-
related organizations and technologies.

These periodicals are only a small sample of the available literature. A complete list
of today s recommended periodicals would become out of date quickly because of rapid
changes in computer technology and the computer publishing industry. You can find a

11

Computer Technology Information Sources

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://surveys.acm.org
http://www.computerworld.com
http://cacm.acm.org
http://www.computer.org/computer
http://www.informationweek.com

current list of recommended periodicals in the Research Links section of this book s Web
site (www.cengage.com/mis/burd).

Most periodical publishers have a Web site with content and services that augment
what s available in printed periodicals, such as the following:

Content from back issues
Additional current content that s not included in the printed periodical
Search engines

Figure 1.3 shows the Web site for InformationWeek. Web-based periodicals often
include Web links to article references and other related material. For example, an article
referring to another article in a back issue might contain a link to the back issue. Links to
reference lists and bibliographies can also be included, so the task of accessing background
and reference material is as easy as clicking the mouse. Similarly, reviews of software or
hardware might contain links to product information and specifications on vendor or
manufacturer Web sites. Articles and other postings often include follow-up comments
from readers and links to related blogs.

FIGURE 1.3 The InformationWeek.com home page
Courtesy of InformationWeek.com

12

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengage.com/mis/burd

Technology-Oriented Web Sites
Computer technology is a big business; there are millions of computer professionals
worldwide and many Web sites devoted to serving their needs. Table 1.1 lists some of the
most widely used sites. Check this book s Web site for updates to this table.

Consolidation in periodical publishers has created large corporate families of
technology-related Web sites and publications. These Web sites are owned by, or associated
with, periodical publishers. For example, Computerworld.com is owned by International
Data Group, Inc., which also owns JavaWorld, LinuxWorld, and many other Web sites and
their affiliated print publications. Technology-oriented Web sites serve as a common inter-
face to these publication families. They also enable publishers to provide content and ser-
vices that transcend a single paper publication, such as cross-referencing publications and
sites and offering online discussion groups, blogs, RSS and Twitter newsfeeds, employment
services, and Web-based interfaces to hardware, software, and technology service vendors.

Technology Web sites can make money in several ways. A few companies, such as
the Gartner Group, charge customers for Web-based information and services, but most
companies earn revenue in other ways, including the following:

Advertising
Direct sales of goods and services
Commissions on goods and services sold by advertisers and partners

TABLE 1.1 Technology-related Web sites

Organization URL Description

CNET www.cnet.com Oriented toward consumers of a broad range of
electronics devices but contains some computer
content of interest to IS professionals

Earthweb www.earthweb.com Offers a broad range of information for IS
professionals

Gartner
Group

www.gartnergroup.com A consulting and research company specializing in
services for CIOs and other executive decision makers

Internet.com www.internet.com Contains a broad range of information for IS profes-
sionals, with an emphasis on Internet technology

ITworld www.itworld.com Provides a broad range of information for IS profes-
sionals, with an emphasis on reader-contributed
content

NetworkWorld www.networkworld.com Contains a broad range of information for IS profes-
sionals, with an emphasis on network-related content

TechRepublic www.techrepublic.com Offers a broad range of information for IS
professionals

Techweb www.techweb.com Contains a broad range of information for IS
professionals

Tom s
Hardware

www.tomshardware.com Includes detailed articles covering hardware and
software technologies and product reviews

13

Computer Technology Information Sources

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cnet.com
http://www.earthweb.com
http://www.gartnergroup.com
http://www.internet.com
http://www.itworld.com
http://www.networkworld.com
http://www.techrepublic.com
http://www.techweb.com
http://www.tomshardware.com

Any site that generates revenue from advertising, referrals, commissions, or preferred
partner arrangements might have biased content. Some examples of bias are as follows:

Ordering content, links, or search results to favor organizations that have
paid a fee to the Web site owner
RSS and Twitter newsfeeds emphasizing organizations that have paid a fee to
the Web site owner
Omitting information from organizations that haven t paid a fee to the search
provider
Omitting information that s against the interests of organizations that have
paid a fee to the search provider

C A U T I O N
These same biases might be reflected in general Internet search engines. It s not always obvious to
readers which, if any, of these biases are present in Web sites.

Unbiased information exists on the Web, although it s not always easy to find. The old
saying You get what you pay for applies. High-quality, unbiased information is the prod-
uct of intensive research. Some computer professional societies and government agencies
offer this information as a public service, but much of what you find on the Web is pro-
duced for a profit. Expect to pay for unbiased information. When dealing with publicly
accessible information sources, be sure to use information from several unrelated sources
to balance the biases of each source.

Vendor and Manufacturer Web Sites
Most vendors and manufacturers of computer hardware and software have an extensive
Web presence (see Figure 1.4). Vendor Web sites are oriented toward sales, but they usu-
ally contain detailed information on specific products or links to manufacturer Web sites.
Manufacturer Web sites have detailed information on their products and offer technical
and customer support services.

14

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Manufacturer Web sites are mainly marketing and customer support tools. They sup-
ply technical product information that s far more detailed and current than what s avail-
able in printed brochures and technical documents. The breadth and depth of this
information can help IS professionals make faster, better, and more informed choices. The
downside is that this information is often biased in favor of vendors products and the
technologies they re based on. As with any source of information, you must consider the
provider s motives and objectivity. Hardware and software manufacturers aren t in the
business of providing unbiased information; they re in the business of selling what they
produce. You should expect the content of manufacturer and vendor Web sites to be
biased toward their products.

In the best case, biased content might consist of marketing hype that readers must
wade through or filter out to get to the real information. In the worst case, the information
might be biased purposefully by content, omissions, or both. Many sites include technol-
ogy overviews, often called white papers, and similar information that s presented as
independent research, even though it s not. In addition, some sites have links to biased
supporting reviews or research. It s the reader s responsibility to balance potentially biased
vendor and manufacturer information with information from unbiased sources.

FIGURE 1.4 A typical computer hardware manufacturer s Web page
© 2009 Advanced Micro Devices, Inc. Reprinted with permission.

15

Computer Technology Information Sources

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Professional Societies
Several professional societies are excellent sources of information about computer tech-
nology, including the following:

AITP (www.aitp.org) The membership of the Association for Information
Technology Professionals (AITP) consists mainly of IS managers and appli-
cation developers. AITP has local chapters throughout the country and
publishes several periodicals, including Information Executive.
ACM (www.acm.org) The Association for Computing Machinery (ACM) is
a well-established organization with a primary emphasis on computer sci-
ence. ACM has dozens of special-interest groups, sponsors hundreds of
research conferences each year, and publishes many periodicals and techni-
cal books. The membership represents a broad cross-section of the computer
community, including hardware and software manufacturers, educators,
researchers, IT professionals, and students.
IEEE Computer Society (www.computer.org) The Institute for Electrical
and Electronics Engineers (IEEE) Computer Society is a subgroup of the
IEEE that specializes in computer and data communication technologies. The
membership is largely composed of engineers with an interest in computer
hardware, but many members are interested in software or have academic or
other backgrounds. The IEEE Computer Society sponsors many conferences
(some jointly with the ACM). Its publications include several periodicals,
such as IEEE Computer, and a large collection of technical books and
standards.

16

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.aitp.org
http://www.acm.org
http://www.computer.org

Summary

Developing information systems requires technical knowledge of computer hardware, net-
works, and system software. The type and depth of required knowledge differ among disci-
plines of the Unified Process (UP). A broad base of knowledge is needed for activities in
the business modeling and requirements disciplines. More in-depth knowledge is required
for activities in the implementation, testing, and deployment disciplines.

Technical knowledge is also needed to manage an organization s information systems and
infrastructure, with particular attention to compatibility issues and future trends. Compatibil-
ity is important because organizational units and subsystems typically share computer
hardware and system software. Future trends must be considered in acquisitions because
of the long-term nature of hardware and software investments.

With rapid changes in hardware and software technologies, technical knowledge must be
updated constantly. IS professionals must engage in continuing education and study to
keep pace with these changes. You can get training from vendors, educational organiza-
tions, and self-study, which relies heavily on reading periodical literature and Web
resources. Articles in periodical literature can vary widely in the intended audience and the
background and training you need to understand the material, so be careful when selecting
periodical literature sources.

Information on computer hardware and software is readily available on the Web, including
sites maintained by publishers, vendors, manufacturers, and professional organizations.
You can find a wealth of information, but be cautious because it might be biased or
incomplete.

In this chapter, you ve learned why you need to understand computer technology and how
to keep this knowledge current. In the next chapter, you see an overview of hardware, software,
and networking technology and examine concepts and terms that are explored in detail in the
rest of the book. Your journey through the inner workings of modern information systems is
about to begin.

Key Terms

architectural design

Association for Computing Machinery (ACM)

Association for Information Technology
Professionals (AITP)

business modeling discipline

chief information officer (CIO)

computer operations manager

computer science

database administrator

deployment discipline

design discipline

detailed design

discipline

implementation discipline

information architecture

Institute for Electrical and Electronics
Engineers (IEEE) Computer Society

iteration

network administrator

programmer

requirements discipline

software developers

systems analyst

systems designer

17

Key Terms

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

systems development life cycle (SDLC)

systems programmer

testing discipline

Unified Process (UP)

Vocabulary Exercises

1. Students of information systems generally focus on application software. Students
of generally focus on system software.

2. Configuring hardware and system software is an activity of the UP discipline.

3. IS students and professionals should be familiar with professional societies, such
as , , and .

4. Selecting hardware, network components, and system software is an activity of the
UP discipline.

5. Typically, a(n) is responsible for a large computer center and all the software
running in it.

6. The computer specialties most concerned with hardware and the hardware-software
interface are and computer engineering.

7. During the UP disciplines, the business, its environment, and user requirements
are defined and modeled.

8. The job titles of people responsible for developing application software include ,
, and .

Review Questions

1. How is the knowledge needed to operate complex devices different from the knowledge
needed to acquire and configure them?

2. What knowledge of computer hardware and system software is necessary to perform
activities in the UP business modeling and requirements disciplines?

3. What knowledge of computer hardware and system software is necessary to perform
activities in the UP design and deployment disciplines?

4. What additional technical issues must be addressed when managing a computer center
or campuswide network compared with developing a single information system?

Research Problems

1. The U.S. Bureau of Labor Statistics (BLS) compiles employment statistics for a variety of
job categories and industries and predictions of employment trends by job category and
industry. Most of the information is available on the Web. Go to the BLS Web site (www.
bls.gov) and investigate current and expected employment prospects for IS professionals.

2. You re an IS professional, and your boss has asked you to prepare a briefing for senior
staff on the comparative advantages and disadvantages of three competing tape drive
technologies: Digital Linear Tape (DLT), Advanced Intelligent Tape (AIT), and Linear Tape

18

Chapter 1

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.bls.gov
http://www.bls.gov

Open (LTO). Search the technology Web sites in Table 1.1 for source material to help you
prepare the briefing. Which sites provide the most useful information? Which sites enable
you to find useful information easily?

3. Read several dozen job listings at http://itjobs.computerworld.com or a similar site. Which
jobs (and how many) require a broad knowledge of computer technology? At what level are
these jobs? Try searching the listings based on a few specific keywords, such as data-
base, developer, and network. Examine the companies that are hiring and where their
job postings show up in search results. Can you draw any conclusions about how the
listings are ordered?

19

Research Problems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://itjobs.computerworld.com

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R 2
INTRODUCTION TO SYSTEMS
ARCHITECTURE

C H A P T E R G O A L S

Discuss the development of automated computing

Describe the general capabilities of a computer

Describe computer hardware components and their functions

List computer system classes and their distinguishing characteristics

Define the roles, functions, and economics of application and system
software

Describe the components and functions of computer networks

Computer systems are complex combinations of hardware, software, and network components. The

term systems architecture describes the structure, interaction, and technology of computer system

components. The term architecture is a misnomer, however, because it implies a concern with only

static structural characteristics. In this book, you also learn about the dynamic behavior of a computer

system that is, how its components interact as the computer operates.

This chapter lays the foundation for the book with a brief discussion of the major components

and functions of hardware, software, and networks. Each component is described in detail in later

chapters. Avoid the temptation to rush through this chapter because it s as important to know how all

a computer system s components interrelate as it is to know their internal workings.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

AUTOMATED COMPUTATION

A simple definition of a computer is any device that can do the following:

Accept numeric inputs.
Perform computational functions, such as addition and subtraction.
Communicate results.

This definition captures a computer s basic functions, but it can also apply to people
and simple devices, such as calculators. These functions can be implemented by many
methods and devices. For example, a modern computer might perform computation elec-
tronically (using transistors in a microprocessor), store data optically (using a laser and an
optical disc s reflective coating), and communicate with people by using a combination
of electronics and mechanics, such as the mechanical and electrical components of a
printer. Some experimental computers have even used quantum physics to perform data
storage and computation.

Mechanical Implementation
Early mechanical computation devices were built to perform repetitive mathematical
calculations. The most famous of these machines is the Difference Engine, built by Charles
Babbage in 1821 (see Figure 2.1), which computed logarithms by moving gears and other
mechanical components. Many other mechanical computation machines were developed
well into the 20th century. Mechanical computers were used during World War II to com-
pute trajectory tables for naval guns and torpedoes, and bookkeepers and accountants
used mechanical adding machines as late as the 1970s.

FIGURE 2.1 Charles Babbage s Difference Engine
Courtesy of Science Museum/Science & Society Picture Library

22

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The common element in all these computation devices is a mechanical representation
of a mathematical calculation. A mechanical clock is driven by a spring and pendulum,
and each swing of the pendulum allows a gear to move one step under pressure from the
spring. As the pendulum swings, the gears advance the clock s hands. The user inputs the
current time by adjusting the hour and minute hands manually. Starting the pendulum in
motion activates a calculation that repeatedly increments the current time and displays
the result by using the clock hands and numbers printed on the clock face.

Mechanical computation devices can also perform more complex calculations. For
example, whole numbers can be multiplied by repeated addition. A machine capable of
addition can perform multiplication by executing the addition function multiple times.
(For example, 6 times 3 can be calculated by adding 6 plus 6, storing the result temporar-
ily, and then adding 6 a third time.) Combinations of moving parts can also be used to
perform complex functions, such as logarithms and trigonometric functions.

Mechanical computation has some inherent limitations and shortcomings, such as the
following:

Complex design and construction
Wear, breakdown, and maintenance of mechanical parts
Limits on operating speed

Automated computation with gears and other mechanical parts requires a complex set
of components that must be designed, manufactured, and assembled to exacting specifica-
tions. As the complexity of the computational function increases, the complexity of the
mechanical device performing it also increases, exacerbating problems of design,
construction, wear, and maintenance.

Electronic Implementation
Much as the era of mechanical clocks gave way to the era of electrical clocks, the era of
mechanical computation eventually gave way to electronic computers. The biggest impe-
tus for the change to electronic computing devices came during World War II. The military
needed to solve many complex computational problems, such as navigation and breaking
enemy communication codes. The mechanical devices of the time were simply too slow
and unreliable.

In an electronic computing device, the movement of electrons performs essentially the
same functions as gears and wheels in mechanical computers. Numerical values are stored
as magnetic charges or by positioning electrical switches rather than gears and wheels.
When necessary, electromechanical devices convert physical movement into electrical
signals or vice versa. For example, a keyboard converts the mechanical motion of key-
strokes into electrical signals, and ink pumps in an inkjet printer convert electrical signals
into mechanical motion to force ink through a nozzle and onto paper.

Electronic computers addressed most shortcomings of mechanical computation. They
were faster because of the high speed of moving electrons, and as electronic devices and
fabrication technology improved, they became more reliable and easier to build than their
mechanical counterparts. Electronic computers made it possible to perform complex cal-
culations at speeds previously thought impossible. Larger and more complex problems
could be addressed, and simple problems could be solved much faster.

23

Automated Computation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Optical Implementation
Light can also be used as a basis for computation. A particle of light, called a photon,
moves at a high rate of speed. As with electrons, a moving photon s energy can be har-
nessed to perform computational work. Light can be transmitted over conductors, such as
laser light through a fiber-optic cable. Data can be represented as pulses of light and stored
directly (such as storing an image as a hologram) or indirectly by reflective materials
(such as the surface of a DVD).

Optical data communication is now common in computer networks that cover large
distances. Optical discs are widely used for video and other data types. Some input/output
devices (laser printers and optical scanners) are based on optical technologies and devices,
and experimental optical computer processors have been developed. Optical and hybrid
electro-optical devices connect system components in some experimental and high-
performance computers.

Optics are expected to gradually supplant electronics during the 21st century,
although the rate of change is unknown and will likely vary across computing applications.
In theory, optics have clear advantages in each area of computing technology. Optical sig-
nals can carry more data than electrical signals, and optical storage media can store more
data in a given physical space than magnetic or electrical media can. In addition, optical
processors might be easier to fabricate than current processors and are better matched to
optical communication technologies. However, turning the theoretical advantages of opti-
cal technology into more capable computer components will require time and resources.
There s also the possibility that yet-to-be-developed technologies will eclipse optics in
some or all areas of computing.

T E C H N O L O G Y F O C U S

Quantum Computing

Current computer technology is based on principles of classical physics developed during
the 17th through 20th centuries, including electronics, magnetism, and optics. These
principles are based on mathematical rules describing the behavior of matter at the level
of atoms, molecules, and larger units. By manipulating matter at these levels, mechani-
cal, electrical, and optical processors perform the mathematical functions underlying
classical physics.

Quantum physics describes the behavior of matter differently at a subatomic level.
For example, in classical physics, an atom or a molecule has a specific position in space
at any point in time. In quantum physics, a subatomic particle, such as a photon, can be
in multiple places at one time. Larger particles can also be in multiple states at once,
although only one state can be observed at any time.

As with classical physics, quantum physics describes subatomic behavior with math-
ematical rules. The rules differ from classical physics and are often more complex, but
they re still rules based on specific computations. In theory, a processor that manipulates
matter at the quantum level can perform quantum mathematics calculations.

In a modern digital computer, data is represented by groups of bits, each having a
clearly defined binary physical state. For example, a bit value might be represented by a
switch that s open or closed or an atom with a positive or negative electrical charge.
Each bit has two possible states, representing the values 0 and 1. Each bit, obeying the
rules of classical physics, must represent 0 or 1 at any specific time. A processor that

(continued)

24

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

manipulates a bit by using principles of classical physics sees only one physical state
and produces only one computational result per bit.

At the quantum level, matter can be in multiple states at the same time. Just as
a photon can be in two places at once, an atom can be both positively and negatively
charged at the same time. In effect, the atom stores both 0 and 1 at the same time. This
atom, or any other matter that stores data in multiple simultaneous quantum states, is
called a qubit.

At first glance, a qubit might seem like little more than a physicist s toy, but the
capability to store two data values at once has important advantages when tackling
certain computational problems, such as cryptography. One advantage comes from
increased storage capacity. In classical physics, a group of 3 bits can store only one of
eight (23) possible values at a time. A group of 3 qubits can store all eight possible values
at once, an eightfold increase in storage capacity.

Another advantage is computational efficiency. A computer that can manipulate
3 qubits at the quantum level can perform a calculation on all eight values at the same
time, producing eight different results at once. A conventional computer must store these
eight values separately and perform eight different computations to produce eight results.
As the number of qubits increases, so does a quantum computer s comparative effi-
ciency. For example, a 64-bit quantum computer is 264 times more efficient than a 64-bit
conventional computer.

Some prototype components for quantum computing have already been built,
although a fully functional quantum computer has yet to be demonstrated publicly.
Figure 2.2 shows two prototype quantum cryptography systems used in 2004 to encrypt
messages sent across the Internet.

FIGURE 2.2 Prototype quantum cryptography systems
Courtesy of BBN Technologies

25

Automated Computation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

COMPUTER CAPABILITIES

All computers are automated computing devices, but not all automated computing devices
are computers. The main characteristics distinguishing a computer from other automated
computation devices include the following, discussed in more detail in the next sections:

General-purpose processor capable of performing computation, data move-
ment, comparison, and branching functions
Enough storage capacity to hold large numbers of program instructions
and data
Flexible communication capability

Processor
A processor is a device that performs data manipulation and transformation functions,
including the following:

Computation (addition, subtraction, multiplication, and division)
Comparison (less than, greater than, equal to, and not equal to)
Data movement between memory, mass storage, and input/output (I/O) devices

An instruction is a signal or command to a processor to perform one of its functions.
When a processor performs a function in response to an instruction, it s said to be
executing that instruction.

Each instruction directs the processor to perform one simple task (for example, add
two numbers). The processor performs complex functions by executing a sequence of
instructions. For example, to add a list of 10 numbers, a processor is instructed to add
the first number to the second and store the result temporarily. It s then instructed to add
the stored result to the third number and store that result temporarily.

More instructions are issued and executed until all 10 numbers have been added. Most
useful computational tasks, such as recalculating a spreadsheet, are accomplished by exe-
cuting a long sequence of instructions called a program. A program is a stored set of
instructions for performing a specific task, such as calculating payroll or generating pay-
checks and electronic fund transfers. Programs can be stored and reused over and over.

A processor can be classified as general purpose or special purpose. A general-purpose
processor can execute many different instructions in many different sequences or combi-
nations. By supplying it with a program, it can be instructed to perform a multitude of
tasks, such as payroll calculation, text processing, or scientific calculation.

A special-purpose processor is designed to perform only one specific task. In essence,
it s a processor with a single internal program. Many commonly used devices, such as
automobiles, kitchen appliances, and MP3 players, contain special-purpose processors.
Although these processors or the devices containing them can be called computers, the
term computer usually refers to a device containing a general-purpose processor that
can run a variety of programs.

Formulas and Algorithms

Some processing tasks require little more than a processor s computation instructions. For
example, take a look at the following calculation:

GROSS PROFIT QUANTITY SOLD SELLING PRICE - SELLING EXPENSES

26

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The only processor functions needed to compute GROSS_PROFIT are multiplying,
subtracting, and storing and accessing intermediate results. In statement 30 (see Figure 2.3),
QUANTITY_SOLD and SELLING_PRICE are multiplied, and the result is stored temporarily
as INTERMEDIATE_RESULT. In statement 40, SELLING_EXPENSES is subtracted from
INTERMEDIATE_RESULT. The GROSS_PROFIT calculation is a formula. A processor
executes a sequence of computation and data movement instructions to solve a formula.

Computer processors can also perform a more complex type of processing task called
an algorithm, a program in which different sets of instructions are applied to different data
input values. The program must make decisions to determine what instructions to execute
to produce correct data output values. Depending on the data input values, different sub-
sets of instructions might be executed. In contrast, all the instructions that implement a
formula are always executed in the same order, regardless of the data input.

The procedure for computing U.S. income tax is an example of an algorithm. Figure 2.4
shows income tax computation formulas. Note that different income values require different
formulas to calculate the correct tax amount. A program that computes taxes based on this
table must execute only the set of instructions that implements the correct formula for a
particular income value.

FIGURE 2.3 A BASIC program to compute gross profit
Courtesy of Course Technology/Cengage Learning

FIGURE 2.4 A tax table
Courtesy of Course Technology/Cengage Learning

27

Computer Capabilities

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Comparisons and Branching

Decisions in a processing task are based on numerical comparisons. Each numerical
comparison is called a condition, and the result of evaluating a condition is true or false.
In the tax example, the income value is compared with the valid income range for each
formula. Each formula is implemented as a separate instruction or set of instructions in
the program. When a comparison condition is true, the program branches (jumps) to the
first instruction that implements the corresponding formula.

In Figure 2.5, a BASIC program uses comparison and branching instructions to
calculate income taxes. In statements 20, 50, 80, 110, and 140, INCOME is compared with
the maximum income applicable to a particular tax calculation formula. The comparison
result (either true or false) determines which instruction is executed next. If the compari-
son condition is false, the next program instruction is executed. If the comparison condi-
tion is true, the program jumps to a different point in the program by executing a GOTO,
or branch, instruction.

Comparison instructions are part of a group of logic instructions, implying a
relationship to intelligent decision-making behavior. A general-purpose processor in a com-
puter is more restricted in comparative capabilities than a person is. A person can compare
complex objects and phenomena and handle uncertainty in the resulting conclusions,
whereas a computer can perform only simple comparisons (equality, less than, and greater
than) with numeric data, in which the results are completely true or completely false.
Despite these limitations, comparison and branching instructions are the building blocks of
all computer intelligence. They re also the capabilities that distinguish a computer processor
from processors in simpler automated computation devices, such as calculators.

10 INPUT INCOME
20 IF INCOME > 8350 THEN GOTO 50
30 TAX = INCOME * 0.10
40 GOTO 180
50 IF INCOME > 33950 GOTO 80
60 TAX = 835.00 + (INCOME - 8350) * 0.15
70 GOTO 180
80 IF INCOME > 82250 GOTO 110
90 TAX = 4675.00 + (INCOME - 33950) * 0.25
100 GOTO 180
110 IF INCOME > 171550 GOTO 140
120 TAX = 16750.00 + (INCOME - 82250) * 0.28
130 GOTO 180
140 IF INCOME > 372950 GOTO 170
150 TAX = 41754.00 + (INCOME - 171550) * 0.33
160 GOTO 180
170 TAX = 108216.00 + (INCOME - 372950) * 0.35
180 OUTPUT TAX
190 END

FIGURE 2.5 A BASIC program to calculate income taxes
Courtesy of Course Technology/Cengage Learning

28

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Storage Capacity
A computer stores a variety of information, including the following:

Intermediate processing results
Data
Programs

Because computers break complex processing tasks into smaller parts, a computer
needs to store intermediate results (for example, the variable INTERMEDIATE_RESULT on
line 30 in Figure 2.3). Programs that solve more complex, real-world problems might gener-
ate and access hundreds, thousands, or millions of intermediate results during execution.

Larger units of data, such as customer records, transactions, and student transcripts,
must also be stored for current or future use. A user might need to store and access thou-
sands or millions of data items, and a large organization might need to store and access
trillions of data items. This data can be used by currently running programs, held for
future processing needs, or held as historical records.

Programs must also be stored for current and future use. A simple program can
contain thousands of instructions, and complex programs can contain millions or billions
of instructions. A small computer might store thousands of programs, and a large
computer might store millions of programs.

Storage devices vary widely in characteristics such as cost, access speed, and
reliability. A computer uses a variety of storage devices because each device provides
storage characteristics best suited to a particular type of data. For example, program
execution speed is increased when the processor can access intermediate results, current
data inputs, and instructions rapidly. For this reason, they re stored in devices with high
access speeds but usually high costs, too. Programs and data held for future use can be
stored on slower and less expensive storage devices. Data that must be transported
physically is stored on removable media storage devices, such as DVDs or USB drives,
which are slower and sometimes less reliable than fixed media devices.

Input/Output Capability
Processing and storage capabilities are of little use if a computer can t communicate with
users or other computers. A computer s I/O devices must encompass a variety of communi-
cation modes sound, text, and graphics for humans and electronic or optical communica-
tion for other computers. A typical small computer has up to a dozen I/O devices, including a
video display, keyboard, mouse, printer, and modem or network interface. A large computer
can have many more I/O devices (for example, multiple printers and network interfaces) and
might use substantially more powerful and complex devices than a smaller computer does.

COMPUTER HARDWARE

Not surprisingly, computer hardware components parallel the processing, storage, and
communication capabilities just outlined (see Figure 2.6). Computer hardware has four
major functions:

Processing Executing computation, comparison, and other instructions to
transform data inputs into data outputs

29

Computer Hardware

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Storage Storing program instructions and data for temporary, short-term,
and long-term use
External communication Communicating with entities outside the
computer system, including users, system administrators, and other
computer systems
Internal communication Transporting data and instructions between
internal and peripheral hardware components, such as processors, disk
drives, video displays, and printers

All computer systems include hardware to perform each function. However, each
function isn t necessarily implemented in a single device. For example, a computer pro-
cessor performs processing and some storage functions, and external communication is
handled by many hardware devices, such as keyboards, video displays, modems, network
interface devices, sound cards, and speakers.

Figure 2.7 shows the hardware components of a computer system. The
number, implementation, complexity, and power of these components can vary sub-
stantially from one computer system to another, but the functions performed are
similar.

The central processing unit (CPU) is a general-purpose processor that executes all
instructions and controls all data movement in the computer system. Instructions and
data for currently running programs flow to and from primary storage. Secondary storage
holds programs that aren t currently running as well as groups of data items that are too
large to fit in primary storage. It can be composed of several different devices (for exam-
ple, magnetic disk drives, optical disc drives, and solid-state drives), although only one
device is shown in Figure 2.7.

Input/output (I/O) units perform external communication functions. Two I/O units
are shown in Figure 2.7, although a typical computer has many more. The system bus is
the internal communication channel connecting all hardware devices.

FIGURE 2.6 The major functions of computer hardware
Courtesy of Course Technology/Cengage Learning

30

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Central Processing Unit
Figure 2.8 shows components of the CPU, which include the following:

Arithmetic logic unit
Registers
Control unit

The arithmetic logic unit (ALU) contains electrical circuits that carry out each
instruction. A CPU can execute dozens or hundreds of different instructions. Simple
arithmetic instructions include addition, subtraction, multiplication, and division. More
advanced computation instructions, such as exponentiation and logarithms, can also be
implemented. Logic instructions include comparison (equal to, greater than, less than) and
other instructions discussed in Chapter 4.

The CPU contains a few internal storage locations called registers, each capable of
holding a single instruction or data item. Registers store data or instructions that are
needed immediately or frequently. For example, each of two numbers to be added is
stored in a register. The ALU reads these numbers from the registers and stores the sum in
another register. Because registers are located in the CPU, other CPU components can
access their contents quickly.

The control unit has two primary functions:

Control movement of data to and from CPU registers and other hardware
components.
Access program instructions and issue appropriate commands to the ALU.

FIGURE 2.7 The hardware components of a computer system
Courtesy of Course Technology/Cengage Learning

31

Computer Hardware

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As program instructions and data are needed, the control unit moves them from
primary storage to registers. The control unit examines incoming instructions to
determine how they should be processed. It routes computation and logic instructions to
the ALU for processing and executes data movement instructions to and from primary
storage, secondary storage, and I/O devices.

System Bus
The system bus is the main channel for moving data and instructions to and from
hardware components, and its capacity is a critical factor in computer performance.
A powerful CPU needs a high-capacity system bus to keep it supplied with instructions and
data from primary storage. Bus capacity is also important for secondary storage and I/O
device performance.

Primary Storage
Primary storage contains millions or billions of storage locations that hold currently
executing program instructions as well as data being processed by these instructions.
Primary storage is also referred to as main memory, or simply memory. A running
program moves instructions and data continually between main memory and the
CPU. Because the CPU is a fast device, main memory devices must be capable of
rapid access.

In current computer hardware, main memory is implemented with silicon-based
semiconductor devices commonly called random access memory (RAM). RAM provides

FIGURE 2.8 Components of the CPU
Courtesy of Course Technology/Cengage Learning

32

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the access speed the CPU requires and allows the CPU to read from or write to specific
memory locations. Unfortunately, RAM can be expensive, which often limits the amount
of main memory a computer system can include.

Another problem with RAM is that it doesn t provide permanent storage. When the
power is turned off, RAM s contents are lost. This characteristic is called volatility. Any
type of storage device that can t retain data values indefinitely is said to be volatile. In
contrast, storage devices that retain data values permanently are said to be nonvolatile.
Because of the volatility and limited capacity of primary storage, a computer system must
have other devices to store data and programs for long periods.

Secondary Storage
Secondary storage is composed of high-capacity nonvolatile storage devices that hold the
following:

Programs not currently running
Data not needed by currently running programs
Data needed by currently running programs that doesn t fit in available
primary storage

In a typical information system, the number of programs and amount of data are quite
large. A typical computer system must have much more secondary storage capacity than
primary storage capacity. For example, a microcomputer might have 4 billion primary
storage locations and 500 billion secondary storage locations. Table 2.1 summarizes
differences in the content and implementation of storage devices.

Secondary storage devices are constructed with slower and less expensive technology
to keep total cost within acceptable limits. The most common secondary storage devices
are magnetic disks, optical discs, and magnetic tape. Magnetic disks provide fast access
compared with optical discs and magnetic tapes. Optical discs provide high-capacity por-
table storage at a low cost per gigabyte. Magnetic tape offers the slowest but cheapest
storage method.

TABLE 2.1 Comparison of storage types

Storage type Implementation Content Typical quantity

CPU registers High-speed electri-
cal devices in the
CPU

Currently executing instruc-
tions and associated data
inputs and outputs

Several dozen to a few
hundred instructions
and data items

Primary storage High-speed electri-
cal devices (RAM)
outside but close
to the CPU

Currently running programs
and data needed immediately
(if they fit in primary storage)

1 to 8 billion data items
per CPU

Secondary
storage

Low-speed electro-
magnetic and
optical devices

Programs not currently run-
ning and data not currently
being accessed by programs

Billions (gigabytes),
trillions (terabytes), or
quadrillions (peta-
bytes) of data items

33

Computer Hardware

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Input/Output Devices
The variety of I/O devices in modern computers addresses the many different forms of
human-to-computer and computer-to-computer communication. From an architectural
perspective, each I/O device is a separate hardware component attached to the
system bus. All I/O devices interact similarly with other hardware devices, but their
internal implementation varies depending on the exact form of communication they
support.

I/O devices can be classified broadly into human-oriented and computer-oriented
communication devices. Examples of input devices for human use include keyboards,
pointing devices (such as a mouse or trackball), and voice-recognition devices. The
purpose of these devices is to accept input from a person (voice, touch, or physical
movement) and convert this input into something the computer can understand (electrical
signals). Output devices for human use include video displays, printers, and devices for
speech and sound output. All these devices convert electrical signals into a format that a
person can understand, such as pictures, words, or sound. Computer-oriented I/O devices
include modems and network interface devices, which handle communication between
computer systems or between a computer and a distant I/O device.

COMPUTER SYSTEM CLASSES

Computer systems are available in many configurations that vary in CPU power, storage
capacity, I/O capacity, number of simultaneous users, and intended application software.
Computer systems can be grouped loosely into the following classes:

Microcomputer
Portable
Midrange computer
Mainframe
Supercomputer

A microcomputer is a computer system designed to meet a single user s information-
processing needs. It can also be called a personal computer (PC) or workstation. Portable
computers, such as laptops, netbooks, and handheld computers, are also microcomputers.
Examples of tasks performed with microcomputers include word processing, computer
games, Web browsing, and small to medium application programs, such as programs to
compute a person s income tax, calculate budgets for a home or small business, and
compute payroll for a small business.

N O T E
To some people, the terms personal computer and workstation are interchangeable. To others, the
term workstation implies a more powerful system than a typical PC, particularly one used in scientific
and engineering organizations. Processing tasks in these organizations require more hardware power
than typical business and home processing do. Examples of hardware-intensive tasks include complex
mathematical computation, computer-aided design (CAD), and manipulation of high-resolution video
images. The power of a workstation is often similar to that of a midrange computer (described later in
this section), but a workstation s overall design is targeted toward a single-user operating environment.

34

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Portable microcomputers have proliferated as the cost and size of computer
components have decreased and battery technology has improved. Current portable
microcomputer types include the following:

A laptop computer is a full-featured microcomputer with an integrated
display (typically 12 to 17 inches measured diagonally) and a battery; a
laptop rivals traditional microcomputers in power and cost.
A netbook computer is a laptop computer that emphasizes small size, reduced
weight, low cost, and wireless networking and is capable of performing only
light-duty tasks, such as Web browsing, e-mailing, and word processing.
A personal digital assistant (PDA) is a handheld computer, usually integrated
with a cell phone, that supports light-duty tasks.

A midrange computer, sometimes called a minicomputer, is designed to provide
information processing for multiple users and run many application programs simulta-
neously. Supporting multiple users and programs requires fairly powerful processing, stor-
age, and I/O subsystems and more sophisticated system software than is typically installed
on microcomputers.

There are many ways of supporting multiple users. They can be connected to a
computer system with simple I/O devices, such as video display terminals. In this case,
processing, data storage, and network communication are handled by the shared
computer system. Multiple users can also share resources (for example, printers, data-
bases, and Web sites). A midrange computer can support several dozen people using video
display terminals or respond to a few hundred simultaneous requests for shared resources.

A mainframe computer system handles the information-processing needs of a large
number of users and applications. It can support hundreds of people using video display
terminals, run hundreds or thousands of programs at one time, and respond to thousands of
simultaneous requests for shared resources. Typical use might involve 250 users entering
customer orders, several programs generating reports, dozens of users querying a large data-
base s contents, and an operator making backup copies of disk files all at the same time.

The feature that distinguishes mainframes from other computer classes is the capa-
bility to store large quantities of data and move it from one place to another quickly. Data
can be moved between up to several dozen or a few hundred CPUs, hundreds or thou-
sands of secondary storage devices, and hundreds or thousands of users connected via
a network. Fast CPUs and large amounts of primary and secondary storage are also
required, but a mainframe is optimized primarily for rapid and efficient data movement.

A supercomputer is designed for one purpose rapid mathematical computation
(billions, trillions, or more computations per second). Supercomputers are used for
computation-intensive applications, such as simulations, 3D modeling, weather prediction,
computer animation, and real-time analysis of large databases. These tasks require hun-
dreds or thousands of CPUs with the highest possible computational speed. Storage and
communication requirements are also extremely high but are secondary to computational
speed and often delegated to other computers accessed via a high-speed network. Super-
computers use the most up-to-date (and expensive) computer technology.

The term server can describe computers as small as microcomputers and as large
as supercomputers. It doesn t imply a minimum set of hardware capabilities; instead, it
implies a specific mode of use. A server is a computer system that manages shared

35

Computer System Classes

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

resources, such as file systems, databases, Web sites, printers, and high-speed CPUs, and
allows users to access these resources over a local or wide area network.

Server hardware capabilities depend on the resources being shared and the number of
simultaneous users. For example, an ordinary microcomputer might be more than ade-
quate for a dozen users on a local area network sharing a file system and two printers.
A mainframe server might be needed for sharing more demanding resources, such as large
databases accessed by thousands of users. Supercomputer servers are sometimes used to
augment the computational capabilities of workstations used for CAD and animation.

Table 2.2 summarizes the configuration and capabilities of each class of computer sys-
tem. Each class is represented by a typical model available in 2009, but keep in mind that
specifications and performance are in a constant state of flux. Rapid advances in computer
technology lead to rapid performance improvements as well as redefinitions of computer
classes and specifications in each class. There s also a technology pecking order that is, the
newest and most expensive hardware and software technology usually appear first in super-
computers. As experience is gained and costs decrease, these technologies move downward
to the less powerful and less costly computer classes.

Several factors blur the lines between computer classes. One is the ability to con-
figure subsystems, such as processors, primary and secondary storage, and I/O. For exam-
ple, a microcomputer can be configured to support some multiuser applications simply

TABLE 2.2 Representative products in various computer classes (2009)

Class
Typical
product Typical specifications

Approxi-
mate cost CPUs

Portable Dell Latitude
E6400

4 billion main memory cells
250 billion disk storage cells
Rewritable DVD drive
14-inch display

$1150 2

Microcomputer Dell Optiplex
760

4 billion main memory cells
500 billion disk storage cells
Rewritable DVD drive

$1000 2

Workstation Dell Precision
T7500

12 billion main memory cells
1.5 trillion disk storage cells
Rewritable high-capacity DVD drive
Dual high-speed 3D graphics processors

$8350 8

Midrange Dell PowerEdge
T610

16 billion main memory cells
4 trillion high-speed disk storage cells
High-speed fault-tolerant storage
subsystem
Tape backup

$15,050 8

Mainframe IBM Z10 E64 512 billion main memory cells
100 trillion high-speed disk storage cells
High-capacity tape archive system
Four high-speed network interfaces

$500,000 64

Supercomputer IBM Blue
Gene/P

2 trillion main memory cells
No internal disk storage

$1,300,000 4096

36

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

by upgrading the capacity of a few subsystems and installing more powerful system
software.

Another factor is virtualization, a technique that divides a single computer s capacity
among multiple virtual machines. For example, an organization might buy a single mainframe
and divide its capacity among several virtual servers: one for Web services, another for data-
base management, another for background applications, and another for e-mail services.
Each virtual machine is a collection of files on the physical server that define the virtual
machine s configuration and the contents of its virtual disk drives (including the operating
system and other software). When a virtual machine is powered on, it s connected to physical
resources on the host machine, such as CPUs, memory, network interfaces, and disk drives.

Virtualization offers flexibility in server configuration and deployment, including the
ability to resize virtual machines easily to match changing requirements. It also enables an
organization to move a virtual machine from one physical computer to another simply by
copying its files across a network. With this technique, an organization can also clone virtual
servers on multiple physical servers to increase capacity or provide service redundancy.

T E C H N O L O G Y F O C U S

IBM POWER-Based Computer Systems

International Business Machines (IBM) introduced the POWER CPU architecture in 1990.
With this CPU, IBM broke away from its previous designs and laid the foundation for two
decades of future computer systems. POWER CPUs have been incorporated into systems
ranging from workstations to supercomputers.

The POWER architecture has been through several generations and variations since
1990. The latest generation is called the POWER7 and incorporates IBM s latest micro-
processor technologies, including the following:

45-nanometer fabrication technology
Up to eight CPUs (cores) per microprocessor
Multiple on-chip memory caches

As of this writing, POWER7-based computer systems aren t available yet. Table 2.3
summarizes sample computer systems based on POWER6 CPUs.

The pSeries 520 is a midrange computer based on a single POWER6 microprocessor
with one, two, or four processing cores (microprocessors with multiple processing cores,
discussed in detail in Chapter 6). A single POWER6 core can operate as two virtual

TABLE 2.3 IBM system configurations for POWER6 CPUs (2009)

Model System type Number of CPUs CPU speed Memory capacity

pSeries 520 Midrange 1 4 4.7 GHz 2 64 GB

pSeries 595 Mainframe 8 64 5.0 GHz 16 4096 GB

pSeries 575 Supercomputer
node

32 4.7 GHz 32 256 GB

(continued)

37

Computer System Classes

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

processors via a technique IBM calls simultaneous multithreading. (A similar technique
in Intel CPUs is called hyperthreading.) Internal disk capacity is up to 2.7 terabytes
(TB), but the system can be expanded well beyond this limit with external storage units.

The pSeries 595 is a large-capacity mainframe with many possible uses. One use is
as a large storage or database server accessing up to 2200 disk drives. Another use is as a
virtualization platform hosting a few dozen high-capacity or many smaller-capacity vir-
tual machines. The pSeries 595 can be configured for high I/O capacity, high storage
capacity, high computational speed, or any combination of these capabilities.

The pSeries 575 is optimized for high computational performance and data transfer
capacity between CPUs and between CPUs and memory. pSeries 575 computers are
building blocks for supercomputer clusters. Multiple computers are linked by high-speed
network connections to achieve very high computational capacity. As of this writing, the
largest supercomputers (two identical clusters) based on the pSeries 575, containing
8384 CPU cores in each cluster, are used by the European Centre for Medium-Range
Weather Forecasts (see Figure 2.9).

Multicomputer Configurations
A final factor that blurs distinctions between computer classes is the trend toward
multicomputer configurations. Simply put, a multicomputer configuration is any arrange-
ment of multiple computers used to support specific services or applications. There are a
variety of common multicomputer configurations, including clusters, blades, and grids.

A cluster is a group of similar or identical computers, connected by a high-speed
network, that cooperate to provide services or run a single application. A Web server farm
is one example of a cluster. Incoming Web service requests are routed to one of a set of
Web servers, each with access to the same content. Any server can respond to any

FIGURE 2.9 One of two supercomputer clusters at the European Centre for Medium-Range
Weather Forecasts
Courtesy of European Centre for Medium-Range Weather Forecasts

38

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

request, so the load is distributed among the servers. In effect, the cluster acts as a single
large Web server. Modern supercomputers are another example of clustering, with dozens
to thousands of identical computers operating in parallel on different portions of a large
computational problem.

The advantages of a cluster include scalability and fault tolerance. Overall capacity can be
expanded or reduced by adding or subtracting servers from the cluster, which is usually sim-
pler than adding or subtracting capacity from a single larger computer. Also, if any one com-
puter fails, the remaining computers continue to function, thus maintaining service availability
at a reduced capacity. Clusters can be replicated in multiple locations for additional fault tol-
erance. The main disadvantages of clusters are complex configuration and administration.

A blade is a circuit board that contains most of a server. Typically, a blade has one or
more CPUs, memory areas, and network interfaces. It lacks secondary storage, external
I/O connections, and a power supply. Up to a dozen or so blades can be installed in a
single cabinet, which also contains a shared power supply and external I/O connections.
Secondary storage is typically provided by a storage server placed near the blade cabinet.

In essence, a blade is a specialized cluster. It has the same advantages and disadvan-
tages as a cluster, although modifying a cluster of blades is usually simpler than modifying
a cluster of stand-alone computers. Blades also concentrate more computing power in less
space and with lower power requirements than a typical cluster needs.

A grid is a group of dissimilar computers, connected by a high-speed network, that
cooperate to provide services or run a shared application. Besides dissimilarity of the
component computers, grids have three other differences from clusters:

Computers in a cluster are typically located close to one another (for exam-
ple, in the same room or rack). Computers in a grid might be in separate
rooms or buildings or even on different continents.
Computers in a cluster are connected by dedicated high-speed networks
that enable them to exchange information rapidly. Computers in a grid are gen-
erally connected by ordinary network connections that serve multiple purposes.
Computers in a cluster work exclusively on the same services or applications.
Computers in a grid work cooperatively at some times and independently at
others.

Grids are typically implemented by installing software on each machine that accepts
tasks from a central server and performs them when not busy doing other work. For
example, all the desktop computers in a building could form a grid that performs
computation-intensive tasks at night or on weekends. Grids of mainframes or supercom-
puters are sometimes used to tackle computation-intensive research problems.

A cloud is a set of computing resources with two components:

Front-end interfaces Typically Web sites or Web-based services that users
interact with
Back-end resources A large collection of computing and data resources, typi-
cally organized with a combination of cluster- and grid-based architectures;
used to provide sites or services to users through the front-end interface

A cloud isn t a specific multicomputer configuration. Rather, it s a specific way of
organizing computing resources for maximum availability and accessibility with minimum

39

Computer System Classes

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

complexity in the user or service interface. Users see only the front-end interface, not the
myriad computing resources behind it. They re unaware of details such as computer sys-
tem sizes, organization of stored data, geographical distribution, and redundancy. Clouds
typically make use of both multicomputer configuration and virtualization, which make
them fault tolerant (because of redundancy) and flexible enough to respond rapidly to
changes in resource access patterns. The computing infrastructure and services of many
service providers, such as Google and MSN, are organized as a cloud.

T E C H N O L O G Y F O C U S

Folding@Home Distributed Computing

Proteins are complex chains of amino acids that act as structural elements of living tissue,
enzymes to initiate chemical reactions, and antibodies to fight disease. Although the struc-
ture of the human genome and, therefore, the blueprint of all human proteins has been
mapped, chemical reactions in proteins still aren t understood well. A crucial aspect of
protein chemistry is protein folding. In many chemical reactions, proteins must first
assemble themselves into special shapes by folding parts of their structure (see Figure
2.10). Correct protein folding is necessary for biological processes, and folding errors are
associated with many diseases, such as Alzheimer s and cystic fibrosis.

Biochemistry researchers at Stanford University wanted to use computers to simulate
protein folding, but they faced a dilemma. Because proteins are highly complex mole-
cules, simulating correct and incorrect folding requires many CPUs. Tackling the simula-
tions these researchers envisioned would have required large, expensive supercomputers,
and the funds to buy them weren t available. By cooperating with computer science
researchers, they were able to address the problem by using grid computing.

The CPU in a typical PC has roughly the same power as a single CPU in a super-
computer. What differentiates a supercomputer from a PC is the number of CPUs and the
ability to interconnect them. When a supercomputer runs a large simulation program, it
divides the problem into many smaller pieces and assigns each piece to a CPU. In many
simulation programs, such as weather-forecasting systems, CPUs must exchange data

FIGURE 2.10 Visualization of a folded protein in the Folding@Home program
Courtesy of Course Technology/Cengage Learning

(continued)

40

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

frequently. Therefore, execution speed is determined by the number of CPUs and the
speed of data exchange between CPUs and dedicated primary storage areas.

However, pieces of a protein-folding simulation running on each CPU have little
need to interact during execution. Therefore, the high-speed interconnection of CPUs in
a typical supercomputer isn t a critical performance factor. A more important perfor-
mance factor is the number of CPUs. Protein-folding simulations can be scaled to mil-
lions of CPUs far more than any supercomputer has today.

Folding@Home is a distributed simulation program that uses servers at Stanford and
a grid of hundreds of thousands of ordinary computers to work simultaneously on protein
folding. Computer owners download and install a small application program that down-
loads simulation problems from the Stanford servers, executes them, and uploads the
results. The application consumes idle CPU capacity that would otherwise be wasted on a
system idle process (see Figure 2.11). The servers gather and assemble the results for use
by researchers. The project has advanced knowledge of protein folding by assembling
donated computing resources to create a virtual supercomputer more powerful than any
current supercomputer or cluster.

Bigger Isn’t Always Better
In 1952, computer scientist H. A. Grosch asserted that computing power, measured by
millions of instructions per second (MIPS), is proportional to the square of hardware cost.
According to Grosch, large and powerful computers will always be more cost effective than

FIGURE 2.11 Windows Task Manager in a typical PC
Courtesy of Course Technology/Cengage Learning

41

Computer System Classes

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

smaller ones. The mathematical formula describing this relationship is called Grosch s
Law. For many years, computer system managers pointed to this law as justification for
investments in ever larger mainframe computers.

Many modern trends in computer design and use, such as the following, have com-
bined to rewrite Grosch s Law:

Multiple classes of computers
Expanded abilities to configure computers for specific purposes
Increases in software and system administration costs compared with
hardware costs
Multicomputer configurations

In Grosch s time, there was basically only one class of computer the mainframe.
Purchasing larger machines in a single class offers more CPU power for the money; there-
fore, Grosch s Law appears to hold. If all classes of computers are considered as a group,
however, Grosch s Law doesn t hold. The cost of CPU power actually increases on a per-
unit basis as the computer class increases. Despite this statement, midrange, main-
frame, and supercomputers aren t necessarily cost inefficient because CPU power is an
incomplete measure of real computer system power. For example, midrange computers
and mainframes differ little in raw CPU power, but they differ substantially in their capa-
bility to store, retrieve, and move large amounts of data.

Within a class or model of computer system, a deliberate choice can be made to
tune system performance to a particular application or type of applications cost effectively.
For example, in a transaction-processing application, the system might be configured with
fast secondary storage and I/O subsystems but sacrifices CPU performance. The same
system might be tailored to a simulation application cost effectively by providing a lot of
high-speed main memory, multiple CPUs with high computational capacity, and a high-
capacity communication channel between memory and CPUs. Secondary storage and I/O
performance would be far less important, and less costly alternatives could be used.

Another difficulty in applying Grosch s Law today is the reality of expensive software
and system administration. Software development and management of software and hard-
ware infrastructure are labor-intensive processes. Despite the pressures of globalization
and outsourcing, labor costs haven t fallen substantially in the developed world. However,
rapidly decreasing hardware costs make hardware a smaller factor in the total cost of
building and operating an information system. Although hardware costs should be man-
aged effectively, an IS professional is far more likely to maximize an information system s
cost effectiveness by concentrating on its software components and long-term costs of
administration and maintenance.

Cost-efficiency comparisons are even more difficult when multicomputer configura-
tions and recent trends, such as virtualization and cloud computing, are considered. In
Grosch s time, computer networks with multicomputer configurations and Web-based ser-
vices didn t exist. Today, however, high-speed computer and storage networks enable
many organizations to deliver large-scale computing power with distributed networks of
smaller computers. At the same time, cloud computing and virtualization enable organiza-
tions to rent computing capacity and control these resources across the Internet. Cloud
computing providers are able to achieve economies of scale by building large computer
centers that support many different organizations.

42

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E
Economies of scale is the concept that the per-unit cost of producing goods or providing services decreases

as the organization size increases. Economies of scale occur in many industries, including electronics, agri-
culture, and electrical power generation. They result from many factors, such as higher levels of automation,
more efficient use of expensive resources, and more specialized and efficient production processes.

The bottom line is that in today s world, Grosch s Law still holds in some cases but not
in others. Bigger is better when it lowers long-term software, maintenance, and adminis-
tration costs and achieves economies of scale. Smaller is better, however, when an organi-
zation needs flexibility, redundancy, and local control of computing resources.

B U S I N E S S F O C U S

Does Your Company Need a Mainframe?

Bauer Industries (BI) is a manufacturer and wholesale distributor of jewelry-making
machinery and components. The company has 200 employees and approximately 2500
products. The current inventory of automated systems is small for a company of its size.
Applications include order entry, inventory control, and general accounting functions,
such as accounts payable, accounts receivable, payroll, and financial reporting. BI s
applications currently run on a Hewlett-Packard (HP) AlphaServer DS midrange com-
puter purchased in 2000. Dedicated character-based video display terminals are used to
interact with application programs.

BI has grown rapidly over the past decade. Increased transaction volume has
strained existing computer hardware capability. Typical order-entry response time is now
30 to 60 seconds compared with 2 to 5 seconds a few years ago. The order-entry system
consumes all memory and CPU capacity during daytime hours. To reduce order-entry
response time, all nonessential processing has been moved to nighttime hours. The
AlphaServer is configured with two CPUs, 2 GB of primary storage, and 500 GB of disk
storage, and no further hardware enhancements are possible.

Bauer Industries management realizes the seriousness of the situation but isn t sure
how to address it. Other factors, such as the following, complicate the decision:

An expected fourfold increase in business over the next 10 years
Relocation to new facilities in the next year
Plans to move the Web-based catalog and online order system, which are now
contracted out, in house
Managers goals to increase and modernize automated support of operating and
management functions

Management has identified these viable options to address the problem:

Purchase one or more used or factory-refurbished AlphaServer systems (which
are no longer manufactured), connect them with a high-speed network, and
partition the application software among these systems.
Accept an offer from HP to upgrade to an Integrity mainframe computer.
Develop a highly scalable hardware platform consisting of HP blade servers or
a cluster of HP midrange computers.

(continued)

43

Computer System Classes

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Migrate some applications, such as accounting and payroll, to a cloud comput-
ing service.

Option 1 is least disruptive to the status quo but has two obvious disadvantages.
First, because the AlphaServer is no longer manufactured, parts are in short supply. The
second problem is data overlap among application programs. The current operating and
application software won t support access to data stored on one machine by applications
running on another machine. Therefore, data would have to be stored on both machines
and synchronized periodically to reflect updates made by different application programs.
Estimated two-year costs are $75,000 for hardware and $100,000 for labor.

Option 2 theoretically preserves existing application software and allows reusing
some hardware, such as video display terminals. It also provides enough capacity to
operate current software at many times the current transaction volume. However, the
new hardware requires a more recent version of the UNIX operating system. This new
UNIX version is designed to support applications running on older versions on Alpha-
Server hardware, but management has heard of many problems in migrating application
software. Estimated two-year costs are $350,000 for hardware and $150,000 for labor.

Option 3 is the most expensive and the biggest departure from current operating
methods. Migration problems are similar to Option 2. Existing video display terminals
can be used initially and gradually replaced with workstations. This option seems to hold
the most promise for implementing a new generation of application software, but the
company has little experience in operating a multicomputer configuration. Estimated
(guesstimated?) two-year costs are $150,000 for hardware and $400,000 for labor
(including hiring or contracting three new IS staff members for two years).

Option 4 theoretically extends the life of the current system by reducing demand on
its capacity from applications other than order entry. However, BI has no experience in
outsourcing IT and business functions and is leery of locking itself into a long-term rela-
tionship with an outsourcing vendor. BI is also concerned that it might need to redesign
its network to expand capacity and improve security so that on-site employees can
interact with distant servers effectively to perform routine tasks. BI has received a pre-
liminary estimate of $75,000 per year to host basic accounting and payroll functions on
an external server farm. However, the cost and details of migrating BI s accounting
functions to the new environment haven t been estimated yet.

Questions:

What problems would you anticipate in two to five years if Option 1 is
selected? Option 2? Option 3? Option 4?
In the past, management has opted for the lowest-cost solutions. How can you
justify the higher costs of options 2 and 3? Will choosing option 4 really save
money over the long term?
Which alternatives would you recommend to management? Why?

THE ROLE OF SOFTWARE

The primary role of software is to translate users needs and requests into CPU instructions
that, when executed, produce a result that satisfies the need or request. People usually ask
computers to perform complex tasks, such as generate my company s income statement,
spell-check my term paper, or print a weekly sales report (see Figure 2.12).

44

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Software is complex because it performs a complex translation process that bridges
two gaps:

Human language to machine language
High-level abstraction to low-level detail

People think, speak, and write in their native language, which has specific vocabulary,
grammar, and semantics. Computers communicate in binary languages consisting of 0s
and 1s, which are grouped by specific grammatical (syntax) rules to form meaningful
statements or instructions.

The need or idea that motivates a request for computer processing is stated at a
high (abstract) level. The tasks that are performed (instructions that are executed) to
satisfy a request are specific (low-level). Because CPU instructions are very small units
of work, the number of instructions that must be executed to satisfy a processing
request is large.

Software Types
A program is a set of detailed instructions for directing a computer to perform a com-
plex task. Much like a recipe, a program can be written down, stored, and retrieved
when needed. Programs are usually stored in files on secondary storage devices. When
needed, they re retrieved by name, copied into primary storage, and then executed by
the CPU.

An application program, or application software, is a stored set of instructions for
responding to a specific request, much as you might look up a recipe to prepare a partic-
ular dish. Examples of application programs in a system devoted to payroll processing
include programs to print checks, enter new employee information, and produce annual
tax reports. Application software is often purchased off the shelf. Examples include
accounting packages, such as QuickBooks; project management software, such as
Microsoft Project; and graphics software, such as Adobe Photoshop.

System software consists of programs for handling the following tasks:

Perform utility functions needed by many application programs.
Allocate computer resources to application programs.
Manage computer resources.

FIGURE 2.12 The role of software as a translator between user requests and CPU instructions

Courtesy of Intel Corporation

45

The Role of Software

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Examples of system software include operating systems, database management sys-
tems, antivirus software, and network security software. The most important distinction
between application and system software is specificity of purpose and use. Application
software is targeted to specific information-processing tasks, such as generating customer
credit card bills. System software is targeted to general-purpose tasks that support many
application programs and users.

Most application software is used by end users. In contrast, most users don t interact
with system software, and most utility programs used by application software operate
invisibly in the background. Programs allocating computer resources shared by application
software also operate in the background. System administrators can set policies governing
allocation rules and methods, but allocation programs don t interact directly with users or
system administrators during execution.

Utility programs that manage computer resources can be used directly by end users or
system administrators. Examples of user-oriented management utilities include those that
copy files and directories, install software on PCs or workstations, and create and manage
connections to ISPs. Examples of management utilities intended for system administrators
include those that create and modify user accounts, install hardware devices on servers,
and carry out computer security policies.

Figure 2.13 shows the interaction between the user, application software, system software,
and computer hardware. User input and program output are limited to direct communication
with the application program. Application software, in turn, communicates with system software
to request basic services (such as opening a file or a new window). System software translates a
service request into a sequence of machine instructions, passes these instructions to hardware
for execution, receives the results, and passes the results back to the application software.

FIGURE 2.13 The interaction between the user, application software, system software, and
computer hardware
Courtesy of Course Technology/Cengage Learning

46

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 2.13 also shows what s called a layered approach to software construction
and operation. Application software is layered above system software, which is layered
above hardware. A key advantage of this approach is that users and application pro-
grammers don t need to know the technical details of hardware. Instead, they interact
with hardware via standardized service requests. Knowledge of the machine s physical
details is embedded into system software and hidden from users and application
programmers. This advantage is commonly referred to as machine independence or
hardware independence.

System Software Layers
Figure 2.14 shows a more detailed view of software layers and their relationship to hard-
ware functions. System software functions have been divided into four layers:

System management Utility programs used by end users and system
administrators to manage and control computer resources
System services Utility programs used by system management and applica-
tion programs to perform common functions
Resource allocation Utility programs that allocate hardware and other
resources to multiple users and programs
Hardware interface Utility programs that control and interact with specific
hardware devices

FIGURE 2.14 Software layers and their relationship to hardware
Courtesy of Course Technology/Cengage Learning

47

The Role of Software

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The principle of software layers applies not only to the relationship between applica-
tion and system software, but also to the relationship between components of system soft-
ware. Machine independence is achieved by placing all hardware interface functions in a
single system software layer. In theory, system software can be modified to operate on new
computer hardware by modifying only the hardware interface layer. In practice, machine
independence isn t always that simple, as you learn in Chapter 11.

Resource allocation is an important, but mostly invisible, function of system software.
A modern computer system can support multiple users and hundreds or thousands of pro-
grams running simultaneously. Under these conditions, resources such as files and I/O
devices can t always be made available to a program or user immediately. System software
balances competing resource demands of users and processes in such a way that users and
programs don t interfere with one another, but all users and programs are assured of get-
ting the resources they need.

Operating Systems
An operating system (OS) is a collection of utility programs for supporting users and
application programs, allocating resources to multiple users and application programs, and
controlling access to hardware. Note that this definition is similar to the definition of sys-
tem software and includes a wide range of functions. OSs are the most common, but not
the only, type of system software. Examples of OSs include Windows, UNIX, Linux, Mac
OS X, and OpenVMS.

OSs include utility programs that meet the needs of most or all users, administrators,
and application programs. Functions in most OSs include the following:

Program storage, loading, and execution
File manipulation and access
Secondary storage management
Network and interactive user interfaces

Although operating systems are the most important and prevalent type of system
software, they aren t the only type. Some system software functions aren t needed by most
users, so they aren t included as a standard part of all OSs. For example, most OSs don t
include utility programs for database manipulation because few users and application pro-
grams need this capability. A separate type of system software called a database
management system is used for this purpose.

Other system software functions can be provided by optional OS components or
stand-alone system software utilities. For example, Web server software is included as an
optional component of some OSs, such as Windows Server, but it s also available from
other vendors, such as the Apache Software Foundation.

N O T E
Windows OSs tend toward an all-inclusive approach to system software, bundling most system software
functions in the OS. UNIX and Linux tend toward a less inclusive approach, with basic resource alloca-
tion and system services embedded in the OS and third-party system software used for extended sys-
tem services, such as Web services, distributed application support, and network security. Some users
prefer the bundled approach of Windows, although this approach has occasionally resulted in antitrust
litigation and claims of unfair competition.

48

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Application Development Software
Early programmers developed application programs without assistance from computers.
They wrote programs consisting entirely of binary CPU instructions, and there
were no intermediaries, such as compilers, interpreters, programming languages, and
OS services. As computers became more powerful, writing larger programs became
possible, but these programs were too complex to develop without automated
assistance.

Application development software describes programs used to develop other pro-
grams. Although the term implies otherwise, most application development programs can
also be used to develop system software or other application development programs.
Examples of application development software include many compilers and interpreters
for programming languages, such as Java and Visual Basic, and integrated software
development packages, such as Microsoft Visual Studio, IBM WebSphere, and Oracle
JDeveloper.

Earlier in the chapter, software complexity was said to have resulted from the need to
bridge the gaps between human-oriented and machine-oriented language and between
abstract, high-level statements of needs and the low-level machine instructions that satisfy
these needs. The same challenge of translating human intelligence into computer
instructions applies to the process of developing programs.

A program translator is a program that translates instructions in a programming
language into CPU instructions. Examples of programming languages include FORTRAN,
Java, C++, and Visual Basic. A program translator doesn t just translate one language into
another; it also translates high-level program instructions into detailed CPU instructions.
With modern programming languages, programmers can express complex processing tasks
in a single statement or instruction. For example, in the BASIC program shown earlier in
Figure 2.3, hundreds or thousands of CPU instructions must be executed to perform that
task. Programming languages free programmers from having to specify every CPU
instruction.

Program translators aren t the only type of application development software. Other
types include the following:

Program editors Writing tools similar to word-processing applications but
customized for writing programs instead of documents
Debugging tools Tools that simulate program execution and help program-
mers trace errors
System development tools Tools that enable systems analysts and designers
to develop models of information systems that are then used as the starting
point for developing application programs

Like any tool, application development software increases programmers productivity
and the quality of what they produce. The complexity of modern software demands appli-
cation development tools of at least equal complexity.

Economics of System and Application Development Software
The system and application development software used today bears little resemblance to
software of the past. Programming languages, program development tools, and OSs

49

The Role of Software

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

weren t developed until the late 1950s and were primitive compared with their modern
equivalents.

Why is modern software so advanced? The answer is derived from three economic
facts of computer hardware and software:

System software consumes hardware resources.
The cost per unit of computing power has decreased rapidly.
Software is more cost effective when it s reused many times.

These facts underlie a continually shifting tradeoff between the cost of developing and
supporting application programs and the cost of hardware resources.

As discussed previously, in the early years of computers, application development was
a manual process. Programmers wrote binary CPU instructions with pencil and paper,
checked their code manually, and used punch cards or similar tools to convert the written
0s and 1s into something the computer could read. Then they tested their programs to
see whether they worked as expected. If too many rounds of testing and correction were
required, programmers were criticized for using too much valuable computer time.
Hardware was simply too expensive to waste it on debugging software.

As the cost of hardware decreased, the economic balance between programming
labor and computer hardware resources shifted. Tedious programming using binary CPU
instructions and extensive manual code checks became more expensive than writing and
running programs with automated assistance. The trend toward more automated support for
application development and computer operation as well as software reuse had begun.

When programmers use a programming language, application development software,
and a computer to develop programs, they re substituting software and hardware resources
for the labor needed to write binary CPU instructions. As programming languages and
development tools become more powerful, application development software becomes
more complex and consumes more hardware resources. As hardware costs fall, the hard-
ware resources used by application software become cheaper than the extra labor
resources that would be needed without application development tools. As you can see in
Figure 2.15, the balance of hardware and software cost has shifted over time because of
the declining cost of hardware and the emergence of system software. Hardware is typi-
cally the cheapest component of current information systems, and system and application
software are nearly equal components in the total cost.

50

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Both system and application development software also increase cost effectiveness by
promoting software reuse. Each system service is a utility program, and application software
reuses these programs each time it makes a service request. Each time a program translator
translates a generic instruction, such as Print Customer_Name, into the equivalent CPU
instructions, it s reusing the small utility program that implements a PRINT statement.
Modern application development tools are even better examples of software reuse because
they provide libraries of utility programs and generate program skeletons from templates.

T E C H N O L O G Y F O C U S

Intel CPUs and Microsoft Operating Systems

IBM introduced the first mass-market microcomputer in 1981. The original IBM PC
platform, the Intel 8086, and MS-DOS 1.0 were primitive by modern standards. MS-DOS s
primary functions were loading and executing application programs one at a time; pro-
viding minimal application support services, such as file I/O; and providing device drivers
for the few PC hardware resources, such as the diskette drive, keyboard, and character-
oriented video display. More sophisticated OS capabilities were available on more expen-
sive hardware platforms using other CPUs. However, MS-DOS s capabilities were about all
that could be provided, given the hardware capabilities of the 8086 and the original PC.

Figure 2.16 shows a timeline for Intel CPUs and Microsoft desktop OSs. Major
advances in OS functions have typically lagged behind supporting CPU technology by
several years because software development is a long and labor-intensive process. Also,
OS development depends on hardware other than the CPU, such as video displays,

1945

Cost

2020

Time

Hardware

Application software

System
software

FIGURE 2.15 The change over time in related costs of hardware, application software, and
system software in a typical information system
Courtesy of Course Technology/Cengage Learning

(continued)

51

The Role of Software

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

network communication devices, primary storage, and secondary storage, which can be
slower to develop. The evolution of Microsoft OSs is a good example of how software
development depends on hardware technology. The increasing power of Intel CPUs made
it possible for Microsoft to gradually improve the power and features of its OSs.

80x86 processors enhanced the capabilities of the original 8088/8086 processors,
which allowed Microsoft OSs to develop beyond MS-DOS. In particular, the 80386 marked
a major advance in CPU performance and capability by replacing earlier approaches to
memory addressing that limited application programs to no more than 640 KB of memory.
The 80386 also provided hardware support for running multiple programs simultaneously,
simplified partitioning primary storage among programs, and provided mechanisms for
preventing programs from interfering with one another. Microsoft developers used these
processor advances to include OS functions, such as task switching and virtual memory
management, in its first true multitasking OS Windows 3.0. The 80486 provided inte-
grated memory caches, enhanced computational capabilities, and increased raw CPU
speed. Windows 95 was developed to take better advantage of this chip s capabilities.

Pentium processors improved memory access and raw CPU speeds and added fea-
tures such as support for higher-speed system buses, pipelined instruction execution, and
multimedia processing instructions. Microsoft OS development split into two distinct
paths. The first path started with Windows 95, which evolved into Windows 98 and
finally Windows Me. Multimedia instructions served as a foundation for improved high-
resolution graphics and audio and video. The second path was a new family of OSs that
began with Windows NT and continued through Windows 2000 and XP. Increased CPU
speed and improved memory management enabled Microsoft to embed more sophisti-
cated memory and hardware management capabilities in Windows NT than in other
Windows OSs. These improvements also allowed Microsoft to develop server OSs,
including Windows 2000 Server and Windows Server 2003.

Multiple-core CPUs resulted in only minor changes to CPU internals but substan-
tially improved performance by integrating multiple processing cores and memory
caches on a single chip and by increasing raw CPU speed. They also incorporated

1980s

8086
80286

80386
80486

MS-DOS
Windows 1.0

Windows 2.0
Windows 3.0

Windows 95

Pentium
Pentium Pro

Pentium ll
Pentium lll

Pentium 4

Pentium D
Core 2 Duo

Core 2 Quad
Core i7

Windows 98
Windows Me

Windows 7
Windows Vista

Windows XP
Windows 2000

Windows NT 4.0
Windows NT 3.0

Intel
processors

Microsoft
operating
systems

1990s 2000s 2010s

FIGURE 2.16 The timing of Intel CPU and Microsoft OS releases
Courtesy of Course Technology/Cengage Learning

(continued)

52

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

architectural changes introduced in earlier Pentium processors that expanded memory
addressing capabilities beyond 4 GB. These improvements allowed incremental changes
in Microsoft OSs, such as introducing more advanced user interface technologies and
native OS support for virtualization. These improvements are included in Windows Vista,
Windows 7, and Windows Server 2008.

In the push-pull relationship of hardware power and software capability, hardware is
usually the driving force. Software developers have a wish list of capabilities that hard-
ware manufacturers try to satisfy to gain a competitive advantage. Software development
doesn t proceed in earnest until the necessary hardware is available to support develop-
ment and testing. However, the situation is occasionally reversed. Software vendors
might develop software that pushes past the limits of current hardware, confident that
hardware manufacturers will soon provide more power. More demanding software in turn
fuels users drive to acquire new and more powerful machines, and the cycle continues.
Competition between software developers guarantees continual and rapid assimilation of
new hardware technology.

COMPUTER NETWORKS

In the past, computers were processing islands, and people had to carry data and
programs to them, but computer networking and the Internet have changed the landscape
of computing forever. Today, a computer isn t considered useful if it doesn t have the
capability to interact with almost every other computer on the planet.

A computer network consists of hardware and software components that enable
users and computer systems to share information, software, and hardware resources
and make it possible to use many types of communication methods, such as e-mail,
team collaboration, and social networking. The number and complexity of network
functions and components have grown as network technology has matured and become
more widespread.

N O T E
This section gives you an overview of networks. Chapters 8, 9, and 13 delve into more detail on
this topic.

External Resources
Most network functions are extensions of the hardware and software functions discussed
previously (see Figure 2.17) that allow a computer system to interface with a physical net-
work and external resources. The complexity of modern networks arises from the huge
quantity of distributed resources and the difficulties in finding, accessing, and managing
these resources. In the early days of networks, the only important distributed resource was
raw data. As networks have matured and expanded, so have the types of resources that can
be accessed. Data is now available in many different forms, including text files, sound and
video, databases, and Web pages. A computer can ask another computer to run a program
and transmit the results, or it can retrieve a file containing the program and run it locally.

53

Computer Networks

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Hardware devices of all types can also be shared across a network. One computer can
use the CPU, storage, or I/O devices of another. Devices such as printers and secondary
storage arrays can be attached directly to the network. The capability to share data, pro-
grams, and hardware resources among computers gives organizations the flexibility to
deploy and redeploy computing and information resources to satisfy rapidly changing
needs.

Network Software
Recall that a key function of system software is allocating resources to users and programs.
Allocation is simple when a single user and program access local resources, but it s more
difficult when many users or programs compete for hardware and other resources on a
single computer. Allocating and accessing resources are complex when a user or program
can request resources that aren t on the local computer and aren t managed by locally
installed system software. In this case, system software must do the following:

Find requested resources on the network.
Negotiate resource access with remote resource allocation software.
Receive and deliver resources to the requesting user or program.

If a computer system makes its local resources available to other computers, system
software must perform the following additional functions:

Listen for resource requests.
Validate resource requests.
Deliver resources via the network.

FIGURE 2.17 Computer network functions and their relationship to computer hardware
and software
Courtesy of Course Technology/Cengage Learning

54

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In essence, system software plays two roles in each network resource access: request
and response. Many computer systems fill both roles and must perform both system soft-
ware functions.

System software has the intelligence needed to make and respond to external resource
requests, and most operating systems include support for both functions. Specialized
response functions are often provided as optional OS components or as stand-alone system
software packages. Examples include Web server software, e-mail distribution software,
and Internet security software.

Network Communication and the Physical Network
A computer system requires at least one hardware device to connect to a network. Net-
work communication devices were once exotic and expensive but are now commonplace.
They differ from I/O devices in two important ways. First, they re usually simpler because
they don t need to convert electronic data into another form. Second, they must support
communication at high speeds so that external resource access isn t far slower than access
to local resources.

Each computer s network communication hardware is attached to a physical network.
A physical network is a complex combination of communication protocols, methods of
data transmission (cables and/or wireless), and network hardware devices (network inter-
face cards, switches, routers, other devices to make physical data connections, and net-
worked printers and other resources). A physical network can be implemented with a
dizzying array of technologies and architectural approaches, which are discussed in more
detail later in the book.

55

Computer Networks

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

A computer is an automated device for performing computational tasks. It accepts input
data from the external world, performs one or more computations on the data, and then
returns results to the external world. Early computers were mechanical devices with limited
capabilities. Modern computers have more extensive capabilities and are implemented with
a combination of electronic and optical devices. The advantages of electronic and optical
implementation include speed, accuracy, and reliability.

Computer capabilities include processing, storage, and communication. A computer system
contains a general-purpose processor that can perform computations, compare numeric data,
and move data between storage locations and I/O devices. A command to the processor to
perform a function is called an instruction. Complex tasks are implemented as a sequence of
instructions called a program. Changing a program changes a computer system s behavior.

A computer system consists of a central processing unit (CPU), primary storage, secondary
storage, and I/O devices. The CPU performs all computation and comparison functions and
directs all data movement. Primary storage holds programs and data currently in use by the
CPU. Primary storage is generally implemented by electronic devices called random access
memory (RAM). Secondary storage consists of devices with high capacity and lower cost
and access speed. Secondary storage holds programs and data not currently in use by the
CPU. I/O devices allow the CPU to communicate with the external world, including users
and other computers.

A computer system can be classified as a microcomputer, midrange computer, mainframe,
or supercomputer. Microcomputers are designed for use by a single user. Midrange com-
puters and mainframes are designed to support many programs and users simultaneously.
Mainframe computers are designed for large amounts of data storage and access. Super-
computers are designed to perform large amounts of numeric computations quickly. Clus-
ters and grids can mimic the performance of mainframes and supercomputers with groups
of smaller computers.

The role of software is to translate user requests into machine instructions. The two primary
types of software are application software and system software. Application software con-
sists of programs that satisfy specific user processing needs, such as payroll calculation,
accounts payable, and report generation. System software consists of utility programs
designed to be general in nature and can be used many times by many different application
programs or users. Examples of system software include operating systems, database
management systems, antivirus software, and network security software.

The operating system is the most important system software component in most compu-
ters. It provides administrative utilities, utility services to application programs, resource
allocation functions, and direct control over hardware.

System and application development software reduce the cost of developing and deploying
application programs and allow organizations to substitute less expensive computer
hardware for expensive labor.

A computer network consists of hardware and software components that enable multiple
users and computers to share information, software, and hardware resources. Network
software allows a computer to find and retrieve resources on other computers or to respond

56

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to requests from other computers for access to local resources. Network hardware
implements direct communication between computer systems.

In this chapter, you ve learned about the basic elements of systems architecture: hardware,
software, and networks. You ve been introduced to many new terms and concepts but haven t
learned about them in detail. You ll get a chance to digest and expand your knowledge of these
topics in later chapters. Figure 2.18 shows the key computer system functions covered so far
and identifies the chapters that explore each function in depth.

Key Terms

80x86 processor

algorithm

application development software

application software

arithmetic logic unit (ALU)

blade

central processing unit (CPU)

cloud

cluster

computer network

condition

control unit

debugging tool

executing

formula

general-purpose processor

grid

Grosch s Law

FIGURE 2.18 Topics covered in the rest of the book
Courtesy of Course Technology/Cengage Learning

57

Key Terms

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hardware independence

Input/output (I/O) unit

instruction

laptop computer

logic instruction

machine independence

main memory

mainframe

microcomputer

midrange computer

multicomputer configuration

multiple-core CPU

netbook computer

operating system (OS)

Pentium processor

personal computer (PC)

personal digital assistant (PDA)

primary storage

processor

program

program editor

program translator

programming language

qubit

random access memory (RAM)

register

secondary storage

server

special-purpose processor

supercomputer

system bus

system development tool

system software

systems architecture

workstation

Vocabulary Exercises

1. A(n) generally supports more simultaneous users than a(n) . Both are
designed to support more than one user.

2. A(n) is a storage location implemented in the CPU.

3. The term refers to storage devices, not located in the CPU, that hold instructions
and data of currently running programs.

4. A problem-solving procedure that requires executing one or more comparison and branch
instructions is called a(n) .

5. A(n) is a command to the CPU to perform one processing function on one or
more data inputs.

6. The term describes the collection of storage devices that hold large quantities of
data for long periods.

7. A(n) is a computer that manages shared resources and allows other computers to
access them through a network.

8. A program that solves a(n) requires no branching instructions.

9. The major components of a CPU are the , , and .

10. Primary storage can also be called and is generally implemented with .

11. A set of instructions that s executed to solve a specific problem is called a(n) .

12. A(n) typically uses the latest and most expensive technology.

58

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. A(n) is a group of similar or identical computers, connected by a high-speed
network, that cooperate to provide services or run an application.

14. A(n) is a group of dissimilar computer systems, connected by a high-speed
network, that cooperate to provide services or run a shared application.

15. A(n) consists of computing resources with a Web-based front-end interface to a
large collection of computing and data resources.

16. A(n) is a hardware device that enables a computer to communicate with users or
other computers.

17. A CPU is a(n) processor capable of performing many different tasks simply by
changing the program.

18. The is the plumbing that connects all computer system components.

19. The CPU program instructions one at a time.

20. The term describes a computer system s components and their interactions.

21. Most programs are written in a(n) , such as C or Java, which is then translated
into equivalent CPU instructions.

22. Resource allocation and direct hardware control are the responsibilities of a(n) .

23. software is general-purpose software. software is specialized for
specific user needs.

24. A(n) consists of hardware and software components that enable multiple users
and computers to share information, software, and hardware resources.

Review Questions

1. What similarities exist in mechanical, electrical, and optical methods of computation?

2. What shortcomings of mechanical computation did the introduction of electronic computing
devices address?

3. What shortcomings of electrical computation will optical computing devices address?

4. What is a CPU? What are its primary components?

5. What are registers? What are their functions?

6. What is main memory? How does it differ from registers?

7. What are the differences between primary and secondary storage?

8. How does a workstation differ from a PC?

9. How does a supercomputer differ from a mainframe computer?

10. Describe three types of multicomputer configurations. What are their comparative advan-
tages and disadvantages?

11. What is virtualization? What are the advantages and disadvantages of using a single large
computer to host multiple virtual machines compared with using multiple smaller computers
without virtualization?

12. What classes of computer systems are normally used for servers?

59

Review Questions

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. What is Grosch s Law? Does it hold today? Why or why not?

14. How can a computer system be tuned to a particular application?

15. What characteristics differentiate application software from system software?

16. In what ways does system software make developing application software easier?

17. Why has the development of system software paralleled the development of computer
hardware?

18. List at least five types of resources that computers on a local area network or wide area
network can share.

19. Describe the dual roles most operating systems play in external resource access.

20. Describe the relationship between the resource allocation and management functions of
system software and external resources accessible via a network. What system software
functions must be provided to access external resources?

Research Problems

1. Find a catalog or visit the Web site of a major distributor of microcomputer equipment, such
as Computer Discount Warehouse (www.cdw.com) or Dell (www.dell.com). You have a
budget of $1000 to purchase workstation hardware (without peripheral devices, such as a
scanner or printer). Select or configure a system that provides optimal performance for the
following types of users:

A home user who uses word-processing software, such as Microsoft Office; a home
accounting package, such as Quicken or TurboTax; children s games; and multimedia
software for editing pictures and creating video DVDs

An accountant who uses office software, such as Microsoft Office, and statistical soft-
ware, such as SPSS or SAS, and downloads large amounts of financial data from a
corporate server for statistical and financial modeling

An architect who uses typical office software and CAD software, such as AutoCAD

Pay particular attention to whether CPU power, disk space, and I/O capabilities are adequate.

2. You have been asked to recommend a computer system to be used as a server for a
250-person office. The server must provide shared access to a 10 TB file system, several
printers, e-mail and Web services, and database services (for a 2 TB database) to a variety
of application programs. Microsoft products, such as Windows Server and Microsoft SQL
Server, will be the primary software used on the server. Gather product information from
IBM (www.ibm.com), Hewlett-Packard (www.hp.com), and Dell Computer Corporation
(www.dell.com). Determine which of their products best meet the server requirements.

3. Table 2.2 will probably be out of date by the time this book is published. Go to the manu-
facturers Web sites (www.ibm.com and www.dell.com) or contact a sales representative,
and update Table 2.2 with current representative models for each computer class. At the
Web site for this book (www.cengage.com/mis/burd), download copies of Table 2.2
from previous editions. What is the rate of change in CPU speed, memory and disk
capacity, and cost?

60

Chapter 2

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cdw.com
http://www.dell.com
http://www.ibm.com
http://www.hp.com
http://www.dell.com
http://www.ibm.comandwww.dell.com
http://www.cengage.com/mis/burd

C H A P T E R 3
DATA REPRESENTATION

C H A P T E R G O A L S

Describe numbering systems and their use in data representation

Compare different data representation methods

Summarize the CPU data types and explain how nonnumeric data
is represented

Describe common data structures and their uses

Computers manipulate and store a variety of data, such as numbers, text, sound, and pictures. This

chapter describes how data is represented and stored in computer hardware. It also explains how

simple data types are used as building blocks to create more complex data structures, such as arrays

and records. Understanding data representation is key to understanding hardware and software

technologies.

DATA REPRESENTATION AND PROCESSING

People can understand and manipulate data represented in a variety of forms. For example,
they can understand numbers represented symbolically as Arabic numerals (such as 8714),
Roman numerals (such as XVII), and simple lines or tick marks on paper (for example, ||| to
represent the value 3). They can understand words and concepts represented with pictorial
characters () or alphabetic characters (computer and , Cyrillic text of
the Russian word for computer) and in the form of sound waves (spoken words). People
also extract data from visual images (photos and movies) and from the senses of taste,
smell, and touch. The human brain s processing power and flexibility are evident in the
rich variety of data representations it can recognize and understand.

To be manipulated or processed by the brain, external data representations, such as
printed text, must be converted to an internal format and transported to the brain s pro-
cessing circuitry. Sensory organs convert inputs, such as sight, smell, taste, sound, and
skin sensations, into electrical impulses that are transported through the nervous system
to the brain. Processing in the brain occurs as networks of neurons exchange data
electrically.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Any data and information processor, whether organic, mechanical, electrical, or opti-
cal, must be capable of the following:

Recognizing external data and converting it to an internal format
Storing and retrieving data internally
Transporting data between internal storage and processing components
Manipulating data to produce results or decisions

Note that these capabilities correspond roughly to computer system components
described in Chapter 2 I/O units, primary and secondary storage, the system bus, and
the CPU.

Automated Data Processing
Computer systems represent data electrically and process it with electrical switches. Two-
state (on and off) electrical switches are well suited for representing data that can be
expressed in binary (1 or 0) format, as you see later in Chapter 4. Electrical switches are
combined to form processing circuits, which are then combined to form processing sub-
systems and entire CPUs. You can see this processing as an equation:

A B C

In this equation, data inputs A and B, represented as electrical currents, are trans-
ported through processing circuits (see Figure 3.1). The electrical current emerging from
the circuit represents a data output, C. Automated data processing, therefore, combines
physics (electronics) and mathematics.

The physical laws of electricity, optics, and quantum mechanics are described by
mathematical formulas. If a device s behavior is based on well-defined, mathematically
described laws of physics, the device, in theory, can implement a processor to perform the
equivalent mathematical function. This relationship between mathematics and physics
underlies all automated computation devices, from mechanical clocks (using the

FIGURE 3.1 Two electrical inputs on the left flow through processing circuitry that generates their
sum on the right

Courtesy of Course Technology/Cengage Learning

62

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mathematical ratios of gears) to electronic microprocessors (using the mathematics of
electrical voltage and resistance). As you learned in Chapter 2, in quantum mechanics, the
mathematical laws are understood but not how to build reliable and cost-effective com-
puting devices based on these laws.

Basing computer processing on mathematics and physics has limits, however. Proces-
sing operations must be based on mathematical functions, such as addition and equality
comparison; use numerical data inputs; and generate numerical outputs. These processing
functions are sufficient when a computer performs numeric tasks, such as accounting or
statistical analysis. When you ask a computer to perform tasks such as searching text
documents and editing sound, pictures, and video, numeric-processing functions do have
limitations, but ones that modern software has largely overcome. However, when you want
to use a computer to manipulate data with no obvious numeric equivalent for example,
literary or philosophical analysis of concepts such as mother, friend, love, and
hate numeric-processing functions have major shortcomings. As the data you want to

process moves further away from numbers, applying computer technology to processing
the data becomes increasingly difficult and less successful.

Binary Data Representation
In a decimal (base 10) number, each digit can have 1 of 10 possible values: 0, 1, 2, 3, 4, 5,
6, 7, 8, or 9. In a binary number, each digit can have only one of two possible values: 0 or
1. Computers represent data with binary numbers for two reasons:

Binary numbers represented as binary electrical signals can be transported
reliably between computer systems and their components (discussed in detail
in Chapter 8).
Binary numbers represented as electrical signals can be processed by two-
state electrical devices that are easy to design and fabricate (discussed in
detail in Chapter 4).

For computer applications to produce accurate outputs, reliable data transport is
important. Given current technology, binary signals and processing devices represent the
most cost-efficient tradeoffs between capacity, accuracy, reliability, and cost.

Binary numbers are also well suited to computer processing because they correspond
directly with values in Boolean logic. This form of logic is named for 19th-century mathe-
matician George Boole, who developed methods of reasoning and logical proof that use
sequences of statements that can be evaluated only as true or false. Similarly, a computer
can perform logical comparisons of two binary data values to determine whether one data
value is greater than, equal to, less than, less than or equal to, not equal to, or greater than
or equal to another value. As discussed in Chapter 2, a computer uses this primitive
logical capability to exhibit intelligent behavior.

Both computers and humans can combine digits to represent and manipulate
larger numbers. Decimal and binary notations are alternative forms of a positional
numbering system, in which numeric values are represented as groups, or strings, of
digits. The symbol used to represent a digit and the digit s position in a string
determine its value. The value of the entire string is the sum of the values of all digits
in the string.

63

Data Representation and Processing

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, in the decimal numbering system, the number 5689 is interpreted as
follows:

5 1000 6 100 8 10 9

5000 600 80 9 5689

The same series of operations can be represented in columnar form, with positions of
the same value aligned in columns:

5000
600
80
9

5689

For whole numbers, values are accumulated from right to left. In the preceding exam-
ple, the digit 9 is in the first position, 8 is in the second position, 6 is in the third, and 5 is
in the fourth.

The maximum value, or weight, of each position is a multiple of the weight of the
position to its right. In the decimal numbering system, the first (rightmost) position is the
ones (100), and the second position is 10 times the first position (101). The third position
is 10 times the second position (102, or 100), the fourth is 10 times the third position (103,
or 1000), and so on. In the binary numbering system, each position is 2 times the previous
position, so position values for whole numbers are 1, 2, 4, 8, and so forth. The multiplier
that describes the difference between one position and the next is the base, or radix, of
the numbering system. In the decimal numbering system, it s 10, and in the binary
numbering system, it s 2.

The fractional part of a numeric value is separated from the whole part by a period,
although in some countries, a comma is used instead of a period. In the decimal number-
ing system, the period or comma is called a decimal point. In other numbering systems,
the term radix point is used for the period or comma. Here s an example of a decimal
value with a radix point:

5689 368

The fractional portion of this real number is .368, and its value is interpreted as
follows:

3 10-1 6 10-2 8 10-3

3 1 6 01 8 001

0 3 0 06 0 008 0 368

Proceeding toward the right from the radix point, the weight of each position is
a fraction of the position to its left. In the decimal (base 10) numbering system, the
first position to the right of the decimal point represents tenths (10-1), the second
position represents hundredths (10-2), the third represents thousandths (10-3), and
so forth.

64

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the binary numbering system, the first position to the right of the radix point
represents halves (2-1), the second position represents quarters (2-2), the third represents
eighths (2-3), and so forth. As with whole numbers, each position has a weight 10 (or 2)
times the position to its right. Table 3.1 compares decimal and binary notations for the
values 0 through 10.

The number of digits needed to represent a value depends on the numbering system s
base: The number of digits increases as the numbering system s base decreases. Therefore,
values that can be represented in a compact format in decimal notation might require
lengthy sequences of binary digits. For example, the decimal value 99 requires two
decimal digits but seven binary digits. Table 3.2 summarizes the number of binary digits
needed to represent decimal values up to 16 positions.

TABLE 3.1 Binary and decimal notations for the values 0 through 10

Binary system (base 2) Decimal system (base 10)

Place 23 22 21 20 103 102 101 100

Values 8 4 2 1 1000 100 10 1

0 0 0 0 5 0 0 0 0

0 0 0 1 5 0 0 0 1

0 0 1 0 5 0 0 0 2

0 0 1 1 5 0 0 0 3

0 1 0 0 5 0 0 0 4

0 1 0 1 5 0 0 0 5

0 1 1 0 5 0 0 0 6

0 1 1 1 5 0 0 0 7

1 0 0 0 5 0 0 0 8

1 0 0 1 5 0 0 0 9

1 0 1 0 5 0 0 1 0

65

Data Representation and Processing

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To convert a binary value to its decimal equivalent, use the following procedure:

1. Determine each position weight by raising 2 to the number of positions left
() or right (-) of the radix point.

2. Multiply each digit by its position weight.
3. Sum all the values calculated in Step 2.

N O T E
The standard Windows calculator can convert between binary, octal, decimal, and hexadecimal. To open
the calculator in Windows 7, click Start, All Programs, Accessories, Calculator. To convert a binary num-
ber to decimal, click View, Programmer from the menu (View, Scientific for Vista and earlier Windows
versions). Click the Bin (for binary) option button at the upper left, enter the binary number in the text
box, and then click the Dec (for decimal) option button.

TABLE 3.2 Binary notations for decimal values up to 16 positions

Number of bits (n) Number of values (2n) Numeric range (decimal)

1 2 0 1

2 4 0 3

3 8 0 7

4 16 0 15

5 32 0 31

6 64 0 63

7 128 0 127

8 256 0 255

9 512 0 511

10 1024 0 1023

11 2048 0 2047

12 4096 0 4095

13 8192 0 8191

14 16,384 0 16,383

15 32,768 0 32,767

16 65,536 0 65,535

66

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 3.2 shows how the binary number 101101.101 is converted to its decimal
equivalent, 45.625.

In computer terminology, each digit of a binary number is called a bit. A group of bits
that describe a single data value is called a bit string. The leftmost digit, which has the
greatest weight, is called the most significant digit, or high-order bit. Conversely, the
rightmost digit is the least significant digit, or low-order bit. A string of 8 bits is called a
byte. Generally, a byte is the smallest unit of data that can be read from or written to a
storage device.

The following mathematical rules define addition of positive binary digits:

0 0 0
1 0 1
0 1 1
1 1 10

To add two positive binary bit strings, you first must align their radix points as follows:

101101 101
10100 0010

FIGURE 3.2 Computing the decimal equivalent of a binary number
Courtesy of Course Technology/Cengage Learning

67

Data Representation and Processing

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The values in each column are added separately, starting with the least significant, or
rightmost, digit. If a column result exceeds 1, the excess value must be carried to the next
column and added to the values in that column.

N O T E
The standard Windows calculator can add and subtract binary integers. To use this feature, click View,
Programmer from the menu (View, Scientific for Vista and earlier Windows versions), and click the Bin
option button. You can also click View, Digit grouping from the menu to place digits in groups of four for
easier readability.

This is the result of adding the two preceding numbers:

1 1 1 1

101101 101
10100 0010

1000001 1100

The result is the same as when adding the values in base-10 notation:

Real Real
Binary fractions decimal

101101 101 45 5
8 45 625

10100 0010 20 1
8 20 125

1000001 1100 65 3
4 65 750

Binary numbers usually contain many digits and are difficult for people to remember
and manipulate without error. Compilers and interpreters for high-level programming lan-
guages, such as C and Java, convert decimal numbers into binary numbers automatically
when generating CPU instructions and data values. However, sometimes programmers
must deal with binary numbers directly, such as when they program in machine language
or for some operating system (OS) utilities. To minimize errors and make dealing with
binary numbers easier, numbering systems based on even multiples of 2 are sometimes
used. These numbering systems include hexadecimal and octal, discussed in the following
sections.

Hexadecimal Notation
Hexadecimal numbering uses 16 as its base or radix (hex 6 and decimal 10).
There aren t enough numeric symbols (Arabic numerals) to represent 16 different values,
so English letters represent the larger values (see Table 3.3).

68

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The primary advantage of hexadecimal notation, compared with binary notation, is its
compactness. Large numeric values expressed in binary notation require four times as
many digits as those expressed in hexadecimal notation. For example, the data content of
a byte requires eight binary digits (such as 11110000) but only two hexadecimal digits
(such as F0). This compact representation helps reduce programmer error.

Hexadecimal numbers often designate memory addresses. For example, a 64 KB
memory region contains 65,536 bytes (64 1024 bytes/KB). Each byte is identified by a
sequential numeric address. The first byte is always address 0. Therefore, the range of
possible memory addresses is 0 to 65,535 in decimal numbers, 0 to 1111111111111111 in
binary numbers, and 0 to FFFF in hexadecimal numbers. As you can see from this exam-
ple, hexadecimal addresses are more compact than decimal or binary addresses because
of the numbering system s higher radix.

When reading a numeric value in written text, the number s base might not be
obvious. For example, when reading an OS error message or a hardware installation
manual, should the number 1000 be interpreted in base 2, 10, 16, or something else?
In mathematical expressions, the base is usually specified with a subscript, as in this
example:

10012

The subscript 2 indicates that 1001 should be interpreted as a binary number.
Similarly, in the following example, the subscript 16 indicates that 6044 should be
interpreted as a hexadecimal number:

604416

The base of a written number can be made explicit by placing a letter at the end. For
example, the letter B in this example indicates a binary number:

1001B

The letter H in this example indicates a hexadecimal number:

6044H

TABLE 3.3 Hexadecimal and decimal values

Base-16 digit Decimal value Base-16 digit Decimal value

0 0 8 8

1 1 9 9

2 2 A 10

3 3 B 11

4 4 C 12

5 5 D 13

6 6 E 14

7 7 F 15

69

Data Representation and Processing

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Normally, no letter is used to indicate a decimal (base 10) number. Some program-
ming languages, such as Java and C , use the prefix 0x to indicate a hexadecimal
number. For example, 0x1001 is equivalent to 100116.

Unfortunately, these conventions aren t observed consistently. Often it s left to the
reader to guess the correct base by the number s content or the context in which it
appears. A value containing a numeral other than 0 or 1 can t be binary, for instance.
Similarly, the use of letters A through F indicates that the contents are expressed in
hexadecimal. Bit strings are usually expressed in binary, and memory addresses are
usually expressed in hexadecimal.

Octal Notation
Some OSs and machine programming languages use octal notation. Octal notation uses
the base-8 numbering system and has a range of digits from 0 to 7. Large numeric values
expressed in octal notation are one-third the length of corresponding binary notation and
double the length of corresponding hexadecimal notation.

GOALS OF COMPUTER DATA REPRESENTATION

Although all modern computers represent data internally with binary digits, they don t
necessarily represent larger numeric values with positional bit strings. Positional number-
ing systems are convenient for people to interpret and manipulate because the sequential
processing of digits in a string parallels the way the human brain functions and because
people are taught to perform computations in a linear fashion. For example, positional
numbering systems are well suited to adding and subtracting numbers in columns by
using pencil and paper. Computer processors, however, operate differently from a human
brain. Data representation tailored to human capabilities and limitations might not be best
suited to computers.

Any representation format for numeric data represents a balance among several
factors, including the following:

Compactness
Range
Accuracy
Ease of manipulation
Standardization

As with many computer design decisions, alternatives that perform well in one factor
often perform poorly in others. For example, a data format with a high degree of accuracy
and a large range of representable values is usually difficult and expensive to manipulate
because it s not compact.

Compactness and Range
The term compactness (or size) describes the number of bits used to represent a
numeric value. Compact representation formats use fewer bits to represent a value, but
they re limited in the range of values they can represent. For example, the largest binary
integer that can be stored in 32 bits is 232, or 4,294,967,29610. Halving the number of bits

70

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to make the representation more compact decreases the largest possible value to 216, or
65,53510.

Computer users and programmers usually prefer a large numeric range. For example,
would you be happy if your bank s computer limited your maximum checking account
balance to 65,535 pennies? The extra bit positions required to increase the numeric range
have a cost, however. Primary and secondary storage devices must be larger and, there-
fore, more expensive. Additional and more expensive capacity is required for data trans-
mission between devices in a computer system or across computer networks. CPU
processing circuitry becomes more complex and expensive as more bit positions are
added. The more compact a data representation format, the less expensive it is to
implement in computer hardware.

Accuracy
Although compact data formats can minimize hardware s complexity and cost, they do so
at the expense of accurate data representation. The accuracy, or precision, of representa-
tion increases with the number of data bits used.

It s possible for routine calculations to generate quantities too large or too small to be
contained in a machine s finite circuitry (that is, in a fixed number of bits). For example,
the fraction 1/3 can t be represented accurately in a fixed number of bits because it s a
nonterminating fractional quantity (0.333333333 , with an infinite number of 3s). In
these cases, the quantities must be manipulated and stored as approximations, and each
approximation introduces a degree of error. If approximate results are used as inputs for
other computations, errors can be compounded and even result in major errors. For this
reason, a program can have no apparent logical flaws yet still produce inaccurate results.

If all data types were represented in the most compact form possible, approximations
would introduce unacceptable margins of error. If a large number of bits were allocated to
each data value instead, machine efficiency and performance would be sacrificed, and
hardware cost would be increased. The best balance in performance and cost can be
achieved by using an optimum coding method for each type of data or each type of oper-
ation to be performed. Striving for this balance is the main reason for the variety of data
representation formats used in modern CPUs.

Ease of Manipulation
When discussing computer processing, manipulation refers to executing processor
instructions, such as addition, subtraction, and equality comparisons, and ease refers to
machine efficiency. A processor s efficiency depends on its complexity (the number of its
primitive components and the complexity of the wiring that binds them together). Effi-
cient processor circuits perform their functions quickly because of the small number of
components and the short distance electricity must travel. More complex devices need
more time to perform their functions.

Data representation formats vary in their capability to support efficient processing.
For example, most people have more difficulty performing computations with fractions
than with decimal numbers. People process the decimal format more efficiently than the
fractional format.

71

Goals of Computer Data Representation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Unfortunately, there s no best representation format for all types of computation
operations. For example, representing large numeric values as logarithms simplifies multi-
plication and division for people and computers because log A log B log (A B) and
log A - log B log (A B). Logarithms complicate other operations, such as addition
and subtraction, and they can increase a number s length substantially (for example, log
99 1.9956351945975499153402557777533).

Standardization
Data must be communicated between devices in a single computer and to other computers
via networks. To ensure correct and efficient data transmission, data formats must be
suitable for a wide variety of devices and computers. For this reason, several organizations
have created standard data-encoding methods (discussed later in the Character Data
section). Adhering to these standards gives computer users the flexibility to combine
hardware from different vendors with minimal data communication problems.

CPU DATA TYPES

The CPUs of most modern computers can represent and process at least the following
primitive data types:

Integer
Real number
Character
Boolean
Memory address

The arrangement and interpretation of bits in a bit string are usually different for
each data type. The representation format for each data type balances compactness,
range, accuracy, ease of manipulation, and standardization. A CPU can also implement
multiple versions of each type to support different types of processing operations.

Integers
An integer is a whole number a value that doesn t have a fractional part. For example,
the values 2, 3, 9, and 129 are integers, but the value 12.34 is not. Integer data formats
can be signed or unsigned. Most CPUs provide an unsigned integer data type, which stores
positive integer values as ordinary binary numbers. An unsigned integer s value is always
assumed to be positive.

A signed integer uses one bit to represent whether the value is positive or negative. The
choice of bit value (0 or 1) to represent the sign (positive or negative) is arbitrary. The sign
bit is normally the high-order bit in a numeric data format. In most data formats, it s 1
for a negative number and 0 for a nonnegative number. (Note that 0 is a nonnegative
number.)

The sign bit occupies a bit position that would otherwise be available to store part of
the data value. Therefore, using a sign bit reduces the largest positive value that can be
stored in any fixed number of bit positions. For example, the largest positive value that

72

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

can be stored in an 8-bit unsigned integer is 255, or 28 - 1. If a bit is used for the sign, the
largest positive value that can be stored is 127, or 27 - 1.

With unsigned integers, the lowest value that can be represented is always 0. With
signed integers, the lowest value that can be represented is the negative of the highest
value that can be stored (for example, -127 for 8-bit signed binary).

Excess Notation

One format that can be used to represent signed integers is excess notation, which always
uses a fixed number of bits, with the leftmost bit representing the sign. For example, the
value 0 is represented by a bit string with 1 in the leftmost digit and 0s in all the other
digits. As shown in Table 3.4, all nonnegative values have 1 as the high-order bit, and neg-
ative values have 0 in this position. In essence, excess notation divides a range of ordinary
binary numbers in half and uses the lower half for negative values and the upper half for
nonnegative values.

To represent a specific integer value in excess notation, you must know how many
storage bits are to be used, whether the value fits within the numeric range of excess
notation for that number of bits, and whether the value to be stored is positive or negative.
For any number of bits, the largest and smallest values in excess notation are 2(n-1) - 1 and
-2(n-1), where n is the number of available storage bits.

TABLE 3.4 Excess notation

Bit string Decimal value

1111 7

Nonnegative
numbers

1110 6

1101 5

1100 4

1011 3

1010 2

1001 1

1000 0

0111 -1

Negative
numbers

0110 -2

0101 -3

0100 -4

0011 -5

0010 -6

0001 -7

0000 -8

73

CPU Data Types

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, consider storing a signed integer in 8 bits with excess notation. Because
the leftmost bit is a sign bit, the largest positive value that can be stored is 27 - 1, or 12710,
and the smallest negative value that can be stored is -27, or -12810. The range of positive
values appears to be smaller than the range of negative values because 0 is considered a
positive (nonnegative) number in excess notation. Attempting to represent larger positive
or smaller negative values results in errors because the leftmost (sign) bit might be over-
written with an incorrect value.

Now consider how 9 and -9 are represented in 8-bit excess notation. Both values are
well within the numeric range limits for 8-bit excess notation. The ordinary binary repre-
sentation of 910 in 8 bits is 00001001. Recall that the excess notation representation of 0
is always a leading 1 bit followed by all 0 bits 10000000 for 8-bit excess notation.
Because 9 is nine integer values greater than 0, you can calculate the representation of

9 by adding its ordinary binary representation to the excess notation representation
of 0 as follows:

10000000
00001001
10001001

To represent negative values, you use a similar method based on subtraction. Because
-9 is nine integer values less than 0, you can calculate the representation of -9 by sub-
tracting its ordinary binary representation from the excess notation representation of 0
as follows:

10000000
- 00001001
01110111

Twos Complement Notation

In the binary numbering system, the complement of 0 is 1, and the complement of 1 is 0.
The complement of a bit string is formed by substituting 0 for all values of 1 and 1 for all
values of 0. For example, the complement of 1010 is 0101. This transformation is the basis
of twos complement notation. In this notation, nonnegative integer values are represented
as ordinary binary values. For example, a twos complement representation of 710 using
4 bits is 0111.

Bit strings for negative integer values are determined by the following transformation:

complement of positive value 1 negative representation

Parentheses are a common mathematical notation for showing a value s complement;
for example, if A is a numeric value, (A) represents its complement. In 4-bit twos comple-
ment representation, -710 is calculated as follows:

0111 0001

1000 0001

1001 -710

As another example, take a look at the twos complement representation of 3510 and
-3510 in 8 bits. The ordinary binary equivalent of 3510 is 00100011, which is also the

74

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

twos complement representation. To determine the twos complement representation of
-3510, use the previous formula with 8-bit numbers:

00100011 00000001

11011100 00000001

11011101 -3510

Twos complement notation is awkward for most people, but it s highly compatible
with digital electronic circuitry for the following reasons:

The leftmost bit represents the sign.
A fixed number of bit positions are used.
Only two logic circuits are required to perform addition on single-bit values.
Subtraction can be performed as addition of a negative value.

The latter two reasons enable CPU manufacturers to build processors with fewer
components than are needed for other integer data formats, which saves money and
increases computational speed. For these reasons, all modern CPUs represent and mani-
pulate signed integers by using twos complement format.

Range and Overflow

Most modern CPUs use 64 bits to represent a twos complement value and support 32-bit
formats for backward compatibility with older software. A 32-bit format is used in the
remainder of this book to simplify the discussion and examples. A small positive value,
such as 1, occupies 32 bits even though, in theory, only 2 bits are required (one for the
value and one for the sign). Although people can deal with numeric values of varying
lengths, computer circuitry isn t nearly as flexible. Fixed-width formats enable more
efficient processor and data communication circuitry. The additional CPU complexity
required to process variable-length data formats results in unacceptably slow performance.
Therefore, when small numeric values are stored, the extra bit positions are filled with
leading 0s.

The numeric range of a twos complement value is -(2n-1) to (2n-1 - 1), where n is the
number of bits used to store the value. The exponent is n-1 because 1 bit is used for the
sign. For 32-bit twos complement format, the numeric range is -2,147,483,64810 to
2,147,483,64710. With any fixed-width data storage format, it s possible that the result of a
computation will be too large to fit in the format. For example, the Gross Domestic Prod-
uct of each U.S. state was less than $2 billion in 2005. Therefore, these values can be
represented as 32-bit twos complement integers. Adding these numbers to calculate Gross
National Product (GNP), however, yields a sum larger than $2 billion. Therefore, a pro-
gram that computes GNP by using 32-bit twos complement values will generate a value
that exceeds the format s numeric range. This condition, referred to as overflow, is treated
as an error by the CPU. Executing a subtraction instruction can also result in overflow
for example, -(231) - 1. Overflow occurs when the absolute value of a computational result
contains too many bits to fit into a fixed-width data format.

As with most other aspects of CPU design, data format length is one design factor that
needs to be balanced with others. Large formats reduce the chance of overflow by
increasing the maximum absolute value that can be represented, but many bits are wasted

75

CPU Data Types

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

(padded with leading 0s) when smaller values are stored. If bits were free, there would be
no tradeoff. However, extra bits increase processor complexity and storage requirements,
which increase computer system cost. A CPU designer chooses a data format width by
balancing numeric range, the chance of overflow during program execution, and the
complexity, cost, and speed of processing and storage devices.

To avoid overflow and increase accuracy, some computers and programming lan-
guages define additional numeric data types called double-precision data formats. A
double-precision data format combines two adjacent fixed-length data items to hold a
single value. Double-precision integers are sometimes called long integers.

Overflow can also be avoided by careful programming. If a programmer anticipates
that overflow is possible, the units of measure for program variables can be made larger.
For example, calculations on centimeters could be converted to meters or kilometers, as
appropriate.

Real Numbers
A real number can contain both whole and fractional components. The fractional portion
is represented by digits to the right of the radix point. For example, the following compu-
tation uses real number data inputs and generates a real number output:

18 0 4 0 4 5

This is the equivalent computation in binary notation:

10010 100 100 1

Representing a real number in computer circuitry requires some way to separate the
value s whole and fractional components (that is, the computer equivalent of a written
radix point). A simple way to accomplish this is to define a storage format in which a
fixed-length portion of the bit string holds the whole portion and the remainder of the bit
string holds the fractional portion. Figure 3.3 shows this format with a sign bit and fixed
radix point.

The format in Figure 3.3 is structurally simple because of the radix point s fixed loca-
tion. The advantage of this simplicity is simpler and faster CPU processing circuitry.

FIGURE 3.3 A 32-bit storage format for real numbers using a fixed radix point
Courtesy of Course Technology/Cengage Learning

76

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Unfortunately, processing efficiency is gained by limiting numeric range. Although the
sample format uses 32 bits, its numeric range is substantially less than 32-bit twos com-
plement. Only 16 bits are allocated to the whole portion of the value. Therefore, the larg-
est possible whole value is 216 - 1, or 65,535. The remaining bits store the fractional
portion of the value, which can never be greater than or equal to 1.

You could increase the format s numeric range by allocating more bits to the whole
portion (shifting the radix point in Figure 3.3 to the right). If the format s total size is fixed
at 32 bits, however, the reallocation would reduce the number of bits used to store the
fractional portion of the value. Reallocating bits from the fractional portion to the whole
portion reduces the precision of fractional quantities, which reduces computational
accuracy.

Floating-Point Notation

One way of dealing with the tradeoff between range and precision is to abandon the con-
cept of a fixed radix point. To represent extremely small (precise) values, move the radix
point far to the left. For example, the following value has only a single digit to the left of
the radix point:

0 0000000013526473

Similarly, very large values can be represented by moving the radix point far to the
right, as in this example:

1352647300000000 0

Note that both examples have the same number of digits. By floating the radix point
left or right, the first example trades range of the whole portion for increased fractional
precision, and the second example trades fractional precision for increased whole range.
Values can be very large or very small (precise) but not both at the same time.

People tend to commit errors when manipulating long strings of digits. To minimize
errors, they often write large numbers in a more compact format called scientific notation.
In scientific notation, the two preceding numbers shown are represented as 13,526,473
10-16 and 13,526,473 108. Note that the numbering system s base (10) is part of the
multiplier. The exponent can be interpreted as the number and direction of positional
moves of the radix point, as shown in Figure 3.4. Negative exponents indicate movement
to the left, and positive exponents indicate movement to the right.

FIGURE 3.4 Conversion of scientific notation to decimal notation
Courtesy of Course Technology/Cengage Learning

77

CPU Data Types

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Real numbers are represented in computers by using floating-point notation, which is
similar to scientific notation except that 2 (rather than 10) is the base. A numeric value is
derived from a floating-point bit string according to the following formula:

value mantissa 2exponent

The mantissa holds the bits that are interpreted to derive the real number s digits. By
convention, the mantissa is assumed to be preceded by a radix point. The exponent value
indicates the radix point s position.

Many CPU-specific implementations of floating-point notation are possible. Differences
in these implementations can include the length and coding formats of the mantissa and
exponent and the radix point s location in the mantissa. Although twos complement can
be used to code the exponent, mantissa, or both, other coding formats might offer better
design tradeoffs. Before the 1980s, there was little compatibility in floating-point format
between different CPUs, which made transporting floating-point data between different
computers difficult or impossible.

The Institute of Electrical and Electronics Engineers (IEEE) addressed this problem in
standard 754, which defines the following formats for floating-point data:

binary32 32-bit format for base 2 values
binary64 64-bit format for base 2 values
binary128 128-bit format for base 2 values
decimal64 64-bit format for base 10 values
decimal128 128-bit format for base 10 values

The binary32 and binary64 formats were specified in the standard s 1985 version and
have been adopted by all computer and microprocessor manufacturers. The other three
formats were defined in the 2008 version. Computer and microprocessor manufacturers
are currently in the process of incorporating these formats into their products, and some
products (such as the IBM POWER6 processor) already include some newer formats. For
the remainder of this chapter, all references to floating-point representation refer to the
binary32 format, unless otherwise specified.

Figure 3.5 shows the binary32 format. The leading sign bit applies to the mantissa, not
the exponent, and is 1 if the mantissa is negative. The 8-bit exponent is coded in excess
notation (meaning its first bit is a sign bit). The 23-bit mantissa is coded as an ordinary
binary number. It s assumed to be preceded by a binary 1 and the radix point. This format
extends the mantissa s precision to 24 bits, although only 23 are actually stored.

78

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Range, Overflow, and Underflow

The number of bits in a floating-point string and the formats of the mantissa and exponent
impose limits on the range of values that can be represented. The number of digits in the
mantissa determines the number of significant (nonzero) digits in the largest and smallest
values that can be represented. The number of digits in the exponent determines the
number of possible bit positions to the right or left of the radix point.

Using the number of bits assigned to mantissa and exponent, the largest absolute value
of a floating-point value appears to be the following:

1 11111111111111111111111 211111111

Exponents containing all 0s and all 1s, however, represent special data values in the
IEEE standards. Therefore, the usable exponent range is reduced, and the decimal range
for the entire floating-point value is approximately 10-45 to 1038.

Floating-point numbers with large absolute values have large positive exponents.
When overflow occurs, it always occurs in the exponent. Floating-point representation is
also subject to a related error condition called underflow. Very small numbers are repre-
sented by negative exponents. Underflow occurs when the absolute value of a negative
exponent is too large to fit in the bits allocated to store it.

Precision and Truncation

Recall that scientific notation, including floating-point notation, trades numeric range for
accuracy. Accuracy is reduced as the number of digits available to store the mantissa is
reduced. The 23-bit mantissa used in the binary32 format represents approximately seven
decimal digits of precision. However, many useful numbers contain more than seven
nonzero decimal digits, such as the decimal equivalent of the fraction 1/3:

1 3 0 33333333

The number of digits to the right of the decimal point is infinite. Only a limited
number of mantissa digits are available, however.

Numbers such as 1/3 are stored in floating-point format by truncation. The numeric
value is stored in the mantissa, starting with its most significant bit, until all available bits
are used. The remaining bits are discarded. An error or approximation occurs any time a
floating-point value is truncated. However, the truncated digits are insignificant compared

FIGURE 3.5 IEEE binary32 floating-point format
Courtesy of Course Technology/Cengage Learning

79

CPU Data Types

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

with the significant, or large, value that s stored. Problems can result when truncated
values are used as input to computations. The error introduced by truncation can be
magnified when truncated values are used and generate inaccurate results. The error
resulting from a long series of computations starting with truncated inputs can be large.

An added difficulty is that more values have nonterminating representations in the
binary system than in the decimal system. For example, the fraction 1/10 is nonterminat-
ing in binary notation. The representation of this value in floating-point notation is a
truncated value, but these problems can usually be avoided with careful programming. In
general, programmers reserve binary floating-point calculations for quantities that can
vary continuously over wide ranges, such as measurements made by scientific
instruments.

When possible, programmers use data types other than binary32 to avoid or minimize
the impact of truncation. Most current microprocessors can store and manipulate
binary64 values, and support for binary128 is gradually being added. In addition, most
programming languages can emulate binary128, decimal64, and decimal128 values,
although processing these values is considerably slower than when the microprocessor
supports them as hardware data types. Programmers seeking to minimize representation
and computation errors should choose the largest floating-point format supported by
hardware or software.

Monetary values are particularly sensitive to truncation errors. Most monetary sys-
tems have at least one fractional monetary unit, such as pennies fractions of a U.S. dol-
lar. Novice programmers sometimes assume that monetary amounts should be stored and
manipulated as binary floating-point numbers. Inevitably, truncation errors caused by
nonterminating representations of tenths and other fractions occur. Cumulative errors
mount when truncated numbers, or approximations, are input in subsequent calculations.

One way to address the problem is to use integer arithmetic for accounting and finan-
cial applications. To do so, a programmer stores and manipulates monetary amounts in
the smallest possible monetary unit for example, U.S. pennies or Mexican pesos. Small
denominations are converted to larger ones only when needed for output, such as printing
a dollar amount on a check or account statement.

Although representing and manipulating monetary values as integers provides computa-
tional accuracy, this method has limitations. For example, complex formulas for computing
interest on loans or investment balances include exponents and division. Intermediate cal-
culation results for programs using these formulas can produce fractional quantities unless
monetary amounts are scaled to very small units (for example, millionths of a penny).

The decimal64 and decimal128 bit formats defined in the 2008 version of IEEE stan-
dard 754 are intended to address the shortcomings of both binary floating-point and inte-
ger representation of monetary units. These formats provide accurate representation of
decimal values, and the standard specifies rounding methods that can be used instead of
truncation to improve computational accuracy. Both formats use the same basic approach
as in binary formats a mantissa and an exponent but they encode three decimal digits
in each 10-bit group.

Processing Complexity

The difficulty of learning to use scientific and floating-point notation is understandable.
These formats are far more complex than integer data formats, and the complexity affects

80

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

both people and computers. Although floating-point formats are optimized for processing
efficiency, they still require complex processing circuitry. The simpler twos complement
format used for integers requires much less complex circuitry.

The difference in processing circuitry complexity translates to a difference in speed of
performing calculations. The magnitude of the difference depends on several factors,
including the computation and the exact details of the processing circuitry. As a general
rule, simple computational operations, such as addition and subtraction, take at least
twice as long with floating-point numbers than with integers. The difference is even
greater for operations such as division and exponentiation. For this reason and for reasons
of accuracy, careful programmers never use a real number when an integer can be used,
particularly for frequently updated data items.

Character Data
In their written form, English and many other languages use alphabetic letters, numerals,
punctuation marks, and a variety of other special-purpose symbols, such as $ and &. Each
symbol is a character. A sequence of characters that forms a meaningful word, phrase, or
other useful group is a string. In most programming languages, single characters are sur-
rounded by single quotation marks ('c'), and strings are surrounded by double quotation
marks ("computer").

Character data can t be represented or processed directly in a computer because
computers are designed to process only digital data (bits). It can be represented indirectly
by defining a table that assigns a numeric value to each character. For example, the inte-
ger values 0 through 9 can be used to represent the characters (numerals)'0' through'9',
the uppercase letters'A' through'Z' can be represented as the integer values 10 through
36, and so forth.

A table-based substitution of one set of symbols or values for another is one example
of a coding method. All coding methods share several important characteristics, including
the following:

All users must use the same coding and decoding methods.
The coded values must be capable of being stored or transmitted.
A coding method represents a tradeoff among compactness, range, ease of
manipulation, accuracy, and standardization.

The following sections describe some common coding methods for character data.

EBCDIC

Extended Binary Coded Decimal Interchange Code (EBCDIC) is a character-coding
method developed by IBM in the 1960s and used in all IBM mainframes well into the
2000s. Recent IBM mainframes and mainframe OSs support more recent character-coding
methods, but support for EBCDIC is still maintained for backward compatibility. EBCDIC
characters are encoded as strings of 8 bits.

ASCII

The American Standard Code for Information Interchange (ASCII), adopted in the United
States in the 1970s, is a widely used coding method in data communication. The international

81

CPU Data Types

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

equivalent of this coding method is International Alphabet 5 (IA5), an International Organi-
zation for Standardization (ISO) standard. Almost all computers and OSs support ASCII,
although a gradual migration is in progress to its newer relative, Unicode.

ASCII is a 7-bit format because most computers and peripheral devices transmit data
in bytes and because parity checking was used widely in the 1960s to 1980s for detecting
transmission errors. Chapter 8 discusses parity checking and other error detection and
correction methods. For now, the important characteristic of parity checking is that it
requires 1 extra bit per character. Therefore, 1 of every 8 bits isn t part of the data value,
leaving only 7 bits for data representation.

The standard ASCII version used for data transfer is sometimes called ASCII-7 to
emphasize its 7-bit format. This coding table has 128, or 27, defined characters. Computers
that use 8-bit bytes are capable of representing 256, or 28, different characters. In most
computers, the ASCII-7 characters are included in an 8-bit character coding table as the
first, or lower, 128 table entries. The additional, or upper, 128 entries are defined by the
computer manufacturer and typically used for graphical characters, such as line-drawing
characters and multinational characters for example, á, ñ, Ö, and . This encoding
method is sometimes called ASCII-8. The term is a misnomer, as it implies that the entire
table (all 256 entries) is standardized. In fact, only the first 128 entries are defined by the
ASCII standard. Table 3.5 shows portions of the ASCII and EBCDIC coding tables.

TABLE 3.5 Partial listing of ASCII and EBCDIC codes

Symbol ASCII EBCDIC

0 0110000 11110000

1 0110001 11110001

2 0110010 11110010

3 0110011 11110011

4 0110100 11110100

5 0110101 11110101

6 0110110 11110110

7 0110111 11110111

8 0111000 11111000

9 0111001 11111001

A 1000001 11000001

B 1000010 11000010

C 1000011 11000011

a 1100001 10000001

b 1100010 10000010

c 1100011 10000011

82

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Device Control When text is printed or displayed on an output device, often it s format-
ted in a particular way. For example, text output to a printer is normally formatted in
lines and paragraphs, and a customer record can be displayed onscreen so that it looks
like a printed form. Certain text can be highlighted when printed or displayed by using
methods such as underlining, bold font, or reversed background and foreground colors.

ASCII defines several device control codes (see Table 3.6) used for text formatting by
sending them immediately before or after the characters they modify. Among the simpler
codes are carriage return, which moves the print head or insertion point to the beginning
of a line; line feed, which moves the print head or insertion point down one line; and bell,
which generates a short sound, such as a beep or bell ring. In ASCII, each of these func-
tions is assigned a numeric code and a short character name, such as CR for carriage
return, LF for line feed, and BEL for bell. In addition, some ASCII device control codes are
used to control data transfer. For example, ACK is sent to acknowledge correct receipt of
data, and NAK is sent to indicate that an error has been detected.

N O T E
The 33 device control codes in the ASCII table occupy the first 32 entries (numbered 0 through 31) and
the last entry (number 127).

TABLE 3.6 ASCII control codes

Decimal code Control character Description

000 NUL Null

001 SOH Start of heading

002 STX Start of text

003 ETX End of text

004 EOT End of transmission

005 ENQ Enquiry

006 ACK Acknowledge

007 BEL Bell

008 BS Backspace

009 HT Horizontal tabulation

010 LF Line feed

011 VT Vertical tabulation

012 FF Form feed

013 CR Carriage return

014 SO Shift out

015 SI Shift in

83

CPU Data Types

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Software and Hardware Support Because characters are usually represented in the
CPU as unsigned integers, there s little or no need for special character-processing
instructions. Instructions that move and copy unsigned integers behave the same whether
the content being manipulated is an actual numeric value or an ASCII-encoded character.
Similarly, an equality or inequality comparison instruction that works for unsigned inte-
gers also works for values representing characters.

The results of nonequality comparisons are less straightforward. The assignment of
numeric codes to characters follows a specific order called a collating sequence. A greater-
than comparison with two character inputs (for example,'a' less than'z') returns a result
based on the numeric comparison of the corresponding ASCII codes that is, whether the
numeric code for'a' is less than the numeric code for'z'. If the character set has an order
and the coding method follows the order, less-than and greater-than comparisons usually
produce expected results.

However, using numeric values to represent characters can produce some unexpected
or unplanned results. For example, the collating sequence of letters and numerals in ASCII
follows the standard alphabetic order for letters and numeric order for numerals, but
uppercase and lowercase letters are represented by different codes. As a result, an equality
comparison between uppercase and lowercase versions of the same letter returns false
because the numeric codes aren t identical. For example,'a' doesn t equal'A', as shown

TABLE 3.6 ASCII control codes (continued)

Decimal code Control character Description

016 DLE Data link escape

017 DC1 Device control 1

018 DC2 Device control 2

019 DC3 Device control 3

020 DC4 Device control 4

021 NAK Negative acknowledge

022 SYN Synchronous idle

023 ETB End of transmission block

024 CAN Cancel

025 EM End of medium

026 SUB Substitute

027 ESC Escape

028 FS File separator

029 GS Group separator

030 RS Record separator

031 US Unit separator

127 DEL Delete

84

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

previously in Table 3.5. Punctuation symbols also have a specific order in the collating
sequence, although there s no widely accepted ordering for them.

ASCII Limitations ASCII s designers couldn t foresee the code s long lifetime (almost 50
years) or the revolutions in I/O device technologies that would take place. They never
envisioned modern I/O device characteristics, such as color, bitmapped graphics, and
selectable fonts. Unfortunately, ASCII doesn t have the range to define enough control
codes to account for all the formatting and display capabilities in modern I/O devices.

ASCII is also an English-based coding method. This isn t surprising, given that when it
was defined, the United States accounted for most computer use and almost all computer
production. ASCII has a heavy bias toward Western languages in general and American
English in particular, which became a major limitation as computer use and production
proliferated worldwide.

Recall that 7-bit ASCII has only 128 table entries, 33 of which are used for device control.
Only 95 printable characters can be represented, which are enough for a usable subset of the
characters commonly used in American English text. This subset, however, doesn t include
any modified Latin characters, such as ç and á, or those from other alphabets, such as .

The ISO partially addressed this problem by defining many different 256-entry tables
based on the ASCII model. One, called Latin-1, contains the ASCII-7 characters in the
lower 128 table entries and most of the characters used by Western European languages in
the upper 128 table entries. The upper 128 entries are sometimes called multinational
characters. The number of available character codes in a 256-entry table, however, is still
much too small to represent the full range of printable characters in world languages.

Further complicating matters is that some printed languages aren t based on charac-
ters in the Western sense. Chinese, Japanese, and Korean written text consists of ideo-
graphs, which are pictorial representations of words or concepts. Ideographs are composed
of graphical elements, sometimes called strokes, that number in the thousands. Other
written languages, such as Arabic, present similar, although less severe, coding problems.

Unicode

The Unicode Consortium (www.unicode.org) was founded in 1991 to develop a multilin-
gual character-encoding standard encompassing all written languages. The original mem-
bers were Apple Computer Corporation and Xerox Corporation, but many computer
companies soon joined. This effort has enabled software and data to cross international
boundaries. Major Unicode standard releases are coordinated with ISO standard 10646.
As of this writing, the latest standard is Unicode 5.2, published in October 2009.

Like ASCII, Unicode is a coding table that assigns nonnegative integers to represent
printable characters. The ISO Latin-1 standard, which includes ASCII-7, is incorporated
into Unicode as the first 256 table entries. Therefore, ASCII is a subset of Unicode. An
important difference between ASCII and Unicode is the size of the coding table. Early
versions of Unicode used 16-bit code, which provided 65,536 table entries numbered
0 through 65,535. As development efforts proceeded, the number of characters exceeded
the capacity of a 16-bit code. Later Unicode versions use 16-bit or 32-bit codes, and the
standard currently encompasses more than 100,000 characters.

The additional table entries are used primarily for characters, strokes, and ideographs
of languages other than English and its Western European siblings. Unicode includes many
other alphabets, such as Arabic, Cyrillic, and Hebrew, and thousands of Chinese,

85

CPU Data Types

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.unicode.org

Japanese, and Korean ideographs and characters. Some extensions to ASCII device control
codes are also provided. As currently defined, Unicode can represent written text from all
modern languages. Approximately 6000 characters are reserved for private use.

Unicode is widely supported in modern software, including most OSs and word-
processing applications. Because most CPUs support characters encoded in 32-bit
unsigned integers, there s no need to upgrade processor hardware to support Unicode.
The main impact of Unicode on hardware is in storage and I/O devices. Because the
numeric code s size is quadruple that of ASCII, pure text files are four times as large.
This increased size seems to be a problem at first glance, but the impact is reduced
with custom word-processing file formats and the ever-declining cost of secondary
storage. In addition, most documents aren t stored as ASCII or Unicode text files.
Instead, they re stored in a format that intermixes text and formatting commands.
Because formatting commands also occupy file space, the file size increase caused by
switching from ASCII to Unicode is generally less than implied by quadrupling per-
character storage.

Before Unicode, devices designed for character I/O used ASCII by default and vendor-
specific methods or older ISO standards to process character sets other than Latin-1. The
typical method was to maintain an internal set of alternative coding tables, with each table
containing a different alphabet or character set. Device-specific commands switched from
one table to another. Unicode unifies and standardizes the content of these tables to pro-
vide a standardized method for processing international character sets. This standard has
been widely adopted by I/O device manufacturers. In addition, backward compatibility
with ASCII is ensured because Unicode includes ASCII.

Boolean Data
The Boolean data type has only two data values true and false. Most people don t think
of Boolean values as data items, but the primitive nature of CPU processing requires the
capability to store and manipulate Boolean values. Recall that processing circuitry physi-
cally transforms input signals into output signals. If the input signals represent numbers
and the processor is performing a computational function, such as addition, the output
signal represents the numerical result.

When the processing function is a comparison operation, such as greater than or equal
to, the output signal represents a Boolean result of true or false. This result is stored in a
register (as is any other processing result) and can be used by other instructions as input
(for example, a conditional or an unconditional branch in a program). The Boolean data
type is potentially the most concise coding format because only a single bit is required.
For example, binary 1 can represent true, and 0 can represent false. To simplify processor
design and implementation, most CPU designers seek to minimize the number of different
coding formats used. CPUs generally use an integer coding format for integers to represent
Boolean values. When coded in this manner, the integer value zero corresponds to false,
and all nonzero values correspond to true.

To conserve memory and storage, sometimes programmers pack many Boolean
values into a single integer by using each bit to represent a separate Boolean value.
Although this method conserves memory, generally it slows program execution because
of the complicated instructions required to extract and interpret separate bits from an
integer data item.

86

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Memory Addresses
As described in Chapter 2, primary storage is a series of contiguous bytes of storage. Con-
ceptually, each memory byte has a unique identifying or serial number. The identifying
numbers are called addresses, and their values start with zero and continue in sequence
(with no gaps) until the last byte of memory is addressed.

In some CPUs, this conceptual view is also the physical method of identifying and
accessing memory locations. That is, memory bytes are identified by a series of nonnega-
tive integers. This approach to assigning memory addresses is called a flat memory model.
In CPUs using a flat memory model, using twos complement or unsigned binary as the
coding format for memory addresses is logical and typical. The advantage of this approach
is that it minimizes the number of different data types and the complexity of processor
circuitry.

To maintain backward compatibility with earlier generations of CPUs that don t use a
flat memory model, some CPU designers choose not to use simple integers as memory
addresses. For example, Intel Core CPUs maintain backward compatibility with the 8086
CPU used in the first IBM PC. Earlier generations of processors typically used a different
approach to memory addressing called a segmented memory model, in which primary
storage is divided into equal-sized (for example, 64 KB) segments called pages. Pages are
identified by sequential nonnegative integers. Each byte in a page is also identified by a
sequentially assigned nonnegative integer. Each byte of memory has a two-part address:
The first part identifies the page, and the second part identifies the byte in the page.

Because a segmented memory address contains two integer values, the data-coding
method for single signed or unsigned integers can t be used. Instead, a specific coding for-
mat for memory addresses must be defined and used. For this reason, CPUs with seg-
mented memory models have an extra data type, or coding format, for storing memory
addresses.

T E C H N O L O G Y F O C U S

Intel Memory Address Formats

Intel microprocessors have been used in PCs since 1981. The original IBM PC used an
Intel 8086 microprocessor. All later generations of Intel processors (the 80x86, Pentium,
and Core processor families) have maintained backward compatibility with the 8086 and
can execute CPU instructions designed for the 8086. Backward compatibility has been
considered an essential ingredient in the success of PCs based on Intel CPUs.

Early Intel microprocessors were designed and implemented with speed of processor
operation as a primary goal. Because a general-purpose CPU uses memory addresses in
nearly every instruction execution cycle, making memory access as efficient as possible
is important. Processor complexity rises with the number of bits that must be processed
simultaneously. Large coding formats for memory addresses and other data types require
complicated and slow processing circuitry. Intel designers wanted to minimize the com-
plexity of processor circuitry associated with memory addresses. They also needed to
balance the desire for efficient memory processing with the need to maintain a large

(continued)

87

CPU Data Types

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

range of possible memory addresses. To achieve this balance, they made two major
design decisions for the 8086:

A 20-bit size for memory addresses
A segmented memory model

The 20-bit address format limited usable (addressable) memory to 1 MB (220

addressable bytes). This limitation didn t seem like a major one because few computers
(including most mainframes) had that much memory at the time. The 20-bit format is
divided into two parts: a 4-bit segment identifier and a 16-bit segment offset. The 16-bit
segment offset identifies a specific byte in a 64 (216) KB memory segment. Because 4 bits
are used to represent the segment, there are 16, or 24, possible segments.

Intel designers anticipated that most programs would fit in a single 64 KB memory
segment. Further, they knew that 16-bit memory addresses could be processed more
efficiently than larger addresses. Therefore, they defined two types of address-processing
functions those using the 4-bit segment portion of the address and those ignoring it.
When the segment identifier was used, memory access was slow, but it was much faster
when the processor ignored the segment identifier. Intel designers assumed that most
memory accesses wouldn t require the segment identifier.

Both the 64 KB segment size and the 1 MB memory limit soon became significant
constraints. Although early programs for the IBM PC were generally smaller than 64 KB,
later versions of these programs were larger. Because the processor design imposed a
performance penalty when the segment identifier was used, later versions ran more
slowly than earlier versions did. In addition, both the OS and the computer hardware
were becoming more complex and consuming more memory resources. As a result,
computer designers, OS developers, and users chafed under the 1 MB memory limit.

Intel designers first addressed these constraints in the 80286 by increasing the seg-
ment identifier to 8 bits, thus increasing total addressable memory to 16 MB. The 80386
went a step further by providing two methods of addressing. The first, called real mode,
was compatible with the 8086 s addressing method. The second, called protected mode,
was a new method based on 32-bit memory addresses. Protected-mode addressing elimi-
nated the performance penalty for programs larger than 64 KB. Pentium and Core
microprocessors continue to use both addressing methods.

The 32-bit protected-mode addresses are adequate for physical memory up to 4 GB.
By the late 1990s and 2000s, larger computer classes were reaching this limit, and PCs
and workstations were expected to follow in a decade. Intel expanded protected-mode
memory addresses to 64 bits beginning in the mid-2000s. The change was far less dis-
ruptive than earlier changes because addresses of both sizes use the flat memory model.
Nonetheless, users have encountered some bumps in the road as software manufacturers
shifted from 32-bit to 64-bit addressing.

This discussion, and the earlier discussion of ASCII, illustrates a few pitfalls for
computer designers in choosing data representation methods and formats. A fundamental
characteristic of any data representation method is that it involves balancing several
variables. For Intel memory addresses, designers had to balance processor cost, speed of
program execution, and memory requirements of typical PC software. The balance might
have been optimal, or at least reasonable, given the state of these variables in 1981, but
neither time nor technology stands still. The outcome of any CPU design decision,
including data representation formats, is affected quickly as technology changes.
Attempts to maintain backward compatibility with previous CPU designs can be difficult
and expensive and might severely limit future design choices.

88

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DATA STRUCTURES

The previous sections outlined the data types that a CPU can manipulate directly: integer,
real number, character, Boolean, and memory address. The data types a CPU supports are
sometimes called primitive data types or machine data types. Computers can also process
more complex data, such as strings, arrays, text files, databases, and digital representa-
tions of audio and image data, such as MP3, JPEG, and MPEG files. Chapter 7 discusses
audio and image data representations and related hardware devices. The remainder of this
chapter concentrates on other complex data formats commonly manipulated by system
and application software.

If only primitive data types were available, developing programs of any kind would be
difficult. Most application programs need to combine primitive data items to form useful
aggregations. A common example is a character or text string. Most application programs
define and use character strings, but few CPUs provide instructions that manipulate them
directly. Application development is simplified if character strings can be defined and
manipulated (that is, read, written, and compared) as a single unit instead of one charac-
ter at a time.

A data structure is a related group of primitive data elements organized for some type
of common processing and is defined and manipulated in software. Computer hardware
can t manipulate data structures directly; it must deal with them in terms of their primi-
tive components, such as integers, floating-point numbers, single characters, and so on.
Software must translate operations on data structures into equivalent machine instruc-
tions that operate on each primitive data element. For example, Figure 3.6 shows a com-
parison of two strings decomposed into comparison operations on each character.

89

Data Structures

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The complexity of data structures is limited only by programmers imagination and
skill. As a practical matter, certain data structures are useful in a wide variety of situa-
tions and are used commonly, such as character strings or arrays, records, and files. Sys-
tem software often provides application services to manipulate these commonly used data
structures. For example, an OS normally provides services for reading from and writing to
files.

Other data structures are less commonly supported by system software. Examples
include numeric arrays, indexed files, and complex database structures. Indexed files are
supported in some, but not all, OSs. Numeric arrays are supported in most programming
languages but not in most OSs. Database structures are normally supported by a database
management system. Most programming languages support direct manipulation of charac-
ter strings.

Data structures have an important role in system software development. For example,
OSs commonly use linked lists to keep track of memory blocks allocated to programs
and disk blocks allocated to files and directories. Indexes are widely used in database

FIGURE 3.6 Software decomposes operations on data structures into operations on primitive data
elements

Courtesy of Course Technology/Cengage Learning

90

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

management systems to speed search and retrieval operations. Programmers who develop
system software generally take an entire course in data structures and efficient methods
for manipulating them.

Pointers and Addresses
Whether implemented in system or application software, almost all data structures make
extensive use of pointers and addresses. A pointer is a data element containing the
address of another data element. An address is the location of a data element in a storage
device. Addresses vary in content and representation, depending on the storage device
being addressed. Secondary storage devices are normally organized as a sequence of data
blocks. A block is a group of bytes read or written as a unit. For example, disk drives usu-
ally read and write data in 512-byte blocks. For block-oriented storage devices, an address
can be represented as an integer containing the block s sequential position. Integers can
also be used to represent the address of a single byte in a block.

As discussed in the previous Technology Focus, memory addresses can be complex if
a segmented memory model is used. For the purpose of discussing data structures, a flat
memory model is used, and memory addresses are represented by nonnegative integers.

Arrays and Lists
Many types of data can be grouped into lists. A list is a set of related data values. In math-
ematics, a list is considered unordered, so no specific list element is designated as first,
second, last, and so on. When writing software, a programmer usually prefers to impose
some ordering on the list. For example, a list of days of the week can be ordered sequen-
tially, starting with Monday.

An array is an ordered list in which each element can be referenced by an index to its
position. Figure 3.7 shows an example of an array for the first five letters of the English
alphabet. Note that the index values are numbered starting at 0, a common (although not
universal) practice in programming. Although the index values are shown in Figure 3.7,
they aren t stored. Instead, they re inferred from the data value s location in the storage
allocated to the array. In a high-level programming language, array elements are normally
referenced by the array name and the index value. For example, the third letter of the
alphabet stored in an array might be referenced as follows:

alphabet 2

In this example, alphabet is the array name, and 2 is the index value (with number-
ing starting from 0).

91

Data Structures

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 3.8 shows a character array, or string, stored sequentially in contiguous mem-
ory locations. In this example, each character of the name John Doe is stored in a single
byte of memory, and the characters are ordered in sequential byte locations starting at
byte 1000. An equivalent organization can be used to store the name on a secondary stor-
age device. The address of an array element can be calculated with the starting address of
the array and the element s index. For example, if you want to retrieve the third character
in the array, you can compute its address as the sum of the first element s address plus the
index value, assuming index values start at 0.

Using contiguous storage locations, especially in secondary storage devices, compli-
cates the allocation of storage locations. For example, adding new elements to the end of
an array might be difficult if these storage locations are already allocated to other data
items. For this reason, contiguous storage allocation is generally used only for fixed-length
arrays.

For a variety of reasons, you might need to store array elements in widely dispersed
storage locations. A linked list is a data structure that uses pointers so that list elements
can be scattered among nonsequential storage locations. Figure 3.9 shows a generic exam-
ple of a singly linked list. Each list element occupies two storage locations: The first holds
the list element s data value, and the second holds the address of the next list element as a
pointer.

FIGURE 3.7 Array elements in contiguous storage locations
Courtesy of Course Technology/Cengage Learning

FIGURE 3.8 A character array in contiguous storage locations
Courtesy of Course Technology/Cengage Learning

92

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 3.10 shows a character string stored in a linked list. Note that characters are
scattered among nonsequential, or noncontiguous, storage locations.

More storage locations are required for a linked list than for an array with equivalent
content because both data and pointers must be stored. Using pointers also complicates
the task of locating array elements. References to specific array elements must be resolved
by following the chain of pointers, starting with the first array element. This method can
be inefficient if the array contains a large number of elements. For example, accessing the
1000th element means reading and following pointers in the first 999 elements.

FIGURE 3.9 Value and pointer fields of a singly linked list
Courtesy of Course Technology/Cengage Learning

FIGURE 3.10 A character array stored in noncontiguous memory locations, with pointers
connecting the array elements

Courtesy of Course Technology/Cengage Learning

93

Data Structures

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Linked lists are easier to expand or shrink than arrays are. The procedure for adding a
new element is as follows (see Figure 3.11):

1. Allocate storage for the new element.
2. Copy the pointer from the element preceding the new element to the pointer

field of the new element.
3. Write the address of the new element in the preceding element s pointer

field.

In contrast, inserting an element in a list stored in contiguous memory can be time
consuming. The procedure is as follows (see Figure 3.12):

1. Allocate a new storage location at the end of the list.
2. For each element past the insertion point, copy its value to the next storage

location, starting with the last element and working backward to the insertion
point.

3. Write the new element s value in the storage location at the insertion point.

Inserting an element near the beginning of the array is highly inefficient because of
the many required copy operations.

FIGURE 3.11 Inserting a new element in a singly linked list
Courtesy of Course Technology/Cengage Learning

94

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 3.13 depicts a more complicated linked list called a doubly linked list. Each
element of a doubly linked list has two pointers: one pointing to the next element in the
list and one pointing to the previous element in the list. The main advantage of doubly
linked lists is that they can be traversed in either direction with equal efficiency. The dis-
advantages are that more pointers must be updated each time an element is inserted into
or deleted from the list, and more storage locations are required to hold the extra pointers.

FIGURE 3.12 Inserting a new element in an array stored in contiguous memory locations
Courtesy of Course Technology/Cengage Learning

FIGURE 3.13 A doubly linked list
Courtesy of Course Technology/Cengage Learning

95

Data Structures

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Records and Files
A record is a data structure composed of other data structures or primitive data elements.
Records are commonly used as a unit of input and output to and from files or databases.
For example, the following data items might be the contents of the data structure for a
customer record (see Figure 3.14):

Account-Number Street-Address
Last-Name City
First-Name State
Middle-Initial Zip-Code

Each component of the record is a basic data element (for example, Middle-Initial) or
another data structure (for example, a character array for Street-Address). To speed input
and output, records are usually stored in contiguous storage locations, which restricts the
record s array components to a fixed length.

A sequence of records on secondary storage is called a file. A sequence of records
stored in main memory is normally called a table, although its structure is essentially the
same as a file. Files can be organized in many different ways, the most common being
sequential and indexed.

In a sequential file, records are stored in contiguous storage locations. As with arrays
stored in contiguous storage, accessing a specific record is simple. The address of the nth
record in a file can be computed as follows:

address-of-first-record n - 1 record-size

If the first byte of the first record is at address 1 and the record size is 200 bytes, the
address of the fourth record is 601.

Sequential files suffer the same problems as contiguous arrays when records are being
inserted and deleted. A copy procedure similar to the one in Figure 3.12 must be used to
add a record to a file. The procedure is even less efficient for files than for arrays because
of the large size of the records that must be copied.

One method of solving this problem is to use linked lists. With files, the data elements
of a linked list are entire records instead of basic data elements. The methods for search-
ing, inserting records, and deleting records are essentially the same as described
previously.

Another method of organizing files uses an index, an array of pointers to records. The
pointers can be ordered in any sequence you need. For example, a file of customer records
can be ordered by ascending account number, as shown in Figure 3.15.

FIGURE 3.14 A record data structure
Courtesy of Course Technology/Cengage Learning

96

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The advantage of using an index lies in the efficiency of record insertion, deletion, and
retrieval. When a record is added to a file, storage is allocated for the record, and data is
placed in the storage location. The index is then updated by inserting the new record s
address. An index update follows the same procedure as an array update. Because the
array contains only pointers, it s small and fast to update.

Classes and Objects
Up to this point, data and programs have been discussed as two fundamentally different
things. Programs contain instructions, which transform data inputs into data outputs when
executed. Data items are held in storage devices, moved to CPU registers when needed,
transformed into data outputs by executing instructions, and sent to output or storage
devices again. In this view of computer systems and software behavior, data items are
mainly static, and programs are the active means for transforming and updating data
items.

In the 1980s and 1990s, computer researchers developed a different view of computer
and software behavior: combining program instructions and data into a single data struc-
ture. A class is a data structure containing both traditional (static) data elements and pro-
grams that manipulate the data. The programs in a class are called methods. A class
combines related data items in much the same way a record does, but it extends the
record to include methods for manipulating data items.

Think of the customer record in Figure 3.14 as a starting point for defining a Cus-
tomer class. The record contains some primitive data items and data structures describing
features of a customer. (Others, such as account balance, could be added to create a more
complete representation of a customer.)

To turn the customer record into a Customer class, methods for manipulating or
modifying data elements in the record must be added. For example, you can add a simple

FIGURE 3.15 An indexed file
Courtesy of Course Technology/Cengage Learning

97

Data Structures

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

method for updating a data element s content called Update-First-Name. You can check for
legal values, such as making sure the value supplied for Zip-Code is a valid U.S. zip code in
the customer s state. Functions, such as Print-Mailing-Label, or methods for modifying the
customer s account balance to reflect transactions, such as Apply-Payment, can be added.
Figure 3.16 shows some possible data elements and methods for the Customer class.

An object is one instance, or variable, of a class. Each person who s a customer is
represented by one variable or object of the Customer class. Each object can be stored in
a storage device, and each object s data elements occupy a separate part of the storage
device.

Viewed as just another data structure, an object differs little from a record. Much as
the data element Street-Address can be represented with a character array, a method can
be represented as an array of CPU instructions. Methods can be represented in other ways,
including linked lists of instructions or pointers to files containing sequential sets of
instructions. In essence, the only new primitive data type needed to represent a method in
an object is an instruction. As you see in Chapter 4, instructions, like data, have specific
representation and storage formats.

FIGURE 3.16 A Customer class containing traditional data elements (darker boxes) and methods
(lighter boxes)

Courtesy of Course Technology/Cengage Learning

98

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

Data can be represented in many ways. To be processed by any device, data must be
converted from its native format into a form suitable for the processing device. Modern
computers represent data as electronic signals and implement processing devices by using
electronic circuitry. Electronic processing devices exploit the physical laws of electricity.
Because the laws of electricity can be stated as mathematical equations, electronic devices
can perform the computational functions embedded in these equations. Other ways of
implementing processors, such as mechanics and optics, use similar mathematically stated
physical laws.

All data, including nonnumeric data, are represented in modern computers as strings of
binary digits, or bits. Bits are used because 0 and 1 can be encoded in clearly recognizable
electrical states, such as high and low voltage. Binary electrical states can be processed
and stored by reliable, cheap electrical devices. A handful of primitive data types are repre-
sented and processed by a CPU, including integers, real numbers, characters, Boolean
values, and memory addresses.

Numeric values other than 0 and 1 are represented by combining multiple bits into larger
groups, called bit strings, much as the decimal digits 2, 5, and 9 can be combined to form
the larger value 592. Each bit string has a specific data format and coding method. There
are many different data formats and coding methods. CPU designers choose formats and
methods that represent the best balance among compactness, range, ease of manipulation,
accuracy, and standardization. The optimal balance can vary, depending on the type of
data and its intended uses.

Integers have no fractional component and can use simple data formats. Twos complement
is the most common integer format, although excess notation is used sometimes. Real
numbers have both whole and fractional components. Their complex structure requires a
complex data format called floating-point notation that represents a numeric value as a
mantissa multiplied by a positive or negative power of 2. A value can have many digits of
precision in floating-point notation for very large or very small magnitudes but not both large
and small magnitudes at the same time. Floating-point formats used in modern computers
typically follow IEEE standards, which include binary and decimal representations ranging
from 32 to 128 bits in length. Floating-point formats are less accurate and more difficult to
process than twos complement format.

Character data isn t inherently numeric. Characters are converted to numbers by means of
a coding table, in which each character occupies a sequential position. A character is
represented by converting it to its integer table position. Characters are extracted from inte-
gers by the reverse process. Many different tables are possible. Most computers use the
ASCII or Unicode coding tables. ASCII is an older standard geared toward the English lan-
guage. Unicode is a more recent standard with a character set large enough to encompass
ASCII and all written languages.

A Boolean data value must be true or false. Memory addresses can be simple or complex
numeric values, depending on whether the CPU uses a flat or segmented memory model.
Flat memory addresses can be represented as a single integer. Segmented memory

99

Summary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

addresses require multiple integers. Many CPUs also provide double-precision numeric
data types, which double the number of bits used to store a value.

Programs often define and manipulate data in larger and more complex units than primitive
CPU data types. A data structure is a related group of primitive data elements organized for
some type of common processing and is defined in software. To enable a CPU to manipu-
late a data structure, software decomposes operations on the data structure into equivalent
operations on its primitive components. Commonly used data structures include arrays,
linked lists, records, tables, files, indexes, and objects. Many data structures use pointers,
which are stored memory addresses, to link primitive data components.

In this chapter, you ve learned the different ways data is represented in modern computers,
focusing particularly on the relationship between data representation and the CPU. This chapter
and the preceding chapters have introduced basic concepts and terminology of systems archi-
tecture. The understanding you ve gained in the first three chapters lays the foundation for the
more detailed discussion of the hardware implementations of data processing, storage, and
communication in upcoming chapters.

Key Terms

address

American Standard Code for Information
Interchange (ASCII)

array

base

binary number

bit

bit string

Boolean data type

Boolean logic

byte

character

class

collating sequence

data structure

decimal point

double-precision

doubly linked list

excess notation

Extended Binary Coded Decimal Interchange
Code (EBCDIC)

file

flat memory model

floating-point notation

hexadecimal notation

high-order bit

index

integer

International Alphabet 5 (IA5)

International Organization
for Standardization (ISO)

Latin-1

least significant digit

linked list

long integer

low-order bit

machine data type

manipulation

method

most significant digit

multinational character

numeric range

object

octal notation

overflow

pointer

primitive data type

radix

100

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

radix point

real number

record

segmented memory model

signed integer

singly linked list

string

truncation

twos complement notation

underflow

Unicode

unsigned integer

Vocabulary Exercises

1. An element in a(n) contains pointers to both the next and previous list elements.

2. notation encodes a real number as a mantissa multiplied by a power (exponent)
of 2.

3. A(n) is an integer stored in double the normal number of bit positions.

4. Increasing a numeric representation format s size (number of bits) increases the
of values that can be represented.

5. Assembly (machine) language programs for most computers use notation to
represent memory address values.

6. A(n) is a data item composed of multiple primitive data items.

7. In older IBM mainframe computers, characters were encoded according to the
coding scheme.

8. A(n) is the address of another data item or structure.

9. In a positional numbering system, the separates digits representing whole number
quantities from digits representing fractional quantities.

10. A(n) is an array of characters.

11. Most Intel CPUs use the , in which each memory address is represented by two
integers.

12. A set of data items that can be accessed in a specified order by using pointers is called
a(n) .

13. A(n) contains 8 .

14. A(n) list stores one pointer with each list element.

15. The result of adding, subtracting, or multiplying two integers might result in overflow but
never or .

16. A(n) is a sequence of primitive data elements stored in sequential storage
locations.

17. A(n) is a data structure composed of other data structures or primitive data ele-
ments, commonly used as a unit of input and output to and from files or databases.

18. A(n) data item can contain only the values true or false.

19. A(n) is an array of data items, each of which contains a key value and a pointer
to another data item.

101

Vocabulary Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20. Many computers implement numeric data types to increase accuracy and prevent
overflow and underflow.

21. Unlike ASCII and EBCDIC, is a 16-bit or 32-bit character coding table.

22. The is the bit of lowest magnitude in a byte or bit string.

23. occurs when the result of an arithmetic operation exceeds the number of bits
available to store it.

24. In a CPU, arithmetic generally is easier to implement than arithmetic
because of a simpler data coding scheme and data manipulation circuitry.

25. In the , memory addresses consist of a single integer.

26. The has defined a character-coding table called , which combines the
ASCII-7 coding table with an additional 128 Western European multinational characters.

27. Data represented in is transmitted accurately between computer equipment from
different manufacturers if each computer s CPU represents real numbers by using an IEEE
standard notation.

28. The ordering of characters in a coding table is called a(n) .

29. A(n) is a data structure containing both static data and methods.

30. A(n) is one instance or variable of a class.

Review Questions

1. What are the binary, octal, and hexadecimal representations of the decimal number 10?

2. Why is binary data representation and signaling the preferred method of computer hard-
ware implementation?

3. What is excess notation? What is twos complement notation? Why are they needed? In
other words, why can t integer values be represented by ordinary binary numbers?

4. What is the numeric range of a 16-bit twos complement value? A 16-bit excess notation
value? A 16-bit unsigned binary value?

5. What is overflow? What is underflow? How can the probability of their occurrence be
minimized?

6. Why are real numbers more difficult to represent and process than integers?

7. Why might a programmer choose to represent a data item in IEEE binary128 floating-point
format instead of IEEE binary64 floating-point format? What additional costs might be
incurred at runtime (when the application program executes) as a result of using the 128-bit
instead of the 64-bit format?

8. Why doesn t a CPU evaluate the expression 'A' = 'a' as true?

9. What are the differences between ASCII and Unicode?

10. What primitive data types can normally be represented and processed by a CPU?

11. What is a data structure? List several types of common data structures.

12. What is an address? What is a pointer? What purpose are they used for?

102

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13. How is an array stored in main memory? How is a linked list stored in main memory? What
are their comparative advantages and disadvantages? Give examples of data that would be
best stored as an array and as a linked list.

14. How does a class differ from other data structures?

Problems and Exercises

1. Develop an algorithm or program to implement the following function:

insert_in_linked_list (element,after_pointer)

The element parameter is a data item to be added to a linked list, and the after_pointer
parameter is the address of the element after which the new element will be inserted.

2. Develop an algorithm or program to implement the following function:

insert_in_array (element,position)

The element parameter is a data item to be added to the array, and the position
parameter is the array index at which the new element will be inserted. Make sure to
account for elements that must be moved over to make room for the new element.

3. Consider the following binary value:

1000 0000 0010 0110 0000 0110 1101 1001

What number (base 10) is represented if the value is assumed to represent a number
stored in twos complement notation? Excess notation? IEEE binary32 floating-point
notation?

4. How are the values 51510 and -51510 represented as ordinary binary numbers? How are
they represented as octal and hexadecimal numbers? How are they represented in 16-bit
excess notation and in 16-bit twos complement notation?

5. How is the binary value 101101 2-101101 represented in IEEE binary32 floating-point
notation?

6. Convert the following values represented in base 12 to their equivalent representations in
base 2, base 5, and base 10:

1A7812

-90B212

Research Problems

1. Choose a commonly used microprocessor, such as the Intel Core (www.intel.com) or IBM
POWER6 (www.ibm.com). What data types are supported? How many bits are used to
store each data type? How is each data type represented internally?

2. Most personal and office productivity applications, such as word-processing applications,
are marketed internationally. To minimize development costs, software producers develop a
single version of the program but have separate configurations for items such as menus
and error messages that vary from language to language. Investigate a commonly used
development tool for applications (called an integrated development environment), such

103

Research Problems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.intel.com
http://www.ibm.com

as Microsoft Visual Studio (www.microsoft.com). What tools and techniques (for example,
Unicode data types and string tables) are supported for developing multilingual programs?

3. Object-oriented programming has been adopted widely because of its capability to reuse
code. Most application development software provides class libraries and extensive support
for complex data structures, including linked lists. Investigate one of these libraries, such as
the Microsoft Foundation Class (www.microsoft.com) or the Java 2 Platform (http://java.
sun.com) application programming interface (API). What data structures are supported by
the library? What types of data are recommended for use with each data structure object?
Which classes contain which data structures, and what methods does the library provide?

104

Chapter 3

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.microsoft.com
http://www.microsoft.com
http://java.sun.com
http://java.sun.com

C H A P T E R 4
PROCESSOR TECHNOLOGY
AND ARCHITECTURE

C H A P T E R G O A L S

Describe CPU instruction and execution cycles

Explain how primitive CPU instructions are combined to form complex
processing operations

Describe key CPU design features, including instruction format, word
size, and clock rate

Describe the function of general-purpose and special-purpose registers

Explain methods of enhancing processor performance

Describe the principles and limitations of semiconductor-based
microprocessors

Summarize future processing trends

Chapter 2 gave a brief overview of computer processing, including the function of a processor,

general-purpose and special-purpose processors, and the components of a central processing unit

(CPU). This chapter explores CPU operation, instructions, components, and implementation (see

Figure 4.1). It also gives you an overview of future trends in processor technology and architecture.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CPU OPERATION

Recall from Chapter 2 that a CPU has three primary components: the control unit, the
arithmetic logic unit (ALU), and a set of registers (see Figure 4.2). The control unit moves
data and instructions between main memory and registers, and the ALU performs all
computation and comparison operations. Registers are storage locations that hold inputs
and outputs for the ALU.

A complex chain of events occurs when the CPU executes a program. To start, the
control unit reads the first instruction from primary storage. It then stores the instruction
in a register and, if necessary, reads data inputs from primary storage and stores them in
registers. If the instruction is a computation or comparison instruction, the control unit
signals the ALU what function to perform, where the input data is located, and where to
store the output data. The control unit handles executing instructions to move data to
memory, I/O devices, or secondary storage. When the first instruction has been executed,
the next instruction is read and executed. This process continues until the program s final
instruction has been executed.

FIGURE 4.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

106

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The actions the CPU performs can be divided into two groups the fetch cycle (or
instruction cycle) and the execution cycle. During the fetch cycle, data inputs are prepared
for transformation into data outputs. During the execution cycle, the transformation takes
place and data output is stored. The CPU alternates constantly between fetch and
execution cycles. Figure 4.3 shows the flow between fetch and execution cycles (denoted
by solid arrows) and data and instruction movement (denoted by dashed arrows).

During the fetch cycle, the control unit does the following:

Fetches an instruction from primary storage
Increments a pointer to the location of the next instruction
Separates the instruction into components the instruction code (or num-
ber) and the data inputs to the instruction
Stores each component in a separate register

During the execution cycle, the ALU does the following:

Retrieves the instruction code from a register
Retrieves data inputs from registers
Passes data inputs through internal circuits to perform the addition, subtrac-
tion, or other data transformation
Stores the result in a register

FIGURE 4.2 CPU components
Courtesy of Course Technology/Cengage Learning

107

CPU Operation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

At the conclusion of the execution cycle, a new fetch cycle is started. The control
unit keeps track of the next program instruction location by incrementing a pointer after
each fetch. The second program instruction is retrieved during the second fetch cycle, the
third instruction is retrieved during the third fetch cycle, and so forth.

INSTRUCTIONS AND INSTRUCTION SETS

As you learned in Chapter 2, an instruction is a command to the CPU to perform a primi-
tive processing function on specific data inputs. It s the lowest-level command that soft-
ware can direct a processor to perform. As stored in memory, an instruction is merely a

FIGURE 4.3 Control and data flow during the fetch and execution cycles
Courtesy of Course Technology/Cengage Learning

108

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

bit string logically divided into a number of components. The first group of bits represents
the instruction s unique binary number, commonly called the op code. Subsequent groups
of bits hold the instruction s input values, called operands. The operand can contain a
data item (such as an integer value) or the location of a data item (such as a memory
address, a register address, or the address of a secondary storage or I/O device).

An instruction directs the CPU to route electrical signals representing data inputs
through predefined processing circuits that implement the appropriate function. Data
inputs are accessed from storage or extracted directly from the operands and stored in
one or more registers. For computation and logic functions, the ALU accesses the registers
and sends the corresponding electrical signals through the appropriate processing cir-
cuitry. This circuitry transforms input signals into output signals representing the proces-
sing result. This result is stored in a register in preparation for movement to a storage
device or an I/O device or for use as input to another instruction.

The control unit executes some instructions without assistance from the ALU, includ-
ing instructions for moving or copying data, as well as simple tasks, such as halting or
restarting the CPU.

The collection of instructions that a CPU can process is called the CPU s instruction
set. CPU instruction sets vary in CPUs in the following ways:

Number of instructions
Size of instructions, op codes, and operands
Supported data types
Number and complexity of processing operations performed by each
instruction

FIGURE 4.4 An instruction containing one op code and two operands
Courtesy of Course Technology/Cengage Learning

109

Instructions and Instruction Sets

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The instruction sets of different CPUs reflect differences in design philosophy, pro-
cessor fabrication technology, class of computer system, and type of application software.
CPU cost and performance depend on these characteristics.

The full range of processing operations expected of a computer can be implemented
with approximately one dozen instructions. This instruction set can perform all the com-
putation, comparison, data movement, and branching functions for integer and Boolean
data types. Computation and comparison of real numbers can be accomplished by soft-
ware with complex sequences of integer instructions operating separately on the whole
and fractional parts. Small instruction sets were common in early CPUs and microproces-
sors, but most modern CPUs have much larger instruction sets. The following sections
describe the minimal instruction set.

Data Movement
A MOVE instruction copies data bits to storage locations and can copy data between any
combination of registers and primary storage locations. A load operation is a data transfer
from main memory into a register. A store operation is a data transfer from a register into
primary storage.

MOVE tests the bit values in the source location and places copies of these values in
the destination location. The former bit values in the destination are overwritten. At the
completion of the MOVE, both sending and receiving locations hold identical bit strings.
The name move is a misnomer because the data content of the source location is
unchanged.

MOVE is also used to access storage and I/O devices. An input or storage device writes
to a specific memory location, and the CPU retrieves the input by reading that memory
location and copying its value into a register. Similarly, data is output or stored by writing
to a predefined memory address or range of addresses. The output or storage device con-
tinually monitors the content of its assigned memory addresses and reads newly written
data for storage or output.

Data Transformations
The most primitive data transformation instructions are based on Boolean logic:

NOT
AND
OR
XOR

These four Boolean instructions and the ADD and SHIFT instructions (discussed in
the following sections) are the basic building blocks of all numeric comparisons and com-
putations. They re summarized in Table 4.1.

110

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

NOT

A NOT instruction transforms the Boolean value true (1) into false (0) and the value false
into true. The rules that define the output of NOT on single bit inputs are as follows:

NOT 0 1

NOT 1 0

With bit strings, NOT treats each bit in the bit string as a separate Boolean value. For
example, executing NOT on the input 10001011 produces the result 01110100. Note that
NOT has only one data input, whereas all other Boolean instructions have two.

AND

An AND instruction generates the result true if both of its data inputs are true. The fol-
lowing rules define the result of AND on single bit data inputs:

0 AND 0 0

1 AND 0 0

0 AND 1 0

1 AND 1 1

The result of AND with two bit string inputs is shown in the following example:

10001011

AND 11101100

10001000

OR

There are two types of OR operations in Boolean logic. An inclusive OR instruction (the
word inclusive is usually omitted) generates the value true if either or both data inputs
are true. The rules that define the output of inclusive OR on single bit inputs are as follows:

0 OR 0 0

1 OR 0 1

0 OR 1 1

1 OR 1 1

TABLE 4.1 Primitive data transformation instructions

Instruction Function

NOT Each result bit is the opposite of the operand bit.

AND Each result bit is true if both operand bits are true.

OR Each result bit is true if either or both operand bits are true.

XOR Each result bit is true if either (but not both) operand bit is true.

ADD Result is the arithmetic sum of the operands.

SHIFT Move all bit values left or right, as specified by the operand.

111

Instructions and Instruction Sets

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The result of inclusive OR with two bit string inputs is shown in the following example:

10001011

OR 11101100

11101111

An exclusive OR (XOR) instruction generates the value true if either (but not both)
data input is true. The following rules define the output of XOR on single bit inputs:

0 XOR 0 0

1 XOR 0 1

0 XOR 1 1

1 XOR 1 0

Note that if either operand is 1, the result is the complement of the other operand.
Specific bits in a bit string can be inverted by XORing the bit string with a string contain-
ing 0s in all positions except the positions to be negated. For example, the following XOR
inverts only the right four bit values and leaves the left four bit values unchanged:

10001011

XOR 00001111

10000100

Every bit in a bit string can be inverted by XORing with a string of 1s:

10001011

XOR 11111111

01110100

Note that XORing any input with a string of 1s produces the same result as executing
NOT. Therefore, NOT isn t required in a minimal instruction set.

ADD

An ADD instruction accepts two numeric inputs and produces their arithmetic sum. For
example, the following ADD shows the binary addition of two bit strings:

10001011

ADD 00001111

10011010

Note that the mechanics of the addition operation are the same, regardless of what the
bit strings represent. In this example, if the bit strings represent unsigned binary numbers,
the operation is as follows:

13910 1510 15410

If the bit strings represent signed integers in twos complement format, the operation is
the following:

-11710 1510 -10210

112

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Binary addition doesn t work for complex data types, such as floating-point and
double-precision numbers. If the CPU supports complex numeric data types, a separate
ADD instruction must be implemented for each type.

SHIFT

Figure 4.5 shows the effect of a SHIFT instruction. In Figure 4.5(a), the value 01101011
occupies an 8-bit storage location. Bit strings can be shifted to the right or left, and the
number of positions shifted can be greater than one. Typically, the second operand holds
an integer value indicating the number of bit positions to shift the value. Positive or nega-
tive operand values indicate shifting to the left or right.

Figure 4.5(b) shows the result of shifting the value two positions to the right. The
resulting value is 00011010. In this case, the values in the two least significant positions of
the original string have been lost, and the vacant bit positions are filled with 0s.

Figure 4.5 is an example of a logical SHIFT, which can extract a single bit from a bit
string. Figure 4.6 shows how shifting an 8-bit value (a) to the left by 4 bits (b) and then to
the right by 7 bits creates a result (c) with the fourth bit of the original string in the right-
most position. Because all other bit positions contain 0s, the entire bit string can be inter-
preted as true or false. Shifting an 8-bit twos complement value to the right by seven
positions is a simple way to extract and test the sign bit.

FIGURE 4.5 Original data byte (a) shifted 2 bits to the right (b)
Courtesy of Course Technology/Cengage Learning

113

Instructions and Instruction Sets

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An arithmetic SHIFT instruction performs multiplication or division, as shown in
Figure 4.7. If a bit string contains an unsigned binary number, as in Figure 4.7(a), shifting
to the left by 1 bit (b) multiplies the value by two, and shifting the original bit (a) to the
right by 2 bits (c) divides the value by four. Arithmetic SHIFT instructions are more
complex when applied to twos complement values because the leftmost bit is a sign bit
and must be preserved during the SHIFT instruction. Most CPUs provide a separate
arithmetic SHIFT instruction that preserves the sign bit of a twos complement value.

FIGURE 4.6 Extracting a single bit with logical SHIFT instructions
Courtesy of Course Technology/Cengage Learning

FIGURE 4.7 Multiplying and dividing unsigned binary values with SHIFT instructions
Courtesy of Course Technology/Cengage Learning

114

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sequence Control
Sequence control operations, which alter the flow of instruction execution in a program,
include the following:

Unconditional BRANCH
Conditional BRANCH
HALT

BRANCH

A BRANCH (or JUMP) instruction causes the processor to depart from sequential instruc-
tion order. Recall that the control unit fetches the next instruction from memory at the
conclusion of each execution cycle. The control unit consults a register to determine
where the instruction is located in primary storage. BRANCH has one operand containing
the memory address of the next instruction. It s actually implemented as a MOVE instruc-
tion. The BRANCH operand is loaded into the register that the control unit uses to fetch
the next instruction.

In an unconditional BRANCH, the processor always departs from the normal execu-
tion sequence. For example, if the user of a word-processing program clicks the Print
menu item, the program always branches to the corresponding instruction sequence. In a
conditional BRANCH, the BRANCH occurs only if a specified condition is met, such as the
equivalence of two numeric variables. The condition must be evaluated, and the Boolean
result must be stored in a register. The conditional BRANCH instruction checks this regis-
ter s contents and branches only if the value in it is true. As discussed in Chapter 2,
conditional BRANCH instructions enable a program to vary its behavior depending on
the data values being processed, as when computing taxes with progressive tax rates.

HALT

A HALT instruction suspends the normal flow of instruction execution in the current pro-
gram. In some CPUs, it causes the CPU to cease all operations. In others, it causes a
BRANCH to a predetermined memory address. Typically, a portion of the operating system
(OS) is stored at this address, effectively transferring control to the OS and terminating
the previously executing program.

Complex Processing Operations

T I P
Reviewing the twos complement discussion in Chapter 3 before studying the following examples might
be helpful.

Complex processing operations can be performed by combining the simpler instructions.
For example, subtraction can be implemented as complementary addition. That is, the
operation A - B can be implemented as A (-B). As described in Chapter 3, a negative
twos complement value can be derived from its positive counterpart by adding 1 to the
complement of the positive value. A bit string s complement can be generated by XORing
it with a string of binary 1 digits.

115

Instructions and Instruction Sets

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

For example, the complement of 0011 (310), represented as a twos complement value,
can be derived as follows:

XOR 0011 1111 0001 1100 0001 1101 -310

This result is added to implement a subtraction operation. For example, the result of
subtracting 0011 from 0111 can be calculated as follows:

710 - 310 ADD ADD XOR 0011 1111 0001 0111

ADD ADD 1100 0001 0111

ADD 1101 0111

10100

Because 4-bit values are used, the result of 10100 is truncated from the left, resulting
in the value 0100.

Comparison operations can be implemented in much the same way as subtraction. A
comparison operation generates a Boolean output value. Typically, an integer value of 0 is
interpreted as false, and any nonzero value is interpreted as true. The comparison A B
can be performed by generating the complement of B and adding it to A. If the two
numbers are equal, the result of the addition is a string of 0s (interpreted as false). An
equality comparison can be performed by negating the Boolean result of an inequality
comparison.

Greater-than and less-than comparisons can also be performed with subtraction fol-
lowed by extraction of the sign bit. For the condition A< B, subtracting B from A generates
a negative result if the condition is true. In twos complement notation, a negative value
always has a 1 in the leftmost position (that is, the sign bit). SHIFT can be executed to
extract the sign bit. For example, the twos complement value 10000111 is a negative num-
ber. The sign bit is extracted by shifting the value 7 bits to the right, resulting in the string
00000001. The SHIFT result is interpreted as a Boolean value (1, or true, in this case).

For example, the comparison 0111 < 0011 can be evaluated as follows:

0111 < 0011 SHIFT ADD 0111 ADD XOR 0011 1111 0001 0011

SHIFT ADD 0111 ADD 1100 0001 0011

SHIFT ADD 0111 1101 0011

SHIFT 0100 0011

0000

The second operand of the SHIFT instruction is a binary number representing the
direction and number of bit positions to shift (3, or right 3, in this example). The result
is 0, interpreted as the Boolean value false.

116

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A Short Programming Example
Take a look at the following high-level programming language statement:

IF (BALANCE < 100) THEN

BALANCE BALANCE - 5

ENDIF

This computation might be part of a program that applies a monthly service charge to
checking or savings accounts with a balance below $100. Figure 4.8 shows a program per-
forming this computation by using only the simpler CPU instructions. Figure 4.9 shows the
register contents after each instruction is executed when the account balance is $64. The
coding format for all numeric data is 8-bit twos complement.

FIGURE 4.8 A simple program using primitive CPU instructions
Courtesy of Course Technology/Cengage Learning

117

Instructions and Instruction Sets

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The following list describes the instructions used in the program:

1. Instructions 1 through 5 load the account balance, minimum balance, service
charge, and needed binary constants from memory locations M1 through M5.

2. A less-than comparison is performed in instructions 6 through 9:
The right side of the comparison is converted to a negative value by exe-
cuting a NOT instruction (instruction 6) and adding 1 to the result
(instruction 7).
The result is added to the account balance (instruction 8), and the sum is
shifted seven places to the right to extract the sign bit (instruction 9). At
this point, register R0 holds the Boolean result of the less-than comparison.

For this example, all BRANCH instructions are assumed to be conditional on the
content of a register. The BRANCH is taken if the register holds a Boolean true
value and otherwise ignored. To jump beyond the code implementing the service
charge if the account balance is above the minimum, the Boolean result of the
condition must be inverted before branching.

3. Instruction 10 inverts the sign bit stored in the rightmost bit of R0 by XOR-
ing it against 00000001 (stored in R4).

FIGURE 4.9 Register contents after executing each instruction in Figure 4.8 when the account
balance in memory location M1 is $64

Courtesy of Course Technology/Cengage Learning

118

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Instruction 11 executes a conditional BRANCH. Because the original sign bit
was 1, the inverted value is 0. Therefore, the BRANCH is ignored, and pro-
cessing proceeds with instruction 12.

5. Instructions 12 through 14 subtract the service charge stored in register R3
from the account balance. Instructions 12 and 13 convert the positive value
to a negative value, and instruction 14 adds it to the account balance.

6. Instruction 15 saves the new balance in memory.
7. Instruction 16 halts the program.

Instruction Set Extensions
The instructions described to this point are sufficient for a simple general-purpose processor.
All the more complex functions normally associated with computer processing can be imple-
mented by combining these primitive building blocks. Most CPUs provide a much larger
instruction set, including advanced computation operations (such as multiplication and divi-
sion), negation of twos complement values (NOT followed by ADD 1), and testing a sign bit
and other single-bit manipulation functions. These instructions are sometimes called complex
instructions because they represent combinations of primitive processing operations.

Complex instructions represent a tradeoff between processor complexity and pro-
gramming simplicity. For example, the three-step process of NOT ADD ADD performs
subtraction in Figure 4.8, instructions 12 through 14. Because subtraction is a commonly
performed operation, most CPU instruction sets include one or more subtraction instruc-
tions. Providing a separate NOT instruction complicates the CPU by requiring extra pro-
cessing circuitry for the additional instruction but simplifies machine-language programs.

Complex instructions also represent a tradeoff between CPU complexity and program exe-
cution speed. Multistep instruction sequences execute faster if they re performed in hardware
as a single instruction, avoiding the overhead of fetching multiple instructions and accessing
intermediate results in registers. Other efficiencies might also be achieved by hard-wiring the
steps together. However, these efficiencies have limits, as described later in RISC and CISC.

Additional instructions are required when new data types are added. For example,
most CPUs provide instructions for adding, subtracting, multiplying, and dividing integers.
If double-precision integers and floating-point numbers are supported, additional compu-
tation instructions must be included for these data types. It s not unusual to see a
half-dozen different ADD instructions in an instruction set to support integers and real
numbers in single- and double-precision as well as signed and unsigned short integers.

Some instruction sets also include instructions that combine data transformations with
data movement. The primitive instructions in Figure 4.8 use registers for both data input
and data output. In some CPUs, data transformation instructions allow one or more oper-
ands to be a memory address, thus combining data movement with data transformation.

INSTRUCTION FORMAT

Recall that an instruction consists of an op code (instruction number) and zero or more
operands (representing data values or storage locations). An instruction format is a tem-
plate that specifies the number of operands and the position and length of the op code
and operands. Instruction formats vary between CPUs in many ways, including the

119

Instruction Format

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

op code size, the meaning of specific op code values, the data types used as operands, and
the length and coding format of each type of operand. The term instruction format
erroneously implies that each CPU uses a single format. Because instructions vary in the
number and type of operands they require, a single CPU must support multiple instruc-
tion formats for various combinations of operand types.

Figure 4.10 shows an instruction format consisting of an op code and three operands
with a total length of 20 bits. This sample format is typical of instructions that use register
inputs and outputs. The op code occupies the first 8 bits. Most CPUs represent the op code
as an unsigned binary number. Therefore, an 8-bit op code provides 256 possible instruc-
tions numbered 0 through 255. Each operand is a 4-bit unsigned binary number identifying
1 of 16 possible registers. Larger instruction sets or more registers would require more bits
to represent the op code and operands and, therefore, a longer instruction format.

Figure 4.11 shows a three-operand instruction format for load and store instructions
using segmented memory addresses. The first operand contains the number of the register
to or from which data is moved. The second operand contains the number of the register
that identifies a memory segment, and the third operand contains the segment offset.

FIGURE 4.10 An instruction format with three register operands
Courtesy of Course Technology/Cengage Learning

FIGURE 4.11 An instruction format that includes a segmented memory address
Courtesy of Course Technology/Cengage Learning

120

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recall from Chapter 3 that some CPUs use a segmented memory-addressing scheme,
in which a memory address consists of two parts a memory segment identifier and a
segment offset. For segmented memory schemes, the second operand identifies a register
that holds the segment identifier, and the third operand is the segment offset. The control
unit constructs a complete memory address, using the contents of the register identified
in the second operand and the content of the third operand. The instruction format in
Figure 4.11 is typical of early Intel CPUs that segmented memory into as many as 16 (24)
segments, each containing 64 KB (216).

Instruction Length
Instruction formats in a single CPU can be fixed or variable in length. Fixed-length
instructions simplify the instruction-fetching process in the control unit. If the instruction
format is fixed length, the amount by which the instruction pointer must be incremented
after each fetch is a constant. This increment is the length of an instruction.

Instruction format lengths can be equalized by padding shorter instruction formats
with trailing 0 bits. For example, the format in Figure 4.10 could be padded with 12 trail-
ing 0 bits to increase its length so that it matches the format in Figure 4.11. The CPU
ignores the extra bits when processing instructions that use the padded format.

With a variable-length instruction, the amount by which the instruction pointer is
incremented after a fetch is the length of the most recently fetched instruction. The con-
trol unit must check the op code of each fetched instruction to determine the correct
increment value. If you think of a table with op code values on the left and format lengths
on the right, the control unit looks up the op code in the table and extracts the appropri-
ate value to add to the instruction pointer.

Variable-length instructions also complicate instruction fetching because the number
of bytes to be fetched isn t known in advance. One method of addressing this uncertainty
is to always fetch the number of bytes in the longest instruction format, but this method
can result in many unnecessary memory accesses. Another method is to fetch only the
number of bytes in the shortest format. Then the op code is examined to determine the
instruction s length and the number of additional bytes to fetch, if any. In either case,
extra computer resources are used in the fetch operation that wouldn t have been used if
the instruction length were fixed and known before the fetch.

Although fixed-length instructions and fields simplify control unit functions, they do
so at the expense of efficient memory use. Some instructions have no operands, and
others have one, two, or three operands. If fixed-length instructions are used, the instruc-
tion length must be the length of the longest instruction for example, an instruction with
two or three large operands. Smaller instructions stored in memory must be padded with
empty bit positions to extend their length to the maximum. The memory used to pad short
instructions is wasted, and programs require more memory during execution and more
time to load from secondary storage.

RISC and CISC
Reduced instruction set computing (RISC) is a philosophy of processor and computer
system design first used in the late 1980s. The primary architectural feature of a RISC
processor is the absence of some, but not all, complex instructions from the instruction

121

Instruction Format

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

set. In particular, RISC processors avoid instructions that combine data transformation
and data movement operations. For example, a non-RISC processor might provide a data
transformation instruction in this form:

Transform Address1 Address2 Address3

Address1 and Address2 are the memory addresses of data inputs, and Address3 is
the memory address to which the result is stored. In a RISC processor, transformation
operations always use register inputs and outputs. The single complex instruction shown
previously requires four separate RISC instructions:

MOVE Address1 R1

MOVE Address2 R2

Transform R1 R2 R3

MOVE R3 Address3

Each instruction is loaded and executed independently, consuming at least four exe-
cution cycles.

Although the lack of many complex instructions is the main distinguishing feature
of a RISC processor, other differences typically include fixed-length instructions, short
instruction length, and a large number of general-purpose registers. To describe these dif-
ferences fully, RISC must be contrasted with its opposite design philosophy complex
instruction set computing (CISC).

Complex instruction sets were developed because early computers had limited mem-
ory and processing power. Memory was expensive, and many computers had barely
enough to hold an entire application program. To compensate for limited memory, many
CPU designers provided complex instructions that would do more work per instruction. As
a result, programs required less memory, and complex operations executed more quickly.

For example, assume a floating-point addition operation, implemented as a single
complex instruction, can be executed in one processor cycle. In addition, assume an
equivalent operation can be performed with a sequence of five integer math instructions,
each requiring one processor cycle. In this example, a direct implementation of the com-
plex floating-point instruction saves four processor cycles each time it s executed.

If complex instructions are so beneficial, why would anyone want to eliminate them?
The most important reason is that each complex instruction provides benefits if measured
in isolation, but as more complex instructions are added, the instruction set becomes large
and complex, which creates two problems. First, it complicates the control unit because
there are more instructions to interpret and usually more instruction formats and data
types to deal with. Also, a large set of complex instructions often goes hand in hand with
variable-length instruction formats. This format adds even more complexity to the job of
fetching and decoding instructions, which in turn increases fetching and decoding time.
Because every simple or complex instruction must be fetched before it s executed, a per-
formance penalty is applied to every instruction, even the simple ones.

The second problem arising from a large, complex instruction set is microprocessor
size. As discussed later in Current Technology Capabilities and Limitations, speed
improvements in microprocessors are achieved mainly by miniaturization. The simpler
the processor, the easier the task of shrinking it, and the more reliably smaller versions
can be fabricated. Because CISC processors are much more complex than RISC

122

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

processors, they re more difficult to fabricate reliably in smaller sizes. RISC processor
design reduces the instruction set s size and complexity to increase raw speed in fetching
and executing instructions. RISC design follows a less is more strategy and extends the
instruction set only when the benefits are very high.

The main disadvantage of RISC CPUs is the extra memory required for program stor-
age and execution. Because many complex instructions aren t present, programs must use
multiple simple instructions in their place. The equivalent sequences of simple instruc-
tions occupy more storage than complex instructions do and increase program memory
requirements. Although increased memory is a disadvantage for RISC, it s not currently a
major factor because memory cost has fallen rapidly.

Compared with CISC processors, RISC processors are also inefficient at executing
programs that do many of the functions complex instructions are designed for, such as
transforming data items stored in memory and immediately storing the results back in
memory. Although this inefficiency is a potential disadvantage, detailed studies of typical
program behavior have shown that many complex instructions aren t used frequently.
Typical programs spend most of their time executing primitive instructions, such as load,
store, add, and compare. In many cases, the speed advantage of complex instructions isn t
realized often enough to make up for the performance penalty applied to every
instruction.

CPU performance depends heavily on the construction of the programs being exe-
cuted, regardless of whether the CPU is RISC, CISC, or a hybrid. Software should be opti-
mized to take advantage of the presence or absence of specific CPU capabilities. In
modern software development, most optimization takes place when a program written in a
high-level language, such as C or Java, is compiled to produce CPU instructions.

N O T E
Compilation is discussed in Chapter 10.

Despite the inherent advantages of RISC design, CISC CPUs from Intel, including the
Core2, Xeon, and Itanium, dominate the microcomputer, workstation, and midrange
computer classes and have made major inroads into mainframes and supercomputers.
RISC-based designs, such as the IBM POWER6, are used mainly in large servers and
supercomputers. How can Intel CISC CPUs compete against supposedly faster RISC CPUs?
Why does Intel stick with CISC technology?

One part of the answer is backward compatibility. Early Intel desktop CPUs were
developed when CISC was clearly dominant. Software developed for these CPUs was typi-
cally sold to customers in the form of CPU instructions (for example, .exe program files in
MS-DOS or Windows). Because customers didn t want to abandon old software when
upgrading to new CPUs, newer Intel CPUs needed to execute the same complex instructions
supported by older CPUs. Although there are several ways to provide backward compatibil-
ity, one of the easiest is to continue expanding on older CISC designs in newer chips.

Another part of the answer is Intel s dominance in CPU fabrication technology. In
essence, Intel can build more complex CPUs economically because it has more advanced
fabrication technology and a large market share over which to spread the technology

123

Instruction Format

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

costs. By using the latest fabrication technology, Intel can produce CISC CPUs with clock
speeds that rival RISC competitors despite their more complex circuitry.

Yet another part of the answer is the advanced RISC techniques used by Intel and most
other microprocessor manufacturers, covered later in Enhancing Processor Performance.
For now, realize that just because a CPU supports complex instructions doesn t mean it
can t use RISC design principles under the hood. In a similar vein, few processors that
claim to be RISC avoid all CISC characteristics. The terms RISC and CISC are overused
in marketing literature to paint stark contrasts between CPU designs, but the realities are
seldom as far apart as a strict interpretation of these terms might imply.

CISC and RISC are different ends of a design continuum representing tradeoffs in sev-
eral design factors. The economics and technology of program design and behavior, pro-
cessor fabrication, and memory cost made CISC an optimal solution in the early days of
computing. In the 1990s, as memory became cheaper and CPU fabrication technology
improved, the optimal tradeoff shifted toward RISC. At the moment, there s no clear best
approach to processor design, partly because processors of each type borrow heavily from
the best features of the other type. Future changes in technology and in how computers are
used might favor RISC, CISC, or a completely different approach to CPU design.

CLOCK RATE

The system clock is a digital circuit that generates timing pulses, or signals, and transmits
the pulses to other devices in the computer. (Note: It s not the clock used to keep track
of the current date and time.) It s generally a separate device with a dedicated communi-
cation line monitored by all devices in the computer system. All actions, especially the
CPU s fetch and execution cycles, are timed according to this clock. Storage and I/O
devices are timed by the clock signal, and all devices in a computer coordinate their
activities with the system clock.

The frequency at which the system clock generates timing pulses is the system s clock
rate, and each tick of the clock begins a new clock cycle. CPU and computer system
clock rates are expressed in hertz (Hz). One hertz corresponds to one clock cycle per sec-
ond. Modern CPUs and computer systems have clocks that generate millions or billions of
timing pulses per second. The frequency of these clocks is measured in megahertz (MHz),
meaning millions of cycles per second, or gigahertz (GHz), billions of cycles per second.

The inverse of the clock rate is called the CPU cycle time. In most CPUs, the cycle
time is the time required to fetch and execute the simplest instruction in the instruction
set. For example, if the CPU clock rate is 5 GHz and NOT is the simplest instruction, the
time required to fetch and execute a NOT instruction can be computed as the inverse of
the clock rate:

cycle time
1

clock rate
1

5 000 000 000
0 0000000002 second 0 2 nanosecond

Clock rate and cycle time are important CPU performance measures. However, they
tell only part of the performance story for a CPU or computer system. CPU clock rate is
frequently misinterpreted by equating it with the following:

Instruction execution rate
Overall computer system performance

124

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

From the perspective of program execution speed, the most important CPU perfor-
mance consideration is the rate at which instructions are executed. This rate is generally
stated in units called millions of instructions per second (MIPS), although modern CPUs
and computers can execute billions or trillions of instructions per second. MIPS are
assumed to measure CPU performance when manipulating single-precision integers.
When manipulating single-precision floating-point numbers, CPU performance is mea-
sured in millions of floating-point operations per second (megaflops or MFLOPS),
billions of floating-point operations per second (gigaflops or GFLOPS), or trillions of
floating-point operations per second (teraflops or TFLOPS). The latest generation of
supercomputers can now execute 1015 floating-point operations per second, called
petaflops (PFLOPS).

If all instructions, regardless of function or data type, were executed in a single clock
cycle, then clock rate, MIPS, and MFLOPS would be equivalent. However, execution time
varies with the processing function s complexity. Instructions for simple processing
functions, such as Boolean functions and equality comparisons, typically require com-
plete execution in one clock cycle. Instructions for functions such as integer multiplica-
tion and division typically require two to four clock cycles to complete execution.
Instructions that perform complex functions on complex data types, such as double-
precision floating-point numbers, typically require up to a dozen clock cycles to com-
plete execution.

The number of instructions executed in a given time interval depends on the mix of
simple and complex instructions in a program. For example, assume a program executes
100 million integer instructions; 50% are simple instructions requiring a single clock cycle,
and 50% are complex instructions requiring an average of three clock cycles. The average
program instruction requires two clock cycles in this case, (1 0.50) (3 0.50) and
the CPU MIPS rate is 50% of the clock rate when executing this program. Different mixes of
simple and complex instructions and data types result in different ratios of clock rate to
MIPS and MFLOPS. For all but the simplest programs, MIPS and MFLOPS are much smaller
than the CPU clock rate.

The previous MIPS calculation assumes that nothing hinders the CPU in fetching and
executing instructions, but the CPU relies on slower devices to keep it supplied with
instructions and data. For example, main memory is typically 2 to 10 times slower than
the processor. That is, the time required for a main memory read or write operation is
typically 2 to 10 CPU clock cycles. Accessing secondary storage is thousands or millions
of times slower than the CPU, so the CPU might be idle while waiting for access to storage
and I/O devices. Each clock cycle the CPU spends waiting for a slower device is called a
wait state.

Unfortunately, a CPU can spend much of its time in wait states, during which no
instructions are being executed. Therefore, a computer system s effective MIPS rate is
much lower than the MIPS rate of the CPU measured in isolation because of delays
imposed by waiting for storage and I/O devices.

N O T E
Chapter 6 discusses methods of minimizing wait states.

125

Clock Rate

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MIPS and MFLOPS are poor measurements for comparing computer system perfor-
mance because processor instruction sets vary so widely and because CPU performance
depends so heavily on memory access speed and other aspects of computer design. A bet-
ter measure of comparative computer system performance is how quickly a specific pro-
gram or set of programs is executed.

T E C H N O L O G Y F O C U S

Benchmarks

A benchmark is a measure of CPU or computer system performance when carrying out
one or more specific tasks. Benchmarks can be used in several ways, including the
following:

Compare the performance of multiple computers from one or many vendors.
Measure the performance of an existing computer system and determine how
its performance might be improved.
Determine the computer system or configuration that best matches specific
application requirements.

A benchmark program performs specific tasks that can be counted or measured. For
example, a benchmark program might test CPU computational speed by performing the
task of multiplying two large matrixes or computing the value of pi to many digits.
Because the number of computations making up the task is known in advance, the num-
ber of computations executed per second can be computed based on the total time
required to execute the benchmark program.

A key issue in choosing and using benchmarks is determining the characteristics of
software that will run on a computer system and choosing benchmarks that most closely
match these characteristics. Because computer systems can run a variety of application
programs, benchmark programs are often combined into benchmark suites. For example, a
benchmark suite for evaluating a PC might include programs that simulate word processing,
photo editing, game playing, Web browsing, and downloading and installing large software
updates. A benchmark suite for a server should match the tasks the server will perform (for
example, handling database queries and updates or processing online order transactions).
A benchmark suite for a supercomputer typically includes programs that test integer and
floating-point computational speed, particularly on large and complex problems.

Developing benchmark programs and updating them to match rapidly changing soft-
ware and hardware are complex tasks. Computer manufacturers and software vendors
have banded together to create and support nonprofit organizations that develop bench-
marks, perform tests, and publish results. Two large benchmarking organizations are the
following:

Standard Performance Evaluation Corporation (SPEC, www.spec.org)
Transaction Processing Performance Council (TPC, www.tpc.org)

SPEC was founded in 1988 to develop benchmarks for high-performance worksta-
tions. Its mission has grown to encompass high-performance computing and computers
running open-source software in a variety of application environments. Table 4.2 sum-
marizes some commonly used SPEC benchmarks.

(continued)

126

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.spec.org
http://www.tpc.org

TPC was also founded in 1988 with a mission to develop benchmarks useful for mea-
suring online transaction processing and database performance. This application area was
growing rapidly in the 1980s as more companies were automating accounting, sales, pro-
duction control, and other business functions. Its importance increased during the 1990s
and 2000s when companies moved commerce to Web-based systems and groups of com-
panies interconnected their business systems to improve operational efficiency.

Benchmarking for online transaction processing is considerably more complex than
for scientific applications. For example, the performance of a typical Web-based store-
front depends on multiple hardware elements, such as CPU, memory, storage subsys-
tems, and network interfaces, and software elements beyond application software, such
as OSs, database management systems, and Web server software. Table 4.3 summarizes
some commonly used TPC benchmarks.

TABLE 4.3 Sample TPC benchmarks

Benchmark Description

TPC-C Measures the response time and throughput of five typical business
transactions (for example, sales order entries and stock level queries)
processed against a relational database.

TPC-E Simulates the online transaction processing load of a brokerage firm, including
real-time customer orders and inquiries and back-end interaction with stock
trading and reporting systems.

TPC-App Simulates a 24/7 Web storefront. This suite exercises the Web server front-end
customer interface and back-end database interaction and business-
to-business functions with a large number of transactions and simultaneous
online sessions.

TPC-H Simulates complex database queries against a large database typical of
decision support and data-mining applications.

TABLE 4.2 Sample SPEC benchmarks

Benchmark Description

SPEC CPU A suite of two benchmark programs, CINT and CFP, that measure the
performance of computation-intensive programs with integer (CINT) and
floating-point (CFP) data. This benchmark is widely used to compare the
performance of supercomputer nodes and high-performance workstations.

SPEC MPI Measures the computational performance of clustered computers. This suite uses
large computational problems distributed across multiple computing nodes with
substantial use of message passing, shared memory, and shared file systems.

SPECviewperf Measures workstation performance on graphics-intensive tasks and applica-
tions, such as computer-aided design and animation.

SPECmail Measures the performance of a computer system acting as an e-mail server
using standard Internet mail protocols. This benchmark simulates the
processing load of a corporate e-mail server supporting 40,000 users.

(continued)

127

Clock Rate

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SPEC, TPC, and other benchmark programs and suites are updated constantly to reflect
changes in computer systems and changes in the tasks these systems perform. For example,
SPEC MPI is a recent benchmark developed to reflect the move in supercomputer
configuration from large stand-alone supercomputers to massively parallel computation with
grids and clusters. SPEC CPU has been updated recently to better measure performance
issues for multicore processors. TPC-App updates the older TPC-C to reflect the modern
reality of 24/7 e-commerce.

CPU REGISTERS

Registers play two primary roles in CPU operation. First, they provide a temporary storage
area for data the currently executing program needs quickly or frequently. Second, they store
information about the currently executing program and CPU status for example, the
address of the next program instruction, error messages, and signals from external devices.

General-Purpose Registers
General-purpose registers are used only by the currently executing program. They typi-
cally hold intermediate results or frequently used data values, such as loop counters or
array indexes. Register accesses are fast because registers are implemented in the CPU. In
contrast, storing and retrieving from primary storage is much slower. Using registers to
store data needed immediately or frequently increases program execution speed by avoid-
ing wait states.

Adding general-purpose registers increases execution speed but only up to a point.
Any process or program has a limited number of intermediate results or frequently used
data items, so CPU designers try to find the optimal balance among the number of general-
purpose registers, the extent to which a typical process will use these registers, and the
cost of implementing these registers. As the cost of producing registers has decreased,
their number has increased. Current CPUs typically provide several dozen general-purpose
registers.

Special-Purpose Registers
Every processor has special-purpose registers used by the CPU for specific purposes.
Some of the more important special-purpose registers are as follows:

Instruction register
Instruction pointer
Program status word

When the control unit fetches an instruction from memory, it stores it in the instruc-
tion register. The control unit then extracts the op code and operands from the instruc-
tion and performs any additional data movement operations needed to prepare for
execution. The process of extracting the op code and operands, loading data inputs, and
signaling the ALU is called instruction decoding.

The instruction pointer (IP) can also be called the program counter. Recall that the
CPU alternates between the instruction (fetch and decode) and execution (data movement

128

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

or transformation) cycles. At the end of each execution cycle, the control unit starts the
next fetch cycle by retrieving the next instruction from memory. This instruction s
address is stored in the instruction pointer, and the control unit increments the instruc-
tion pointer during or immediately after each fetch cycle.

The CPU deviates from sequential execution only if a BRANCH instruction is exe-
cuted. A BRANCH is implemented by overwriting the instruction pointer s value with the
address of the instruction to which the BRANCH is directed. An unconditional BRANCH
instruction is actually a MOVE from the branch operand, which contains the branch
address, to the instruction pointer.

The program status word (PSW) contains data describing the CPU status and the
currently executing program. Each bit in the PSW is a separate Boolean variable, some-
times called a flag, representing one data item. The content and meaning of flags vary
widely from one CPU to another. In general, PSW flags have three main uses:

Store the result of a comparison operation.
Control conditional BRANCH execution.
Indicate actual or potential error conditions.

The sample program shown previously in Figure 4.8 performed comparison by using
the XOR, ADD, and SHIFT instructions. The result was stored in a general-purpose register
and interpreted as a Boolean value. This method was used because the instruction set was
limited.

Most CPUs provide one or more COMPARE instructions. COMPARE takes two oper-
ands and determines whether the first is less than, equal to, or greater than the second.
Because there are three possible conditions, the result can t be stored in a single Boolean
variable. Most CPUs use two PSW flags to store a COMPARE s result. One flag is set to true
if the operands are equal, and the other flag indicates whether the first operand is greater
than or less than the second. If the first flag is true, the second flag is ignored.

To implement program branches based on a COMPARE result, two additional condi-
tional BRANCH instructions are provided: one based on the equality flag and the other
based on the less-than or greater-than flag. Using COMPARE with related conditional
BRANCH instructions simplifies machine-language programs, which speeds up their
execution.

Other PSW flags represent status conditions resulting from the ALU executing
instructions. Conditions such as overflow, underflow, or an attempt to perform an unde-
fined operation (dividing by zero, for example) are represented by PSW flags. After each
execution cycle, the control unit tests PSW flags to determine whether an error has
occurred. They can also be tested by an OS or an application program to determine
appropriate error messages and corrective actions.

WORD SIZE

A word is a unit of data containing a fixed number of bytes or bits and can be loosely
defined as the amount of data a CPU processes at one time. Depending on the CPU, pro-
cessing can include arithmetic, logic, fetch, store, and copy operations. For example, a
statement such as The Intel Core2 is a 64-bit processor implies that logic and arithme-
tic operations use 64-bit operands and load and store operations use 64-bit memory

129

Word Size

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

addresses. Word size normally matches the size of general-purpose registers and is a fun-
damental CPU design decision with implications for most other computer components.

In general, a CPU with a large word size can perform a given amount of work faster
than a CPU with a small word size. For example, a processor with a 128-bit word size can
add or compare 128-bit integers by executing a single instruction because the registers
holding the operands and the ALU circuitry are 128 bits wide.

Now consider manipulating 128-bit data in a CPU with a 64-bit word size. Because the
operands are larger than the word size, they must be partitioned and the operations car-
ried out on the pieces. For example, in a comparison operation, the CPU compares the
first 64 bits of the operands and then, in a second execution cycle, compares the second
64 bits. This process is inefficient because multiple operands are loaded from or stored to
memory, and multiple instructions are executed to accomplish what s logically a single
operation.

Because of these inefficiencies, a 128-bit CPU usually is more than twice as fast as a
64-bit processor when processing 128-bit data values. Inefficiencies are compounded as
the operation s complexity increases. For example, division and exponentiation of 128-bit
data might be four or five times slower on a 64-bit processor than on a 128-bit processor.

CPU word size also has implications for system bus design. Maximum CPU perfor-
mance is achieved when the bus width is at least as large as the CPU word size. If the bus
width is smaller, every load and store operation requires multiple transfers to or from pri-
mary storage. For example, moving 16 bytes of character data to contiguous memory
locations requires two separate data movement operations on a 64-bit bus, even if the
processor s word size is 128 bits. Similarly, fetching a 128-bit instruction requires two
separate transfers across the bus.

The physical implementation of memory is likewise affected by word size. Although
the storage capacity of memory is always measured in bytes, data movement between
memory and the CPU is generally performed in multiples of the word size. For a 64-bit
CPU, memory should be organized to read or write at least 64 contiguous bits in a single
access operation. Lesser capabilities incur extra wait states.

As with many other CPU design parameters, word size increases yield performance
improvements only up to a certain point. Two main issues are the usefulness of the extra
bits and their cost. The extra bits are useful if the larger word is less than or equal to the
size of data items that application programs normally manipulate.

The added benefit of increased word size drops off sharply past 64 bits. Recall from
Chapter 3 that integers are typically stored in 32-bit or 64-bit twos complement format,
and real numbers are typically stored in IEEE binary32 or binary64 floating-point format.
Of what use are the extra 64 bits of a 128-bit CPU when adding two 64-bit data items?
They re of no use at all. The extra 64 bits simply store 0s that are carried through the
computational process and are beneficial only when manipulating 128-bit data items.
However, many current word-processing programs, financial applications, and other pro-
grams never manipulate 128-bit data items. Only a few types of application programs can
use the additional bits. Examples include numerical-processing applications that need
very high precision (such as navigation systems), numerical simulations of complex phe-
nomena, some database- and text-processing applications, and programs that manipulate
continuous streams of audio or video data. For other programs, the increased computa-
tional power of the larger word size is wasted.

130

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The waste of extra word size wouldn t be a major concern if cost weren t an issue.
However, doubling word size generally increases the number of CPU components by 2.5 to
3 times, thus increasing CPU cost and complicating microprocessor fabrication. Costs
tend to rise at nonlinear rates when approaching the limits of current fabrication technol-
ogy. Until recently, these limits made 64-bit CPUs an expensive luxury generally used
only in larger and more expensive computer systems. Now technology has reached the
point where placing billions of transistors on a single chip is cost effective. Recent micro-
processor generations, including the Intel Core2, IBM POWER6, and AMD Opteron, fea-
ture multiple CPUs on a single chip and a 64-bit word size and include 128-bit data
formats, registers, and ALUs optimized for processing continuous streams of multimedia
information.

ENHANCING PROCESSOR PERFORMANCE

Modern CPUs use a number of advanced techniques to improve performance, including
the following:

Memory caching
Pipelining
Branch prediction and speculative execution
Multiprocessing

Memory caching is discussed in Chapter 5. The remaining techniques are forms of
parallel processing and are discussed in the following sections.

Pipelining
Refer back to Figure 4.3 to review the steps in fetching and executing an instruction:

1. Fetch from memory.
2. Increment and store instruction pointer (IP).
3. Decode instruction and store operands and instruction pointer.
4. Access ALU inputs.
5. Execute instruction in the ALU.
6. Store ALU output.

Note that each function in this list is performed by a separate portion, or stage, of the
CPU circuitry. All computation and comparison instructions must pass through each stage
of this circuitry in sequence.

Pipelining is a method of organizing CPU circuitry so that multiple instructions can be
in different stages of execution at the same time. A pipelining processor operates similarly
to a car assembly line. Cars are assembled by moving them sequentially through dozens or
hundreds of production stages. Each stage does a small part of the assembly process (for
example, install a door, an engine, or a dashboard) and then passes the car onto the next
stage. As each car passes to the next stage, another arrives from the previous stage.

Assume a typical computation or comparison instruction requires six CPU cycles to
pass through all six stages one cycle for each stage. In a traditional processor, each
instruction must pass through all six stages before the next instruction can enter the first
stage. Therefore, a sequence of 10 instructions requires 10 6 60 CPU cycles to

131

Enhancing Processor Performance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

complete execution. What if it were possible to overlap the processing stages, similar to a
car assembly line (see Figure 4.12)? For example, the first instruction could be in the
store stage, the second instruction in the execute stage, the third instruction in the access
stage, and so forth. In theory, allowing instructions to overlap in different processor stages
would reduce execution time for all 10 instructions to 15 CPU cycles a 400%
improvement!

The theoretical improvement shown in Figure 4.12 is unlikely to be realized for
several reasons. One reason is that building a processor in which all six stages take exactly
one clock cycle would be nearly impossible. Operations such as fetching the next instruc-
tion from main memory and performing a computation in the ALU usually take longer
than simpler operations, such as incrementing the instruction pointer. Pipelining s
efficiency is reduced if some stages take longer than others.

FIGURE 4.12 Overlapped instruction execution via pipelining
Courtesy of Course Technology/Cengage Learning

132

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Another reason that a 400% performance improvement is unlikely is that instructions
aren t always executed sequentially. When the instruction sequence is altered by a condi-
tional BRANCH instruction, the CPU empties the pipeline s content and starts over with
the first instruction of a new sequence. This problem and methods of addressing it are
described next.

Branch Prediction and Speculative Execution
As discussed in Chapter 2, one feature that enables a general-purpose processor to
emulate intelligent behavior is its capability to execute algorithms that alter their behavior
based on different data inputs. The example you saw was a progressive tax computation, in
which the tax rate increases as income increases. The processor applied the progressive
tax algorithm by executing a series of comparison operations followed by conditional
BRANCHes, corresponding to a program such as the one in Figure 4.13.

Refer back to the six-stage pipeline shown in Figure 4.12. If instruction 4 is a condi-
tional BRANCH and the condition controlling a conditional BRANCH is true, the branch
overwrites the instruction pointer in CPU cycle 9 with a new value. At that point, instruc-
tions 5 through 9 have been fetched based on incrementing an IP value that s now invalid.
Because the branch condition is true, all work on these instructions must be abandoned,
and the processor must start anew to fill the pipeline and produce useful processing
results. The opportunity for parallelism in completing instructions after instruction 4 has
been lost, and it will be six more CPU cycles before another processing result is stored.

10 INPUT INCOME
20 IF INCOME > 8350 THEN GOTO 50
30 TAX = INCOME * 0.10
40 GOTO 180
50 IF INCOME > 33950 GOTO 80
60 TAX = 835.00 + (INCOME - 8350) * 0.15
70 GOTO 180
80 IF INCOME > 82250 GOTO 110
90 TAX = 4675.00 + (INCOME - 33950) * 0.25
100 GOTO 180
110 IF INCOME > 171550 GOTO 140
120 TAX = 16750.00 + (INCOME - 82250) * 0.28
130 GOTO 180
140 IF INCOME > 372950 GOTO 170
150 TAX = 41754.00 + (INCOME - 171550) * 0.33
160 GOTO 180
170 TAX = 108216.00 + (INCOME - 372950) * 0.35
180 OUTPUT TAX
190 END

FIGURE 4.13 The income tax program from Chapter 2
Courtesy of Course Technology/Cengage Learning

133

Enhancing Processor Performance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This situation is similar to deciding to switch models being built on a car assembly
line because customers no longer want the current model. The assembly line must be
stopped, and all cars currently in production must be removed. In addition, no new mod-
els will be available until one car proceeds through every stage of the assembly process
from start to finish.

There are various approaches to dealing with the problem of conditional BRANCHes.
One approach is fetching several instructions ahead of the current instruction and exam-
ining them to see whether any are conditional BRANCH instructions. By analyzing the
order of pending instructions, the CPU can determine that it can evaluate the branch
condition early. This approach is complicated, and not all branches can be evaluated out
of sequence. However, if it succeeds often enough, it can improve processor speed by
redirecting the CPU s efforts to the right set of instructions.

Under another approach, called branch prediction, the CPU guesses whether a branch
condition will be true or false based on past experience. To provide a performance
improvement, the guess must be made during or soon after the conditional BRANCH
instruction is loaded, before it s completely executed. Branch prediction is best applied
to conditional BRANCH instructions embedded in a program loop. For example, branch
prediction could be used to compute withholding tax for all employees of a single filing
status that is, using a loop to compute the tax for all employees whose tax is computed
with the same algorithm.

Using the payroll program in Figure 4.13, and assuming that most single employees
have incomes greater than $8350 but less than or equal to $33,950, the CPU guesses that
the branch condition in line 20 will be true and the branch condition in line 50 will be
false. After the CPU loads and examines the conditional BRANCH in line 20, it immedi-
ately loads the conditional BRANCH instruction from line 50, bypassing machine instruc-
tions for lines 30 and 40. After the CPU loads and examines the conditional BRANCH
instruction in line 50, it predicts false for the branch condition and begins work on the
instructions that implement line 60 in the next CPU cycle.

As the CPU executes conditional BRANCH instructions in the loop, it keeps score,
tracking how often the condition for each branch instruction has been true or false. Based
on the scores, the CPU determines whether to load the next sequential instruction past the
conditional BRANCH or the instruction at the branch operand s address. The program
path the CPU chooses is speculative the CPU doesn t know whether its guess is correct
until the conditional BRANCH instruction proceeds through all CPU stages. Therefore, the
term speculative execution describes instructions executed after the guess but before the
final result is known with certainty.

The processing needed to keep track of conditional BRANCH instructions and their
scores can add considerable overhead to early CPU stages, which might slow the entire
processor. If the CPU s guess is later found to be incorrect, instructions in intermediate
stages of processing must be flushed from the pipeline.

Another approach that avoids the complexities of branch prediction and speculative
execution is simultaneous execution (multiprocessing) of both program paths after a con-
ditional BRANCH. Rather than guess which path will be taken, the CPU assumes that
either path is possible and executes instructions from both paths until the conditional
BRANCH is finally evaluated. At that point, further work on the incorrect path is
abandoned, and all effort is directed to the correct path.

134

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Simultaneous execution of both paths requires redundant CPU stages and registers.
The necessary processing redundancy can be achieved with parallel stages in a single CPU
or with multiple CPUs sharing memory and other resources.

Multiprocessing
The term multiprocessing describes any CPU architecture in which duplicate CPUs or
processor stages can execute in parallel. There s a range of possible approaches to
implementing multiprocessing, including the following:

Duplicate circuitry for some or all processing stages in a single CPU
Duplicate CPUs implemented as separate microprocessors sharing main
memory and a single system bus
Duplicate CPUs on a single microprocessor that also contains main memory
caches and a special bus to interconnect the CPUs

These approaches are listed from less difficult to more difficult implementation. The
first approach was made possible by microprocessor fabrication technology improvements
in the late 1980s and early 1990s. The second approach became cost effective with fabri-
cation technology advances in the late 1990s and early 2000s. The third approach has
been implemented in general-purpose microprocessors since the mid-2000s.

Duplicate processing stages of a single CPU enable some, but not all, instructions to
execute in parallel. For example, take a look at these formulas:

1. ((a b) c) - d) e
2. ((a b) (c d)) - ((e f) (g h))

Formula 1 provides no opportunities for parallel execution because the computation
operations must be implemented from left to right to produce the correct result. In for-
mula 2, however, all four addition operations can be performed in parallel before the mul-
tiplication and division operations, which can also be performed in parallel before
performing the subtraction operation. Assuming each operation requires a single ALU
cycle, a processor with a single ALU stage consumes seven ALU cycles to calculate the
result of formula 2. If two ALUs are available, formula 2 can be calculated in four ALU
cycles by performing two additions in parallel, then two more additions in parallel, then
the multiplication and division in parallel, and finally the subtraction.

The performance improvement assumes enough general-purpose registers to hold all
intermediate processing results. Earlier processing stages must also be duplicated to keep
the multiple ALUs supplied with instructions and data. As with pipelined processing, con-
ditional BRANCH instructions limit the CPU s capability to execute nearby instructions in
parallel, but the performance gains are substantial for complex algorithms, such as com-
puting bank account interest and image processing.

Embedding multiple CPUs in a single computer system and sharing resources, such as
main memory, among them offers more possibilities for executing parallel instructions.
Because a typical computer system executes multiple programs at the same time, multiple
CPUs enable instructions from two separate programs to execute simultaneously. How-
ever, the CPUs must cooperate to ensure that they don t interfere with one another. For
example, the CPUs shouldn t try to write to the same memory location, send a message
over the system bus, or access the same I/O device at the same time. To keep interference

135

Enhancing Processor Performance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

from happening, processors must watch one another continuously, which adds com-
plexity to each processor.

Current microprocessor fabrication technology enables placing multiple CPUs on the
same chip. The coordination complexities are similar to those of CPUs on separate chips,
but implementing CPUs on the same chip allows them to communicate at much higher
speeds and allows placing shared memory and other common resources on the same chip.
This topic is discussed in more detail in Chapter 6.

T E C H N O L O G Y F O C U S

Intel Core Processor Family

Intel Core processors are direct descendents of the Intel 8086/8088 processors used in
the original IBM PC. Current Core processors maintain backward compatibility with
these processors and intervening processor generations in all areas, including instruction
set, data types, and memory addressing. The first Core processor was introduced in 2006
as the successor to several generations of the Pentium processor. Later Core processor
generations include the Core2 Duo, Core2 Extreme, Core2 Quad, and Core-i7.

Data Types
Core processors support a wide variety of data types (see Table 4.4). For purposes of
describing data types, a word is considered to be 16 bits long (as it was in the
8086/8088). Data types are of five sizes, including 8 (byte), 16 (word), 32 (doubleword),
64 (quadword), and 128 bits (double quadword). Two variable-length data types are also
defined. Note that MMX stands for multimedia extensions, SSE stands for streaming
SIMD extensions, and SIMD stands for single-instruction multiple-data.

No special data types are provided for Boolean or character data, which are assumed
to use appropriate integer data types. A bit field data type consists of up to 32 individu-
ally accessible bits. Two variable-length data types are also defined: bit string and byte

TABLE 4.4 Data types supported in Core processors

Data type Length (bits) Coding format

Unsigned integer 8, 16, 32, or 64 Ordinary binary

Signed integer 8, 16, 32, or 64 Twos complement

Real 32, 64, or 80 IEEE floating-point standards (1985)

Bit field 32 32 binary digits

Bit string Variable up to 232 bits Ordinary binary

Byte string Variable up to 232 bytes Ordinary binary

Memory address 32, 48, 64, or 80 Ordinary binary

MMX (integer) 8 8, 4 16, 2 32 Packed twos complement

SSE (integer) 16 8, 8 16, 4 32, 2 64 Packed twos complement

SSE (real) 4 32, 2 64 Packed IEEE 32-bit floating-point

(continued)

136

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

string. A bit string is a sequence of 1 to 232 bits commonly used for large binary objects,
such as compressed audio or video files. A byte string consists of 1 to 232 bytes. Elements
of a byte string can be bytes, words, or doublewords, thus allowing storage of long ASCII
and Unicode character sequences.

Multimedia data can be stored in a packed format, in which multiple twos com-
plement or IEEE floating-point values are stored. The earliest packed data formats (called
MMX data types) were defined for the Pentium processor, and several generations of
extensions (called SSE data types) were defined later. Packed data types enable some
CPU instructions to operate on up to 16 embedded data items in parallel, which
improves performance substantially for operations such as photo editing and decoding
streaming video.

Six different memory address formats are provided. Two are segmented memory
addresses that are backward compatible with the 8088, 8086, and 80286 processors. Two
flat memory address formats are carried over from the 80386, 80486, and Pentium pro-
cessors. The remaining formats support 64-bit addressing, which allows memory sizes
larger than 4 GB.

Instruction Set
As of this writing, the instruction set of a Core processor with the latest multimedia and
virtual memory extensions includes 678 different instructions, with approximately 60%
dedicated to packed (multimedia) data types. It s one of the largest instruction sets in
modern microprocessors. As expected, such a large instruction set has many instruction
formats of varying length.

A detailed discussion of the Core processor instruction set fills more than 1600
pages of documentation. The large number of instructions represents both the rich vari-
ety of supported data types and the desire to implement as many processing functions as
possible in hardware, clearly placing the Core in the CISC camp of CPU design.

Word Size
There s no clear definition of word size for Core processors. For backward compatibility
with 8088/8086 microprocessors, a word is defined as 16 bits. Register sizes range from
32 bits for many special-purpose registers to 128 bits for the multimedia ALU. Core pro-
cessors have multiple ALUs dedicated to integer, floating-point, and packed data types,
each with its own registers and internal processing paths. Internal data paths between
CPU and on-chip memory components are 256 bits wide.

Clock Rate
The original Core processor debuted at a clock rate of 1.2 GHz. The fastest Core proces-
sor at this writing has a 3.33 GHz clock rate. ALUs execute at twice the processor fre-
quency, with substantial use of parallel processing for packed data types and pipelining,
branch prediction, speculative execution, and out-of-order execution for all data types.
With the right kinds of data and programming, these technologies can yield multiple
executed instructions per clock cycle.

137

Enhancing Processor Performance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 4.14 Electrical component symbols for a signal inverter or NOT gate (a), an AND gate (b),
an OR gate (c), an XOR gate (d), and a NAND gate (e)

Courtesy of Course Technology/Cengage Learning

THE PHYSICAL CPU

A CPU is a complex system of interconnected electrical switches. Early CPUs contained
several hundred to a few thousand switches, and modern CPUs contain millions of
switches. In this section, you look at how these switches perform basic processing func-
tions and then at how switches and circuits have been implemented physically.

Switches and Gates
The basic building blocks of computer processing circuits are electronic switches and
gates. Electronic switches control electrical current flow in a circuit and are implemented
as transistors (described in more detail later in Transistors and Integrated Circuits).
Switches can be interconnected in various ways to build gates. A gate is a circuit that can
perform a processing function on a single binary electrical signal, or bit. The 1-bit and
2-bit processing functions performed by gates include the logical functions AND, OR, XOR,
and NOT. Figure 4.14 shows the electrical component symbols for NOT, AND, OR, XOR,
and NAND (NOT AND). A NOT gate is also called a signal inverter because it transforms a
value of 0 or 1 into its inverse (opposite).

138

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processing circuits for more complex operations are constructed by combining logic
gates. One example is the XOR gate. Although it s represented by a single symbol in
Figure 4.14(d), it s actually constructed by combining NOT, AND, and OR gates.

Figure 4.15 shows the components of half adder and full adder circuits for single bit
inputs. Addition circuits for multiple bit inputs are constructed by combining a half adder
for the least significant bit position with full adder circuits for the remaining bit positions.
More complex processing functions require more complicated interconnections of gates.
Modern CPUs have millions of gates to perform a wide variety of processing functions on a
large number of bits.

Electrical Properties
Gates and their interconnections carry and transform electrical signals representing
binary 1s and 0s. The construction of these switches and their connections is important in
determining the CPU s speed and reliability. The speed and reliability of a CPU are
affected not only by the materials used in its fabrication, but also by the properties of
electricity, such as conductivity, resistance, and heat.

Conductivity

Electrical current is the flow of electrons from one place or device to another. An electron
requires a sufficient energy input to excite it to move. After electrons are excited, they

FIGURE 4.15 Circuit diagrams for half adder (a) and full adder (b)
Courtesy of Course Technology/Cengage Learning

139

The Physical CPU

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

move from place to place, using molecules as stepping stones. Conductive molecules are
typically arranged in straight lines, generically called wires or traces. Because each switch
is usually interconnected with many other switches, a CPU contains many more traces
than switches. Traces are as important as switches in determining CPU speed and
reliability.

The capability of an element or a substance to enable electron flow is called conduc-
tivity. Substances that electrons can flow through are called conductors. Electrons travel
through a perfect conductor with no loss of energy. With less than perfect conduction,
energy is lost as electrons pass through. If enough energy is lost, electrons cease to move,
and the flow of electrical current is halted. Commonly used conductors include aluminum,
copper, and gold.

Resistance

The loss of electrical power that occurs as electrons pass through a conductor is called
resistance. A perfect conductor would have no resistance. Unfortunately, all substances
have some degree of resistance. Conductors with low resistance include some well-known
and valuable metals, such as silver, gold, and platinum. Fortunately, some cheaper mate-
rials, such as copper, serve nearly as well.

The laws of physics state that energy is never really lost but merely converted from
one form to another. Electrical energy isn t really lost because of resistance. Instead, it s
converted to heat, light, or both, depending on the conductive material. The amount of
generated heat depends on the amount of electrical power transmitted and the conductor s
resistance. Higher power and/or higher resistance increase the amount of generated heat.

Heat

Heat has two negative effects on electrical conductivity. The first is physical damage to the
conductor. To reduce heat and avoid physical destruction of a switch or trace, manufac-
turers must use a very low-resistance material, reduce the power input, or increase the
size of the switch or trace.

The second negative effect of heat is that it changes the conductor s inherent resis-
tance. The resistance of most materials increases as their temperature increases. To keep
operating temperature and resistance low, some method must be used to remove or dissi-
pate heat. Although many ways to do this are possible, the simplest is providing a cushion
of moving air around the device. Heat migrates from the surface of the device or its coat-
ing to the air and then is transported away by fans or through ventilation openings.

A heat sink (see Figure 4.16) is an object specifically designed to absorb heat and
rapidly dissipate it via air or water movement. It s placed in direct physical contact with
an electrical device to dissipate heat from it, exposing a large surface area to the moving
air to allow more rapid dissipation.

140

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Speed and Circuit Length

To perform processing, electrons must move through the traces and switches of a proces-
sing circuit. In a vacuum, electrical energy travels at the (constant) speed of light, which is
approximately 180,000 miles per second. Electricity travels through a trace at approxi-
mately 70% of the speed of light. There s a fundamental relationship between circuit length
and processing speed: The time required to perform a processing operation is a function of
circuit length and the speed of light.

Because circuit length is the only variable, the path to faster processing is clear:
Reduce circuit length. Shorter circuits require smaller switches and shorter and narrower
traces. Miniaturization has been the primary basis for CPU speed and clock rate improve-
ment since the first electrical computer. The first IBM PC used an Intel 8086/8088 micro-
processor with a clock rate of 4.77 MHz. As of this writing, commercial microprocessors
have clock rates as high as 5 GHz.

Processor Fabrication
Reliable, efficient, and cost-effective electrical circuits must balance power requirements,
resistance, heat, size, and cost. The earliest computers were constructed with ordinary
copper wire and vacuum tube switches and were unreliable because of the heat the vac-
uum tubes generated. They were also quite large, typically filling an entire room with pro-
cessing circuitry less powerful than what s in a cheap calculator today. Improvements in
materials and fabrication techniques have vastly increased processor performance and
reliability.

FIGURE 4.16 A heat sink attached to a surface-mounted microprocessor
Courtesy of Course Technology/Cengage Learning

141

The Physical CPU

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Transistors and Integrated Circuits

In 1947, researchers at Bell Laboratories discovered a class of materials called
semiconductors. The conductivity of these materials varies in response to the electrical
inputs applied. Transistors are made of semiconductor material that has been treated, or
doped, with chemical impurities to enhance the semiconducting effects. Silicon and
germanium are basic elements with resistance characteristics that can be controlled or
enhanced with chemicals called dopants.

A transistor is an electrical switch with three electrical connections. If power is
applied to the second (middle) connection, power entering at the first connection flows
out through the third connection. If no power is applied to the second connection, no
power flows from the first connection to the third. Transistors are combined to implement
the gates shown in Figure 4.14, which are combined to make larger circuits, such as
adders and registers. Therefore, transistors and the traces that interconnect them are the
fundamental building blocks of all CPUs.

In the early 1960s, photolithography techniques were developed to fabricate
miniature electronic circuits from multiple layers of metals, oxides, and semiconductor
materials. This new technology made it possible to fabricate several transistors and their
interconnections on a single chip to form an integrated circuit (IC). Integrated circuits
reduced manufacturing cost per circuit because many chips could be manufactured in a
single sheet, or wafer. Combining multiple gates on a single chip also reduced the
manufacturing cost per gate and created a compact, modular, and reliable package. As
fabrication techniques improved, it became possible to put hundreds, then thousands, and
today, billions of electrical devices on a single chip. The term microchip was coined to
refer to this new class of electronic devices.

Microchips and Microprocessors

A microprocessor is a microchip containing all the circuits and connections that imple-
ment a CPU. The first microprocessor (see Figure 4.17) was designed by Ted Hoff of Intel
and introduced in 1971. Microprocessors ushered in a new era in computer design and
manufacture. The most important part of a computer system could now be produced and
purchased as a single package. Computer system design was simplified because designers
didn t have to construct processors from smaller components. Microprocessors also
opened an era of standardization as a small number of microprocessors became widely
used. The PC revolution wouldn t have been possible without standardized
microprocessors.

142

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Current Technology Capabilities and Limitations
Gordon Moore, an Intel founder, made an observation during a speech in 1965 that
has come to be known as Moore s Law. He observed that the rate of increase in tran-
sistor density on microchips had increased steadily, roughly doubling every 18 to 24
months. He further observed that each doubling was achieved with no increase in unit
cost. Moore s Law has proved surprisingly durable. Figure 4.18 shows that increases in
transistor density of Intel microprocessors have followed Moore s Law. Software develo-
pers and users have come to expect CPU performance to double every couple of years
with no price increase.

FIGURE 4.17 The Intel 4004 microprocessor containing 2300 transistors
Courtesy of Intel Corporation

143

The Physical CPU

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Arthur Rock, a venture capitalist, made a short addendum to Moore s Law. Rock s Law
states that the cost of fabrication facilities for the latest chip generation doubles every four
years. This law has also proved quite durable. A fabrication facility using the latest produc-
tion processes currently costs at least $10 billion. Improvements in chip fabrication have
been achieved by increasingly expensive and exotic techniques. The added expense hasn t
led to price increases, however, because new fabrication methods produce larger numbers of
chips, and the demand for chips exceeds the production capacity of any single factory.

Current fabrication technology is capable of squeezing more than one billion transis-
tors onto a wafer of silicon approximately 1 square centimeter (see Figure 4.19). The
process starts with a wafer, which is a flat disk of pure silicon, and a thin layer of conduc-
tive or semiconductive material is spread over its surface. The material is exposed to
ultraviolet light focused through a patterned map, similar to an overhead transparency. An
etching chemical is then applied, which removes the exposed portion of the layer. The
portion that remains has a specific pattern, or map, corresponding to one layer of the
microprocessor circuitry. Additional layers are added and then etched, gradually building
up complete transistors and wires.

FIGURE 4.18 Increases in transistor count for Intel microprocessors
Courtesy of Course Technology/Cengage Learning

144

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The wafer contains hundreds or thousands of microprocessors, which are cut apart,
encased in carriers, and tested. It s not unusual for half or more of the microprocessors
to fail initial testing. Testing failures can be the result of impurities in materials, con-
tamination of layers as they re laid down on the wafer, errors in etching, and variations
in production process parameters. Those that survive initial tests are then subjected
to further tests at successively higher clock rates. A microprocessor that fails to
perform reliably at a higher clock rate might still be usable and rated for sale at a
lower clock rate.

Increases in the number of circuits and packing density on a chip have been achieved
by shrinking the size of transistors and the traces connecting them and by increasing
the number of layers added to the wafer. Shrinking the size of transistors and traces is
done with an etching process that leaves thinner and thinner lines of conductive and
semiconductive material on the wafer; increasing the number of layers puts additional
components on top of one another on the chip.

FIGURE 4.19 A wafer of processors with 410 million transistors each
Courtesy of Intel Corporation

145

The Physical CPU

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Increased packing density causes some problems, however. As the size of devices and
wiring decreases, the capability to transmit electrical power is reduced. This decrease in
transmission requires reduced operating voltage (currently as low as 0.8 volts, down from
5 volts in the 1980s). Low voltage circuits are more susceptible to damage from voltage
surges and static electricity. Also, low voltage signals are more susceptible to contamina-
tion and noise from nearby circuits and external interference. On the plus side, lower
operating voltage also reduces power requirements a benefit for all computers but espe-
cially for battery-powered devices, such as laptops, netbooks, and cell phones.

Electrical resistance is also a problem because circuits must have uniform resistance
properties throughout the chip. A slight increase in resistance in one part of the chip
might prevent enough electrical power from reaching another part of the chip. Uniform
resistance requires very high and uniform purity of the conductive and semiconductive
material in the chip. Resistance can also cause problems due to heat. Because a chip is a
sealed package, there s no way to circulate air or any other substance around its circuits.
Heat must migrate through the chip carrier to be dissipated by a fan or heat sink. Heat
generation per circuit is minimized by the circuits small size, low operating voltage, and
low-resistance materials, but each device and trace does generate heat. Higher clock rates
generate more heat as more electrons are forced through the circuits. Inadequate or
barely adequate cooling can substantially shorten a microprocessor s operating life.

B U S I N E S S F O C U S

Intel Server CPUs

Beginning with the Pentium line of CPUs, Intel has developed products along two parallel
development paths, one targeted toward ordinary desktop computers and the other tar-
geted toward workstations and servers. Table 4.5 summarizes the history of both devel-
opment paths. In essence, each release of a desktop processor has been followed quickly
by similar, but more powerful, processors targeted to the workstation and server market.

TABLE 4.5 Parallel development of Intel desktop and server processors

Desktop processor Server processor

Pentium (1993) Pentium Pro (1995)

Pentium II (1997) Pentium II Xeon (1998)

Pentium III (1999) Pentium III Xeon (1999)

Pentium 4 (2000) Xeon (2001), Xeon MP (2002)

Pentium D (2005) Xeon 7000 series (2005)

Core (2006) Xeon 5100 series and 7200 series (2006)

Core2 (2006) Xeon 5400 series and 7300 series (2007)

Core-i7 (2008) Xeon 5500 series and 7400 series (2009)

(continued)

146

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Intel Xeon processors share much technology with their Pentium and Core counter-
parts, including their instruction sets, integer and floating-point execution units, approaches
to managing memory caches, and manufacturing processes. However, Xeon processors have
extra features not found in related desktop processors, including the following:

Larger memory caches
The capability to access more main memory
The capability to share access to main memory, the system bus, and other
resources between multiple CPUs

Early Xeon processors filled an important niche in the small server market but
weren t powerful enough to perform processing duties in many large-scale servers. Later
Xeon versions have fared better in the large server market, although they still hold a
small market share. Generally, large-scale servers use processors with higher computa-
tional and memory performance, on-chip error checking, and support for more than four
CPUs per server. IBM, Sun Microsystems, and Hewlett-Packard currently dominate this
market, although Sun Microsystems s future is uncertain.

In the mid-1990s, Intel teamed with Hewlett-Packard to develop a new CPU archi-
tecture called explicitly parallel instruction computing (EPIC). Its characteristics include
64-bit word size, pipelined execution, prefetching of instructions and operands, and
parallel execution of multiple instructions.

Intel s first CPU based on the EPIC architecture, called the Itanium, was released in
2001, and the Itanium2 was released in 2002. Although the Itanium is well suited to
large-scale servers, computer manufacturers have been slow to build systems based on it.
Hewlett-Packard is the only vendor producing Itanium-based servers in significant quan-
tities. IBM POWER CPUs have been more successful, partly because of IBM s entrenched
position in the large-scale server market and its long history of developing and supporting
server OSs.

To match IBM s success, Intel will have to convince computer manufacturers to
develop new mainframe-class servers with the Itanium and convince large-scale server
customers to buy them and adopt compatible operating systems. Itanium market pene-
tration is expected to be slow, given the time and cost of mainframe development and
the high costs and risks of purchasing and operating large-scale servers.

Questions:

You re purchasing new servers for a medium-sized business in which the main
server functions are file and printer sharing. Which CPU Xeon, Itanium, or
POWER is the best choice?
You re purchasing new servers for a server farm. The servers host e-commerce
Web sites and supporting software, such as an Oracle DBMS. Which CPU is the
best choice?

FUTURE TRENDS

Will Moore s Law continue to hold for the foreseeable future? Will transistor size and
cost continue to shrink at the present rate? Many industry experts don t think so. They
predict hitting a technological wall between 2010 and 2020, when the limits of current
microprocessor design and fabrication will be reached.

147

Future Trends

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Beyond a certain point, further miniaturization will be more difficult because of the
nature of the etching process and the limits of semiconducting materials. The size of
traces and devices depends on the etching beam wavelength, but there are limits to the
ability to generate and focus short wavelength lasers and X-rays. The width of chip traces
is also rapidly approaching the molecular width of the materials for constructing traces; a
trace can t be less than one molecule wide.

Subsequent improvements will require fundamentally different approaches to micro-
processor design and fabrication. These approaches might be based on a number of tech-
nologies, including optics and quantum physics. However, none of these technologies has
yet been proved on a commercial scale.

Optical Processing
In an electrical computer, computation is performed by forcing electricity to flow through
millions of electrical switches and wires. Optical computing could eliminate interconnec-
tions and simplify fabrication problems because photon pathways can cross without inter-
fering with one another. Although fiber-optic wires are usually used to connect optical
devices, connecting them without wires is possible. If the sending and receiving devices
are aligned precisely, light signals sent between them can travel through free space.
Eliminating wires would vastly improve fabrication cost and reliability.

Commercially available and affordable optical computers have yet to become a reality.
As long as semiconductors continue to get faster and cheaper, there isn t a sufficient eco-
nomic incentive to develop optical technologies. However, there s an economic incentive
to pursue specialized processing applications in the areas of telecommunications and net-
working. Practical optical processors will probably appear first as dedicated communica-
tion controllers and later evolve into full-fledged computer processors.

Electro-Optical Processing
As silicon-based processors become faster and as more are integrated into single chips, the
problem of supplying them with enough data becomes more acute. Traditional bus inter-
faces are simply too slow and power hungry to provide sufficient data transfer capacity
between many processors or between processors and primary storage.

As their name implies, electro-optical transistors are a bridge between electrical and
optical computer components. Early versions were used primarily in fiber-optic switches
and generally constructed of gallium arsenide. Unfortunately, producing gallium arsenide
devices and interfacing them with silicon-based processors proved exceptionally difficult.
For the past decade, researchers have shifted their efforts to materials such as indium
phosphide alone and in combination with silicon. They have constructed electro-optical
devices by using fabrication methods more similar to those currently used to manufacture
microprocessors. These devices haven t yet found their way into commercial products but
are expected to in a few years.

Quantum Processing
Quantum computing, introduced in a Technology Focus in Chapter 2, uses quantum states
to simultaneously encode two values per bit, called a qubit, and uses quantum processing
devices to perform computations. In theory, quantum computing is well suited to solving

148

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

problems that require massive amounts of computation, such as factoring large numbers
and calculating private encryption keys.

Current computers solve many different types of problems, only a few of which
require massive computation. As currently envisioned, quantum computing offers no ben-
efit compared with conventional electrical processors for problem types that don t require
massively parallel computation. Quantum processors might never replace conventional
processors in most computer systems, or perhaps they will develop in ways that can t be
imagined now. Much as Bell Labs researchers couldn t have imagined 5 GHz microproces-
sors when they developed the first transistor, current researchers probably can t foresee
the quantum devices that will be built later in the 21st century or how they ll be applied to
current and future computing problems.

149

Future Trends

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

The CPU alternates continuously between the fetch (instruction) cycle and the execution
cycle. During the fetch cycle, the control unit fetches an instruction from memory, separates
the op code and operands, stores the operands in registers, and increments a pointer to
the next instruction. During the execution cycle, the control unit or the ALU executes the
instruction. The ALU executes the instruction for an arithmetic or a logical operation. The
control unit executes all other instruction types.

Primitive CPU instructions can be classified into three types: data movement, data transfor-
mation, and sequence control. Data movement instructions copy data between registers,
primary storage, secondary storage, and I/O devices. Data transformation instructions
implement simple Boolean operations (NOT, AND, OR, and XOR), addition (ADD), and bit
manipulation (SHIFT). Sequence control instructions control the next instruction to be
fetched or executed. More complex processing operations are implemented by sequences
of primitive instructions.

An instruction format is a template describing the op code s position and length and the
position, type, and length of each operand. Most CPUs support multiple instruction formats.
CPUs can support fixed-length or variable-length instruction formats. Fixed-length formats
are simpler for the control unit to fetch and decode. Variable-length instructions use primary
and secondary storage more efficiently. RISC CPUs use fixed-length instructions and gen-
erally avoid complex instructions, particularly those combining data movement and data
transformation. RISC CPUs are simpler than CISC CPUs, but they re less efficient than
CISC CPUs when performing some complex operations.

The CPU clock rate is the number of instruction and execution cycles potentially available
in a fixed time interval. Typical CPUs have clock rates measured in GHz (1 GHz 1 billion
cycles per second). A CPU generally executes fewer instructions than its clock rate implies.
The rate of actual or average instruction execution is measured in MIPS, MFLOPS,
GFLOPS, or TFLOPS. Many instructions, especially floating-point operations, require multi-
ple execution cycles to complete. The CPU can also incur wait states pending accesses of
storage or I/O devices.

CPU registers are of two types general-purpose and special-purpose. Programs use
general-purpose registers to hold intermediate results and frequently needed data items.
General-purpose registers are implemented in the CPU so that their contents can be read
or written quickly. Within limits, increasing the number of general-purpose registers
decreases program execution time. The CPU uses special-purpose registers to track the
status of the CPU and the currently executing program. Important special-purpose registers
include the instruction register, instruction pointer, and program status word.

Word size is the number of bits a CPU can process simultaneously. Within limits, CPU effi-
ciency increases with word size because inefficient piece-by-piece operations on large data
items are avoided. For optimal performance, other computer system components, such as
the system bus, should match or exceed CPU word size.

Techniques to enhance processor performance include pipelining, branch prediction, spec-
ulative execution, and multiprocessing. Pipelining improves performance by allowing multi-
ple instructions to execute simultaneously in different stages. Branch prediction and

150

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

speculative execution ensure that the pipeline is kept full while executing conditional
BRANCH instructions. Multiprocessing provides multiple CPUs for simultaneous execution
of different processes or programs.

CPUs are electrical devices implemented as silicon-based microprocessors. Like all electri-
cal devices, they re subject to basic laws and limitations of electricity, including conductivity,
resistance, heat generation, and speed as a function of circuit length. Microprocessors use
a small circuit size, low-resistance materials, and heat dissipation to ensure fast and reli-
able operation. They re fabricated by using expensive processes based on ultraviolet or
laser etching and chemical deposition. These processes, and semiconductors themselves,
are approaching fundamental physical size limits that will stop further improvements. Tech-
nologies that might move performance beyond semiconductor limitations include optical
processing, hybrid optical-electrical processing, and quantum processing.

Now that you ve learned about the inner workings of computer processors, it s time to move
on to other computer system components. In Chapter 5, you learn the characteristics and inner
functions of primary and secondary storage devices, including magnetic and optical storage
technology the bases of all modern storage devices.

Key Terms

ADD

AND

arithmetic SHIFT

benchmark

benchmark program

benchmark suite

billions of floating-point instructions per second
(gigaflops or GFLOPS)

BRANCH

branch prediction

clock cycle

clock rate

complex instruction

complex instruction set computing (CISC)

conditional BRANCH

conductivity

conductor

cycle time

decoding

exclusive OR (XOR)

execution cycle

fetch cycle

fixed-length instruction

flag

gate

general-purpose register

gigahertz (GHz)

HALT

heat sink

hertz (Hz)

inclusive OR

instruction cycle

instruction format

instruction pointer (IP)

instruction register

instruction set

integrated circuit (IC)

JUMP

load

logical SHIFT

megahertz (MHz)

microchip

microprocessor

millions of floating-point operations per second
(megaflops or MFLOPS)

millions of instructions per second (MIPS)

151

Key Terms

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Moore s Law

MOVE

multiprocessing

NOT

op code

operand

petaflops (PFLOPS)

pipelining

program status word (PSW)

reduced instruction set computing (RISC)

resistance

Rock s Law

semiconductor

SHIFT

special-purpose register

speculative execution

store

switch

system clock

trace

transistor

trillions of floating-point operations per second
(teraflops or TFLOPS)

unconditional BRANCH

variable-length instruction

wait state

wire

word

Vocabulary Exercises

1. The time of a processor is 1 divided by the clock rate (in hertz).

2. A CPU typically uses multiple to account for differences in the number and type of
operands in instructions.

3. generates heat in electrical devices.

4. is a semiconducting material with optical properties.

5. A(n) is an electrical switch built of semiconducting materials.

6. A(n) improves heat dissipation by providing a thermal mass and a large thermal
transfer surface.

7. One is one cycle per second.

8. Applying a(n) OR transformation to input bit values 1 and 1 generates true.
Applying a(n) OR transformation to the same inputs generates false.

9. When an instruction is first fetched from memory, it s placed in the and
then to extract its components.

10. Using instructions simplifies the process of instruction fetching and decoding.

11. A(n) is an electrical circuit that implements a Boolean or other primitive
processing function on single bit inputs.

12. A microchip containing all the components of a CPU is called a(n) .

13. A(n) instruction transforms the bit pairs 1/1, 1/0, and 0/1 into 1.

14. The address of the next instruction to be fetched by the CPU is held in the .

15. The contents of a memory location are copied to a register while performing a(n)
operation.

16. A(n) or contains multiple transistors or gates in a single sealed package.

152

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17. A(n) instruction always alters the instruction execution sequence. A(n)
instruction alters the instruction execution sequence only if a specified condition is true.

18. A(n) processor doesn t directly implement complex instructions.

19. A(n) instruction copies data from one memory location to another.

20. The CPU incurs one or more when it s idle, pending the completion of an
operation by another device in the computer system.

21. A(n) is the number of bits the CPU processes simultaneously. It also describes
the size of a single register.

22. In many CPUs, a register called the stores bit flags representing CPU and
program status, including those representing processing errors and the results of
comparison operations.

23. The components of an instruction are its and one or more .

24. Two 1-bit values generate a 1 result value when a(n) instruction is executed. All
other input pairs generate a 0 result value.

25. A(n) CPU typically uses variable-length instructions and has a large instruction
set.

26. A(n) operation transforms a 0 bit value to 1 and a 1 bit value to 0.

27. predicts that transistor density will double every two years or less.

28. A(n) is a measure of CPU or computer system performance when performing
specific tasks.

29. is a CPU design technique in which instruction execution is divided into multiple
stages and different instructions can execute in different stages simultaneously.

Review Questions

1. Describe the operation of a MOVE instruction. Why is the name move a misnomer?

2. Why does program execution speed generally increase as the number of general-purpose
registers increases?

3. What are special-purpose registers? Give three examples of special-purpose registers and
explain how each is used.

4. What are the advantages and disadvantages of fixed-length instructions compared with
variable-length instructions? Which type is generally used in a RISC processor? Which
type is generally used in a CISC processor?

5. Define word size. What are the advantages and disadvantages of increasing word size?

6. What characteristics of the CPU and primary storage should be balanced to achieve
maximum system performance?

7. How does a RISC processor differ from a CISC processor? Is one processor type better
than the other? Why or why not?

8. What factors account for the dramatic improvements in microprocessor clock rates over the
past three decades?

153

Review Questions

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. What potential advantages do optical processors offer compared with electrical
processors?

10. Which is the better measure of computer system performance a benchmark, such as
SPEC CINT, or a processor speed measure, such as GHz, MIPS, or MFLOPS? Why?

11. How does pipelining improve CPU efficiency? What s the potential effect on pipelining s
efficiency when executing a conditional BRANCH instruction? What techniques can be
used to make pipelining more efficient when executing conditional BRANCH instructions?

12. How does multiprocessing improve a computer s efficiency?

Problems and Exercises

1. Develop a program consisting of primitive CPU instructions to implement the following
procedure:

integer i,a;

i=0;

while (i < 10) do

a=i*2;

i=i+1;

endwhile

2. If a microprocessor has a cycle time of 0.5 nanoseconds, what s the processor clock rate?
If the fetch cycle is 40% of the processor cycle time, what memory access speed is
required to implement load operations with zero wait states and load operations with two
wait states?

3. Processor R is a 64-bit RISC processor with a 2 GHz clock rate. The average instruction
requires one cycle to complete, assuming zero wait state memory accesses. Processor C
is a CISC processor with a 1.8 GHz clock rate. The average simple instruction requires one
cycle to complete, assuming zero wait state memory accesses. The average complex
instruction requires two cycles to complete, assuming zero wait state memory accesses.
Processor R can t directly implement the complex processing instructions of Processor C.
Executing an equivalent set of simple instructions requires an average of three cycles to
complete, assuming zero wait state memory accesses.

Program S contains nothing but simple instructions. Program C executes 70% simple
instructions and 30% complex instructions. Which processor will execute program S more
quickly? Which processor will execute program C more quickly? At what percentage of
complex instructions will the performance of the two processors be equal?

4. You have a CPU with a 4.8 GHz clock rate. Both the fetch and execution cycles are 50%
of the clock cycle. The average instruction requires 0.5 nanoseconds to complete execu-
tion. Main memory access speed for a single instruction is 2 nanoseconds on average.
What is the expected average MIPS rate for this CPU? What modern microprocessor
architectural features might be added to the CPU to improve its MIPS rate?

154

Chapter 4

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Research Problems

1. Investigate the instruction set and architectural features of a modern RISC processor, such
as the IBM POWER6 (www.ibm.com/technology). In what ways does it differ from the
architecture of the Intel Core and Itanium processor families? Which processors use
advanced techniques, such as pipelining, speculative execution, and multiprocessing?

2. AMD (www.amd.com) produces microprocessors that execute the same CPU instructions
as Intel desktop and laptop processors. Investigate its current product offerings. Do they
offer true Intel compatibility? Is their performance comparable with that of Intel processors?

3. The Web site Top500.org publishes a list, updated monthly, of the world s most powerful
supercomputers. Go to this Web site and investigate the top 10 or 20 computers. What
CPUs are used in these computers? What are their clock rates and word sizes? Why do
Intel CPUs seem to be underrepresented in the list?

155

Research Problems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.ibm.com/technology
http://www.amd.com

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R5
DATA STORAGE
TECHNOLOGY

C H A P T E R G O A L S

Describe the distinguishing characteristics of primary and secondary
storage

Describe the devices used to implement primary storage

Compare secondary storage alternatives

Describe factors that affect magnetic storage devices

Explain how to choose appropriate secondary storage technologies and
devices

In Chapter 2, you were briefly introduced to the topic of storage, including the role of storage in a

computer system and the differences between primary and secondary storage. In this chapter, you

explore storage devices and their underlying technologies in depth (see Figure 5.1). This chapter

also outlines characteristics common to all storage devices and compares primary and secondary

storage technologies.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

STORAGE DEVICE CHARACTERISTICS

A storage device consists of a read/write mechanism and a storage medium. The storage
medium is the device or substance that actually holds data. The read/write mechanism is
the device used to read or write data to and from the storage medium. A device controller
provides the interface between the storage device and system bus.

N O T E
Device controllers are discussed in detail in Chapter 6.

In some storage devices, the read/write mechanism and storage medium are a single
unit using the same technology. For example, most types of primary storage use electrical
circuits implemented with semiconductors for both the read/write mechanism and storage
medium. In other storage devices, the read/write mechanism and the storage medium use
fundamentally different technologies. For example, tape drives use an electromechanical
device for the read/write mechanism and a magnetic storage medium composed of
polymers and metal oxides.

A typical computer system has many storage devices (see Figure 5.2). Storage devices
and technologies vary in several important characteristics, which include the following:

Speed
Volatility

FIGURE 5.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

158

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Access method
Portability
Cost and capacity

No single device or technology is optimal in all characteristics, so any storage device
optimizes some characteristics at the expense of others. A computer system has a variety of
storage devices, each offering a cost-effective solution to a particular storage requirement.

Speed

Speed is the most important characteristic differentiating primary and secondary storage.
It s essential because the CPU must be continuously supplied with instructions and data to
keep it busy. For example, a CPU with a 1 GHz clock rate needs a new instruction and
supporting data every nanosecond. As you learned in Chapter 4, a wait state is a CPU
cycle spent waiting for access to an instruction or data. Wait states reduce CPU and
computer system performance.

As discussed in Chapter 2, registers in the CPU are storage locations for instructions
and data. Their location enables zero wait states for access, but CPUs have a limited

FIGURE 5.2 Primary and secondary storage and their component devices
Courtesy of Course Technology/Cengage Learning

159

Storage Device Characteristics

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

number of registers far fewer than are needed to hold typical programs and their data.
Primary storage extends the limited capacity of CPU registers. The CPU moves data and
instructions continually between registers and primary storage. To ensure that this move-
ment incurs few or no wait states, all or part of primary storage is implemented with the
fastest available storage devices. With current technology, primary storage speed is
typically faster than secondary storage speed by a factor of 105 or more.

Speed is also an important issue for secondary storage. Many information system
applications need access to large databases to support ongoing processing. Program
response time in these systems depends on secondary storage access speed, which also
affects overall computer performance in other ways. Before a program can be executed, its
executable code is copied from secondary to primary storage. The delay between a user
request for program execution and the first prompt for user input depends on the speed of
both primary and secondary storage.

Storage device speed is called access time. Access time is the time required to perform
one complete read or write operation. It s assumed to be the same for both reading and
writing unless otherwise stated. For some storage devices, such as random access memory
(RAM), access time is the same regardless of which storage location is accessed. For other
storage devices, such as disks, access time varies with storage location and is typically
expressed as an average of access times for all storage locations, called average access
time. (Access times are described in more detail later in Magnetic Disk). Access times of
primary storage devices are generally expressed in nanoseconds (ns, billionths of a sec-
ond). Access times for secondary storage devices are typically expressed in milliseconds
(ms, thousandths of a second).

By itself, access time is an incomplete measure of storage device speed. A complete
measure consists of access time and the unit of data transfer to or from the storage device.
Data transfer unit size varies from one storage device to another. For primary storage
devices, it s usually a word. Depending on the CPU, a word can represent 2, 4, 8, or more
bytes, with 4 and 8 bytes being the most common word sizes. Data transfer unit size is
sometimes used as an adjective, as in 64-bit memory.

Secondary storage devices read or write data in units larger than words. Block is a
generic term for describing secondary storage data transfer units. Block size is normally
stated in bytes and can vary widely between storage devices and even in a single storage
device. A 512-byte block is the most common data transfer unit for magnetic disks. The
term sector describes the data transfer unit for magnetic disk and optical disc drives. As
with blocks, sector size is generally stated in bytes and can vary from one device to
another.

A storage device s data transfer rate is computed by dividing 1 by the access time
(expressed in seconds) and multiplying the result by the unit of data transfer (expressed in
bytes). For example, the data transfer rate for a primary storage device with 15 ns access
time and a 64-bit word data transfer unit can be calculated as follows:

1 second
15 ns

64 bits
1

0 000000015
8 bytes 533 333 333 bytes second

Using average access time, this formula can be used to calculate an average data
transfer rate for devices with variable access times.

160

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Volatility
A storage device or medium is nonvolatile if it holds data without loss over long periods
and is volatile if it can t hold data reliably for long periods. Primary storage devices are
generally volatile, and secondary storage devices are generally nonvolatile.

Volatility is actually a matter of degree and conditions. For example, RAM is nonvolatile
as long as external power is supplied continuously. However, it s generally considered a vol-
atile storage device because continuous power can t be guaranteed under normal operating
conditions (for example, during a system restart after installing an OS update). Magnetic
tape and disk are considered nonvolatile storage media, but data on magnetic media is often
lost after a few years because of natural magnetic decay and other factors. Data stored on
nonvolatile media might also be lost because of compatible read/write devices becoming
obsolete, which has happened with many older diskette and tape formats.

Access Method
The physical structure of a storage device s read/write mechanism and storage medium
determines the ways in which data can be accessed. Three broad classes of access are
recognized; a single device can use multiple access methods:

Serial access
Random access
Parallel access

Serial Access

A serial access storage device stores and retrieves data items in a linear, or sequential,
order. Magnetic tape is the only widely used form of serial access storage. Data is written
to a linear storage medium in a specific order and can be read back only in that same
order. For example, viewing the past few minutes recorded on a video cassette tape
requires playing or fast-forwarding past all the minutes preceding it. Similarly, if n digital
data items are stored on a magnetic tape, the nth data item can be accessed only after the
preceding n - 1 data items have been accessed.

Serial access time depends on the current position of the read/write mechanism and
the position of the target data item in the storage medium. If both positions are known,
access time can be computed as the difference between the current and target positions
multiplied by the time required to move from one position to the next.

Because of their inefficient access method, serial access devices aren t used for
frequently accessed data. Even when data items are accessed in the same order as they re
written, serial access devices are much slower than other forms of storage. Serial access
storage is used mainly to hold backup copies of data stored on other storage devices for
example, in a weekly tape backup of user files from magnetic disk.

Random Access

A random access device, also called a direct access device, isn t restricted to any specific
order when accessing data. Rather, it can access any storage location directly. All primary
storage devices and disk storage devices are random access devices.

161

Storage Device Characteristics

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Access time for a random access storage device may or may not be a constant. It s a
constant for most primary storage devices but not for disk storage because of the physical,
or spatial, relationships of the read/write mechanism, storage media, and storage locations
on the media. This issue is discussed in more detail later in Magnetic Storage.

Parallel Access

A parallel access device can access multiple storage locations simultaneously. Although
RAM is considered a random access storage device, it s also a parallel access device. This
confusion comes from differences in defining the unit of data access. If you consider the
unit of data access to be a bit, access is parallel. That is, random access memory circuitry
can access all the bits in a byte or word at the same time.

Parallel access can also be achieved by subdividing data items and storing the compo-
nent pieces on multiple storage devices. For example, some OSs can store file content on
several disk drives. Different parts of the same file can be read at the same time by issuing
parallel commands to each disk drive.

Portability
Storage device portability is typically implemented in one of two ways:

The entire storage device storage medium, read/write mechanism, and pos-
sibly controller can be transported between computer systems (for example,
a USB flash drive).
The storage medium can be removed from the storage device and transported
to a compatible storage medium on another computer (for example, a DVD).

Portable secondary storage devices and devices with removable storage media typically
have slower access speeds than permanently installed devices and those with nonremovable
media. High-speed access requires tight control of environmental factors and high-speed
communication channels to connect the device to the system bus. For example, high-speed
access for magnetic disks is achieved, in part, by sealed enclosures for the storage media,
thus minimizing or eliminating dust and air density variations. Removable storage media
come in contact with a wider variety of damaging environmental influences than isolated
media do. Also, an internal magnetic disk drive is usually connected to the system bus by a
high-speed channel, whereas a portable magnetic disk drive typically uses a slower channel,
such as FireWire or USB.

Cost and Capacity
Each storage device attribute described so far is related to device cost per unit of storage
(see Table 5.1). For example, improving speed, volatility, or portability increases cost per
unit if all other factors are held constant. Cost per unit also increases as an access method
moves from serial to random to parallel. Primary storage is generally expensive compared
with secondary storage because of its high speed and combination of parallel and random
access methods.

162

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Secondary storage devices are usually thought of as having much higher capacity than
primary storage devices. In fact, the capacity difference between primary and secondary
storage in most computers results from a compromise between cost per unit and other
device characteristics. For example, if cost weren t a factor, most users would opt for solid-
state drives rather than magnetic disk drives. However, most users need hundreds of giga-
bytes of secondary storage, and solid-state drives of this capacity cost more than most
users can afford. So users sacrifice speed and parallel access to gain the capacity they
need at an acceptable cost.

Memory-Storage Hierarchy
A typical computer system has a variety of primary and secondary storage devices. The
CPU and a small amount of high-speed RAM usually occupy the same chip. Slower RAM on
separate chips composes the bulk of primary storage. One or more magnetic disk drives
are usually complemented by an optical disc drive and at least one form of removable
magnetic storage.

The range of storage devices in a single computer system forms a memory-storage
hierarchy, as shown in Figure 5.3. Cost and access speed generally decrease as you move
down the hierarchy. Because of lower cost, capacity tends to increase as you move down
the hierarchy. A computer designer or purchaser attempts to find an optimal mix of cost
and performance for a particular purpose.

TABLE 5.1 Storage device characteristics and their relationship to cost

Characteristic Description Cost

Speed Time required to read or write a bit,
byte, or larger unit of data

Cost increases as speed increases.

Volatility Capability to hold data indefinitely,
particularly in the absence of external
power

For devices of a similar type, cost
decreases as volatility increases.

Access method Can be serial, random, or parallel;
parallel devices are also serial or
random access

Serial is the least expensive; random is
more expensive than serial; parallel is
more expensive than nonparallel.

Portability Capability to easily remove and re-
install storage media from the device
or the device from the computer

For devices of a similar type, portabil-
ity increases cost, if all other charac-
teristics are held constant.

Capacity Maximum data quantity the device or
storage medium holds

Cost usually increases in direct
proportion to capacity.

163

Storage Device Characteristics

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

PRIMARY STORAGE DEVICES

As discussed, the critical performance characteristics of primary storage devices are
access speed and data transfer unit size. Primary storage devices must closely match CPU
speed and word size to avoid wait states. CPU and primary storage technologies have
evolved in tandem in other words, CPU technology improvements are applied to the
construction of primary storage devices.

Storing Electrical Signals
Data is represented in the CPU as digital electrical signals, which are also the basis of data
transmission for all devices attached to the system bus. Any storage device or controller
must accept electrical signals as input and generate electrical signals as output.

Electrical power can be stored directly by various devices, including batteries and
capacitors. Unfortunately, there s a tradeoff between access speed and volatility. Batteries
are quite slow to accept and regenerate electrical current. With repeated use, they also

FIGURE 5.3 Comparison of storage devices in terms of cost and access speed
Courtesy of Course Technology/Cengage Learning

164

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

lose their capability to accept a charge. Capacitors can charge and discharge much faster
than batteries. However, small capacitors lose their charge fairly rapidly and require a
fresh injection of electrical current at regular intervals (hundreds or thousands of times
per second).

An electrical signal can be stored indirectly by using its energy to alter the state of a
device, such as a mechanical switch, or a substance, such as a metal. An inverse process
regenerates an equivalent electrical signal. For example, electrical current can generate a
magnetic field. The magnetic field s strength can induce a permanent magnetic charge in a
nearby metallic compound, thus writing the bit value to the metallic compound. To read
the stored value, the stored magnetic charge is used to generate an electrical signal equiv-
alent to the one used to create the original magnetic charge. Magnetic polarity, which is
positive or negative, can represent the values 0 and 1.

Early computers implemented primary storage as rings of ferrous material (iron and
iron compounds), a technology called core memory. These rings, or cores, are embedded
in a two-dimensional wire mesh. Electricity sent through two wires induces a magnetic
charge in one metallic ring. The charge s polarity depends on the direction of electrical
flow through the wires.

Modern computers use memory implemented with semiconductors. Basic types of
semiconductor memory include random access memory and nonvolatile memory. There
are many variations of each memory type, described in the following sections.

Random Access Memory
Random access memory (RAM) is a generic term describing primary storage devices with
the following characteristics:

Microchip implementation with semiconductors
Capability to read and write with equal speed
Random access to stored bytes, words, or larger data units

RAM is fabricated in the same manner as microprocessors. You might assume that
microprocessor clock rates are well matched to RAM access speeds. Unfortunately, this
isn t the case for many reasons, including the following:

Reading and writing many bits in parallel requires additional circuitry.
When RAM and microprocessors are on separate chips, there are delays
when moving data from one chip to another.

There are two basic RAM types and several variations of each type. Static RAM (SRAM)
is implemented entirely with transistors. The basic storage unit is a flip-flop circuit
(see Figure 5.4). Each flip-flop circuit uses two transistors to store 1 bit. Additional tran-
sistors (typically two or four) perform read and write operations. A flip-flop circuit is an
electrical switch that remembers its last position; one position represents 0 and the other
represents 1. These circuits require a continuous supply of electrical power to maintain
their positions. Therefore, SRAM is volatile unless a continuous supply of power can be
guaranteed.

165

Primary Storage Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Dynamic RAM (DRAM) stores each bit by using a single transistor and capacitor.
Capacitors are the dynamic element. However, because they lose their charge quickly,
they require a fresh infusion of power thousands of times per second, so DRAM chips
include circuitry that performs refresh operations automatically. Each refresh operation is
called a refresh cycle. Unfortunately, a DRAM chip can t perform a refresh operation at the
same time it performs a read or write operation.

Because DRAM circuitry is simpler, more memory cells can be packed into each chip.
(In other words, DRAM has higher density.) In contrast, fewer SRAM bits can be implemen-
ted in each chip, effectively making SRAM more expensive than DRAM. Despite its simpler
circuitry, DRAM is slower than SRAM because of its required refresh cycles and less effi-
cient circuitry for accessing bits. With current fabrication technology, typical access times
are 10 to 20 ns for DRAM and 1 to 5 ns for SRAM. Improvements in fabrication technology
can decrease both access times but can t change the performance difference.

Note that neither RAM type can match current microprocessor clock rates, which
range from 3 to 4 GHz at this writing. For zero wait states in memory accesses, these clock
rates require the following memory access speeds:

1
3 GHz

1
3 000 000 000

0 00000000033 0 33 ns

1
4 GHz

1
4 000 000 000

0 00000000025 0 25 ns

The fastest DRAM is one to two orders of magnitude slower than current micropro-
cessors. SRAM is up to one order of magnitude slower. The following technologies are used
to bridge the performance gap between memory and microprocessors:

Read-ahead memory access
Synchronous read operations

Computer memory contains more than just SRAM or DRAM circuits. Memory circuits
are grouped in memory modules containing tens or hundreds of megabytes. Each module

FIGURE 5.4 A flip-flop circuit composed of two NAND gates: the basic component of SRAM and
CPU registers

Courtesy of Course Technology/Cengage Learning

166

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

contains additional circuitry to implement read and write operations to random locations
circuitry that must be activated before data can be accessed. Activating the read/write
circuitry consumes time, which lengthens the time required to access a memory location.

Programs usually access instructions and data items sequentially. Read-ahead memory
access takes advantage of this tendency by activating the read/write circuitry for location
n 1 during or immediately after an access to memory location n. If the CPU subse-
quently issues an access command for location n 1, the memory module has already
performed part of the work needed to complete the access.

Synchronous DRAM (SDRAM) is a read-ahead RAM that uses the same clock pulse as
the system bus. Read and write operations are broken into a series of simple steps, each of
which can be completed in one bus clock cycle (similar to pipelined processing, described
in Chapter 4). Several clock cycles are required to complete a single random access.
However, if memory is being written or read sequentially, accesses occur once per system
bus clock tick after the first access has completed.

SDRAM was improved steadily through the late 1990s and 2000s with a series of
technologies that doubled the data transfer rate of the previous technology. These tech-
nologies are called double data rate (DDR) and have been named DDR, DDR2, DDR3, and
a proposed DDR4. DDR3 SDRAM supports clock rates up to 1 GHz and reads or writes
eight 64-bit words per clock cycle.

Nonvolatile Memory
Memory manufacturers have worked for decades to develop semiconductor and other
forms of RAM with long-term or permanent data retention. The generic term for these
memory devices is nonvolatile memory (NVM). Of course, manufacturers and consumers
would like NVM to cost the same or less than conventional SRAM and DRAM and have
similar or faster read/write access times. So far, these goals have proved elusive, but some
current and emerging memory technologies show considerable promise.

Even though NVM currently lacks the access speed of RAM, it has many applications in
computing and other industries, including storage of programs and data in portable devices,
such as handheld computers, netbook computers, and cell phones; portable secondary stor-
age in devices such as digital cameras; and permanent program storage in motherboards
and peripheral devices. One of the oldest uses in computers is storing programs such as
boot subroutines the system BIOS, for example. These instructions can be loaded at high
speed into main memory from NVM. Software stored in NVM is called firmware.

Early NVM technology has evolved through several generations of devices. Read-only
memory (ROM) is the earliest type of NVM, with data content written permanently during
manufacture. Erasable programmable ROM (EPROM) is manufactured blank, written
(programmed) with a special EPROM writer, and erased by exposure to ultraviolet light.
The latest (and only currently used) form of ROM is electronically erasable programmable
ROM (EEPROM). An EEPROM device can be programmed, erased, and reprogrammed by
signals sent from a CPU. The main drawbacks of EEPROM technology are low density, high
cost, and a write speed that s much too slow to be used in primary storage devices.

The most common NVM in use today is flash RAM (also called flash memory). It s
competitive with DRAM in storage density (capacity) and read performance. Unfortu-
nately, write performance is much slower than in DRAM. Also, each write operation is

167

Primary Storage Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

mildly destructive, resulting in storage cell destruction after 100,000 or more write opera-
tions. Because of its slower write speed and limited number of write cycles, flash RAM
currently has limited applications. It s used to store firmware programs, such as the sys-
tem BIOS, that aren t changed frequently and are loaded into memory when a computer
powers up. Flash RAM is also used in portable secondary storage devices, such as compact
flash cards in digital cameras and USB flash drives. These storage devices typically mimic
the behavior of a portable magnetic disk drive when connected to a computer system.
Flash RAM is also beginning to challenge magnetic disk drives as the dominant secondary
storage technology (see Technology Focus: Solid-State Drives later in this chapter).

Other NVM technologies under development could overcome some shortcomings of
flash RAM. Two promising candidates are magnetoresistive RAM and phase-change mem-
ory. Magnetoresistive RAM (MRAM) stores bit values by using two magnetic elements,
one with fixed polarity and the other with polarity that changes when a bit is written. The
second magnetic element s polarity determines whether a current passing between the
elements encounters low (a 0 bit) or high (a 1 bit) resistance. The latest MRAM genera-
tions have read and write speeds comparable with SRAM and densities comparable with
DRAM, which make MRAM a potential replacement for both these RAM types. In addition,
MRAM doesn t degrade with repeated writes, which gives it better longevity than
conventional flash RAM.

Phase-change memory (PCM), also known as phase-change RAM (PRAM or PCRAM),
uses a glasslike compound of germanium, antimony, and tellurium (GST). When heated to
the correct temperatures, GST can switch between amorphous and crystalline states. The
amorphous state exhibits low reflectivity (useful in rewritable optical storage media) and
high electrical resistance. The crystalline state exhibits high reflectivity and low electrical
resistance. PCM has lower storage density and slower read times than conventional flash
RAM, but its write time is much faster, and it doesn t wear out as quickly.

Memory Packaging
Memory packaging is similar to microprocessor packaging. Memory circuits are embedded
in microchips, and groups of chips are packed on a small circuit board that can be
installed or removed easily from a computer system. Early RAM and ROM circuits were
packaged in dual inline packages (DIPs). Installing a DIP on a printed circuit board is a
tedious and precise operation. Also, single DIPs mounted on the board surface occupy a
large portion of the total surface area.

In the late 1980s, memory manufacturers adopted the single inline memory module
(SIMM) as a standard RAM package. Each SIMM incorporates multiple DIPs on a tiny
printed circuit board. The edge of the circuit board has a row of electrical contacts, and
the entire package is designed to lock into a SIMM slot on a motherboard. The double
inline memory module (DIMM), a newer packaging standard, is essentially a SIMM with
independent electrical contacts on both sides of the module, as shown in Figure 5.5.

168

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Current microprocessors include a small amount of on-chip memory (described in
Chapter 6). As fabrication techniques improve, the amount of memory that can be pack-
aged with the CPU on a single chip will grow. The logical extension of this trend is placing
a CPU and all its primary storage on a single chip, which would minimize or eliminate the
current gap between microprocessor clock rates and memory access speeds.

N O T E
Although main memory isn t currently implemented as part of the CPU, the CPU s need to load instruc-
tions and data from memory and store processing results requires close coordination between both
devices. Specifically, the physical organization of memory, the organization of programs and data in
memory, and the methods of referencing specific memory locations are critical design issues for both
primary storage devices and processors. These topics are discussed in Chapter 11.

FIGURE 5.5 From left to right, 30-pin SIMM, 72-pin SIMM, DDR DIMM, DDR2 DIMM, and DDR2
DIMM for a laptop computer

Courtesy of Course Technology/Cengage Learning

169

Primary Storage Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MAGNETIC STORAGE

Magnetic storage devices exploit the duality of magnetism and electricity. That is, electrical
current can generate a magnetic field, and a magnetic field can generate electricity. A
magnetic storage device converts electrical signals into magnetic charges, captures the
magnetic charge on a storage medium, and later regenerates an electrical current from the
stored magnetic charge. The magnetic charge s polarity represents the bit values 0 and 1.

Figure 5.6 illustrates a simple magnetic storage device. A wire is coiled around a
metallic read/write head. To perform a write operation, an electrical current is passed
through the wire, which generates a magnetic field across the gap in the read/write head.
The direction of current flow through the wire determines the field s polarity that is, the
position of the positive and negative poles of the magnetic field. Reversing the current s
direction reverses the polarity.

A magnetic storage medium is placed next to the gap, and the portion of the
medium s surface closest to the magnetic field is permanently charged. The stored
charge s polarity is identical to the polarity of the generated magnetic field. In addition,
the strength of the stored charge is directly proportional to the magnetic field s strength,
which is determined by several factors, including number of coils in the wire, strength of
the electrical current, and mass of the metallic read/write head. The storage medium must
be constructed of or coated with a substance capable of accepting and storing a magnetic
charge, such as a metallic compound.

A read operation is the inverse of a write operation. The portion of the storage
medium with the data being read is placed near the gap of the read/write head, and the

FIGURE 5.6 Principles of magnetic data storage
Courtesy of Course Technology/Cengage Learning

170

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

stored charge radiates a small magnetic field. When the magnetic field comes in contact
with the read/write head, a small electrical current is induced in the read/write head and
the wire wrapped around it. The current direction depends on the stored charge s polar-
ity. Electrical switches at either end of the coiled wire detect the direction of current flow
and sense a 0 or 1 bit value.

Magnetic storage devices must control or compensate for some undesirable charac-
teristics of magnetism and magnetic storage media, including the following:

Magnetic decay
Magnetic leakage
Minimum threshold current for read operations
Storage medium coercivity
Long-term storage medium integrity

A magnetic storage device must balance all these factors carefully to achieve cost-
effective and reliable storage. Different storage device requirements, such as speed versus
cost, dictate different tradeoffs. The following sections explain factors affecting data loss
with magnetic storage media.

Magnetic Decay and Leakage
The tendency of magnetically charged particles to lose their charge over time is called
magnetic decay. Magnetic decay is constant over time and proportional to the power of the
charge. The electrical switches used in a read operation require a minimum, or threshold,
current level. Because induced current power is proportional to the magnetic charge s
strength, a successful read operation requires a magnetic charge above a certain threshold,
called the read threshold.

Over time, the stored charge decays below the read threshold. At that point, the data
content of the storage medium is effectively lost. This phenomenon is the main reason
that data stored on disks and tapes is usually unreadable after a few years. To minimize
potential data loss, data bits must be written with a charge high enough to compensate for
decay. Magnetic storage devices write data at a substantially higher charge than the read
threshold, thus ensuring long-term readability. However, there are limits to how much
charge a read/write head can generate and how much the storage medium can hold.

The strength of a bit charge can also decrease because of magnetic leakage from
adjacent bits. Any charged area continuously generates a magnetic field that might affect
nearby bit areas. If the polarity of adjacent bits is opposite, their magnetic fields tend to
cancel out the charge of both areas, and the strength of both charges falls below the read
threshold. Magnetic leakage is counteracted by lowering areal density (thus increasing the
charge per bit) or by placing uncharged buffer areas between bit areas. Unfortunately,
both methods reduce storage capacity.

Areal Density
Coercivity is the capability of a substance or magnetic storage medium to accept and hold
a magnetic charge. This property varies widely between elements and compounds. In gen-
eral, metals and metallic compounds offer the highest coercivity at a reasonable cost. For
any material, coercivity is directly proportional to mass. In magnetic storage media, mass

171

Magnetic Storage

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is a function of the surface area in which a bit is stored, the thickness of the medium or its
coercible coating, and the density of the chargeable material in the medium or coating.
Larger, thicker, and denser areas can hold more charge because of their higher coercible
mass.

Most users want to store as much data as possible on a storage medium. The simplest
way to do this is to reduce the surface area used to store a single bit value, thus increasing
the total number of bits that can be stored on the medium. For example, the areal density
of a two-dimensional medium can be quadrupled by halving the length and width of each
bit area (see Figure 5.7). The surface area allocated to a bit is called the areal density,
recording density, or bit density. Areal density is typically expressed in bits, bytes, or
tracks per inch, abbreviated as bpi, Bpi, and tpi.

Some magnetic storage devices, such as hard disks, have fixed areal density, but
others, such as tape, have variable areal density. Because reductions in area per bit reduce
coercible mass per bit, the problems of magnetic decay and leakage increase as areal den-
sity increases. Designers and purchasers of magnetic media and devices must find a suit-
able balance between high areal density and storage longevity.

Media Integrity
A magnetic storage medium s integrity depends on its construction and the environmental
factors it s subjected to. Magnetic media, such as hard disk drives and MRAM, have high
media integrity. Other magnetic media, such as magnetic tape, have thin coatings of
coercible material layered over a plastic or other substrate. Age and environmental stress
can loosen the bond between the coating and substrate, causing the coating to wear away.
Physical stress on the medium from fast-forwarding and rewinding tape can accelerate the
process, as can temperature and humidity extremes.

Loss of the coercible coating results in a loss of strength in stored magnetic charges.
As with magnetic leakage and decay, data becomes unreadable when the remaining charge
falls below the read threshold. Magnetic media must be protected from physical abuse and
temperature and humidity extremes to extend their life. To ensure long-term media integ-
rity, magnetic tapes are sometimes stored in climate-controlled vaults, for example.

FIGURE 5.7 Areal density is a function of a bit area s length and width (a); density can be quadru-
pled by halving the length and width of bit areas (b)

Courtesy of Course Technology/Cengage Learning

172

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Table 5.2 summarizes the factors leading to data loss in magnetic storage media.

Magnetic Tape
A magnetic tape is a ribbon of plastic with a coercible (usually metallic oxide) coating.
Tapes are mounted in a tape drive, which is a slow serial access device, for reading and
writing. A tape drive contains motors that wind and unwind the tape, one or more read/
write heads, and related circuitry. Tapes are used primarily to make backup copies of data
stored on faster secondary storage devices and to physically transport large data sets.

Tapes and tape drives come in a variety of shapes and sizes. Tape widths have shrunk
over time because technology improvements have increased areal density. Older tape
drives used tapes up to 1 inch wide wound on large open reels up to 10 inches in diame-
ter. Modern tape drives use much narrower tapes mounted permanently in plastic cas-
settes or cartridges (see Figure 5.8). When a cassette is inserted into a tape drive, an
access door opens automatically, and the read/write head is positioned around or next to
the exposed tape.

TABLE 5.2 Factors leading to data loss in magnetic storage devices

Factor Description

Magnetic decay Natural charge decay over time; data must be written at a higher charge than the
read threshold to avoid data loss.

Magnetic leakage Cancellation of adjacent charges of opposite polarity and migration of charge to
nearby areas; data must be written at a higher charge than the read threshold to
avoid data loss.

Coercivity Capability of the storage medium to hold a charge; the medium must have
enough mass and coercivity to hold charges strong enough to counteract decay
and leakage.

Recording density The coercible material per bit decreases as the areal density increases; higher
areal density makes stored data more susceptible to loss caused by decay and
leakage.

Media integrity Stability of coercible material and its attachment to the substrate; physical
stress and extremes of temperature and humidity must be avoided to prevent
loss of coercible material.

173

Magnetic Storage

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Tapes compound magnetic leakage because the tape is wound upon itself. Leakage can
occur from adjacent bit positions on the same area of the tape as well as from the layer of
tape wound above or below on the reel. Tapes are also susceptible to problems caused by
stretching, friction, and temperature variations. As a tape is wound and unwound, it tends
to stretch. If enough stretching occurs, the distance between bit positions can be altered,
making bits difficult or impossible to read.

There are two geometric approaches to recording data onto a tape surface. Linear
recording places bits along parallel tracks that run the entire length of the tape, as shown
in Figure 5.9(a). Areal density depends on bit spacing in each track and on the number of
tracks. Helical scanning, as shown in Figure 5.9(b), reads and writes data to or from a tape
by rotating the read/write head at an angle to the tape and moving from tape edge to tape
edge. This geometry requires more complex read/write mechanisms.

FIGURE 5.8 Components of a typical cassette or cartridge tape
Courtesy of Course Technology/Cengage Learning

174

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Helical scanning was originally developed for video recording, such as on VHS tapes.
For drives of equal cost, helical scanning can pack more data into the same tape area than
linear recording can. The main disadvantages of helical scanning are slower tape motor
speeds and direct contact of read/write heads with the tape. The slower tape motor speed
makes searching for specific data on a helically scanned tape slower. The direct contact of
read/write heads with the tape creates friction that makes helically scanned tapes subject
to wear. Linear recording drives usually maintain a small gap between the read/write head
and the tape to eliminate friction.

There are at least five competing magnetic tape technology/format combinations and
several variations on each (see Table 5.3). The tape storage industry has had little cooper-
ation on standards since the early 1990s. Modern standards are proprietary and subject to
licensing fees. For the consumer, the result has been a maze of competing technologies
with lots of hype, lots of misinformation, and little compatibility.

FIGURE 5.9 Data recorded in linear parallel tracks (a) and with helical scanning (b)
Courtesy of Course Technology/Cengage Learning

TABLE 5.3 Comparison of modern tape formats

Format Manufacturer Geometry
Maximum
capacity (GB)

Digital Data Storage (DDS) HP, Sony Helical 40

Advanced Intelligent Tape (AIT) Sony Helical 400

Mammoth Tandberg Helical 160

Super Digital Linear Tape (SDLT) Quantum Linear 300

Linear Tape Open (LTO) HP, IBM, Seagate Linear 800

175

Magnetic Storage

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T E C H N O L O G Y F O C U S

Magnetic Tape Formats and Standards

Before the mid-1990s, there were several widely used tape storage standards. Mainframe
tape drives typically used 0.5- or 1-inch open-reel tape. IBM set standards for mainframe
tapes because it manufactured the majority of mainframe computers. Tape drives for
smaller computers followed IBM s standards or the open standards of the Quarter Inch
Committee (QIC), shown in Table 5.4. In those days, IBM s dominance helped create an
us versus IBM mentality that perhaps explains the cooperative spirit that led to the QIC.

The explosion in the market for PCs, small servers, and minicomputers in the 1980s
and 1990s led to a corresponding surge in the tape market. Many companies entered the
business and guarded their technology closely to gain a competitive advantage. Coopera-
tion became the exception, and when companies did cooperate, they created proprietary
standards and charged substantial licensing fees for other companies to produce compat-
ible media and drives. Technology quickly outpaced the QIC standards, and no vendors
were willing to contribute proprietary technology to update them.

The Digital Data Storage (DDS) standards were developed by Hewlett-Packard and
Sony from an earlier technology called Digital Audio Tape (DAT). All DDS tapes are 4
mm wide, and all DDS drives use helical scanning. DDS tapes are cheap, but they aren t
designed for precise alignment. DDS drives compensate for cheap tape cassettes with
elaborate technology for tape and environmental control, making the drives more expen-
sive. DDS storage was used widely in workstations and small servers.

Super Digital Linear Tape (SDLT) is a standard developed by Quantum Corpora-
tion. (Early versions omit the word super.) SDLT tape is 0.5 inches wide, and the car-
tridge contains only one reel. The other reel is located in the drive, which uses an
elaborate mechanism to grab a plastic tape leader from the cartridge and wind it onto the
take-up reel. SDLT records in parallel linear tracks, one at a time, from one end of the
tape to another. At the end of the tape, the drive motors reverse direction, and the next
track is recorded. The end-to-end track format has advantages when searching for spe-
cific data, but it requires many passes to fill the tape completely.

Sony and Exabyte breathed new life into DAT with Sony s Advanced Intelligent
Tape (AIT) and Exabyte s Mammoth standards. (Exabyte merged with Tandberg in the

(continued)

TABLE 5.4 Sample QIC tape format specifications

Format Year
Cartridge
size (in)

Capacity
(GB) Tracks

Areal
density (bpi)

QIC-80 1988 4 6 .08 28 14,700

QIC-120 1991 4 6 .125 15 10,000

QIC-525 1992 4 6 .525 26 20,000

QIC-2100 1993 4 6 2.1 30 50,800

QIC-3095 1995 3.25 2.5 4.0 72 67,733

QIC-3220 1997 3.25 2.5 10.0 108 106,400

176

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2000s.) Both standards use helical scanning on 8 mm tapes and a more expensive and
precisely manufactured tape cartridge. Both standards also improve tape drive technol-
ogy to pack more data onto a single tape. AIT includes a small RAM cache in each car-
tridge, which stores directory information to speed searching and data access.

Hewlett-Packard, IBM, and Seagate developed the Linear Tape Open (LTO) stan-
dard. Despite its name and claims, LTO is a proprietary standard. It uses linear recording
and has technology improvements in tape cartridges, coercible materials, read/write
heads, and tape control. All this technology comes at a substantial price, so LTO is
designed mainly for enterprise servers supporting mission-critical applications. It s cur-
rently the market leader and appears to be the only tape format that will thrive in the
near future. Drives and media for other formats are still manufactured, although their
markets are smaller and based mainly on legacy uses.

Magnetic storage technology has improved rapidly in both price and performance,
and many large data centers now rely on redundant disks for storage backup and use
tape storage sparingly, if at all. This trend reflects both the shifting cost/performance
characteristics of magnetic tape and disk and the trend toward around-the-clock data
availability. Many organizations simply can t afford to have data unavailable during a
recovery operation from tape. At the same time, tape s role as an archival storage format
is under attack from optical discs of ever larger capacity. Tape still leads optical discs in
recovery speed and storage capacity, but these advantages continue to shrink.

Magnetic Disk
Magnetic disk media are flat, circular platters with metallic coatings that are rotated
beneath read/write heads (see Figure 5.10), and data is normally recorded on both sides of
a platter. Multiple platters can be mounted and rotated on a common spindle. A track is
one concentric circle of a platter, or the surface area that passes under a read/write head
when its position is fixed. A cylinder consists of all tracks at an equivalent distance from
the edge or spindle on all platter surfaces.

FIGURE 5.10 Primary components of a typical magnetic disk
Courtesy of Course Technology/Cengage Learning

177

Magnetic Storage

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A sector is a fractional portion of a track (see Figure 5.11). A single sector usually
holds 512 bytes, which is also the normal data transfer unit to or from the drive.

There s a read/write head mounted on an access arm for each side of each platter.
Access arms of equal length are attached to a positioning servo. This servo moves the
access arms so that read/write heads can be positioned anywhere between the outermost
track, closest to the platter s outer edge, and the innermost track, closest to the center of
the disk. Read/write heads don t normally make contact with a platter s recording surface.
Rather, they float above the platter on a thin cushion of air as the disk spins.

A hard disk is a magnetic disk medium with a rigid metal base (substrate). Typically,
platter diameter is between 1 and 5 inches. Multiple platters are spun at high speeds, up to
15,000 revolutions per minute (rpm). Drive capacity depends on the number of platters,
platter size, and areal density. At this writing, hard disk drive capacities range from 160
GB to 2 TB, but maximum capacity typically doubles every year or two. Multiple hard
drives can be enclosed in a single storage cabinet; this arrangement is referred to as a
drive array.

All magnetic disks are blank when manufactured, although many are formatted before
sale. The location of tracks in a platter is fixed, but sector locations in a track are not. One
operation performed when formatting a disk is fixing the location of sectors in tracks,
which is done by writing synchronization data at the beginning of each sector. Synchroni-
zation data can also be written in a sector during formatting or subsequent write opera-
tions. Read/write circuitry uses synchronization data to compensate for minor variations
in rotation speed and other factors that might disturb the precise timing needed for
reliable reading and writing.

FIGURE 5.11 Organization of tracks and sectors on one surface of a disk platter
Courtesy of Course Technology/Cengage Learning

178

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A read or write command identifies the platter, track in the platter, and sector in the
track. Controller circuitry switches activate the read/write head for the platter, and the
positioning servo moves the access arms over the track. The controller circuitry then
waits for the correct sector to rotate beneath the read/write head; at this point, the read or
write operation is started. The operation is completed as the last portion of the sector
passes under the read/write head. The access arms are typically left in their last position
until the next read or write command is received.

Disk access time depends on several factors, including the time required to do the
following:

Switch between read/write heads.
Position read/write heads over a track.
Wait for the correct sector to rotate beneath read/write heads.

Disk drives share one set of read/write circuits among all read/write heads. The read/
write circuitry must be electronically attached, or switched, to the correct read/write head
before a sector can be accessed. The time needed to perform this switching, referred to as
head-to-head (HTH) switching time, is no more than a few nanoseconds. Switching occurs
in sequence among read/write heads, and multiple switching operations might be required
to activate a head. For example, if there are 10 read/write heads, switching from the first
head to the last requires 9 separate switching operations (first to second, second to third,
and so forth). HTH switching time is the least important component of access time.

The positioning servo that moves access arms and read/write heads is a bidirectional
motor that can be started and stopped quickly to position read/write heads precisely over
a track. The time needed to move from one track to another is called track-to-track (TTT)
seek time, typically measured in milliseconds. It s an average number because of varia-
tions in the time required to start, operate, and stop the positioning servo.

After the read/write heads are positioned over the track, the controller waits for the sec-
tor to rotate beneath the heads. The controller keeps track of the current sector position by
continually scanning the sector synchronization data written on the disk during formatting.
When the correct sector is sensed, the read or write operation is started. The time the disk
controller must wait for the right sector to rotate beneath the heads is called rotational delay,
which depends on platter rotation speed. Increasing the spin rate reduces rotational delay.

Both TTT seek time and rotational delay vary from one read or write operation to
another. For example, if two consecutive read requests access adjacent sectors on the
same track and platter, rotational delay and TTT seek time for the second read operation
are zero. If the second read access is to the sector preceding the first, rotational delay is
high, almost a full platter rotation. If one read request references a sector on the outer-
most track and the other request references the innermost track, TTT seek time is high.

The amount of TTT seek time and rotational delay can t be known in advance because
the location of the next sector to be accessed can t be known in advance. Access time for a
disk drive is not a constant. Instead, it s usually stated by using a variety of performance
numbers, including raw times for HTH switching and rotation speed. The most important
performance numbers are average access time, sequential access time, and sustained data
transfer rate.

Average access time is computed by assuming that two consecutive accesses are sent
to random locations. Given a large number of random accesses, the expected value of HTH

179

Magnetic Storage

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

switching time corresponds to switching more than half the number of recording surfaces.
The expected value of TTT seek time corresponds to movement over half the tracks, and
the expected value of rotational delay corresponds to one-half of a platter rotation. If HTH
switching time is 5 ns, the number of read/write heads is 10, TTT seek time is 5 microse-
conds (μs, millionths of a second), each recording surface has 1000 tracks, and platters are
rotated at 7500 rpm, the average access delay is computed as follows:

average access delay HTH switch TTT seek rotational delay

5 ns
10
2

1000
2

5 μs
60 seconds
7500 rpm

2

000000025 500 000005 008 2 seconds

000000025 0025 004 seconds

6 5 ms

Average access time is the sum of average access delay and the time required to read
a single sector, which depends entirely on the disk s rotational speed and the number of
sectors per track. Using the previous figures and assuming there are 24 sectors per track,
the average access time is computed as follows:

average access time average access delay
60 seconds
7500 rpm

24

0065 008 24

6 83 ms

Sequential access time is the time required to read the second of two adjacent sectors
on the same track and platter. HTH switching time, TTT seek time, and rotational delay are
zero for this access. The only component of access time is the time required to read a single
sector that is, the second half of the preceding equation, or 0.33 ms in that example.

Because sequential access time is so much faster than average access time, disk perfor-
mance is improved dramatically if related data is stored in sequential sectors. For example,
loading a program from disk to memory is fast if the entire program is stored in sequential
locations on the same track. If the program won t fit in a single track, performance is maxi-
mized by storing the program in a single cylinder or group of adjacent cylinders.

If portions of a program or data file are scattered around the disk in random sectors,
performance is reduced because of switching read/write heads, positioning the access arm,
and waiting for sectors to rotate beneath the heads. A disk with many program and data
files scattered on it is said to be fragmented.

N O T E
File storage in sequential sectors improves performance only if file contents are accessed sequentially. If
file contents are accessed in random order, sequential storage might not improve performance.

Over time, file contents tend to become fragmented in many nonsequential sectors.
Fragmentation is a normal byproduct of adding, deleting, modifying, and moving files and
directories. Most OSs include a utility program for performing disk defragmentation.

180

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A disk defragmentation utility reorganizes disk content so that a file s contents are stored
in sequential sectors, tracks, and platters (see Figure 5.12).

Effective disk drive performance also depends on the speed at which data can be
moved through the disk controller circuitry to and from memory or the CPU. Communi-
cation channel capacity is rarely a restriction on a single disk drive s data transfer rate,
but it can limit the effective throughput of a drive array.

A disk drive s data transfer rate is a summary performance number combining the
physical aspects of data access with the electronic aspects of data transfer to the disk
controller or system. As with access times, generally two different numbers are stated:
maximum data transfer rate and sustained data transfer rate. The maximum data transfer
rate is the fastest rate the drive can support and assumes sequential access to sectors.
Because mechanical delays are minimal with sequential accesses, this number is quite
high, typically several megabytes per second. The maximum data transfer rate for the
previously described performance figures, assuming no controller delays, is as follows:

1
0 00033 seconds

512 bytes per sector 1 5 MB per second

The sustained data transfer rate is calculated with much less optimistic assumptions
about data location. The most straightforward method is to use average access time. For
the previous example, this is the sustained data transfer rate:

1
0 00683 seconds

512 bytes per sector 75 KB per second

Because OSs typically allocate disk space to files sequentially, the sustained data
transfer rate is generally much higher than the preceding calculation implies. Table 5.5
lists performance statistics for hard disk drive models from Seagate Technology, Inc. and
Hitachi, Ltd.

FIGURE 5.12 Display of fragmentation before and after disk defragmentation
Courtesy of Course Technology/Cengage Learning

181

Magnetic Storage

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Another factor that complicates performance calculations is that most manufacturers
pack more sectors in the outer tracks of a platter. Look closely at Figure 5.11 again, and
note that the platter surface area of sectors increases as you move toward the outer edge.
Coercible material per sector is greater at the platter edge than in the center. To increase
capacity per platter, disk manufacturers divide tracks into two or more zones and vary the
sectors per track in each zone (see Figure 5.13).

Computing the average access time is more complex when sectors are more densely
packed on the platter s outer portions because the assumption that an average access
requires moving the read/write head over half the tracks is no longer valid. For this reason,
most average access time computations assume movement over a quarter to a third of the
tracks.

TABLE 5.5 Hard disk drive performance statistics

Manufacturer Model Platters
Capacity
(GB)

Rotation
speed (rpm)

Average access
time (ms)

Seagate ST3500320AS 2 500 7200 8.5

ST3600002SS 4 600 10,000 3.8

ST3600057SS 4 600 15,000 3.4

Hitachi E5K500 3 500 5400 12.0

C10K300 2 300 10,000 3.9

15K600 4 600 15,000 3.4

FIGURE 5.13 A platter divided into two zones with more sectors per track in the outer zone
Courtesy of Course Technology/Cengage Learning

182

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T E C H N O L O G Y F O C U S

Solid-State Drives

Declining cost and improved performance and capacity of flash RAM has created a new
class of storage devices that are expected to supplant magnetic disk as the dominant
secondary storage technology. A solid-state drive (SSD) is a storage device that mimics
the behavior of a magnetic disk drive but uses flash RAM or other NVM devices as the
storage medium and read/write mechanism. SSDs are currently implemented with the
same physical size and interfaces as magnetic drives, which enables them to compete
directly and be used interchangeably.

SSDs compare favorably with magnetic disk drives on some characteristics but not on
others (see Table 5.6). However, the comparative advantages and disadvantages are expected
to change rapidly under the assumption that magnetic disks are a more mature technology
than NVM. The rate of improvement in SSD characteristics is expected to be faster than for
magnetic disks, resulting in magnetic disks being gradually replaced with SSDs.

TABLE 5.6 Comparison of solid-state drives and magnetic disks in 2010

Device
characteristic Solid-state drives Magnetic disks

Read speeds Typical average access times are less
than 5 ms per sector for random or
sequential reads.

Typical average access times are less
than 5 ms per sector for random reads
and less than1msfor sequential reads.

Write speeds Write times depend on the underlying
NVM technology, with more expen-
sive technologies having write times
comparable with read times and less
expensive technologies being two to
five times slower.

Write times are typically
5% to 15% slower than read times.

Volatility Operational life depends on use and
NVM technology. Flash RAM wears out
after 100,000 or more write opera-
tions, which might be less than 5 years,
depending on the write frequency.

Typical operational life is 5 to
10 years, with an unlimited number
of accesses.

Access method Access is random by sector, although
current inexpensive flash RAM tech-
nology requires writes to multiple
sectors at once, which slows writing
considerably.

Access is random by sector,
although faster sequential access
occurs if disks are defragmented
frequently and when files are
accessed sequentially.

Portability Lack of moving parts provides inher-
ent portability with little or no per-
formance penalty.

Use of moving parts limits the
performance of portable drives
compared with nonportable drives.

Capacity and
cost

Maximum capacity of 64 GB per
drive. Cost ranges from $5 to $15 per
gigabyte, depending on capacity,
interface, and NVM technology.

Maximum capacity is 2 TB per drive.
Cost ranges from 2¢ to $2 per
gigabyte, depending on capacity,
interface, and performance.

(continued)

183

Magnetic Storage

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Current SSDs use flash RAM as the storage medium, although newer NVM types,
such as MRAM and PCM, might supplant it in the next decade. At present, the main
drawbacks of SSDs are byproducts of the current state of flash RAM technology. Flash
RAM s slow write times give magnetic disk drives a major performance advantage in
applications that perform many sequential writes, such as digital audio recording and
other multimedia applications. New flash RAM technology minimizes the write perfor-
mance penalty but at a substantially higher cost and with reduced capacity.

Volatility also limits the use of SSDs in write-intensive applications, although mod-
ern SSDs use a technique called wear leveling to spread write operations around the
storage medium, thus evening out the impact of destructive writes and extending the
storage device s useful life. SSD cost per gigabyte is also much higher, which currently
limits it to applications in which its advantages are worth the higher price.

SSDs are much more tolerant to shock and other negative environmental factors
commonly encountered with portable devices, such as multifunction cell phones, net-
books, and laptop computers. Magnetic disk drives used in portable applications typically
have much lower performance than in fixed applications to compensate for environmen-
tal factors. Therefore, the performance advantage of magnetic disk drives compared with
SSDs is much smaller in the portable market, and the cost differential can often be justi-
fied by improved reliability.

SSDs also have an advantage over magnetic disk drives in power consumption. It s
yet another advantage in the portable market, but it s also an advantage in large data
centers that often house tens or hundreds of thousands of disk drives. SSDs are just
beginning to be used in large data centers for applications in which their high read per-
formance and low power requirements offset their higher cost, slower write times, and
limited write cycles.

OPTICAL MASS STORAGE DEVICES

Optical storage came of age in the 1990s. Its primary advantages, compared with magnetic
storage, are higher areal density and longer data life. Typical optical recording densities
are at least 10 times higher than for magnetic storage devices. Higher density is achieved
with tightly focused lasers that can access a very small storage medium area. Magnetic
fields can t be focused on such a small area without overwriting surrounding bit positions.

Most optical storage media can retain data for decades because they aren t subject to
magnetic decay and leakage. Optical storage is popular because of its standardized and
inexpensive storage media. The CD and DVD formats used for musical and video record-
ings are also supported by most computer optical storage devices.

Optical storage devices store bit values as variations in light reflection (see Figure 5.14).
The storage medium is a surface of highly reflective material, and the read mechanism
consists of a low-power laser and a photoelectric cell. The laser is focused on one bit
location of the storage medium at a specific angle, and the photoelectric cell is positioned
at a complementary angle to intercept reflected laser light. A highly reflective surface spot
causes the photoelectric cell to generate a detectable electrical current. A poorly reflective
surface spot doesn t reflect enough light to cause the photoelectric cell to fire. The cur-
rent, or lack of current, the photoelectric cell produces is interpreted as a binary 1 or 0.

184

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

There are multiple ways to implement bit areas with low reflectivity. In Figure 5.14,
low reflection is a result of a concave dent, or pit, in the reflective layer. Other ways of
achieving low reflectivity bit areas include burned areas, dyes, and substances that change
from crystalline to amorphous states.

An optimal surface material could be changed rapidly and easily from highly to poorly
reflective and then back again an unlimited number of times. The search for this material
and a reliable and efficient method of altering its reflectivity has proved difficult. Some
materials change quickly in one direction but not another, such as photosensitive sunglass
materials. The capability of most materials to change reflectivity degrades over time and
with repeated use. Several optical write technologies are currently in use or under devel-
opment, but there s no clearly dominant technology.

Current optical storage devices use a disc storage medium. (Optical storage media are
usually called discs, and magnetic storage media are called disks.) Because the
recording surface is a disc, there are many similarities to magnetic disk storage, including
a read/write mechanism mounted on an access arm, a spinning disc, and performance
limitations caused by rotational delay and movement of the access arm.

Although both magnetic and optical devices use disk technology, their performance is
quite different. Optical disc storage is slower for a number of reasons, including the use of
removable media and the inherent complexity of an optical write operation. The perfor-
mance difference has narrowed considerably in recent years. Magnetic hard disks typi-
cally have access times under 10 ms, and read access time for optical drives is generally

FIGURE 5.14 Optical disc read operations for a 1 bit (a) and a 0 bit (b)
Courtesy of Course Technology/Cengage Learning

185

Optical Mass Storage Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

more than 100 ms. Write access time is typically two or three times longer than read
access time. This gap is expected to shrink as optical technology matures and magnetic
technology reaches its physical limits.

Magnetic and optical storage aren t currently direct competitors because they have
different cost/performance tradeoffs. Magnetic hard disks are still the cost/performance
leader for general-purpose online secondary storage. Optical storage is favored for read-
only storage with low performance requirements and when portability in a standardized
format is needed. Optical storage devices are available in a wide variety of storage formats
and write technologies, summarized in Table 5.7 and discussed in detail in the following
sections.

TABLE 5.7 Technologies and storage formats for optical and magneto-optical storage

Technology/
format Writable? Description

CD-ROM No Adaptation of musical CD technology; 650 or 700 MB
capacity.

CD-R One time only CD-ROM format with a dye reflective layer that can be
written by a low-power laser.

CD-RW Yes CD-ROM format with phase-change reflective layer; can be
written up to 1000 times.

DVD-ROM No Adaptation of DVD video technology; similar to CD-ROM
but more advanced; 4.7 GB (single layer) or 8.5 GB (dual
layer) capacity.

DVD /-R One time only DVD-ROM single- and dual-layer formats; similar to CD-R
with improved performance and capacity. DVD-R and
DVD R are slightly different formats

DVD /-RW Yes DVD-ROM single- and dual-layer formats with phase-change
reflective layer. DVD-RW and DVD RW are slightly
different formats.

BD No Trade name is Blu-ray disc. Improved DVD technology using
higher wavelength lasers; 25 GB (single layer) or 50 GB
(dual layer) capacity. Higher capacity discs with more than
two layers are under development.

BD-R One time only Blu-ray version of DVD /-R.

BD-RE Yes Blu-ray version of DVD /-RW.

Magneto-optical Yes Outdated combination of magnetic and optical technolo-
gies; only Sony still manufactures drives; capacity up to 30
GB per disk.

HVD Yes Stores bits holographically in the optical recording layer. A
2007 multivendor standard specifies a 500 GB disc, but no
drives are currently in production.

186

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CD-ROM, DVD-ROM, and BD

Sony and Philips originally developed compact disc (CD) technology for storing and
distributing music in the CD digital audio (CD-DA) format. CD read-only memory
(CD-ROM) is compatible with CD-DA but includes additional formatting information to
store directory and file information. Both CD-DA and CD-ROM are read-only storage
technologies and formats because data is permanently embedded in the disc during
manufacture.

A CD is 120 millimeters (approximately 4.75 inches) in diameter and made largely of
durable polycarbonate. Bit values are represented as flat areas called lands and concave
dents called pits in the reflective layer. Data is recorded in a single continuous track that
spirals outward from the disc s center. Error correction data written along the track at
regular intervals helps the CD drive s read mechanism recover from errors introduced by
dust, dirt, and scratches.

DVD is an acronym for both digital video disc and digital versatile disc. (The two
terms are equivalent.) A consortium of companies developed DVD as a standard format for
distributing movies and other audiovisual content. Like CD-ROM, DVD read-only memory
(DVD-ROM) is an adaptation of audiovisual DVD in which DVD discs can store computer
data. Most DVD-ROM drives can also read CD, CD-R, and CD-RW discs.

Blu-ray disc (BD), an important update to DVD-ROM, was originally designed for high-
definition video discs. As with CD and DVD, the technology has been adapted to computer
data storage. DVDs and BDs are the same size as CDs, and their read and write technolo-
gies are similar enough that storage and most drives are backward compatible with all
earlier standards.

DVD and BD technologies improve on CD technology in several ways:

Increased areal density achieved with smaller wavelength lasers and more
precise mechanical control
Higher rotational speeds
Improved error correction
Multiple recording sides and layers

CD-ROMs and DVD-ROMs are popular media for distributing software and large data
sets, such as maps, census data, phone directories, and other large databases. Standardized
formats, high density, and cheap manufacturing cost make them well suited for these
purposes. Their primary drawback is that discs can t be rewritten.

Recordable Discs
Recordable versions of the major optical disc formats (CD-R, DVD R, DVD-R, DVD R DL,
DVD-R DL, and BD-R) use a laser that can be switched between high and low power and a
laser-sensitive dye embedded in the disc. The dye is stable when scanned at low power
during a read operation but changes its reflective properties when scanned at higher
power during a write operation. The write operation is destructive, so recordable disc
formats can be written only one time. Because the dyes are sensitive to heat and light,
recordable discs should be stored in a dark location at room temperature. Also, because
the dyes degrade over time, data might be lost after a few decades.

187

Optical Mass Storage Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Phase-Change Optical Discs
Phase-change optical technology enables nondestructive writing to optical storage media.
The technology is based on the same GST material used in MRAM, which can change state
easily from amorphous to crystalline and then back again. The reflective characteristics of
this material are quite different in the amorphous and crystalline states. The difference is
less than with manufactured or dye-based discs but enough to be detected by newer opti-
cal scanning technologies.

GST changes from an amorphous state to a crystalline state when heated to a precise
temperature. Heating the material to its melting point changes it back to an amorphous
state. The melting point is low, so high-power lasers aren t required. However, multiple
passes are usually required to generate enough heat, so write times are substantially longer
than read times. The reflective layer loses its capability to change state with repeated
heating and cooling. Current rewritable media wear out after about 1000 write operations.

CD-Rewritable (CD-RW) is a standard for phase-change optical discs that use the CD-
ROM format. Rewritable DVDs use one of four different standards: DVD RW, DVD-RW,
DVD RW DL, and DVD-RW DL. BD-RE is the rewritable version of the Blu-ray standard.

Magneto-Optical Drives
A magneto-optical (MO) drive uses a laser and reflected light to sense magnetically
recorded bit values. Reading is based on the polarity of the reflected laser light, which is
determined by the polarity of the magnetic charge. This laser polarity shift is known as the
Kerr effect.

The disc surface is a material that accepts a magnetic charge when heated to approx-
imately 150 degrees Celsius. To bring the material to a chargeable temperature, a high-
power laser is focused on a bit position. A magnetic write head positioned below the media
surface then generates the appropriate charge. Because the laser beam focuses on a single
bit position, only that bit position is raised to a sufficient temperature. Surrounding bits
are unaffected by the magnetic field from the write head because they re cooler.

Magneto-optical technology peaked in the mid-1990s. Few new MO drives have been
sold since then because of the introduction of cheaper rewritable CD, DVD, and BD drives.
However, there s still a market for MO drives because many organizations created data
archives on magneto-optical discs and still need access to these archives. Therefore, the
technology probably won t fade away completely for a few more years.

B U S I N E S S F O C U S

Which Storage Technology?

The Ackerman, Holt, Sanchez, and Trujillo (AHST) law firm has thousands of clients,
dozens of partners and associates, and a costly document storage and retention problem.
Before 1990, AHST archived legal documents and billing records on paper. As in-office
file cabinets filled, the paper was boxed, labeled, and transported to a warehouse for
storage. AHST retains all records for at least 20 years and longer in some cases.

In the late 1980s, AHST adopted automated procedures for archiving documents.
Most documents were stored as computer files in their original format (WordPerfect, at

(continued)

188

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

that time). Documents with signatures were scanned and stored as JPEG files. Several
possible storage media were considered, including different forms of magnetic tape and
removable MO drives. The firm chose Sony MO drives based on the following selection
criteria, listed roughly in order of importance:

Permanence (25-year minimum document recoverability)
Cost
High storage capacity
Ease of use
Stability and market presence of the technology and selected vendor(s)

AHST has used several different MO media, including 600 MB, 2.3 GB, and 9.1 GB
5.25-inch discs, and several different drives. Document formats have also changed to
include Microsoft Word and Adobe Acrobat files. Starting last year, AHST began record-
ing depositions with a digital video camera and archiving them as MPEG files stored on
9.1 GB MO drives. AHST estimates its current annual storage requirements for document
and video deposition archives at 1 to 5 TB, approximately 90% of which is video.

Electronic document and secondary storage technologies have evolved considerably
since AHST chose magneto-optical storage. Many new tape formats have been developed,
and optical formats, such as CD and DVD, have become commonplace. At the same time,
magneto-optical technology has evolved, even though its popularity has waned. Drives
and media are becoming harder to find, and costs are high compared with more modern
alternatives. For these reasons, the firm is reassessing the choice of technology for per-
manent document storage.

Questions:

Summarize the pros and cons of the removable secondary storage technologies
described in this chapter with respect to the firm s selection criteria.
What technologies should AHST adopt for future document and video storage?
Why?
How and when might the technologies you recommended become obsolete?

189

Optical Mass Storage Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

A typical computer system has multiple storage devices filling a variety of needs. Primary
storage devices support immediate execution of programs, and secondary storage devices
provide long-term storage of programs and data. The characteristics of speed, volatility,
access method, portability, cost, and capacity vary between storage devices, forming a
memory-storage hierarchy. Primary storage tends to be at the top of the hierarchy, with
faster access speeds and higher costs per bit of storage, and secondary storage tends to
be in the lower portion of the hierarchy, with slower access speeds and lower costs.

The critical performance characteristics of primary storage devices are their access speed
and the number of bits that can be accessed in a single read or write operation. Modern
computers use memory implemented with semiconductors. Basic types of memory built
from semiconductor microchips include random access memory (RAM) and nonvolatile
memory (NVM). The primary RAM types are static and dynamic. Static RAM (SRAM) is
implemented entirely with transistors; dynamic RAM (DRAM) is implemented with transis-
tors and capacitors. SRAM s more complex circuitry is more expensive but provides faster
access times. Neither type of RAM can match current microprocessor clock rates. NVM is
usually relegated to specialized roles and secondary storage because of its slower write
speeds and limited number of rewrites.

Magnetic secondary storage devices store data bits as magnetic charges. Magnetic tapes
are ribbons of plastic with a coercible coating. Data is written to or read from tape by pass-
ing over a tape drive s read/write head. Magnetic disks are platters coated with coercible
material. Platters are rotated in a disk drive, and read/write heads access data at various
locations on the platters. Magnetic disk drives are random access devices because the
read/write head can be moved to any location on a disk platter. They face increasing com-
petition from solid-state drives based on flash RAM and other forms of nonvolatile memory.

Optical discs store data bits as variations in light reflection. An optical disc drive reads data bits
by shining a laser beam onto a small disc location. High and low reflections of the laser are
interpreted as 1s and 0s. The cost per bit of optical storage is less than magnetic storage, at
the expense of slower access speed. Types of optical discs (and drives) include different forms
of CDs and DVDs. CD-ROM, DVD-ROM, and BD are written during manufacture. CD-R,
DVD /-R, and BD-R are manufactured blank and can be written to once. CD-RW and rewrita-
ble DVD and Blu-ray formats use phase-change technology to write and rewrite media.

Now that CPUs, primary storage, and secondary storage have been covered in some detail,
it s time to turn your attention to how these devices are integrated in a computer system. Chap-
ter 6 describes how processing, I/O, and storage devices interact and discusses methods of
improving overall computer system performance. Chapter 7 describes types of I/O devices.

Key Terms

access arm

access time

Advanced Intelligent Tape (AIT)

areal density

average access time

block

Blu-ray disc (BD)

CD digital audio (CD-DA)

190

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CD read-only memory (CD-ROM)

coercivity

compact disc (CD)

core memory

cylinder

data transfer rate

Digital Audio Tape (DAT)

Digital Data Storage (DDS)

direct access

disk defragmentation

double data rate (DDR)

double inline memory module (DIMM)

drive array

dual inline packages (DIPs)

DVD

DVD read-only memory (DVD-ROM)

dynamic RAM (DRAM)

electronically erasable programmable ROM
(EEPROM)

erasable programmable ROM (EPROM)

firmware

flash RAM

fragmented

germanium, antimony, and tellurium (GST)

hard disk

head-to-head (HTH) switching time

helical scanning

linear recording

Linear Tape Open (LTO)

magnetic decay

magnetic leakage

magnetic tape

magnetoresistive RAM (MRAM)

magneto-optical (MO) drive

Mammoth

nonvolatile

nonvolatile memory (NVM)

parallel access

phase-change memory (PCM)

platters

Quarter Inch Committee (QIC)

random access

read-only memory (ROM)

read/write head

refresh cycle

rotational delay

sector

sequential access time

serial access

single inline memory module (SIMM)

solid-state drive (SSD)

static RAM (SRAM)

storage medium

Super Digital Linear Tape (SDLT)

sustained data transfer rate

synchronous DRAM (SDRAM)

tape drive

track

track-to-track (TTT) seek time

volatile

Vocabulary Exercises

1. Dynamic RAM requires frequent to maintain its data content.

2. The rate is the speed at which data can be moved to or from a storage device
over a communication channel.

3. Three standard optical storage media that are written only during manufacture are
called , , and .

4. , , , and are competing standards for rewritable DVD
discs.

191

Vocabulary Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. The of a hard disk drive generate or respond to a magnetic field.

6. Data stored on magnetic media for long periods of time might be lost because of
and .

7. A(n) stores data in magnetically charged areas on a platter.

8. The contents of most forms of RAM are , making them unsuitable for long-term
data storage.

9. and are outdated technologies for nonvolatile primary storage.
and are promising new technologies for implementing NVM.

10. is typically stated in milliseconds for secondary storage devices and nanoseconds
for primary storage devices.

11. The three components that are summed to calculate average access time for a disk drive
are , , and .

12. In a magnetic disk drive, a read/write head is mounted on the end of a(n) .

13. The access method for RAM is or if words are considered the unit of
data access. The access method is if bits are considered the unit of data access.

14. Both DDS and AIT use to record bits and tracks on a magnetic tape.

15. and are two current standards or formats for linear recording on mag-
netic tapes.

16. A(n) mimics the behavior and physical size of a magnetic disk drive but has no
moving parts.

17. A(n) is a series of sectors stored along one concentric circle on a platter.

18. A magnetic disk drive s data transfer rate can be calculated by dividing 1 by the drive s
access time and multiplying the result by the size.

19. , , and are storage formats originally designed for music or
video recording that have been applied to computer data storage.

20. Tape drives are devices. are random or direct access devices.

21. Average access time can usually be improved by files stored on a disk.

22. Modern desktop and laptop computers generally use memory packaged on small standard-
ized circuit boards called .

23. The of a magnetic or optical storage medium is the ratio of bits stored to a unit of
the medium s surface area.

24. For most disk drives, the unit of data access and transfer is a(n) or .

25. Software programs stored permanently in ROM are called .

26. Many open standards for cartridge tape storage have been defined by the .

Review Questions

1. What factors limit the speed of an electrically based processing device?

2. What are the differences between static and dynamic RAM?

3. What improvements are offered by synchronous DRAM compared with ordinary DRAM?

192

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Why isn t flash RAM commonly used to implement primary storage?

5. Describe current and emerging nonvolatile RAM technologies. What potential advantages
do the emerging technologies offer compared with current flash RAM technology?

6. Describe serial, random, and parallel access. What types of storage devices use each
method?

7. How is data stored and retrieved on a magnetic mass storage device?

8. Describe the factors that contribute to a disk drive s average access time. Which of these
factors is improved if the spin rate is increased? Which is improved if areal density is
increased?

9. What problems contribute to read/write errors on magnetic tapes? Are these problems also
present with other magnetic storage media/devices?

10. What are the advantages and disadvantages of helical scanning compared with linear
recording?

11. Why is the areal density of optical discs higher than the areal density of magnetic disks?
What factors limit this areal density?

12. Describe the processes of reading from and writing to a phase-change optical disc. How
does the performance and areal density of these discs compare with magnetic disks?

13. List and briefly describe the standards for recordable and rewritable CDs and DVDs. Are
any of the standards clearly superior to their competitors?

Problems and Exercises

1. A magnetic disk drive has the following characteristics:

10,000 rpm spin rate

2 ns head-to-head switching time

3 μs average track-to-track seek time

5 platters, 1024 tracks/platter side recorded on both sides, 50 sectors per track on
all tracks

Questions:

a. What is this drive s storage capacity?

b. How long will it take to read the drive s entire contents sequentially?

c. What is this drive s serial access time?

d. What is this drive s average (random) access time (assuming movement over half the
tracks and half the sectors in a track)?

2. A CPU has a clock rating of 2.4 GHz, and half of each clock cycle is used for fetching and
the other half for execution.

Questions:

a. What access time is required of primary storage for the CPU to execute with zero wait
states?

193

Problems and Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

b. How many wait states per fetch will the CPU incur if all primary storage is implemen-
ted with 5 ns SRAM?

c. How many wait states per fetch will the CPU incur if all primary storage is implemen-
ted with 10 ns SDRAM?

3. Compute data transfer rates for the following types of devices:

Storage device Average access time Data transfer unit size

RAM 4 ns 64 bits

Optical disc 100 ms 512 bytes

Magnetic disk 5 ms 512 bytes

Research Problems

1. Select three to five computers at work or school covering a range of ages and types (for
example, PCs, workstations, and servers). Visit a Web site such as www.kingston.com or
www.memory4less.com and locate a 1, 2, or 4 GB memory expansion for each computer.
Note the prices and memory type for each upgrade. What factors account for the variation
in memory price and type for each computer?

2. IBM has invested heavily in research and development for holographic storage systems.
Investigate this research to determine the nature of holographic storage, its applicability to
primary and secondary storage, and the likelihood of seeing products based on holographic
technology in the near future.

3. You re the chief information officer of a rapidly growing company. You manage several
dozen small and medium servers and are about to acquire your first mainframe to set up a
data warehouse. You currently have AIT tape drives, but you wonder whether they ll be
enough in the future. You re concerned about tape drive capacity, reliability, and cost and
are considering switching to another tape format or technology. Which of the current tape
formats provides the highest capacity at the lowest cost? Which is most reliable? Which is
least likely to become obsolete 5 years from now? Which, if any, should you buy?

4. You re a home computer user and amateur photographer with almost 500 GB of digital
photos stored on your hard disk. You re running short of disk space and want to archive
photos on removable optical discs. Investigate the capacity and cost of different recordable
and rewritable CD and DVD media. Which media type offers the lowest cost? Which offers
the best performance? Which offers the longest life? Which would you choose and why?
Are there any feasible alternatives to optical discs for this purpose?

194

Chapter 5

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.kingston.com
http://www.memory4less.com

C H A P T E R 6
SYSTEM INTEGRATION
AND PERFORMANCE

C H A P T E R G O A L S

Describe the system and subsidiary buses and bus protocols

Describe how the CPU and bus interact with peripheral devices

Describe the purpose and function of device controllers

Describe how interrupt processing coordinates the CPU with secondary
storage and I/O devices

Describe how buffers and caches improve computer system performance

Compare parallel processing architectures

Describe compression technology and its performance implications

Earlier chapters discussed the processing and storage components of a computer system. Now it s

time to describe how these components communicate with one another. This chapter explores the

system bus and device controllers and explains how the CPU uses them to communicate with sec-

ondary storage and input/output (I/O) devices. The chapter also covers bus protocols, interrupt pro-

cessing, buffering, caching, parallel processing architectures, and compression and how these

elements affect system performance (see Figure 6.1).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SYSTEM BUS

A bus is a shared electrical or optical channel that connects two or more devices. As you
learned in Chapter 2, a system bus connects computer system components, including the
CPU, memory, storage, and I/O devices. There are typically multiple storage and I/O
devices, collectively referred to as peripheral devices. A system bus can be conceptually
or physically divided into specialized subsets, including the data bus, the address bus, and
the control bus, as shown in Figure 6.2.

As its name implies, the data bus transmits data between computer system compo-
nents. The address bus transmits a memory address when primary storage is the sending
or receiving device. The control bus carries commands, command responses, status
codes, and similar messages. Computer system components coordinate their activities by
sending signals over the control bus.

FIGURE 6.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

196

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A bus can be constructed by using parallel communication lines, a smaller number
of serial communication lines, or a combination of both types of lines. With parallel
communication lines, each line carries only one bit value or signal at a time, and many
lines are required to carry data, address, and control bits. With serial communication
lines, a single communication line can carry multiple bits, one after another, in rapid
succession.

N O T E
Chapter 8 discusses parallel and serial channel construction more fully.

Until the 2000s, system buses were always constructed with parallel electrical
lines. Each bit of a data item, memory address, or digital control value was carried on
a separate electrical line, and additional lines were used to carry clock signals, electri-
cal power, and return (or ground) wires to complete electrical circuits. The number
of bus lines gradually increased over time to account for increases in CPU word and
memory address size, increases in control signals to coordinate more complex commu-
nication, and more diverse power requirements of peripheral devices and device
controllers.

Starting in the 2000s, system buses began to incorporate serial channels to carry
data and address bits. Serial channels are more reliable than parallel channels at very
high speeds, and they enable physically smaller buses and bus connections, an important
advantage as computers and their components continue to shrink. Initial use was
confined to mainframes, supercomputers, and video subsystems of workstations and
PCs. The conversion from entirely parallel to hybrid serial/parallel system buses in all
computer classes is taking place gradually and probably won t be complete until well
into the 2010s.

FIGURE 6.2 The system bus and attached devices
Courtesy of Course Technology/Cengage Learning

197

System Bus

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Bus Clock and Data Transfer Rate
Devices attached to a system bus coordinate their activities with a common bus clock. Each
clock tick marks the start of a new communication opportunity across the bus. Having each
attached device follow the same clock ensures that a receiving device is listening at the same
time a transmitting device is speaking. In a parallel or hybrid system bus, one or more con-
trol bus lines carry the bus clock pulse. In a serial bus, clock pulses are intermixed with data
signals. The frequency of bus clock pulses is measured in megahertz (MHz) or gigahertz (GHz).

The time interval from one clock pulse to the next is called a bus cycle. Bus cycle
time is the inverse of the bus clock rate. For example, if the bus clock rate is 400 MHz,
each bus cycle s duration is as follows:

bus cycle time
1

bus clock rate
1

400 000 000 Hz

2 5 nanoseconds

By its very nature, the system bus must be long because it connects many different
computer system components. Component miniaturization has reduced the length of a
typical system bus, but it s still 10 centimeters or longer in most desktop computers. A bus
cycle can t be any shorter than the time an electrical signal needs to traverse the bus from
end to end. Therefore, bus length imposes a theoretical maximum on bus clock rate and a
theoretical minimum on bus cycle time.

In practice, bus clock rate is generally set below its theoretical maximum to compen-
sate for noise, interference, and the time required to operate interface circuitry in
attached devices. Slower bus clock rates also enable computer component manufacturers
to ensure reliability yet hold costs to acceptable levels. As an analogy, think about the
speed limit on a road. Although it s possible to construct a road that supports a maximum
speed of 150 miles per hour, few roads have a speed limit this high. The road and vehicles
that could travel at this maximum speed would be expensive. Reliable and safe transport
would require high standards of road and vehicle maintenance, skilled drivers, and perfect
weather and visibility.

The maximum capacity of a bus or any communication channel is the product of
clock rate and data transfer unit size. For example, the theoretical capacity of a parallel
bus with 64 dedicated data lines and a 400 MHz clock rate is as follows:

bus capacity data transfer unit clock rate
64 bits 400 MHz
8 bytes 400 000 000 Hz
3 200 000 000 bytes per second

This measure of communication capacity is called a data transfer rate. Data transfer
rates are expressed in bits or bytes per second, such as 1 billion bits per second (Gbps) or
3.2 million bytes per second (MBps). See the appendix for more information on data
transfer rate units of measure.

198

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

There are only two ways to increase the maximum bus data transfer rate: Increase
the clock rate, or increase the data transfer unit size (the number of data lines). The evo-
lution of parallel system buses is marked by steady increases in data bus size and more
gradual increases in clock rate. However, these increases work against one another, with
each increase in data bus size making clock rate increases more difficult. Increasing clock
rate in serial channels is much easier, as explained in Chapter 8.

Bus Protocol
The bus protocol governs the format, content, and timing of data, memory addresses, and
control messages sent across the bus. Every peripheral device must follow the protocol
rules. In the simplest sense, a bus is just a set of communication lines. In a larger sense,
it s a combination of communication lines, a bus protocol, and devices that implement the
bus protocol.

The bus protocol has two important effects on maximum data transfer rate. First,
control signals sent across the bus consume bus cycles, reducing the cycles available to
transmit data. For example, a disk drive transfers data to main memory as a result of an
explicit CPU command, and sending this command requires a bus cycle. In some bus pro-
tocols, the command is followed by an acknowledgment from the disk drive and later by a
confirmation that the command was carried out. Each signal (command, acknowledgment,
and confirmation) consumes a separate bus cycle.

An efficient bus protocol consumes a minimal number of bus cycles for commands,
which maximizes bus availability for data transfers. For example, some bus protocols send
command, address, and data signals at the same time (during a single bus cycle) and don t
use acknowledgment signals. Unfortunately, efficient bus protocols tend to be complex,
increasing the complexity and cost of the bus and all peripheral devices.

The second effect of the bus protocol on maximum data transfer rate is regulation of
bus access to prevent devices from interfering with one another. If two peripheral devices
attempt to send a message at the same time, the messages collide and produce electrical
noise. A collision is a wasted transmission opportunity, and allowing collisions effectively
reduces data transfer capacity. A bus protocol avoids collisions by using one of two access
control approaches: a master-slave approach or a peer-to-peer approach.

In traditional computer architecture, the CPU is the focus of all computer activity. As
part of this role, it s also the bus master, and all other devices are bus slaves. No device
other than the CPU can access the bus except in response to an explicit instruction from
the CPU. There are no collisions as long as the CPU waits for a response from one device
before issuing a command to another device. In essence, the CPU plays the role of bus
traffic cop.

Because there s only one bus master, the bus protocol is simple and efficient.
However, overall system performance is reduced because transfers between devices, such
as from disk to memory, must pass through the CPU. All transfers consume at least two
bus cycles: one to transfer data from the source device to the CPU and another to transfer
data from the CPU to the destination device. The CPU can t execute computation and logic
instructions while transferring data between other devices.

199

System Bus

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Performance is improved if storage and I/O devices can transmit data between
themselves without explicit CPU involvement. There are two commonly used approaches
to implementing these transfers: direct memory access and peer-to-peer buses. Under
direct memory access (DMA), a device called a DMA controller is attached to the bus and
to main memory. The DMA controller assumes the role of bus master for all transfers
between memory and other storage or I/O devices. While the DMA controller manages bus
traffic, the CPU is free to execute computation and data movement instructions. In
essence, the DMA controller and CPU share the bus master role, and all other devices act
as slaves.

In a peer-to-peer bus, any device can assume control of the bus or act as a bus master
for transfers to any other device. When multiple devices want to become a bus master at
the same time, a single master must be chosen. A bus arbitration unit is a simple proces-
sor attached to a peer-to-peer bus that decides which devices must wait when multiple
devices want to become a bus master. Peer-to-peer bus protocols are substantially more
complex and expensive than master-slave bus protocols, but their complexity is offset by
more efficient use of the CPU and the bus.

Subsidiary Buses
Computer system performance would be severely limited if all CPU, memory, and periph-
eral device communication had to traverse the system bus. For example, when you re
playing a game on a PC, data is read continuously from disk files and stored in memory,
the CPU accesses the data in memory to manipulate the game environment in response to
your commands and control inputs, and video and sound data is sent continuously from
memory to the video display and speakers. If the system bus were the only communica-
tion pathway, it would become a bottleneck and slow the entire system s performance.

Modern computers use multiple subsidiary buses to address this problem. Subsidiary
buses connect a subset of computer components and are specialized for these components
characteristics and communication between them:

Memory bus Connects only the CPU and memory. The memory bus has a
much higher data transfer rate than the system bus because of its shorter
length, higher clock rate, and (in most computers) large number of parallel
communication lines. Because the CPU constantly interacts with memory,
moving all CPU memory accesses to the memory bus improves overall
computer performance because of the memory bus s higher data transfer
rate and reduced contention (competition) for system bus access.
Video bus Connects only memory and the video display interface. As dis-
cussed later in this chapter and in Chapter 7, video display data is buffered
through memory. The data transfer rate required for display updates ranges
from a few megabytes per second for ordinary desktop use to hundreds or
thousands of megabytes per second for continuous full-screen motion video.
The video bus improves computer system performance by removing this
traffic from the system bus and providing a high-capacity one-way

200

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

communication channel optimized for video data. Examples of video buses
include Accelerated Graphics Port (AGP) and Peripheral Component Inter-
connect Express (PCIe).
Storage bus Connects secondary storage devices to the system bus. Desk-
top computers typically have a handful of permanently installed secondary
storage devices. Larger computers might have a dozen to thousands of sec-
ondary storage devices. Secondary storage devices are much slower than the
system bus, so direct attachment is both a waste of bus capacity and
impractical if there are many devices. Using a storage bus reduces the
length and number of physical connections to the system bus and aggregates
the lower data transfer capacity of multiple secondary storage devices to
better match the higher capacity of a single system bus connection. Exam-
ples of storage buses include Serial Advanced Technology Attachment
(SATA), Integrated Drive Electronics (IDE), and Small Computer System
Interface (SCSI).
External I/O bus Connects one or more external devices to the system
bus. As with secondary storage, providing a direct connection to the
system bus isn t practical for external devices, such as keyboards, mice,
iPods, flash drives, and portable hard drives. Instead, a subsidiary bus
provides the connection points and aggregates their capacity to better
match the capacity of a system bus connection. In many computers,
external I/O buses also connect internal devices, such as memory card
readers. Examples of external I/O buses include Universal Serial Bus
(USB) and FireWire (IEEE 1394).

Figure 6.3 shows the devices and bus attachments of a typical PC. The PCI bus is the
system bus in this computer, and subsidiary buses, except the memory bus, are layered
below it.

201

System Bus

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

System bus
(PCI)

DVD drive
(IDE storage bus)

Keyboard and mouse
(USB I/O bus)

MP3 player and
memory card readers
(USB I/O bus)

Video display
(PCI Express video bus)

Disk drives
(SATA storage bus)

FIGURE 6.3 Subsidiary buses and connected devices in a typical PC
Courtesy of Course Technology/Cengage Learning

202

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T E C H N O L O G Y F O C U S

PCI

Peripheral Component Interconnect (PCI) is a family of bus standards found in nearly
all small and midrange computers and many larger ones. Intel developed the first PCI
standard in the early 1990s, and it was widely adopted in the late 1990s. The PCI Special
Interest Group (PCI-SIG), formed in 1992, currently includes representatives from most
of the world s major computer and computer component manufacturers. The first stan-
dard was updated several times through the early 2000s. The PCI-SIG developed two
additional standard families, including PCI-X in 1999 and PCI Express (PCIe) in 2002.
The PCIe standard is still in development, with version 2.0 published in 2006 and version
3.0 scheduled for release in 2010.

The original PCI 1.0 standard specified a 124-line parallel bus architecture with a
32-bit shared data/address bus, 33 MHz clock rate, and maximum data transfer rate of
133 MBps. Table 6.1 summarizes the lines and their use in the 3.0 standard. Later ver-
sions of the PCI standard and the newer PCI-X standard support both 32- and 64-bit
data/address buses and have gradually increased clock rate to its current maximum of
533 MHz.

By the early 2000s, the need for a fundamentally different bus architecture was
becoming apparent. CPUs were clocked at ever higher speeds, and many peripherals,
especially video controllers, were chafing under the data transfer rate limitations of par-
allel bus architectures. PCI and PCI-X bus designs limited overall system performance by
forcing every device to operate at the slowest device s speed. The large physical size of
PCI and PCI-X bus connections also hampered miniaturization of computer systems and
components.

TABLE 6.1 Summary of line functions in the 32-bit PCI 3.0 bus specification

Function Lines Comments

Address/data bus 32 Two sequential bus cycles carry address bits in
the first cycle and data bits in the second

Control bus 35 Includes lines to carry the clock signal, interrupt
codes, source and target device IDs, and error
codes

Power 27 3.3, 5, -12, and 12 volts

Ground 26 Distributed throughout the connector to com-
plete electrical circuits for address, data, control,
and power lines

Not defined 4

(continued)

203

System Bus

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The PCIe standard addressed many limitations of the earlier standards by doing the
following:

Adopting serial data transmission for address and data bits
Providing two-way (full-duplex) communication
Decreasing the size of bus connections

Data, address, and command bits are transmitted across bus line subsets called
lanes. Each lane contains two wire pairs carrying bits in opposite directions, which

enables a device to send and receive bits during the same clock cycle. PCIe 2.0 lanes
encode bits in each wire pair at a maximum data transfer rate of 4 Gbps, or 500 MBps.
PCIe buses can provide 1, 2, 4, 8, 16, or 32 lanes, yielding a maximum one-way data
transmission rate of 16 Gbps for the 2.0 standard. The maximum data transmission rate
is somewhat misleading because the bitstream in each lane carries address and
command bits in addition to data. Also, cost increases with the number of lanes.

The PCIe standard enables devices to communicate by using all or any subset of
available lanes. Devices with low data transfer demand can use a single lane, and devices
with higher requirements can increase their available data transfer rate by using addi-
tional lanes. The design of the physical bus connector and slot enables devices that
support fewer lanes to use bus ports that support more lanes.

PCIe buses are now common as the primary system bus in PCs, with older PCI and
PCI-X being phased out gradually. Multilane PCIe connections are widely used for video
controllers in PCs and workstations and for high-speed network and secondary storage
controllers in servers.

LOGICAL AND PHYSICAL ACCESS

In most computer systems, the system bus is physically implemented on a large printed
circuit board with attachment points for various devices (see Figure 6.4). Some devices,
such as bus and memory controller circuitry, are permanently mounted to the board.
Others, such as the CPU, memory modules, and some peripheral device controllers, are
physically inserted into bus ports or dedicated sockets.

An I/O port is a communication pathway from the CPU to a peripheral device. In
most computers, an I/O port is a memory address, or set of contiguous memory addresses,
that can be read or written by the CPU and a single peripheral device. Each peripheral
device can have multiple I/O ports and use them for different purposes, such as transmit-
ting data, commands, and error codes. The CPU communicates with a peripheral device
by moving data to or from an I/O port s memory addresses. Dedicated bus interface
circuitry monitors changes to I/O port memory content and copies updated content
to the correct bus port automatically.

204

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An I/O port is more than a memory address or data conduit; it s also a logical
abstraction used by the CPU and bus to interact with each peripheral device similarly. For
example, I/O ports enable the CPU and bus to interact with a keyboard in the same way
they interact with a disk drive or video display. I/O ports simplify the CPU instruction set
and bus protocol because special instructions and bus circuitry aren t required for each
different peripheral device. The computer system is also more flexible because new types
of peripheral devices can be incorporated into an older system simply by allocating new
I/O ports.

Bus
ports

CPU
port

I/O device
connectors

Video
controller port

Disk ports

DIMM
sockets

FIGURE 6.4 A typical PC motherboard
Courtesy of Course Technology/Cengage Learning

205

Logical and Physical Access

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Despite similar interfaces to the CPU and bus, peripheral devices differ in important
ways, including storage capacity (if any), data transfer rate, internal data-coding methods,
and whether the device is a storage or an I/O device. The simple interface between
peripheral device and CPU described so far doesn t deal directly with physical device
details, such as how a disk read/write head is positioned, how a certain color is displayed
on a video display, or a printer character s font and position.

In essence, the CPU and bus interact with each peripheral device as though it were
a storage device containing one or more bytes stored in sequentially numbered addresses.
A read or write operation from this hypothetical storage device is called a logical access.
The set of sequentially numbered storage locations is called a linear address space. Logi-
cal accesses to a peripheral device are similar to memory accesses. One or more bytes are
read or written as each I/O instruction is executed. The address bus lines carry the posi-
tion in the linear address space being read or written, and the data bus lines carry data.
Complex commands and status signals can also be encoded and sent via the data lines.

As an example of a logical access, consider a disk drive organized physically into sec-
tors, tracks, and platters. When the CPU executes an instruction to read a specific sector,
it doesn t transmit the platter, track, and sector number as parameters of the read com-
mand. Instead, it thinks of the disk as a linear sequence of storage locations, each hold-
ing one sector of data, and sends a single number to identify the location it wants to read.

To physically access the correct sector, the location in the assumed linear address
space must be converted into the corresponding platter, sector, and track, and the disk
hardware must be instructed to access this specific location. Linear addresses can be
assigned to physical sectors in any number of ways, one of which is shown in Figure 6.5.
The disk drive or its device controller (described in the next section) translates the
linear sector address into the corresponding physical sector location on a specific track
and platter. For example, linear address 43 in Figure 6.5 corresponds to platter 2,
track 3, sector 1.

With tape drives, translating logical addresses to physical addresses is more straight-
forward because blocks on a tape are physically organized in a linear sequence. A logical
access to a storage (block) location is translated into commands to position the right part
of the tape physically under the read/write head.

Some I/O devices, such as keyboards and sound cards, communicate only in terms of
sequential streams of bytes that fill the same memory location. With these devices, the
concept of an address or a location is irrelevant. From the CPU s point of view, the I/O
device is a storage device with a single location that s read or written repeatedly.

206

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Other I/O devices do have storage locations in the traditional sense. For example, the
character or pixel positions of a printed page or video display are logical storage locations.
Each position is assigned an address in a linear address space, and these addresses are
used to manipulate pixel or character positions. The device or device controller translates
logical write operations into the physical actions necessary to illuminate the correspond-
ing video display pixel or place ink at the corresponding position on the page.

DEVICE CONTROLLERS

Storage and I/O devices are normally connected to the system bus or a subsidiary bus
through a device controller, as shown in Figure 6.6. Device controllers perform the
following functions:

Implement the bus interface and access protocols.
Translate logical accesses into physical accesses.
Enable several devices to share access to a bus connection.

FIGURE 6.5 An example of assigning logical sector numbers to physical sectors on disk platters
Courtesy of Course Technology/Cengage Learning

207

Device Controllers

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A device that connects a subsidiary bus to the system bus can also be called a device
controller, although it doesn t normally translate logical accesses into physical accesses. A
device controller performs all bus interface functions for its attached peripheral devices or
between two different buses. Device controllers monitor control bus lines for signals to
peripheral devices and translate these signals into commands to the storage or I/O device.
Similarly, they translate data and status signals from a device or subsidiary bus into bus
control and data signals.

Device controllers perform some or all of the conversion between logical and physical
access commands. They know the physical details of the attached devices and issue
specific instructions to devices based on this knowledge. For example, a disk controller
converts a logical access to a specific disk sector in a linear address space into a com-
mand to read from a specific head, track, and sector.

Mainframe Channels
In many mainframe computers, a device controller can be a dedicated special-purpose
computer called an I/O channel, or simply a channel. The distinction between an I/O
channel and a device controller isn t clear cut. It s a function of power and capability in
several key areas, including the following:

Number of devices that can be controlled
Variability in type and capability of attached devices
Maximum communication capacity

FIGURE 6.6 Secondary storage and I/O device connections using device controllers
Courtesy of Course Technology/Cengage Learning

208

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E
IBM coined the term channel to describe a specific component of its 7000 series mainframe compu-
ters, and the term has since gained the generic meaning described in this section. Vendors of other
mainframe computers often use different terms for example, peripheral processing unit and front-end
processor to describe functionally similar components.

Typical I/O and storage device controllers can control only a few devices of a similar
type. For example, the disk controller in most desktop computers can control one or two
disk drives. In contrast, a secondary storage channel in a mainframe computer can control
several dozen secondary storage devices of different types, such as magnetic disks, optical
discs, and magnetic tape drives. Another channel in the same mainframe might control up
to 100 video display terminals or point-of-sale I/O devices.

INTERRUPT PROCESSING

Secondary storage and I/O devices have much slower data transfer rates than a CPU does.
Table 6.2 lists access times and data transfer rates for typical memory and storage
devices. Table 6.3 shows data transfer rates of some I/O devices. Slow access times and
data transfer rates are caused primarily by mechanical limitations, such as disk rotation
speed. The interval between a CPU s request for input and the moment the input is
received can span thousands, millions, or billions of CPU cycles.

TABLE 6.2 Performance characteristics of typical memory and storage devices

Memory or storage device Maximum data transfer rate Access time

SDRAM 12.8 GBps 5 nanoseconds (ns)

Magnetic disk 20 100 MBps 3 milliseconds (ms)

Flash drive 20 30 MBps 20 100 ms

Blu-ray disc 50 MBps 100 200 ms

DAT tape 1 MBps N/A

TABLE 6.3 Typical data transfer rates for I/O devices

I/O device Maximum data transfer rate

Video display 100 500 MBps

Inkjet printer 30 120 lines/minute

Laser printer 4 20 pages/minute

Network interface 100 10,000 Mbps

209

Interrupt Processing

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the CPU waits for a device to complete an access request, the CPU cycles that could
have been (but weren t) devoted to instruction execution are called I/O wait states. To
prevent this inefficient use of the CPU, peripheral devices communicate with the CPU by
using interrupt signals. In a logical sense, an interrupt is a signal to the CPU that some
event has occurred that requires the CPU to execute a specific program or process. In a
physical sense, an interrupt is an electrical signal that a peripheral device sends over the
control bus.

A portion of the CPU, separate from the components that fetch and execute instruc-
tions, monitors the bus continuously for interrupt signals and copies them to an interrupt
register. The interrupt signal is a numeric value called an interrupt code, usually equiva-
lent to the bus port number of the peripheral device sending the interrupt. At the conclu-
sion of each execution cycle, the control unit checks the interrupt register for a nonzero
value. If one is present, the CPU suspends execution of the current process, resets the
interrupt register to zero, and proceeds to process the interrupt. When the interrupt has
been processed, the CPU resumes executing the suspended process.

Coordinating peripheral device communication with interrupts allows the CPU to do
something useful while it s waiting for an interrupt. If the CPU is executing only a single
process or program, there s no performance gain. If the CPU is sharing its processing
cycles among many processes, the performance improvement is substantial. When one
process requests data from a peripheral device, the CPU suspends it and starts executing
another process s instructions. When an interrupt is received, indicating that the access is
complete, the CPU retrieves the data, suspends the process it s currently executing, and
returns to executing the process that requested the data.

Interrupt Handlers
Interrupt handling is more than just a hardware feature; it s also a method of calling
system software programs and processes. The OS provides a set of processing routines,
or service calls, to perform low-level processing operations, such as reading data from a
keyboard or writing data to a file stored on disk. An interrupt is a peripheral device s
request for OS assistance in transferring data to or from a program or a notification
that the transfer has already been completed. For example, an interrupt signal indicating
that requested input is ready is actually a request to the OS to retrieve the data and
place it where the program that requested it can access it, such as in a register or in
memory.

There s one OS service routine, called an interrupt handler, to process each possible
interrupt. Each interrupt handler is a separate program stored in a separate part of
primary storage. An interrupt table stores the memory address of the first instruction of
each interrupt handler. When the CPU detects an interrupt, it executes a master interrupt
handler program called the supervisor. The supervisor examines the interrupt code stored
in the interrupt register and uses it as an index to the interrupt table. It then extracts the
corresponding memory address and transfers control to the interrupt handler at that
address.

210

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Multiple Interrupts
The interrupt-handling mechanism just described seems adequate until you consider the
possibility of an interrupt arriving while the CPU is busy processing a previous interrupt.
Which interrupt has priority? What s done with the interrupt that doesn t have priority?

Interrupts can be classified into the following general categories:

I/O event
Error condition
Service request

The interrupt examples discussed so far have been I/O events used to notify the OS
that an access request has been processed and data is ready for transfer. Error condition
interrupts are used to indicate errors that occur during normal processing. These inter-
rupts can be generated by software (for example, when attempting to open a nonexistent
file) or by hardware (for example, when attempting to divide by zero or when battery
power in a portable computer is nearly exhausted).

Application programs generate interrupts to request OS services. An interrupt code is
assigned to each service program, and an application program requests a service by plac-
ing the corresponding interrupt number in the interrupt register. The interrupt code is
detected at the conclusion of the execution cycle, the requesting process is suspended,
and the service program is executed.

An OS groups interrupts by their importance or priority. For example, error condi-
tions are normally given higher priority than other interrupts. Critical hardware errors,
such as a power failure, are given the highest priority. Interrupt priorities determine
whether an interrupt that arrives while another interrupt is being processed is handled
immediately or delayed until current processing is finished. For example, if a hardware
error interrupt code is detected while an I/O interrupt is being processed, the I/O proces-
sing is suspended, and the hardware error is processed immediately.

Stack Processing
While instructions in an application program are being executed, say that an interrupt is
received from a pending I/O request. The interrupt is detected, and the corresponding
interrupt handler is called. As it executes, the interrupt handler overwrites several general-
purpose registers. When the interrupt handler terminates, processing of the application
program resumes, but an error occurs because the interrupt handler altered a value in a
general-purpose register that the application program needed.

How could this error have been prevented? How did the CPU know which instruction
from the application program to load after the interrupt handler terminated? The OS
needs to be able to restart a suspended program at exactly the position it was interrupted.
When the program resumes execution, it needs all register values to be in the same state
they were in when it was interrupted. The mechanism that enables a program to resume
execution in exactly the same state as before an interruption is called a stack. A stack is a
reserved area of main memory accessed on a last-in, first-out (LIFO) basis. LIFO access is

211

Interrupt Processing

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

similar to a stack of plates in a cafeteria. Items can be added to or removed from only the
top of the stack. Accessing the item at the bottom of the stack requires removing all items
above it. In a computer system, the stack is a primary storage area that holds register
values of interrupted processes or programs; these saved register values are sometimes
called the machine state. When a process is interrupted, values in CPU registers are added
to the stack in an operation called a push. When an interrupt handler finishes executing,
the CPU removes values on top of the stack and loads them back into the correct registers.
This operation is called a pop.

Pushing the values of all registers onto the stack isn t always necessary. At a mini-
mum, the current value of the instruction pointer must be pushed because the instruction
at this address is needed to restart the interrupted process where it left off. Think of the
instruction pointer as a bookmark in a running program. If indirect addressing is in use,
the offset register must also be pushed. General-purpose registers are pushed because they
might contain intermediate results needed for further processing or values awaiting output
to a storage or an I/O device.

Multiple machine states can be pushed onto the stack when interrupts of high prece-
dence occur while processing interrupts of lower precedence. It s possible for the stack to
fill to capacity, in which case further attempts to push values onto the stack result in a
stack overflow error. The stack size limits the number of processes that can be inter-
rupted or suspended. A special-purpose register called the stack pointer always points to
the next empty address in the stack and is incremented or decremented automatically
each time the stack is pushed or popped. Most CPUs provide one or more instructions to
push and pop the stack.

Performance Effects
Figure 6.7 summarizes the sequence of events in processing an interrupt. The CPU
suspends the application program by pushing its register values onto the stack, and the
supervisor suspends its own operation by pushing its register values onto the stack before
branching to the interrupt handler. Two pop operations are required to restore the original
application program. This sequence is complex and consumes many CPU cycles. The most
complex parts are the push and pop operations, which copy many values between registers
and main memory. Wait states might occur if the stack isn t implemented in a cache.
(Caching is described in the next section.)

Supervisor execution also consumes CPU cycles. The table lookup procedure is
fast but still consumes at least 10 CPU cycles. Other steps in the process, discussed in
Chapter 11, consume additional CPU cycles. In total, processing an interrupt typically
consumes at least 100 CPU cycles in addition to the cycles the interrupt handler
consumes.

212

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

BUFFERS AND CACHES

Access to I/O and storage devices is inherently slow. Mismatches in data transfer rate and
data transfer unit size are addressed in part by interrupt processing, which consumes
substantial CPU resources. RAM can be used to overcome the mismatches in two distinct
ways: buffering and caching. The main goal of buffering and caching is to improve overall
system performance.

Buffers
A buffer is a small reserved area of main memory (usually DRAM or SRAM) that holds
data in transit from one device to another and is required to resolve differences in data
transfer unit size. It s not required when data transfer rates differ, but using one generally
improves performance.

Figure 6.8 shows wireless communication between a PC and a laser printer. A PC
usually transmits data 1 bit at a time over a wireless connection, and a laser printer prints
an entire page at once. The input data transfer unit from the PC is a single bit, and the
output data transfer unit from the laser printer is a full page that can contain up to several
million bytes of data. A buffer is required to resolve this difference.

FIGURE 6.7 Interrupt processing
Courtesy of Course Technology/Cengage Learning

213

Buffers and Caches

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

As single bits are transferred over the wireless connection, they re added to the buffer
in sequential order. When all bits of a page have been received, they re removed from the
buffer and transferred to the print engine as a single unit. Buffer size must be at least as
large as the data output unit. If the buffer isn t large enough to hold a full page, an error
called a buffer overflow occurs. A buffer for an I/O device is typically implemented in the
device, as it is in a laser printer.

A buffer can also improve system performance when two devices have different data
transfer rates, as when copying music files from a PC to an iPod via a USB 2.0 connection.
The USB controller receives data from primary storage at the system bus s data transfer
rate typically 500 MBps or more. The USB connection transmits data at 480 Mbps,
although an iPod typically uses only a fraction of this capacity a few hundred to a few
million megabits per second. Therefore, the USB controller is a bridge between two data
transmission channels with a speed difference of at least 80 to 1.

Assume the USB controller has a 1-byte buffer, and after the USB controller receives
1 byte from primary storage and fills the buffer, it sends an interrupt to the CPU to pause
the transfer operation. The interrupt prevents more data from arriving and causing a
buffer overflow before the USB controller can transmit the current buffer content to the
iPod. After the buffer content has been sent to the iPod, the USB controller transmits
another interrupt to indicate that it s ready to receive data again.

How much system bus data transfer capacity is used to transmit 1 MB (1,048,576
bytes) via the USB controller? The answer is 3,145,728 bus cycles (1,048,576 3). For

Buffer
Print

engine One page
per cycle

One page
per cycle

One bit
per cycle

Data transfer units

FIGURE 6.8 A buffer resolves differences in data transfer unit size between a PC
and a laser printer

Courtesy of Course Technology/Cengage Learning

214

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

each data byte transmitted across the system bus, two interrupts are also transmitted: one
to stop further transmission and another to restart it. The two interrupts aren t data, but
they do consume bus cycles. Further, the CPU must process these interrupts. If you
assume 100 CPU cycles are consumed per interrupt, then 209,715,200 CPU cycles are
consumed to process interrupts while transferring 1 MB to the iPod.

Now consider the same example with a 1024-byte buffer in the USB controller. A sin-
gle transfer from main memory to the USB controller would send as many bytes per bus
cycle as could be carried on the data bus for example, 64 bits or 8 bytes. After 131,072
bus transfers (1 MB at 8 bytes per bus cycle), the USB controller would send an interrupt
to stop transmission. After the buffer content was transmitted to the iPod, the USB con-
troller would transmit another interrupt to restart data transfer from memory.

Computer system performance improves dramatically with the larger buffer (see Table
6.4). Two interrupts are generated for each 1024 bytes transferred. The total number of
bus cycles consumed is as follows:

131 072 data transfers
1 048 576 bytes

1024 bytes per transfer
2 interrupts 133 120 bus cycles

The number of CPU cycles falls to 204,800 (1,048,576 1024 2 100). Bus and
CPU cycles are, therefore, freed for other purposes.

Diminishing Returns

Note the rates of change in performance improvement for total bus transfers and CPU
cycles shown in Table 6.4. The first few increases in buffer size improve bus efficiency at a
constant rate until the data transfer unit matches the bus width. As buffer size increases
above 8 bytes, CPU cycle consumption decreases at a linear rate, but total bus cycles
decrease at a diminishing rate. In other words, each doubling of buffer size yields fewer
benefits in improved bus efficiency.

TABLE 6.4 Bus and CPU cycles consumed for a 1 MB data transfer with various buffer sizes

Buffer
size

Bus data
transfers Interrupts

Total bus
transfers Improvement CPU cycles Improvement

1 1,048,576 2,097,152 3,145,728 N/A 209,715,200 N/A

2 524,288 1,048,576 1,572,864 50% 104,857,600 50%

4 262,144 524,288 786,432 50% 52,428,800 50%

8 131,072 262,144 393,216 50% 26,214,400 50%

16 131,072 131,072 262,144 33.33% 13,107,200 50%

32 131,072 65,536 196,608 25% 6,553,600 50%

64 131,072 32,768 163,840 16.67% 3,276,800 50%

128 131,072 16,384 147,456 10% 1,638,400 50%

256 131,072 8192 139,264 5.56% 819,200 50%

512 131,072 4096 135,168 2.94% 409,600 50%

1024 131,072 2048 133,120 1.52% 204,800 50%

215

Buffers and Caches

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If you assume there are no excess CPU cycles, all buffer size increases shown in Table
6.4 provide a substantial benefit. In other words, CPU cycles not used for I/O interrupts
are always applied to other useful tasks. However, if you assume extra CPU cycles are
available in other words, the CPU isn t being used at full capacity the only major bene-
fit of a larger buffer size is reduced bus cycles. Because bus cycle improvement drops off
rapidly, there s a point at which further buffer size increases have no real benefit. If you
also assume that buffer cost increases with buffer size (a reasonable assumption), there s
also a point at which the cost of additional buffer RAM is higher than the monetary value
of more efficient bus utilization.

N O T E
If the discussion in the preceding paragraphs sounds vaguely familiar, you ve probably studied econom-
ics. The underlying economic principle is called the law of diminishing returns. Simply stated, this law
says that when multiple resources are required to produce something useful, adding more of a single
resource produces fewer benefits. It s just as applicable to buffer size in a computer as it is to labor or
raw material inputs in a factory. It has many other applications in computer systems, some of which are
described elsewhere in this book.

Table 6.5 shows bus and CPU performance improvements for a 16 MB transfer
through the USB controller. Because the example starts with a much larger buffer size
than in Table 6.4, improvements in bus efficiency are barely measurable. CPU efficiency
improves at a constant rate until buffer size exceeds the amount of data being transferred,
after which there s no further improvement in bus or CPU efficiency. Why don t increases
in buffer size beyond 16 MB result in any improvement? Because in this example, there s
nothing to store in the extra buffer space.

The results in Tables 6.4 and 6.5 do more than show the law of diminishing returns in
action. They also show the importance of clearly defined assumptions and an understand-
ing of the work a computer system will be asked to do. Accurate computation of

TABLE 6.5 Bus and CPU cycles consumed for a 16 MB data transfer with large buffer sizes

Buffer
size
(bytes)

Bus data
transfers Interrupts

Total bus
transfers Improvement

CPU
cycles Improvement

1,048,576 2,097,152 32 2,097,184 N/A 3200 N/A

2,097,152 2,097,152 16 2,097,168 0.000763% 1600 50%

4,194,304 2,097,152 8 2,097,160 0.000381% 800 50%

8,388,608 2,097,152 4 2,097,156 0.000191% 400 50%

16,777,216 2,097,152 2 2,097,154 0.000095% 200 50%

33,554,432 2,097,152 2 2,097,154 0% 200 0%

67,108,864 2,097,152 2 2,097,154 0% 200 0%

216

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

improvements requires understanding all affected components in this case, the CPU, bus,
USB controller, and buffer; clearly stated operational assumptions for example, whether
the CPU is being used at full capacity; and well-defined workload characteristics size and
frequency of data transfers to and from the USB controller, for instance.

Caches
Like a buffer, a cache is a reserved area of high-speed memory (usually RAM) that improves
system performance. However, a cache differs from a buffer in several important ways,
including the following:

Data content isn t automatically removed as it s used.
A cache is used for bidirectional data transfer.
A cache is used only for storage device accesses.
Caches are usually much larger than buffers.
Cache content must be managed intelligently.

The basic idea behind caching is simple. Access to data in a high-speed cache can
occur much more quickly than access to slower storage devices, such as magnetic disks.
The speed difference is entirely a function of the faster access speed of the RAM used to
implement the cache. Performance improvements require a large enough cache and the
intelligence to use it effectively.

Performance improvements are achieved differently for read and write accesses. Dur-
ing a write operation, a cache acts similarly to a buffer. Data is first stored in the cache
and then transferred to the storage device. Performance improvements are the same as
those of a buffer: reduced bus and CPU overhead as a function of larger continuous data
transfers. Because caches are usually much larger than buffers, the performance improve-
ment is increased. However, the law of diminishing returns usually results in only slightly
better performance than with a typical buffer.

Write caching can result in more substantial performance improvement when one
write access must be confirmed before another can begin. Some programs, such as trans-
action updates for banks and retailers, require confirmed writes. In Figure 6.9, when data
is written to a cache (1), the confirmation signal is sent immediately (2), before the data is
written to the storage device (3).

Sending a confirmation before data is written to the storage device can improve pro-
gram performance because the program can proceed immediately with other processing
tasks. If the program is performing a series of write operations, performance improvement

FIGURE 6.9 A storage write operation with a cache
Courtesy of Course Technology/Cengage Learning

217

Buffers and Caches

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ceases as soon as the cache is full. As with a buffer, interrupts are used to coordinate the
data transfer activity.

Immediate write confirmations are risky because an error might occur while copying
data from the cache to the storage device. The biggest danger is total cache failure caused
by a power failure or other hardware error. In this case, all data, possibly representing
many cached write operations, is lost permanently, and there s no way to inform the
programs that wrote the data of the loss.

Data written to a cache during a write operation isn t automatically removed from the
cache after it s written to the underlying storage device. Data remaining in the cache can
improve performance when the data is reread shortly after it s written. A subsequent read
of the same data item is much faster, unless the data item has been purged from the cache
for another reason for example, to make room for other data items.

Most performance benefits of a cache occur during read operations (see Figure 6.10).
The key performance-enhancing strategy is to guess what data will be requested and copy
it from the storage device to the cache before a read request is received (1). When the
read request is received (2), data can be supplied more quickly because access to the
cache is much faster than access to the storage device (3). If the requested data isn t in
the cache, it must be read from the storage device after the read request is received,
resulting in a waiting period for the requester equal to the storage device s access and data
transfer times.

A cache controller is a processor that implements the procedures shown in
Figures 6.9 and 6.10. It can be implemented in the following:

A storage device controller or communication channel, as a special-purpose
processor controlling RAM installed in the controller or channel; more
common with primary storage caches
The OS, as a program that uses part of primary storage to implement the
cache; more common with secondary storage caches

A cache controller guesses what data will be requested in the near future and loads
this data from the storage device into the cache before it s actually requested. Guessing
methods can be simple or complex. One simple method is to assume linear access to stor-
age locations. For example, while servicing a read request for location n, the cache con-
troller prefetches location n 1 and possibly several subsequent storage locations. More
complex guessing methods require more complex processing circuitry or software. The

FIGURE 6.10 A read operation when data is already stored in the cache
Courtesy of Course Technology/Cengage Learning

218

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

extra complexity and expense are justified only if the guessing accuracy improves and if
these improvements lead to substantial overall performance improvement.

When a read operation accesses data already contained in the cache, the access is
called a cache hit. When the data needed isn t in the cache, the access is called a cache
miss. The ratio of cache hits to read accesses is called the cache s hit ratio. A cache miss
requires performing a cache swap to or from the storage device. The cache controller
guesses which data items are least likely to be needed in the near future, writes them to
the storage device, and purges them from the cache. The requested data is then read from
the storage device and placed in the cache.

Caches can be implemented in main memory if an OS program serves as the cache
controller. However, this approach can reduce overall system performance by reducing
memory and CPU cycles available to application programs. Modern device controllers can
implement a cache with RAM and the cache controller installed on the device controller.
In this case, the CPU and system software are unaware that a cache is in use.

A surprisingly small cache can improve performance dramatically. Typical ratios of
cache size to storage device capacity range from 10,000:1 to 1,000,000:1. Primary storage
caches with a 10,000:1 size ratio typically achieve cache hits more than 90% of the time.
Actual performance gain depends on cache size and the nature of storage device accesses.
Frequent sequential read accesses tend to improve performance. Frequent random or
scattered read accesses tend to reduce the hit ratio.

Primary Storage Cache

Current processor speeds exceed the capability of dynamic RAM (DRAM) to keep the pro-
cessor supplied with data and instructions. Although static RAM (SRAM) more closely
matches processor speed, it s generally too expensive to use for all primary storage. When
the CPU accesses DRAM, it incurs wait states. For example, a 4 GHz processor incurs 10
wait states each time it reads sequentially from 400 MHz SDRAM and many more wait
states if the reads are from scattered locations.

One way to limit wait states is to use an SRAM cache between the CPU and SDRAM pri-
mary storage. The SRAM cache can be integrated into the CPU, located on the same chip as
the CPU, or located between the CPU and SDRAM. Multiple cache levels can be used in the
same chip or computer. When three cache levels are in use, the cache closest to the CPU is
called a level one (L1) cache, the next closest cache is called a level two (L2) cache, and the
cache farthest from the CPU is called a level three (L3) cache. Multicore processors (dis-
cussed later in Processing Parallelism) typically implement all three levels on the same
chip, including a small (64 KB) L1 cache in each CPU, a larger (0.5 to 2 MB) L2 cache next
to each CPU, and an even larger (2 to 16 MB) L3 cache shared by all CPUs.

Primary storage cache control can be quite sophisticated. The default sequential flow of
instructions in most software enables simple guesses based on linear storage access to work
some of the time. However, this simple strategy doesn t account for accesses to operands and
conditional BRANCH instructions. Current CPUs use sophisticated methods to improve the
hit ratio. For example, instead of guessing whether a conditional BRANCH will be taken, the
cache controller might prefetch both subsequent instructions. This method consumes more
of the cache but guarantees that the next instruction will be in the cache. Another strategy is
to examine operands as instructions are loaded into the cache. If an operand is a memory
address, the cache controller prefetches the data at that location into the cache.

219

Buffers and Caches

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Secondary Storage Caches

Disk caching is common in modern computer systems, particularly in file and database servers.
In a file server, disk-caching performance can be improved if information about file access is
tracked and used to guide the cache controller. Specific strategies include the following:

Give frequently accessed files higher priority for cache retention.
Use read-ahead caching for files that are read sequentially.
Give files opened for random access lower priority for cache retention.

The OS is the best source of file access information because it updates information
dynamically as it services file access requests. Because the OS executes on the CPU,
implementing access-based cache control is difficult if the cache controller is a special-
purpose processor in a disk controller.

Many computer system designers now rely on the OS to implement disk caching
instead of using specialized disk controller hardware. They believe the extra cost of
hardware-based disk-caching solutions is better spent on more primary storage and faster
or additional CPUs. The OS uses the extra memory and CPU cycles to implement larger
caches and more intelligent access-based cache control. This approach makes sense only
if the computer system has enough CPU capacity to devote to cache management.

PROCESSING PARALLELISM

Many applications, such as the following examples, are simply too big for a single CPU or
computer system to execute:

Large-scale transaction processing applications Computing monthly social
security checks and electronic fund transfers, for example
Data mining Examining a year of sales transactions at a large grocery store
chain to identify purchasing trends, for example
Scientific applications Producing hourly weather forecasts for a 24-hour
period covering all of North America, for example

Solving problems of this magnitude would require days, months, or years for even the
fastest single CPU or computer system. The only way to solve them in a timely fashion is
to break the problems into pieces and solve each piece in parallel with separate CPUs.
Even for applications that could be performed by a single CPU, parallel processing can
improve performance. This section examines parallel-processing hardware architectures
and their performance implications.

Multicore Processors
As described in Chapter 5, current semiconductor fabrication techniques are capable of
placing billions of transistors and their interconnections in a single microchip. A full-
featured 64-bit CPU, even one with multiple ALUs and pipelined processing, typically
requires fewer than 100 million transistors. This raises an obvious question what else can
be placed in a single microchip to improve processor and computer system performance?

Until the mid-2000s, the only answer was cache memory, which yields substantial
performance enhancements by helping overcome the speed differences between CPU cir-
cuitry and off-chip memory. However, as single-chip transistor counts increased into the

220

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

hundreds of millions, devoting the extra transistors entirely to cache memory began to
yield fewer performance improvements because the performance benefit of larger caches
is subject to rapidly diminishing returns.

The latest trend in high-performance CPU design embeds multiple CPUs and cache
memory on a single chip an approach called multicore architecture, in which the term
core describes the logic, computation, and control circuitry of a single CPU. As of this
writing, AMD offers a six-core processor (see Figure 6.11), Intel offers a six-core version
of its Xeon processor, and IBM has demonstrated a prototype of an eight-core POWER7
processor. With future advances in semiconductor fabrication, more cores in a single
microprocessor will be possible.

Multicore architectures typically share memory cache, memory interface, and off-chip
I/O circuitry between cores. This sharing reduces the total transistor count and cost and
offers some synergistic benefits compared with separate CPUs on a single motherboard.
For large-scale computational problems, a common data set can be stored in cache mem-
ory, and each core can work on a different part. This arrangement yields substantial per-
formance improvements in many numerical-modeling and image-processing applications
because communication and data exchange between CPUs don t have to traverse the
slower system bus.

Core 1
Core 2 Core 3

L3
cache

memory

Core 4
Core 5 Core 6

FIGURE 6.11 The six-core AMD Opteron processor
Courtesy of Advanced Micro Devices, Inc.

221

Processing Parallelism

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T E C H N O L O G Y F O C U S

Core-i7 Memory Cache

The Intel Core-i7 processor uses three levels of primary storage caching, as shown in
Figure 6.12. All processing cores, caches, and the external memory interface share the
same chip, which enables much faster performance than with earlier Intel processors.
Four-core processors share the same cache architecture.

Instruction fetch &
branch prediction unit

L2 cache

L1
data cache

L1
data cache

L3 cache

L2 cache

Memory interface

Instruction fetch &
branch prediction unit

L1
instruction cache

L1
instruction cache

Core 2

Core 1

Integer units
Floating-point units

Multimedia units
Registers

Integer units
Floating-point units

Multimedia units
Registers

FIGURE 6.12 Memory caches in a dual-core Intel Core-i7 processor
Courtesy of Course Technology/Cengage Learning

(continued)

222

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The L1 cache is divided into two 16 KB segments: one for data and the other for
instructions. The L2 cache is 256 KB and holds both instructions and data. L1 data cache
contents are swapped automatically with the L2 cache as needed. The instruction fetch and
branch prediction unit examines incoming instructions for conditional BRANCHes and
attempts to prefetch instructions from both branch paths into the L1 instruction cache. The
branch prediction unit also interacts with CPU execution units to determine the likelihood
of BRANCH conditions being true or false.

Using separate L1 caches for instructions and data allows some streamlining of pro-
cessor functions. The L1 instruction cache is read-only. The L1 data cache can be read
or written as operands are moved to and from registers. Cache controller functions are
optimized for each type of access. However, it s possible for a program to modify its own
instructions. In this case, the code section being modified is stored in both L1 caches
at the same time. The processor detects this condition automatically and maintains
consistency between the two caches.

The memory interface controller acts as a cache controller for the L2 and L3
caches. It controls movement between external memory and the L3 and L2 caches and
ensures consistency of their contents. L1 cache management is handled internally in
each processing core.

The Core-i7 can assign different caching modes to 4 KB, 2 MB, or 4 MB regions of
main memory. Write-back caching enables full caching of both read and write operations.
Main memory is updated only when necessary, such as when a modified cache line must
be removed to make room for new content. Write-through caching causes all write
operations to update caches and main memory at the same time. This mode is useful for
regions of memory that can be read directly without knowledge of a processing core by
another core or by other devices on the system bus, such as a disk or video controller.
All caching functions can be disabled for any memory region.

Multicore processors add complexity to cache management because multiple cores
can cache the same memory regions simultaneously. Program execution errors are pos-
sible if a program running on one processor updates a cached memory location, and
another program running on another processor subsequently reads this same memory
location from an outdated cache copy. Core-i7 processors use a technique called mem-
ory snooping to maintain consistency between caches and main memory. The memory
interface controller monitors access to main memory by all cores. An access to memory
that s currently cached by another core causes the corresponding cache contents to be
marked invalid. The modified cache contents are reloaded from main memory automati-
cally the next time they re accessed. If a memory region cached by multiple cores is
written, all cores exchange updated cache contents to ensure consistency.

Multiple-Processor Architecture
Multiple-processor architecture is a more traditional approach to multiprocessing that uses
two or more processors on a single motherboard or set of interconnected motherboards.
When multiple processors occupy a single motherboard, they share primary storage and a
single system bus. When necessary, they can exchange messages over the system bus and
transfer data by reading from and writing to primary storage. However, these exchanges are
much slower than the exchanges between cores in multicore architecture.

Multiple-processor architecture is common in midrange computers, mainframe
computers, and supercomputers; the number of processors and the number of cores per

223

Processing Parallelism

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

processor tend to increase with computer class. Multiple programs can run in parallel, and
the OS can move them between processors to meet changing needs. Multiple-processor
architecture is a cost-effective approach to computer system design when a single com-
puter runs many different application programs or services. In this case, there s little need
for CPUs to share data or exchange messages, so the performance penalty associated with
these exchanges is seldom incurred.

Multiple-processor architecture is also common in workstations. The similarity in
processing and I/O power of midrange and workstation computers enables manufacturers
to build both types from a common pool of subcomponents, such as motherboards and
storage subsystems.

Scaling Up and Scaling Out
The phrase scaling up describes approaches to increasing processing and other computer
system power by using larger and more powerful computers. Both multicore and multiple-
processor architectures are examples of scaling up because they increase the power of a
single computer system. The alternative approach is scaling out partitioning processing
and other tasks among multiple computer systems. Two of the approaches to multicom-
puter architecture described in Chapter 2, clusters and grids, are examples of scaling out.
Blade servers are a combination of scaling up and scaling out, although some people
consider them an example only of scaling up because all blades are normally housed
in a single computer system or rack.

Until the 1990s, scaling up was almost always a more cost-effective strategy to
increase available computer power because communication between computers was
extremely slow compared with communication between a single computer s components.
However, beginning in the early 1990s, the speed of communication networks increased
rapidly. Today, 10 Gbps speed across networks is common, and much higher speeds are
close at hand. As a result, the performance penalty of communication between computer
systems has diminished. Also, because networking technology is widely deployed, econo-
mies of scale have decreased high-speed network costs. Other changes that have increased
the benefits of scaling out include the following:

Distributed organizational structures that emphasize flexibility
Improved software for managing multicomputer configurations

Organizations change more rapidly than they did a few decades ago. They need the
flexibility to deploy and redeploy all types of resources, including computing resources. In
general, scaling out enables them to distribute computing resources across many locations
and combine disparate resources to solve large problems.

Until recently, the complexity of multicomputer configurations made administering
widely distributed resources difficult and expensive. However, improvements in manage-
ment software have made it feasible to manage large, diverse collections of computing
resources with a minimum of labor. Nonetheless, administering a few large computer sys-
tems is still less expensive than administering many smaller ones. So scaling up is still a
cost-effective solution when maximal computer power is required and flexibility isn t as
important. Examples of environments in which scaling up is cost effective include large
data-processing centers that service the transaction-processing needs of multiple
organizations, such as banks and insurance companies.

224

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

High-Performance Clustering
The largest computational problems, such as those encountered in modeling three-
dimensional physical phenomena, can t be solved by a single computer. These problems
are typically handled by groups of powerful computers organized into a cluster. Each
computer system, or node, in the cluster usually contains multiple CPUs, and each CPU
can be dual-core.

Figure 6.13 shows a dual-cluster architecture used by the European Centre for
Medium-Range Weather Forecasts. (To see the full-color version, go to www.ecmwf.int/
services/computing/overview/ibm_cluster.html.) Each cluster contains more than 200
IBM pSeries 575 32-CPU computers operating as compute nodes. Groups of 16 nodes are
interconnected by a dedicated network through a network I/O node. The network I/O
nodes connect to a shared high-speed network, which enables connections between groups
of compute nodes and between compute nodes and secondary storage. Secondary storage
is controlled by separate storage nodes.

The cluster organization in Figure 6.13 addresses a common problem in
supercomputing data movement between processing nodes. For example, a simplified
approach to global weather forecasting breaks up the globe into 10 nonoverlapping regions
and further divides each region into four zones (see Figure 6.14).

Compute cluster C1A with an
8-way In niBand interconnect

Storage cluster S1A

Storage cluster S1B

Compute cluster C1B with an
8-way In niBand interconnect

Basic I/O unit

FIGURE 6.13 Organization of two interconnected supercomputing clusters
Courtesy of European Centre for Medium-Range Weather Forecasts

225

Processing Parallelism

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.ecmwf.int/

Each region can be assigned to a group of compute nodes connected to a single
network I/O node, and each zone can be assigned to one compute node. The interdepen-
dence of forecast calculations in a zone results in continuous data transfer between CPUs
in a single compute node. However, this data traverses high-speed bus and memory con-
nections in a single motherboard or set of interconnected motherboards. Of equal impor-
tance is that the data doesn t traverse connections between compute nodes or the network
that connects the groups.

Now consider what happens when weather features in the forecast move from zone to
zone. For example, look at the region consisting of most of North America, Central
America, and the western edge of the North Atlantic and the division of this region into
four zones (on the left in Figure 6.14). A low-pressure center or cold front moving from the
western to eastern United States moves from one zone to another. This movement creates
a shared data dependency between the compute nodes assigned to the region, and these
computers must exchange data to perform forecast calculations. A similar data exchange
between compute nodes assigned to different zones occurs when modeling a hurricane as
it moves westward from the Atlantic Ocean into the Caribbean Sea.

By dividing the forecasting problem into pieces that mirror the cluster organization in
Figure 6.13, the problem is divided hierarchically into pieces with increasing needs for
data exchange. The largest amount of data is exchanged between CPUs in a single com-
puter dedicated to a single zone. The next largest amount of data is exchanged between
compute nodes connected to a single network I/O node, which traverses data connections
specific to this group. The least amount of data is exchanged between compute nodes
assigned to a region, and this data traverses the network that connects all nodes. Parti-
tioning the problem to match the cluster architecture ensures that most data exchange
traverses high-speed paths. Therefore, all CPUs are kept as busy as possible by avoiding
long waits for data sent from distant processors.

FIGURE 6.14 Sample weather forecast regions (separated by solid lines) and division of a region
into zones (separated by dashed lines)

Courtesy of Course Technology/Cengage Learning

226

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

COMPRESSION

We live in a world that s rich in processing power but overwhelmed with data. People
routinely download megabytes or gigabytes of data via the Internet and store gigabytes of
data on handheld devices, terabytes on desktop computers, and petabytes to exabytes in
corporate and government data centers. The demand for data storage and data transfer
capacity often exceeds budgets and sometimes exceeds technical feasibility. Further,
although processors are faster and cheaper, the ability to feed them with data hasn t kept
pace.

Compression is a technique that reduces the number of bits used to encode data,
such as a file or a stream of video images transmitted across the Internet. Reducing the
size of stored or transmitted data can improve performance whenever there s plenty of
inexpensive processing power but a dearth of data storage or data transfer capacity. As
this situation is common, compression is used in many devices and applications, including
iPods, DVD players, YouTube, video conferencing, and storage of large data files, such as
medical images and motion video.

A compression algorithm is a mathematical compression technique implemented as
a program. Most compression algorithms have a corresponding decompression algorithm
that restores compressed data to its original or nearly original state. In common use, the
term compression algorithm refers to both the compression and decompression algo-
rithms. There are many compression algorithms, which vary in the following ways:

Types of data for which they re best suited
Whether information is lost during compression
Amount by which data is compressed
Computational complexity (CPU cycles required to execute the compression
program)

A compression algorithm can be lossless or lossy. With lossless compression, any data
input that s compressed and then decompressed is exactly the same as the original input.
Lossless compression is required in many applications, such as accounting records, exe-
cutable programs, and most stored documents. Zip files and archives are examples of
lossless compression.

With lossy compression, data inputs that are compressed and then decompressed are
different from, but still similar to, the original input. Lossy compression is usually applied
only to audio and video data because the human brain tolerates missing audio and video
data and can usually fill in the blanks. It s commonly used to send audio or video
streams via low-capacity transmission lines or networks, such as video conferencing. MP3
audio encoding and video encoding on DVDs are two examples of lossy compression.

The term compression ratio describes the ratio of data size in bits or bytes before and
after compression. For example, if a 100 MB file is compressed to 25 MB, the compression
ratio is 4:1. Some types of data are easier to compress than others. For example, lossless
compression ratios up to 10:1 are achieved easily with word-processing documents and
ASCII or Unicode text files. Lossless compression ratios higher than 3:1 are difficult or
impossible to achieve with audio and video data. Lossy compression of audio and video
can achieve compression ratios up to 50:1, although at high ratios, listeners and viewers
can easily discern that information has been lost (see Figure 6.15).

227

Compression

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Compression is commonly used to increase the amount of data stored on backup tapes
and is sometimes used to reduce disk storage requirements, as shown in Figure 6.16(a).
Data sent to the storage device is compressed before it s written. Data read from storage is
decompressed before it s sent to the requester. Compression can also increase communi-
cation channel capacity, as shown in Figure 6.16(b). Data is compressed as it enters the
channel and then decompressed as it leaves the channel. Hardware-based compression is
included in all current standards for videoconferencing and is often used for long-distance
telephone transmissions.

Using data compression alters the balance of processor resources and communication
or storage resources in a computer system. Implementing a compression algorithm con-
sumes processor cycles, and algorithms with high compression ratios often consume more
processing resources than those with low compression ratios. The tradeoff between these
resources depends on their comparative cost, availability, and degree of use. Using data
compression with CPU processing resources might not be cost effective, for example.

FIGURE 6.15 A digital image before (top) and after (bottom) 20:1 JPEG compression
Courtesy of Course Technology/Cengage Learning

FIGURE 6.16 Data compression with a secondary storage device (a) and a communication channel (b)
Courtesy of Course Technology/Cengage Learning

228

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Using data compression with special-purpose processors is often preferable. These
processors are now widely available and are usually embedded in tape backup devices,
video display controllers, and high-speed modems.

T E C H N O L O G Y F O C U S

MPEG and MP3

The Moving Picture Experts Group (MPEG) creates and evaluates standards for motion
picture recording and encoding technology, including MPEG-1, MPEG-2, and MPEG-4.
Motion pictures usually contain images and sound, so MPEG standards address recording
and encoding formats for both data types. Each standard is divided into layers numbered
1 (systems), 2 (video), and 3 (audio). The audio-encoding standard commonly known as
MP3 is actually layer 3 of the MPEG-1 standard. It s a useful encoding method for many
types of audio, not just audio tracks in motion pictures.

Analog audio data is converted to digital form by sampling the audio waveform
thousands of times per second and then constructing a numerical picture of each sample.
On an audio CD, there are 44,100 samples per second per stereo channel. Each sample
is represented by a single digital number. Sample quality is improved if many bits are
used to encode each sample because of better precision and accuracy. Each sample on
an audio CD is encoded in 16 bits, so each second of audio data on a stereo CD requires
44,100 16 2 1,411,200 bits.

A typical motion picture is two hours long and includes far more video than audio
data. To encode both data sets in a single storage medium, such as on a DVD-ROM, all
data must be compressed. Normal CD-quality music can be compressed by a ratio of 6:1,
and most listeners can t distinguish the compressed audio data from the original. MP3, a
lossy compression method, discards much of the original audio data and doesn t attempt
to reconstruct the data for playback. Therefore, it has a simple decompression algorithm.

MP3 takes advantage of a few well-known characteristics of human audio perception,
including the following:

Sensitivity that varies with audio frequency (pitch)
Inability to recognize faint tones of one frequency simultaneously with much
louder tones in nearby frequencies
Inability to recognize soft sounds that occur shortly after louder sounds

These three characteristics interact in complex ways. For example, loud sounds at
the extremes of the human hearing range, such as 20 Hz or 20 KHz, mask nearby soft
frequencies more effectively than do loud sounds in the middle of the human hearing
range. MP3 analyzes digital audio data to determine which sound components are
masked by others. For example, a bass drum might be masked for a moment by a bass
guitar note. MP3 then compresses the audio data stream by discarding information about
masked sounds or representing them with fewer bits.

Figure 6.17 shows the conceptual components of an MP3 encoder. A frequency
separator divides raw audio data into 32 narrow-frequency audio streams. In parallel,
a perceptual modeler examines the entire audio signal to identify loudness peaks. It then
determines by how much and for how long these loudness peaks can mask nearby audio
data. The masking information and the 32 data streams are sent to an encoder that

(continued)

229

Compression

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

represents data in each frequency. The encoder uses the masking information from the
perceptual modeler to determine what data to discard or to represent with less than 16-
bit precision.

The MP3 standard is widely implemented in MP3 player software and hardware, Internet
broadcasts, and DVD playback devices. There has been much controversy over its
widespread use and its effects on music distribution and piracy. Attempts might be made
to modify the standard or legally mandate a variant that makes copyright infringement
more difficult, although there are doubts about whether that s even possible. The standard
will definitely need enhancement to address more advanced forms of audio data, such
as theater-quality surround sound, but the coding method and data format have been
proved effective by researchers and the marketplace. This success means MP3 will be
around in some form for many years to come.

FIGURE 6.17 MP3 encoding components

230

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

The system bus is the communication pathway that connects the CPU with memory and
other devices. A bus is a set of data lines, control lines, and status lines. The number and
use of these lines as well as the procedures for controlling access to the bus are called the
bus protocol. A master-slave bus protocol is simple to implement, but a peer-to-peer bus
protocol improves computer system performance.

The CPU communicates with peripheral devices through I/O ports. For simplicity, the CPU
and bus interact with all peripheral devices by using simple data movement instructions.
The CPU treats each peripheral device as though it were a storage device with a linear
address space. The device, or its controller, translates access commands to the linear
address space into whatever physical actions are necessary to perform the access. A
peripheral device controller performs several important functions, including logical-to-
physical translation, physical bus interface, sharing a single bus connection between multi-
ple devices, and (optionally) caching. A channel is an advanced type of device controller
used in mainframe computers. It has higher data transfer capacity, a larger maximum num-
ber of attached peripheral devices, and more variability in the types of devices that can be
controlled compared with device controllers.

Application programs use interrupt processing to coordinate data transfers to or from
peripheral devices, notify the CPU of errors, and call OS service programs. An interrupt is a
signal to the CPU that some condition requires its attention. When an interrupt is detected,
the currently executing process is suspended by pushing current register values onto the
stack and transferring control to the corresponding interrupt handler. When the interrupt
handler finishes executing, the stack is popped, and the suspended process resumes
execution from the point of interruption.

A buffer is a region of memory that holds a single unit of data for transfer to or from a
device. Buffers enable devices with different data transfer rates and unit sizes to coordinate
data transfer efficiently. A cache is a large buffer implemented in a device controller or pri-
mary storage. When used for input, a cache enables more rapid access if the data being
requested is already in the cache. The cache controller guesses what data the CPU will
request next and loads this data into the cache before it s actually requested.

Computer system computational capacity can be increased with parallel processing techni-
ques, including multicore processors, multiple-processor architecture, and clustering. A
multicore processor includes multiple CPUs and shared memory cache in a single micro-
chip. Multiple-processor architecture uses multiple single-core or multicore processors
sharing main memory and the system bus in a single motherboard or computer. Clusters
connect computer systems with high-speed links. Each computer in a cluster works on part
of a large problem and exchanges data as needed.

Compression reduces the number of bits required to encode a data set or stream, effec-
tively improving performance by increasing the capacity of a communication channel or
storage device. A compression algorithm can be lossless or lossy. With lossless compres-
sion, data is exactly the same before and after compression and decompression. With lossy
compression, some information is lost during compression and decompression. Data
compression requires increased processing resources to implement compression and

231

Summary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

decompression algorithms, but it reduces the resources needed for data storage and
communication.

Chapter 3 described the ways in which data is represented, and Chapters 4 and 5 described
CPU, primary storage, and secondary storage hardware. In this chapter, you ve learned how data
is transmitted between computer hardware devices. This chapter has also described hardware and
software techniques for improving data transfer efficiency and, therefore, overall computer system
performance. In Chapter 7, you look at I/O device technology.

Key Terms

address bus

buffer

buffer overflow

bus

bus arbitration unit

bus clock

bus cycle

bus master

bus protocol

bus slaves

cache

cache controller

cache hit

cache miss

cache swap

channel

compression

compression algorithm

compression ratio

control bus

core

data bus

decompression algorithm

device controller

direct memory access (DMA)

DMA controller

external I/O buses

hit ratio

interrupt

interrupt code

interrupt handler

interrupt register

I/O channel

I/O port

I/O wait states

law of diminishing returns

level one (L1) cache

level three (L3) cache

level two (L2) cache

linear address space

logical access

lossless compression

lossy compression

machine state

memory bus

Moving Picture Experts Group (MPEG)

MP3

multicore architecture

multiple-processor architecture

peer-to-peer bus

Peripheral Component Interconnect (PCI)

peripheral devices

pop

push

scaling out

scaling up

stack

stack overflow

stack pointer

storage bus

supervisor

video bus

232

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Vocabulary Exercises

1. A(n) is a shared electrical or optical communication channel that con-
nects two or more devices.

2. A(n) cache is generally implemented on the same chip as the CPU.

3. The CPU is always capable of being a(n) , thus controlling access to
the bus by all other devices in the computer system.

4. A(n) is a reserved area of main memory used to resolve differences
in data transfer unit size and sometimes data transfer rate.

5. A(n) is an area of fast memory where data held in a storage device is
prefetched in anticipation of future requests for the data.

6. A cache controller is a hardware device that initiates a(n) when it
detects a cache miss.

7. The transmits command, timing, and status signals between devices
in a computer system.

8. If possible, the system bus rate should equal the CPU s speed.

9. The is a special-purpose register that always points to the next empty
address in the stack.

10. The transfers control to the interrupt handler at the memory address
corresponding to the interrupt code.

11. The set of register values stored in the stack while processing an interrupt is also called
the .

12. A(n) is a program stored in a separate part of primary storage to
process a specific interrupt.

13. During interrupt processing, register values of a suspended process are held on
the .

14. A(n) is a signal to the CPU or OS that some device or program
requires processing services.

15. A(n) is a simple processor that intervenes when two devices want
control of the bus at the same time.

16. The has a much higher data transfer rate than the system bus
because of its shorter length, higher clock rate, and large number of parallel communication
lines.

17. The CPU incurs one or more if it s idle pending the completion of an
I/O operation.

18. The system bus can be divided logically into three sets of transmission lines: the
bus, the bus, and the bus.

19. During a(n) operation, one or more register values are copied to the
top of the stack. During a(n) operation, one or more values are copied
from the top of the stack to registers.

20. The comparative size of a data set before and after data compression is described by the
compression .

233

Vocabulary Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21. If data isn t exactly the same as the original after compressing and decompressing, the
compression algorithm is said to be . If data is the same as the
original after compressing and decompressing, the compression algorithm is said to
be .

22. A(n) is a special-purpose processor dedicated to managing cache
content.

23. A(n) is a communication pathway from the CPU to a peripheral
device.

24. The carries interrupts, command responses, status codes, and similar
messages.

25. The transmits a memory address when primary storage is the
sending or receiving device.

26. The CPU and bus normally view any storage device as a(n) , ignoring
the device s physical storage organization.

27. Part of a device controller s function is to translate into physical
accesses.

28. A(n) controller assumes the role of bus master for all transfers
between memory and other storage or I/O devices, leaving the CPU free to execute
computation and data movement instructions.

29. A(n) is a high-capacity device controller used in mainframe
computers.

30. When a read operation accesses data already contained in the cache, it s called
a(n) .

31. The defines the format, content, and timing of data, memory
addresses, and control messages sent across the bus.

32. In architecture, multiple CPUs and cache memory are embedded on
a single chip.

33. The term describes methods of increasing processing and other
computer system power by using larger and more powerful computers.

34. architecture is a cost-effective approach to computer design when a
single computer runs many different applications or services at once.

35. Examples of a(n) bus include SATA and SCSI.

Review Questions

1. What is the system bus? What are its main components?

2. What is a bus master? What is the advantage of having devices other than the CPU be bus
masters?

3. What characteristics of the CPU and the system bus should be balanced to achieve
maximum system performance?

4. What is an interrupt? How is an interrupt generated? How is it processed?

234

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. What is a stack? Why is it needed?

6. Describe the execution of push and pop operations.

7. What s the difference between a physical access and a logical access?

8. What functions does a device controller perform?

9. What is a buffer? Why might one be used?

10. How can a cache be used to improve performance when reading data from and writing data
to a storage device?

11. What s the difference between lossy and lossless compression? For what types of data is
lossy compression normally used?

12. Describe how scaling up differs from scaling out. Given the speed difference between a
typical system bus and a typical high-speed network, is it reasonable to assume that both
approaches can yield similar increases in total computational power?

13. What is a multicore processor? What are its advantages compared with multiple-processor
architecture? Why have multicore processors become available only recently?

Problems and Exercises

1. You have a PC with a 2 GHz processor, a system bus clocked at 400 MHz, and a 3 Mbps
internal cable modem attached to the system bus. No parity or other error-checking
mechanisms are used. The modem has a 64-byte buffer. After it receives 64 bytes, it stops
accepting data from the network and sends a data ready interrupt to the CPU. When this
interrupt is received, the CPU and OS perform the following actions:

a. The supervisor is called.

b. The supervisor calls the modem s data ready interrupt handler.

c. The interrupt handler sends a command to the modem, instructing it to copy its buffer
content to main memory.

d. The modem interrupt handler immediately returns control to the supervisor, without
waiting for the copy operation to be completed.

e. The supervisor returns control to the process that was originally interrupted.

When the modem finishes the data transfer, it sends a transfer completed interrupt to the
CPU and resumes accepting data from the network. In response to the interrupt, the CPU
and OS perform the following actions:

a. The supervisor is called.

b. The supervisor calls the transfer completed interrupt handler.

c. The interrupt handler determines whether a complete packet is present in memory. If
so, it copies the packet to a memory region of the corresponding application program.

d. The modem interrupt handler returns control to the supervisor.

e. The supervisor returns control to the process that was originally interrupted.

Sending an interrupt requires one bus cycle. A push or pop operation consumes 30 CPU
cycles. Incrementing the stack pointer and executing an unconditional BRANCH instruction
require one CPU cycle each. The supervisor consumes eight CPU cycles searching the

235

Problems and Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

interrupt table before calling an interrupt handler. The data ready interrupt handler
consumes 50 CPU cycles before returning to the supervisor.

Incoming packets range in size from 64 bytes to 4096 bytes. The transfer complete inter-
rupt handler consumes 30 CPU cycles before returning to the supervisor if it doesn t detect
a complete packet in memory. If it does, it consumes 30 CPU cycles plus one cycle for
each 8 bytes of the packet.

Question 1: How long does it take to move a 64-byte packet from its arrival at the
modem until its receipt in the memory area of the target application program or ser-
vice? State your answer in elapsed time (seconds or fractions of seconds).

Question 2: The computer is running a program that s downloading a large file by
using the modem, and all packets are 1024 bytes. What percentage of the computer s
CPU capacity is used to manage data transfer from the modem to the program? What
percentage of available bus capacity is used to move incoming data from the modem
to the program? Assume the bus uses a simple request/response protocol without
command acknowledgment.

Question 3: Recalculate your answers to Questions 1 and 2, assuming a modem
buffer size of 1024 bytes and all incoming packets being 1024 bytes.

2. A video frame displayed onscreen consists of many pixels, with each pixel, or cell, repre-
senting one unit of video output. A video display s resolution is typically specified in hori-
zontal and vertical pixels (such as 800 600), and the number of pixels onscreen is simply
the product of these numbers (800 600 480,000 pixels). A pixel s data content is one
or more unsigned integers. For a black-and-white display, each pixel is a single number
(usually between 0 and 255) representing the intensity of the color white. Color pixel data is
typically represented as one or three unsigned integers. When three numbers are used, the
numbers are usually between 0 and 255, and each number represents the intensity of a
primary color (red, green, or blue). When a single number is used, it represents a prede-
fined color selected from a table (palette) of colors.

Motion video is displayed onscreen by copying frames rapidly to the video display control-
ler. Because video images or frames require many bytes of storage, they re usually copied
to the display controller directly from secondary storage. Each video frame is an entire pic-
ture, and its data content, measured in bytes, depends on the resolution at which the image
is displayed and the maximum number of simultaneous colors that can be contained in the
sequence of frames. For example, a single frame at 800 600 resolution with 256 (28)
simultaneous colors contains 800 600 1 byte 480,000 bytes of data. Realistic motion
video requires copying and displaying a minimum of 20 frames per second; 24 or 30 frames
per second are common professional standards. Using fewer frames per second results in
a jerky motion because the frames aren t being displayed quickly enough to fool the eye
and brain into thinking that they re one continuously changing image.

Assume the computer system being studied contains a bus mastering disk controller and a
video controller that copies data to the video display at least as fast as it can be delivered
over the bus. Further, the system bus can transfer data at a sustained rate of 100 Mbps, as
can both the controllers bus interfaces. This system will be used to display motion video on
a monitor capable of resolutions as low as 640 480 and as high as 1024 768.

In addition, a single disk drive is attached to the disk controller and has a sustained data
transfer rate of 20 MB per second when reading sequentially stored data. The channel

236

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

connecting the disk drive to the disk controller has a data transfer rate of 80 Mbps. Finally,
the files containing the video frames are stored sequentially on the disk, and copying these
files contents from disk to the display controller is the only activity the system will perform
(no external interrupts, no multitasking, and so forth).

The video display controller contains 2 MB of 50 ns, 8-bit buffer RAM, and the video image
arriving from the bus can be written to the buffer at a rate of 8 bits per 50 ns. The video
display s RAM buffer can be written from the bus while it s being read by the display device
(sometimes called dual-porting). Finally, data can be received and displayed by the dis-
play device as fast as the video controller can read it from the RAM buffer.

Question 1: What is the maximum number of frames per second (round down to a
whole number) that this system can display in 256 simultaneous colors at a resolution
of 640 480?

Question 2: What is the maximum number of frames per second (round down to a
whole number) that this system can display in 65,536 simultaneous colors at a
resolution of 800 600?

Question 3: What is the maximum number of frames per second (round down to
a whole number) that this system can display in 16,777,216 simultaneous colors at
a resolution of 1024 768?

3. Employees at your company are watching YouTube videos constantly while using their
office computers. The YouTube Web site sends compressed video through the Internet and
company network to employees computers, and the video stream consists of the following:

480 360 pixel frames

24-bit color (each pixel is represented by 24 bits)

30 frames per second

10:1 compression ratio

Employees computers have a 100 Mbps Ethernet interface and a 400 MHz 32-bit PCI bus.
The company has a 100 Mbps internal network and two T1 connections (1.54 Mbps each)
to the Internet.

Question 1: How much of the company s network capacity are employees consuming
when watching YouTube videos?

Question 2: What percentage of available bus cycles on employees computers are
consumed when watching the videos?

Question 3: Does your answer to Question 1 or Question 2 support forbidding
employees to watch YouTube videos? What if there are 500 employees on the com-
pany network? What if the company Internet connection is a T3 line (45 Mbps)?

Research Problems

1. Choose two computer systems from a single manufacturer, such as Dell or HP. The first
system should be from the standard desktop family (for example, Dell Optiplex or HP/
Compaq Elite series), and the second system should be from the workstation family (for
example, Dell Precision or HP Z-series). For both systems, select a configuration to
achieve optimal performance, and examine the computers technical specifications to

237

Research Problems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

determine the differences underlying the high-performance designation for the workstation.
Concentrate on the system bus, video bus, storage bus, available processors, memory
type, and architecture for interconnecting processors and memory. Is the price difference
between these computers commensurate with the performance difference?

2. The trend toward multiple-processor and multicore architectures has placed increasing
strain on interconnections between processors, memory, and I/O controllers. Intel s
QuickPath Interconnect (QPI) and the HyperTransport Consortium s HyperTransport (HT)
are two widely used approaches to addressing the performance bottleneck. Investigate
both interconnection standards, and compare similar multicore processors from Intel and
AMD that implement each standard. Do the standards address the same basic performance
issues? Which offers the best performance? Which do you expect to dominate the
marketplace, and why? (See this book s Web site, www.cengage.com/mis/burd, for
relevant Web links.)

3. Music purchased from iTunes is encoded in the M4P format. Investigate this format and
compare it with the MP3 encoding method discussed in this chapter. Which encoding
method offers the best tradeoff between compression ratio and audio quality? Which
requires the most processing power for audio encoding? Which addresses issues of
copy protection, and how are these issues addressed?

238

Chapter 6

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cengage.com/mis/burd

C H A P T E R 7
INPUT/OUTPUT
TECHNOLOGY

C H A P T E R G O A L S

Describe basic concepts of text and image representation and display,
including digital representation of grayscale and color, bitmaps, and
image description languages

Describe the characteristics and implementation technology of video
display devices

Understand printer characteristics and technology

Describe the main manual input technologies

Describe types of optical input devices

Identify the characteristics of audio I/O devices and explain how they
operate

People communicate in many different ways, and these differences are reflected in the variety of

methods for interacting with computer systems. This chapter describes the concepts, technology,

and hardware used in communication between people and computers (see Figure 7.1). Understand-

ing I/O technology is important because it expands or limits computers capability to assist people in

problem solving.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

BASIC PRINT AND DISPLAY CONCEPTS

Although printing technology dates from the 15th century, communication via video
display devices is less than a century old. However, both technologies share many
features, including character representation methods, measurement systems, and methods
of generating color. These topics are covered first because they re common to many
I/O technologies and devices.

Matrix-Oriented Image Composition
Display surfaces vary widely in size and composition. The most common are paper and
flat panel displays. Display surfaces have a default background color, usually white for
paper and black for video display devices, and are divided into rows and columns, similar
to a large table or matrix. Each cell in the matrix represents one part of an image, called

FIGURE 7.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

240

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a pixel (a shortened form of picture element). For printed output, a pixel is either empty
or contains one or more inks or dyes. For video display, a pixel displays no light or light
of a specific color and intensity.

The number of pixels in a display surface depends on these factors:

Display surface size (height and width)
Pixel size

For example, a typical 19-inch flat panel display is 28 centimeters (11 inches) high
and 37 centimeters (14.5 inches) wide. If display pixels are .25 millimeters square, the
total number of pixels in the display is as follows:

280 mm 370 mm 0 25 mm 414 400

The resolution of a display is the number of pixels displayed per linear measurement
unit. For example, the resolution of the 19-inch flat panel display described previously is
40 pixels per centimeter, or approximately 100 pixels per inch. In the United States, reso-
lution is generally stated in dots per inch (dpi), with a dot equivalent to a pixel. Higher
resolutions correspond to smaller pixel sizes. To an observer, the quality of a printed or
displayed image is related to the pixel size. As Figure 7.2 shows, smaller pixel size (higher
dpi) yields higher print quality because fine details, such as smooth curves, can be incor-
porated into the image.

On paper, pixel size corresponds to the smallest drop of ink that can be placed accu-
rately on the page. Decades ago, printers adopted 1/72 of an inch as a standard pixel size,
called a point. This term and its use as a printer s measuring system continues to be used,
even though modern printing techniques are capable of much higher resolution.

Fonts

Written Western languages are based on systems of symbols called characters. Each
character can be represented as a matrix of pixels, as shown in Figure 7.3. A printed
character need not exactly match a specific pixel map to be recognizable. For example,
people can easily interpret the symbols E E and E as the letter E, even though
their pixel composition varies.

FIGURE 7.2 Text displayed in two resolutions: 50 dpi (top) and 200 dpi (bottom)
Courtesy of Course Technology/Cengage Learning

241

Basic Print and Display Concepts

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A collection of characters of similar style and appearance is called a font. Figure 7.4
shows sample characters from different fonts. Points are the most common unit for mea-
suring font size; point size refers to characters height, not width, although width is
normally scaled to match height. Figure 7.5 shows a single font printed in several point
sizes. Notice that characters vary in height and placement. For example, T is taller than
a, and letters such as p and q extend below the text baseline. A font s point size is the
distance between the top of the highest character and the bottom of the lowest character
in the font.

FIGURE 7.3 The letters p and A represented in an 8 16 pixel matrix
Courtesy of Course Technology/Cengage Learning

FIGURE 7.4 Sample characters printed in a variety of fonts
Courtesy of Course Technology/Cengage Learning

242

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Color

The human eye and brain interpret different light frequencies as different colors. Video
display devices generate light of a specific color in each pixel. On the printed page, color
is the light frequency reflected from the page. Any color in the visible spectrum can be
represented as a mixture of varying intensities of primary colors. For example, mixing
equal intensities of red and blue produces magenta (a shade of purple). The absence of
all three colors is black, and full intensity of all three is white.

Different sets of primary colors are used for different purposes. In paint, red, blue, and
yellow are used as primary pigments. Video display devices have used red, green, and blue
as primary colors since the earliest color TVs. These primary colors for video display are
sometimes referred to by their first letters: RGB. A video display that generates color by
using mixtures of red, green, and blue is sometimes called an RGB display.

The printing industry generates color by using the inverse of the primary video display
colors. In this context, video display colors are called additive colors, and their inverse col-
ors are called subtractive colors. The subtractive colors are cyan (absence of red), magenta
(absence of green), and yellow (absence of blue), and they re often referred to by the
abbreviation CMY. Black can be generated by combining all three, but a separate black dye,
identified by the letter K, is generally used. This four-dye scheme is called CMYK color.

Numeric Pixel Content

Because computers are digital devices, pixel content must be described numerically. A
stored set of numbers describing the content of all pixels in an image is called a bitmap.
The number of bits required to represent a pixel s content depends on the number of
different colors the pixel can display.

A monochrome display can display one of two colors, so it requires only 1 bit per pixel.
A grayscale display can display black, white, and many shades of gray in between. The
number of gray shades that can be displayed increases with the number of bits used to rep-
resent a pixel. If 8 bits per pixel are used, 254 shades of gray are available in addition to
pure black (0) and pure white (255). The number of distinct colors or gray shades that can
be displayed is sometimes called the chromatic depth or chromatic resolution.

Most color display schemes represent each pixel s color with three different numbers,
each representing the intensity of an additive or subtractive color. Chromatic depth depends
on the number of bits used to represent each color s intensity. For example, if each color

FIGURE 7.5 A font (Times Roman) printed in different point sizes
Courtesy of Course Technology/Cengage Learning

243

Basic Print and Display Concepts

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

is represented by an 8-bit number, the chromatic depth is 2(3 8), or around 16 million;
this scheme is sometimes called 24-bit color. Each group of 8 bits represents the intensity
(0 none, 255 maximum) of one color. For example, with RGB color, the numbers
255:0:0 represent bright red, and the numbers 255:255:0 represent bright magenta.

Another approach to representing pixel color with numbers is to define a color palette.
A palette is simply a table of colors. The number of bits used to represent each pixel
determines the table size. If 8 bits are used, the table has 28 (256) entries. Each table
entry can contain any RGB color value, such as 200:176:40, but the number of different
colors that can be represented is limited by the table s size. Table 7.1 shows the 4-bit color
palette for the Color Graphics Adapter (CGA) video driver of the original IBM PC/XT.

Dithering is a process that generates color approximations by placing small dots of
different colors in an interlocking pattern. If the dots are small enough, the human eye
interprets them as being a uniform color representing a mixture of the dot colors. For
example, a small pattern of alternating red and blue dots appears to be magenta. A lower
percentage of red and higher percentage of blue is interpreted as violet. An alternating
pattern of black and white dots looks gray, which can be confirmed by examining a gray
area of one of the figures in this book with a magnifying glass. Grayscale dithering is
usually called half-toning.

TABLE 7.1 4-bit (16-color) palette for the IBM PC/XT Color Graphics Adapter

Table entry
number RGB value Color name

0 0:0:0 Black

1 0:0:191 Blue

2 0:191:0 Green

3 0:191:191 Cyan

4 191:0:0 Red

5 191:0:191 Magenta

6 127:63:0 Brown

7 223:223:223 White

8 191:191:191 Gray

9 127:127:255 Light blue

10 127:255:127 Light green

11 127:255:255 Light cyan

12 255:127:127 Light red

13 255:127:255 Light magenta

14 255:255:127 Yellow

15 255:255:255 Bright white

244

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Image Storage and Transmission Requirements
The amount of storage or transmission capacity required for an image depends on the
number of bits representing each pixel and the image height and width in pixels. For
example, an 800 600 image has 480,000 pixels. For a monochrome image, 1 bit repre-
sents each pixel, and the image requires 60,000 bytes (480,000 pixels 1 bit/pixel 8
bits/byte). Storing or transmitting an 800 600 24-bit color image requires 1.44 MB
(480,000 pixels 3 bytes/pixel).

Image storage and transmission requirements are the same regardless of whether the
image is stored in primary storage, secondary storage, or an I/O device buffer or is trans-
mitted through a communication channel. Storage and transmission requirements can be
reduced with bitmap compression techniques. Common bitmap compression formats
include Graphics Interchange Format (GIF) and Joint Photographic Experts Group
(JPEG) for still images and Moving Picture Experts Group (MPEG, introduced in
Chapter 6) for moving images. However, all these compression methods are lossy,
meaning they result in some loss of image quality.

Image Description Languages
There are two major drawbacks to using bitmaps to represent high-quality images. The
first is size. An 8½ 11-inch, 24-bit color image with 1200 dpi resolution requires
approximately 400 MB of uncompressed storage. A good compression algorithm might
achieve compression ratios of 10:1 or 20:1, reducing the storage requirements to 20 to
40 MB. Files of this size transmit slowly over communication links, such as a DSL Internet
connection.

The second drawback is having no standard storage format for raw bitmaps. Bitmap
formats vary across software packages and output device types, manufacturers, and mod-
els. Image files stored by software must be converted into a different format before they re
printed or displayed. This conversion process consumes substantial processing and mem-
ory resources, and multiple conversion utilities or device drivers might be needed.

An image description language (IDL) addresses both drawbacks by storing images
compactly. Many, but not all, IDLs are device independent. IDLs use compact bit strings or
ordinary ASCII or Unicode text to describe primitive image components, such as straight
lines and simple shapes. They reduce storage space requirements because a description
of a simple image component is usually much smaller than a bitmap of that component.
Examples of current IDLs include Adobe s PostScript and Portable Document Format. The
internal file formats of many drawing and presentation graphics programs (for example,
CorelDRAW and Microsoft PowerPoint) are based on proprietary IDLs.

An IDL can represent image components in several ways:

Embedded fonts
Vectors, curves, and shapes
Embedded bitmaps

Modern I/O devices contain embedded font tables that store symbol bitmaps in ROM
or flash RAM, and current OSs store font tables in files. An IDL can represent text in a
specific font by storing the text in ASCII or Unicode along with a reference to the font
style and size. The CPU, or an embedded processor in an I/O device, can shrink or enlarge

245

Basic Print and Display Concepts

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a character bitmap to any size according to simple image-processing algorithms. Although
fonts can consume considerable storage, each symbol is stored only once and reused every
time it s displayed or printed.

In graphics, a vector is a line segment with a specific angle and length in relation to
a point of origin, as shown in the top half of Figure 7.6. Vectors can also be described in
terms of their weight (line width), color, and fill pattern. Line drawings can be described
as a vector list, a series of concatenated or linked vectors that can be used to construct
complex shapes, such as boxes, triangles, and the inner and outer lines of a table or
spreadsheet. Images constructed from a vector list resemble connect-the-dots drawings,
as shown in the bottom half of Figure 7.6, and can be scaled larger or smaller easily.

More complex lines and shapes can be constructed with curves. Like a vector, a curve
has a point of origin, length, weight, and color. Unlike a vector, a curve has an angle.
Curves can be closed and filled to represent objects such as circles and ovals.

FIGURE 7.6 Elements of a vector (top) and two complex shapes built from vectors (bottom)
Courtesy of Course Technology/Cengage Learning

246

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Some image components are simply too complex to represent with vectors or curves.
An IDL represents complex image components as embedded bitmaps, which can be
compressed with GIF, JPEG, or another compression algorithm.

IDLs are a complex form of compression. As with any compression algorithm, storing
images with IDLs substitutes processing resources for storage and communication
resources. To display or print an image, a program or device driver must process the
IDL image description. For video display, the processing can occur in the CPU, a special-
purpose processor embedded in the video controller, or a combination of both. For printed
output, processing usually takes place in an embedded processor, although part of the
work can be handled by the CPU s execution of device driver instructions.

T E C H N O L O G Y F O C U S

Adobe PostScript and Portable Document Format

PostScript is an IDL designed mainly for printed documents, although it can also be used
to generate video display outputs. It s also a programming language, so a PostScript file
is a program that produces a printed or displayed image when an interpreter or a
compiler runs it. Images can include display objects, such as characters, lines, and
shapes, that can be manipulated in a variety of ways, including rotation, skewing,
filling, and coloring.

PostScript commands are composed of normal ASCII or Unicode characters and can
include numeric or text data, primitive graphics operations, and procedure definitions.
Data constants are pushed onto a stack. Graphic operators and procedures pop their
input data from the stack and push results, if any, back onto the stack.

To see an example of PostScript in action, take a look at this short program:

newpath

400 400 36 0 360

arc

stroke

showpage

The first line declares the start of a new path straight line, curve, or complex line.
The second line lists numeric data items (control parameters) to be pushed onto the stack.
As the control parameters are used, they re removed from the stack by the predefined
procedure named arc (the third line). In the second line, the first two parameters specify
the origin (center) of the arc as row and column coordinates. The third parameter, 36,
specifies the arc s radius in points. The remaining parameters specify the arc s starting and
ending points in degrees. In this example, the starting and ending points represent a circle.

Primitive graphics operations are specified in an imaginary drawing space containing
a grid (rows and columns) of points. The first three commands in this program specify
a tracing in this space. The fourth command states that this tracing should be stroked
(drawn). Because no width is specified, the circle is drawn by using the default line
width. The final command, showpage, instructs the output processor to display the
page s contents as defined so far. A PostScript printer or viewing program would run this
program to generate a single page containing one circle.

(continued)

247

Basic Print and Display Concepts

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 7.7 shows a PostScript program combining text and graphics. The first two
sections define the menu box outline and title separator line with primitive vector and
shape drawing commands. The third section defines the menu s text content and the
display font and font size. The last section builds a complex object (the arrow pointer)
by defining its outlines, closing the shape, and filling it.

By 1990, PostScript was widely used in the printing and publishing industries and also
used as a graphics file interchange format and an embedded printer technology. PostScript
printers have special-purpose computers to run PostScript programs and generate printed
pages. Some OSs used PostScript to support GUIs, although no current OSs do so.

Although PostScript was successful, it lacked many features, such as the following,
needed to generate and manage documents as an integrated whole rather than a collec-
tion of independent images and pages:

Table of contents with page links
Hyperlinks to other documents, Web pages, or active objects, such as scripts
and executable programs

FIGURE 7.7 The PostScript program that generates the pop-up menu on the right
Courtesy of Course Technology/Cengage Learning

(continued)

248

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Annotations and bookmarks
Document properties, such as authorship, copyright, and summary
Digital signatures

In the early 1990s, Adobe Systems, Inc., developed Portable Document Format
(PDF), a superset of PostScript. To ensure that PDF would be widely adopted, Adobe
developed the free Adobe Reader program, which can be installed with a variety of OSs
and Web browsers, as well as many tools to create PDF documents. For example, Adobe
Acrobat Capture enables organizations to convert paper documents to PDF format and
store them in searchable archives. With Adobe PDF Writer, users can create PDF docu-
ments from desktop word-processing and graphics programs, such as Microsoft Office and
CorelDRAW. PDF Writer is installed as a printer driver, and application programs create
PDF document files by printing to this driver.

PDF has been widely adopted, especially for documents distributed via the Web. It
offers a capability that wasn t available with standard Web protocols distributing com-
pressed documents with the author s complete control over the format of the printed and
displayed document, regardless of the end user s computer, OS, or printer.

VIDEO DISPLAY

The first computer video display devices, introduced in the 1960s, consisted of an
integrated keyboard and TV screen called a video display terminal (VDT), or simply a
terminal. VDTs were connected to computer systems through dedicated low-speed

communication links and could display only text and primitive graphics. They were the
most common form of video display throughout the 1970s and much of the 1980s, until
PCs came into common use. Today, they re used mostly in systems such as retail check-
out counters and factory floor environments. Modern video displays combine a sophisti-
cated video controller with one or more flat panel displays. These technologies are
described in detail in the following sections.

Video Controllers
Video display panels (sometimes called monitors) are connected to a video controller
that s connected to a port on the system bus or a dedicated video bus (see Figure 7.8). The
video controller accepts commands and data from the CPU and memory and generates
analog or digital video signals, which are transmitted to the monitor.

249

Video Display

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In the simplest video controllers, the video controller RAM is a cache for video images
in transit from primary storage to the monitor. Software modifies the display by updating
the corresponding portions of primary storage and initiating a bus transfer to the video
controller. The controller s bus interface circuitry manages the flow of data from primary
storage into the cache.

The controller s display generator circuitry reads the cache contents continuously and
generates analog or digital video signals, which are transmitted to the monitor. Each transfer
of a full screen of data from the display generator to the monitor is called a refresh cycle.
Monitors require many refresh cycles per second to generate high-quality video images,
especially those with rapidly changing content. The number of refresh cycles per second is
normally stated in hertz and called the refresh rate (for example, a 60 Hz refresh rate).

More complex video controllers are essentially special-purpose graphics computers.
Like any computer, they contain a microprocessor and primary storage, and their actions
are controlled by dedicated (embedded) software. Unlike a general-purpose computer,
they have no secondary storage devices, and their only I/O devices are a bus connection
to the host computer and one or more connections to display devices.

N O T E
Because protein-folding simulations are similar in many ways to video image processing, client software
for Folding@Home (described in Chapter 2) has versions for general-purpose CPUs and for video pro-
cessors embedded in powerful video controllers. In many computers, a video processor can execute the
simulation more quickly than a general-purpose CPU can.

FIGURE 7.8 Video controller with monitor and bus connections
Courtesy of Course Technology/Cengage Learning

250

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Video RAM (VRAM) is different from ordinary RAM because it can be written by the
bus interface circuitry or video processor while being read by display generator circuitry.
Simultaneous read/write capability is sometimes called dual-porting. Video controllers
generally have at least 256 MB of RAM, which can be used as a cache or to support more
complex graphics-processing operations.

A video processor and its embedded software can serve multiple functions. At min-
imum, it serves as a cache controller, deciding when to save and when to overwrite por-
tions of the cache. When displaying complex two-dimensional (2D) and three-dimensional
(3D) graphics, the video processor converts incoming IDL commands into cache contents.
The IDLs used for video display are generally more complex than those for documents and
static images. Video controller IDLs can respond to commands to draw simple and com-
plex shapes, fill them with patterns or colors, and move them from one part of the display
to another. The two most widely used video controller IDLs are Direct3D and OpenGL.
Direct3D is part of the Microsoft DirectX suite embedded in Windows OSs. OpenGL was
developed by Silicon Graphics, but Khronos Group now maintains it as an open standard.
Video processors are optimized to run programs written in these languages.

Video Monitors
Video monitors use a wide variety of technologies to generate displays, with complex trade-
offs between cost and performance characteristics. Until the late 1990s, most computer
displays were based on a cathode ray tube (CRT). A CRT is an enclosed glass vacuum
tube with an electron gun in the rear that generates a stream of electrons focused in a
narrow beam toward the tube s front surface. The interior of the display surface is coated
with colored phosphors that emit light when struck by a sufficient number of electrons.
Pulsing the electron beam (turning it on and off rapidly) as it travels across the inside
of the screen controls the pixel brightness.

CRTs are bulky, heavy, and power-hungry and generate lots of heat. Newer display
technologies, collectively called flat panel displays, have replaced CRTs because they re
thinner, generate higher quality images, and consume less power than CRTs for similar-
sized displays. The next sections describe the most common flat panel display technologies.

LCDs

A liquid crystal display (LCD) contains a matrix of liquid crystals sandwiched between
two polarizing filter panels that block all light except light approaching from a specific
angle. The front polarizing panel is rotated 90 degrees from the back panel, as shown in
the different orientations in Figure 7.9. Light passing through an uncharged twisted crystal
is rotated 90 degrees, which enables light to pass through both panels and the crystal.
When an electrical charge is applied to a crystal, it untwists, so light entering the rear
panel can t pass through the front panel. An LCD s backlight is usually a white fluorescent
bulb. Color display is achieved with a matrix of RGB color filters layered over or under the
front panel.

251

Video Display

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Applying an electrical charge to each display matrix cell requires transistors and wir-
ing. A passive matrix display shares transistors among rows and columns of pixels, but an
active matrix display uses one or more transistors for every pixel. Additional transistors
enable pixels to be switched on and off more quickly. Also, with transistors dedicated to
each pixel, a continuous charge can be generated, resulting in a brighter display. However,
additional transistors increase the display panel s complexity and cost.

Since the early 1990s, active matrix displays have been manufactured with thin film
transistor (TFT) technology. The wiring and transistors of a TFT display are added in thin

FIGURE 7.9 Light entering the rear filter can t pass through the front filter if the liquid crystal is
electrically charged (top); removing the charge returns the liquid crystal to its twisted
state, allowing light to pass (bottom)

Courtesy of Course Technology/Cengage Learning

252

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

layers to a glass substrate. The manufacturing process is similar to that for semiconduc-
tors, with successive layering of wiring and electrical devices added with photolithography.
With TFT technology, large displays can be manufactured reliably.

LCD displays have less contrast than other flat panel displays because color filters
reduce the total amount of light passing through the front of the panel. They also have a
more limited viewing angle than CRTs. Acceptable contrast and brightness are achieved
with a 30- to 60-degree angle. Outside that angle, contrast drops off sharply and colors
shift. In contrast, viewing angles for other flat panel display technologies usually approach
180 degrees, with little loss in contrast or brightness.

Early LCD displays accepted the same analog video signals as CRTs. However, because
LCD pixels don t require continuous refresh cycles, analog signals are converted to digital
signals. The conversion process adds unnecessary complexity that can result in slower
display updating and reduced image quality. Later LCD generations accept both analog
and digital video signals, and analog connections are gradually being phased out.

Plasma Displays

A plasma display combines elements of CRT and LCD technology. Like LCDs, they re flat
panel active matrix display devices. Unlike LCDs, they have no backlight and no color
filters. Instead, each pixel contains a gas that emits ultraviolet light when electricity is
applied (see Figure 7.10). Each pixel s inner display surface is coated with a color
phosphor that emits visible light when struck by ultraviolet light.

Because plasma displays actively generate colored light near the display surface,
they re brighter and have a wider viewing angle than LCDs, but they require more power

FIGURE 7.10 A plasma display pixel
Courtesy of Course Technology/Cengage Learning

253

Video Display

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

than LCDs. Plasma displays have some shortcomings that limit their use as general-
purpose video monitors. The gases and phosphors that generate light have a limited oper-
ational lifetime currently, up to 100,000 hours. (A year has 8760 hours.) Limited lifetime
is a problem with many desktop computer systems and other displays used continuously.
Also, pixel size is slightly larger in plasma displays than in LCDs, which reduces image
quality when viewed from short distances.

Many companies are investing heavily in plasma display R&D because of the market
for large-format flat panel televisions. Some of these R&D results have been applied to
computer displays. However, LCDs still dominate the flat panel display market.

LED Displays

Displays based on light-emitting diodes (LEDs) are a new entrant in the flat panel display
market. Early use of LED technology was limited because of high cost, a complex fabrica-
tion process, and difficulties in generating accurate color. Improvements in technology and
fabrication have made LED displays more affordable, although they re still more expensive
than similar-sized LCD or plasma displays. Modern LED displays, often called organic LED
(OLED) displays, achieve high-quality color display with organic compounds.

Figure 7.11 shows the layers of an OLED pixel. Electrical current is routed through
the cathode layer to the emissive layer, which is composed of organic compounds that
emit red, green, or blue light, depending on their chemical composition. The conducting
layer transmits electrical current to the anode layer, which is connected to the negative
side of the power supply to complete the electrical circuit. In a flexible display, the trans-
parent layer is plastic, and conductive polymers are used for the cathode and anode.

OLED displays combine many of the best features of LCD and plasma displays. Like
LCD and plasma displays, they re manufactured with TFT technology, which makes them
thin and lightweight. Like plasma displays, they generate light near the display surface,
which provides brightness and a wide viewing angle. OLED displays need less power than

Organic
emissive layer

Red, green, or blue light

Cathode (+)

Transparent
conducting layer

Transparent layer
(glass or plastic)Anode (–)

FIGURE 7.11 Layers of a single OLED pixel
Courtesy of Course Technology/Cengage Learning

254

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LCD and plasma displays because they require no backlight and don t have to excite gas
into a plasma state. The lack of a backlight makes OLED displays thinner than LCD
displays, and their emissive layers are thinner than a plasma display s gas cells.

Currently, the most important drawbacks of OLED technology are cost and expected
lifetime, but both are expected to improve as the technology matures. The organic emissive
compounds have limited lifetimes, so they lose their brightness gradually over periods rang-
ing up to a few hundred thousand hours. More important, the emissive capabilities of differ-
ent organic compounds degrade at different rates, which causes a gradual color shift over
the display lifetime and limits this lifetime to that of the most rapidly degrading emissive
compound. Manufacturers have struggled to find combinations of red, green, and blue
emissive compounds with similar brightness and degradation rates.

PRINTERS

Printer technology can be classified into three common types:

Impact
Inkjet
Laser

Impact technology began with medieval printing presses: A raised image of a printed
character or symbol is coated with ink and pressed against paper. The process was
updated in the 1880s with the invention of the typewriter, which enabled precise control
over paper position and inserted an ink-soaked cloth ribbon between the raised character
image and paper. Early printers were little more than electric typewriters that could
accept input from a keyboard or a digital communication port.

Later variations on impact printer technology include the line printer and the dot
matrix printer. Line printers had multiple disks or rails containing an entire set of raised
character images. Each disk or rail occupied one column of a page, so an entire row or
line could be printed at once. A dot matrix printer moves a print head containing a
matrix of pins over the paper. A pattern of pins matching the character or symbol to be
printed is forced out of the print head, generating printed images and characters similar
to those shown earlier in Figure 7.3. Some dot matrix printers, customized for high-speed
printing of multicopy forms, are still produced.

Inkjet Printers
An inkjet printer places liquid ink directly onto paper. It has one or more disposable ink-
jet cartridges containing large ink reservoirs, a matrix of ink nozzles, and electrical wiring
and contact points that enable the printer to control the flow of ink through each nozzle.
Each nozzle has a small ink chamber behind it that draws fresh ink from an ink reservoir.

A small drop of ink is forced out of the nozzle in one of two ways:

Mechanical movement The back of the ink chamber is a piezoelectric
membrane, meaning that when electrical current is applied to this mem-
brane, it bends inward, forcing a drop of ink out of the nozzle. When the
current is removed, the membrane returns to its original shape, creating
a vacuum in the chamber that draws in fresh ink.

255

Printers

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Heat The back of the ink chamber is a resistor that heats rapidly when
electrical current is applied (see Figure 7.12a). The ink forms a vapor bubble
(see Figure 7.12b), forcing a drop of ink out of the nozzle. When the current
is removed, the vapor bubble collapses (see Figure 7.12c), creating a vacuum
in the chamber that draws in fresh ink.

Paper is fed from an input hopper and positioned so that the print nozzles are along
its top edge. As the print head is drawn across the paper width by a pulley, the print gen-
erator rapidly modulates the flow of current to the ink chamber membranes or resistors,
generating a pattern of pixels across the page. The paper is then advanced, and the pro-
cess is repeated until the entire sheet has been drawn past the moving print head.

Inkjet printer nozzles can produce ink dots as small as 1/600th of an inch in diameter,
meaning the resolution can be up to 600 dpi. Color output is generated with CMY inks and
alternating rows of nozzles for each ink color. As each row passes a horizontal point on the
page, a different color of ink is applied. The inks mix to form printed pixels of various col-
ors. Most color inkjet printers use a separate ink cartridge for black.

Inkjet printer technology was developed in the 1980s and has advanced rapidly to
become the most common printing technology. Typical output speeds for inexpensive
models are 4 to 6 pages per minute (ppm) for black and 2 to 4 ppm for full color. Black
print quality is good to excellent, and color print quality is often better than that of color
laser printers. Inkjet printers are the only type of printer capable of producing high-quality
color output that s within the budget of a typical home or small-office user.

Printer Communication

Communication between a computer system and an impact printer usually consists of
ASCII or Unicode characters because characters and symbols are the fundamental output

FIGURE 7.12 Ink drop formation and ejection in a thermal inkjet chamber
Courtesy of Hewlett-Packard Company; reproduced with permission

256

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

unit. An impact printer can print each character as it s received, although small buffers
are commonly used to improve performance.

Inkjet and laser printers use pixels as the fundamental output unit, so more complex
communication methods are required. These printers have large buffers to hold a single
line, multiple lines, or an entire page of printed output (refer back to Figure 6.8). An
embedded processor and software decide how to store incoming data in the buffer. With
bitmaps, data is simply stored in the correct buffer location.

IDLs are commonly used to improve printer performance. The processor interprets
the IDL commands for drawing shapes and lines, generates the corresponding bitmaps,
and stores them in the correct part of the buffer. With character-oriented data, the pro-
cessor generates a bitmap for each printed character according to current settings for font
style and size.

Laser Printers
A laser printer operates with an electrical charge and the attraction of ink to this charge
(see Figure 7.13):

1. A rotating metal drum is lightly charged over the width of its surface.
2. The print driver reads rows of pixel values from the buffer and modulates

a tightly focused laser over the width of the drum.
3. The drum is advanced, and the process is repeated with the next line of pixels.
4. The laser removes the charge wherever it shines on the drum. The drum

contains an image of the page, with charged areas representing black pixels
and uncharged areas representing white pixels.

FIGURE 7.13 Components of a laser print engine
Courtesy of Course Technology/Cengage Learning

257

Printers

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5. After charging, the drum then passes a station where fine particles of toner
(a dry powder ink) are attracted to the charged areas.

6. In synchronized motion with the drum, paper is fed through a series of rollers
and given a high electrical charge. As the paper passes over the drum surface,
toner on the drum is attracted to the paper because of its higher charge.

7. The paper and attached toner are fed through heated rollers that fuse the
toner to the paper surface.

8. A light source removes all charges from the drum, and excess toner is
removed from the drum by a fine blade and/or vacuum.

Color laser output uses three separate print generators (laser, drum, and laser modu-
lators), one for each color. Paper must be aligned precisely as it passes over the three
drums. Color laser printers are more complex and expensive than their monochrome
counterparts. Color can also be generated with three passes over the same print generator,
with different color toner applied during each pass. This method reduces the printer s
complexity, cost, and (unfortunately) maximum speed.

Plotters
A plotter is a printer that generates line drawings on wide sheets or rolls of paper. Plotters
can handle paper widths up to 64 inches, which makes them ideal for producing posters,
blueprints, and engineering drawings. They vary in drawing technology, printing speed,
and paper width. Pen-based printing technology, which was the norm until the mid-1990s,
draws images by using one or more moving pens that are raised and lowered onto paper.

Modern plotters use inkjet technology and are little more than large-format inkjet
printers that can produce any large output, including posters and banners. Comparably
sized laser print engines are too expensive to compete with inkjet plotters. The term
plotter has faded in favor of the more descriptive term large-format printer.

MANUAL INPUT DEVICES

Manual input devices include keyboards, pointing devices, input pads, and many less
familiar but related devices. Until the 1980s, keyboards were the predominant form of
manual input. Pointing devices, such as mice, were introduced in the 1980s, and many
other technologies have been introduced since then. The following sections concentrate
on the most common manual input devices.

Keyboards
Early computer systems accepted input via punched cards or tape. Keypunch machines
converted manual keystrokes into punched holes in a cardboard card or paper tape.
Another device, called a card reader, converted punched cards into electrical inputs the
CPU could recognize. Punched cards were passed over a light source in the card reader,
and light shining or not shining through the punched holes was detected and interpreted
as input characters.

Modern keyboard devices translate keystrokes directly into electrical signals, elimi-
nating the need for intermediate storage media, such as punched cards or paper tape.
They use an integrated microprocessor, called a keyboard controller, to generate

258

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

bitstream outputs. Pressing a key sends a coded signal to the controller, and the controller
generates a bitstream output according to an internal program or lookup table.

A keyboard has many special-purpose keys, including function keys, such as F1, Print
Screen, and Esc; display control keys, such as , Page Down, and Scroll Lock; and modifier
keys, such as Shift, Caps Lock, Ctrl, and Alt. In addition, there are many valid key combi-
nations, such as Ctrl+Alt+Delete. When keys are pressed, a keyboard controller generates
output called a scan code, a 1- or 2-byte data element representing a specific keyboard
event. For most keys, the event is simply a key press. For some keys, pressing and releas-
ing the key represent two different events and generate two different scan codes. The
widespread use of IBM-compatible PCs has created a few scan code standards, including
those based on keyboard controllers in early IBM PCs. Most keyboards now follow the
IBM PS/2 standard.

A keyboard can be connected to a computer in various ways. Older PCs connected to
keyboards via a wire and connector based on the IBM PS/2 standard. Most PCs now use
USB connections or wireless connection standards, such as Bluetooth.

Over the past few decades, many people have predicted the demise of keyboards,
assuming that a combination of speech recognition, optical scanning, and character recog-
nition technologies would soon fill the keyboard s role. (These technologies are discussed
later in Audio I/O Devices.) Although all these technologies have advanced considerably,
they aren t developed enough to match the accuracy and speed of a well-trained typist.
Pending substantial improvements in competing technologies, keyboards will be around
for many years to come.

Pointing Devices
Pointing devices include the mouse, trackball, and joystick. All these devices perform a
similar function: translating the spatial position of a pointer or other selection device into
numeric values in a system of 2D coordinates. They can be used to enter drawings into a
computer system or control the position of a cursor (pointer) on a display device.

A mouse is a pointing device that s moved on a flat surface, such as a table, desk, or
rubber pad. Its position on the surface corresponds to the pointer s position on a video
display. As the mouse is moved left or right, the pointer onscreen moves left or right. As
the mouse is moved toward or away from the user, the pointer moves toward the bottom
or top of the display.

Mouse position is translated into electrical signals by mechanical or optical compo-
nents. Most mechanical mice have a roller ball in contact with two wheels mounted on
pins. As the mouse moves, the roller ball moves one or both wheels. Wheel movement
generates electrical signals that are sent to a device controller and then converted to
numeric data describing the direction and distance the mouse has been moved.

An optical mouse uses an optical scanner that constantly scans the surface under the
mouse at a high resolution. A microprocessor in the mouse compares many scans per sec-
ond to determine the direction and speed of movement. This approach works on most
surfaces, including those of apparently uniform color and texture. When scanned at high
resolutions (such as 600 dpi), most surfaces have discernible texture and color or intensity
variation. Optical mice have no moving or exposed parts, as mechanical mice do, that can
become contaminated by dust or dirt. Some optical mice have two scanners for more
accurate tracking.

259

Manual Input Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A mouse has one to three buttons on top that are clicked to set the cursor s position
in the display, select text or menu items, open programs, and display pop-up or context
menus. Some also have a scroll wheel for scrolling through a menu or window. Mouse but-
tons are simple electromechanical switches. Users select text, menu items, and commands
by clicking or double-clicking a button or by pressing two buttons at once.

The latest generation of mice and related pointing devices uses embedded gyroscopes
and communicates without wires. A gyroscope can detect motion within 3D space, which
frees the pointing device from the confines of a 2D surface, such as a desktop. Gyroscopic
pointing devices are ideal for lectures and presentations because they give the user more
freedom of movement.

A trackball is essentially an upside-down mechanical mouse. The roller ball is typi-
cally much larger than in a mechanical mouse, and the selection buttons are mounted
nearby. The roller is moved by the fingertips, thumb, or palm. Trackballs require less
desktop space than a mouse and are easy to incorporate into other devices, such as key-
boards and video games. Because they require minimal finger, hand, and arm dexterity,
trackballs are ideal for young children and people with certain physical disabilities,
although ease of use generally requires a large ball.

Input Pads
A digitizer consists of a digitizing tablet and a pen, stylus, or both. The tablet is sensitive
to the stylus or pen s placement at any point on its surface. Drafters and artists trace
blueprints and drawings on a digitizer tablet or use it for freehand sketching. Specialized
digitizer tablets are used in industries such as mapping, engineering, and medical imaging.
With a stylus, drawing, tracing, and command functions can be combined in a single
device. Tablet PCs use a similar input and display surface but omit the stylus and add
handwriting-recognition software for text entry.

Digitizing tablets and tablet PCs are examples of input pads, a general class of input
devices. These pads are the basic technology behind other devices, such as signature pads,
mouse pads, and touch screens. There are four common input pad technologies:

Infrared detectors
Photosensors
Pressure-sensitive pads
Magnetic fields

Infrared sensing, the oldest of these technologies, was commonly used in devices such
as touch screens, where the pressure-sensing mechanisms must be invisible. An array of
infrared beam generators is placed along two adjacent edges of the screen or pad. Arrays
of infrared sensors are placed along the other two edges, aligned precisely with the infra-
red beam generators. When a finger or an object touches the pad, it interrupts one or
more of the beams. Each sensor generates a binary input to a microprocessor that com-
pares inputs from all sensors to determine where the touch occurs. Infrared technology is
fading in favor of alternative TFT-based technologies.

An input pad can also be composed of a 2D array of photosensors. A photosensor
converts incoming light energy into outgoing electrical energy. A light pen that generates
laser light causes photosensors in the pad to generate a signal when the pen is placed
against a point on the pad. Again, a microprocessor compares inputs from all photosensors

260

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to determine the pen position. Photosensing provides high precision and resolution but is
subject to interference from dirt and other contaminants.

Some large input pads contain four pressure-sensitive ribbons at each edge of the pad.
Each ribbon transmits a separate signal, indicating the amount of pressure at one edge of
the pad. A microprocessor compares pressure levels for all four ribbons to determine
where pressure from a finger, stylus, or pen is being applied on the pad. For example,
applying pressure to the center of a square pad results in equal pressure on all four rib-
bons. Applying pressure at one corner of the pad results in equally high pressure on the
two ribbons at that corner and equally low pressure on the two ribbons at the opposite
corner.

Smaller pads, such as those used for laptop mouse pads and signature pads, are man-
ufactured with TFTs. One approach uses an array of sensors that detect interruptions in a
weak magnetic field. A finger or a metal stylus interrupts the magnetic field at a specific
point, generating a pattern of electrical output in the sensors. Another approach uses an
array of pressure-sensitive resistors that vary current flow according to the physical pres-
sure an object applies. With either approach, a microprocessor compares input from the
entire array of sensors or resistors to determine the precise location of the finger or stylus.

OPTICAL INPUT DEVICES

Optical input devices have come of age in the past decade with the introduction or
refinement of devices such as advanced bar-code readers, low-cost optical scanners, and
digital still and motion cameras. Optical input devices can be classified into two broad
categories based on their application and underlying technology:

Mark and pattern sensors
Image capture devices

Mark and pattern sensors capture input from special-purpose symbols placed on
paper or the flat surfaces of 3D objects (for example, the shipping label on a box). Specific
devices include magnetic mark sensors and bar-code readers. Image capture devices,
which are newer, include digital still and motion cameras, which are based on more com-
plex technology than mark sensors and bar-code readers are.

Photosensors are common to both device types. Light reflected from a mark, a sym-
bol, or an object is reflected into a photosensor. A photosensor s current outflow is an
analog signal representing the intensity of this reflected light. High light intensities induce
large current outflows from the photosensor, and low light intensities produce little or no
current. The analog signal is then converted to a digital number. Simple devices, such
as bar-code readers, generate a small range of numbers, such as 0 to 7. More complex
devices, such as digital cameras, classify the analog input in a larger range, such as
0 to 255, producing a more accurate digital representation of the light input.

Mark Sensors and Bar-Code Scanners
A mark sensor scans for light or dark marks at specific locations on a page. Input locations
are drawn on a page with circles or boxes and are selected by filling them in with a dark
pencil. The mark sensor uses preprinted bars on the edge of the page to establish refer-
ence points for example, the row of boxes corresponding to the possible answers for

261

Optical Input Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Question 5. It then searches for dark marks at specific distances from these reference
points. Marks must be of a sufficient size and intensity to be recognized correctly. Older
mark sensor devices used magnetic sensing, which required magnetic ink or pencil marks
for accurate recognition. Mark sensors now use fixed arrays of photosensors, which don t
require magnetic ink or pencil marks.

A bar-code scanner detects specific patterns of bars or boxes. The most common type
of bar code contains a series of vertical bars of equal length but varied thickness and
spacing. The order and thickness of bars are a standardized representation of numeric
data. To detect these bars, bar-code readers use scanning lasers that sweep a narrow laser
beam back and forth across the bar code. Bars must have precise width and spacing as
well as high contrast for accurate decoding.

When a single scanning laser and photosensor are used, a bar code must be placed at
a specific angle in relation to the detector for accurate recognition. Most bar-code scan-
ners have multiple scanning lasers and photosensors mounted at oblique angles, which
enables accurate readings at a variety of physical orientations.

Bar-code readers are typically used to track large numbers of inventory items, as in
grocery store inventory and checkout, package tracking, warehouse inventory control,
and zip code routing for postal mail. The U.S. Postal Service (USPS) uses a modified form
of bar coding with evenly spaced bars of equal thickness but varying height. They re
placed along the lower edge of an envelope and encode five- and nine-digit zip codes
(see Figure 7.14).

Modern bar codes encode data in two dimensions. Figure 7.15 shows a sample 2D bar
code in the PDF417 format. Data is encoded in patterns of small black and white blocks
surrounded by vertical bars marking the left and right boundaries. PDF417 bar codes can
hold around 1 KB of data, so descriptive or shipping information can be stored on the
shipping container or inventory item.

FIGURE 7.14 An address with a standard USPS bar code
Courtesy of Course Technology/Cengage Learning

FIGURE 7.15 A PDF417 bar code
Courtesy of Course Technology/Cengage Learning

262

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Optical Scanners
An optical scanner generates bitmap representations of printed images. A bright white
light shines on the page, and reflected light is detected by an array of photosensors. Chro-
matic resolution is determined by the photosensors sensitivity to different light frequen-
cies. High resolution requires small, tightly packed photosensors. Typical desktop scanners
have spatial resolution up to 1200 dpi and chromatic resolution up to 24 bits. With manual
or hand scanners, a user must move the scanning device over a printed page at a steady
rate. Automatic scanners use motorized rollers to move paper past a scanning surface or
move the light source and photosensor array under a fixed glass surface. Optical scanners
typically communicate with a computer system by using a general-purpose I/O interface,
such as USB, Bluetooth, or IEEE FireWire. These interfaces provide more than adequate
data transfer rates for most scanners.

Optical character recognition (OCR) devices combine optical-scanning technology
with a special-purpose processor or software to interpret bitmap content. After an image
has been scanned, the bitmap is searched for patterns corresponding to printed charac-
ters. In some devices, input is restricted to characters in prepositioned blocks, such as the
Amount Enclosed blocks in Figure 7.16. As with mark sensors, preprinted, prepositioned

input blocks are a reference point for locating characters, which simplifies the character
recognition process.

More sophisticated OCR software and hardware place no restriction on the position
and orientation of symbols, which creates problems in locating and recognizing printed
symbols. Recognition is most accurate when text is printed in a single font and style, with
all text oriented in the same direction on the page. If the text is handwritten, contains
mixed fonts or styles, is combined with images, or has varying orientations on the page,
accurate recognition is more difficult. Many inputs are beyond the current capabilities
of OCR devices.

N O T E
Error rates of 10% or higher are still common with mixed-font text and even higher with handwritten text.
The accuracy and flexibility of input have improved rapidly, but more progress must be made before
error rates are acceptable for many types of applications.

FIGURE 7.16 A sample form with OCR input fields
Courtesy of Course Technology/Cengage Learning

263

Optical Input Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Digital Cameras
Digital still cameras, video cameras, and Webcams use a 2D photosensor array placed behind
lenses to capture reflected and focused ambient light. Separate sensors for each primary
color capture data for a single pixel. Sensors for each pixel are combined on a single sensor
array in a row and column geometry and typically produced on a single chip. This sensor
array has a native resolution expressed in megapixels, derived by multiplying the number of
pixels in the array s rows and columns (for example, 2000 3000, or 6 megapixels).

The main difference between digital still and motion video cameras is apparent after
an image is captured. A digital still camera captures one image at a time. When the shutter
button is pressed, the camera briefly samples the photosensor array s output and generates
a bitmap, which is then stored in a memory card (internal or removable). To conserve
storage space, the user can configure the camera to store images in a compressed format,
such as JPEG.

Both film and digital video cameras capture moving images by rapidly capturing a
series of still images called frames. Moving image quality improves as the number of
frames per second (fps) increases. Typically, digital cameras capture 24 to 30 fps. Each
frame is stored in a bitmap buffer as it s captured. A separate processor reads buffer con-
tent continuously and applies a compression algorithm, such as MPEG, to the data. The
processor can generate better quality compressed images if the buffer is large enough to
hold several frames. The compression algorithm can also be configured for tradeoffs
between compressed image quality and storage requirements.

Portable Data Capture Devices
Since the 1990s, there s been an explosion of portable data capture devices for tasks such
as warehouse inventory control and package routing, tracking, and delivery and in retail
settings, such as grocery stores and Walmart (see Figure 7.17). Most portable data capture
devices combine a keyboard, mark or bar-code scanner, and wireless connection to a
wired base station, cash register, or computer system.

FIGURE 7.17 A wireless portable data capture device
Courtesy of Motorola, Inc.

264

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Portable data capture devices differ in the degree of embedded computer power. Sim-
pler devices function only as I/O devices, sending captured data through a wired or wireless
communication channel to a computer system. More complex devices are actually portable
computers with embedded I/O devices, such as bar-code scanners, radio frequency ID tag
readers, and digital cameras. Some devices also include cell phone capabilities.

AUDIO I/O DEVICES

Sound is an analog signal that must be converted to digital form for computer processing
or storage. The process of converting analog sound waves to digital representation is called
sampling, which analyzes the content of the audio sound spectrum many times per sec-
ond and converts it to a numeric representation. For sound reproduction that sounds nat-
ural to people, frequencies between 20 Hz and 20 KHz must be sampled at least 40,000
times per second. Sampling frequencies for digital recordings range from 44,100 to 96,000
samples per second.

Sound varies by frequency (pitch) and intensity (loudness). By using mathematical
transformations, a complex sound, such as a human voice, consisting of many pitches and
intensities can be converted to a single numeric representation. For natural-sounding
reproduction, at least 16 bits (2 bytes) must be used to represent each sample. At present,
24-bit (3-byte) samples are commonly used for better accuracy. For example, one second
of sound sampled 96,000 times per second at 24 bits per sample requires 288,000 bytes
for digital representation. A full minute of stereo sound at the same frequency and resolu-
tion requires about 35 MB of data storage or transmission capacity.

Sampling and playback rely on simple converting devices. An analog-to-digital converter
(ADC) accepts a continuous electrical signal representing sound (such as microphone input),
samples it at regular intervals, and outputs a stream of bits representing the samples. A
digital-to-analog converter (DAC) performs the reverse transformation, accepting a stream of
bits representing sound samples and generating a continuous electrical signal that can be
amplified and routed to a speaker. The conversion hardware, processing power, and commu-
nication capacity needed to support sampling and playback have existed in consumer audio
devices since the 1980s and in ordinary desktop computers since the early 1990s.

In a computer system, sound generation and recognition are used for many purposes,
such as the following:

General-purpose sound output, such as warnings, status indicators, and
music
General-purpose sound input, such as digital recording of voice e-mail
messages
Voice command input
Speech recognition
Speech generation

Limited general-purpose sound output has been available in computer systems for many
years. VDTs and early PCS could generate a single audible frequency at a specified volume
for a specified duration. This type of sound output is called monophonic output because only
one frequency (note) can be generated at a time. Newer computers use polyphonic, or mul-
tifrequency, sound generation hardware with built-in amplification and high-quality speakers.

265

Audio I/O Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Speech Recognition
Speech recognition is the process of recognizing and responding to the meaning embedded
in spoken words, phrases, or sentences. Human speech consists of a series of sounds called
phonemes, roughly corresponding to the sounds of each letter of the alphabet. A spoken
word is a series of interconnected phonemes, and continuous speech is a series of phonemes
interspersed with periods of silence. Recognizing single voiced (spoken) phonemes isn t a
difficult computational problem. Sound can be captured in analog form by a microphone
and converted to digital form by digital sampling, and the resulting digital pattern is com-
pared with a library of patterns corresponding to known phonemes, as shown in Figure 7.18.

Although the process of speech recognition is simple conceptually, a number of factors
complicate it, including the following:

Speech variability
Phoneme transitions and combinations
Real-time processing

The characteristics of voiced phonemes vary widely because of physical, geographic,
and situational differences in people. For example, phonemes might differ depending on
whether the speaker is male or female, is from Texas or New England, or is making polite

FIGURE 7.18 The process of speech recognition
Courtesy of Course Technology/Cengage Learning

266

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

conversation or giving a command. Because of these variations, comparison with a library
of known phonemes can t be based on an exact match; the closest match must be deter-
mined and decisions between multiple possible interpretations must be made.

Another difficult problem in speech recognition results from the continuous nature of
speech. Phonemes sound similar when voiced repetitively by the same person. However,
when combined with other phonemes in different words, their voicing varies considerably.
For example, the letter e is voiced differently in the words bed and neighbor. In addi-
tion, a computer must determine where one phoneme ends and another begins as well as
where one word ends and another begins. Performing these tasks in real time requires
complex software and powerful CPUs.

Most current speech-recognition systems are speaker dependent, which means they
must be trained to recognize the sounds of human speakers. They re also restricted
to vocabularies of perhaps only a few thousand words. The most limited are command-
recognition systems, designed to recognize up to a few hundred words from a single
speaker. These systems are useful when a single user is using the device and manual input
is impractical. They have been applied in airplane cockpits, manufacturing control sys-
tems, and input systems for people with physical disabilities.

A digital signal processor (DSP) is a microprocessor specialized for processing continu-
ous streams of audio or graphical data. DSPs are commonly embedded in audio and video
hardware, such as PC sound cards and dedicated audio/video workstations. In some cases,
a DSP processes audio input before data is transferred to the CPU. In other cases, the CPU
and DSP share processing duties, with each performing the tasks to which it s best suited.

Speech Generation
A device that generates spoken messages based on text input is called an audio response
unit. Typical applications include delivering limited amounts of information over conven-
tional phones, such as automated phone bank tellers and automated call routing. Audio
response units enable a phone to act as an information system s output device.

Simple audio response units store and play back words or word sequences. Words or
messages are digitally recorded and stored. To output a message, the stored message is
retrieved and sent to a device that converts the digitized voice into analog audio signals.
All possible outputs must be recorded in advance. Phrases and sentences can be generated
from stored words, although pauses and transitions between words tend to sound
unnatural.

A more general and complex approach to speech generation is speech synthesis, in
which vocal sounds (phonemes) are stored in the system. Character outputs are sent to a
processor in the output unit, which assembles corresponding groups of phonemes to gen-
erate synthetic speech. The quality of speech output from these units varies considerably.
Creating natural-sounding transitions between phonemes within and between words
requires sophisticated processing. However, the difficulties of speech generation are far
less formidable than those of speech recognition.

General-purpose audio hardware, discussed in the next section, can also be used for
speech generation. Digital representations of phoneme waveforms can be combined math-
ematically to produce a continuous stream of digitized speech, which is then sent to the
audio hardware s digital-to-analog converter. After speech is converted to an analog wave-
form, it s amplified and routed to a speaker or phone.

267

Audio I/O Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

General-Purpose Audio Hardware
General-purpose audio hardware can be integrated on a PC motherboard or packaged as
an expansion card that connects to the system bus (commonly called a sound card). At
minimum, sound cards include an ADC, a DAC, a low-power amplifier, and connectors
(jacks) for a microphone and a speaker or headphones (see Figure 7.19). More elaborate
cards might include the following:

Multichannel surround sound, such as Dolby 5.1
A general-purpose Musical Instrument Digital Interface (MIDI) synthesizer
MIDI input and output jacks
A more powerful amplifier to accommodate larger speakers and generate
more volume

FIGURE 7.19 Components and connections of a typical sound card
Courtesy of Course Technology/Cengage Learning

268

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Other differences in sound cards include degree of polyphony (the number of simul-
taneous sounds that can be generated), supported sampling rates, and power and speed
of embedded DSPs.

Musical Instrument Digital Interface (MIDI) is a standard for storing and transporting
control information between computers and electronic musical instruments. Its original
purpose was to enable electronic keyboards to control remotely connected synthesizers.
The MIDI standard defines a serial communication channel and a standard set of 1- to
3-byte commands for performing these tasks:

Turn notes on and off.
Modulate pitch.
Mimic musical instrument controls, such as a piano s sustain pedal.
Select specific instruments or artificial sounds.

Up to 16 channels of MIDI data can be sent over the same serial transmission line, so
16 separate instruments or instrument groups can be played at once. Most sound cards
include some MIDI capability. At minimum, they provide a simple synthesizer capable of
simulating the sound of a few dozen instruments. Files containing MIDI control data are
transferred to the sound card over the system bus, and then the synthesizer processes the
commands and generates digital waveforms for each instrument. The digital waveforms are
combined (mixed) and sent through the DAC, amplifier, and speakers.

More complex sound cards provide more synthesized instruments, better quality
waveforms, and the capability to accept or transmit MIDI data through external MIDI
connections. The quality of synthesized sound varies widely from one synthesizer and/or
sound card to another. The poorest quality sounds are generated by inexpensive DSPs
executing simple instrument simulation programs and operating at low sampling rates.
The most realistic sounds are achieved with sample-based synthesis, which uses stored
digitized recordings of musical instruments.

The main advantage of MIDI is its compact storage format. A command to sound a
single note on a piano for 1 second requires 6 bytes: 3 bytes each for the note-on and
note-off control messages. A 24-bit digital recording of this sound sampled at 96,000 Hz
requires 288,000 bytes of storage. The disadvantage of MIDI is a lack of control over the
nature of the generated sound. A MIDI command selects instruments and notes but doesn t
control how instrument sounds are generated. Sound quality can vary widely across sound
cards and synthesizers, depending on sampling rate, synthesis technique, and hardware
capability. The sound for an instrument might not even exist on the synthesizer receiving
the MIDI commands.

269

Audio I/O Devices

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

Display surfaces can be divided into rows and columns, similar to a large table or matrix.
Each cell, or pixel, in this table represents one simple component of an image. The
number of pixels per inch is the display s resolution. A stored set of numeric pixel
descriptions is called a bitmap. Monochrome display uses a single bit to indicate whether
each pixel is on or off. Multiple bits can represent varying levels of intensity, such as
a grayscale.

Any color in the visible spectrum can be represented as a mixture of varying intensities of
the additive (RGB) colors red, green, and blue or the subtractive (CMY) colors cyan,
magenta, and yellow. Three numbers represent a pixel in full color. The major drawbacks
of bitmaps include their large file size and device dependence. Compression can be used
to reduce file size. Image description languages can describe images compactly by
using vectors, display objects, or both.

Video display technologies include liquid crystal displays (LCDs), plasma displays, and
light-emitting diode (LED) displays, all of which are packaged in a thin flat panel. Video
signals are sent to flat panel displays from a video controller containing a specialized
video processor, dual-ported video RAM, embedded software, and display generator
circuitry. Video processors accept IDL commands from standards such as Direct3D
and OpenGL and generate corresponding bitmaps for output to the display.

Printer types include impact (dot matrix), inkjet, and laser printers. Dot matrix printers are
inexpensive but are slow and noisy and produce poor-quality output. Inkjet printers produce
output of excellent quality but are slow. Laser printers are fast and produce excellent-quality
output. Plotters, more commonly called large-format printers, are similar to inkjet printers,
except they print on paper up to 64 inches wide.

Manual input devices include keyboards, pointing devices, and input pads. Keyboards are
used to enter text and commands. Mice and other pointing devices are used for pointing to
and selecting buttons and menu items, for drawing, and for moving the cursor s position.
Input pads can perform many of the same functions as a mouse. Artists and drafters use
digitizers, which are large-format input pads. Input pads are also used for devices such
as signature pads and touch screens.

Optical input devices include mark sensors, bar-code readers, optical scanners, digital
cameras, and portable data capture devices. All detect light reflected off a printed surface
or an object into a photosensor. A mark sensor scans for light or dark marks at specific
locations on a page. A bar code is a series of vertical bars of varied thickness and spacing.
Optical scanners generate bitmap representations of printed images.

Optical character recognition (OCR) devices combine optical-scanning technology with
intelligent interpretation of bitmap content. Digital still cameras capture single images and
store them as raw or compressed bitmaps. Video cameras capture moving images by rap-
idly capturing a series of still images called frames and storing them in a bitmap buffer.
Simple portable data capture devices function only as an I/O device, sending captured data
through a wired or wireless communication channel to a computer system. More complex
devices are actually portable computers with embedded I/O devices, and some have cell
phone capabilities, too.

270

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Sound is an analog waveform that can be sampled and stored as digital data. Computer
sound recognition and sound generation hardware and software can be used to play or
record speech and music, synthesize speech from text input, and recognize spoken com-
mands. Sound cards include an analog-to-digital converter (ADC), a digital-to-analog con-
verter (DAC), a low-power amplifier, and connectors for a microphone, a speaker, and
headphones. MIDI inputs, MIDI outputs, and a music synthesizer can also be provided.
Digital signal processors (DSPs) are commonly used for complex sound processing, such
as music synthesis and speech recognition.

This chapter discussed how I/O technology supports human-computer interaction. The next
two chapters focus on other important classes of I/O technology: data communication and com-
puter networks. These technologies enable computers to interact and allow users to interact
simultaneously with multiple computer systems. Computer systems rely heavily on these tech-
nologies to deliver powerful information retrieval and processing capabilities to end users.

Key Terms

24-bit color

active matrix display

additive colors

analog-to-digital converter (ADC)

audio response unit

bar code

bar-code scanner

bitmap

cathode ray tube (CRT)

chromatic depth

chromatic resolution

CMY

CMYK

cursor

digital signal processor (DSP)

digital-to-analog converter (DAC)

digitizer

Direct3D

dithering

dot matrix printer

dots per inch (dpi)

dual-porting

flat panel displays

font

Graphics Interchange Format (GIF)

grayscale

half-toning

image description language (IDL)

inkjet printer

input pads

Joint Photographic Experts Group (JPEG)

keyboard controller

large-format printer

laser printer

light-emitting diodes (LEDs)

liquid crystal display (LCD)

mark sensor

monitors

monochrome

monophonic

Musical Instrument Digital Interface (MIDI)

OpenGL

optical character recognition (OCR)

optical scanner

organic LED (OLED)

palette

passive matrix display

phonemes

photosensor

pixel

271

Key Terms

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

plasma display

plotter

point

polyphonic

Portable Document Format (PDF)

PostScript

refresh cycle

refresh rate

resolution

RGB

sampling

scan code

scanning lasers

sound card

speaker dependent

speech recognition

speech synthesis

subtractive colors

thin film transistor (TFT)

vector

vector list

video controller

video display terminal (VDT)

video RAM (VRAM)

Vocabulary Exercises

1. Color video display can be achieved by using elements colored , ,
and .

2. displays have replaced CRTs for video monitors.

3. A(n) display achieves high-quality color display with organic compounds.

4. The printing industry generally uses inks based on the colors, which
are , , and . A(n) ink can also be used as a fourth
color.

5. A(n) is another name for a large-format printer.

6. and are commonly used image description languages for documents.

7. A(n) printer forces ink onto a page by heating it or forcing it out with a piezo-
electric membrane.

8. The or format is commonly used to compress still images.

9. A(n) sound card can generate multiple notes simultaneously. A(n)
sound card can generate only one note at a time.

10. A display device s is the number of colors that can be displayed simultaneously.

11. In a computer, an image is stored as a(n) , with each pixel represented by one or
more numbers.

12. A(n) is a basic component of human speech.

13. A(n) is a small device in optical scanners and digital cameras that converts light
into an electrical signal.

14. When a user presses a key, the keyboard controller sends a(n) to the computer.

15. A(n) recognizes input in the form of vertical lines, usually of varied
width and spacing.

16. A(n) converts analog sound waves into a digital representation.

17. Each cell in a video display surface s matrix represents a(n) .

272

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18. A(n) display illuminates a pixel by using excited gas and a colored phosphor.

19. speech-recognition programs must be trained to recognize one person s voice.

20. A video display s resolution is described by the units .

21. Each transfer of a full screen of data from the display generator to the monitor is called
a(n) .

22. A(n) is 1/72 of an inch and is considered a standard pixel size.

23. A(n) accepts data or commands over a bus and generates output for a video
monitor.

24. A collection of characters of similar style and appearance is called a(n) .

25. A(n) compresses an image by replacing image components, such as lines and
shapes, with equivalent drawing commands.

26. is dual-ported, which enables cache contents to be written by a video processor
while they re being read by display generator circuitry.

27. A(n) is an LCD with transistors to control each display pixel.

28. creates an interlocking pattern of colored pixels that fools the eye into thinking
a uniform color is being displayed.

29. is a standardized method of encoding notes and instruments for communication
with synthesizers and sound cards.

Review Questions

1. Describe the process by which software recognizes keystrokes.

2. What is a font? What is point size?

3. What are the additive colors? What are the subtractive colors? What types of I/O devices
use each kind of color?

4. What is a bitmap? How does a bitmap s chromatic resolution affect its size?

5. What is an image description language? What are the advantages of representing images
with image description languages?

6. What is JPEG encoding? What is MPEG encoding?

7. Why does a video controller have its own processor and memory?

8. Describe the technologies used to implement flat panel displays. What are their compara-
tive advantages and disadvantages?

9. How does a laser printer s operation differ from that of a dot matrix printer?

10. Describe the types of optical input devices. For what type of input is each device intended?

11. Describe the process of automated speech recognition. What types of interpretation errors
are inherent to this process?

12. Describe the components and functions of a typical sound card. How is sound input
captured? How is speech output generated? How is musical output generated?

273

Review Questions

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Research Problems

1. Many organizations store all documents, such as medical records, engineering data, and
patents, as graphics files. Identify commercial software products that support this form of
data storage. Examine the differences between these products and more traditional data
storage approaches. Concentrate on efficient use of storage space, internal data represen-
tation, and methods of data search and retrieval. What unique capabilities are possible with
image-based storage and retrieval? What additional costs and hardware capabilities are
required? Examine sites such as www.databankimx.com and www.knowledgetree.com.

2. Flat panel display technology changes so rapidly that many of the comparative statements
made in this chapter might be out of date before the book is published. Investigate current
LCD, plasma, and LED display products and answer the following questions:

Do LCDs still have a price and performance edge over LED and plasma displays?

Have LED and plasma display lifetimes advanced enough to make them viable moni-
tors for most desktop computers?

Are any new flat panel display technologies coming into the marketplace?

3. Investigate the Direct3D and OpenGL video standards and answer the following questions:

For what types of applications was each originally developed?

What OSs support each standard?

Does either standard have a clear advantage in any market segments or for specific
types of applications?

What skills are needed for a programmer to use either standard?

4. Investigate audio interfaces that support recording multichannel digital sound, such as
those offered by MOTU (www.motu.com), M-Audio (www.m-audio.com), and Echo Digital
Audio (www.echoaudio.com), and answer the following questions:

How are the interfaces connected to the computer?

What types of audio connections are supported?

What are the minimum software and hardware requirements for the host computer?

Which are best suited to use at home for simple composing and recording projects?

Which are best suited to use in recording studios or for recording a live concert?

274

Chapter 7

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.databankimx.com
http://www.knowledgetree.com
http://www.motu.com
http://www.m-audio.com
http://www.echoaudio.com

C H A P T E R 8
DATA AND NETWORK
COMMUNICATION
TECHNOLOGY

C H A P T E R G O A L S

Explain communication protocols

Compare methods of encoding and transmitting data with analog or
digital signals

Describe signals and the media used to transmit digital signals

Describe wireless transmission technology and compare wireless LAN
standards

Describe methods for using communication channels efficiently

Explain methods of coordinating communication, including clock
synchronization and error detection and correction

Successful and efficient communication is a complex endeavor. People have long labored with the

intricacies of communicating concepts and data. The method of expression (such as words, pictures,

and gestures), language syntax and semantics, and communication rules and conventions vary

widely across cultures and contexts. All these areas make successful communication between people

a long learning process.

Understanding computer and network communication can be daunting as well because these

topics cover a broad range of interdependent concepts and technologies. Chapter 7 addressed some

of these topics, and this chapter extends that coverage, as shown in Figure 8.1, and lays the founda-

tion for a detailed discussion of computer networks in Chapter 9.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

COMMUNICATION PROTOCOLS

A message is a unit of data or information transmitted from a sender to a recipient.
Messages can be loosely categorized into two types data messages and command
messages. Data messages vary in format and content and can include any primitive CPU
data types or more complex data types (discussed in Chapter 3). For the purposes of
computer communication, a data message s content isn t important; the message is simply
moved from one place to another with no attempt to understand its content.

A command message contains instructions that control some aspect of the communi-
cation process. Examples include many ASCII device control characters, addressing and
routing instructions, and error detection and correction information. Command messages
can also be used to transmit information about data messages, such as format, content,
length, and other information the receiver needs to interpret the data message correctly.

At the most fundamental level, a message is simply a sequence of bits. Sender and
receiver must agree on a common method of encoding, transmitting, and interpreting
these bits. This common method is called a communication protocol, a set of rules and
conventions for communication. Although this definition sounds simple, it encompasses
many complex details.

For example, think about the communication protocol that applies during a classroom
presentation. First, all participants must agree on a common language, and its grammar

FIGURE 8.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

276

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and syntax rules are part of the protocol. For spoken languages, the air in the room
serves as the transmission medium. Large classrooms might require auxiliary means to
improve transmission, such as sound insulation and voice amplification equipment.

Command-and-response sequences ensure efficient and accurate information flow.
In this example, the instructor coordinates access to the shared transmission medium.
Students use gestures such as raising their hands to ask for permission to speak
(transmit messages). In addition, message content is restricted, so the instructor
ignores or cuts off messages that are off topic or too long.

Some rules and conventions ensure accurate transmission and reception in this
setting. For example, participants must speak loudly enough to be heard by all. The
instructor might pause and look at students faces to determine whether the message is
being received and interpreted correctly. In addition, the act of entering the classroom
signals participants acceptance of the communication protocol.

Communication between computers also relies on complex communication protocols.
Figure 8.2 organizes the components of a computer communication protocol in a hierar-
chy. Each node has many possible technical implementations. A complete communication
protocol is a complex combination of subsidiary protocols and the technologies to imple-
ment them. You might find it helpful to return to this hierarchy often while reading the
remainder of this chapter so that you can place topics in their context.

FIGURE 8.2 Components of a communication protocol
Courtesy of Course Technology/Cengage Learning

277

Communication Protocols

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ENCODING AND TRANSMITTING BITS

Chapter 3 described how data items, such as integers and characters, are encoded in
a bit string. This section describes how bits are represented and transported between
computer systems and hardware components.

Carrier Waves
Light, radio frequencies, and electricity travel through space or cables as a sine wave
(see Figure 8.3). A sine wave s energy content varies continuously between positive
and negative states. Three characteristics of a sine wave can be manipulated to
represent data:

Amplitude
Phase
Frequency

Amplitude is a measure of wave height or power the maximum distance between a
wave s peak and its zero value. It s the same whether it s measured from zero to a positive
peak or zero to a negative peak. A complete cycle (also called a period) of a sine wave
follows its full range from zero to positive peak, back to zero, to its negative peak, and then
back to zero again.

Phase is a specific time point in a wave s cycle. It s measured in degrees, with 0°
representing the beginning of the cycle and 360° representing the end. The point of

FIGURE 8.3 Characteristics of a sine wave
Courtesy of Course Technology/Cengage Learning

278

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a positive peak is 90°, the zero point between a positive and negative peak is 180°, and the
point of a negative peak is 270°.

Frequency is the number of cycles occurring in 1 second and is measured in hertz
(Hz). Figure 8.4 shows two sine waves with frequencies of 2 Hz and 4 Hz.

Waves are important in communication for these reasons:

Waves travel, or propagate, through space, wires, and fibers.
Patterns can be encoded in waves.

Bits are encoded in a wave by precisely manipulating, or modulating, amplitude, fre-
quency, or phase. A wave with encoded bits is called a carrier wave because it transports
(carries) bits from one place to another. The receiver observes a modulated carrier wave
characteristic and interprets the modulations as bit values. A signal is a data transmission
event or group of events representing a bit or group of bits.

You can think of ripples in a pond as a simple example of carrier waves. Using a stick,
the sender can generate waves of varying height that travel across the pond to a receiver
on the other side. Strong strikes make large waves, and weak strikes make smaller waves.
A large wave can be interpreted as a 1 bit and a small wave as a 0 bit, or vice versa. It
doesn t matter which interpretation is used, as long as the sender and receiver use the
same one.

Data can be encoded as bits (large and small waves) by any shared coding method.
For example, text messages can be encoded with Morse code (see Table 8.1), with 1 bits

FIGURE 8.4 Sine waves with frequencies of 2 Hz and 4 Hz
Courtesy of Course Technology/Cengage Learning

279

Encoding and Transmitting Bits

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

representing dashes and 0 bits representing dots (see Figure 8.5). Data can also be
encoded with ASCII, Unicode, or the other coding methods described in Chapter 3.

Modulation Methods
Amplitude modulation (AM) represents bit values as specific wave amplitudes and is
sometimes called amplitude-shift keying (ASK). Figure 8.6 shows an AM scheme using
electricity, with 1 volt representing a 0-bit value and 10 volts representing a 1-bit value.
The AM method holds frequency constant while varying amplitude to represent data. The
amplitude must be maintained for at least one full wave cycle to be interpreted correctly
by the receiver.

TABLE 8.1 Morse code

A _ N _ 0 _____

B _ O ___ 1 ____

C _ _ P __ 2 ___

D _ Q __ _ 3 __

E R _ 4 _

F _ S 5

G __ T _ 6 _

H U _ 7 __

I V _ 8 ___

J ___ W __ 9 ____

K _ _ X _ _ ? __

L _ Y _ __ . _ _ _

M __ Z __ , __ __

FIGURE 8.5 Wave amplitude representing Morse code dots and dashes
Courtesy of Course Technology/Cengage Learning

280

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Frequency modulation (FM) represents bit values by varying carrier wave frequency
while holding amplitude constant. It s also called frequency-shift keying (FSK). Figure 8.7
shows an FM scheme, with 2 Hz representing a 0 bit and 4 Hz representing a 1 bit.

FIGURE 8.6 The bit string 11010001 encoded in a carrier wave with amplitude modulation
Courtesy of Course Technology/Cengage Learning

FIGURE 8.7 The bit string 11010001 encoded in a carrier wave with frequency modulation
Courtesy of Course Technology/Cengage Learning

281

Encoding and Transmitting Bits

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Phase is a wave characteristic that s fundamentally different from amplitude or
frequency. The nature of a sine wave makes holding phase constant impossible. However,
it can be used to represent data by making an instantaneous shift in a signal s phase or
by switching quickly between two signals of different phases. The sudden shift in signal
phase can be detected and interpreted as data, as shown in Figure 8.8. This method of
data encoding is called phase-shift modulation or phase-shift keying (PSK).

Multilevel coding is a technique for embedding multiple bit values in a single wave
characteristic, such as frequency or amplitude. Groups of bits are treated as a single unit
for the purpose of signal encoding. For example, 2 bits can be combined into a single
amplitude level if four different levels of the modulated wave characteristic are defined.
Figure 8.9 shows a four-level AM coding scheme. Bit pair values of 11, 10, 01, and 00 are
represented by the amplitude values 8, 6, 4, and 2.

FIGURE 8.8 The bit string 11010001 encoded in a carrier wave with phase-shift modulation
Courtesy of Course Technology/Cengage Learning

282

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Analog Signals
An analog signal uses the full range of a carrier wave characteristic to encode continuous
data values. A wave characteristic s measured value is equivalent to a data value or can be
converted to a data value by a simple mathematical function. For example, say that data is to
be encoded as an analog signal by using sound frequency. The numeric value 100 could be
encoded by setting the wave frequency to 100 Hz, and the numeric value 9999.9 could be
encoded by setting the wave frequency to 9999.9 Hz. Data values anywhere within the range
of frequencies that can be generated and detected can be encoded in the signal.

Analog signals are continuous in nature, so they can represent any data value within a
continuum (range) of values. In theory, the number of values that can be encoded is infi-
nite. For example, even if the voltage range that can be sent through a wire is limited to
between 0 and 10 volts, there are an infinite number of possible voltages in that range
0 volts, 10 volts, and values between 0 and 10, such as 4.1 volts, 4.001 volts, 4.00001 volts,
and so forth. The number of different voltages in any range is limited only by the sender s
ability to generate them, the transport mechanism s capability to carry them accurately,
and the receiver s ability to distinguish between them.

Digital Signals
A digital signal can contain one of a finite number of possible values. A more precise term
is discrete signal, with discrete meaning a countable number of possible values. The
modulation schemes in Figures 8.6 and 8.7 can encode one of two different values in each
signal event and are called binary signals. Other possible digital signals include trinary
(three values), quadrary (four values), and so forth. The modulation scheme in Figure 8.9
generates a quadrary signal.

FIGURE 8.9 The bit string 11100100 encoded in a carrier wave with 2-bit multilevel coding
Courtesy of Course Technology/Cengage Learning

283

Encoding and Transmitting Bits

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Digital signals can also be generated by using a square wave instead of a sine wave
as the carrier wave. A square wave contains abrupt amplitude shifts between two different
values. Figure 8.10 shows data transmission using an electrical square wave, with 1 bits
represented by 5 volts and 0 bits represented by no voltage. Square waves can be gener-
ated by rapidly switching (pulsing) an electrical or optical power source a technique
called on-off keying (OOK). In essence, OOK is the digital equivalent of amplitude
modulation.

Square waves are the preferred method of transmitting digital data over short dis-
tances, such as on a system bus. However, electrical square waves can t be transmitted
reliably over long distances (more than a kilometer, for example). Power loss, electromag-
netic interference, and noise generated in the wiring combine to round off the sharp edges
of a square wave (see Figure 8.11). Pulses also tend to spread out because of interactions
with the transmission medium. Without abrupt voltage level changes, receivers can t
decode data values reliably. Optical square waves are subject to similar problems,
although only over much longer distances. They can be transmitted reliably over distances
up to a few dozen kilometers through high-quality optical fibers.

N O T E
In most communication and network standards, distance is stated in metric units. One meter is about
39 inches, and one kilometer is approximately 0.625, or 5/8, of a mile.

FIGURE 8.10 The bit string 11010001 encoded in square waves (digital signals)
Courtesy of Course Technology/Cengage Learning

284

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Wave characteristics, such as frequency and amplitude, aren t inherently discrete.
For example, electrical voltage can be 0, 0.1, 0.001, 5, 10, 100, and many other values.
To send a digital signal with electrical voltage, sender and receiver choose two values, such
as 0 and 5, to represent two different bit values. However, the voltage that reaches the
receiver might not be exactly 0 or 5 for a number of reasons, discussed in the next sec-
tion. How should the receiver interpret voltage that doesn t precisely match the assigned
values for 0 and 1 bits? For example, should 3.2 volts be interpreted as 0, 1, or nothing?

A digital signaling scheme defines a range of wave characteristic values to represent
each bit value. For example, Figure 8.12 shows two ranges of voltage. Any value in the
lower range is interpreted as a 0 bit, and any value in the upper range is interpreted as a
1 bit. The dividing line between the two ranges is called a threshold. The sender encodes
a bit value by sending a specific voltage, such as 0 volts for a 0 bit or 5 volts for a 1 bit.
The receiver interprets the voltage by comparing it with the threshold. If the received
voltage is above the threshold, the signal is assumed to contain a 1 bit. If it s below the
threshold, the signal is assumed to contain a 0 bit. In this figure, 0, 0.1, 1.8, and 2.4999
volts, for example, are interpreted as 0 bits.

FIGURE 8.11 A square wave before (a) and after (b) transmission over a long distance
Courtesy of Course Technology/Cengage Learning

FIGURE 8.12 A binary signaling method using voltage ranges
Courtesy of Course Technology/Cengage Learning

285

Encoding and Transmitting Bits

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Signal Capacity and Errors
Two important differences between analog and digital signals are their data-carrying
capacity and susceptibility to error. Analog signals can carry more information than digital
signals in a fixed time interval. Higher data-carrying capacity results from the large num-
ber of possible messages that can be encoded in an analog signal during one time period.

For example, say an analog signaling method uses electrical voltage with a signal
duration of 1 second, the range of voltages that can be transmitted reliably on the wire is
0 to 127 volts, and sender and receiver can distinguish 1-volt differences accurately. In
this situation, 128 different signals can be transmitted during 1 second. This number
would be much larger, theoretically approaching infinity, if sender and receiver were
capable of distinguishing smaller voltage differences.

Under these conditions, say you have a binary electrical signal, using 64 volts as the
threshold. During a transmission event, the number of possible data values sent is only two
(a 0 or a 1). In this example, the analog signal s data-carrying capacity is 64 times greater
than the binary signal: 128 possible values with analog divided by 2 possible values with
binary.

To transmit values larger than 1 with binary signals, sender and receiver combine
adjacent signals to form a single data value. For example, the sender could transmit seven
different binary signals in succession, and the receiver could combine them to form one
numeric value. With this method, it s possible to transmit 128 different messages (27

128 possible combinations of seven binary signals). However, an analog signal could have
communicated any of 128 different values in each signal.

Although analog signals have higher data-carrying capacity than digital signals, they re
more susceptible to transmission error. If the mechanisms for encoding, transmitting, and
decoding electrical analog signals were perfect, transmission error wouldn t be an issue,
but errors are always possible. Electrical signals and devices are subject to noise and dis-
ruption because of electrical and magnetic disturbances. The noise you hear on a radio
during a thunderstorm is an example of these disturbances. Voltage, amperage, and other
electrical wave characteristics can be altered easily by this interference.

For example, your bank s computer communicates with its ATMs via analog electrical
signals. You re in the process of making a $100 withdrawal. The value $100 is sent from
the ATM to the bank s computer by a signal of 100 millivolts. The computer checks
your balance and decides you have enough money, so it sends an analog signal of 100
millivolts back to the ATM as a confirmation. During this signal s transmission, a bolt of
lightning strikes, inducing a 2-volt (2000 millivolt) surge in the wire carrying the signal.
When the signal reaches the ATM, it dutifully dispenses $2000 dollars to you in clean,
crisp $10 and $20 bills.

Electrical signals susceptibility to noise and interference can never be eliminated
completely. Computer equipment is well shielded to prevent noise from interfering with
internal signals, but external communications are more difficult to protect. Also, errors
can result from resistance in wires or magnetic fields generated in a device, such as by
a transformer or fan.

A digital electrical signal isn t nearly as susceptible to noise and interference. In the
ATM example, what happens if digital encoding is used instead of analog encoding?
With a threshold of 2.5 volts (and using 0 volts to represent 0 and 5 volts to represent 1),

286

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

a voltage surge less than 2.5 volts can be tolerated without misinterpreting a signal
(see Figure 8.13). If a 0 is sent at the instant the lightning strikes, the ATM still
interprets the signal as a 0 because the 2 volts induced by the lightning are below the
threshold value 2.5. If a 1 is sent, the lightning raises the voltage from 5 to 7 volts, a
difference that s still above the threshold. Resistance in the wire or other factors degrading
voltage aren t a problem as long as the voltage doesn t drop more than 2.5 volts.

TRANSMISSION MEDIA

A communication channel consists of a sending device, a receiving device, and the
transmission medium connecting them. In a less physical sense, it includes the com-
munication protocols used in the channel. Figure 8.14 shows a simple channel design,
but most channels have a complex construction, with multiple media segments using
different signal types and communication protocols. As a message moves from one
media segment to another, it must be altered to conform to the next segment s signal
characteristics and protocol.

FIGURE 8.13 Margin of transmission error (voltage drop or surge) before the data
value encoded in a digital binary signal is altered

Courtesy of Course Technology/Cengage Learning

FIGURE 8.14 Elements of a communication channel
Courtesy of Course Technology/Cengage Learning

287

Transmission Media

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The communication path that transports signals is called a transmission medium.
Transmission can be guided or unguided. Guided transmission routes signals between
two locations through a physical connection, such as copper wire or optical fiber. It s
also referred to as wired transmission, even when optical fiber (called fiber-optic cable) is
the transmission medium. Messages must be encoded in signals that can be conducted or
propagated through the transmission medium. In copper wires, signals are streams of
electrons; in fiber-optic cable, signals are pulses of light. Unguided transmission, also
called wireless transmission, uses the atmosphere or space to carry messages encoded
in radio frequency or light signals.

Figure 8.15 shows a DSL modem connection from a home computer to an ISP.
Digital electrical signals travel across the system bus to an internal modem, which
converts these signals to analog signals in different frequency bands that travel through
twisted-pair copper wiring to the house s phone interface. From there, analog signals
travel via lower-gauge (thicker) copper wiring to the local phone-switching center. The
switching center converts the analog signals to digital signals and routes them via
fiber-optic cable to the ISP. Messages sent from the ISP to the home computer
travel the same path in reverse.

Characteristics of transmission media that affect their capability to transmit messages
successfully and efficiently include the following:

Speed and capacity
Frequency
Bandwidth
Noise, distortion, and susceptibility to external interference

In general, transmission media are better when their speed, capacity, and bandwidth
are high, and their noise, distortion, and external interference are low. However, media
with all these desirable characteristics are costly. Reliability, efficiency, and cost also
depend on the signaling method and communication protocol. Varying combinations of
transmission medium, signaling method, and protocol are cost effective for different types
of communication links. These differences account for the variety of media, signaling
methods, and protocols that form the communication channel between a home computer
and an ISP or between any sender and receiver.

FIGURE 8.15 A DSL modem connection to an ISP
Courtesy of Course Technology/Cengage Learning

288

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Speed and Capacity
The fundamental transmission speed limit for any medium is the rate at which a carrier
wave propagates through the medium. Electrical signals travel through wires at close to
the speed of light. Optical signals transmitted through fibers and radio frequencies trans-
mitted through the atmosphere or space also travel at close to the speed of light. Raw
speed varies little in commonly used transmission media. What does vary is length of the
media, the ways in which media segments are interconnected, and the rate at which bits
are encoded in signals and recognized by the receiver. These factors account for trans-
mission speed variations in different media.

Speed and capacity are interdependent: A faster communication channel has a higher
transmission capacity per time unit than a slower channel does. However, capacity isn t
solely a function of transmission speed. It s also affected by the efficiency with which the
channel is used. Different communication protocols and methods of dividing a channel to
carry multiple signals affect transmission capacity.

A channel s speed and data transmission capacity are jointly described as a data
transfer rate. A raw data transfer rate is the maximum number of bits or bytes per second
that the channel can carry. This rate ignores the communication protocol and assumes
error-free transmission.

A net or effective data transfer rate describes the transmission capacity actually
achieved with a communication protocol. It s always less than the raw data transfer rate
because no medium is error free and because most communication protocols use part of
the channel capacity for tasks other than transmitting raw data. Examples include sending
command messages and retransmitting data when errors are detected.

Frequency
Carrier wave frequency is a basic measure of data-carrying capacity. It limits data-carrying
capacity because a change in amplitude, frequency, or phase must be held constant for at
least one wave cycle to be detected reliably by a receiver. If a single bit is encoded in each
wave cycle, the raw data transfer rate is equivalent to the carrier wave frequency. If multiple
bits are encoded in each wave cycle via multilevel coding, the raw data transfer rate is an
integer multiple of the carrier wave frequency.

Figure 8.16 shows the range of electromagnetic frequencies and the subsets in this
range. The term radio frequency (RF) describes transmissions using frequencies between
50 Hz and 1 terahertz (THz). Wireless networks and cell phones use the upper end of the
RF spectrum, called shortwave radio. Frequencies above 1 THz and below 10,000 THz
include infrared, visible, and ultraviolet light. Because these frequencies don t penetrate
most materials, they re used less often for data communication. Ships sometimes use light
to transmit Morse code messages over short distances, and high-speed digital transmission
can use precisely aligned laser light sources and receivers.

289

Transmission Media

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Signals can also be encoded in electromagnetic frequencies transmitted through
metal, plastic, or glass wires. RF energy is typically transmitted through copper wires,
which can propagate frequencies up to around 1 GHz. Light energy is transmitted through
plastic or glass fibers; these optical fibers can propagate frequencies up to 10,000 THz.

FIGURE 8.16 The spectrum of electromagnetic frequency between 101 and 1019 Hz
Courtesy of Course Technology/Cengage Learning

290

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E
Fiber optics have a higher potential data transmission capacity because light is a higher-frequency car-
rier wave. However, note the word potential. Achieving the bit transmission rates implied by carrier
wave frequency requires encoding and decoding equipment that can operate at the carrier wave fre-
quency. If the transmission s source or destination is an electrical device, such as a conventional phone
or a computer s CPU, signals must be converted between electrical and optical formats, which limits the
effective data transmission rate.

Bandwidth
The difference between a signal s maximum and minimum frequencies is called the signal
bandwidth. The difference between the maximum and minimum frequencies that can be
propagated through a transmission medium is called the medium bandwidth. For example,
copper wiring in phone circuits can typically carry electromagnetic frequencies between
0 and 100 MHz. The medium bandwidth is computed by subtracting the minimum fre-
quency from the maximum: 100 MHz - 0 Hz 100 MHz. A similar calculation for an
optical fiber carrying visible light is approximately 790 THz - 400 THz 390 THz.

Like maximum signal frequency, channel (or medium) bandwidth determines the raw
data transfer rate. To understand how, you must first understand the concept of a com-
posite signal (or complex signal), a signal created by combining multiple simple signals. As
an example of the difference between simple and composite acoustic signals, think of a
battery-operated smoke alarm, which has an annoying but necessary tendency to emit
short high-frequency beeps when its batteries need to be replaced. The amplified signal
you hear is a single sine wave, typically at a frequency of 5000 Hz. No one would mistake
the beep for music, but it does serve the intended purpose of motivating you to replace the
battery.

Now consider the acoustic signal you hear when listening to an orchestra. Instruments,
such as violins, produce composite acoustic signals, even when sounding a single note. Each
note is more than a single pure frequency; it s a mix of fundamental and harmonic frequen-
cies produced by parts of the instrument vibrating at different frequencies and amplitudes.
Each instrument produces notes in a specific range of frequencies and has a unique sonic
character defined by the frequency and amplitude of the acoustic waves produced for each
note. Each instrument produces a complex signal that merges with those of other instru-
ments to produce an even more complex signal.

Both the smoke alarm s beep and the orchestra s composite signal have information
content. The beep carries a single message: Change the battery. Although the interpreta-
tion of music is subjective, clearly it carries a more complex message than a single-frequency
beep. You can hear separate instruments and voices in the composite signal, and they can
send messages that stir complex emotions, as in a movie soundtrack. Similarly, the bass
and drums of popular music can motivate you to dance with their rhythmic low-frequency
signals, and vocals deliver other messages at higher frequencies.

Returning to the concept of bandwidth, the smoke alarm signal s bandwidth is very
narrow: a specific single frequency say, 1 Hz. In contrast, an orchestra s bandwidth spans
the entire range of human hearing: 20 to 20,000 Hz, or a bandwidth of 19,800 Hz. This
larger bandwidth enables transmitting more information per time interval.

291

Transmission Media

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Data transmission with analog or digital signals has the same basic relationship
between bandwidth and data-carrying capacity. For analog signals, wider bandwidth
enables the transmission medium to carry multiple signals of different frequencies at the
same time, which merge to form a composite signal that occupies more bandwidth than
any of the component signals. Because each frequency carries a different data stream,
data transfer rate increases as bandwidth increases.

Higher bandwidth also implies higher data transfer rates for digital signals, although
for subtly different reasons. Recall that digital signals are sent by using square waves,
which are essentially short, powerful bursts of electrical or optical energy. Also, electrical
and optical energy propagate through space, wires, or fibers as sine waves. So how can
energy that propagates as a sine wave be used to generate a square wave?

The answer was first described mathematically by Joseph Fourier, a mathematician
and physicist in the late 18th and early 19th centuries. He proved that all complex signals
could be decomposed into a large or an infinite set of single-frequency signals of varying
amplitude and phase by a mathematical technique now known as Fourier analysis. Con-
versely, a signal such as a complex square wave can be created by combining sine waves
of varying frequencies, amplitudes, and phases.

According to Fourier, there are an infinite number of sine waves across an infinite
number of frequencies composing a perfectly shaped square wave, so Fourier analysis
implies that a square wave requires infinite bandwidth to carry all the component sine
waves. Fortunately, narrower bandwidths can produce a usable square wave approxima-
tion, but the quality of this approximation does increase with higher bandwidth and
maximum signal frequency. Higher-quality square wave approximations can be transmit-
ted at higher rates and travel longer distances without degradation. Therefore, as with
analog signals, raw data transmission rate increases as bandwidth increases.

A modulator-demodulator (modem) sends digital signals by modulating a carrier wave
to embed bits in one or more analog wave characteristics. A common and particularly
complex example is a dial-up modem, which carries digital signals over voice-grade phone
channels. These channels have a minimum bandwidth of 3100 Hz (3400 Hz - 300 Hz),
which provides an acceptable approximation of human speech when using analog signals.
Early dial-up modems used four separate frequencies to carry bit values (see Table 8.2).
The lowest frequency (1070 Hz) in effect created an upper limit on transmission speed.
Assuming a single bit is transmitted per signal cycle, the maximum transmission rate is
1070 bps, although lower bit-encoding rates were used to increase reliability.

Mode Signal frequency (Hz) Binary value

Transmit 1070 0

Transmit 1270 1

Receive 2025 0

Receive 2225 1

TABLE 8.2 Frequency assignments for data transmission
over 300 bps analog phone lines

292

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Subsequent modem standards have exceeded this theoretical capacity, but they have
had to use more complex schemes, such as the following, to achieve raw data transmission
rates as high as 56,000 bps:

Hardware-based data compression
Multilevel coding of up to 32 bits in a single carrier wave cycle
An elaborate combination of amplitude and phase modulation

Digital signals transmitted over ordinary phone wires can achieve megabits per second
(Mbps) transmission rates, depending on distance, which seems to contradict earlier state-
ments about the capacity of analog and digital signals. This contradiction arises because
analog phone-signaling standards don t use all the bandwidth available in a modern phone
circuit. Today s phone wiring can transmit frequencies much higher than 3400 Hz, but
older analog phone-switching equipment was designed to use only the frequencies between
300 and 3400 Hz. Most of this equipment has been replaced with digital switching equipment
that converts electrical voice signals to digital form. Bandwidth above 3400 Hz can be used
to transmit digital signals as long as analog voice signals below 3400 Hz are filtered out.
Digital subscriber lines use bandwidth above 3400 Hz to encode digital data signals at raw
transmission rates up to 20 Mbps.

Signal-to-Noise Ratio
In a communication channel, noise refers to unwanted signal components added to the
data signal that might be interpreted incorrectly as data. Noise can be heard in many
common household devices. Turn on a radio and tune it to an AM frequency (channel)
on which no local station is transmitting. The hissing sound is amplified background RF
noise. Internally generated noise can also be heard on an iPod or a home stereo system.
On an iPod, turn up the volume all the way without playing a song. On a home stereo
system, set the amplifier or receiver input to a device that isn t turned on and turn the
volume up high. (In either case, be sure to turn the volume back down when you re
finished!) The hissing sound you hear is amplified noise in the signal transmission and
amplification circuitry. Any sound other than hissing is externally generated noise picked
up by the amplifier, speakers, or cabling between them.

Noise can be introduced into copper, aluminum, and other wire types by electromag-
netic interference (EMI). EMI can be produced by a variety of sources, including electric
motors, radio equipment, and nearby power or communication lines. In an area dense
with wires and cables, EMI problems are compounded because each wire both generates
and receives EMI. Shielding transmission wires with an extra layer of metallic material,
such as a braided fabric or metal conduit (pipe), reduces but doesn t entirely eliminate
EMI problems.

Attenuation is the reduction in signal strength (amplitude) caused by interactions
between the signal s energy and the transmission medium. It occurs with all signal and
transmission medium combinations, although different combinations exhibit different
amounts of attenuation. Electrical resistance is the main cause of attenuation with electrical
signals and transmission media. Both optical and radio signals exhibit high attenuation
when transmitted through the atmosphere; optical signals exhibit much lower attenuation
when transmitted through fiber-optic cable. For all signal types, attenuation is proportional
to the medium s length. Doubling the length doubles the total attenuation.

293

Transmission Media

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Another source of errors in communication is distortion changes to the data signal
caused by interaction with the communication channel. The transmission medium is a
main source of distortion, although auxiliary equipment, such as amplifiers, repeaters,
and switches, can also distort the signal. There are many types of distortion, including
resonance, echoes, and selective attenuation. Resonances in a transmission medium
amplify certain portions of a complex signal in much the same way that certain bass
notes can make a car or room vibrate. Echoes occur when a signal bounces off a hard
surface and intermixes with later portions of the same signal. Attenuation in any
medium varies with signal frequency. In general, high-frequency analog signals and the
high-frequency components of digital signals attenuate more rapidly than lower
frequency signals do.

For a receiving device to interpret encoded data correctly, it must be able to distinguish
encoded bits from noise and distortion. Distinguishing valid signals from extraneous noise
becomes more difficult as transmission speed increases. For example, when listening to a
speech, the difficulty or ease of understanding it is related to the speed at which it s delivered
and its volume (amplitude) in relation to background noise. Accurate speech reception is
impaired by sources of noise, such as other people talking, an air-conditioning fan, or a
nearby construction project. The speaker can compensate for noise by increasing speech
volume, thus increasing the signal-to-noise ratio. Accurate reception is also impaired if the
speaker talks too quickly because the listener has too little time to interpret one word or
speech fragment before receiving the next.

A channel s effective speed limit is determined by the power of the data-carrying
signal in relation to the power of noise in the channel. This relationship is called the
channel s signal-to-noise (S/N) ratio. S/N ratio is measured at the channel s receiving end
or at a specific distance from the sender, usually in units of signal power called decibels
(dB), and is computed as follows:

S/N ratio signal power - noise power

The term ratio usually implies dividing one value by another. However, the decibel
scale used to measure signal and noise power is logarithmic. When logarithms are used,
division is reduced to subtraction as follows:

x
y

log x - log y

S/N ratio incorporates the effects of signal attenuation and added noise. For example,
say a channel has the following characteristics:

The sender generates a signal at 80 dB of power.
The signal attenuates at a rate of 10 dB per kilometer.
The channel has a noise level of 20 dB at the sending end.
The channel adds 5 dB of noise per kilometer.

In this example, S/N ratio is 60 dB (80 dB - 20 dB) at the sending end. S/N ratio
gradually decreases as the signal moves through the channel because signal power drops
and noise power rises. Figure 8.17 plots signal power with the solid line and noise power

294

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

with the dashed line over various transmission distances. At 2 kilometers, S/N ratio is
30 dB, computed as follows:

S/N ratio signal power - noise power

initial signal power - attenuation - initial noise power added noise

80 - 10 2 - 20 5 2

60 - 30

30 dB

Successful transmission is theoretically impossible beyond 4 kilometers because the
S/N ratio is negative. In theory, the maximum possible (usable) channel length is 4 kilo-
meters. However, receiving devices usually need some amount of positive S/N ratio for
reliable operation. If the receiving device in the channel described previously requires at
least 15 dB for error-free operation, the maximum usable channel length is 3 kilometers.

Each transmitted bit is a period of time during which a signal representing a 0 or 1 is
on the channel. As transmission speed is increased, the duration of each bit in the signal,
known as the bit time, decreases. If signal-generating equipment could generate a full-
amplitude signal instantaneously, raw data transfer rates could always be increased

Distance (kilometers)

Amplitude
(decibels)

0
0

10

20

30

40

30 dB S/N
ratio at 2 km

Signal amplitude (in decibels) Noise amplitude (in decibels)

50

60

70

80

1 2 3 4 5 6 7 8

FIGURE 8.17 S/N ratio as a function of distance for a channel
Courtesy of Course Technology/Cengage Learning

295

Transmission Media

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

by shortening bit time. However, no device, including lasers, electrical circuits, and the
human voice, can go from zero amplitude to full power instantaneously. Short bit times
don t give the signal-generating device enough time to ramp up to full power before the
next bit must be transmitted. S/N ratio decreases because the signal amplitude during
each bit time slice is decreased. Eventually, a limit is reached at which the bit time is so
short that the signal is no louder than background noise. At this point, the S/N ratio
becomes zero.

As higher speeds are attempted, the error rate increases. A transmission error repre-
sents a wasted opportunity to send a message, thus reducing the effective data transfer rate.
Another difficulty is that the noise level might not be constant. In electrical signals, noise
usually occurs in short intermittent bursts, such as a nearby lightning strike or an electric
motor starting. As discussed later in Error Detection and Correction, the receiver can
request retransmission of a message if errors are detected. If noise bursts are infrequent,
retransmissions might not diminish the overall data transfer rate much, and a higher raw
transmission speed could be used.

Electrical Cabling
Electrical signals are usually transmitted through copper wiring because it s inexpensive,
highly conductive, and easy to manufacture. Copper wiring varies widely in construction
details, including gauge (diameter), insulation, purity and consistency, and number and
configuration of conductors per cable. The two most common forms of copper wiring used
for data communication are twisted-pair cable and coaxial cable.

Twisted-pair cable is the most common transmission medium for phone and local area
network (LAN) connections. It contains two copper wires twisted around one another. The
wires are usually encased in nonconductive material, such as plastic. The primary advan-
tages of twisted pair are low cost and ease of installation. Its main disadvantages are high
susceptibility to noise, limited transmission capacity because of low bandwidth (generally
less than 250 MHz), and a low amplitude (voltage) limit.

The Electronics Industries Alliance and the Telecommunications Industry Association
have defined the most common standards for twisted-pair cable and connectors, including
Category 5 and Category 6 cable. Both contain four twisted pairs bundled in a single thin
cable, and standardized modular RJ-45 jacks similar to modular phone connectors are
used at both ends (see Figure 8.18). Category 6 is the latest widely used standard,
although Category 5 is more common because it was used for many years, and pulling new
cable through walls and ceilings is an expensive task. Category 6 cable can transmit at
speeds up to 1 Gbps (250 Mbps on each wire pair) over long distances and 10 Gbps over
distances up to a few meters. Under optimal conditions, Category 5 cable can achieve
similar speeds, although not as reliably as Category 6 cable.

296

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Coaxial cable contains a single copper conductor surrounded by a thick plastic insulator,
a metallic shield, and a tough plastic outer wrapping. Because of its heavy shielding, coaxial
cable is very resistant to EMI. It has a high bandwidth of up to 500 MHz, lower attenuation
than twisted pair, and high data transmission capacity, especially over long distances. These
characteristics make coaxial cable well suited for cable TV wiring.

Its main disadvantages are that it s more expensive and harder to install than Category 6
twisted-pair cable. Coaxial modular connectors (see Figure 8.18) aren t as easy to install
as RJ-45 connectors. Coaxial cable is also stiff, making it more difficult to route through
conduits and around corners than Category 6 cable. Coaxial cable isn t used often in
networks now because twisted-pair quality has improved, and costs of twisted-pair and
fiber-optic cable and devices have declined.

Twin-axial cable is similar to coaxial cable, except that it contains two internal con-
ductors and is thinner. It supports higher data transmission rates and is less susceptible to
EMI because the signal and return wire are heavily shielded. Bundles of twin-axial cables
are sometimes used for high-speed network connections over short distances.

Optical Cabling
Fiber-optic cable contains strands of light-conducting filaments made of plastic or glass.
Electrical shielding isn t used because light waves neither generate nor respond to EMI.
A tough plastic coating protects the inner fibers from physical damage. In cables with
many glass fiber strands, special construction techniques are required to avoid breaking
the glass. Thick, inflexible plastic coatings are used to prevent stretching and breaking
the glass fibers, and additional plastic or gels can be embedded in the cable for more
protection.

Fiber-optic cables come in three basic types: multimode step-index, multimode
graded-index, and single-mode. Multimode cables have an optical fiber with a large diame-
ter, compared with the wavelength of the light signals they carry. The density of optical
fibers is different from the surrounding material (cladding). This density difference causes

FIGURE 8.18 Common cable connectors
Courtesy of Course Technology/Cengage Learning

297

Transmission Media

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

light that might otherwise escape the optical fibers to reflect back into the fiber. Light
can travel straight down the center of a multimode optical fiber, but more often it follows a
zigzag path, reflecting many times per centimeter. Each reflection attenuates the signal
because the cladding absorbs energy.

Multimode optical fibers can be constructed with glass or plastic. Plastic fibers are less
expensive, although they generally have higher attenuation and dispersion and are suitable
only for short-distance communication. However, plastic fibers have some performance
advantages over glass fibers, including more capability to bend and more tolerance for
scratches and other physical damage. Multimode cables support lower transmission rates
and distances than single-mode cables because they disperse and attenuate signals more
rapidly. Dispersion occurs because different components of the optical signal travel differ-
ent lengths as they move through the cable, resulting in a signal shape similar to the one
in Figure 8.11.

In multimode step-index cable, both the optical fiber and cladding have different
but uniform densities throughout the cable, which results in many reflections. Multimode
graded-index cable uses more expensive optical fibers with slightly lower density in the
center than at the edge. This variation in density from center to edge tends to bend light
waves away from the cladding before they re reflected, thus reducing, but not eliminating,
the number of reflections per centimeter.

Single-mode cable uses optical fibers with a much smaller diameter that vary
continuously in density from center to edge. Although these fibers are more expensive
than multimode fibers, they eliminate reflections and reduce the variation in distance that
different components of the optical signal must travel. The result is much lower attenuation
and dispersion, which increases raw data transmission rates and/or transmission distances.

All optical cables are more expensive than copper cables for equivalent distances and
are more difficult to install and connect. Therefore, copper cabling is preferred for most
short-haul connections, such as within buildings. Fiber-optic cables are generally used
where their superior data transmission rate or transmission distance is most valuable.
Examples include network wiring between high-capacity servers in the same rack or room,
high-capacity connections in or between buildings, and communication over distances
more than a few hundred meters.

N O T E
Despite their higher cost, optical cables are often used in new or refurbished buildings because cable
cost is only one part of wiring s overall cost. For new networks, designing the network and pulling cable
through ceilings, walls, and conduits are a larger part of the total cost than cable cost is. Further, optical
cable cost continues to decline, so optical cabling is expected to gradually supplant copper wire for all
data communication applications over the next decade.

Amplifiers and Repeaters
No cable type can carry signals more than a few dozen kilometers at high transmission
rates with low error rates. Transmitting data over longer distances requires devices such
as amplifiers and repeaters to increase signal strength and remove unwanted noise and
distortion.

298

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An amplifier increases a signal s strength (amplitude) and can extend a signal s range
by boosting signal power to overcome attenuation. However, the effective length over
which the signal travels can t be increased indefinitely; it s limited by two factors. The first
is noise and interference introduced during transmission. An amplifier amplifies whatever
signal is present at its input. If this signal includes noise along with the intended message,
the noise as well as the message is amplified. In addition, amplifiers are never perfect.
Some distortion or noise is generally introduced in the amplification process. A signal
that s amplified many times contains noise from multiple transmission line segments and
distortion introduced by each stage of amplification. Eventually, reduced signal quality and
S/N ratio render the signal useless.

A repeater performs much the same function as an amplifier but operates on a differ-
ent principle. Rather than amplify whatever signal is sent to it, a repeater extracts the data
embedded in the signal it receives and retransmits a new signal containing the same data.
An advantage of this device is that it doesn t retransmit noise or distortion. As long as the
noise introduced since the last transmitting or repeating device doesn t cause misinterpre-
tation of the data, the retransmitted data is the same as the original. Repeaters are typi-
cally required every 2 to 5 kilometers for coaxial cable and every 40 or 50 kilometers for
single-mode fiber-optic cable.

WIRELESS TRANSMISSION

Wireless transmission shares many of the characteristics of wired media, including
tradeoffs among data transfer capacity, signal frequency, bandwidth, attenuation, noise,
distortion, and S/N ratio. Issues unique to wireless transmission include licensing,
regulation, and security.

Radio Frequency Transmission
As mentioned, computer-related RF data transmission normally uses frequencies in the
shortwave spectrum. Many other types of communication compete for the shortwave
spectrum, including FM radio, broadcast TV, cell phones, land-based microwave transmis-
sion, and satellite relay microwave transmission (refer back to Figure 8.16).

The main advantage of RF transmission is high raw data transfer capacity (because of
high frequency and bandwidth) and the mobility afforded by avoiding wired infrastructure.
Another advantage in some situations is broadcast transmission one sender transmitting
the same message to many receivers at the same time. The drawbacks of wireless trans-
mission include the following:

Major regulatory and legal issues
Cost of transmitting and receiving stations
High demand for unused radio frequencies
Susceptibility to many forms of external interference
Security concerns that is, anyone with the necessary receiving equipment
can listen to the transmission

Wireless transmission frequencies are regulated heavily, and regulations vary in dif-
ferent parts of the world. The United States, Europe, Japan, and China have their own
regulatory agencies. Different regulations apply to different transmission power levels.

299

Wireless Transmission

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In general, low-power transmission doesn t require a license, but the transmission
equipment must be certified to meet regulations. Current wireless LAN technology uses
unlicensed but regulated RF bands. High-power transmissions, such as long-distance
microwave transmission, require certified transmitters and a license to use a specific fre-
quency band. License costs are high because available bandwidth is a limited commodity.

N O T E
Long-distance wireless networks, such as satellite-based networks, are seldom implemented by a single-
user organization because of the high cost of transmission equipment and licenses. Instead, companies
are formed to purchase and maintain the required licenses and infrastructure. Users purchase capacity
from these companies on a fee-per-use or bandwidth-per-time-interval basis.

The Institute of Electrical and Electronics Engineers (IEEE) creates many network
and telecommunication standards. The 802.11 committee was formed in the early 1990s
to develop standards for wireless LANs. In 1997, the committee published the 802.11
standard. Later versions of this standard include 802.11a (1999), 802.11b (1999), 802.11g
(2003), and 802.11n (2009). Standards currently under development for higher through-
put include 802.11ac and 802.11ad.

The following are some goals of the IEEE 802.11 standards:

Meet the requirements of national and international regulatory bodies and
pursue adoption by these bodies.
Support communication by radio waves and infrared or visible light.
Support stationary stations and mobile stations moving at vehicular speeds.

To expedite its work, the committee initially focused on RF transmission in the
2.4 GHz band because RF waves can travel several miles and penetrate walls and other
obstacles. The 2.4 GHz band was chosen because most of this band is regulated but
unallocated in the United States, Europe, and Japan.

The first 802.11 standard defined two RF transmission methods with a maximum raw
data transfer rate of 2 Mbps. One method, frequency hopping spread spectrum (FHSS),
was abandoned in later standards because its transmission speed couldn t be increased
with FCC-mandated transmitter power limits. The other method, direct sequence spread
spectrum (DSSS), was enhanced in the 802.11b standard to provide raw data transmission
at 5.5 and 11 Mbps. The 802.11a standard uses a transmission method called orthogonal
frequency division multiplexing (OFDM), which transmits across several channels
simultaneously.

Error detection is a major problem in any RF data transmission scheme. RF transmis-
sions are subject to many types of interference, and receivers encounter varying degrees
of interference when in motion. Devices such as computers, TVs, microwave ovens, and
cordless phones can interfere with wireless network communication. Another problem is
multipath distortion, which occurs when an RF signal bounces off stationary objects (see
Figure 8.19), causing the receiving antenna to receive multiple copies of the same signal at
different times. Multipath distortion blurs or smears the signal content, causing bit detec-
tion errors. The problem is especially severe indoors, where there are many hard, flat
surfaces that reflect RF waves.

300

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The 802.11b standard divides the 2.4 GHz band into 14 channels, each with 22 MHz
of bandwidth. Transmissions in each band encode bits by using two-level, four-level, or
eight-level phase-shift modulation, which yields raw data transfer rates of 22, 44, and 88
Mbps. A substantial portion of the raw data transfer rate is used for redundant bit trans-
mission to improve error detection. The four standard transmission speeds (1, 2, 5.5, and
11 Mbps) use different bit-encoding and signal modulation methods, each with a different
tradeoff in reliability, speed, and transmission distance. The fastest method uses eight-
level modulation and encodes bits with minimal redundancy. Slower transmission uses
two-level modulation with higher redundancy.

Transmitters monitor signal quality and error rates continuously. As noise, interfer-
ence, and errors increase, or as the sender and receiver move farther apart, transmitters
change modulation and bit-encoding methods to compensate. Transmitters step down
through the 5.5, 2, and 1 Mbps transmission methods until reliable transmission is
achieved and then move upward again as conditions improve.

The 802.11a standard divides frequency bands in the 5.2, 5.7, and 5.8 GHz ranges
into 12 channels. The standard transmission speeds are 6, 9, 12, 18, 24, 36, 48, and
54 Mbps. Bit transmission rates in each channel can be varied to account for different
interference levels and error rates. 802.11a transmission is generally more reliable over
short distances than 802.11b and 802.11g are because there are fewer sources of noise
and interference. However, RF signals in the 5 GHz band attenuate more quickly than
2.4 GHz signals and are more easily absorbed by walls and other obstacles. Therefore,
effective 802.11a transmission distance is shorter than for 802.11b and 802.11g.

The 802.11g standard combines the frequencies and bit-encoding methods of 802.11b
with the OFDM transmission method of 802.11a. Standard raw transmission speeds are

FIGURE 8.19 Multipath distortion caused by receiving multiple signal copies at slightly
different times

Courtesy of Course Technology/Cengage Learning

301

Wireless Transmission

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the same as in 802.11a. The 802.11n standard expands on the 802.11g standard by
defining additional higher-speed bit-encoding methods, optional higher-bandwidth chan-
nels, and methods to achieve multiple-input multiple-output (MIMO) with multiple anten-
nas. An 802.11n device can broadcast or receive on up to four frequencies in the 2.4 or
5 GHz bands. Raw data transmission rates up to 600 Mbps are possible by combining the
highest bit-encoding rates and bandwidth across four frequencies. As a practical matter,
these rates are usually impossible in the 2.4 GHz band because of interference and
congestion; they re possible, but unlikely, in the 5 GHz band.

The 802.11n standard allows up to four antennas transmitting and receiving on four
different frequencies. Antenna pairs can be used for redundant transmissions, usually
described by the term diversity. A diversity transmitter sends redundant data transmissions
across different frequencies, and a diversity receiver compares the received data streams
and decodes only the higher quality transmission (usually the strongest). Diversity trans-
mission and reception increase reliability under changing transmission conditions because
interference tends to affect single frequency bands but does so by using more bandwidth.

N O T E
Development of the IEEE 802.11n standard was a long, difficult process because of considerable con-
tention among committee members and a desire by many vendors to release products that complied
with earlier drafts of the standards. This standard is also complicated by requirements for backward
compatibility with earlier standards. As a result, available equipment varies widely in capabilities and its
degree of adherence to the final standard.

Light Transmission
Wireless transmission using light frequencies can occur in the infrared, visible, or ultraviolet
light spectra. In theory, raw transmission rates can be much higher than for RF transmission
because of higher transmission frequency and available bandwidth. As a practical matter,
however, atmospheric interference creates major barriers by attenuating light signals rap-
idly. Infrared transmissions are effectively limited to a few dozen meters, and laser trans-
missions in the visible spectrum are limited to a few hundred meters. The need for an
unobstructed line of sight is also a barrier to widespread use.

Infrared transmission was once used as a LAN technology in large rooms with many
cubicles, but it has been supplanted by the superior performance of RF transmission,
which can penetrate walls and other obstacles. Laser transmission is used occasionally for
point-to-point connections, as from one building rooftop to another, and when running
fiber-optic cable is more expensive.

CHANNEL ORGANIZATION

A communication channel s configuration and organization affect its cost and efficiency.
Configuration and organization issues include the number of transmission wires or band-
width assigned to each channel, the assignment of wires or frequencies to carry specific
signals, and the sharing (or not sharing) of channels between multiple senders and
receivers.

302

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Simplex, Half-Duplex, and Full-Duplex Modes
Figure 8.20 shows the most basic form of channel organization for electrical transmission
through wires. A single communication channel requires two wires: a signal wire, which
carries data, and a return wire, which completes an electrical circuit between sending
and receiving devices. Optical transmission requires only one optical fiber per channel
because a complete circuit isn t required. Some transmission modes might need two or
more communication paths between sender and receiver, as shown in Figure 8.21.
Multiple electrical transmission lines can share a single return wire to complete all
electrical circuits.

A single communication line can transmit messages in simplex or half-duplex mode.
In simplex mode, messages flow in only one direction, as shown in Figure 8.22(a). This
communication mode is useful when data needs to flow in only one direction and the
chance of transmission error is small or irrelevant, as in ordinary radio broadcasts. How-
ever, if transmission errors are common or if error correction is important, simplex mode
is inadequate. If the receiver detects transmission errors, there s no way to notify the
sender or to request retransmission. A typical use of simplex mode is to send file updates
or system status messages from a host processor to distributed data storage devices in a
network. In these situations, the same message is transmitted to all devices on the network
simultaneously, called broadcast mode.

Half-duplex mode uses a single shared channel, and each node takes turns using the
transmission line to transmit and receive, as shown in Figure 8.22(b). The nodes must
agree on which node is going to transmit first. After sending a message, the first node
signals its intent to cease transmission by sending a special control message called a line
turnaround. The receiver recognizes this message and subsequently assumes the role of

FIGURE 8.20 Configuration of a two-conductor electrical communication channel
Courtesy of Course Technology/Cengage Learning

FIGURE 8.21 Multichannel communication with multiple signal wires and one
common return wire

Courtesy of Course Technology/Cengage Learning

303

Channel Organization

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

sender. When its transmission is finished, it sends a line turnaround message, and the
original transmitter again becomes the sender.

Half-duplex mode allows the receiver to request retransmitting a message if it detects
errors. After receiving a message and a line turnaround, the former receiver briefly
assumes the sender role and transmits a signal indicating correct or incorrect data receipt,
followed by another line turnaround. If ASCII control characters are used, a negative
acknowledge (NAK) control character is sent if errors are detected, and an acknowledge
(ACK) control character is sent if no errors are detected. When a NAK is received, the
recipient retransmits the most recent message.

Communication line cost is the same in simplex and half-duplex modes. However, the
added reliability of half-duplex mode is achieved at a sacrifice in effective data transfer
rate. When the receiver detects an error, it must wait until the sender transmits a line
turnaround before it can send a NAK. If the error occurs near the beginning of a message,
the transmission time used to send the remainder of the message is wasted. Also, because

FIGURE 8.22 Configurations for simplex (a), half-duplex (b), and full-duplex (c) modes
Courtesy of Course Technology/Cengage Learning

304

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

errors typically occur in bursts, many retransmissions of the same message might be
required before the message is received correctly.

The inefficiencies of half-duplex mode can be avoided by using two transmission lines,
as shown in Figure 8.22(c). This two-channel organization permits full-duplex communi-
cation. In full-duplex mode, the receiver can communicate with the sender at any time
over the second transmission line, even while data is still being transmitted on the first
line. If an error is sensed, the receiver can notify the sender immediately, which can halt
the data transmission and retransmit. The speed of full-duplex transmissions is high, even
if the channel is noisy. Errors are corrected promptly, with minimal disruption to message
flow. This speed increase does involve the cost of a second transmission line, however.

Parallel and Serial Transmission
Parallel transmission uses a separate transmission line for each bit position (see Figure
8.23). A parallel channel s width, or number of lines, is typically one byte or one word plus
a common return wire. Parallel communication is more expensive because of the cost of
multiple transmission lines, but combining the capacity of multiple transmission lines
results in a higher data transfer rate.

FIGURE 8.23 Parallel transmission of a data byte (8 bits)
Courtesy of Course Technology/Cengage Learning

305

Channel Organization

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The maximum distance over which data can be sent reliably via parallel transmission
is limited. Because of slight differences in parallel transmission lines, data bits might arrive
at the receiver at slightly different times. The timing difference between bits, called skew,
increases with distance and transmission rate. Excessive skew causes bit values to be
misinterpreted. To limit skew errors, high-speed parallel communication channels must
be short, typically less than 1 meter.

Another problem with parallel channels is crosstalk, which is noise added to the
signal in the wire from EMI generated by adjacent wires. Because of their limitations,
parallel channels are used only over short distances where high data transfer rates are
required for example, the system bus and connections between memory caches and
the CPU.

Serial transmission uses only a single transmission line and a return wire. Bits are
sent sequentially through the transmission line, and the receiver reassembles them into
larger data units, such as bytes (see Figure 8.24). Digital communication over distances
of more than a few meters usually uses serial transmission to avoid skew and crosstalk
and minimize wiring and cable cost. LAN, wide area network (WAN), and long-distance
telecommunication lines use serial transmission.

FIGURE 8.24 Serial transmission of a data byte (8 bits)
Courtesy of Course Technology/Cengage Learning

306

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T E C H N O L O G Y F O C U S

Serial and Parallel Storage Connections

Until the mid-2000s, most computer systems used parallel cables to connect storage
devices and device controllers. The most common examples included cables meeting the
Advanced Technology Attachment (ATA) and Small Computer System Interface (SCSI)
standards. Parallel connections were the only way to provide enough data transfer capacity
to meet the needs of typical computer systems. However, a few important trends have
combined to make serial cables the predominant form of storage device connection.

First, typical desktop computers and small servers continue to shrink. As a result,
routing cables between the motherboard, device controllers, storage devices, and I/O
devices is difficult. Because they contain many wires, parallel cables are bulky (see
Figure 8.25) and difficult to route inside a typical small computer cabinet. Their size
also restricts airflow, which can cause heat dissipation problems. In contrast, serial
cables are thin and flexible. They occupy less space and are easier to route around
computer components.

Second, although desktops and small servers have grown smaller, the storage sub-
systems large-scale computers use have grown. Many transaction-processing and data-
mining applications require terabytes of secondary storage, for example. Fulfilling this
storage need requires hundreds of disk drives connected to dozens of storage controllers
spread across multiple storage cabinets. Connecting all these devices with parallel cables is
difficult because skew and crosstalk limit cable length to a few meters.

Finally, when electronic switching devices were slower, operating many in parallel was
the only feasible way to achieve high data transfer rates. However, advances in semiconduc-
tor fabrication and electronic switching technology have yielded smaller and faster devices,
which are the basic building blocks of computer components, such as network interface cards
and storage device controllers. As a result, data transfer speeds of hundreds or thousands of
megabits per second across a single cable pair are now possible.

FIGURE 8.25 Parallel ATA (top) and Serial ATA (bottom) cables
Courtesy of Course Technology/Cengage Learning

(continued)

307

Channel Organization

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recognizing these trends, standard-setting organizations for storage devices and
cables have developed serial versions of older parallel standards. In the PC arena, storage
device and computer manufacturers have widely adopted the Serial Advanced Technology
Attachment (SATA) standard. SATA uses a software interface standard that s compatible
with older Parallel ATA (PATA) standards but substitutes a seven-wire cable for PATA s
40-wire cable. A SATA cable uses two wire pairs for serial data transmission in each direc-
tion and three wires for shielding and ground. All desktop computers now use SATA storage
devices and cables for higher performance and simpler low-cost assembly. SATA can also be
used in servers because of its improved features, such as command queuing, hot-swapping,
and better error detection.

In the server arena, serial standards, such as Serial Attached SCSI (SAS), have
replaced older parallel standards, too. Also, bulkier parallel cables carrying electrical sig-
nals have been replaced by optical serial cables. Figure 8.26 shows an older SCSI-3 cable
for connecting a storage array to a server and a newer optical cable. SCSI-3 cables are
bulky and limited to a few meters in length because of skew and crosstalk. Optical serial
cables are much thinner and more flexible and can carry signals much longer distances,
which enables connections between storage arrays and servers to span multiple racks
or rooms.

FIGURE 8.26 Parallel SCSI-3 (top) and serial optical (bottom) cables
Courtesy of Course Technology/Cengage Learning

308

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Channel Sharing
Most local phone service is based on a channel-sharing strategy called circuit switching.
When a user makes a phone call, the full capacity of a channel between the user and the
nearest phone-switching center is devoted to the call. The user has a continuous supply of
data transfer capacity, whether it s needed or not, and the channel is unavailable to other
users until the call is terminated. Circuit switching wastes channel capacity in most data
transmission situations because the channel is held by one sender and receiver, even
during inactive periods, such as silences during a phone conversation.

Circuit switching is inefficient for most data transmission settings because few users
require high data transmission capacity continuously. Typically, transmission capacity is
needed for short periods, or bursts. Channel-sharing techniques use available capacity
efficiently by combining transmissions to and from multiple users. As long as many users
don t need high capacity at the same time, the combined load on the channel averages to
an acceptable level, and the cost of a single channel is shared across more users, thus
reducing the cost per user.

Time-division multiplexing (TDM) describes techniques for splitting data transfer
capacity into time slices and allocating them to multiple users. Packet switching, the most
common type of TDM, divides messages from all users or applications into small pieces
called packets (see Figure 8.27).

FIGURE 8.27 Packet switching the most common form of TDM
Courtesy of Course Technology/Cengage Learning

309

Channel Organization

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Each packet contains a header identifying the sender, recipient, sequence number,
and other information about its contents. Packets are then sent through the network to
their destination as channel capacity becomes available. They can be held in a buffer
temporarily, pending channel availability. If multiple channels are available, multiple
packets can be sent simultaneously. The receiver reassembles packets into the original
message in their intended sequence, even if they arrive in a different order. Transmis-
sion errors must be localized to a specific packet to request retransmitting the correct
packet.

The primary advantage of packet switching is that the telecommunication service
provider determines how to use available data transfer capacity and channels most
effectively. In most situations, the provider can make rapid and automatic decisions that
allocate available capacity efficiently to users. The result is substantially reduced tele-
communication cost because of more efficient use of available capacity.

The main disadvantages of packet switching are varying delays in message trans-
mission and the complexity of creating and routing packets. Because a user doesn t have
a dedicated channel, the time required to send a message is unpredictable; it rises and
falls with the total demand for the available data transfer capacity. Delays can be sub-
stantial when many users send messages simultaneously and available capacity is
insufficient.

Despite its complexities, packet switching is the dominant form of intercomputer
communication. Its cost and complexity are more than offset by more efficient use of
available communication channels. Also, as in other areas of computer and communica-
tion technology, the inherent complexity doesn t translate into high costs because devices
that can cope with the complexity are becoming cheaper and more powerful. Circuit
switching is used only when data transfer delay and available data transfer capacity must
be within precise and predictable limits, as when relaying a digital video broadcast from a
sports arena to a broadcast facility in real time.

Another method for sharing communication channels is frequency-division multi-
plexing (FDM), shown in Figure 8.28. Under FDM, a single broadband (high bandwidth)
channel is partitioned into multiple narrowband (low bandwidth) subchannels. Each sub-
channel represents a different frequency range, or band, within the narrowband channel.
Signals are transmitted in each subchannel at a fixed frequency or narrow frequency
range. Common FDM examples include cable TV and 802.11n wireless networking with
multiple antennas. Long-distance telecommunication providers also use FDM to multiplex
single-mode optical fibers, an application commonly called wavelength-division multi-
plexing (WDM).

FDM might require moving signals intended for one frequency band into another
frequency band. For example, in most cable TV systems, channels 2 through 13 are car-
ried across a coaxial cable at their original broadcast frequencies. Channels above 13 are
remapped to frequencies other than their assigned broadcast frequencies so that they
occupy contiguous narrowband channels within the coaxial broadband channel.

310

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Narrowband channels in a single broadband channel can use different signaling
methods, communication protocols, and transmission speeds. They can be shared by using
packet switching or other TDM methods. Multiple narrowband channels can also be
combined into a parallel transmission channel.

T E C H N O L O G Y F O C U S

InfiniBand

InfiniBand is a data interconnection standard developed by the InfiniBand Trade
Association, a consortium founded by Dell, Hewlett-Packard, IBM, Intel, Microsoft,
and Sun Microsystems. This high-speed communication architecture is intended to
interconnect devices such as servers, secondary storage appliances, and network
switches. The goal is to replace the current jumble of competing interconnection
standards with a unified standard and architecture that increases data transfer rates
substantially.

InfiniBand is based on an interconnection architecture known as switched fabric,
which interconnects devices with multiple data transmission pathways and a mesh of
switches that resembles the interwoven threads of fabric (see Figure 8.29). A fabric
switch connects any sender directly to any receiver and can support many simultaneous
connections. Connections are created on request and deleted when they re no longer
needed, freeing data communication capacity to support other connections. Switched

FIGURE 8.28 Channel sharing with FDM
Courtesy of Course Technology/Cengage Learning

(continued)

311

Channel Organization

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

fabric architecture isn t new, but the digital-switching technology that supports it has
become cost effective since the late 1990s.

Each device is connected to an InfiniBand switch by a host channel adapter (HCA) or a
target channel adapter (TCA). HCAs are used by devices such as general-purpose servers
that can initiate and respond to data transfer requests. An HCA has a direct connection to the
host s primary storage via a device controller attached to the system bus or a special-purpose
memory interface. TCAs are used by simpler devices, such as network switches and storage
appliances.

InfiniBand devices are connected with copper wires or fiber-optic cables. The stan-
dard specifies cable connectors and operational characteristics but not physical cable
construction. Conventional twisted-pair or coaxial cables can t meet the InfiniBand
requirements. Some vendors use a bundle of twin-axial cables. Raw data transmission
rates range from 2.5 to 30 Gbps per connection, and up to four connections can be used
in parallel. Copper cables can be up to 25 meters long, and fiber-optic connections can
extend up to 10 kilometers.

Figure 8.30 shows a typical architecture for a medium to large server farm used by
large e-commerce Web sites. It includes multiple general-purpose servers configured for
specific tasks, network storage servers, and network switches. Specializing each device s
functions makes it easier to enlarge or reduce overall capacity, and device redundancy

FIGURE 8.29 A 3 3 switched fabric
Courtesy of Course Technology/Cengage Learning

(continued)

312

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

increases reliability and fault tolerance. However, many high-speed transmission lines
and switches are necessary to interconnect all system components. These interconnec-
tions are InfiniBand s target market.

InfiniBand has established a firm hold on high-speed connections in large server
farms and supercomputer clusters. However, it competes with other interconnection
standards, such as PCI, Gigabit Ethernet, and Fiber Channel. Many current InfiniBand
products are switches and interconnection bridges for existing components that use
other data communication standards.

FIGURE 8.30 A server farm with network interconnections
Courtesy of Course Technology/Cengage Learning

313

Channel Organization

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

COMMUNICATION COORDINATION

Sender and receiver must coordinate their approaches to various aspects of communication
in a channel, including the start and end times of bits or signal events, error detection and
correction, and encryption methods (or lack thereof). Encryption methods are beyond the
scope of this chapter, but clock synchronization and error detection and correction methods
are described in the following sections.

Clock Synchronization
An important part of any communication protocol is a common transmission rate.
Senders place bits onto a transmission line at precise intervals, and receivers examine
the signal at specific time intervals to extract encoded bits. Unless sender and receiver
share a common timing reference and use equivalent transmission rates, data can t be
extracted correctly from the signal. When sender and receiver share a common timing
reference, they re said to be synchronized.

Two main synchronization problems can occur during message transmission:

Keeping sender and receiver clocks synchronized during transmission
Synchronizing the start of each message

Most computer and communication devices use internal clocks that generate voltage
pulses at a specific rate when a specific input voltage is applied. Unfortunately, these
clocks aren t perfect. Timing pulse rates can vary with temperature and minor power
fluctuations.

Timing fluctuations aren t a problem when all devices use the same clock. Most
parallel transmission standards assign a separate transmission line to carry the sender s
clock pulse. The receiver monitors this clock line continuously and uses it to ensure
that it reads and interprets bits at the same rate the sender encodes and transmits them.

With serial transmission, sending and receiving devices have their own clocks.
Because the clocks are independent, there s no guarantee that their timing pulses are
generated at exactly the same time. Most communication protocols transmit clock pulses
from sender to receiver when a connection is first established. However, even if perfect
synchronization is achieved at that time, clocks can drift out of synchronization later, and
then bit interpretation errors by the receiver become more likely.

Figure 8.31 shows an example of errors resulting from unsynchronized clocks.
The receiving device s clock pulses are generated at different times than the sender s
clock pulses, resulting in misalignment of bit time boundaries. In this example, the receiver
can t interpret several bits correctly because they contain two different signal levels.

Sender and receiver must occasionally transmit timing signals over the data transmis-
sion line to ensure that their clocks are synchronized. They must also agree on the
boundaries of each message, and to do so, they must agree on message length. Two
common approaches to synchronizing clocks and coordinating message boundaries are
synchronous transmission and asynchronous transmission. These approaches are
sometimes referred to as character-framing methods when messages consist of ASCII or
Unicode characters.

Synchronous transmission ensures that sender and receiver clocks are always
synchronized by sending continuous data streams. Messages are transmitted in fixed-size

314

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

byte groups called blocks (see Figure 8.32). Because block size is always the same, the
receiver always knows where one block ends and another begins. If necessary, transmis-
sion blocks are separated by a continuous stream of synchronous idle characters, which
have a predetermined pattern of signal transitions designed for easy clock synchroniza-
tion. For example, the data start flag is an easily recognizable bit pattern that differs from
the synchronous idle message and data end flag bit patterns. These differences enable the
receiver to detect the beginning of a new transmission block.

In asynchronous transmission, messages are sent on an as-needed basis. They can be
sent one after another, or there can be periods of inactivity between messages. From the
receiver s standpoint, messages arrive at random or intermittent times. Clock drift is a
major problem in asynchronous transmission. During idle periods, sender and receiver
clocks can drift out of synchronization because no data or timing signals are being trans-
mitted. When the sender does transmit data, the receiver must resynchronize its clock
immediately to interpret incoming signals correctly.

FIGURE 8.31 Communication errors resulting from unsynchronized clocks
Courtesy of Course Technology/Cengage Learning

315

Communication Coordination

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Asynchronous transmission adds one or more start bits to the beginning of each mes-
sage. The start bit wakes up the receiver, informs it that a message is about to arrive,
and allows the receiver to synchronize its clock before data bits arrive. Figure 8.33 shows
a message containing a single byte preceded by a start bit. In network transmissions, doz-
ens or hundreds of bytes are usually transmitted as a unit. Each byte group is preceded by
one or more start bits.

FIGURE 8.32 Typical format for messages transmitted with synchronous character-framing
methods

Courtesy of Course Technology/Cengage Learning

FIGURE 8.33 Asynchronous character framing for serial transmission, including a start bit
Courtesy of Course Technology/Cengage Learning

316

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Synchronous transmission uses channel capacity more efficiently than asynchronous
transmission because data is transmitted in large blocks, with fewer bits used to mark
message boundaries and synchronize clocks. However, because transmission is continu-
ous, synchronous transmission can t be used when multiple senders and receivers share
the same channel. Asynchronous transmission is used in most networks, modem commu-
nication, and communication between computer systems and peripheral devices, such as
keyboards and printers. Synchronous transmission is used only for high-speed communi-
cation between a dedicated sender and receiver, such as between two mirrored or clus-
tered mainframe computers.

Error Detection and Correction
A crucial component of any communication protocol is a method for detecting and
correcting errors in data transmission, reception, or interpretation. All widely used error-
detection methods are based on some form of redundant transmission, meaning a redun-
dant message or message component is transmitted with or immediately after the original
message. The receiver compares the original message with the redundant transmission,
and if the two match, the original message is assumed to have been transmitted, received,
and interpreted correctly. If the two don t match, a transmission error is assumed to have
occurred, and the receiver asks the sender to retransmit the message.

Error detection and correction methods vary in the following characteristics:

Size and content of the redundant transmission
Efficient use of the communication channel
Probability that an error will be detected
Probability that an error-free message will be identified as an error
Complexity of the error-detection method

Size and content of the redundant transmission are inversely related to efficient use
of the channel. For example, one possible error-detection method is to send three copies
of each message and verify that they re identical. This method is easy to implement, but it
uses the channel at only one-third of its capacity, or less if many errors are detected (cor-
rectly or incorrectly). Changing the method to send only two copies of each message
increases maximum channel utilization to 50% of raw capacity.

For most methods and channels, the probability of detecting errors can be computed
mathematically or statistically. The probability of not detecting a real error is called Type I
error. The probability of incorrectly identifying good data as an error is called Type II
error. For any error-detection method, Type I and Type II errors are inversely related
meaning a decrease in Type I error is accompanied by an increase in Type II error.

N O T E
Type II errors result in needless retransmission of data that was received correctly but incorrectly
assumed to be in error. Increasing Type II error decreases the channel efficiency because a larger
proportion of channel capacity is used to retransmit data needlessly.

In some types of communication channels, such as a system bus or a short-haul fiber-
optic cable, the probability of a transmission or reception error is extremely remote. In
other types of channels, such as high-speed analog modem channels, errors are common.

317

Communication Coordination

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Different methods of error detection are suited to different channels and purposes. For
example, error detection isn t normally used for digital voice transmissions because users
aren t sensitive to occasional minor errors. At the other extreme, communication between
bank computers and ATMs over copper wire uses extensive error checking because of the
data s importance and the higher error rate in long-distance electrical transmissions.

Common methods of error detection include the following, discussed in the next
sections:

Parity checking (vertical redundancy checking)
Block checking (longitudinal redundancy checking)
Cyclic redundancy checking

Parity Checking

Character data is often checked for errors by using parity checking, also called vertical
redundancy checking. In a character-oriented transmission, one parity bit is appended to
each character. The parity bit value is a count of other bit values in the character.

Parity checking can be based on even or odd bit counts. With odd parity, the sender
sets the parity bit to 0 if the count of 1-valued data bits in the character is odd. If the
count of 1-valued data bits is even, the parity bit is set to 1 (see Figure 8.34). Under even
parity, the sender sets the parity bit to 0 if the count of 1-valued data bits is even or to 1 if
the count of 1-valued data bits is odd. The receiver counts the 1-valued data bits in each
character as they arrive and then compares the count against the parity bit. If the count
doesn t match the parity bit, the receiver asks the sender to retransmit the character.

Parity checking has a high Type I error rate. For example, a transmission error that flipped
the values of 2, 4, or 6 bits in an ASCII-7 character wouldn t be detected. In addition, this
method is unreliable in channels that are subject to error bursts affecting many adjacent bits.
It s more reliable in channels with rare errors that are usually confined to widely spaced bits.

FIGURE 8.34 Sample parity bits
Courtesy of Course Technology/Cengage Learning

318

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Block Checking

Parity checking can be expanded to groups of characters or bytes by using block checking,
also called longitudinal redundancy checking (LRC). To implement this method, the
sending device counts the number of 1-valued bits at each bit position in a block. It then
combines parity bits for each position into a block check character (BCC) and adds it to
the end of the block (see Figure 8.35). The receiver counts the 1-valued bits in each
position and derives its own BCC to compare with the BCC the sender transmitted. If
the BCCs aren t the same, the receiver requests retransmission of the entire block. In
Figure 8.35, an even parity bit is computed for each bit position of an 8-byte block. The
set of parity bits forms a BCC that s appended to the block for error detection.

This method is vulnerable to the same types of errors as parity checking. Type I error
rates can be reduced by combining parity checking and block checking. However, even
with this approach, some compensating errors might go undetected.

Cyclic Redundancy Checking

Cyclic redundancy checking (CRC) is the most widely used error-detection method. Like
block checking, it produces a BCC for a group of characters or bytes. This CRC character,
generated by a complex mathematical algorithm, is usually more than 8 bits and can be as
large as 128 bits. CRC bit strings can be computed by software or special-purpose micro-
processors incorporated into data communication and network hardware.

CRC has much lower Type I and Type II error rates than parity and block checking.
Both error rates depend on the size of the transmitted data block and CRC bit string. CRC
bit strings of 64 or 128 bits are commonly used in network packets and for magnetic tape
data backups.

FIGURE 8.35 Block checking
Courtesy of Course Technology/Cengage Learning

319

Communication Coordination

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

B U S I N E S S F O C U S

Upgrading Storage and Network Capacity

The Bradley Advertising Agency (BAA) specializes in designing print and video ads,
mostly under contract to other advertising agencies. BAA employs 30 people; most are
engaged in design and production work. Print ad copy is produced almost entirely by
computer, using Adobe Illustrator and other software on 15 networked Dell and Apple
desktop computers. BAA also uses many peripheral devices, including scanners, color
printers, and a high-speed color copier. The company has two Dell rack-mounted servers
connected to a Dell storage array with ten 146 GB SCSI disks. One server acting as the
primary file server is also connected to an 80 GB DLT tape drive and a Blu-ray re-
writable DVD drive.

Over the past five years, BAA has gradually migrated from standard-definition analog
video cameras and videotape-editing equipment to high-definition video equipment for
video production projects. Two high-performance workstations are dedicated to digital
video editing and production, and BAA plans to add two more this year and two the fol-
lowing year. The files used to store print ads are normally 200 to 500 MB per project but
can range as high as 5 GB, and BAA often has several dozen print projects in process at a
time. Video production files are much larger than print files. For example, files for a typ-
ical standard-definition 30-second TV ad require 10 GB of storage; high-definition video
files are six to eight times larger.

File-sharing performance was already slow when the first video-editing workstations
were purchased. A consultant determined that the file server was using only about 20% of
its data transfer capacity, and the network was the performance bottleneck. The existing
network is an Ethernet LAN using twisted-pair cable installed in 1993. The LAN origi-
nally operated at 10 Mbps, but the network hub was upgraded to a 10/100 Mbps switch.
All the desktop computers operate at 100 Mbps. The video-editing workstations and the
server have network interfaces that support 100 Mbps or 1 Gbps speed, but they re
limited to 100 Mbps by the current switch.

Network bottlenecks have become more common since the two video-editing work-
stations were acquired. Access to print ad files that took a few seconds a year or two ago
can now take up to 5 minutes during busy periods. Recently, two 250 GB disks were
added to each video-editing workstation so that video files can be stored locally during
editing, but downloading and uploading a project to or from the server can take 15 min-
utes or more. Project files are sometimes moved between workstations several times a
day if both machines are being used for the same project. Because BAA is growing rap-
idly, it expects disk storage requirements to double every year for the next three years.

BAA is studying alternatives to increase data storage, data communication, and
network capacity, including the following:

Upgrading the existing network to Gigabit Ethernet with existing cabling
Installing a parallel 1 or 10 Gbps network for the server and video-editing
workstations with new copper or fiber-optic cable
Adding disks to the current storage cabinet (which has four empty slots) or
adding a second storage cabinet
Buying a network-attached storage server with at least 5 TB of disk capacity

(continued)

320

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Purchasing one or more InfiniBand storage devices and interfacing them to the
existing file server and video-editing workstations via an InfiniBand switch

BAA is unsure whether its cabling will work with Gigabit Ethernet because it isn t
certified as Category 5. It s also concerned that even if the existing cable works, the net-
work will soon be saturated, and the cable will be unable to support a future move to
10 Gbps Ethernet. BAA is also concerned about investing in expensive InfiniBand
technology.

Questions:

If BAA s current cable is tested and determined to be reliable with Gigabit
Ethernet, should the company use its existing wiring or install new wiring?
If costs (including installation labor) for Category 6 and fiber-optic cable are
$25,000 and $40,000, respectively, which cable should BAA choose if the
existing network must be rewired for Gigabit Ethernet?
What are the advantages of operating a separate high-speed network to support
video-editing applications in addition to the existing network? What are the
disadvantages? Which cable type is most suitable?
Should BAA seriously consider moving to InfiniBand and stand-alone storage
servers? Why or why not? If BAA should adopt InfiniBand, how quickly should
it do so?

321

Communication Coordination

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

A communication protocol is a set of rules and conventions covering many aspects of
communication, including message content and format, bit encoding, signal transmission,
transmission medium, and channel organization. It also includes procedures for coordinat-
ing the flow of data, including media access, clock synchronization, and error detection and
correction.

Data bits can be encoded into analog or digital signals, which can be transmitted via elec-
trical, optical, or radio frequency sine waves. Bits are encoded in sine waves by modulating
one or more wave characteristics. Possible modulation techniques include on-off keying
and frequency, amplitude, and phase-shift modulation.

Important characteristics of transmission media include raw data transfer rate, bandwidth,
and susceptibility to noise, distortion, external interference, and attenuation. Bandwidth is
the difference between the highest and lowest frequencies that can be propagated through
a transmission medium. Higher-bandwidth channels can reliably carry composite signals
with more data content over longer distances.

The effective data transfer rate can be much lower than the raw data transfer rate because
of attenuation, distortion, and noise. Attenuation is loss of signal power as it travels through
the transmission medium. Distortion is caused by interactions between the signal and the
transmission medium. Noise can be generated internally or added through external interfer-
ence. The signal-to-noise (S/N) ratio is a measure of the difference between noise power
and signal power.

Electrical cables are of two main types twisted-pair cable and coaxial cable. Both use
copper but differ in construction and shielding. Twisted pair is inexpensive but limited in
bandwidth, S/N ratio, and transmission speed because of limited shielding. Coaxial and
twin-axial cables are more expensive but offer higher bandwidth, a higher S/N ratio, and
lower distortion.

Optical cables are of two types multimode and single mode. Single-mode cable provides
higher transmission rates than multimode cable but at a much higher cost. Optical cables
have high bandwidth, little internally generated noise and distortion, and immunity to
electromagnetic interference.

Data can be transmitted wirelessly via radio waves and infrared or visible light. Short-distance
RF transmission using IEEE 802.11 standards is widely used for LANs. Long-distance
RF channels are in short supply because of their limited number and intense competition for
licenses. RF channels are generally leased from telecommunication companies on an as-
needed basis. Infrared and visible light transmission have limited applications because of
line-of-sight requirements and atmospheric interference.

Channel organization describes the number of lines dedicated to a channel and the
assignment of specific signals to these channels. A simplex channel uses one optical fiber
or copper wire pair to transmit data in one direction only. A half-duplex channel is identical
to a simplex channel but can send a line turnaround message to reverse transmission
direction. Full-duplex channels use two fibers or wire pairs to support simultaneous
transmission in both directions.

322

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Parallel transmission uses multiple lines to send several bits simultaneously. Serial trans-
mission uses a single line to send one bit at a time. Parallel transmission provides higher
channel throughput, but it s unreliable over distances of more than a few meters because of
skew and crosstalk. Serial transmission is reliable over much longer distances. Serial
channels are cheaper to implement because fewer wires or wireless channels are used.

Channels are often shared when no single user or application needs a continuous supply of
data transfer capacity. In circuit switching, an entire channel is allocated to a single user for
the duration of one data transfer operation. Packet switching, a time-division multiplexing
method, allocates time on the channel by dividing many message streams into smaller units
called packets and intermixing them during transmission. Frequency-division multiplexing
divides a broadband channel into several narrowband channels.

Sender and receiver must synchronize clocks to ensure that they use the same time peri-
ods and boundaries to encode and decode bit values. A single shared clock is the most
reliable synchronization method, but it requires sending clock pulses continuously from
sender to receiver. Asynchronous transmission relies on specific start and stop signals
(usually a single bit) to indicate the beginning and end of a message unit. Synchronous
transmission maintains a continuous flow of signals from sender to receiver to provide
constant opportunities for clock synchronization.

Error detection is always based on some form of redundant transmission. The receiver
compares redundant copies of messages and requests retransmission if they don t match.
Increasing the level of redundancy increases the chance of detecting errors but at the
expense of reducing channel through put. Common error-detection schemes include parity
checking (vertical redundancy checking), block checking (longitudinal redundancy check-
ing), and cyclic redundancy checking.

At this point, you have a thorough understanding of how data is encoded and transmitted
between computer systems. Data communication technology is the foundation of computer
networks, but other software and hardware technologies are required. Chapter 9 discusses
computer network hardware, protocols, and architecture, and Chapter 13 discusses system
software that supports distributed resources and applications.

Key Terms

802.11

802.11a

802.11b

802.11g

802.11n

acknowledge (ACK)

amplifier

amplitude

amplitude modulation (AM)

amplitude-shift keying (ASK)

analog signal

asynchronous transmission

attenuation

bandwidth

binary signals

bit time

block check character (BCC)

block checking

broadband

broadcast mode

carrier wave

Category 5

323

Key Terms

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Category 6

character-framing methods

circuit switching

coaxial cable

communication channel

communication protocol

composite signal

crosstalk

cycle

cyclic redundancy checking (CRC)

digital signal

discrete signal

distortion

diversity

effective data transfer rate

electromagnetic interference (EMI)

even parity

fiber-optic cable

frequency

frequency-division multiplexing (FDM)

frequency modulation (FM)

frequency-shift keying (FSK)

full-duplex mode

guided transmission

half-duplex mode

host channel adapter (HCA)

InfiniBand

line turnaround

longitudinal redundancy checking (LRC)

message

modulator-demodulator (modem)

multilevel coding

multimode graded-index cable

multimode step-index cable

narrowband

negative acknowledge (NAK)

noise

odd parity

on-off keying (OOK)

packets

packet switching

parallel transmission

parity bit

parity checking

phase

phase-shift keying (PSK)

phase-shift modulation

radio frequency (RF)

raw data transfer rate

repeater

return wire

Serial Advanced Technology Attachment
(SATA)

Serial Attached SCSI (SAS)

serial transmission

signal

signal-to-noise (S/N) ratio

signal wire

simplex mode

sine wave

single-mode cable

skew

start bits

switched fabric

synchronous idle characters

synchronous transmission

target channel adapter (TCA)

time-division multiplexing (TDM)

transmission medium

twin-axial cable

twisted-pair cable

Type I error

Type II error

unguided transmission

vertical redundancy checking

wavelength-division multiplexing (WDM)

wired transmission

wireless transmission

324

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Vocabulary Exercises

1. transmission sends bits one at a time over a single transmission line or electrical
circuit.

2. During half-duplex transmission, sender and receiver switch roles after a(n)
message is transmitted.

3. encodes data by varying the distance between wave peaks in an analog signal.

4. A(n) converts a digital signal to an analog signal so that digital data can be
transmitted over analog phone lines.

5. Serial transmission standards, including and , are replacing parallel
transmission standards for connecting secondary storage devices and controllers.

6. The of a sine wave is measured in hertz.

7. Most local phone service uses switching to route messages from a wired home
phone to the local phone-switching center.

8. Most networks use switching to send messages from sender to receiver.

9. In , a bit is added to each character or byte, and the bit value is determined
by counting the number of 1 bits.

10. A(n) signal is a discrete signal that can encode only two possible values.

11. A(n) wave transports encoded data through a transmission medium.

12. With parity checking, sender and receiver must agree whether error detection is based
on or .

13. A channel s describes the mathematical relationship between noise power and
signal power.

14. is any change in a signal characteristic caused by components of the
communication channel.

15. For any error-detection method, a decrease in is accompanied by an increase
in error.

16. can t affect optical signals but can affect electrical or RF signals.

17. A communication channel using electrical signals must have at least two
wires a(n) and a(n) to form a complete electrical circuit.

18. measures a channel s theoretical capacity. measures the actual
capacity of a channel when a specific communication protocol is used.

19. Multiple messages can be transmitted on a single transmission line or circuit by
multiplexing or multiplexing.

20. A(n) signal can encode an infinite number of possible numeric values.

21. is a measure of peak signal strength.

22. In asynchronous transmission, at least one is added to the beginning of each
message.

23. The term describes encoding data as variations in one or more physical
parameters of a signal.

325

Vocabulary Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24. In transmission, blocks or characters arrive at unpredictable times, and no signal
is transmitted during idle periods.

25. A medium s is the difference between the highest and lowest frequencies that can
be transmitted.

26. mode implements two-way transmission with two separate communication
channels; mode implements two-way transmission with only one communication
channel.

27. encodes data by varying the magnitude of wave peaks in an analog signal.

28. transmission uses multiple lines to send multiple bits simultaneously.

29. A(n) extends a signal s range by retransmitting the signal without any noise or
distortion from earlier transmission stages.

30. generates a(n) consisting of a single parity bit for each bit position in
the group of characters or bytes.

31. In transmission, signals are transmitted continuously, even when there s no data
to send, to ensure clock synchronization.

32. uses more than two signal characteristic levels to encode multiple bits in a single
signal.

33. encodes bit values with rapid pulses of electrical or optical power.

34. is noise added to the signal from EMI generated by adjacent transmission lines in
a parallel communication channel.

35. Frequency-division multiplexing of optical channels is sometimes called .

36. The length of a parallel communication channel is limited by , which can cause
bits to arrive at slightly different times.

37. A receiver informs a sender that data was received correctly by sending a(n)
message. It informs the sender of a transmission or reception error by sending
a(n) message.

38. is loss of signal strength as it travels through a transmission medium.

39. Messages transmitted by time-division multiplexing are divided into before
physical transmission.

40. cable is an improved version of Category 5 cable that transmits data at high
speeds more reliably.

41. Wireless LANs following the IEEE , , and standards transmit in
the 2.4 GHz band.

Review Questions

1. What are the components of a communication channel?

2. What are the components of a communication protocol?

3. Describe frequency modulation, amplitude modulation, phase-shift modulation,
and on-off keying.

326

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. How does multilevel coding increase a channel s effective data transfer rate?

5. Describe the relationship between bandwidth, data transfer rate, and signal frequency.

6. How can noise and distortion be introduced into a transmission medium? How does a
channel s S/N ratio affect the reliability of data transmission?

7. Compare twisted-pair, coaxial, twin-axial, multimode fiber-optic, and single-mode fiber-optic
cable in terms of construction, susceptibility to EMI, cost, and bandwidth or transmission speed.

8. What are the advantages of wireless transmission using RF waves compared with infrared
and visible light waves?

9. Describe simplex, half-duplex, and full-duplex transmission and compare them in terms of
cost and effective data transfer rate.

10. Why is a channel s actual data transfer rate usually less than the theoretical maximum of
the technology used to implement the channel?

11. Compare serial and parallel transmission in terms of channel cost, data transfer rate, and
suitability for long-distance data communication. Why are standards for connecting
secondary storage devices migrating from parallel to serial transmission?

12. What are the differences between synchronous and asynchronous data transmission?

13. What is character framing? Why is it generally not an issue in parallel data transmission?

14. Describe the differences between even and odd parity checking.

15. What s a block check character? How is it computed and used?

16. Compare frequency-division and time-division multiplexing. What physical characteristics
of the communication channel does each technique require? Which provides higher data
transmission capacity?

17. What s the difference between an amplifier and a repeater?

18. Compare IEEE 802.11b, 802.11g, and 802.11n wireless transmission in terms of raw
data transfer rates, transmission frequencies, efficient use of available bandwidth, and
susceptibility to noise and interference.

Problems and Exercises

1. Calculate the effective data transfer rate for a dedicated channel, given these characteris-
tics: Data is transmitted in blocks of 48 bytes at 100 Mbps, an 8-bit BCC is used for error
detection, and an error is detected, on average, once every 1000 transmitted blocks.

2. For data transmitted over twisted-pair cable, you have these characteristics: A signal s
power on the channel is 75 dB, signal attenuation is 5 dB per 100 meters, and average
noise power on the cable is 0.1 dB per meter. Answer the following questions:

What s the S/N ratio at the end of a 50-meter channel?

What s the S/N ratio at the end of a 1-kilometer channel?

What s the maximum channel length if the receiving device requires at least
20 dB of S/N ratio for reliable operation?

327

Problems and Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Research Problems

1. Parity checking is often used in computer memory to detect errors. Investigate current
memory types, including parity and error-correcting code (ECC) memory. How is parity
checking implemented in the memory module? How are errors detected, and what happens
when an error is detected? What types of computer systems should use parity or ECC
memory, and why?

2. Research InfiniBand Architecture (www.infinibandta.org) to investigate some issues not
addressed in the chapter. What signal encoding, cables, and connectors are used? Is the
channel serial or parallel? Is transmission synchronous or asynchronous? How are errors
detected and corrected?

3. Investigate the IEEE FireWire data communication standard. How is data encoded, and
what is the raw transmission speed? Describe how the standard enables quality of service
guarantees when transmitting multimedia and other time-sensitive data.

4. Investigate the IEEE 806.16 (WiMAX) wireless networking standard. How do transmission
speeds and distances compare with the IEEE 802.11 standards? What methods are used
to detect and correct transmission errors? Will 802.16 networks eventually replace 802.11
networks? Why or why not?

328

Chapter 8

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.infinibandta.org

C H A P T E R 9
COMPUTER NETWORKS

C H A P T E R G O A L S

Describe logical and physical network topologies

Explain message forwarding across local and wide area networks

Describe media access control protocols

Describe network hardware devices

Summarize the OSI network layers

Describe the Internet architecture and network protocols

Describe IEEE physical network standards, including Ethernet

Chapter 8 discussed data communication between a single sender and a single receiver, including

data transfer between hardware devices in a computer system, between a computer and a peripheral

device (such as a printer), and between two connected computers. Communication between

computers in a network is more complex, as shown in Figure 9.1.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

NETWORK TOPOLOGY

The term network topology refers to the spatial organization of network devices, physical
routing of network cabling, and flow of messages from one network node to another. An
end node is a device such as a workstation, server, or printer that can be the source or
destination of a message. Physically linking two nearby end nodes is usually straightfor-
ward. A point-to-point transmission line is laid over the shortest path and connected
directly to both end nodes.

Figure 9.2(a) shows a mesh topology, in which every node pair is connected by a
point-to-point link. This topology requires many transmission lines if the number of end
nodes is large. To connect four end nodes, for example, six transmission lines and three
connections per node are required. As the number of end nodes (n) increases, the
number of point-to-point transmission lines rises quickly, as described by this formula:

1 2 3 n - 1

Mesh topology is impractical for all but very small networks. For larger networks, a
segmented approach that shares links among end nodes is more efficient. Note the
similarity of Figure 9.2(b) to a roadway system. End nodes are served by low-capacity
links that connect to higher-capacity shared links, just as driveways connect houses to
residential streets. Smaller shared links are connected to larger shared links in the same
way residential streets connect to higher-capacity roads and highways.

FIGURE 9.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

330

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

If the end nodes in Figure 9.2(b) were parts factories and assembly plants and
the links between them were roads, how would you design a delivery service to
move goods between them? Most large-scale delivery services use a store and
forward system to connect source and destination nodes. Figure 9.3 shows the network
in Figure 9.2(b) with three central nodes of small capacity and one of large capacity. In
a physical delivery system, the central nodes are transfer points located at or near the
junction of major roadways or air routes. Shipments move from end nodes to the nearest
central node, where they are combined into larger shipments to other central nodes.

Computer networks and shipping networks are similar in that both connect many end
nodes by using a system of interconnected transmission routes and central nodes. Both
network types ensure reliable, rapid movement of shipments or messages between end nodes
with minimal investment in network infrastructure. Both network types achieve reliability
and cost efficiency by carefully organizing end nodes, transmission routes, and central nodes.

Network topology is an essential factor in computer network efficiency and reliability
and can be referred to in physical or logical terms. Physical topology is the physical
placement of cables and device connections to these cables. Logical topology is the path

FIGURE 9.2 End nodes connected by (a) point-to-point and (b) shared connections
Courtesy of Course Technology/Cengage Learning

331

Network Topology

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

messages traverse as they travel between end and central nodes. Logical topology can
differ from the underlying physical topology, as later examples illustrate.

Physical topologies include the following:

Mesh This topology directly connects every node to every other node;
practical only for very small networks.
Bus A bus topology directly connects every node to a single shared trans-
mission line, as shown in Figure 9.4.
Ring A ring topology directly connects every node to two other nodes with
a set of links forming a loop or ring (see Figure 9.4).
Star A star topology directly connects every node to a shared hub, switch,
or router (see Figure 9.5).

The characteristics differentiating these topologies include the length and routing of
network cable, type of node connections, data transfer performance, susceptibility of the
network to failure, and cost.

FIGURE 9.3 Shared connections and central nodes
Courtesy of Course Technology/Cengage Learning

Bus Ring

FIGURE 9.4 Bus and ring topologies
Courtesy of Course Technology/Cengage Learning

332

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Networks using bus and ring physical topologies were once common but are rarely
used today. The historical advantages of bus networks (simplicity, reliability, and
low-cost construction) have faded as network hardware has become cheaper and more
reliable. Ring networks once had a performance advantage achieved at the expense of
complex configuration. However, as network technology evolved, this advantage was
eroded by faster network devices and network managers desire to simplify network
configuration. Star topologies now dominate physical network topology for wired
networks. A bus topology is still common in wireless networks, described later in this
chapter.

The advantage of a star topology is simple wiring. A transmission line connects each
end node to the central node, which is typically in a central place in a building or a floor
of a multistory building. The main disadvantage is that failure of the central node disables
the entire network. Star networks now use two transmission lines (full-duplex mode,
discussed in Chapter 8) between each end node and the central node, which enables
messages to travel in both directions simultaneously.

MESSAGE ADDRESSING AND FORWARDING

This section discusses how messages sent by end nodes find their way through transmis-
sion lines and central nodes to their ultimate destination. Many types of central nodes can
be used in a network, including hubs, switches, and routers. Although they have internal
differences, they share a similar purpose forwarding incoming messages from end nodes
to the recipient end node or another central node that s one step closer to the recipient
end node. To simplify the discussion of forwarding, the differences are ignored for now,

FIGURE 9.5 Star topology
Courtesy of Course Technology/Cengage Learning

333

Message Addressing and Forwarding

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and the generic term central node is used to describe any device that forwards mes-
sages. Later in Network Hardware, you learn about different types of central nodes in
more detail.

Figure 9.6 shows a typical campus wired network. Entire buildings, such as Jones
Hall, or parts of buildings, such as the first three floors of Smith Hall, are organized into
small networks wired as physical star topologies. Each network covering a floor or
building is called a local area network (LAN).

A zone network connects all LAN central nodes in a group of buildings, a zone central
node connects each zone network to the campus backbone network, and a campus
central node connects the campus backbone network to the Internet. The entire campus
network is a wide area network (WAN), including end nodes, LANs, zone networks, the
campus backbone network, and central nodes.

Messages can travel through many transmission lines and central nodes before reach-
ing their destinations. Each message includes a destination address that a central node

FIGURE 9.6 A typical campus wired network
Courtesy of Course Technology/Cengage Learning

334

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

examines to determine where to forward the message. How does a central node know
the addresses of other nodes in its network, and how does it forward a message to a dis-
tant address? Each central node maintains a table of node addresses and transmission
lines or connection ports, called a forwarding table, and uses this table to make forward-
ing decisions. Each time an end node or a central node is powered on, it sends a message
announcing its presence and its address to all nearby nodes. Central nodes listen for these
messages and update their tables accordingly.

The procedure for forwarding a message between two end nodes in the same LAN
depends on the logical network topology. For a logical bus, the central node examines the
destination address to see whether it s local. If so, the central node forwards the message
to all other local nodes. Each local node sees the message, but only the node with a
matching destination address processes the message; all other nodes simply ignore it. If
the destination address isn t local, the central node forwards the message to the next
central node. The central node needs to distinguish only between local and nonlocal
addresses to determine whether to forward the message to another central node.

Forwarding local messages in a logical star network is more complex. Because each
node is attached to its own transmission line, the central node s forwarding tables keep
track of which transmission line is connected to which address. A local message is
forwarded from the source node s transmission line to the destination node s transmission
line. The central node connects local sending and receiving nodes as needed for each
incoming message.

Messages coming from outside the LAN to a local node are handled much like
messages between local nodes. For logical bus networks, messages arriving from another
central node are copied to the local bus. For a logical star network, the central node
looks up the target address and copies the message to the target node s transmission line.
Table 9.1 summarizes the forwarding decisions made by LAN central nodes.

The zone and campus central nodes in Figure 9.6 must make more sophisticated
forwarding decisions than LAN central nodes do, and they need to know how to forward
messages to any network address. One method of storing and accessing forwarding infor-
mation on all addresses is to store a master directory of all known network addresses on
one or more central servers and have central nodes get forwarding information by sending
queries to these servers. This method works in theory, but in practice, it has many short-
comings, including the following:

TABLE 9.1 LAN central node routing decisions

Source and destination Routing action

Local node to local node For ring or bus, propagate message through local medium.
For star, copy message from source node s transmission line to
target node s transmission line.

Nonlocal node to local node For ring or bus, copy message to local medium.
For star, copy message from source node s transmission line to
target node s transmission line.

Local node to nonlocal node Forward message to the next central node.

335

Message Addressing and Forwarding

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Every central node must know the location of one or more directory servers.
If a server is moved, all central nodes must update their server location
information.
The master directory size is large, as is the volume of directory service
requests. Many powerful computers are required to store the directory and
answer queries.
Every directory query travels over long distances, and WANs are clogged with
directory queries and responses.
Directory updates must be copied to each server, requiring multiple update
messages (one for each server) or regular synchronization of directory
content between servers. Either approach further clogs WANs.

Instead of the master directory method, most WANs use a distributed approach to
maintaining directories. With this approach, each central node knows the addresses and
physical locations of other nodes on its network and knows other nearby central nodes
and the groups of addresses they control. Each central node also has one or more default
destinations for addresses it doesn t know. Central nodes exchange information periodi-
cally, so they are kept updated on changes to network nodes and topology.

For example, a message is forwarded from an end node in Jones Hall to an end node
in the south campus zone network in Figure 9.6. The Jones Hall LAN central node knows
the addresses of all Jones Hall end nodes and the address of the north campus zone
central node. When the central node receives a message to any node outside its LAN, it
forwards the message to the north campus zone central node.

The north campus zone central node examines the destination address and compares
it with addresses in its forwarding table. The LAN central nodes in Jones Hall and Smith
Hall exchange forwarding information periodically with the north campus central node so
that it knows the range of addresses each LAN central node services. Because the desti-
nation address doesn t match any of its known address ranges, the north campus central
node forwards the message to the campus central node.

The campus central node knows that the destination address falls within a range of
addresses controlled by the south campus central node, so it forwards the message to that
central node. The south campus central node knows which addresses are controlled by
which LAN central nodes and forwards the message to the correct LAN central node,
which then forwards the message to its final destination.

N O T E
This description of distributed WAN forwarding is general and omits many details. There are many ways
to implement it, but the method just described approximates the standard message forwarding used in
most networks.

MEDIA ACCESS CONTROL

When multiple nodes share a common transmission medium, as in wireless LANs, they
must coordinate their activities to avoid interfering with one another. If multiple nodes
attempt to transmit across the same medium at the same time, their messages mix,

336

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

producing noise or interference that s called a collision. Nodes sharing a common
transmission medium follow a Media Access Control (MAC) protocol to determine how
to share the medium efficiently. MAC protocols fall into two broad categories: those that
allow collisions but detect and recover from them and those that attempt to avoid
collisions altogether.

Carrier Sense Multiple Access/Collision Detection (CSMA/CD) is a MAC protocol
described in the IEEE 802.3 standard and developed for early Ethernet networks, based
on a wired bus topology. The basic strategy is not to prevent collisions but to detect and
recover from them. Nodes using this protocol follow this procedure:

1. A node ready to transmit listens (carrier sense) until no traffic is detected.
2. The node then transmits its message.
3. The node listens during and immediately after its transmission. If abnormally

high signal levels are heard (a collision is detected), the node ceases
transmission.

4. If a collision is detected, the node waits for a random time interval and then
retransmits its message.

Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) is a MAC protocol
used in wireless networks. The name is a misnomer because collisions aren t avoided
completely. Instead, CSMA/CA modifies CSMA/CD to prevent a unique problem in
wireless transmission. In the node arrangement in Figure 9.7, say that both laptops can
transmit to and from the access point reliably but are too far from one another to receive
each others transmissions. In this situation, carrier sense doesn t always prevent
collisions because neither laptop can hear the other. Therefore, both might transmit at
the same time because they think the RF channel is unused, and neither hears the
interference pattern caused by the other s transmission.

To prevent this problem, CSMA/CA uses a three-step carrier sense and transmission
sequence:

1. A node that wants to transmit sends a ready-to-send (RTS) signal.
2. If the wireless access point detects no collision, it transmits a clear-to-send

(CTS) signal.
3. After receiving the CTS signal, the node transmits its data.

Because all nodes can hear the wireless access point, they hear the CTS signal, and
only the node that transmitted the RTS signal answers the CTS signal with a data trans-
mission. If any other node wants to transmit, it waits at least one transmission interval
after hearing a CTS before sending its own RTS. Collisions are still possible with CSMA/

FIGURE 9.7 Two laptops transmitting to a wireless access point
Courtesy of Course Technology/Cengage Learning

337

Media Access Control

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

CA but only with RTS signals. To avoid subsequent data transmission collisions, the
wireless access point doesn t respond to colliding RTS signals. Lacking an immediate CTS
response, each node assumes a collision has occurred and waits a random time interval
before retransmitting an RTS signal.

NETWORK HARDWARE

Network topology, addressing and forwarding, and MAC functions are carried out by
network hardware devices that include the following:

Network interface cards (NICs) or network adapters
Hubs
Switches
Routers
Wireless access points

Table 9.2 summarizes the functions of each device. Network hardware is constantly
evolving, and networking functions are frequently combined in a single device, particu-
larly in newer hardware. When selecting devices, understanding their functional capabili-
ties is important because device names might be misleading.

Network Interface Cards
A device that connects a node, such as a computer or network printer, to a network
transmission cable is called a network interface card (NIC) or network adapter. For a
single computer, it can be a printed circuit board or card attached to a bus expansion
port, or it can be integrated on the computer motherboard. An OS device driver controls
the NIC and directs the hardware actions that move messages between the NIC and
primary storage. For a peripheral device, such as a printer, a NIC is more complex
because it can t rely on the processing and storage resources available in a computer.

TABLE 9.2 Network hardware devices

Device Function

NIC Connects a node to the network
Performs MAC and message-forwarding functions
Acts as a bridge between the system bus and LAN

Hub Acts as a central connection point for LAN wiring
Implements the logical network topology

Switch Forwards messages between nodes by creating and deleting
point-to-point connections rapidly

Router Connects two or more networks
Forwards messages between networks as needed
Makes intelligent choices between alternative routes

Wireless access point Connects a wireless network to a wired network and forwards messages
Performs MAC and security functions for wireless networks

338

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

In a bus network, the NIC scans the destination addresses of all messages and ignores
those not addressed to it. In ring networks, it scans the destination addresses of all mes-
sages and retransmits those not addressed to it. The NIC in a star network accepts all
incoming messages because the transmission line is shared only with the central node.
When a correctly addressed message is received, the NIC stores it in a buffer and gener-
ates an interrupt on the system bus. It also performs MAC functions, including listening for
transmission activity, detecting collisions, and retransmitting messages in CSMA/CD and
CSMA/CA networks.

Hubs
A hub is a central connection point for nodes in a LAN. An evolutionary step in early bus
and ring LANs was moving the physical topology from the LAN wiring to the hub. For
example, early Ethernet LANs were wired with a shared coaxial cable (the bus), and end
nodes connected to it with a transceiver. The introduction of Ethernet hubs eliminated the
need for the coaxial cable and transceivers. The hub provided separate point-to-point
connections between nodes and the hub by using less expensive cabling in a physical star
topology and attached these connections to its internal shared bus (see Figure 9.8). As
technology has progressed, LANs have abandoned bus and ring topologies entirely, and
switches have replaced hubs.

FIGURE 9.8 An Ethernet hub
Courtesy of Course Technology/Cengage Learning

339

Network Hardware

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Switches
Like a hub, a switch generally has a dozen or more input connections for computers
and other network nodes. Unlike a hub, point-to-point connections with nodes aren t
connected to a shared transmission medium. Instead, a switch examines the destination
address of each incoming message and temporarily connects the sender s transmission line
to the receiver s transmission line. It creates a temporary point-to-point connection for the
time needed to transmit one message and breaks the connection as soon as the message
has reached its destination.

Switches are more complex than hubs because they contain multiple connection
points that can connect and disconnect rapidly and because they must understand
message formats to extract addresses and control connection duration. Compared with a
hub, a switch increases network performance for these reasons:

Each connection has only one sending and one receiving node, thereby
eliminating collisions and congestion.
Multiple connections are supported, which enables multiple sender-receiver
pairs to transmit at the same time.

In essence, each node occupies a separate LAN that s temporarily connected to
another LAN as needed, eliminating collisions and retransmissions. A switch must deal
with possible contention for transmission connections, as when two nodes try to send a
message to a third node at the same time. Switches provide a memory buffer for each
node connection that s large enough to hold at least one message. If a destination node is
busy when a message destined for it is received, the message is held in the buffer until the
connection is available.

Routers
A router intelligently forwards messages between two or more networks. It stores messages
in a buffer, examines their contents, and applies decision rules to determine where to
forward messages. Router buffers are large because they handle many messages that must
be stored, examined, and forwarded. The routing process is more complex than switching,
and there s a longer delay between message receipt and retransmission.

A router scans the network constantly to monitor traffic patterns and network node
additions, modifications, and deletions. Routers use this information to build an internal
map of the network. They periodically exchange information in their internal routing

tables with other routers to learn about networks beyond those to which they re directly
connected. Using this information, they can forward messages from local nodes to distant
recipients and choose from multiple possible routes to a recipient.

Routers can be connected to more than two networks and can forward messages
based on information other than the destination address. For example, an organization
might have two internal networks one dedicated to ordinary data traffic and another
dedicated to audio or video streams. A router can be configured to examine messages
arriving from an external network and forward them to one of the internal networks based
on their content. A router might also be connected to two ISPs and route outgoing
messages to a specific ISP based on criteria such as shortest path to recipient or maximal
use of the least expensive ISP.

340

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A stand-alone router is essentially a special-purpose computer with its own processor
and storage. Routing and switching can be done in the same device, which blurs the
distinction between them. In addition, a general-purpose computer with multiple NICs
connected to different segments or networks can be configured as a router if the necessary
software is installed. Routing software is usually a standard network OS component and
might or might not be enabled by the server administrator.

Wireless Access Points
A wireless access point (AP) connects a wireless network to a wired network. Typically,
wireless networks follow the IEEE 802.11a, 802.11b, 802.11g, or 802.11n standards, and
wired networks follow one of the IEEE 802.3 (Ethernet) standards. Therefore, wireless
APs serve as central points to carry out the central management functions of wireless
protocols and as a switch connecting two different physical networks, translating
between their protocols as needed. In their role as a central node for wireless networks,
wireless APs manage media access, perform error detection, and implement security
protocols.

OSI NETWORK LAYERS

In the late 1970s, the ISO developed a conceptual model for network hardware and soft-
ware called the Open Systems Interconnection (OSI) model. The OSI model is useful as a
general model of networks, a framework for comparing networks, and an architectural
roadmap that enhances interoperability between different network architectures and
products. It organizes network functions into seven layers (see Figure 9.9). Each layer
uses the services of the layer immediately below it and is unaware of other layers internal
functions.

Application Layer

The Application layer includes communication protocols used by programs that make and
respond to high-level requests for network services. Programs using Application layer
protocols include end-user network utilities, such as Web browsers and e-mail clients;
network services embedded in the OS, such as service routines that access remote files;
and network service providers, such as File Transfer Protocol (FTP) and Web server
programs.

The Application layer of one network node generates a service request and forwards it
to the Application layer of another network node. The Application layers of the two
network nodes talk to each other (shown by the top dashed arrow in Figure 9.9) by
using all the lower-level OSI layers on both nodes as a communication channel (shown by
solid arrows between layers in Figure 9.9). Other layers also communicate with their
counterparts in this way and use the lower-level layers to transmit messages.

341

OSI Network Layers

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Presentation Layer
The Presentation layer ensures that data transmitted by one network node is interpreted
correctly by the other network node. It s used mainly by applications that format data
for user display. For example, a Web browser s Presentation layer formats compressed
JPEG images for visual display and decides which fonts to use for text display. Other
layered network models usually collapse Presentation-layer functions into the
Application layer.

Session Layer
The Session layer establishes and manages communication sessions. When a session is
first established, the Session layers negotiate protocol parameters, such as encryption and
quality of service. After protocol parameters have been established, they monitor commu-
nication to detect and deal with any problems. For example, when an order is placed over
the Web, the Web browser and server use Session-layer protocols to negotiate session

FIGURE 9.9 Layers of the OSI model
Courtesy of Course Technology/Cengage Learning

342

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

parameters, such as encrypted transmission, and monitor the session for disruptions. If
the communication channel is broken before the transaction is completed, the Web server
node ensures that the transaction is abandoned for instance, by canceling an unfinished
order so that charges aren t applied to the customer s credit card.

Transport Layer
The Transport layer formats messages into packets suitable for transmission over the
network. It places messages in a packet data area and adds required header and trailer
information, including network addresses, error-detection data, and packet-sequencing
data. Packets are given to the Network layer for delivery to the recipient. After receiving
packets, the Transport layer examines them for errors and requests retransmission if
necessary.

If a message doesn t fit in a single packet, the sending Transport layer divides the
message content among several packets, adds a sequence number to each packet, and
adds special coding in the first and last packets. The receiving Transport layer requests
retransmission of any missing packets and reassembles data from multiple packets in the
correct order.

Network Layer
The Network layer forwards messages to their correct destinations. As described earlier,
the Network layers of sending nodes typically forward messages to the nearest central
node. Network layers in the central node interact with one another to exchange forwarding
information and update internal tables. Network layers in end nodes announce their
presence to other end nodes and central nodes when they re initialized.

Data Link Layer
The Data Link layer is the interface between network software and hardware. In an end
node, such as a computer or network printer, the NIC and device drivers implement the
Data Link layer. Device drivers manage message transfer from secondary or primary
storage to the NIC, which transmits messages as bitstreams across the physical network
link. Data Link layer device drivers perform functions such as media access control and
conversion of messages and addresses from one format to another for example, from
Internet formats to Ethernet formats.

Physical Layer
The Physical layer is where communication between devices actually takes place. It
includes hardware devices that encode and decode bitstreams and the transmission lines
that transport them.

INTERNET ARCHITECTURE

The U.S. Department of Defense (DOD) Advanced Research Projects Agency Network
(ARPANET) developed network technology in the late 1960s and early 1970s to connect
researchers working on defense projects. Many DOD researchers worked at universities,

343

Internet Architecture

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

which soon incorporated ARPANET technology in their own networks. Networks based
on ARPANET technology eventually evolved into the Internet. As a result of worldwide
Internet adoption, core ARPANET protocols and their extensions have become
worldwide standards.

N O T E
There s no universally accepted name for the layered protocol model that describes current Internet
standards and technology. Some terms include DARPA model, Internet model, and TCP/IP model,
which is the term used for the remainder of this chapter.

Transmission Control Protocol (TCP) and Internet Protocol (IP), which are jointly
called TCP/IP, are the core protocols of the Internet. Most services normally associated
with the Internet are delivered via TCP/IP, including file transfer via File Transfer Protocol
(FTP), e-mail distribution via Simple Mail Transfer Protocol (SMTP), and access to Web
pages via Hypertext Transfer Protocol (HTTP). TCP/IP is the glue that binds private net-
works together to form the Internet and the World Wide Web.

The TCP/IP model predates the OSI model by almost a decade. Therefore, it s
understandable that TCP/IP model layers and supporting protocols (see Figure 9.10)
correspond only roughly to the OSI model. The following list describes the TCP/IP model
layers briefly:

Application layer Roughly corresponds to the OSI Application and Presenta-
tion layers and includes many protocols. Only a few are shown in the figure:
those defined previously as well as Domain Name System (DNS), Trivial File
Transfer Protocol (TFTP), Dynamic Host Configuration Protocol (DHCP), and
Network File System (NFS).
Transport layer Roughly equivalent to the OSI Session and Transport
layers and includes TCP and User Datagram Protocol (UDP).
Internet layer Roughly corresponds to the OSI Network layer. IP is the
primary protocol, although others, including Internet Control Message Proto-
col (ICMP), Address Resolution Protocol (ARP), and Reverse Address Resolu-
tion Protocol (RARP), play a supporting role.
Network Interface layer Roughly equivalent to the OSI Data Link layer.
This layer connects Internet protocols to underlying network protocols in the
Physical layer.
Physical layer Roughly equivalent to the OSI Physical layer. This layer
contains physical network protocols, such as Ethernet and Asynchronous
Transfer Mode (ATM).

344

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Internet Protocol

IP accepts messages called datagrams from Transport-layer protocols and forwards them
to their destination. Because the Internet layer of the TCP/IP model is responsible for
message forwarding, it includes rules for constructing valid addresses and routing packets
from sender to receiver through central nodes as needed. IP assumes that a datagram
traverses multiple networks via nodes called gateways, which are nodes connecting two
or more networks or network segments that might be implemented physically as work-
stations, servers, or routers. Figure 9.11 shows the TCP/IP model layers involved in a route
between two end nodes that includes two gateways. Note that the Transport and Applica-
tion layers aren t implemented in the gateways.

Every IP node has a unique 32-bit or 128-bit address. The 32-bit addresses are defined
in Internet Protocol version 4 (IPv4) and written in the form ddd.ddd.ddd.ddd, with ddd
representing a decimal number between 0 and 255. IPv4 is slowly being replaced by IPv6,
which uses 128-bit addresses written in the form hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:
hhhh, with hhhh representing a sequence of four hexadecimal digits.

Layers

Application

Transport

Internet

Network
Interface

Physical

HTTP

SMTP DNS

TCP

IP

Interface to physical network protocols

UDP

FTP TFTP DHCP NFS

Protocols

Ethernet, ATM, and
other physical network protocols

FIGURE 9.10 TCP/IP model layers and protocols
Courtesy of Course Technology/Cengage Learning

345

Internet Architecture

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E
The written format of 32-bit IP addresses is called dotted decimal notation. The written format of 128-
bit IP addresses is called colon hexadecimal notation, or colon hex. Colon hexadecimal addresses
containing a group of 0 digits can be abbreviated. For example, the address 2002:406A:3A9B:0000:
0000:0000:C058:6301 can be written as 2002:406A:3A9B::C058:6301.

Each gateway maintains a routing table of local node IP addresses and their corre-
sponding physical network addresses, such as Ethernet addresses. Each node and gateway
knows the physical network address of at least one other gateway. If a received message
contains an IP address that doesn t appear in a gateway s internal tables, the packet is
forwarded to the default gateway.

IP tables can include entries for partial IP addresses. For example, most IPv4 node
addresses in the University of New Mexico begin with 129.24. A node or gateway might
not know the physical address for a specific node, such as 129.24.8.1, but its routing
tables might contain the physical address of a gateway to any node with 129.24 in the
first 16 address bits. Nodes and gateways announce their presence to nearby devices
whenever they re started and exchange routing information periodically to keep their
tables current.

Application
layer

Sending
node

Network Network Network

Recipient
node

Gateway Gateway

Transport
layer

Internet
layer

Network
Interface layer

Physical
layer

Application
layer

Transport
layer

Internet
layer

Network
Interface layer

Physical
layer

Internet
layer

Network
Interface layer

Physical
layer

Internet
layer

Network
Interface layer

Physical
layer

FIGURE 9.11 TCP/IP connection between sender and receiver, using multiple networks and
gateways

Courtesy of Course Technology/Cengage Learning

346

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IPv6
Internet Protocol version 6 (IPv6) is an updated version of IPv4 defined in the late 1990s
and first deployed in the mid-2000s. It was developed to address a number of real and
perceived problems with IPv4, including the following:

Limited number of node addresses
Poor fit to streaming multimedia
Inability to multicast efficiently

IPv4 s 32-bit addresses limited the total number of Internet nodes to around four billion.
This number seemed more than enough in the late 1960s and was a good match to the
limited networking and data communication technologies at that time. However, by the late
1990s, it was apparent that soon more than four billion devices would be connected to the
Internet. IPv6 s 128-bit addresses allowed enough expansion for the next century and
offered more flexible ways to allocate groups of addresses to organizations and nodes.

The TCP/IP model and protocols were intended to transmit small data items quickly.
When large data items, such as files, were to be transferred, it was assumed the transfer
wasn t time sensitive. As computer and network technology improved in the 1980s and
1990s, Internet traffic increasingly included large streams of real-time audio and video data
to support applications such as videoconferencing and Internet radio. IPv4 was poorly suited
to transmitting this type of data, resulting in quality problems (see the VoIP Technology
Focus for examples). IPv6 doesn t fully solve all the problems, but it does solve some.

The term multicasting describes transmission situations involving multiple senders
and receivers. The most common is a single server transmitting the same data to multiple
end nodes simultaneously (as in Internet radio and three-way calling). IPv4 had limited
support for multicasting, but it was too inefficient for practical deployment. IPv6 expands
support for efficient multicasting in one-to-many, many-to-one, and many-to-many modes.

Because IP is used in all Internet nodes and gateways, moving from IPv4 to IPv6 is a
major undertaking. Many vendors didn t start providing IPv6 support until the late 2000s.
End nodes can be updated by patching older OSs or switching to newer OSs designed to
support IPv6. Upgrading gateways is more difficult. Most Internet gateways are routers
implemented as dedicated hardware devices with embedded network software. Software in
newer routers can be updated with remotely installed upgrades, but many older routers
lack this capability, and others are simply incapable of supporting IPv6. As of 2010, IPv6
use is still far below IPv4, and full conversion to IPv6 will take many more years.

TCP
IP is an example of a connectionless protocol, in which the sender doesn t attempt to
verify a recipient s existence or ask its permission before sending data. An end node sends
an IP datagram to a gateway and assumes it will find its way to the intended recipient. IP
doesn t support error detection or correction because datagrams are launched toward a
recipient Internet layer without telling it that data is coming. There s no way for the
recipient to know whether a datagram has been lost in transit or for the recipient node to
send a negative acknowledgment or request retransmission.

TCP, on the other hand, is a connection-oriented protocol, so it has the framework
needed to check for lost messages by establishing a connection between one sender and

347

Internet Architecture

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

one recipient before transmitting messages. It can perform several connection manage-
ment functions, including verifying receipt, verifying data integrity, controlling message
flow, and securing message content. The sender and recipient TCP (Transport) layers
maintain information about one another, including message routes, errors encountered,
transmission delays, and status of ongoing data transfers. They can use this information to
adjust their communication parameters to match changing network conditions.

TCP uses a positive acknowledgment (ACK) protocol to ensure data delivery. A recip-
ient TCP layer sends an ACK signal to the sender TCP layer to acknowledge data receipt.
The sender TCP layer waits for ACK signals for a time interval that s set based on the time
required to establish a connection. This interval can be extended or shortened during the
life of the connection to adapt to changing network conditions. If an ACK isn t received,
the sending TCP layer assumes the message has been lost and retransmits it. If several
consecutive messages are lost, the connection times out, and the sender assumes the
connection has been lost.

TCP connections are established through a socket, which is the combination of an IP
address and a port number. A port is a TCP connection with a unique integer number.
Many ports are standardized to specific Internet services. For example, port 80 is the
default TCP connection for HTTP (used by Web browsers and servers), and port 53 is the
default TCP connection for Internet name service queries. The socket 129.24.8.1:53 is the
TCP connection for Internet name services at the University of New Mexico.

UDP
User Datagram Protocol (UDP) is a connectionless protocol that provides less reliable
transport services than TCP does. It lacks TCP s connection management features but
does have one capability that TCP doesn t supporting communication between multiple
hosts and multiple senders. Like TCP, UDP addresses sockets, which enables targeting
UDP communication to specific applications.

UDP is used mainly for communication that requires low processing overhead and
doesn t require a guarantee of reliable delivery. Applications using UDP include broadcast
applications, such as Internet radio; other streaming multimedia applications, such as
video playback; and applications with multiple participating nodes, such as multipoint
Internet phone service. UDP s lack of positive acknowledgment and other connection
management messages reduces the data transfer requirements of these applications. Also,
by using many small datagrams, loss of some messages can be tolerated because people
aren t usually sensitive to the loss of small amounts of audio or video data in a continuous
data stream.

348

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

T E C H N O L O G Y F O C U S

Voice over IP

Voice over IP (VoIP) is a family of technologies and standards for carrying voice messages
and data over a single packet-switched network. As discussed in Chapter 8, packet-switching
networks generally use available transmission capacity more efficiently than circuit-
switching networks. With VoIP, consumers of phone services can place calls over the Internet
or other networks by using their computers, VoIP cell phones, or other VoIP-enabled devices
at a much lower cost than with a traditional public switched telephone network (PSTN).
Skype and Vonage are examples of VoIP-based phone services. Many cable TV and integrated
TV/phone companies, such as Comcast and Verizon, also offer VoIP services.

Because of its advantages, many organizations have migrated to VoIP, and more are
considering doing so. However, any organization that wants to use VoIP must address
many challenges, including the following:

Choosing VoIP standards
Acquiring and configuring compatible VoIP equipment and software
Guaranteeing service quality
Providing emergency phone connectivity

One challenge of VoIP deployment is the number of complex and competing stan-
dards. As with data networks, VoIP networks rely on a protocol suite an integrated set of
protocols, each of which performs a specific function, such as creating connections, pack-
etizing the audio signal, routing packets, ensuring quality of service, and ensuring call
security. The oldest and most widely used VoIP protocol suite is H.323, which also
addresses video and data conferencing. It s an umbrella for many component protocols (see
Figure 9.12). Supporting protocols include Registration, Admission, and Status (RAS),
Real-Time Transport Protocol (RTP), RTP Control Protocol (RTCP), and H.225. Many of
these protocols have multiple versions, which can cause compatibility problems for VoIP
equipment and software that support different mixes of standards and versions.

RAS
(address registration)

H.245
(call signal & control)

H.225
(Transport, Internet, and Network Interface)

IP network

H.323 VoIP

RTP/RTCP
(quality of service)

FIGURE 9.12 The H.323 VoIP protocol suite
Courtesy of Course Technology/Cengage Learning

(continued)

349

Internet Architecture

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Further complicating VoIP deployment is that H.323 has several competitors, including
Session Initiation Protocol (SIP), H.248, and Media Gateway Control Protocol (MGCP). Each
protocol suite offers a different mix of capabilities, limitations, and interoperability with
competing standards. Different vendors support different protocol suites, and equipment
capability varies widely between vendors and often even in products from the same vendor.
As a result, full interoperability has been the exception rather than the norm, although
vendors are improving their products by supporting multiple standards and versions.

VoIP equipment and software can be loosely divided into two groups: end nodes and
intermediate nodes. An end node is a device that a user uses to participate in a phone
conversation. It can be a traditional phone with an external IP interface, a phone with an
integrated IP interface, a computer, or a portable device combining phone and computer
capabilities. An intermediate node performs many of the same functions as switches and
routers in a data-oriented network, including routing and protocol conversion. Interme-
diate nodes also perform call and connection management functions that are unique
to VoIP.

In the PSTN, a caller opens a connection to the local switching center, receives a
dial tone, and then enters a series of numbers to identify the intended recipient. The
local switching center uses a protocol suite that describes how a phone number is used
to establish a two-way connection to the receiver across multiple networks and telephone
switches. VoIP must perform similar call management functions, including the following:

Establishing connections between VoIP end nodes on IP networks
Establishing connections between VoIP end nodes and PSTN and other phones
Performing protocol conversions as needed
Managing available network capacity to ensure quality of service

Different VoIP protocol suites allocate these tasks to different hardware and software
components. At one extreme, most call management functions can be embedded in end
nodes. At the other extreme, end nodes can be simpler devices, with call management
tasks performed by VoIP intermediate nodes, including specialized routers and switches.
Again, the plethora of available standards yields many choices in end and intermediate
nodes, with widely varying capabilities and interoperability. Some vendors, such as
Cisco, market general-purpose equipment that can be customized to particular protocols
and functions by adding software and hardware options.

Guaranteeing service quality isn t a simple matter in most IP networks. IPv4 can t
guarantee minimal levels of throughput between a specific sender and receiver or guar-
antee that packets will be delivered in a timely fashion, in the correct order, or at all.
IPv6 addresses some of these issues, but it will be years before it s fully deployed. Trans-
mission quality problems include the following:

Packet loss VoIP packets might be lost during transmission because of
network congestion, router overload, and intermittent device failures. Call
participants perceive lost packets as dropouts, which are missing audio
segments of short or long duration.
Latency VoIP packets can be delayed in transit because of network conges-
tion or having many routers in the chain of devices between end nodes. Call
participants perceive periods of silence before the other participant s speech is
heard. If the delays are too long, one party might assume the other is silent
and start speaking, only to then hear both parties overlapped speech.

(continued)

350

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Jitter VoIP packets can be subject to latency that fluctuates over short
periods. The user perceives jitter as periods of silence mixed with overlapped
voice signals.

If the same organization controls both ends of a call and the network in between,
intermediate nodes can detect VoIP packets and take actions to ensure their timely
delivery. These actions might include routing packets over dedicated communication
channels or assigning them higher priority during periods of heavy traffic. Little can be
done to ensure service quality across a public IP network or when the same organization
doesn t control both ends of the call.

Providing emergency phone service is difficult with VoIP for two reasons. First,
ordinary phones are designed to operate during power outages, but most VoIP nodes are
not. An ordinary phone receives all the electrical power it requires through the same
wires that carry the analog voice signal. If this signal is carried over a separate circuit-
switching network, phones can usually function during power blackouts. Because most
VoIP end and intermediate nodes require external power, they don t function during
power outages.

The second problem with emergency VoIP phone service is that many communities
haven t implemented VoIP in emergency (911) call centers. Traditional phones and
phone networks are the only means of reaching most of these call centers. To provide
reliable emergency phone service, most organizations maintain at least some traditional
phone equipment and connections.

Network Interface Layer
The TCP/IP model was originally intended to unite disparate network standards in a way
that enabled any node connected to any type of network to communicate with any other
node. When this model was developed, more than a dozen widely used network standards
with incompatible address formats and forwarding methods were in use. IP provided a
universal protocol specifying message and address formats and forwarding methods, but it
didn t replace existing protocols. Instead, it was layered over existing protocols and
designed to be translated easily into protocols used by the physical networks to which
sending and receiving nodes were attached.

At the sending node, the Network Interface layer s role is to translate IP datagrams
into a format that can be transported and forwarded over a specific physical network.
Reverse translation occurs at the recipient node. A key concept in this translation is
encapsulation, which embeds all or part of a datagram in a physical network s message
format. Physical network protocols have different names for their message formats,
including Ethernet frames or ATM cells. Because IP datagrams can be large and most
physical network protocols specify a maximum message size, the Network Interface layer
must often divide datagrams into pieces and encapsulate each piece in a separate frame
or cell.

Another important concept in this layer is address resolution. Each physical network
protocol has its own format for network addresses that differs from IPv4 and IPv6 address
formats. In essence, an end node s network interface has two addresses: an IP address and
an address assigned by the physical network protocol, such as an Ethernet address. The

351

Internet Architecture

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

TCP/IP model defines two protocols to translate between IP and physical network
addresses. ARP converts IP addresses to physical network addresses, and RARP translates
addresses in the opposite direction. In terms of the OSI model layers, IP addresses are
Network layer (layer 3) addresses, and physical network addresses are Data Link layer
(layer 2) addresses. A key distinction between switches and routers is that switches make
forwarding decisions by using layer 2 addresses, and routers make forwarding decisions by
using layer 3 addresses.

PHYSICAL NETWORK STANDARDS

The IEEE has drafted a number of network standards, collectively referred to as the IEEE
802 standards. These standards describe physical network hardware, transmission media,
transmission methods, and protocols. Table 9.3 lists current standards and standards
under development; discontinued and obsolete standards aren t included.

The 802.1 and 802.2 standards correspond roughly to the OSI Data Link layer. The
802.1 standard addresses issues such as media access and describes an architectural
framework into which other standards fit. The 802.2 standard addresses issues such as
routing, error control, and flow control. The methods defined in these standards are
incorporated into most of the other 802 standards.

The most common standards for LANs are 802.3 (CSMA/CD in bus networks) and
802.11 (wireless LANs). Each standard has a number of subsidiary standards indicated by
added letters, such as 802.11g, that cover additional implementation parameters. Many
commercial networking products are based on the IEEE standards. For example, Ethernet
is based on the 802.3 standard, and WiMAX is based on the 802.16 standard.

TABLE 9.3 IEEE 802 network standards

Standard Description

802.1 Media Access Control (MAC)

802.2 Logical Link Control (LLC); inactive

802.3 CSMA/CD and Ethernet

802.11 Wireless LAN (Wi-Fi)

802.15 Wireless personal area network (WPAN)

802.16 Broadband wireless access (BWA)

802.17 Resilient packet ring (RPR)

802.18 Radio regulatory technical advisory group

802.19 Coexistence technical advisory group

802.20 Mobile broadband wireless access

802.21 Media independent handoff

802.22 Wireless regional area network

352

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The IEEE standards development process is heavily influenced by companies and
organizations in the telecommunication and networking industries. Standards are
developed by committees whose membership is drawn from industry, government,
and academia. These committees work closely with other standards and regulatory
agencies, such as the American National Standards Institute (ANSI), the ISO, and the
U.S. Federal Communications Commission and its international counterparts. The
development of standards can be influenced as much by politics as by technological
considerations.

The IEEE committees set criteria for evaluation and then invite proposals for adop-
tion as standards. Proposals are usually submitted by vendors or vendor consortia based
on products and technologies already under development. Occasionally, the process
backfires. Adopted standards sometimes represent major compromises between very
different proposals. Vendors might decide not to adjust their products under development
to meet the compromise standard, thus generating an orphan standard. A vendor might
also choose to release products that don t adhere to any published standard and hope
that its technology becomes a de facto standard. For example, Bluetooth version 1.2 is an
IEEE standard, but later versions are not.

The marketplace ultimately decides which technologies and products succeed. The
standard-setting process usually establishes an accepted target for implementation and,
with a widely used standard, a degree of compatibility between competing products.

T E C H N O L O G Y F O C U S

WiMAX

Worldwide Interoperability for Microwave Access (WiMAX) is a group of wireless
networking standards developed by the WiMAX Forum and codified in the IEEE 802.16
standard. It s neither a replacement for nor an extension to the IEEE 802.11 standards.
Instead, it s targeted to different application areas fixed and mobile Internet access
spanning distances up to 50 kilometers (about 30 miles) and a market between LANs
and WANs, sometimes called metropolitan area networks (MANs), which typically cover
a town or city.

Table 9.4 summarizes characteristics of three current IEEE 802.16 standards. Higher
transmission frequencies yield a higher raw data transmission rate (DTR) because of
more available bandwidth, although later standards make more efficient use of lower
frequencies and bandwidth with more sophisticated bit-encoding methods. A higher raw
DTR is achieved over shorter distances with fixed transmission and receiving stations. As
in 802.11 LANs, transmission shifts to lower DTRs with more robust error detection
when stations are far apart or in motion. Like 802.11n, 802.16e includes multiple-
antenna support that can yield higher DTRs or reduced error rates but not both at the
same time. The 802.16m standard (WiMAX 2) is still under development, with ratifica-
tion expected in 2011 or 2012. The expected raw DTR for mobile applications will be

(continued)

353

Physical Network Standards

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

four times higher than for 802.11e, and high-power fixed-station DTRs will support mul-
tiple 120 Mbps connections.

TABLE 9.4 IEEE 802.16 (WiMAX) standards

Standard Frequencies
Maximum
raw DTR

Station
types

Maximum
range

802.16 (2001) 10 66 GHz 134 Mbps Fixed 5 km

802.16 (2004) 2 11 GHz 75 Mbps Fixed 5 km (low
power); 50 km
(high power)

802.16e (2005) 2 6 GHz 15 Mbps Mobile 5 km

802.16 MAC protocols differ widely from 802.11 protocols. 802.16 uses a
connection-oriented protocol in which stations establish a connection and negotiate
transmission parameters before data is transmitted. A typical WiMAX deployment is a
single high-power station with a tower-mounted antenna serving as an Internet access
point for multiple lower-power fixed or mobile stations in nearby homes or vehicles.
As each home or mobile station establishes a connection, the Internet access point
station allocates transmission time slices, which prevents collisions and enables assigning
higher quality of service levels to stations for purposes such as VoIP or H.323
videoconferencing.

The variety of transmission types defined in the 802.16 standards has been both a
help and hindrance to adoption and deployment. Because RF spectrum availability and
licensing above 10 GHz varies widely across the globe, 802.16 implementations have an
advantage over competing technologies because they can be adapted to local conditions.
On the other hand, the lack of a well-defined worldwide RF frequency range for high-
throughput connections has fragmented the WiMAX market and made economies of scale
and interoperability difficult to achieve. Later standard versions use unlicensed and open
RF bands in most of the world, but they compete against a variety of other bandwidth
users, including 802.11 LANs.

To date, most WiMAX adoption has occurred in suburban and rural areas with lim-
ited or no wired broadband connections. Adoption has been especially high in parts of
Asia, where there s rapid growth but poor wired infrastructure. The biggest competitors
to WiMAX are the data services provided by cell phone carriers, phone service providers,
and cable TV companies. During the mid-2000s, it seemed that some cell phone carriers
would adopt WiMAX as a supplement and eventual replacement for third-generation (3G)
cell phone data services. As of 2010, however, it appears that most cell phone carriers
will transition to a competing standard (Long Term Evolution [LTE]) that s more com-
patible with their existing 3G standards and infrastructure.

The rocky road traveled by 802.16 standards, vendors, and users is an excellent
example of the ups and downs of the standard-setting process, market adoption, and the
supporting roles of politics and economic competition. The 802.16 standards are based
on solid technology that can deliver excellent data services, but a fragmented global
regulatory environment coupled with major competition has slowed product develop-
ment and adoption. WiMAX might still prove wildly popular, but so far, the lofty
aspirations of many WiMAX vendors, investors, and adopters have yet to be realized.

354

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Ethernet
Ethernet is a LAN technology, developed by Xerox in the early 1970s, that s closely related
to the IEEE 802.3 standard. Digital Equipment Corporation (DEC), now part of Hewlett-
Packard, was the driving force in developing commercial Ethernet products in the late
1970s. DEC, Intel, and Xerox jointly published a specification for Ethernet networks in
1980. The 802.3 standard, published a few years later, incorporated most aspects of this
specification and has been extended many times.

Older Ethernet standards used a bus logical topology, Category 5 twisted-pair cable,
and CSMA/CD. Figure 9.13 shows the 802.3 packet format. There s no provision for packet
priorities or guarantees of quality of service, although incorporating these capabilities is a
high priority for vendors and standard-setting organizations. The original Ethernet stan-
dard transmits data at 10 Mbps and was updated (802.3u) in the late 1990s to increase
transmission speed to 100 Mbps. There were several competing and incompatible propo-
sals for 100 Mbps Ethernet, including the never deployed 802.12 and 802.13 standards.

Gigabit Ethernet is based on the 802.3z standard (1998) and the 802.3ab standard
(1999). As shown in Table 9.5, several physical implementations are defined, each repre-
senting a tradeoff between cost and maximum cable length.

10 Gigabit Ethernet is based on the 802.3ae (2002) and the 802.3ak (2004) stan-
dards. It supports 10 Gbps transmission speeds over multimode fiber-optic cables at LAN
distances of 100 to 300 meters and WAN distances of 2 to 40 kilometers. Copper-based
transmission is supported only over short distances. 10 Gigabit Ethernet is the first Ether-
net standard to abandon CSMA/CD in favor of a full-duplex point-to-point switched archi-
tecture. 40 Gigabit Ethernet and 100 Gigabit Ethernet standards (802.3ba) are planned for
release in 2010.

Preamble
(8 bytes)

Destination
address

(6 bytes)

Sourse
address

(6 bytes)

Type
(2 bytes)

Data
(46–1500 bytes)

CRC
(4 bytes)

FIGURE 9.13 Ethernet packet format
Courtesy of Course Technology/Cengage Learning

TABLE 9.5 Gigabit Ethernet specifications

IEEE
standard

Configuration
name Cable and laser type

Maximum
length

802.3z 1000BaseSX Short-wavelength laser over multimode fiber 550 meters

802.3z 1000BaseLX Long-wavelength laser over multimode fiber 550 meters

802.3z 1000BaseLX Long-wavelength laser over single-mode fiber 5 kilometers

802.3z 1000BaseCX Category 5 twisted pair 25 meters

802.3ab 1000BaseT Category 5 twisted pair 100 meters

355

Physical Network Standards

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Ethernet has been a popular networking technology since the 1980s. Many competi-
tors in the LAN marketplace, such as IBM token ring, have fallen by the wayside. In recent
years, Ethernet has made major inroads into the WAN marketplace, supplanting older
standards, such as Fiber Distributed Data Interface, and relegating others, such as Asyn-
chronous Transmission Mode, to niche markets. If ongoing efforts to update the technol-
ogy are successful, Ethernet should continue to dominate other network standards well
into the 21st century.

B U S I N E S S F O C U S

Upgrading Network Capacity

Note: This Business Focus is a continuation of the one in Chapter 8.
The Bradley Advertising Agency (BAA) has decided to implement a network sup-

porting both Gigabit and 10 Gigabit Ethernet networks to support general data commu-
nication and file access. The Gigabit Ethernet network will support general-purpose
needs, and the 10 Gigabit Ethernet network will interconnect servers and video-editing
workstations. BAA will purchase an additional server dedicated to high-speed, high-
capacity storage for video editing. This server will have a 3 TB storage array, expandable
to 20 TB. The reasons for the upgrade include the following:

The existing twisted-pair cable was tested and found to meet Category 6
requirements.
Gigabit Ethernet will meet the demand for general-purpose networking now
and for the foreseeable future.
10 Gigabit Ethernet will meet current and near-term demands for video file
sharing among video-editing workstations.
Gigabit and 10 Gigabit Ethernet equipment is much cheaper than InfiniBand
equipment.

BAA isn t sure how to integrate its microcomputers, video-editing workstations, and
servers into the Gigabit and 10 Gigabit Ethernet networks and is considering three
options:

Purchase a new Ethernet switch with six 100/1000 Mbps ports and eight 10
Gigabit Ethernet ports. Leave the desktop computers connected to the current
10/100 switch and connect this switch to the new switch. Connect the video-
editing workstations and all servers to 10 Gigabit Ethernet ports (upgrading
NICs as needed). Use existing copper cabling for all desktop computer and
video-editing workstation connections.
Scrap the existing Ethernet switch and purchase two new ones a 12-port 10
Gigabit Ethernet switch and a 24-port Gigabit Ethernet switch. Upgrade all
desktop NICs to Gigabit Ethernet and connect them to a Gigabit Ethernet
switch. Connect all servers and video-editing workstations to the 10 Gigabit
Ethernet switch (upgrading NICs as needed). Use existing copper cabling for all
desktop computer and video-editing workstation connections.
Same as Option 2, except run new multimode fiber-optic cable from the 10
Gigabit Ethernet switch to the video-editing workstations.

(continued)

356

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Questions:

What are the costs of each option? Which option offers the best network
performance? Which option provides the most operational flexibility?
Which option should BAA choose to implement now? Why?
BAA anticipates it will need to transmit high-quality video to and from client
locations in the next three years. Video transfer modes will include transfer of
large files and real-time video conferencing at HDTV resolution. Which option
best enables BAA to adapt to this long-term need?

357

Physical Network Standards

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

Network topology refers to the spatial organization of network devices, the physical routing
of network cabling, and the flow of messages from one network node to another. Topology
can be physical (arrangement of node connections) or logical (message flow). Physical
topologies include mesh, bus, ring, and star. The star topology is used in most modern
wired networks, and wireless networks use the bus topology.

LANs can be interconnected to form WANs. Specialized network hardware devices forward
packets from source to destination. Message forwarding in a LAN is usually handled by the
LAN hub or switch. Message forwarding across WANs uses a store and forward approach
that s like the delivery and warehouse network of a package delivery service.

A Media Access Control (MAC) protocol specifies rules for accessing a shared transmission
medium. CSMA/CD is used in older Ethernet bus networks, and CSMA/CA is used in many
wireless networks. CSMA/CD allows collisions to occur but provides a recovery mecha-
nism. CSMA/CA prevents most collisions.

Network hardware devices include NICs, hubs, switches, routers, and wireless APs. A NIC
is the interface between a network node and the network transmission medium. A hub con-
nects nodes to form a LAN. Switches are high-speed devices that forward messages based
on physical network addresses. Routers can connect to more than two networks, forward
messages based on IP addresses, and exchange information to improve forwarding
decisions.

The Open Systems Interconnection (OSI) model is a conceptual model that divides network
architecture into seven layers: Application, Presentation, Session, Transport, Network,
Data Link, and Physical. Each layer uses the services of the layer below and is unaware
of other layers implementations.

TCP/IP is the core protocol suite on the Internet. IP provides connectionless packet
transport across LANs and WANs. IP addresses are 32- or 128-bit values. TCP provides
connection-oriented message transport to higher-level Internet service protocols, including
HTTP and FTP. UDP provides connectionless service to support transporting multimedia
data with minimal processing overhead. The Network Interface layer of the TCP/IP model
enables transporting IP messages over physical network protocols, such as Ethernet
and ATM.

The IEEE 802 standards are developed by committees composed of members from indus-
try, government, and academia and cover many types of networks. IEEE standards help
ensure compatibility between products from competing vendors. Some standards, such as
the Ethernet standard (802.3), are successful, and others are never implemented.

Ethernet is the most widely deployed physical network standard. It has evolved through
many versions, with Gigabit Ethernet and 10 Gigabit Ethernet standards currently used and
40 and 100 Gigabit Ethernet standards under development. Ethernet s support of multiple
transmission speeds and media makes it suitable to both LANs and WANs.

Chapter 8 and this chapter have described all the hardware but only some of the software
technology underlying computer networks. In Chapter 10, you examine tools used to build
application software. In Chapters 11 and 12, you look at operating system technology, including

358

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

resource allocation and file management systems. Then you return to computer networks in
Chapter 13 and learn about distributed resources and applications.

Key Terms

10 Gigabit Ethernet

access point (AP)

Application layer

bus topology

Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA)

Carrier Sense Multiple Access/Collision
Detection (CSMA/CD)

clear-to-send (CTS) signal

collision

colon hexadecimal notation

connectionless protocol

connection-oriented protocol

Data Link layer

datagrams

dotted decimal notation

encapsulation

Ethernet

forwarding table

gateways

Gigabit Ethernet

H.323

hub

IEEE 802 standards

Internet Protocol (IP)

Internet Protocol version 4 (IPv4)

Internet Protocol version 6 (IPv6)

local area network (LAN)

logical topology

Media Access Control (MAC)

mesh topology

metropolitan area networks (MANs)

multicasting

network adapter

network interface card (NIC)

Network layer

network topology

Open Systems Interconnection (OSI) model

Physical layer

physical topology

port

Presentation layer

ready-to-send (RTS) signal

ring topology

router

routing tables

Session layer

socket

star topology

store and forward

switch

TCP/IP

TCP/IP model

Transmission Control Protocol (TCP)

Transport layer

User Datagram Protocol (UDP)

Voice over IP (VoIP)

wide area network (WAN)

Worldwide Interoperability for Microwave
Access (WiMAX)

359

Key Terms

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Vocabulary Exercises

1. The standards define many aspects of physical networks.

2. The OSI layer establishes and manages connections between clients and servers.

3. The protocol is an updated version with larger addresses and improved support for
multicasting and multimedia data.

4. The topology is most common in wired networks, and the topology is most
common in wireless networks.

5. The OSI layer forwards messages to their correct destinations.

6. A is the combination of an IP address and a port number.

7. The OSI layer refers to communication protocols used by programs, such as Web
browsers, that generate requests for network services.

8. A network using a physical topology connects all end nodes to a central node.

9. A physical connection between two different networks is implemented by using a(n) ,
, or .

10. A receiver can t detect loss of datagrams if a(n) protocol is used.

11. In the TCP/IP model, a(n) is the basic data transfer unit.

12. The original standard transmits at 10 Mbps over twisted-pair cabling. Current stan-
dard versions support 1 and 10 Gbps transmission over twisted-pair and fiber-optic cable.

13. The defines conceptual software and hardware layers for networks.

14. The MAC protocol is used in wireless networks to prevent most collisions.

15. When two messages are transmitted at the same time on a shared medium, a(n)
has occurred.

16. With the MAC protocol, collisions can occur, but they re detected and corrected.

17. A(n) protocol defines the rules governing a network node s access to a transmission
medium.

18. An end node s hardware interface to a network transmission medium is called a(n) .

19. The protocol is used with broadcast and multimedia applications when processing
overhead needs are low and reliable delivery doesn t need to be guaranteed.

20. The oldest and most widely used VoIP protocol suite is .

Review Questions

1. Describe the function of each layer of the TCP/IP model.

2. Compare 802.11 and WiMAX wireless networks in terms of transmission distances and
frequencies, strategies for dealing with noise and interference, and how widely they re
deployed.

3. How does a message from one LAN node find its way to a recipient on the same LAN?
How does a message find its way to a recipient on another LAN?

360

Chapter 9

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4. Compare CSMA/CD and CSMA/CA in terms of how collisions are detected or avoided and
their inclusion in physical network standards.

5. What is the function of a hub? How does it differ from a switch or router?

6. Describe the processes of encapsulation and address resolution. Why are they necessary
features of the Internet?

7. Describe a connectionless and a connection-oriented protocol, and list one example
of each.

8. How many bits are in an IP address? What is a TCP or UDP port? What is a TCP or UDP
socket?

9. Describe past, current, and proposed Ethernet standards in terms of transmission speed,
supported transmission media, and relevant IEEE standards.

10. What protocols are commonly used to implement VoIP? Are all VoIP protocols compatible
with one another?

11. Describe the service quality problems that can occur in VoIP. Why are these problems so
difficult to solve?

Research Problems

1. Investigate the videoconferencing equipment and software offerings of a major networking
or telecommunication vendor, such as Cisco Systems (www.cisco.com), Tandberg (www.
tandberg.net), Radvision (www.radvision.com), or Polycom (www.polycom.com). What
related standards are supported in each company s product line? Which vendors and
products support high-definition video, and what are the related standards? Describe
available infrastructure products, including gatekeepers and multipoint control units (MCUs),
and compare their capabilities with routers and switches in data networks.

2. You have been asked to design a network (wired, wireless, or a combination) for a home
on which construction will start soon. The home is serviced by a cable TV provider and
local phone company, and both provide Internet connectivity. It has two levels totaling
250 meters2 (2700 feet2). Five people will live in the home and use three laptop/netbook
computers, a desktop computer, a multimedia server, an Internet-connected TV device (for
example, TiVo or digital cable DVR), two multifunction printers, and at least five handheld
802.11g wireless devices, such as iPods and cell phones. Based on Internet connectivity
options in your own area, recommend whether the home should get Internet services via
DSL or cable TV. Also, recommend network infrastructure, including a router/firewall,
wireless access points, wired switches, and combination devices. Should the homeowner
have wired Internet connections installed during construction? If so, what wire types should
be used, and in what rooms should connection points be placed?

3. Investigate the Ethernet connectivity devices offered by a major vendor, such as Linksys
(www.linksysbycisco.com), NETGEAR (www.netgear.com), or Cisco (www.cisco.com).
What range of features is available in LAN and WAN switches and routers? What devices
are offered that don t clearly fall into the categories described in this chapter? What s the
cost per port of Gigabit and 10 Gigabit switches and routers? What options are available for
linking groups of switches and routers?

361

Research Problems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.cisco.com
http://www.tandberg.net
http://www.tandberg.net
http://www.radvision.com
http://www.polycom.com
http://www.linksysbycisco.com
http://www.netgear.com
http://www.cisco.com

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R10
APPLICATION DEVELOPMENT

C H A P T E R G O A L S

Describe the application development process and the role of methodol-
ogies, models, and tools

Compare generations and types of programming languages

Explain how assemblers, compilers, and interpreters translate source
code instructions into executable code

Describe link editing and contrast static and dynamic linking

Explain the role of memory maps in symbolic debugging

Describe integrated application development tools

Application development is a complex process that follows steps to translate users needs into executable

programs. There are automated tools to support each step, from user requirement statements

through system models and program source code to executable code. Understanding the role and

function of application development tools will make you a more efficient and effective analyst,

designer, and programmer. Figure 10.1 shows the topics covered in this chapter.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

THE APPLICATION DEVELOPMENT PROCESS

The process of designing and constructing software translates users information-
processing needs into CPU instructions that, when executed, address these needs. User
needs are stated in general or abstract terms in natural human language, such as I
need to process accounts receivable and payable. Software programs are detailed, pre-
cise statements of formal logic written as sequences of CPU instructions. Application
development involves two translations from an abstract need statement to a detailed
implementation that satisfies the need and from natural language to CPU instructions
(see Figure 10.2).

Developing software requires a lot of effort and resources. For example, a user need
stated in a single sentence might require millions or billions of CPU instructions to
address. Developing and testing software require development methods and tools, highly
trained specialists, and months or years of effort. Software has surpassed hardware to
become the most costly component of most information systems.

FIGURE 10.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

364

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Information system owners expect their investment in application development to
produce software that meets their needs. Unfortunately, the complexity of this process
creates many possibilities for error, resulting in software that doesn t work or fails to meet
users needs. The economic cost of application development errors can be much higher
than the cost of developing the software. Reduced productivity, dissatisfied customers,
and poor managerial decisions are just a few indirect costs of software that doesn t
address users needs completely or correctly.

Systems Development Methodologies and Models
In this chapter, you return to the systems development life cycle (SDLC) introduced in
Chapter 1 but with a focus on application development. Figure 10.3 shows the disciplines of
the Unified Process (UP) and their organization into iterations for a typical application
development project. The UP is a system development methodology a way of breaking the
development process into smaller, more manageable pieces. In this chapter, you re con-
cerned mainly with the requirements, design, and implementation disciplines of the UP.

FIGURE 10.2 Application development translates users needs to CPU instructions
Courtesy of Course Technology/Cengage Learning

365

The Application Development Process

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Developers attempt to minimize errors by using proven development methodologies,
which are integrated collections of models, tools, techniques, and processes. The UP
methodology, for example, uses object-oriented analysis, design, and deployment models.
Class diagrams and other types of diagrams document user and system requirements.
Design and deployment discipline activities use additional model types. Many graphical
models are supplemented with detailed text descriptions.

As part of the requirements discipline, members of the development team interact
with users to understand and document users needs. Much of the translation from
abstract concepts to specific, detailed facts occurs during activities in this discipline. The
components of a general statement, such as I need to process accounts receivable and
payable, are examined and documented in detail. What is an account payable or account
receivable? What specific tasks are implied by the term process ? What is the data con-
tent of system inflows and outflows? What data must be stored internally? What tasks are
performed when and by which people or programs? The answers to these questions are
summarized in a variety of forms, including text descriptions and diagrams that together
compose a system requirements model.

System requirements models provide the detail needed to develop a system that
meets users needs. System developers perform design activities to create models that
produce an architectural blueprint for system implementation. These models specify
required features of system software, such as operating systems and database management
systems; describe the required functions of application software subroutines, procedures,
methods, objects, and programs in detail; and serve as a blueprint and roadmap for imple-
mentation. Figure 10.4 shows an example of a system requirements model; it s a class
diagram, used to summarize a system s division into software and data as manageably

FIGURE 10.3 Disciplines and iterations in the Unified Process
Courtesy of Course Technology/Cengage Learning

366

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

sized components. Other UP system requirements models include use case, activity, and
system sequence diagrams.

Design models specify detailed blueprints for software component construction and
the interaction between software components and users. UP design models include pack-
age diagrams, interaction diagrams, and deployment diagrams. As shown in Figure 10.5,
design models are developed based on system requirements models but add design and
implementation details.

FIGURE 10.4 A class diagram
Courtesy of Course Technology/Cengage Learning

367

The Application Development Process

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Requirements models Design models

OrderCustomer

Domain model class diagram

Web
server

Application
server

Component diagrams

Deployment diagrams

Client
computer

Network
computer

Use case diagrams

Create new order

Clerk

Activity diagrams and use case
descriptions

Clerk

Enter
data

Display
order

System

System sequence diagrams

Clerk

:System

Requirements state machine
diagrams

Ready Shipped

Design state machine diagrams

Ready Shipped

Customer

name

changeName()

Order

OrderID

shipOrder()

Design class diagrams

Interaction diagrams

Clerk

:Controller :Customer

Package diagrams

View layer Data layer

FIGURE 10.5 UP design models and their relationship to system requirements models

368

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Implementation activities acquire or construct software and hardware components
that match the design models. Typically, hardware and system software are purchased,
and some or all application software is constructed, sometimes using purchased or previ-
ously developed software components. As acquisition and construction proceed, hardware
and software are tested to ensure that they function correctly and meet users needs as
described in the system requirements model. The end result of the UP is a fully tested
system that s ready to be put to productive use.

Tools
Many automated tools support application development. Some tools, such as word-
processing and general-purpose drawing programs, can be used to build many types of
models. Others, such as CASE tools (described later in Application Development Tools),
are customized to specific models and development methodologies. Related tools are often
integrated into a single suite that supports an entire system development methodology, in
much the same way that word-processing, graphics, database, and spreadsheet programs
are integrated into office suites.

These tools vary with the target system s deployment environment. They can be
specific to an OS, a programming language, a database management system (DBMS), or a
type of hardware. Wide variations in underlying methodology, supported models and tech-
niques, and target deployment environment make selecting the right tool a critical and
difficult undertaking. This task is further complicated by a dizzying array of descriptive
terminology and varying levels of support for different parts of the development process.

Substituting automated application development tools for manual methods is a classic
economic tradeoff between labor (such as analysts, designers, and programmers) and
capital resources (sophisticated development tools and the hardware required to run
them). In the early days of computers, hardware was so much more expensive than labor
that it made economic sense to use labor-intensive processes for software development;
hardware was simply too expensive to waste it doing anything but running application
software developed by manual methods.

As hardware costs decreased, the economic balance shifted, leading to the introduction
of automated tools to support application development. Programming languages, program
translators, and OS service layers are the earliest examples of this shift. They enable
computing hardware to support software development, thus reducing labor requirements.
The current proliferation of application development tools is a continuation of this economic
shift. Analysts, designers, and programmers now use a wide array of tools to automate
application development tasks.

PROGRAMMING LANGUAGES

A programming language is used to instruct a computer to perform a task. Program
instructions are sometimes called code, and the person who writes the instructions is
called a programmer. Developers of programming languages strive to make software easier
to develop by doing the following:

Making the language easier for people to understand

369

Programming Languages

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Developing languages and program development approaches that require
writing fewer instructions to accomplish a task

Programming languages have evolved through multiple stages called generations, as
shown in Figure 10.6. Table 10.1 summarizes the characteristics of each generation;
details are given in the following sections.

FIGURE 10.6 Programming language evolution
Courtesy of Course Technology/Cengage Learning

370

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

First-Generation Languages

Binary CPU instructions, called machine languages or first-generation languages (1GLs),
are the earliest programming languages. People have difficulty remembering and manipu-
lating long strings of binary digits, yet that s what early machine-language programmers
did. They had to remember the binary codes representing each CPU instruction and spec-
ify all operands as binary numbers. Programming with binary numbers is tedious and error
prone. As primary storage capacity and program size grew, developing error-free programs
with only binary numbers became less feasible.

Second-Generation Languages
A second-generation language (2GL) is more commonly known as an assembly language.
The instructions and programming examples in Chapter 4 were in a simplified assembly
language. These languages use a short character sequence called a mnemonic to represent
each CPU instruction, and programmers can define their own mnemonics to represent
memory addresses of instructions and data items. Today, the term variable is often used to
describe a mnemonic representing a data item s memory address and the term label to
describe a mnemonic representing a program instruction s memory address. Short names
are easier for people to manipulate than binary numbers. As a result, 2GLs became the most
common programming languages during the early and mid-1950s. They re still used today in
some types of system programming, such as writing device drivers.

Because the CPU processes only binary digits, any language other than a 1GL must be
translated into a 1GL before a CPU can execute it. An assembler is a program that trans-
lates an assembly-language program into binary CPU instructions. It reads an assembly-
language program file one instruction at a time. It then translates each mnemonic into its

TABLE 10.1 Programming language characteristics

Generation Description or characteristics

First Binary instructions for a CPU

Second Mnemonic instructions for a CPU

Third Instruction explosion, machine independence, and usually standardization

Fourth Higher instruction explosion, interactive and graphical I/O support, database
support, limited nonprocedural programming, and proprietary standards

Fifth High instruction explosion, nonprocedural programming, expert systems, and
artificial intelligence applications

Object-oriented High instruction explosion, support for modern code development, and code reuse
methods, such as inheritance and message passing

Scripting Very high instruction explosion; interpreted execution, used mainly for Web
applications

371

Programming Languages

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

corresponding binary digit sequence and writes these digits to an output file ready to be
loaded into memory and executed by the CPU. Assemblers are the earliest example of
automated program development tools.

Although 2GLs made programming easier, they did nothing to minimize the number
of instructions programmers had to write to perform a task. Each assembler instruction is
translated into a CPU instruction, so a 2GL program still directs every CPU action. As
memory capacity and program size grew, specifying every CPU action became more diffi-
cult. To increase programmer productivity, the one-to-one (1:1) correspondence between
program instructions and CPU actions had to be broken.

Third-Generation Languages
Programming languages beyond the second generation enable programmers to specify
many CPU actions with a single program instruction or statement. The one-to-many (1:N)
relationship between later-generation programming statements and the CPU actions
implementing them is called instruction explosion. For example, if 1000 machine instruc-
tions result from translating a 20-statement program, the degree of instruction explosion
can be stated as a 50:1 ratio. Programming languages differ in the degree of instruction
explosion, and even within a language, different types of statements vary in the degree of
instruction explosion. In general, statements describing mathematical computation have
low instruction explosion (10:1 or less), and statements describing I/O operations have
high instruction explosion (100:1 or more).

A third-generation language (3GL) uses mnemonics to represent instructions,
variables, and labels and has a degree of instruction explosion higher than 1:1. The
first 3GL was FORTRAN. Later 3GLs include COBOL, BASIC, PL/1, Pascal, and C.
A few 3GLs are still used today, but most were developed before graphical user inter-
faces (GUIs), DBMSs, and the Internet, which account for much of the decline in their
popularity.

Like 2GL programs, 3GL programs must be translated into binary CPU instructions
before the program is executed. Compilers, link editors, and interpreters are automated
tools used to translate 3GL programs; they re covered in more detail later in this
chapter. 3GL program translation is more complex than 2GL program translation, so
3GL translation tools are much larger and consume more computer resources than
assemblers.

A single 3GL program can be translated to run on many different CPUs, a characteristic
called machine independence or hardware independence (discussed in Chapter 2).
Compilers, link editors, and interpreters translate machine-independent instructions
into machine-language instructions for specific CPUs. Each CPU uses a different 3GL
translation program that s customized to its instruction set.

Fourth-Generation Languages
In the 1970s and 1980s, fourth-generation languages (4GLs) were developed to address
3GL limitations. They shared many features, including the following:

Much higher instruction explosion than in 3GLs
Instructions or prewritten functions to implement interactive GUIs

372

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Instructions to interact directly with an internal or external relational
database
Capability to describe processing requirements without specifying solution
procedures

The majority of 4GLs were proprietary, and many were optional components of
DBMSs. Few of the original 4GLs survive today, although some current programming lan-
guages are their direct descendants. Two that have survived (and thrived) are Visual Basic
and Structured Query Language (SQL). Visual Basic evolved from the 3GL BASIC and is
adapted to modern software requirements. It has a variety of GUI capabilities and can
interact directly with Microsoft Access databases. Although it s widely used, it lacks some
features needed by industrial strength software.

SQL is specialized for adding, modifying, and retrieving data from relational databases
and is usually used with DBMSs, such as Oracle or Microsoft SQL Server. SQL isn t a full-
fledged programming language because it lacks some features of a general-purpose pro-
gramming language, including many control structures and user interface capabilities. SQL
programs are usually embedded in other programs, such as Web-based applications writ-
ten in scripting languages. Figure 10.7 shows two programs that perform similar functions,
one in C and the other in SQL. The C program has far more program statements, which
indicates a lower degree of instruction explosion.

These programs also differ in their approach to solving a data retrieval problem. The
C program describes a detailed, step-by-step procedure for extracting and displaying data
that includes control structures and many database management functions, such as open-
ing and closing files and testing for the end of file while reading records. In contrast, the
SQL program contains no control structures, file manipulation, or output-formatting
commands. It states what fields should be extracted, what conditions extracted data
should satisfy, and how data should be grouped for display. SQL is a nonprocedural
language because it describes a processing requirement without specifying a procedure for
satisfying the requirement. The compiler or interpreter determines the most suitable pro-
cedure for retrieving data and generates or executes whatever CPU instructions are
needed.

As a group, 4GLs are sometimes called nonprocedural languages, although this term
isn t completely accurate because most 4GLs support a mixture of procedural and non-
procedural instructions. A 4GL typically provides nonprocedural instructions for database
manipulation and report generation. Some 4GLs also provide nonprocedural instructions
for updating database contents interactively. Other types of information processing, such
as complex computations, require procedural instructions.

Fifth-Generation Languages
A fifth-generation language (5GL) is a nonprocedural language suitable for developing
software that mimics human intelligence. 5GLs first appeared in the late 1960s with Lisp
but weren t widely used until the 1980s. Lisp and Prolog are the most common general-
purpose 5GLs, but many proprietary 5GLs are used to build applications in medical
diagnosis and credit application scoring, for example.

A 5GL program contains nonprocedural rules that mimic the rules people use to solve
problems. A rule processor accepts a starting state as input and applies rules iteratively

373

Programming Languages

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

to achieve a solution. Figure 10.8 shows a sample Prolog program for solving the problem
of moving a farmer, fox, chicken, and corn across a river on a boat that can hold only
two. The rules describe valid moves and unsafe states; for example, the chicken and corn
can t be left without the farmer because the chicken would eat the corn. The program
prints messages to describe the rules it applies and moves it makes to solve the problem.

FIGURE 10.7 Equivalent programs in SQL and C
Courtesy of Course Technology/Cengage Learning

374

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 10.8 A sample Prolog program
Courtesy of Course Technology/Cengage Learning

375

Programming Languages

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Object-Oriented Programming Languages
Both 3GLs and 4GLs have a similar underlying programming paradigm in which data and
functions are distinct. Program instructions manipulate data and move it from source to
destination. Data is processed by passing it between code modules, functions, or subrou-
tines, each of which performs one well-defined task.

Software researchers in the late 1970s and early 1980s began to question the efficacy
of this program/data dichotomy. They developed a new programming paradigm called
object-oriented programming (OOP) that better addresses program reuse and long-term
software maintenance. The fundamental difference between object-oriented and tradi-
tional programming paradigms is that OOP views data and programs as two parts of an
integrated whole called an object (introduced in Chapter 3). Objects contain data and
programs or procedures, called methods, that manipulate the data.

Objects reside in a specific location and wait for messages to arrive. A message is a
request to execute a specific method and return a response. The response can include
data, but the data included in a response is only a copy. The original data can be accessed
and manipulated only by object methods. Figure 10.9 shows the relationships between
data, methods, messages, and responses.

Smalltalk was the first commercial OOP language. C++ (an extension of C) and Java
are more widely used now. Other languages, such as Visual Basic, have been extended
with OOP concepts.

Object-oriented programming and design are uniquely suited to developing real-time
programs, such as OSs and interactive user interfaces. Most current OSs and Web brow-
sers are written in an OOP language. OOP languages and good object-oriented software
design promote reusability and portability of source code. (Portability is explained later in
Programming Language Standards.) New objects can incorporate data and methods from

existing objects through a feature called inheritance.

FIGURE 10.9 Objects, data, methods, messages, and responses in OOP
Courtesy of Course Technology/Cengage Learning

376

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E
Describing OOP languages by a name rather than a generation number is evidence that the concept of
language generations is no longer relevant. OOP languages aren t a clear successor to 5GLs because
they re neither nonprocedural nor used exclusively for developing AI and expert system applications.
Some OOP languages, such as C++ and C#, are direct extensions of 3GLs, and others, such as
Smalltalk and Java, are more closely related to 4GLs.

Scripting Languages
Scripting languages evolved from 4GLs, although most now incorporate OOP concepts.
A scripting language enables programmers to develop applications that do most of their
work by calling other applications and system software. These languages provide the usual
control structures, mathematical operators, and data manipulation commands, but they
extend these tools with the capability to call external programs, such as Web browsers,
Web servers, and DBMSs. With scripting languages, programmers can assemble application
software rapidly by gluing together the capabilities of many other programs. VBScript,
JavaScript, and PHP are widely used languages for developing applications that use a Web
browser as their main user interface.

Programming Language Standards
The American National Standards Institute (ANSI) and the International Organization for
Standardization (ISO) set standards for some programming languages. Examples of ANSI
standard languages include FORTRAN, COBOL, C, and C++. A programming language
standard defines the following:

Language syntax and grammar
Machine behavior for each instruction or statement
Test programs with expected warnings, errors, and execution behavior

Compilers, link editors, and interpreters are submitted to a standard-setting body for
certification. Test programs are translated, and the behavior of the translator program and
executable code is examined. The program s behavior is compared with the behavior defined
by the standard to determine whether the translation program complies with the standard.

Standard programming languages guarantee program portability between other OSs
and application programs, meaning a program can be moved to a new OS or CPU by
recompiling and relinking or reinterpreting it with certified translation programs in the
new environment. Portability is important because OSs and hardware change more
frequently than most program source code.

N O T E
Setting standards for programming languages has become less relevant since the late 1980s. There are
many reasons, including basic software research moving from academia into industry, software compa-
nies reluctance to share proprietary technology, variability in applications and runtime environments,
and increasing interdependence between application and system software. Current software standards
are often more concerned with system software and interfaces between programs than with the
languages used to build programs.

377

Programming Languages

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

COMPILATION

Figure 10.10 shows application development with a program editor, compiler, and link
editor. Input to the program editor comes from a programmer, a program template, or
both, and its output is a partial or complete program, called source code, written in a
programming language, such as Java or Visual Basic. Source code is normally stored in
a file that s named to indicate both its function and programming language, such as
ComputePayroll.cpp (with cpp as an abbreviation for C++).

The compiler and link editor translate source code into executable code, although
they perform different parts of the translation process. Executable code is stored in a file,
such as an .exe file in Windows, and contains CPU instructions that are ready for an OS to
load and execute. The compiler translates some source code instructions into executable
code and others into library calls, which are further processed by the link editor. (Library
calls and link editing are described later in Link Editing.) Compiler output, called
object code, contains a mixture of CPU instructions, library calls, and other information
the link editor needs. It s usually stored in a file with an .o or .obj extension, such as
ComputePayroll.obj.

The compiler reads and translates source code instructions. While reading source
code, it performs the following tasks:

Checks for syntax and other errors and issues warning or error messages, if
needed

FIGURE 10.10 Application development with a program editor, compiler, and link editor
Courtesy of Course Technology/Cengage Learning

378

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Updates internal tables that store information about data items and program
components, such as functions and subroutines
Generates CPU instructions or library calls to carry out source code
instructions

The actions the compiler takes vary, depending on the source code instruction type.
Most programming languages have four source code instruction types, described in the
following sections:

Data declarations
Data operations
Control structures
Function, procedure, or subroutine calls

Data Declarations
A data declaration defines the name and data type of program variables. For example, take
a look at these C++ source code instructions:

float f_temperature;

float c_temperature;

These instructions declare two floating-point variables named f_temperature and
c_temperature. When a compiler reads a data declaration, it allocates memory to store
the data item. The amount of memory it allocates depends on the data type and the
number of bytes used to represent this data type in the target CPU.

The compiler updates an internal table, called a symbol table, to keep track of data
names, types, and assigned memory addresses. Information stored in this table includes
the variable name, data type, and memory location. Table 10.2 shows some sample
entries.

Data Operations
A data operation is any instruction, such as an assignment statement or a computation,
that updates or computes a data value. The compiler translates data operation instructions
into an equivalent sequence of data movement and data transformation instructions for
the target CPU. It refers to entries in the symbol table to determine source and destination
memory addresses for data movement instructions.

For example, here s a source code instruction that assigns a constant value to a
program variable:

f_temperature 212;

TABLE 10.2 Sample symbol table entries for data declarations

Name Type Length Address

f_temperature Single-precision floating-point 4 1000

c_temperature Single-precision floating-point 4 1004

379

Compilation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The compiler looks up f_temperature in the symbol table to find its memory
address (1000) and generates this CPU instruction:

MOV 1000 <212>

In this instruction, <212> is the internal floating-point representation of the value
212. The compiler translates an instruction copying data from one variable to another

f_temperature c_temperature;

into this CPU instruction:

MOV 1000 1004

Now look at a more complex example that combines computation and data
movement:

c_temperature (f_temperature 32) 1.8;

The compiler translates this statement into the following sequence of CPU
instructions:

MOV R1 1000 ; move f_temperature to register 1

MOV R2 <32> ; store constant 32 to register 2

FSUB R1 R2 R3 ; subtract R2 from R1 and

; store the result in register 3

MOV R2 <1.8> ; store constant 1.8 in register 2

FDIV R3 R2 R3 ; divide register 3 by register 2 and

; store the result in register 3

MOV R3 1004 ; copy register 3 to c_temperature

More complex formulas or more input variables and constants require longer CPU
instruction sequences.

Control Structures
A control structure is a source code instruction that controls the execution of other
source code instructions. Control structures include unconditional BRANCHes, such as a
goto statement; conditional BRANCHes, such as an if-then-else statement; and loops,
such as while-do and repeat-until.

The common thread in all control structures is the transfer of control between CPU
instructions. A CPU BRANCH instruction requires a single operand containing the address
of another instruction. Because all control structures require a CPU BRANCH instruction,
the compiler must keep track of where CPU instructions for each source code instruction
are located in memory. For example, examine these source code instructions:

f_temperature 0;

loop: f_temperature f_temperature + 1;

goto loop;

380

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Here s the equivalent CPU instruction sequence:

2000 MOV 1000 <0> ; copy 0 to f_temperature

2004 MOV R2 <1> ; copy 1 to register 2

2008 MOV R1 1000 ; copy f_temperature to register 1

200C RADD R1 R2 R1 ; add R1 and R2 store result in R1

2010 MOV 1000 R1 ; copy result to f_temperature

2014 JMP 200C ; loop back to add

The numbers to the left of each CPU instruction are its hexadecimal memory address.
The name loop in the source code is a label. When the compiler reads a label, it stores the
label in the symbol table along with the address of the first CPU instruction generated for
the corresponding source code instruction. When the label is used as the target of a goto
instruction, the compiler retrieves the corresponding memory address from the symbol
table and uses it as the operand of the corresponding CPU BRANCH or JUMP instruction.

The if-then-else, while-do, and repeat-until control structures are based
on a conditional BRANCH. For example, look at this source code instruction sequence:

f_temperature 0;

while (f_temperature < 10)

{

f_temperature f_temperature + 1;

}

Here s the equivalent CPU instruction sequence:

2000 MOV 1000 <0> ; copy 0 to f_temperature

2004 MOV R2 <1> ; copy 1 to register 2

2008 MOV R3 <10> ; copy 10 to register 3

200C MOV R1 1000 ; copy f_temperature to register 1

2010 RADD R1 R2 R1 ; add R1 and R2 store result in R1

2014 MOV 1000 R1 ; copy result to f_temperature

2018 FLT R1 R3 ; floating-point less than comparison

201C CJMP 2010 ; loop back to add if less-than is true

As before, each CPU instruction is preceded by its memory address. When the
compiler reads the while statement, it temporarily stores the condition s contents and
marks the memory address of the first instruction in the while loop (2010). It then
translates each statement in the loop. When there are no more statements in the loop, as
indicated by the closing brace (}), the compiler generates a CPU instruction to evaluate
the condition (2018), followed by a conditional BRANCH statement to return to the first
CPU instruction in the loop.

An if-then-else statement selects one of two instruction sequences by using both
a conditional and unconditional BRANCH. For example, this source code instruction
sequence

if (c_temperature > -273.15)

f_temperature (c_temperature * 1.8) + 32;

else

f_temperature -999;

381

Compilation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

causes the compiler to generate the following CPU instruction sequence:

2000 MOV R1 1004 ; copy c_temperature to register 1

2004 MOV R2 <-273.15> ; store constant -273.15 to register 2

2008 FGE R1 R2 ; floating-point > or

200C CJMP 2018 ; branch to if block if true

; begin else block

2010 MOV 1000 <-999> ; copy constant -999 to f_temperature

2014 JMP 202C ; branch past if block

; begin if block (calculate f_temp)

2018 MOV R2 <1.8> ; store constant 1.8 to register 2

201C FMUL R1 R2 R3 ; multiply registers 1 and 2 and

; store the result in register 3

2020 MOV R2 <32> ; store constant 32 in register 2

2024 FADD R2 R3 R3 ; add registers 2 and 3 and

; store the result in register 3

2028 MOV 1000 R3 ; copy register 3 to f_temperature

202C ; next instruction after if-then-else

Function Calls
In most languages, a programmer can define a named instruction sequence called a
function, subroutine, or procedure that s executed by a call instruction. A call instruction
transfers control to the first instruction in the function, and the function transfers
control to the instruction following the call by executing a return instruction.

N O T E
The terms function, subroutine, and procedure describe a named instruction sequence that receives
control via a call instruction, receives and possibly modifies parameters, and returns control to the
instruction after the call. For the remainder of the chapter, the term function is used, although every-
thing said about functions also applies to procedures and subroutines.

Functions are declared much as program variables are, and the compiler adds
descriptive information to the symbol table when it reads the declaration. For example,
examine the following function:

float fahrenheit_to_celsius(float F)

{

/* convert F to a celsius temperature */

float C;

C (F - 32) / 1.8;

return(C);

}

When the compiler reads the function declaration, it adds the function name
fahrenheit_to_celsius to the symbol table and records the memory address of

382

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the function s first CPU instruction as well as other information, such as the function type
(float) and the number and type of input parameters. When it reads a later source code
line referring to the function, such as the following, it retrieves the corresponding symbol
table entry:

c_temperature fahrenheit_to_celsius(f_temperature);

The compiler first verifies that the types of the input variable (f_temperature) and
result assignment variable (c_temperature) match the types of the function and func-
tion arguments. To implement call and return instructions, the compiler generates CPU
instructions to do the following:

Pass input parameters to the function.
Transfer control to the function.
Execute CPU instructions in the function.
Pass output parameters back to the calling function.
Transfer control back to the calling function at the statement immediately
after the function call statement.

The flow of control to and from functions is similar to the flow of control to and from
an OS interrupt handler, explained in Chapter 6. The calling function must be suspended,
the called function must be executed, and the calling function must then be restored to its
original state so that it can resume execution. As with interrupt handlers, register values
are pushed onto the stack just before the called function begins executing and are popped
from the stack just before the calling function resumes execution. The stack serves as a
temporary holding area for the calling function so that it can be restored to its original
state after the called function finishes execution.

Table 10.3 shows symbol table entries for the function fahrenheit_to_celsius, its
internal parameters, and its variables in this function call:

c_temperature fahrenheit_to_celsius(f_temperature);

TABLE 10.3 Symbol table entries

Name Context Type Address

fahrenheit_to_celsius Global Single-precision
floating-point,
executable

3000

F fahrenheit_to_celsius Single-precision
floating-point

2000

C fahrenheit_to_celsius Single-precision
floating-point

2004

f_temperature Global Single-precision
floating-point

1000

c_temperature Global Single-precision
floating-point

1004

383

Compilation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The compiler reads data names used in the function call and return assignment and
looks up each name in the symbol table to extract the corresponding address. It also looks
up the function parameter s name and extracts its addresses and lengths. The compiler
then creates a MOV4 (move 4 bytes) instruction with this address and places it immedi-
ately before the PUSH instruction:

MOV4 2000 1000 ; copy fahrenheit temperature

PUSH ; save calling process registers

JMP 3000 ; transfer control to function

The return from the function call is handled in a similar manner:

MOV4 1004 2004 ; copy function value to caller

POP ; restore caller register values

The compiler generates code to copy the function result to a variable in the calling
program. Control is then returned to the caller by executing a POP instruction.

LINK EDITING

The previous examples showed how a compiler translates assignment, computation, and
control structure source code instructions into CPU instructions. It translates other types
of source code instructions, such as file, network, and interactive I/O statements, into
external function calls. The compiler also generates external function calls when it
encounters call statements without corresponding function declarations. An external
function call, sometimes called an unresolved reference, is a placeholder for missing exe-
cutable code. It contains the name and type of the called function as well as the memory
addresses and types of function parameters.

A link editor searches an object code file for external function calls. When one is
found, it searches other object code files or compiler libraries to find executable code that
implements the function. A compiler library is a file containing related executable func-
tions and an index of the library contents. When the link editor finds executable code in a
library or another object code file, it inserts the executable code into the original object
code file and generates instructions to copy parameters and the function s return value.
The result is a single file containing only executable code. If the link editor can t find
executable code for an external function call, it generates an error message and produces
no executable file.

At this point, you might be wondering why the compiler couldn t have generated all
the executable code, eliminating the need for a link editor. Link editors provide two key
benefits in program translation:

A single executable program can be constructed from multiple object code
files compiled at different times.
A single compiler can generate executable programs that run in multiple OSs.

To understand a link editor s function better, say that each function in a program to
convert temperatures between Fahrenheit and Celsius is being written by a different pro-
grammer. In other words, each programmer develops a function and stores the source
code in a file. Each file is compiled separately, and none of the object code files contain a

384

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

complete program. To combine these separate functions, the link editor patches together
the call and return instructions in each object code file to create a single executable
program (see Figure 10.11).

A link editor also makes it possible to use a single compiler for multiple OSs. For
example, the C++ temperature conversion program in Figure 10.12 reads temperature
input from the keyboard. (Lines beginning with // are comments.) Because the CPU

FIGURE 10.11 A link editor combines separately compiled functions into a single executable
program

Courtesy of Course Technology/Cengage Learning

385

Link Editing

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

instructions for interactive I/O vary by OS, if the compiler were responsible for generating
CPU instructions for I/O operations, different compilers would be required to implement
this program for each OS.

Using external function calls and link editing enables a single compiler to serve mul-
tiple OSs. CPU instructions that implement I/O functions for each OS are stored in a
compiler library. When object code files are linked, the programmer instructs the link
editor to use the library for the target OS. The link editor replaces external function calls
for interactive I/O with the CPU instructions for a specific OS. Target OSs might be
completely different (such as Windows and Linux) or might be different versions of the
same OS family (for example, Windows 7, Vista, and XP).

Link editing with compiler libraries can offer flexibility in other ways. For example,
encryption algorithms vary in complexity and maximum length of the encryption key, and
different versions of encryption algorithms with the same name and parameters can be
stored in different libraries. An application programmer can choose the level of encryption
to embed in an executable program by specifying which encryption library the link editor
reads.

Dynamic and Static Linking
The linking process described previously is often called static linking or early binding. The
term static is used because library and other subroutines can t be changed after they re
inserted into executable code. Dynamic linking, or late binding, is performed during
program loading or execution.

FIGURE 10.12 A C++ program that reads input from the keyboard
Courtesy of Course Technology/Cengage Learning

386

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Calls to OS service routines are sometimes done with dynamic linking. For example,
most Windows OS service routines are stored in dynamic link libraries (DLLs). During
program development, the link editor inserts code to call a special DLL interrupt handler
and passes pointers to the service routine name and parameters in general-purpose regis-
ters. During program execution, the DLL interrupt handler accepts DLL service requests,
locates the service routine by name, loads it into memory (if it isn t already there), copies
input parameters, and then executes the service routine. When the service routine
finishes, the DLL interrupt handler copies output parameters, terminates the service
routine, and passes control back to the calling program.

Dynamic linking has two key advantages over static linking. The first advantage is
smaller program executable files. Static linking incorporates copies of service routines into
executable programs, which can increase executable program size by double, triple, or
more, depending on the nature and number of functions included. Much of this additional
storage is redundant because common subroutines (such as those to open and close files
or windows) are used by many application programs. Dynamic linking avoids redundant
storage of service routines in program executable files. Instead, each program contains
only the code needed to call the DLL interrupt handler, which is typically only a few
hundred kilobytes.

The second advantage of dynamic linking is flexibility. Portions of the OS can be
updated by installing new DLLs. If application programs use dynamic linking, updating the
OS updates all application programs with the new service-layer subroutines. The new sub-
routines are loaded and executed the next time an application program runs after an
upgrade. In contrast, static linking locks an application program to a particular version of
the service-layer functions. These functions can be updated only by providing an updated
compiler library and relinking the application s object code.

The main advantage of static linking is execution speed. When a dynamically linked
program calls a service-layer function, the OS must find the requested function, copy para-
meters, and transfer control. If the subroutine isn t in memory, the application program is
delayed until the service routine is located and loaded into memory. All these steps are
avoided if the application program is statically linked, resulting in much faster execution.

Static linking also improves the reliability and predictability of executable programs.
When an application program is developed, it s usually tested with a specific set, or ver-
sion, of OS service routines. Service routine updates are designed to be backward com-
patible with older versions, but there s always the risk that new routines dynamically
linked into an older application program could result in unexpected behavior. Static link-
ing ensures that this behavior can t happen. However, the reverse situation can also occur.
That is, a new service routine version might fix bugs in an older version. Static linking
prevents these fixes from being incorporated into existing programs automatically.

INTERPRETERS

Source and object code files are compiled and linked as a whole. In contrast, interpretation
interleaves source code translation, link editing, and execution. An interpreter reads a single
source code instruction, translates it into CPU instructions or a DLL call, and executes the
instructions or DLL call immediately, before the next program statement is read. In essence,
one program (the interpreter) translates and executes another (the source code) one
statement at a time.

387

Interpreters

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The main advantage of interpretation over compilation is that it offers the flexibility
to incorporate new or updated code into an application program. This flexibility is a result
of dynamic linking. Program behavior can be updated easily by installing new versions of
dynamically linked code. It s also possible for programs to modify themselves a feature
required for certain types of applications, such as expert systems.

N O T E
Most desktop computers and many servers have more than enough memory and CPU resources to
handle the additional demands of interpretation without noticeable performance degradation. The perfor-
mance difference is an issue in some hardware environments, such as portable computing, and for
many CPU-intensive applications, such as numerical modeling and computer animation.

The main disadvantage of interpretation compared with compiling and linking is
increased memory and CPU requirements during program execution (see Table 10.4).
With compiling and link editing, each program used to develop executable code resides in
memory for only a short time. When a program is loaded and executed, all the software
components that helped create it (program editor, compiler, and link editor) are no longer
in memory. The memory requirements of a compiled and linked application program
consist only of the memory required to store its executable code.

Symbolic Debugging
Compilers, link editors, and interpreters produce error messages to warn programmers of
actual or potential mistakes in source code. However, even if a program is compiled and
linked successfully, it might still produce errors when it runs. Diagnosing runtime errors
based on a typical runtime error message is difficult because the error message refers to the
executable code generated by the compiler and link editor instead of the programmer s
source code. Variable names have been replaced by memory addresses, and symbolic source
code instructions have been replaced by CPU instructions. Determining the source code
instructions and variables that correspond to these memory addresses is a difficult task.

A compiler can be instructed to incorporate its symbol table into the object code file,
and a link editor can be instructed to produce a memory map, or link map, based on the

TABLE 10.4 Memory and CPU resources used during application execution

Resource Interpretation Compilation

Memory contents (during execution):

Interpreter or compiler
Source code
Executable code

Yes
Partial
Yes

No
No
Yes

CPU instructions (during execution):

Translation operations
Library linking
Application program

Yes
Yes
Yes

No
No
Yes

388

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

symbol table s contents. A memory map lists the memory location of every function and
program variable, and a programmer can use it to trace error messages containing mem-
ory addresses to corresponding program statements and variables. Tracing these addresses
to source code statements or data items requires a detailed memory map and a thorough
understanding of machine code and the compiling and linking processes.

For example, look at the partial memory map in Figure 10.13 (the complete map is
several hundred text lines) and the runtime error message in Figure 10.14. The error
message lists the memory instruction that generated the error, and the memory map lists
the starting address of each module in the program. The address in this error message falls
between addresses in the third and fourth rows of the memory map. With this information,
a programmer can determine that the error occurred somewhere in the _main function
but can t tell exactly which instruction caused the error or determine the contents of
program variables at the time the error occurred.

FIGURE 10.13 A partial memory map
Courtesy of Course Technology/Cengage Learning

FIGURE 10.14 A typical runtime error message
Courtesy of Course Technology/Cengage Learning

389

Interpreters

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A symbolic debugger is an automated tool for testing executable programs. It includes
several features, including the capability to perform these tasks:

Trace calls to specific source code statements or subroutines.
Trace changes to variable contents.
Execute source code instructions one at a time.
Detect runtime errors and report them in terms of specific source code
instructions and variables.

A symbolic debugger uses the symbol table, memory map, and source code files to
trace memory addresses to specific source code statements and variables. It also inserts
debugging checkpoints after each source code instruction so that program execution can
be paused. An executable program containing symbol table entries and debugging check-
points is sometimes called a debugging version. In contrast, a program s production
version, or release version, omits the symbol table and debugging checkpoints to reduce
program size and increase execution speed.

Interpreted programs have an advantage over compiled programs in detecting and
reporting runtime errors because the symbol table and program source code are always
available to the interpreter at runtime. If an error occurs, it can be reported in terms of
the most recent source code line translated. Memory addresses can also be converted to
source code names by looking them up in the symbol table. Most interpreters incorporate
symbolic debugging capabilities, so they don t need a stand-alone symbolic debugging
program.

T E C H N O L O G Y F O C U S

Java

Java is an OOP language and program execution environment developed by Sun
Microsystems during the early and mid-1990s. It was first used as a plug-in to extend
Web browser functionality and, as a result, has been described as a Web or network pro-
gramming language. Although it does satisfy this description, Java is a full-featured pro-
gramming language that supports almost any combination of hardware platform and OS.

Java s syntax and capabilities are similar to C++ s, so programmers familiar with either
language can learn the other easily. Unlike C++, which is an extension of the C procedural
language, Java was designed to be an OOP language. It supports object-oriented features,
including encapsulation, inheritance, and polymorphism, but multiple inheritance isn t
supported. It s designed to maximize application reliability and reusability of existing code.

What makes Java unique is a standardized target machine language for Java interpreters
and compilers. Compilers and interpreters for other programming languages translate source
code into executable CPU instructions and service routine calls to a specific OS. A Java
compiler or interpreter translates Java source code into machine instructions and service
routine calls for a hypothetical computer and OS called the Java Virtual Machine (JVM).
Instructions and library calls to the JVM are called Java bytecode.

(continued)

390

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The term JVM also describes an interpreter that translates JVM instructions into
actual CPU instructions and OS service routine calls. The JVM simulates a Java com-
puter with the CPU and OS of a conventional computer (see Figure 10.15). The JVM
bytecode interpreter translates JVM machine instructions into CPU instructions for a real
CPU, such as an Intel Core-i7 or IBM POWER7. Calls to JVM service routines are
translated into equivalent calls to a real OS, such as Windows or Linux.

Java programs come in three forms: stand-alone applications, applets, and servlets.
Stand-alone Java applications run in the JVM and don t usually interact with other
programs. A Java applet runs inside another program, such as a Web browser, and per-
forms functions such as accepting user input and displaying forms and images. A Java
servlet runs in a Web server and performs functions such as calculations, database
access, and creation of Web pages that are transmitted to a Web browser for display.
Applets and servlets run in a protected area called the sandbox, which provides
extensive security controls to prevent them from accessing unauthorized resources
or damaging the hardware, OS, or file system.

Native support for Java OS calls has been added to the Sun Solaris OS, which is
Sun s version of UNIX. Other OS vendors haven t added native support for Java, although
finding a general-purpose computer without an installed JVM is rare. Incorporating the

(continued)

FIGURE 10.15 How Java and the JVM relate to the CPU and OS
Courtesy of Course Technology/Cengage Learning

391

Interpreters

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JVM into the native OS reduces some of the inefficiency inherent in translating OS
service routine calls. It also reduces the need for Java-enabled application software to
install and use private and sometimes incompatible JVMs.

Java s popularity has far exceeded most initial expectations because of a number of
factors, including the following:

Sun s strategy of providing Java compilers and JVMs at little or no cost
Incorporation of JVMs into Web browsers and servers
The predominance of application software that uses a Web browser as the
primary I/O device
The capability of Java programs to run on almost any combination of hardware
and OS

The most important drawback of Java is reduced execution speed resulting from
using interpreted bytecode and OS translation. Emulation processes are inefficient users
of hardware resources. Native applications those compiled and linked for a particular
CPU and OS usually run 10 times faster than interpreted Java bytecode programs.
Some JVMs use a just-in-time compiler to reduce the speed difference to approximately
3:1, but Java programs are always slower than native programs when running on any-
thing other than a true Java machine, which doesn t exist currently. This inefficiency is
an important consideration in some application environments, including portable
computing devices, such as netbooks, tablet PCs, and Web-enabled cell phones, which
typically use less powerful CPUs than other computer types.

Oracle acquired Sun Microsystems in 2009, and its intentions for Java s future aren t
fully known. Oracle has incorporated Java technologies into its product offerings exten-
sively since the late 1990s, including database servers and application development tools
(see the JDeveloper Technology Focus later in this chapter). There has been some fear
that Oracle might alter the Sun Microsystems tradition of open-source and user-driven
development. However, current Java technologies are rooted firmly in the public domain
because they re distributed under the GNU General Public License, which grants
substantial rights to third parties to modify and redistribute Java programs, JVMs, and
related tools. (You examine the GNU General Public License in Research Problems at
the end of the chapter.)

APPLICATION DEVELOPMENT TOOLS

Programming languages, program translation tools, and debugging tools address only the
implementation discipline of the Unified Process. Other tools are needed to perform
activities in the other disciplines. Figure 10.16 summarizes the application development
tools discussed, introduces new tools, and ties each tool to a specific part of the applica-
tion development process.

392

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Integrated Development Environments

An integrated development environment (IDE) is a collection of automated support tools
to speed development and testing, and it generally includes the following components:

Intelligent program editor
Compiler, interpreter, or both
Link editor and a large library of classes or subroutines
Interactive tool for prototyping and designing user interfaces
Symbolic debugger
Integrated GUI

The key feature of an IDE is the level of integration among tools, not the specific tools
included. It leverages programmers effort and skill so that programs can be written and
tested in minutes, hours, or days; automates tedious and time-consuming tasks; stream-
lines other tasks; and maximizes reuse of existing source code. Using an IDE, a program-
mer can develop and test many program versions rapidly.

Editors assist programmers in writing syntactically correct code by verifying syntax as
the code is being typed and highlighting errors (see Figure 10.17). They might also offer
help in the form of completing program statements automatically or displaying pop-up
messages or tool tips related to the current source code line (see Figure 10.18). Compiler
and link editor errors displayed in one window are linked to source code instructions in
another window. Some compilers supply suggested corrections or context-sensitive help in
addition to error messages.

FIGURE 10.16 Application development tools
Courtesy of Course Technology/Cengage Learning

393

Application Development Tools

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

IDEs can also include program templates and skeletons stored in a library or generated
based on input from the programmer or from other tools. They usually contain large libraries
of predefined subroutines or classes that address user interface, database manipulation,
network resource access, and other common functions. Library routines can be imported
into program source code or added via function or method calls and linked into the execut-
able program. With libraries, programmers can reuse source and executable code, thus
speeding up application development.

N O T E
Complex tools, simulated execution environments, and large libraries require two to three times more
CPU power, memory, and secondary storage than a typical desktop computer has. Programmers also
need multiple large monitors to display all the windows used in the development process.

IDEs offer extensive symbolic debugging support. Method calls, function calls, and
changes to program variables or object data can be traced during program execution.

FIGURE 10.17 An intelligent program editor underlines suspected errors and displays a pop-up
message

Courtesy of Course Technology/Cengage Learning

FIGURE 10.18 A pop-up tool tip prompting a programmer to correct a source code line
Courtesy of Course Technology/Cengage Learning

394

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Programs can be started and stopped at programmer-specified locations so that testing can
be performed on specific code segments. Debugging and tracing can also be done on
machine code and OS service calls. Testing and debugging occur in a simulated runtime
environment so that program crashes can t disable the IDE or the entire workstation.

T E C H N O L O G Y F O C U S

Oracle JDeveloper

Oracle JDeveloper is an IDE for developing object-oriented Java software with Oracle and
other DBMSs. A JDeveloper workspace is a container for application components, including
program files, Web pages, system development models, user interface windows, and data-
base connections. A programmer can interact with different views of a project, including
software development models (such as class and package diagrams), files (see the upper-left
pane in Figure 10.19), and classes and methods (see the lower-left pane in Figure 10.19).

FIGURE 10.19 The Oracle JDeveloper interface
Courtesy of Course Technology/Cengage Learning

(continued)

395

Application Development Tools

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

JDeveloper contains many application development tools, including compilers, link
editors, program text editors, symbolic debuggers, and interactive tools for designing user
interface elements, such as menus, toolbars, icons, and forms. It also keeps track of which
tools are used to create and modify programmer-defined objects and opens the correct tool
automatically when a programmer selects an application component. Overlapping menus,
toolbars, and icons provide access to tool features and commands.

Development tools are integrated automatically whenever possible. For example, a
command to build a complete program automatically opens the link editor, user interface
resource compilers, and program compilers for each component programming language
in the right order. JDeveloper keeps track of file dependencies, so a change to one source
code file causes all dependent files to be rebuilt automatically. It also manages data
movement between tools and displays progress and results in an output window.

JDeveloper includes extensive symbolic debugging capabilities. For example, a pro-
grammer can pause program execution at specified source code lines. (In Figure 10.19,
execution is paused before line 279.) Further execution can be directed on a line-by-line
or function-by-function basis. A programmer can examine variable content while the
program is paused and trace variable changes during execution (see the lower-right pane
in Figure 10.19).

In addition, JDeveloper offers useful documentation containing many cross-
references and hyperlinks to glossary terms, examples, and tutorials that can be accessed
from a hard disk or the Web. A sophisticated documentation browser provides extensive
search and indexing capabilities.

CASE Tools
The term computer-assisted software engineering (CASE) tool usually refers to a tool that
supports the UP requirements and design disciplines. This term is a bit of a misnomer
because any tool that assists system or application development fits the literal definition of
a CASE tool. The singular form is also misleading because CASE tools are normally highly
integrated tool suites.

The key feature of a CASE tool is support for a broad range of system development
activities, with particular emphasis on model development. CASE tools support most or
all system development activities up to, and sometimes including, program translation.
They usually support a specific system development methodology, such as structured
system development or the UP. A tool suite that primarily supports model development is
sometimes called a front-end CASE tool. A tool suite that primarily supports application
development based on specific analysis and design models is sometimes called a back-end
CASE tool or code generator.

CASE tools can perform consistency checks and other types of error checking on
models. For example, a CASE tool supporting structured analysis can verify that all data
flows in a data flow diagram have corresponding definitions in the data dictionary. This
tool can also verify that data outputs of each process can be produced from the data
inflows based on the process logic specification.

When extensive back-end capabilities are included in CASE tools, much of the
application development process can be automated. For example, a CASE tool supporting
object-oriented development can generate class declarations in Java or C++ source code

396

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

files, database schema descriptions, and component registration entries for specific
database and component management systems.

The most comprehensive CASE tools automate the process of deploying working
systems from analysis and design models. These tools generate program and other source
code from models, compile and link the programs, create databases, and create, register,
and install all components. They can also include comprehensive features for planning and
managing development projects and for maintaining and modifying existing systems.
Comprehensive CASE tools are usually expensive, require weeks or months of training,
and support specific deployment environments.

B U S I N E S S F O C U S

Building the Next Generation of Application Software

Southwestern Gifts, Inc. (SGI), is a small catalog retailer of Southwestern art, jewelry,
and gifts that distributes two catalogs per year, in May and October. About 40% of orders
are received by phone and 10% by mail, and the rest via the SGI Web site. SGI employs
up to 50 people, including 15 warehouse staff and 30 order-processing clerks during
the Christmas shopping season, 4 accountants and bookkeepers to handle payroll and
accounts payable, 3 buyers, a catalog designer, 4 IS staff, a warehouse manager, and the
owner-operator.

SGI currently has a Hewlett-Packard (HP) ProLiant midrange computer running
Linux, a small Dell server running Windows Server, and 20 desktop computers, all con-
nected by a 100 Mbps Ethernet LAN with a single T1 (1.54 Mbps) Internet connection.
Ten desktop computers are used only for order entry. The Dell server provides file and
printer sharing for desktop computers and printer sharing for the HP computer. The
other 10 desktop computers are used by the accountants, warehouse manager, buyers,
catalog designer, and IS staff.

Application software on desktop computers includes Quicken (an accounting
package), various productivity tools, such as Microsoft Office, and Adobe Illustrator
(graphics design software). SGI purchased an order entry and inventory control package
eight years ago from an out-of-state vendor. This package stores data in a MySQL rela-
tional DBMS and uses a proprietary IDE and operating environment called Data Entry,
Retrieval, and Query System (DERQS).

DERQS provides forms-based data entry and data queries, a file definition tool, and a
simple report generator. Screen forms are defined by using an interactive layout tool that
compiles and stores screen layout and content in a screen definition file (SDF). Database
tables are also defined with an interactive tool, and a simple query interface and report
generator are included with the DBMS.

Application programs are written in a proprietary interpreted scripting language
to display and manipulate screens, manipulate database content, and generate simple
reports. Most of the existing application programs are DERQS scripts, but some are
written in C and C++. DERQS includes a compiler library with functions that enable
C programs to display DERQS screens and interact with DERQS files and the MySQL
database. This library also works with C++ programs because C++ is a superset of C.

(continued)

397

Application Development Tools

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Within a year after purchasing the order-entry and inventory control package, SGI
contracted with the vendor to develop a Web-based order system for customers use. The
Web interface is targeted for Internet Explorer 5 (the most current version at that time).
Web pages are hosted by Apache Web Server software running on the HP server, use
HTML forms-based data input and JavaScript, and interact with back-end processing
functions written in C.

One IS staff member specializes in DERQS data entry functions and script-based
applications. A second IS staff member specializes in the DERQS query language and
develops and maintains C and C++ applications. A third IS staff member maintains the
Web site, including the online catalog and order-entry system. A fourth IS staff member
manages the LAN and desktop computers.

SGI has seen the phone and mail order parts of its business decline steadily.
Although it expects to keep these systems operating for several more years, SGI sees a
need to improve its Web-based ordering system to attract younger, more tech-savvy
customers. SGI also wants to minimize the number of software technologies it depends
on and integrate purchasing, sales, inventory, and accounting functions more tightly.
To achieve these goals, SGI plans to make several improvements to its information
systems, including the following:

Updating the Web-based ordering system to take advantage of more recent
HTML standards, later IE versions, and other browsers, such as Firefox
Implementing a direct interface to financial information in the MySQL data-
base so that data can be uploaded to Quicken and Excel
Enabling buyers to interact with the sales, purchasing, and accounts payable
systems
Using Web-based interfaces for existing and new application programs, with
support for employees working from home or while traveling

SGI recently learned that the company that developed and supported DERQS has
filed for bankruptcy. No company has shown an interest in purchasing the rights to
DERQS, so it appears that no further upgrades or technical support will be available.

Questions:

Should SGI develop any new software with DERQS? If not, what tools should it
acquire for new system development?
Should SGI reimplement the functions of its existing DERQS-based applica-
tions by using more up-to-date development tools?
Should SGI consider replacing its disparate collection of tools and supporting
software with an integrated suite from a large vendor, such as an Oracle DBMS
with JDeveloper or Microsoft SQL Server with Visual Studio? What are the
advantages and disadvantages of this replacement?

398

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

Applications are developed by following the disciplines and iterations of the Unified
Process. Application development follows a methodology, develops models, and uses
automated tools. Most application development cycles include two sets of models:
requirements models and design models.

Executable software consists entirely of CPU instructions. Programmers write programs in
higher-level programming languages that are translated into CPU instructions. Programming
languages have evolved through many generations, and the most recent types are object-
oriented and scripting languages. Later generations have incorporated improvements and
capabilities such as instruction explosion, database access, support for GUIs, and
nonprocedural programming.

All programming language generations other than 1GL must be translated into CPU
instructions before execution. A compiler translates an entire source code file, building a
symbol table and an object code file as output. An interpreter translates, links, and
executes source code programs one source code instruction at a time.

Compiled and interpreted programs must be linked to libraries of executable functions or
methods. A link editor statically links external reference calls in object code to library func-
tions and combines them into a single file containing executable code. It also produces a
memory map showing the organization of all software modules, which is useful for debug-
ging. A link editor can also dynamically link external calls by statically linking them to an OS
service routine that loads and executes DLL functions at runtime. Interpreters always use
dynamic linking.

Integrated suites of automated tools support the application development process. An IDE
includes tools such as a program editor, screen and report designers, an intelligent com-
piler and link editor, a symbolic debugger, and extensive documentation. CASE tools pro-
vide a tool suite to support a wider range of development tasks. A front-end CASE tool
supports developing requirements and design models. A back-end CASE tool generates
program source code from models.

In the next two chapters, you look at operating systems in detail. Chapter 11 describes the
internal architecture of an OS and discusses how it manages processes and memory. Chapter
12 concentrates on file and secondary storage device management.

Key Terms

applet

assembler

assembly language

back-end CASE tool

call instruction

code

compiler

compiler library

computer-assisted software engineering
(CASE) tool

control structure

data declaration

data operation

debugging version

design models

dynamic link libraries (DLLs)

399

Key Terms

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

dynamic linking

early binding

executable code

external function call

fifth-generation language (5GL)

first-generation languages (1GLs)

fourth-generation languages (4GLs)

front-end CASE tool

function

instruction explosion

integrated development environment (IDE)

interpretation

interpreter

Java

Java Virtual Machine (JVM)

label

late binding

link editor

machine languages

memory map

message

native applications

nonprocedural language

object code

object-oriented programming (OOP)

procedure

production version

release version

return instruction

sandbox

scripting language

second-generation language (2GL)

servlet

source code

static linking

subroutine

symbol table

symbolic debugger

system requirements models

third-generation language (3GL)

unresolved reference

variable

Vocabulary Exercises

1. A compiler allocates storage space and makes an entry in the symbol table when it
encounters a(n) in source code.

2. A(n) is produced as output during activities of the UP requirements
discipline.

3. A link editor searches an object code file for .

4. A 4GL has a higher degree of than a 3GL does.

5. code contains CPU instructions and external function calls.

6. A(n) produces a(n) to show the location of functions or
methods in executable code.

7. The compiler adds the names of data items and program functions to the as
they re encountered in source code.

8. A 2GL is translated into executable code by a(n) .

9. A(n) translates an entire source code file before linking and execution.
A(n) interleaves translation, link editing, and execution.

10. A Java runs in the of a Web browser.

400

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11. in source code instructions are translated into machine instructions to
evaluate conditions or transfer control from one program module to another.

12. A(n) uses the symbol table s contents to help programmers trace memory
locations to program variables and instructions.

13. FORTRAN, COBOL, and C are examples of .

14. A(n) tool supports system model development. A(n) tool
generates program source code from system models.

15. A link editor performs linking. An interpreter performs linking.

16. Java programs are compiled into object code for a hypothetical hardware and OS
environment called the .

17. Widely used scripting languages include , , and .

Review Questions

1. Describe the relationships between application development methodologies, models,
and tools.

2. Compare the generations and types of programming languages.

3. What is instruction explosion? What types of programming languages have the most
instruction explosion? What types of programming languages have the least instruction
explosion?

4. What are the differences between source code, object code, and executable code?

5. Compare assemblers, compilers, and interpreters.

6. What does a compiler do when it encounters data declarations in a source code file? Data
(manipulation) operations? Control structures?

7. Compare the execution of compiled programs with interpreted programs in terms of CPU
and memory utilization.

8. What is a link editor? What is a compiler library? How and why are they useful in program
development?

9. What types of programming statements are likely to be translated into machine instructions
by a compiler? What types are likely to be translated into library calls?

10. Compare error detection and correction capabilities in interpreters and compilers.

11. Compare static and dynamic linking.

12. What are the shortcomings of 3GLs in meeting the requirements of modern applications?

13. What are the main differences between OOP languages and traditional programming
languages?

14. What components are normally part of an IDE? In what ways does an IDE improve
programmer productivity?

15. What is a CASE tool? What s the relationship between a CASE tool and a system
development methodology?

16. What s the difference between a front-end CASE tool and a back-end CASE tool?

401

Review Questions

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Problems and Exercises

1. Develop assembly-language instructions to implement the following source code fragment:
a 0;

i 0;

while (i < 10) do

a a+i;

i i+1;

endwhile

Research Problems

1. Investigate a CASE tool, such as those offered by Computer Associates (www.ca.com),
Oracle (www.oracle.com), Borland (www.borland.com), or IBM (www.ibm.com). On what
system development methodologies is the tool based? What types of system models can
be built with the tool? How is an analysis model translated into an implementation model?
What programming languages, OSs, and DBMSs does the back-end CASE tool support?
What deployment environments are supported?

2. Investigate an IDE, such as Microsoft Visual Studio or IBM WebSphere. Are application
programs interpreted, compiled, or both? What program-editing tools are included? What
tools are available to support runtime debugging? What DBMSs can be accessed by appli-
cation programs?

3. Investigate the Free Software Foundation and the terms of its licenses the GNU General
Public License (GPL) in particular. What are the provisions of this license, and what is
copyleft ? Identify at least three current software packages, such as programming or appli-

cation development tools, OSs, or DBMSs, distributed under the GPL s terms. Identify at
least two large companies that incorporate these technologies into their own products and
services sold for profit. What are the economic motivations for these companies to build
their products and services around free software?

402

Chapter 10

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.ca.com
http://www.oracle.com
http://www.borland.com
http://www.ibm.com

C H A P T E R11
OPERATING SYSTEMS

C H A P T E R G O A L S

Describe the functions and layers of an operating system

List the resources allocated by the operating system and describe the
allocation process

Explain how an operating system manages processes and threads

Compare CPU scheduling methods

Explain how an operating system manages memory

Operating systems are critical components of information systems. Users and application programs

rely on them to provide services and to manage software, data, and hardware resources. As an infor-

mation systems professional, you ll often be asked to select, install, configure, and upgrade operating

systems. Performing these tasks successfully requires a detailed understanding of how operating

systems work. Figure 11.1 shows some topics you learn about in this chapter.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

OPERATING SYSTEM OVERVIEW

The operating system (OS) is an important part of all information systems. It plays a dual
role as a high-level manager and a tireless low-level worker. As a manager, it oversees all
hardware resources and allocates them to users and applications as needed. It also shifts
resources to meet rapidly changing demands while enforcing resource security and shar-
ing policies. With resources, the OS is similar to Big Brother an omniscient govern-
ment with unquestioned authority.

At the same time, the OS performs many low-level tasks on behalf of users and appli-
cation programs, such as accessing files and directories, creating and moving windows,
and accessing resources over a network. It provides these services for two reasons. First,
it s efficient. If many application programs perform similar tasks, it makes sense to imple-
ment these tasks as reusable OS services available to all applications. This way, applica-
tion programmers are free to address tasks unique to the type of application they re
developing.

Second, providing so many low-level functions enables the OS to maintain control
over hardware resources. For example, it provides file access services so that it can main-
tain control over secondary storage devices. With complete control, the OS can enforce
systemwide security policies, prevent programs from accidentally overwriting one
another s data, and allocate disk and I/O capacity efficiently to meet the needs of all users
and programs.

FIGURE 11.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

404

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Operating System Functions
OS functions are categorized as shown in Figure 11.2. You might want to refer back to this
figure as you read this chapter and the next two to remind yourself how each low-level
function fits into the big picture. OS functions are divided into five main groups in this
figure. In the leftmost column, hardware interface functions are listed by device type
CPU, primary storage, secondary storage, and I/O devices. The functions in the next three
columns are also organized by these device types.

The functions in the Resource Allocation column are essentially a bridge between
users, their processes, and the hardware resources used by these processes. As in any
complex business or other organization, resource allocation is an important management
function that provides resources to support many ongoing activities. OS resource alloca-
tion functions ensure that overall system objectives are achieved efficiently and effec-
tively, as described in more detail later in this chapter.

As discussed in Chapter 6, interrupt processing is a way to coordinate I/O devices and
improve system performance. This chapter expands the description of interrupt processing
to include its role in coordinating hardware devices with their corresponding resource
allocation functions. For example, you learn about the role of timers and other interrupts
for CPU scheduling, process prioritization, and virtual memory management. The OS
service layer, as you learned in Chapter 2, provides services to application programs and
processes, such as file management, interfaces to external resources via networks, and
user interface services (for example, GUI windowing functions). This chapter explores this
layer further to include process and thread management services. Chapter 12 covers file-
related services in depth, and Chapter 13 does the same with network-related services.

Operating
system

Hardware
interface

(device drivers)

Resource
allocation

Interrupt
processing
(supervisor)

Services
(service layer)

CPU

Primary
storage

Secondary
storage

I/O
devices

I/O device
interrupts

Storage device
interrupts

Page fault and
protection
interrupts

Timer
interrupts

Scheduling
Process/thread
management

Account
management

Users and
security

Authentication

Authorization

Interprocess
communication

File/folder
services

Network
services

Console and GUI
services

Virtual memory
management

Storage
I/O control

Interactive and
network I/O

FIGURE 11.2 OS management functions
Courtesy of Course Technology/Cengage Learning

405

Operating System Overview

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Finally, as shown in the rightmost column of Figure 11.2, this chapter introduces the
OS s role in ensuring system security through user accounts, authentication of users, and
authorizing access by users and processes to specific resources, such as files and I/O
devices. As with service-layer functions, Chapter 12 explores file-related security issues
in more depth, and Chapter 13 discusses these issues for network services.

Operating System Layers
Like other complex software, operating systems are organized internally into layers, as
shown in Figure 11.3. Using layers makes the OS easier to maintain because functions in
one layer can be modified without affecting other layers. The outermost layers provide
services to application programs or directly to end users. The innermost layer encapsu-
lates hardware resources, thus controlling and managing access by users and applications.

The command layer, sometimes called the shell, is the user interface to the OS.
Through this layer, a user or system administrator can run application and OS utility pro-
grams and manage system resources, such as files, folders, and I/O devices. Although end
users tend to think of the command layer and the OS as one and the same, the command
layer is only one part of the OS, and users can use different command layers to interact
with the same OS.

Today s operating systems include a graphical user interface (GUI) that enables users
to interact with visual representations (icons) of programs and other resources and
manipulate them with actions such as dragging or clicking them. Having files, programs,

FIGURE 11.3 OS layers
Courtesy of Course Technology/Cengage Learning

406

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and commands represented with icons is easy for most people to use. Xerox first used this
form of interface in the late 1970s, and it has grown to dominate computing through dec-
ades of use and refinement and because of continuing advances in display technology and
computer power.

The command layer can also be implemented with a text interface that accepts user
input from the keyboard. For example, in MS-DOS, a user types commands, such as DIR
to list a folder s contents or COPY to copy a file or folder from one storage location to
another. A set of commands and syntax requirements is called a command language or
sometimes a job control language (JCL). Command languages tend to be difficult to learn
and use, partly because of their similarity to programming languages. The user or pro-
grammer must know the language s syntax and semantics to issue commands. Examples of
command languages include MS-DOS, IBM MVS JCL, Windows PowerShell, and UNIX
Bourne shell. End users rarely use command languages now, but system administrators
still use them often. Commands can be stored in a file to be reused, and they can be
embedded in control structures, such as if statements and while-do loops, to automate
repetitive tasks for example, creating accounts and folders for a group of new users.

N O T E
Although Windows replaced MS-DOS in the 1980s and 1990s, a compatible command layer is included
in most Windows versions. You can search for and run the cmd.exe file to open the text-based com-
mand prompt window that accepts MS-DOS commands. Similarly, UNIX and Linux OSs still include
text-based command-layer shells, such as the Bourne (filename sh) and C (filename csh) shells.

The service layer contains thousands of reusable components that provide functions
ranging from file and folder manipulation to accessing I/O devices (such as printers and
scanners), starting and stopping programs, and creating, moving, and resizing GUI win-
dows. Service components are packaged as functions that can be called from an applica-
tion or other program. A request to execute a service-layer function is called a service call.
Application programs, the command layer, and utility programs perform most of their
functions by executing service calls.

The service layer is also an intermediary between programs, which request and use
resources, and the kernel, which manages and provides access to resources. Think of a
service call as an indirect request for system resources. For example, when an application
program asks the OS to retrieve data from a file, it s indirectly asking for access to mem-
ory buffers, the system bus, the disk controller, and the disk holding the file. Similarly, an
I/O service call is an implicit request for access to an I/O device and the resources needed
to communicate with it.

The kernel is the OS portion that manages resources and interacts directly with com-
puter hardware. It includes a resource allocation layer (described in the following section)
and interface programs called device drivers for each hardware device in the computer
(see Figure 11.4), such as keyboards, video displays, disk drives, DVD drives, and printers.
Using device drivers makes the OS modular and flexible. As hardware is added or
upgraded, device drivers are added or modified to reflect the changes (see Figure 11.5).

407

Operating System Overview

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FIGURE 11.4 Components of the kernel
Courtesy of Course Technology/Cengage Learning

FIGURE 11.5 Device driver properties in Windows
Courtesy of Course Technology/Cengage Learning

408

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

RESOURCE ALLOCATION

Early computer systems were simple devices with few hardware resources. Because hard-
ware resources were limited, complex resource allocation methods were unnecessary. An
application program took control of the entire computer when it ran. Because only one
application program ran at a time, there was no need for OS software to resolve compet-
ing demands for hardware resources.

Over time, computers became more powerful, and their hardware resources became
more numerous and diverse. Extra processing power and storage capacity made it possible
for multiple users and programs to use a computer at the same time. OS support for run-
ning multiple programs simultaneously is called multitasking. Multitasking OSs use elabo-
rate procedures to share resources between processes and users and prevent them from
interfering with one another.

Single-Tasking Resource Allocation
Resource allocation in a single-tasking OS involves only two running programs an applica-
tion and the OS. Single-tasking operating systems are small and efficient because they don t
need complex resource allocation procedures. There s rarely any contention between the
OS and application program for resources. The OS reserves whatever resources it requires
when it boots, and all resources not allocated to it are available to an application program.

In a single-tasking environment, when an application program begins running, the OS
grants it control of all unused hardware resources. The program controls these resources
until it terminates, an error occurs, or it needs service from the OS. Errors and service
calls are normally processed through interrupts (discussed in Chapter 6). When an inter-
rupt is detected, control of the CPU is passed back to the OS. If an error has occurred, the
OS can attempt to correct it so that the program is able to continue. If error correction
isn t possible, the program is terminated, and the OS reclaims control of all hardware
resources. In a single-tasking OS, no elaborate mechanisms are needed to prevent pro-
grams from accessing one another s resources because there s only one active program.

N O T E
MS-DOS, the most common single-tasking OS, was developed for the IBM PC and widely used until the
early 1990s. It s still used sometimes in specialized applications that don t require multitasking capabili-
ties, such as security systems, and for controlling hardware devices, such as elevators and irrigation
systems.

Multitasking Resource Allocation
Multitasking operating systems are now the norm for general-purpose computers. They
enable many programs or processes to run at the same time. Application and system soft-
ware can be more flexible because large programs can be built from smaller independent
modules or processes. Small modules are easier to develop and update, and they can be
loaded, executed, suspended, and resumed as needed.

For example, a typical word-processing program often needs to format output and send
it to a printer. With a multitasking OS, the program s printer formatting and interface

409

Resource Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

functions can be a separate module that s loaded and executed when printing is required and
suspended when it s not in use. The printing module can run independently of other word-
processing modules, so the user can perform other tasks while a document is being printed.

System software also benefits from multitasking capabilities. Network interface cards,
for example, typically have a dedicated OS module that detects and responds to incoming
data. With multitasking, this module is loaded into memory when the OS boots and is
placed in a suspended state until data arrives. Independent modules also manage other I/O
devices, such as printers and video displays. Dividing OS tasks between independent mod-
ules makes the OS easier to build and upgrade and results in more efficient use of hardware
resources. A multitasking OS manages hardware resources to achieve the following goals:

Meet each program s resource needs.
Prevent programs from interfering with one another.
Use hardware and other resources efficiently.

Related goals include maximizing the amount of work performed, ensuring reliable pro-
gram execution, protecting resource security, and minimizing resources the OS consumes.

Resource Allocation Tasks
To understand how resource allocation works, think of the resource allocation tasks that
the road maintenance unit of a local government performs: maintaining a pool of repair
personnel, equipment, and supplies; accepting repair requests from a variety of sources;
scheduling resources to satisfy requests; and moving resources between sites to complete
repairs. Managing resources to respond to repair orders is a complex task requiring
detailed knowledge of what personnel, equipment, and supplies are available and when
they re available. This unit also maintains detailed records of personnel skills, equipment
capabilities, supplies on hand and on order, operational status, commitments, and sche-
dules. These records are input data for future scheduling decisions and are modified as a
result of these decisions. The road maintenance unit also follows well-defined policies and
procedures to prioritize conflicting demands for service.

An OS s resource allocation functions are similar to those of the road maintenance
unit. The OS keeps detailed records of available resources and knows which resources can
satisfy which requests. It schedules resources based on allocation policies to meet current
and anticipated demand, and it updates records constantly to reflect resource commit-
ment and release by programs and users. Resource allocation goals and policies are
defined as procedures or algorithms implemented in software. The records supporting
these procedures are implemented as data structures. An OS s resource allocation func-
tions are similar to any other program s; they re a set of algorithms and data structures
organized to accomplish a particular purpose.

Computer scientists have long studied data structures and the most efficient ways to
manipulate them, resulting in a large body of knowledge about which algorithms and data
structures are most efficient for particular types of processing tasks. System programmers
apply this body of knowledge to design and implement OS resource allocation procedures,
taking care to use procedures that consume as few machine resources as possible. The
reason is simple every resource consumed by OS tasks is unavailable to application pro-
grams. You can compare it with management functions in a business: Every business has
limited resources, and every resource devoted to a management function is unavailable for
other business functions, such as producing and selling products.

410

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The resources consumed by resource allocation procedures are sometimes referred to
as system overhead. An important design goal for most OSs is to minimize system over-
head while achieving acceptable levels of throughput and reliability. Note, however, that
these goals conflict. Allocation decisions that make more resources available to programs
typically require more complex allocation procedures. Ensuring higher levels of reliability
also requires more extensive oversight procedures. However, increasing the complexity of
allocation and oversight procedures consumes more hardware resources when these pro-
cedures are implemented in software. OS designers must determine the right balance
between these competing objectives.

Real and Virtual Resources
A computer s physical devices and associated system software are called real resources. As
allocated by the OS, the resources that are apparent to a program or user are called vir-
tual resources. Operating systems make virtual resources appear to be equal to or greater
than real resources. For example, a typical desktop computer usually has only one printer.
However, if a user runs multiple programs, such as word-processing and spreadsheet
applications, at the same time, each program thinks it has a printer all to itself. The
single physical printer is a real resource. The printers each program thinks it controls
exclusively are virtual resources.

Application design and programming are much simpler if the application isn t con-
cerned with resource availability. Programs can be written under the assumption that
whatever resources are requested will be provided. The programmer doesn t need to
develop schemes to lock and unlock resources for exclusive use. For example, a word-
processing program doesn t need to check whether the physical printer is being used by
another program. It simply prints to its own virtual printer and leaves it to the OS to figure
out how to print output from multiple programs without interference.

Providing virtual resources that meet or exceed real resources is accomplished by
doing the following:

Rapidly shifting resources unused by one program to other programs that
need them
Substituting one type of resource for another when possible and necessary

Although each program thinks it has control of all hardware resources in the com-
puter, it s rare for one program to need them all at the same time. The OS shifts resources
between programs as demand rises and falls. In this way, the sum of virtual resources for
all active programs can substantially exceed the computer s real resources. Interrupt pro-
cessing is an example of resource shifting. When a program makes an I/O request that
can t be satisfied immediately, the OS suspends it and stores its register contents in mem-
ory (a stack push). Other programs receive control of the CPU while the I/O request is
being processed. Later, the register contents are copied back from memory (a stack pop),
and the program resumes execution and control of the CPU.

Certain types of resources can be substituted for each other. For example, memory is
temporarily substituted for CPU registers while a program is suspended, pending comple-
tion of an I/O request. In the printing example, an application program thinks it s
interacting directly with the printer. Instead, the OS stores output in a file temporarily.
In essence, it substitutes secondary storage resources for the printer and related I/O

411

Resource Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

resources. When the printer is available, the OS copies the data to the printer and deletes
the file, thus reversing the temporary substitution.

T E C H N O L O G Y F O C U S

VMware ESX and ESXi

A hypervisor is an OS that enables dividing a single physical computer or cluster into
multiple virtual machines (VMs). Hypervisors are marketed or used by several software
vendors, including VMware, IBM, Oracle, and Microsoft. Open-source hypervisors include
Citrix XenServer and Kernel-Based Virtual Machine (a Linux version). VMware is the
market leader in hypervisors, with approximately an 80% market share in 2009.

A hypervisor carries virtualization one step further than a normal OS. Instead of
virtualizing each hardware resource for use by programs and processes, it virtualizes a
subset of the physical computer s CPU, storage, and I/O resources to create multiple
VMs. A guest OS is installed on each VM, and applications and services are installed in
this OS.

A hypervisor can make the sum of physical resources allocated to all virtual machines
appear greater than the underlying physical resources. This capability is a key reason for
the widespread use of hypervisors for server consolidation, which uses VMs as small
virtual servers hosted by a hypervisor running on a larger machine (see Figure 11.6).
Because most servers don t use all their allocated resources all the time, a hypervisor can
move resources between virtual servers as their needs rise and fall. As a result, total
hardware resource requirements are reduced, compared with installing each server on a
separate computer. Sharing a single hardware platform across multiple virtual servers can
also simplify administrative tasks, such as installation, backup, and recovery, although it
might complicate other tasks, such as hardware maintenance and upgrades.

(continued)

Virtual
server

1

CPUs Memory

Hardware resources

Hypervisor

Disks
I/O

devices

Virtual
server

2

Virtual
server

3

Virtual
server

4

FIGURE 11.6 Virtual servers sharing a single computer system with a hypervisor
Courtesy of Course Technology/Cengage Learning

412

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Virtualization software varies in several characteristics, including how many tradi-
tional OS functions are provided and whether the software is installed directly on the
hardware or in a host OS (the OS running on the physical computer). At one end of the
spectrum are bare-metal hypervisors that are installed much like OSs but provide only
minimal OS-type functions, such as the capability to start and stop VMs and manage
physical resources on behalf of VMs. At the other end of the spectrum are virtualization
environments that are installed as an application in another OS.

VMware offers two hypervisors, ESX and ESXi, intended for server consolidation and
a virtualization environment, VMware Workstation, which is installed as an application in
Windows or Linux. ESXi is a bare-metal hypervisor with minimal OS services. Its small
hardware footprint makes it efficient, thus maximizing the hardware resources available
to VMs. ESX includes a portion of the Linux kernel, which enables it to interact directly
with some Linux applications, but it consumes more hardware resources than ESXi.
VMware Workstation is used mainly to enable desktop computers to run multiple OSs
simultaneously.

A critical performance factor in any hypervisor or virtualization environment is I/O
processing and communication between the hypervisor and guest OSs. Interactive I/O
devices, such as keyboards, mice, and video displays, typically use highly optimized dri-
vers for quick response time. Virtualization introduces another software layer between
device drivers and I/O hardware that can reduce performance to unacceptable levels. To
address this issue, VMware includes VMware Tools, which provides customized device
drivers for interactive I/O devices that streamline the I/O interface between the hypervi-
sor and guest OS. VMware Tools also allows direct communication between the hypervi-
sor and guest OS to enable functions such as shutting down and restarting a VM.

PROCESS MANAGEMENT

A process is a unit of executing software that s managed independently by the OS and can
request and receive hardware resources and OS services. It can be a stand-alone entity or
part of a group of processes cooperating to achieve a common purpose. Processes can
communicate with other processes executing on the same computer or with processes
executing on other computers.

Process Control Data Structures
The OS keeps track of each process by creating and updating a data structure called a
process control block (PCB) for each active process. It creates a PCB when a process is
created, updates the PCB as process status changes, and deletes the PCB when the process
terminates. Using information stored in the PCB, the OS can perform a number of func-
tions, including allocating resources, securing resource access, and protecting active pro-
cesses from interference by other active processes.

PCB content varies across operating systems and can also vary within a single OS,
depending on whether certain functions, such as resource accounting and auditing, are
enabled. The following data items are typically included:

A unique process identification number
The current state of the process for example, executing or suspended
Events the process is waiting for

413

Process Management

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Resources allocated exclusively to the process, including memory, files, and
I/O devices
Machine resources consumed for example, CPU seconds consumed and
bytes of data transferred to and from disk
Process ownership and access privileges
Scheduling priority or data for determining scheduling priority

PCBs are normally organized into a larger data structure, such as a linked list. The list
of PCBs, sometimes called a process queue or process list, is often searched by OS com-
ponents. For example, a user control process might search the process queue for all pro-
cesses owned by a certain user so that they can be terminated when the user logs off. The
speed of searches and updates is an important characteristic of PCBs and the process list.
The process list and PCB contents change frequently as processes are created and termi-
nated and resources are allocated and released. Using efficient data structures and proces-
sing algorithms minimizes system overhead.

Processes can create, or spawn, other processes and communicate with them. The
original process is called the parent process, and the newly created process is called the
child process. Parent processes can spawn multiple child processes, and the child pro-
cesses of a single parent are collectively called sibling processes. Child processes can, in
turn, spawn children of their own. A group of processes descended from a common ances-
tor, including the common ancestor itself, is called a process family.

Application programs often spawn a child process to run general-purpose utility pro-
grams that aren t part of the OS service layer. For example, a Web browser can spawn a
process to view specialized content, such as a spreadsheet or Adobe Acrobat document. The
process can be another program in the same application, a utility program supplied with an
application suite, or a utility program supplied with the OS. Subdividing application pro-
grams into multiple cooperating processes can improve execution speed, especially if the
computer has multiple CPUs, because multiple processes can execute simultaneously.

Even if only one CPU is available, subdividing application programs into cooperating
processes increases execution speed because of more efficient resource allocation. For
example, a user of a word-processing program wants to edit one document while generat-
ing an Acrobat version of another. If the word-processing program spawns a separate
Acrobat formatting process, both tasks can be performed concurrently. Because the two
tasks use different mixes of computer resources (heavy I/O and light CPU for the editing
process and the reverse for the Acrobat formatting process), the OS can allocate resources
efficiently so that both processes move toward completion quickly.

Threads
The benefits of subdividing large processes into smaller ones are subject to the law of
diminishing returns. As the number of active processes increases, the system overhead
required to track and manage them also increases. The process list grows, and OS pro-
cesses that search and update the list become less efficient. System overhead increases,
and the resources available to execute application processes are reduced.

In many operating systems, processes can subdivide themselves into more easily
managed subunits called threads. A thread is a portion of a process that can be scheduled
and executed independently. Process threads can execute concurrently on a single pro-
cessor or simultaneously on multiple processors. Threads share all resources allocated to
their parent processes, including primary storage, files, and I/O devices.

414

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The advantage of organizing an application program into a family of threads instead of
multiple processes is that system overhead for resource allocation and process manage-
ment is reduced. Because all threads of a process share storage and I/O resources, the OS
can track allocation of these resources on a per-process basis, which reduces the number
of PCBs and speeds up searching and updating the process queue.

The OS keeps track of thread-specific information in a thread control block (TCB).
Each PCB contains pointers to its related TCBs, and all active TCBs are organized into a
data structure called a run queue or thread list. As with a process list, a run queue is
implemented with efficient data structures that can be searched or updated quickly.

A process or program that divides itself into multiple threads is said to be multi-
threaded. An OS that supports threads creates a thread for each process automatically,
but subdividing processes into multiple threads isn t automatic. The programmer or com-
piler must specifically identify code segments that can execute independently and create a
thread for each segment. Desktop and server OSs have supported multithreaded processes
since the 1990s.

CPU ALLOCATION

Threads progress toward completion only when they have CPU cycles in which to execute
their instructions. A multitasking OS can execute dozens, hundreds, or thousands of
threads in the same time frame. Most computers have only one or two CPUs, so threads
must share CPUs.

N O T E
The term thread is used throughout this chapter, but all references to threads also apply to processes
in OSs that don t support threads.

The OS makes rapid decisions about which threads receive CPU control and for how
long control is retained. Typically, a thread controls a CPU for no more than a few milli-
seconds before it relinquishes control and the OS gives another thread a turn. Figure 11.7
shows three threads sharing a single CPU by using small time slices. This method of CPU
sharing is called concurrent execution or interleaved execution.

FIGURE 11.7 Concurrent (interleaved) thread execution on a single CPU
Courtesy of Course Technology/Cengage Learning

415

CPU Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Thread States

An active thread can be in only one of the following states:

Ready
Running
Blocked

Figure 11.8 shows the three thread states and the events that move a thread from one
state to another. Threads in the ready state are idle, pending availability of a CPU. Many
threads can be in the ready state at one time. When a CPU becomes available, the OS
chooses a ready thread to execute on that CPU.

The act of giving control of a CPU to a ready thread is called dispatching. The OS
dispatches a thread by loading the instruction pointer with an instruction address that
belongs to the dispatched thread. During the next fetch and execution cycle, the thread
takes control of a CPU and its related resources, such as general-purpose registers.

After it s dispatched, a thread has entered the running state and retains control of a
CPU until one of these events:

The thread or its parent process terminates (halts) normally.
An interrupt occurs.

When a process or thread terminates itself, control returns to the OS. The way in
which the OS regains CPU control varies across operating systems and CPUs. The most
common method is for the process or thread to execute an exit service call, which triggers
a software interrupt.

FIGURE 11.8 Thread movement between states
Courtesy of Course Technology/Cengage Learning

416

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Interrupts can occur for a variety of reasons, including the following:

Executing a service call, such as a file I/O request
A hardware-generated interrupt indicating an error, such as overflow, or a
critical condition, such as a power failure alarm from an uninterruptible
power supply
An interrupt generated by a peripheral device, such as a NIC when a packet
arrives

Recall from Chapter 6 that when any interrupt is received, the CPU automatically
suspends the currently executing thread, pushes current register values onto the stack,
and transfers control to the OS master interrupt handler. The suspended thread remains
on the stack until interrupt processing is completed. During this time, the thread is in a
blocked state. After the interrupt has been processed, the OS can leave the suspended
thread in the blocked state, move it to the ready state, or return it to the running state.

Interrupt Processing
A blocked thread is waiting for an event to occur, such as allocation of a requested
resource or correction of an error condition. Error conditions might or might not be cor-
rectable. If they can t be corrected for example, overflows or memory protection faults
the thread is halted. If the error can be corrected, the thread remains in the blocked state
until the error condition is resolved.

For example, if a thread attempts to access a file on a removable disk and the disk
isn t in the drive, the disk drive controller generates an interrupt to signal the error. The
CPU automatically suspends the thread and passes CPU control to an OS interrupt han-
dler. In an OS such as Windows, the interrupt handler displays an error message asking
that a disk be inserted. If the user complies, the error condition is resolved, and the thread
leaves the blocked state. If the user doesn t comply, the error isn t corrected, and the
requesting thread is terminated.

Most service calls directly or indirectly require resource allocation. For example, a
service call requesting additional memory for a thread is a direct request for resource
allocation. A request to open a file is an indirect request for memory buffers to hold file
data as it s transferred to or from secondary storage. If the request is for read/write access,
it s an indirect request for exclusive access to the file. A subsequent request to read data
from the file is an indirect request for access to the secondary storage device, its control-
ler, and the I/O channels connecting the secondary storage device to its memory buffers.

Some service calls, such as requests for additional memory, can usually be performed
immediately, but many service calls, such as requests for input from a file or device,
require time to carry out. In this case, the thread remains in the blocked state until the
request is satisfied.

The following event sequence is typical when a process or thread reads from a file:

1. The thread requests file input by issuing a software interrupt.
2. The thread is pushed onto the stack automatically, and the corresponding

interrupt handler is called.
3. The interrupt handler executes. It checks to see whether the requested data

is already in a memory buffer. If it is, the interrupt handler transfers the data

417

CPU Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

from the memory buffer to the data area of the requesting process. The
interrupt handler exits, and the OS places the suspended thread in the ready
or running state.

4. If the requested data isn t already in a memory buffer, the interrupt handler
generates a read command and sends it to the secondary storage controller.
The interrupt handler then exits without waiting for the data to be returned.
The OS places the suspended thread in a blocked state, pending arrival of the
requested data.

5. When the data is read from disk, the secondary storage controller sends an
interrupt to the CPU. The interrupt handler transfers the data from the sec-
ondary storage controller to a memory buffer over the system bus and then
copies it to the data area of the requesting process. The interrupt handler
exits, and the OS places the blocked thread in the ready or running state.

Scheduling
The decision-making process the OS uses to determine which ready thread moves to the
running state is called scheduling, and the OS portion that makes scheduling decisions is
called the scheduler. Operating systems vary widely in their scheduling methods, although
the following methods are typical:

Preemptive scheduling
Priority-based scheduling
Real-time scheduling

Preemptive Scheduling

In preemptive scheduling, a thread can be removed involuntarily from the running state. A
running thread controls a CPU by controlling the instruction pointer s content. CPU control
is lost whenever an interrupt is received and the CPU pushes the current thread onto the
stack and transfers control to the OS. As you learned in Chapter 6, the portion of the OS
that receives control is called the supervisor, which performs two important functions:

Calling the correct interrupt handler
Transferring control to the scheduler

The supervisor uses the value in the interrupt register as an index to the interrupt
table. It extracts the corresponding address, pushes itself on the stack, and transfers con-
trol to the interrupt handler by placing its address in the instruction pointer. When the
interrupt handler finishes, it passes control back to the supervisor by popping the stack.
The supervisor then passes control to the scheduler by executing an unconditional
BRANCH instruction.

The scheduler performs four tasks:

Updating the status of any thread affected by the last interrupt
Deciding which thread to dispatch to the CPU
Updating thread control information and the stack to reflect the scheduling
decision
Dispatching the selected thread

418

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Processing an interrupt usually changes the state of at least one thread. If the inter-
rupt resulted from a request for a resource that couldn t be provided immediately, the
thread currently on top of the stack must be moved from the running state to the blocked
state. If processing the interrupt cleared an error condition or supplied a resource some
thread was waiting for, the thread must be moved from the blocked state to the ready
state. The scheduler updates the corresponding TCBs to reflect these state changes.
Figure 11.9 shows the processing sequence for a service request and delayed satisfaction
of that request. The processing steps on the left occur after Thread 1 makes an I/O service
call. The processing steps on the right occur after the I/O device finishes the I/O operation.

FIGURE 11.9 Interrupt processing
Courtesy of Course Technology/Cengage Learning

419

CPU Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

After the scheduler decides which thread will run next, it updates the thread s TCB
and manipulates the stack contents, if necessary. If the suspended thread is to become the
running thread, the scheduler pops the stack and the thread resumes execution. If another
thread is selected as the running thread, the scheduler must save the entire stack contents
to the corresponding TCB because elements below the topmost element represent sus-
pended subroutines or functions of the interrupted thread.

For example, a thread named main begins execution and calls subroutine A. Sub-
routine A calls subroutine B, and an interrupt is received before any subroutine completes
execution. After the interrupt is received and control is passed to the supervisor, there are
three thread states on the stack (see Figure 11.10). The stack contents are main, which
was pushed when subroutine A was called; A, which was pushed when subroutine B was
called; and B, which was pushed when the interrupt was detected. The entire stack must
be saved to the thread s TCB so that it can be restored when the thread is dispatched at
some future point.

After the suspended thread s stack is saved to its TCB, the OS copies the saved stack
of the next running thread from its TCB to the stack. The scheduler then transfers control
to the thread by issuing a pop instruction.

Timer Interrupts Because interrupt arrival is unpredictable, the time a thread remains
in the ready state is also unpredictable. Theoretically, it s possible for a thread to control
the CPU indefinitely if it makes no service calls, generates no error conditions, and
receives no external interrupts. Under these conditions, a thread stuck in an infinite loop
would execute forever.

Most CPUs generate an interrupt periodically to give the scheduler an opportunity to
suspend the currently executing thread. A timer interrupt is generated at regular intervals
of between several dozen and several thousand CPU cycles. As with other interrupts, the
currently executing thread is pushed onto the stack, and control is transferred to the

FIGURE 11.10 Subroutine calls (left) and associated stack content (right)
Courtesy of Course Technology/Cengage Learning

420

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

supervisor. Because a timer interrupt isn t a real interrupt, there s no interrupt handler
to call, so the supervisor passes control to the scheduler.

Timer interrupts are an important CPU hardware feature for multitasking operating
systems. They guarantee that no thread can hold the CPU for long periods because the
scheduler has regular opportunities to place another thread in the running state.

Priority-Based Scheduling

Priority-based scheduling determines which ready thread should be dispatched to the
CPU according to one or more of the following methods:

First come first served
Explicit priority
Shortest time remaining

With first come first served (FCFS) scheduling, the scheduler always dispatches the
ready thread that has been waiting the longest. The simplest way to determine which
thread has been waiting the longest is to order the run queue by waiting time. Each time a
thread is moved into the ready state, the scheduler places its TCB at the back of the run
queue. The scheduler then searches the run queue from front to back until it finds a ready
thread, and this thread is the next to run. Implementing the run queue in this fashion is
simple, so FCFS scheduling has low system overhead.

Explicit priority scheduling assigns a priority level to each process or thread. A prior-
ity level can be assigned to a newly created thread based on the default priority of the
process owner, a priority stated explicitly in an OS command, or other methods. Many
operating systems automatically assign high priority levels to their own internal threads
under the assumption that OS threads must be completed quickly to maintain total system
throughput. This scheduling method can use priority levels in two ways:

Always dispatch the highest-priority ready thread.
Assign larger time slices to high-priority threads.

The first strategy ensures that high-priority threads are always dispatched before
lower-priority threads. However, scheduling decisions based solely on initial priority level
can result in extremely long or infinite idle time for long-running threads with low priority.
These threads are always moved to the back of the run queue and can t get enough CPU
time to be completed. To prevent this problem, many operating systems increase the
priority level of old threads automatically. Priority-based scheduling with variable-length
time slices also addresses this problem, although this method is seldom used.

Shortest time remaining (STR) scheduling chooses the next thread to be dispatched
based on the expected amount of CPU time needed to complete the process. It can be
implemented directly by tracking time to completion for each thread and ordering the run
queue with STR threads first. STR scheduling can be used indirectly by increasing a thread s
explicit priority as it nears completion. In either case, the scheduler must know how much
CPU time is required for each thread to execute and how much time has already been used.
For the scheduler to have this information, the required CPU time must be provided to the
scheduler when the thread is created and then stored in the TCB. The TCB must also store
the amount of CPU time a thread uses, and this information must be updated each time the
thread leaves the ready state. Creating, updating, and using time-to-completion information
increases system overhead, so STR scheduling is rarely used.

421

CPU Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Real-Time Scheduling

Real-time scheduling guarantees a minimum amount of CPU time to a thread if the thread
makes an explicit real-time scheduling request when it s created. It guarantees a thread
enough resources to complete its function in a specified time and is often used in transac-
tion processing, data acquisition, and automated process control. For example, in a
transaction-processing application, an ATM typically expects a response to an account
balance inquiry within a specified time.

Data acquisition and process control programs use data that arrives at a constant rate
from hardware devices. Data acquisition programs, such as those used to record radio
astronomy observations, copy incoming data to a storage device, such as tape or disk. Data
analysis is performed later by a separate process. Process control programs actively pro-
cess the data as it arrives. For example, a process control program in a chemical
manufacturing plant processes data from sensors in pipelines and reaction vessels. Data
inputs flow from data collection devices or process sensors into memory buffers. A data
acquisition or process control program must extract data from buffers for analysis quickly
enough to keep them from overflowing. The program must be allocated enough resources
to ensure that it can process or store incoming data at least as quickly as it arrives.

When a thread with a real-time scheduling requirement is created, it informs the OS
of the maximum CPU time needed to complete one thread cycle and the frequency of
cycles. A thread cycle can execute instructions to process a single transaction, retrieve
and store data from an I/O device, or retrieve and analyze one set of process variables. For
example, data acquisition equipment might send data every second, and the thread might
need a maximum of 150 milliseconds to finish processing the data.

The thread signals the OS at the start of each thread cycle, and the scheduler starts a
timer, tracking thread progress by updating CPU time used in the TCB each time the thread
enters and leaves the ready state. The scheduler checks the timer, CPU time used, and
maximum thread cycle time whenever it makes a scheduling decision to ensure that the
thread completes its cycle before the timer expires. The scheduler can manage multiple
real-time threads, although real-time scheduling overhead can quickly consume available
CPU resources.

T E C H N O L O G Y F O C U S

Windows Scheduling

Current Windows desktop and server operating systems support multitasking, multi-
threaded processes, and preemptive priority-based scheduling and dispatching. Schedul-
ing, dispatching, and interrupt handling are performed by an OS component called the
microkernel, which acts as both supervisor and scheduler.

Each process the microkernel manages has a base priority level described by an
integer value from 0 to 31. Higher values represent higher scheduling priority. Priority
levels are grouped into four categories called base priority classes: Idle (priority levels
0 6), Normal (priority levels 6 10), High (priority levels 11 15), and Real-time (priority
levels 16 31). A process is assigned a base priority class when it s first created.

(continued)

422

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Most user processes start in the Normal base priority class. In desktop computers
and workstations, the microkernel raises the base priority class to High when a process is
moved from the background to the foreground in other words, when the process is
receiving input from the keyboard and mouse. The Real-time base priority class doesn t
meet the definition of real-time scheduling given previously; it simply describes the
highest category of priority levels.

Threads inherit the base priority class of their parent processes, and thread priority
classes are named Idle, Lowest, Below Normal, Normal, Above Normal, Highest, and Time
Critical. Table 11.1 summarizes the meaning of thread priority classes in the base prior-
ity classes for processes.

TABLE 11.1 Thread priority classes and levels

Base priority class Thread priority class Priority level

Real-time Time Critical
Highest
Above Normal
Normal
Below Normal
Lowest
Idle

31
26
25
24
23
22
16

High Time Critical
Highest
Above Normal
Normal
Below Normal
Lowest
Idle

15
15
14
13
12
11
1

Normal Time Critical
Highest
Above Normal
Normal
Below Normal
Lowest
Idle

15
10
9
8
7
6
1

Idle Time Critical
Highest
Above Normal
Normal
Below Normal
Lowest
Idle

15
6
5
4
3
2
1

A thread s current priority level is called its dynamic priority. The initial value of a
thread s dynamic priority is the same as the base priority class of the thread and parent
process. The microkernel can alter dynamic priority to improve system performance and
to reflect high or low demand for system resources by a thread.

(continued)

423

CPU Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 11.11 shows a Windows utility called Process Viewer (pview.exe), which
shows information about active processes, including each process s base priority class
and the initial priority class and dynamic priority of its threads. This example shows
information for a process named jdeveloper and six of its threads. The base priority class
of jdeveloper is Normal, and the initial priority class for the selected thread (4) is Above
Normal. The dynamic priority for this thread started at 9, but the current value shown at
the bottom is 12. At some point after the thread was created, the microkernel adjusted
its dynamic priority upward.

The microkernel uses a strict priority-based scheduling algorithm. A higher-priority
thread in the ready state is always executed before a lower-priority thread. When a new
thread is created with a higher priority level than the currently executing thread, the
microkernel moves the currently executing thread to the ready state, where it remains
until all higher-priority threads terminate or become blocked.

FIGURE 11.11 Windows Process Viewer
Courtesy of Course Technology/Cengage Learning

424

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

B U S I N E S S F O C U S

Choosing a Server Operating System

Microsoft has steadily gained market share in server operating systems, starting with Windows
NT and continuing with various versions of Windows Server. Windows Server faces competi-
tion from several operating systems, including OS/390 (IBM) and OpenVMS (Hewlett-
Packard). UNIX is also a major competitor, with Linux and products from hardware vendors
such as Solaris (Sun Microsystems), AIX (IBM), and HP-UX UNIX (Hewlett-Packard).

Early Windows versions, such as Windows 3.1 and Windows 95, lacked many fea-
tures needed for a server or multiuser OS. Beginning with Windows NT, Microsoft has
added server-oriented features, such as the following:

A reliable, robust file management system (NTFS)
Access controls for key system resources, including files and directories
Preemptive priority-based scheduling and multithreading
Memory protection and virtual memory management
Interprocess communication and Internet-oriented networking support
Server clustering with load sharing and failover

Windows Server includes many server-oriented services and functions beyond basic
server OS capabilities, including the following:

Core Internet services, such as DNS, DHCP, and routing
User and business-oriented Internet services, such as e-mail, FTP, HTTP, and
e-commerce
File and printer sharing
Support for component-based software with the COM+ and .NET component
frameworks

By including these functions as part of Windows Server, Microsoft has forced other ven-
dors to bundle software that had been sold separately with their server operating systems.

UNIX, another widely used server OS, has a long history, beginning in the early 1970s
as an experimental OS developed at AT&T Bell Laboratories. At first, AT&T didn t com-
mercialize UNIX and allowed others to use both the OS and its source code free. Many
universities experimented with UNIX and made changes and enhancements to it. Eventu-
ally, commercial vendors began to offer UNIX operating systems with proprietary exten-
sions, such as GUIs, advanced networking support, and database management systems.

At the same time, nonprofit organizations enhanced UNIX and developed useful
applications and services that ran in UNIX. These enhancements and extensions were
always distributed free and with complete source code (called open source) so that
others could make improvements or modify the software as they saw fit. Currently, the
driving force behind UNIX development and standardization is the Open Group (www.
opengroup.org), which has owned the UNIX trademark since 1993. Until the late 1990s,
the Open Group s UNIX standards competed with others from the IEEE and ISO, and
these competing standards had major incompatibilities that created problems for soft-
ware developers. In the late 1990s, these groups collaborated to produce the Single UNIX
Specification. Version 3 is the most widely adopted, and systems conforming to it are
described as UNIX 03. A newer version released in 2008 is called POSIX:2008; despite
the name, it s the successor to version 3 of the Single UNIX Specification.

(continued)

425

CPU Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.opengroup.org
http://www.opengroup.org

Linux is a UNIX variant developed by Linus Torvalds in the early 1990s. It combines
many early open-source enhancements with new ones to create a unified package that s
generally easier to install and administer than other UNIX variants. Many Linux applica-
tions and services are based on nonproprietary standards, such as MIT s X Window GUI
and the CORBA component standard. (CORBA is discussed in Chapter 13.) Organizations
can deploy Linux and Linux-based applications and services without paying the per-user or
per-server licensing fees required with Windows and proprietary UNIX variants.

Linux, UNIX, and all current UNIX variants provide essentially the same basic OS
functions as Windows Server. In addition, a variety of applications and services are
available, ranging from personal productivity software to industrial-strength database
management systems and computer-aided design and manufacturing software. The main
differences from Windows Server are as follows:

Many commonly used services and software (such as Web services) aren t pro-
vided as part of the server OS. A wide variety of for-profit and nonprofit orga-
nizations develop and distribute this software for Linux and UNIX.
Most Linux/UNIX application and server software is provided with source code,
which enables users to make modifications for their own purposes.
Application and server software can t be distributed in binary (executable)
form because Linux and UNIX run on so many different CPUs and computer
systems. Software is normally distributed in source code format, with installa-
tion scripts that recompile and relink it for a specific hardware platform.
Linux/UNIX application and server software are usually based on open stan-
dards, controlled by nonprofit organizations with wide representation from
hardware and software vendors, academia, and user communities.

The differences in standards, bundling, binary compatibility, and number of software
sources yield a complex set of tradeoffs that must be considered when deciding which
OS to acquire. For example, many people see the open-source nature of Linux and UNIX
as a security and reliability advantage, assuming that open-source software undergoes
rigorous testing by a large user and developer community and enables faster incorpo-
ration of security patches and improvements. On the other hand, many people consider
Windows Server to be much easier to use and configure because of binary software com-
patibility, an extensive set of similar configuration tools, and single-vendor support.

Describe the strengths and weaknesses of Windows Server and UNIX or Linux in the
following settings. Which OS would you recommend for each company?

A small electrical supply wholesaler with 25 employees, 15 user workstations,
and an application and services suite that includes basic accounting and
inventory control functions, file and printer sharing, and a small Web site not
used for e-commerce
An engineering design and consulting partnership with 25 employees, 15 user
workstations, and a mix of applications and services, including basic account-
ing functions, bid preparation, CAD and drafting, construction management,
file and printer sharing, and a small Web site not used for e-commerce
A large catalog seller of musical equipment with hundreds of employees; three
warehouses in New Jersey, St. Louis, and Portland; and a mix of applications
and services, including all accounting functions, catalog preparation and dis-
tribution, phone and Web-based sales, and inventory control and logistics

Chapter 11

426

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MEMORY ALLOCATION

Memory allocation is the assignment of specific memory addresses to system software,
application programs, and data. Processes and threads need memory to hold instructions
and data during execution. The OS allocates memory when processes and threads are
created and responds to requests for additional memory during execution. It also allocates
memory to itself and for other needs, such as buffers and caches.

Note that most of what s said about memory allocation in this section also applies to
managing secondary storage devices. Keep this in mind as you read this section because
many of the terms and concepts are used again in Chapter 12.

Physical Memory Organization
Any computer s main memory can be regarded as a sequence of contiguous, or adjacent,
memory cells, as shown in Figure 11.12. Addresses of these memory locations are assigned
sequentially so that available addresses proceed from zero (low memory) to the maximum
available address (high memory).

Data values and instructions generally occupy multiple bytes of storage. For example,
a single-precision integer typically occupies 4 consecutive bytes, or 32 bits, of storage.
When written in a program, the bits and bytes of a numeric value are typically ordered
from highest-position weight on the left to lowest-position weight on the right. If a 32-bit
integer is written as follows, it s assumed that the left-position weight is the largest (231)
and the right-position weight is the smallest (20):

00110010 11010011 01001100 01101001

When considered as a byte sequence, the leftmost byte is called the most significant
byte, and the rightmost byte is called the least significant byte. In many CPU and memory
architectures, a data item s least significant byte is placed at the lower memory address.
For example, the 32-bit value 02468ACE16 would be stored in memory with CE at the
lowest memory address, 8A at the next address, 46 at the address after that, and 02 at the
highest address.

N O T E
Other CPU and memory architectures store bytes in the reverse order. Big endian describes architec-
tures that store the most significant byte at the lowest memory address. Little endian describes archi-
tectures that store the least significant byte at the lowest memory address.

FIGURE 11.12 The sequential physical organization of memory cells
Courtesy of Course Technology/Cengage Learning

427

Memory Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A CPU s or computer s addressable memory is the highest numbered storage byte that
can be represented. Addressable memory is usually determined by the number of bits used
to represent an address. For example, if 32 bits are used to represent a memory address,
addressable memory is 232 4,294,967,296 bytes, or FA00000016 bytes, or 4 GB. A com-
puter system s physical memory is the actual number of memory bytes that are physically
installed in the machine. Physical memory can be smaller than addressable memory but
never larger.

Single-Tasking Memory Allocation
Memory allocation in a single-tasking OS is fairly simple. A memory allocation diagram, or
memory map, shows physical memory as an array of addresses, with the lowest memory
address at the bottom and the highest memory address at the top. Figure 11.13 shows a
memory map for a single-tasking OS. The bulk of the OS normally occupies lower memory
addresses, and the application program is loaded immediately above it. For the application
program in this figure, memory allocation is contiguous, meaning all portions of the pro-
gram and OS are loaded into sequential locations in memory.

In Figure 11.13, the OS occupies the lowest range of memory addresses, and the appli-
cation process s first instruction is one address higher than the last byte of the OS. The
difference between the first address in physical memory and the address of the first process
instruction is called the process offset. In this figure, the offset is 1F40000016 - 0
1F40000016.

A programmer could explicitly include the process offset in any memory address
operands when writing or compiling a program. For example, if the process offset is
1F40000016 and the 10th program instruction is a BRANCH to the first instruction, the
10th instruction s operand must be 1F40000016. The programmer must know the process

Free
space

Application
process

OSProcess
offset

High memory

Low memory

MB
MB
MB
MB
MB
MB
MB
MB
MB
MB
MB
MB
MB
MB
MB
MB
MB

(FA00000016)
(EA60000016)
(DAC0000016)
(CB20000016)
(BB80000016)
(ABE0000016)
(9C40000016)
(8CA0000016)
(7D00000016)
(6D60000016)
(5DC0000016)
(4E20000016)
(3E80000016)
(2EE0000016)
(1F40000016)
(0FA0000016)
(0000000016)

4000
3750
3500
3250
3000
2750
2500
2250
2000
1750
1500
1250
1000

750
500
250

0

FIGURE 11.13 Contiguous memory allocation in a single-tasking OS
Courtesy of Course Technology/Cengage Learning

428

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

offset to specify any memory address operands in BRANCH, MOVE, and other instruc-
tions. This method is called absolute addressing, which uses memory address operands
that refer to actual physical memory locations.

However, a programmer doesn t usually know exactly where a program will be loaded
in memory when it s executed or the exact value of the process offset. Even if the pro-
grammer does know the process offset when writing the program, the offset value might
change later for many reasons, including the following:

Upgrading the OS, thus changing its size and the process offset
Reconfiguring the OS, such as allocating more I/O buffers or adding device
drivers
Loading and running multiple processes

If a process uses absolute addressing, it must be rewritten every time the offset is
changed.

Because a process offset usually can t be known in advance, processes are written as
though their first instruction will always be loaded in memory address 0. The CPU auto-
matically converts memory address operands into physical memory addresses as the pro-
gram runs. To do so, the OS calculates and stores the process offset in a register when the
program is first loaded into memory. During program execution, the CPU automatically
adds the process offset to all memory address operands before accessing memory. This
method of computing physical memory addresses automatically is called indirect addres-
sing or relative addressing. The register holding the offset value is called an offset register.

When a CPU instruction uses a memory address as an operand, the operand is called a
memory reference. Examples of CPU instructions containing memory references include

LOAD, STORE, and BRANCH. The process of determining the physical memory address
that corresponds to a memory reference is called address mapping or address resolution.
Address resolution is a simple process when memory is allocated contiguously; each mem-
ory reference is mapped to its equivalent physical memory address by adding the offset
value. For the application process shown in Figure 11.13, all memory references are mapped
to physical memory addresses by adding the value 1F40000016 (500 MB) to the reference.

Multitasking Memory Allocation
Memory allocation is more complex when the OS supports multitasking. The OS finds free
memory regions in which to load new processes and reclaims memory when processes
terminate. The goals of multitasking memory allocation are as follows:

Allow as many active processes as possible.
Respond quickly to changing memory demands of processes.
Prevent unauthorized changes to a process s memory regions.
Perform memory allocation and addressing as efficiently as possible.

Multitasking operating systems use partitioned memory, which divides memory into
equally sized regions, each capable of holding all or part of a process or thread.
Figure 11.14 shows 4 GB of physical memory divided into 250 MB partitions, each of
which can hold an OS component, a process, or nothing at all (free space).

429

Memory Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 11.15 shows three processes and the OS loaded into fixed-size memory parti-
tions. Process 1 occupies three memory partitions, and Process 2 occupies two memory
partitions. Each process uses all memory in its allocated partitions. Process 3 occupies
four complete partitions and part of a fifth. Partitions 14 and 15 are unallocated.

Partition 13

Partition 12

Partition 11

Partition 10

Partition 9

Partition 8

Partition 7

Partition 6

Partition 5

Partition 4

Partition 3

Partition 2

Partition 1

Partition 0

Partition 14

Partition 15
4000 MB

3750 MB

3500 MB

3250 MB

3000 MB

2750 MB

2500 MB

2250 MB

2000 MB

1750 MB

1500 MB

1250 MB

1000 MB

0750 MB

0500 MB

0250 MB

0000 MB

FIGURE 11.14 Dividing main memory into fixed-size partitions
Courtesy of Course Technology/Cengage Learning

Partition 13

Partition 12

Partition 11

Partition 10

Partition 9

Partition 8

Partition 7

Partition 6

Partition 5

Partition 4

Partition 3

Partition 2

Partition 1

Partition 0

Partition 14

Partition 15
4000 MB

Free space

Process 3

Process 2

Process 1

OS

3750 MB

3500 MB

3250 MB

3000 MB

2750 MB

2500 MB

2250 MB

2000 MB

1750 MB

1500 MB

1250 MB

1000 MB

0750 MB

0500 MB

0250 MB

0000 MB

FIGURE 11.15 Several processes and the OS loaded into 250 MB fixed-size memory partitions
Courtesy of Course Technology/Cengage Learning

430

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The OS maintains a memory partition table and updates it each time a partition is
allocated or freed (see Table 11.2). When a process is ready to be loaded, the OS searches
the table to find enough contiguous free partitions. If they re found, the table is updated
and the process is loaded into free partitions. When a process terminates, the table is
updated to free the memory partitions.

Contiguous program loading, coupled with fixed-size memory partitions, usually
results in wasted memory space. For example, Process 3 uses only part of its last partition.
The remainder is wasted because the OS can t allocate less than a full partition. Wasted
space can be reduced by reducing partition size. In general, the smaller the partition size,
the less wasted space. However, smaller partitions require a larger memory partition table,
which increases OS memory requirements and the time needed to search and update
the table.

Memory Fragmentation
As processes are created, executed, and terminated, memory allocation changes accord-
ingly. Over time, memory partition allocation and deallocation leads to an increasing
number of small free partitions separated by allocated partitions. Figure 11.16 shows
changes in memory allocation over time as processes are created and terminated.

TABLE 11.2 Fixed-size memory partitions maintained by the OS

Partition Starting address Status Allocated to

0 0 MB Allocated OS

1 250 MB Allocated OS

2 500 MB Allocated OS

3 750 MB Allocated OS

4 1000 MB Allocated Process 1

5 1250 MB Allocated Process 1

6 1500 MB Allocated Process 1

7 1750 MB Allocated Process 2

8 2000 MB Allocated Process 2

9 2250 MB Allocated Process 3

10 2500 MB Allocated Process 3

11 2750 MB Allocated Process 3

12 3000 MB Allocated Process 3

13 3250 MB Allocated Process 3

14 3500 MB Free

15 3750 MB Free

431

Memory Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 11.16(a) shows a starting point with four processes in memory. Figure 11.16(b)
shows memory allocation after Process 3 has terminated and Process 5 has been loaded
into memory. A new free space area has been created because Process 5 is smaller
than Process 3. In Figure 11.16(c), Process 2 has terminated, and its former partition is
now free.

There s now 1 GB of free memory but only two contiguous free 250 MB partitions (in
the space between 1500 and 2000 MB). Although there might be other processes waiting
to execute that require 1 GB or less, only those requiring 500 MB or less can be loaded
because of fragmentation of available free space.

Fragmentation occurs when memory partitions allocated to a single process or pur-
pose are scattered throughout physical memory, as shown for free space in Figure 11.16(c)
and Figure 11.17(a). Over time, free space becomes more fragmented, and larger pro-
cesses have increasing difficulty finding enough contiguous partitions. One way to address
the problem of fragmented free space is to relocate all programs in memory periodically in
a process called compaction. After compaction, all free partitions form a contiguous block
in upper memory, as shown in Figure 11.17(b). Compaction is a time-consuming process
because entire programs are moved in memory and many partition table entries are
updated. The overhead required for compaction is generally larger than the overhead
required for a more common strategy noncontiguous memory allocation.

4000 MB

3750 MB
Free space

Free space

Free space

3500 MB

3250 MB

3000 MB

2750 MB

2500 MB

2250 MB

2000 MB

1750 MB

1500 MB

1250 MB

1000 MB

0750 MB

0500 MB

0250 MB

0000 MB
(a) (b) (c)

Process 4

Process 5

Process 1

OS

Free space

Free space

Process 4

Process 5

Process 1

OS

Free space

Process 4

Process 3

Process 1

OS

Process 2Process 2

FIGURE 11.16 Changes in memory allocation as processes execute and terminate
Courtesy of Course Technology/Cengage Learning

432

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E
Compaction of allocated space is done during disk fragmentation. Scattered sectors allocated to each
file are moved to sequential sectors in the same or adjacent cylinders. File compaction isn t required
because sectors are allocated to files noncontiguously, but compaction does improve read/write perfor-
mance by minimizing track-to-track seek time and rotational delay.

Noncontiguous Memory Allocation
In an OS that supports noncontiguous memory allocation, portions of a process can be
allocated to free partitions anywhere in memory. Noncontiguous memory allocation uses
small fixed-size partitions, usually no larger than 64 KB, although 250 MB partitions are
assumed to simplify the discussion and figures in this section.

In Figure 11.17(a), imagine that a new process (Process 6) awaits loading and needs
1 GB of memory. Under contiguous memory allocation, it can t be loaded unless memory
is compacted first. With noncontiguous memory allocation, Process 6 can be divided into
four 250 MB partitions that are allocated to available free memory partitions, shown as
white boxes in Figure 11.18.

4000 MB

3750 MB

3500 MB

3250 MB

3000 MB

2750 MB

2500 MB

2250 MB

2000 MB

1750 MB

1500 MB

1250 MB

1000 MB

0750 MB

0500 MB

0250 MB

0000 MB

Free space

Free space

Free space

(a)

Process 4

Process 5

Process 1

OS

(b)

Free space

Process 4

Process 1

OS

Process 5

FIGURE 11.17 Compaction combines multiple free space fragments (a) into a single contiguous
partition (b)

Courtesy of Course Technology/Cengage Learning

433

Memory Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Noncontiguous memory allocation is more flexible than contiguous memory alloca-
tion, but flexibility comes at a price. Process 6 was compiled and linked assuming that it
would occupy contiguous memory locations starting at address 0. However, memory
references in Process 6 must now cross noncontiguous partitions. For example, if a
BRANCH instruction in partition 7 references an instruction in partition 15, what offset
value should be used to resolve the memory reference to a physical address?

In noncontiguous memory allocation, each process partition has its own offset value.
To resolve addresses correctly, the OS must keep track of each program partition and its
offset and make adjustments to memory references that cross partition boundaries. The
partition tables and address calculations that support noncontiguous memory allocation
are more complex than for contiguous memory allocation. Table content and address
resolution are described in the next section.

Virtual Memory Management
The only portions of a process that must be in memory at any point during execution are
the next instruction to be fetched and any operands stored in memory. Only a few bytes of
any process must reside in memory at any one time. Most operating systems minimize the
amount of process code and data stored in memory at one time, which frees large quanti-
ties of memory for use by other processes and substantially increases the number of pro-
cesses that can execute concurrently.

Virtual memory management divides a program into partitions called pages. Each
page is a small fixed-size portion of a program, normally between 1 and 4 KB. Memory is
also divided into pages of the same size. Each memory page is called a page frame. During
program execution, one or more pages are allocated to page frames, and the rest are held
in secondary storage. As pages in secondary storage are needed for current processing, the

4000 MB

3750 MB

3500 MB

3250 MB

3000 MB

2750 MB

2500 MB

2250 MB

2000 MB

1750 MB

1500 MB

1250 MB

1000 MB

0750 MB

0500 MB

0250 MB

0000 MB

Process 6d

Process 6a
Process 6b

Process 6c

Process 4

Process 5

Process 1

OS

FIGURE 11.18 Process 6 is allocated to available free memory partitions
Courtesy of Course Technology/Cengage Learning

434

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

OS copies them into page frames. If necessary, pages currently in memory are written to
secondary storage to make room for pages being loaded.

Each memory reference is checked to see whether the page it refers to is currently in
memory. A reference to a page held in memory is called a page hit, and a reference to a
page held in secondary storage is called a page fault. Page tables store information about
page locations, allocated page frames, and secondary storage space. Each active process has
a page table or portion of a page table dedicated to it. Table contents include page numbers,
a status field indicating whether the page is currently held in memory, the page frame num-
ber in main memory or secondary storage, and a status field indicating whether the page has
been modified since being swapped into memory. Table 11.3 shows a sample page table.

Because page size is fixed, memory references can easily be converted to the corre-
sponding page number and offset in the page. The page number can be determined by
dividing the memory address by the page size. The whole portion of the result is the page
number, and the remainder is the offset into this page. For example, if page size is 1 KB, a
reference to address 1500 is equivalent to an offset of 476 (1500 - 1024) into page number
2 (1500/1024 1). If the table is stored sequentially, the corresponding entry in the pro-
cess s page table can be computed as an offset into the table.

If the reference is to an address in a page held in memory, the corresponding memory
address is an offset into the memory page indicated in the table. Using Table 11.3 as an
example, a reference to address 700 (offset of 700 into page 1) resolves to an offset of 700
into memory frame 214. Again, fixed page size is used to calculate the corresponding
memory address as 219836 (214 1024 700). Note that these calculations are similar
to those for addressing array contents, described in Chapter 3.

A secondary storage region, called the swap space, swap file, or page file, is reserved
for the task of storing pages not held in memory. The swap space is divided into page
frames in the same manner as memory. A memory reference to a page held in the swap
space results in this page being loaded into a page frame in memory. As with address res-
olution, page location in the swap space can be computed by multiplying the page number
by the page size.

If all page frames are allocated, a page currently in memory, called the victim, must be
written to the swap space before the reference page is loaded into a page frame. Some
common methods for selecting the victim are as follows:

Least recently used
Least frequently used

TABLE 11.3 Portion of a process s page table

Page number Memory status Frame number Modification status

1 In memory 214 No

2 On disk 101 N/A

3 On disk 44 N/A

4 In memory 110 Yes

5 On disk 252 N/A

435

Memory Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Both methods require the OS to maintain information about accesses to pages in
memory. Searching and updating this information is part of the system overhead associ-
ated with virtual memory management.

When a victim has been selected, it might or might not be copied back to the swap
space. The sample data in Table 11.3 shows entries indicating whether a page has been
modified since it was swapped into memory. If a page hasn t been modified, the copy held
in the swap space is identical to the copy in memory, which means the page doesn t have
to be copied to the swap space if it has been selected as the victim.

Memory Protection
Memory protection refers to protecting memory allocated to one program from unau-
thorized access by another program. It can apply to interference between programs in a
multitasking environment or interference between a program and the OS in a single-
tasking or multitasking environment. If memory isn t protected, errors in one program can
generate errors in another. If the program being interfered with is the OS, the result might
be a system crash.

In the simplest form of memory protection, the OS checks each write to a memory loca-
tion to ensure that the address being written is allocated to the program performing the write
operation. Complicating factors include various forms of indirect addressing, virtual memory
management, and cooperating processes, which are two or more processes that want to
share a memory region. Memory protection adds overhead to each write operation.

Memory Management Hardware
Early types of multitasking, memory protection, and virtual memory management were
implemented exclusively by the OS, which imposed severe performance penalties. Con-
sider, for example, the overhead required to map program memory references by using
virtual memory management. Each reference requires the OS to search one or more tables
to locate the correct page and determine its corresponding memory or disk location. A
memory reference that should consume only one or a few CPU cycles consumes many
additional cycles for paging, swapping, and address-mapping functions.

The benefits of advanced memory addressing and allocation schemes are offset by
reduced performance when they re implemented in software. For this reason, CPUs and
computer systems now incorporate advanced memory allocation and address resolution
functions in hardware. For example, all Intel microprocessors since the 80386 have
included hardware support for virtual and protected memory management.

T E C H N O L O G Y F O C U S

Intel Core Memory Management

Intel Core CPUs dedicate six registers named CS, DS, ES, FS, GS, and SS to hold data
structures called segment descriptors. (Segment is an Intel term for a memory region

(continued)

436

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

containing instructions or data.) Segment descriptions contain information about a seg-
ment, including the following:

The physical memory address of the segment s first byte (its base address)
The segment size
The segment type
Access restrictions
Privilege level

A memory address used in an operand consists of a reference to a segment register
and an offset value. For example, the operand DS:018C refers to byte 018C (hexadecimal)
in the segment the DS segment descriptor points to. The CPU converts a memory address
operand to a physical memory address by adding the segment s base address and the offset.

Segment size ranges from 1 byte to 4 GB. Segment types include data segments (fur-
ther divided into the types true data and stack data) and code segments (executable
instructions). The CS register always contains a segment descriptor for a code segment.
The DS, ES, FS, and GS registers always contain segment descriptors for a data segment or
a null descriptor. The SS registers always contain the segment descriptor of a stack.

Core CPUs protect process memory by checking instruction operands that reference
segment descriptors. The simplest check is a limit check on the offset value that prevents
processes from reading or writing data outside their own segments. For each memory
reference, the CPU compares the offset value to the size parameter stored in the segment
descriptor. If the offset is larger than the segment size, an error interrupt is generated.

Access types must also be specified for each segment. Data segments can be marked
as read-only (RO) or read-write (RW). Code segments can be marked as execute-only (EO)
or execute-read (ER). A segment s access type restricts the types of instructions that can
execute by using memory references in the segment. For example, the CPU generates an
error interrupt if an instruction attempts to write to a segment marked RO or read from a
segment marked EO. Write operations to code segments always generate an error inter-
rupt. The CPU also checks segment types when loading segment descriptors into a register.
Segment descriptors for data segments can t be loaded into the CS register, and segment
descriptors for code segments can t be loaded into the DS, ES, FS, GS, or SS registers.

Core CPUs use two different methods to prevent access to code segments not allo-
cated to a process. The first specifies a privilege level for each process and segment.
Privilege levels are numbered 0 through 3, with 0 being the most privileged. Every pro-
cess is assigned a privilege level and can t access a segment with a privilege level num-
bered lower than its own. This method protects OS components from interference by
application programs. Segments allocated to the kernel typically have a privilege level of
0, and segments allocated to other OS components typically have a privilege level of 1 or
2. Application processes usually have a privilege level of 3.

Memory segments can be hidden from a process. The CPU maintains a global
descriptor table (GDT) containing descriptors for all segments. If an application process
uses the GDT, it can see all segments. The OS can execute an instruction that allocates
a local descriptor table (LDT) to a process and defines the LDT s content before issuing
the instruction. Typically, the OS populates the LDT only with descriptors allocated
to the process. It s impossible for a process using an LDT to know of any segments
other than its own.

(continued)

437

Memory Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Core CPUs implement virtual memory management tables in hardware. Page size is
normally 4 KB. The CPU uses two types of tables page directories and page tables. A
page directory is a table of pointers to page tables. By convention, the entries in the page
directory correspond to the segment s descriptors in a process s LDT (see Figure 11.19).
Each entry in a page directory points to one entry in a page table. Each entry in a page
table contains descriptive information about one 4 KB page.

A page table entry includes the page s physical memory address if it s loaded into
memory. It also contains bit field flags, including a flag indicating whether the page is in
memory, a flag indicating whether the page has been accessed since it was loaded, and a
flag indicating whether the content of a page in memory has been written.

Virtual memory management responsibility is split between the CPU and the OS.
When virtual memory management is enabled, the CPU converts addresses containing a
segment descriptor and offset into addresses containing a page directory offset, a page
table offset, and an offset into the 4 KB page. The CPU automatically performs a lookup
in the page directory and page table based on these offsets to find the page s base address
(see Figure 11.20). It then adds the page offset to generate a physical address. If the page
table entry indicates that the page isn t in memory, the CPU generates an interrupt. It
also sets the access and write flags in the page table as page contents are read or written.

FIGURE 11.19 Relationship between segment and page (virtual memory) tables
Courtesy of Course Technology/Cengage Learning

(continued)

438

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The OS maintains its own table that maps pages to page frames in the swap space
and clears the access and write flags when a page is loaded into memory. It also sets and
clears in memory flags in the page table each time pages are loaded or swapped and
provides an interrupt handler to perform page swaps in response to page fault interrupts.

Early Microsoft and UNIX operating systems were unable to implement usable multi-
tasking and virtual memory management on Intel-based PCs because early Intel CPUs
didn t have these features. Intel introduced hardware support for memory protection and
virtual memory management with the 80386 CPU in 1987, and these features have con-
tinued into current Core processors. This hardware support enabled important improve-
ments in Microsoft operating systems and provided enough CPU power to support UNIX
on PCs.

FIGURE 11.20 Address resolution with virtual memory management
Courtesy of Course Technology/Cengage Learning

439

Memory Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

The OS is the most important component of system software. Its primary purpose is to
manage hardware resources and provide support services to users and application pro-
grams. In functional terms, it manages the CPU, memory, processes, secondary storage
(files), I/O devices, and users. In architectural terms, it consists of the kernel, service layer,
and command layer.

The OS allocates hardware resources to user processes on demand. In multitasking envi-
ronments, it coordinates access to shared resources by many processes while ensuring
that each process receives the resources it needs. The resource allocation function
requires extensive recordkeeping and complex procedures to make allocation decisions. An
important design goal for any OS is to minimize system overhead yet ensure that resource
allocation goals are met.

Application software is simpler to develop if programs are unaware of resource allocation
functions. Operating systems make a large set of virtual resources appear to be available to
each program. The sum of virtual resources generally exceeds the real resources existing
in a computer system. The OS implements virtual resources by rapidly reallocating real
resources to programs and substituting one resource for another.

The OS stores information about each process in a process control block (PCB). PCB con-
tents are updated continuously as resources are allocated to processes. In some operating
systems, processes can create executable subunits called threads, which can be sched-
uled independently. Threads share all resources with their parent process. Execution speed
is increased when multiple threads execute concurrently or simultaneously.

An active thread is always in one of three states ready, running, or blocked. In a computer with
a single CPU, only one thread can be in the running state at a time. Ready threads are waiting
for access to a CPU. Blocked threads are waiting for some event to occur, such as completing a
service request or correcting an error condition. Processes can be scheduled by many methods,
including first come first served, explicit priority, and real-time scheduling.

Memory is divided into fixed-size partitions and processes are allocated one or more mem-
ory partitions to store instructions and data. The OS maintains tables to track partition allo-
cations and free space. Memory references are mapped to physical addresses through
page table lookups and address calculations.

Processes are created as though they occupy contiguous primary storage locations starting
at the first location. They aren t usually placed in low memory because system software or
other programs reside there. Indirect addressing reconciles the difference between where a
program thinks it s located in memory and where it s actually located. The actual address
of a program s first instruction is stored in an offset register, and this address is added to
each address reference the program makes. Indirect addressing enables multiple programs
to reside in memory and allows programs to be moved during execution.

Current operating systems implement virtual memory management. Portions of processes,
called pages, are allocated to small memory partitions called page frames. Pages are
swapped between memory and secondary storage as needed. Complex memory manage-
ment procedures incur substantial overhead. To reduce system overhead, CPUs now
implement many of these functions in hardware.

440

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This chapter gave you an overview of internal OS architecture and described resource,
CPU, and memory allocation. In Chapter 12, you examine secondary storage allocation and file
management and see that many of the issues in memory allocation must also be addressed in
secondary storage allocation. In Chapter 13, you turn your attention to external resources and
explore how one OS cooperates with other operating systems to give local users access to
external resources.

Key Terms

absolute addressing

address mapping

address resolution

addressable memory

bare-metal hypervisors

big endian

blocked state

child process

command language

command layer

compaction

concurrent execution

contiguous

dispatching

explicit priority

first come first served (FCFS)

fragmentation

hypervisor

indirect addressing

interleaved execution

job control language (JCL)

kernel

least significant byte

little endian

memory allocation

memory protection

most significant byte

multitasking

multithreaded

noncontiguous memory allocation

offset register

page

page fault

page file

page frame

page hit

page tables

parent process

physical memory

preemptive scheduling

priority-based scheduling

process

process control block (PCB)

process family

process list

process offset

process queue

ready state

real resources

real-time scheduling

relative addressing

run queue

running state

scheduler

scheduling

server consolidation

service call

service layer

shell

shortest time remaining (STR)

sibling processes

spawn

swap file

swap space

441

Key Terms

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

system overhead

thread

thread control block (TCB)

thread cycle

thread list

timer interrupt

victim

virtualization environments

virtual machines (VMs)

virtual memory management

virtual resources

Vocabulary Exercises

1. A(n) OS supports multiple active processes or users.

2. In virtual memory management, a memory page s location is determined by searching
a(n) .

3. A(n) occurs when a process or thread references a memory page not currently
held in memory.

4. Dispatching a thread moves it from the state to the state.

5. The CPU periodically generates a(n) to give the scheduler an opportunity to
allocate the CPU to another ready process.

6. A(n) is an OS that enables dividing a single physical computer or cluster into
multiple virtual machines.

7. In the scheduling method, threads are dispatched in order of their arrival.

8. A(n) process contains subunits that can be executed concurrently or
simultaneously.

9. scheduling guarantees that a thread receives enough resources to complete
one in a maximum time interval.

10. Hardware resources consumed by an OS s resource allocation functions are called .

11. scheduling refers to any type of scheduling in which a running thread can lose
control of the CPU to another thread.

12. The act of selecting a running thread and loading its register contents is called
and is performed by the .

13. To achieve efficient use of memory and a large number of concurrently executing
processes, most OSs use memory management.

14. When a thread makes an I/O service request, it s placed in the state until
processing of the request is finished.

15. Memory pages not held in primary storage are held in the of a secondary storage
device.

16. On a computer with a single CPU, multitasking is achieved by execution of
multiple processes.

17. With , all portions of a process must be loaded into sequential physical memory
partitions.

18. The , , and are the main layers of an OS.

442

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19. A(n) is the unit of memory read from or written to the swap space.

20. A(n) resource is apparent to a process or user, although it might not physically
exist.

21. Under a(n) memory allocation scheme, portions of a single process might be
physically located in scattered partitions of main memory.

22. In virtual memory management, memory references by a process must be converted to an
offset in a(n) .

23. Information about a process s execution state, such as register values and process status,
are stored in a(n) .

24. With the scheduling method, threads requiring the least CPU time are dispatched
first.

25. A(n) causes the currently executing process to be and control to be
passed to the .

26. The process of converting an address operand into a physical address in a memory
partition or page frame is called .

27. A(n) is an executable subunit of a process that s scheduled independently but
shares memory and I/O resources.

28. The endian storage format places the byte of a word in the lowest
memory address. The endian storage format places the byte of a word
in the lowest memory address.

29. In , program memory references correspond to physical memory locations.
In , the CPU must calculate the physical memory location that corresponds to a
program memory reference.

30. In indirect addressing, the content of a(n) is added to calculate the corresponding
physical memory address.

Review Questions

1. Describe the functions of the kernel, service, and command layers of an OS.

2. What s the difference between a real resource and a virtual resource?

3. What are the goals of an OS resource allocation function? Describe the conflicts between
them.

4. What characteristics or capabilities differentiate a bare-metal hypervisor from a virtualization
environment?

5. How and why does a thread move from the ready state to the running state? How and why
does a thread move from the running state to the blocked state? How and why does a
thread move from the blocked state to the ready state?

6. What is a process control block, and what is it used for?

7. What is a thread? What resources does it share with other threads in the same process?

8. Briefly describe the most common methods for making priority-based scheduling decisions.

443

Review Questions

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9. What complexities are introduced by real-time scheduling requirements?

10. Describe the operation of virtual memory management.

11. What is memory protection, and why is it needed? What factors complicate it?

12. What is absolute addressing? What is indirect addressing?

13. What are the costs and benefits of indirect addressing?

Research Problems

1. Viruses and other malware often exploit bugs known as buffer overflows in widely used
software. One method of preventing these exploits in software running on current Windows
versions is Data Execution Prevention (DEP). Investigate buffer overflows and DEP. How
does DEP prevent malicious attacks via buffer overflows? Is it always effective? Why might
a user or administrator disable DEP?

2. Microsoft includes the hypervisor Hyper-V in Windows Server 2008 and later. Compare the
capabilities of the most recent versions of Hyper-V and VMware ESX and ESXi. Which
product has the best features for server consolidation? How has VMware responded to
Microsoft bundling a free hypervisor with its server OSs?

444

Chapter 11

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R12
FILE AND SECONDARY
STORAGE MANAGEMENT

C H A P T E R G O A L S

Describe the components and functions of a file management system

Compare the logical and physical organization of files and directories

Explain how secondary storage locations are allocated to files and
describe the data structures used to record these allocations

Describe file manipulation operations

List access controls that can be applied to files and directories

Describe file migration, backup, and recovery methods

Explain methods for ensuring fault tolerance

Compare storage consolidation methods, such as storage area networks
and network-attached storage

File and secondary storage management are important system software functions because stored

programs and data are important user and organizational resources. The collection of system soft-

ware that performs file and secondary storage management and access functions is known as a file

management system (FMS). The FMS is usually part of the OS, although it s sometimes supplemen-

ted by additional software, such as database management systems. Figure 12.1 shows the FMS

functions described in this chapter.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

FUNCTIONS AND COMPONENTS OF FILE MANAGEMENT
SYSTEMS

An FMS is implemented in the following layers, which are similar to those in an OS (see
Figure 12.2):

Command layer or application program
File control
Storage I/O control
Secondary storage devices

FIGURE 12.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

446

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Storage devices physically store bits, bytes, and blocks in a storage medium, and
storage device controllers interact with the bus and OS device drivers to transfer data
between storage devices and memory. As discussed in Chapter 6, the device controller
presents a logical view of the storage device or media to the device driver. A logical view
is a linear sequence of storage locations called a linear address space.

The storage I/O control layer is the part of the kernel that accesses storage locations
and manages data movement between storage devices and memory. Software modules in
this layer include the following:

Device drivers for each storage device or device controller
Interrupt handlers
Buffers and cache managers

The file control layer provides service functions for manipulating files and directories. It
processes service calls from the command layer or application program and issues commands to
the storage I/O control layer to interact with hardware. It also maintains the directory and stor-
age allocation data structures used to find files and their associated physical storage locations.

FIGURE 12.2 OS layers compared with FMS layers
Courtesy of Course Technology/Cengage Learning

447

Functions and Components of File Management Systems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

An FMS provides command-layer functions and utility programs for users and system
administrators to manage files, directories, and secondary storage devices. Via the com-
mand layer, users perform common file management functions, such as copying, moving,
and renaming files. Utility programs address more complex functions, such as creating
text files, formatting storage devices, and creating backup copies of files and directories.

Logical and Physical Storage Views
The file control layer is the bridge between logical and physical views of secondary stor-
age. Users and applications view secondary storage logically as a collection of files orga-
nized in directories and storage volumes. On a desktop or laptop computer, a volume is
usually an entire physical disk, a partition of the disk, or a removable storage medium,
such as a DVD or flash drive. On larger computers, a volume can span multiple physical
disks. The physical view of secondary storage is a collection of physical storage locations
organized as a linear address space. A typical computer has up to a few dozen storage
volumes, thousands of directories, tens of thousands to millions of files, and billions of
physical secondary storage locations (see Figure 12.3).

FIGURE 12.3 Logical and physical secondary storage for a typical small server
Courtesy of Course Technology/Cengage Learning

448

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12.4 shows the logical structure of a typical data file. It s subdivided
into records, and each record is composed of multiple fields. As discussed in Chapter 3,
a record usually contains information about a single person, such as a customer or
employee; a thing, such as a product in inventory; or an event, such as a transaction.
A field contains a single data item describing the record.

The logical file structure is independent of the physical device on which it s stored.
A number of physical structure characteristics, such as the following, are simplified or
ignored in the corresponding logical file structure:

Physical storage allocation
Data access methods
Data-encoding methods

Physical storage allocation considerations include placement of fields and records in
a file and distribution of a file across storage locations, media, or devices. Physical data
access factors include whether file content is accessed sequentially, with an index, or by
some other method. Data-encoding issues include the data structures and coding methods
for representing each field. Related issues include data encryption and data compression.

File Content and Type
A file can store many different data types, including text, numbers, complex data struc-
tures, and executable instructions, but designing an FMS that accounts for all possible
variations in file content and organization is difficult. This type of FMS would be complex

FIGURE 12.4 Logical structure of a data file
Courtesy of Course Technology/Cengage Learning

449

Functions and Components of File Management Systems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and have a huge number of file-oriented commands and service routines. To avoid these
problems, most FMSs support only a few file types directly, including the following:

Executable programs
OS commands
Text or unformatted binary data

Among other things, file type determines the following:

Physical organization of data items and data structures in secondary storage
Operations that can or can t be performed on the file
Filename restrictions

For example, the Windows FMS supports executable code stored in executable (EXE)
files and dynamic link library (DLL) files. EXE files are stored in a format that simplifies
loading them into memory for execution. DLL files contain subroutines that can be called
from executable files and an index that enables the OS to locate subroutines quickly by
name. OS batch command (BAT or CMD) files are stored as ordinary text files, and text
commands are passed automatically to a command interpreter when a user double-clicks
a BAT or CMD file icon. If a user double-clicks a text (TXT) file icon, the OS automatically
starts Notepad, which opens the file for editing. The relationship between file types and the
programs or OS utilities that manipulate them is called file association.

Current FMSs include a framework to support additional file types. In this framework, users
and programs can register new file types and install programs to perform common file-
manipulation operations, such as printing, editing, and error checking. Figure 12.5 shows
a partial listing of file types registered on a Windows computer. Right-clicking a file opens a
context menu for that file type.

Normally, the file type is declared when a file is created. In some FMSs, such as UNIX,
the file type is stored in the directory. In other FMSs, the file type is declared with a nam-
ing convention, such as a file extension. For example, in Windows, executable filenames
must end in .exe, dynamic link library filenames must end in .dll, and text filenames end
in .txt by default. Windows registered file types also use file extensions, such as .docx for
WordPad or Word document files (see the Name column in Figure 12.5) and .dvr for
recorded TV programs.

450

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DIRECTORY CONTENT AND STRUCTURE

A directory contains information about files and other directories. Directory information
is normally stored in a table, although more complex data structures are used sometimes.
Users can view most directory information with graphical or command-line interfaces,
such as Windows Explorer or the UNIX/Linux ls command. Some directory information,
such as disk location, is hidden from users because it s used only by the FMS. Typical
directory contents include the following:

Name
File type
Location
Size
Ownership
Access controls
Time stamps

N O T E
In Windows operating systems, the term folder is often used instead of directory.

All files and directories must have a unique name in their own directory, but names can
be reused in other directories. Operating systems vary in requirements for valid names. Many

FIGURE 12.5 Registered Windows file types and associated programs
Courtesy of Course Technology/Cengage Learning

451

Directory Content and Structure

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

older OSs restrict both the length and characters used. For example, MS-DOS uses a two-part
name with a maximum of eight characters in the first part, three characters in the second
part, and a mandatory dot (.) symbol separating the parts, such as Sample.doc. (This for-
mat is sometimes called 8.3.) Embedded spaces and most nonalphabetic and nonnumeric
characters aren t allowed. Current OSs are far less restrictive in filename requirements.

The file type can be stored implicitly with a filenaming convention, such as .exe for
an executable file, or directly by using a coded field in the directory. A file s type can be
displayed in several formats, including icons in a graphical display or special characters
added to the filename in a text display. Most FMSs store information about directories the
same way as information about files. An FMS uses a special directory code in the file type
field to distinguish directories from files.

The location field content varies considerably across FMSs. In simpler FMSs, it usually
contains the disk address of the file s first disk block. In more complex FMSs, it contains or
points to a data structure, such as an index, containing the addresses of all disk blocks.

The size field can contain the number of bytes allocated to the file, the actual number
of bytes stored in the file, or both. The number of allocated bytes is usually larger than
the actual number of bytes because typically, a portion of the last disk block isn t used.
For example, with a block size of 512 bytes, a file that s actually 513 bytes might have
1024 bytes listed as the file size because the 513th byte causes the FMS to allocate
another entire 512-byte disk block.

The file owner field contains the account name or identification number of the file
creator or the last account to take ownership. Most complex FMSs grant special permis-
sions to the file owner. Access controls, described in more detail later in this chapter, list
the accounts that have been granted or denied rights to the file. Rights vary depending on
the OS, but the following are typical:

List An account or a group can view a file in a particular directory listing or
list a directory s contents.
Read An account or a group can view a file s content, which also implies the
right to copy it.
Modify An account or a group can add new content, alter or delete existing
content, rename the file, move the file to a new directory, or delete the file.
Change An account or a group can alter permissions for other accounts or
groups; this right is usually granted to the owner by default.

Most FMSs store one or more time stamps for each file in the directory, which can
include date and time data for the following:

File creation
Most recent read
Most recent write
Most recent backup

Hierarchical Directory Structure
In a hierarchical directory structure, directories can contain other directories, but a directory
can t be contained in more than one parent. This structure is sometimes called a tree
directory structure because directory diagrams resemble upside-down trees. The left pane of

452

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12.6 shows a portion of a hierarchical directory structure in Windows Explorer. There s
a root directory for each secondary storage device (drives C and T in this figure). Each root
directory can contain other directories, files, or both, as can directories below the root direc-
tory. The number of recursively descending directory levels is theoretically unlimited.

The right pane of Figure 12.6 shows the contents of the Chapter08 directory. For each
process or user, the OS maintains a pointer to the directory that s currently being
accessed. This directory is called the current directory or working directory. In a multi-
user OS, each user normally has a default working directory, or home directory. When
a user logs on interactively or runs a batch process, his or her home directory is the
default current directory. The user or process can change the current directory by issuing
a command or making a service call.

In the hierarchy of directories, names of access paths can be specified in two ways.
A complete path, also called a fully qualified reference, begins at the root directory and
proceeds through all directories along a path to the file being accessed. Directory names
are separated by a special character, such as \ in Windows or / in UNIX/Linux. The
fully qualified reference to the current directory is shown without \ characters in the
address text box at the top of Figure 12.6:

T:\Systems Architecture\6e\Chapters\Chapter08

The fully qualified reference to the last file in this directory is as follows:

T:\Systems Architecture\6e\Chapters\Chapter08\Solutions_08_Au.doc

FIGURE 12.6 A hierarchical directory structure
Courtesy of Course Technology/Cengage Learning

453

Directory Content and Structure

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A relative path begins at the current directory s level and extends downward to a
specific file. For example, if Chapters is the current directory, the name .\Chapter08\
Solutions_08_Au.doc is a relative path to the Solutions_08_Au.doc file in the Chapter08
subdirectory of the current directory, which is indicated with a period.

Graph Directory Structure
A graph directory structure is more flexible than a hierarchical directory structure
because it relaxes two of the restrictions enforced in a hierarchical directory structure:

Files and subdirectories can be contained in multiple directories.
Directory links can form a cycle.

Figure 12.7 shows a graph directory structure. The shaded directory is a pointer to a
directory stored elsewhere, as indicated by the dashed arrow. Pointers from one directory to
another are called links in UNIX and shortcuts in Windows. In the figure, the Public Reports
directory is referenced from two parent directories: Financial Statements and Accounting.

Links require special processing to avoid multiple listings and recursive loops in pro-
grams, such as backup and synchronization utilities, that list a directory s contents and all
its subdirectories. Without special processing, a backup utility would back up all files in
the Public Reports directory twice. Also, a program can enter an infinite loop if a directory
structure contains a link between a subdirectory and one of its parent directories. To pre-
vent these problems, a program can build a list of directories already accessed and never

Root

Public
Relations

Reports

Accounting

Internal
Reports

Public
Reports

Sales Finance Financial
Statements

Press
Releases

FIGURE 12.7 A graph directory structure
Courtesy of Course Technology/Cengage Learning

454

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

reread a directory already on this list. It can also be programmed to ignore links and
shortcuts, as in most Windows applications.

STORAGE ALLOCATION

The storage I/O control layer allocates secondary storage locations to files and directories.
Because there are so many directories, files, devices, and secondary storage locations,
storage allocation data structures and the functions for maintaining their content are
complex. Data structures and procedures for managing secondary storage allocation to
files and directories are similar to those for allocating memory to processes, described in
Chapter 11. The most important differences are the number of storage locations, which is
much larger for secondary storage, and the frequency of allocation changes, which is
much lower for secondary storage.

Allocation Units
An allocation unit is the smallest number of secondary storage bytes that can be allocated
to a file. Allocation units can t be smaller than the unit of data transfer (normally a block)
between the storage device and device controller. The typical block size for secondary
storage devices ranges from 512 bytes to 4 KB, in multiples of 512 bytes.

Allocation unit size can be a multiple of block size. For example, a disk might use a
512-byte block size, but the system administrator might decide to use 16 KB allocation
units, each containing 32 blocks. Allocation unit size is usually set when an OS or storage
device is installed. Some OSs, such as DOS and early Windows versions, set this size
automatically based on storage device or media capacity. In other OSs, such as UNIX and
later Windows versions, the system administrator selects the unit size when a storage
volume is created. After allocation unit size has been set, changing it is difficult.

Allocation unit size is a tradeoff among these factors:

Efficient use of secondary storage space for files
Size of storage allocation data structures
Efficiency of storage allocation procedures

Smaller allocation units result in more efficient use of storage space. For example, a
file containing a single byte must be stored in a full allocation unit. If allocation unit size is
512 bytes, 511 bytes are empty and wasted. If the allocation unit size is 16 KB and only
1 byte is stored, 16,383 bytes are empty and wasted. If a storage device holds many small
files, a large allocation unit can waste a lot of storage capacity.

The advantage of larger allocation units is that storage allocation data structures can
be smaller. As allocation unit size increases, the number of allocation units decreases.
For example, in a 100 GB disk, if the unit size is set to 512 bytes, there are 209,715,200
(100 10243 512) allocation units in the device. If the unit size is set to 16 KB, there
are 6,553,600 (100 10243 16,384) allocation units in the device.

Storage Allocation Tables
A storage allocation table is a data structure that records which allocation units are free
and which belong to files. It contains one entry for each allocation unit. Smaller allocation
units increase the number of entries in the table. As this table grows larger, the time

455

Storage Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

required to search and update it increases, which slows down any processing function that
creates or deletes a file or changes its size.

Storage allocation table format and content vary across FMSs. Simple OSs, such as
early Windows versions, used simple data structures tables and linked lists, for example.
More complex OSs, such as UNIX and later Windows versions, use complex data structures,
including bitmaps and B+ trees. This chapter sticks to simpler data structures for examples.

Figure 12.8 shows a hypothetical storage device with 36 allocation units; those shaded
the same color belong to the same file or to free space. Table 12.1 shows directory entries
for the files stored in this figure. Free allocation units are assigned to SysFree, a hidden
system file. A file s allocation units can be stored in any order on the device. The linear
address of each file s first allocation unit is stored in the directory, and addresses of other
file allocation units are stored in the storage allocation table.

FIGURE 12.8 Storage blocks allocated to three files
Courtesy of Course Technology/Cengage Learning

TABLE 12.1 Directory content for the files in Figure 12.8

Filename Owner name First allocation unit
Length (in allocation
units)

File1 Smith 0 14

File2 Jones 3 3

File3 Smith 5 9

SysFree System 2 10

456

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Figure 12.9 shows a storage allocation table for the files in Figure 12.8. Its format and
content are nearly identical to the File Allocation Table (FAT) file system used in early
Windows versions. This table contains an entry for each allocation unit, and a file s alloca-
tion units are chained together in sequential order by a series of pointers. The table entry
for each allocation unit contains a pointer to the next allocated unit in the file. For exam-
ple, the entry for unit 0 (the first unit allocated to File1) contains a pointer to the table
entry for unit 1 (the second unit allocated to File1). The pointers form a linked list that
ties together the entries of all allocation units assigned to a file. The entry for a file s last
allocation unit contains a special code (End, in this example) to indicate that it s the last
unit. All unallocated units are linked into a single chain, which simplifies finding storage
units to allocate to new or expanded files.

Sequential access to a file s allocation units is efficient when the storage allocation
table uses linked lists. However, random access is much less efficient, particularly if the
file is large. Some FMSs define a separate file type for random access files and store an
index or similar data structure in the file s first allocation unit. The contents of this index
are redundant with the storage allocation table s contents, but the index makes locating
and accessing specific units of a file more efficient.

Blocking and Buffering
Some application programs access files by logical records. A logical record is a collection
of data items, or fields, that an application program accesses as a single unit. A physical
record is the unit of storage transferred between the device controller and memory in a
single operation. For disks and other devices using fixed-size data transfer units, a physical
record is equivalent to a block. For storage devices with variable-size data transfer units,
such as tape drives, block size might differ from physical record size or be undefined.

If the logical record size is less than the physical record size, a single physical record
might contain multiple logical records, as shown in Figure 12.10(a). If the logical record

FIGURE 12.9 A storage allocation table matching the storage allocations in Figure 12.8
Courtesy of Course Technology/Cengage Learning

457

Storage Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

size is larger than the physical record size, multiple physical records are needed to hold
a single logical record, as shown in Figure 12.10(b). Logical record grouping in physical
records is called blocking, which is described by a numeric ratio of logical records to
physical records called the blocking factor. The blocking factor in Figure 12.10(a) is 4:3,
and the blocking factor in Figure 12.10(b) is 2:3. If a physical record contains just one
logical record, the file is said to be unblocked.

Read and write operations to or from an unblocked file can be carried out with simple,
efficient algorithms because of the one-to-one correspondence between logical and physi-
cal records. File I/O is more complex when logical and physical records have different
sizes because the FMS must coordinate physical record I/O and extract logical records on
behalf of the requesting program.

The FMS uses buffers in primary storage to store data temporarily as it moves between
programs and secondary storage devices. Buffers are allocated automatically when the
file is first accessed and managed by the OS on behalf of application programs. Each buffer
is the size of one allocation unit. As physical records are read from secondary storage,
they re stored in buffers. The FMS extracts logical records from the buffers and copies
them to the data area of the application program (see Figure 12.11). This procedure is
reversed for write operations.

FIGURE 12.10 Blocking logical records
Courtesy of Course Technology/Cengage Learning

458

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A buffer is a temporary holding area for extracting logical records from physical
records. As discussed in Chapter 6, buffering also improves I/O performance if enough
buffers are used. For high blocking factors, a small number of buffers can improve perfor-
mance dramatically. For example, if each physical record contains 10 logical records,
reading a single physical record provides enough data for 10 logical read operations.
Reading the first logical record results in copying 10 logical records, which is one physical
record, into the buffer. The next nine sequential read operations can be satisfied from the
buffer without further input from secondary storage.

Low blocking factors, with larger logical records, require more buffers to achieve sub-
stantial performance improvements. The FMS usually allocates enough buffers to hold at
least one physical record. If enough buffers can t be allocated to hold an entire physical
record, a logical record must be moved to the program s data area in a series of physical
read operations and buffer-copying operations.

An Example of Storage Allocation and File I/O
The following example is typical of storage allocation and file I/O procedures in a simple
FMS. Assume the directory entries in Table 12.1 represent actual files stored on a disk
drive, and the allocation unit size used by the disk drive and FMS is 512 bytes. Allocation

FIGURE 12.11 Input from secondary storage to an application program using a buffer
Courtesy of Course Technology/Cengage Learning

459

Storage Allocation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

units are assigned to files as shown in Figure 12.8, and Figure 12.9 shows the storage allo-
cation table. In addition, 55-byte logical records are stored sequentially in File3.

In response to any read operation an application program performs, the FMS carries
out the following tasks:

1. Determine which allocation unit contains the requested record.
2. Load this allocation unit into the buffer if it s not already there.
3. Copy the portion of the allocation unit containing the requested logical

record to the application program s data area in memory.
4. Increment a pointer to the current position in the file.

Sequential Access

The first allocation unit contains the first logical record or the first part of the logical
record, if it s larger than an allocation unit. When the first logical record is read, the FMS
looks up File3 s first allocation unit (5) in the directory, issues a read request to the disk
controller, and then loads the physical record into the buffer. Next, the first logical
record s first byte is stored in byte 0, and the FMS copies the first 55 bytes from the buffer
to the application program. At the end of the operation, the FMS sets the file pointer to 55
to point to the start of the second logical record.

During subsequent read operations, the FMS calculates the allocation unit and offset
for each logical record. For the second record, the calculation is as follows:

Pointer -1 Record size
Block size

2 - 1 55
512

0 remainder 55

The second record begins in allocation unit 0 at byte 55. Because this block is already
in the buffer, the FMS copies 55 bytes starting at offset 55 and adds 55 to the file pointer.

Direct Access

Say that the first read operation requests the 37th logical record. Using the same formula,
the calculation is as follows:

Pointer - 1 Record size
Block size

37 - 1 55
512

3 remainder 499

The 37th record begins in the fourth allocation unit allocated to File3 at byte 499.
Allocation unit 3 is the fourth allocation because allocation unit 0 is the first allocation
unit.

To find File3 s third allocation unit, the FMS follows the chain of entries in the storage
allocation table. The first allocated unit (5) is recorded in the directory. File3 s second
allocation unit is the pointer field of entry 5 in the storage allocation table, which is allo-
cation unit 14. File3 s third allocation unit is the pointer field of entry 14 in the table,
which is allocation unit 16. File3 s fourth allocation unit is the pointer field of entry 16 in
the table, which is allocation unit 19. Therefore, the 37th record is stored in allocation
unit 19, starting at byte 499.

The FMS loads allocation unit 19 into the buffer and begins transferring 55 bytes to
the application program, but it reaches the end of the buffer before it finishes copying
55 bytes. The FMS recognizes this condition, looks in the storage allocation table to

460

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

determine File3 s next allocation unit (20), issues a read request for allocation unit 20,
loads it into the buffer, and copies the first 42 bytes to the application program.

FILE MANIPULATION

All FMSs provide service functions in the file control layer to enable application programs
to create, copy, move, delete, read, and write files, but the exact functions vary widely
across FMSs. Application programs interact directly with the FMS through the OS service
layer, and users interact with the FMS indirectly through the command layer.

File Open and Close Operations
The FMS must perform several tasks, collectively called a file open operation, before an
application program can read or write a file s contents. The application program executes
a file open service call to inform the FMS that it intends to read or write a file. In response
to the service call, the FMS performs the following steps:

1. Locate the file in the directory structure and read its directory entry.
2. Search an internal table of open files to see whether the file is already open.
3. Ensure that the process has enough privileges to access the file.
4. Allocate one or more buffers.
5. Update an internal table of open files.

The FMS maintains an open file table to prevent application programs from interfering
with each other s file I/O activities. If a file is already open for read-only access and
another program tries to open it, the FMS normally opens the file but allocates separate
buffers to each program. If another program attempts to open the file for writing, the
request is normally denied because buffer content is difficult to manage if one program
can change content that another program has already read. In some complex FMSs, mul-
tiple programs can read or write a file by using complex schemes for locking physical
records.

When an application program finishes reading or writing a file, it executes a file close
service call. The FMS completes the file close operation by performing these steps:

1. Flush the program s file I/O buffers to secondary storage.
2. Deallocate buffer memory.
3. Update the file s directory entry time stamps.
4. Update the open file table.

If the program that issued the request is the only program accessing the file, the FMS
deletes the file s entry in the open file table. If other programs are still accessing the file,
the FMS deletes the program from the list of programs actively using the file.

Delete and Undelete Operations
In most FMSs, files aren t immediately removed from secondary storage when they re
deleted. Instead, the file s storage allocation units are marked as free, and its directory
entry is marked as unused. As new files are created or existing files are expanded, the
deleted file s allocation units are reassigned to other files and overwritten with new

461

File Manipulation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

content. Some portion of the deleted file s content remains in secondary storage until all
its allocation units have been reassigned and overwritten. When a new file is created in the
deleted file s former directory, the deleted file s directory entry is overwritten. Handling
file deletion in this way is efficient, but it has two important consequences:

Files can be undeleted by reconstructing directory and storage allocation
table contents.
File content can be visible to intruders who can bypass the storage allocation
table and read allocation units directly.

A user might be able to recover a deleted file by performing an undelete operation.
For example, if File2 in Figure 12.8 and Table 12.1 is deleted, the second row of the
directory table is marked as deleted, and allocation units 3, 4, and 6 are added to the
chain of allocation units for SysFree. If the user runs a file recovery utility before per-
forming any other file operations, File2 can be recovered based on the information still in
the directory entry and the chained contents of the storage allocation table in Figure 12.9.

N O T E
In some environments, such as law enforcement and defense research, users need to know that a
deleted file can never be recovered. In these environments, an FMS is used that can be configured so
that directory entries and allocation units are overwritten immediately with blanks. This feature increases
security but slows the deletion process, particularly for large files.

ACCESS CONTROLS

Because data is an important organizational resource, an FMS helps prevent loss, corrup-
tion, and unauthorized access to files. An FMS relies on the OS to identify and authenti-
cate users and their processes. In OSs that enforce access controls, each user has a
unique account name or ID number and must authenticate his or her identity through
passwords or other means. After a user s identity is authenticated, the user s account
name or ID number is passed to the FMS with every service request.

By default, users are the owners of files they create and can grant or deny access
privileges to other users or groups. Different FMSs have different access controls. For
example, UNIX defines three access control types:

Read A user or process can view a file s contents.
Write A user or process can alter a file s contents or delete it altogether.
Execute A user or process can execute a file, assuming it contains an
executable program or OS commands.

A file owner can reserve access privileges for himself or herself, thereby denying these
access privileges to all other users except the system administrator. The file owner can
also grant any access privilege to other members of a group or to all users. For example,
a file owner might grant read and write access to one workgroup but only read access to
other users. A file owner can also revoke his or her own access privileges. For example,
a file owner might deny write access to prevent deleting an important file accidentally.

462

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Most FMSs use similar access controls for files and directories. Users are the owners
of their home directories and any directories they create below the home directory in a
hierarchical directory structure. Access controls for reading (listing directory contents)
and writing (altering directory contents) are defined.

Access controls are enforced automatically in FMS service routines that access and
manipulate files and directories. Although access controls are a necessary part of file
manipulation, they impose additional processing overhead. In some FMSs, the system
administrator might choose from several levels of enforcement for file access controls to
balance overall FMS performance with the need for file security.

An FMS restricts access to secondary storage devices, storage allocation tables, and
root directories to prevent users and processes from bypassing security controls built into
FMS service routines. File and directory accesses can also be logged for the system
administrator to review later. Enforcing access controls reduces the speed of many file
access operations because of the extra processing required.

T E C H N O L O G Y F O C U S

Windows NTFS

As mentioned, early Microsoft OSs used the FAT file system. When Microsoft developed
Windows NT, which evolved into later Windows versions, including Server, Vista, and 7,
it decided to develop a new file system: New Technology File System (NTFS). NTFS was
targeted to high-performance and mission-critical applications requiring features such as
the following:

High-speed directory and file operations
Capability to handle large disks, files, and directories
Secure file and disk content
Reliability and fault tolerance

NTFS organizes secondary storage as a set of volumes containing storage allocation
units called clusters, which can be 512, 1024, 2048, or 4096 bytes. Each cluster is iden-
tified by a 64-bit logical cluster number (LCN) in a linear address space. A volume can
be as large as 4096 264 bytes.

A volume s master directory is stored in a data structure called the Master File Table
(MFT), which contains a sequential set of file records, one for each file in the volume. All
volume contents are stored as files, including user files, the MFT itself, and other volume
management files, such as the root directory, storage allocation table, bootstrap program,
and bad (corrupted) cluster file. The first 16 MFT entries, numbered 0 through 15, are
reserved for the MFT and volume management files. All subsequent MFT entries, num-
bered 16 and higher, store records about user files.

Conceptually, a file is an object with a collection of attributes, including name,
global access restrictions (such as read only), and a security descriptor that identifies the
owner and owner-defined access controls. A file s data content is just another attribute,
although it s usually much larger than other attributes. Each attribute type is assigned a
numeric code, and file attributes are stored in ascending numeric code order in the file s

(continued)

463

Access Controls

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MFT record. MFT record size is 1, 2, or 4 KB and is determined by the OS when a vol-
ume is formatted.

Each file attribute contains a header and a data value. The header contains the
attribute name, a resident flag, the header length, and the length of the attribute value.
Attributes can be resident or nonresident. A resident attribute is a short value, stored in
an MFT record immediately after the header, for holding information such as access
restrictions or filename (see Figure 12.12a).

A nonresident attribute is stored in clusters elsewhere in the storage device, and these
cluster addresses are stored in the file s MFT record. A file s data content is the most common
nonresident attribute, although some usually resident attributes, such as the security
descriptor, can grow too large to fit in an MFT record and are also stored in clusters. The
clusters assigned to a nonresident attribute are called virtual cluster numbers (VCNs). The
area immediately after the nonresident attribute s header stores a sequence of logical cluster
numbers (LCNs), as shown in Figure 12.12b. The VCN corresponds to an LCN s position in
this sequence. For example, LCN 94112 is VCN 2 in this figure.

The volume root directory and all user-defined directories are stored in the same
manner as files as sequences of attributes in an MFT record. A directory s data attribute

FIGURE 12.12 MFT records for a small file (a), large file (b), and small directory (c)
Courtesy of Course Technology/Cengage Learning

(continued)

464

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

contains an index of files it contains, as shown in Figure 12.12c. The index is sorted by
filename and contains the file number (equivalent to the MFT record number), time
stamps, and size. By duplicating this information in the index, directories can be listed
more quickly. The index of small directories is stored sequentially in the MFT record,
and larger directories are stored as B+ trees.

File security is implemented through the OS s object manager capabilities. The OS
manages files, I/O devices, and many system services as objects. Accessing an object
automatically invokes a security subsystem that compares the object s security descrip-
tor against the security descriptor of the accessing process or user. An MFT security
descriptor has the same structure and content as security descriptors for other object
types.

NTFS has several fault-tolerance features, including redundant storage of critical
volume information, mapping of bad clusters, logging of disk changes, and optional RAID
(discussed later in Fault Tolerance). The MFT is always stored at the beginning of a
volume, but a partial second copy is stored in the middle of the disk in case a block
assigned to the primary MFT becomes corrupted or unreadable. The FMS detects
unreadable blocks during formatting and subsequent read and write operations. Clusters
containing bad blocks are marked as unreadable in a separate bad cluster file.

NTFS uses a delayed, or lazy, write protocol. Disk blocks are cached in memory,
and a background process performs cache flushing whenever the disk isn t otherwise
busy. Although the actual write to disk might be delayed, the program performing the
write operation gets immediate confirmation of its completion. Write operations affecting
volume structure, such as file creation, file deletion, and directory modification, are
written to the cache and also written immediately to a log file stored on disk. If a system
crash happens, the log file s contents are always current and can be used to restore the
volume structure to a consistent state.

FILE MIGRATION, BACKUP, AND RECOVERY

Most file management systems have utilities and embedded features, such as the following,
to protect files against damage or loss:

File migration (version control)
Automatic and manual file backup
File recovery

Smaller-scale FMSs, such as those in LAN and PC operating systems, typically don t
support file migration but do support backup and recovery.

File Migration
When a user alters a file, the original file version is usually overwritten by the new version.
However, there are advantages to maintaining the original file version, including allowing
undo operations and having the original available as a backup. Many commonly used

application programs, such as word processors and text editors, save original file copies
automatically. For example, Microsoft Word can be configured to create a backup of the
original version automatically each time it saves a document file. The most recently saved

465

File Migration, Backup, and Recovery

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

file is stored with a .doc file extension, and the backup of the original file is stored with a
.wbk (for Word backup) file extension.

Many transaction-processing programs also preserve original versions of input files.
For example, the original version of a bank s master account file is usually copied before
processing daily batch transactions, such as checks, interest, and monthly fees. The
transaction-processing program then reads the master and transaction files and updates
the master with the transactions (see Figure 12.13). The original master account file is
commonly called the parent, and the copy that s updated to reflect new transactions is
called the child. After another set of transactions is processed, the parent becomes the
grandparent, the child becomes the parent, and the new copy of the master account file
becomes the new child.

In mainframe FMSs, such as IBM s OS/390, and some third-party file management
software, the process of naming and storing original versions of altered files is automated.
In a process called versioning, a file s original version is archived automatically whenever
the file is modified. In these systems, attaching a version number to each filename is typi-
cal. When a file is created, it s assigned a version number of 1. The first time it s altered,
the modified copy is assigned a version number of 2, and so forth. The FMS generates and
stores copies and tracks version numbers. A user or an application program can access a
file s older version by referring to its version number.

As files are modified, older versions accumulate on secondary storage and can consume
this resource rapidly, especially when files are large or altered frequently. To compensate,

FIGURE 12.13 Updating batch transactions
Courtesy of Course Technology/Cengage Learning

466

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the FMS automatically performs file migration, a file management technique that balances
each file version s storage cost with anticipated user demand for this version. As a file version
becomes outdated, the probability of access decreases. The FMS migrates (moves) older file
versions from local disks to remote storage media and eventually to offline backup storage,
such as tape.

A simpler file migration method is based on file age rather than file version. The FMS peri-
odically checks each file s last access time stamp and migrates older files. The file still appears in
directory listings and is reloaded automatically from remote or backup storage if it s accessed.
This method is often used in FMSs that manage infrequently accessed files for many users and
can be coupled with robotic devices to access offline tape or removable optical disc volumes.

File Backup
Most FMSs include general-purpose utilities to create backup copies of files and directories
on removable or remote storage media. Backups protect against data loss caused by stor-
age device or media failure, accidental erasure, malicious attack, and so forth. Backup
utilities can be run manually or automatically at set periods and protect file content,
directory content, and storage allocation tables.

Backup copies should be stored on a separate storage device to prevent losing both the
original and backup in case of total device failure. For backups created on removable
media, the media should be stored in a different physical location. Large computer centers
typically store backup copies in a separate building or site to minimize the probability of a
disaster destroying both copies, such as a fire that destroys an entire building. Backup
copies can be transmitted to remote storage facilities via a high-speed network, eliminating
the cost, delay, and risks of physically transporting storage media.

Types of periodic backups include the following:

Full backup
Incremental backup
Differential backup

When a full backup is performed, the FMS copies all files and directories for an entire
storage volume. As each file is backed up, the backup utility usually modifies the file s
directory entry to set the time of the last backup to the current time. A full backup can
also include storage allocation tables, partition tables, and other important disk manage-
ment data structures. This backup type is time consuming because of the large number of
files copied and the slow write speeds of most backup storage devices. It s usually done
during off-peak hours at long time intervals, such as weekly.

An incremental backup archives only files that have been modified since the previous
incremental or full backup. To make these operations possible, the FMS must keep track
of when backups are performed and when files are modified. The backup utility compares
the most recent update and backup time for each file and directory. Only files and direc-
tories modified since their last backup are copied to backup storage, and their backup
times are reset to the current time. Incremental backups are usually much faster than full
backups because many files aren t modified frequently.

A differential backup is a variation on an incremental backup in which backup times
aren t reset as files are copied. As a result, subsequent differential backups take longer

467

File Migration, Backup, and Recovery

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

because they include files that wouldn t be backed up if the backup time stamp had been
reset during the previous backup. The main advantage of this backup type is faster recov-
ery time after storage device failure. With a differential backup, data is fully recovered by
restoring the most recent full backup and then the most recent incremental backup. With
incremental backups, full recovery is accomplished by restoring the most recent full
backup and then restoring all subsequent incremental backups in the order they were
created.

Most large-scale FMSs use all the backup types. For example, for smaller data sets,
incremental backups might be created at the end of each business day with full backups
created each weekend. For larger or more important data sets, differential backups might
be created at the end of each business day with full backups created twice per week.

Transaction Logging

Transaction logging, also called journaling, is a form of automated file backup. The term
transaction in this context shouldn t be confused with the more generic meaning of a busi-

ness transaction, such as a customer purchase. To an FMS, a transaction is any change to file
contents or attributes, such as an added record, a modified field, or changed access controls.
In an FMS that supports transaction logging, all changes to file content and attributes are
recorded automatically in a log file in addition to being written to the file s I/O buffer. Log
entries are written immediately or frequently to a separate physical storage device.

Transaction logging provides a high degree of protection against data loss caused by
program or hardware failure. When an entire computer system fails, the contents of file
I/O buffers are lost. If these buffers weren t written to physical storage before the failure,
file content becomes corrupted and content changes are lost. With transaction logging, the
FMS can recover most or all of the lost changes and repair corrupted files. When the sys-
tem is restarted, the transaction log s contents are reviewed and compared with the file
content on disk. Lost updates are identified and written to the files.

Transaction logging imposes a performance penalty because every file change requires
two write operations: one to the data file and another to the log file. It s typically used only
when the costs of data loss are high, as for large-scale e-commerce sites.

File Recovery
Backup procedures and utilities must be supplemented by reliable recovery procedures to
form a complete file protection mechanism. Typically, recovery procedures have both
automated and manual components. For example, transaction log replay and subsequent
file repair is usually fully automated. Recovery procedures based on full or incremental
backups stored on removable media usually rely on manual procedures to some degree.

The FMS maintains backup logs to aid in locating backup copies of lost or damaged
files. Recovery utilities can search these logs for particular files or groups of files. Backup
logs record the storage device or medium holding backup copies. At the time of the
backup, the backup utility writes an ID number or code to the backup storage medium
and sometimes to a label that s manually applied to the medium. The system administrator
can locate the medium and mount this external label on the correct device. The recovery
utility reads the embedded ID number or code to verify that the correct medium has been
mounted before beginning recovery operations.

468

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Recovery procedures for a crashed system or physically damaged storage device are
usually more sophisticated and highly automated. Damage might have occurred to files,
directories, storage allocation tables, and other important disk management data struc-
tures. The recovery utility reconstructs as much of the directory and storage allocation
data structures as possible and makes a consistency check to ensure the following:

All storage locations appear in the storage allocation table and other data
structures.
All files have correct directory entries.
All storage locations of a file can be accessed through the storage allocation
table.
All storage locations can be read and/or written.

Consistency checking and repair procedures consume anywhere from a few minutes
to several hours, but they reduce the need to do large amounts of data recovery from
backup copies and minimize the amount of current data that s lost. They can also elimi-
nate the need to reinstall system and application software.

FAULT TOLERANCE

As applied to FMSs, fault tolerance describes methods of securing file content against
hardware failure. Magnetic and optical drives are complex devices with many mechanical
parts. To improve performance, manufacturers use high spin rates and small distances
between read/write heads and recording media. The result is devices that provide high
performance but at the cost of occasional catastrophic failure.

Common causes of disk failure include head crashes, which are contacts between a
read/write head and a spinning platter, and burned-out motors and bearings. Repairing a
failed disk drive is prohibitively expensive because of the nature of manufacturing meth-
ods. Most enterprise disks have 5-year warranties, and manufacturer claims for mean time
between failures (MTBF) range as high as 180 years, but the large number of disks in use
guarantees that some failures will occur.

File backup, recovery, and transaction logging are forms of protection against disk
failure, but they require time to carry out, and data is unavailable to users during recov-
ery operations. In many processing environments, occasional downtime for file recovery is
acceptable. In others, such as banking, retail sales, e-commerce, and production monitor-
ing and control, downtime is unacceptable or expensive. In general, any business or orga-
nization performing continuous updates and queries against files and databases is a
candidate for advanced methods of fault tolerance, such as mirroring or RAID.

Mirroring
Disk mirroring is a fault-tolerance technique in which all disk write operations are made
simultaneously or concurrently to two storage devices. In some cases, the two devices
might be in different cabinets, rooms, or buildings. If one device fails, the other device
contains a duplicate of all data. Data is available continuously because either device can
respond to a read request.

The FMS can perform disk mirroring by being configured to make duplicate writes to
duplicate storage devices, but this method can reduce system performance substantially.

469

Fault Tolerance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Software-based mirroring is required if duplicate disks aren t attached to the same disk
controller. When duplicate disks are in the same cabinet, mirroring is usually implemen-
ted in hardware by the device controller, which reduces CPU and system bus overhead.
Multiple disk drives are attached to the controller, and the controller duplicates write
operations automatically to each drive. Read operations are split between the drives to
improve performance. Special utilities are used to configure the disk controller for mirror-
ing and to initialize a new duplicate drive if a failure occurs.

Disk mirroring provides a high degree of protection against data loss with no perfor-
mance penalty if it s implemented in hardware. The primary disadvantages of mirroring
are doubling storage device cost and the higher cost of disk controllers that perform
mirroring.

RAID
Redundant array of independent disks (RAID) is a disk storage technique that improves
performance and fault tolerance. The original RAID version, now known as RAID 0, was
developed at the University of California, Berkeley, in the late 1980s. RAID has evolved
considerably since then, and many products are now available commercially. A flurry of
RAID development in the early 1990s resulted in many incompatible approaches and pro-
ducts, and the RAID Advisory Board (RAB) was formed in 1992 to define standard meth-
ods of implementing RAID levels through 5 (see Table 12.2). The RAB disbanded in the
mid-2000s, so RAID techniques developed since then (such as RAID 6 and 10) can vary
across software and hardware providers. RAID levels 2 through 4 are rarely used.

RAID 1 is disk mirroring, described in the previous section. All other RAID levels use
some form of data striping, which breaks a unit of data into smaller segments and stores
these segments on multiple disks. For example, a 16 KB block of data can be divided into
four segments, with each 4 KB segment written in parallel to a separate disk (see Figure
12.14). A subsequent read of the original 16 KB block accesses all four disks in parallel.

TABLE 12.2 RAID levels

Level Description

0 Data striping without redundancy

1 Mirroring

2 Data bit striping with multiple error checksums

3 Data byte striping with parity check data stored on a separate disk

4 Data block striping with parity check data stored on a separate disk

5 Data block striping with parity check data stored on multiple disks

6 Data block striping with two sets of parity check data stored on multiple
disks

10 Data striping combined with mirroring

470

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Data striping improves read performance by breaking a large read operation into
smaller parallel read operations. The elapsed time to perform an entire read or write
operation is reduced because multiple disks can perform small parallel operations faster
than a single disk can perform one large operation. However, overhead is incurred to dis-
assemble and reassemble data segments and to issue read or write requests to multiple
disks.

RAID 1 through 6 achieve fault tolerance by generating and storing redundant data
during each write operation. RAID 3 through 6 generate parity bits for data bytes or blocks
and store them on one or more of the RAID disks. If a single disk fails, no data is lost
because missing bits can be reconstructed from the data and parity bits on the remaining
disks, as described in Chapter 8.

In RAID 3 and 4, parity information is stored on a dedicated disk (see Figure 12.15).
In RAID 5 and 6, parity information is distributed across all disks in a round-robin fashion.
RAID 5 and 6 have slightly better performance during the period between a disk failure
and regeneration of its content to a new disk. With RAID 3 and 4, failure of any disk
except the parity disk requires recomputing lost data bits from the remaining data and the
parity data for all read operations. With RAID 5 and 6, some read operations don t require
parity computations. For example, with five disks, RAID 5 stores 20% of the parity infor-
mation on each disk. If a single disk fails, 80% of subsequent read operations require parity
computations, but the other 20% don t.

FIGURE 12.14 Data striping across four disks
Courtesy of Course Technology/Cengage Learning

471

Fault Tolerance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Storing parity data reduces a disk array s usable capacity. The proportional reduction
depends on the number of disks in the array. If five disks are used, 20% of the available
disk space stores redundant parity information, and the effective data storage capacity is
80% of the raw storage capacity. Using more disks would decrease the portion of space
used for parity bits but with a slight increase in the probability of data loss in the event of
multiple disk failures.

Multiple RAID levels can be layered to combine their best features. The most common
example is RAID 1+0, also called RAID 10. RAID 10 mirrors each disk (RAID 1) and then
stripes data (RAID 0) across multiple mirrored pairs (see Figure 12.16). Because striping
requires at least two disks and each disk is mirrored, RAID 10 requires at least four disks.
For RAID 10 with four disks, read and write performance is improved by up to 100%, and
the system can recover from the failure of any single disk or two disks if they re in differ-
ent mirror pairs.

FIGURE 12.15 A RAID 3 or 4 write operation to multiple disks
Courtesy of Course Technology/Cengage Learning

472

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

RAID can be implemented in software or hardware. Hardware systems are common
for a number of reasons, including the following:

The ability to configure all RAID components in a single cabinet
Hardware fault tolerance extended with redundant power supplies and disk
controllers
Reduced load on the host CPU
Reduced system software complexity

A RAID storage device looks like a single large disk drive to an OS. A dedicated con-
troller performs all RAID-related processing, including segmenting read and write opera-
tions, generating parity data, reconstructing missing data if a disk fails, and repopulating
data to a replacement disk. Hardware-based RAID systems for LAN and small WAN servers
are typically based on a SCSI standard. RAID systems for larger computer systems usually
use other high-capacity communication channels, such as Fibre Channel.

STORAGE CONSOLIDATION

The traditional model of storage access by application software relies on an approach
commonly called direct-attached storage (DAS). DAS describes any architecture in which
software running on a CPU accesses secondary storage devices in the same computer. It s
an efficient approach to storage access when a single computer interacts with a single
storage subsystem. However, DAS can be expensive and inefficient for organizations with
dozens or hundreds of servers and terabytes of shared data. In this environment, storage
overlap between servers can be substantial, resulting in high costs and redundant updates

FIGURE 12.16 16 KB stored in a four-disk RAID 10 array
Courtesy of Course Technology/Cengage Learning

473

Storage Consolidation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

of multiple data copies. Two approaches are widely used to overcome the inefficiencies of
DAS in multiple-server environments:

Storage area network
Network-attached storage

A storage area network (SAN) is a high-speed interconnection between general-
purpose servers and a separate storage server. For example, in Figure 12.17 each general-
purpose server has a device controller attached to its system bus. The device controller
attaches via an external connection to a SAN switch that connects to one or more storage
servers. A storage server accepts storage access requests from other servers and accesses
embedded storage devices on their behalf. As in DAS, SAN storage accesses are at the
level of disk sectors in a logical address space. Communication in a SAN is based on a
high-speed protocol, such as Fibre Channel, InfiniBand, or 10 Gigabit Ethernet.

FIGURE 12.17 A server cluster with a storage area network
Courtesy of Course Technology/Cengage Learning

474

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The storage server in a SAN isn t a complete general-purpose computer, although it
might have a CPU and a limited-purpose OS. In essence, it acts as a disk controller for
each server, translating accesses in a logical address space into physical accesses to one
or more disk drives. However, the storage server must also handle the complexities of
shared resource access. For example, if one general-purpose server asks to read a storage
location while another server is writing to the same location, the storage server must
queue the read request until the write request is completed.

The term network-attached storage (NAS) describes any architecture with a dedi-
cated storage server attached to a general-purpose network to handle storage access
requests from other servers. Figure 12.18 shows an NAS server with four application and
Web servers attached via a LAN or WAN. An NAS server can be a general-purpose server
customized for storage applications or a limited-purpose server, sometimes called a
server appliance. In either case, an NAS server has all the hardware attributes of a

complete computer system, including a CPU, memory, system bus, storage subsystem, and
network I/O devices. It also has an OS that can manage its hardware resources and
respond to storage service requests from other servers.

A key distinction between SAN devices and NAS servers is the type of storage access
requests that are serviced. A SAN device accepts low-level requests to locations in the
storage subsystem s logical address space. This type of access is sometimes called block-
oriented access or sector-oriented access. In contrast, an NAS server accepts access

FIGURE 12.18 Network-attached storage
Courtesy of Course Technology/Cengage Learning

475

Storage Consolidation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

requests to files, which can encompass many storage blocks. This type of access is usually
called file-oriented access. In NAS, a storage server OS manages one or more file sys-
tems shared by other servers or clients. In a SAN, a storage server provides a pool of
physical storage locations. Other servers use these locations to store one or more file
systems.

SANs and NASs have unique advantages, although many organizations use a combi-
nation of both approaches. SANs are most common in multiserver environments with
mainframes or supercomputers and substantial overlap in server storage needs. Clusters
commonly use SANs to share data and system software among many identical computers.
SANs are expensive to purchase and administer, but they avoid the costs of duplicate
storage and storage administration.

NAS is commonly used when geographically dispersed servers need access to a com-
mon file system. One example is a shared file system accessed by servers and clients
spread across a university or corporate campus. NAS is much cheaper to acquire and
administer than a SAN, but the cost savings come at the price of lower performance. The
reason is that NAS connections are ordinary LAN or WAN connections, which are usually
slower and more congested than SAN interfaces, which are high-speed connections dedi-
cated to storage access. NAS servers also have the additional task of file system manage-
ment, which slows their response time compared with storage servers in a SAN.

T E C H N O L O G Y F O C U S

Google File System

Traditional FMSs embedded in widely used OSs, such as Linux and Windows, are
designed to support many kinds of applications. Most organizations achieve acceptable
levels of application performance and support with these FMSs. However, some organiza-
tions have applications that aren t well matched to traditional FMSs, which leads to a
difficult decision tolerate the suboptimal performance and application support or invest
the resources to develop a customized FMS that better matches application
requirements.

In its early years, Google recognized that its FMS needs were quite different from other
organizations and poorly matched to traditional FMS capabilities. Because Google execu-
tives anticipated rapid growth in data storage requirements, they were concerned that sub-
optimal FMS performance for their applications would be a continuing problem. They
decided to develop Google File System (GFS), an FMS specifically matched to their needs.
Key assumptions underlying GFS led to important differences from traditional FMSs:

Scalability to petabyte storage
Large files, ranging from hundreds of megabytes to dozens of gigabytes
Data storage on a distributed collection of commodity servers
Simultaneous file access by multiple distributed applications

Because traditional FMSs support files of widely varying sizes, their allocation units
are generally small (512 KB to 4 MB) for efficient storage allocation and I/O with smaller
files. However, most files stored in GFS are 100 MB or larger. In addition, most Google

(continued)

476

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

applications read entire files sequentially. These characteristics, combined with the need
to scale to petabyte storage, led GFS designers to choose 64 MB as the standard unit of
storage allocation (called a chunk). As a result, storage allocation tables are smaller
and can fit entirely in memory, thus improving file server performance substantially.

Large allocation unit size can result in poor I/O performance when applications
interact with many small files or small portions of larger files. For example, with a 64 MB
block size, an application such as a Web server retrieving kilobyte-sized pages would
access large quantities of data needlessly. However, few Google applications perform I/O
on random locations in files, so large storage allocation units don t incur the performance
penalties associated with a poor match between allocation unit size and typical patterns
of application storage access.

Given Google s growth expectations, it was clear from the beginning that relying on a
few large file servers wasn t feasible. Instead, data storage would require thousands or
more servers that needed to be distributed geographically and built with inexpensive
components to control cost. Therefore, failure of disks, disk arrays, entire servers, and
network connections was an important design issue. GFS has to tolerate these failures
without a major impact on performance or data availability.

To address this need, GFS uses a unique approach to distribution. A single server
cluster (the GFS master) stores all directory, storage allocation, and replication informa-
tion, and a distributed network of chunk servers running Linux stores file content (see
Figure 12.19). When an application opens a file, it interacts with the GFS master, which
transfers much of the file s storage allocation and replication data to the application.
Most of the application s subsequent file accesses go directly to the chunk servers holding
the necessary data. Instead of implementing fault tolerance at the disk array level, GFS
routinely duplicates entire files across multiple chunk servers.

Application
server

File access
request

Chunk and
replica locations

Chunk
Chunk
request

Chunk server Chunk server Chunk server Chunk server

GFS master

Directory
data

Storage
allocation

table
Replication

data

FIGURE 12.19 Interaction between an application server and the GFS master and chunk
servers

Courtesy of Course Technology/Cengage Learning

(continued)

477

Storage Consolidation

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Unlike traditional FMSs, applications that interact with GFS see storage allocation and
replication information and interact directly with underlying allocation units via the chunk
servers. This approach reduces the I/O load on the GFS master at the expense of more
complex application programming. In the world of general-purpose OSs and application
software, hiding FMS complexity and internals from the applications is the norm. However,
because Google develops all its own applications, it can choose to make more FMS details
available to applications with little concern about increased application expense and
complexity.

The use of a single GFS master is a potential performance bottleneck and a single
point of failure. Most large-scale FMSs use a multimaster approach that s more fault tol-
erant but requires complex processes for distributing and managing updates to directory,
storage allocation, and replication information. The choice of a single GFS master was for
expediency. In the late 1990s, Google wanted to develop and deploy GFS as rapidly as
possible. Google estimates that bypassing the complexity of a true multimaster FMS
reduced development and deployment time by at least a year. However, as Google s data
storage needs continue to grow, having a single GFS master looms larger as a possible
impediment to performance and fault tolerance.

478

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

A file management system (FMS), usually part of the OS, manages all aspects of user and
program access to secondary storage. The FMS presents a logical view of stored data and
programs to users as files organized into directories and storage volumes. As users and
programs manipulate the logical view, the FMS translates these operations into commands
to physical storage devices. FMSs support only a few file types directly, including execut-
able programs, executable OS command files, and user data files. In current FMSs, users
and programs can define new file types and have programs for manipulating these files
associated with the file types.

Directories enable users to organize the many files stored in a typical computer. Each stor-
age device or volume has a root directory. In hierarchical directory structures, directories
can contain other directories, creating a tree structure in which each file belongs to only
one directory. In graph directory structures, files can belong to more than one directory, and
there s the possibility of loops or cycles in the directory structure. Directories store descrip-
tive information about files and directories, such as name, owner, file type, access controls,
and time stamps.

Secondary storage devices are divided into allocation units, typically a few kilobytes in size.
The FMS assigns allocation units to files and directories as they re created or expanded
and reclaims allocation units as files and directories shrink or are deleted. The FMS uses
data structures called storage allocation tables to track the assignment of allocation units to
files and directories. Entries in these tables can be linked lists in simple FMSs; in more
complex FMSs, they can be indexes or other complex data structures.

The FMS allocates buffers to support program file I/O. A program executes a file open ser-
vice call before reading or writing a file, which causes the FMS to find the file, verify access
privileges, allocate buffers, and update the open file table. Multiple programs can open the
same file for reading, but in most FMSs, only one program can open a file for writing. When
a program is finished with a file, it executes a file close service call, which causes the FMS
to flush buffer content to the storage device, release the buffers, update the file s time
stamps, and update the open file table.

The FMS enforces access controls when accessing files on behalf of a user or program.
File owners and system administrators can grant or deny access privileges for reading,
writing, and executing files. When a user or program attempts to access a file, the FMS
checks the account name or ID number against the access controls stored in the file s
directory entry to determine whether access is permitted. Enforcing access controls
provides security but increases FMS overhead.

FMSs include utilities to make backup copies of files and directories and to recover them if
needed. Backups can be performed manually or be fully automated, and backup types
include full, incremental, and differential. Some FMSs support automatic storage and
backup of old file versions with file migration. As file contents change, the original versions
are archived and migrated from local disks to remote storage media and eventually to
offline storage as they become further out of date.

Fault tolerance describes methods of securing file content against hardware failure. One
method is disk mirroring, in which all disk write operations are duplicated to two storage

479

Summary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

devices. Servers and some workstations use RAID technology to improve performance and
fault tolerance. RAID improves performance by striping data across multiple disks and
reading or writing small blocks of data in parallel. It improves fault tolerance through disk
mirroring, storing redundant parity data on one or more disks, or both. There are multiple
levels of RAID, each providing a unique mix of fault tolerance and performance improvement.

Organizations that store large amounts of data typically use some form of consolidated
storage. A storage area network (SAN) is a high-speed interconnection between
general-purpose servers and one or more storage servers. Network-attached storage
(NAS) servers are dedicated to managing one or more file systems and are accessed
by other servers and clients over a LAN or WAN.

This chapter and Chapter 11 have covered allocation and management of the CPU, primary
storage, and secondary storage. In Chapter 13, you examine how users and applications
interact with external resources, including files, I/O devices, and programs.

Key Terms

allocation unit

blocking

blocking factor

child

complete path

current directory

data striping

differential backup

direct-attached storage (DAS)

directory

disk mirroring

fault tolerance

fields

File Allocation Table (FAT)

file association

file close operation

file control layer

file management system (FMS)

file migration

file open operation

full backup

fully qualified reference

Google File System (GFS)

grandparent

graph directory structure

hierarchical directory structure

home directory

incremental backup

journaling

links

logical record

network-attached storage (NAS)

New Technology File System (NTFS)

parent

physical record

redundant array of independent disks (RAID)

relative path

shortcuts

storage allocation table

storage area network (SAN)

storage I/O control layer

transaction

transaction logging

tree directory structure

unblocked

undelete operation

versioning

volume

working directory

480

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Vocabulary Exercises

1. A(n) is the unit of file I/O accessed by an application program as a single unit.
A(n) is the unit of storage transferred between the device controller and memory
in a file I/O operation.

2. The term describes the ratio of logical records to physical records.

3. A(n) operation releases allocated buffers and flushes their content to secondary
storage.

4. A(n) operation allocates buffers for file I/O and updates a table of files in use.

5. The content of a logically, but not physically, deleted file can be recovered in a(n)
operation.

6. describes tracking old file versions and moving them to archival and offline stor-
age devices.

7. In , changes to files are written to a log file as they re made.

8. In an FMS, the layer processes service calls from the command layer or
application program. The layer manages movement of data between storage
devices and memory.

9. A(n) specifies all directories leading to a specific file. A(n) specifies file
location based on the current or working directory.

10. In a(n) directory structure, a file can be located in only one directory. This
restriction doesn t apply in a(n) directory structure.

11. MS-DOS and some Windows versions record storage allocation information in the
file system.

12. An FMS can implement with disk mirroring or .

13. A(n) records the assignment of storage locations to files.

14. When an old version of a master file is saved, the current version can be called
the , the previous version is the , and the version before that is
the .

15. RAID 10 combines disk mirroring and to achieve fault tolerance and improve
performance.

16. In a(n) , multiple servers share access to the same storage server over a
high-speed dedicated network.

17. In , a storage server manages one or more file systems and responds to file I/O
requests sent across a LAN or WAN.

Review Questions

1. List the FMS layers and describe their functions.

2. What s the difference between the logical and physical structure of a file? What are the
advantages of not having an application program interact directly with the physical file
structure?

481

Review Questions

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3. What file types does a file management system usually support?

4. What is an allocation unit? What are the advantages of using small allocation units? What
are the disadvantages?

5. Describe the use of buffers in file I/O operations. When are buffers allocated? When are
they released?

6. Describe a hierarchical directory structure. What are its advantages and disadvantages
compared with a graph directory structure?

7. How is file deletion normally accomplished? What security problems might result from this
method?

8. What levels of access rights can exist for a file?

9. What is transaction logging or journaling? Describe the performance penalty it imposes on
file update operations.

10. Describe the levels of RAID. What are their comparative advantages and disadvantages?

11. Compare storage area networks and network-attached storage. Which is more common in
environments where many servers in the same location access the same data?

Problems and Exercises

1. Modify the directory content in Table 12.1 and the storage allocation table in Figure 12.9 to
store a new file containing seven allocation units.

2. Assume the first character of the filename in a deleted file s directory entry is overwritten
with an ASCII 0 to mark the file as deleted. Write a step-by-step procedure for undeleting a
deleted file, assuming no file operations have been performed since the deletion.

3. You have six 1 TB disks for assembling a RAID storage array and are considering RAID
levels 0, 5, 6, and 10 for the array. For each level, what s the effective data storage capac-
ity, and how many disks can fail before data is lost permanently? Which level would you
recommend for an array holding data for a Web site that s changed infrequently and backed
up daily? Which would you recommend for an array holding transaction data for an
e-commerce site that s backed up daily?

Research Problems

1. Google has two customized FMSs: GFS, described in the chapter, and a newer file system,
called BigTable, that supports applications such as Google Earth and Google Finance.
Investigate BigTable to determine how it s implemented and what application services it
provides. What are the unique characteristics of applications using BigTable, and how is it
optimized for these applications?

2. Investigate the SAN and NAS products of a major computer vendor, such as IBM, Hewlett-
Packard, or Dell. What are the approximate costs of configuring each device to store 2 TB of
data and respond to requests from eight other servers? Which one has higher storage
access performance? Which one is easier to configure and administer? Which is best suited
to file sharing for fewer than a dozen computers in a home or small business network?
Which is best suited to handle storage duties in a high-performance computing cluster?

482

Chapter 12

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R13
INTERNET AND DISTRIBUTED
APPLICATION SERVICES

C H A P T E R G O A L S

Describe types of distributed software architecture and discuss their
advantages compared with centralized applications

Explain how operating systems and network protocol stacks cooperate
so that users and programs can access remote resources

Explain the role and function of directory services and the LDAP
standard

Describe low-level protocols for interprocess communication across
networks

Describe standard Internet protocols for accessing distributed resources

Discuss component-based application development and describe the
protocols and standards that support it

Describe cloud computing models and compare their economic benefits
and risks

Users of computers and information systems interact with a variety of resources located on computer

systems all over the world. In this chapter, you examine the complex set of network protocols, infra-

structure, and services that make it possible for users to interact with geographically dispersed

resources. Figure 13.1 shows the topics covered in this chapter.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

DISTRIBUTED SOFTWARE ARCHITECTURE

Information systems are composed of software components distributed across many com-
puter systems and geographic locations. For example, an organization s corporate financial
data might be stored on a mainframe computer in its central office. Midrange computers
in regional offices might generate accounting reports periodically based on data stored on
the mainframe, and desktop computers in branch offices might access and view these
reports as well as query and update the central database. Similar tasks might be per-
formed with laptop computers or PDAs using wireless networks. Distributing parts of an
information system across many computer systems and locations is called distributed
computing or distributed processing.

Client/Server Architecture
Client/server architecture is a method of organizing software to provide and access dis-
tributed information and computing resources. It divides software into two classes: client
and server. A server manages system resources and provides access to these resources
through a well-defined communication interface. A client uses the communication inter-
face to request resources, and the server responds to these requests. Servers are typically
available at all times to respond to clients. In contrast, clients can be offline or idle except
when needed to access server resources.

FIGURE 13.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

484

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The client/server architectural model can be applied in many ways. A simple example
is how workstations access a shared printer on a LAN, as shown in Figure 13.2. An appli-
cation program on a workstation sends a document to a server, which dispatches it to a
management process for the specified printer. The server acknowledges the client request
and notifies the client when the document is sent to the printer.

N-Layer Client/Server Architecture
A variation of client/server architecture, called three-layer architecture or three-tier
architecture, divides application software into the following client and server processes
called layers or tiers (see Figure 13.3):

The data layer manages stored data, usually in databases.
The business logic layer carries out the rules and procedures of business
processing.
The view layer accepts user input and formats and displays processing
results.

The view layer acts as a client of the business logic layer, which in turn acts as a
client of the data layer.

FIGURE 13.2 Network printing services implemented with client/server architecture
Courtesy of Course Technology/Cengage Learning

FIGURE 13.3 Three-layer architecture
Courtesy of Course Technology/Cengage Learning

485

Distributed Software Architecture

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Three-layer architecture simplifies distributing or replicating application software
across a network. Interactions between layers are service requests and responses, and
layers can be placed in different processes on the same computer or on different compu-
ters. Layers that overload a single computer s capacity can be replicated on multiple
machines.

Layers can be added when processing requirements or data resources are complex.
Architectures having more than three layers are called n-layer architectures or n-tier
architectures. For example, corporate databases are often stored by using multiple data-
base management systems (DBMSs). An additional data layer is interposed between the
business logic layer and the DBMSs to present a unified view of data resources from all
corporate databases.

Layers can also be replicated in different forms. A single business logic layer might
interact with multiple view layers from different applications. For example, business logic
for validating inventory items might be part of an inventory-ordering application and part
of a customer merchandise return application. Similarly, a single application can have
multiple view layers that interact with a single business logic layer. For example, order
entry business logic might interact with a view layer used by phone sales representatives
that runs on simple VDTs. This same business logic might interact with a Web-based view
layer used by customers.

Middleware
The connections between layers of client/server and multitier application software can be
complex. Every layer can use a unique combination of programming language, OS, and
hardware. Well-defined interfaces and communication protocols enable the layers to
function as an integrated whole.

The term middleware describes software that glues together parts of a client/server
or multitier application. It s a wide-ranging system software category because applications
connection and communication requirements vary. For example, a simple client/server
application might only need to transmit messages between a single client and server in
predetermined locations. A more complex multitier application might need additional
middleware, such as Web servers that support embedded client-side programs, database
servers that support stored procedures, and network OSs that share files among clients
on multiple computers.

As OSs have evolved, they have incorporated more middleware functions. For exam-
ple, software to implement network protocols, such as TCP/IP, wasn t embedded in micro-
computer OSs until the mid-1990s. Web server software, once an optional component of
most server OSs, is now standard, and other server OS functions, such as e-mail and
document distribution, often rely on it.

N O T E
Other middleware can be obtained as optional OS utilities or as separate packages. For example,
the Microsoft BackOffice suite is optional middleware that extends the capabilities of Windows Server.
Novell GroupWise and Oracle Tuxedo are examples of middleware packages that work with
multiple OSs.

486

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Peer-to-Peer Architecture
In peer-to-peer (P2P) architecture, the roles of client and server are combined into a sin-
gle application or group of related applications. For example, a family has several Internet-
connected computers in separate locations containing photos and home movies. Each
family member can install a P2P file-sharing application, such as BitTorrent, and configure
a shared file space that enables each computer to access files on the other computers. In
essence, each computer acts as a client when accessing files on other computers and a
server when providing files to other computers.

Advantages of P2P architecture include improved scalability and reducing the number
of computer and network connections needed to support an application. For example,
family photos and movies can also be shared via a client/server architecture, as when
a family posts pictures and videos to a server-based sharing site, such as Facebook or
YouTube. Using these sites reduces the amount of software and files stored on users
computers but adds a server and associated network connections. The server and its
network connections are central points of failure, and server capacity must be sufficient
to handle many users. With P2P architecture, there are fewer potential bottlenecks and
points of failure. In addition, the system s overall capacity scales up with the number of
participating computers.

Some applications combine client/server and P2P architectures. For example, when an
Internet phone application, such as Skype, starts on a user computer, it connects to a
server to register its IP address and the connected user account. When users call one
another, they interact with this server to get connection information. After the connection
is established, further communication between users is P2P.

P2P architecture has a bad reputation resulting from P2P applications that enable
illicit file sharing of copyrighted material. Because many of these applications bypass cen-
tralized servers, the illicit activity is spread across many users and computers, which
makes it harder for copyright holders to stop this practice, compared with client/server
applications. However, there are many legitimate uses of P2P architecture. Because today s
computers and devices such as cell phones have more than enough power to run both
client/server and P2P applications, P2P architecture is here to stay, and its use will likely
increase over time.

NETWORK RESOURCE ACCESS

An operating system s primary role is to manage hardware, software, and data resources.
As part of this role, it accepts and processes resource access requests from users and
applications via the service layer. OSs enable users to interact with resources of the local
computer and remote computers. To provide distributed access, the OS must be able to
distinguish between local and remote resources and interact with remote operating
systems. This section covers the OS components that perform these functions.

Protocol Stacks
An OS implements network I/O and services as a complex set of software layers. The TCP/
IP model, covered in Chapter 9, defines the number and functions of these software layers.

487

Network Resource Access

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Software implementing the Transport, Internet, and Network Interface layers of this model
is commonly called a protocol stack. Figure 13.4 shows one possible protocol stack for a
workstation. Stacks 1 and 2 have different Application and Transport layers but share the
other three layers. A client application, such as a Web browser, uses stack 1, and Skype
uses stack 2.

Protocol stacks have several advantages for implementing network I/O and services:

They divide the task of network interaction into several well-defined pieces
that can be implemented, installed, and updated separately.
They provide the flexibility needed to keep up with rapid changes in protocol
standards.
They insulate application programs and many portions of the OS from details
of low-level network communication protocols and physical network imple-
mentation, which ensures software portability across a wide range of network
protocols and transmission media.

A network protocol stack is a computer s doorway to external resources, such as Web
sites and applications, databases, shared files and folders, and shared I/O devices.

Static Resource Connections
Connections to remote resources can be static or dynamic. Before accessing a remote
resource, a user or system administrator must know the server and resource names to
create a static connection. The remote resource can be given a local object, resource, or
service name. Figure 13.5 shows the dialog box for creating a static connection between
the local S drive and the SharedFiles folder on the Fileserver.mgt.unm.edu server. Similar
static connections can be created for printers and other shared resources.

Layer

Application layer

Transport layer

Internet layer

Network Interface layer

Physical layer NIC & Cat6 cable

Gigabit Ethernet

IP

TCP

HTTP

UDP

Skype

Stack 1 Stack 2

FIGURE 13.4 Two protocol stacks with three shared layers
Courtesy of Course Technology/Cengage Learning

488

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Static connections are difficult to initialize and maintain because the OS must be
configured to establish a connection each time it starts. In addition, if a remote resource s
name or location changes, the configuration of all computers with static connections to
this resource must be changed, too.

Remote resource access in current OSs is based on the following premises:

Operating systems, application programs, and user interfaces are simpler if
there s no distinction between local and remote resource access.
All resources are potentially shared across a network.
Any computer system is potentially both a client and a server.
Resources can be moved between computer systems.

Software and user interfaces are simplified by providing a common method of acces-
sing both local and remote resources. For example, a word-processing program running on
a workstation should use the same service calls and parameters to access document files
stored on local disks and on server disks. A Web browser should access resources on
remote machines in the same manner it accesses resources on the local machine. This
characteristic of software and user interfaces is called location transparency or network
transparency.

The second and third premises go hand in hand. If every local resource might be
needed by remote users or processes, every computer is potentially both a client and a
server. To provide remote access, all OSs need to incorporate client/server or P2P

FIGURE 13.5 Displaying and creating static connections in Windows 7
Courtesy of Course Technology/Cengage Learning

489

Network Resource Access

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

resource sharing and access functions. Figure 13.6 shows the arrangement of software
components that support service-oriented resource access. Two layers, the resource loca-
tor and service provider, are interposed between the OS service layer and device drivers.
The resource locator acts as a router for resource access requests arriving from local and
remote users and application programs. Service requests from local users or programs are
passed down through the local OS service layer to the resource locator. For access to local
resources, the resource locator connects to the local service provider. For static connec-
tions to external resources, the resource locator creates and forwards messages to the
external server or P2P node. Service requests from remote users or programs are passed
up through the low-level network protocol stack and then down to a local service provider.
The service request format is the same regardless of the request s origin. Each service
provider is an interface to a specific resource, such as a shared printer or folder.

The resource locator maintains a local resource registry containing the names and
locations of known resources and services. When local service provider processes are
started, they register themselves with the resource locator, which updates the resource

FIGURE 13.6 Software resources used to access local and remote resources
Courtesy of Course Technology/Cengage Learning

490

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

registry accordingly. Resource requests are checked against this registry. If all connections
to resources are static, the resource locator generates an error if a requested resource isn t
listed in the resource registry.

Dynamic Resource Connections
As mentioned, static connections are difficult to administer. When resources are added,
moved, renamed, or deleted, all users resource registries must be updated to reflect the
changes. A more complex, but flexible, approach to remote resource access uses dynamic
connections. With dynamic connections, a resource user asks for a resource, and if it isn t
found in the local resource registry, the resource locator searches for it in external locations. If
the resource is found, the resource locator communicates with the host server or P2P node on
behalf of the local process or user, who is unaware of whether the resource is local or external.

Domain Name System (DNS), used on the Internet, is one example of dynamic con-
nections. Every IP packet carries the destination node s IP address. Because nearly all
remote service accesses use Internet protocols, finding the IP addresses of servers and P2P
nodes with needed resources must be the first step to sending access request messages.
However, the Internet is a dynamic place, where servers and P2P nodes can be moved
from network to network (thus changing their IP addresses), and most users and applica-
tion programs know servers and P2P nodes by DNS names, such as www.microsoft.com,
not by their corresponding IP addresses. How does a client or P2P node that wants to
connect to another node by DNS name convert the name into an IP address?

Every network attached to the Internet has at least two servers designated as DNS
servers. A DNS server maintains a registry of DNS names and corresponding IP addresses
for each node on the local network and for DNS servers elsewhere on the Internet. For
example, the University of New Mexico (UNM) has two large DNS servers with the IP
addresses 129.24.8.1 and 129.24.8.4 that respond to requests for the IP addresses of any
DNS name ending with unm.edu. These servers are registered with Internet naming
authorities, and the registrations are stored in root DNS servers that act as DNS master
servers for the entire Internet. In the worst case, a client wanting to know the IP address
corresponding to a DNS name in UNM takes the following steps:

1. Contact a root DNS server to find the IP address of a UNM DNS server.
(IP addresses of root DNS servers are updated periodically via automated
downloads.)

2. Send a request to the UNM DNS server s IP address asking for the IP address
of a specific node, such as averia.unm.edu.

If the request is for the IP address of a node such as www.unm.edu, the UNM DNS
responds with the IP address. If the request is for an IP address of a node in a UNM subnet
(for example, www.mgt.unm.edu), the UNM DNS server might respond with the IP address
of a DNS server for the subnet, which the client then contacts for the IP address it wants.

As clients send DNS requests and receive responses, the client OS updates a local
registry of DNS names and IP addresses. If a client requests an IP address for one DNS
name in the unm.edu network and shortly after requests an IP address for the same DNS
name, the answer is already in the local DNS registry. If the client later needs the IP
address of another DNS name in the unm.edu network, the UNM DNS server s IP address
can be retrieved from the local DNS registry, thus avoiding Step 1.

491

Network Resource Access

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.microsoft.com
http://www.unm.edu
http://www.mgt.unm.edu

Distributed resource directories and servers, such as those used for DNS queries, offer
the flexibility to create dynamic connections to remote resources as needed. When a
resource access request is sent to the local resource locator, it searches the local resource
registry and, if the resource isn t listed there, initiates a search by using protocols similar
to the DNS query protocol. Of course, the flexibility of dynamic connections comes at a
high cost the complexity of the protocol and its software implementation in the client
and a potentially large collection of servers. However, in today s world of widely
distributed and rapidly changing resources, there s simply no alternative.

N O T E
It should be clear by now that the traditional distinctions between client and server OSs have become
blurry. All modern OSs are organized internally as a collection of server processes that can respond to
requests from local and remote users and processes. In addition, they maintain one or more resource
registries and create dynamic connections to remote resources as needed. There are some distinctions
between client and server OSs, such as scalability and security, but they re mainly a matter of different
configuration, not fundamentally different architecture.

DIRECTORY SERVICES

When resources are distributed across network nodes, resource users and providers must
have some way of finding one another. The term directory services describes middleware
that does the following:

Stores the name and network address of distributed resources
Responds to directory queries
Accepts directory updates
Synchronizes replicated or distributed directory copies

Directory services are integral components of all network operating systems.
Typically, network OS directories store information about these items:

Registered users and their permissions to access directory objects
Shared hardware resources, such as printers
Shared files, databases, and programs
Computer systems and specialized hardware devices, such as network storage
appliances

Directory services are distributed much like Internet name services. Directories are
organized hierarchically to create a single namespace for all network resources and
objects. In large networks, responsibility for maintaining directory content and answering
queries is distributed throughout the network. Directory content can be replicated in
multiple servers in different parts of the network to reduce response time and improve
fault tolerance.

Lightweight Directory Access Protocol
In the 1980s, the International Telecommunications Union (ITU) developed the X.500
standard, which defines nonproprietary directory services for e-mail and network

492

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

addresses. This standard was never fully implemented in a commercial product or OS.
However, it became the basis for another standard called Lightweight Directory Access
Protocol (LDAP), which the Internet Engineering Task Force (IETF) adopted as a formal
Internet standard. It was updated regularly in the late 1990s, and these efforts still are
in progress. LDAP is widely used, although not all products have all the features of the
most recent updates.

An LDAP directory stores information about LDAP objects. Each object is an instance of
an objectclass, which defines the attributes common to all member objects. For example, the
objectclass Shared_Printer might define attributes named Building, Room, Manufacturer,
Model, Color, Duplex, and Pages_Per_Minute. Each directory entry for a shared printer is an
object of the type Shared_Printer and contains values for some or all defined attributes.

LDAP objects are organized in a hierarchical directory structure. Objects can be
grouped into container objects that can be grouped into other container objects (see
Figure 13.7). LDAP defines several standard container object types, including Country (C),
Organization (O), and Organizational Unit (OU). All objects in an LDAP schema have a
distinguished name (DN) attribute, which uniquely identifies the object in an objectclass.
A fully qualified DN, such as the following, specifies a complete path from a directory root
node through one or more container objects to a specific object:

DN=Stephen Burd,O=Faculty,O=School of Management,

OU=University of New Mexico,C=USA

FIGURE 13.7 An LDAP hierarchy of objects and container objects
Courtesy of Course Technology/Cengage Learning

493

Directory Services

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

LDAP also defines a standard protocol for updating and querying LDAP directories.
LDAP queries contain plaintext characters, although the syntax is complex and awkward.
Many client programs, such as e-mail software and Web browsers, have a more user-
friendly interface to LDAP services.

Strict adherence to the LDAP standard guarantees interoperability between all LDAP
clients and servers. However, an important area of interoperability has yet to be
addressed: standard schema names and structure. Currently, there are no standard
objectclass or attribute names for entities and resources common to most directories, such
as people and shared printers. As a result, there s no standard way for a directory from
one vendor or organization to query the directory of another organization or vendor.

For example, one directory might define an objectclass named Employee, and another
directory might use the name Worker for a similar objectclass, and the two directories
might use different attribute names for identical data items, such as office phone number.
One directory can send a query to the other asking it to enumerate its defined object-
classes and attributes, but without a standard naming system, there s no way to determine
semantic equivalence of schema classes and attributes automatically.

In the absence of standard class and attribute names, directory vendors and user orga-
nizations have developed proprietary directory schemas that are usually incompatible. Even
if a set of standard schema classes and attributes is developed, the existing base of incom-
patible directory schemas will hinder true directory interoperability for years to come.

T E C H N O L O G Y F O C U S

Microsoft Active Directory

Microsoft Active Directory is the directory service and security system built into Windows
Server. Active Directory stores information about many network resources, including
computers, I/O devices, and users (see Figure 13.8). It incorporates security services
that enable system administrators to limit resource access to specific users or user
groups. Active Directory also supports large directories and distributed organizations
with directory partitioning across Internet domains, directory replication across multiple
servers, and automatic synchronization of replicated directories or directory partitions.

Windows client OSs query Active Directory to locate and access network resources.
For example, a user can search for shared directories matching specific criteria. Pro-
grams can also interact with Active Directory by calling Active Directory-specific service
functions. For example, a word-processing program might query Active Directory for all
printers in an organizational unit, and then construct and display the result to users
when they select the Print function from the File menu.

Windows client and server OSs use Active Directory to store and access security
information. Every user, group, and computer object is assigned a unique security iden-
tifier, and every Active Directory resource or container object has an access control list
(ACL) describing rights granted or denied to users, groups, and computers for accessing
resources. Figure 13.9 shows the ACL for the Active Directory object named Subnets.
Members of the Domain Admins group have special permissions for Subnets and, by
default, have these permissions for all child objects.

(continued)

494

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Active Directory ACLs and permissions inheritance can be used to distribute system
administration tasks across users and organizations. If Active Directory objects are orga-
nized hierarchically with container objects, the directory administrator can delegate
management functions to other users by assigning rights to container objects. For
example, he or she can assign rights such as Create All Child Objects and Modify
Permissions to other users for lower-level container objects so that they can administer
one part of Active Directory.

Active Directory is based on LDAP and DNS, so it responds to standard LDAP
information requests and uses LDAP concepts, such as objectclasses and OUs, to store
and organize directory information hierarchically. Active Directory clients rely on a DNS
server to locate Active Directory servers, which register their names and services by
supplying a service (SRV) record to a DNS server. Active Directory clients query the DNS

FIGURE 13.8 Active Directory objects
Courtesy of Course Technology/Cengage Learning

(continued)

495

Directory Services

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

server for LDAP servers registered in their domain. The DNS server returns IP addresses,
which the client uses to send TCP/IP messages to an Active Directory server.

Like many other commercial products, Active Directory doesn t implement LDAP
fully. Unlike other directory service software, it relies on DNS and requires DNS servers
to accept dynamic updates. Although dynamic updates are an Internet DNS standard,
many DNS servers don t accept them by default. DNS administrators are reluctant to
enable them because they re a potential security and reliability threat. Microsoft s DNS
server software does support dynamic updates, so most Active Directory installations use
Microsoft DNS server software.

In addition, Active Directory doesn t support distributed or component-based soft-
ware directly. Shared files, including executable files, and databases can be registered in
Active Directory, which could support locating and accessing programs and data sources.
However, Active Directory has no standard way to glue together components and
external data sources to create complex systems. Windows relies on a parallel directory
and registration system to track COM+ components (discussed later in Components and
Distributed Objects) and provide component-related directory and interprocess com-
munication services.

FIGURE 13.9 Viewing an ACL
Courtesy of Course Technology/Cengage Learning

496

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INTERPROCESS COMMUNICATION

When an application is split into multiple processes, these processes must communicate
with one another to share data and coordinate their activities. However, when processes
are executing on different computers, how do they communicate and coordinate activi-
ties? A variety of protocols and standards have been developed that enable process coor-
dination across networks. In this section, you concentrate on lower-level P2P protocols
and standards, which enable processes to communicate synchronously across a network
(see Figure 13.10). System software often uses these protocols to exchange data and
coordinate activities. Distributed applications usually use higher-level protocols, described
later in the chapter. However, these higher-level protocols are often layered above
interprocess communication protocols.

Sockets

As described in Chapter 9, a socket is a unique combination of an IP address and a port
number, separated by a colon. For example, the socket 129.24.8.1:53 is the network lis-
tening address for the primary DNS name server at the University of New Mexico. A port
number is an unsigned 16-bit integer, so there are 65,536 possible port numbers. Some
port numbers are permanently assigned to standard Internet or vendor-specific services,
but many are available for other uses, including client/server or P2P communication
between application programs.

All current OSs support sockets and provide system service calls so that programs can
initialize sockets, receive messages sent to a socket, and send messages to sockets any-
where on the Internet. Figure 13.11 shows a communication example between client and
server processes on two computers. Client processes on Computer A are attached to sock-
ets 129.24.8.212:2 and 129.24.8.212:6 and communicate with two server processes on
Computer B attached to sockets 207.46.230.219:1 and 207.46.230.219:6. Each socket
uniquely identifies a client or server process on the Internet.

Application layer

Transport layer

Internet layer IP

TCP

Sockets

Named pipes

RPC

DCE

FIGURE 13.10 Interprocess communication protocols layered over TCP/IP
Courtesy of Course Technology/Cengage Learning

497

Interprocess Communication

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Named Pipes
A pipe is a region of shared memory through which multiple processes executing on the
same machine can exchange data. Pipes are commonly used for communication between
OS components, for queuing requests to an OS service (such as a Web server), and for
exchanging messages between components in a large program. Processes read or write a
pipe as though it were a file, and the OS manages data movement between processes and
the shared memory region.

A named pipe is a pipe with two additional features:

A name that s permanently placed in a file system directory
The capability to communicate between processes on different computers

When a named pipe is created, a directory entry is also created in the local file sys-
tem. Programs can read or write the named pipe as they would read or write an ordinary
file. Typically, the server side of a client/server application creates the named pipe. In a
P2P application, either side of the application can create it. A client or peer opens a
named pipe as a network resource and reads or writes it as though it were a file on a
shared directory. A server or peer on the machine where the named pipe was created
reads and writes the pipe as though it were a local file.

The OSs at both ends of the pipe manage communication to and from the pipe. Named
pipes are actually a high-level interface to sockets, so the OS assigns a free socket to the
named pipe when it s created. The OS also allocates I/O buffers and routes data flowing in
and out of the pipe through the low-level network protocol stack, as shown in Figure 13.12.
The OS on the client side also allocates a socket each time a remote named pipe is opened.

FIGURE 13.11 Multiple processes communicating through sockets
Courtesy of Course Technology/Cengage Learning

498

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Data can flow in either direction through a named pipe, although bidirectional data flow
is usually done with two one-way pipes. In client/server applications, multiple clients can
send messages to a single server by writing to the same named pipe. The server can tell
which client sent which messages or data because each client has a unique socket number.

Remote Procedure Calls
With the Remote Procedure Call (RPC) protocol, a process on one machine can call a
process on another machine. As with function or procedure calls in a single program, the
calling process follows these steps:

1. Pass parameters to the called process.
2. Wait for the called process to complete its task.
3. Accept parameters back from the called process.
4. Resume execution with the instruction following the call.

Parameter passing between machines can potentially cause problems because data
representation varies across CPUs and sometimes across operating systems. Common dif-
ferences include little endian versus big endian memory storage, character coding (ASCII
or Unicode), and which IEEE floating-point format is used for real numbers. If the calling

FIGURE 13.12 Two processes communicating through a named pipe
Courtesy of Course Technology/Cengage Learning

499

Interprocess Communication

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and called process execute on machines with different data representation formats, the
parameters must be converted when passed to the called process and when passed back to
the calling process.

T E C H N O L O G Y F O C U S

Distributed Computing Environment

Distributed Computing Environment (DCE) is a standard for distributed OS services
defined by the Open Group (www.opengroup.org), formerly known as the Open Soft-
ware Foundation. This wide-ranging standard covers network directory services, file-
sharing services, RPC, remote thread execution, system security, and distributed
resource management. Its main goal is to promote interoperability of distributed software
across OSs and middleware products. Many OSs comply partially with DCE, including
Windows and many versions of UNIX. IBM and Hewlett-Packard are principal supporters
of and contributors to the standard.

DCE defines a subset of OS services and a standard interface to these services. DCE
functions are incorporated into an OS or supplied as an optional component (see Figure
13.13). In theory, DCE services can replace their counterparts in an existing OS. In practice,
DCE-compliant services usually translate DCE service calls into native OS service calls.

Security is an integral part of every DCE service. DCE security is based on the Ker-
beros security model, which defines interactions between clients, services, and a trusted
security service. Clients and servers authenticate one another by asking the security
server to authenticate the other party. The security server issues security tickets to
each party that are exchanged to verify identities.

The security database also maintains an ACL for each service and resource. After a
client has been authenticated, its identity is checked against the ACL for the resource

FIGURE 13.13 DCE software layers
Courtesy of Course Technology/Cengage Learning

(continued)

500

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.opengroup.org

it s attempting to access. If the client is part of the ACL, it s issued a ticket that it pre-
sents to the server to gain access. Tickets, passwords, and other security mechanisms are
encrypted during network transmission. Tickets are also time-stamped and expire in
minutes or hours.

DCE file services are based on a fully distributed file and directory structure. Every
file in a DCE file system has a unique name consisting of its hostname, a file system
resource name in the host, and its pathname in the file system resource. File systems
can be distributed or replicated across multiple servers. DCE file services use transaction
logging for all updates to ensure rapid recovery in the event of a crash.

Clients, servers, and all DCE services interact through RPC. RPC messages are for-
matted according to an interface definition language (IDL). DCE-compliant client and
server programs are compiled and linked with DCE library routines that implement the
IDL. These routines perform the low-level aspects of passing messages, exchanging
parameters, converting data formats, and interacting with DCE security services.

The DCE standard is used in many UNIX variants, but it has also penetrated deeply
into other OSs. It s widely used, although competing standards, such as CORBA (dis-
cussed later in Components and Distributed Objects), are more commonly used in new
software development projects. However, DCE will probably be around for many years,
given its widespread operating support and large installed base.

THE INTERNET

The Internet and World Wide Web are widely used frameworks for implementing and
delivering information system applications. However, there s a general lack of agreement
on definitions of the Internet, Web, and related terms. The following definitions are used
in this chapter:

The Internet is a global collection of networks that are interconnected with
TCP/IP.
The World Wide Web (WWW), also called the Web, is a collection of
resources (programs, files, and services) that can be accessed over the Inter-
net by standard protocols, such as Hypertext Transfer Protocol (HTTP).
An intranet is a private network that uses Internet protocols but is accessible
only by a limited set of internal users (usually members of the same organi-
zation or workgroup). It also describes privately accessible resources that are
organized and delivered via one or more Web protocols over a TCP/IP
network.

The Internet is the infrastructure on which the Web is based. In other words, Web
resources are delivered to users over the Internet. An intranet uses the same protocols
as the Internet and Web but restricts access to a limited set of users. Access can be
restricted in many ways, including using privately registered resource names, firewalls,
and user/group account names and passwords.

Much of the Web is organized by using client/server architecture. Web resources, such
as Web pages, are managed by server processes that can execute on dedicated servers or

501

The Internet

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

multipurpose computers. Clients are programs that send requests by using standard Web
resource request protocols, which define valid resource formats and a standard means of
requesting resources. Any program, not just a Web browser, can use Web protocols to
access Web resources.

Standard Web Protocols and Services
Web resources are identified by a unique Uniform Resource Locator (URL), such as http://
averia.unm.edu/default.htm. A URL has four components, as shown in Figure 13.14:

Protocol An optional header specifying the resource access protocol
(http:// is the default value)
Host The IP address or registered name of an Internet host computer or
device
Port An optional port number that, together with an IP address, specifies a
socket (if omitted, a standard port number for the protocol is assumed)
Resource The complete pathname to a resource on the host (if omitted, the
host can return a default resource if configured correctly)

Web standards define a number of protocols for resource format, content, transfer,
and manipulation. The number of standard protocols is growing, and their content changes
rapidly. Table 13.1 summarizes major Web protocol categories.

FIGURE 13.14 URL components
Courtesy of Course Technology/Cengage Learning

TABLE 13.1 Web protocols

Category Sample protocols

Formatted and hyperlinked
documents

Hypertext Markup Language (HTML) and Extensible Markup
Language (XML)

File and document transfer File Transfer Protocol (FTP) and Hypertext Transfer Protocol (HTTP)

E-mail and messaging Simple Mail Transfer Protocol (SMTP) and Internet Message Access
Protocol (IMAP)

502

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://averia.unm.edu/default.htm
http://averia.unm.edu/default.htm
http://isthedefaultvalue

The Web began with the development of Hypertext Markup Language (HTML). Orig-
inally, HTML defined a device-independent document-formatting language in which links
to other documents could be embedded. The first Web browser, Mosaic, displayed HTML
documents on any computer and output device to which it was ported. Mosaic spawned
the current generation of Web browsers, such as Mozilla Firefox and Microsoft Internet
Explorer. Both HTML and Web browser software have evolved through several generations
to include capabilities such as forms, style sheets, data transfer from client to server, and
embedded scripts and programs. HTML will eventually be replaced by Extensible Markup
Language (XML), which extends HTML to describe the structure, format, and content of
documents.

Hypertext Transfer Protocol (HTTP) is a companion protocol to HTML and XML that
specifies the language by which clients request documents and how servers respond to
those requests. HTTP is an extension of an older Web protocol, called File Transfer Pro-
tocol (FTP), that specifies a client/server request and response language for copying files
from one Internet host to another. Because HTTP is an extension of FTP, servers that
respond to HTTP requests can also respond to FTP requests. HTTPS is a secure version
of HTTP that encrypts HTTP requests and responses.

With the Telnet protocol, users on one Internet host can interact with the OS
command layer of another host (see Figure 13.15). Telnet emulates a VDT and is limited
to interacting with command-line interfaces, such as Windows Cmd.exe and the UNIX
Bourne shell. Secure Shell (SSH) is an improved version of Telnet that encrypts data
flowing between client and server to address a major security issue in Telnet.

E-mail standards have been part of the Internet since the 1970s. The earliest e-mail
protocol is Simple Mail Transfer Protocol (SMTP), which defines how text messages are
forwarded and routed between Internet hosts. E-mail client programs on each host inter-
act with a server process to access forwarded messages and send messages to users on

TABLE 13.1 Web protocols (continued)

Category Sample protocols

Videoconferencing H.323 and Session Initiation Protocol (SIP)

Executable programs Java, JavaScript, and VBScript

Interprocess
communication

Remote Procedure Call (RPC) and named pipes

Web services Simple Object Access Protocol (SOAP) and Universal Description,
Discovery, and Integration (UDDI)

Instant messaging SIP for Instant Messaging and Presence Leveraging Extensions
(SIMPLE), Instant Messaging and Presence Service (IMPS), and
Extensible Messaging and Presence Protocol (XMPP)

503

The Internet

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

other hosts. SMTP was later extended by the Multipurpose Internet Mail Extensions
(MIME) protocol to allow including nontext files in e-mail messages. MIME is also used
by HTTP and XML.

Today s e-mail server software is based on Post Office Protocol 3 (POP3), Internet
Message Access Protocol 4 (IMAP4), or both. POP3 standardizes the interaction
between e-mail clients and servers so that client and server can run on different
Internet hosts. Under POP3, e-mail messages are held on the server temporarily,
downloaded to the client when a connection is established, and deleted from the server
as soon as the download is finished. IMAP4 extends POP3 to permanently store and
manage e-mail messages on the server, which enables users to access stored e-mail from
any Internet host.

In later HTML versions, program code or scripts can be embedded in HTML docu-
ments. Java applets, described in Chapter 10, can be called from an HTML document with
parameters passed in either direction. Figure 13.16 shows sample HTML code to call a
Java applet named VocabMan.class. The applet is downloaded to a Web browser along with
the surrounding HTML document. Figure 13.17 shows the Web page with the embedded
Java applets displayed as boxes containing asterisks. The Web browser executes the applet
when the cursor is placed over a box, and the applet displays answer text when the mouse
button is clicked.

As described in Chapter 10, scripting languages are slimmed-down programming lan-
guages. JavaScript and VBScript are two widely used scripting languages. Scripts embed-
ded in HTML pages can perform many functions that full-fledged programs can, without

FIGURE 13.15 Telnet connection
Courtesy of Course Technology/Cengage Learning504

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the need for compiling or link editing. Typical functions include data validation and
customizing page layout or content based on Web browser configuration.

Web servers can run programs and scripts on the server in response to requests sent
by clients as a URL. Internet search engines are a common example of this approach. The
Web browser downloads an HTML form in which the user enters search criteria. When

FIGURE 13.16 A Java applet call embedded in HTML
Courtesy of Course Technology/Cengage Learning

FIGURE 13.17 Vocabulary exercise answers displayed or hidden by a Java applet
Courtesy of Course Technology/Cengage Learning

505

The Internet

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the user clicks a Send or Go button, the search criteria (vacation and caribbean, in
this case) are transmitted back to the Web server encoded in a URL, such as this one:

http://www.google.com/search?q=vacation+caribbean&ie=utf-8&oe=utf-8

This URL contains an encoded function call to a search engine program. The text after
the question mark contains input parameters for the search engine program. When the
program has found the requested data, it encodes processing results in HTML, and the
Web server sends them back to the Web browser for display.

The Internet as an Application Platform
Internet and Web technologies are an attractive alternative for implementing distributed
applications. For example, a geographically dispersed computer consulting firm, with doz-
ens of offices and many employees on extended assignment at client locations, uses an
automated payroll system. Employees need to update withholding, insurance, and other
payroll information and enter billable hours. How can all the firm s employees interact
with the payroll system quickly and easily?

One way to address this problem is to build a client/server application that uses a
private network to connect remote clients with servers at the firm s administrative
offices. The client portion of the application is installed on employees laptop
computers, and employees connect to payroll servers via a modem and private phone
number. The disadvantages of this approach include the cost to build and maintain a
private network, the cost to develop full-fledged, self-contained client-side software, and
the difficulties of installing, configuring, and updating client software on many different
computers.

An alternative is building a client/server application that uses a Web browser inter-
face. The application runs on a Web server that can be accessed from any computer with
an Internet connection. Employees can access the payroll server with their own laptop
computers or computers in a client office or hotel business suite.

Figure 13.18 shows the architecture of a typical Web-based three-layer payroll
system. The client interacts with the Web server to download HTML pages that can
include embedded scripts or Java applets. The bulk of the application code resides on
the server, and program functions are called by the Web server in response to client
requests encoded in URLs. The server-side application code interacts with a back-end
database server by using lower-level Internet standards, such as sockets, named pipes,
or RPC. All parts of the application communicate by using standard Internet and Web
protocols. The application can be secured via layered security protocols, such as HTTPS
and Kerberos.

Implementing the application via the Internet expands its accessibility and eliminates
the need to install custom client software on employees laptop computers. The application
can be updated by updating software only on the Web server. It s also cheaper to develop
and deploy because it s built around existing Web standards and relies on Web browser
software already installed on clients.

506

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.google.com/search?q=vacation+caribbean&ie=utf-8&oe=utf-8

Each resource participating in the payroll update application can also participate in
other applications. For example, the database server hardware and software can host mar-
keting and production databases. The Web server can store product manuals and host an
order entry application for customers. The Web browser on an employee s laptop com-
puter can access other Web applications or information resources anywhere on the
Internet.

The primary disadvantages of implementing applications via the Internet are security,
performance, and reliability. If an employee can access the system via the Web, others
might also be able to gain access. System access can be restricted by various means,
including user accounts and passwords, but the risk of a security breach is always present.
Performance and reliability are limited by employees Internet connection points and the
available Internet capacity between these connection points and the application server.
Unreliable or overloaded local Internet connections can render the application unusable.

FIGURE 13.18 A distributed Web-based application
Courtesy of Course Technology/Cengage Learning

507

The Internet

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Although it s possible to implement distributed applications by using Internet stan-
dards such as sockets, named pipes, HTTP, and HTML, this approach isn t optimal for the
following reasons:

With lower-level protocols, server addresses are stored in client configuration
files or source code. If server resources are moved, the clients must be
reconfigured or recompiled.
Breaking up server-side processes into small manageable pieces is difficult.
Each new distributed piece requires a new set of hard-coded connections.
Developers usually create large complex server processes to avoid the
complexity of large numbers of connections between many smaller server
processes. However, doing so reduces the chance that server processes can
be incorporated into multiple distributed applications.

Newer techniques and standards for deploying and supporting distributed applications
address these problems in several ways:

They make it easier to break up large server processes into small reusable
pieces by providing standards for communication between server processes.
They improve flexibility by providing directory services so that processes can
locate one another with location-independent names.
They make it easier to build systems from small reusable processes by
providing the infrastructure to manage large numbers of interprocess
connections.

COMPONENTS AND DISTRIBUTED OBJECTS

A component is a standardized, interchangeable software module with the following
characteristics:

Is executable
Has a unique identifier
Has a well-known interface

Components are ready-to-use software. They re compiled and linked for the OS and
CPU on which they ll run, or they re Java programs that can run in an installed Java
Virtual Machine (JVM).

Every component has a unique identifier (ID), which is a number or symbolic
name. Like Internet names and sockets, component names must be unique. Unique
IDs enable one component to find and request services from another component.
Component IDs must be registered with a directory service that other components
can query.

A component s interface is the set of services it provides or tasks it performs.
Each service or task is similar to a function or subroutine in a program, in that it has
a name and parameters. When one component asks another to perform a task, it
sends it a message containing the task or service name and the required input param-
eters. The component receiving the message performs the task and, if necessary,
returns results.

508

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Component-Based Software
Components are important in software development because complex programs and appli-
cations can be constructed from smaller previously developed parts. Other complex pro-
ducts have been built from components for decades. For example, a car contains tens or
hundreds of thousands of parts, few of which are manufactured by the companies assem-
bling and selling cars. Automobile manufacturers specify standards for components such as
engines, bearings, and tires that can often be used in several models. Other companies
manufacture parts based on these specifications. Without component-based construction,
cars would be more expensive, less reliable, and more difficult to repair and modify.

Component-based design and construction provide similar benefits to complex
software products. For example, grammar-checking in most word-processing programs
can be implemented as a function or subroutine that s called by other parts of the
program. The grammar-checking function s source code is integrated into the rest of the
program s source code during compiling and linking. The executable program is then
delivered to users.

Now consider two possible changes to the grammar-checking function:

The developers of another word-processing program want to incorporate the
grammar-checking function into their product.
The developers of the grammar-checking function modify it to improve speed
and accuracy.

For the first change, the developers integrate the grammar-checking function s source
code into the new word-processing program. They add the necessary grammar-checking
function calls to their program s source code and then compile, link, and distribute this
program to users.

For the second change, the developers deliver the grammar-checking function s source
code to the developers of both word-processing programs. Both development teams inte-
grate the new source code into their programs, recompile and relink the programs, and
deliver a revised program to their users.

What s wrong with the approach? Nothing in theory, but a great deal in practice. The
grammar checker developers can provide their function to other developers only as source
code, which creates potential problems in intellectual property rights and software piracy.
Also, integrating the grammar-checking function is difficult or impossible if the word-
processing program is written in a different programming language from the grammar checker.

When the grammar-checking function is updated, the developers of both word-
processing programs must recompile and relink their entire product to update the embed-
ded grammar checker. The new executable program must then be delivered to users and
installed on their computers an expensive and time-consuming process.

A component-based approach to software design and construction solves all these
problems. Component developers can deliver their product as a ready-to-use executable
function, and developers of word-processing programs simply plug in the component.
Updating a single component doesn t require recompiling, relinking, and redistributing the
entire application. Applications already installed on users machines can be updated by
installing only the new component. This mechanism is the same one many companies use
to update installed software, such as Windows Update and Symantec Live Update for its
antivirus and other security software.

509

Components and Distributed Objects

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Components and Objects
Talking about components without using object-oriented (OO) terminology is difficult.
Components are similar to objects in an OO program because they send and respond to
messages, encapsulate internal data, and interact with other components through a well-
defined interface. OO program design concepts can also be applied to component-based
applications. In essence, component-based design and development scale up OO program-
ming concepts to the level of application programs and entire information systems.

Components are usually developed with OO software development tools and program-
ming languages, but this method isn t required. A component can be implemented with
any programming language, as long as it interacts with other components via messages and
a well-defined public interface. Nonetheless, the majority of components are implemented
with OO tools because they re naturally suited to component development. A component
behaves as a distributed object, regardless of its internal implementation.

Connection Standards and Infrastructure
Interoperability across hardware or software components requires well-defined and widely
adopted standards. For example, consider phone connections and the services provided by
telecommunication companies (see Figure 13.19). In the United States, all phones are
connected to the public telephone grid by a four-conductor wire with an RJ-11 connector.
Each wire in an RJ-11 connector carries a specific electrical signal with known voltage and
other characteristics. This standard ensures that any phone can be connected easily to
any phone interface.

FIGURE 13.19 Standard connectors and infrastructure enable communication between phones
Courtesy of Course Technology/Cengage Learning

510

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Phones rely on basic services supplied by the public telephone infrastructure. A
unique phone number identifies every phone or set of phones. The infrastructure provides
connection services between phones as well as directory services to match numbers to
people, organizations, and physical locations. Switching and routing are handled by the
infrastructure with no specific instructions from sending and receiving phones. Additional
services, such as forwarding and voicemail, can also be provided. The standards that
enable any phone to access any other phone or service have been developed over many
years through industry cooperation and occasional governmental intervention.

Software components require similar standards for connections and services. They
need the software equivalent of an RJ-11 plug and an infrastructure that provides direc-
tory, routing, and forwarding services. In a single computer, OS interprocess communica-
tion services can connect components, and configuration files can supply directory
information.

Connecting components located on different machines running different OSs requires
a standard network protocol, even when all components execute on the same machine
because it provides the flexibility needed to distribute components in the future. Standard
Internet services and protocols, such as TCP/IP and sockets, provide part of a component
connection solution, but they don t address two important issues:

Format and content of valid messages and responses
Means of uniquely identifying each component on the Internet and routing
messages to and from that component

Addressing these issues requires additional standards, protocols, and services. Many
organizations have participated in developing these standards over the past two decades.
Currently, four standard families are well developed and widely implemented: CORBA,
COM+, SOAP, and Java EE, discussed in the following sections.

CORBA

In the 1980s, many computer hardware and software organizations joined forces to create
an industry-wide component interoperability standard known as the Common Object
Request Broker Architecture (CORBA). CORBA specifies the middleware objects use to
interact across networks and has these two key components:

Object Request Broker (ORB), a service that maintains a component direc-
tory and routes messages between components
Internet Inter-ORB Protocol (IIOP), a component message-passing protocol

ORB is a server process that can reside anywhere on a network or be distributed
across many network nodes. It acts as a component registry, a message router, and a
translator. Components must register themselves with ORB before other components can
connect to them. ORB assigns a unique identifier to each registered component, so that
component s methods can be invoked by other components anywhere on the Internet.

A component that wants to invoke a method in another component sends an IIOP-
formatted request to the nearest ORB. ORBs cooperate with one another to locate the
component and establish a connection. After a connection has been established, param-
eters can be passed in both directions. If necessary, ORB can translate parameters from

511

Components and Distributed Objects

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

one format to another, which enables incompatible objects, such as those developed with
different languages or running on incompatible CPUs, to exchange data.

The CORBA standard is robust, inherently scalable, and independent of programming
language, OS, and CPU architecture. These features are the result of deliberate design, a
long development history, and participation by many computing vendors and organiza-
tions. The standard is implemented widely, with support from the Open Group and major
computer and software vendors, such as IBM, Hewlett-Packard, and Oracle.

COM+

Component Object Model Plus (COM+), a Microsoft specification for component interop-
erability, has its roots in older Microsoft specifications, including Object Linking and
Embedding (OLE) and the Component Object Model (COM). In the early and mid-1990s,
Microsoft incorporated DCE services into COM and called the resulting specification the
Distributed Component Object Model (DCOM). COM+ is the most recent upgrade of this
standard.

Like CORBA, COM+ defines component registration, message-routing services, and a
component communication protocol. COM+ services and protocol are similar to CORBA,
with the following key differences:

Components aren t assigned a permanent identifier, and their internal states
can t be stored permanently. COM+ components can t remember information
from one invocation to the next. COM+ components are similar to functions
or subroutines, and CORBA components are objects.
COM+ components are registered in the Windows Registry of the client
machine on which they re installed. The Windows Registry stores information
other than component registrations, including hardware configuration, soft-
ware configuration, and user profile information. A CORBA ORB is dedicated
to component services.

COM+ is widely used. Most developers of general-purpose application software, such
as word-processing and spreadsheet programs, use COM+.

SOAP

Both CORBA and COM+ have some major disadvantages for building distributed
component-based software. For CORBA, the main problem is complexity. CORBA infra-
structure requirements are substantial, and the programming constructs needed to access
these services are complex. This complexity has made companies reluctant to invest
heavily in the technology and created a shortage of skilled CORBA-trained personnel.

For COM+, the main problem is dependence on proprietary technology and limited
support outside of Microsoft products. A commitment to COM+ entails a commitment to
Microsoft OSs and other system software. Although Microsoft dominates the desktop OS
market, most organizations have a diverse collection of server OSs and software. Also, few
non-Microsoft development tools support COM+.

Simple Object Access Protocol (SOAP) is an open standard, developed by the World
Wide Web Consortium (W3C; www.w3.org), for distributed object interaction that
attempts to address the shortcomings of both CORBA and COM+. Unlike CORBA, SOAP
has few infrastructure requirements, and its programming interface is simpler. Perhaps the

512

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.w3.org

best evidence of SOAP s long-term potential for success is that Microsoft adopted it as the
basis of its .NET distributed software platform.

A key to SOAP s simplicity and minimal infrastructure requirements are its reliance
on existing Internet protocols HTTP and XML. Messages between objects are encoded in
XML and transmitted by using HTTP, which enables the objects to be located anywhere on
the Internet. Figure 13.20 shows a client sending a service request to a server as a SOAP
message. The same transmission method supports server-to-client and peer-to-peer com-
munication. The SOAP encoder/decoder and HTTP connection manager are standard
components of a SOAP programmer s toolkit. Applications can also be embedded scripts
that use a Web server to provide SOAP message-passing services. SOAP messages can be
transmitted by using other protocols, such as FTP and SMTP, but HTTP is the most
common transmission protocol.

Although SOAP has been widely deployed for many types of distributed applications,
it has some major limitations. Early SOAP versions left many implementation specifics
undefined, thus creating problems of interoperability. SOAP 1.2 filled many gaps in earlier
standards but is still an incomplete solution. Building and deploying industrial-strength
SOAP-based distributed applications isn t as simple as it might seem because developers
must use additional protocols to address issues such as security and message delivery
guarantees. Nonetheless, SOAP has been a popular basis for distributed applications for

FIGURE 13.20 Client/server communication with a SOAP message
Courtesy of Course Technology/Cengage Learning

513

Components and Distributed Objects

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the past decade because it filled a largely unmet need for a powerful yet easy-to-use
approach to distributed applications. Recent protocols, such as Java RESTful Web
services, will probably supplant SOAP gradually because they re more complete
standards and support newer and more powerful Web application architectures.

T E C H N O L O G Y F O C U S

Java Platform, Enterprise Edition

Java Platform, Enterprise Edition (Java EE) is a family of standards for developing and
deploying component-based distributed applications written in Java. Figure 13.21 shows
key elements of the Java EE architecture, which follows the three-layer architecture
described earlier. The client tier can include Java components and Web browsers dis-
playing HTML pages with embedded scripts. Browser-based client interfaces are some-
times called thin clients because they contain little or no program code. Thick
clients are collections of complete Java objects that run under the control of a Java Vir-
tual Machine (described in Chapter 10) and communicate directly with corresponding
components in the Web/business tier.

In the Web/business tier, components can be JavaServer Pages (JSP); servlets,
which run under the control of a Web server; and Enterprise JavaBeans (EJBs), which
run in a system software component called a business container. JSP are components
that generate formatted Web pages by using embedded scripts. Servlets are full-fledged

FIGURE 13.21 Java EE architecture
Courtesy of Course Technology/Cengage Learning

(continued)

514

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Java programs that can perform more complex operations, including computations and
interactions with other EJBs and databases. JSP and servlets communicate with the cli-
ent tier by using HTML or XML messages. The latest Java EE standard includes support
for JavaServer Faces (JSF), which enable developers to create user interfaces that run
on a server but interact with a client Web browser or component.

EJBs are Java programs that perform complex, behind-the-scenes processing. For
example, an EJB might implement a distributed object with object attributes stored in
the database, perform a complex query against multiple tables in multiple databases, or
manage a complex customer order with related financial, inventory, and shipping trans-
actions. EJBs provide services that can be called by components running on the client
or on a Web server or by other EJBs.

Component interactions are based on many standards, including the following:

Remote Method Invocation (RMI) Enables objects executing on different
computers to send messages and receive responses
Java Naming and Directory Interface (JNDI) Enables objects executing on
different machines to locate one another and query their available methods
Java Authentication and Authorization Service (JAAS) Authenticates users
and restricts access to components
Java Database Connectivity (JDBC) Enables objects to interact with
relational databases by using SQL statements

Developing and deploying Java EE applications is a complex endeavor because of the
elaborate architecture, the number of related standards, and the number of required
system software elements. Many vendors, including IBM and Oracle, offer development
packages and system software suites to support Java EE applications. Developers typi-
cally require months of training to learn the intricacies of the tools and system software.

Java EE application portability is enhanced by a common programming language
(Java) and well-defined standards for describing and storing components and system
software configuration information in Java source code and XML files. The files have
standard internal formats and naming conventions and are placed in a standardized
directory structure. This standardization enables developers to move all or part of a Java
EE application from one computer or system software suite to another simply by copying
the corresponding files and restarting the supporting system software services.

The earliest version of Java EE was developed after CORBA and COM+ but before
SOAP. Java EE is incompatible with COM+ and, in its original form, with CORBA, too.
However, subsequent revisions to Java EE and CORBA have brought them closer
together. The current RMI standard enables CORBA components and Java EE EJBs to
interact by using the CORBA IIOP standard. Java components can be defined with the
CORBA interface definition language and registered with a CORBA ORB. Java EE also
includes limited interoperability with SOAP, which is expected to expand in future Java
EE standards.

Java EE has been used widely in enterprise-level information systems. Although its
complexity rivals CORBA, it has been more successful, mainly because of support from
Sun Microsystems and Oracle, which merged in 2009. The battle for the future of dis-
tributed systems seems to have narrowed to Java EE and Microsoft .NET. Microsoft .NET
had the advantages of an early adoption of Web services standards, including SOAP, and
its considerable resources and market presence. However, Java EE has a well-established
reputation as a platform for reliable and scalable industrial-strength Web applications
and a strong support base from many vendors and software developers.

515

Components and Distributed Objects

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

EMERGING DISTRIBUTION MODELS

The previous section describes distributed computing in terms of distributed components
and objects a fine-grained view of distributed software that concentrates on how small
parts of an application program can be distributed across a network yet cooperate to per-
form a larger function. A new class of distribution architectures emerged in the 2000s
based on a more coarse-grained view of distribution. These distribution architectures deal
with larger units of software and the hardware hosting them and address how to distribute
entire information systems and deploy them rapidly and flexibly.

By the 2000s, nearly all medium and large businesses had built or purchased infor-
mation systems to streamline nearly every aspect of the business. Ubiquitous high-speed
Internet connections enabled interconnecting these systems with customer and supplier
information systems, a setup sometimes described as business-to-business (B2B). Soft-
ware support for business functions grew more complex, as did the supporting computing
and network infrastructure. Managing applications and infrastructure became an
increasingly complex task requiring a larger share of organizational resources.

At the same time, higher levels of automation were a barrier to starting new ventures.
A small startup company or a larger organization entering a new business area could pur-
chase needed application software, but how could they quickly acquire, assemble, and
manage the infrastructure supporting the software? Where could they find the required
investment capital and technical expertise to do so? In effect, the increasing complexity of
information systems and supporting infrastructure had become a barrier to entry in many
industries.

This problem of a barrier to entry has many historical precedents. For example, in
the late 1800s and early 1900s, there was no electrical power grid, yet electricity enabled
a new generation of manufacturing techniques in many industries that speeded produc-
tion, reduced costs, and increased profits. Larger factories could afford to build their own
electricity-generating stations to power production machinery. Smaller factories couldn t
afford the needed infrastructure and, therefore, were in danger of being left behind in this
chapter of the Industrial Revolution. In the end, the problem was solved by developing
local, regional, and then national power grids. Electricity became a commodity that could
be purchased by anyone willing to be hooked to the grid.

In many ways, computing in the late 20th century is similar to the U.S. electrical grid
of the late 19th century. Electricity-generating stations and large computing centers
existed but were just beginning to be connected. Standards were the exception rather
than the norm, and there were substantial gaps in connectivity and compatibility. As with
electricity, a decade or two changed the landscape. By the mid-2000s, vast computing
power was available from large and small providers over a national and international
grid the Internet.

The dissimilarity lies in what can be delivered over that grid. Electrical power is a
simple, uniform commodity delivered in only one direction. In contrast, the Internet
enables bidirectional delivery of a bewildering array of computing, software, and informa-
tion services. Customers can purchase access to components, application software, or
entire information systems, or they can rent platforms and infrastructure on which to
install their own software and services. Standardization and compatibility are more
complex in this diverse arena.

516

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The term cloud computing has been coined to summarize new approaches to distrib-
uting and accessing software and hardware services across the Internet. The term is
appropriate in many ways. It embodies a physical reality assumed to exist and work but
about which few details are known. For years, network engineers have drawn diagrams
with clouds representing parts of the network over which they have no control (for exam-
ple, the Internet as a whole or a network purchased from a large telecommunications
provider). In these diagrams, a cloud describes something that can be seen from the out-
side but not from the inside. The term cloud also embodies the concepts of change and
size: The Internet and cloud computing change shape and can grow over time. Three
current distribution modes that fit in the cloud computing paradigm, summarized in
Figure 13.22, are described in the following sections.

Software as a Service
As described earlier, operating systems and some application software are constructed as a
set of services that can be accessed by both internal and external users and software
components. In the 1990s, the term service-oriented architecture (SOA) was coined to
describe this design philosophy, partly reflecting the growing dominance of client/server
architecture. As Internet connections became more common and Web browser technology
matured, most application software was constructed with the view layer implemented as a
Web page that accessed a collection of interconnected back-end services housed on
organizational servers.

During this same era, companies such as Yahoo! and Google emerged as leaders in
providing services to both businesses and end users via Web browsers. Internet search
engines and e-mail applications were the earliest examples of widely used Web-based
services, but they were soon followed by many others in application areas such as mapping
(Google Maps), social networking (MySpace and Facebook), and communication (Skype).

Software as a service (SaaS) is a Web-based architectural approach in which users
interact via a Web browser or other Web-enabled view layer with application software
provided by a third party. Instead of installing application software on locally owned and
administered computers, application software is installed on computers owned by a soft-
ware provider, and the user accesses this software over the Internet. It s a straightforward
extension of SOA in which services are defined in large chunks, and the resources provid-
ing services are no longer local.

Application
software

Software
as a service

Platform
as a service

Infrastructure
as a service

System
software

Computer
hardware

Vendor-
supplied

Vendor-
supplied

Vendor-
supplied

User-
supplied

Vendor-
supplied

Vendor-
supplied

User-
supplied

User-
supplied

Vendor-
supplied

FIGURE 13.22 Cloud distribution models
Courtesy of Course Technology/Cengage Learning

517

Emerging Distribution Models

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

From a business perspective, SaaS offers benefits by eliminating the need to purchase
and maintain application software, system software, and supporting hardware. A third
party can provide an entire information system, and the user organization essentially rents
access to it. The only local resources required to implement this architecture are desktop
or other computers with a Web browser or another interface and an Internet connection.
The user organization no longer needs racks of servers and associated system software and
support personnel. If an organization follows SaaS for all its application software, it has
essentially outsourced many formerly internal IT functions. From the systems operations
and maintenance perspective, all that remains is management of desktop and other end-
user computing devices, the local network, and Internet connections.

SaaS also has substantial benefits from a consumer perspective. Consumers are freed
from the need to purchase, maintain, and upgrade application software, such as office
suites. The service provider maintains the application, upgrades it as needed, and supplies
the hardware and labor resources to operate and maintain the software. Users no longer
purchase software or upgrades; they rent access per time period or per metered use. User
computing devices can be simpler and cheaper because application software no longer
resides on them.

To use SaaS successfully, customers need reliable high-capacity Internet connections.
If the connection isn t reliable, users might not have access to software and other
resources when needed. Simple applications, such as word processing and e-mail, can be
supported with ordinary Internet connections. However, data- and graphics-intensive
applications, such as online game playing and video editing, require high-capacity Internet
connections.

Platform as a Service
Some organizations aren t willing to embrace SaaS fully. Reasons vary but include con-
cerns over ownership and privacy of data, use of custom-developed application software
that provides a competitive advantage, and concerns about locking up important IT
resources with a single vendor.

Platform as a service (PaaS) describes an architectural approach in which an organi-
zation rents access to system software and hardware on which it installs its own applica-
tion software and other services. The simplest example is a hosted Web site. Typically, the
user organization develops Web content on a desktop computer or an inexpensive local
test server. After the content is developed, it s uploaded to a platform provider that places
the site on its own servers and makes it accessible to the intended users. The customer
retains ownership of the content and applications and can move them to another platform
or service provider if needed. More complex PaaS examples range from Web-based appli-
cations, such as e-commerce sites, to entire information systems supporting all facets of an
organization s operations.

From the customer/user s perspective, the main advantage of PaaS is avoiding the
need to operate its own servers and system software. In the hosted Web site example, the
customer bypasses the need to purchase and maintain the server, its OS, the Web server
software, and any supporting software and hardware, such as firewalls. The customer also
gains the flexibility to scale the Web site up or down in size rapidly. If the Web site is
inundated with accesses, for example, the customer can simply rent a more powerful

518

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

platform. For complex application software, the customer avoids the cost of purchasing,
maintaining, and supporting related system software, such as component directories,
object brokers, and DBMSs.

Infrastructure as a Service
Infrastructure as a service (IaaS) is similar in many ways to PaaS, but the service provider
supplies little or no system software. Hardware virtualization is a key supporting tech-
nology in IaaS because it enables a customer/user to configure application and system
software for a generic platform as virtual servers and then deploy these servers to a third-
party hosting site. The customer is responsible for purchasing and configuring most or
all software components, including application, system, and database software, and
encapsulating them in virtual servers that are compatible with the hosting infrastructure.

IaaS can also be structured for only part of an application s infrastructure require-
ments. For example, companies such as Amazon and Google provide back-end data stor-
age services that customers can use to extend locally owned data storage infrastructure.
Similarly, many companies provide access to large-scale computing infrastructure that can
be used for complex simulations in marketing research, engineering analysis, and other
areas.

Although an IaaS customer organization avoids fewer internal costs than it would with
SaaS or PaaS, it retains the advantage of being able to respond rapidly to changing
demands by scaling capacity up or replicating capacity to new geographic locations. With
virtualization, capacity can be increased by upsizing or cloning virtual servers. In special-
ized cases, such as storage and computation, additional capacity can be purchased as
needed.

Risks
SaaS, PaaS, and IaaS share common vendor-related risks. First, vendor reliability is a
critical issue. For all three, internal and external functions become dependent on vendor-
provided resources. Most organizations can t tolerate major interruptions in system
availability, so the reliability and availability of vendor-supplied services must be
guaranteed to whatever level the customer requires.

Second, vendor lock-in is a risk, although its level varies across architectures, as
shown in Figure 13.23, and with additional specifics. With vendor lock-in, a customer is
forced to continue using a vendor because of high cost or other difficulties in switching. In
cloud architectures, vendor lock-in arises from lack of compatibility between vendors,
making it difficult to move customer-owned resources from one vendor to another. Vendor
lock-in isn t a recent phenomenon. It has been a risk through most of computing history
and has occurred in hardware platforms, system software, and application software,
usually when standards are lacking or just emerging, as with cloud computing.

With cloud architectures, the risk of vendor lock-in rises with the number of hardware
and software components the vendor provides. The risk is lower with IaaS because most
vendors use similar virtualization environments, which enables customers to move virtual
servers between vendors easily.

519

Emerging Distribution Models

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Lock-in risk rises with PaaS because the vendor provides system software components
in addition to hardware. The precise risk level depends on the system software compo-
nents and the extent to which these components follow widely implemented standards.
For example, if a vendor s platform includes Linux and other system software components
covered by the GNU public license, customers can move their application software to
other vendors with few problems. In contrast, if a vendor uses proprietary system software
(for example, Google s BigTable), customers who want to change vendors must reimple-
ment portions of their application software that use the proprietary components.

The highest lock-in risk occurs with SaaS because the vendor controls all key compo-
nents of the customer s information system. Customers usually negotiate contract terms to
reduce the risk, including the right to export data from the system in standardized formats
and long-term pricing and support agreements.

Other cloud-related risks include service availability, data security and privacy, and
legal ownership of stored data. Most cloud vendors guarantee minimum levels of availabil-
ity via service-level agreements with financial and other penalties for failure to meet the
agreements. However, it s up to each user organization to determine the full impact
financial and otherwise of a major service outage, such as lost productivity, lost sales,
dissatisfied customers, and damage to its reputation. Although these issues concern many
managers considering the use of cloud services, they should be just as concerned about
them when evaluating the reliability of internal IT services.

Security, privacy, and legal ownership of data are thorny issues in a rapidly shifting
legal landscape. Some industries, such as health care, have a legal and regulatory obliga-
tion to secure data at rest and in transit and to protect this data from unauthorized use.
For many other industries, ensuring data security and privacy is simply good business
practice; rapidly changing legislation at all levels of government has increased organiza-
tions obligations in these areas with heavy penalties and legal liability for noncompliance.
Meeting these obligations is simpler when most data traverses internal networks, but with

High

Vendor
lock-in

risk

Low
IaaS PaaS SaaS

FIGURE 13.23 Vendor lock-in risk is lowest for IaaS and highest for SaaS
Courtesy of Course Technology/Cengage Learning

520

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

cloud computing, most or all data traverses public networks, which are more difficult to
protect. However, as with service-level agreements, many internal networks are less secure
than managers assume.

B U S I N E S S F O C U S

Moving Office Applications into the Cloud

Many businesses, large and small, have moved some or all of their office applications into
the cloud, and more are considering doing so. Although there are many vendors of cloud
computing services, Google stands out as a leader in the market, offering services that
cross all three cloud distribution models.

As of mid-2010, Google claims more than two million business customers. Google
Apps is perhaps the best-known SaaS offering because it s used by both businesses and
home users. It includes the following:

Gmail for business Combines traditional e-mail, voicemail, chat, and instant
messaging into a single application and interacts with cell phones and other
mobile devices
Google Calendar Individual, group, and project-based calendaring; tightly
integrated with Gmail
Google Docs Documents, spreadsheet, and presentation graphics integrated
into a single Web-based suite
Google Sites Web page and Web site creation; intended mainly for document
distribution and workgroup coordination
Google Video Video sharing for a variety of uses, including marketing, train-
ing, and recruiting

The Google Apps suite competes with traditional software products from companies
such as Microsoft, Lotus, Corel, and OpenOffice.org. Microsoft, in particular, has been
feeling pressure because Google Apps competes against some of its most profitable soft-
ware products, such as the following:

Microsoft Office Competes with the combination of Gmail for business, Goo-
gle Calendar, and Google Docs. Office is considered to have more features than
Google Apps and typically has better performance for many tasks, especially
graphics-intensive tasks, such as image editing.
Microsoft Exchange Competes with Gmail. Microsoft Exchange is a back-
office e-mail, messaging, and calendaring server that provides support services
for Microsoft Office in many medium and large organizations.
Microsoft SharePoint Competes with Google Sites. Enables users to develop
Web sites for document distribution and workgroup coordination.

The Microsoft Office suite is typically installed on desktop computers. However, in
an organizational setting, it derives much of its power from Microsoft Exchange and
SharePoint running on servers. Organizations using all three products often have
substantial investments in server hardware, supporting OSs, and related software and

(continued)

521

Emerging Distribution Models

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

provide extensive in-house support for users. Capital costs for servers and related hard-
ware are high, as are annual operating expenses for software licenses and IT staff.

In contrast, organizations using Google Apps can avoid application-related invest-
ments in server hardware and high annual operating expenses. Instead, organizations pay
an annual per-user license fee to Google, and employees can use applications anytime,
anywhere. Using Google Apps does require a reliable, high-speed network with high-
capacity Internet connections. However, building and supporting this type of network is
generally less complex and costly than providing the supporting infrastructure and
technical support for locally installed software.

Compare the combination of Microsoft Office, Exchange, and SharePoint with the
Google Apps suite for the following business settings (the same ones used in the Chapter
11 Business Focus):

A small electrical supply wholesaler with 25 employees, 15 user workstations,
and an application and services suite that includes basic accounting and
inventory control functions, file and printer sharing, and a small Web site
not used for e-commerce
An engineering design and consulting partnership with 25 employees, 15 user
workstations, and a mix of applications and services, including basic account-
ing functions, bid preparation, CAD and drafting, construction management,
file and printer sharing, and a small Web site not used for e-commerce
A large catalog seller of musical equipment with hundreds of employees; three
warehouses in New Jersey, St. Louis, and Portland; and a mix of applications
and services, including all accounting functions, catalog preparation and dis-
tribution, phone and Web-based sales, and inventory control and logistics

In your comparison, be sure to pay careful attention to the following issues:

Differences in application capability and performance and their importance
(or lack of importance) to users in each business setting
Cost of desktop and portable computing devices (locally installed applications
require more powerful computers)
Cost of server and network hardware
Annual software licensing costs for applications, supporting software (such as
Exchange), and operating systems
Annual costs of IT support personnel

522

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

Information systems are typically distributed across many computer systems and geo-
graphic locations. Client/server, three-layer, and n-layer architecture define frameworks for
dividing applications into multiple layers that can execute on different computers. Multilayer
architectures require standard methods and services to communicate with one another.
System software that implements communication standards and gives clients and servers
the capability to interact is called middleware.

A network protocol enables users and applications to interact with resources and applica-
tions on remote computers. The OS service layer accepts resource access requests and
routes them to remote or local service processes. Local requests to remote resources are
routed through the protocol stack to external servers, and remote requests to access local
resources are received through the protocol stack. Connections to remote resources can be
static or dynamic. Dynamic connections are more flexible but require a distributed registry
of resource names and locations.

With directory services, users, resources, and components can find one another on the
Internet. Directory services must span the range of resource types and Internet protocols.
LDAP is a widely used directory service standard that can track users, distributed
resources, and objects. Although it defines a standard method for defining and accessing
directory structure, it doesn t define standard content templates, which limits interoperability
between different LDAP directories.

Distributed processes must communicate with one another to exchange data and synchro-
nize their activities. P2P interprocess communication protocols include sockets, named
pipes, RPC, and DCE. Sockets implement direct process-to-process communication via
protocol stacks. Named pipes enable multiple clients to interact with a single server via a
shared file system object. RPC allows one process to execute another as a subroutine with
parameter passing and format translation. DCE combines all these approaches and adds
security and minimal directory services.

The Internet is a global network based on TCP/IP and many other protocols. The
Web is the set of resources accessible over the Internet via standard protocols. Internet
protocols define methods for sharing many types of resources, including files,
documents, and applications. Multitiered applications can be implemented over the
Internet by using a Web browser for the user interface and Internet and Web protocols
to connect the layers.

Component-based applications are divided into many different cooperating processes or
distributed objects. Each distributed object implements a public interface to the services
it provides. Component-based applications require protocols and infrastructure for compo-
nent registration, discovery, and communication. CORBA, COM+, Java EE, and SOAP
are standards that address the full range of component infrastructure and communication
services.

Cloud computing is an increasingly attractive alternative to managing an entire suite of
hardware, system software, and application software internally. Cloud distribution models
include software as a service, infrastructure as a service, and platform as a service. SaaS
moves application software and all supporting layers into the cloud. PaaS enables users to

523

Summary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

install and run their own applications on vendor-supplied hardware and system software.
IaaS provides distributed access to vendor-owned hardware with user-owned system and
application software. Cloud computing models share varying levels of vendor lock-in,
security, and data ownership risks.

Key Terms

access control list (ACL)

Active Directory

business logic layer

business-to-business (B2B)

client

client/server architecture

cloud computing

Common Object Request Broker Architecture
(CORBA)

component

Component Object Model Plus (COM+)

data layer

directory services

distributed computing

Distributed Computing Environment (DCE)

distributed processing

Domain Name System (DNS)

dynamic connections

Enterprise JavaBeans (EJBs)

Extensible Markup Language (XML)

File Transfer Protocol (FTP)

HTTPS

Hypertext Markup Language (HTML)

Hypertext Transfer Protocol (HTTP)

infrastructure as a service (IaaS)

Internet

Internet Inter-ORB Protocol (IIOP)

Internet Message Access Protocol 4 (IMAP4)

intranet

Java Platform, Enterprise Edition (Java EE)

JavaServer Faces (JSF)

JavaServer Pages (JSP)

Kerberos

Lightweight Directory Access Protocol (LDAP)

location transparency

middleware

Multipurpose Internet Mail Extensions (MIME)

n-layer architectures

n-tier architectures

named pipe

network transparency

Object Request Broker (ORB)

objectclass

peer-to-peer (P2P) architecture

pipe

platform as a service (PaaS)

Post Office Protocol 3 (POP3)

protocol stack

Remote Procedure Call (RPC)

resource registry

Secure Shell (SSH)

service-oriented architecture (SOA)

Simple Mail Transfer Protocol (SMTP)

Simple Object Access Protocol (SOAP)

software as a service (SaaS)

static connection

Telnet

three-layer architecture

three-tier architecture

Uniform Resource Locator (URL)

view layer

World Wide Web (WWW)

524

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Vocabulary Exercises

1. architecture divides an application into multiple processes, some of which send
requests, some of which respond to requests, and others that do both.

2. System software that connects parts of a distributed application or enables users to locate
and interact with remote resources is called .

3. A(n) is a process that sends a request. A(n) is a process that responds
to requests.

4. A server process creates a(n) that allows clients to send data or messages
via a shared filename.

5. With the protocol, a process on one machine can call a process on another
machine as a subroutine with parameters passed in either or both directions.

6. Three-layer architecture divides an application into , , and
layers.

7. A(n) to a remote resource must be initialized by the user or a system
administrator.

8. is the original Internet e-mail standard. More recent e-mail standards
include and .

9. The is a global collection of networks that are interconnected with TCP/IP.

10. Web pages are encoded in and delivered from a Web server to a Web browser via .

11. The standard defines methods for embedding graphics and other nontext data in
e-mail messages and Web pages.

12. The is a collection of resources that can be accessed over the Internet by
standard protocols, such as FTP and HTTP.

13. is a family of component infrastructure and interoperability standards supported by
Microsoft.

14. defines a standard for describing and accessing directories of users and
distributed resources.

15. A(n) contains a protocol, an Internet host, an optional socket, and a resource
path.

16. is a wide-ranging standard covering network directory services, file sharing
services, RPC, remote thread execution, system security, and distributed resource
management.

17. With the protocol, a client can interact with a remote computer s command layer
as though it were a directly connected VDT.

18. A(n) is a standardized, interchangeable, and executable software module that has
a unique identifier and a well-known interface.

19. is a family of component infrastructure and interoperability standards supported by
a broad consortium of computer companies.

20. The set of software layers for implementing network I/O and services is called a(n) .

525

Vocabulary Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21. Web/business tier components of the Java EE distributed application architecture
include , , and .

22. is a secure version of HTTP that encrypts HTTP requests and responses.

23. is an improved version of Telnet that encrypts data flowing between client and
server.

24. A(n) is a shared memory region that enables multiple processes executing on the
same machine to exchange messages.

25. describes a cloud computing model in which users install their own applications
on vendor-supplied hardware with vendor-supplied system software.

26. describes a cloud computing model in which users access vendor-owned
software, running on vendor-owned hardware and system software, via the Internet.

Review Questions

1. Describe client/server, three-layer, and n-layer architecture. What are the differences
between a client and a server? What is the function of each layer in a three-layer
application? Why might more than three layers be used?

2. What is middleware?

3. What is a protocol stack? What are the components of a typical protocol in a client
computer that can access many Web servers?

4. What are the differences between static and dynamic connections to remote resources?
Which connection type requires a resource registry? Where should the resource registry be
located?

5. An OS acts as both client and server. How are software components organized to perform
both functions at the same time?

6. Describe three low-level P2P interprocess communication standards. What are the advan-
tages and disadvantages of using these standards to implement distributed multilayer
applications?

7. Do the terms Internet and Web describe the same thing?

8. What are the components of a URL?

9. Describe at least five standard Internet and Web protocols.

10. How can the Internet be used as a platform to implement distributed multilayer applica-
tions? Which Internet and Web protocols are used, and how are they used?

11. What is a component? Component-based design and development have been the norm in
manufacturing durable goods for decades. Why has this approach only recently been
adopted for designing and deploying information systems?

12. Describe the COM+ and CORBA standards for component infrastructure and communica-
tion. Which standard would you choose to support a new large-scale information system?
Why?

13. What are directory services? What types of information might be made available through
directory services? Describe the LDAP standard.

526

Chapter 13

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. Describe the components of the Java EE architecture. What standards govern the form of
the client and Web/business tiers? What standards govern communication between
components? Is Java EE compatible with other distributed application standards?

15. Describe the role of DNS in enabling dynamic connections. Could DNS function with a fully
centralized directory server architecture? Why or why not?

16. Briefly describe the three most common approaches to cloud computing, and compare the
risk levels and potential economic benefits of each approach.

Research Problems

1. The Kerberos security model is a part of both the DCE and CORBA standard families.
Investigate the capabilities and limitations of Kerberos. What degree of security does it pro-
vide? What infrastructure components are needed to use it? Does it address all security
issues in distributed applications and resources?

2. The CORBA (www.corba.org), Java EE (http://java.sun.com), and SOAP (www.w3.org)
standards are evolving rapidly. Visit these Web sites, and determine what features have
been added by recent standard revisions. What needs are these new features intended to
satisfy? Are they being implemented widely? Why or why not?

3. Distributed.net (www.distributed.net) is an organization that coordinates research on dis-
tributed computing applications. People and organizations can join Distributed.net and con-
tribute idle computing power to ongoing research projects that require or use massively
parallel approaches to solving complex computational problems. Investigate some current
projects and the methods and protocols that coordinate software on members computers.

4. Although Google is the clear market leader in cloud computing services, it does have
competitors. Identify one or two competitors in each cloud market segment SaaS, PaaS,
and IaaS and compare their services with Google s. In which market segment is Google
most dominant? In which is it least dominant?

527

Research Problems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.corba.org
http://java.sun.com
http://www.w3.org
http://www.distributed.net

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C H A P T E R14
SYSTEM ADMINISTRATION

C H A P T E R G O A L S

Describe system administration responsibilities and tasks

Explain the process of acquiring computer hardware and system
software

Describe tools and processes for evaluating application resource
requirements and computer system performance

Summarize measures for ensuring system security

Describe physical environment factors affecting computer hardware

In previous chapters, you have explored the inner workings of computer hardware and system

software. In this chapter, you take a step back from bits, bytes, and instructions to examine hardware

and software from a system administrator s point of view. A system administrator s job includes many

varied tasks, and describing them in detail could fill an entire book. This chapter concentrates on

tasks requiring in-depth knowledge of the topics covered in previous chapters (see Figure 14.1).

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

SYSTEM ADMINISTRATION

In the context of information systems, system administration covers a range of activities
and responsibilities. The main responsibility is to ensure efficient and reliable delivery of
information services. A typical information system (IS) administrator performs many tasks
to meet this responsibility, which can be grouped into the following broad categories:

Acquiring new IS resources
Maintaining existing IS resources
Developing and implementing an IS security policy

The assignment of these responsibilities to specific people varies considerably across
organizations. In small organizations, the user or organizational administrator might
assume these responsibilities. In large organizations, these responsibilities might be
divided among many people. Medium-size organizations might have a single technical
specialist who handles all system administration responsibilities.

Each activity area entails a variety of system administration tasks. Some tasks are
straightforward and take only a short time, such as maintaining user accounts and

FIGURE 14.1 Topics covered in this chapter
Courtesy of Course Technology/Cengage Learning

530

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

performing file system backups. Other tasks require many different skills and take longer,
such as strategic planning and resource acquisition.

Strategic Planning
IS resource acquisition and deployment should occur only in the context of a well-defined
strategic plan for the organization as a whole. For the purposes of this chapter, a strategic
plan is defined as a set of long-range goals and a plan to attain these goals. The planning
horizon is typically three years and beyond. At a minimum, goals must include the following:

Services to be provided
Resources needed to provide these services

The strategic plan addresses the following issues related to achieving stated goals:

Strategies for developing services and markets for them
Strategies for acquiring enough resources for operations and growth
Organizational structure and control

In all cases, strategic plans must address the basic question How do we get there
from here? An information system is only one part of an organization, and an IS strategic
plan is only part of an organization s overall strategic plan. An IS strategic plan must be
evaluated with plans of other organizational units. Information systems are normally a
support service for other organizational units and functions, such as customer services,
accounting, and manufacturing. Therefore, an IS strategic plan tends to follow, rather
than lead, the strategic plans of other units in the organization.

Hardware and Software as Infrastructure
The resources devoted to most organizational activities can be classified into two categories:
capital expenditures and operating expenditures. Capital expenditures purchase capital
resources, which are assets or resources expected to provide benefits beyond the current
fiscal year. Operating expenditures provide benefits only in the current fiscal year.

Typical capital expenditures include buildings, land, equipment, and research and
development costs. Typical operating expenditures include salaries, rent, lease payments,
supplies, and equipment maintenance. Computer and software purchases are capital
expenditures, even though the expected useful lifetime of computer hardware and software
has decreased in recent years because of rapid technological change.

Many capital resources provide benefits to a wide range of organizational units and
functions. An office building, for example, benefits all the units and functions housed in it.
These resources are referred to as infrastructure and have the following characteristics:

Service to a large and diverse group of users
Costs that are difficult to allocate to users separately
Recurring need for new capital expenditures
High maintenance costs

The computer hardware and system software that provide IS services are infrastructure.
This statement is obvious in organizations that rely extensively on large computer systems
used by many units in the organization. It s less obvious but no less true in organizations
with highly decentralized computer hardware and system software. IS strategic planning

531

System Administration

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

issues are similar to those in many other infrastructure-based service organizations, such
as utility companies supplying communications, electrical power, and water. In general,
service organizations must address these strategic issues:

What services will be provided? How will service users be charged?
What infrastructure is required to provide the services?
How can the infrastructure be operated, maintained, and improved
at minimal cost?

For example, with the communication services from local phone companies, the
main strategic question is what types of services should be provided: basic phone only,
expanded phone services, Internet access, mobile services, information storage and
retrieval, and so on. Answers to this question lead to decisions on the nature of the
infrastructure and its capital and operating expenditures.

Standards
Providing infrastructure-based services to a wide variety of users requires adopting service
standards. However, standardization tends to stifle innovation and produce solutions that
are suboptimal for some users. Returning to the local phone company as an example, all
users agree on and abide by certain standards for phone service, including acceptable user
devices, basic service availability, and interactions with the infrastructure (for example,
line voltage and signal encoding). The nature of this infrastructure requires standardization
to provide service at a reasonable cost.

However, standardization often causes problems for some users, especially for those
demanding services at or near the leading edge of technology. For example, many phones
are connected to the nearest switching center with low-capacity copper wiring, which
limits the availability of high-speed Internet services and, therefore, the ability of some
users to work at home. The provider of an infrastructure-based service must constantly
balance the benefits of standardization in reduced costs and simplified service against its
costs in stifled innovation and failure to meet the needs of some users.

Standardizing hardware and system software is a particularly complex issue involving
many choices and compatibility issues. Standardization issues are further complicated
by the diverse components required for information processing in even a small organization.

Competitive Advantage
Discussing hardware and system software as an infrastructure ignores certain opportunities.
Infrastructure management tends to concentrate on providing short-term services at
minimal cost a viewpoint that tends to preclude major technical innovations and radical
redefinition of services. The term competitive advantage describes the way in which an
organization uses resources to give it a major edge over its competitors. It can take a
number of forms, including the following:

Providing services that competitors are unable to provide
Providing services of unusually high quality
Providing services at an unusually low price
Generating services at an unusually low cost

Hardware and system software can be applied to achieve a competitive advantage in
any or all of these areas. Examples include investment updates to customers via text

532

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

messages, radio frequency ID (RFID) tags for shipments and inventory control, and use of
social networking Web sites to communicate with customers.

Each of these examples was once novel but is now commonplace. Such is the nature
of applying technology for a competitive advantage: Rapid technology changes and adop-
tion by competitors severely restrict the useful life of most technology-based competitive
advantages. Furthermore, pursuing competitive advantages through new technology
involves substantial risks. The costs of technology are usually high for developers and early
adopters but then decrease rapidly after introduction, so late adopters might incur much
lower costs yet realize most of the benefits. Early adopters also face the inefficiency of
starting at the beginning of a learning curve.

B U S I N E S S F O C U S

A Standard Hardware Platform?

Cooper State University (CSU) is a large school with more than 1000 faculty members
and a full-time enrollment of 20,000 students. Academic programs span a wide range of
fields, including hard sciences, humanities, engineering, education, management, law,
and medicine. CSU offers many graduate degree programs and is highly ranked in terms
of externally funded research.

CSU has a campuswide computing organization, Computer Information Services
(CIS), which is responsible for supporting the computing and information-processing needs
of both academic and administrative users. It supports administrative users by operating a
large mainframe computer, several LANs, and many administrative applications, such as
payroll, accounts payable, class scheduling and registration, and student academic records.
It supports academic users with shared midrange computers and file servers and many
microcomputers in classroom labs and general-purpose facilities. CIS also operates the
campus network that links most offices, classrooms, and buildings to the Internet.

CIS has been under considerable budgetary pressure for several years. Demand for
computing services has grown rapidly, but funding hasn t kept pace. Declining hardware
costs have been a budgetary bright spot, but they have been more than offset by increases in
support costs for CSU s wide variety of hardware platforms, software packages, and admin-
istrative applications. Integrating this disparate collection of hardware and software with
the growing campus network has been a difficult and costly task.

Recently, CIS proposed standardizing the hardware platforms and OSs for
microcomputers and midrange computers to minimize support costs, contracting with
a single vendor for each computer class, and negotiating volume pricing on hardware,
software, and maintenance. All CSU workstation and midrange computer purchases,
including those made with non-CIS funds, would be part of the contract.

Reactions to the proposal have ranged from indifference to near revolt. Many
administrative and academic departments that rely on CIS for most computing and
information-processing needs are supportive, provided CIS can continue meeting their
needs. Some academic departments that fund their own computer purchases are
concerned with loss of control over the acquisition process.

The computer science, engineering, information systems, and physics departments
are vehemently opposed to the proposal. They argue that their computing needs are

(continued)

533

System Administration

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

unique and require hardware and software at the cutting edge of technology. They claim
that standardized platforms would lag behind technology and interfere with their teach-
ing and research missions. They point out that most of their computing needs are met
with funds from external sources, such as research grants and contracts, and oppose
restrictions on how this money is spent.

Questions:

Are the benefits that CIS anticipates from a standardized platform likely to be
realized?
Are the concerns of the four opposing departments valid? Should any other
departments share these concerns?

THE ACQUISITION PROCESS

The process of acquiring hardware and system software is ongoing in most organizations.
New hardware and software can be acquired to do the following:

Support new applications.
Increase support for existing applications.
Reduce the cost of supporting existing applications.

The nature of this process depends on which of these goals (or combination of goals)
motivates the new acquisition. It also depends on other factors, such as the following:

The mix of applications the hardware and software will support
Existing plans for upgrades or changes in these applications
Compatibility requirements with existing hardware and software
Existing technical capabilities

Hardware and software exist to support current and future applications. Planning for
acquisition is little more than guesswork if you don t have a thorough understanding of
present and anticipated application needs.

The acquisition process consists of these steps:

1. Determine the applications the hardware and software will support.
2. Specify hardware and software capability and capacity requirements.
3. Draft a request for proposal and circulate it to potential vendors.
4. Evaluate responses to the request for proposal.
5. Contract with a vendor or vendors for purchase, installation, and/or maintenance.

The acquisition process occurs whenever a new system is implemented or an existing
system is upgraded. In either case, hardware and system software requirements are
determined by activities in the design discipline of the Unified Process (UP). Activities
in the requirements discipline produce detailed estimates of system activity, such as
transaction volume and file or database content. Decisions about what processes will be
automated, type of user interfaces, OSs and other system software, and selection of
development tools are made during early design discipline activities. These decisions,
combined with activity estimates, are translated into detailed hardware requirements.

534

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Determining and Stating Requirements
Computer performance is measured in terms of application tasks that can be performed
in a given time frame. Performance can be measured in terms of throughput (execution
speed), response time, or some combination of the two. The first step in stating hardware
and software requirements is to state the application tasks to be performed and their
performance requirements.

Different techniques are used to determine requirements, depending on the motivation
for the proposed acquisition. For existing applications, hardware and system software require-
ments might be based on measurements of existing performance and resource consumption.
Requirements for new applications are more difficult to derive. Techniques for finding this
information are discussed later in Determining Requirements and Evaluating Performance.

Although application requirements are the primary basis for hardware and system
software requirements, other factors must also be considered, including the following:

Integration with existing hardware and software
Availability of maintenance services
Availability of training
Physical parameters, such as size, cooling requirements, and disk space for
system software
Availability of upgrades

These factors are integral to the overall requirements statement. Some requirements,
such as physical parameters, are essential; others are less important bases for differentiating
between potential vendors.

Request for Proposal
A request for proposal (RFP) is a formal document sent to vendors that states requirements
and solicits proposals to meet these requirements. It s often a legal document as well, particu-
larly in governmental purchasing. Vendors rely on information and procedures specified in the
RFP and invest resources in the response process with the expectation that stated procedures
will be followed consistently and completely. An RFP is generally considered a contract offer,
and a vendor s response is an acceptance of this offer. Problems such as erroneous or incom-
plete information, failure to enforce deadlines, failure to treat all respondents equitably, and
failure to state all relevant requirements and procedures can lead to litigation.

The general outline of an RFP is as follows:

Identification of requestor
Format, content, and timing requirements for responses
Requirements
Evaluation criteria

The identification describes the organization requesting proposals. It should include
the name of a person to whom questions can be addressed as well as postal and e-mail
addresses, phone numbers, and fax numbers.

The RFP should state procedural requirements for submitting a valid proposal and,
when possible, include an outline of a valid proposal describing each section s required
content. In addition, it should clearly state deadlines for questions, proposal delivery, and
other important events.

535

The Acquisition Process

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

The requirements statement composes the majority of the RFP. Requirements should
be categorized by type and listed completely. Relevant categories include the following:

Hardware and software capability
Related services, such as installation and maintenance
Warranties and guaranties
Deadline dates for delivery or implementation of requested products or
services
Financial considerations for example, acquisition cost, maintenance cost,
lease cost, and payment options

Requirements should be separated into those that are essential and those that are
optional or subject to negotiation. For example, minimum hardware capacity is generally
stated as an absolute requirement, whereas some related services, such as 24/7 technical
support, might be described only as desirable.

Evaluation criteria are stated as specifically as possible. A point system or weighting
scheme is often used to evaluate optional or desirable requirements. Weight might also be
given to factors that aren t stated as part of the hardware or software requirements, such
as a vendor s financial stability and good or bad previous experiences with a vendor.

Evaluating Proposals

Proposal evaluation is a multistep process, with the following usual steps:

1. Determine the acceptability of each proposal.
2. Rank acceptable proposals.
3. Validate high-ranking proposals.

Each proposal is evaluated to determine whether it meets the basic criteria, including
essential requirements, financial requirements, and deadlines. Proposals that fail to satisfy
minimal criteria in any category are eliminated from further consideration.

The remaining proposals are ranked by evaluating the extent to which they exceed
minimal requirements. This ranking includes providing excess capability or capacity,
satisfying optional requirements, and other factors. Measurements of subjective criteria,
such as compatibility, technical competence, and vendor stability, are also considered at
this stage.

A subset of highly ranked proposals is then chosen for validation. This subset should
be small because of the time and expense involved in evaluating proposals. To validate a
proposal, the evaluator determines the correctness of vendor claims and the vendor s
ability to meet commitments in the proposal. The ranking process relies primarily on
what vendors assert in the proposal; the validation stage is where the accuracy of these
assertions is determined.

Various methods and sources of information can be used to validate proposals. The
most reliable is a benchmark of the proposed system with actual applications. (Benchmarks
were introduced in Chapter 4 and are discussed more in the following section.) For all but
the largest systems, vendors usually deliver and install hardware and system software for
customer evaluation. If purchased or already developed application software is available,
the test system can be benchmarked with the application suite.

536

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Alternatives to on-site benchmarking with actual application software include the
following:

Benchmarking at alternate sites with actual applications
Benchmarking test applications
Validating with published evaluations

With systems that are difficult to install, testing applications at another site, such as
on the premises of the vendor or another customer, might be possible.

DETERMINING REQUIREMENTS AND EVALUATING
PERFORMANCE

Information systems are a combination of hardware, system software, and application soft-
ware. One of the most difficult system administration tasks is determining hardware require-
ments for a specific set of application software. This task is difficult for a few reasons:

Computers are complex combinations of interdependent components.
OS and other system software configuration can affect raw hardware
performance substantially.
The hardware and system software resources that applications require can t
always be predicted precisely.

The starting point for determining hardware requirements is the application software
that will run on the hardware platform. The nature and volume of application software
inputs must be described to determine what application code will be executed and how
often. This information determines the demands that application software will place on
system software, such as number and type of service calls, and on hardware, such as
number of CPU instructions.

If the application software has already been developed, its resource consumption in
terms of hardware and system software can be measured. Software and hardware tools
can be used to monitor resource utilization while application programs are running, which
generates precise measurements of resource requirements.

Determining resource requirements is more complex when application software hasn t
been developed yet. Detailed requirements and design details typically aren t available for
the entire system until several UP iterations have been completed. Estimates of hardware
and system software requirements are only as precise as the specifications of application
software requirements. General statements of user and software requirements can gener-
ate only rough estimates of hardware requirements. More accurate hardware requirements
can t be determined until all design discipline activities are completed.

Unfortunately, application developers seldom have the luxury of waiting until all
design discipline activities are finished to acquire hardware, especially when implement-
ing large systems. To accomplish the acquisition process described previously, enough
lead time is required. The acquisition process is typically started in an early UP iteration,
after the automated system s scope has been determined.

Informal methods of estimating requirements based on requirements models can
sometimes be used. These methods typically use comparisons to similar application
software and work volumes. For example, a developer of an online transaction-processing

537

Determining Requirements and Evaluating Performance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

system might attempt to identify a similar system inside or outside the organization and
examine it to determine the adequacy of its existing hardware and system software. If
current hardware resources match current application demand, they can be used as
a baseline for estimating the hardware requirements of the system being developed.
Requirements can be adjusted to account for differences in transaction volume and
application-processing characteristics.

This basic approach to estimating requirements is used widely and successfully,
particularly for small hardware platforms running typical application software. The risk
of inaccurate estimates is minimized for smaller hardware platforms because they can
be modified quickly and inexpensively.

Large hardware platforms and large-scale one-of-a-kind application software require
more formal methods of estimating requirements. Lead times for hardware acquisition
and configuration are longer for mainframes and large midrange computers than for
smaller hardware classes. Hardware and software costs are high, which increases the
economic risks of inaccurate estimates. Estimating requirements in this environment
typically follows formal methods based on two types of mathematical models:

Application demand model Represents units of work application software
performs in terms of its demand for low-level hardware services. For exam-
ple, an online transaction update might be described in terms of required
number of CPU instructions, disk I/O bytes, and bytes input from or output
to I/O devices. A complete model includes numerical representations of
each type of work the application performs.
Resource availability model Describes a computer s capability to deliver
resources to application software. The resources described in this model
must match those used in the application demand model. Modeled resources
can be low-level, such as CPU instructions and disk I/O bytes, or high-level,
such as OS service calls or HTTP requests to a Web server.

After both models are specified, evaluators can test them by using a variety of analysis
methods, including integer programming and simulation. Simple models can be constructed
and evaluated by IS professionals with the assistance of decision support software. However,
building and analyzing complex models require personnel with an extensive background in
mathematics and experience in developing and analyzing computer performance models.

Benchmarks
As described in Chapter 4 s Technology Focus on benchmarking, a benchmark is a mea-
sure of computer system performance while executing one or more processing tasks. There
are many types of benchmarks testing many different aspects of performance. Benchmarks
can test low-level aspects of hardware performance such as CPU instruction execution
speed or write speed to a RAID storage device as well as measure performance when
performing complex tasks, such as processing database queries and updates.

Using published benchmarks to evaluate new computers for an application or
application suite is a complex matter because evaluators must do the following:

Select the benchmark tests most relevant to the intended applications.
Determine the relationship between benchmark tests and the actual work
the new computer will perform.

538

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

To address the first issue, evaluators examine benchmarks for similarities to and
differences from their own application software. Testing organizations supply detailed
descriptions and source code to help evaluators select benchmarks.

To determine the relationship between a benchmark test and application software,
evaluators test their own application software on a system with known performance on
the most relevant benchmarks. The purpose of this testing is to establish a mathematical
relationship between units of work in the application software and units of work in the
benchmark.

For example, evaluators testing a computer with a known performance rating from the
Transaction Processing Performance Council (TPC) for example, 500,000 transactions
per minute run their own application software on the same computer and generate a
result of 300,000 transactions per minute. The ratio of the two results (300,000 ÷ 500,000 =
0.6) enables evaluators to adapt the TPC-C benchmark for any computer to their software.
For example, if evaluators anticipate a transaction volume of 150,000 transactions per minute,
they need a computer meeting the TPC-C benchmark of at least 150,000 ÷ 0.6 = 250,000.

It might not be possible to test computer systems with actual applications if
they re large, difficult to install, or not yet developed. In these cases, evaluators must
examine the performance benchmark tests closely and estimate the ratio computed
previously.

C A U T I O N
Care must be taken when using benchmarks, especially if only one benchmark is used at a time to test
only one type of performance. Overall system performance under mixed application demand can vary
substantially from separate benchmark results.

Measuring Resource Demand and Utilization
Accurate performance analysis requires accurate performance data. This data is needed as
input to numerical performance models and when evaluating the performance of existing
systems to determine the need for reconfiguration or hardware upgrades. Automated tools
to measure resource demand and utilization include the following:

Hardware monitors
Software monitors
Program profilers

The information these monitors generate describes the behavior of devices, resources,
or subsystems over some period of time.

Monitors are programs or hardware devices that detect and report processing or I/O
activity. A hardware monitor is a device attached directly to the communication link
between two hardware devices, often used to monitor the use of communication channels,
disk drives, and network traffic. It monitors communication activity between the two
devices and stores communication statistics or summaries that can be retrieved and
printed in a report.

A software monitor is a program typically embedded in OS service routines that
detects and reports processing activity or requests. Software monitors are usually disabled
by default but can be enabled to monitor high-level processing requests, such as file open,

539

Determining Requirements and Evaluating Performance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

read, write, and close operations, or low-level kernel routines, such as flushing file or I/O
buffers or virtual memory paging. When it s enabled, a software monitor generates statistics
of service utilization or processing activity that can be displayed in real time or stored in
a file for later analysis.

Software monitors can alter the activity being measured. For example, one that
measures systemwide CPU activity generates inflated measurements because the software
monitor itself requires CPU cycles to execute. Resources the monitor consumes must be
estimated or measured and subtracted from the overall measurements to determine
correct measurements for processes other than the monitor.

Monitors can operate continuously or intermittently. A continuous monitor records
all activity as it occurs; it provides complete information on activity, but its operation
can consume excessive system resources. An intermittent, or sampling, monitor checks
for activity periodically. The advantage of a sampling monitor is that fewer resources are
expended in running the monitor. Another advantage is that less data is accumulated in
output files, which can become very large. Continuous utilization statistics can be
estimated based on the sampled activity.

Monitors help identify performance bottlenecks as a precursor to configuring
hardware and/or system software for maximal performance. For example, monitoring I/O
activity on all secondary storage channels can indicate that some disks are used continu-
ously, and others aren t used as much. Based on this information, a system administrator
might decide to move frequently accessed files from heavily used disks to less used disks
or to reallocate disks among controllers or I/O channels. In addition, an entire system
can be tested at full load to determine its maximum sustainable resource delivery.

A program profiler describes the resource or service utilization of an application
program during execution. Typically, monitor subroutines are added to the program s
executable file during link editing. As the program runs, these subroutines write
data to a file each time the application requests a system service. They can also
record other statistics, such as elapsed (wall clock) time to complete each service
request, CPU time consumed by service calls, and CPU time consumed by program
subroutines. This information can be used to derive an application demand
model as well as identify segments of the program that might be implemented
inefficiently.

T E C H N O L O G Y F O C U S

Windows Performance Monitoring

Windows includes the Performance Monitor utility. System administrators can use it to
monitor hardware and software resource use in real time. It defines a number of system
objects about which performance and utilization data can be captured. Figure 14.2 shows
some of these objects. Monitored objects can be a single hardware device, such as the
CPU; groups of hardware devices, such as all physical disks; OS services, such as a
network name service; and resource management data structures, such as a service
queue or virtual memory paging file.

(continued)

540

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Each object has data items called counters. A counter monitors a specific perfor-
mance or resource utilization aspect of an object. For example, there are 19 counters for
the PhysicalDisk object, including current queue length, average seconds per disk read or
write operation, number of disk read or write operations per second, and number of
bytes read or written per second. Using different counters, a system administrator can
monitor aggregate or highly specific aspects of performance.

Resource utilization and other system activity can be displayed in various formats.
Figure 14.3 shows a line graph displaying total CPU utilization (upper line) and network
interface bytes per second (lower line). Statistics such as mean, minimum, and maxi-
mum are shown for the currently selected counter. The display can be configured for
any number of counters, and each counter is assigned a color and type of line. Similar
display options are available for other output formats, such as bar graphs and text
reports. Performance data can also be captured in a file for later analysis.

A system administrator needs accurate data to make configuration decisions. For
example, decisions about changes to the size and/or location of virtual memory page files

FIGURE 14.2 Objects and counters in Performance Monitor
Courtesy of Course Technology/Cengage Learning

(continued)

541

Determining Requirements and Evaluating Performance

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

require accurate data on current virtual memory utilization. Decisions about upgrading
CPU capacity require data describing current CPU utilization and utilization of related
resources, such as memory and bus I/O. Performance Monitor is a flexible and powerful
means of acquiring this data.

Accurate data is not the only requirement for good configuration decisions, however.
Interpreting data requires a thorough understanding of the OS and hardware components,
which enables system administrators to associate cause and effect and understand the
tradeoffs between types of system performance. Without this understanding, performance
assessment is little more than guesswork, and configuration decisions can produce
suboptimal or detrimental effects on overall system performance.

SECURITY

For most organizations, information-processing resources are a sizable investment. Some
resources, such as specific items of hardware and software, are tangible and have well-
defined dollar values. Others, such as databases, user skill, and reliable operating proce-
dures, are less tangible but also of considerable value. As applied to information systems,
the term security describes all measures for protecting the value of these investments,
including physical protection against equipment loss or damage and economic protection
against loss of information s value through unauthorized disclosure.

FIGURE 14.3 A real-time display of performance data
Courtesy of Course Technology/Cengage Learning

542

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A well-integrated approach to system security includes measures for the following:

Protect physical resources against accidental loss or damage.
Protect data and software resources against accidental loss or damage.
Protect all resources against malicious tampering.
Protect sensitive software and data resources against unauthorized access
and accidental disclosure.

A complete discussion of all these measures could fill an entire book. This section
gives you an overview of some commonly used security measures.

Physical Security
Access to computers and related equipment should be restricted to prevent theft, tampering,
and unauthorized access. Locked doors and limited distribution of keys, key cards, and other
lock control mechanisms are the most direct way to protect equipment. Additional protec-
tive measures for rooms containing servers and other dedicated equipment include archi-
tectural details, such as reinforced doors, reinforced walls, and barriers above drop ceilings.

Other physical controls are required for computers in public and semipublic areas,
such as offices and campus computer labs. Most computer cases can be locked to prevent
removal of key system components. Computers and peripheral equipment can also be
locked to desks or other furniture by cable locks.

Access Controls
All operating systems incorporate access control features that enable restricting access to
resources such as data files, programs, and hardware devices. Access control is based on
two key processes:

Authentication, which is the process of determining or verifying the identity
of a user or process owner
Authorization, which is the process of determining whether an authenticated
user or process has enough rights to access a resource

A challenge-response dialogue using a username and password is the most common
means of authentication. A user enters a name or other identifier and a password to
prove his or her identity. The OS verifies the username and password by searching a
local security database or interacting with a security server, such as a Kerberos server.

Although password-based authentication is most common, other methods are often
used as supplements or alternatives for improved security. ID cards with bar codes or
embedded ROM chips can supplement passwords. Biometric authentication methods are
sometimes used instead of password-based authentication. These methods identify a
person by using physical characteristics, such as fingerprints, facial features, or retinas.

Until the early 1990s, authentication was normally handled by the OS. Each OS
maintained its own security database and enforced its own access controls. As organiza-
tions became more tightly integrated through information technology, handling authenti-
cation and access control exclusively through OSs became a problem. If a user needed
access to resources on dozens of different servers, a user account and authorizations had
to be created and maintained on each server. This approach is too complex for both users
and administrators.

543

Security

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Operating systems now cooperate with one another to perform authentication and
authorization. Typically, each OS interacts with a directory or security service, such as
Kerberos or Microsoft Active Directory, and relies on this service to handle authentication
and perhaps some or all authorization functions. Because all security functions are cen-
tralized, security procedures are simpler for both users and administrators.

After being authenticated, a user or process is given a digital ID. OSs and security
systems have different names for the ID, including user identification (UID), security
identification (SID), and security ticket. (The term ticket is used for the rest of this
chapter.) Tickets are the basis for determining users authorization to access resources
the OS manages and can govern their ability to do the following:

Access the OS or resources from specific locations or at specific times.
Read, write, create, and delete directories and files.
Run programs.
Access hardware resources, such as printers and communication devices.

For each restricted action and resource, the OS or security service maintains a list
of users or groups with access authority, called an authorization list or access control list.
The list can include different authority levels for different users for example, read
authority for all users who access a file but write authority only for system administrators.

When a user or process attempts an action or requests a resource, the OS or security
service looks up the user s ticket in the access control list to determine whether the user
has enough authority. Typically, authority checks are an integral part of the OS service
routines that application programs and administration utilities use to access resources.
For example, a service routine to open a file typically asks for a ticket and passes it to a
security service for authentication before processing the request (see Figure 14.4).

Password Controls and Security
Because password-based authentication is so common, operating systems and security
services use methods such as the following to enhance it:

Restrictions on the length and composition of valid passwords
Requirements that passwords be changed periodically

FIGURE 14.4 Authorization in a file open service call
Courtesy of Course Technology/Cengage Learning

544

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Analysis of password content to identify passwords that can be guessed easily
Encryption of passwords in files and during transmission over a network

With most OSs, the system administrator can create and enforce password policies
on a per-user, per-group, or per-system basis. Figure 14.5 shows password controls that
can be set in Windows, including restrictions on password length, age, complexity, and
uniqueness. OS password policies should be supplemented with organizational policies,
including rules against sharing passwords, creating passwords based on personal informa-
tion (such as birth dates or family member names), and writing passwords down in easily
accessed locations. Some password controls, such as password age restrictions, can be
overridden for certain accounts.

A related group of policies, shown in Figure 14.6, can be set to deal with failed
attempts to log on. For example, accounts can be deactivated after a specified number
of failed logons and reactivated manually by the system administrator or automatically
after a specified time interval.

FIGURE 14.5 Windows password policies
Courtesy of Course Technology/Cengage Learning

FIGURE 14.6 Windows account lockout policies
Courtesy of Course Technology/Cengage Learning

545

Security

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Locking out accounts after a specified number of failed logon attempts prevents
unauthorized users from repeatedly attempting to guess correct passwords for valid user
accounts. Password-guessing programs are sometimes used to attempt remote logon with
words and/or names taken from a dictionary. Because many users choose common words
or names as their passwords, it s possible for these programs to find a correct password
by trying every word in their dictionaries. Automatic account deactivation coupled with
delayed reactivation limits the number of guesses that can be made in any time period.

Some OSs and security services use similar password-guessing programs against local
password files periodically or continuously. When passwords are guessed successfully, the
OS forces the user to change his or her password at the next logon. Similar capabilities
can be embedded in the program that enables users to change their passwords. An attempt
to change a password to an easily guessed value is denied.

System security might be compromised if a copy of the password file or database is
somehow distributed to or stolen by an unauthorized user. The password file is usually
protected by access controls, but some degree of accessibility must be granted for normal
logon processing. Most OSs further protect the password file by encrypting part or all of
its content. However, a stolen password file can be decrypted successfully if enough
computing resources are used to crack the encryption key.

Auditing
In accounting, auditing is the process of examining records to determine whether
generally accepted accounting principles were applied correctly in preparing financial
reports. In computer security, the term auditing usually refers only to creating and
managing records of user activity or resource access. These records provide data to
determine whether the security policy has been implemented correctly or whether
resources or the system itself have been compromised.

Most OSs and security services include an audit function that s disabled by default
but can be enabled for specific users, resources, actions, or access types. When auditing
is enabled, the OS or security service writes an entry to a log file each time an audited
action is performed. This log entry includes information such as which ticket was
presented to gain access and the access date and time.

Although auditing can be a useful tool for examining the security policy and analyzing
security breaches, it has several limitations, including the following:

Log files can grow quickly when auditing is enabled for a large number of
users, resources, actions, or access types.
Auditing reduces system performance because of the overhead of writing
log file entries.
Auditing examines historical data, so it s incapable of preventing future
security breaches.
Extracting useful information from large auditing logs requires automated
search tools and a consistently implemented program of log file analysis.

Because of its limitations and effect on system performance, auditing is used sparingly,
if at all. When used, it s generally enabled only for the specific aspects of a security system
that an administrator wants to evaluate.

546

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Virus Protection
In biology, a virus is a DNA fragment that infects a living host at the cellular level and
uses the host s cellular machinery to reproduce itself and perform actions detrimental to
the host. In computers, a virus is a program or program fragment that does the following:

Infects a computer by installing itself permanently, usually in a hard-to-find
location
Performs malicious acts on the infected computer
Replicates and spreads itself by using services on the infected computer

Viruses come in many types, including the following:

Boot virus Attaches itself to code that runs when the system boots, such
as a BIOS or OS startup routine
Macro virus Embedded in a macro stored in a desktop application file,
such as a spreadsheet or word-processing document
Worm Stored in a stand-alone executable program and usually sent as an
e-mail attachment; runs automatically when the attachment is opened

Viruses are commonplace and can perform many malicious acts, including damaging
or destroying important files, opening backdoors for potential hackers, and sending sensi-
tive information to others. No information system can be considered secure unless it
includes active virus protection.

Many companies market antivirus software. Features vary, but common capabilities
include the following:

Scanning e-mail messages and attachments for known viruses and disabling
or deleting them
Monitoring access to important system files and data structures and logging
or denying access when needed
Scanning removable media for known viruses whenever they re inserted
Scanning the file system and important data structures periodically for
viruses that might have escaped other scans and monitoring activities
Monitoring Web page accesses and disabling malicious software that might
be embedded

The most important aspect of antivirus software configuration is ensuring that it s
enabled and updated regularly. Antivirus software should be installed automatically with
the OS and enabled by default. Users are sometimes tempted to disable antivirus software
because its continuous monitoring and scanning activities impose a performance penalty.

Antivirus software uses data files, sometimes called signature files, containing
information about known viruses. Because new viruses appear constantly, these files
must be updated regularly. Most antiviral software includes a subscription to updated
signature files, which the vendor makes available as new viruses are discovered. The
best approach to updating these files is based on push technology, meaning one of the
organization s servers monitors the vendor s download site for new signature files. When
they re released, the server downloads the files and copies them to all the organization s
computers.

547

Security

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Software Updates
Operating systems and application software are a complex collection of interconnected
components. A typical OS or desktop application suite includes tens of millions of lines
of source code. Given software s size and complexity, errors, bugs, and security holes
are a certainty. Hackers and viruses often attempt to exploit these problems to perform
malicious acts or gain access to secure information or resources.

Software developers are in a constant race to fix bugs, errors, and security holes as
they re discovered. They do so by developing new software versions or software patches,
sometimes called service packs, to apply to existing installations. A key part of any
security system is updating system and application software.

Until recently, applying patches and upgrades was a manual process. Users or
system administrators needed to monitor information sources about software upgrades
and patches constantly and take actions to apply them. However, software now includes
features to streamline or automate the update process. Typically, software examines
its own internal configuration whenever it runs and then sends a query to a server to
determine whether its configuration is current. If the response indicates an upgrade is
needed, the software can inform the user or system administrator or download and
install required updates automatically. Figure 14.7 shows the configuration dialog box
for Windows automatic updates. Similar update options exist for many other OSs and
application software.

FIGURE 14.7 Configuring automatic updates in Windows
Courtesy of Course Technology/Cengage Learning

548

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A system administrator can also control software updates via some directory
services and network OSs. Figure 14.8 shows installing an application program via
a Microsoft Active Directory group policy object (GPO). In this example, the GPO is
applied to workstations in computer classrooms. Each time a workstation boots, it
checks whether Intel Processor ID Utility is installed and performs the installation
automatically, if necessary. Automatic software installation improves security by
ensuring that the latest software versions and security patches are always installed
on all an organization s computers.

Firewalls
In architecture and machinery, a firewall is a physical barrier that prevents fire from
spreading between two structures or compartments that share a common wall or
divider. In computer security, a firewall is a hardware device, software, or a combina-
tion of hardware and software that prevents unauthorized users in one network from
accessing resources on another network. Typically, a firewall is a stand-alone device
with embedded software that physically separates a private network from a public
network, such as the Internet (see Figure 14.9). Firewalls are widely deployed in
information systems to protect servers and information resources from unauthorized
access over the Internet.

The simplest firewall type is a packet-filtering firewall, which examines each packet
and matches header content to a list of allowed or denied packet types. Recall from
Chapter 9 that TCP/IP packets include source and target sockets (combinations of IP
addresses and port numbers). A packet-filtering firewall consults a list of valid source

FIGURE 14.8 Viewing a software installation policy
Courtesy of Course Technology/Cengage Learning

549

Security

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

and target IP addresses or address ranges and valid port numbers for these addresses.
For example, if a public Web server is located in the private network, the firewall is
configured to allow incoming packets addressed to the Web server s IP address and
port 80, the standard HTTP port.

Configuring the firewall becomes more complex as the volume and variety of
legitimate traffic between networks increases. For example, an organization enables
strategic partners, such as suppliers, to interface directly with its production databases.
An application that supports these interactions has components running both inside and
outside the private network. The firewall must be configured to allow transmitting
packets between servers and enable software to support the application. Specific entries
must be added to the firewall database for the IP addresses strategic partners use and
the port numbers applications use.

More complex approaches to firewall use and configuration include application
firewalls and stateful firewalls. An application firewall, sometimes called a proxy server,
is a server that handles service requests from external users of applications. It accepts
service requests from clients on the Internet or other untrusted networks on behalf of
servers in the internal network, relays requests to the correct servers, and relays
responses back to clients (see Figure 14.10). Application firewalls improve security by
shielding internal servers and resources from direct access by outside users. To gain
access to secure resources, a hacker or other intruder must compromise two servers,
usually with two different security systems.

FIGURE 14.9 A firewall between the Internet and a private network
Courtesy of Course Technology/Cengage Learning550

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A stateful firewall tracks the progress of complex client/server interactions. It s most
useful in client/server transaction-processing environments, where each transaction has
a predictable processing pattern. The firewall is configured with the sequence of events
composing valid client/server interactions, including packet types and transmission
sequence, port and server access order, and maximum time durations between valid
requests and responses. Packets that don t match specified patterns of normal activity
are blocked automatically.

Installing and configuring any firewall correctly requires a detailed understanding of
network protocols, OS security procedures, and the mechanisms by which client, server,
and peer processes interact with one another. The process starts with an inventory of all
existing services and the packet types, IP addresses, and ports that support client/server
or P2P interaction for each service. Note that a typical information system includes many
services that aren t obvious, such as Remote Procedure Calls, authentication and authori-
zation, and background services (for example, time synchronization). System administra-
tors sometimes use a port scanner or network monitor to determine what IP addresses
and ports existing services are using.

After the inventory is complete, the administrator determines which services need to
be accessible from outside the organization s private network. Based on this information,
the administrator can configure firewalls to block packets associated with unimplemented
services and packets from unauthorized IP addresses. Because configuration is complex
and error prone, any changes to firewall configuration should be tested thoroughly to
ensure that unauthorized external access is blocked and all authorized internal and
external activity is enabled.

PHYSICAL ENVIRONMENT

Installing hardware requires special attention to many aspects of the physical environment.
Issues to be considered when choosing or preparing a location for hardware include the
following; each is discussed in the next sections:

Electrical power
Heat dissipation
Moisture
Cable routing
Fire protection

FIGURE 14.10 An application firewall
Courtesy of Course Technology/Cengage Learning

551

Physical Environment

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Electrical Power
Hardware is sensitive to fluctuations in power levels. Computer circuitry is designed to
operate at a constant low power level, and fluctuations can cause momentary loss of
operation or damage to electrical circuits. Fluctuations can be of several types:

Momentary power surges
Momentary power sags
Long-term voltage sags
Total loss of power

Power surges or spikes can be caused by a number of events. Lightning strikes in
power generation or transmission facilities tend to cause the most dangerous types of
power surges. Dangerous spikes can also be caused by failure of power transformers or
other transmission equipment, which leads to brief power surges of very high intensity.
Because the surges are brief, they might not engage standard protection devices, such
as fuses or circuit breakers, before major damage has occurred. Standard fuses or
breakers for a floor or building don t provide adequate protection for computer
equipment.

Power sags normally occur when a device that requires a large amount of power
is started. You can see this in the home when air conditioners, refrigerators, and
electric dryers are started and cause a momentary dimming of lights. Small power
sags are almost always present when multiple devices share a single electrical circuit.
Large power sags are a symptom of overloaded circuits. Longer-term power sags are
often caused by the power provider. The common term for this event is a brownout.
Brownouts occur when the demand for electricity exceeds the provider s generation
and transmission capabilities during peak demand periods, such as hot summer days.
To avoid a complete service interruption for some users, the power provider reduces
the voltage level temporarily on a systemwide basis to spread available power evenly
to all users.

Most computer equipment is designed to operate reliably over a range of voltage
levels. In the United States, transformers in small computer systems are designed for
110-volt alternating current (AC) power input. Large computer systems in the United
States can use 220- or 440-volt power inputs. Computer systems in other countries use
different voltage levels. Computer system power transformers can usually deliver consis-
tent voltage output with input voltage variations of up to 10%. This characteristic provides
some protection against surges and sags caused by the startup or shutdown of other
equipment as well as brownouts.

Auxiliary power-conditioning equipment is needed to deal with powerful surges
and total power loss. Equipment can be protected against high power surges by a
surge protector, which detects incoming power surges and diverts them to ground in
nanoseconds. Surge protectors differ in the speed at which they react, the intensity
of the surge they can suppress, and whether they can be reused after a surge. Surge
protectors can be purchased as separate devices or integrated into other power-
conditioning devices.

552

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

N O T E
By itself, total power loss rarely causes damage to hardware. However, a tripped circuit breaker or
blackout is often accompanied by power surges. The main problem with power loss lies in the loss of
data. Data held in RAM, including process data areas, secondary storage buffers, and communication
buffers, is lost when power is interrupted.

Protection against power loss requires an auxiliary power source. It can take several
forms, including a combination of redundant power circuits, auxiliary generators, and
battery backup. An uninterruptible power supply (UPS) is a device that provides power
to attached devices in the event of external power failure. UPSs vary in their power deliv-
ery capacity, switching time, and battery life. Surge protection is normally incorporated
into a UPS. This feature is almost essential because switching between external and
internal power supplies might introduce surges.

Some UPSs, particularly those with short delivery times, are designed to work with a
computer s OS. They include a standard (for example, USB) communication port and
cable that can be connected to the computer. When a power failure is detected, the UPS
sends a signal to the computer to indicate that it has switched over to battery power. This
signal enables the OS to initiate protective actions before a total loss of power. Typically,
the OS starts a normal or emergency shutdown procedure when an interrupt is detected.
More complex UPSs support two-way communication, which can give the OS additional
information, such as error conditions and battery discharge rate.

Heat Dissipation
All electrical devices generate heat as a byproduct of normal operation. As you learned in
Chapter 4, excessive heat can cause intermittent or total failure of electrical circuits, so all
computer equipment needs some means of heat dissipation. In equipment that generates
little heat, vents in the equipment cabinet are normally enough to dissipate heat. Care
must be taken to ensure that vents don t become blocked, which impedes free movement
of air through the cabinet.

Many computer hardware devices use fans to move air through the unit. Fans force
cool exterior air into the cabinet or draw hot interior air out. Either method requires at
least two vents and a clear pathway for air movement. Vents are normally positioned at
opposite corners of the cabinet to ensure that all components receive adequate cooling.
Fan-based cooling also requires some filtering to remove dust and other contaminants.

When heat is dissipated from an equipment cabinet, it collects in the room where the
cabinet is located. Heat must be dissipated from the room, especially when many hard-
ware devices are situated in a small space, as in a server closet. Normal room or building
air-conditioning might be adequate; otherwise, supplemental cooling capacity is necessary.
Supplemental cooling counteracts heat buildup more effectively and adds extra protection
if the primary cooling system fails.

In extreme cases, auxiliary cooling can be provided in an equipment cabinet in the
form of a refrigerant-based heat exchanger, a liquid cooling system, or even a liquid
nitrogen system. These measures are often used with supercomputers, in which CPUs and
other components operate at extremely high clock rates or access speeds.

553

Physical Environment

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Moisture
Excessive moisture is an enemy of electrical circuitry because of the danger of short
circuits, which form when water conducts electricity between two otherwise unconnected
conductors. Short circuits can cause circuit damage and fire when computer equipment
is operating. In addition, water can damage computer equipment even when power is
turned off because impurities in the water remain on computer components as the water
evaporates. These impurities can corrode exposed electrical contacts or other hardware
components, such as power connectors, printed circuit boards, and metal cabinets. They
can also form a short circuit.

Well-designed cabinets are one defense against the dangers of moisture, but they
protect only against spills and leaks. Another protective measure is to mount hardware
cabinets and devices above floor level, which minimizes the danger from roof leaks,
broken pipes, and similar problems that can lead to standing water.

Hardware must also be protected against condensation resulting from excessive
humidity. Low humidity is a problem, too. Low humidity levels increase the buildup of
static electricity, which increases the likelihood of circuit damage caused by inadvertent
static discharges. In general, the humidity level of a room containing computer equipment
should be near 50%.

Humidity can generally be controlled automatically by optional components of
heating, ventilation, and air-conditioning systems. A household dehumidifier can be used
in small rooms, but be aware that when the unit powers on, it might cause a brief power
sag if it s on the same circuit as computer equipment. Also, household dehumidifiers
collect airborne water in a pan, which must be emptied regularly. An overflowing pan
can be a safety or electrical hazard.

Cable Routing
Computer facilities must provide protection for data communication lines. Because the
configuration of these lines changes frequently, ease of access is also important. Computer
facilities usually deal with this problem in two ways raised floors and dedicated cabling
conduits.

A raised floor is often used in a room containing multiple hardware cabinets and
serves several purposes. The main purpose is to have an accessible location for cables
connecting different devices. The floor is made up of load-bearing supports on which a
grid of flooring panels is laid. The flooring panels can be installed or removed from the
grid easily. Cables are routed under walkway areas.

Other advantages of raised floors include protection from standing water and ensuring
movement of chilled air. Several inches of water can accumulate without reaching the
level of equipment cabinets. Moisture sensors placed below the floor panels can detect
the buildup of standing water. The space between the actual floor and the floor panels
can also be used as a conduit for chilled air. When used in this manner, equipment
cabinets are vented at the bottom and top. Chilled air is forced through the floor into
the bottom of the cabinets, and heat is dissipated through the top.

Dedicated cabling conduits normally provide cable access between rooms or floors.
To prevent electromagnetic interference, these conduits shouldn t be used to route both
electrical power and electrical data communication lines. In addition, access panels should

554

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

be installed at regular intervals for adding, removing, or rerouting cables. Conduits should
be shielded to limit external electromagnetic interference.

Fire Protection
Fire protection is an important consideration both for ensuring safety of personnel and
protecting expensive computer hardware. As with cooling, the normal fire protection
mechanisms incorporated in buildings are inadequate for rooms housing computer
hardware. In fact, these measures actually increase the danger to personnel and equip-
ment because they usually rely on water for example, automatic sprinklers.

Carbon dioxide, fire retardant foams and powders, and various gaseous compounds
are alternate methods of fire protection. Carbon dioxide is generally unacceptable
because it s a suffocation hazard and promotes condensation in computer equipment.
Fire-retardant foams and powders are unacceptable because of their moisture content,
and powders generally have corrosive properties.

Until the 2000s, many large computer facilities used halon 1301 gas, which doesn t
promote condensation and doesn t displace oxygen to the extent that carbon dioxide
does. It also gives personnel adequate time to evacuate a room or floor. Unfortunately,
halon gas is a chlorofluorocarbon (CFC), a class of gases with ozone-depleting properties.
Most industrialized countries have signed the Montreal Protocol, which has phased out
CFC production and bans importation of newly produced CFCs. Other alternatives are
currently being used, including halocarbon compounds and inert gas mixtures. None has
yet emerged as a clear successor to halon, which is still in wide use as a result of
industry-wide recycling efforts.

Fire detection is also a special problem in computer facilities. Electrical fires often
don t generate heat or smoke as quickly as conventional fires do, and normal detection
equipment might be slow to react. Fast detection is an economic necessity. A fire in one
item of computer equipment can spread quickly and cause damage to attached equipment
through power surges. Normal building fire-detection equipment is typically supplemented
in a computer room with additional smoke detectors placed near large concentrations of
equipment and below raised floors to detect fires in cabling.

Disaster Planning and Recovery
Because disasters such as fire, flood, and earthquakes can t be avoided, plans must be
made to recover from them. Disaster planning is particularly critical in online systems and
systems in which extended downtime causes extreme economic impact. A number of
measures are normally taken, including the following:

Periodic data backup and storage of backups at alternate sites
Backup and storage of critical software at alternate sites
Duplicate or supplementary equipment installed at alternate sites
Arrangements for leasing existing equipment at alternate sites, such as
another company or a service bureau

The measures that are suitable for a specific installation depend heavily on local
characteristics, such as size and distribution of computing resources, available budget,
available service vendors, and available network capacity to and from those vendors.

555

Physical Environment

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Summary

A system administrator s main responsibility is to ensure efficient, reliable delivery of IS
services. Broad categories of system administration tasks include acquiring new IS
resources, maintaining existing IS resources, and designing and implementing an IS
security policy. The assignment of tasks varies considerably across organizations.

IS resource acquisition and deployment should occur only in the context of a well-defined
strategic plan for the organization. IS strategic plans tend to follow, rather than lead, the
strategic plans of other organizational units. IS resources can be considered organizational
infrastructure. Many IS resources are also capital assets because they re used for multiple
years. Strategic issues relevant to information systems include services to be provided,
charges for services, infrastructure composition, and infrastructure improvement and
maintenance.

Providing infrastructure-based services to a wide variety of users requires service
standards. However, standardization tends to stifle innovation and produce solutions that
are suboptimal for some users. Standardization often causes problems for users who
need services at or near the leading edge of technology. Managing IS resources as an
infrastructure can result in ignoring opportunities to use IS resources for a competitive
advantage.

Planning for IS resource acquisition requires a thorough understanding of current and
anticipated application needs. The acquisition process includes determining the applications
that the hardware and software will support, specifying detailed hardware and software
requirements, drafting and circulating a request for proposal (RFP), evaluating RFP
responses, and negotiating a purchase and/or support contract.

Hardware requirements depend on the hardware and system software resources required
by application software. If application software has already been developed, its hardware
and system software resource consumption can be measured. Determining resource
requirements is more complex when application software hasn t been developed yet.
In this case, requirements must be determined by benchmark testing.

A well-integrated approach to system security protects an organization s hardware, software,
and data resources against accidental loss or damage, malicious tampering, unauthorized
access, and accidental disclosure. Authentication and authorization enforced through the OS
or security service are the first line of defense. Other defensive measures include password
control, auditing, virus protection, regular software updates, and firewalls.

Hardware installation and operation require special attention to many aspects of the
physical environment, particularly electrical power, heat dissipation, moisture, cable routing,
and fire protection.

Key Terms

application firewall

auditing

authentication

authorization

biometric authentication

brownout

556

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

capital expenditures

capital resources

competitive advantage

firewall

hardware monitor

heat dissipation

infrastructure

monitors

operating expenditures

packet-filtering firewall

power sags

power surges

program profiler

proxy server

request for proposal (RFP)

service standards

software monitor

stateful firewall

strategic plan

surge protector

system administration

uninterruptible power
supply (UPS)

virus

Vocabulary Exercises

1. are expected to provide service over a period of years.

2. is the process of determining or verifying the identity of a user or process owner.

3. is the process of determining whether an authenticated user or process has
enough rights to access a resource.

4. The term usually refers only to creating and managing records of user activity
or resource access.

5. A(n) accepts service requests from an untrusted network and relays the
requests to the appropriate servers.

6. Because IS resources can be considered , service standards and costs for
operation, maintenance, and improvement are important components of the IS
strategic plan.

7. A(n) is a formal (legal) document that solicits bids from hardware and software
vendors.

8. A(n) is a program or program fragment that infects a computer by installing itself
permanently, performing one or more malicious acts, and replicating and spreading itself
by using services of the infected computer.

9. A(n) detects and reports processing or I/O activity.

10. Opportunities to use IS resources for a might be missed if these resources are
managed only as infrastructure.

11. A(n) provides auxiliary power during blackouts and can notify the OS when it s
activated.

12. Computer hardware must be protected against and in electrical power.

13. A(n) tracks the progress of complex client-server interactions and blocks packets
that don t conform to normal activity patterns.

557

Vocabulary Exercises

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14. A(n) is a hardware device, software, or a combination of hardware and software
that prevents unauthorized users in one network from accessing resources in another
network.

15. Long-range acquisition of hardware and software should be made in the context of
an overall for the organization.

16. The resource demands of an existing application program can be measured with
a(n) .

Review Questions

1. What is infrastructure? In what ways do hardware and system software qualify as
infrastructure?

2. What basic strategic planning questions should be addressed for infrastructure?

3. What are the advantages and disadvantages of standardization in hardware and system
software?

4. What is a request for proposal (RFP)? How are responses to an RFP evaluated?

5. What problems are encountered when attempting to determine hardware and system
software requirements for application software that hasn t been developed yet?

6. What is a monitor? List types of monitors and the information they provide.

7. Describe authentication and authorization. Which depends on the other? How and why
are these processes more complex in a networked organization than in an organization
that supports all information processing with a single mainframe?

8. What password-protection measures are normally implemented by system administrators,
operating systems, and security services?

9. Describe the pros and cons of enabling auditing of resource accesses.

10. What is a virus? How can users and system administrators prevent virus infections?

11. Why is it important to install OS and application software updates in a timely manner?
How can users and system administrators ensure that they re installed in a timely manner?

12. Describe the main firewall types and how each can improve system security. What
information does a system administrator need to configure a firewall correctly?

13. Why are conventional methods of fire protection inadequate or dangerous for computer
equipment?

14. What problems associated with electrical power must be considered in planning the
physical environment for computer hardware?

Research Problems

1. Some manufacturers and vendors of large midrange computers and mainframes have
developed documentation and software to help engineers, account representatives, and
purchasers configure computer hardware and system software. Some software can help
users match software demands against the capabilities of particular hardware

558

Chapter 14

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

configurations. Investigate the online offerings of a few large computer vendors, such as
www.ibm.com, www.hp.com, and www.fujitsu.com.

2. Investigate firewall products from a major computer vendor, such as www.checkpoint.com,
www.cisco.com, or www.netgear.com. Which products are best suited to a small LAN
with no publicly accessible resources? Which are best suited to a small LAN containing
one publicly accessible Web site? Which are best suited to large organizations with
e-commerce Web sites and internal resources accessed by strategic partners?

3. Locate one or more benchmarking programs for PCs on the Web. Download and install
the benchmarks and test your own computer s performance. What do the results tell you
about your computer? Do they offer any guidance for improving system performance?
What types of application tasks do the benchmark programs simulate? Would similar
benchmark programs be useful with midrange computers or mainframes?

559

Research Problems

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

http://www.ibm.com
http://www.hp.com
http://www.fujitsu.com
http://www.checkpoint.com
http://www.cisco.com
http://www.netgear.com

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

A P P E N D I X

MEASUREMENT UNITS

Many measurement units describe the capabilities of computer system components, such
as storage devices, I/O devices, device controllers, and networks. This appendix describes
common measurement units and abbreviations as well as common mistakes in use and
interpretation.

TIME UNITS

Time intervals, such as CPU cycle time or disk access time, are expressed in fractions of a
second, as shown in Table A.1.

Note that microseconds are sometimes abbreviated as ms, too. However, micro-
seconds are rarely used when describing computer hardware, so you can generally assume
that ms refers to milliseconds.

CAPACITY UNITS

Bits and bytes are the smallest data storage and transmission units. A bit is a binary digit
containing the value 0 or 1, and a byte contains 8 bits. The terms bit and byte are
often quantified with a prefix to indicate larger magnitudes. These prefixes are based on
the value 210 (102410) because it approximates traditional units based on powers of 10,
such as thousands, millions, and billions. Table A.2 shows the abbreviations and prefixes
used in capacity measurements.

TABLE A.1 Time measurements

Abbreviation Term Fraction

ms Millisecond 10-3 (one thousandth)

μs Microsecond 10-6 (one millionth)

ns Nanosecond 10-9 (one billionth)

ps Picosecond 10-12 (one trillionth)

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Both uppercase and lowercase letters are used, although uppercase is more common.
The values these prefixes represent are slightly larger than their decimal counterparts,
which can cause confusion when an abbreviation based on 1024 is used to describe a
quantity based on 1000.

For example, you re considering the capacity of a typical 500 GB disk for a laptop or
desktop PC. Buried in the fine print of a typical ad or technical specification sheet, you
see a statement such as GB means 1 billion bytes and TB equals 1 trillion bytes. In
other words, the stated capacity in GB is based on units of 10003, not 10243. So the cor-
rect capacity of the 500 GB disk is as follows:

10003 10243 500 465 66 GB

Another source of confusion is representing the terms bit and byte with the letter
b or B. For example, both megabit and megabyte can be abbreviated as MB. A com-
mon method of distinguishing between these terms is to abbreviate bit with the lower-
case b and byte with the uppercase B. For example, the abbreviation GB is interpreted
as gigabytes and the abbreviation Gb as gigabits. Unfortunately, this convention isn t fol-
lowed universally. Any abbreviation containing the letters b and B deserves careful scru-
tiny to determine whether bit or byte is intended.

DATA TRANSFER RATES

Data transfer rates describe the capacity of communication channels and the input speed,
output speed, or throughput of I/O devices and device controllers. A data transfer rate is
always expressed as a quantity of data per time interval. For example, LAN data trans-
mission capacity might be described as 1 gigabit per second, and printer output speed
might be described as four pages per minute.

Communication channel capacities are usually expressed in bits or bytes per second.
Magnitude prefixes, such as kilo and mega, can be used (such as 500 kilobits per sec-
ond and 100 megabytes per second). Bit and byte capacity measures are abbreviated as
described previously, and the phrase per second (abbreviated as ps) is appended to the
measurement unit. For example, gigabits per second is abbreviated as Gbps, and

TABLE A.2 Capacity measurements

Abbreviation Prefix Value

K or k Kilo 1024

M or m Mega 10242 (1,048,596)

G or g Giga 10243 (1,073,741,824)

T or t Tera 10244 (1,099,511,627,776)

P or p Peta 10245 (1,125,899,906,842,624)

E or e Exa 10246 (1,152,921,504,606,846,976)

562

Appendix

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

megabytes per second is abbreviated as MBps. As with capacity measures, examine any
abbreviation containing the letter b or B to determine whether it means bit or byte.

Printer output rates are generally expressed in pages per minute, abbreviated as ppm.
The number of bytes in a page varies widely, depending on page content and data-
encoding method. Video output rates can be expressed in frames per second, abbreviated
as fps. The number of bytes per frame depends on frame size, image content, and data-
encoding method.

563

Data Transfer Rates

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

GLOSSARY

10 Gigabit Ethernet An Ethernet standard,
based on the IEEE 802.11ae and 802.11ak
standards, for 10 Gbps transmission. See also
Ethernet and IEEE 802 standards.

24-bit color A color display scheme that
represents each pixel s color as three 8-bit
numbers, each representing the intensity of
an additive or a subtractive color; results in
chromatic depth of around 16 million colors.
See also chromatic depth.

802.11 An early IEEE wireless networking
standard that defines a 2 Mbps maximum raw
data transfer rate in the 2.4 GHz band.

802.11a An IEEE wireless networking stan-
dard that divides frequency bands in the 5.2,
5.7, and 5.8 GHz ranges into 12 channels;
uses orthogonal frequency division multi-
plexing (OFDM) to achieve standard
transmission speeds of 6, 9, 12, 18, 24, 36, 48,
and 54 Mbps.

802.11b An IEEE wireless networking
standard that divides the 2.4 GHz band into
14 channels, each with 22 MHz of bandwidth;
uses direct sequence spread spectrum
(DSSS) to yield raw data transfer rates of 22,
44, and 88 Mbps.

802.11g An IEEE wireless networking stan-
dard that combines the frequencies and bit-
encoding methods of 802.11b with the OFDM
transmission method of 802.11a; raw trans-
mission speeds are the same as 802.11a.

802.11n An IEEE wireless networking stan-
dard that expands on 802.11g; capable of
broadcasting or receiving on up to four fre-
quencies in the 2.4 or 5 GHz bands.

80x86 processors A family of processors that
enhanced the capabilities of the original
8088/8086 processors and enabled Microsoft
OSs to develop beyond MS-DOS.

absolute addressing In programming, using
memory address operands that refer to actual

physical memory locations; this method
requires knowing process offsets. See also
process offset.

access arm In magnetic disks, the device
where read/write heads are mounted; it s
attached to a positioning servo for placing
read/write heads on specific tracks.

access control list (ACL) A list describing
rights granted or denied to users, groups, and
computers for accessing network resources.

access point (AP) A device that connects a
wireless network to a wired network and
manages media access, performs error detec-
tion, and implements security protocols for
the wireless network.

access time The time required to perform one
complete read or write operation; a measure
of storage device time.

acknowledge (ACK) An ASCII control char-
acter sent by a receiver if no data errors are
detected.

Active Directory A directory service and
security system built into Windows Server.
See also directory services.

active matrix display An LCD that uses one
or more transistors for every pixel.

ADD An instruction that accepts two
numeric inputs and produces their arithmetic
sum.

additive colors The primary colors for video
display (red, green, and blue).

address The location of a data element in a
storage device; often used in data structures.

address bus The portion of the system bus
that transmits a memory address when pri-
mary storage is the sending or receiving
device. See also system bus.

address mapping The process of the CPU
determining the physical memory address
that corresponds to a memory reference.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

address resolution See address mapping.

addressable memory The highest numbered
storage byte that can be represented in a CPU
or computer; usually determined by the
number of bits used to represent an address.

Advanced Intelligent Tape (AIT) A magnetic
tape standard developed by Sony based on
Digital Audio Tape; uses helical scanning
and an improved tape drive technology to
pack more data onto a single tape. AIT
includes a small RAM cache in cartridges,
which stores directory information to
speed searching and data access. See also
Digital Audio Tape (DAT) and helical
scanning.

algorithm A program in which different
instructions are applied to different data input
values, depending on the outcome of deci-
sions the program makes. This term also
applies to processing steps that describe the
solution to a problem.

allocation unit The smallest number of sec-
ondary storage bytes that can be allocated to a
file; can t be smaller than the unit of data
transfer between the storage device and
device controller.

American Standard Code for Information
Interchange (ASCII) A standard 7-bit coding
method for character data and some device
control codes.

amplifier A device that increases a signal s
amplitude and can extend a signal s range by
boosting signal power to overcome attenua-
tion; a drawback is that any existing noise
or distortion in the signal is amplified as
well. See also attenuation and repeater.

amplitude A measure of wave height or
power; the maximum distance between a
wave s peak and its zero value.

amplitude modulation (AM) A modulating
method that represents bit values as specific
wave amplitudes.

amplitude-shift keying (ASK) See amplitude
modulation.

analog signal A signal that uses the full range
of a carrier wave characteristic to encode
continuous data values; because it s

continuous in nature, it can represent any
data value within a range of values.

analog-to-digital converter (ADC) An
audio device that accepts a continuous
electrical signal representing sound, samples
it at regular intervals, and outputs a bitstream
representing the samples. See also sampling.

AND An instruction that generates the result
true only if both its data inputs are true.

applet A Java program that runs inside
another program, such as a Web browser, and
performs functions such as accepting user
input and displaying forms and images.
See also Java.

application development software Programs
used to develop other programs, including
application software, system software, and
other application development programs;
encompasses compilers and interpreters for
programming languages and integrated soft-
ware development packages.

application firewall A server that handles
service requests from external users of appli-
cations; improves security by shielding inter-
nal servers and resources from direct access
by outside users.

Application layer The OSI layer that includes
communication protocols used by programs
that make and respond to high-level requests
for network services. See also Open Systems
Interconnection (OSI) model.

application software A stored set of instruc-
tions for responding to a specific request or
performing a specific task.

architectural design The first set of
activities in the UP s design discipline;
involves selecting and describing the config-
uration of all hardware, network, systems
software, and application development tools
to support system development and opera-
tions. See also design discipline and Unified
Process (UP).

areal density The surface area allocated to a
bit on a storage medium, typically measured
in bits, bytes, or tracks per inch; also called
recording density or bit density.

566

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

arithmetic logic unit (ALU) One of the main
CPU components, containing circuitry for
performing computation, comparison, and
logic instructions. See also central processing
unit (CPU).

arithmetic SHIFT A SHIFT instruction that
performs division or multiplication. See also
SHIFT.

array An ordered list of data elements, in
which each element can be referenced by an
index to its position; array elements are
normally referenced by the array name and
the index value.

assembler A program that translates an
assembly-language program into binary CPU
instructions; the earliest example of auto-
mated program development tools. See also
assembly language.

assembly language A programming language
that uses mnemonics to represent CPU
instructions and memory addresses; also
called a second-generation language (2GL).

Association for Computing Machinery
(ACM) A professional society for computer
scientists, programmers, and engineers.

Association for Information Technology
Professionals (AITP) A professional society
for information system managers and appli-
cation developers.

asynchronous transmission A method in
which messages are sent on an as-needed
basis, so sender and receiver don t synchro-
nize their clocks continuously.

attenuation A reduction in signal amplitude
caused by interactions between the signal s
energy and the transmission medium; pro-
portional to the medium s length.

audio response unit A device that generates
spoken messages based on text input; com-
monly used for automated phone bank tellers
and automated call routing.

auditing The process of creating and manag-
ing records of user activity or resource access.

authentication The process of determining or
verifying the identity of a user or process
owner.

authorization The process of determining
whether an authenticated user or process has
enough rights to access a resource.

average access time Typically expressed as
an average of access times for all storage
locations. See also access time.

back-end CASE tool An application develop-
ment tool that generates source code instruc-
tions based on analysis and design models; also
called a code generator. See also computer-
assisted software engineering (CASE) tool.

bandwidth The difference between maxi-
mum and minimum frequencies that can be
transmitted through a transmission medium.

bar code A series of vertical bars of equal
length but varied thickness and spacing, used
to encode numeric data.

bar-code scanner An optical input device
that detects specific patterns of bars or boxes
representing numeric data.

bare-metal hypervisors Hypervisors that are
installed much like an OS but provide only
minimal OS-type functions, such as the
capability to start and stop virtual machines
(in contrast to hypervisors installed over a
traditional OS). See also hypervisor and
virtualization environments.

base A multiplier that describes the differ-
ence between one position and the next in a
numbering system.

benchmark A measure of CPU or computer
performance when carrying out one or more
specific tasks; used to compare the perfor-
mance of multiple computers, measure a
computer s performance and determine how
to improve it, and determine the computer or
system configuration that meets an applica-
tion s requirements.

benchmark program A program that per-
forms specific tasks that can be counted or
measured. See also benchmark.

benchmark suite A collection of benchmark
programs for evaluating computer systems.
See also benchmark.

big endian A CPU or memory architecture in
which the most significant byte is stored at

567

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the lowest memory address. See also most
significant byte.

billions of floating-point operations per sec-
ond (gigaflops or GFLOPS) A measurement
of the rate at which floating-point operations
are performed; used to measure CPU
performance.

binary number A number in which each
digit can have only one of two possible values
(0 or 1).

binary signals Digital signals in which one of
two values is encoded by modulating a wave
characteristic. See also digital signal.

biometric authentication A method of verify-
ing identity based on physical characteristics,
such as fingerprints and facial features.
See also authentication.

bit Derived from the term binary digit, it
represents one digit of a binary number and
can have the value 0 or 1.

bitmap A stored set of numbers describing
the content of all pixels in an image.

bit string A group of bits describing a single
data value.

bit time The duration of each bit in a carrier
signal.

blade A circuit board containing most of a
server but lacks secondary storage, external
I/O connections, and a power supply; con-
centrates more computing power in less space
and with lower power requirements than a
typical cluster.

block A generic term for describing secondary
storage data transfer units. Also refers to a set
of logical records grouped on a storage device
for efficient processing, storage, or transport as
well as a portion of a program that s always
executed as a unit.

block check character (BCC) The
combined parity bits from each position in a
group of characters or bytes; added to the end
of the block before transmitting. See also
parity bit.

block checking An error-checking method
for groups of characters or bytes in which
the sender combines parity bits for each
position into a block check character (BCC)

and adds it to the end of the block. See also
parity bit.

blocked state The state of an active thread
that s been suspended by the OS and is wait-
ing on the stack until interrupt processing has
been completed. See also interrupt and
thread.

blocking The grouping of logical records in
physical records. See also logical record and
physical record.

blocking factor A numeric ratio of logical
records to physical records. See also logical
record and physical record.

Blu-ray disc (BD) An update to DVD-ROM,
originally designed for high-definition video
discs but has been adapted to data storage.
See also DVD read-only memory (DVD-ROM).

Boolean data type A data type that can store
only the value true or false; requires only a
single bit for storage.

Boolean logic A formal logic system in which
statements can be evaluated only as true or
false; well suited to the binary numbers used
in computer processing.

BRANCH An instruction that causes the
processor to depart from sequential instruc-
tion order; its operand is loaded into the reg-
ister that the control unit uses to fetch the
next instruction.

branch prediction An approach to dealing
with conditional BRANCHes in which the CPU
guesses whether a branch condition will be
true or false based on past experience; a form
of parallel processing.

broadband A high-bandwidth communica-
tion channel.

broadcast mode A communication mode in
which the same message is transmitted to all
devices on a network simultaneously. See also
simplex mode.

brownout A temporary reduction in voltage
level by a power provider, usually because of
demand for electricity exceeding the provi-
der s generation and transmission capabilities
during peak demand periods.

buffer A small reserved area of main
memory (usually DRAM or SRAM) that holds

568

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

data in transit from one device to another and
is used to resolve differences in data transfer
unit size.

buffer overflow An error condition that
results when receiving more data than can be
stored in a buffer. See also buffer.

bus A shared electrical or optical communi-
cation channel that connects two or more
devices in a computer or network.

bus arbitration unit A simple processor
attached to a peer-to-peer bus that
decides which devices must wait when
multiple devices want to become a bus
master. See also bus master and peer-
to-peer bus.

bus clock A clock circuit that generates
timing pulses, which are transmitted to all
devices attached to the system bus to coordi-
nate their activities.

bus cycle The time interval from one bus
clock pulse to the next; also the time required
to perform one data transfer operation on a
bus.

bus master A device attached to a bus that
can initiate a data transfer operation or send a
command to another device; it controls all
access to the bus.

bus protocol A communication protocol,
used by all devices attached to a bus, that
governs the format, content, and timing of
data, memory addresses, and control mes-
sages sent across the bus.

bus slaves Devices that must go through the
bus master for access to the bus. See also bus
master.

bus topology A network topology in which
every node is directly connected to a single
shared transmission line. See also bus and
network topology.

business logic layer The software layer that
carries out the rules and procedures of busi-
ness processing. See also three-layer
architecture.

business modeling discipline Activities in the
Unified Process for developing models of an
organization and the system environment.
See also Unified Process (UP).

business-to-business (B2B) The intercon-
nection of a company s information systems
with customer and supplier information sys-
tems to improve efficiency.

byte A string of 8 bits; generally the smallest
unit of data that can be read from or written
to a storage device. See also bit.

cache An area of high-speed memory (usually
RAM) for storage device accesses that
improves the performance of read and write
operations.

cache controller A special-purposes proces-
sor or software that manages cache content; it
guesses what data will be requested in the
near future and loads this data from the stor-
age device into the cache before it s actually
requested.

cache hit An access to data already contained
in the cache.

cache miss An access to data that isn t stored
in the cache.

cache swap An operation performed after a
cache miss. The cache controller guesses
which data is least likely to be needed in the
near future, writes it to the storage device,
and purges it from the cache. The requested
data is then read from the storage device and
placed in the cache. See also cache miss.

call instruction In programming, an instruc-
tion that transfers control to the first instruc-
tion in a function. See also function.

capital expenditures Funds an organization
uses on capital resources. See also capital
resources.

capital resources Assets or resources
expected to provide benefits beyond the cur-
rent fiscal year.

Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA) A MAC protocol,
used in wireless networks, that uses a three-
step carrier sense and transmission sequence
to try to prevent collisions. See also collision
and Media Access Control (MAC).

Carrier Sense Multiple Access/Collision
Detection (CSMA/CD) A MAC protocol
that allows collisions to occur but has meth-
ods for detecting and recovering from them.

569

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

See also collision and Media Access Control
(MAC).

carrier wave A wave with encoded bits in a
communication channel.

Category 5 Similar to Category 6 but can t
achieve the same transmission speeds
reliably.

Category 6 The most widely used twisted-
pair wiring standard; consists of four
twisted pairs that transmit at speeds up to 1
Gbps.

cathode ray tube (CRT) An older video dis-
play device that s an enclosed glass vacuum
tube with an electron gun generating a narrow
beam of electrons toward the tube s front
surface, which is coated with colored phos-
phors that emit light when struck by
electrons.

CD digital audio (CD-DA) A read-only for-
mat for storing and distributing music on a
CD.

CD read-only memory (CD-ROM) A
standard 120-mm read-only optical disc;
compatible with CD-DA but includes
additional formatting information to store
directory and file information. See also CD
digital audio (CD-DA).

central processing unit (CPU) A general-
purpose processor that executes all instruc-
tions and controls all data movement in a
computer system. See also general-purpose
processor.

channel See I/O channel or communication
channel.

character A symbol in a written language,
including letters, numerals, and punctuation
marks.

character-framing methods Approaches to
clock synchronization when messages consist
of ASCII or Unicode characters.

chief information officer (CIO) The person
who s responsible for planning, maintaining,
and operating all information-processing
resources in an organization; managers such
as the database administrator, network
administrator, and computer operations
manager often report to the CIO.

child The file version that s been updated
with changes to the parent file. See also
parent.

child process A process created and con-
trolled by the parent process that spawned it.
See also process and spawn.

chromatic depth The number of distinct col-
ors or gray shades that can be displayed in a
grayscale image. See also grayscale.

chromatic resolution See chromatic depth.

circuit switching A channel-sharing strategy
that grants exclusive use of a communication
channel for the duration of the session.

class A data structure containing both tradi-
tional (static) data elements and programs
that manipulate data; it combines related data
items in much the same way a record does,
but it extends a record to include methods for
manipulating data items.

clear-to-send (CTS) signal A CSMA/CA
signal that a wireless access point transmits
after it detects no potential collision. See also
Carrier Sense Multiple Access/Collision
Avoidance (CSMA/CA).

client A program or computer that requests
services from another program or computer.

client/server architecture A method of orga-
nizing software to provide and access distrib-
uted information and computing resources;
divides software into two classes client and
server.

clock cycle The time interval between two
clock timing pulses. See also system clock.

clock rate The frequency (expressed in Hz)
at which the system clock generates timing
pulses. See also system clock.

cloud A specific way of organizing computing
resources for maximum availability and
accessibility and minimum complexity in the
interface; includes front-end Web-based
interfaces and a large collection of computing
and data resources (collectively called back-
end resources).

cloud computing A cloud-based approach to
distributing and accessing software and hard-
ware services across the Internet. See also
cloud, infrastructure as a service (IaaS),

570

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

platform as a service (PaaS), and software as a
service (SaaS).

cluster A group of similar or identical com-
puters, connected by a high-speed network,
that cooperate to provide services or run a
common application; has the advantages of
scalability and fault tolerance but can be
complex to configure and manage.

CMY Cyan, magenta, and yellow; the primary
colors in printing. See also subtractive colors.

CMYK Cyan, magenta, yellow, and black;
represents the primary colors in printing plus
a separate ink for black.

coaxial cable A transmission medium that
contains a single copper conductor sur-
rounded by a thick plastic insulator, a metal-
lic shield, and a tough plastic outer wrapping.

code Program instructions for performing a
task.

coercivity The capability of a substance or
magnetic storage medium to accept and hold
a magnetic charge; directly proportional to
mass.

collating sequence The specific order for
assigning numeric codes to characters or
symbols.

collision The noise or interference produced
when multiple nodes attempt to transmit
across the same medium at the same time,
and their messages mix.

colon hexadecimal notation The written for-
mat of 128-bit IPv6 addresses; written in the
form hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:hhhh:
hhhh, with hhhh representing a sequence of
four hexadecimal digits. See also Internet
Protocol version 6 (IPv6).

command language A set of commands and
syntax requirements for implementing an
operating system s command layer via a text
interface.

command layer The operating system layer
that serves as the user interface; via this layer,
users can run applications and OS utilities
and manage system resources, such as files,
folders, and I/O devices.

Common Object Request Broker Architecture
(CORBA) An industry-wide interoperability

standard specifying the middleware that
objects use to interact across networks.

communication channel A combination of a
sending device, a receiving device, the trans-
mission medium connecting them, and a
communication protocol. See also communi-
cation protocol and transmission medium.

communication protocol A set of rules and
conventions for representing the content of
data and commands, encoding and transmit-
ting data (bits), channel organization, and
communication coordination (clock syn-
chronization and error detection and
correction).

compact disc (CD) A technology developed
by Sony and Phillips for storing and distri-
buting music in the CD-DA format on a 120-
mm optical disc. See also CD digital audio
(CD-DA).

compaction The process of reallocating all
programs in memory so that free partitions
form a contiguous block in upper memory;
used to address the problem of fragmentation.
See also contiguous and fragmentation.

competitive advantage The way in which an
organization uses resources to offer better or
cheaper services so that it has a major edge
over its competitors.

compiler A program that translates some
source code instructions into executable
code and others into library calls; a compiler s
output is called object code. See also object
code.

compiler library A file containing related
executable functions and an index of the
library contents. See also compiler and link
editor.

complete path The access path that begins at
the root directory and proceeds through all
directories along a path to the file being
accessed.

complex instructions Instructions that com-
bine primitive processing operations.

complex instruction set computing (CISC) A
computer and processor design approach,
using complex instructions that do more work
per instruction; it reduces the extra memory

571

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

required for program storage and execution in
RISC CPUs. See also reduced instruction set
computing (RISC).

component A standardized, interchangeable
software module that s executable, has a
unique identifier, and has a well-known
interface.

Component Object Model Plus (COM+) A
Microsoft specification for component inter-
operability; defines component registration,
message-routing services, and a component
communication protocol.

composite signal A complex signal created by
combining multiple simple signals.

compression A technique that reduces the
number of bits used to encode data.

compression algorithm A mathematical
compression technique implemented as a
program for translating data inputs into
equivalent but smaller data outputs. See also
compression.

compression ratio The ratio of data size in
bits or bytes before and after compression.
See also compression.

computer-assisted software engineering
(CASE) tool An application development
tool suite that supports the Unified
Process requirements and design disciplines.
See also design discipline and requirements
discipline.

computer network A collection of hardware
and software components that enable users
and computer systems to share information,
software, and hardware resources and make it
possible to use many types of communication
methods.

computer operations manager The person
who oversees the operation and maintenance
of a large information-processing facility or an
information system.

computer science The study of implement-
ing, organizing, and applying computer soft-
ware and hardware resources.

concurrent execution A method of sharing
CPU control among threads by using time
slices. See also thread.

condition A comparison or other logical
operation that produces a Boolean (true or
false) result.

conditional BRANCH A BRANCH instruction
that occurs only if a specified condition is
met. The condition is evaluated, and the
Boolean result is stored in a register; the
register s contents are checked, and the
BRANCH is performed only if the Boolean
result is true.

conductivity The capability of an element or
a substance to enable electron flow.

conductor A substance that exhibits conduc-
tivity, allowing electrons to flow through it.

connectionless protocol A communication
protocol that doesn t require sender and
receiver to establish a connection before
transmitting any data.

connection-oriented protocol A communica-
tion protocol that requires sender and
receiver to establish a connection before
transmitting any data.

contiguous The condition of all portions of a
program or the OS being loaded into sequen-
tial physical locations in memory. See also
memory allocation.

control bus The portion of the system bus
that carries commands, command responses,
status codes, and similar messages; computer
components coordinate their activities by
sending signals over this bus. See also system
bus.

control structure A source code instruction
that controls the execution of other source
code instructions; includes unconditional
BRANCHes, such as a goto statement; con-
ditional BRANCHes, such as an if-
then-else statement; and loops, such as
while-do. See also source code.

control unit One of the main CPU compo-
nents, responsible for moving data, accessing
instructions, and controlling the arithmetic
logic unit. See also central processing unit
(CPU).

core A term describing the logic, computa-
tion, and control circuitry of a single CPU.
See also multicore architecture.

572

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

core memory In early computers, a technol-
ogy for implementing primary storage as rings
of ferrous materials embedded in a two-
dimensional wire mesh.

crosstalk In parallel transmission channels,
noise added to the signal in a wire from EMI
generated by adjacent wires. See also parallel
transmission.

current directory The directory that s being
accessed. See also directory.

cursor A symbol on a video display that
indicates the current position; also called a
pointer.

cycle In communication, the full range of a
sine wave, from zero to positive peak, back to
zero, to negative peak, and back to zero again.

cycle time The inverse of the clock rate; in
most CPUs, it s the time required to fetch and
execute the simplest instruction in the
instruction set. See also clock rate.

cyclic redundancy checking (CRC) The most
widely used error-detection method; uses a
complex algorithm to generate CRC bit strings
for groups of characters or bytes.

cylinder In magnetic disks, consists of all
tracks at an equivalent distance from the edge
or spindle on all platter surfaces. See also
platters and track.

data bus The portion of the system bus that
transmits data between computer compo-
nents. See also system bus.

data declaration A source code instruction
type that defines the name and data type of
program variables. See also source code.

data layer The software layer that manages
stored data, usually in databases. See also
three-layer architecture.

Data Link layer The OSI layer serving as the
interface between network software and
hardware; responsible for media access con-
trol and converting messages and addresses
from one format to another. See also Open
Systems Interconnection (OSI) model.

data operation A source code instruction
type that updates or computes a data value,
such as an assignment statement or a com-
putation. See also source code.

data striping A fault-tolerance technique that
breaks a unit of data into smaller segments
and stores these segments on multiple disks.
See also fault tolerance.

data structure A related group of primitive
data elements organized for some type of
common processing; it s defined and manipu-
lated in software because the CPU can t
manipulate data structures directly.

data transfer rate The rate at which data is
transmitted through a medium or communi-
cation channel; measured in data units per
time interval; essentially, it s a measure of
communication capacity. For a storage
device, it s computed by dividing 1 by the
access time and multiplying the result by the
unit of data transfer.

database administrator The person responsi-
ble for overseeing an organization s database
and ensuring data integrity, reliability, secu-
rity, and availability.

datagrams Messages accepted from
Transport-layer protocols and forwarded to
their destinations. See also Transport layer.

debugging tools Utilities that simulate pro-
gram execution and help programmers trace
errors. See also application development
software.

debugging version A program version con-
taining symbol table entries and debugging
checkpoints to help locate and correct errors.
See also production version and symbol table.

decimal point The period or comma in the
decimal numbering system that separates the
whole and fractional parts of a numeric value.
See also radix point.

decoding The process the control unit per-
forms of extracting an instruction s op code
and operands, loading data inputs, and sig-
naling the ALU.

decompression algorithm An algorithm
that restores compressed data to its original
or nearly original state. See also
compression.

deployment discipline Activities in the
Unified Process for installing and configuring
infrastructure and application software

573

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

components and bringing them into opera-
tion. See also Unified Process (UP).

design discipline Activities in the Unified
Process for determining the structure of a
specific information system that fulfills the
system requirements. See also Unified Pro-
cess (UP).

design models Models that specify detailed
blueprints for software component construc-
tion and the interaction between software
components and users.

detailed design Design activities that specify
system details, including databases, applica-
tion software, user and system interfaces, and
backup and recovery mechanisms.

device controller A processor that controls
the physical actions of storage and I/O
devices; connects these devices to the system
bus or a subsidiary bus.

differential backup A type of backup that s a
variation on an incremental backup, in which
backup times aren t reset as files are copied.
See also incremental backup.

Digital Audio Tape (DAT) An early magnetic
tape technology on which Digital Data Storage
standards are based. See also Digital Data
Storage (DDS).

Digital Data Storage (DDS) Magnetic tape
standards developed by Hewlett-Packard and
Sony and based on Digital Audio Tape; DDS
drives use helical scanning. See also Digital
Audio Tape (DAT) and helical scanning.

digital signal A signal that can contain one of
a finite (countable) number of possible values.

digital signal processor (DSP) A micropro-
cessor specialized for processing continuous
streams of audio or graphical data; commonly
embedded in audio and video hardware.

digital-to-analog converter (DAC) An audio
device that accepts a bitstream representing
sound samples and generates a continuous
analog signal that can be amplified and routed
to a speaker.

digitizer A device consisting of a digitizing
tablet and a pen, stylus, or both that
captures a pointing device s position as
input data.

Direct3D A video controller image descrip-
tion language that s part of the Microsoft
DirectX suite embedded in Windows OSs.
See also image description language (IDL).

direct access See random access.

direct-attached storage (DAS) A storage
access model in which software running on a
CPU accesses secondary storage devices in
the same computer.

direct memory access (DMA) A method of
data transfer that enables the CPU to exe-
cute instructions while another device (the
DAM controller) manages all transfers
between memory and other storage or I/O
devices. See also DMA controller.

directory A data structure containing infor-
mation about files and other directories.

directory services Middleware that stores the
name and network address of distributed
resources, responds to directory queries,
accepts directory updates, and synchronizes
directory copies. See also middleware.

disciplines Related groups of system devel-
opment activities in the Unified Process.
See also Unified Process (UP).

discrete signal See digital signal.

disk defragmentation Reorganizing data on a
disk drive so that a file s contents are stored in
sequential sectors, tracks, and platters; an OS
utility is used to perform this task.

disk mirroring A fault-tolerance technique in
which all disk write operations are made
simultaneously or concurrently to two storage
devices. See also fault tolerance.

dispatching Giving CPU control to a thread in
the ready state. See also ready state and
thread.

distortion Changes to the data signal caused
by interaction with the communication
channel; can include echoes, resonance, and
selective attenuation.

distributed computing See distributed
processing.

Distributed Computing Environment
(DCE) A standard for distributed OS services
defined by the Open Group Standard; covers

574

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

network directory services, file-sharing ser-
vices, RPC, remote thread execution, system
security, and distributed resource manage-
ment. See also distributed processing and
Remote Procedure Call (RPC).

distributed processing Spreading parts of an
information system across many computer
systems and locations.

dithering A process that generates continu-
ous color approximations by placing small
dots of different colors in an interlocking
pattern.

diversity As specified in the 802.11n stan-
dard, using antenna pairs for redundant data
transmission across different frequencies to
increase signal reliability. See also 802.11n.

DMA controller A device attached to the
system bus and main memory that manages
data transfers, freeing the CPU to execute
instructions. See also direct memory access
(DMA).

Domain Name System (DNS) A name-
resolution protocol used on the Internet;
makes use of dynamic connections to find
requested IP addresses. See also dynamic
connection.

dot matrix printer An impact printer that
moves a print head containing a matrix of pins
over the paper, and a pattern of pins matching
the character or symbol to be printed is forced
out of the print head.

dots per inch (dpi) A measure of print or
display resolution (pixel density); a smaller
pixel size represents a higher dpi and, there-
fore, higher image or print quality. See also
resolution.

dotted decimal notation The written format
of IPv4 addresses; written in the form ddd.ddd.
ddd.ddd, with ddd representing a decimal
number between 0 and 255. See also Internet
Protocol version 4 (IPv4).

double data rate (DDR) A series of technol-
ogies, each doubling the data transfer rate of
the previous synchronous DRAM version.
See also synchronous DRAM (SDRAM).

double inline memory module (DIMM) A
small printed circuit board that s essentially a

SIMM with independent electrical contacts on
both sides of the module. See also single
inline memory module (SIMM).

double-precision A data format that com-
bines two adjacent fixed-length data items to
hold a single value; increases accuracy or
numeric range.

doubly linked list A data structure in which
each list element contains pointers to both
the previous and next list elements.

drive array An arrangement of hard drives
enclosed in a storage cabinet and accessed as
though they re a single storage device.

dual inline packages (DIPs) An early form of
packaging for RAM or ROM circuits; had two
rows of electrical contact pins.

dual-porting The simultaneous read/write
capability in video RAM.

DVD An optical disc format for distributing
movies and other audiovisual content; stands
for both digital video disc and digital ver-
satile disc.

DVD read-only memory (DVD-ROM) A
format for general-purpose read-only data
storage on DVD.

dynamic connection A more complex, but
flexible, approach to remote resource access,
in which connections between a client and a
server or remote resource aren t established
until the time of the access request. See also
static connection.

dynamic link libraries (DLLs) Repositories of
reusable software modules organized for
dynamic linking; also refers to a Windows
file format for storing reusable software
modules.

dynamic linking A linking process performed
during program loading or execution. See also
link editor.

dynamic RAM (DRAM) A type of RAM that
stores each bit by using a single transistor and
capacitor.

early binding See static linking.

effective data transfer rate The data-
transmission capacity actually achieved
with a communication protocol; always less

575

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

than the raw data transfer rate. See also raw
data transfer rate.

electromagnetic interference (EMI) An
alteration of wave characteristics caused by
external electrical or magnetic phenomena,
such as radio equipment and nearby power
lines.

electronically erasable programmable ROM
(EEPROM) A type of nonvolatile memory
that can be programmed, erased, and repro-
grammed by signals sent from a CPU; the only
type of ROM that s currently used.

encapsulation A message-translation process
that embeds all or part of a datagram in the
message format of a physical network.

Enterprise JavaBeans (EJBs) Java compo-
nents that run in a business container on a
server; capable of performing complex,
behind-the-scenes processing.

erasable programmable ROM (EPROM) A
type of nonvolatile memory that s manufac-
tured blank, written (programmed) with a
special EPROM writer, and erased by expo-
sure to ultraviolet light.

Ethernet A widely used LAN technology,
developed by Xerox in the early 1970s, that s
closely related to the IEEE 802.3 standard.
See also IEEE 802 standards and local area
network (LAN).

even parity An error-detection method in
which the sender sets the parity bit to 0 if the
count of 1-valued data bits is even or to 1 if
the count of 1-valued data bits is odd. See also
parity bit.

excess notation A format that can be used to
represent signed integers with a fixed number
of bits; essentially, it divides a range of ordi-
nary binary numbers in half and uses the
lower half for negative values and the upper
half for nonnegative values. See also signed
integer.

exclusive OR (XOR) An instruction that
generates the value true if either (but not
both) data input is true.

executable code A program consisting
entirely of CPU instructions that are ready to
be loaded and run.

executing The act of a processor performing
a function in response to an instruction.
See also instruction and processor.

execution cycle The CPU cycle in which
instructions are retrieved from registers, the
specified data transformation is performed,
and data outputs are stored in registers.

explicit priority A priority-based scheduling
method that assigns a priority level to each
thread and can dispatch the highest-priority
threads first or assign larger time slices to
high-priority threads. See also dispatching,
priority-based scheduling, and thread.

Extended Binary Coded Decimal Interchange
Code (EBCDIC) An IBM mainframe coding
method for representing character data in an
8-bit format.

Extensible Markup Language (XML) An
extension of HTML that describes the struc-
ture, format, and content of documents.
See also Hypertext Markup Language
(HTML).

external function call A placeholder in
object code that the compiler generates for
missing executable code; contains the
name and type of the called function as well
as the memory addresses and types of func-
tion parameters. See also compiler and
function.

external I/O buses Subsidiary buses that
connect external devices to the system bus;
they provide the connection points for exter-
nal devices and aggregate their capacity to
better match a system bus connection s
capacity.

fault tolerance In an FMS, methods of secur-
ing file content against hardware failure.
See also file management system (FMS).

fetch cycle The CPU cycle (also called the
instruction cycle) in which data inputs are

prepared for transformation into data outputs;
instructions are fetched from primary storage
and stored in registers.

fiber-optic cable A guided transmission
medium for optical signals, generally consisting
of plastic or glass fibers sheathed in a protec-
tive plastic coating.

576

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

fields In a file s logical structure, the compo-
nents of a record; usually contains informa-
tion about a single person, a thing, or an
event. See also record.

fifth-generation language (5GL) A nonpro-
cedural programming language used to
develop software that mimics human
intelligence.

file A sequence of records on secondary
storage; the common organization schemes
for files are sequential and indexed. See also
record.

File Allocation Table (FAT) The file system
used in DOS and early Windows versions to
record the allocation of storage device loca-
tions to files and directories.

file association The relationship between file
types and the programs or OS utilities that
manipulate them.

file close operation The act of severing the
relationship between a file and a process by
flushing file I/O buffers, deallocating buffer
memory, updating the file s directory entries,
and updating the open file table.

file control layer The FMS layer that provides
service functions for manipulating files and
directories, processes service calls from the
command layer, issues commands to the
storage I/O control layer to interact with
hardware, and maintains the directory and
storage allocation data structures. See also file
management system (FMS).

file management system (FMS) The collec-
tion of system software that performs file and
secondary storage management and access
functions; usually part of the OS.

file migration A file management technique
that balances each file version s storage
cost with anticipated user demand for this
version; older versions of files are moved
automatically to less costly storage media or
devices.

file open operation The process of associat-
ing a file with an active process by allocating
buffers and updating internal tables.

File Transfer Protocol (FTP) An older Web
protocol that specifies a client/server request

and response language for copying files from
one Internet host to another.

firewall A hardware device or software (or a
combination) that prevents unauthorized
users in one network from accessing
resources on another network.

firmware Software, such as system BIOS,
stored in nonvolatile memory; can be loaded
into main memory at high speeds. See also
nonvolatile memory (NVM).

first come, first served (FCFS) A priority-
based scheduling method in which the
scheduler always dispatches the ready thread
that has been waiting the longest. See also
dispatching, priority-based scheduling, and
thread.

first-generation languages (1GLs) The earli-
est programming languages, consisting of
binary CPU instructions.

fixed-length instructions In this type of
instruction format, the amount by which the
instruction pointer must be incremented after
each fetch is a constant; this increment is the
length of an instruction.

flag A Boolean variable representing each
bit in a PSW register s bit string; generally
used to store the result of a comparison
operation, control conditional BRANCH
execution, or indicate actual or potential
error conditions. See also program status
word (PSW).

flash RAM The most common type of non-
volatile memory; typically used to store firm-
ware and in portable secondary storage
systems, such as USB flash drives.

flat memory model An approach to assigning
memory addresses in which memory loca-
tions are described by single unsigned inte-
gers corresponding to linear positions.

flat panel displays Newer video display
devices that are thinner, generate higher
quality images, and consume less power than
CRTs.

floating-point notation A method for repre-
senting real numbers that consists of two
parts: a mantissa and an exponent; the man-
tissa holds the bits that are interpreted to

577

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

derive the real number s digits, and the
exponent value indicates the radix point s
position. See also real number.

font A collection of characters of similar style
and appearance.

formula A sequence of computation and data
movement instructions that a processor exe-
cutes to solve a processing problem.

forwarding table A table of node addresses
and transmission lines or connection ports
that each central network node maintains to
make message-forwarding decisions.

fourth-generation languages (4GLs) High-
level programming languages that have higher
instruction explosion and support nonproce-
dural programming, database manipulation,
and advanced I/O capabilities. See also
instruction explosion.

fragmentation The scattering of storage
locations allocated to a single process or pur-
pose throughout noncontiguous locations in
physical memory or a secondary storage
device. See also contiguous and memory
allocation.

fragmented The condition of a hard disk (or
other storage drive) with many programs and
files scattered across it in noncontiguous
storage locations. See also contiguous.

frequency The number of wave cycles
occurring in 1 second; measured in hertz.
See also cycle.

frequency-division multiplexing (FDM) A
channel-sharing technique that partitions a
single broadband channel into multiple nar-
rowband subchannels, each representing a
different frequency band.

frequency modulation (FM) A modulation
method that represents bit values by varying
carrier wave frequency while holding ampli-
tude constant.

frequency-shift keying (FSK) See frequency
modulation.

front-end CASE tool An application devel-
opment tool that primarily supports develop-
ing system models. See also computer-
assisted software engineering (CASE) tool.

full backup A type of backup in which the
FMS copies all files and directories for an
entire storage volume; can include storage
allocation tables, partition tables, and other
important disk management data structures.

full-duplex mode A communication mode in
which two transmission lines are used; allows
simultaneous communication in both
directions.

fully qualified reference See complete path.

function A named instruction sequence in a
high-level programming language that s
always executed as a unit; also called a sub-
routine or a procedure.

gate A circuit that can perform a processing
function on a single binary electrical signal, or
bit. See also switch.

gateways Nodes connecting two or more
networks or network segments that might be
physically implemented as workstations,
servers, or routers.

general-purpose processor A processor that
can be instructed to perform a wide variety of
tasks. See also processor.

general-purpose registers Registers used only
by the currently running program; they typi-
cally hold intermediate results or frequently
used data values. See also registers.

germanium, antimony, and tellurium
(GST) A glasslike compound, used in phase-
change memory, that can change between
amorphous and crystalline states. See also
phase-change memory (PCM).

Gigabit Ethernet An Ethernet standard,
based on the IEEE 802.3z and 802.3ab stan-
dards, for 1 Gbps transmission. See also
Ethernet and IEEE 802 standards.

gigahertz (GHz) A measurement of wave or
system clock frequency; one billion cycles per
second.

Google File System (GFS) A file system
Google developed to meet rapidly increasing
storage requirements; offers scalability to
petabyte storage, the capability to handle
extremely large files, data storage on distrib-
uted commodity servers, and simultaneous

578

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

file access by multiple distributed
applications.

grandparent The file version before the
parent version. See also parent.

graph directory structure A directory struc-
ture in which files and subdirectories can be
contained in multiple directories, and direc-
tory links can form a cycle. See also links.

Graphics Interchange Format (GIF) A com-
mon bitmap compression format for still
images.

grayscale A display device or encoding
method that can display black, white, and
shades of gray but no other colors.

grid A group of dissimilar computers, con-
nected by a high-speed network, that cooper-
ate to provide services or run a shared
application; unlike a cluster, computers in a
grid work cooperatively at some times and
independently at others and can be located
far away from each other.

Grosch s Law An outdated mathematical
relationship between computer size and cost
per unit of instruction execution, which states
that computing power, measured by millions
of instructions per second, is proportional to
the square of hardware cost. In other words,
large and powerful computers are always
more cost effective than smaller ones.

guided transmission A transmission medium
that routes signals between two locations
through a physical connection, such as cop-
per wire or optical fiber; also called wired
transmission.

H.323 The oldest and most widely deployed
VoIP protocol suite; also addresses video and
data conferencing. See also Voice over IP
(VoIP).

half-duplex mode A communication mode
that uses a single shared channel, and each
node takes turns using the transmission line
to transmit and receive.

half-toning Simulating shades of gray by
dithering black and white dots. See also
dithering.

HALT An instruction that suspends the nor-
mal flow of instruction execution in the

current program; in some CPUs, it causes the
CPU to cease all operations, and in others, it
causes a BRANCH to a predetermined mem-
ory address. See also BRANCH.

hard disk A magnetic disk medium with a
rigid metal base (substrate) where data is
recorded as patterns of magnetic charge.

hardware independence Embedding hard-
ware s physical details into system software
so that users and application programmers
don t need to know them to interact with
hardware.

hardware monitor A device attached directly
to the communication link between two
hardware devices, often used to monitor the
use of communication channels, disk drives,
and network traffic; monitors communication
activity between the two devices and stores
communication statistics that can be
retrieved and printed in a report.

head-to-head (HTH) switching time The time
needed to switch a hard drive s read/write
circuitry to the correct read/write head before
accessing a sector.

heat dissipation Conducting excessive heat
away from a device, thus reducing its
temperature.

heat sink An object designed to absorb heat
and rapidly dissipate it via air or water
movement; it s placed in direct physical con-
tact with an electrical device.

helical scanning A geometric approach to
recording data on a tape surface in which data
is read and written by rotating the read/write
head at an angle and moving from tape edge to
tape edge. See also linear recording.

hertz (Hz) In computers, a unit of measure
for the frequency of system clock timing
pulses; one Hz corresponds to one clock cycle
per second. See also clock rate and system
clock.

hexadecimal notation A numbering system
with a base value of 16; uses digits from 0 to 9
and letters from A to F, which represent the
decimal values 10 to 15.

hierarchical directory structure A multilevel
system of directories in which directories can

579

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

contain other directories, but a directory
can t be contained in more than one parent.

high-order bit See most significant digit.

hit ratio The ratio of cache hits to read
accesses. See also cache hit.

home directory The main directory associ-
ated with and owned by a single user.

host channel adapter (HCA) An interface
that connects a device to an InfiniBand
switch; used by devices, such as general-
purpose servers, that can initiate and respond
to data transfer requests.

HTTPS A secure version of HTTP that
encrypts HTTP requests and responses.
See also Hypertext Transfer Protocol (HTTP).

hub A central connection point for nodes in a
LAN; provides separate point-to-point con-
nections between nodes and the hub by using
cabling in a physical star topology and
attaching these connections to its internal
shared bus. See also local area network
(LAN).

Hypertext Markup Language (HTML) A
device-independent formatting language that
describes Web documents; links to other
documents can be embedded in it.

Hypertext Transfer Protocol (HTTP) A Web
protocol that specifies the language by which
clients request documents and how servers
respond to those requests.

hypervisor An OS that enables dividing a
single physical computer or cluster into mul-
tiple virtual machines. See also virtual
machine (VM).

IEEE 802 standards A collection of IEEE
network standards describing physical net-
work hardware, transmission media, trans-
mission methods, and protocols.

image description language (IDL) A language
(usually device independent) that uses com-
pact bit strings or ordinary ASCII or Unicode
text to describe primitive image components,
such as straight lines and simple shapes;
reduces storage space requirements because a
description of a simple image component is
usually much smaller than a bitmap.

implementation discipline Activities in the
Unified Process for building, acquiring, and
integrating application software components.
See also Unified Process (UP).

inclusive OR An instruction that generates
the value true if either or both data inputs are
true; usually called just an OR instruction.

incremental backup A type of backup in
which the FMS archives only files that have
been modified since the previous incremental
or full backup. See also full backup.

index In file organization, an array of poin-
ters to records. See also pointer and record.

indirect addressing A method of computing
physical memory addresses automatically;
the CPU adds the process offset to all mem-
ory address operands before accessing
memory. See also process offset.

InfiniBand A data connection standard for
high-speed interconnection of network
switches, servers, and secondary storage
devices; based on a switched fabric architec-
ture. See also switched fabric.

information architecture The requirements
and constraints that define important char-
acteristics of information-processing
resources and how these resources interact
with one another.

infrastructure Capital resources that provide
benefits to a wide range of organizational
units and functions; typically, they serve a
large, diverse group of users; have high main-
tenance costs; involve costs difficult to allo-
cate to users separately; and require recurring
capital expenditures. See also capital
resources.

infrastructure as a service (IaaS) A cloud-
based architectural approach similar to PaaS,
in which customers can configure applica-
tion and system software for a generic plat-
form as virtual servers and then deploy these
servers to a third-party hosting site; often
used to provide back-end storage services
and large-scale computing infrastructures
for running complex simulations. See also
cloud computing and platform as a
service (PaaS).

580

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

inkjet printer A printer that produces printed
images by placing small drops of liquid ink
onto paper; ink is forced out of the nozzle by
mechanical movement or by heat.

input/output (I/O) units Devices that perform
external communication functions.

input pads A general class of input devices
that convert pressure into input, such as for
capturing signatures or drawings; these
devices typically use infrared detectors,
photosensors, pressure-sensitive pads, or
magnetic fields.

Institute for Electrical and Electronics Engi-
neers (IEEE) Computer Society A subgroup
of the IEEE that specializes in computer and
data communication technologies.

instruction A signal or command to a pro-
cessor to perform one of its functions.
See also processor.

instruction cycle See fetch cycle.

instruction explosion The one-to-many (1:N)
relationship between later-generation pro-
gramming statements and the CPU actions
implementing them.

instruction format A template that specifies
the number of operands and the position and
length of the op code and operands in
instructions.

instruction pointer (IP) A special-purpose
register that stores the address of the next
instruction the control unit should fetch from
memory. See also registers.

instruction register A special-purpose regis-
ter that holds an instruction the control unit
has fetched from memory. See also registers.

instruction set The collection of instructions
that a CPU can process. See also instruction.

integer A whole number that is, a value that
doesn t have a fractional part.

integrated circuit (IC) A semiconductor
device that incorporates several transistors
and their interconnections on a single chip.

integrated development environment
(IDE) A collection of automated support tools
to speed program development and testing;
typically includes tools such as program

editors, interpreters, compilers, debuggers,
prototyping tools, function and class libraries,
and so forth.

interleaved execution See concurrent
execution.

International Alphabet 5 (IA5) The interna-
tional equivalent of the ASCII coding method
for character data. See also American Stan-
dard Code for Information Interchange
(ASCII).

International Organization for Standardiza-
tion (ISO) An international group with func-
tions similar to those of the American
National Standards Institute.

Internet A global collection of networks
interconnected with TCP/IP.

Internet Inter-ORB Protocol (IIOP) A com-
ponent message-passing protocol in CORBA.
See also Common Object Request Broker
Architecture (CORBA).

Internet Message Access Protocol 4
(IMAP4) A protocol that extends POP3 to
permanently store and manage e-mail mes-
sages on the server, which enables users to
access stored e-mail from any Internet host.
See also Post Office Protocol 3 (POP3).

Internet Protocol (IP) A core protocol for
packet switching and routing on the Internet.

Internet Protocol version 4 (IPv4) The orig-
inal version of IP; uses 32-bit addresses.

Internet Protocol version 6 (IPv6) An update
to IPv4 that uses 128-bit addresses; developed
to address the limited number of node
addresses, handle streaming multimedia, and
multicast more efficiently.

interpretation A process for source code
instructions that interleaves source code
translation, link editing, and execution.
See also link editor and source code.

interpreter A program that reads a single
source code instruction, translates it into CPU
instructions or a DLL call, and executes the
instructions or DLL call immediately. See also
dynamic link libraries (DLLs).

interrupt A signal sent to the CPU over the
control bus that some event requires it to
execute a specific program or process; used to

581

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

prevent inefficiency caused by I/O wait states.
See also I/O wait states.

interrupt code A numerical value of an
interrupt, indicating the type of event that has
occurred; usually equivalent to the bus port
number of the peripheral device sending the
interrupt. See also interrupt.

interrupt handler An OS service routine that
processes interrupts; each interrupt handler
is a separate program stored in a separate part
of primary storage.

interrupt register A register in the CPU s
control unit that stores interrupt codes
received over the bus or generated by the
CPU. See also interrupt code.

intranet An internal private network that
uses Internet protocols but is accessible only
by a limited set of internal users; also
describes privately accessible resources that
are organized and delivered via one or more
Web protocols over a TCP/IP network.

I/O channel A device controller dedicated to
a mainframe bus port that enables many
devices to share access to, and the capacity
of, the port; originally used to describe a spe-
cific hardware component of IBM s 7000
series mainframe computers.

I/O port A communication pathway from the
CPU to a peripheral device; in most compu-
ters, it s a memory address, or set of contigu-
ous memory addresses, that can be read or
written by the CPU and a single peripheral
device.

I/O wait states Idle processor cycles con-
sumed while waiting for secondary storage or
I/O devices to complete access requests.

iterations Repeated steps in an SDLC pro-
cess; for example, in the UP, each iteration,
consisting of specific activities, is 4 to 6
weeks. See also systems development life
cycle (SDLC) and Unified Process (UP).

Java An object-oriented programming lan-
guage that supports almost any combination
of hardware platform and OS.

Java Platform, Enterprise Edition (Java
EE) A family of standards for developing and
deploying component-based distributed

applications written in Java; follows a three-
layer architecture, with the client,
Web/business, and data tiers.

JavaServer Faces (JSF) Java components
that enable developers to create user inter-
faces that run on a server but interact with a
client Web browser or component.

JavaServer Pages (JSP) Server-side Java
components that generate formatted Web
pages by using embedded scripts.

Java Virtual Machine (JVM) A hypothetical
computer and operating system serving as the
target machine for Java interpreters and
compilers; avoids the need to translate source
code instructions for a specific platform
and OS.

job control language (JCL) See command
language.

Joint Photographic Experts Group (JPEG) A
common bitmap compression format for still
images.

journaling See transaction logging.

JUMP See BRANCH.

keyboard controller A microprocessor
integrated into a keyboard that generates a
bitstream output of scan codes according to
an internal program or lookup table. See also
scan code.

Kerberos A security model that defines stan-
dard interactions between clients, services,
and a trusted security service.

kernel The OS layer that manages resources
and interacts with hardware; includes a
resource allocation layer and interface pro-
grams called device drivers.

label A mnemonic representing a program
instruction s memory address.

large-format printer A more current term for
plotters. See also plotter.

laptop computer A full-featured, portable
microcomputer with an integrated display
and a battery; rivals traditional microcompu-
ters in power and cost. See also
microcomputer.

laser printer A printer that operates by
charging areas of a photoconductive drum;

582

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

toner is attracted to charged areas of the
drum and then to paper.

late binding See dynamic linking.

Latin-1 An ISO standard character-coding
table containing the ASCII-7 characters in the
lower 128 table entries and most of the char-
acters used by Western European languages in
the upper 128 table entries. See also multi-
national characters.

law of diminishing returns The economic
principle stating that when multiple resources
are required to produce something useful,
adding more of a single resource produces
fewer benefits; can be applied to buffer and
cache sizes as well as many other computer
components.

least significant byte In storage bytes, the
rightmost byte in a multiple-byte data item
containing digits of the lowest weight.

least significant digit The rightmost digit in a
bit string that represents the lowest weight.

level one (L1) cache An SRAM cache
between the CPU and SDRAM primary stor-
age, used to limit wait states; the L1 cache is
closest to the CPU.

level two (L2) cache An SRAM cache between
the CPU and SDRAM primary storage, used to
limit wait states; the L2 cache is the next level
away from the CPU.

level three (L3) cache An SRAM cache
between the CPU and SDRAM primary stor-
age, used to limit wait states; the L3 cache is
the farthest level away from the CPU.

light-emitting diodes (LEDs) A video display
technology that uses phosphorescent com-
pounds to produce red, green, and blue light.

Lightweight Directory Access Protocol
(LDAP) An Internet standard for directory
services, based on the X.500 standard and
adopted by the Internet Engineering Task
Force.

linear address space The set of sequentially
numbered storage locations in a peripheral
device; these locations must be converted into a
disk s corresponding platter, sector, and track
for the CPU to physically access the correct
sector. See also logical access.

linear recording A geometric approach to
recording data on a tape surface in which bits
are placed along parallel tracks that run along
the tape s entire length. See also helical
scanning.

Linear Tape Open (LTO) A magnetic tape
standard developed by Hewlett-Packard,
IBM, and Seagate; uses linear recording and
has technology improvements in tape car-
tridges, coercible materials, read/write
heads, and tape control. See also linear
recording.

line turnaround A control message that s sent
when one node in a half-duplex channel has
stopped sending; the receiver then assumes the
role of sender.

links The UNIX term for pointers from one
directory to another in a graph directory
structure; also refers to pointers connecting
two data items in a data structure or external
function calls in an object code file. See also
graph directory structure.

link editor A program that combines object
code files into an integrated set of executable
code with a consistent scheme of memory
addresses and references.

linked list A data structure that uses pointers
so that list elements can be scattered among
nonsequential storage locations. See also
doubly linked list and singly linked list.

liquid crystal display (LCD) A video display
device containing liquid crystals sandwiched
between two polarizing filter panels; the
crystals change from opaque to transparent
when an electrical charge is applied.

little endian A CPU or memory architecture
in which the least significant byte is stored at
the lowest memory address. See also least
significant byte.

load A data transfer from main memory into
a register.

local area network (LAN) A network that
spans a limited area, such as a single building
or office floor.

location transparency A characteristic of
software and user interfaces meaning that
local and remote resources are accessed in

583

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the same way; also referred to as network
transparency.

logic instructions Instructions that imple-
ment Boolean operations, such as ADD, AND,
OR, NOR, and XOR.

logical access A read or write operation from
the hypothetical storage device representing a
peripheral device. See also linear address
space.

logical record A collection of data items, or
fields, that an application program accesses as
a single unit.

logical SHIFT A SHIFT instruction used to
extract a single bit from a bit string. See also
SHIFT.

logical topology The path messages traverse
as they travel between end and central net-
work nodes. See also network topology.

long integers Double-precision representa-
tions of integers. See also double-precision.

longitudinal redundancy checking (LRC) See
block checking.

lossless compression A compression algo-
rithm in which data content is unchanged
when compressed and then decompressed.

lossy compression A compression algorithm
in which data content is altered or lost when
compressed and then decompressed; usually
applied only to audio and video data.

low-order bit See least significant digit.

machine data types See primitive data types.

machine independence See hardware
independence.

machine languages See first-generation lan-
guages (1GLs).

machine state The saved register values of
interrupted processes or programs that rep-
resent their state before an interrupt. See also
interrupt.

magnetic decay The tendency of magneti-
cally charged particles to lose their charge
over time; it s constant over time and pro-
portional to the power of the charge.

magnetic leakage The reduction in strength
of a stored magnetic charge because of

interference from adjacent magnetic charges
of opposite polarity.

magnetic tape A ribbon of plastic with a
coercible (usually metallic oxide) coating,
used to store data.

magneto-optical (MO) drive A secondary
storage device that uses a laser and reflected
light to sense magnetically recorded bit
values; data reading is based on the polarity of
the reflected laser light, which is determined
by the polarity of the magnetic charge.

magnetoresistive RAM (MRAM) A type of
nonvolatile memory under development that
stores bit values by using two magnetic ele-
ments, one with fixed polarity and the other
with polarity that changes when a bit is writ-
ten; has better longevity than conventional
flash RAM.

main memory See primary storage.

mainframe A computer system designed to
handle the information-processing needs of a
large number of users and applications and
optimized to store large quantities of data and
move it from one place to another quickly and
efficiently.

Mammoth A magnetic tape standard, devel-
oped by Exabyte, based on Digital Audio
Tape; uses helical scanning and an improved
tape drive technology to pack more data onto
a single tape. See also Digital Audio Tape
(DAT) and helical scanning.

manipulation In computer processing, refers
to working with data by executing processor
instructions, such as addition, subtraction,
and equality comparisons.

mark sensor An optical input device that
scans for light or dark marks at specific loca-
tions on a page.

Media Access Control (MAC) A protocol for
determining how to share a transmission
medium efficiently.

megahertz (MHz) A measurement of wave or
system clock frequency; one million cycles
per second.

memory allocation The assignment of spe-
cific memory addresses to system software,

584

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

application programs, threads and processes,
and data.

memory bus A subsidiary bus that connects
only the CPU and memory; because its data
transfer rate is higher than that of the system
bus, it improves overall computer
performance.

memory map A list of the memory location of
every function and program variable;
produced by the link editor based on the
symbol table s contents. See also link editor
and symbol table.

memory protection A procedure for protect-
ing memory allocated to one program from
unauthorized access by another program;
adds overhead to each write operation.

mesh topology A network topology in which
every node pair is connected by a point-
to-point link; requires many transmission
lines if the number of end nodes is large.
See also network topology.

message In network communication, a unit of
data or information transmitted from a sender
to a recipient. In components and object-
oriented programs, a request sent from one
object or component to another.

methods Programs for manipulating data
items in a class. See also class.

metropolitan area networks (MANs) Net-
works that typically cover a town or city; the
market for WiMAX networks. See also World-
wide Interoperability for Microwave Access
(WiMAX).

microchip A semiconductor device capable of
integrating hundreds, thousands, and even
billions of electrical devices on a single chip.

microcomputer Also called a PC or a work-
station, a computer system designed to meet a
single user s information-processing needs;
can include portable computers, such as
laptops and handheld computers.

microprocessor A microchip containing all
the circuits and components of a CPU.

middleware System software that that
glues together parts of a client/server or

multitier application and enables clients and

servers or distributed components to locate
and communicate with one another.

midrange computer A computer system
designed to provide information processing
for multiple users and run many application
programs simultaneously; sometimes called a
minicomputer.

millions of floating-point operations per sec-
ond (megaflops or MFLOPS) A measure-
ment of the rate at which floating-point
operations are performed; used to measure
CPU performance.

millions of instructions per second (MIPS) A
measurement of the rate at which instructions
are executed; assumed to measure CPU per-
formance when manipulating single-precision
integers.

modulator-demodulator (modem) A device
that translates analog signals into digital sig-
nals and vice versa, enabling computer hard-
ware to communicate over voice-grade phone
lines.

monitors Video display panels. The term
also refers to hardware or software that
tracks and reports processing or I/O activity.
See also hardware monitor and software
monitor.

monochrome A display device or encoding
method that can display only one of two col-
ors (usually black and white), so it requires
only 1 bit per pixel.

monophonic Capable of generating only one
frequency (note) at a time.

Moore s Law Gordon Moore s observation
that the rate of increase in transistor density
on microchips doubles every 18 to 24 months,
with no increase in unit cost.

most significant byte In storage bytes, the
leftmost byte in a multiple-byte data item
containing digits of the highest weight.

most significant digit The leftmost digit in a
bit string that represents the greatest weight.

MOVE An instruction that copies data bits to
storage locations and can copy data between
any combination of registers and primary
storage locations.

585

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Moving Pictures Experts Group (MPEG) An
organization that creates standards for motion
picture recording and encoding technology;
each standard is divided into layers numbered
1 (systems), 2 (video), and 3 (audio).

MP3 The audio-encoding standard that s
layer 3 of the MPEG-1 standard. See also
Moving Pictures Experts Group (MPEG).

multicasting Transmission situations involv-
ing multiple senders and receivers.

multicomputer configuration Any arrange-
ment of multiple computers used to support
specific services or applications; includes
clusters, blades, and grids.

multicore architecture A microprocessor
architecture that embeds multiple CPUs and
cache memory on a single chip.

multilevel coding A technique for embedding
multiple bit values in a single wave charac-
teristic, such as frequency or amplitude;
treats groups of bits as a single unit for the
purpose of signal encoding.

multimode graded-index cable A multimode
fiber-optic cable in which fibers vary in den-
sity from the center to the edge, which
reduces the number of light reflections.

multimode step-index cable A multimode
fiber-optic cable in which both the optical
fiber and cladding have different but uniform
densities throughout the cable, resulting in
many light reflections.

multinational characters Modified Latin
characters, such as ç and á, used by Western
European languages other than English.

multiple-core CPUs Processors that improve
performance by integrating multiple proces-
sing cores and memory caches on a single
chip and by increasing raw CPU speed; the
processors share primary storage and a single
system bus.

multiple-processor architecture A more tra-
ditional approach to multiprocessing that uses
two or more processors on a single mother-
board or set of interconnected
motherboards; slower than multicore archi-
tecture. See also multicore architecture and
multiprocessing.

multiprocessing Any CPU architecture in
which duplicate CPUs or processor stages can
execute in parallel; a form of parallel
processing.

Multipurpose Internet Mail Extensions
(MIME) A protocol that s an extension of
SMTP; enables including nontext content in
e-mail messages. See also Simple Mail
Transfer Protocol (SMTP).

multitasking An operating system s support
for running multiple programs
simultaneously.

multithreaded A process or program divided
into two or more threads, each of which can
be scheduled and executed independently.
See also thread.

Musical Instrument Digital Interface (MIDI)
A standard for storing and transporting con-
trol information between computers and
electronic musical instruments and
synthesizers.

n-layer architecture A client/server architec-
ture with more than three layers; used when
processing requirements or data resources are
complex.

n-tier architecture See n-layer architecture.

named pipe A pipe with a name that s placed
permanently in a file system directory; can
communicate between processes on different
computers. See also pipe.

narrowband A low-bandwidth communica-
tion channel; typically a subchannel of a
broadband channel.

native applications Programs that are com-
piled and linked for a particular CPU and OS.

negative acknowledge (NAK) An ASCII con-
trol character sent by a receiver if data errors
are detected.

netbook computer A laptop computer that
emphasizes small size, reduced weight, low
cost, and wireless networking; capable of
performing only light-duty tasks. See also
laptop computer.

network adapter See network interface card
(NIC).

586

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

network administrator The person
who s responsible for managing an organiza-
tion s network infrastructure; can also
apply to the manager of a local area
network.

network-attached storage (NAS) A storage
architecture with a dedicated storage server
attached to a general-purpose network to
handle storage access requests from other
servers.

network interface card (NIC) A device
that connects a node, such as a computer or
network printer, to a network transmission
cable.

Network layer The OSI layer that forwards
messages to their correct destinations.
See also Open Systems Interconnection (OSI)
model.

network topology The spatial organization of
network devices, physical routing of network
cabling, and flow of messages from one net-
work node to another.

network transparency See location
transparency.

New Technology File System (NTFS) The
Microsoft file system introduced with Win-
dows NT; targeted to applications requiring
high-speed directory and file operations, reli-
ability and fault tolerance, secure file and disk
content, and the capability to handle large
disks, files, and directories.

noise In a communication channel,
unwanted signal components added to the
data signal that might be interpreted incor-
rectly as data; can be introduced by factors
such as electromagnetic interference and
distortion.

noncontiguous memory allocation A mem-
ory allocation scheme in which portions of a
process can be allocated to free partitions
anywhere in memory; uses small fixed-size
partitions. See also contiguous and memory
allocation.

nonprocedural language A programming
language that describes a processing require-
ment without describing a specific procedure
for satisfying the requirement.

nonvolatile A term describing storage devices
that hold data without loss for long periods;
secondary storage is usually nonvolatile.

nonvolatile memory (NVM) A generic term
for memory devices with long-term or per-
manent data retention.

NOT An instruction that transforms the
Boolean value true (1) into false (0) and the
value false into true.

numeric range The set of all data values that
can be represented by a data-encoding
method.

object One instance, or variable, of a class.
See also class.

object code The output of an assembler or a
compiler; contains a mixture of CPU instruc-
tions, library calls, and other information the
link editor needs. See also link editor.

object-oriented programming (OOP) A pro-
gramming paradigm that views data and pro-
grams as two parts of an integrated whole;
better addresses program reuse and long-term
software maintenance.

Object Request Broker (ORB) A CORBA
service that maintains a component directory
and routes messages between components.
See also Common Object Request Broker
Architecture (CORBA).

objectclass An LDAP concept that defines
attributes common to all members of a class.
See also directory services and Lightweight
Directory Access Protocol (LDAP).

octal notation A base-8 numbering system
that uses digits from 0 to 7.

odd parity An error-detection method in
which the sender sets the parity bit to 0 if the
count of 1-valued data bits in the character is
odd and to 1 if the count of 1-valued data bits
is even. See also parity bit.

offset register A register containing the pro-
cess offset value; used in indirect addressing.
See also indirect addressing and process
offset.

on-off keying (OOK) A signal-coding method
that generates square waves by rapidly
switching (pulsing) an electrical or optical
power source to represent bit values;

587

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

essentially the digital equivalent of amplitude
modulation. See also amplitude modulation
(AM).

op code In an instruction s bit string, it s the
first group of bits and represents the instruc-
tion s unique binary number.

OpenGL A video controller image description
language developed by Silicon Graphics but
now maintained by Khronos Group as an open
standard. See also image description language
(IDL).

Open Systems Interconnection (OSI) model
A conceptual model for network hardware
and software that organizes network
functions into seven layers; useful as a gen-
eral model of networks, a framework for
comparing networks, and an architectural
roadmap that enhances interoperability
between network architectures and
products.

operands In an instruction s bit string,
they re groups of bits after the op code that
hold the instruction s input values; they can
contain a data item or the location of a data
item. See also op code.

operating expenditures Funds expended
during the current fiscal year to support nor-
mal business activities.

operating system (OS) A collection of utility
programs for supporting users and application
programs, allocating resources to multiple
users and application programs, and control-
ling access to hardware.

optical character recognition (OCR) A tech-
nology that combines optical-scanning tech-
nology with a special-purpose processor or
software to interpret bitmap content. See also
optical scanner.

optical scanner A device that generates bit-
map representations of printed images;
detects light reflected from the page with an
array of photosensors.

organic LED (OLED) A newer LED, manu-
factured with TFT technology, that achieves
high-quality color display with organic com-
pounds. See also light-emitting diodes (LEDs)
and thin film transistor (TFT).

overflow An error that occurs when the
result of a processing operation exceeds the
format s numeric range. See also numeric
range.

packets Basic units of data communication in
a network.

packet-filtering firewall The simplest type of
firewall; examines each packet and matches
header content to a list of allowed or denied
packet types.

packet switching The most common type
of TDM, in which messages are divided
into packets and then transmitted to their
destination as channel capacity becomes
available. See also time-division multiplexing
(TDM).

page A small fixed-size portion of a program,
normally between 1 and 4 KB, swapped
between primary and secondary storage.
See also virtual memory management.

page fault A reference to a page held in
secondary storage. See also page and virtual
memory management.

page file See swap space.

page frame A memory page used in virtual
memory management. See also page and
virtual memory management.

page hit A reference to a page held in mem-
ory. See also page and virtual memory
management.

page tables Tables that store information
about page locations, allocated page frames,
and secondary storage space. See also page
and virtual memory management.

palette A table of colors used to represent
pixel color; the number of bits used to
represent each pixel determines the table
size.

parallel access An access method that can
access multiple storage locations simulta-
neously; can also be achieved by subdividing
data items and storing the component pieces
on multiple storage devices.

parallel transmission Sending each bit posi-
tion of a message over a separate transmission
line simultaneously.

588

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

parent The original version of a file, after
updates have been applied to generate a new
version (the child). See also child.

parent process The original process that
initiates and controls execution of a child
process. See also process and spawn.

parity bit A bit appended to a character that
stores redundant information used for error
checking; its value is a count of other bit
values in the character.

parity checking Validating character data by
recomputing the value of a parity bit. See also
even parity and odd parity.

passive matrix display An LCD that shares
transistors among rows and columns of pixels.

peer-to-peer (P2P) architecture A software
architecture in which the roles of client and
server are combined into a single application
or group of related applications.

peer-to-peer bus In this arrangement, any
device can assume control of the bus or act
as a bus master for transfers to any other
device. See also bus arbitration unit and bus
master.

Pentium processors A family of processors
that improved memory access and raw CPU
speeds and added features such as support for
higher-speed system buses, pipelined instruc-
tion execution, and multimedia processing
instructions.

Peripheral Component Interconnect (PCI) A
family of bus standards, developed by Intel in
the early 1990s, found in nearly all small and
midrange computers of that era; since the late
2000s, largely replaced by PCI Express.

peripheral devices Storage and I/O devices in
a computer, other than the CPU and primary
storage.

personal computer (PC) See microcomputer.

personal digital assistant (PDA) A handheld
computer, usually integrated with a cell
phone, that supports light-duty tasks.

petaflops (PFLOPS) A measurement of the
rate (1015 per second) at which floating-point
operations are performed; used to measure
CPU performance.

phase In communication, a specific time
point in a sine wave s cycle; measured in
degrees. See also cycle.

phase-change memory (PCM) A type of
nonvolatile memory under development that
uses a GST compound capable of switching
between amorphous and crystalline states;
has fast write times and high longevity.
See also germanium, antimony, and tellurium
(GST).

phase-shift keying (PSK) See phase-shift
modulation.

phase-shift modulation A modulation
method that represents bits as sudden shifts
in wave phase.

phonemes Vocal sounds that are basic com-
ponents of human speech; they correspond
roughly to the sounds of each letter of the
alphabet.

photosensor A device that converts
incoming light energy into outgoing electrical
energy.

Physical layer The OSI layer where com-
munication between devices actually takes
place; includes hardware devices that
encode and decode bitstreams and the
transmission lines that transport them.
See also Open Systems Interconnection (OSI)
model.

physical memory The actual number of
memory bytes that are physically installed in
a computer system; can be smaller than
addressable memory but never larger.
See also addressable memory.

physical record The unit of storage trans-
ferred between the device controller and
memory in a single operation.

physical topology The physical placement of
cables and device connections in a network
topology. See also network topology.

pipe A region of shared memory through
which multiple processes executing on the
same computer can exchange data; used for
communicating between OS components,
queuing requests to an OS service, and
exchanging messages between program
components.

589

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

pipelining A method of organizing CPU cir-
cuitry so that multiple instructions can be in
different stages of execution at the same time;
a form of parallel processing.

pixel An abbreviation of picture element,
it s a single unit of data in an image; also
refers to a single point on a display surface.

plasma display A video display device that
uses an active matrix display and generates
light by applying an electrical charge to neon
gas.

platform as a service (PaaS) A cloud-based
architectural approach in which an organiza-
tion rents access to system software and
hardware on which it installs its own applica-
tion software and other services. See also
cloud computing.

platters In magnetic disk media, they re flat,
circular disks with metallic coatings that are
rotated beneath read/write heads; data is
normally recorded on both sides.

plotter A printer that generates line drawings
on sheets or rolls of paper up to 64 inches
wide. See also large-format printer.

point A standard measurement unit for font
size; equals 1/72 of an inch.

pointer A data element containing the
address of another data element;
typically used in data structures; also a
synonym for cursor in a display device.

polyphonic Capable of generating many
frequencies (notes) simultaneously.

pop The process of removing register values
from the top of a stack and loading them back
into the correct registers. See also stack.

port A TCP connection identified by a unique
integer number; many ports are standardized
to specific Internet services. See also Trans-
mission Control Protocol (TCP).

Portable Document Format (PDF) An Adobe
image description language developed to gen-
erate and manage documents as an integrated
whole rather than a collection of independent
images and pages.

Post Office Protocol 3 (POP3) A protocol
that standardizes the interaction between
e-mail clients and servers so that client and

server can run on different Internet hosts;
e-mails are held on the server temporarily,
downloaded to the client when a connection
is established, and then deleted from the
server.

PostScript An Adobe image description lan-
guage designed mainly for printed documents,
although it s also a programming language for
generating video display output.

power sags Momentary reductions in the
voltage or amperage of electrical power.

power surges Momentary increases (spikes)
in the voltage or amperage of electrical
power.

preemptive scheduling A scheduling method
that enables a higher-priority thread to inter-
rupt and suspend a lower-priority thread.
See also scheduling and thread.

Presentation layer The OSI layer that makes
sure data transmitted by one network node is
interpreted correctly by the other network
node; used mainly by applications that format
data for user display. See also Open Systems
Interconnection (OSI) model.

primary storage High-speed storage in a
computer system that holds currently running
programs and data immediately needed by
these programs.

primitive data types The integer, real
number, character, Boolean, and memory
address data types that CPUs can manipulate
directly.

priority-based scheduling A scheduling
method that determines which ready thread
should be dispatched to the CPU based on
user or thread priority. See also scheduling
and thread.

procedure See function.

process A unit of executing software that s
managed independently by the OS and can
request and receive hardware resources and
OS services. Also refers to transforming input
data by applying calculations, manipulations,
and other operations.

process control block (PCB) A data structure
containing information about an active pro-
cess; used by the OS to keep track of each

590

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

process and allocate resources, secure
resource access, and protect active processes
from interference by other active processes.

process family The collective name for a
parent process and all its descendants.
See also process and spawn.

process list See process queue.

process offset In memory allocation, the dif-
ference between the first address in physical
memory and the address of the first process
instruction. See also memory allocation and
process.

processor A device capable of performing
data manipulation and transformation
operations.

process queue A data structure containing a
list of PCBs for all active processes; can be
searched by OS components. See also process
control block (PCB).

production version A program version that
omits the symbol table and debugging check-
points to reduce program size and increase
execution speed. See also debugging version
and symbol table.

program A stored set of instructions for per-
forming a specific task.

program editors Writing tools similar to
word-processing applications but customized
for writing programs instead of documents.
See also application development software.

program profiler A software utility that
describes the resource or service utilization of
an application program during execution.

program status word (PSW) A special-
purpose register containing a bit string
describing the CPU s status and the
currently running program. See also flag
and registers.

program translator A program that translates
instructions in a programming language into
CPU instructions. See also application devel-
opment software.

programmer A software developer who builds
and tests software; might also perform tasks in
the requirements and design disciplines.
See also software developers.

programming language A language for
expressing computer-processing functions or
instructions.

protocol stack A complex set of software
layers that an OS uses to implement network
I/O and services.

proxy server See application firewall.

push The process of copying register values
to the top of a stack. See also stack.

Quarter Inch Committee (QIC) A committee
that develops open standards for magnetic
tape drives on smaller computers.

qubit An atom or any other matter that
stores data in multiple simultaneous quantum
states.

radio frequency (RF) Electromagnetic radia-
tion propagated through space; describes
transmissions using frequencies between 50
Hz and 1 THz.

radix See base.

radix point In numbering systems other than
decimal, the period or comma that separates
the whole and fractional parts of a numeric
value. See also decimal point.

random access An access method that can
access any storage location directly and in
any order; primary storage devices and disk
storage devices use random access.

random access memory (RAM) Semiconduc-
tor devices used to implement primary stor-
age; they don t provide permanent storage
because RAM s contents are erased when the
system power is turned off.

raw data transfer rate The maximum number
of bits or bytes per second a communication
channel can carry; ignores the communica-
tion protocol and assumes error-free
transmission.

read-only memory (ROM) The earliest type
of nonvolatile memory, with data content
written permanently during manufacture; this
primary storage device can be read, but no
further data can be written.

read/write head A mechanism in a storage
device that reads and writes data to and from

591

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

the storage medium; also referred to as a
read/write mechanism.

ready state The state of an active thread
that s idle, pending availability of a CPU.
See also thread.

ready-to-send (RTS) signal A CSMA/CA signal
sent by a node waiting to transmit. See also
Carrier Sense Multiple Access/Collision Avoid-
ance (CSMA/CA).

real number A number that can contain both
whole and fractional components; the frac-
tional portion is represented by digits to the
right of the radix point. See also radix point.

real resources A computer s hardware
devices and associated system software
that physically exist. See also virtual
resources.

real-time scheduling A scheduling method
that guarantees a thread a minimum amount
of CPU time and enough resources to complete
its function in a specified time if the thread
makes an explicit request when it s created.
See also scheduling and thread.

record A data structure composed of other
data structures or primitive data elements;
commonly used as a unit of input and output
to and from files or databases.

reduced instruction set computing (RISC) A
computer and processor design approach
that typically includes fixed-length instruc-
tions, short instruction length, and a large
number of general-purpose registers; the
main feature is the absence of some complex
instructions from the instruction set.
See also complex instruction set computing
(CISC).

redundant array of independent disks
(RAID) A disk storage technique that
improves performance and fault tolerance.
See also fault tolerance.

refresh cycle In dynamic RAM, the period
during which circuitry supplies fresh infu-
sions of power automatically; read and write
operations can t be performed during this
cycle. Also refers to the transfer of a full
screen of data from the display generator to
the monitor.

refresh rate The number of refresh cycles per
second on a video display device; normally
stated in hertz. See also refresh cycle.

registers Internal storage locations in a CPU;
each is capable of holding a single instruction
or data item. See also central processing unit
(CPU).

relative addressing See indirect addressing.

relative path The access path that begins at
the current directory s level and extends
downward to a specific file. See also current
directory.

release version See production version.

Remote Procedure Call (RPC) A protocol
that enables a process on one computer to call
a process on another computer.

repeater A device that functions much like
an amplifier but extracts data embedded in
the signal it receives and retransmits a new
signal containing the same data; therefore,
noise or distortion aren t retransmitted.
See also amplifier.

request for proposal (RFP) A formal docu-
ment stating hardware or software require-
ments and soliciting proposals from vendors
to meet these requirements.

requirements discipline Activities in the
Unified Process for developing models of sys-
tem and user requirements. See also Unified
Process (UP).

resistance The loss of electrical power
that occurs as electrons pass through a con-
ductor; low resistance means little power is
lost.

resolution The number of pixels displayed
per linear measurement unit.

resource registry A database, maintained by
the resource locator, containing the names
and locations of known resources and services
on a network.

return instruction In programming, an
instruction executed at the end of a function
to return control to the calling function.
See also function.

return wire In electrical transmission
through wires, the channel component that

592

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

completes an electrical circuit between send-
ing and receiving devices.

RGB Red, green, and blue; the primary colors
for video display. See also additive colors.

ring topology A network topology in which
every node is connected directly to two other
nodes, with a set of links forming a closed
ring. See also network topology.

Rock s Law Arthur Rock s addendum to
Moore s Law, stating that the cost of fabrica-
tion facilities for the latest chip generation
doubles every four years. See also Moore s
Law.

rotational delay The time a hard disk con-
troller must wait for the right sector to rotate
beneath read/write heads.

router A device that intelligently forwards
messages between networks; it stores mes-
sages in a buffer, examines their contents, and
applies decision rules to determine where to
forward them.

routing tables Internal maps of a network
containing information routers use to forward
messages and choose from multiple possible
paths to a recipient; routers periodically
exchange this information with other routers
to learn about networks beyond those to
which they re connected. See also router.

run queue A data structure listing all active
TCBs. See also thread and thread control
block (TCB).

running state The state of an active thread
that s been dispatched and has CPU control.
See also dispatching and thread.

sampling The process of converting analog
sound waves to digital representation; it ana-
lyzes the content of the audio sound spectrum
many times per second and converts it to a
numeric representation.

sandbox The protected area in which Java
applets and servlets run; provides extensive
security controls to prevent these programs
from accessing unauthorized resources or
damaging the hardware, OS, or file system.
See also Java.

scaling out An approach to increasing pro-
cessing and other computer system power by

partitioning processing and other tasks among
multiple computer systems; examples include
clusters and grids. See also cluster and grid.

scaling up An approach to increasing pro-
cessing and other computer system power by
using larger and more powerful computers;
examples include multicore and multiple-
processor architectures. See also multicore
architecture and multiple-processor
architecture.

scan code A 1- or 2-byte data element gen-
erated by a keyboard controller; represents a
specific keyboard event. See also keyboard
controller.

scanning lasers Devices that sweep a narrow
laser beam back and forth across bar codes.
See also bar-code scanner.

scheduler The portion of the OS that makes
scheduling decisions for threads. See also
thread.

scheduling The decision-making process the
OS uses to determine which ready thread
moves to the running state. See also thread.

scripting language A simple programming
language that enables programmers to
assemble software quickly by gluing
together the capabilities of many other pro-
grams, such as Web servers and database
management systems; scripts can be embed-
ded in HTML pages and many other programs.

second-generation language (2GL) See
assembly language.

secondary storage System devices that pro-
vide large-capacity and long-term data
storage.

sector The data transfer unit for magnetic
disk and optical disc drives; the size is gener-
ally stated in bytes and can vary from one
device to another. Also refers to a fractional
portion of a track on magnetic disk media.

Secure Shell (SSH) An improved version of
Telnet that encrypts data between client and
server to address a major security issue in
Telnet. See also Telnet.

segmented memory model An approach to
assigning memory addresses in which primary
storage is divided into equal-sized segments

593

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

called pages, identified by sequential nonneg-
ative integers; each byte of memory has a two-
part address: The first part identifies the page,
and the second part identifies the byte in the
page.

semiconductors Materials with conductivity
that varies in response to the electrical inputs
applied; they have resistance properties that
can be modified between those of a conductor
and an insulator by adding chemical
impurities.

sequential access time The time required to
read the second of two adjacent sectors on the
same track and platter of a hard disk.

serial access An access method that stores
and retrieves data items in a linear (sequen-
tial) order; mainly used to hold backup copies
of data stored on other storage devices.

Serial Advanced Technology Attachment
(SATA) A storage device and cabling stan-
dard commonly used in PCs; compatible with
older parallel ATA standards but uses serial
transmission.

Serial Attached SCSI (SAS) A storage device
and cabling standard commonly used in ser-
vers; compatible with older parallel SCSI
standards but uses serial transmission.

serial transmission Sending bits sequentially
over a single transmission line; the receiver
reassembles the bits into larger data units,
such as bytes.

server A mode of use rather than a class of
computer system; manages shared resources
and enables users to access these resources
over a network.

server consolidation Using virtual machines
as small servers hosted by a hypervisor
running on a larger machine; reduces total
hardware requirements because not every
server has to be installed on a separate com-
puter. See also hypervisor and virtual
machine (VM).

service call A request to execute an OS
service-layer function.

service layer The OS layer containing reus-
able components packaged as functions that
can be called from other programs; also acts

as an intermediary between programs, which
request and use resources, and the kernel,
which manages and provides access to
resources. See also kernel.

service-oriented architecture (SOA) A design
philosophy under which operating systems
and some application software are con-
structed as a set of services that can be
accessed by both internal and external users
and software components.

service standards Standards for providing
infrastructure-based services to a wide variety
of users. See also infrastructure.

servlet A full-fledged Java program that runs
in a Web server and performs functions such
as calculations, database access, and creation
of Web pages; runs in a protected area called
the sandbox. See also Java Platform, Enter-
prise Edition (Java EE).

Session layer The OSI layer that establishes
and manages communication sessions.
See also Open Systems Interconnection (OSI)
model.

shell See command layer.

SHIFT An instruction that moves all bit
values right or left, according to the number
of positions specified by the operand; after
shifting, empty positions are filled with 0s,
and bit values that shift beyond the bit string s
bounds are discarded.

shortcuts The Windows term for links in a
graph directory structure. See also graph
directory structure and links.

shortest time remaining (STR) A priority-
based scheduling method that chooses
the next thread to be dispatched based
on the expected amount of CPU time
needed to complete the process. See also
dispatching, priority-based scheduling, and
thread.

sibling processes The child processes of a
single parent process. See also process and
spawn.

signal A data transmission event or group of
events representing a bit or group of bits; a
message sent from one active process to
another.

594

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

signal-to-noise (S/N) ratio A mathematical
relationship between the power of a carrier
signal and the power of noise in the commu-
nication channel; measured in decibels.

signal wire In electrical transmission through
wires, the channel component used to carry
data.

signed integer An integer that uses a sign bit
to indicate whether the value is negative or
positive.

Simple Mail Transfer Protocol (SMTP) The
earliest e-mail protocol; defines how text
messages are forwarded and routed between
Internet hosts.

Simple Object Access Protocol (SOAP) An
open standard, developed by the World
Wide Web Consortium; has a simple pro-
gramming interface and few infrastructure
requirements.

simplex mode A communication mode in
which messages flow in only one direction.

sine wave A waveform that varies continu-
ously between positive and negative states.

single inline memory module (SIMM) A
small printed circuit board that incorporates
multiple DIPs and has a row of electrical
contacts on the edge; the entire package is
designed to lock into a SIMM slot on a moth-
erboard. See also dual inline packages (DIPs).

single-mode cable A fiber-optic cable with
fibers that are much thinner in diameter than
multimode fibers and vary continuously in
density from center to edge to eliminate light
reflections.

singly linked list A data structure in which
each list element contains a pointer to the
next list element.

skew The timing difference between the
arrival of bits sent in a parallel transmission
channel; skew increases with distance and
transmission rate. See also parallel
transmission.

socket The combination of an IP address with
a port number, such as 129.24.8.4:53; used to
establish connections.

software as a service (SaaS) A Web-based or
cloud-based architectural approach in which

users interact via a Web browser or other
Web-enabled view layer with application
software provided by a third party and
installed on the provider s hardware. See also
cloud computing.

software developers People who create
application software for specific processing
needs; can include many job titles, with each
role contributing to a different part of the
SDLC. See also systems development life
cycle (SDLC).

software monitor A program typically embed-
ded in OS service routines that detects and
reports processing activity or requests; can also
generate statistics of service utilization or pro-
cessing activity that can be displayed in real
time or stored in a file for later analysis.

solid-state drive (SSD) A storage device that
mimics the behavior of a magnetic disk but
uses flash RAM or other nonvolatile memory
devices as the storage medium and read/write
mechanism; expected to replace magnetic
disks gradually.

sound card An expansion card connected to
the system bus that contains components for
sound input and output.

source code Instructions or statements in a
high-level programming language; normally
stored in a file that s named to indicate both
its function and programming language.

spawn The act of a parent process creating a
child process. See also process.

speaker dependent Requiring training to
recognize the sounds of human speakers; a
characteristic of speech-recognition systems.
See also speech recognition.

special-purpose processor A processor that s
designed to perform only one specific task;
essentially, a processor with a single internal
program. See also processor.

special-purpose registers Registers used by
the CPU for specific tasks; they include the
instruction register, instruction pointer, and
program status word. See also registers.

speculative execution An approach to dealing
with condition BRANCHes in which the
CPU executes instructions after a branch

595

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

prediction but before the final branch condi-
tion value is known with certainty; a form of
parallel processing. See also branch
prediction.

speech recognition The process of recogniz-
ing and responding to the meaning embedded
in spoken words, phrases, or sentences.

speech synthesis A complex process for gen-
erating human speech based on character or
text input.

stack A reserved area of primary storage
accessed on a last-in, first-out (LIFO) basis;
this mechanism enables a program suspended
by an interrupt to resume execution in
exactly the same state as before an
interruption.

stack overflow An error condition that
occurs when attempting to push register
values onto a stack that s already at its maxi-
mum capacity. See also stack.

stack pointer A special-purpose register that
points to the next empty address in the stack
and is incremented or decremented automat-
ically each time the stack is pushed or
popped. See also stack.

star topology A network topology in which
every node is connected directly to a shared
hub, switch, or router. See also network
topology.

start bits Bits added to the beginning of
messages in asynchronous transmission
to alert the receiver to synchronize its
clock.

stateful firewall A firewall that tracks the
progress of complex client/server interactions.
See also firewall.

static connection A mapping between a local
resource name and a remote resource that
must be initialized before use.

static linking A linking process in which
library calls and other functions can t be
changed after they re inserted into executable
code. See also link editor.

static RAM (SRAM) A type of RAM that s
implemented entirely with transistors; the
basic storage unit is a flip-flop circuit.

storage allocation table A data structure that
records which allocation units are free and
which belong to files. See also allocation unit.

storage area network (SAN) A high-speed
interconnection between general-purpose
servers and a separate storage server; storage
accesses are at the level of disk sectors in a
logical address space.

storage bus A subsidiary bus that connects
secondary storage devices to the system bus;
reduces the length and number of physical
connections to the system bus and aggregates
the lower data transfer capacity of secondary
storage devices to better match the higher
capacity of a single system bus connection.

storage I/O control layer An FMS layer; the
part of the kernel that accesses storage loca-
tions and manages data movement between
storage devices and memory. Includes device
drivers, interrupt handlers, and buffers and
cache managers. See also file management
system (FMS).

storage medium A device or substance in a
storage device that actually holds data.

store A data transfer from a register into pri-
mary storage.

store and forward An interconnected system
of end nodes and transfer points used to route
data between source and destination nodes.

strategic plan A set of long-range goals for
services to be provided and the resources
needed to provide these services.

string A sequence of characters forming a
meaningful word, phrase, or other useful
group.

subroutine See function.

subtractive colors In printing, the primary
colors are generated by using the inverse of
the primary video display colors, so cyan is
the absence of red, magenta is the absence of
green, and yellow is the absence of blue.

supercomputer A computer system designed
for rapid mathematical computations and
used for computation-intensive applications,
such as simulations, 3D modeling, weather
prediction, computer animation, and real-
time analysis of large databases.

596

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Super Digital Linear Tape (SDLT) A mag-
netic tape standard developed by Quantum
Corporation; the cartridge has only one reel,
and the device records in parallel linear
tracks in an end-to-end format.

supervisor The master interrupt handler
program; it examines the interrupt code
stored in the interrupt register, uses it as an
index to the interrupt table, extracts the cor-
responding memory address, and transfers
control to the interrupt handler at that
address. See also interrupt code and interrupt
handler.

surge protector A hardware device that
detects incoming power surges and diverts
them to ground. See also power surges.

sustained data transfer rate The maximum
data transfer rate a storage device or com-
munication channel can sustain during
lengthy data transfer operations.

swap file See swap space.

swap space A secondary storage region
reserved for the task of holding pages not held
in memory; it s divided into page frames in
the same manner as memory. See also page
and virtual memory management.

switch A central connection point for nodes
in a LAN; examines incoming destination
addresses and temporarily connects the
sending transmission line to the receiving
transmission line. Also refers to a building
block of processing circuitry; it controls elec-
trical current flow in a circuit and is imple-
mented as a transistor.

switched fabric An architecture for intercon-
necting devices with multiple data transmis-
sion pathways and a mesh of switches
resembling the interwoven threads of fabric.

symbol table An internal table updated by
the compiler that keeps track of data names,
types, and assigned memory addresses in
programs. See also compiler.

symbolic debugger An automated tool for
testing executable programs; includes features
for tracing calls to source code statements or
functions, tracing changes to variables
contents, and detecting runtime errors.

synchronous DRAM (SDRAM) A read-ahead
RAM that uses the same clock pulse as the
system bus; read and write operations are
broken into simple steps that can be com-
pleted in one bus clock cycle.

synchronous idle characters Control mes-
sages consisting of a predetermined pattern of
signal transitions designed for easy clock
synchronization.

synchronous transmission A method that
ensures sender and receiver clocks are always
synchronized by sending data in continuous
streams of fixed-size byte groups called
blocks.

system administration A wide range of man-
agerial activities for ensuring efficient and
reliable delivery of information services.

system bus The internal communication
channel connecting all hardware devices.

system clock A digital circuit that generates
timing pulses (signals) and transmits them to
other devices in the computer; all actions,
especially a CPU s fetch and execution cycles,
are timed according to this clock.

system development tools Tools that enable
systems analysts and designers to develop
models of information systems that are then
used as the starting point for developing
application programs. See also application
development software.

system overhead The resources consumed by
resource allocation procedures.

system requirements models Models that
provide the detail needed to develop a system
that meets users needs.

system software A program for handling
resource allocation to application software,
performing utility functions needed by
application software, or managing computer
resources; includes operating systems,
database management systems, antivirus
software, and network security software, for
example.

systems analyst A software developer who
contributes to the business modeling and
requirements disciplines. See also software
developers.

597

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

systems architecture The structure, interac-
tion, and technology of computer
components.

systems designer A software developer who
contributes to the design discipline. See also
software developers.

systems development life cycle (SDLC) The
process for developing an information system;
follows a series of steps or activities. See also
Unified Process (UP).

systems programmers People who develop or
maintain system software and might also
perform tasks such as hardware trouble-
shooting and software installation and config-
uration. See also system software.

tape drive A slow serial access device
containing motors that wind and unwind
tapes and read/write heads to access tape
content.

target channel adapter (TCA) An interface
that connects a device to an InfiniBand
switch; used by simpler devices, such as net-
work switches and storage appliances.

TCP/IP See Internet Protocol (IP) and
Transmission Control Protocol (TCP).

TCP/IP model A layered protocol model
describing current Internet standards and
technology. See also Internet Protocol (IP)
and Transmission Control Protocol (TCP).

Telnet A Web protocol in which users on one
Internet host can interact with another host s
OS command layer; it emulates a VDT and is
limited to interacting with command-line
interfaces.

testing discipline Activities in the Unified
Process for verifying the correct functioning
of infrastructure and application software
components and ensuring that they satisfy
system requirements. See also Unified
Process (UP).

thin film transistor (TFT) A technology for
manufacturing active matrix displays, in
which wiring and transistors are added in thin
layers to a glass substrate; similar to semi-
conductor fabrication technology.

thread A subdivision of a process that can be
scheduled and executed independently;

shares all resources allocated to its parent
process. See also process.

thread control block (TCB) A data structure
containing information that an OS uses to
keep track of and manage threads. See also
thread.

thread cycle The amount of CPU time needed
to complete a thread s function. See also
thread.

thread list See run queue.

three-layer architecture A variation of client/
server architecture that divides software into
three client or server processes called layers:
the view layer, the business logic layer, and
the data layer.

three-tier architecture See three-layer
architecture.

third-generation language (3GL) A high-
level programming language that uses mne-
monics to represent instructions, variables,
and labels; is machine independent; and has
instruction explosion higher than 1:1. It
has no advanced capabilities for interactive
I/O, database processing, or nonprocedural
programming. See also instruction
explosion.

time-division multiplexing (TDM) A tech-
nique that divides a channel s data transfer
capacity into time slices and allocates them to
multiple users.

timer interrupt An interrupt generated at
regular intervals (between several dozen and
several thousand CPU cycles) to give the
scheduler an opportunity to suspend the cur-
rently executing thread. See also scheduling
and thread.

traces Arrangements of conductive
molecules (usually straight lines) that enable
electrons to flow from one place or device to
another.

track One concentric circle of a platter; the
surface area that passes under a read/write
head when its position is fixed. See also
platters.

track-to-track (TTT) seek time The average
time needed to move a read/write head

598

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

between two adjacent tracks; typically mea-
sured in milliseconds.

transaction To an FMS, any change to file
contents or attributes, such as an added
record, a modified field, or changed access
controls. See also file management system
(FMS).

transaction logging A form of automated
backup in which all changes to file content
and attributes are recorded automatically in a
log file in addition to being written to the
file s I/O buffer; provides a high degree of
protection against data loss caused by pro-
gram or hardware failure but imposes a per-
formance penalty.

transistors Electrical switches made of semi-
conductor material that has been treated with
chemical impurities to enhance the semicon-
ducting effects; they re combined to imple-
ment gates. See also gate.

Transmission Control Protocol (TCP) A core
Internet protocol for translating messages into
packets and guaranteeing their delivery.

transmission medium A communication path
that carries signals.

Transport layer The OSI layer responsible for
formatting messages into packets suitable for
transmission over the network; adds required
header and trailer information, including
network addresses, error-detection data, and
packet-sequencing data. See also Open Sys-
tems Interconnection (OSI) model.

tree directory structure See hierarchical
directory structure.

trillions of floating-point operations per sec-
ond (teraflops or TFLOPS) A measurement
of the rate at which floating-point operations
are performed; used to measure CPU
performance.

truncation The act of deleting bits that don t
fit in a storage location.

twin-axial cable A transmission medium
that s similar to coaxial cable but is thinner
and contains two internal conductors.
See also coaxial cable.

twisted-pair cable A transmission medium
consisting of two copper wires twisted around

one another and encased in nonconductive
material, usually plastic.

twos complement notation A notation system
that represents positive integers as ordinary
binary values and negative integers by adding
1 to the complement of the positive value.

Type I error In data transmission, the prob-
ability of not detecting a real error.

Type II error In data transmission, the prob-
ability of incorrectly identifying good data as
an error.

unblocked The term describing a physical
record containing just one logical record.
See also logical record and physical record.

unconditional BRANCH An instruction in
which the processor always departs from the
normal execution sequence. See also
BRANCH.

undelete operation The act of restoring a
record or file by re-creating its index infor-
mation (directory entry) and recovering its
previously allocated storage locations.

underflow A condition that occurs when a
value is too small to represent in floating-
point notation; also refers to overflow of a
negative exponent in floating-point notation.
See also floating-point notation.

unguided transmission A transmission
medium that uses the atmosphere or space to
carry messages encoded in radio frequency or
light signals; also called wireless
transmission.

Unicode A standard 16-bit or 32-bit
character-coding method that assigns non-
negative integers to represent printable char-
acters; includes alphabets, ideographs, and
characters for most of the world s languages.

Unified Process (UP) A systems development
life cycle based on object-oriented techni-
ques; follows a series of repeated steps.
See also iterations.

Uniform Resource Locator (URL) A unique
identification for a Web resource, composed
of a protocol, host, port, and resource.

uninterruptible power supply (UPS) A
device that provides power to attached
devices in the event of external power failure;

599

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

UPSs vary in their power delivery capacity,
switching time, and battery life.

unresolved reference See external function
call.

unsigned integer A data type that stores
positive integer values as ordinary binary
numbers; its value is always assumed to be
positive.

User Datagram Protocol (UDP) A connec-
tionless protocol that lacks the connection
management features of TCP but can support
communication between multiple hosts and
senders; used mainly for communication that
requires low processing overhead and doesn t
require a guarantee of reliable delivery.
See also connectionless protocol.

variable A mnemonic representing a data
item s memory address in assembly language
or a name representing a data item s memory
address in a high-level programming language.
See also assembly language.

variable-length instruction In this type of
instruction format, the amount by which the
instruction pointer is incremented after a
fetch is the length of the most recently
fetched instruction; this format complicates
instruction fetching because the number of
bytes to be fetched isn t known in advance.

vector In graphics, a line segment with a
specific angle and length in relation to a point
of origin; also refers to a one-dimensional
array.

vector list A series of concatenated or linked
vectors that can be used to construct complex
shapes; images constructed from a vector list
resemble connect-the-dots drawings.

versioning A process in which a file s original
version is archived automatically whenever
the file is modified.

vertical redundancy checking See parity
checking.

victim If all page frames are allocated, the
page currently in memory that must be writ-
ten to the swap space before the reference
page is loaded into a page frame. See also
page, swap space, and virtual memory
management.

video bus A subsidiary bus that connects
only memory and the video display device;
improves performance by removing display
update traffic from the system bus and pro-
viding a high-capacity one-way communica-
tion channel optimized for video data.

video controller A device connected to the
system bus (or a dedicated video bus)
that accepts commands and data from the
CPU and generates analog or digital video
signals, which are transmitted to the
monitor.

video display terminal (VDT) An early I/O
device containing an integrated keyboard and
TV screen; capable of displaying only text and
primitive graphics.

video RAM (VRAM) A type of RAM used
in a video controller; differs from ordinary
RAM because it can be written by the bus
interface circuitry or video processor while
being read by display generator circuitry.
See also dual-porting.

view layer The software layer that accepts
user input and formats and displays proces-
sing results. See also three-layer architecture.

virtualization environments Hypervisors that
are installed as applications in other OSs.
See also hypervisor.

virtual machine (VM) A collection of files on
a physical computer that define the virtual
machine s configuration and the contents of
its virtual disk drives; creates an environment
separate from the physical computer in which
different OSs can run, application software
can be tested, and so forth.

virtual memory management A memory
management method in which the OS divides
memory and programs into partitions called
pages, which are held in secondary storage
until needed. See also page.

virtual resources Resources (hardware and
system software) that are apparent to a user
or program as being available but don t nec-
essarily exist physically.

virus A program or program fragment that
infects a computer by installing itself perma-
nently, performs malicious acts on the infected

600

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

computer, and replicates and spreads itself by
using services on the infected computer.

Voice over IP (VoIP) A family of
technologies and standards for carrying voice
messages and data over a single packet-
switched network.

volatile A term describing storage devices
that can t hold data for long periods; primary
storage is usually volatile.

volume Part of the logical view of secondary
storage; consists of an entire physical disk, a
partition of the disk, or a removable storage
medium and on larger computers, can span
multiple physical disks.

wait state An idle clock cycle during which
the CPU is waiting for a response from
another device. See also clock cycle.

wavelength-division multiplexing (WDM) In
long-distance telecommunication, using FDM
to multiplex single-mode optical fibers.
See also frequency division multiplexing
(FDM).

wide area network (WAN) A network that
spans large physical distances, such as multi-
ple buildings, cities, regions, or continents.

wired transmission See guided transmission.

wireless transmission See unguided
transmission.

wires See traces.

word A unit of data containing a fixed num-
ber of bytes or bits, loosely defined as the
amount of data a CPU processes at one time;
word size normally matches the size of
general-purpose registers. See also general-
purpose registers.

working directory See current directory.

workstation A type of microcomputer that s
typically more powerful than a PC to support
demanding numeric or graphics processing
tasks. See also microcomputer.

Worldwide Interoperability for Microwave
Access (WiMAX) A group of wireless net-
working standards codified in the IEEE
802.16 standard; targeted to applications
involving fixed and mobile Internet access
spanning distances up to 50 kilometers (about
30 miles). See also metropolitan area net-
works (MANs).

World Wide Web (WWW) Also referred to as
just the Web, a collection of resources that
can be accessed over the Internet by standard
protocols, such as HTTP.

601

Glossary

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

INDEX

10 Gigabit Ethernet, defined, 355
24-bit color, defined, 244
802 standards, 300–302, 341, 352–354
802.11, 300–302

defined, 300
802.11a, 300–302

defined, 301
802.11b, 300–302

defined, 301
802.11g, 300–302

defined, 301
802.11n, 300–302

defined, 302
80x86 processors, defined, 52

A
Absolute addressing, defined, 429
Accelerated Graphics Port (AGP), 201
Access arm, 178–179, 185

defined, 178
Access control list (ACL), 494–496

defined, 494
Access controls, 543–544

types of, 462
Windows NTFS and, 463–465

Access method and storage devices,
161–163, 183

Access point (AP), defined, 341
Access time, 160–162, 179–183, 185

defined, 160
Accuracy, as goal of computer data

representation, 71
Acknowledge (ACK), defined, 304
Acknowledgment (ACK) protocol, 348
ACM Computing Surveys, 11
Acquisition process of hardware/

software, 534–536
Active Directory, 494–496

defined, 494
Active matrix display, defined, 252
ADD, 110–112

defined, 112

Additive colors, defined, 243
Address, defined, 91
Address bus, 196–197

defined, 196
Address mapping, defined, 429
Address resolution, defined, 429
Address Resolution Protocol (ARP), 344
Addressable memory, defined, 428
Addresses

data structures and, 91
defined, 69
memory addresses as data types, 87–88
pointers and, 69

Adobe Systems, Inc., 249, 320
Advanced Intelligent Tape (AIT)

defined, 176
format comparisons, 175–177

Advanced Technology Attachment
(ATA), 307

Algorithm, defined, 27
Algorithms of processors, 27
Allocation unit, defined, 455
Alternating current (AC), 552
American National Standards Institute

(ANSI), 353
American Standard Code for Information

Interchange (ASCII), 81–82
character data and, 81–85
data encoding and, 280
defined, 81
RPC protocol and, 496

Amplifiers, 298–299
defined, 299

Amplitude, defined, 278
Amplitude modulation (AM), 280–281

defined, 280
Amplitude-shift keying (ASK), defined, 280
Analog, defined, 253
Analog signals, 283, 286

defined, 283
Analog-to-digital converter (ADC), 265, 268

defined, 265
AND

data transformations, 110–111

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Index

AND (continued)
defined, 111

Antivirus software, 547
Applet, 391, 504–505

defined, 391
Application demand model, 538
Application development

compilation and, 378–392. See also
Compilation

process, 364–369
programming languages, fifth-generation

languages, 373–375
programming languages, first-generation

languages, 371
programming languages, fourth-generation

languages, 372–373
programming languages, general

description, 369–371
programming languages, importance

of, 369–371
programming languages, object-oriented

languages, 376–377
programming languages, scripting

languages, 377
programming languages, second-generation

languages, 371–732
programming languages, standards, 377
programming languages, third-generation

languages, 372
tools, 392–398

Application development software
defined, 49
operating systems and, 49

Application firewall, defined, 550
Application layer of OSI model, 341–342

defined, 341
Application layer of TCP/IP model, 344–346
Application software, 45–47

defined, 45
processing parallelism and, 220–224

Architectural design, 4–6
defined, 4

Areal density, 171–172
defined, 172

Arithmetic logic unit (ALU)
of CPU, 106–108
defined, 31

Arithmetic SHIFT, defined, 114
ARPANET. See U.S. Department of

Defense (DOD) Advanced
Research Projects Agency
Network (ARPANET)

Arrays
data structures, 91–95
defined, 91

Assembler, 371–372
defined, 371

Assembly language, 370–371
defined, 371

Association for Computing Machinery (ACM),
defined, 16

Association for Information Technology
Professionals (AITP), defined, 16

Asynchronous Transfer Mode (ATM), 344
Asynchronous transmission, 314–317

defined, 315
Asynchronous Transmission Mode, 356
Attenuation, defined, 293
Audio hardware, 268–269
Audio I/O devices. See also Input/output (I/O)

ADC/DAC and, 265
hardware, 268–269
speech generation and, 267
speech recognition and, 266–267

Audio response unit, defined, 267
Auditing, defined, 546
Authentication, 543–544

defined, 543
Authorization, defined, 543
Automated data processing, data

representation and, 62–63
Average access time, defined, 160

B
Babbage, Charles, 22
Back-end CASE tool, defined, 396
Back-end resources, 39
Backup. See File backup
Backward compatibility, and CISC versus

RISC, 123
Bandwidth, 291–293

broadband/narrowband, 310–311
defined, 291
and transmission media, 288

Bar code, defined, 262
Bar-code scanners, defined, 262
Bare-metal hypervisors, defined, 413
Base, 64–65

defined, 64
Base-16 numbering system. See Hexadecimal

notation
Base-8 numbering system. See Octal notation
BASIC, 370
Batch transactions, 466
Benchmark, 126–128, 538–539

defined, 126
Benchmark program, 126–128

defined, 126

604

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Benchmark suites, defined, 126
Bias

and vendor/manufacturer Web sites, 15
and Web sites that generate revenue, 14

Big endian, defined, 427
Billions of floating-point operations per

second (gigaflops or GFLOPS),
defined, 125

Binary data representation, data
representation and, 63–68

Binary number
defined, 63
languages and, 371–372

Binary signal, 283, 285–287
defined, 283

Biometric authentication, defined, 543
BIOS, flash RAM and, 168
Bit, 561. See also Storage

ASCII and, 82
data transfer rates and, 562–563
defined, 67
encoding/transmitting, 278–287
IP nodes and, 345–346
speed/capacity and, 289
word and, 129–130

Bit string, defined, 67
Bit time, 295–296

defined, 295
Bitmap, 243, 246

defined, 243
Blade

blade servers, 224
defined, 39

Block, 160, 315–316, 455. See also Storage
defined, 160

Block check character (BCC), defined, 319
Block checking, 318–319

defined, 319
Blocked state, 416–417

defined, 417
Blocking, 457–459

defined, 458
Blocking factor, defined, 458
Blu-ray disc (BD), defined, 187
Boolean data type, defined, 86
Boolean logic

data transformations and, 110–113
defined, 63

Boot virus, 547
BRANCH

CPU and, 115
defined, 115
primary storage cache and, 219
and programming example, 118
special-purpose registers and, 129

Branch prediction
defined, 134
enhancing processor performance

via, 133–135
Broadband, 310–311

defined, 310
Broadband wireless access (BWA)

standard, 352
Broadcast mode, 303–304

defined, 303
Brownout, defined, 552
Buffer overflow, defined, 214
Buffering, 457–459
Buffers

defined, 213
diminishing returns and, 215–217
goals/operations of, 213–215

Bus, defined, 196
Bus arbitration unit, defined, 200
Bus clock, 198–199

defined, 198
Bus cycle, defined, 198
Bus master, defined, 199
Bus protocol, 199–200

defined, 199
Bus slaves, defined, 199
Bus topology, 332–333

defined, 332
Buses

bus clock/data transfer rate and,
198–199

bus protocol and, 199–200
defined, 196
subsidiary buses and, 200–202
system bus, 196–197, 202

Business logic layer, 485–486
defined, 485

Business modeling discipline, 3, 366
defined, 3

Business-to-business (B2B), defined, 516
Byte. See also Storage

allocation units and, 455
data transfer rates and, 561–563
defined, 67
most/least significant, 427
parallel transmission and, 305–306
serial transmission and, 306
word and, 129

Bytecode, 390–392

C
C#, 370
C, standards for, 377

605

Index

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

C++
defined, 49
Java and, 390
and programming language evolution, 370
standards for, 377

Cable routing, 554–555
Cables

electrical, 296–297
optical, 297–298

Cache controller, 218–219
defined, 218

Cache hit, defined, 219
Cache miss, defined, 219
Cache swap, defined, 219
Caches, 217–219

defined, 217
primary storage cache, 219
secondary storage cache, 220

Call instruction, defined, 382
Cameras, digital, 264
Capacity and storage devices, 162–163, 183,

320–321
Capacity units of measurement, 561–562
Capital expenditures, defined, 531
Capital resources, defined, 531
Carrier Sense Multiple Access/Collision

Avoidance (CSMA/CA), 337–338
defined, 337

Carrier Sense Multiple Access/Collision
Detection (CSMA/CD), defined, 337

Carrier waves, 278–280
defined, 279

Category 5, defined, 296
Category 6, 296–297

defined, 296
Cathode ray tube (CRT), 251, 253

defined, 251
CD digital audio (CD-DA), defined, 187
CD read-only memory (CD-ROM), defined, 187
Central processing unit (CPU). See also

Central processing unit (CPU) allocation
and Boolean data as data type, 86
branch prediction and, 133–135
bus protocol and, 199–200
and character data as data type, 81–86
clock rate of, 124–128
and complex processing

operations, 115–116
components and, 508
components of, 31–32
conductivity and, 139–140
current technology capabilities/limitations

of, 143–147
data movement instruction, 110
data transformation instruction, 110–113

defined, 30
electro-optical processing and, 148
execution cycle of, 107–108
fetch cycle of, 107–108
future trends of, 147–149
heat and, 140–141
instruction format of, 119–124
instruction set, 108–110
instruction set extensions and, 119
and integers as data type, 72–76
Intel core processing family and, 136–137
Java and, 391
and memory addresses as data type, 87–88
microchips/microprocessors and, 142–143
multicore architecture and, 221–223
multiprocessing and, 135–137
optical processing and, 148
processor fabrication and, 141–143
programming example, 117–119
quantum processing and, 148–149
and real numbers as data type, 76–81
registers, 128–129
resistance and, 140
sequence control instruction, 115
SHIFT instruction, 113–114
speculative execution and, 133–135
speed/circuit length and, 141
starting operation of, 106–107
switches/gates of, 138–139
transistors/integrated circuits of, 142
video processors and, 250
word size of, 129–131

Central processing unit (CPU) allocation
and choosing server OS, 425–426
concurrent/interleaved execution and, 415
interrupt processing and, 417–418
scheduling and, 418, 418–424
thread states and, 415–416

Channel, 208–209, 309–311
defined, 208

Channel organization
channel sharing and, 309–311
InfiniBand and, 311–313
parallel/serial connections and, 307–308
parallel/serial transmission and, 305–306
simplex/half-duplex/full-duplex modes

and, 303–305
Character, defined, 81
Character data

ASCII and, 81–85
device control and, 83
EBCDIC and, 81–82
software/hardware support and, 84–85
Unicode and, 85–86

Character-framing methods, defined, 314

Index

606

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chief information officer (CIO)
defined, 10
job description, 10

Child, defined, 466
Child process, 414, 466

defined, 414
Chlorofluorocarbon (CFC), 555
Chromatic depth, 243–244

defined, 243
Chromatic resolution, defined, 243
Circuit switching, 309–310

defined, 309
Circuits

integrated, 142
length, 141

Class, 97–98
data structures, 97–98
defined, 97

Class diagram for system requirements
model, 367

Clear-to-send (CTS) signal, 337–338
defined, 337

Client, defined, 484
Client/server architecture, 501

defined, 484
firewalls and, 551
HTTP and, 503
and Internet as application platform, 506
middleware and, 486
n-layer, 485–486
named pipes and, 498–499
peer-to-peer (P2P) architecture and, 487
SaaS and, 517
SOAP and, 513
sockets and, 497
software organization and, 484–485
Web organization and, 501–502

Clock cycle, 124–125, 132, 137
defined, 124

Clock rate
CPU and, 124–128
defined, 124
Intel Core processors and, 137
microprocessors and, 145

Clock synchronization, 314–317
Cloud, 39–40

defined, 39
Cloud computing, 517, 520–521

defined, 517
Cluster, 38–39

defined, 38
high-performance clustering, 225–227

CMD files, 450
CMY, defined, 243
CMYK, defined, 243

CNET, 13
Coaxial cables, defined, 297
COBOL, standards for, 377
Code, defined, 369
Coding

ASCII and, 81–85
EBCDIC and, 81–82
Unicode and, 85–86

Coercivity, 172–173
defined, 171

Coexistence technical advisory group
standard, 352

Collating sequence, defined, 84
Collision, 336–337

defined, 337
Colon hexadecimal notation, defined, 346
Color, 243
Color Graphics Adapter (CGA), 244
Command-and-response sequences, 277
Command language, defined, 407
Command layer

defined, 406
of FMS, 446–447
of OS, 406

Common Object Request Broker Architecture
(CORBA), 501, 511–512, 515

defined, 511
Communication. See also Data storage

amplifiers/repeaters and, 298–299
analog signals and, 283
bandwidth and, 291–293
carrier waves and, 278–280
channel sharing and, 309–311
clock synchronization and, 314–317
communication channel/path, 287–288
communication protocols, 276–277
digital signals and, 283–285
electrical cabling and, 296–297
error detection/correction and, 317–318
frequency and, 289–291
InfiniBand and, 311–313
internal/external, 158
modulation methods and, 280–283
optical cabling and, 297–298
parallel/serial connections and, 307–308
parallel/serial transmission and, 305–306
parity checking and, 318–319
signal capacity/errors and, 286–287
signal-to-noise ratio, 293–296
simplex/half-duplex/full-duplex modes

and, 303–305
speed/capacity and, 289
and upgrading storage/network

capacity, 320–321
wireless transmission and, 299–302

607

Index

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Communication channel, defined, 287
Communication coordination

clock synchronization and, 314–317
error detection/correction and, 317–318
parity checking and, 318–319
and upgrading storage/network

capacity, 320–321
Communication protocol, 276–277

defined, 276
Communications of the ACM, 11
Compact disc (CD), defined, 187
Compaction, 432–433

defined, 432
Compactness, as goal of computer data

representation, 70–71
Comparisons/branching of processor, 28
Compatibility

and CISC versus RISC, 123
effects of maintenance attempts, 88

Competitive advantage, defined, 532
Compilation, 378–379

control structures and, 380–382
data declarations and, 379
data operations and, 379–380
dynamic/static linking and, 386–387
function calls and, 382–384
interpreters and, 387–388
Java language and, 390–392
link editing and, 384–386
symbolic debugging and, 388–392

Compiler, 378–380, 388–389
defined, 378

Compiler library, defined, 384
Complete path, defined, 453
Complex instruction set computing

(CISC), 122–124
defined, 122

Complex instructions
defined, 119
instruction set extensions and, 119
RISC/CISC and, 121–124

Component
COM+ and, 512
component-based software and, 509
CORBA and, 511–512
defined, 508
general information, 508
Java Platform, Enterprise Edition (Java

EE), 514–515
objects and, 510
SOAP, 512–514
standard/infrastructure, 510–511

Component-based software, 509
Component Object Model Plus (COM+),

defined, 512

Composite signal, defined, 291
Compression, defined, 227
Compression algorithm, defined, 227
Compression, MPEG/MP3 and, 229–230
Compression ratio, defined, 227
Computation. See Systems architecture
Computer, 11
Computer-assisted software engineering

(CASE) tool, 396–398
defined, 396

Computer data representation. See Data
representation

Computer networks
ARPANET and, 343–344
defined, 53
Ethernet and, 355–356
external resources for, 53–54
IEEE 802 standards and, 352–353
Internet Protocol (IP) and, 343–346
Internet Protocol version 6 (IPv6)

and, 347
Media Access Control (MAC) and, 336–338
message addressing/forwarding

and, 333–336
network communication and physical

network, 54–55
network interface cards (NICs)

for, 338–341
and Network Interface Layer of TCP/IP

model, 351–352
network software for, 54–55
OSI Application layer, 341–342
OSI Data Link layer, 342–343
OSI Network layer, 342–343
OSI Physical layer, 342–343
OSI Presentation layer, 342
OSI Session layer, 342–343
OSI Transport layer, 342–343
topology of, 330–333
Transmission Control Protocol (TCP)

and, 344–345, 347–348
and upgrading capacity, 356–357
User Datagram Protocol (UDP) and, 348
Voice over IP (VoIP) and, 349–350
Worldwide Interoperability for Microwave

Access (WiMAX) and, 353–354
Computer operations manager

defined, 9
job description, 9–10

Computer science
defined, 9
job descriptions, 9

Computer systems
Grosch’s Law and, 41–43
mainframe, 34–36

Index

608

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

microcomputer, 34–36
midrange computer, 34–36
portable, 34–36
supercomputer, 34–36

Computer technology
hardware personnel and, 9
information system development, 2–7
managing computer resources, 7–8
and periodical literature as information

source, 10–11
and professional societies as information

source, 16
software developers and, 8–9
systems managers and, 9–10
and Web sites as information source, 12–15

Computerworld, 11
Concurrent execution, defined, 415
Condition, defined, 28
Conditional BRANCH, defined, 115
Conductivity

CPU and, 139–140
defined, 140

Conductor, defined, 140
Configurations, of subsystems, 36–37
Connection-oriented protocol, 347–348

defined, 347
Connection standards. See Standards
Connectionless protocol, defined, 347
Contiguous, 427–428

defined, 428
Control bus, 196–197

defined, 196
Control structure, 380–382

defined, 380
Control unit of CPU, 31–32, 106–108. See

also Central processing unit (CPU)
defined, 31

Conversions, binary to decimal, 66–68
Converters, ADC/DAC, 265
Core, defined, 221
Core memory, 165, 221

defined, 165
Core, server processors and, 146–147
CorelDRAW, 249
Crosstalk, defined, 306
Cryptography systems, 25
CSMA/CA, 352
Current directory, defined, 453
Cursor, defined, 259
Cycle, defined, 278
Cycle of sine wave, 278
Cycle time, defined, 124
Cyclic redundancy checking (CRC), 318–319

defined, 319
Cylinder, defined, 177

D
Data bus, 196–197

defined, 196
Data capture devices, 264–265
Data declaration, defined, 379
Data layer, 485–486

defined, 485
Data Link layer of OSI model, 342–343

defined, 343
Data mining, 220
Data movement, CPU and, 110
Data/network communication technology

amplifiers/repeaters and, 298–299
analog signals and, 283
bandwidth and, 291–293
carrier waves and, 278–280
channel sharing and, 309–311
clock synchronization and, 314–317
communication channel/path for, 287–288
communication protocols, 276–277
digital signals and, 283–285
electrical cabling and, 296–297
error detection/correction and, 317–318
frequency and, 289–291
InfiniBand and, 311–313
modulation methods and, 280–283
optical cabling and, 297–298
parallel/serial connections and, 307–308
parallel/serial transmission and, 305–306
parity checking and, 318–319
signal capacity/errors and, 286–287
signal-to-noise ratio, 293–296
simplex/half-duplex/full-duplex modes

and, 303–305
speed/capacity and, 289
and upgrading storage/network

capacity, 320–321
wireless transmission and, 299–302

Data operations, 379–380
defined, 379

Data ownership, 520–521
Data representation

accuracy as goal of, 71
and arrays/lists as data structures, 91–95
automated data processing and, 62–63
binary data representation and, 63–68
and Boolean data as data type, 86
and character data as data type, 81–86
and classes/objects as data

structures, 97–98
compactness/range as goals of, 70–71
data structure (general information)

and, 89–91
ease of manipulation as goal of, 71–72

609

Index

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Data representation (continued)
hexadecimal notation and, 68–70
and integers as data type, 72–76
and memory addresses as data type, 87–88
octal notation and, 70
and pointers/addresses as data

structures, 91
processing requirements of, 61–62
and real numbers as data type, 76–81
and records/files as data structures, 96–97
standardization as goal of, 72

Data storage
access method and, 161–162
areal density (magnetic storage)

and, 171–172
CD-ROM/DVD-ROM/BD (optical mass

storage) and, 187
cost/capacity and, 162–163
device characteristics (general

information), 158–159
magnetic decay/leakage and, 171
magnetic disc and, 177–184
magnetic storage (general

information), 170–171
magnetic tape and, 173–177
magnetic tape formats/standards, 176–177
magneto-optical drives (optical mass

storage) and, 188–189
media integrity (magnetic storage)

and, 172–173
memory-storage hierarchy and, 163–164
optical mass storage devices (general

information) and, 184–186
phase-change optical discs (optical mass

storage) and, 188
portability and, 162
primary storage devices, 164–169
recordable discs (optical mass storage)

and, 187
solid-state drives and, 183–184
speed and, 159–160
volatility and, 161

Data striping, 470–471
defined, 470

Data structures
arrays/lists, 91–95
classes/objects, 97–98
defined, 89
pointers/addresses and, 91
records/files, 96–97

Data transfer, caches and, 217
Data transfer rate, 200–202, 209

defined, 160
InfiniBand and, 311–313
storage devices and, 160, 307–308

Data transfer rates of measurement, 562–563
Data transformations, CPU and, 110–113
Data types, Intel Core processors

and, 136–137
Database administrator

defined, 10
job description, 10

Database management system (DBMS), as
tool, 369

Datagrams, defined, 345
Debugging tools

defined, 49
symbolic debugging and, 388–390

Debugging version, defined, 390
Decimal point, defined, 64
Decoding, defined, 128
Decompression algorithm, 229

defined, 227
Defragmentation, 180–181
Dell, InfiniBand and, 311
Deployment discipline

defined, 6
Unified Process (UP) and, 6

Deployment discipline of UP, 366
Design discipline, 3–6

defined, 4
Design discipline of UP, 366
Design models, 367–368

defined, 367
Detailed design, 5–6

defined, 5
Device control, ASCII character data and, 83
Device controllers

defined, 207
mainframe channels and, 208–209
secondary storage and, 207–208

Difference Engine (Babbage), 22
Differential backup, 467–468

defined, 467
Digital Audio Tape (DAT), defined, 176
Digital cameras, 264
Digital Data Storage (DDS)

defined, 176
format comparisons, 175–176

Digital signal, 283–285
defined, 283

Digital signal processor (DSP), defined, 267
Digital-to-analog converter (DAC),

defined, 265
Digitizer, defined, 260
Diminishing returns, buffers and, 215–217
Direct access, 161–162, 460–461

defined, 161
Direct-attached storage (DAS), 473–474

defined, 473

Index

610

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

611

Index

Direct memory access (DMA), defined, 200
Direct sequence spread spectrum

(DSSS), 300
Direct3D, defined, 251
Directories

content/structure of, 451–452
defined, 451
graph directory structure and, 454–455
hierarchical directory structure

and, 452–454
Directory services

defined, 492
general information, 492
Lightweight Directory Access

Protocol, 492–494
Microsoft Active Directory, 494–496

Disaster planning/recovery, 555
Disciplines

defined, 3
Unified Process (UP) and, 2–3

Discrete signal, defined, 283
Disk defragmentation, 180–181

defined, 180
Disk drive. See also Magnetic disk

bus protocol and, 199
Disk mirroring, 469–470

defined, 469
Dispatching

defined, 416
preemptive scheduling and, 418

Display concepts. See Print/display concepts
Distortion, 294, 300–301

defined, 294
Distributed application services

cloud computing and, 521–522
components/distributed objects

and, 508–515
directory services and, 492–496
distributed software architecture

and, 484–487
emerging distribution models, 516–521
Internet/WWW and, 501–508
interprocess communication

and, 496–501
network resource access and, 487–492

Distributed computing, defined, 484
Distributed Computing Environment

(DCE), 500–501
defined, 500

Distributed object
COM+ and, 512
component-based software and, 509
CORBA and, 511–512
Java Platform, Enterprise Edition

(Java EE), 514–515

objects and, 510
SOAP, 512–514
standard/infrastructure, 510–511

Distributed processing, defined, 484
Distributed software architecture

client/server architecture, 484–485
middleware, 486
n-layer client/server architecture, 485–486
peer-to-peer (P2P) architecture, 487

Distribution models, emerging
business-to-business (B2B) and, 516–517
cloud computing and, 517, 521–522
infrastructure as a service (IaaS), 519
platform as a service (PaaS) and, 518–519
risks of, 519–521
service-oriented architecture (SOA)

and, 517–518
software as a service (SaaS), 517–521

Dithering, defined, 244
Diversity, defined, 302
DMA controller, defined, 200
Domain Name System (DNS), 344, 491–492

defined, 491
Dot matrix printer, defined, 255
Dots per inch (dpi), 241, 256

defined, 241
Dotted decimal notation, defined, 346
Dotted hexadecimal notation, defined, 346
Double data rate (DDR), defined, 167
Double inline memory module

(DIMM), 168–169
defined, 168

Double-precision, defined, 76
Doubly linked list, defined, 95
Drive array, 178, 181

defined, 178
Dual inline packages (DIPs), defined, 168
Dual-porting, defined, 251
DVD (digital video disc or digital versatile

disc), defined, 187
DVD read-only memory (DVD-ROM),

defined, 187
Dynamic connection

defined, 491
remote resource access and, 492

Dynamic Host Configuration Protocol
(DHCP), 344

Dynamic link library (DLL)
defined, 387
files, 450

Dynamic linking, 386–387
defined, 386

Dynamic RAM (DRAM), 166
defined, 166
primary storage cache and, 219

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

E
E-mail protocol, 502, 504, 520–521
Early binding, defined, 386
Earthweb, 13
Economics

and attempts to maintain
compatibility, 88

capital expenditures and, 531
capital resources and, 531
cost and storage devices, 162–163, 183
economies of scale, 43
MIPS and, 41–42
operating expenditures and, 531
of packet switching, 310
simplex/half-duplex modes and, 304–305
of system/application development

software, 49–51
Effective data transfer rate, defined, 289
Electrical cabling, 296–297
Electrical power, 552–553
Electrical properties, CPU and, 139–141
Electrical signal storage, 164–165
Electricity and emerging models, 516
Electro-optical processing, as future trend of

processors, 148
Electromagnetic interference (EMI),

defined, 293
Electronic implementation of

computation, 23
Electronically erasable programmable ROM

(EEPROM), defined, 167
Electronics Industries Alliance, 296
Emergency call centers and protocol, 351
Encapsulation, defined, 351
Encoding/transmitting bits

analog signals and, 283
carrier waves and, 278–280
digital signals and, 283–285
modulation methods, 280–283
signal capacity/errors and, 286–287

End nodes of network topology, 331–332
Enterprise JavaBeans (EJBs), defined, 514
Environment

cable routing and, 554–555
disaster planning/recovery and, 555
electrical power and, 552–553
fire protection and, 555
heat dissipation and, 553
moisture and, 554

Erasable programmable ROM (EPROM),
defined, 167

Errors
bit time and, 296
detection/correction, 317–319

mixed-font text and, 263
RF transmission and, 300
signal, 286–287
simplex/half-duplex modes and, 304
synchronization and, 314–315
Type I, 318–319
Type II, 317, 319

Ethernet, 320
defined, 355
description/dominance of, 355–356
hubs and, 339
and Physical layer of OSI model, 344

Evaluation of IS performance
application demand model and, 538
benchmarks and, 538–539
importance of, 537
and measurement of resource demand/

utilization, 539–540
resource availability model and, 538
and Windows Performance Monitor

utility, 540–542
Even parity, defined, 318
Exa prefix, 562
Exabyte, magnetic tape and, 176–177
Excess notation, 73–74

defined, 73
Exclusive OR (XOR), defined, 112
Executable code, defined, 378
Executable (EXE) files, 450
Execute and access controls, 462
Executing, defined, 26
Execution cycle, 107–108

defined, 107
Explicit priority, defined, 421
Extended Binary Coded Decimal Interchange

Code (EBCDIC)
character data and, 81–82
defined, 81

Extensible Markup Language (XML), 503–504
defined, 503

External function call, defined, 384
External I/O bus, 201–202

defined, 201
External resources, for computer

networks, 53–54

F
Fabric switch, 311–313
Fault tolerance

clusters and, 39
defined, 469
mirroring and, 469–470
RAID and, 470–473

Index

612

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Fetch cycle, 107–108
defined, 107

Fiber Distributed Data Interface, 356
Fiber-optic cable, 288, 297–298

defined, 288
errors and, 317

Fields, defined, 449
Fifth-generation languages (5GLs), 373–375

defined, 373
File, defined, 96
File Allocation Table (FAT), defined, 457
File and secondary storage management

access controls and, 462–465
directory content/structure and, 451–455
fault tolerance and, 469–473
file manipulation and, 461–462
file migration/backup/recovery

and, 465–469
functions/components of, 446–451
Google File System (GFS) and, 476–478
storage allocation and, 455–461
storage consolidation and, 473–478

File association, defined, 450
File backup, 467–468
File close operation, defined, 461
File control layer, 446–447

defined, 447
File management system (FMS)

defined, 445
file content/type and, 449–451
functions/components of, 446–451
logical/physical storage views of, 448–449

File manipulation
delete/undelete operations and, 461–462
file open/close operations and, 461
operating systems (OSs) and, 48

File migration, 465–467
defined, 467

File open operation, defined, 461
File recovery, 462, 468–469
File Transfer Protocol (FTP), 344, 502–503

defined, 503
Files, data structures and, 96–97
Fire protection, 555
Firewalls, 549–551

defined, 549
Firmware, defined, 167
First come, first served (FCFS), defined, 421
First-generation languages (1GLs),

defined, 371
Fixed-length instructions, defined, 121
Flag, defined, 129
Flash RAM, 167–168, 184

defined, 167
Flat memory model, defined, 87

Flat panel displays, defined, 251
Floating-point data, IEEE on, 78
Floating-point notation, 77–79

defined, 78
Folding@Home distributed computing, 40–41,

250
Fonts, 241–243, 263

defined, 242
Formula, 26–27

defined, 27
FORTRAN, 370, 372

defined, 49
standards for, 377

Forwarding table, defined, 335
Fourier, Joseph, 292
Fourth-generation languages (4GLs), 372–373

defined, 372
Fragmentation

defined, 432
memory allocation and, 431–433

Fragmented, defined, 180
Fragmented disks, 180
Frames, 264
Frequency

carrier waves and, 278–279
defined, 279
and transmission media, 288

Frequency-division multiplexing
(FDM), 310–311

defined, 310
Frequency hopping spread spectrum

(FHSS), 300
Frequency modulation (FM), 281–283

defined, 281
Frequency-shift keying (FSK), defined, 281
Front-end CASE tool, defined, 396
Front-end interfaces, electronic

implementation, 39
FTP. See File Transfer Protocol (FTP)
Full backup, defined, 467
Full-duplex mode, defined, 305
Fully qualified reference, defined, 453
Function, defined, 382
Function calls, 382–384

G
Gartner Group, 13
Gate

CPU and, 138–139
defined, 138

Gateways, 345–346
defined, 345

General-purpose processor, defined, 26

613

Index

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

General-purpose registers, defined, 128
Germanium, antimony, and tellurium (GST),

defined, 168
Giga prefix, 562
Gigabit Ethernet, 320, 355–356

defined, 355
Gigahertz (GHz), 124

defined, 124
speed and, 159

Global descriptor table (GDT), 437
Gmail, 521
GNU General Public License, 392
Google Apps suite, 521–522
Google, clouds and, 40
Google File System (GFS), 476–478

defined, 476
Grandparent, defined, 466
Graph directory structure, 454–456

defined, 454
Graphical user interface (GUI), 406–407
Graphics Interchange Format (GIF),

defined, 245
Grayscale, defined, 243
Grid, defined, 39
Grosch’s Law, 41–43

defined, 42
Group policy object (GPO), 549
GST, phase-change optical discs (optical mass

storage) and, 188
Guided transmission, defined, 288

H
H.225, 349
H.323, defined, 349
H.323 VoIP protocols, 349–351
Half-duplex mode, 303–304

defined, 303
Half-toning, defined, 244
HALT

defined, 115
sequence control and, 115–116

Hard disk
defined, 178
magnetic storage and, 172, 181

Hardware
acquisition process and, 534–536
application demand model and, 538
audio, 268–269
benchmarks and, 538–539
cloud computing and, 517
and economics of system/application

development software, 49–51
functions of, 29–31

hubs, 338–339
importance of, 537
as infrastructure, 531–532
interaction between user/software

and, 46–47
and measurement of resource demand/

utilization, 539–540
network communication and physical

network, 55
network interface card (NIC), 338–339
RAID and, 471
resource availability model and, 538
routers, 338, 340–341
sound generation, 265
switches, 338, 340
and Windows Performance Monitor

utility, 540–542
wireless access points (APs), 338, 341

Hardware independence, 47–48
defined, 47

Hardware interface, as system software
layer, 47–48

Hardware monitor, defined, 539
Hardware personnel, 16

job description, 9
Head-to-head (HTH) switching time, 179–180

defined, 179
Heat, CPU and, 140–141
Heat dissipation, defined, 553
Heat sink, 140–141

defined, 140
Helical scanning, 174–177

defined, 174
Hertz (Hz), defined, 124
Hewlett-Packard (HP)

AlphaServer DS midrange computer, 43–44
Distributed Computing Environment (DCE)

and, 500
InfiniBand and, 311
magnetic tape and, 177

Hexadecimal notation
data representation and, 68–70
defined, 69

Hierarchical directory structure, 452–454
defined, 452

High bandwidth, 310–311
High-order bit, defined, 67
High-performance clustering, processing

parallelism and, 225–226
History of automated computation

electronic implementation, 23
mechanical implementation, 22–23
optical implementation, 24
quantum computing and, 24–25

Hit ratio, defined, 219

Index

614

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

615

Index

Hitachi, Ltd., hard disk drive and, 181–182
Home directory, defined, 453
Host channel adapter (HCA), defined, 312
Host of URL, 502
Hubs, 338–339

defined, 339
Humidity, 553
Hypertext Markup Language (HTML),

defined, 503
Hypertext Transfer Protocol (HTTP), 501–504

defined, 503
packet-filtering firewall and, 550
SOAP and, 513

HTTPS, defined, 503
Hyperthreading, 38
Hypervisor, 412–413

defined, 412

I
I/O channel, 208–209

defined, 208
I/O port, 204–207

defined, 204
I/O wait states, defined, 210
IBM

EBCDIC and, 81
InfiniBand and, 311

IBM MVS JCL, 407
IBM PC platform, 51–53
IBM POWER-based computer systems, 37–38
IBM pSeries 32-CPU computers, 225
IBM token ring, 356
Identifier (ID), 508
IEEE 802 standards, 300–302, 341, 352–354

defined, 352
IEEE Computer Society, 16
Image description language (IDL), 245–249

defined, 245
Image storage/transmission

requirements, 245
Implementation design, Unified Process (UP)

and, 6
Implementation discipline, defined, 6
Implementation discipline of UP, 366
Inclusive OR, defined, 111
Incremental backup, defined, 467
Index, 96–97

defined, 96
Indirect addressing, defined, 429
InfiniBand, 311–313

defined, 311
InfiniBand Trade Association, 311
Information architecture, defined, 5

Information system development, SDLC
and, 2–3

Information system (IS) administrator, 529.
See also System administration

InformationWeek, 11–12
Infrared detectors, 260
Infrastructure

defined, 531
as a service (IaaS), 517, 519

Infrastructure as a service (IaaS),
defined, 519

Inkjet printers, 255–257
defined, 255

Input devices. See Manual input devices
Input/output (I/O)

ASCII and, 85
audio I/O devices, 265–269
bar-code scanners and, 262
bus protocol and, 200
capability, 29
color and, 243
data transfer rates and, 562–563
digital cameras and, 264
fonts and, 241–243
high-performance clustering and, 227
hypervisors and, 412
image description languages for, 245–249
image storage/transmission requirements

for, 245
input pads and, 260–261
keyboards and, 258–259
LED display and, 254–255
link editor and, 386
liquid crystal display (LCD) and, 251–253
mark sensors and, 261–262
matrix-oriented image composition

for, 240–241
named pipes and, 498–499
numeric pixel content and, 243–244
optical scanners and, 263
PCBs and, 414
plasma display and, 253–254
pointing devices and, 259–260
portable data capture devices and, 264–265
printers (inkjet) and, 255–257
printers (laser) and, 257–258
printers (plotter) and, 258
and real/virtual resources, 411–412
storage allocation and, 459–461
transaction logging and, 468
units, 30–31
variety of devices, 34
video controllers and, 249–251

Input/output (I/O) units, 30–31
defined, 30

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Input pads, 260–261
defined, 260

Institute for Electrical and Electronics
Engineers (IEEE), 16

defined, 16
on floating-point data, 78
on RF transmission (802.11), 300–302

Instruction, defined, 26
Instruction cycle, 107–108

defined, 107
Instruction explosion, defined, 372
Instruction format, 119–121

defined, 119
Instruction length, 121
Instruction pointer (IP), 128–129

defined, 128
Instruction register, defined, 128
Instruction set, 109–110, 119

defined, 109
Instruction set, Intel Core processors

and, 137
Integers, 97–98

defined, 72
excess notation and, 73–74
range/overflow and, 75–76
real numbers and, 76–77
signed, 72–73
twos complement notation and, 74–75

Integrated circuit (IC), defined, 142
Integrated development environment

(IDE), 393–396
defined, 393

Integrated Drive Electronics (IDE), 201–202
Intel

InfiniBand and, 311
microprocessors and, 142–143
server processors and, 146–147

Intel Core-i7 memory cache, processing
parallelism and, 222–223

Intel Core memory management, 436–439
Intel Core processors

clock rate of, 137
data types and, 136–137
instruction set and, 137
word size and, 137

Intel CPUs/Microsoft OSs, 51–53
CISC versus RISC, 123
memory addresses and, 87–88

Interface definition language (IDL), 501
Interleaved execution, defined, 415
International Alphabet 5 (IA5), 81–82

defined, 82
International Data Group, Inc., 13
International Organization for

Standardization (ISO), defined, 82

International Telecommunications Union
(ITU), 492–493

Internet
as application platform, 506–508
cloud computing and, 521–522
components/distributed objects

and, 508–515
defined, 501
directory services and, 492–496
distributed software architecture

and, 484–487
emerging distribution models, 516–521
general information, 501–502
Internet/WWW and, 501–508
interprocess communication and, 496–501
network resource access and, 487–492
protocols, 502–503
and software as a service (SaaS), 517–521
standard Web protocols/services

and, 502–506
virus protection and, 547

Internet architecture
ARPANET and, 343–344
Internet Protocol (IP) and, 343–346
Internet Protocol version 6 (IPv6)

and, 347
and Network Interface layer of TCP/IP

model, 351–352
Transmission Control Protocol (TCP)

and, 347–348
User Datagram Protocol (UDP) and, 348
Voice over IP (VolP) and, 349–350

Internet Control Message Protocol
(ICMP), 344

Internet Engineering Task Force (IETF), 493
Internet Inter-ORB Protocol (IIOP),

defined, 511
Internet layer of TCP/IP model, 344–346
Internet Message Access Protocol 4 (IMAP4),

defined, 504
Internet Protocol (IP), 343–346, 351–352, 488

defined, 344
packet-filtering firewall and, 549–550
sockets and, 497–498

Internet Protocol version 4 (IPv4),
defined, 345

Internet Protocol version 6 (IPv6),
defined, 347

Internet.com, 13
Interoperability and connection

standards, 510–511
Interpretation, defined, 387
Interpreters, 387–388

defined, 387
Java and, 390–392

Index

616

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

617

Index

symbolic debugging and, 388–390
Interprocess communication

Distributed Computing Environment (DCE)
and, 500–501

named pipes and, 498–499
protocols, 503
protocols layered over TCP/IP, 496
Remote Procedure Call (RPC) protocol

and, 499–500
sockets and, 497–498

Interrupt, defined, 210
Interrupt code, 203

defined, 210
Interrupt handlers, defined, 210
Interrupt processing

CPU allocation and, 417–418
interrupt handlers and, 210
multiple interrupts and, 211
performance effects and, 212–213
stack processing and, 211–212
thread states and, 416–417
times/data transfer rates and, 209–210

Intranet, defined, 501
Interrupt register, defined, 210
IP. See Internet Protocol (IP)
Iterations, 2–3

defined, 2
ITworld, 13

J
Java, 370, 377, 390–392, 503–505

defined, 390
Java Authentication and Authorization

Service (JAAS), 515
Java Database Connectivity (JDBC), 515
Java Naming and Directory Interface

(JNDI), 515
Java Platform, Enterprise Edition (Java

EE), 514–515
defined, 514

Java Virtual Machine (JVM), 390–392, 508,
514

defined, 390
JavaScript, 370, 503
JavaServer Faces (JSF), defined, 515
JavaServer Pages (JSP), defined, 514
JavaWorld, 13, 49
Jitter and VoIP packets, 351
Job control language (JCL), defined, 407
Job titles

hardware personnel, 9
software developers, 8–9
systems managers, 9–10

Joint Photographic Experts Group (JPEG),
defined, 245

Journaling, defined, 468
JUMP, defined, 115

K
Kerberos, 500–501, 506, 544

defined, 500
Kernel, 407–408

defined, 407
Keyboard controller, 258–259

defined, 258
Keyboards, 258–259
Kilo prefix, 562

L
Label, defined, 371
Languages

assembly, 370–371
fifth-generation, 373–375
first-generation, 371
fourth-generation, 372–373
general description, 369–371
Hypertext Markup Language (HTML),

503
importance of, 369–371
interface definition language (IDL),

501
object-oriented, 376–377
scripting, 377
second-generation, 371–732
standards for, 377
third-generation, 372

Laptop computer, defined, 35
Large-format printer, defined, 258
Laser printers, 257–258

defined, 257
Last-in, first-out (LIFO) basis, 211–212
Late binding, defined, 386
Latency of VoIP packets, 350
Latin-1, defined, 85
Law of diminishing returns, defined, 216
Layered approach, software and, 46–47
Least significant byte, defined, 427
Least significant digit, defined, 67
Level one (L1) cache, defined, 219
Level two (L2) cache, defined, 219
Level three (L3) cache, defined, 219
Light-emitting diodes (LEDs), 254–255

defined, 254
Light transmission, 302

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Lightweight Directory Access Protocol
(LDAP), 493–496

defined, 493
Line turnaround, 303–304

defined, 303
Linear address space, defined, 206
Linear recording, 174–175, 177

defined, 174
Linear Tape Open (LTO)

defined, 177
format comparisons, 175, 177

Link editor, 378, 384–387
defined, 384

Linked list, 92–93, 456–457
defined, 92

Links, defined, 454
Linux

as operating system (OS), 48
server OS and, 426

LinuxWorld, 13
Liquid crystal display (LCD), 251–252,

251–253, 253–254
defined, 251

Lisp, 370, 373
Lists, data structures, 91–95
Little endian, defined, 427
Load, 110, 120

defined, 110
Local area network (LAN)

addressing/forwarding of messages
and, 334–336

central node routing decisions of, 335
defined, 334
electrical cabling and, 296
hubs and, 339
IEEE 802 standards and, 352
network-attached storage (NAS)

and, 475–476
serial transmission and, 306
storage area network (SAN) and, 474
switches and, 340

Local descriptor table (LDT), 437–438
Location transparency, defined, 489
Logic instructions, defined, 28
Logical access, defined, 206
Logical cluster number (LCN), 463
Logical Link Control (LLC), 352
Logical record, 457–458

defined, 457
Logical SHIFT, 113–114

defined, 113
Logical storage view, 448–449
Logical topology, 331–332

defined, 331
Long integers, defined, 76

Longitudinal redundancy checking
(LRC), 318–319

defined, 319
Lossless compression, defined, 227
Lossy compression, defined, 227
Low bandwidth, 310–311
Low-order bit, defined, 67

M
Mac OS X, 48
Machine data types, defined, 89
Machine independence, 47–48
Machine languages, 370–371

defined, 371
Machine state, defined, 212
Macro virus, 547
Magnetic decay, 171, 173

defined, 171
Magnetic disk

access time and, 179–180
primary components of, 177–178
read/write circuits and, 179
sequential access time and, 180
solid-state drives and, 183–184

Magnetic fields, 260
Magnetic leakage, 171–174, 184

defined, 171
Magnetic storage

areal density and, 171–172
decay/leakage and, 171, 173
magnetic disc and, 177–182
magnetic tape and, 173–177
media integrity and, 172–173
principles of, 170–171
solid-state drives and, 182–183

Magnetic tape
defined, 173
format comparisons, 175
formats/standards of, 175–177
helical scanning, 174–175
linear recording and, 174–175

Magneto-optical (MO) drive, 188–189
defined, 188

Magnetoresistive RAM (MRAM), defined, 168
Main memory, 32
Mainframe, 34–36

defined, 35
Mainframe channels, device controllers

and, 208–209
Mammoth, 175–176

defined, 176
Manipulation, 71–72

defined, 71

Index

618

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Manual input devices
input pads, 260–261
keyboards, 258–259
pointing devices, 259–260

Mark sensors, 261–262
defined, 261

Mass and coercivity, 171–172
Master File Table (MFT), 463–465
Matrix-oriented image composition, 240–241
Measurement units

capacity units, 561–562
data transfer rates, 562–563
time units, 561

Mechanical implementation of
computation, 22–23

Media Access Control (MAC), 336–338, 352
defined, 337

Media independent handoff standard, 352
Media integrity and magnetic

storage, 172–173
Mega prefix, 562–563
Megabits per second (Mbps), 293
Megahertz (MHz), defined, 124
Memory

caching, 131
defined, 32
embedding multiple CPUs and, 135
fragmentation, 431–433
management hardware for, 436–439
memory-storage hierarchy and, 163–164
multitasking memory allocation, 429–431
noncontiguous memory

allocation, 433–434
nonvolatile, 167–168
physical memory organization, 427–428
protection, 436
RPC protocol and, 496
single-tasking memory allocation, 428–429
virtual management of, 434–436
word size and, 130

Memory addresses, as data type, 87–88
Memory allocation, defined, 427
Memory bus, defined, 200
Memory fragmentation, 431–433
Memory management hardware, 436–439
Memory map, 388–390

defined, 388
Memory packaging, 168–169
Memory protection, defined, 436
Mesh topology, 330, 332

defined, 330
Message, 276

addressing/forwarding of, 333–336
defined, 276, 376

Messaging protocol, 502

Methods
Boolean and, 63
coding data and, 81–83, 85–86
core processors and, 88
defined, 97
standardization and, 72

Metric units, 284
Metropolitan area networks (MANs),

defined, 353
Microchips, defined, 142
Microcomputer, 34–35

defined, 34
Microprocessors

defined, 142
Moore’s Law and, 143
in mouse, 259
processor fabrication and, 142–143
Rock’s Law and, 144
wafer of, 144–145

Microsecond (μs), 561
Microsoft

BackOffice, 486
InfiniBand and, 311
OS, 51–53

Microsoft Active Directory, 544, 549
Middleware, defined, 486
Midrange computer, 34–36

defined, 35
Migration. See File migration
Millions of floating-point operations per

second (megaflops or MFLOPS), 125–126
defined, 125

Millions of instructions per second
(MIPS), 41–42, 125–126

defined, 125
Millisecond (ms), 561
Mirroring, 469–470
Mobile broadband wireless access

standard, 352
Modem, defined, 292
Modulation methods

amplitude modulation (AM), 280–281
frequency modulation (FM), 281–283
phase-shift modulation, 282

Modulator-demodulator (modem), 292
Moisture, 554
Monitors, defined, 249, 539
Monochrome, defined, 243
Monophonic, defined, 265
Moore’s Law, 143–144

defined, 143
Morse code, 279–280
Most significant byte, defined, 427
Most significant digit, defined, 67
Mouse, 259–260

619

Index

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

MOVE, 110, 115, 122, 129
defined, 110

Moving Picture Experts Group
(MPEG), 229–230

defined, 299
MP3, 229–230

defined, 229
MS-DOS, 407, 409
MSN, clouds and, 40
Multicasting, defined, 347
Multichannel communication channel, 303
Multicomputer configuration, 38–40

defined, 38
Multicore architecture, defined, 221
Multifrequency, 265
Multilevel coding, 282–283

defined, 282
Multimode graded-index cables, 297–298

defined, 298
Multimode step-index cables, 297–298

defined, 298
Multinational characters, defined, 85
Multipath distortion, 300–301
Multiple-core CPUs, 52–53

defined, 52
Multiple-processor architecture, 223–224

defined, 223
Multiprocessing

defined, 135
enhancing processor performance

via, 134–136
Multipurpose Internet Mail Extensions

(MIME), defined, 504
Multitasking, defined, 409
Multitasking memory allocation, 429–431
Multitasking resource allocation of

OS, 409–410, 409–410
Multithreaded, 422

defined, 415
Multithreaded process/program, 415
Musical Instrument Digital Interface

(MIDI), 268–269
defined, 269

N
N-layer architecture, 485–486

defined, 486
N-tier architectures, defined, 486
Named pipes, 498–499

defined, 498
Nanosecond (ns), 561
Narrowband, 310–311

defined, 310

Native applications, defined, 392
Negative acknowledge (NAK), defined, 304
Netbook computer, 35
Network adapter. See Network interface

card (NIC)
defined, 338

Network administrator. See also Computer
networks

defined, 10
Network-attached storage (NAS), 475–476

defined, 475
Network File System (NFS), 344
Network hardware. See Hardware
Network interface card (NIC), 338–339

defined, 338
Network Interface layer of TCP/IP

model, 344–345, 351–352
Network layer of OSI model, 342–343

defined, 343
Network resource access

dynamic resource connections
and, 491–492

protocol stacks and, 487–488
static resource connections and, 488–491

Network topology, 330–333
defined, 330

Network transparency, defined, 489
Networks. See Computer networks
NetworkWorld, 13
New Technology File System

(NTFS), 463–465
defined, 463

Nodes of network topology, 331–332,
335–336, 345–346

CSMA/CA and, 337–338
DNS and, 491

Noise, 286, 288
defined, 293

Noncontiguous memory allocation, 433–434
defined, 433

Nonprocedural languages, defined, 373
Nonvolatile memory (NVM), 167–168

defined, 167
Nonvolatility, defined, 161
NOT

data transformations and, 110–113
defined, 111

Notation
colon hexadecimal notation, 346
dotted decimal notation, 346
excess notation and, 73–74
floating-point notation, 77–79
hexadecimal notation and, 68–70
octal notation, 70
twos complement notation, 74–75

Index

620

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Novell GroupWise, 486
Numeric pixel content, 243–244
Numeric range, 75–76

defined, 75

O
Object, defined, 98
Object code, 378–379

defined, 378
Object-oriented languages, 370, 376–377
Object-oriented (OO) components, 510
Object-oriented programming

(OOP), 376–377
defined, 376

Object Request Broker (ORB), 511, 515
defined, 511

Objectclass, defined, 493
Objects, data structures, 97–98
Octal notation, defined, 70
Odd parity, defined, 318
Offset register, defined, 429
On-off keying (OOK), defined, 284
Op code, defined, 109
Open Group, 425
Open Systems Interconnection (OSI) model

application layer, 341–342
data link layer, 342–343
defined, 341
network layer, 342–343
physical layer, 342–343
presentation layer, 342
session layer, 342–343
transport layer, 342–343

OpenGL, defined, 251
OpenVMS, as operating system, 48
Operands, 109, 120

defined, 109
Operating expenditures, defined, 531
Operating systems (OSs). See also File

management system (FMS)
and choosing server OS, 425–426
components and, 508
CPU allocation and, 415–424
defined, 48
directory services and, 492
dynamic linking and, 387
functions of, 405–406
layers of, 406–408
link editor and multiple, 385–386
management functions of, 405
memory allocation and, 427–439
middleware and, 486
OOP and, 376

overview, 404–408
process management and, 413–415
remote resource access in, 489
resource allocation and, 409–413
secondary storage cache and, 220
Sun Solaris OS, 391–392
as tools, 369
uninterruptible power supply (UPS) and, 553

Optical cabling, 297–298
Optical character recognition (OCR),

defined, 263
Optical implementation of computation, 24
Optical input devices

bar-code scanners, 262
digital cameras, 264
mark sensors, 261–262
optical scanners, 263
portable data capture devices, 264–265

Optical mass storage
CD-ROM/DVD-ROM/BD as, 187
principles of, 184–186
technologies/storage formats for, 186

Optical mouse, 259
Optical processing, as future trend of

processors, 148
Optical scanners, defined, 263
OR, data transformations and, 110–112
Oracle, 392, 395–396
Oracle Tuxedo, 486
Organic LED (OLED), 254–255

defined, 254
Orthogonal frequency division multiplexing

(OFDM), 300
OS batch command (BAT) files, 450
Overflow, 75–76, 79

defined, 75
Overflow/underflow/range, real numbers

and, 79

P
Packet-filtering firewall, 549–551

defined, 549
Packet loss and VoIP, 350
Packet switching, 309–310

defined, 309
Packets, 309–310

defined, 309
Page, 434–435

defined, 434
Page fault, defined, 435
Page file, defined, 435
Page frame, 434–435

defined, 434

621

Index

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Page hit, defined, 435
Page tables, defined, 435
Palette, defined, 244
Parallel access, defined, 162
Parallel ATA, 308
Parallel transmission, 305–308

defined, 305
Parallelism. See Processing parallelism
Parent, defined, 466
Parent process, 416, 423

defined, 414
Parity bit, defined, 318
Parity checking, defined, 318
Passive matrix display, defined, 252
Passwords, 544–546
Peer-to-peer bus, defined, 200
Peer-to-peer (P2P) architecture, 487, 551

defined, 487
Pentium processors, 52

methods and, 88
server processors and, 146–147

Performance. See also System integration/
performance

branch prediction and, 133–135
caches and, 218
evaluation, 537–542
interrupt processing and, 212–213
multiprocessing and, 134–136
pipelining and, 131–133
speculative execution and, 133–135

Performance Monitor, 540–542
Periodical literature as information source,

computer resources and, 10–11
Peripheral Component Interconnect Express

(PCIe), 201
Peripheral Component Interconnect

(PCI), 202–204
defined, 203

Peripheral devices, defined, 196
Permanent storage, RAM and, 33
Personal computer (PC). See also

Microcomputer
defined, 34

Personal digital assistant (PDA), defined, 35
Peta prefix, 562
Petabyte, 476
Petaflops (PFLOPS), defined, 125
Phase, 278–279

defined, 278
Phase-change memory (PCM), defined, 168
Phase-change optical discs, 188
Phase-change RAM (PRAM), 168
Phase-shift keying (PSK), defined, 282
Phase-shift modulation, defined, 282
Phonemes, defined, 266

Photosensor, 260–261
defined, 260

PHP, 370
Physical layer of OSI model, 342–343

defined, 343
Physical layer of TCP/IP model, 344–346
Physical memory, defined, 428
Physical network standards

Ethernet and, 355–356
IEEE 802 standards and, 352–353
Worldwide Interoperability for Microwave

Access (WiMAX) and, 353–354
Physical record, defined, 457
Physical storage view, 448–449
Physical topology, 331–333

defined, 331
Physics

automated data processing and, 62–63
as basis of computer technology, 24–25

Picosecond (ps), 561
Pipe, 498–499, 503

defined, 498
Pipelining, 131–133

defined, 131
Pixel, 241, 252

defined, 241
Plasma display, 253–254

defined, 253
Platform as a service (PaaS), 517–520

defined, 518
Platter

defined, 177
I/O devices and, 206–207
magnetic disks and, 177–178, 182

Plotter, defined, 258
Point, 241, 243

defined, 241
Pointer, defined, 91
Pointing devices, 259–260
Polyphonic, defined, 265
Pop, defined, 212
Port, 348, 502, 551

defined, 348
Portability and storage devices, 162, 183
Portable data capture devices, 264–265
Portable Document Format (PDF), 247, 249

defined, 249
Portable microcomputers, 34–36
Positional numbering system, binary data

representation and, 63–64
Post Office Protocol 3 (POP3), defined, 504
PostScript, 247–249

defined, 247
POWER-based computer systems

(IBM), 37–38

Index

622

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Power sags, defined, 552
Power surges, defined, 552
Precision/truncation, real numbers

and, 79–80
Preemptive scheduling, 418–420

defined, 418
Presentation layer of OSI model, defined, 342
Pressure-sensitive pads, 260–261
Primary storage

component devices of, 159
cost/access speed of devices

compared, 163–164
cost and, 162
defined, 30
memory packing and, 168–169
nonvolatile memory and, 167–168
RAM and, 164–167
storing electrical signals, 164–165

Primary storage cache, 219
Primary storage of CPU, 30–33. See also Data

storage
Primitive data types, defined, 89
Print/display concepts

color, 243
fonts, 241–243
image description languages, 245–249
image storage/transmission

requirements, 245
matrix-oriented image

composition, 240–241
numeric pixel content, 243–244
printers, 255–258

Printers
inkjet, 255–257
laser, 257–258
output rates of, 563
plotter, 258

Priority-based scheduling, defined, 421
Privacy, risk and, 520–521
Procedure, defined, 382
Process, defined, 413
Process control block (PCB), defined, 413
Process control data structures and

OS, 413–414
Process family, defined, 414
Process list, defined, 414
Process management of OS

process control data structures
and, 413–414

threads and, 414–415
Process offset, defined, 428
Process queue, defined, 414
Processing parallelism

high-performance clustering and, 225–226
Intel Core-i7 memory cache and, 222–223

multicore processors and, 220–221
multiple-processor architecture

and, 223–224
scaling up/scaling out and, 224

Processor. See also Central processing
unit (CPU)

defined, 26
fabrication, 141, 141–143
future trends of, 147–149
wafer of, 144–145

Production version, defined, 390
Professional societies as information source,

computer resources and, 16
Program, defined, 26
Program counter, 128–129
Program editors, defined, 49
Program profiler, defined, 540
Program status word (PSW), defined, 129
Program storage/loading/execution, operating

systems (OSs) and, 48
Program translator, defined, 49
Programmer

defined, 8
job description, 8

Programming, example, 117–119
Programming languages

characteristics of, 371
defined, 49
and economics of system/application

development software, 50
evolution of, 370
fifth-generation languages, 373–375
first-generation languages, 371
fourth-generation languages, 372–373
general description, 369–371
importance of, 369–371
object-oriented languages, 376–377
scripting languages, 377
second-generation languages, 371–732
standards for, 377
third-generation languages, 372
as tool, 369

Prolog, 370, 373–375
Protocol stack, 487–488

defined, 488
Protocols. See also Standards

communication, 276–277
H.323 VoIP, 349–351
Hypertext Transfer Protocol (HTTP), 501
stacks, 487–488
standard Web protocols/services

and, 502–506
of URL, 502

Proxy server, 550–551
defined, 550

623

Index

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Public switched telephone network
(PSTN), 349–350

Push, defined, 212

Q
Quadrary signals, 283
Quantity of storage of CPU, 33
Quantum computing, 24–25
Quantum Corporation, magnetic tape and, 176
Quantum processing, as future trend of

processors, 148–149
Quarter Inch Committee (QIC), defined, 176
Qubit, defined, 25

R
Radio frequency (RF), 289–290

defined, 289
ID tags (RFID), 532
transmission, 299–302

Radio regulatory technical advisory group
standard, 352

Radix, defined, 64
Radix point, defined, 64
Random access, 161–162

defined, 161
Random access memory (RAM), 32–33

caches and, 217
defined, 32
memory-storage hierarchy and, 163–164
as primary storage device, 164–167
storage devices and, 160

Range
as goal of computer data

representation, 70–71
numeric, 75–76

Range/overflow/underflow, real numbers
and, 79

Raw data transfer rate, defined, 289
Read-ahead memory access, 166
Read and access controls, 462
Read-only memory (ROM), 167, 437

defined, 167
Read speeds, 183
Read/write head, 170–171

defined, 170
Read/write mechanisms, storage devices

and, 158
Read-write (RW), 437
Ready state, defined, 416
Ready-to-send (RTS) signal, 337–338

defined, 337

Real numbers, 76–77
defined, 76
floating-point notation and, 77–79
precision/truncation and, 79–80
processing complexity and, 80–81
range/overflow/underflow and, 79

Real resources, defined, 411
Real-time scheduling, defined, 422
Real-Time Transport Protocol

(RTP), 349
Real/virtual resources, resource allocation of

OS, 411–412
Recordable discs, 187
Recording density, 173
Records

data structures, 96–97
defined, 96

Recovery. See File recovery
Reduced instruction set computing

(RISC), 121–124
defined, 121

Redundant array of independent disks
(RAID), 470–473

defined, 470
Refresh cycle, defined, 250
Refresh rate, defined, 250
Registers. See also Central processing

unit (CPU)
data movement and, 106–108
defined, 31
general-purpose, 128
special-purpose, 128–129
storage types and, 33

Registration, Admission, and Status
(RAS), 349

Relative addressing, defined, 429
Relative path, defined, 454
Release, defined, 390
Release version, defined, 390
Remote Method Invocation (RMI), 515
Remote Procedure Call (RPC), 499–501,

503
defined, 499

Repeaters, 298–299
defined, 299

Request for proposal (RFP), 535–536
defined, 535

Requirements discipline, 3, 366
defined, 3

Requirements for hardware determination
application demand model and, 538
benchmarks and, 538–539
importance of, 537
and measurement of resource demand/

utilization, 539–540

Index

624

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

resource availability model and, 538
and Windows Performance Monitor

utility, 540–542
Resilient packet ring (RPR) standard, 352
Resistance, defined, 140
Resolution, defined, 241
Resource allocation, as system software

layer, 47–48
Resource allocation of OS

multitasking, 409–410
real/virtual resources and, 411–412
single-tasking, 409
tasks of, 410–411
VMware ESX/ESXi and, 412–413

Resource availability model, 538
Resource registry, 490–491

defined, 490
Resources

periodical literature as information
source, 10–11

professional societies as information
source, 16

Web sites as information source, 12–15
Return instruction, defined, 382
Return wire, 303–304

defined, 303
Reverse Address Resolution Protocol

(RARP), 344
RGB, 244, 251

defined, 243
Ring topology, 332–333

defined, 332
Risks of Saas/Paas/IaaS, 519–521
Rock’s Law, defined, 144
Rotational delay, defined, 179
Routers, 338, 340–341

defined, 340
Routing tables, defined, 340
RTP Control Protocol (RTCP), 349
Run queue, defined, 415
Running state, defined, 416

S
Sampling, defined, 265
Sandbox, defined, 391
Scalability, clusters and, 39
Scaling out, defined, 224
Scaling up, defined, 224
Scan code, defined, 259
Scanners

bar-code, 262
optical, 263

Scanning lasers, defined, 262

Scheduler, defined, 418
Scheduling, defined, 418
Scheduling and OS

preemptive, 418–420
priority-based, 421
real-time, 422
timer interrupts and, 420–421
Windows, 422–424

Scripting languages, 370, 377
defined, 377

Seagate Technology, Inc., hard disk drive
and, 181–182

Second-generation languages
(2GLs), 371–732

defined, 371
Secondary storage. See also Data storage

component devices of, 159
cost/access speed of devices

compared, 163–164
cost and, 162
defined, 30
device controllers and, 207–208
flash RAM and, 168

Secondary storage cache, 220
Secondary storage management. See File and

secondary storage management
Secondary storage of CPU, 30–31, 33, 48

defined, 30
Sector, 160, 178–182

defined, 160
Secure Shell (SSH), defined, 503
Security

access controls and, 543–544
auditing and, 546
economics and, 542
firewalls and, 549–551
password controls and, 544–546
physical security and, 543
risk and, 520–521
software updates and, 548–549
virus protection and, 547

Security identification (SID), 544
Security ticket, 544
Segmented memory model, defined, 87
Semiconductor

defined, 142
optical processing and, 148
serial/parallel transmission and, 307
transistors/integrated circuits and, 142

Sequence control, CPU and, 115
Sequential access, 460
Sequential access time, defined, 180
Sequential physical organization of memory

cells, 427
Serial access, defined, 161

Index

625

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Serial Advanced Technology Attachment
(SATA), 201–202, 308

defined, 308
Serial Attached SCSI (SAS), defined, 308
Serial transmission, 306–308

defined, 306
Server. See also Client/server architecture

consolidation, 412
defined, 35
logical/physical storage views for, 448–449
network-attached storage (NAS)

and, 475–476
and platform as a service (PaaS), 517–519

Server consolidation, defined, 412
Service call, 419–420

defined, 407
Service layer, defined, 407
Service-oriented architecture

(SOA), 517–518
defined, 517

Service standards, defined, 532
Servlet, defined, 391
Session Initiation Protocol (SIP), 503
Session layer of OSI model, 342–343

defined, 342
Shell, defined, 406
SHIFT

data transformations and, 110–114
defined, 113

Shortcuts, defined, 454
Shortest time remaining (STR), defined, 421
Sibling processes, defined, 414
Signal

analog, 283
capacity/errors, 286–287
composite, 291
defined, 279
digital, 283–285
radio frequency (RF) and, 289–290

Signal bandwidth, 291–293
Signal-to-noise (S/N) ratio, 293–296

defined, 294
Signal wire, 303–304

defined, 303
Signature files, 547
Signed integer, defined, 72
Simple Mail Transfer Protocol (SMTP), 502,

504
defined, 503

Simple Object Access Protocol
(SOAP), 512–514

defined, 512
Simplex mode, 303–304

defined, 303
Simultaneous multithreading, 37–38

Sine wave, 278–279
defined, 278

Single inline memory module
(SIMM), 168–169

defined, 168
Single-mode cables, 297–298

defined, 298
Single-tasking memory allocation, 428–429
Single-tasking resource allocation of OS, 409
Singly linked list, defined, 92
Skew

defined, 306
serial/parallel connections and, 307–308

Small Computer System Interface
(SCSI), 201, 307

Smalltalk, 370, 376–377
Sockets, 348, 497–498

defined, 348
Software

acquisition process and, 534–536
antivirus, 547
application development software and, 49
component-based, 509
and economics of system/application

development software, 49–51
hypervisors and, 412
as infrastructure, 531–532
Intel CPUs/Microsoft OSs, 51–53
network, 54–55
operating system (OS) and, 48
role of, 44–45
stand-alone packages, 55
system software layers, 47–48
types of, 45–47
updates, 548–549

Software as a service (SaaS), 517–521
defined, 517

Software developers, 8–9
defined, 8
and economics of system/application

development software, 49–51
Software/hardware support, character data

and, 84–85
Software monitor, 539–540

defined, 539
Solid-state drive (SSD), 183–184

defined, 183
Sony, magnetic tape and, 176–177
Sound. See Audio hardware; Speech

generation
Sound card, 267–269

defined, 268
Source code, 378–379

defined, 378
Spawn, defined, 414

Index

626

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Speaker dependent, defined, 267
Special-purpose processor, defined, 26
Special-purpose registers, 128–129

defined, 128
Speculative execution, 133–135

defined, 134
Speech generation, 267
Speech recognition, 266–267

defined, 266
Speech synthesis, defined, 267
Speed and storage devices, 159–160, 163

solid-state drives and, 183–184
Speed, and transmission media, 288
Speed/circuit length, CPU and, 141
SQL, 370
Square waves, 284–285
Stack, 211–212

defined, 211
Stack overflow, defined, 212
Stack pointer, defined, 212
Stack processing, 211–212
Standard Performance Evaluation

Corporation (SPEC), 126–128
Standardization

as goal of computer data representation, 72
InfiniBand and, 313
RF transmission and, 300–302

Standards. See also Protocols
connection, 510–514
CORBA and, 511–512
Ethernet and, 355–356
IEEE 802 standards and, 352–354
ITU and, 492–493
programming languages and, 377
service, 532
system administration and, 532
wireless access points (APs) and, 341
Worldwide Interoperability for Microwave

Access (WiMAX) and, 353–354
Star topology, 332–333, 335

defined, 332
Start bits, defined, 316
Stateful firewall, defined, 551
Static connection, 488–491

defined, 488
Static linking, defined, 386
Static RAM (SRAM), 165

defined, 165
primary storage cache and, 219

Storage. See also Data storage
hypervisors and, 412
MIDI and, 269
upgrading, 320–321

Storage allocation
allocation units and, 455

blocking/buffering and, 457–459
example of file I/O and, 459–461
storage allocation tables, 455–457

Storage allocation table, defined, 455
Storage area network (SAN), 474–476

defined, 474
Storage bus, defined, 201
Storage capacity of computer, 29
Storage consolidation, 473–478
Storage I/O control layer, 446–447

defined, 447
Storage medium, defined, 158
Store

data movement and, 110
defined, 110
instruction format and, 120
instruction sets and, 106–107
word size and, 129

Store and forward, defined, 331
Strategic plan, 530–531

defined, 531
Strategic planning, 530–531

system administration and, 530–531
String, defined, 81
Subroutine, defined, 382
Subsidiary buses, 200–202
Subtractive colors, defined, 243
Sun Microsystems, InfiniBand and, 311
Sun Solaris OS, 391
Super Digital Linear Tape (SDLT)

defined, 176
format comparisons, 175–176

Supercomputer, 34–36
defined, 35

Supervisor, 210, 212
defined, 210

Surge protector, defined, 552
Sustained data transfer rate, defined, 181
Swap file, defined, 435
Swap space, defined, 435
Switched fabric, 311–312

defined, 311
Switches, 138–139, 338, 340

defined, 340
Symbol table, 379–381

defined, 379
Symbol table entries, 383
Symbolic debugger

defined, 390
IDE and, 393
Oracle JDeveloper and, 396

Symbolic debugging, 388–390
Synchronization. See Clock synchronization
Synchronous DRAM (SDRAM), 167, 219

defined, 167

Index

627

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Synchronous idle characters, defined, 315
Synchronous read operations, 166
Synchronous transmission, 314–317

defined, 314
System administration

acquisition process and, 534–536
and the competitive advantage, 532
defined, 530
general information, 529–530
and hardware/software as

infrastructure, 531–532
performance evaluation and, 537–542
and physical environment of hardware

installation, 551–555
requirement determination and, 537–542
security and, 542–551. See also Security
standards and, 532
strategic planning and, 530–531

System administrator, 46–47
System bus, 30–31, 196–197, 202

defined, 30
errors and, 317
functions of, 32

System clock, defined, 124
System development tools, defined, 49
System integration/performance

buffers and, 213–217
bus clock/data transfer rate and, 198–199
bus protocol and, 199–200
bus types/functions, 196–197
caches and, 217–220
compression and, 227–229
device controllers and, 207–209
high-performance clustering and, 225–226
interrupt processing and, 209–213
logical/physical access and, 204–207
MPEG/MP3 and, 229–230
multicore processors and, 220–223
multiple-processor architecture

and, 223–224
Peripheral Component Interconnect (PCI)

and, 202–204
scaling up/scaling out and, 224
subsidiary buses and, 200–202

System management, as system software
layer, 47

System overhead, defined, 411
System requirements models, 366–368

defined, 366
System services, as system software layer, 47
System software. See also Software

defined, 45
examples, 46

System software layers, 47–48. See also
Software

System software, task-handling by, 45–47
Systems analyst

defined, 8
job description, 8

Systems architecture
application development software

and, 49
central processing unit (CPU), 31–32
and classes of computer systems, 34–44
computer capabilities and, 26–29
computer hardware, 29–31
computer networks, 53–55
defined, 21
and economics of system/application

development software, 49–53
electronic implementation, 23
input/output capability, 29
input/output devices, 34
mechanical implementation, 22–23
operating systems (OSs) and, 48
optical implementation, 24
primary storage, 32–33
processor, 26–27
quantum computing and, 24–25
and role of software, 44–45
secondary storage, 33
software types, 45–47
storage capacity, 29
system bus, 32
system software layers, 47–48

Systems designer
defined, 8
job description, 8

Systems development life cycle (SDLC), 2–3,
365–366

defined, 2
Systems evaluation/maintenance, Unified

Process (UP) and, 6–7
Systems managers, job description, 9–10
Systems programmers

defined, 9
job description, 9

T
Tandberg, 176–177
Tape drive, defined, 173
Target channel adapter (TCA), defined, 312
Tasks of resource allocation of OS, 410–411
TCP. See Transmission Control Protocol

(TCP)
TCP/IP, defined, 344
TCP/IP model, 344–345, 351–352

defined, 344

Index

628

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Technology. See also Computer technology
acquiring/configuring devices, 2

TechRepublic, 13
Techweb, 13
Telecommunications Industry

Association, 296
Telephone infrastructure, 510
Telnet, 503–504

defined, 503
Tera prefix, 562
Terabytes, 307
Testing discipline

defined, 6
Unified Process (UP) and, 6

Testing discipline of UP, 366
Text (TXT) files, 450
Thick clients, 514
Thin clients, 514
Thin film transistor (TFT), 252–253, 261

defined, 252
Third-generation languages (3GLs),

defined, 372
Thread, 414–415

defined, 414
Thread control block (TCB), defined, 415
Thread cycle, defined, 422
Thread list, defined, 415
Threads and process management of

OS, 414–415
Three-layer architecture, 485–486

defined, 485
Three-tier architecture, 485–486

defined, 485
Ticket, 544
Time-division multiplexing (TDM),

defined, 309
Time, units of measurement, 561
Timer interrupts, 420–421

defined, 420
Tom’s Hardware, 13
Trace, 140–142, 145–146, 148

defined, 140
Track, 172, 174–177

defined, 177
Track-to-track (TTT) seek time, 179–180

defined, 179
Trackball, 260
Transaction, 449, 466

defined, 468
Transaction logging, defined, 468
Transaction Performance Evaluation

Corporation (TPC), 126–128
Transfer rates, 289
Transformers, 552
Transistors

defined, 142
microprocessors and, 144–145
processor fabrication and, 142

Transmission Control Protocol
(TCP), 347–348, 351–352, 488

defined, 344
interprocess communication and, 497
packet-filtering firewall and, 549–550

Transmission media
amplifiers/repeaters and, 298–299
bandwidth and, 291–293
communication channel/path for, 287–288
electrical cabling and, 296–297
frequency and, 289–291
optical cabling and, 297–298
signal-to-noise ratio and, 293–296
speed/capacity and, 289

Transmission medium, defined, 288
Transport layer of OSI model, 342–343

defined, 343
Transport layer of TCP/IP model, 344–346
Tree directory structure, 452–453

defined, 452
Trillions of floating-point operations per

second (teraflops or TFLOPS),
defined, 125

Trinary signals, 283
Trivial File Transfer Protocol (TFTP), 344
Truncation, 79–80

defined, 79
Truncation/precision, real numbers

and, 79–80
Twin-axial cables, defined, 297
Twisted-pair cable, 296–297

defined, 296
Two-conductor electrical communication

channel, 303
Twos complement notation, 74–75

defined, 74
Type I error, 318–319

defined, 317
Type II error, defined, 317

U
Unblocked, defined, 458
Unconditional BRANCH, defined, 115
Undelete operation, defined, 462
Underflow, defined, 79
Underflow/overflow/range, real numbers

and, 79
Unguided transmission, defined, 288
Unicode, 85–86, 314, 496

defined, 85

Index

629

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Unicode Consortium, 85
Unified Process (UP), 365–369

defined, 2
design activities in, 4–5
as SDLC, 2–3

Uniform Resource Locator (URL),
defined, 502

Uninterruptible power supply (UPS),
defined, 553

UNIX
access controls and, 462
Bourne shell, 407
Distributed Computing Environment (DCE)

and, 500
links in, 454
as operating system (OS), 48
server OS and, 425–426

Unresolved reference, defined, 384
Unsigned integers, 72–73

defined, 72
U.S. Department of Defense (DOD) Advanced

Research Projects Agency Network
(ARPANET), and development of
Internet architecture, 343–344

U.S. Federal Communications
Commission, 353

User Datagram Protocol (UDP), 344, 348
defined, 348

User identification (UID), 544
Utility programs, operating systems (OSs)

and, 48

V
Variable, 371–372

defined, 371
Variable-length instructions, defined, 121
VBScript, 370, 503
Vector, defined, 246
Vector list, defined, 246
Vendor lock-in risk, 519–520
Version, defined, 390
Versioning, defined, 466
Vertical redundancy checking, defined, 318
Victim, 435–436

defined, 435
Video bus, 200–202

defined, 200
Video controllers, 249–251

defined, 249
Video display

LED display and, 254–255
liquid crystal display (LCD) and, 251–253
plasma display and, 253–254

video controllers and, 249–251
Video display terminal (VDT), defined, 249
Video output rates
Video RAM (VRAM), defined, 251
Videoconferencing, 503
View layer, 485–486

defined, 485
Virtual cluster numbers (VCNs), 464
Virtual machines (VMs), defined, 412
Virtual memory management, 434–436,

438–439
defined, 434

Virtual resources, defined, 411
Virtualization

subsystems and, 37
Virtualization environments, defined, 413
Virus, defined, 547
Virus protection, 547
Visual Basic, 370

defined, 49
VMware ESX/ESXi, 412–413
VocabMan.class, 504–505
Voice over IP (VoIP), 349–350

defined, 349
Volatility, defined, 161
Volatility and storage devices, 161, 163,

183–184
Voltage drops/surges, 286–287
Volume, defined, 448

W
Wafer, microprocessors and, 144–145
Wait state, 125, 128, 130

defined, 125
Wavelength-division multiplexing

(WDM), 310–311
defined, 310

Waves. See also Modulation methods
carrier waves, 278–279
sine waves, 278–279

Web sites. See World Wide Web (WWW)
Weight of position, 64, 66
Wide area network (WAN)

addressing/forwarding of messages
and, 334–336

defined, 334
IEEE 802 standards and, 352
network-attached storage (NAS)

and, 475–476
serial transmission and, 306
storage area network (SAN) and, 474

Windows
device driver properties in, 408

Index

630

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

file types/associated programs, 450–451
as operating system (OS), 48
PowerShell, 407
scheduling and, 422–424
server OS and, 425–426
shortcuts in, 454
and software updates, 548–549
static connections in, 489

Wire, 140, 140–141. See also Trace
defined, 140

Wired transmission, defined, 288
Wireless access points (APs), 338, 341
Wireless personal area network (WPAN)

standard, 352
Wireless regional area network standard, 352
Wireless transmission

defined, 288
light transmission, 302
radio frequency transmission, 299–302

Word, defined, 129
Word size

CPU and, 129–131
Intel Core processors and, 137

Working directory, defined, 453

Workstation
defined, 34
multiple-processor architecture

and, 224
World Wide Web Consortium (W3C), 512
World Wide Web (WWW). See also Internet

defined, 501
as information source, 12–15
technology-oriented, 13–14
vendor/manufacturer, 14–15

Worldwide Interoperability for Microwave
Access (WiMAX), 353–354

defined, 353
Worm, 547
Write and access controls, 462
Write speeds, 183

X
Xeon, server processors and, 146–147
Xerox, 355, 407
XML, SOAP and, 513
XOR, 110–112, 129

Index

631

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

 Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover Page
	Half-Title Page
	Title Page
	Copyright Page
	Dedication Page
	CONTENTS
	PREFACE
	INTENDED AUDIENCE
	READERS ’ BACKGROUND KNOWLEDGE
	CHANGES IN THIS EDITION
	RESOURCES FOR INSTRUCTORS
	WORLD WIDE WEB SITES
	ORGANIZATION
	CHAPTER DESCRIPTIONS
	ACKNOWLEDGMENTS

	Chapter 1: Computer Technology: Your Need to Know
	Technology and Knowledge
	Acquiring and Configuring Technological Devices

	Information System Development
	Business Modeling and Requirements Disciplines
	Design Discipline
	Implementation and Testing Disciplines
	Deployment Discipline
	Systems Evaluation and Maintenance

	Managing Computer Resources
	Roles and Job Titles
	Software Developers
	Hardware Personnel
	System Managers

	Computer Technology Information Sources
	Periodical Literature
	Technology-Oriented Web Sites
	Vendor and Manufacturer Web Sites
	Professional Societies

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Research Problems

	Chapter 2: Introduction to Systems Architecture
	Automated Computation
	Mechanical Implementation
	Electronic Implementation
	Optical Implementation

	Computer Capabilities
	Processor
	Storage Capacity
	Input/Output Capability

	Computer Hardware
	Central Processing Unit
	System Bus
	Primary Storage
	Secondary Storage
	Input/Output Devices

	Computer System Classes
	Multicomputer Configurations
	Bigger Isn’t Always Better

	The Role of Software
	Software Types
	System Software Layers
	Operating Systems
	Application Development Software
	Economics of System and Application Development Software

	Computer Networks
	External Resources
	Network Software
	Network Communication and the Physical Network

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Research Problems

	Chapter 3: Data Representation
	Data Representation and Processing
	Automated Data Processing
	Binary Data Representation
	Hexadecimal Notation
	Octal Notation

	Goals of Computer Data Representation
	Compactness and Range
	Accuracy
	Ease of Manipulation
	Standardization

	CPU Data Types
	Integers
	Real Numbers
	Character Data
	Boolean Data
	Memory Addresses

	Data Structures
	Pointers and Addresses
	Arrays and Lists
	Records and Files
	Classes and Objects

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Problems and Exercises
	Research Problems

	Chapter 4: Processor Technology and Architecture
	CPU Operation
	Instructions and Instruction Sets
	Data Movement
	Data Transformations
	Sequence Control
	Complex Processing Operations
	A Short Programming Example
	Instruction Set Extensions

	Instruction Format
	Instruction Length
	RISC and CISC

	Clock Rate
	CPU Registers
	General-Purpose Registers
	Special-Purpose Registers

	Word Size
	Enhancing Processor Performance
	Pipelining
	Branch Prediction and Speculative Execution
	Multiprocessing

	The Physical CPU
	Switches and Gates
	Electrical Properties
	Processor Fabrication
	Current Technology Capabilities and Limitations

	Future Trends
	Optical Processing
	Electro-Optical Processing
	Quantum Processing

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Problems and Exercises
	Research Problems

	Chapter 5: Data Storage Technology
	Storage Device Characteristics
	Speed
	Volatility
	Access Method
	Portability
	Cost and Capacity
	Memory-Storage Hierarchy

	Primary Storage Devices
	Storing Electrical Signals
	Random Access Memory
	Nonvolatile Memory
	Memory Packaging

	Magnetic Storage
	Magnetic Decay and Leakage
	Areal Density
	Media Integrity
	Magnetic Tape
	Magnetic Disk

	Optical Mass Storage Devices
	CD-ROM, DVD-ROM, and BD
	Recordable Discs
	Phase-Change Optical Discs
	Magneto-Optical Drives

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Problems and Exercises
	Research Problems

	Chapter 6: System Integration and Performance
	System Bus
	Bus Clock and Data Transfer Rate
	Bus Protocol
	Subsidiary Buses

	Logical and Physical Access
	Device Controllers
	Mainframe Channels

	Interrupt Processing
	Interrupt Handlers
	Multiple Interrupts
	Stack Processing
	Performance Effects

	Buffers and Caches
	Buffers
	Caches

	Processing Parallelism
	Multicore Processors
	Multiple-Processor Architecture
	Scaling Up and Scaling Out
	High-Performance Clustering

	Compression
	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Problems and Exercises
	Research Problems

	Chapter 7: Input/Output Technology
	Basic Print and Display Concepts
	Matrix-Oriented Image Composition
	Image Storage and Transmission Requirements
	Image Description Languages

	Video Display
	Video Controllers
	Video Monitors

	Printers
	Inkjet Printers
	Laser Printers
	Plotters

	Manual Input Devices
	Keyboards
	Pointing Devices
	Input Pads

	Optical Input Devices
	Mark Sensors and Bar-Code Scanners
	Optical Scanners
	Digital Cameras
	Portable Data Capture Devices

	Audio I/O Devices
	Speech Recognition
	Speech Generation
	General-Purpose Audio Hardware

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Research Problems

	Chapter 8: Data and Network Communication Technology
	Communication Protocols
	Encoding and Transmitting Bits
	Carrier Waves
	Modulation Methods
	Analog Signals
	Digital Signals
	Signal Capacity and Errors

	Transmission Media
	Speed and Capacity
	Frequency
	Bandwidth
	Signal-to-Noise Ratio
	Electrical Cabling
	Optical Cabling
	Amplifiers and Repeaters

	Wireless Transmission
	Radio Frequency Transmission
	Light Transmission

	Channel Organization
	Simplex, Half-Duplex, and Full-Duplex Modes
	Parallel and Serial Transmission
	Channel Sharing

	Communication Coordination
	Clock Synchronization
	Error Detection and Correction

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Problems and Exercises
	Research Problems

	Chapter 9: Computer Networks
	Network Topology
	Message Addressing and Forwarding
	Media Access Control
	Network Hardware
	Network Interface Cards
	Hubs
	Switches
	Routers
	Wireless Access Points

	OSI Network Layers
	Application Layer
	Presentation Layer
	Session Layer
	Transport Layer
	Network Layer
	Data Link Layer
	Physical Layer

	Internet Architecture
	Internet Protocol
	IPv6
	TCP
	UDP
	Network Interface Layer

	Physical Network Standards
	Ethernet

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Research Problems

	Chapter 10: Application Development
	The Application Development Process
	Systems Development Methodologies and Models
	Tools

	Programming Languages
	First-Generation Languages
	Second-Generation Languages
	Third-Generation Languages
	Fourth-Generation Languages
	Fifth-Generation Languages
	Object-Oriented Programming Languages
	Scripting Languages
	Programming Language Standards

	Compilation
	Data Declarations
	Data Operations
	Control Structures
	Function Calls

	Link Editing
	Dynamic and Static Linking

	Interpreters
	Symbolic Debugging

	Application Development Tools
	Integrated Development Environments
	CASE Tools

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Problems and Exercises
	Research Problems

	Chapter 11: Operating Systems
	Operating System Overview
	Operating System Functions
	Operating System Layers

	Resource Allocation
	Single-Tasking Resource Allocation
	Multitasking Resource Allocation
	Resource Allocation Tasks
	Real and Virtual Resources

	Process Management
	Process Control Data Structures
	Threads

	CPU Allocation
	Thread States
	Interrupt Processing
	Scheduling

	Memory Allocation
	Physical Memory Organization
	Single-Tasking Memory Allocation
	Multitasking Memory Allocation
	Memory Fragmentation
	Noncontiguous Memory Allocation
	Virtual Memory Management
	Memory Protection
	Memory Management Hardware

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Research Problems

	Chapter 12: File and Secondary Storage Management
	Functions and Components of File Management Systems
	Logical and Physical Storage Views
	File Content and Type

	Directory Content and Structure
	Hierarchical Directory Structure
	Graph Directory Structure

	Storage Allocation
	Allocation Units
	Storage Allocation Tables
	Blocking and Buffering
	An Example of Storage Allocation and File I/O

	File Manipulation
	File Open and Close Operations
	Delete and Undelete Operations

	Access Controls
	File Migration, Backup, and Recovery
	File Migration
	File Backup
	File Recovery

	Fault Tolerance
	Mirroring
	RAID

	Storage Consolidation
	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Problems and Exercises
	Research Problems

	Chapter 13: Internet and Distributed Application Services
	Distributed Software Architecture
	Client/Server Architecture
	N-Layer Client/Server Architecture
	Middleware
	Peer-to-Peer Architecture

	Network Resource Access
	Protocol Stacks
	Static Resource Connections
	Dynamic Resource Connections

	Directory Services
	Lightweight Directory Access Protocol

	Interprocess Communication
	Sockets
	Named Pipes
	Remote Procedure Calls

	The Internet
	Standard Web Protocols and Services
	The Internet as an Application Platform

	Components and Distributed Objects
	Component-Based Software
	Components and Objects
	Connection Standards and Infrastructure

	Emerging Distribution Models
	Software as a Service
	Platform as a Service
	Infrastructure as a Service
	Risks

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Research Problems

	Chapter 14: System Administration
	System Administration
	Strategic Planning
	Hardware and Software as Infrastructure
	Standards
	Competitive Advantage

	The Acquisition Process
	Determining and Stating Requirements
	Request for Proposal

	Determining Requirements and Evaluating Performance
	Benchmarks
	Measuring Resource Demand and Utilization

	Security
	Physical Security
	Access Controls
	Password Controls and Security
	Auditing
	Virus Protection
	Software Updates
	Firewalls

	Physical Environment
	Electrical Power
	Heat Dissipation
	Moisture
	Cable Routing
	Fire Protection
	Disaster Planning and Recovery

	Summary
	Key Terms
	Vocabulary Exercises
	Review Questions
	Research Problems

	APPENDIX
	MEASUREMENT UNITS
	TIME UNITS
	CAPACITY UNITS
	DATA TRANSFER RATES

	GLOSSARY
	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

