
www.allitebooks.com

http://www.allitebooks.org

Talend for Big Data

Access, transform, and integrate data using Talend's
open source, extensible tools

Bahaaldine Azarmi

 BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Talend for Big Data

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 2170214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-949-9

www.packtpub.com

Cover Image by Abhishek Pandey (abhishek.pandey1210@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Bahaaldine Azarmi

Reviewers
Simone Bianchi

Vikram Takkar

Acquisition Editors
Mary Nadar

Llewellyn Rozario

Content Development Editor
Manasi Pandire

Technical Editors
Krishnaveni Haridas

Anand Singh

Copy Editor
Alfida Paiva

Project Coordinator
Ankita Goenka

Proofreader
Mario Cecere

Indexers
Hemangini Bari

Tejal Soni

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bahaaldine Azarmi is the cofounder of reach5.co. With his past experience of
working at Oracle and Talend, he has specialized in real-time architecture using
service-oriented architecture products, Big Data projects, and web technologies.

I like to thank my wife, Aurelia, for her support and patience
throughout this project.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Simone Bianchi has a degree in Electronic Engineering from Italy, where he
is living today, working as a programmer to develop web applications using
technologies such as Java, JSP, jQuery, and Oracle. After having a brief experience
with the Oracle Warehouse Builder tool, and as soon as the Talend solution came out,
he started to extensively use this new tool in all his data migration/integration tasks
as well as develop ETL layers in data warehouse projects. He also developed several
Talend custom components such as tLogGrid, tDBFInput/Output, which you can
download from the TalendForge site, and the ones to access/store data on the Web
via SOAP/REST API.

I'd like to thank Packt Publishing to have chosen me to review
this book, as well as the very kind people who work there,
to have helped me to accomplish my first review at my best.

A special dedication to my father Americo, my mother Giuliana,
my sisters Barbara and Monica, for all their support over the years,
and finally to my little sweet nephew and niece, Leonardo and Elena,
you are my constant source of inspiration.

www.allitebooks.com

http://www.allitebooks.org

Vikram Takkar is a freelance Business Intelligence and Data Integration
professional with nine years of rich hands-on experience in multiple BI and ETL
tools. He has a strong expertise in technologies such as Talend, Jaspersoft, Pentaho,
Big Data-MongoDB, Oracle, and MySQL. He has managed and successfully
executed multiple projects in data warehousing and data migration developed
for both Unix and Windows environments. He has also worked as a Talend Data
Integration trainer and facilitated training for various corporate clients in India,
Europe, and the United States. He is an impressive communicator with strong
leadership, analytical, and problem-solving skills. He is comfortable interacting
with people across hierarchical levels for ensuring smooth project execution as per
the client's specifications. Apart from this, he is a blogger and publishes articles and
videos on open source BI and ETL tools along with supporting technologies on his
YouTube channel at www.youtube.com/vtakkar. You can follow him on Twitter
@VikTakkar and you can visit his blog at www.vikramtakkar.com.

I would like to thank the Packt Publishing team for again giving
me the opportunity to review their book. Earlier, I reviewed their
Pentaho and Big Data Analytics book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads
related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with Talend Big Data 5

Talend Unified Platform presentation 5
Knowing about the Hadoop ecosystem 7
Prerequisites for running examples 8
Downloading Talend Open Studio for Big Data 9
Installing TOSBD 9
Running TOSBD for the first time 10
Summary 12

Chapter 2: Building Our First Big Data Job 13
TOSBD – the development environment 13
A simple HDFS writer job 16
Checking the result in HDFS 25
Summary 25

Chapter 3: Formatting Data 27
Twitter Sentiment Analysis 27
Writing the tweets in HDFS 28
Setting our Apache Hive tables 31
Formatting tweets with Apache Hive 35
Summary 38

Chapter 4: Processing Tweets with Apache Hive 39
Extracting hashtags 39
Extracting emoticons 44
Joining the dots 46
Summary 48

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 5: Aggregate Data with Apache Pig 49
Knowing about Pig 49
Extracting the top Twitter users 51
Extracting the top hashtags, emoticons, and sentiments 56
Summary 58

Chapter 6: Back to the SQL Database 59
Linking HDFS and RDBMS with Sqoop 59
Exporting and importing data to a MySQL database 60
Summary 64

Chapter 7: Big Data Architecture and Integration Patterns 65
The streaming pattern 65
The partitioning pattern 68
Summary 71

Appendix: Installing Your Hadoop Cluster with Cloudera CDH VM 73
Downloading Cloudera CDH VM 73
Launching the VM for the first time 75
Basic required configuration 76
Summary 78

Index 79

Preface
Data volume is growing fast. However, data integration tools are not scalable
enough to process such an amount of data, and thus, more and more companies
are thinking about starting Big Data projects—diving into the Hadoop ecosystem
projects, understanding each technology, learning MapReduce, Hive SQL,
and Pig-Latin—thereby becoming more of a burden more than a solution.

Software vendors such as Talend are trying to ease the deployment of Big Data
by democratizing the use of Apache Hadoop projects through a set of graphical
development components, which doesn't require the developer to be a Hadoop
expert to kick off their project.

This book will guide you through a couple of hands-on techniques to get a better
understanding of Talend Open Studio for Big Data.

What this book covers
Chapter 1, Getting Started with Talend Big Data, explains the structure of Talend
products and then sets up your Talend environment and discovers Talend Studio
for the first time.

Chapter 2, Building Our First Big Data Job, explains how we can start creating our first
HDFS job and be sure our Talend Studio is integrated with our Hadoop cluster.

Chapter 3, Formatting Data, describes the basics of Twitter Sentiment Analysis and
gives an introduction to format data with Apache Hive.

Chapter 4, Processing Tweets with Apache Hive, shows advanced features of Apache
Hive, which helps to create the sentiment from extracted tweets.

Preface

[2]

Chapter 5, Aggregate Data with Apache Pig, finalizes the data processing done so
far and reveals the top records using Talend Big Data Pig components.

Chapter 6, Back to the SQL Database, will guide you on how to work with the Talend
Sqoop component in order to export data from HDFS to a SQL Database.

Chapter 7, Big Data Architecture and Integration Patterns, describes the most used
patterns deployed in the context of Big Data projects in an enterprise.

Appendix, Installing Your Hadoop Cluster with Cloudera CDH VM describes the main
steps to set up a Hadoop cluster based on Cloudera CDH4.3. You would learn how
to go about installations and configuration.

What you need for this book
You will need a copy of the latest version of Talend Open Studio for Big Data,
a copy of Cloudera CDH distribution, and a MySQL database.

Who this book is for
This book is for developers with an existing data integration background, who want
to start their first Big Data project. Having a minimum of Java knowledge is a plus,
while having an expertise in Hadoop is not required.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles are
shown as follows: The custom UDF is present in the org.talend.demo package
and called ExtractPattern

A block of code is set as follows:

CREATE EXTERNAL TABLE hash_tags (
hash_tags_id string,
day_of_week string,

Preface

[3]

day_of_month string,
time string,
month string,

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: So my
advice would be to create an account or click on Ignore if you already have one.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from http://www.packtpub.com/sites/
default/files/downloads/9499OS_Graphics.pdf

Preface

[4]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

Getting Started with
Talend Big Data

In this chapter, we will learn how the Talend products are regrouped as an
integration platform, and we'll set up our development environment to start
building Big Data jobs.

The following topics are covered:

• Talend Unified Platform structure
• Setting up our Talend development environment

Talend Unified Platform presentation
Talend is a French software vendor specialized in open source integration.
Through its products, the company democratizes integration and enables IT
users and organizations to deploy complex architectures in simpler and
comprehensive ways.

Getting Started with Talend Big Data

[6]

Talend addresses all aspects of integration from the technical layer to the business
layer, and all products are regrouped into one unique unified platform as shown
in the following diagram:

Talend Unified Platform

Talend Unified Platform offers a unique Eclipse-based environment, which means
that users can jump from one product to another just by clicking on the related
perspective button without the need for changing tools. All jobs, services, and
technical assets are designed in the same environment with the same methodology,
deployed and executed in the same runtime, monitored and operated in the same
management console.

• Talend Data Integration is the historical Talend product, which rapidly
promoted Talend as a leader in its field. It allows developers to create the
simplest integration jobs such as extracting data from a file and loading it
to a database, and create complex data integration job orchestration, high
volume integration with parallelization feature, and finally Big Data
Integration mainly based on Hadoop projects. This book is essentially
dedicated to this module and will give the reader a better understanding
of the Talend Big Data usage module.

• Talend Data quality comes with additional analytics features mainly
focused on data profiling in order to get a better understanding not only
of the quality and reliability of your data, but also integration features such
as data standardization, enrichment, matching, and survivorship based on
largely adopted industry algorithms.

• Talend Enterprise Service Bus is mainly based on open source projects
from the Apache Software Foundation such as Apache Karaf, Apache
CXF, Apache Camel, and Apache ActiveMQ, all packed into a single
comprehensive product, which speeds the deployment of Service
Oriented Architecture composed of few services, to large and
complex distributed instance architectures.

Chapter 1

[7]

• Talend Master Data Management manages the best of all products and
offers business customers all the features required to manage master
data such as a business user interface, workflow and business processes,
data quality controls, and role-based access management.

• Talend Business Process Management will help business users to
graphically design their business processes composed of human tasks,
events, and business activity monitoring. It also takes advantage of all
existing integration services such ESB SOAP and REST Services or even
Data Quality jobs, thanks to a comprehensive integration layer between
all products.

Talend Unified Platform is part of the commercial subscription offer; however,
all products are available under a community version called Talend Open Studio.
As mentioned earlier, Talend Unified Platform is unified at every level, whereas
Talend community version products are separate studios. It doesn't include
teamwork module, and also advanced features such as administration console,
clustering, and so on globally.

This book is focused on Talend Open Studio for Big Data (TOSBD), which adds
to Talend Open Studio for Data Integration a set of components that enables
developers to graphically design Hadoop jobs.

Knowing about the Hadoop ecosystem
To introduce the Hadoop projects ecosystem, I'd like to use the following diagram
from the Hadooper's group on Facebook (http://www.facebook.com/hadoopers),
which gives a big picture of the positioning of the most used Hadoop projects:

Getting Started with Talend Big Data

[8]

As you can see, there is a project for each task that you need to accomplish in a
Hadoop cluster which is explained in the following points:

• HDFS is the main layer where the data is stored. We will see in the
following chapter how to use TOSBD to read and write data in it.
More information can be found at http://hadoop.apache.org/
docs/stable1/hdfs_design.html.

• MapReduce is a framework used to process a large amount of data stored
in HDFS, and it relies on a map function that processes key values pairs
and a reduce function to merge all the values as the following publication
explains http://research.google.com/archive/mapreduce.html.

• In this book, we will use a bunch of high-level projects over HDFS, such as
Pig and HIVE, in order to generate the MapReduce code and manipulate
the data in an easier way instead of coding the MapReduce itself.

• Other projects such as Flume or Sqoop are used for integration purpose
with an industry framework and tools such as RDBMS in the case of Sqoop.

The more you get into Big Data projects, the more skills you need, the more time you
need to ramp up on the different projects and framework. TOSBD will help to reduce
this ramp up time by providing a comprehensive graphical set of tools that ease the
pain of starting and developing such projects.

Prerequisites for running examples
As described earlier in this chapter, this book will describe how to implement Big Data
Hadoop jobs using TOSBD. For this the following technical assets will be needed:

• A Windows/Linux/Mac OS machine
• Oracle (Sun) Java JDK 7 is required to install and run TOSBD, and is available

at http://www.oracle.com/technetwork/java/javase/downloads/
jdk7-downloads-1880260.html

• Cloudera CDH Quick Start VM, a Hadoop distribution, which by default
contains a ready-to-use single node Apache Hadoop is available at
http://www.cloudera.com/content/support/en/downloads/
download-components/download-products.html?productID=F6mO278Rvo

• A VMWare Player or VirtualBox free for personal use (for windows and
linux only) to run the Cloudera VM available at https://my.vmware.com/
en/web/vmware/free#desktop_end_user_computing/vmware_player/
6_0 and https://www.virtualbox.org/wiki/Downloads

Chapter 1

[9]

• MySQL Database, an open source RDBMS, is available at
http://dev.mysql.com/downloads/mysql/

• And obviously, TOSBD, which is described in the next part

Downloading Talend Open Studio for
Big Data
Downloading a community version of Talend is pretty straightforward; just connect
on http://www.talend.com/download/big-data, and scroll at the bottom of the
page to see the download section as shown in the following screenshot:

Talend Open Studio for Big Data download section

The product is a generic bundle, which can be run either on Mac, Linux, or Windows.
This book uses the last version of the product; just click on the Download now button
to get the TOS_BD-r110020-V5.4.0.zip archive of TOSBD.

Installing TOSBD
All products of the Talend community version are of Eclipse-based tooling
environment and packaged as archive. To install TOSBD, you only need to extract
the archive preferably under a path, which doesn't contain any space, for example:

Operating system Path

Mac, Linux /home/username/talend/

Windows C:\talend\

The result should be a directory called TOS_BD-r110020-V5.4.0 under the
example path.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Talend Big Data

[10]

Running TOSBD for the first time
As said earlier in the download section of this chapter, the product is generic and
is packaged in one archive for several environments; thus, running TOSBD is just
a matter of choosing the right executable file in the installation directory.

All executable filenames have the same syntax:

TOS_BD-[Operating system]-[Architecture]-[Extension]

Then, to run TOS_BD on a 64-bit Windows machine, TOS_BD-win-x86_64.exe
should be run, TOS_BD-macosx-cocoa for Mac, and so on. Just choose the one
that fits your configuration.

The first time you run the studio, a window will pop up asking to accept the terms
of use and license agreement; once accepted, the project configuration wizard will
appear. It presents the existing project, in our case, only the default demo project
exists. The wizard also proposes to import or create a project.

When you work with Talend products, all your developments are
regrouped in a project, which is then stored in a workspace with
other projects.

We are now going to create the project, which will contain all development done
in this book. In the project wizard, perform the following steps:

• Click on the Create button to open the project details window as shown in
the following screenshot:

Project details window

Chapter 1

[11]

• Name your project; I've set the name to Packt_Big_Data; you don't really
need the underscores, but you might guess that's just a habit of mine.

• Click on Finish; you are now ready to run the studio:

TOSBD project configuration done

• A window will appear to let you create a Talend Forge account, which
is really useful if you want to get the latest information on the products,
interact with the products community, get access to the forum and also
to the bug tracker (Jira), and more. So my advice would be to create an
account or click on Ignore if you already have one.

• The studio will load all Big Data edition components and then open
the welcome window, scroll down in the window, and check the Do
not display again checkbox for the next studio boot as shown in the
following screenshot:

Studio welcome page

• You are now ready to start developing your first Talend Big Data job!

Getting Started with Talend Big Data

[12]

Summary
So far, we have learned the difference between Talend Unified Platform and
Talend Community Edition, and also how fast it is to set up a Talend Open
Studio for Big Data development environment.

In the next chapter, we'll learn how to build our first job and discover a couple
of best practices and all the main features of TOSBD.

Building Our First Big
Data Job

This chapter will help you to understand how the development studio is organized
and then how to use TOSBD components to build Big Data jobs.

In this chapter, we will cover the following:

• TOSBD – the development environment
• Configuring the Hadoop HDFS connection
• Writing a simple job that writes data in Hadoop HDFS
• Running the job
• Checking the result in HDFS

TOSBD – the development environment
We are ready to start developing our Big Data jobs, but before diving into serious
things, be my guest and have a nickel tour of the studio.

Building Our First Big Data Job

[14]

The studio is divided into the following parts:

• The Repository view on the left contains all the technical artifacts designed
in the studio, such as jobs, context variables, code, and connection resources,
as shown in the following screenshot:

The TOSBD Studio's Repository view

• In the center, there is a design view in which the graphical implementation
takes place, and various components are arranged to create a job according
to the business logic. Here, the developer just drags and drops components
from the Palette view to the design view and connects them to create a
job, as shown in the following screenshot (remember that Talend is a code
generator, so anything contained in the design view is actually a piece of the
generated code. The design view contains a code; you can switch from the
design view to read the generated code):

Chapter 2

[15]

The design view

• The properties and controls view is where you will get all information on
your job, used context, components, and modules, and also have the ability
to run a job in the studio without having to deploy it, as shown in the
following screenshot:

The properties and controls view

Building Our First Big Data Job

[16]

• The last view is the Palette view, which by default is placed on the
left-hand side of the studio; I manually move it next to the Repository
view for the convenience of design. You can see the Palette view in the
following screenshot:

TOSBD's Palette view

• The Palette view contains all the 500+ Talend components required to create
a job.

• The last detail is about the perspective buttons located in the top-right corner,
where you can switch from a studio resolution to the others. The main benefit
if you ever switch to the commercial edition is that you will be able to switch
between two products just by clicking on the button.

A simple HDFS writer job
In this part, we will learn how to create a Talend job, which uses an HDFS component
to write in the Hadoop distributed file system.

Chapter 2

[17]

To do so, we'll need a Hadoop distribution, and fortunately, most of the software
vendors are providing some quick-start virtual machines to be able to kick off a Big
Data project.

From my side, I'm going to use a Cloudera CDH VM, which you also must have
downloaded as mentioned in the previous chapter.

If you have installed and set up your VM as described in the Appendix, Installing
Your Hadoop Cluster with Cloudera CDH VM you are ready to create your first job.

We will organize our studio's workspace and create a folder for each chapter by
performing the following steps:

1. In the Repository view, right-click on Jobs and click on Create Folder.
2. Type Chapter1 and click on Finish. You will be able to see the Chapter1

folder, as shown in the following screenshot:

The workspace's structure

3. We will now create a new job in this new folder by right-clicking on it and
choosing Create Job. A window will appear to give all the details of the job;
just add the following properties and leave the rest blank, as they are not
really useful, as shown in the next screenshot:

 ° Name: CH01_HDFS_WRITER
 ° Goal: Write in HDFS

Building Our First Big Data Job

[18]

 ° Description: This job is part of the previous chapter of the Talend
Big Data book and aims to write a new file in the Hadoop
distributed file system

Create a new job

4. When your job is opened, you will see a complete list of components in
the Palette view, from application components such as SAP connectors,
to database, file, and so on. The complete list of components is available
on this link: http://talendforge.org/components/.
Take a deep breath; more than 500 components are waiting for you there!

5. For your brain sake, Palette contains a search box to filter the components;
type HDFS as the keyword, and press Enter to see all the related components,
as shown in the following screenshot:

Chapter 2

[19]

HDFS components

6. In Talend, reading and writing components end with the words Input
and Output respectively. As we want to write in HDFS, we will use the
tHDFSOutput component. Other components are described in detail in the
documentation; their names give you a good idea of what they are used for.

Selecting a component and pressing F1 will print the documentation
related to the component, along with the complete description of all
the properties and also example scenarios.

www.allitebooks.com

http://www.allitebooks.org

Building Our First Big Data Job

[20]

7. Drag-and-drop the tHDFSOutput component in the design view and
double-click on the component; the properties view should show all the
information of the component, as shown in the following screenshot:

tHDFSOutput properties

8. As you can see, the preceding view lets you configure the component
properly, depending on the distribution you want to use, your Hadoop
distribution, the security, and so on.

9. We will be notified that a JAR file is missing in the studio, in order to use the
component. This is because some JAR files and drivers are provided under a
license that cannot be embedded in the Talend package. We can embed them
by performing the following steps:

1. Click on the Install button.
2. Then in the pop up, follow the instructions to download and install

the JAR.

10. If everything went well during the installation, the notification should have
disappeared.

11. So, the idea is to write in HDFS a simple file in a specific directory. To do
that, we'll need to configure our component to fit our environment. Instead of
hardcoding each property, we'll use the Talend Context feature to externalize
all properties, and will enrich this context throughout the book. In the
Repository view:

Chapter 2

[21]

1. Right-click on the Contexts node and choose Create context group.
2. Name the group as PacktContext and click on the Next button.
3. Add three variables and switch to the Values as Table tab to set the

following default values:

Name Value
hdfsHost CLOUDERA_VM_HOST_IP

for example, 172.16.253.202
hdfsPort 8020

username YOUR_USERNAME (as seen in the VM setup Appendix)
for example, bahaaldine

4. Click on the Finish button.

12. You will see throughout the book that contexts are really convenient and are
anyway part of the Talend design's best practices. To use the context group
in our job, just switch to the Contexts tab in the property view and click on
Select Context Group, then select PacktContext and all the defined variables
to add them to the job, as shown in the following screenshot:

The Contexts tab and the Select Context Group

Building Our First Big Data Job

[22]

13. We are ready to configure the tHDFSOutput component by just setting the
following properties and keeping the rest as default:

Name Value
Distribution Cloudera

Hadoop version Cloudera CDH4.3+(YARN mode)

NameNode URI "hdfs://"+context.hdfsHost+":"+conte
context.hdfsPort+"/"

User name context.username

File Name "/user/"+context.username+"/packt/
chp01/.init"

The following screenshot shows the tHDFSOutput_1 component's
properties, as discussed in the preceding table:

The tHDFSOutput_1 component's settings

As you can see in the property view, we will create subdirectories under
user/username/ and an empty file called .init.

Chapter 2

[23]

14. The job, as it is, cannot run; we need an entry point that triggers the
tHDFSOutput_1 component. To do that, we'll use the tFixedFlowInput_1
component for which I recommend that you read the documentation.
Basically, this component is used to start the job's data flow with a custom
data schema, custom constant, or variable data row, and by setting the
number of rows the component should iterate.

15. Search the component in the Palette view and drag-and-drop it in the design
view, as shown in the following screenshot:

Two components to reign on HDFS

16. We need to configure the tFixedFlowInput component to send a row,
which will trigger the writing of our second component. However, we don't
need data in the row; we'll just create an empty row by performing the
following steps:

1. Click on the component, and in the Component tab of the property
view, click on the Edit schema button.

2. Add a new column called empty.
3. Right-click on the component and choose Row / Main, and then

connect it to tHDFSOutput to finish the job design.

The following screenshot shows the tFixedFlowInput_1
component's properties:

The tFixedFlowInput component's settings

Building Our First Big Data Job

[24]

17. We are now ready to run the job and see what happens on HDFS:
1. In the property view, choose the Run tab and click on the Run button.
2. You should get the following output:

HDFS write output

18. Finally, we'll check that the job has done its job!

Chapter 2

[25]

Checking the result in HDFS
To check if everything went well, we need to browse to HDFS and see if the empty.
init file has been created. To do so, connect via SSH or directly through a terminal
in your Cloudera VM, and issue the following command:

$ hadoopfs –ls /user/bahaaldine/packt/chap01

The following output will appear:

-rw-r--r-- 3 bahaaldinesupergroup 1 2013-11-20 02:15 /user/
bahaaldine/packt/chp01/.init

hadoopfs is the command-line utility to interact with HDFS; it
supports all the basic shell commands such as ls, tail, mkdir,
cat, and many others. For more information, I recommend that
you read the documentation at http://hadoop.apache.org/
docs/r0.19.1/hdfs_shell.html.

Summary
At this point, we have learned how to use the different views in TOSBD and how
to build a job and configure its components. We have also discussed how to use
the basic HDFS commands to interact with the filesystem.

In the next chapter, we will pass a level and focus on Twitter Sentiment Analysis.

Formatting Data
In this chapter, we will be introduced to Twitter Sentiment Analysis, and see how
we can format raw tweets into usable tweets. We will:

• Start by writing data into our Hadoop distributed file system
• Set up our Apache Hive environment to keep a reliable data structure

Twitter Sentiment Analysis
Sentiment analysis is one of the topics that you may have met with some of the
most popular social network analytics tools. The goal of such analysis is to
determine what people are feeling regarding a specific topic.

Twitter is a good candidate for sentiment analysis because of the tweet structure.
The following is the one from the provided data set:

Sun Mar 17 08:33:59 CET 2013 (Nats25) OH MY GOOOOOOOD! Why am
I awake L

We can see that the author is obviously not happy with the fact that he's awake
so early on a Sunday morning. What if we could relate certain words or topics with
certain emoticons? We could then get the mood of authors regarding their tweets.
What if the word is a company name? Now you may understand the stakes behind
the scene.

So, the purpose of all the later chapters is to create and set up all the required
technical assets to implement the Twitter Sentimental Analysis. What we want
here is to:

• Write tweet files on HDFS
• Transform the raw tweets into usable tweets using Apache Hive

Formatting Data

[28]

• Extract hashtags, emoticons, and build sentiments still with Hive
• Reveal tops hashtags, emoticons, and sentiments with Apache Pig
• Export dry data to RDBMS wwith Apache Sqoop

Writing the tweets in HDFS
For convenience, we'll only work on one 60 MB tweet file, but real-life use cases are
worked on several GB files. This file was generated with a Talend ESB Job that uses
the Twitter streaming component, as shown in the following diagram:

If you have reached this part, this step should be easy because it's very close to what
we did in the previous chapter.

The purpose here is to create a Job, which consumes our tweets like a file, but more
than just consuming, we want to add some structure to our file before writing it
to HDFS.

As you may have noticed in the previous part of this chapter, a tweet structure
extracted with Talend ESB looks like the following one:

Sun Mar 17 08:33:59 CET 2013 (Nats25) OH MY GOOOOOOOD! Why am
I awake L

It contains:

• Day of the week
• Month
• Day of the month
• Time
• Zone
• Year
• Username
• Content

Chapter 3

[29]

So, we will use a tFileInputPositional component to read our file and extract
the columns of our tweets as follows:

1. Create a new Job called CH02_01_HDFS_WRITING_TWEETS under a new
Chapter2 folder.

2. Drag-and-drop a tFileInputPositional component from the palette.
3. Drag-and-drop an HDFSOutput component.

The first component reads data depending on the column position and length, so
we need to create a schema and configure the column pattern. Double-click on the
component and click on the Edit schema button in the component property view,
as shown in the following screenshot:

The Edit schema button

Click on the Edit schema button to add the following columns:

Name Type

day_of_week String

month String

day_of_month String

time String

zone String

year String

content String

www.allitebooks.com

http://www.allitebooks.org

Formatting Data

[30]

The following screenshot shows the resulting schema configuration:

The tFileInputPositional schema

The following table contains a context variable whose value is set to the tweet files
path. Create a new context variable and add the context with all variables to your Job:

Name Type
tweetFilePath PATH_TO_YOUR_TWEET_FILE

Finalize the component configuration with the following properties:

Name Type

File name / Stream context.tweetFilePath

Row separator \n

Pattern "3,4,3,9,5,5,*"

We now need to configure the tHDFSOutput component in the same way as we have
done in Chapter2, Building Our First Big Data Job, but with one difference in the file
path property, as given in the following table:

Name Type

File name / Stream "/user/bahaaldine/packt/chp02/tweet.log "

Link the tFileInputPositional component to the tHDFSOutput component and
run the Job. Your Job should have sent all the tweets contained in the file.

Chapter 3

[31]

The following diagram shows the Job execution; we can see that 580936 tweets had
been written in HDFS.

Write tweets in HDFS

Do not hesitate to check in HDFS if the file has been properly written.

Setting our Apache Hive tables
Before trying to format our data, we need to create a data structure over HDFS to
be able to manipulate the data in a convenient way. Apache Hive is a project of the
Hadoop ecosystem, which adds an abstraction layer over HDFS and lets the user
interact with the data using a SQL-like language called HiveQL. Because we don't
want to directly request the big raw files stored in our Hadoop file system, we'll use
Hive to:

• Create the tables representing the tweet structure contained in the files
• Format the data using Hive User Defined Function (UDF)

More information on Hive can be found at http://hive.apache.org/.

Let's dive into the first step and create a new Job to build our tweets table.

Since we have a better vision of the table, we should create a table to store our
tweets. Thanks to the previous part in which we have seen all the required columns.
We will create one table by performing the following steps:

1. Create a new Job CH02_02_HIVE_CREATE_TWEET_TABLE in the repository
under the Chapter2 folder.

2. Type hive as the keyword in the palette search box and press Enter.

Formatting Data

[32]

3. Drag-and-drop one tHiveConnection component and three tHiveRow
components in the design view, as shown in the following screenshot:

Creating our new Hive Job

Basically, we need to connect to Hive with the tHiveConnection component and
then select the proper Hive database, drop the tweet table if it already exists, and
recreate it. I usually create such a Job to not only create tables for the first instance
but also recreate them to initialize my environment when needed. To get a better
understanding of our Job, we'll rename the different components by performing
the following steps:

1. Double-click on a component.
2. In the property view, choose the Component view panel and change the

label format for each component as follows:

 ° The tHiveConnection label should be renamed to connection
to hive

 ° The tHiveRow label should be renamed to use default database
 ° The tHiveRow label should be renamed to drop the table tweets
 ° The tHiveRow label should be renamed to create the table tweets

Chapter 3

[33]

We'll use the context group that we have created in Chapter 2, Building Our First Big
Data Job, and add the following variables related to Hive:

Name Value

hiveHost CLOUDERA_VM_HOST_IP

ex: 172.16.253.202

hivePort 9083

JTHost CLOUDERA_VM_HOST_IP

ex: 172.16.253.202

JTPort 8021

As we are working in a pseudo-distributed mode with only one node, each service
is hosted on the same VM so that the hosts are the same. But in the production
mode, services can be distributed in several nodes, and the host and port can differ.

We'll use these variables to establish the connection to our Hive environment by
performing the following steps:

1. In the property view Contexts tab, add the context and all available variables
to the Job.

2. Double-click on the tHiveConnection component.
3. Set the following component properties:

Name Value

Distribution Cloudera

Hadoop Version Cloudera CDH4.3+(YARN mode)

Connection mode Embedded

Hive Server Hive 1

Host context.hiveHost

Port context.hivePort

Set JobTracker URI Checked with URI:

context.JTHost+":"+context.JTPort

Set Namenode URI Checked with URI:

"hdfs://"+context.hdfsPort+":"+context.hdfsPort

Formatting Data

[34]

You may have noticed that we need to install a JAR file to be able to use the
tHiveConnection component; just click on the Install Jar button and follow
the instructions.

Now that our Hive connection is properly configured, we can use this connection
for each tHiveRow component by performing the following steps:

1. Double-click on the component.
2. In the property view, check the Use an existing connection checkbox.
3. Be sure tHiveConnection 1 is selected in the drop-down list.

Each tHiveRow component basically consists of HiveQL queries that interact with
our Hive server. Let's configure this component by performing the following steps:

1. The first Hive component selects the right database by using the
following command:
use default

2. The second component drops the existing tweets table by using the
following command:
DROP TABLE IF EXISTS tweets

3. The third one create a new tweets table as follows:
CREATE EXTERNAL TABLE tweets

(day_of_week string, mont string, day_of_month string, time
string, zone string, year string, username string, content string)

ROW FORMAT DELIMITED FIELDS TERMINATED BY ';'

LOCATION '/user/"+context.username+"/packt/chp02

4. We set the delimiter to the semicolon, and the data location to the directory
where we have written the tweets file.

5. Connect the component by right-clicking on it and choosing onComponent
Ok for each of them. At the end, your Job should look as follows:

Hive creates tweets table

Chapter 3

[35]

Checking in Hive if the table has been created is pretty easy; just open a terminal in
your Cloudera VM and issue the following commands:

• $ hive: This command connects to the Hive server and opens the Hive
command-line tool

• $ use default: This command selects the database
• $ desc tweets: This command shows tweets table description and prints

the following information:

The Hive tweet table's description

Formatting tweets with Apache Hive
In this last part of the Hive integration process, we now need to create a formatted
tweet table and separate the content into the following two parts:

• The effective content of the tweet
• The username of the tweet author

We are doing this because so far we only have the merged content and we couldn't
determine who is the most active user on a specific topic. This is very useful, for
example, for a political party to get a list of the tough leaders during the electoral
period. As you understood the added value can be really significant, we need to
proceed with the following steps to reach to this goal:

1. Right-click on CH02_02_HIVE_CREATE_TWEET_TABLE and duplicate
it into a new CH02_03_HIVE_FORMAT_DATA Job under the Chapter2 folder.

2. Modify the third tHiveRow component and change the dropped table name
using the following command:
DROP TABLE IF EXISTS formatted_tweets

Formatting Data

[36]

3. Modify the request in the last tHiveRow component to change the table name,
add a new username column, and change the data location folder using the
following command:

CREATE EXTERNAL TABLE formatted_tweets (day_of_week string, mont
string, day_of_month string, time string, zone string, year
string, username string, content string) ROW FORMAT DELIMITED
FIELDS TERMINATED BY ';' LOCATION '/user/"+context.username+"/
packt/chp02/formatedTweets"

So far, we only have the part that creates a formatted_tweets table over HDFS,
but we need to use the Talend Hive ELT features to feed the formatted tweets HDFS
folder. This is done by performing the following steps:

1. From the palette, drag-and-drop a tHiveELTInput component, a
tHiveELTMap component, and a tHiveELTOutput component. ELT
components, as compared to ETL components, execute the transformation /
mapping code on the related technology server, whereas ETL components
execute the processing code on Talend server. This means that, here, the
Hive-generated transformation code will be executed on our Hadoop server.

2. In the tHiveELTInput component, we need to specify the source table name,
which is tweets here, and specify the schema. To avoid creating each column
manually again in the edit schema section, go to the previous CH02_01
Job, click on Edit schema of the tHDFSOutput component, and copy all the
columns present in the schema by selecting all the columns and using the
Copy button next to the down arrow:

The Hive tweet table's description

Chapter 3

[37]

3. Go back to our new Job, click on the Edit schema button of the tELTInput
component, and paste the schema, as shown in the preceding screenshot.

4. Paste it also in the tELTOutput component and add a username column
before the last content column.

5. Link the tELTInput component to the tELTMap component.
6. Link the tELTMap component to the tELTOuput component; the new output

creation dialog will appear; name it like our new table formatted_tweets.
7. We need to map the source data to the target column; some are the same,

whereas others need to call a Hive user-defined function. Instead of mapping
them one by one, click on the Auto Map button in the top-right corner and
then modify the mapping for the following columns:

Target Source

username regexp_replace(split(tweets.content,'\\\\)')[0], '\\\\
(', '')

content substr(tweets.content, locate(')', tweets.content)+2)

The first expression contains a nested split expression, which first splits the content
where the first closing bracket occurs and gets the first element in the return array.

If we apply this to the previous example, we would get the following result :
(Nats25

Then second part of the expression uses the regexp_replace function to delete
the opening brackets. If we take the result of the first part, then we should get
the username without any brackets, which is, Nats25.

The second expression is just a substr expression, which extracts the tweet
content from the first closing bracket to the end of the tweet content.

You should have two parts in the Job, the first is the table initialization and the
second is the table data feed. To link both of them, click on the last tHiveRow
component and choose Trigger/OnSubjob Ok and link it to the tELTHiveMap
component. Thus, the second part of the Job will be triggered when the first
is finished.

Formatting Data

[38]

The Hive tweet formatting Job

Run the Job and check in Hive if the table has been created and fed by issuing the
following command in the Hive command-line tool:

$ select * from formatted_tweets

You should see that now, the username and the content are separated.

Summary
In this chapter, we have learned that TOSBD can help to graphically design the
Hive data integration process and even go further by providing a graphical mapping
tool to ease the transformation required in Twitter Sentiment Analysis. In the next
chapter, we'll go a little bit deeper in using Hive, by introducing the concept of
custom user-defined functions, and also a lateral view, to extract top values from
our formatted data.

Processing Tweets with
Apache Hive

In this chapter, we'll learn how to use tweets to highlight sentiments by performing
the following actions:

• Extracting hashtags and emoticons from tweets
• Joining the newly created hashtags and emoticon tables to create sentiments

Extracting hashtags
In this part and the following one, we'll see how to extract data efficiently from
tweets such as hashtags and emoticons. We need to do it because we want to be able
to know what the most discussed topics are, and also get the mood across the tweets.
And then, we'll want to join that information to get people's sentiments.

We'll start with hashtags; to do so, we need to do the following:

1. Create a new hashtag table.
2. Use a function that will extract the hashtags from the tweet string.
3. Feed the hashtag table with the result of the extracted function.

So, I have some bad news and good news:

• Bad news: Hive provides a lot of built-in user-defined functions, but
unfortunately, it does not provide any function based on a regex pattern;
we need to use a custom user-defined function to do that. This is such a
bad news as you will learn how to do it.

www.allitebooks.com

http://www.allitebooks.org

Processing Tweets with Apache Hive

[40]

• Good news: Hive provides an extremely efficient way to create a Hive table
from an array. We'll then use the lateral view and the Explode Hive UDF
to do that.

The following is the Hive-processing workflow that we are going to apply to
our tweets:

Hive-processing workflow

The preceding diagram describes the workflow to be followed to extract the
hashtags. The steps are basically as follows:

1. Receive the tweets.
2. Detect all the hashtags using the custom Hive user-defined function.
3. Obtain an array of hashtags.
4. Explode it and obtain a lateral view to feed our hashtags table.

This kind of processing is really useful if we want to have a feeling of what the
top tweeted topics are, and is most of the time represented by a word cloud chart
like the one shown in the following diagram:

Topic word cloud sample

Chapter 4

[41]

Let's do this by creating a new CH04_01_HIVE_PROCESSING_HASH_TAGS job under
a new Chapter4 folder. This job will contain six components:

• One to connect to Hive; you can easily copy and paste the connection
component from the CH03_03_HIVE_FORMAT_DATA job

• One tHiveRow to add the custom Hive UDF to the Hive runtime classpath

The following would be the steps to create a new job:

1. First, we will add the following context variable to our PacktContext group:

Name Value
custom_udf_jar PATH_TO_THE_JAR

For example: /Users/bahaaldine/here/is/
the/jar/extractHashTags.jar

This new context variable is just the path to the Hive UDF JAR file provided
in the source file

2. Now, we can add the "add jar "+context.custom_udf_jar Hive query
in our tHiveRow component to load the JAR file in the classpath when the
job is being run.

3. We use the add jar query so that Hive will load all the classes in the JAR
file when the job starts, as shown in the following screenshot:

Adding a Custom UDF JAR to Hive classpath.

Processing Tweets with Apache Hive

[42]

4. After the JAR file is loaded by the previous component, we need tHiveRow
to register the custom UDF into the available UDF catalog. The custom UDF
is a Java class with a bunch of methods that can be invoked from Hive-QL
code. The custom UDF that we need is located in the org.talend.demo
package of the JAR file and is named ExtractPattern. So we will simply
add the "create temporary function extract_patterns as 'org.
talend.demo.ExtractPattern'" configuration to the component.
We use the create temporary function query to create a new
extract_patterns function in Hive UDF catalog and give the
implementation class contained in our package

5. We need one tHiveRow to drop the hashtags table if it exists. As we have
done in the CH03_02_HIVE_CREATE_TWEET_TABLE job, just add the "DROP
TABLE IF EXISTS hash_tags" drop statement to be sure that the table is
removed when we relaunch the job.

6. We need one tHiveRow to create the hashtags table. We are going to create
a new table to store the hashtags. For the purpose of simplicity, we'll only
store the minimum time and description information as shown in the
following table:

Name Value

hash_tags_id String

day_of_week String

day_of_month String

time String

month String

hash_tags_label String

7. The essential information here is the hash_tags_label column,
which contains the hashtag name. With this knowledge, the following
is our create table query:
CREATE EXTERNAL TABLE hash_tags (
hash_tags_id string,
day_of_week string,
day_of_month string,
time string,
month string,

Chapter 4

[43]

hash_tags_label string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ';' LOCATION
 '/user/"+context.hive_user+"/packt/chp04/hashtags'

Nothing new here, just a new table as we have created in the
previous chapter.

8. Finally we need a tHiveRow component to feed the hashtags table.
Here, we are going to use all the assets provided by the previous
components as shown in the following query:

insert into table hash_tags
select
concat(formatted_tweets.day_of_week, formatted_tweets.
day_of_month,
formatted_tweets.time, formatted_tweets.month) as hash_id,
formatted_tweets.day_of_week, formatted_tweets.day_of_month,
formatted_tweets.time,
formatted_tweets.month,
hash_tags_label
from formatted_tweets
LATERAL VIEW explode(
 extract_patterns(formatted_tweets.content,'#(\\\\w+)'))
hashTable as hash_tags_label

Let's analyze the query from the end to the beginning. The last part of the query
uses the extract_patterns function to parse in the formatted_tweets.content
all hashtags based on the regex #(+).

In Talend, all strings are Java string objects. That's why we need here to
escape all backslash. Hive also needs special character escape, that brings
us to finally having four backslashes.

The extract_patterns command returns an array that we inject in the exploded
Hive UDF in order to obtain a list of objects. We then pass them to the lateral view
statement, which creates a new on-the-fly view called hashTable with one column
hash_tags_label. Take a breath. We are almost done.

If we go one level up, we will see that we selected all the required columns for our
new hash_tags table, do a concatenation of data to build hash_id, and dynamically
select a runtime-built column called hash_tags_label provided by the lateral view.

Finally, all the selected data is inserted in the hash_tags table.

Processing Tweets with Apache Hive

[44]

We just need to run the job, and then, using the following query, we will check in
Hive if the new table contains our hashtags:

 $ select * from hash_tags

The following diagram shows the complete hashtags-extracting job structure:

Hive processing job

Extracting emoticons
I think you have guessed that it is exactly the same job for emoticons. Instead of
running into details for each step, like we did for the hashtags, it will be a good
exercise for you to duplicate the hashtags job and adapt it for the emoticons,
keeping in mind the following requirements:

• Create a new CH04_01_HIVE_PROCESSING_EMOTICONS job
• The emoticons table named emoticons has the following structure:

Name Value

emoticons_id String

day_of_week String

day_of_month String

time String

month String

emoticons_label String

• The following is a regex pattern I've built for emoticons:
((?:\\;|:|=|8|\\\\^|X|:\\'|<|>)(?:-|O|c|\\\\.|_|\\\\^)?(?
:D|P|<|>|\\\\)\\\\)|\\\\(\\\\(|\\\\|\\\\||\\;|=|X|O|*
|S|\\\\||\\\\{|\\\\}|\\\\[|\\\\]|\\\\(|\\\\)))

Chapter 4

[45]

One word crosses my mind when I read fat. In case you want to learn more
about regular expressions, I recommend that you read a documentation
from Mozilla at https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Regular_Expressions, which gives a detailed
description of all regular expressions. Also, if you want to test your regex,
then I recommend an online Ruby tool, which is really convenient and
efficient for debugging, and can be found at http://rubular.com/.

• The following is a screenshot of what the tHiveRow configuration and
whole query looks like:

Emoticons extracting query

• Following is the request for your convenience:

insert into table emoticons

select concat(tweets.day_of_week, tweets.day_of_month, tweets.
time, tweets.mont)
as emoticons_id, tweets.day_of_week, tweets.day_of_month,
substr(tweets.time,1,2), tweets.mont, emoticons_label
from tweets LATERAL VIEW explode(extract_pattern(tweets.con
tent,'((?:\\;|:|=|8|\\\\^|X|:\\'|<|>)(?:-|O|c|\\\\.|_|\\\\^)
?(?:D|P|<|>|\\\\)\\\\)|\\\\(\\\\(|\\\\|\\\\||\\;|=|X|O|*
|S|\\\\||\\\\{|\\\\}|\\\\[|\\\\]|\\\\(|\\\\)))'))
emoticonTable as emoticons_label

As I said, you will obtain exactly the same job structure as shown in
the following diagram:

An emoticons-extracting job

Processing Tweets with Apache Hive

[46]

At the end, you should obtain, as you did for the hashtags, an emoticons
table with all emoticons in it. Run the following query to check it in Hive:

$ select * from emoticons

Joining the dots
This part is pretty straightforward because we only need to join our two hashtags
and emoticons table to create the sentiment table, so we need the following
components:

• A tHiveConnection component to connect to Hive; nothing new here,
just copy and paste one of the previous connection components

• A tHiveRow component to drop the sentiment table if it exists; just add
the following drop statement to remove the sentiment table each time
you run the job:
DROP TABLE IF EXISTS sentiments

• The following screenshot shows tHiveRow with the drop statement:

tHiveRow Sentiment drop component

• A tHiveRow component to create the sentiment table:
CREATE EXTERNAL TABLE sentiments (
hash_tags_label string,
time string,

Chapter 4

[47]

emoticons_label string)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ';'
LOCATION '/user/"+context.hive_user+"/packt/chp04/ /sentiments'

• A tHiveRow component to feed the sentiment table by joining the hashtags
and emoticons tables:
insert into table sentiments
select hash_tags.hash_tags_label,
hash_tags.time,
emoticons.emoticons_label
from hash_tags INNER JOIN emoticons
ON hash_tags.hash_tags_id == emoticons.emoticons_id

This is still very simple; using the INNER JOIN statement, one subrequest will
join the hashtags and emoticons tables and then select the hash_tags_label
and the emoticons_label component, and one master request is used to
insert the selected data in our new table.

Configuring the Hive join request to build sentiments

• The sentiment table job should have a structure as shown in the
following diagram:

Sentiments table job builder

Processing Tweets with Apache Hive

[48]

So simple and so fast! This is one of the benefits of developing with Talend,
reusing assets. Most of the time, your job will use the same connection, the same
data structure, the same context variables, and so on, so you then have several
ways to reuse assets, and they are as follows:

• Define your connection and data structure in the repository and reuse
them among your jobs

• Define the project and job templates and kick off a new development
from that

• Duplicate existing jobs and modify them to fit the new needs

Most of the reusing features are only available in the enterprise version of the product,
especially when it comes to the repository, which is just present in its lightest version
in the product community versions. Basically, duplicating jobs and copying and
pasting components are your only options in the community versions.

By now, you should have verified in Apache Hive that the sentiment table has been
created correctly with a list of hashtags and the related emoticons.

You just need to run the following query to visualize the rows in the sentiment table:

$ select * from sentiments

Summary
By now, you should have a good overview of how to use Apache Hive features
with Talend, from the ELT mode to the lateral view, passing by the custom Hive
user-defined function. From the point of view of a use case, we have now reached
the step where we need to reveal some added-value data from our Hive-based
processing data. We will use other components in the next chapter, and we'll dive
a bit into Apache Pig to reveal the top data.

Aggregate Data with
Apache Pig

In this chapter, we'll learn how to highlight the top records including the following
ones using Pig:

• The top Twitter users
• The top hashtags
• The top emoticons
• The top sentiments

Knowing about Pig
Like Apache Hive, Apache Pig is an abstraction layer in HDFS. It enables
developers to process data stored in HDFS with a language called Pig Latin,
which is completely different from HiveQL, but is an easy-to-use, optimized,
and extensible programming language.

You will see that in Talend, the integration with Pig is better than for Hive,
where, except for the tHiveELT component, we often have to write the HiveQL
language. Talend ships out of the box Pig components that implement 90 percent
of Pig's use cases.

For more information on Pig, I recommend that you go to
http://pig.apache.org/.

www.allitebooks.com

http://www.allitebooks.org

Aggregate Data with Apache Pig

[50]

So basically, what we want to do here is highlight the top data. The processing
workflow would be as follows:

• Loading the data from HDFS
• Applying some filters on the loaded data

A Talend Pig filtering component is shown in the following screenshot:

The Talend Pig filtering component

• Using grouping functions such as count to count the number of
occurrences, or max to get the maximum among records, as shown
in the following screenshot:

Pig grouping functions

Chapter 5

[51]

• Sorting data in the descending mode, as shown in the following screenshot:

Talend Pig sorting component

• Storing processed data in HDFS

We'll start by extracting the top Twitter users, then hashtags, emoticons, and finally
the sentiments we have built.

Extracting the top Twitter users
As you may have understood, all jobs will have the same structure; I will describe
in great detail this job and then give a big picture for the other parts.

At the end, your job should look as follows:

The top Twitter Pig job

Aggregate Data with Apache Pig

[52]

The basic steps will be to load the data, filter columns, use aggregate functions,
sort data, and store the resulting data.

To create the CH05_01_PIG_TOP_TWITTERS job under a new chapter5 directory,
we will need the following components:

• A tPigLoad component to load the data from HDFS.
Actually, this component can load data from another type of storage;
you can even extend your own loader or storer by implementing a Pig
UDF given in the following screenshot:

Pig UDF

We need the following context variables to use this component:

Name Value

resourceManagerHost CLOUDERA_HOST
for example, 172.16.253.202

resourceManagerPort 8032

These two variables are required to connect to the global resource manager,
which is part of the new Hadoop cluster architecture that comes with YARN.
Now, add the following configurations to the component:

Chapter 5

[53]

Property Value

Distribution Cloudera

Version Cloudera 4.3+

Namenode URI "hdfs://+context.
hdfsHost+:context.hdfsPort"

Resource Manager context.
resourceManagerHost+":"+context.
resourceManagerPort

Input File URI "/user/"+context.username+"/
packt/chp02/formatedData"

Field separator ";"

The component points to the file that contains all the formatted data
obtained with the CH03_03_HIVE_FORMAT_DATA job.

• A tPigFilterColumns component to filter the username and time columns
in order to get the top Twitter users across the time. You need to click on
the Edit schema button and only retain the username and time columns.
Don't forget that we are designing a Pig job, and that the goal is to generate
the Pig code in our Talend Studio. Thus, it's not possible to use a usual
Talend component such as tFilterColumns that does the same job as
that of the tPigFilterColumns component, but doesn't generate Pig code.

Filter columns

Aggregate Data with Apache Pig

[54]

• A tPigAggregate component (tPigAggregate_1) to count the number of
occurrences by username. We will group by username and time, and add
the count operation on the username column to obtain the username_count
column, as shown in the following screenshot:

Count usernames by time

• A tPigAggregate component to get the username that appeared the
most number of times. We will still group by username and time,
and add the max operation on the username_count column, as shown
in the following screenshot:

The top username by time

Chapter 5

[55]

• A tPigSort component to get the list of usernames in the descending order.
Here, we will just add the created username_count column ordered in the
descending mode, as shown in the following screenshot:

Descending ordering

• A tPigStoreResult component to store the processed results.
Finally, we'll just set the Result Folder URI field in the component,
as shown in the following screenshot:

The tPigStoreResult component's settings

Run the job and check in HDFS by issuing the following command to be sure that
we have the list of top Twitter users sorted by time:

$ hadoopfs –cat /user/bahaaldine/packt/chp05/twitters

Finally, replace your username.

Aggregate Data with Apache Pig

[56]

Extracting the top hashtags, emoticons,
and sentiments
Now that you have understood the pattern used to design the job, you can duplicate
it and reproduce the flow to highlight the hashtags, emoticons, and sentiments.

The following are the broad outlines for the hashtags', emoticons', and sentiments'
Pig-processing jobs:

• We don't need the max grouping function as it will filter some records, and we
want to keep all the records. The job structure of the top values is as follows:

Top values' job structure

• The source columns to filter hashtags are hash_tags_label and time, and the
ones to filter emoticons are emoticon_label and time. The source columns to
filter hashtags are shown in the following screenshot:

The hashtag job's filtered columns

• The top sentiment job doesn't need to filter columns, as we only have the
hash_tag_label, emoticon_label, and time columns, as shown in the
following diagram:

Sentiment job structure

Chapter 5

[57]

• For hashtags, store the data in "/user/"+context.username+"/packt/
chp05/hashtags".

• For emoticons, store the data in "/user/"+context.username+"/packt/
chp05/emoticons".

• For sentiments, store the data in "/user/"+context.username+"/packt/
chp05/sentiments".

At the end, you should have four jobs, one for the top Twitter users, one for the top
hashtags, one for the top emoticons, and one for the top sentiments, as shown in the
following screenshot:

A repository of top extracting jobs

From the point of view of the Twitter sentiment use case, as we have these top
values, we can draw chart-like timelines, such as the Twitters timeline shown in
the following diagram, which reveals the most active users for each hour:

Top Twitters Timeline

Aggregate Data with Apache Pig

[58]

Summary
After Hive, we have seen in this chapter how to process data using Talend Pig
components, and how filtering, grouping, and sorting can be achieved with
some clicks.

Now that our data is aggregated and ready to be used, we'll see in the next
chapter how to export it to a traditional SQL RDBMS.

Back to the SQL Database
In this chapter, we'll learn how to work with the Talend Sqoop component in order
to export data from HDFS to a SQL database.

Linking HDFS and RDBMS with Sqoop
Apache Sqoop is a project that enables developers to transfer data between their
Hadoop cluster and relational database. Talend provides components to implement
a data process based on Sqoop transfer, as shown in the following screenshot:

Sqoop components

Basically, what we want to do here is enable business analysts to use their preferred
RDBMS-coupled tool to access our processed gold mine's data and build some
added-value reports. Thus, we will mainly use the tSqoopExport component to
export our top Twitter users, emoticons, hashtags, and sentiments to, for example,
a MySQL database.

www.allitebooks.com

http://www.allitebooks.org

Back to the SQL Database

[60]

Exporting and importing data to a MySQL
database
As you can imagine, exporting data using Sqoop will be pretty easy with Talend,
so easy that it will require only the following components:

• A tLibraryLoad component to load our database library JAR file. Some
components in Talend Palette are dedicated to a specific database, so when
you use them in a job, all the required drivers are loaded without the need
of thinking about it. For example, if I want to read a table in MySQL, I'll use
the tMySQLInput component, which loads the MySQL JAR driver.
Here, with Sqoop, as it's a generic component, we don't know in advance
what kind of database we want to work with; that's why we have to
manually load the JAR file with the tLibraryLoad component.

• A tSqoopExport component to export the data. The library load only
requires to point on your database library JAR file, which can be chosen
in the tLibraryLoad component's drop-down list, as shown in the
following screenshot:

Database library

Chapter 6

[61]

Just search in the drop-down list to check whether the library is shipped in the
Studio, or click on the button next to the dropdown to manually add your JAR file.
Here, I'm using the mysql-connector-java-5.1.22-bin.jar library to connect
to MySQL.

Before configuring the tSqoopExport component, we will add to our existing context
group the following context variables, which will be used to connect our database:

Name Value

mysql_host MYSQL_HOST

for example, 172.16.253.203
mysql_port MYSQL_PORT

for example, 3396
mysql_user MYSQL_USER

mysql_password MYSQL_PASSWORD

mysql_twitters_table MYSQL_TWITTERS_TABLE

for example, top_twitters
mysql_hash_tags_table MYSQL_HASH_TAGS_TABLE

for example, top_hash_tags
mysql_emoticons_table MYSQL_EMOTICONS_TABLE

for example, top_emoticons
mysql_sentiments_table MYSQL_SENTIMENTS_TABLE

for example, top_sentimentss

Back to the SQL Database

[62]

Then, we just add the context group to our job, like we did in the previous hands-on
chapter, and we will set up the tSqoopExport component's properties as shown in
the following screenshot:

The Sqoop component's properties tab

Here is the table of properties from where you can copy and paste easily:

Name Value

Distribution Cloudera

Hadoop version Cloudera CDH4.X (MR 1 mode)

NameNode URI "hdfs://"+context.
hdfsPort+":"+context.hdfsPort

JobTracker Host context.JTHost+":"+context.
JTPort

Connection "jdbc:mysql://"+context.
mysql_host+":"+context.mysql_
port+"/"+context.mysql_database

Chapter 6

[63]

Name Value

Table Name context.mysql_twitters_table

Export Dir "/user/"+context.username+"/
packt/chp02/formatedData"

Username context.mysql_user

Password context.mysql_password

A word on the Export Dir variable: This variable defines the folder
from where the data will be exported. In our case, it will be all the
directories that we created in the previous hands-on chapter.

That's it. Your job should have the following structure:

A Sqoop processing job

Here, we have completed the job for exporting the top Twitter users, and this is
the same for the rest. You just need to change the Sqoop Export Dir property and
the Table Name property in each case. As you may have understood, the MySQL
table will have the exact same structure as that of the output of the Pig Jobs that
we created in the previous chapter; so typically, if I stick to the twitters example,
then the table creation script will be as follows:

CREATE TABLE `top_twitters` (
 `username` varchar(50) NOT NULL,
 `time` varchar(2) NOT NULL,
 `username_count` int(11) NOT NULL) ENGINE=InnoDB DEFAULT
CHARSET=latin1;

Back to the SQL Database

[64]

In the provided source files, you will find a SQL script to create all the tables.

Importing data is also really easy to implement; keep the same job structure and
replace the tSqoopExport component with a tSqoopImport component, then set
the component's properties. The following screenshot shows the tSqoopImport
component's properties tab, which is almost the same that you have set for the
tSqoopExport component:

The tSoopImport component's properties

Summary
Sqoop should satisfy those for whom SQL databases are essential for analysis.
So far, you should be able to use the Talend Sqoop component and use your
favorite RDBMS database to leverage all the processing you have done on your
Hadoop cluster. In the next chapter, we'll go through the description of two common
Big Data deployment patterns, the streaming pattern and the partitioning pattern.

Big Data Architecture and
Integration Patterns

In this chapter, we'll see two examples of deployment based on Twitter Sentiment
analysis:

• The streaming pattern
• The partitioning pattern

The streaming pattern
In a Big Data project, you have two common ways to write your data in the cluster:

• Bulk mode: In this mode, big files are punctually written and processed in
the cluster. These are generally handled by background schedule jobs, for
example a nightly scheduled job. We have seen how to design such a job
in Chapter 2, Building Our First Big Data Job.

• Streaming mode: In this mode, the Hadoop cluster is coupled with a
real-time technology layer such as Apache Flume or an Enterprise Service
Bus (ESB) so that the files are polled and automatically written in real time
as they are created. Depending on polling rules, you can configure the file,
such as the file size.

Here, we'll discuss how we can set up the streaming mode, and fortunately,
Talend has an ESB in the stack, so we can stick to Talend to illustrate this pattern.
We won't dive into ESB service implementation but just see how we can combine
the two worlds and give our Twitter Sentiment Analysis a bit of real-time dynamics.

Big Data Architecture and Integration Patterns

[66]

So, Talend ESB is based on Apache projects such as Apache Camel for the routing
part. An ESB is mainly used for the following purposes:

• It eases integration between IT system applications
• Service enablement such as web services
• It acts as a single point of service accesses monitoring in the system

Here, we are using Talend ESB integration and service-enablement capabilities to
stream tweets from Twitter using the Camel Twitter component, and then writing
the data in a file that is then pushed in HDFS.

Talend ESB is then used to create a Twitter-to-HDFS service using the two worlds:
Camel and HDFS data-integration components. The following diagram gives an
overview of the data-flow process:

The data-flow process of the Streaming mode

As files are pushed in HDFS, all contained tweets continuously integrate the
processing chain we have implemented so far. The data will then stay updated.

Talend ESB consists of two services:

• The following are the components of the Twitter streaming service:

Streaming service

Chapter 7

[67]

 ° The first TwitterConfig component imports all the required libraries
to use the Camel Twitter component.

 ° The Twitter Stream component is the one that connects to Twitter
and streams the tweets as they are sent by the user.

 ° The Add Carriage Return component adds a carriage return at the
end of each tweet; otherwise, the tweets would be stored on the
same line and that's not what we want here, to be able to process
them line-by-line.

 ° The Tweets Hourly File component creates an hour-specific file.
This means that if it's 10:00 am, then the tweets will be written in
a tweets-10.log file

• The HDFS file writer service just polls a file every hour and pushes the
file in HDFS using the cTalendJob component, which basically enables
Talend ESB to call Talend Big Data components, such as the tHDFSOutput
component as follows:

HDFS writer service

 ° The first Tweets File component polls the file created every hour.
 ° The Build previous file name component formats the filename.
 ° The Filter Current Hour File component filters the current hour

file because the trick here is that every time an hour is reached,
another file is created to receive the tweet of the current hour.
So what we don't want here is to send the current hour file to
HDFS but the previous hour file for which the streaming is finished.

 ° The File Sent component logs the fact that the file was sent.
 ° The Remove File If Exists component deletes the file from HDFS

if it exists.

The content of the HDFS component is shown in the following diagram:

HDFS writer job

Big Data Architecture and Integration Patterns

[68]

As you can see, you can jump from the ESB world to the data-processing world just
through one component. It basically iterates through the tweets file with the Iterate
over the tweets component, parses all the columns that were described in Chapter 3,
Formatting Data, and contained in a tweet with the parse tweets component. Then,
we make some transformation with the transform and format the tweet component
to clean the data before using the write in hdfs component to write the file in HDFS.

By doing so, you get the streaming pattern using Talend ESB with the two services
described previously and Talend Big Data with the subjobs that are using the Big
Data components.

The partitioning pattern
If you have applied the streaming pattern to your project, your data is split into
multiple files, which is periodically written in HDFS. This period can vary from
seconds, minutes, hour, days, and so on. It depends on the data throughput that
you want to capture.

But at the end, your file can be categorized depending on the time it appeared,
for example, per hour, in the aim of accessing a precise period of time.

This data boxing is called partitioning, and if you are familiar with databases,
you know that this concept is not new and lets the user submit an accurate
query that contains a partitioning parameter.

The steps to implement this pattern in a Hadoop cluster are as follows:

1. Setting up HDFS to store the data in an Hour-specific folder.
2. Setting up Hive to make it aware that the data is stored in the partition.

Chapter 7

[69]

For the HDFS part, the following is a screenshot of what we want to obtain:

HDFS partitioning

You may have understood that we want a folder structure, which reflects that we
are writing files every hour. Doing so with Talend is pretty easy; we just need to
add to our HDFS writer job a loop logic to create a folder for each hour. This job,
as explained in the previous chapter, is only called whenever you need to initialize
your HDFS structure, basically before running any other jobs, as shown in the
following diagram:

HDFS partitioning job

Big Data Architecture and Integration Patterns

[70]

The first tHDFSDelete component deletes all the folders specified in the component's
properties to initialize the HDFS store, the second is a tLoop component that iterates
24 times, the third tFixedFlow component is used to access a Talend global map,
which contains the process variables to create a folder dynamically depending on
the current iteration value as shown in the following code:

"/user/"+context.hdfs_user+"/data/" +
 (((Integer)globalMap.get("tLoop_1_CURRENT_VALUE"))-1<10?"0":"")
 +(((Integer)globalMap.get("tLoop_1_CURRENT_VALUE"))-1) +"/.init"

We add 0 when the hour is between 1 and 10 to get a consistent
folder structure.

The last tHDFSOutput creates the folder with the previously generated path.

That's it for HDFS. Now, we just have to configure our Hive table to make it aware
that the filesystem is partitioned. To do so, we'll add a branch to our Hive table
creation job (CH03_02_HIVE_CREATE_TWEET_TABLE), to create a partition for each
hour as shown in the following diagram:

A Hive-partitioning job (CH03_02_HIVE_CREATE_TWEET_TABLE)

Chapter 7

[71]

As you have already guessed, we are again using the tLoop component to iterate
24 times and call the following tHive component, which creates the partitions.

The partition component consists of calling the ADD PARTITION Hive statement
to create a partition for each hour:

ALTER TABLE tweets
 ADD PARTITION (hours = '" +
 (((Integer)globalMap.get("tLoop_1_CURRENT_ITERATION"))-
 1<10?"0":"")
 +(((Integer)globalMap.get("tLoop_1_CURRENT_ITERATION"))-1) + "')
 location '/user/"+context.hive_user+"/data/" +
 (((Integer)globalMap.get("tLoop_1_CURRENT_ITERATION"))-
 1<10?"0":"")
 +(((Integer)globalMap.get("tLoop_1_CURRENT_ITERATION"))-1) + "'"

The logic is the same for HDFS; you can now add an hour parameter to your query
to get results depending on the time and optimize the query-execution time.

Summary
The integration pattern for Big Data helps architects get a base guidance to efficiently
deploy a Big Data project in an IT system. There are plenty of possibilities in terms
of deployment patterns, but keep in mind that Big Data must not be reduced as a
simple data-processing system. It's a highly scalable distributed data-processing
system, which needs to be used in a predefined business data-processing workflow.

Installing Your Hadoop
Cluster with Cloudera

CDH VM
In this appendix, we will describe the main steps to set up a Hadoop cluster based
on Cloudera CDH 4.3. We will cover the following topics:

• Where and which packages to download
• How to launch every service
• The configuration required

Downloading Cloudera CDH VM
Cloudera CDH 4.3 VM is a ready-to-use Hadoop environment, which includes
the most used Hadoop ecosystem projects out of the box.

Installing Your Hadoop Cluster with Cloudera CDH VM

[74]

If you want to quickly start a project with TOS Big Data, going through this
appendix is highly recommended. The following is the structure of Cloudera
CDH VM:

Cloudera CDH structure

CDH includes all assets needed to store, integrate, and manage your Hadoop
cluster. To download the VM, just go to the https://www.cloudera.com/content/
support/en/downloads.html page and click on Download and Install. There will
be several download links on the page; just scroll and choose the one shown in the
following screenshot:

Cloudera CDH download section

Appendix

[75]

Launching the VM for the first time
Once downloaded, extract the cloudera-quickstart-vm-X.X.X-vmware archive
file and launch the virtual machine in VMware. If you need a free version of
VMware, then your best option is the VMware player, which can be downloaded
from the https://my.vmware.com/web/vmware/free#desktop_end_user_
computing/vmware_player/6_0 link.

If you need to refer to the documentation to set up the VM, then check the link
http://www.cloudera.com/content/cloudera-content/cloudera-docs/
DemoVMs/Cloudera-QuickStart-VM/cloudera_quickstart_vm.html.

When the VM has booted up, you should be able to access the Cloudera Manager
console in the VM browser http://localhost:7180/cmf. A couple of minutes
is required before CDH has finished launching all the services; just refresh the
page periodically until you get the following login page:

The Cloudera Manager login screen

The default username and password are both cloudera. Click on the Service
tab and be sure that the following list of services is started before continuing
with this appendix:

• hdfs1

• hive1

• mapreduce1

• zookeeper1

Installing Your Hadoop Cluster with Cloudera CDH VM

[76]

These services are required to be able to write in HDFS and play with Apache Hive
as well as Apache Pig.

If any of the previously stated services are down, please read the
documentation at https://www.cloudera.com/content/support/
en/documentation/manager/cloudera-manager-v4-latest.
html and fix the issue before continuing.

Basic required configuration
The hands-on technique requires us to create a new HDFS directory under which
we will store all the data. We first need to change some permission property set
in HDFS to do so. In the Cloudera Manager console, as shown in the following
screenshot, click on the hdfs1 service and then click on Configuration:

hdfs1 service configuration

In the search field, as shown in the following screenshot, type dfs.persmission
and uncheck the checkbox next to the Check HDFS Permissions property:

Appendix

[77]

HDFS permission

This configuration should not be considered for production mode,
and it's only done here to ease the usage of VM through a hands-on
approach. Here is a post from a Cloudera blog that explains how to
deploy a highly available Hadoop production architecture, which
can be found at http://blog.cloudera.com/blog/2009/07/
hadoop-ha-configuration/.

We need to connect via SSH to create our user directory, so open a command line
or ssh tool and run the following command:

ssh cloudera@CLOUDERA_VM_HOST

password: cloudera

As you understood, the default Cloudera QuickStart VM SSH username and
password is cloudera/cloudera.

Now that we are connected to the VM, we can create your user directory where
we will store the data, in my case, the command line would be as follows:

hadoop fs –mkdir /user/bahaaldine

Installing Your Hadoop Cluster with Cloudera CDH VM

[78]

A last configuration is required for network purpose; you need to make the VM
listen to other external IPs if you want to run Talend Studio outside Cloudera VM.
In the hdfs1 configuration, click on the Ports and Addresses icon and be sure that
the first two properties are checked.

HDFS network configuration

That's it, you can now run TOS Big Data on your host machine and point to your
Cloudera VM.

Summary
This appendix should have helped you to set up your Hadoop environment and
be able to start implementing the different hands-on techniques that compose
this book.

Index
A
Apache ActiveMQ 6
Apache Camel 6
Apache CXF 6
Apache Hive

tweets, formatting with 35-37
Apache Hive tables

setting 31-35
Apache Karaf 6
Apache Pig

about 49
processing workflow 50, 51

Apache Sqoop
about 59
used, for exporting data to MySQL

database 60-63
used, for importing data to MySQL

database 60- 63
used, for linking HDFS and RDBMS 59

B
Big Data

Talend Open Studio, downloading for 9

C
cat command 25
Cloudera CDH 4.3 VM 73
Cloudera CDH VM

basic required configuration 76-78
downloading 74
launching 75
structure 74

clustering, Big Data project
bulk mode 65
streaming mode 65

D
data

exporting, to MySQL database using Scoop
60

importing, to MySQL database using Scoop
60

dots
joining, for sentimental table creation 46-48

E
emoticons

extracting, from tweets 44-46
empty.init file 25
Enterprise Service Bus (ESB) 65
ESB

need for 66
extract_patterns command 43

F
Flume 8

H
Hadoop ecosystem 7, 8
Hadooper's group

URL 7
hadoopfs command 25
hashtags

extracting, from tweets 39-43

[80]

HDFS
about 8
linking, to RDBMS using Sqoop 59
result, checking 25
tweets, writing in 28-30

HDFS writer job
writing 16-24

HIVE 8
Hive User Defined Function (UDF) 31

I
installation, TOSBD 9

L
ls command 25

M
MapReduce 8
mkdir command 25

P
partitioning pattern

about 68
implementing 68-71

Pig 8

R
Ruby tool 45

S
Sqoop 8
streaming pattern 65

T
tail command 25
Talend 5
Talend Big Data

prerequisites, for running examples 8
Talend Business Process Management 7
Talend Data Integration 6
Talend Data quality 6
Talend ESB

services 66, 67
Talend Master Data Management 7
Talend Open Studio

about 7
downloading, for Big Data 9

Talend Open Studio for Big Data. See
TOSBD

Talend Pig components 50
Talend Unified Platform 6
tELTInput component 37
tELTMap component 37
tFileInputPositional component 29, 30
tFixedFlow component 70
tHDFSDelete component 70
tHDFSOutput component 22, 30, 36
tHiveConnection component 32, 46
tHiveELTInput component 36
tHiveRow component 34, 35, 46
tLibraryLoad component 60
tLoop component 70
top emoticons

extracting 56
top hashtags

extracting 56
top sentiments

extracting 56
top Twitter Pig job

data, filtering with tPigFilterColumns
component 53

data, loading with tPigLoad component 52
tPigAggregate component, using 54
tPigSort component, using 55
tPigStoreResult component, using 55

top Twitter users
extracting 51

top values job structure
emoticons, extracting 56
hashtags, extracting 56
sentiments, extracting 57

TOSBD
about 7, 14, 15
installing 9
running, for first time 10, 11

tPigAggregate component
using 54

tPigFilterColumns component
using 53

[81]

tPigLoad component
using 52

tPigSort component
using 55

tPigStoreResult component
using 55

tSqoopExport component
about 60
setting up 62

tSqoopImport component 64
properties tab 64

tweets
emoticons, extracting from 44-46
formatting, with Apache Hive 35, 37
hashtags, extracting from 39-43
writing, in HDFS 28-30

Twitter 27
Twitter Sentiment Analysis 27
Twitter-to-HDFS service 66

Thank you for buying
Talend for Big Data

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Talend Open Studio Cookbook
ISBN: 978-1-78216-726-6 Paperback: 270 pages

Over 100 recipes to help you master Talend Open
Studio and become a more effective data integration
developer

1. A collection of exercises covering all
development aspects including schemas,
mapping using tMap, database and working
with files

2. Get your code ready for the production
environment by including the use of contexts
and scheduling of jobs in Talend

3. Includes exercises for debugging and testing
of code

Getting Started with Talend Open
Studio for Data Integration
ISBN: 978-1-84951-472-9 Paperback: 320 pages

Develop system integrations with speed and quality
using Talend Open Studio for Data Integration

1. Develop complex integration jobs without
writing code

2. Go beyond "extract, transform and load" by
constructing end-to-end integrations

3. Learn how to package your jobs for production
use

Please check www.PacktPub.com for information on our titles

Scaling Big Data with Hadoop
and Solr
ISBN: 978-1-78328-137-4 Paperback: 144 pages

Learn exciting new ways to build efficient, high
performance enterprise search repositories for Big
Data using Hadoop and Solr

1. Understand the different approaches of making
Solr work on Big Data as well as the benefits
and drawbacks

2. Learn from interesting, real-life use cases for
Big Data search along with sample code

3. Work with the Distributed Enterprise Search
without prior knowledge of Hadoop and Solr

Big Data Analytics with R and
Hadoop
ISBN: 978-1-78216-328-2 Paperback: 238 pages

Set up an integrated infrastructure of R and Hadoop
to turn your data analytics into Big Data analytics

1. Write Hadoop MapReduce within R

2. Learn data analytics with R and the Hadoop
platform

3. Handle HDFS data within R

4. Understand Hadoop streaming with R

5. Encode and enrich datasets into R

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with
Talend Big Data
	Talend Unified Platform presentation
	Knowing about Hadoop ecosystem
	Prerequisites for running examples
	Downloading Talend Open Studio for
Big Data
	Installing TOSBD
	Running TOSBD for the first time
	Summary

	Chapter 2: Building Our First Big
Data Job
	TOSBD – the development environment
	A simple HDFS writer job
	Checking the result in HDFS
	Summary

	Chapter 3: Formatting Data
	Twitter Sentiment Analysis
	Writing the tweets in HDFS
	Setting our Apache Hive tables
	Formatting tweets with Apache Hive
	Summary

	Chapter 4: Processing Tweets with Apache Hive
	Extracting hashtags
	Extracting emoticons
	Joining the dots
	Summary

	Chapter 5: Aggregate Data with
Apache Pig
	Knowing about Pig
	Extracting the top Twitter users
	Extracting the top hashtags, emoticons, and sentiments
	Summary

	Chapter 6: Back to the SQL Database
	Linking HDFS and RDBMS with Sqoop
	Exporting and importing data to a MySQL database
	Summary

	Chapter 7: Big Data Architecture and Integration patterns
	Streaming pattern
	The Partitioning pattern
	Summary

	Appendix: Installing Your Hadoop Cluster with Cloudera
CDH VM
	Downloading Cloudera CDH VM
	Launching the VM for the first time
	Basic required configuration
	Summary

	Index

