
SugarCRM

The
Definitive
Guide to

Companion
eBook

Available

spine = 0.625" 280 page count

The EXPERT’s VOIce® in Open Source

The Definitive Guide to
SugarCRM
Better Business Applications

John Mertic

A hands-on guide to the #1 open source
CRM platform

M
ertic

this print for content only—size & color not accurate

 C YAN
  MAGENTA

  YELLOW
  BLACK
  PANTONE 123 C

Books for professionals by professionals®

The Definitive Guide to SugarCRM:
Better Business Applications
Dear Reader,

SugarCRM is the world's leading commercial open source CRM software, serv-
ing more than 500,000 users all over the world. What most people don't realize
is how flexible SugarCRM is as a platform, enabling businesses of all sizes to
custom build the CRM application they need. In this book, you'll learn all about
SugarCRM from a developer's perspective.

This book brings to light the developer side of SugarCRM, an often rather
neglected topic. It provides something unique compared to all previous SugarCRM
books; the insight from being a part of very talented engineering team at SugarCRM
which has put endless efforts into making SugarCRM one of the premier open
source web applications today. This insight will give you a deeper understanding
how the internals of SugarCRM tick, and this book will be an authoritative resource
for developing new applications on top of the SugarCRM platform.

The Definitive Guide to SugarCRM comes in three parts. Part 1 focuses on
SugarCRM itself: the company, the community, the application, and the plat-
form. Here we’ll do a deep dive into everything the platform offers, from the
MVC and Metadata frameworks to Web Services, and many pieces in between.
Part 2 then takes this knowledge of the Sugar platform and builds upon it show-
ing you how to customize the Sugar application out of the box. Part 3 takes
that a step further, showing you how to build entirely new functionality on
top of SugarCRM, and closes up with building an entire application on top of
SugarCRM from start to finish.

With this book, you’ll gain a better understanding of SugarCRM, and in
doing so, you’ll be able to take SugarCRM and customize it to meet your organi-
zation's needs. I truly hope you enjoy it.

John Mertic
Software Engineer - SugarCRM

US $59.99

Shelve in
E-commerce

User level:
Intermediate

John Mertic

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN 978-1-4302-2439-6

9 781430 224396

55999

Re
lat

e
d

ti
tl

es

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

i

The Definitive Guide to
SugarCRM

Better Business Applications

■ ■ ■

John Mertic

www.allitebooks.com

http://www.allitebooks.org

ii

The Definitive Guide to SugarCRM: Better Business Applications

Copyright © 2009 by John Mertic

ISBN-13 (pbk): 978-1-4302-2439-6

ISBN-13 (electronic): 978-1-4302-2440-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewer: Matt Heitzenroder, Roger Smith, Collin Lee
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham, Tony

Campbell, Gary Cornell, Jonathan Gennick, Michelle Lowman, Matthew Moodie,
Jeffrey Pepper, Frank Pohlmann, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Copy Editor: Jim Markham
Coordinating Editor: Katie Stence
Compositor: MacPS, LLC
Artist: April Milne

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-
ny@springer-sbm.com, or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue,
Suite 600, Berkeley, CA 94705. Phone 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or
promotional use. eBook versions and licenses are also available for most titles. For more
information, reference our Special Bulk Sales–eBook Licensing web page at
http://www.apress.com/info/bulksales.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor
Apress shall have any liability to any person or entity with respect to any loss or damage
caused or alleged to be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

www.allitebooks.com

http://www.allitebooks.org

iii

www.allitebooks.com

http://www.allitebooks.org

iv

Contents at a Glance

■Contents at a Glance .. iv
■Contents ..v
■About the Author ..xi
■About the Technical Reviewers...xii
■Acknowledgments..xiii
■Introduction ... xiv
Part 1: The SugarCRM Platform ...1
■Chapter 1: What Is SugarCRM? ...3
■Chapter 1: MVC Architecture...11
■Chapter 1: Metadata Layer..35
■Chapter 1: Web Services ...55
■Chapter 1: More Platform Features...77
Part 2: Customizing SugarCRM Out of the Box..107
■Chapter 1: Easy Customizations Using Studio ..109
■Chapter 1: Workflows and Logic Hooks ..125
■Chapter 1: Overriding Existing Code ...151
Part 3: Building New Functionality on Top of SugarCRM169
■Chapter 1: Using Module Builder to Build Custom Modules..............................171
■Chapter 1: Building a Custom Module Manually ...195
■Chapter 1: Designing a Complete Application...219
■Index ...219

www.allitebooks.com

http://www.allitebooks.org

v

Contents

■Contents at a Glance .. iv
■Contents ..v
■About the Author ..xi
■About the Technical Reviewers...xii
■Acknowledgments..xiii
■Introduction.. xiv

Part 1: The SugarCRM Platform..1
■Chapter 1: What Is SugarCRM? ...3

The Company .. 3
Rapid Growth—Harnessing Open Source and SaaS..4

The Product... 4
The Community ... 7

Sugar Forums and Wiki..7

SugarExchange and SugarForge..7

Sugar Developer Zone..8

Getting SugarCRM..8

Summary... 9
■Chapter 2: MVC Architecture...11

What Is MVC?.. 11
MVC the Sugar Way .. 12

SugarApplication..13

SugarController ..15

SugarView..18

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

vi

Entrypoints.. 21
What About the Model?... 22

Bean Classes and SugarObjects ..22

Vardefs...24

Fields..24

Indexes...28

Relationships ...29

Database Layer ..31

Sugar Before MVC... 33
Summary... 33

■Chapter 3: Metadata Layer..35
DetailView and EditView .. 35
How the DetailView and EditView Classes Work.. 38

SugarFields ..40

ListViews..41

Defining Search Fields ...44

Field Overlays”...46

Subpanels ..48

Summary... 53
■Chapter 4: Web Services ...55

What Are Web Services?... 55
Connectors.. 56

Building the Connector Source ..56

Defining the Fields from the Web Service”... 60
Formatters ...61

Localization ..63

Pulling It Together..63

Web Services API .. 64
SOAP ..65

Make a Connection ..66

Get Lists and Counts of Records ..67

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

vii

Add a New Record ...68

Saving and Retrieving Attachments...70

Relate Records...71

REST...72

Logging in Using REST ...73

Custom Web Services ... 73
Create a Custom Registry ..74

Provide an Implementation Class...74

Add soap.php and rest.php Files..75

Summary... 75
■Chapter 5: More Platform Features...77

User Management... 77
ACL...79

Password Management ...81

Tracking User Actions ..82

Team Management ... 84
Dashlets ...85

ListView Dashlet..86

Chart Dashlets...89

Iframe Dashlets...92

Custom Dashlets ...93

Sugar Feeds ...94

Record Importing and Exporting ..98

Themes ..102

Logger ..104

Summary... 106
Part 2: Customizing SugarCRM Out of the Box..107
■Chapter 6: Easy Customizations Using Studio ..109

Starting with Studio .. 109
Adding New Fields to a Module ...111

Customizing View Templates.. 113

www.allitebooks.com

http://www.allitebooks.org

■ CONTENTS

viii

Customizing Edit and Detail Views...113

Customizing ListViews ...115

Editing Labels...117

Relationships, Relationships, Relationships ..119

Help! My Customizations Have Gone Awry ..121

Summary... 123
■Chapter 7: Workflows and Logic Hooks ..125

What Are Logic Hooks? ... 125
Creating Your First Logic Hook...127

Point and Click Logic Hooks with Workflows...131

Creating the Workflow ..132

Defining Workflow Alerts ..138

Workflow Actions ..141

Managing the Sequence of Workflows ...142

Logic Hooks Pitfalls..143

Modifying the Bean Object ..143

Conflicting Logic Hooks...147

Logic Hook Being Nullified by the Existing Code...148

Logic Hook Weaknesses ...149

Summary... 150
■Chapter 8: Overriding Existing Code ...151

Safety Lies in the Custom Directory.. 151
Customizations You Can Make...153

Altering View Actions ..153

Changing the Metadata-Driven Views...156

Adding New Custom Field Types ..161

Changing Language Strings ..164

Tweak vardef Definitions ..165

Custom Themes and Theme Customizations (Yes, They Are Different)166

Summary... 168

www.allitebooks.com

http://www.allitebooks.org

 ■ CONTENTS

ix

Part 3: Building New Functionality on Top of SugarCRM169
■Chapter 9: Using Module Builder to Build Custom Modules..............................171

Getting Started.. 172
Designing a New Module ...174

Fields...177

Metadata ...180

Relationships ...184

What Do I Do with This Package? ..187

Deploy to the Current Instance ...187

Publishing Your Changes and Installing Them with Module Loader ..188

Exporting the Package ..191

Removing an Installed Package ..191

Summary... 193
■Chapter 10: Building a Custom Module Manually ...195

Why Would You Do This? .. 195
What You Need to Do .. 196

Construct Directory Structure ..196

Register Module with the Instance”..198

Add Bean Class File”...200

Build vardefs ...202

Build Any Metadata Templates ..204

Add Language Files..211

Create a Dashlet...212

Add Any Additional Views Needed ...215

Summary... 217
■Chapter 11: Designing a Complete Application...219

Background of the Application...220

Breakdown of the Various Components...221

Studio..222

Accounts and Contacts ...222

Module Builder..224

Customers...224

■ CONTENTS

x

Jobs ..226

Supplies ..226

Vendors, Vendor Contacts, and Vendor Orders ..227

Custom Code...228

Accounts and Contacts ...229

Jobs ..229

Supplies ..233

Vendors ...239

Invoicing Hooks...243

Final Touches..246

Summary... 248
■Index .. 251

 ■ CONTENTS

xi

About the Author

■ John Mertic is a software engineer at SugarCRM, and has several years of
experience with PHP Web applications. An avid writer, he has been published in
php|architect, IBM Developerworks, and in the Apple Developer Connection, and
has been a speaker at several developer conferences. He has also contributed to
many open source projects, most notably the PHP project where he is the creator
and maintainer of the PHP Windows Installer. John is happily married to his lovely
and exceptionally supportive wife Kristy. Together they have a daughter
Malloryand a dog Dominic.

■ CONTENTS

xii

About the Technical Reviewers

■ Roger Smith is currently an Engineering Manager and Staff Engineer at
SugarCRM. Prior to SugarCRM, Roger held Software Engineering positions at
StrikeIron, a Web Services company focused on providing commercial data as a
service. He also served as a Software Engineer at Cisco Systems on their E-
Commerce and Government Solutions teams. Roger holds a Masters degree in
Machine Learning from Columbia University and a BS in Mathematics from the
University of North Carolina at Chapel Hill.

■ Collin Lee has been working at SugarCRM as a platform developer for over three
years. He has also previously worked for IBM and Xerox Corporation. In his spare
time, he enjoys cooking, running, and experimenting with software technologies.
He currently lives with his wife in New York City.

■ Matthew Heitzenroder, SugarCRM's Community Manager, is a fanatic about the
power of community and democratization of software. Four years ago, Matt joined
SugarCRM's Support team, dedicating himself to provide an outstanding customer
support experience. He made a transition to become a Senior Professional Services
consultant, implementing SugarCRM in some the companies largest clients and
most demanding projects. Today, Matt's passion for Open Source and it's ideals has
naturally lead to a career of empowering and advocating the SugarCRM community
of developers, consultants, and users. He happily lives life with his wife in sunny
Miami, Florida, sailing and diving every chance he gets.

 ■ CONTENTS

xiii

Acknowledgments

One thing that I’ve learned over the past 8 years is software development is hard work. But I never
realized that writing about software development is even harder.

Looking back on writing this book, I am simply amazed at the gift God has given me to accomplish
such an amazing feat. He stuck by my side, even when it was 2 a.m. and I was trying to make it through a
few more paragraphs, and for that I am the most grateful. There is also an amazing group of individuals
that he put here who I am in tremendous debt to that made this book possible.

I’ll begin by thanking the entire team at SugarCRM for all their help and support with the book. I’d
like to personally thank SugarCRMS’s founders, John Roberts, Clint Oram, and Jacob Taylor, for starting
the project and the entire company from scratch five years ago. I want to personally thank the reviewers
Matt Heitzenroder, Roger Smith, and Collin Lee for giving me great advice and direction in making the
book such a resounding success. And, I want to thank all those at Sugar who have put their time and
energy into developing SugarCRM into a world class application. My hope is that this book puts a light to
the high quality engineering that has been put into the product.

I would also like to thank Apress, especially Steve Anglin, Michelle Lowman, James Markham, and
Dominic Shakeshaft for giving me the opportunity as a new author to write this book. The group at
Apress put a ton of effort into making this book a reality, even when the schedule seemed to work against
us at times.

And last, but certainly not least, I would like to thank all my friends and family that have provided
me support and encouragement over the years, especially during the writing of this book. The biggest
thank you goes to my exceptionally supportive wife Kristy, who put up with all the long writing nights
and weekends (and family vacation) in my efforts to put together this book. I could never have done this
without you.

■ CONTENTS

xiv

Introduction

I started this book with the intention of bringing a new side of SugarCRM to light. Since I began working
at SugarCRM, I saw the flexibility and extensibility that the application could provide. I looked back on
my previous position developing internal business applications, and saw that many of the features I
added and design issues I would wrestle with were problems that SugarCRM had already solved. The
engineering team at SugarCRM had built the application to solve this problem, yet few developers
outside of SugarCRM really knew how powerful the underlying platform was. I knew there were other
developers in this same boat, and that if I could reach them it would make their jobs much easier.

What a CRM application does or doesn’t do isn’t authoritatively defined; instead, its goal is to fill in
the gap where a company needs to solve problems in their relationships with their customers.
Sometimes this means keeping track of meetings and phone calls. Other times, this means tracking the
progress of an ongoing project. It could also mean managing support cases and product defects. Yet
sometimes an application may not completely cover this. Just as every business or organization is
unique, so must be what CRM will mean to them. Up until SugarCRM, this application space was full of
players who thought they had the CRM problem solved, and built large proprietary applications that
were expensive to implement and support and notoriously difficult to customize to meet their needs.
SugarCRM came in and changed that scene, making CRM something that is inexpensive to implement,
easier to customize, and more approachable for end-users to work with. It’s designed to be a CRM that
your users won’t hate, which is the philosophy that the founders of SugarCRM set as their paramount
goal when building it.

This book is designed to take this easy-to-use and customizable application and show you what you
need to do with it. The contents of this book are unique as they come directly from the engineering
experience of SugarCRM, giving you as the reader an insight into the application that you can’t find
anywhere else. I’ve broken the book down into three distinct parts:

• Part 1: The SugarCRM Platform

• Part 2: Customizing SugarCRM Out of the Box

• Part 3: Building New Functionality on Top of SugarCRM

While this book is designed to be read from beginning to end, it’s also useful as a general reference
manual when developing on SugarCRM. Once you have the knowledge of how the application works
internally, you can go back to the book easily to pick up any tidbit of information you might need as you
work with the platform. All of the information contained within is current with SugarCRM version 5.5,
and most of the examples are built upon the community edition of SugarCRM. I encourage you as you
read through the book to download and install SugarCRM on your local machine and try the examples
out to see how easy it is to work with. This book is only the tip of the iceberg in what can be done with
SugarCRM. Therefore, I also encourage you to also visit the Sugar Forums (http://www.sugarcrm.com/
forums) and the Sugar Developer Zone (http://developers.sugarcrm.com) for more about what Sugar
can do for you and where we are going in the future.

Thanks for picking up this book and taking a chance on SugarCRM. My hope is that it can help you
out in your future applications for your business or organization.

P A R T 1

■ ■ ■

The SugarCRM Platform

In this first part of the book, you’ll learn all about SugarCRM; from the company and
community to the various features of the platform. You’ll see in depth how the MVC
and metadata frameworks drive the core of the application. You’ll also see how you
can integrate SugarCRM with various other applications using the feature rich web
services platform, and learn about many other features the Sugar platform offers the
user and the developer.

C H A P T E R 1

■ ■ ■

3

What Is SugarCRM?

SugarCRM is a commercial open source company. It’s not often that “commercial”
and “open source” go together. When we think of commercial software we think
proprietary, closed-source software. On the flipside, when we think of open source
software, we think of free or “libre” software that is community driven and
community oriented. SugarCRM is unique in that it breaks the expectation of how
commercial software works, leveraging the best of how open-source software is
designed and built to create a product that is focused on the end-users and
developers, creating a positive experience for both groups. But it also has the
advantages of a commercial company, which includes world-class support,
comprehensive end-user training, and end-to-end quality assurance testing to
ensure high product stability.

Let’s look at SugarCRM from a few different perspectives: as a company, product,
and community.

The Company
SugarCRM was founded in 2004 as an open source project on SourceForge,
http://www.sourceforge.net, one of the Internet’s largest open source development
sites. SugarCRM’s three founders, John Roberts, Clint Oram, and Jacob Taylor, had a
combined experience of over 50 years building proprietary Customer Relationship
Management (CRM) applications for Silicon Valley companies. They had grown
frustrated with the lack of innovation in CRM and the high failure rates of proprietary
CRM applications. SugarCRM’s founders took an unusual approach in building a
CRM solution. Rather than write the code in secret and keep the product proprietary,
the founders released the code with an open source license and allowed for any
interested party to download, modify, and redistribute SugarCRM.

CHAPTER 1 ■ WHAT IS SUGARCRM

4

In just a few months, the application was downloaded 50,000 times and translated
into ten languages. In November 2004, the Sugar Open Source Project was selected as
Project of the Month by SourceForge.net. The popularity of the application allowed
SugarCRM founders to incorporate a business around the open source project and
receive $2 million in venture capital funding from Draper Fisher Jurvetson, a leading
Silicon Valley venture capital firm.

Rapid Growth—Harnessing Open Source and SaaS
The popularity of SugarCRM on SourceForge and an infusion of capital from Silicon
Valley investors allowed the company to begin expanding. SugarCRM established a
headquarters in Cupertino, CA and began building out its engineering team. In early
2005, SugarCRM introduced Sugar On-Demand, which is a “Software-as-a-Service”
(software is provided for a user via a hosting service) that allows customers to use
Sugar without installing software on premise.

The adoption of an Open Source and On-Demand product offering positioned
SugarCRM at the nexus of two major technology waves. The first—On-Demand—
promotes more flexibility and control over how the application is installed,
customized, and used. The second—On-Demand—gives users the ability to use CRM
software without having technical expertise in-house.

SugarCRM’s innovation in the marketplace was to champion both approaches.
Previously, companies had offered On-Site or On-Demand, rarely both. In all cases,
the code was kept proprietary which means it was very difficult for customers to
understand what they were purchasing, and nearly impossible to modify the code
without large investments in professional services and long project timelines.

The Product
Customer Relationship Management is a well-established industry that has evolved
over the past two decades. Simply put, CRM is about using information technology to
gain a better understanding of customers and deliver a differentiated customer
experience across the entire relationship. Think of it as turning your customers inside
out, giving businesses a tool to learn what their history is, buying trends are, and
interactions have been, allowing you to use this knowledge to plan ahead for your
interactions with them. CRM suites, such as SugarCRM, provide tools to all customer-
facing employees—marketing, sales, customer support—as well as provide
collaboration tools to ease communications and reporting functionality, so managers
can understand what is happening in their business. CRM suites also provide
administration tools to manage users, information flow, customizations, and other
“behind-the-scenes” operations of the CRM system.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1 ■ WHAT IS SUGARCRM

5

SugarCRM began as a sales force automation tool and quickly expanded to
include marketing automation functionality and customer support, as well as
collaboration and reporting across all parts of the application. It is a web-based
application written mostly in the PHP programming language, supporting version
5.2.1 and greater as of SugarCRM version 5.5.0, as well as using the latest javascript
and flash techniques to enhance the user experience. It supports running on the
MySQL, Microsoft SQL Server, and Oracle database servers (Oracle is only supported
in the Enterprise Edition) as well as deployments on Windows, Linux, Mac OS X, and
Solaris. Being a browser-based application, it allows the end-users to use either
Internet Explorer, Mozilla Firefox, or Apple’s Safari browser.

SugarCRM comes in three product editions: Sugar Community Edition contains
core CRM functionality designed for small businesses. Sugar Professional contains
additional functionality to manage the needs of small-and-medium-sized business.
Sugar Enterprise contains the CRM features and support for large enterprises. The
following discusses each edition in detail:

• Sugar Community Edition: A Free Open Source Software (FOSS)
licensed under the GNU General Public License Version 3 (GPLv3),
the newest and one of the many prevalent open source licenses in
the software world. Sugar Community Edition is available for free
download at SugarCRM’s development environment at
http://www.sugarforge.org. Customers are free to download,
modify, and use Sugar Community Edition without restriction.

• Sugar Professional: SugarCRM’s flagship product, targeted at small
and medium-sized businesses. It contains additional functionality,
such as team management, access control, reporting, and wireless
device access. It is offered under a commercial license. Sugar
Professional is offered under an annual subscription.

• Sugar Enterprise: Contains enterprise-grade functionality for large
enterprises. It adds additional features that most large scale
deployments require, such as Oracle database support and
Advanced SQL reporting. It is also commercially licensed and
offered under an annual subscription, just like Sugar Professional.

Figure 1-1 provides a graphical outline of what is included with the various
editions of SugarCRM.

CHAPTER 1 ■ WHAT IS SUGARCRM

6

Figure 1-1. SugarCRM Product Matrix

SugarCRM is further customizable by allowing multiple deployment options,
which allows even companies without IT expertise to use SugarCRM.

• Sugar On-Demand: Allows users to set up and run SugarCRM
within minutes, using SugarCRM Managed Data Centers.
Advantages include guaranteed uptime and management of your
SugarCRM instance, which takes away all the upgrade and server
maintenance worries.

• Sugar On-Site: Allows users to install SugarCRM on their existing
hardware. In addition, SugarCRM has a Faststack installer that is
designed to install all the required components (Web Server,
Database Server, PHP) for SugarCRM as well.

The beauty of flexible deployment options is that even users using Sugar On-
Demand can customize how SugarCRM works through the powerful, yet easy-to-use
Module Builder and Studio tools. (We’ll learn more about these in Parts 2 and 3 of

CHAPTER 1 ■ WHAT IS SUGARCRM

7

this book.) This allows anyone using SugarCRM to customize it to meet their needs
without having the burden of supporting a server and installation. In addition, they
can leverage both the On-Demand and On-Site deployment options at no additional
charge. This is handy so that one system can be used as a backup of the other, or one
can be used as a development/staging system and the other as a production system.

SugarCRM’s growth has continued month after month since being founded as an
open source project in 2004. To date, SugarCRM has been downloaded over 5.2
million times, with over 55,000 active systems in over 195 countries supporting nearly
half a million users. In addition, SugarCRM has 4,500 paying customers that use the
commercial versions of the product to power their enterprise.

The Community
The key to SugarCRM’s success lies in the large community of users and developers
around the world. Their feedback and contributions have helped shape the product,
and have been an invaluable resource for helping SugarCRM grow. SugarCRM as a
company has recognized this and have built several tools for the community to
interact with SugarCRM and other users of SugarCRM around the world. Let’s take a
look at them.

Sugar Forums and Wiki
The easiest place to interact with the Sugar community is at the Sugar Forums
(http://www.sugarcrm.com/forums/). Here is where members of the SugarCRM team,
end-users, partners, and developers interact to discuss issues with the product, learn
about upcoming features and releases, and learn how others are using SugarCRM
within their industry. The forums are driven by both members of the SugarCRM team
and community volunteers and is the easiest way to participate with the SugarCRM
community.

The Sugar Wiki (http://www.sugarcrm.com/wiki/) is an invaluable resource for
tips and tricks when working with SugarCRM. This is a mostly community-driven
wiki, but also provides official SugarCRM documentation on the product and
podcasts from SugarCRM team members on a variety of SugarCRM and industry
topics.

SugarExchange and SugarForge
SugarExchange (http://www.sugarexchange.com/)is the SugarCRM marketplace
where any Sugar user wishing to extend core Sugar functionality can choose among
hundreds of module extensions, themes, and language packs provided by Sugar
community members and partners. It is the go–to place when you are looking for
functionality that can be easily added to your SugarCRM instance. SugarExchange

CHAPTER 1 ■ WHAT IS SUGARCRM

8

contains both free and non-free add-ons to SugarCRM. While SugarExchange is
facilitated by SugarCRM, all transactions and support for the add-ons offered is
completely independent of SugarCRM, which provides a forum for the SugarCRM
developer community to showcase add-ons to the product.

SugarForge (http://www.sugarforge.org/) is the developer side of the
SugarExchange, which provides developer and project collaborations tools for those
developing on the SugarCRM platform. This is designed to offer features similar to
SourceForge or Google Code, and provides forums, and documentation space for
your add-ons. It is often used in conjunction with SugarExchange, where
SugarExchange is used to help feature the add-ons to the Sugar Community as a
whole. There are over 600 active projects on SugarForge to date, including over 80
language translations offered for free download.

Sugar Developer Zone
If you do any development on top of SugarCRM, this is the place to be. It is a
comprehensive resource for any Sugar developer, with links to the official SugarCRM
developer guide, developer forums, and tutorials on common customizations and
topics. It also features a blog that is run by the SugarCRM team, which provides
developers insight on upcoming developer features in SugarCRM or tips and tricks on
developing applications with SugarCRM.

As you can see, SugarCRM isn’t like typical commercial software, but it has the
more polished feel of typical open source software. This book focuses on this
distinction, so in Part 1 we will take an in-depth look at the SugarCRM platform and
the features of the product that make it ideal for building a business application.

Getting SugarCRM
In order to best follow along with the examples in the remaining chapters, you should
probably download and install SugarCRM. The community edition of SugarCRM is
available for download at http://www.sugarcrm.com/crm/download/sugar-suite.html.
You have two options for installing SugarCRM from this site. One option is to
download the zip archive that contains the application, and install it on your local
machine or Web Server. In order to do this, you’ll need the following components
installed and configured:

• Web Server: Either Apache 1.3 or later or IIS 6 or later with FastCGI
installed if you are using Windows.

• PHP: Version 5.2.1 or later installed and configured to be used with
the above Web Server.

• Database Server: Either MySQL 5.0 or later or SQL Server 2005 or
later.

CHAPTER 1 ■ WHAT IS SUGARCRM

9

To install SugarCRM, simply open a web browser and point it to the location
where SugarCRM was unzipped. If you unzipped it into the sugar directory in the root
of the Web Server on your local machine, point your web browser to
http://localhost/sugar, and then the Sugar interactive installer will guide you to the
remainder of the setup process.

To make it easier to get the stack installed, SugarCRM provides several “faststack”
installers that will install SugarCRM along with the complete Apache, MySQL, (or SQL
Server Express for Windows), and PHP stacks, so you can be ready to run in no time.

Summary
In this chapter, you looked at SugarCRM, and saw how the open source and
community-driven nature of the company has helped the product grow into such a
success. You then looked at the product, learning the various editions available as
well as the many different ways that SugarCRM can be deployed and used by
businesses. Next, you turned toward the SugarCRM community, seeing how the
SugarCRM as a company and the Sugar community can interact through both forums
and wikis to add-on package repositories and marketplaces. Finally, you took a brief
look at installing Sugar, so you can follow through with the examples in the
remainder of this book.

Let’s continue on with a deep dive into SugarCRM’s underlining platform. In
Chapter 2, you’ll look at the MVC framework that Sugar is built upon.

CHAPTER 1 ■ WHAT IS SUGARCRM

10

C H A P T E R 2

■ ■ ■

11

MVC Architecture

With the advent of SugarCRM 5.0, a new MVC architecture was born. This
architecture was designed to eliminate the painful tasks in building a module in
SugarCRM. Instead of having to manually lay out templates and set up object
interactions and relationships, you can easily leverage the framework by using
standardized templates and definition files for building the various views. The system
is also very extensible, allowing new views and custom templating to be built on top
of it as well.

Before digging into how the SugarCRM MVC model works, let’s take a step back
and see what MVC actually is.

What Is MVC?
MVC stands for Model View Controller, and is a very common architectural pattern
used in both web and desktop application design. The goals of using the MVC pattern
is to separate the user interface logic from the application logic, having a layer in
between to facilitate the communication between them. Each one of the Model,
View, and Controller components are tasked with handling certain roles within an
application (see Figure 2-1).

Figure 2-1. Diagram of the MVC pattern

CHAPTER 2 ■ MVC ARCHITECTURE

12

The model layer represents the application logic layer. The goal of this layer is to
handle the communication with any external resources, such as databases, Web
Services, and files. It also contains any business logic in the application, such as ways
to calculate field values. A good model provides a clean interface to the guts of the
application, providing methods and functions to easily interact with the lower level
services and provide any needed transformation or interpretation so that other parts
of the application can easily use it.

The view layer represents the user interface. This is where any display logic is
dealt with, such as form layout and data display. It is also designed to how it’s
consumed, so for a web application a view would be a typical web page. The view
layer is specific to what role it is meant to have, so a data entry view would be
different than a record display view, even though they may represent the same
model.

The controller layer is the glue between the model and view layer. A good
controller will accept the request from the user, calls upon a model for the
information it needs, and then calls upon a view to return that information to the
user. This layer is meant to be a thin layer. It shouldn’t contain business logic,
communicate with a database directly, or deal with the how to display information to
the user.

Sugar has used the MVC pattern to replace the aging architecture used before
version 5.0. Although it was based upon many of the principles of the MVC
architecture, it was not truly optimized in a way to really take advantage of it. Let’s
look now at how SugarCRM does MVC.

MVC the Sugar Way
Sugar uses the MVC pattern to handle requests from the users. Each request to the
primary entrypoint (index.php) will specify HTTP request variables indicating the
module (which maps to the MVC definition of controller) and the action (which maps
to the MVC definition of view) as follows:
http://servername/index.php?module=Contacts&action=EditView.

For the preceding URL, the request to Sugar would return the EditView action of
the Contacts module. Figure 2-2 shows what happens internally when that request is
made.

CHAPTER 2 ■ MVC ARCHITECTURE

13

Figure 2-2. Sugar MVC flowchart

Let’s take a look at each component in the MVC flowchart.

SugarApplication
The first step in the request handling happens at the SugarApplication level. This
class handles much of the prerequisites needed for the Sugar application, including
session checking, user authentication, setting the theme, and making the connection
to the database. It also handles much of the preprocess logic of the application. For
example, setting the user time zone on first login and letting the user know when
their password is expired. The class is not designed to be modified or extended by
developers. However, a preprocess method does exist in the SugarController class
which allows developers to interject logic into the handling of the request before the
controller is executed.

After loading the controller, the following tasks are done before executing the
controller:

• User authentication takes place. If the user is already authenticated
then you’ll continue on with the request, otherwise you’ll redirect
the login form so the user can authenticate. I’ll talk in more detail
about user authentication in Chapter 5.

• Using the settings from the user, any Access control list (ACL) rules
are applied for the cases of what modules to expose to the user.

CHAPTER 2 ■ MVC ARCHITECTURE

14

• Any preprocess rules from that are defined on the application level
or are applied by the controller. Setting the time zone for the user
on their first login is handled here.

• The correct language strings are loaded, as set by the user upon
login. In Chapter 5, I’ll talk about how SugarCRM can be
internationalized for any language.

• The theme that is currently selected by the user is initialized and
loaded. I’ll talk more about how themes work in Chapter 5.

The preProcess() method in the controller is best used when there needs to be
some initial logic before you do anything with a module. Listing 2-1 provides an
example of what that would be.

Listing 2-1. Example of a preProcess() Method in the Controller

public function preProcess()
{
 global $current_user;

 if (!is_admin($current_user)) {
 echo 'This module is for admin use only!';
 sugar_die();

 }

}

You would use this if the module is going to be an admin-only module, so you
could check initially in the controller to see if the user has access to it or not. This
avoids the need to add this logic to every view in the module.

Once all of these prerequisites are handled, you can then move on to the
SugarController, which is designed to take the request and execute it.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ MVC ARCHITECTURE

15

SugarController
The SugarController class handles the main flow of the request, and is designed to
control all requests for the module specified. The SugarController implementation
maps very well to the MVC model’s interpretation of what a controller will do, and
contains several action hooks for common actions you would have in a typical
module. These actions, available out of the box by default, include complete
implementations for DetailView, EditView, ListView, and saving and deleting records.
Several of these have definition files, or metadata, that is used to define what they
look and act like, which you’ll learn more about in Chapter 3.

The SugarController will provide representation for each of the views of the
module for which it controls. It does this is by providing two ways of handling the
mapping to a view. The first way is by having an actual action method in the
controller class which represents the action and transfers control over to the view. At
a minimum, this method will specify the view to use with this action, but it can also
do some logic at this level that isn’t really related to the view layer. Listing 2-2 shows
an example view, which I’ll call 'getthemail'.

Listing 2-2. action_getthemail()

public function action_getthemail()
{
 if (mailExists())
 $this->view = 'getthemail';
 else
 $this->view = 'hasnomail';
}

The action hook will first add a check to see if mail exists before redirecting to the
'getthemail' view. If there is no mail, then it will use 'hasnomail' view instead. This
kind of situation is a common one, and can provide hooks to direct different views to
use depending upon the state of the application or the type of request being made.
For example, you could have different views based upon whether json or HTML data
is being requested, but the core logic could use the same action hook.

If you have additional controller logic that needs added, such as handling extra
request parameters, you can subclass the SugarController class by naming it
ModulenameController and saving the file as controller.php in the module’s
directory. Listing 2-3 is an example where you will override the Meetings module
EditView action to allow marking a meeting completed by passing the request
variable 'close'.

CHAPTER 2 ■ MVC ARCHITECTURE

16

Listing 2-3. MeetingsController Class

<?php

class MeetingsController extends SugarController
{
 public function action_editview()
 {
 if (isset($_REQUEST['close'])
 $this->bean->status = 'Held';

 }
}

In the preceding, you simply added a new piece of logic to the EditView action
which will set the status of the Meeting to 'Held', if you have requested to close it.
The bean object corresponds to the data record of the module being requested. The
record id is grabbed from the request variable 'record', and it is initialized and
loaded automatically in the SugarController class as a part when it processed the
request, prior to calling the actual action logic.

Sometimes you may want to be selective about overriding a controller action, by
adding logic before or after the action is called. The SugarController class provides
hooks for this, by having pre_action() and post_action() methods for each action,
which are called before and after the action is called, if they are defined. There are
multiple uses for this. Listing 2-4 shows an example where you will check for a
changed value of the status field during a save of a Bugs module record in the
BugsController class.

Listing 2-4. BugsController Class

<?php

class BugsController extends SugarController
{
 protected $_prevStatus = '';

 public function pre_save()
 {
 $bugFocus = new Bug;
 $bugFocus->retrieve($_REQUEST['record']);
 if (isset($bugFocus->id))
 $this->_prevStatus = $bugFocus->status;

 parent::pre_save();
 }

 public function post_save()
 {
 if (($bugFocus->status != $this->bean->status)

CHAPTER 2 ■ MVC ARCHITECTURE

17

 && ($this->bean->status != 'Closed')) {
 // do something now that the bug is closed
 }

 parent::post_save();
 }
}

In the pre_save() method, you will save the value of the status of the bug in the
private class variable $_prevStatus, and then you’ll check to see if it’s changed to
'Closed' in the post_save() method. It’s important here to call the parent pre_save()
and post_save() methods, since there is logic for those in the SugarController class.

Another use for the pre_action() and post_action() methods is to give options for
extending the logic needed for an action without needing to override the main action
method. This is handy so that you split the logic of an action into multiple parts.
Then, if it needs to be overridden by a subclass, you only have to override the part
that needs changed. Let’s say you want to override the BugsController in Listing 2-4
with another check for a different status type. Listing 2-5 shows how this is done.

Listing 2-5. CustomBugsController Class

<?php

class CustomBugsController extends SugarController
{
 public function post_save()
 {
 if (($bugFocus->status != $this->bean->status)
 && ($this->bean->status != 'Pending')) {
 // do something now that the bug is pending
 }

 parent::post_save(); // call the parent class BugsController
 }
}

Now you’ve added an additional check into the post_save() method for bugs that
are pending, so in this case you may e-mail it to a QA engineer for verification or a
team lead to know that the engineer has fixed the issue.

If you have no additional controller logic to add, you can simply create a mapping
from the action name to the view to be called in the action_view_map.php file. This
file can be specified at the application level in the custom/include/MVC/Controller
directory or in the module level at the root of the module directory or module custom
directory. It is simply defined as an associative array with the key as the action name
given and the value as the view file to call. Listing 2-6 shows an example of this code.

CHAPTER 2 ■ MVC ARCHITECTURE

18

Listing 2-6. action_view_map.php File Example

<?php

$action_view_map['myspecialview']= 'edit';
$action_view_map['myreallyspecialview']= 'edit';

Using the preceding action view mapping file for the Cases module will map to
the Cases EditView.

SugarView
After the controller code is processed, and if a valid view is specified, the appropriate
SugarView derived class is called. This class provides any view handling needed, such
as setting up the display template. By default, the Sugar application ships with many
views out of the box designed to handle certain types of views. Table 2-1 specifies
those views.

Table 2-1. Some of the Default Views in Sugar

View File View Name Description

view.edit.php ViewEdit Handles displaying the EditView to the user using the metadata
framework

view.detail.php ViewDetail Handles displaying the DetailView to the user using the metadata
framework

view.list.php ViewList Handles displaying the ListView to the user using the metadata
framework

view.ajax.php ViewAjax Used to return ajax data back to the user client

view.popup.php ViewPopup Handles displaying the popup record selector to the user using the
metadata framework

view.classic.php ViewClassic Displays view created using the pre-MVC style view files

view.json.php ViewJson Returns json data directly to the user without any other markup

view.noaccess.php ViewNoaccess Called when the user doesn’t have permission to access the given
action

view.vcard.php ViewVcard Returns the given object’s data as a vCard

CHAPTER 2 ■ MVC ARCHITECTURE

19

You’ll learn more about how the metadata framework works in Chapter 3.
Each of the previous views are also customizable as well by extending the view

class and adding the functionality you need. Normally when overriding a view, there
are two methods you’ll want to change: the display() method is designed to handle
the actual display logic of the view. It is by default an empty method, so you can
customize the output to whatever you need it to be (calling a template, outputting
straight html, or returning a json string). There is also the preDisplay() method, which
is used for handling any non-display logic code, and also is often used in the base
views previously listed. This allows the base views to define display logic in such a
way so that if they are subclassed, the child class can just override the display method
and not have to worry about making sure the display() method of the parent class is
called as well.

You can also define your own views as well. This is a two-part process: part one
involves adding either an action method in the respective controller that specifies the
view to call, while part two is adding an entry in the action_view_map.php to direct
the called action to the view to execute. Listing 2-7 shows an example action call in
the controller (you’ll call it the helloworld view).

Listing 2-7. action_helloworld() Controller Method

public function action_helloworld()
{
 $this->view = 'helloworld';
}

The key here is to make sure the view property of the controller is set to the name
of the view to call. From there, you can create your own view, which is defined in
either the custom/include/MVC/View/views directory for the case of an application
level view (available to all modules) in the module/modulename/views, or
custom/module/modulename/views directory for those views only defined at the
module level. Listing 2-8 is an example of creating your own view for the action
helloworld.

Listing 2-8. view.helloworld.php

<?php

class ViewHelloworld extends SugarView
{
 var $message = 'Hello World!';

 public function __construct()
 {
 parent::SugarView();
 }

 public function preDisplay()
 {

CHAPTER 2 ■ MVC ARCHITECTURE

20

 if (isset($_REQUEST['message']))
 $this->message = $_REQUEST['message'];
 }

 public function display()
 {
 echo "<p>{$this->message}</p>";
 }
}

If you would call the previous view, defined as a base view for the application, and
specify the helloworld view with no arguments, you would have the message 'Hello
World!' outputted to the display. If you specify the message to display in the request
variables, it would override the default message in the preDisplay() method and be
output to the user in the display() method.

You can also add view customizations to existing views in the custom directory.
This is handy if you are looking to customize a module that defines many of its own
views, but does so in an upgrade safe way that does require you to code and paste a
bunch of code. Listing 2-9 shows how you can extend the following Calls EditView.

Listing 2-9. Customize a Module Defined View

<?php
require_once('modules/Calls/views/view.edit.php');

class CustomCallsEditView extends CallsEditView
{
 public function __construct()
 {
 parent::CallsEditView();
 }

 public function display()
 {
 // code to add

 parent::display();
 }
}

Anytime you extend a class, be sure to call the parent method as well to ensure
you are leveraging any logic it adds. Of course, that assumes the customization you
are doing isn’t re-writing the entire method.

CHAPTER 2 ■ MVC ARCHITECTURE

21

Entrypoints
Sometimes certain actions in the application don’t really apply to the normal
module-action model. Many times this code doesn’t require authentication to the
application, such as tracking images that are inserted into HTML email. For these
situations, the entire process flow of the normal MVC framework either won’t work or
isn’t needed, which is why a different entrypoint in the application is often needed.
However, there is still quite a bit of code that needs to be set up and several security
related measures that need to be taken care of. Because of this, Sugar has always been
particular to which files are granted the privilege of being able to be an initial file
requested from the browser, or entrypoint, so that those cases are taken care of
properly.

To help streamline the use of entrypoints, Sugar 5.1 added the ability to directly
handle them though the MVC framework. This is done in two parts: the first part is an
entrypoint registry, which is defined at
include/MVC/Controller/entry_point_registry.php, and specifies the available
entrypoints, where they exist in the filesystem, and if it requires authentication or
not. Listing 2-10 shows part of the standard entry_point_registry.php file that ships
with SugarCRM.

Listing 2-10. entry_point_registry.php

$entry_point_registry = array(
 'download' => array('file' => 'download.php', 'auth' => true),
 'export' => array('file' => 'export.php', 'auth' => true),
 'image' => array('file' => 'modules/Campaigns/image.php', 'auth' => false),
 'acceptDecline' => array('file' => 'modules/Contacts/AcceptDecline.php',
 'auth' => false),
 'removeme' => array('file' => 'modules/Campaigns/RemoveMe.php', 'auth' => false),
 'process_queue' => array('file' => 'process_queue.php', 'auth' => true),
 'process_workflow' => array('file' => 'process_workflow.php', 'auth' => true),

The key of the $entry_point_registry registry array is the entrypoint name, which
will be given as a part of the URL. The value is an array with two elements: the file
element is the path to the entrypoint file to call, and the auth element indicates
whether the entrypoint requires authentication or not. The registry can be overridden
by developers as well simply by adding the same entry_point_registry.php in the
custom/include/MVC/Controller/ directory.

Now that the entrypoint is defined, you can now access it from the browser.
Pointing your browser to the following URL formatted will direct the request to the
entrypoint: http://servername/index.php?entryPoint=entrypoint.

CHAPTER 2 ■ MVC ARCHITECTURE

22

If you are converting an entrypoint that existed before Sugar 5.1 into the new
module, be sure to change:

if(!defined('sugarEntry'))define('sugarEntry', true);

to:

if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry Point');

at the top of the previous entrypoint file.

Also, you can still maintain your entrypoints in the previous way by pointing the
URL at the file directly. This is helpful if there is some technical reason why changing
it would not work, such as if the application that uses the URL doesn’t work nicely
with URL parameters (the vcal.php entrypoint is one example of this, since Outlook
doesn’t like the parameters in the URL request for some reason). However, it is highly
recommended that you change to the newer style entrypoints if at all possible, since
it will greatly simplify your code by setting up most parts of the environment for you.

What About the Model?
The model layer is sometimes the forgotten part of the MVC paradigm. For
SugarCRM, ea module represents one primary table. This in turn is represented by a
bean class, derived from the main bean class called SugarBean (defined at
data/SugarBean.php) which each bean derives from. The SugarBean provides an
interface to the lower level database calls which control storing, retrieving, and
deleting data from the database, as well as a tool for interpreting the structure of the
table underneath it, defined in a vardefs.php file in each module.

The core concepts of the model layer in SugarCRM revolve around the bean
classes, the vardefs, and the database layer. Let’s start off by looking at the bean
classes.

Bean Classes and SugarObjects
The bean class is the primary place that the model layer of the Sugar MVC framework
interacts with the database or any other data stores. Its purpose is to provide all the
methods you need in the controller to interact with the module. It comes with several
methods by default, such as handle saving, deleting, and retrieving records, as well as
helper methods for the standard views that ship with SugarCRM (Detail, Edit, and List
views).

CHAPTER 2 ■ MVC ARCHITECTURE

23

One thing most people notice as they build modules in SugarCRM is that often
times they will share the same or similar fields with other modules. These modules
may also be objects that represent the same kind of entity. For example, a Students
and Teachers module would probably both have similar address and phone number
fields. Because of this sort of situation, several module templates exist that you can
base your module on. They are listed in Table 2-2, and are located in the
include/SugarObjects/templates directory.

Table 2-2. SugarObject Template Names and Descriptions

Template Name Description

Basic
A basic template with only fields for a name and description, plus those “behind the
scenes” fields, like id, the deleted flag, and created/modified timestamps. This
template is intended to be the base of all the following templates.

Company Fields that would normally be used with a company, such as name, address, phone,
web site, industry, etc.

File Used when the object stores files that the user uploads.

Issue For modeling an issue or job tracking system.

Person Fields that represent a person, such as name, address, phone, email, etc.

Sale Used when the object is for sales transactions or forecasting.

In addition, you can apply the assignable or team_security (for SugarCRM

Professional and Enterprise only) fields to any of the previous modules to enable
records to be assigned to a person or a team. These aren’t full-fledged templates like
those listed previously which contain bean files, starter metadata, and other specific
code, but rather are just additional sets of fields that a module can use.

Let’s see how simple it is to build a new module based upon one of these
templates. If you want a module to track applicants for a company, the person
template very closely models this example. The new bean definition would look
something like Listing 2-11.

CHAPTER 2 ■ MVC ARCHITECTURE

24

Listing 2-11. Applicants Bean Class

<?php

require_once('include/SugarObjects/templates/person/Person.php');

class Applicants extends Person
{
 public function __construct()
 {
 parent::Person();
 }

 //
 // here we would add any other bean class methods we would need
 //
}

By simply extending the template class you now inherit the special actions and
properties of it. There’s one other part to making the module a true descendent of the
templated class, which you’ll see in the next section when you look at vardefs.

Vardefs
Vardefs define how the data fields should exist in the database, plus provide
properties of each field on how Sugar should deal with it. It is defined as an
associative array, and it contains several pieces. At the top level, you find information
about the table as a whole, such as table name, whether the table provides auditing
and global search capabilities, and a description of the table’s purpose. This is
defined at the top level of the associative array.

Fields
Field definitions are defined in the 'fields' attribute of the array. Each field is a key
in this array and has several properties, as shown in Table 2-3.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2 ■ MVC ARCHITECTURE

25

Table 2-3. Attributes in the Fields Array Key of the vardefs

Attribute Default Setting Description

name -- The name of the field should be set to the same value as the key to
this fielddef.

vname -- The language pack id for the label of this field. This is used in the
metadata layer to provide a display label for the field.

type -- The type of the attribute:
'relate' represents a field in a related bean.

'datetime' is a date and time value.

'bool' is a boolean value.

'enum' is an enumeration field; the values are specified from the
from the language pack. 'char' is a character array.

'assigned_user_name' is a linked user name.

'varchar' is a variable sized string.

'link' provides a relationship to another module.

table -- The table this field comes from.

comment -- A description of what the field should represent.

isnull True Set this to false if the field is not allowed to store null values.

len -- Length of the field.

dbType same as type
attribute

The database type of the field; only specify if it needs to be
different than the 'type' attribute.

reportable True Set this to false if this field should not show up in the list of fields
for the reporting module (only applies to modules that are used in
the reporting module).

required False Set this to true if this field is a required field. In the EditView, the
field will be indicated as required and must have a valid value in
order to save.

Default -- The default value for this field.

massupdate True Set this to false if you do not want this field to show up in the Mass
Update section at the bottom of the List views.

CHAPTER 2 ■ MVC ARCHITECTURE

26

Attribute Default Setting Description

Unified_search false Set to true if you want this field searched when doing a unified
search on this module. Only applicable if the module vardef has
the 'unified_search' attribute set at the top level of vardef array.

rname -- The field from the related module that contains the value for this
field. (Used only when field type is relate.)

id_name -- The field from the module that stores the id for the related module.
(Used only when field type is relate.)

source Db Set this to 'non-db' if the field value does not come from the
database. This is designed to be used for the calculated field or if
the value for the field can be retrieved in some other way.

sort_on -- If this field represents concatenated values in the database, this
will specify what database field you should sort by.

fields -- If this field represents concatenated values in the database, this is
an array containing the fields that are concatenated. For example:
'fields' => array('first_name','last_name').

db_concat_fields -- If this field represents concatenated values in the database, this is
an array containing the fields to concatenate in the DB. For
example: 'db_concat_fields' =>
array('first_name','last_name').

importable True Set this to 'false' (either the string 'false' or the boolean false) if
the field is not able to be imported into, or set to 'required' if the
field is required for importing into.

options -- If the field is an enum type, this will be the key in the language
pack that specifies the enumerated values to use.

relationship -- For link type fields, this will be the name of the relationship
definition used to build this link.

Listing 2-12 provides a sample of a few fields that would be defined in the fields

section of the vardefs for the Applicants module you have begun to previously define.

Listing 2-12. Fields in the Applicants Module As Defined in the vardefs.php File

<?php

$dictionary['Applicants']['fields']['first_name'] = array(
 'name' => 'first_name',
 'vname' => 'LBL_FIRST_NAME',
 'type' => 'varchar',

CHAPTER 2 ■ MVC ARCHITECTURE

27

 'len' => '100',
 'comment' => 'First name of the applicant',
);
$dictionary['Applicants']['fields']['last_name'] = array (
 'name' => 'last_name',
 'vname' => 'LBL_LAST_NAME',
 'type' => 'varchar',
 'len' => '100',
 'comment' => 'Last lname of the applicant',
);
$dictionary['Applicants']['fields']['name'] = array (
 'name' => 'name',
 'rname' => 'name',
 'vname' => 'LBL_NAME',
 'type' => 'name',
 'fields' => array('first_name', 'last_name'),
 'sort_on' => 'last_name',
 'source' => 'non-db',
 'group'=>'last_name',
 'len' => '255',
 'db_concat_fields'=> array(0=>'first_name', 1=>'last_name'),
 'importable' => 'false',
);

$dictionary['Applicants']['fields']['referral_source'] = array (
 'name' => 'referral_source',
 'vname' => 'LBL_REFERRAL_SOURCE',
 'type' => 'enum',
 'options' => 'referral_source_dom',
 'len' => '100',
 'audited' => true,
 'comment' => 'Referral source of the application (Recruiter, Existing Employee,
 etc)',
 'merge_filter' => 'enabled',
);

$dictionary['Applicants']['fields']['position_id'] = array(
 'name' => 'position_id',
 'vname' => 'LBL_POSITION_ID',
 'type' => 'id',
 'isnull' => 'true',
 'reportable' => false,
 'massupdate' => false,
 'duplicate_merge'=> 'disabled',
 'comment' => 'ID field of the position in the Positions module'

);

$dictionary['Applicants']['fields']['position_name'] = array(
 'name' => 'position_name',
 'rname' => 'name',
 'id_name' => 'position_id',

CHAPTER 2 ■ MVC ARCHITECTURE

28

 'vname' => 'LBL_ACCOUNT_NAME',
 'type' => 'relate',
 'table' => 'positions',
 'isnull' => 'true',
 'module' => 'Positions',
 'dbType' => 'varchar',
 'len' => '255',
 'source' => 'non-db',
 'unified_search' => false,
 'comment' => 'Name field of the position in the Positions module'

);

You have defined the first and last name fields in the table, and also have added a
field for the name field which should be the concatenation of the first and last name
fields. However, this field is only available in the bean and will not be stored in the
database. You also defined an enum field for storing the referral source, which comes
from a preset list that is in the 'referral_source_dom' entry in the language pack. You
then created a related field to the Positions module. The position_id field will be
stored in this table and will be used to reference the position this applicant is related
to. The position_name field value will come from the Positions module.

Indexes
Index definitions are in the 'indices' key of the array, and represent all of the indexes
in the table. Each of the array entries in this list does not have keys. Table 2-4 outlines
the specification of the attributes for the index definitions.

Table 2-4. Attributes in the Indices Array Key of the vardefs

Attribute Description

Name Name of the index, as you want it to exist in the database.

Type primary is the primary index for table, there should only be one of these.
unique adds a constraint that only unique values are allowed for the fields this index uses.
index is a standard index on table, useful for speeding up searches and sorting

alternate_key, same as index.
foreign is a key that links a field in one table to a field in another, adding a constraint to

the values that can be used in the field. If the database or table does not support foreign
keys then a regular index will be created instead.

fulltext is a fulltext index, useful for doing full text searches on a table. If the database or
table does not support fulltext indexes then the index will be skipped.

Fields An array that specifies the field that makes up the index, in the order you want them
indexed. For example: 'fields' => array('id','name','deleted'),.

Db Set to one of mysql, mssql, or oracle if you only want the index in that respective database.
Defaults to setting the index in all databases.

CHAPTER 2 ■ MVC ARCHITECTURE

29

Listing 2-13 is an example of some indexes for the aforementioned applicants
module, as they would be defined in the vardefs files.

Listing 2-13. Sample Indices in the vardefs.php File

<?php

$dictionary['Applicants']['indices'][] = array(
 'name' =>'applicantspk',
 'type' =>'primary',
 'fields'=>array('id')
);

$dictionary['Applicants']['indices'][] = array(
 'name' =>'idx_applicants_name',
 'type' =>'index',
 'fields'=>array('last_name','first_name'))
);
$dictionary['Applicants']['indices'][] = array(
 'name' =>'idx_applicants_name_unique',
 'type' =>'unique',
 'fields'=>array('last_name','first_name','position_id'))
);

You defined three indices for the table. The first one is your primary index, which
is on the id field, and is the main identifier for the record in the table. Next, you create
an index on the applicant’s name in last_name then first_name order. Finally, you
add an unique index to the table which incorporates the applicant name plus the id
of the position he is applying for, which will help you avoid having duplicate records
in the database.

Relationships
Relationships are in the 'relationships' array key, and show the relationships from
this module into other modules in the application. Each relationship listed in Table
2-5 should have a link field also in the 'fields' section of the vardefs to reference it.

CHAPTER 2 ■ MVC ARCHITECTURE

30

Table 2-5. Attributes in the Relationships Array Key of the vardefs

Attribute Description

lhs_module The module on the left-hand side of the relationship.

lhs_table The table on the left-hand side of the relationship.

lhs_key The primary key column of the left-hand side of the relationship.

rhs_module The module on the right-hand side of the relationship

rhs_table The table on the right-hand side of the relationship.

rhs_key The primary key column of the right-hand side of the relationship.

relationship_type The type of relationship, which can be one of one-to-one, one-to-
many, many-to-one, or many-to-many.

relationship_role_column The type of relationship role.

relationship_role_column_value Defines the unique identifier for the relationship role.

join_table For many-to-many relationships, this specifies the name of the join
table.

join_key_lhs For many-to-many relationships, this is the key in the join table that
joins to the lhs_key in the lhs_table table.

join_key_rhs For many-to-many relationships, this is the key in the join table that
joins to the rhs_key in the rhs_table.

relationship_role_column One-to-many relationships set an additional field in the rhs_table to
be used to match the record. This is most commonly used in flex
relate fields, where one field is used to provide a relationship to
several different modules. You’ll learn more about flex relate field
when you build your sample application in Chapter 11.

relationship_role_column_value For one-to-many relationships, used in conjunction with the
'relationship_role_column' field. It sets what the value should be of
that additional field in the rhs_table, which is used to match the
record.

Let’s build a few relationships for the Applicants module you have been working

with in this section. Listing 2-14 shows how you would define them in the vardefs.

CHAPTER 2 ■ MVC ARCHITECTURE

31

Listing 2-14. Sample Relationships Defined in the vardefs.php File

<?php

$dictionary['Applicants']['relationships']['applicants_modified_user'] = array (
 'lhs_module' => 'Users',
 'lhs_table' => 'users',
 'lhs_key' => 'id',
 'rhs_module' => 'Applicants',
 'rhs_table' => 'applicants',
 'rhs_key' => 'modified_user_id',
 'relationship_type' => 'one-to-many',
);

$dictionary['Applicants']['relationships']['applicants_notes'] = array (
 'lhs_module' => 'Applicants',
 'lhs_table' => 'applicants',
 'lhs_key' => 'id',
 'rhs_module' => 'Notes',
 'rhs_table' => 'notes',
 'rhs_key' => 'parent_id',
 'relationship_type' => 'one-to-many',
 'relationship_role_column' => 'parent_type',
 'relationship_role_column_value' => 'Applicants',
);

The first relationship is a standard one, setting the one-to-many relationship
between the Users and Applicants table for the purpose of tracking the user who last
modified the record. The second relationship allows you to assign notes to the
applicants records. Since the Notes module uses a flex relate field so that you can
specify more than one type of module to relate the note to, you specify the role
column and value of 'Applicants' to help further qualify the relationship.

Database Layer
SugarCRM supports three different database management systems (DBMS) by
default: MySQL, Microsoft SQL Server, and Oracle. Sugar provides an abstraction
layer to each of the PHP interfaces to the individual databases. This enables database
agnostic programming in each of the bean classes.

As of Sugar 5.5, the following database extensions listed in Table 2-6 are
supported.

CHAPTER 2 ■ MVC ARCHITECTURE

32

Table 2-6. Supported Database Extensions

Extension Description Notes

mysql PHP mysql driver Designed for MySQL 4.0 and earlier, but will work with
any version of MySQL.

mysqli PHP mysql improved driver Designed for and works with MySQL 4.1+.

oci8 Oracle OCI8 driver

mssql PHP Microsoft SQL Server driver Does not support full UTF-8 character set; deprecated.

dblib FreeTDS driver Can be downloaded at
http://www.sugarforge.org/frs/?group_id=6.

sqlsrv Microsoft SQL Server Driver for
PHP

Added in Sugar 5.5; does not have complete UTF-8
support, but will in the future.

As stated earlier, the database layer is designed in such a way that it is very

agnostic, so you should never need to make calls to the actual database later
functions, but rather use the exposed class methods for doing all the work needed. In
Listing 2-15 shows an example of making a query from the users table, iterating
through the results, and making and updating the records if needed.

Listing 2-15. Iterating Through the Users Table Using the Database Layer Methods

<?php

$db = DBManagerFactory::getInstance();

$res = $db->query("select * from users");

while ($row = $db->fetchByAssoc($res)) {
 // remove the admin privilege from any non-active users
 if ($row['status'] != 'Active') {

 $db->query("update users set is_admin = 0 where id = '{$row['id']}'");

 }
}

The query method of the database object executes a query to the database,
returning back a resource handle for the result. Then you can iterate through the
result set, grabbing each row using the fetchByAssoc() method. One handy part of

CHAPTER 2 ■ MVC ARCHITECTURE

33

this method is that by default the html encodes any data coming back to the user,
which can be disabled if this is not needed. This eliminates another headache by
preventing cross site scripting (XSS) attacks when the content may include dangerous
javascript code that is invisible to the user.

Sugar Before MVC
Sugar modules are often referred to in two categories, MVC and pre-MVC. The pre-
MVC modules are part of Sugar 4.5.1 and earlier, and didn’t use the very structured
application structure for routing the request. While the request URL would look the
same using index.php as the entrypoint and the request variables 'module' and
'action' to route the request, it would rely on a PHP file existing in the root of the
module directory to point the request to. This made a lot of extra work for creating
very common views, as I’ll talk about in the Chapter 3.

 One nice part about the transition from pre-MVC to MVC modules in Sugar is
that the pre-MVC style is still supported in SugarCRM versions 5.0 and later. You can
also mix and match styles within a module, with some actions using the pre-MVC
style and others using the MVC style. This gives module developers some flexibility in
the transition to the newer module design. However, it is recommended to not build
new modules or enhance older ones using that pattern since it may be dropped in the
future.

Summary
In this chapter, you learned about the MVC framework, both what traditional MVC
design pattern is and how Sugar does MVC with the application. You took an in-
depth look at the request flow of the application through a request, and saw how easy
it is to customize this to meet your needs. You also took a look at what Sugar offers
out of the box in terms of actions, so that you can reuse these in your modules easily.
You finished up by taking a look at entrypoints in the application and how you can
use those with the MVC framework as well.

The MVC framework is one very major aspect of the overall SugarCRM platform.
In Chapter 3, you’ll look at the metadata framework, which aims to simplify the
building of common views in the applications, such as the Edit, Detail, and List views,
removing the need for us to build and maintain them manually.

CHAPTER 2 ■ MVC ARCHITECTURE

34

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 3

■ ■ ■

35

Metadata Layer

Often times, the core of what a module does follows the Create, Retrieve, Update, and
Delete (CRUD) pattern. These modules also use the same basic forms for each of
these actions. Frequently, developers copy and paste the exact same basic code to
handle each time they create a new view, just changing the names input types of the
actual fields shown. This can be very cumbersome and tedious, and updates to
certain field types (such as a calendar widget) would have to be made across the
codebase, which can be quite an undertaking.

Up until Sugar 5.0, this is what the developer had to deal with when building the
most common views in use: the EditView, DetailView, and ListView. With the advent
of Sugar 5.0, this model was changed so the layout of these common views can be
defined in a metadata file, so that it is easier to build and maintain these forms. I’ll
talk about the metadata layer in regard to the various ways it is used. This model also
hooks in directly with the visual development tools of Studio and Module Builder,
which I will talk more about in Chapters 6 and 9.

Let’s start with the prime example where metadata is used to define the
DetailView and EditView.

DetailView and EditView
The main data entry form for SugarCRM is known as the EditView. This form serves
the purpose of both creating new records and updating existing records. Upon a
successful save, it redirects to the DetailView, which is a read-only view at the record.
Both of these forms work in conjunction with one another to provide the primary way
to interact with a record for a module. Both the Detail and Edit views within the Sugar
MVC model are predefined to use metadata to build the forms that display to the
user. They do this by using the EditView class (defined at
include/EditView/EditView2.php) for the EditView, and then extends that class into
the subclass DetailView (defined at include/DetailView/DetailView2.php) for
building the DetailView. Each of these classes work the same way.

CHAPTER 3 ■ METADATA LAYER

36

The first step is to set up the view by loading the metadata file. It is structured as
an associative array that is part of the global $viewdefs array. The schema has two
parts: the templateMeta section lays out some general parts to the form, as shown in
Table 3-1. The other part is the form section, which is in the next section.

Table 3-1. The templateMeta Section of the Edit and Detail viewdefs

Parent Attribute Attribute Default Description

preRow none HTML code to insert before the form
element.

form buttons array('SAVE','CANCEL') for the
EditView
array('EDIT','DUPLICATE',
'DELETE') for the DetailView

An array of buttons that appear at the top
of the form. The following buttons are
predefined and available by specifying
the string as the array value:
'SAVE': Save button (EditView only).
'CANCEL': Cancel button (EditView only).
'DELETE': Delete current record button.
'DUPLICATE': Duplicate the current
record (DetailView only).
'EDIT': Go to the Editview for the current
record (DetailView only).
'CONNECTOR': Button to enter the wizard
for merging in data from a connector. If
you want to use custom code to define
your button, you can do so in an array
and specify the 'customCode' attribute to
specify your button’s code. Example:
array('customCode' => '<input
type=.....',).

form hidden array() Array of html hidden input elements to
put in the form.

form hideAudit false True if you want to hide the audit button.

form headerTpl null Set to the path of the header template file
you want to use in place of the default.

form footerTpl null Set to the path of the footer template file
you want to use in place of the default.

form links array() Array of links to put at the top of the
form.

maxColumns 2 Number of columns of fields for the
form.

CHAPTER 3 ■ METADATA LAYER

37

Parent Attribute Attribute Default Description

widths Auto-calculated based upon
the number of columns in the
forms.

Defined as an array, one element for each
column, and a 'field' key for the width
of the field and a 'label' key for the
width of the label. Example:
array('0' =>
array('label'=>'10','field'=>'30'),
'1' =>
array('label'=>'10','field'=>'30'),).

The next part of the viewdefs contain the field definitions. These are also defined

in associative arrays, but are grouped by sections and then by rows. Grouping by
sections allows you to make a multi-section form, grouping together fields that are in
common. Furthermore, grouping by rows gives users the ability to dictate the exact
placement of the elements on the form. If you’ve defined your form to be two
columns wide and have two sections, the 'panels' section of the vardefs for the
Accounts detailview would look something like Listing 3-1.

Listing 3-1. Fields Section of viewdefs for Two Column Form

<?php

$viewdefs['Accounts']['DetailView']['panels'] = array(

 'default' => array(

 array(

 'name',
 'phone_office'
),
array(
 'parent_name',
 'account_type'
),
),

 'lbl_account_information' => array(

 array(
 'ownership',
 'rating'
),
 array(
 'industry',
 'sic_code'
),
 array(
 'employees',
 'annual_revenue'
),

CHAPTER 3 ■ METADATA LAYER

38

),

);

The preceding would have two sections to the form, one would be the 'default'
section while the second would use the string 'lbl_account_information' from the
module language strings. The layout would be two columns wide, with the main
information in the top of the form and the rest in the second section of the form.
When rendered, it would look similar to Figure 3-1.

Figure 3-1. Accounts Detail View as customized by viewdefs in Listing 3-1

Now that you see how easy it is to build a form layout for a module, let’s look at
how the internals of the DetailView and EditView rendering work.

How the DetailView and EditView Classes Work
The control of the layout of these forms is driven by the DetailView2.php and
EditView2.php files which contain the DetailView and EditView classes. (Note that
there are also DetailView and EditView classes in the DetailView.php and
EditView.php classes as well, but these are used for the pre-5.0 DetailView and
EditView templates.) It does the job of parsing the viewdefs, building the templates
files, and populating the fields in several steps. Figure 3-2 is a diagram showing how
the basic flow works.

CHAPTER 3 ■ METADATA LAYER

39

Figure 3-2. EditView/DetailView class flow

The first part of the work occurs in the render() method, which is called at the
beginning of the process() method. This method will do the actual processing of the
viewdef file, which it will begin by going through and laying out all the panels and
fields as they have been defined. It will also calculate the column widths so that the
form layout will be consistent across the form. This only occurs once, however, when
the form is ready to be displayed. The main rendering is stored in the
cache/modules/modulename/ directory when the form is processed by Smarty
(http://www.smarty.net), which is an html template tool.

Next let’s look at the process() method, where the request variables and the
module’s vardefs are processed. The first part handles the request variables, setting
certain ones such as 'return_module', 'return_action', and 'return_id' to class
variables which will be later set as hidden form values in the template. The next part
iterates through the fields, formatting it for the display as each field type requires.
Date and time fields are formatted and converted to be in the correct date and time
format and in the correct time zone. For enum and multienum fields, the process()
method will go through and populate the options that are part of the select dropdown

CHAPTER 3 ■ METADATA LAYER

40

that displays on the form; it will grab the values from the $app_list_strings language
pack array based upon the key given in the 'options' attribute. It also has a hook so
that if the field name is passed as a request variable, then it will populate the field
with that value. For example, if the $_REQUEST['name'] is set to 'John' then the field in
the form will be set to that value.

Finally, the last part occurs in the display method, which actually builds the
template. This is done in two parts: the first part does the initial parsing of the
templates (the header and footer templates, as well as the main section template) and
outputs it to the cache/modules/modulename/ directory. This template will be built
according to the viewdef definitions, and will only need to be built once as it is stored
in the cache directory after it’s built. That cached template is then used as the basis
for the second part, where the field values are filled into the form. The second part of
the build then takes the cached output from part one and fills in the field values; this
template will be displayed to the user.

Each of the fields in the EditView and DetailView forms are built from common
templates, which are integrated into the template during the first parsing of the
template. These field templates come from the SugarField templates, which you’ll
look at next.

SugarFields
Each field shown in the forms, whether they are the EditView, DetailView, or Search
Form is built for the type of field it is using in the SugarFields field templates. The
nice part about this system is that you can have a consistent display every time the
field type is displayed.

The SugarFields are located in the include/SugarFields/Fields/ directory. Each
field is based off of the Base field definition, which has default templates for each of
the EditView, DetailView, and SearchForms widgets, as well as class named
SugarFieldBase. The hooks display the correct template depending upon the view
that is requesting it. Other fields are based upon this definition, but only need to
specify what’s different from the base template or the template that the field is
derived from. For example, the 'Phone' field type only specifies an override for the
DetailView template, if the Skype integration is enabled so the display will be a link
instead of just text. Listing 3-2 shows the code.

Listing 3-2. Phone SugarField DetailView Template

{if !empty({{sugarvar key='value' string=true}})}
{assign var="phone_value" value={{sugarvar key='value' string=true}} }
{sugar_phone value=$phone_value }
{/if}
{{if !empty($displayParams.enableConnectors)}}
{{sugarvar_connector view='DetailView'}}
{{/if}}

CHAPTER 3 ■ METADATA LAYER

41

In the same way, you can also modify the display of any of the built-in field types,
by simply dropping a copy of the corresponding file inside the
custom/include/SugarFields/Fields/fieldname/ directory. For example, if you would
want to change the way the 'Link' field displays on the DetailView, you would simply
add the code in Listing 3-3 to the file
custom/include/SugarFields/Fields/Link/DetailView.tpl.

Listing 3-3. DetailView Template Override for the 'Link' Field Type

{if !empty($vardef.value)}
{$vardef.value}
{/if}

The previous code would always have links opened in a new window, regardless
of any settings that may be in the vardefs.

In the same way, you can also define custom field types. Let’s say instead of
changing the default link template code, you want to define a different type of link
field that always defaults to opening the link in a new page. To do this, you could
simply create a new directory in the custom/include/
SugarFields/Fields/ directory called Newpagelink, and copy the DetailView.tpl
template shown in Listing 3-3 to that directory.

Relate, one type of SugarField, is used when specifying a record to relate the
current record to. Part of this field is a 'Select' button, which displays a popup
window to select the record to relate to. The Popup form you see is also very
definable through metadata, as you’ll see in the next section.

ListViews
The default view for most modules is the ListView, which provides a listing of records
currently in the module. It also has both a basic search for quickly locating records, as
well as a more in-depth search form for building more detailed queries, which gives
an option to save the search terms for later use. Using the ListView form it is also
possible to do mass updates of records with ease (see Listing 3-4).

Listing 3-4. Listviewdefs.php for the Calls Module

$listViewDefs['Calls'] = array(
 'SET_COMPLETE' => array(
 'width' => '1',
 'label' => 'LBL_LIST_CLOSE',
 'link' => true,
 'sortable' => false,
 'default' => true,
 'related_fields' => array('status')),
 'DIRECTION' => array(
 'width' => '10',
 'label' => 'LBL_LIST_DIRECTION',

CHAPTER 3 ■ METADATA LAYER

42

 'link' => false,
 'default' => true),
 'NAME' => array(
 'width' => '40',
 'label' => 'LBL_LIST_SUBJECT',
 'link' => true,
 'default' => true),
 'CONTACT_NAME' => array(
 'width' => '20',
 'label' => 'LBL_LIST_CONTACT',
 'link' => true,
 'id' => 'CONTACT_ID',
 'module' => 'Contacts',
 'default' => true,
 'ACLTag' => 'CONTACT'),
 'PARENT_NAME' => array(
 'width' => '20',
 'label' => 'LBL_LIST_RELATED_TO',
 'dynamic_module' => 'PARENT_TYPE',
 'id' => 'PARENT_ID',
 'link' => true,
 'default' => true,
 'sortable' => false,
 'ACLTag' => 'PARENT',
 'related_fields' => array('parent_id', 'parent_type')),
 'DATE_START' => array(
 'width' => '15',
 'label' => 'LBL_LIST_DATE',
 'link' => false,
 'default' => true,
 'related_fields' => array('time_start'),
),
 'ASSIGNED_USER_NAME' => array(
 'width' => '2',
 'label' => 'LBL_LIST_ASSIGNED_TO_NAME',
 'default' => true),
 'STATUS' => array(
 'width' => '10',
 'label' => 'LBL_STATUS',
 'link' => false,
 'default' => false),
);

Table 3-2 outlines the many things you can customize.

CHAPTER 3 ■ METADATA LAYER

43

Table 3-2. Listviewdef Attribute Options

Attribute Description

width Width of the field.

label Language pack label to use for the column header.

link True if this field will be a link; defaults to false.

default True, if this field is in the default ListView. False, if it’s not in the default ListView,
but can be added later.

sortable False if this column is not sortable, defaults to true.

related_fields Array of fields that are used in conjunction with the given field to display it. A
common use is for relate fields to list the other fields needed to help grab the field
values.

Id For relate fields, this is the id in the current module that provides a link to the
other module.

dynamic_module For flex relate fields, this is the field containing the module name you are relating
to.

module For relate fields, this is the name of the module to relate to.

ACLTag This is the module used to verify if the user has access to the related module
according to the ACL.

Sortable and default attributes are used most often. Having the sortable attribute
set to false can be very handy for fields that are calculated, since often these field are
impossible to sort correctly using SQL statements in the Listview. The default
attribute allows you to set up a list of 'default' and 'available' fields, so that the
user is presented by default with the most sensible list of fields to have, yet has the
ability to tweak the layout as needed. The user can tweak the fields he or she wishes
to show or hide using a special section inside the Advanced Search search panel (
Figure 3-3).

CHAPTER 3 ■ METADATA LAYER

44

Figure 3-3. Customizing the ListView

The first two columns control the display and hidden columns for the ListView.
You can also set the default sort order and direction in the 'Order by column' and
'Direction' fields. Once you have the search set where you want it, you can then save
it here as well.

Speaking of the search form, this is also a part of the ListView that can be easily
customized. Let’s see how it works.

Defining Search Fields
One major component of the ListViews is the search boxes at the top of the list. The
search forms allow you to filter down records in the ListView below it, as well as save
these parameters for later use.

SugarCRM’s search implementation has two sets of search boxes: a basic search
with a small number of common used fields and an advanced search that provides
more exhaustive search options. There’s no restriction on the usage of these sets of
search fields, but the intention is to have the default set of search fields consist of only
those that are most commonly used, such as searching by name. The advanced
search view is designed to provide a more exhaustive search, with options for
searching by most of the fields existing in the table. The advanced search page will
also contain a widget for changing the fields displayed in the ListView form, as well as
saving the current search so that it can be accessed later. However, it is
recommended to add database indexes for any fields you plan to search on, which
you learned how to do back in Chapter 2.

The searchdefs.php metadata file looks very similar to the editviewdefs.php and
detailviewdefs.php file, as you can see in Listing 3-5, which shows the searchdefs.php
file for the Accounts module.

Listing 3-5. Searchdefs.php Metadata File for the Accounts Module

$searchdefs['Accounts'] = array(
 'templateMeta' => array(
 'maxColumns' => '3',
 'widths' => array(
 'label' => '10',
 'field' => '30'

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 3 ■ METADATA LAYER

45

),
),
 'layout' => array(
 'basic_search' => array(
 'name',
 'billing_address_city',
 'phone_office',
 array('name' => 'address_street', 'label' =>'LBL_BILLING_ADDRESS', 'type' =>

 'name' , 'group'=>'billing_address_street'),
 array('name'=>'current_user_only', 'label'=>'LBL_CURRENT_USER_FILTER',

 'type'=>'bool'),
),
 'advanced_search' => array(
 'name',
 array('name' => 'address_street', 'label' =>'LBL_ANY_ADDRESS', 'type' =>

 'name'),
 array('name' => 'phone', 'label' =>'LBL_ANY_PHONE', 'type' => 'name'),
 'website',
 array('name' => 'address_city', 'label' =>'LBL_CITY', 'type' => 'name'),
 array('name' => 'email', 'label' =>'LBL_ANY_EMAIL', 'type' => 'name'),
 'annual_revenue',
 array('name' => 'address_state', 'label' =>'LBL_STATE', 'type' => 'name'),
 'employees',
 array('name' => 'address_postalcode', 'label' =>'LBL_POSTAL_CODE', 'type' =>

 'name'),
 array('name' => 'billing_address_country', 'label' =>'LBL_COUNTRY', 'type' =>

 'name', 'options' => 'countries_dom',),
 'ticker_symbol',
 'sic_code',
 'rating',
 'ownership',
 array('name' => 'assigned_user_id', 'type' => 'enum', 'label' =>

 'LBL_ASSIGNED_TO', 'function' => array('name' => 'get_user_array', 'params' =>

 array(false))),
 'account_type',
 'industry',
),
),
);

Just like the editviewdefs and detailviewdefs, you can just specify the name of the
vardef field to use, or specify it as an array if you need to make changes to the default
implementation of the field in that view. The array options are the same as the
detailviewdefs and editviewdefs. The big difference with the searchdefs.php
metadata file is that there is a 'layout' attribute instead of the 'panels' attribute,
which has two options of 'basic_search' and 'advanced_search' for specifying the
fields on those search forms.

CHAPTER 3 ■ METADATA LAYER

46

Field Overlays”
Sometimes you would like to deliver a bit more information to the user about a
record, but do not want them going to DetailView to get to it. Fortunately, the
ListViews allow you to define text that would appear in a popup when the user hovers
over a field in the ListView, which can pull its contents from the current record’s field
values.

This metadata file works differently than the other ones. You will specify a
function to call, whose name is in the format of 'additionalDetailsobjectname'
which will return back an array. The array attributes, shown in Table 3-3, will provide
the definition of the field overlays.

Table 3-3. additionalDetails Function Return Array Attributes

Attribute Description

String The text to show in the field overlay.

width Optional, the width of the field overlay popup. Defaults to 300px.

editLink Optional, the link to go to when clicking on the 'edit' button in the field overlay title.

viewLink Optional, the link to go to when clicking on the 'view' button in the field overlay title.

fieldToAddTo Name of the field in the EditView to add the field overlay to.

On the ListView page, you’ll see a dropdown arrow icon, which indicates the

additional details overlay available.
The reason this metadata file works differently than the others is that often the

'string' attribute is a calculated value. The function is passed an array of the values
of the various fields in the module for that record, so in turn you can build the text to
show in the popup. Listing 3-6 shows an example of this function, in this case the one
used to build the field overlay for the Bugs module.

CHAPTER 3 ■ METADATA LAYER

47

Listing 3-6. additionalDetails.php Metadata File for the Bugs Module

function additionalDetailsBug($fields)
{
 static $mod_strings;
 global $app_strings;
 if(empty($mod_strings)) {
 global $current_language;
 $mod_strings = return_module_language($current_language, 'Bugs');
 }

 $overlib_string = '';

 if(!empty($fields['DATE_ENTERED']))
 $overlib_string .= ''. $app_strings['LBL_DATE_ENTERED'] . ' ' .

$fields['DATE_ENTERED'] . '
';
 if(!empty($fields['SOURCE']))
 $overlib_string .= ''. $mod_strings['LBL_SOURCE'] . ' '

 . $fields['SOURCE'] . '
';
 if(!empty($fields['PRODUCT_CATEGORY']))
 $overlib_string .= ''. $mod_strings['LBL_PRODUCT_CATEGORY'] . '

 ' . $fields['PRODUCT_CATEGORY'] . '
';
 if(!empty($fields['RESOLUTION']))
 $overlib_string .= ''. $mod_strings['LBL_RESOLUTION'] . '

 ' . $fields['RESOLUTION'] . '
';
 if(!empty($fields['DESCRIPTION'])) {
 $overlib_string .= ''. $mod_strings['LBL_DESCRIPTION'] . '

 ' . substr($fields['DESCRIPTION'], 0, 300);
 if(strlen($fields['DESCRIPTION']) > 300)
 $overlib_string .= '...';
 $overlib_string .= '
';
 }
 if(!empty($fields['WORK_LOG'])) {
 $overlib_string .= ''. $mod_strings['LBL_WORK_LOG'] . '

 ' . substr($fields['WORK_LOG'], 0, 300);
 if(strlen($fields['WORK_LOG']) > 300)
 $overlib_string .= '...';

 }

 return array('fieldToAddTo' => 'NAME',
 'string' => $overlib_string,
 'editLink' =>

"index.php?action=EditView&module=Bugs&return_module=Bugs&record={$fields['ID']}",
 'viewLink' =>

"index.php?action=DetailView&module=Bugs&return_module=Bugs&record={$fields['ID']}"
);
}

CHAPTER 3 ■ METADATA LAYER

48

Figure 3-4 shows the final product of the additionalDetails.php file in the Bugs
module Listview. It is activated by clicking the down arrow icon at beginning of the
row.

Figure 3-4. Additional Details field overlay

Subpanels
As you learned in Chapter 2, modules can be related to other modules in many kinds
of ways. One-to-one relationships are typically expressed using a related id field in
each module, providing one record to another. One-to-Many relationships for the
child module are usually expressed the same way, providing an id field for holding
the id of the parent module’s record in the child module’s record. Working with these
kinds of relationships will often use the 'relate' or 'parent' field type in the
DetailView, which I showed earlier in this chapter when I talked about the various
field types.

However, when expressing a many-to-many relationship, or the showing related
child records in a parent module’s record in a one-to-many relationship, you need to
use a different paradigm that can show all the related records to the current record.
For this, you will recycle the ListView used before, but this time make it part of the
DetailView form. This allows working with the ListView to be more interactive. Figure
3-5 shows the various relationship types available.

CHAPTER 3 ■ METADATA LAYER

49

Figure 3-5. Diagram illustrating the different relationship types available

CHAPTER 3 ■ METADATA LAYER

50

There are two parts to building a subpanel. The first part is defining the actual
structure of the subpanel itself. These definitions are stored in the subpanels/
directory inside the metadata directory. The default subpanel definition is stored in
the default.php file in that directory; an example of how one would look is in Listing
3-7, where you see how the default Contacts module subpanel is defined. The second
part is discussed in the next section.

Listing 3-7. Default Subpanel Definition for the Contacts Module

$subpanel_layout = array(
'top_buttons' => array(
array('widget_class' => 'SubPanelTopCreateButton'),
array('widget_class' => 'SubPanelTopSelectButton', 'popup_module' => 'Contacts'),
),

'where' => '',

'list_fields' => array(
'first_name'=>array(
'name'=>'first_name',
'usage' => 'query_only',
),
'last_name'=>array(
'name'=>'last_name',
'usage' => 'query_only',
),
'name'=>array(
'name'=>'name',
'vname' => 'LBL_LIST_NAME',
 'sort_by' => 'last_name',
 'sort_order' => 'asc',
'widget_class' => 'SubPanelDetailViewLink',
'module' => 'Contacts',
'width' => '23%',
),
'account_name'=>array(
'name'=>'account_name',
'module' => 'Accounts',
'target_record_key' => 'account_id',
'target_module' => 'Accounts',
'widget_class' => 'SubPanelDetailViewLink',
'vname' => 'LBL_LIST_ACCOUNT_NAME',
'width' => '22%',
'sortable'=>false,
),
'account_id'=>array(
'usage'=>'query_only',
),
'email1'=>array(
'name'=>'email1',
'vname' => 'LBL_LIST_EMAIL',
'widget_class' => 'SubPanelEmailLink',

CHAPTER 3 ■ METADATA LAYER

51

'width' => '30%',
'sortable'=>false,
),
'phone_work'=>array (
'name'=>'phone_work',
'vname' => 'LBL_LIST_PHONE',
'width' => '15%',
),
'edit_button'=>array(
'vname' => 'LBL_EDIT_BUTTON',
'widget_class' => 'SubPanelEditButton',
'module' => 'Contacts',
'width' => '5%',
),
'remove_button'=>array(
'vname' => 'LBL_REMOVE',
'widget_class' => 'SubPanelRemoveButton',
'module' => 'Contacts',
'width' => '5%',
),
),
);

There are three distinct parts to the subpanel definition:

• 'top_buttons' attribute: An array defining the buttons to appear at
the top of the subpanel grid. These come from the templates in the
include/generic/SugarWidgets/ directory, as specified by the
'widget_class' attribute.

• 'where' attribute: A string that allows the subpanel to pass an
additional condition to the WHERE clause of the underlying SQL
query that will build the subpanel.

• 'list_fields' attribute: An associative array of the fields to show
in the subpanel. It follows a similar pattern to the
detailviewdefs.php and editviewdefs.php.

There are a few interesting things to note in the subpanel definition. First off, each
field that is not just displaying text must indicate which SugarWidget it is using to
render the field. The most common SugarWidget used is the
'SubPanelDetailViewLink', which is used to provide a link to the given record or to a
related record. In the case of a related record, the 'target_module' field is used to
specify the related field’s module, and the 'target_record_key' field is used to
provide the id record in the current module that relates to the other module. One
thing you may have noticed is that this field is also in the subpanel definition, even
though it is not shown. It is used in the building of the query that populates the
subpanel fields, so give the option 'usage' and set it to 'query_only' to be sure that
you don’t show it in the table. The edit and remove buttons also have their own
widgets.

CHAPTER 3 ■ METADATA LAYER

52

Once you have the subpanel definition built, you can now add a reference to it in
the subpaneldefs.php file, which is located in the module’s metadata/ folder. This is
an associative array, that is keyed off the $layout_defs global variable. For each
subpanel you wish to have, you’ll add an entry to it in the subpaneldefs.php file.
Listing 3-8 shows an example of an entry in this file. In this case, it is for the Quotes
subpanel in the Contacts module.

Listing 3-8. Quotes Subpanel As Defined in the Contacts Module subpaneldefs.php File

$layout_defs['Contacts']['subpanel_setup']['quotes'] => array(
 'order' => 50,
 'module' => 'Quotes',
 'sort_order' => 'desc',
 'sort_by' => 'date_quote_expected_closed',
 'subpanel_name' => 'default',
 'get_subpanel_data' => 'quotes',
 'add_subpanel_data' => 'quote_id',
 'title_key' => 'LBL_QUOTES_SUBPANEL_TITLE',
 'get_distinct_data' => true,
 'top_buttons' => array(array('widget_class' => 'SubPanelTopCreateButton'))
);

The preceding subpanel definition is rather straightforward. You indicate the link
field (quotes) and module you are relating to (Quotes). You also specify a default sort
field and order in to use when displaying the subpanel. Of course, this can be
changed by the user just as he or she can change the sort order of a ListView by
clicking the column header. You also have an opportunity to change the buttons
which will be displayed at the top of the form, in case you want to change from the
'top_buttons' attribute as in the subpanel definition.

Sometimes, the module subpanel may want to be displayed differently depending
upon the situation in which it is used. For this, you can define an additional subpanel
definition file with a different name in the same subpanels/ directory, and then from
the subpaneldefs.php file, you can reference this by name. Listing 3-9 is an example
of the Contracts subpanel in the Documents module.

Listing 3-9. Contracts Subpanel As Defined in the Documents Module
subpaneldefs.php File

$layout_defs['Contacts']['subpanel_setup']['contracts'] => array(
 'order' => 20,
 'sort_order' => 'desc',
 'sort_by' => 'name',
 'module' => 'Contracts',
 'subpanel_name' => 'ForDocuments',
 'get_subpanel_data' => 'contracts',
 'add_subpanel_data' => 'contract_id',
 'title_key' => 'LBL_CONTRACTS_SUBPANEL_TITLE',
 'top_buttons' => array(),
);

CHAPTER 3 ■ METADATA LAYER

53

You specify the subpanel definition file to use by giving its file name in the
'subpanel_name' attribute.

Pulling it all together, you have a complete subpanel built. Figure 3-6 shows an
example of the Contacts subpanel in the Accounts module.

Figure 3-6. Contacts subpanel in the Accounts module

Summary
In this chapter, you explored the major parts of the metadata framework. You began
by looking at the editviewdefs.php and detailviewdefs.php files, and saw how those
build the main forms used in the module. You then looked at ListViews, saw how they
are built, as well as looked at the additional components of them, such as the Search
boxes and the additional details field overlays. You finally looked at the subpanels,
showing how to construct them in the module, as well as add them to the desired
related module’s DetailView form.

You have looked at the two major components in the platform, the MVC and
metadata framework. Let’s now move on to learning how SugarCRM can interact
with other applications using its rich Web Services framework.

CHAPTER 3 ■ METADATA LAYER

54

www.allitebooks.com

http://www.allitebooks.org

C H A P T E R 4

■ ■ ■

55

Web Services

One of the biggest questions about any application built in the last few years revolves
around Web Services. Does the application support it? How can an application
interact with it? What methods are supported? Web Services are one of the most
popular ways to not only have your application interact with other applications, but
they also serve as tools for the outside world to interact with you.

What Are Web Services?
A Web service is defined by the W3C as “a software system designed to support
interoperable machine-to-machine interaction over a network.” You usually use Web
Services in terms of an API that can be accessed over a network. In the old days, this
incorporated technologies such as Object Management Group’s (OMG) Common
Object Request Broker Architecture (CORBA), Microsoft’s Distributed Component
Object Model (DCOM), or SUN’s Java/Remote Method Invocation (RMI). As the web
has grown in the last few years, newer protocols have grown to take the place of these
outdated technologies.

With this growth of Web Services, a few different standards have emerged. One
standard is the Simple Object Access Protocol (SOAP) standard, which allows calls
towed services just like they were local objects and libraries. It’s a very popular Web
Service protocol since it is very easy to integrate at the code level, and because most
languages have SOAP support which treats the SOAP calls just like they are normal
local function calls. It’s a highly structured standard, however, using XML as a
messaging format that is quite verbose. It’s often considered very heavyweight for
many tasks, since the actual response is a small portion of the returned payload.

Another major standard is Representational State Transfer (REST), which is a
much leaner Web Services format. It’s actually considered more of software
architecture, but is most commonly used in the Web Services context when using the
HTTP verbs of GET, POST, and DELETE to interact with another application. It’s a
very loosely defined standard. There’s no explicit requirement to use any sort of
messaging format or structure for the data being transferred. The formats are more

CHAPTER 4 ■ WEB SERVICES

56

often determined by the application requirements. Formats such as HTML and JSON
are often used when interacting with other common web applications since it’s easy
to consume, while XML is many times used when specifying an external API.

SugarCRM is built in mind with being “open,” both in terms of allowing other
applications to access SugarCRM data and also allowing SugarCRM to consume data
from other applications. To do this, SugarCRM has provided a SOAP API for quite
some time, and in Sugar 5.5 has enhanced that API and also added a REST API to the
mix. In addition, Sugar 5.2 added a Connectors framework, which opens SugarCRM
to the infinite amount of consumable data existing on the web. Let’s take a look at
how this framework works, and how you can add new Web Services to be able to be
consumed by SugarCRM.

Connectors
The Cloud Connector framework is designed to provide an abstract layer around a
connector, so essentially your own databases would just be considered another
connector alongside any SOAP or REST connector. By abstracting out the connector
layer they can then be swapped in and out seamlessly. These connectors can then be
loaded by a factory and returned and called based on their interface methods. In the
Community Edition, the framework will allow the placement of “hover” icons on
fields in a record’s DetailView. These “hover” icons may link to external Web Services
or widgets to retrieve additional information. It also includes support for LinkedIn’s
Company Insider widget in the Community Edition release. In the Professional
Edition and Enterprise Edition, the system will also contain additional connectors
(both contain connectors for Hoovers and Jigsaw) and have the ability to merge the
data into existing records.

The main components for the connector framework are the factories, source, and
formatter classes. The factories implement the Factory pattern, returning the
appropriate source or formatter instance for a connector. The sources are responsible
for encapsulating the retrieval of the data as a single record, or a list of records, of the
connectors. The formatters are responsible for rendering the display elements of the
connectors.

Let’s see how a connector is built.

Building the Connector Source
The sources are the centerpiece of the connector framework” . The class name of the
source should be prefixed with either "ext_soap_" or "ext_rest_" because the "_"
character serves as a delimiter into the file system for the class to be found. For
example, a SOAP implementation for a source we call "Test" will have the class name
"ext_soap_test" and a REST implementation will have the class name

CHAPTER 4 ■ WEB SERVICES

57

"ext_rest_test". There are two categories of sources, one for REST and one for SOAP,
which the connector class must extend from.

 The connector class has two methods it must implement: getItem() and getList().
The methods work just as you would expect; getList() will return a list of records for
the given arguments passed to it, while getItem() returns a single record passed upon
the same argument criteria. The important thing for your connector is to be able to
identify a unique identifier for each record provided by the service. This may be an
actual unique id like a GUID, an email address, or specially formatted record. What’s
important is that each record can be uniquely indentified. This is important for the
getList() method since the returned array is multidimensional, and expects each
record array key to be that unique identifier. It’s also important for the getItem()
method, since this method will often be called when you know the exact record you
want, and will specify it by id. Listing 4-1 shows an example of how your connector
might look for simple rest-based service that returns json data.

Listing 4-1. Sample Connector Source Definition

require_once('include/connectors/sources/ext/rest/rest.php');

class ext_rest_sample extends ext_rest
{
 protected $service_url = 'http://example.com/rest/';

 public function getItem($args=array(), $module=null)
 {
 $curl = curl_init($this->service_url.'item/');
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($curl, CURLOPT_POST, true);
 curl_setopt($curl, CURLOPT_POSTFIELDS, $args);
 $curl_response = curl_exec($curl);
 curl_close($curl);

 return json_decode($curl_response);
 }

 public function getList($args=array(), $module=null)
 {
 $curl = curl_init($this->service_url.'list/');
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($curl, CURLOPT_POST, true);
 curl_setopt($curl, CURLOPT_POSTFIELDS, $args);
 $curl_response = curl_exec($curl);
 curl_close($curl);

 $ids = json_decode($curl_response);
 $returnArray = array();
 foreach ($ids as $id)
 $returnArray[$id] = $this->getList(array('id'=>$id));

CHAPTER 4 ■ WEB SERVICES

58

 return $returnArray;
 }
}

Here you use the PHP curl library to make the REST calls. There are two REST
services: http://example.com/rest/list/ is used for getting a list of records and
http://example.com/rest/item/ is used for grabbing a particular record, both using
HTTP POST. You make the calls, then translate the results back to a PHP array using
the json_decode() function. For the getList() method, you actually leverage the
getItem() method to help fill in the individual record array’s values.

As mentioned earlier, these functions expect the records formatted a certain way.
For the getItem() method, the returned array would look like Listing 4-2.

Listing 4-2. getItem() Array

Array(
 ['id'] => 19303193202,
 ['recname'] => 'SugarCRM, Inc',
 ['addrcity'] => 'Cupertino',
)

The getList() array is very similar, only adding another dimension to the array that
acts as a container to the array.

Listing 4-3. getList() Array

Array(
 [19303193202] => Array(
 ['id'] => 19303193202,
 ['recname'] => 'SugarCRM, Inc',
 ['addrcity'] => 'Cupertino',
),
 [39203032990] => Array(
 ['id'] => 39203032990,
 ['recname'] => 'Google',
 ['addrcity'] => 'Mountain View',
)
)

One other option is to provide a test interface for your connector. This is an
optional step where you may wish to provide functionality for your connector so that
it may be tested through the administration interface under the "Set Connector
Properties" section. It’s valuable to have since sometimes a Web Service may go
down or has changed its parameters, so this method can do a simple test to make
sure connectivity can be made to the Web Service. To enable testing for your
connector, set the connector class variable $_has_testing_enabled to true in the
constructor and provide a test() method implementation, as shown in Listing 4-4.

CHAPTER 4 ■ WEB SERVICES

59

Listing 4-4. Providing Testing Functionality for a Connector Source

require_once('include/connectors/sources/ext/rest/rest.php');

class ext_rest_sample extends ext_rest
{
 protected $service_url = 'http://example.com/rest/';
 protected $_has_testing_enabled = true;

 public function getItem($args=array(), $module=null)
 {
 $curl = curl_init($this->service_url.'item/');
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($curl, CURLOPT_POST, true);
 curl_setopt($curl, CURLOPT_POSTFIELDS, $args);
 $curl_response = curl_exec($curl);
 curl_close($curl);

 return json_decode($curl_response);
 }

 public function getList($args=array(), $module=null)
 {
 $curl = curl_init($this->service_url.'list/');
 curl_setopt($curl, CURLOPT_RETURNTRANSFER, true);
 curl_setopt($curl, CURLOPT_POST, true);
 curl_setopt($curl, CURLOPT_POSTFIELDS, $args);
 $curl_response = curl_exec($curl);
 curl_close($curl);

 $ids = json_decode($curl_response);
 $returnArray = array();
 foreach ($ids as $id)
 $returnArray[$id] = $this->getList(array('id'=>$id));

 return $returnArray;
 }

 public function test()
 {
 $item = $this->getItem(array('id'=>'1'));
 return !empty($item['firstname']) && ($item['firstname'] == 'John');
 }
}

CHAPTER 4 ■ WEB SERVICES

60

Defining the Fields from the Web Service”
Just like you defined a vardefs.php file for the database table in Chapter 2, you also
will define one here to describe the fields coming back from the connector.

Each key value in the array from the getList() and getItem() methods should be
mapped to this vardefs.php, and it is contained within the source. The format is
similar to the one before, as you can see in Listing 4-5.

Listing 4-5. vardefs.php for a Connector

<?php
$dictionary['ext_rest_test'] = array(
 'comment' => 'vardefs for test connector',
 'fields' => array (
 'id' => array (
 'name' => 'id',
 'vname' => 'LBL_ID',
 'type' => 'id',
 'hidden' => true
 'comment' => 'Unique identifier'
),
 'addrcity' => array (
 'name' => 'addrcity',
 'input' => 'bal.location.city',
 'vname' => 'LBL_CITY',
 'type' => 'varchar',
 'comment' => 'The city address for the company',
 'options' => 'addrcity_list',
 'search' => true,
),
)
);
?>

One difference from the vardefs.php you used with database tables is the addition
of the 'input' key for the addrcity entry. The 'input' key allows for some internal
argument mapping conversion that the source uses. The period (.) is used as a
separator to map the input value into an Array. In the example of the addrcity entry,
the value bal.location.city will be translated into the Array argument
['bal']['location']['city']. The 'search' key for the addrcity entry may be used for the
search form in the connector data merge wizard screens available for the professional
and enterprise editions.

CHAPTER 4 ■ WEB SERVICES

61

You can also define a mappings.php file, which helps with the mapping process of
the fields as they come from the connector to how they exist in the database. One way
this is done is by specifying the mapping of source values for a field to how you use
them in the database. You’ll note the 'options' key for the addrcity entry. This
'options' key maps to an entry in the mapping.php file. The mappings.php also can
specify specific module field mappings, in case the fields would map differently
based upon the module you are using. Listing 4-6 shows an example mappings.php
file.

Listing 4-6. Sample mappings.php File

$mapping = array (
 'beans' => array (
 'Contacts' => array (
 'id' => 'id',
 'addrcity' => 'primary_address_city',
),
 'Accounts' => array (
 'id' => 'id',
 'addrcity' => 'billing_address_city',
),
),
 'options' => array (
 'addrcity_list' => array (
 '001' => 'sjc', //San Jose
 '032' => 'sfo', //San Francisco
),
),
);
?>

Here you change your field mapping based upon which module the connector
will be using. In the case of the Contacts module, the 'addrcity' field will map to the
'primary_address_city' field. However, this field does not exist in the Accounts
module, so you’ll map to the 'billing_address_city' field instead. In addition, you
have provided a way to map given addrcity values to those you would use inside
Sugar.

Formatters
The optional formatter components are used by the connector framework to render
the ‘Cloud View’ window that may display additional details and information. Out of
the box, they are shown in the DetailView screens for modules that are enabled for
the connector. Like the source class, the formatter class has a corresponding factory
class (FormatterFactory). The formatters also follow the same convention of using the
"ext_rest_" or "ext_soap_" prefix. However, to distinguish conflicting class names, a
suffix "_formatter" is also used. Formatters extend from default_formatter.

CHAPTER 4 ■ WEB SERVICES

62

By default, the formatter will look for a default.tpl in the tpls/ directory of the
connector, which it will render in the first field of the DetailView. It’s a simple Smarty
template that can supply the information the record is connected to inside the
DetailView. (As you may remember from Chapter 3, these are templates SugarCRM
uses for handling displaying the user interface to the client.) Listing 4-7 shows the
formatter used for the LinkedIn connector.

Listing 4-7. LinkedIn Connector Formatter

<div style="visibility:hidden;" id="linkedin_popup_div"></div>
<script src="{{$config.properties.company_url}}" type="text/javascript"></script>
<script type="text/javascript" src="{sugar_getjspath

 file='include/connectors/formatters/default/company_detail.js'}"></script>
<script type="text/javascript">
function show_ext_rest_linkedin(event)
{literal}
{

var xCoordinate = event.clientX;
var yCoordinate = event.clientY;
var isIE = document.all?true:false;

if(isIE) {
 xCoordinate = xCoordinate + document.body.scrollLeft;
 yCoordinate = yCoordinate + document.body.scrollTop;
}

{/literal}

cd = new CompanyDetailsDialog("linkedin_popup_div", '<div id="linkedin_div"></div>',

 xCoordinate, yCoordinate);
cd.setHeader("{$fields.{{$mapping_name}}.value}");
cd.display();
linked_in_popup = new LinkedIn.CompanyInsiderBox("linkedin_div",

 "{$fields.{{$mapping_name}}.value}");
{literal}
}
{/literal}
</script>

The default_formatter class will scan the tpls directory for a Smarty template file
named after the module that is being viewed. For example, the file
*formatters/ext/rest/linkedin/tpls/Accounts.tpl will be used for the Accounts popup
view if the file exists. If the module named template file is not found, it will attempt to
use a file named default.tpl.

CHAPTER 4 ■ WEB SERVICES

63

Localization
The connectors support localization through the use of language files placed in a
folder named language under the connector’s root folder. The file should declare a
key/value Array named $connector_strings. The vardefs.php entries will use the
standard 'vname' key to denote the label key in the language file. The configuration
labels shown in the administration screens use the key value in the config.php files to
render the label. Listing 4-8 provides an example of how this file would look.

Listing 4-8. Localization File for a Connector

$connector_strings = array (
 //vardef labels
 'LBL_ID' => 'ID',
 'LBL_FIRST_NAME' => 'First Name',
 'LBL_LAST_NAME' => 'Last Name',
 'LBL_JOB_TITLE' => 'Job Title',
 'LBL_IMAGE_URL' => 'Image URL',
 'LBL_COMPANY_NAME' => 'Company Name',
 //Configuration labels
 'url' => 'URL',
 'api_key' => 'API Key',
);

Pulling It Together
Sources also need to provide a config.php file that may contain optional runtime
properties, such as the URL of the SOAP WSDL file and API keys. These runtime
properties should be placed under the 'properties' array. At a minimum, a 'name'
key should be provided for the source (see Listing 4-9).

Listing 4-9. Sample config.php

<?php
$config = array(
 'name' => 'Test', //Name of the source
 'properties' => array(
 'TEST_ENDPOINT' => 'http://test-dev.com/axis2/services/AccessTest',
 'TEST_WSDL' => 'http://hapi-dev.test.com/axis2/test.wsdl',
 'TEST_API_KEY' => 'abc123',
),
);
?>

At this point, the directory structure for a rest based connector named 'test'
should look like the following:

custom/modules/Connectors/connectors/sources/ext/rest/test/test.php

custom/modules/Connectors/connectors/sources/ext/rest/test/vardefs.php

CHAPTER 4 ■ WEB SERVICES

64

custom/modules/Connectors/connectors/sources/ext/rest/test/config.php

custom/modules/Connectors/connectors/sources/ext/rest/test/mapping.php
(optional)

custom/modules/Connectors/connectors/sources/ext/rest/test/language/en_us.
lang.php (default English language file for localization)

custom/modules/Connectors/connectors/formatters/ext/rest/test/test.php

custom/modules/Connectors/connectors/formatters/ext/rest/test/tpls/test.gif
(optional)

custom/modules/Connectors/connectors/formatters/ext/rest/test/tpls/default.t
pl (optional)

You would exchange out 'soap' for 'rest' in the preceding pathnames if you
were building a SOAP-based connector.

Web Services API
The other half of the Web Services support in SugarCRM is the Web Services API,
which provides a way for external applications to interact with your Sugar instance.
SugarCRM has a SOAP API, which has opened up access to the internals of SugarCRM
in such a way where any application or programming language with a SOAP library or
SOAP capabilities can connect to Sugar. You’ll see shortly how in Sugar 5.5 it has
undergone a major transformation, greatly simplifying the interface, allowing it to be
easily customized, and adding a REST interface to complement the existing SOAP
interface.

One big step forward in your Web Services API in Sugar 5.5 is the addition of a
versioning and extensibility framework. With this, you can make changes to the Web
Services API that will not break any existing applications, since your application can
target a particular version of the API whose interface will remain constant. It also
makes it easier to customize the Web Services API with additional methods and
change the existing method definitions. These revisions can be tagged with a certain
version that will remain constant, even through upgrades to the application. Since
this is a separate framework from the SOAP API that existed in previous versions of
SugarCRM, Sugar 5.5 will continue to support backwards compatibility for Version 1
of your Web Services API.

CHAPTER 4 ■ WEB SERVICES

65

All the classes used to implement the Web Services live in a service directory. The
service directory contains the following subdirectories:

• core/: Contains all the core classes that the Web Services API are
derived from.

• REST/: Contains all the REST classes used for returning data in a
particular format, such as JSON, Serialized data, or RSS.

• v2/: Contains all the version 2 specific classes for SOAP and REST
implementation of the Web Services API.

In the v2/ directory, you will define the new entrypoints for the Web Services API.
The entrypoint code will look similar to Listing 4-10, which is the code used to define
the v2 SOAP entrypoint.

Listing 4-10. Web Service API Entrypoint for v2 SOAP Web Service

chdir('../..');
// name of the web service class
$webservice_class = 'SugarSoapService2';
// location of the above class
$webservice_path = 'service/v2/SugarSoapService2.php';
// name of class that is responsible for registering all the complex data types

 and functions available to call
$registry_class = 'registry';
// path to the above class
$registry_path = 'service/v2/registry.php';
// name of the implementation class for all the functions
$webservice_impl_class = 'SugarWebServiceImpl';
// location of the SOAP entrypoint (should be the URI to this script)
$location = '/service/v2/soap.php';

require_once('service/core/webservice.php');

To access the new version of the Web Services you will use the URL

http://sugar_root_url/
service/v2/soap.php to connect.

Now let’s look at how you can connect to the new Sugar Web Services API using
SOAP and REST.

SOAP
SOAP is probably the most used Web Services protocol. It provides a way of
exchanging structured information of application functionality. A SOAP interface can
be defined by its Web Service Description Language (WSDL) file, which simply
provides the definitions of all available methods to the client. One of the biggest
attractions to using SOAP as a Web Service over lighter weight services, such as REST,

CHAPTER 4 ■ WEB SERVICES

66

is that it makes interacting with remote Web Services as seamless as making local
function calls. It can do this because SOAP support in various languages mimic object
method calls, allowing use of built-in data types with them automatically making the
needed conversions between the data provided by a method to those used in the
class itself

I’ll focus on the newer version of SOAP interface in this book. SugarCRM will
continue to support backwards compatibility of the previous SOAP interface, which
has been in use for many versions now. I recommend you upgrade to the newer
libraries because they are much more efficient than the older libraries (less calls
needed to accomplish the same end results in the newer library versus the old), as
well as make it easier to write custom SOAP methods.

Let’s look at a few common actions and how to do them with the SOAP interface.
You’ll use the nusoap PHP SOAP library for all of the following examples, but they
should translate easily into the language/library of your choice.

Make a Connection
To begin, you need to connect to the service. You start this process by initializing the
SOAP object with the URL of the SOAP instance, then using the login method to
authenticate against the Sugar instance. Listing 4-11 provides the implementation.

Listing 4-11. Connecting to the Sugar Instance Using SOAP

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>$user_name,

'password'=>md5($user_password), 'version'=>'.01'), 'application_name'=>'SoapTest'));
$session = $result['id'];
// Get the user_id of the logged on user
$user_id = $soapclient->call('get_user_id',array('session'=>$session));

You pass the credentials that you are using to login to the instance using the
'user_auth' parameter of the login method. The array key 'user_name' specifies the
user name and the key 'password' specifies the password, which you need to pass
md5 encoded for added security. Returned from this method call, among other
things, is the session_id, which is returned as in the 'id' key element of the array.
This key is important, since you’ll need to pass it along as the first argument to all
further soap function calls.

One performance issue you have seen is when dealing with the WSDL file.
Loading it on every SOAP client call can degrade performance considerably. I have
seen up to 40 percent performance improvement by simply caching the WSDL file
locally, instead of loading it from the remote source every time. NuSOAP provide a
class to do such a thing, called wsdlcache, which integrates nicely into the NuSOAP
client (see Listing 4-12).

CHAPTER 4 ■ WEB SERVICES

67

Listing 4-12. Caching the WSDL File with NuSOAP

$cache = new wsdlcache("C:\temp", $cachelifetimeinseconds);
$wsdl = $cache->get("http://localhost/soap.php?wsdl");
if (is_null($wsdl)) {
 // Retrieve the WSDL file and store it in the cache
 $wsdl = new wsdl("http://localhost/soap.php?wsdl");
 $cache->put($wsdl);
} else {
 $wsdl->debug_str = '';
 $wsdl->debug('Retrieved from cache');
} // else
// instantiate the soap client using the cached wsdl file
$soapclient = new nusoapclient($wsdl, true);

You can see in Listing 4-12 how to establish a WSDL cache location and check to
see if the WDSL file you need is in the cache. If it isn’t, you can use the put() method
of the wsdlcache object to store the retrieved WSDL file. Finally, you specify the
wsdlcache object instance instead of a URL as the first parameter to the nusoapclient
constructor to use the cached WSDL file, rather than retrieving it from the remote
source every time. Note that using WSDL files are not required by this SOAP service.
It’s merely provided as a convenience. You could always choose not to pull the WSDL
file when you initiate the SOAP connection (in NuSOAP, you would pass false to the
second argument of the nusoapclient constructor).

Get Lists and Counts of Records
Now that you can establish a connection to the SOAP server, let’s try to actually query
the data there. A good place to start is by trying to get a count of records available for
a module. In Listing 4-13, you’ll do this for the Accounts module, returning the
number of non-deleted records back to you.

Listing 4-13. Get a Count of Records in a Module

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>

$user_name,'password'=>md5($user_password), 'version'=>'.01'),

 'application_name'=>'SoapTest'));
$session = $result['id'];
// Get the count of records
$result = $soapclient->call('get_entries_count',array('session'=>$session,

 'module_name' => 'Accounts', 'query' => '', 'deleted' => 0));
$count = $result['result_count'];

You initialize your SOAP instance and login, and then make the get_entries_count
SOAP call. You’ll pass the session id as a parameter, as well as the name of the module

CHAPTER 4 ■ WEB SERVICES

68

which you are querying. The query parameter to the call allows you to add extra
conditions to the records being counted. For example, you could set it to
'array('industry = 'Banking')' to return only accounts in the Banking industry.
The deleted parameter at the end specifies that you only want non-deleted records
counted.

Extending this example, let’s now actually get the records for a module. The SOAP
call you’ll use here is get_entry_list, which returns an array of fields for the given
parameter specified. Listing 4-14 shows an example of this in action for retrieving all
Contacts in the Sugar instance.

Listing 4-14. Get All Contacts in a Module

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>$user_name,

'password'=>md5($user_password), 'version'=>'.01'), 'application_name'=>'SoapTest'));
$session = $result['id'];
// Get the list of records
$result = $soapclient->call('get_entry_list',array('session'=>$session,'module_name'=>

'Contacts','query'=>'', 'order_by'=>'','offset'=>0,'select_fields'=>array(),

'link_name_to_fields_array' => '', 'max_results'=>10,'deleted'=>-1));
$records_returned = $result['result_count'];
$next_offset = $result['next_offset'];
$field_list = $result['entry_list'];

The actual records retrieved will be in the $field list array. The $records_returned
and $next_offset integer values are handy if you want to page the returned results—in
case you expect the result set to be large and want to handle it chunk by chunk (just
like the SugarCRM ListViews only deal with 20 records at a time). To handle the
paging, you can specify the 'offset' parameter to the get_entry_list method to the
result given by $next_offset, limiting the page set size by the 'max_results'
parameter. You’ll know when you’ve reached the end when the method call returns
no records or the $records_returned is less than the value used for 'max_results'.

Add a New Record
Adding a record is a fairly straightforward exercise. The set_entry method call is used
here, where you will specify an array of name/value pairs that each record should be
set to. Listing 4-15 has the code for this example.

Listing 4-15. Add a New Record with set_entry

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>$user_name,

CHAPTER 4 ■ WEB SERVICES

69

'password'=>md5($user_password), 'version'=>'.01'), 'application_name'=>'SoapTest'));
$session = $result['id'];
// Add the new record
$result = $soapclient->call('set_entry',array('session'=>$session,'module_name'=>

'Contacts', 'name_value_list'=>array(array('name'=>'last_name' , 'value'=>"Mertic"),

 array('name'=>'first_name' , 'value'=>'John'))));
$id = $result['id'];

The 'name_value_list' parameter you use is an array with each field specified.
The 'name' key in the subarray is the name of the field you’ll be setting, while the
'value' field is the value. The resulting record id is returned back in the 'id' key of
the $result array, which you quickly grab and store in a local variable.

You use the same method for also updating records. In this case, you just need to
specify what the id of the record to update is. Assuming the previous record was
successfully created in Listing 4-15, you’ll extend that example to update the newly
created Contact record with a title in Listing 4-16.

Listing 4-16. Add a New Contact Record and Then Update It

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>$user_name,

'password'=>md5($user_password), 'version'=>'.01'), 'application_name'=>'SoapTest'));
$session = $result['id'];
// Add the new record
$result = $soapclient->call('set_entry',array('session'=>$session, 'module_name'=>

'Contacts', 'name_value_list'=>array(array('name'=>'last_name' ,

 'value'=>"Mertic"), array('name'=>'first_name' , 'value'=>'John'))));
$id = $result['id'];
// Now change a field in the newly created record
$result = $soapclient->call('set_entry',array('session'=>$session,'module_name'=>

'Contacts', 'name_value_list'=>array(array('name'=>'id' , 'value'=>$id),

 array('name'=>'title' , 'value'=>'Author'))));
$id = $result['id'];

Let’s say you have a bunch of records to update or create in one shot for a
module. Instead of having to do several set_entry calls in a row, you can save yourself
the extra network time and use the set_entries method (notice that it’s plural) to do
several changes in one shot. The biggest difference is that now the 'name_value_list'
parameter becomes 'name_value_lists' (again, plural). Listing 4-17 has all the code
details.

Listing 4-17. Creating Multiple Records with set_entries

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>$user_name,

'password'=>md5($user_password), 'version'=>'.01'), 'application_name'=>'SoapTest'));

CHAPTER 4 ■ WEB SERVICES

70

$session = $result['id'];
// Specify the list of records to add
$name_value_lists[] = array(array('name'=>'last_name' , 'value'=>"Mertic"),

 array('name'=>'first_name' , 'value'=>'John'));
$name_value_lists[] = array(array('name'=>'last_name' , 'value'=>"Mertic"),

 array('name'=>'first_name' , 'value'=>'Dominic'));
$name_value_lists[] = array(array('name'=>'last_name' , 'value'=>"Mertic"),

 array('name'=>'first_name' , 'value'=>'Mallory'));
// Now add all the new records
$result = $soapclient->call('set_entries',array('session'=>$session,'module_name'=>

'Contacts', 'name_value_lists'=>$name_value_lists));
$ids = $result['ids'];

You specify the records to create or update the same way as before, but this time
wrap them in one more array, using that array as the value for the
'name_value_lists' parameter in the SOAP method call. The returned result is
similar as well, this time returning an 'ids' key with the array list of ids created
or updated.

Saving and Retrieving Attachments
Don’t let simple record creation stop you in your SOAP integration. You can also
upload and retrieve attachments as well, such as those used in the Notes module. You
do this as a secondary call instead of using set_entry, like you would for normal
record data. Here you use the set_note_attachment method to upload the actual file
to the Sugar instance record. Listing 4-18 shows you how to do this for the Notes
module.

Listing 4-18. Add a New Notes Record with an Attachment

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>$user_name,

'password'=>md5($user_password), 'version'=>'.01'), 'application_name'=>'SoapTest'));
$session = $result['id'];
// Add the new note record
$result = $soapclient->call('set_entry',array('session'=>$session,'module_name'=>

'Notes', 'name_value_list'=>array(array('name'=>'name' , 'value'=>"My new note"),

 array('name'=>'description' , 'value'=>'This is a note with a file attached to it'))));
$id = $result['id'];
// Now attach the file to the newly created note
$file = base64_encode(file_get_contents('attach.txt'));
$result = $soapclient->call('set_note_attachment',array('session'=>$session,

'note'=>array('id'=>$id, 'filename'=>'attach.txt','file'=>$file)));
$id = $result['id'];

CHAPTER 4 ■ WEB SERVICES

71

You create the file attachment from the local file named 'attach.txt'. You grab
the contents of it and base64 encode it for transport in the SOAP method call, passing
it under the parameter 'file'. You also need to specify the actual name of the file as
it should be stored on the server in the 'filename' attribute.

What comes in must come out as well, so the get_note_attachment method call
provides this functionality. Here you’ll assume the existence of record in the Notes
module already, and you’ll assume you already know the id of that record (which is
provided in the $id variable). Listing 4-19 shows the details on the more interesting
parts of the file retrieval process.

Listing 4-19. Grab a Given Notes Record Attachment

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>$user_name,

'password'=>md5($user_password), 'version'=>'.01'), 'application_name'=>'SoapTest'));
$session = $result['id'];
// Grab the given record's attachment
$result = $soapclient->call('get_note_attachment',array('session'=>$session,

'id'=>$note_id));
$file_contents = base64_decode($result['note_attachment']['file']);
$filename = $result['note_attachment']['filename'];
// Now store the contents in a local file
file_put_contents($filename,$file_contents);

The get_note_attachment method is very simple, returning back an array with all
the file details. Everything you are looking for is under the 'note_attachment' key,
with two subarray keys, 'file' and 'filename', giving you the actual file content (this
is base64 encoded, so you need to decode for your use), as well as the name of the file
as it existing in the Sugar instance. You take these two elements and use them with
the file_put_contents() method for saving the file on your local filesystem while also
using the same name as it was on the server.

Relate Records
One nice part about SugarCRM is the ability to have records from different modules
relate to one another. In the same way, the SOAP interface provides the same sort of
ability through the set_relationship method call. Listing 4-20 shows you how to do
this by relating a Contact to an Account record.

Listing 4-20. Relating a Contact with an Account Using SOAP

// Create the SOAP client instance
$soapclient = new nusoapclient('http://sugar_root_url/service/v2/soap.php?wsdl', true);
// Login to the server
$result = $soapclient->call('login',array('user_auth'=>array('user_name'=>$user_name,

CHAPTER 4 ■ WEB SERVICES

72

'password'=>md5($user_password), 'version'=>'.01'), 'application_name'=>'SoapTest'));
$session = $result['id'];
// Add the new Contact record
$result = $soapclient->call('set_entry',array('session'=>$session,'module_name'=>

'Contacts', 'name_value_list'=>array(array('name'=>'last_name' , 'value'=>"Mertic"),

 array('name'=>'first_name' , 'value'=>'John'))));
$contact_id = $result['id'];
// Add the new Account record
$result = $soapclient->call('set_entry',array('session'=>$session,

'module_name'=>'Accounts', 'name_value_list'=>array(array('name'=>'name' , 'value'=>

"John's House of Cards"))));
$account_id = $result['id'];
// Now relate the contact to the account
$result = $soapclient->call('set_relationship',array('session'=>$session,

'module_name' => 'Accounts', 'module_id' => $account_id, 'link_field_name' =>

 'contacts', 'related_ids' => array($contact_id)));

After you create the two new records, you relate them using the set_relationship
method. You first specify the parent module name and id in the 'module_name' and
'module_id' parameters. You then indicate which link field you are using to relate
with the target module. In the case of the Accounts module, the link field name for
the Contact module relationship is 'contacts' (refer to Chapter 2 for information on
this field type). Finally, you specify an array list of contact ids that should be marked
as being related to the given account_id in the related_ids parameter.

REST
A new addition to the Sugar Web Services framework in the 5.5 release is a REST
interface. This has been one of the more requested additions to the service, as it adds
a much more lightweight way for developers to gain access to data in a system in
comparison to the SOAP interface used in previous versions of SugarCRM. REST is
considered the preferable Web Services implementation for higher transactional Web
Services implementations (those where lots of calls are made to the Web Service at
once), but also when used with browser client-side implementations where all
rendering happens in the browser. SugarCRM’s implementation of REST makes this
even easier, using the Javascript native JSON format as the default return format for
all the Web Services calls made with the REST interface, and also using PHP serialized
data as an alternate type as well.

You can even define your own data type for input and output of data in the REST
interface by simply extending the SugarRest class inside the service/core/REST/
directory. Two methods need to be implemented: serve() decodes the data from the
REST method call as it is given, while generateResponse() is used to encode the
return data for returning it back to the client. You can mix and match input and
output types in the same REST call by specifying the 'input_type' and
'response_type' accordingly, so you could have json data inputted, but serialized
data returned.

CHAPTER 4 ■ WEB SERVICES

73

The examples you’ll use in this section will illustrate using the REST interface
from Javascript, using the Yahoo Interface Library’s connection object.

Logging in Using REST
Logging into the Sugar instance via REST uses the same method calls as you did
before when dealing with the SOAP interface, but this time of course you’ll need to
deal with the data a bit differently due to the different interface used. Listing 4-21
shows you how to do this.

Listing 4-21. Logging into the SugarCRM Using the REST Interface

var loginData = [{
 user_name: 'user',
 password: 'password'
},'javascriptTest'];
data = YAHOO.lang.JSON.stringify(loginData);
YAHOO.util.Connect.asyncRequest('POST', 'v2/rest.php' , {success:success},

 'method=login&input_type=json&response_type=json&rest_data='+data);

function success(o)
{
 var data = YAHOO.lang.JSON.parse(o.responseText);
 var session = data['id'];
 alert(session);
}

You’ve used the asyncRequest() method of the YUI Connect object to make the
REST call. The rest_data argument to the REST service is where you pass the data in.
You use the YUI JSON tools for properly preparing this data for use.

Otherwise, all of the previous examples from the SOAP interface equally apply to
the REST interface as well.

Custom Web Services
Before the release of 5.5 it was only possible to add new Web Services functionality by
modifying out of box core files. Each subsequent upgrade would then require the end
Sugar user to check to make sure the newest patch/upgrade being applied did not
have any files in conflict. In version 2 of the Web Services interface introduced with
SugarCRM 5.5, you now have an extensible framework which allows a developer to
add and distribute new Web Services functionality without the need to worry about
merging code with each patch/upgrade.

To do this, the following items are needed: create a custom registry, provide an
implementation class, and then add the SOAP or REST interface file. You’ll create
them in a new directory underneath the custom/services/ directory which you’ll call
v2_1 to help illustrate it as an extension of the existing library.

CHAPTER 4 ■ WEB SERVICES

74

Create a Custom Registry
First, you’ll need to provide your own registry.php file in the new directory previously
created. You’ll call it customregistry.php, and define it as a child class of the registry
class as shown in Listing 4-22.

Listing 4-22. customregisty.php

require_once('service/v2/registry.php');

class customregistry extends registry
{
 public function __construct($serviceClass)
 {
 parent::__construct($serviceClass);
 }

 protected function registerFunction()
 {
 parent::registerFunction();
 $this->serviceClass->registerFunction(
 'get_entry',
 array(
 'session' => 'xsd:string',
 'module_name' => 'xsd:string',
 'id' => 'xsd:string',
),
 array(
 'return' => 'xsd:string',
)
);
 }
}

The main change here is inside the registerFunction() method, where you add the
'get_entry' method to the available list of functions that can be used through this
Web Service. In the definition, you specify both the input parameters, as well as the
return type for the function. You also call the parent method definition as well, so
that you can include all the default functions in the main SOAP interface.

Provide an Implementation Class
Next, you’ll extend the SugarWebServiceImpl class to add in the new method which
you are exposing the client. Listing 4-23 shows this example.

Listing 4-23. SugarWebServiceImpl_v2_1.php

require_once('service/core/SugarWebServiceImpl.php');

class SugarWebServiceImpl_v2_1 extends SugarWebServiceImpl
{

CHAPTER 4 ■ WEB SERVICES

75

 public function get_entry($session, $module_name, $id)
 {
 return $id;
 }
}

As you can see, the get_entry method is really simple. It just returns back the

passed id.

Add soap.php and rest.php Files
Now you just need to provide the interface file for both SOAP and REST calls. You can
see them in Listings 4-24 and 25.

Listing 4-24. Example soap.php to be Accessed at custom/service/v2_1/soap.php

Chdir('../..');
$webservice_class = 'SugarSoapService2';
$webservice_path = 'service/v2/SugarSoapService2.php';
$registry_class = 'customregistry';
$registry_path = 'custom/service/v2_1/customregistry.php';
$webservice_impl_class = 'SugarWebServiceImpl_v2_1';
$location = '/custom/service/v2_1/soap.php';
require_once('service/core/webservice.php');

Listing 4-25. Example rest.php to be Accessed at http://sugar root
url/service/v2_1/rest.php

Chdir('../..');
$webservice_class = 'SugarRestService';
$webservice_path = 'service/v2/SugarRestService.php';
$registry_class = 'customregistry';
$registry_path = 'custom/service/v2_1/customregistry.php';
$webservice_impl_class = 'SugarRestServiceImpl_v2_1';
$location = '/custom/service/v2_1/rest.php';
require_once('service/core/webservice.php');

You just change the former definitions used to point to the correct locations of the
new files you created inside the service/v2_1/ directory.

Summary
In this chapter, you learned about the various Web Service integrations the
SugarCRM platform provides. You first looked at Connectors, a feature added in
Sugar 5.2 for interfacing directly into remote Web Services from your Sugar instance.
You then looked at the Web Services interface, which allows other applications to
easily interface into SugarCRM. You saw how easy both the inbound and outbound

CHAPTER 4 ■ WEB SERVICES

76

Web Services interfaces are to use and how you can easily customize them however
you wish.

In the next chapter, you’ll finish your dig into the innards of SugarCRM, taking a
look at some of the value added features and tools such as User Authentication,
Dashlets, and Themes.

C H A P T E R 5

■ ■ ■

77

More Platform Features

In previous chapters, you looked at the large features of the Sugar platform. Chapter 2
focused on the MVC framework, such as how requests are handled, how you can
control the output to the user, and how to interact with the database layer. Chapter 3
showed you the metadata framework, which provides a way to build the common
views of the application (namely the DetailView, EditView, and ListView) with ease
and consistency. Then in Chapter 4, you looked at how you can use Web Services by
consuming them within your Sugar instance, as well as how you can expose Web
Services from your Sugar instance to be consumed by other applications.

This chapter will focus on the “less major” features of the SugarCRM platform.
Think of this chapter as the miscellaneous drawer chapter of the book, where you’ll
look at several random features that are noteworthy enough to be mentioned in the
book, but don’t necessarily fit in any of the previous chapters. Things I’ll focus on
include user and team management, which is essential for any multi-user
application. You’ll also look at Dashlets, which provides a way to display data from
multiple sources on one page. I’ll then touch on sugar feeds, record importing and
exporting, themes, and the Sugar logger.

Let’s start off by looking at user management in SugarCRM.

User Management
A core feature of any multi-user application is user management. It’s often one of the
first concerns when building a new application, since having this enables security of
the application and also enables auditing of user actions. SugarCRM does this for
you, providing a very secure default authentication scheme, as well more advanced
LDAP authentication. LDAP authentication allows you to hook Sugar into your
company’s existing LDAP directory server (such as Active Directory) to provide
authentication.

By default, Sugar uses its built-in authentication and stores the users information
inside the database itself. Users can have many properties and preferences associated
with them, as you would expect. In the Admin panel, the User Management option

CHAPTER 5 ■ MORE PLATFORM FEATURES

78

allows you to create, edit, activate, and deactivate users in Sugar. You can create a
Sugar user, System Administrator, Group User, or Portal Only User. Table 5-1
describes the different user types.

Table 5-1. User Types in SugarCRM

User Type Description

Sugar User Can access and use Sugar modules but does not have administrative privileges.

System Administrator User who has administrative privileges in Sugar to perform tasks such as
creating users. The System Administrator has the rights to access all modules
and records.

Group User A bucket that is used for inbound emails, and does not count toward the
number of Sugar licenses that you purchase for your organization. For example,
when you create a group mail account for Support, a group user named Support
is created to handle customer support issues. Users can then distribute the
emails to other users from the group inbox.

Portal Only User Used by portals created in Sugar to access the system. Portal users do not count
toward the number of Sugar licenses that you purchase for your organization.

When you create a user, by default the system creates a Sugar user unless you

specify Administrator, Group User, or Portal Only User.
There are many things you can set on a user’s account, including preferences on

how things should work and look while they use the application. User preferences are
stored separately from the user itself as serialize and base64 encoded data. However,
it can be easily retrieved and updated using the getPreference() and setPreference()
methods of the User bean object. Since the user object for the currently logged on
user is always available through the $current_user global, you can get any user
preference you need easily. In Listing 5-1, you see how to look up the preference for
showing the module’s icon as the browser’s favicon and act accordingly.

Listing 5-1. Handling the User Preference module_favicon.

$user_module_favicon = $GLOBALS['current_user']->getPreference('module_favicon');
if(!isset($user_module_favicon))
if isset($GLOBALS['sugar_config']['default_module_favicon']))
 $user_module_favicon = $GLOBALS['sugar_config']['default_module_favicon'];
else
 $user_module_favicon = false;

CHAPTER 5 ■ MORE PLATFORM FEATURES

79

Here you check the current user’s preference for displaying the module’s icon as
the favicon instead of using the normal application favicon. If you cannot find the
preference, you fall back onto looking at the default setting in the $sugar_config, and
if it’s still not found you simply assume the setting to be false.

Once you have users, you need to control their access to the system. SugarCRM
provides an ACL system to do this.

ACL
With a multiuser system, there usually exists many different types of users. Some
users may be data entry people, who have little need for the management aspects of
the system and don’t need a bunch of options they’ll never use. Sales folks often have
the most restrictions, to keep them from accounting information that wouldn’t
pertain to them. Very few users need full access to the system (and nor would many
system administrators want them to).

ACLs are used to restrict access to Sugar modules, and the data and actions
available (e.g., “Delete” and “Save”) to users within Sugar modules. ACLs are defined
in the roles area of Sugar Admin panel, and can apply to any module in the system
and their actions. Sugar Professional and Enterprise Editions take this one step
further, allowing administrators to restrict user access down to specific fields, as well
as make certain users administrators of certain modules in the system, without
having to give them full admin level access to all modules.

You do ACL in SugarCRM by creating user roles. A role defines a set of
permissions to perform actions, such as viewing, editing, and deleting information.
Then you take these roles and apply them to users, which will affect the modules,
actions, and fields that they can see or interact with. Users can have zero or more
roles applied to them, which will apply the role rules on them in the order in which
they are defined. If a user is not assigned a role, they can, by default, access and take
any action in any module. Roles can also be assigned to more than one person, which
is handy for managing group and employee-level access permissions. For example, if
you want to prevent a group of users in your organization from accessing the
Opportunities module, you can create a role that restricts access to this module.
When you assign this role to an engineer, the individual will no longer be able to
access the Opportunities module. Or, you may want to assign junior sales
representatives to a role that allows them to view and edit opportunities, accounts,
and contacts but prevents them from deleting these records. The only user exempt
from roles is the System Administrator, who always has the right to access all
modules and records.

When you create a role, you specify whether access is permitted or not, the
modules that the role can access, the access type such as Normal (for regular Sugar
users) or administrator, and the actions that can be performed.

Setting up roles for a module involves the following steps:

CHAPTER 5 ■ MORE PLATFORM FEATURES

80

1. Identify the modules you wish to control access to. It’s best to
keep ACL rules specific in what their goals are, so you can
combine them with other roles to achieve the desired level of
access control for the user.

2. Set the Access Level for the module to one of the following
options:

3. Enabled: This permits the user to see the module.

4. Disabled: This hides the module from the user and prevents
them from accessing it.

5. Not Set: This does not change the existing setting for Access
Level.

6. Set the Access Type for the module. The options here are shown
in the following list:

7. Normal: Gives the user normal rights to the module.

8. Admin: Gives the user admin level privilege to the module, such
as changing the settings in the Admin panel and being able to
view, edit, and delete any record in the module.

9. Developer: Allows the user to make changes to the module
through Studio, Workflow Manager, and Dropdown Editor.

10. Admin and Developer: Combines the previous two privileges.

11. Not Set: Does not change the existing setting for Access Type.

12. Set the rights for the Delete, Edit, Export, Import, List, and View
permissions to one of the following settings:

13. All: Can perform the given action.

14. Owner: Only the owner of the record can perform the given
action.

15. None: Cannot perform the given action.

16. Not Set: Does not change the existing setting for the given action.

17. For Professional and Enterprise editions, you can set permission
for each field in the module as well to one of the following:
Read/Write, Read/Owner Write, Read Only, Owner Read/Owner
Write, None, or Not Set.

When a user is assigned multiple roles, the roles definitions are merged and the
more restrictive settings prevail. For example, if a user is assigned to two roles

CHAPTER 5 ■ MORE PLATFORM FEATURES

81

pertaining to one module where one role grants administrator access and the other
grants end-user access, the user has only end-user access. In this case, the end-user
access overrides the role with the administrative access because it is more restrictive.

A special case is the “Not Set” value in a role definition. You can use “Not Set” to
ensure that a role does not affect a particular setting. This allows simple roles to be
constructed and then combined to achieve the desired security level. For example, if
users are assigned to both the following roles:

Role A, where Access Type = Admin and Export (action) = None

Role B, where Access Type = Normal and Export (action) = All

Then, users can only see records that are assigned to them, but they cannot

export the data. If you change the Access Type to Not Set:

Role A, where Access Type = Admin and Export (action) = All

Role B, where Access Type = Not Set and Export (action) = None

Then the user can see all records in the module, but cannot export the data.

Password Management
The Password Management feature, which has been added in Sugar 5.5, enables
system administrators to create and manage system-generated passwords and
password rules for users. It first comes into play when a user is initially created. Here
system-generated passwords are automatically sent to new users when system
administrators create new user records. System administrators can also send new
passwords to users at anytime, giving them the ability to reset the password in case of
security issues with the application. You can also provide an expiration date for any
password that is automatically generated, forcing the user to reset his password soon
after he is issued a new password.

To help with password security, you can set requirements on what kind of
password can be used. You can set options for maximum and minimum length, as
well as the content of the password itself, such as requiring uppercase or lowercase
character, numbers, and symbols. If the default requirements aren’t enough, then a
regex can be provided that would enforce the rules of what is not allowed in a
password. Anytime a password is created, the rules for creating the username must
be followed. If not, then the user will be notified and the given password will not be
accepted.

A common problem for administrators is when users forget their password.
SugarCRM solves this problem by providing the users a Forgot Password link on the
Login page, so when the user gives his username and email address (and provided
both match an active user in the system) it will send a system-generated link to the
page where he can reset his password. You can also require a Captcha on the form, to

CHAPTER 5 ■ MORE PLATFORM FEATURES

82

prevent automated tools from requesting these new password requests. The system-
generated links for resetting passwords can be set with an expiration date as well, so
that they must be responded to in a short amount of time from when they are sent.
You can also custom the email templates used to send users system-generated
passwords and links to reset passwords to provide any additional information the
user may need. To help further protect your system from those trying to access it
without proper credentials, you can also enable the Login Lockout feature to lock
users out of the system after a specified number of failed login attempts.

All-in-all, SugarCRM now has a very robust password management scheme, that
both help ease the burden on administrators in managing user password, but also
helps users solve the common “I forgot my password” problem without IT
intervention each time. It also adds another level of security to user passwords, to
help avoid accounts being easily cracked into by enforcing configurable password
and login failure rules.

Tracking User Actions
Another important feature of any multi-user system is tracking user actions. This has
benefits both for users and administrators. While administrators have the ability to
track users and access patterns in the system, users also gain the ability to easily get
to recent records without having to search for them explicitly. SugarCRM does this all
automatically and transparently, giving administrators and developers a very useful
addition in managing their application.

Originally, SugarCRM would only track user actions of editing and/or viewing
data records. This functionality gave users a list of last viewed records on their screen,
which were links to access those records. With SugarCRM 5.1, this was greatly
enhanced to also track performance metrics, query metrics, and session information.
This kind of information is very useful for system administrators, so they can tweak
their systems for the best performance based upon their individual needs. It’s also
useful for managers, so they can see how much their employees are using the system
and what for.

The Tracker Reports dashlet provides a quick and easy way to access this
information (we'll talk about Dashlets later in this chapter). Shown in Figure 5-1, it
has a simple interface to find the common types of requests for Tracker data

CHAPTER 5 ■ MORE PLATFORM FEATURES

83

Figure 5-1. Tracker Reports dashlet

There are several reports available in this dashlet, namely:

• Last Ten Modified Records

• Show Active Users

• Active User Count

• Top User

• My Weekly Usage

• My Module Usage

• My Top Three Modules Used

• My Cumulative Login Time (this week)

• Users Cumulative Login Time (this week)

The Tracker backend is also very configurable. The Tracker Settings admin panel
allows disabling capturing certain Tracker actions, such as tracking page views,
session information, performance metrics, and query logging. You can also adjust the
slow query time threshold and the amount of time tracker data is stored. The main
reason for doing this would be for performance reasons, since operating the full slate
of metric tracking can be quite taxing on the system. Since many admins may not be

CHAPTER 5 ■ MORE PLATFORM FEATURES

84

interested in certain aspects of this at all times, disabling those items not used can
result in a noticeable performance increase.

Team Management
The Professional and Enterprise Editions of SugarCRM add on the ability to manage
users in groups of teams. This can be very handy for larger organizations, where there
are different groups of users that share the same responsibilities and work together
on projects. Teams in SugarCRM can have one or more users, and each user can have
one or more teams. Also, starting in SugarCRM 5.5 a record can belong to one or
more teams, allowing organizations to manage their information very effectively.

Depending on the needs of your organization, you can design your teams in many
ways. For example, based on the reporting hierarchy, you may want to create a team
of users who report to the same manager. Based on product management
requirements, you may want to create a cross-functional team of users who report to
different managers, but who manage the same product. By default, all Sugar records
such as accounts, contracts, and opportunities are assigned to a specific team and
can only be accessed by the members of that team.

As mentioned, a user can belong to one or more teams. When you create a user,
the system automatically creates a private team for the person. Any record that the
user creates, such as a contract or a quote, is assigned to the user’s private team by
default. Only the user can access and manage records assigned to this team. But the
user can assign a different team to manage the record. Managers can view any record
that their subordinates can view, even if the record is not assigned to the same team
the manager is a part of.

Users can be both explicitly and implicitly assigned to teams, and will appear as
either Member or Member Reports-to. When a user is manually, or explicitly,
assigned to a team, the user will appear as a member in the Membership column. For
example, Will and Chris both report to Jim. Will is a member of the East team; Chris is
a member of the West team. As a result, Jim will be an implicit member of both the
East and West teams.

When a user is manually assigned to a team, the user’s management reporting
hierarchy is implicitly added to the team as well. This ensures that members of the
user’s management hierarchy also have visibility over the records of the user in
question. Implicit members appear as Member Reports-to in the Membership
column. However, when a user becomes implicitly part of a team, they cannot be
removed manually from the team. Instead, you must remove them from the inherited
team. In the preceding example, to delete Jim from the West team either Chris must
be removed from the West team, or Chris must no longer report to Jim. You cannot
just remove Jim from the West team.

CHAPTER 5 ■ MORE PLATFORM FEATURES

85

In regard to teams, the new feature added in SugarCRM 5.5 is the ability to have
multiple teams for a record. This is handy in larger organizations, where a record
might have different parts of it that need to be used by different areas of the
company. For example, an Account record may need to be shared by the accounting
department, sales team, and the department that does the service work for the
account. By having multiple teams for a record, all three teams can share this record
between them. An additional fix to the multiple teams feature in Sugar 5.5 is the
ability to view records you are assigned to, even if the team you were a member of
didn’t have access to the record.

The team’s functionality in SugarCRM is flexible enough to handle any
organizations needs. It also is very easy to use, yet fast and powerful.

Dashlets
Reporting is an important part of any application for keeping on top of the data
within it. However, many reporting needs are pretty simple. What are my top ten
accounts? What calls need to be made today? Show me a chart of all the kinds of
opportunities I have. In a previous life as an in-house application developer for a
small company, many of these reports were built by hand, on demand, and would go
on for pages and pages. In the end, people would look at the first page and then move
on. This wasn’t just an inconvenience for the poor application developer, but also the
end-user who has to look through so many page to get the information they need.

To solve this problem, the SugarCRM home page is designed to be a dashboard, a
place where all kinds of different information is listed in a way that end users can see
what’s going on in one place. In Sugar 5.0, this has been very much extended by not
only enhancing the available Dashlets, but also allowing the user to group their
Dashlets into different tabs. Figure 5-2 shows the typical home page with Dashlets.

CHAPTER 5 ■ MORE PLATFORM FEATURES

86

Figure 5-2. Home page with Dashlets

From a developer’s perspective, there are many ways to customize here. Dashlets
are added at the module level and inside the Dashlets/ directory. Placing a
subdirectory underneath with the Dashlet’s name, and a PHP script with the child
class extended from the base, Dashlet class gets you started.

There are three principal types of Dashlets in Sugar:

• ListView dashlet: Displays lists of records like the ListViews or
subpanels do.

• Chart dashlet: Displays a chart to user using flash.

• Iframe dashlet: Displays a web page inside the dashlet.

Let’s break these down and see how you can build each one of them.

ListView Dashlet
For this, there is very little actual PHP code required. You require building the
subclass from the Dashlet class. Instead of directly inheriting from the Dashlet class,
however, you’ll instead inherit from the DashletGeneric class, which has all of the
common methods for this type of dashlet predefined. This enables you to use

CHAPTER 5 ■ MORE PLATFORM FEATURES

87

metadata to customize the dashlet, instead of having to rely on PHP code. Listing 5-2
shows the child class for the sample ApplicantsDashlet.

Listing 5-2. ApplicantsDashlet Class

require_once('include/Dashlets/DashletGeneric.php');
require_once('modules/ApplicantsDashlet/ApplicantsDashlet.php');

class ApplicantsDashlet extends DashletGeneric

{
 public function __construct(
 $id,

 $def = null
)

 {
 global $current_user, $app_strings;
 require('modules/ApplicantsDashlet/metadata/dashletviewdefs.php');

 parent::DashletGeneric($id, $def);

 if(empty($def['title'])) $this->title = translate('LBL_HOMEPAGE_TITLE',

'test_basic');

 $this->searchFields = $dashletData['ApplicantsDashlet']['searchFields'];
 $this->columns = $dashletData['ApplicantsDashlet']['columns'];

 $this->seedBean = new ApplicantsDashlet();
 }
}

All the constructor does here is point everything in the correct direction. You start
off by loading the definition file, which contains both the searchfields and the
columns for the dashlet. You also set the title and then the bean object for the
module.

The next part is defining the search and column fields. For this, you’ll have a
dashletviewdefs.php file in the module, defined in the metadata directory of the
module (see Listing 5-3).

Listing 5-3. ApplicantsDashlet Metadata

$dashletData['ApplicantsDashlet']['searchFields'] = array (
 'date_entered' =>
 array (
 'default' => '',
),
 'assigned_user_id' =>
 array (
 'type' => 'assigned_user_name',

CHAPTER 5 ■ MORE PLATFORM FEATURES

88

 'default' => 'Administrator',
),
);
$dashletData['ApplicantsDashlet']['columns'] = array (
 'name' =>
 array (
 'width' => '40%',
 'label' => 'LBL_LIST_NAME',
 'link' => true,
 'default' => true,
 'name' => 'name',
),
 'date_entered' =>
 array (
 'width' => '15%',
 'label' => 'LBL_DATE_ENTERED',
 'default' => true,
 'name' => 'date_entered',
),
 'assigned_user_name' =>
 array (
 'width' => '8%',
 'label' => 'LBL_LIST_ASSIGNED_USER',
 'name' => 'assigned_user_name',
 'default' => true,
),
 'date_modified' =>
 array (
 'width' => '15%',
 'label' => 'LBL_DATE_MODIFIED',
 'name' => 'date_modified',
 'default' => true,
),
);

You’ve defined four fields to display: the applicant’s name, the date he was
entered into the system, to whom the applicant is assigned to, and the date the
applicant record was last modified. You’ve also enabled searching by date entered
and assigned user id. The display of this is just like the standard ListView, as you can
see in Figure 5-3.

Figure 5-3. ApplicantsDashlet ListView

CHAPTER 5 ■ MORE PLATFORM FEATURES

89

You can refresh the dashlet data by clicking the refresh icon in the title bar (the
one that has two arrows in a circle), which grabs the updated data in an ajax request.
Clicking the X icon will remove the dashlet from the page. You can get to the
configuration dialog for the dashlet by clicking the pencil icon, which brings up a
window that looks like Figure 5-4.

Figure 5-4. ApplicantsDashlet options dialog

The first part of the dialog allows customizing the dashlet itself, such as changing
the title, number of rows to display, and the columns to show. The next part
incorporates the searchFields you previously defined, allowing you to customize the
display dashlet records results. One item that is always added is the 'My Items Only'
checkbox, which is handy to filter out other users records in case you are making
Dashlets of items just for yourself. These can all be customized via the metadata file
shown previously in Listing 2-2.

Chart Dashlets
Chart Dashlets work similarly to the Listview Dashlets, the only difference being in
the display of the Dashlet itself. Here you use the display method of the bean to build
and display the chart itself. The SugarCharts class can be used for doing this because

CHAPTER 5 ■ MORE PLATFORM FEATURES

90

it has chart templates for many different kinds of charts, such as bar charts, line
charts, pie charts, and funnel charts. The display method of the Dashlet child class
handles all the building of this, from grabbing the data from the database to
displaying it to the end user, as you can see in Listing 5-4.

Listing 5-4. display() method from the OutcomeByMonthDashlet

 public function display()
 {
 $currency_symbol = $GLOBALS['sugar_config']['default_currency_symbol'];
 if ($GLOBALS['current_user']->getPreference('currency')){
 require_once('modules/Currencies/Currency.php');
 $currency = new Currency();
 $currency->retrieve($GLOBALS['current_user']->getPreference('currency'));
 $currency_symbol = $currency->symbol;
 }

 require("modules/Charts/chartdefs.php");
 $chartDef = $chartDefs['outcome_by_month'];

 require_once('include/SugarCharts/SugarChart.php');
 $sugarChart = new SugarChart();
 $sugarChart->setProperties('',
 translate('LBL_OPP_SIZE', 'Charts') . ' ' . $currency_symbol . '1'

 .translate('LBL_OPP_THOUSANDS', 'Charts'),
 $chartDef['chartType']);
 $sugarChart->base_url = $chartDef['base_url'];
 $sugarChart->group_by = $chartDef['groupBy'];
 $sugarChart->url_params = array();
 $sugarChart->getData($this->constructQuery());
 $sugarChart->is_currency = true;
 $sugarChart->data_set = $sugarChart->sortData($sugarChart->data_set, 'm', false,

 'sales_stage', true, true);
 $xmlFile = $sugarChart->getXMLFileName($this->id);
 $sugarChart->saveXMLFile($xmlFile, $sugarChart->generateXML());

 return $this->getTitle('<div align="center"></div>') .
 '<div align="center">' . $sugarChart->display($this->id, $xmlFile, '100%',

 '480', false) . '</div>
';
 }

 /**
 * @see DashletGenericChart::constructQuery()
 */
 protected function constructQuery()
 {
 $query = "SELECT sales_stage,".
 db_convert('opportunities.date_closed','date_format',array("'%Y-
%m'"),array("'YYYY-MM'"))." as m, ".
 "sum(amount_usdollar/1000) as total, count(*) as opp_count FROM opportunities ";
 $query .= " WHERE opportunities.date_closed >= ".db_convert("'".$this-
>obm_date_start."'",'datetime') .

CHAPTER 5 ■ MORE PLATFORM FEATURES

91

 " AND opportunities.date_closed <= ".db_convert("'".$this-
>obm_date_end."'",'datetime') .
 " AND opportunities.deleted=0";
 if (count($this->obm_ids) > 0)
 $query .= " AND opportunities.assigned_user_id IN ('" . implode("','",$this-
>obm_ids) . "')";
 $query .= " GROUP BY sales_stage,".
 db_convert('opportunities.date_closed','date_format',array("'%Y-
%m'"),array("'YYYY-MM'")) .
 " ORDER BY m";

 return $query;
 }

Here you’ve refactored out the actual query building into the constructQuery()
method. You feed it directly into the SugarChart::getData() method to handle the
entire chart build process. Displaying the chart you can see is a two-part process. You
first output the xml data used to build the chart into the cache directory, then,
secondly, you feed it back into the SugarChart::display() method, which displays the
chart as an Adobe Flash animation. You can see this in action in Figure 5-5.

Figure 5-5. OutcomeByMonth

CHAPTER 5 ■ MORE PLATFORM FEATURES

92

Iframe Dashlets
This is a really simple kind of dashlet that just displays a web page to the end user
inside an iframe. There’s no coding required for this dashlet. You simply add the 'My
Portal' dashlet to your Home page then set the URL you want it to point at in the
configuration options.

While any web page can be used inside this dashlet, it’s really best to suit only
certain types of content inside it. One type of content is mobile web pages. They are
typically designed for small screens like phones and tablets. Since the proportions of
the iframe in this dashlet is in the same situation, it’s an excellent choice for iframe
dashlets (see Figure 5-6).

Figure 5-6. Google Talk dashlet

To create the preceding Google Talk dashlet, you can simply set the URL for the
dashlet to http://talkgadget.google.com/talkgadget/popout in the options dialog
for the dashlet.

CHAPTER 5 ■ MORE PLATFORM FEATURES

93

Custom Dashlets
You can build any kind of dashlet using the dashlet framework. The only requirement
is to extend the Dashlet class and implement the display() method, and optionally the
displayOptions() and saveOptions() methods if the dashlet is configurable. You can
control if the dashlet is configurable by setting the $isConfigurable property in the
child class.

Let’s look at an example of a custom dashlet that ships with Sugar, the Team
Notices Dashlet, in Listing 5-5.

Listing 5-5. TeamNoticesDashlet Class

require_once('include/Dashlets/Dashlet.php');

class TeamNoticesDashlet extends Dashlet
{
 public $isRefreshable = false;
 public $hasScript = true;

 public function __construct(
 $id
)
 {
 parent::Dashlet($id);
 if(empty($def['title']))
 $this->title = translate('LBL_MODULE_NAME', 'TeamNotices');
 }

 public function displayScript()
 {
 }

 public function display()
 {
 $data = array();

 require_once('include/Sugar_Smarty.php');
 $ss = new Sugar_Smarty();

 require_once('modules/TeamNotices/TeamNotice.php');
 $focus = new TeamNotice();

 $today = db_convert("'".gmdate($GLOBALS['timedate']->dbDayFormat)."'", 'date');
 $query = $focus->create_list_query("date_start",$focus->table_name."
.date_start <= $today and ".$focus->table_name.".date_end >= $today and
 ".$focus->table_name.'.status=\'Visible\'');

 if ($result = $focus->db->query($query))
 while ($row = $focus->db->fetchByAssoc($result))
 $data[] = $row;

CHAPTER 5 ■ MORE PLATFORM FEATURES

94

 $ss->assign("data", $data);

 return parent::display() . $ss->fetch
 ('modules/TeamNotices/Dashlets/TeamNoticesDashlet/TeamNoticesDashlet.tpl');
 }
}

The display method here handles displaying all of the content to the user. Two
other properties worth noting are the $isRefreshable property, which controls the
display of the refresh button, and the $hasScript property, which is true if javascript is
used in the display of the dashlet. This is useful if $hasScript is set to true, then the
entire page must be reloaded before the dashlet can be used.

Next, let’s look at Sugar Feeds another custom dashlet, which takes interaction in
SugarCRM to a whole new level.

Sugar Feeds
Social networking has become the new way of interacting with people. Sites like
Facebook, MySpace, and LinkedIn have gone from niche online web applications to
primary tools for us to keep in contact with others all over the world. SugarCRM saw
this trend, and saw the need to embrace it within the scope of CRM. Many times
members of companies and teams may be geographically separated, or may just be
out of touch with each other since they are involved in different projects. How can
everyone still stay in touch and keep up with what’s going on within the organization?
For this, the concept of Sugar Feeds was born.

Sugar Feeds is a tool for social networking within SugarCRM. In its simplest form,
it acts as an intra-company message board, allowing users to post messages and
content for others to see. This content can be a number of different sources: a link to
another web page, an image, or even a YouTube video. For those using SugarCRM
Professional or Enterprise Edition, you can even direct the content posted to a
particular team, which enables intra-team messaging from clogging up the main feed
the rest of the enterprise would see. Sugar Feeds are not enabled by default. To
enable Sugar Feeds you’ll need to go into the Sugar Feeds Settings in the Admin panel
and do so. Figure 5-7 shows this.

CHAPTER 5 ■ MORE PLATFORM FEATURES

95

Figure 5-7. Sugar Feeds Admin panel

There are two different sources for Sugar Feeds. One is the user feeds, which is
driven by content and messages posted by users in the Sugar Feeds dashlet. The
other source is from logic hooks prior to the save of the module record. Logic hooks
are custom code that can be called during certain processes in the application. (You'll
learn more about them in Chapter 7.) These logic hooks are automatically added
from code that is located in the SugarFeeds/ directory of the module, and are derived
from the FeedLogicBase class. They are called during the saving of a modules record,
before the actual saving of the data to the database takes place. Only one method is
required to be implemented, pushFeed(), which is the code used to push the new
feed entry into the feed. Listing 5-6 shows this method for the Leads module.

Listing 5-6. Leads Module SugarFeeds Hook

class LeadFeed extends FeedLogicBase

{
 var $module = 'Leads';
 function pushFeed($bean, $event, $arguments)
 {
 global $locale;

 $text = '';
 if(empty($bean->fetched_row)){
 $full_name = $locale->getLocaleFormattedName($bean->first_name,
 $bean->last_name, '');

 $text = '{SugarFeed.CREATED_LEAD} [' . $bean->module_dir . ':' . $bean->id
 . ':' . $full_name . ']';
 }else{
 if(!empty($bean->fetched_row['status']) && $bean->fetched_row['status']
 != $bean->status && $bean->status == 'Converted'){

CHAPTER 5 ■ MORE PLATFORM FEATURES

96

 // Repeated here so we don't format the name on "uninteresting" events
 $full_name = $locale->getLocaleFormattedName($bean->first_name,
 $bean->last_name, '');

 $text = '{SugarFeed.CONVERTED_LEAD} [' . $bean->module_dir . ':'
 . $bean->id . ':' . $full_name . ']';
 }
 }

 if(!empty($text)){
 SugarFeed::pushFeed2($text, $bean);
 }

 }
}

Here you push the newly converted leads into the Sugar Feeds for other users to
feed. The SugarFeed::pushFeed2() method does this. It grabs the team name from the
team of the record and puts it in that team’s feed for the Sugar
Professional/Enterprise instances. The presence of the preceding class in the
SugarFeeds directory is all that’s required to make Sugar Feeds work, but you can
disable modules which are already 'Sugar Feeds enabled' through the Sugar Feeds
admin panel by not checking the boxes for the modules not wanted, as you can see
previously in Figure 5-7.

The Sugar Feeds dashlet is the result, and it shows the available feed items to the
user in chronological order with the newest items at the top of the list. This is also the
interface used by end-users for posting new items to the user feed. Figure 5-8 shows
the Sugar Feeds dashlet, which can be added to the Home page or the Dashboard.

CHAPTER 5 ■ MORE PLATFORM FEATURES

97

Figure 5-8. Sugar Feeds dashlet

The Sugar Feeds makes interaction between co-workers near and far much easier
as well as centralizing communication so that everyone can keep abreast of what’s
happening in the application. It’s also a useful tool for pushing data updates to
everyone, keeping end-users aware of additions and changes to records in various
modules.

CHAPTER 5 ■ MORE PLATFORM FEATURES

98

Record Importing and Exporting
Sugar provides automatic abilities to import and export records out of a module. It
uses the ListView as the main interface for exporting records. Here users can simply
select the records they wish to export, click the 'Export' button, and then a CSV file
will be returned to the user with the records requested. Figure 5-9 shows the ListView
widget with export capabilities.

Figure 5-9. ListView widget with Export capabilities

Clicking the checkboxes will select individual records to export, while clicking the
select dropdown link gives the user the ability to select all the records on the current
page, or even all the records that match the ListView query.

By default, Sugar builds the query based upon on all the database fields in the
main module table and custom table. However, sometimes you may want to add
additional calculated fields to that listing. To do this, you can use the module bean
method create_export_query(). It will return back the query to use to build the export
list. Listing 5-7 shows an example of this in the Contacts module, by building a query
that will also grab some Account information as well.

Listing 5-7. Contacts Module create_export_query() method

public function create_export_query(
 &$order_by,

 &$where,

 $relate_link_join=''

CHAPTER 5 ■ MORE PLATFORM FEATURES

99

)
{
 $custom_join = $this->custom_fields->getJOIN(true, true,$where);
 $custom_join['join'] .= $relate_link_join;

 $query = "SELECT
 contacts.*,email_addresses.email_address email1,
 accounts.name as account_name,
 accounts.employees as account_employees,
 accounts.industry as account_industry,

 users.user_name as assigned_user_name ";
 if($custom_join){
 $query .= $custom_join['select'];
 }
 $query .= " FROM contacts ";
 $query .= "LEFT JOIN users
 ON contacts.assigned_user_id=users.id ";
 $query .= "LEFT JOIN accounts_contacts
 ON (contacts.id=accounts_contacts.contact_id
 and (accounts_contacts.deleted is null or accounts_contacts.deleted = 0))
 LEFT JOIN accounts
 ON accounts_contacts.account_id=accounts.id ";

 //join email address table too.
 $query .= ' LEFT JOIN email_addr_bean_rel on contacts.id =
 email_addr_bean_rel.bean_id and email_addr_bean_rel.bean_module=\'Contacts\'
 and email_addr_bean_rel.deleted=0 and email_addr_bean_rel.primary_address=1 ';
 $query .= ' LEFT JOIN email_addresses on email_addresses.id =
 email_addr_bean_rel.email_address_id ' ;

 if($custom_join){
 $query .= $custom_join['join'];
 }

 $where_auto = "(accounts.deleted IS NULL OR accounts.deleted=0)
 AND contacts.deleted=0 ";

 if($where != "")
 $query .= "where ($where) AND ".$where_auto;
 else
 $query .= "where ".$where_auto;

 if(!empty($order_by))
 $query .= " ORDER BY ". $this->process_order_by($order_by, null);

 return $query;
}

The preceding query will include the account name, employees, and industry
field along with the contact data.

CHAPTER 5 ■ MORE PLATFORM FEATURES

100

The next part of the equation is importing data into your Sugar instance. Sugar 5.1
did a major revamping of the Import process, which greatly enhanced the import
user interface and import file capabilities, allowing record imports of more than
100,000 records to occur. It also added a very easy way to add import capabilities to
any module in the product—all that is needed is two changes to your existing
module. The first change needed is to add the $importable property to the module’s
bean and set the value to true while the second is discussed after the following code.
Listing 2-7 shows the sample module you’ll call Applicants.

Listing 2-7. Applicants Module Bean Class with the Importable Property

require_once('include/SugarObjects/templates/person/Person.php');

class Applicants extends Person
{
 // we set importable to true to enable importing in our module
 public $importable = true;

 public function __construct()
 {
 parent::Person();
 }
}

The importable property defaults to false if it is not specified otherwise.
The second part is adding the menu option in the left-side shortcuts menu to

enter the import process for the current module. The left shortcuts menu is defined
in the Menu.php file in the module directory, and all you need to add is an entry for
the import option. Listing 2-8 shows this for the Applicants sample module you used
in the previous example.

Listing 2-8. Applicants Module Menu.php File

global $mod_strings, $app_strings, $sugar_config;

if(ACLController::checkAccess('Applicants', 'edit', true))

 $module_menu[] = Array("index.php?module=Applicants&action=EditView&return_module=
Applicants&return_action=index", $mod_strings['LNK_NEW_APPLICANT'],"CreateApplicants",
 'Applicants');
if(ACLController::checkAccess('Applicants', 'list', true))
 $module_menu[] =Array("index.php?module=Applicants&action=index&return_module=
Applicants&return_action=DetailView",
 $mod_strings['LNK_APPLICANT_LIST'],"Applicants", 'Applicants');
if(ACLController::checkAccess('Applicants', 'import', true))

CHAPTER 5 ■ MORE PLATFORM FEATURES

101

 $module_menu[] =Array("index.php?module=Import&action=Step1&import_module=
Applicants&return_module=Applicants&return_action=index", $app_strings['LBL_IMPORT'],"Import",
'Applicants');

The typical left shortcut menu for a module will have two links: one to create a
new record and another to access the ListView for the module. What you’ve done is
add a link after that to start the import process. With those two changes, you have
made a module available to be imported into. Pretty simple, all things considered.

There are other customizations available for the import process as well. One
common one is to exclude fields from being imported into. The reasons for doing this
are normally due to a field being calculated in some way in the module, so you
wouldn’t want the given imported setting to overwrite that calculation. To have a
field be excluded, you simply need to add the importable attribute to the field
definition in the vardefs.php file, as shown in Listing 2-9. You also can handle the
situation where a certain field must be imported into. Again, you can use the
importable attribute of the field definition here, setting it to the value 'required'.
When the field is set to required, then it must be mapped during the mapping step of
the import process.

Listing 2-10. Examples of Field Defintions Using the 'importable' attribute

$dictionary['Applicants']['fields']['applied_position'] => array (
 'name' => 'applied_position',
 'vname' => 'LBL_APPLIED_POSITION',
 'type' => 'varchar',
 'source' => 'non-db',
 'len' => '32',
 'importable' => 'required',
);
$dictionary['Applicants']['fields']['applied_department'] => array (
 'name' => 'applied_department',
 'vname' => 'LBL_APPLIED_DEPARTMENT',
 'type' => 'varchar',
 'source' => 'non-db',
 'len' => '32',
 'group'=>'portal',
 'reportable' => false,
 'importable' => 'false',
);

The previous is a very typical example of a field you wouldn’t want to import. The
applied_department field in the case is a calculated field based upon the position
code, which is given in the applied_position field, so you wouldn’t want to allow
importing a value into this since you would not use it in the record. Additionally, the
applied_position field is a required field, since you want every applicant to be
connected to a position he is applying for.

CHAPTER 5 ■ MORE PLATFORM FEATURES

102

As you can see, adding importing to a module is a very simple thing to do.
Customizing the import process for a module, where we can control the fields
available to import into and what fields must be mapped, is also just as simple.

Let’s now look at how you can customize the look and feel of Sugar with themes.

Themes
Theming a web application is one of the most important aspects of any application.
It’s important for end-user acceptance, because if the application is not aesthetically
pleasing or has poor usability, people will not feel very favorable to your application
(even if it does make their life much easier). In enterprise deployments, theming that
includes corporate branding is an often important requirement to those
stakeholders.

A huge step forward for theme development has been made with Sugar 5.5. The
biggest hurdle previously to theme development was in creation. You would normally
start by copying an existing theme into a new directory then change the items you
wish to change. The biggest problem with this approach is it was very difficult to
apply styles from new UI elements, often requiring the developer to do lots of work to
bring their theme to be current with the new version. It’s especially inconvenient if
there are very few changes needing made to customize the theme to your liking.
Another issue is that the out-of-the-box themes were not customizable at all, which
meant any change you would make to those themes would need to be reapplied on
every upgrade.

With the advent of Sugar 5.5, the theme framework has been dramatically
improved. To begin with, themes now only contain images, css files, smarty
templates, and javascript code but no PHP code as there was previously. Doing so
greatly simplifies the directory layout, as shown in Figure 5-10.

Figure 5-10. Theme directory layout

CHAPTER 5 ■ MORE PLATFORM FEATURES

103

You’ve probably noticed I’ve told a small fib, there is one PHP file that is a part of
the theme. It is a theme definition file, created in the same way as many of the other
definition files in the application as an associative array. Listing 5-8 shows the
structure of that file.

Listing 5-8. themedefs.php file

$themedef = array(
 'name' => "Sugar", // theme name
 'description' => "Sugar", // short description of the theme
 'colors' => array("sugar","red","green","blue","purple","gray"),
// list of color.*.css files provided
 'fonts' => array("normal", "larger", "largest"), // list of font.*.css files provided
 'maxTabs' => $max_tabs, // maximum number of tabs shown in the bar
 'pngSupport' => true, // true if png image files are used in this theme, false if gifs
 'parentTheme' => "ParentTheme", // name of the theme this theme inherits from,
 if something other than the default theme.
 'barChartColors' => array(....),
 'pieChartColors' => array(....),
);

One thing to note is the 'parentTheme' attribute because this is where the magic
happens. Let’s say you like the out-of–the-box Sugar theme, but need to make a few
adjustments to it. Before, you would have copied them to a new directory and start
hacking away. But with the new framework in Sugar 5.5, you can simply create a new
theme, and specify 'Sugar' as the parent theme. From there, the new theme will only
contain changes to the parent theme needed to get the desired result, so if you
wanted to use different images you would put images with the same name as the
original in the images/ directory of the new theme, and put any css changes in the
style.css file in the css/ directory. Javascript files and Smarty templates can also be
overidden. In the case of CSS and javascript files, the given files will be added to the
existing files, while smarty templates and images override the existing files.

You also now have opened the possibility of making custom modifications to
themes. These customizations use the same inheritance framework as you have with
building new themes on top of existing themes, but do so by adding a directory
custom/themes/themename/ with the same structure as the original theme, only
specifying the parts that you wish to change.

Pulling together the ability to customize any existing theme in an upgrade-safe
way or build a new theme upon an existing theme, you can drastically change the
user interface with very few lines of code. Let’s say you want to add a more dramatic
header background to the default Sugar theme. You would begin by creating the
custom/themes/Sugar/images/ and custom/themes/Sugar/css/ directories, which
will hold your changes. Then, you’ll add a style.css file in the
custom/themes/Sugar/css/ directory, which will contain the changes you wish to
make to the theme. Listing 5-9 shows the style.css file, which has a rule for adding a

CHAPTER 5 ■ MORE PLATFORM FEATURES

104

background to the #header div (this div contains the entire top section of the theme
template).

Listing 5-9. Custom style.css file for Changes to the Sugar Theme

#header
{
 background: url(../../../../custom/themes/Sugar/images/header.jpg);
}
#globalLinks, #welcome, #search, #sitemapLink,
#globalLinks a, #welcome a, #search a, #sitemapLink a
{
 color: white !important;
}

You’ll add the new image to the custom/themes/Sugar/images/header.jpg
directory. Since the image you picked has some darker colors in it, I’ve decided to
make the text white so it stands out more. The finished product is shown in Figure 5-
11.

Figure 5-11. Sugar theme with custom modifications

You can see here that making a few small changes to a theme can result in a big
difference. That’s the power of the Theme Framework in Sugar 5.5. It enables the user
to do small things that can result in huge differences to the product as a whole. This
kind of ease for the developer helps sell the Sugar user experience to your end-users,
which in turn makes your life as a developer a bit easier, too.

Logger
As a developer, one of the most difficult tasks is debugging problems. Tracking down
where your customizations go awry can be a daunting task, one that even the most
experienced developer can struggle with at times. While PHP does have rich
debugging and tracing tools, such as apd or XDebug (one of my personal favorites),
these kinds of tools do slow down your code a considerable amount, making their use
in a production environment less than ideal.

CHAPTER 5 ■ MORE PLATFORM FEATURES

105

Fortunately, SugarCRM comes with its own logger known internally as the
SugarLogger. It’s a very simple tool that is configurable to be as quiet or as verbose as
needed, which makes it ideal for all kinds of logging needs. Much of the code that
comes with SugarCRM uses the logger extensively to aid the developer in helping to
diagnose problems without impacting the end-user at all (except, of course, for the
slight performance hit the extra calls will have).

There are two parts to the using the logger. The first part is enabling the logger,
which can be done from the config.php file in the root directory or in the 'System
Settings' section of the Admin panel. To set the logger up manually, you can simply
edit the config.php and change the setting for the 'logger' key, as shown in Listing 5-
10. The way to change it in the UI is shown in Figure 5-12.

Listing 5-10. config.php 'logger' key

'logger' =>
 array (
 'level' => 'fatal', // options here can be one of: 'debug', 'info', 'warn',
 'error', 'fatal', 'security', or 'off'
 'file' => array (
 'ext' => '.log', // log file name extension
 'name' => 'sugarcrm', // log file base name
 'dateFormat' => '%c', // date format used in the log file for the entries;
 uses the settings from the PHP strftime() function
 'maxSize' => '10MB', // max size of a single log file before it rolls over
 'maxLogs' => 10, // max number of log files before it deletes the oldest one
),
),

Figure 5-12. Changing the logger settings in the System Settings UI

The choice of log level is important since you can filter the amount of logging you
do by changing the level. The order of the logging levels is 'debug', 'info', 'warn',
'error', 'fatal', 'security', then 'off', with 'debug' being the most verbose
logging, and 'off' having no logging at all. Now in your code, you can easily trigger
the logger by making calls to it, as shown in Listing 5-11.

CHAPTER 5 ■ MORE PLATFORM FEATURES

106

Listing 5-11. Making Calls to the Logger

$GLOBALS['log']->info("Write me to the info log"); // write to the log at the info level

$GLOBALS['log']->debug("Variable set to $x"); // write to the log at the debug level,
 with the current value of $x

$GLOBALS['log']->security("Illegal access by user {$current_user->username}");
 // write to the log at the security level, with the current user's username

With the preceding, you can easily watch for problems in your application that
are major (such as security level issues) as well as troubleshoot problems with your
code using the 'debug' level logging, or use one of the settings in the middle to give
the appropriate amount of logging needed.

Summary
You can see now that SugarCRM provides several tools that most applications will
use, like User Management, Dashboard items, Import and Export, Themes, and
Logging, automatically and fully integrated into the product. They are also very
controllable from a GUI perspective, allowing developers to truly put the day-to-day
operations of the system into the user’s hands.

You have now seen the main parts of the SugarCRM platform. In the next section
of the book, you’ll look into the tools available to customize it to fit your
organization’s needs.

P A R T 2

■ ■ ■

Customizing SugarCRM
Out of the Box

With the knowledge of how SugarCRM works internal behind you, you’ll next dive
into customizing SugarCRM to meet your need. You’ll see how to do simple
customizations using the easy to use GUI developer tool Studio, see how to interject
business logic into your applications with Logic Hooks and Workflows, and see how
to customize every last little bit of Sugar with custom PHP code

C H A P T E R 6

■ ■ ■

109

Easy Customizations Using Studio

In Part 1 of the book, you saw all the guts of SugarCRM and how they work together. I
didn’t leave any stone unturned, showing how the MVC processes each request
meticulously, how the database structure is built using vardef files, how the metadata
framework removes the need for manually coding common views, and where to look
for the various components of a module. Although I hinted at ways to customize this
as you went along, in this section of the book you’ll dedicate your time to actually
looking at customizing the application from how it ships to how you need to use it.
The customizations you’ll look at are just extensions of the already existing modules.
In Part 3 of the book, you will focus on actually building new functionality on top of
SugarCRM.

I’ll show the easiest ways to customize Sugar in this chapter, using the Studio.
You’ll see how simple yet powerful this tool is, because it enables most
customizations of SugarCRM to take place without having to touch any PHP code.
This tool is also a big factor in the approachability of SugarCRM to those with little to
no programming experience, empowering them to easily extend their instance.

Starting with Studio
Studio, one of the several developer tools SugarCRM ships out of the box, is designed
to be used from within the application itself. It’s a unique tool for a web application
(or any business application) because it allows you to make upgrade-safe
customizations to your instance using a simple GUI tool. Figure 6-1 shows how
Studio looks when you first enter it, from the Admin Studio link.

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

110

Figure 6-1. Main screen for Studio

The interface for Studio has three distinct parts: the left-most column is a tree
view of all of the customizable modules in your instance. You can expand the tree to
access the customizations available for any particular part of a module. The center
section is the main content view for Studio, containing the primary information you
are concerned with when doing customizations. The right-most column is used to
display help as you work through Studio, to help guide on how to use Studio
effectively and show the impact of your changes.

I mentioned previously that the only modules that are shown here are modules
that are customizable. When I say customizable, I mean Studio customizable. Not all
modules are customized in such a way, mainly because some have a lot of legacy
code in them or very customized views. For these, you cannot use Studio, but instead
will need to customize them using code which you’ll see in Chapter 8. For those that
are customizable using Studio, you just need to add a studio.php file inside the
modules/modulename/metadata/ directory. The file doesn’t need to have anything
inside—it’s mere presence let’s studio know the module is ready for customizing.

Studio is designed to enable the user to do the following kinds of customizations:

• Add new fields to a module.

• Change the display names (the name of the field as the user sees it)
of existing fields in a module.

• Edit the various label strings used in a module.

• Customize the layouts of the Edit, Detail, and List views, as well as
the Search box at the top of the Listviews and the Quickcreate form
used in the left column on the page.

• Add new relationships from the given module into another module
(or even the same module).

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

111

• Customize the display of Subpanels in the DetailView record for
the given module.

I’ll break apart the previous topics into sections to show how each of them work.

Adding New Fields to a Module
Adding fields is one of the most common customizations people do to SugarCRM.
The biggest reason for this is that everyone has those one or two extra fields that they
need for their own purposes, whether a checkbox to indicate a status for something
or perhaps a field to specify an internal identification number of an account. This is
one thing that SugarCRM understands about its user base. CRM is not a one-size-fits-
all type of application, so it’s silly to force people into that kind of thinking. In that
respect, the first and foremost use for Studio is to be able to add new custom fields to
a module.

Adding new custom fields is a very simple exercise. From the main screen of
Studio, click on the module you wish to edit, and then click on the 'Fields' link.
From there, a list of all the fields in the module will show, as you can see in Figure 6-2.

Figure 6-2. View of fields for the Accounts module

Notice the fields list is divided up into separate sections. The top section (which
currently has no fields so you see the '-None-' label) is where all the custom fields for
a module will be listed. Below the horizontal line is where the normal fields for the
module are listed. This is handy since custom fields allow lots of customization to
them through Studio, while normal fields only allow their display label to be changed.

From here, you can add new custom fields to your module. To do this, you simply
click the 'Add Field' button, which will bring up a new dialog window for giving the
details of the new field to add (see Figure 6-3).

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

112

Figure 6-3. Add field dialog

The initial dropdown field shown in Figure 6-3 indicates what data type this field
will be. (In Chapter 2, I discussed the vardef files and various field types in Sugar.) The
options shown here are used to set those values in the field definition. They are
different depending upon what data type you choose for the field, so you’ll notice
them change upon selecting a different field type than the default. However, the
typical options shown previously tend to be fairly consistent across the various field
types, with a few addition and some new options as needed. You’ll also notice by
default that Studio will add the suffix '_c' to the field name you choose. This is done
as a convention for custom fields and by no means is required.

Let’s say the new field you want to add is very similar to an existing field in the
module. Instead of going through the trouble of creating a new field and hoping to
get all the settings right, you can simply just clone the field you wish to copy from to
make the new field. To do this, click on the field you wish to clone your new custom
field from, which brings up the edit dialog. Next to the Save button will be a Clone
button, which when clicked will open a new field edit view with the settings from the
current field already filled in. From here you can change anything you wish
(especially the field name) and then click Save to save the field.

Looking at how fields are added into SugarCRM from a behind-the-scenes
perspective, the new fields added through Studio are actually added separately from
the default fields for a module. For each primary module table, a secondary table with
the suffix '_cstm' is added when you create custom fields, and this table holds the
custom fields for a module. During the save and retrieve process, you join the fields in

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

113

the primary table and the custom table in order to get all the fields needed for the
record. This is important to know for performance reasons, because if you have
custom fields that you are going to be heavily searching against, you may want to
consider adding indexes for them as well. This is something you’ll need to do in the
database itself using some form of the SQL CREATE INDEX command. Be sure that
when you do this, you include the record id field ('id_c') to ensure that this index is
chosen by the database’s query optimizer.

Once you have added the fields you need to the module, the next step is to add
the fields to the views so that users can interact with them.

Customizing View Templates
Each of the metadata views are customizable through Studio. Doing it through Studio
offers numerous advantages compared to editing them by hand. As you saw in
Chapter 3, it can be tedious to get everything correct and avoid errors in the metadata
files. The Studio method allows you to edit through drag and drop, making the
customization of the forms a snap.

Customizing Edit and Detail Views
Let’s begin by looking at the Detail and Edit views. You can get to these by going to
the Layouts section after selecting the module you wish to customize. From there,
you can select either the EditView or DetailView links to customize the given view.
When the view loads, you’ll see a screen similar to
Figure 6-4.

Figure 6-4. Studio EditView editing for the the Accounts module

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

114

The main section of this form shows the layout of the EditView. If you recall from
Chapter 3 when I talked about the metadata framework, the forms are laid out in a
table form, and you can group sets of fields into different panels to help ease the data
entry and viewing of records. The left side has a list of fields available to add to the
form as well as an element to add a new panel to the form and add a new row to an
existing panel. Panels are more for organizing fields into groups of related fields, like
putting all the address fields into one section. Each panel contains one or more rows,
where you can put in a field for each column cell. The view is very interactive. You
can add and remove elements from the form by simply clicking and dragging the
various form elements around to get the resulting view you wish to have. When you
are content with your changes, you can click Save to save them, or Save & Deploy to
save your changes and then push them out for all your users to see immediately.

There are a few other views that use this style of editing as well. For example, the
QuickCreate view forms are used for creating or edit records from the subpanel inline
using ajax instead of loading the full edit view. They use this same editing form for
customizing their views. Those using the Professional and Enterprise versions of
Sugar also have the ability to use their mobile device, such as an iPhone or
BlackBerry, with a specially formulated view of the application that can be easily used
on the go. Starting with Sugar 5.5, these views can be edited through Studio as well
through the same interface previously shown. The main issue people may run into
with the mobile version of Sugar is that only a few of the modules are enabled to be
used with mobile devices by default, and thus are missing from Studio to be
customizable there. Fortunately, another Sugar 5.5 addition was a UI for adding
and removing modules available from the mobile version of Sugar, as shown in
Figure 6-5.

Figure 6-5. Dialog to add and remove modules from the mobile version of Sugar

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

115

This can also be done in Sugar 5.1 or 5.2 by creating the
custom/include/MVC/Controller/wireless_module_registry.php file and adding an
entry $wireless_module_registry['modulename'] = array(); to it.

Customizing ListViews
ListViews are a bit different than their Edit and Detail view counterparts. For one, the
physical layout is different, as it focuses more on column data rather than a large
form. But one other big difference is that ListViews can also be customizable by the
user. They can both change around the order of columns, but also remove and add
columns to the display. Because of these facts, you need to have Studio act
differently.

To begin with, ListViews can be customized with Studio by selecting ListView
after choosing the module you wish to customize. Figure 6-6 shows you the editing
view for the ListView by default.

Figure 6-6. Customizing the ListView for the Accounts module in Studio

The ListView editor has three columns of fields. The first column is a list of fields
that will show by default when you are on the ListView for the module. If you would
look at the listviewdefs.php file for the module, you see these fields listed with the
'default' attribute set to true. The middle column is a list of fields that are available
to the user to be included in the ListView, but aren’t shown by default. Finally, the last

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

116

column is a list of all columns that are hidden from display to the user. This column
should include only the field that under no circumstance an end user could have
included in the ListView.

The form is itself is very interactive, just as the Edit and Detail view editors were.
You can freely reorder any of the fields in the columns shown, as well click, drag, and
drop fields between the columns as needed. Clicking the icon allows you to change
the display label and widths of each column, which is handy as it can help your
ListView fit much better and display the data much clearer if it doesn’t do so by
default. When you have the fields the way you want them, clicking Save & Deploy will
push the changes out to everyone to begin using immediately.

For customizing the subpanels and search panels using Studio, a modified
version of the ListView editing screen is used. Since the users cannot customize what
fields appear in the search or for a subpanel, you can remove the Available column
from the editing view, as shown in Figure 6-7.

Figure 6-7. Customizing the Contacts subpanel in the Accounts module using Studio

The editing view works exactly the same as the editing for the ListView worked: by
allowing drag and drop field placement and ordering in the view. Working with the

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

117

search panels is identical to this, except you’ll want to be cognizant of the number of
columns used in the search panel if you are trying to group or line up fields since the
editor in Studio doesn’t make that very clear. The mobile counterparts to the search
panels and ListView will work just the same as the normal search panels and
ListView, respectively.

Editing Labels
As you have seen, SugarCRM separates out strings into language files to enable the
application to be easily translated into different languages. This has been quite
successful for Sugar, as it has been translated into over 75 different languages since
its inception, making it a truly global aware product. But this abstraction layer also
enables users to change the display verbiage used in various parts of the application
to match the terms that make the most sense to their company or workflow.

There are two primary ways to do this. The most straightforward way to make the
change is though the Labels option under the module in Studio. Figure 6-8 lists out all
of the strings for the current language in the given module, allowing you to edit them
right then and there.

Figure 6-8. Editing labels for a module

The editing screen is very simple, providing the current values for the various
strings and an input box for changing them. If you have multiple language packs
installed on your Sugar instance, you can select the language you wish to edit in the
Language dropdown at the top of the form to change the string used in the other
languages. Once you have made your changes, clicking Save & Deploy saves the
changes and applies them immediately to the current instance.

The second way is that you can also make changes to a field directly. This
approach may be preferred since it allows you to know exactly which display string

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

118

will be used with each field, removing any ambiguities in deciding what label to edit
in the Labels option under the module in Studio. To access this, you just click on the
field name listed in the Fields option under the module, and are returned a form
similar to Figure 6-9.

Figure 6-9. Editing the display label for a particular field

From here, you can simply make your field’s display label change in the input
box, and click save to have the changes made immediately.

Let’s say you just need the field’s display name changed in one of the metadata
driven views, such as the EditView, but don’t want it changed everywhere. Instead of
editing the display label as you previously have, you can edit it through the EditView
customization view. To do this, click on the icon on the field as it’s listed in the
view template display, which will bring up the dialog shown in Figure 6-10.

Figure 6-10. Edit field name through the view template customization screen

Here you can specify the exact label you wish to use for this field for this metadata
view. Saving your change will commit you to using the given string for this field in the
view. If you leave it blank then the default string for the field will be used instead.

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

119

Relationships, Relationships, Relationships
One of the most useful tools in Studio is the ability to add new relationships to other
modules in the product. If you remember from Chapter 2, you can define many
different types of inter-module relationships to handle the specific needs you have in
your Sugar instance. Doing this by hand can become a very tedious multistep
process, requiring you to correct add the needed pieces to the vardefs for both
modules, create subpanels to display the data, and even add extra fields to the
EditView and DetailViews of the module to display this extra data. Fortunately,
Studio’s ability to create relationships handles this all automatically and gets it ready
to go in an instance.

To begin to create new relationships, go to the Relationships link under the
module you wish to customize. Once you’ve done that, you see a screen similar to
Figure 6-11.

Figure 6-11. Relationship listing for the Accounts module in Studio

The relationships list for the module shows all the relationships that currently
exist for the module. You can see the name of the relationship, the Primary module of
the relationship (often referred to as the parent module), the type of relationship, and
the module it’s related to (also known as the child module). Any modules that you
have added through Studio will also be shown here with an asterisk next to the
relationship name.

Once you’ve made it here, you can simply click on Add Relationship to add a new
relationship. When you do so, the new relationship screen will be shown, as you can
see in Figure 6-12.

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

120

Figure 6-12. Creating a new relationship with the Accounts module using Studio

The new relationship form allows you to select the primary and related modules
for the relationship. There are three options for this type of relationship that you can
create through this form:

• One to One: The primary module has one record which relates to
only one record in the related module.

• One to Many: The primary module has one record which relates to
one or more records in the related module.

• Many to Many: The primary module can have one or more records
which relates to one or more records in the related module.

The new relationship form is very dynamic, so when you change the relationship
type in the middle column of the form, the relationship details on each side of the
column will change accordingly. If the side of the relationship contains the Many part
(which would mean that module has more than one record relating to the other side
of the relationship), then the options to provide a label for the subpanel in the
opposite side of the relationship is available, along with an option to choose the
subpanel layout to use.

After clicking Deploy, the relationship becomes permanent and immediately
available to all users. This is where the “magic” happens. One of many different
things occur, depending upon the relationship type you choose:

• One to One: The primary module and the related module will have
relate fields added to the Edit and Detail views to enable the end
users to build the relationship between the records.

• One to Many: The primary module will have a subpanel listing all
the related records in the related modules, which includes the
ability to add existing records related to that record or add a new
record which is related to that record from there. In the related
module, relate field will be added to the Edit and Detail views to
enable end users to relate the record to a record in the primary
module

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

121

• Many to Many: Both the primary and the related modules will have
a subpanel listing all the related records in the opposite module,
which includes the ability to add existing records related to that
record or add a new record which is related to that record from
there. Adding a record to be related to the other module will make
it show up in the subpanels for both that record and the record in
the opposite module.

You can see Studio really does everything you need here to add relationships to
any Studio customizable module in Sugar. One thing that Studio doesn’t allow is the
ability to delete relationships you’ve added, but I will give you a solution to that
problem in the next section.

Help! My Customizations Have Gone Awry
Let’s say you’ve played around with Studio as you have gone through this chapter.
You added a bunch of new fields, customized the module views, and added a
relationship or two. After going through the journey of learning the ins and outs of
customizing your Sugar instance with Studio, you realize that you went too far, and
now wish to go back. Have no fear, as everything you’ve done can be undone fairly
easily.

All of the metadata customizations (customizations to any of the detail/edit/list
views and subpanels) done are stored in the /custom directory. By simply removing
the associated metadata file (editviewdefs.php, detailviewdefs.php, listviewdefs.php,
etc.) from the /custom/modules/modulename/metadata/ directory, the customized
view is undone and you can resume using the out-of-the-box view layouts. Studio
also stores the history your view changes inside the
custom/history/modules/modulename/metadata/ directory, so you can step back
through the changes you’ve made to the view of the form. Figure 6-13 illustrates this
in action and you can access it by clicking the View History button.

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

122

Figure 6-13. Historical view of changes made by Module Builder for a view

Clicking the Preview gives you a look at what the view looked like at that point in
time. When you find the one you want, just click Restore and it comes back to life.

Removing custom fields is very simple from the Studio UI, just simply click the
field you wish to delete from the Fields view, and then click the Delete button on the
field’s edit view. You can also remove them by hand, but it is bit more tedious of a
task. If you remember, custom field definitions are actually stored in the database
rather than in the file system itself. Therefore, the process to remove the field actually
involves looking into the field_meta_data table, and removing the custom field
definition from the table. To look for the field, check for the id of the field to be set to
the module name plus the field name. If your custom field name in the Accounts
module is foobar_c, look for the record with the id field set to 'Accountsfoobar_c'.
From there, you can set the deleted field value in that row to 1, or simply delete the
row from the table. You’ll then need to rebuild the vardef files. You can do this in
Sugar by going to Admin Repair Repair Database, so simply by removing the
cache/modules/modulename/modulenamevardefs.php file.

Relationships are also dealt with entirely inside the custom/ directory, but they
don’t come with the pretty UI to remove them (recall the giant warning message
about the inability to remove any created relationships). Have no fear though, as you
can dig through the custom/ directory to undo these changes as well. There are three
different files that need removed:

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

123

• custom/metadata/relationship_nameMetaData.php

• custom/Extension/modules/firstrelatedmodulename/Ext/Vardefs/
customrelationship_name.php

• custom/Extension/modules/secondrelatedmodulename/Ext/Varde
fs/customrelationship_name.php

Substitute the name of the relationship (usually
firstrelatedmodulename_secondrelatedmodulename) in the previous examples. If the
relationship relates back to the same module, then you’ll only have two files to delete.
Once those files are removed, you’ll need to go to Admin Repair Rebuild
Relationships followed by an Admin Repair Repair Database to clean up all the
remaining references to the previous module in the cached vardefs. If you have any
related fields to the parent module from the child module, then you’ll also want to
remove those manually from the metadata viewdef files or using Studio.

Please remember that undoing any customization is just as hazardous as doing
customizations, so I greatly recommend trying this on a test instance before doing so
on your production instance. Undoing can be especially dangerous, since you may
lose any customizations you didn’t mean to remove.

Summary
In this chapter, you have learned all about Studio, a very powerful and unique tool
that enables end-users to customize their Sugar instance with little or no
programming experience required. Studio allows you to add new custom fields to a
module, customize the string used in a module, and add additional relationships
between the given module and another module, or even back to the current module.
You explored each of these topics in detail, showing the ease of use that Studio
provides to make these customizations. You also saw how to back out the changes
made while using Studio, either by using the Studio UI itself, removing the files from
the custom/ directory and/, or removing the entries from the field_meta_data table.

In the next chapter, you’ll look at customizations designed to modify the data in
the application based upon the actions the users take. Much like Studio, these hooks
will have user friendly front ends to them, but also allow more powerful changes
through custom PHP code.

CHAPTER 6 ■ EASY CUSTOMIZATIONS USING STUDIO

124

C H A P T E R 7

■ ■ ■

125

Workflows and Logic Hooks

Think about business processes for a second. They usually involve various steps with
decisions to make at each step on how to continue. They involve all sorts of logic,
asking questions on the results of a step or the status of process, and how to use that
to make the transition to the next step in the process. These processes can get very
complicated. I remember from old projects that sometimes the end diagram looks
like a giant maze of circles and arrows that makes you dizzy from just looking at it.
But, the reality is that most businesses depend upon these kinds of processes (even if
they are confusing), and need the ability to model them in their software applications
as well. Fortunately, SugarCRM comes with a safe way to do this.

In this chapter, you’ll take a look at logic hooks, which provides a tool to add these
processes into your Sugar instance. You’ll also look at workflows, which is a way to
create many common logic hooks using a point and click interface.

What Are Logic Hooks?
Logic hooks provide ways to extend SugarCRM with PHP code. What makes it
different than most customizations is that you aren’t changing or overriding existing
code with the customization. Instead, you are adding code that is designed to be
called in certain circumstances during the application execution. Think of logic
hooks as your playground, where you can add any sort of code to have the
application perform the actions needed.

There are a number of places in the app where you can add logic hooks. Table 7-1
outlines them.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

126

Table 7-1. Types of Logic Hooks

Type Description

after_ui_frame Fired after the frame has been invoked and before the footer has been invoked.
This hook does not have access to the current bean object (meaning you cannot
view or change a record’s values).

after_ui_footer Fired after the footer has been invoked. This hook does not have access to the
current bean object.

server_round_trip Fired at the end of every SugarCRM page. It is called in the in the sugar_cleanup()
method, which is called as the shutdown function for Sugar. This hook does not
have access to the current bean object.

before_delete Fired before a record is deleted using the SugarBean::mark_deleted().

after_delete Fired after a record is deleted using the SugarBean::mark_deleted().

before_restore Fired before a record is undeleted using the SugarBean::mark_undeleted()
method.

after_restore Fired after a record is undeleted using the SugarBean::mark_undeleted() method.

before_retrieve Fired before a record has been retrieved from the database using the
SugarBean::retrieve() method. This hook does not fire when you create a new
record.

after_retrieve Fired after a record has been retrieved from the database using the
SugarBean::retrieve() method. This hook does not fire when you create a new
record.

before_save Fired before a record is saved using the SugarBean::save() method. One thing to
note is that with certain modules, such as Cases and Bugs, the human-readable ID
of the record (like the case_number field in the Case module), is not available
within a before_save call since the business logic that calculates this value simply
hasn’t been executed yet.

after_save Fired after a record is saved using the SugarBean::save() method. One thing to
note is that with certain modules, such as Cases and Bugs, the human-readable ID
of the record (like the case_number field in the Case module), is not available
within an after_save call since the business logic that calculates this value simply
hasn’t been executed yet.

process_record Fired immediately prior to the database query resulting in a record being made
current. This gives developers an opportunity to examine and tailor the
underlying queries. This is also a perfect place to set values in a record’s fields
prior to display in the DetailView or ListView. This event is not fired in the
EditView.

before_logout Fired before a user logs out of the system.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

127

Type Description

after_logout Fired after a user logs out of the system. This hook does not have access to the
current bean object.

after_login Fired after a user successfully logs into the system.

before_login Fired before a user logs into the system. This hook does not have access to the
current bean object.

login_failed Fired on a failed login attempt. This hook does not have access to the current
bean object.

You can see from Table 7-1 there are many logic hooks available to use. You’ll

notice many of these are application level hooks and some are module level hooks—
all of the application level hooks (after_ui_frame, after_ui_footer, server_round_trip)
are designed to handle application level actions, so no bean object information will
be available to them. All other logic hooks will have the current bean information
available to them (with the exception of the after_logout, before_login, and
login_failed hooks, since no User bean object will be available).

Now that you know what’s available to use as logic hook writers, let’s dive right
into creating your very first logic hook.

Creating Your First Logic Hook
Now that you’ve seen all the logic hook options, let’s actually build one. The hooks
themselves are PHP classes while the methods in them are the actual hooks that will
be executed. There are two parts to any logic hook: the hook definition file and the
hook itself.

The hook definition file will install the logic hook into the running instance,
making it instantly available. This is done automatically during the early parts of the
request. It looks inside the custom/modules/modulename/logic_hooks.php file and
the custom/modules/logic_hooks.php file for these definitions. The definition file
has an array structure, a sample of which appears in Listing 7-1.

Listing 7-1. Sample logic_hooks.php File

$hook_version = 1;
$hook_array = Array();
$hook_array[after_save] = Array();
$hook_array[after_save][] = Array(1, AccountHooks,
 custom/Accounts/AccountHooks.php,AccountHooks, checkForLead);
$hook_array[before_save] = Array();
$hook_array[before_save][] = Array(1, AccountHooks,
custom/Accounts/AccountHooks.php,AccountHooks, getParentAccountIndustry);

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

128

There are two essential elements to the logic hook definition files. The first part is
specifying the $hook_version value, which should be set to the integer value ‘1.’ (This
is designed to be used in case SugarCRM updates the API for building logic hooks.)
Next, you build the array of logic hook definitions as an associative array. The first
level of the multidimensional array indicates the type of hook you are defining. From
there, each element in the array points to the individual hooks to call. That array has
five elements with the following specifications:

• Parameter 1: Sorting index used to sort the arrays of logic hook
definitions before they are processed.

• Parameter 2: A string value to identify the hook.

• Parameter 3: Path to the PHP file to include which contains your
logic hook code.

• Parameter 4: Name of the PHP class the logic hook method is in.

• Parameter 5: Name of the PHP method to call.

With the logic hook definition file defined, you can actually begin to write a logic
hook for your application. To do this, you’ll continue with the example you started in
Listing 7-1. You’ll have two logic hooks for execution before and after the save of an
account record. The after_save hook will do a quick check to make sure you haven’t
defined the account given already as a Lead, using the name and address
information. If you have, then you’ll link the Lead record to this record. Then in the
before_save hook, you’ll check the parent account record (if one is given) for a value
for the industry field if it is not currently set in the current record. Listing 7-2 shows
this all in action.

Listing 7-2. Sample Account Module Logic Hooks File AccountHooks.php

require_once(modules/Leads/Lead.php);
require_once(modules/Accounts/Account.php);

class AccountHooks
{
 public function checkForLead(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 $leadFocus = new Lead;
 $leadFocus->retrieve_by_string_fields(
 array(
 name => $bean->name,
 primary_address_street => $bean->billing_address_street,
 primary_address_city => $bean->billing_address_city,

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

129

 primary_address_state => $bean->billing_address_state,
 primary_address_postalcode => $bean->billing_address_postalcode,
 primary_address_country => $bean->billing_address_country,
 account_id => ,

),
 false);
 if (!empty($leadFocus->id)) {
 $bean->load_relationship(leads);
 $bean->leads->add($leadFocus->id);
 }
 }

 public function getParentAccountIndustry(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 if (empty($bean->industry) && !empty($bean->parent_id)) {
 $parentAccountFocus = new Account();
 $parentAccountFocus->retrieve($bean->parent_id);
 if (!empty($parentAccountFocus->id))
 $bean->industry = $parentAccountFocus->industry;
 }
 }
}

You’ve successfully created the logic hooks. Now on every save of an Account
record, the application will check for Leads that are of the same name and address of
the current one and relate them, as well as backfill the industry field from the parent
account record into the current one. Next, you’ll add a few more logic hooks to your
module as well.

Let’s say you have added some custom fields that are calculated from other fields
in the application. For example, perhaps you group your accounts into regions based
upon the state they are located in. Assuming you’ve created an app_strings_list array
of the options for the region field name account_region_dom, you can add a simple
logic hook as shown in Listing 7-3 to handle this case.

Listing 7-3. getRegion after_retrieve logic Hooks for the Accounts Module

public function getRegion(
 SugarBean $bean,
 $event,
 $arguments
)
{
 switch (strtoupper($bean->billing_address_state)) {
 case "AL":
case "AK":
case "AZ":

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

130

case "AR":
case "CA":
case "CO":
case "CT":
 $bean->region_c = $app_list_strings[account_region_dom][Region1];

 break;

case "DE":
case "FL":
case "GA":
case "HI":
case "ID":
case "IL":
case "IN":
case "IA":
case "KS":
case "KY":
 $bean->region_c = $app_list_strings[account_region_dom][Region2];

 break;
case "LA":
case "ME":
case "MD":
case "MA":
case "MI":
case "MN":
case "MS":
case "MO":
case "MT":
case "NE":
case "NV":
case "NH":
case "NJ":
case "NM":
 $bean->region_c = $app_list_strings[account_region_dom][Region3];

 break;
case "NY":
case "NC":
case "ND":
case "OH":
case "OK":
case "OR":
case "PA":
case "RI":
case "SC":
case "SD":
case "TN":
case "TX":
case "UT":
case "VT":
case "VA":

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

131

 $bean->region_c = $app_list_strings[account_region_dom][Region4];

 break;
case "WA":
case "WV":
case "WI":
 $bean->region_c = $app_list_strings[account_region_dom][Region5];

 break;
 }

}

The previous code checks the billing address state of the Account to determine
this field value. This provides the advantage of having this field always accurately
displayed to the client easily. The nice part is this case can be customized easily when
business needs change to accurately reflect the correct region.

Another common change would be to add some logic to the login_failed logic
hook. For example, maybe you want to email the system admin when someone has
trouble logging into the admin accounts. Listing 7-4 provides a solution for that.

Listing 7-4. Login_failed Logic Hook for Alerting on Failed admin Logins

class LoginHooks
{
 public function alertSystemAdminOfBadAdminLogin(
 $event,
 $arguments
)
 {
 if ($_REQUEST[user_name] == admin) {
 mail("admin@localhost","BAD ADMIN LOGIN","Someone tried to login to the
 admin account and failed. Better check it out!");
 }
 }

}

You just check the username given and if it matches the admin account, you’ll
shoot an email out to the system admin about it. You may want to even include the
user’s mobile phone too with an SMS if you get quite a few in a row.

Now that you’ve seen how to write our own logic hooks, let’s look at how you can
use the Workflows tool to do many of these with a point and click interface.

Point and Click Logic Hooks with Workflows
You’ve seen how to build logic hooks using PHP code that is interjected into various
points of the application. The downside is that logic hooks require PHP coding skills
to create them, which can make it difficult for the average person to build them. To
help those poor souls out, SugarCRM comes with a tool to help them build the most

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

132

common logic hooks called Workflows. (Workflows are available only in the
Professional and Enterprise versions of SugarCRM.)

Workflows enable you to create logic hooks using an easy-to-use user interface
instead of having to write PHP code. This is especially useful for those with little or no
programming experience. They can simply go through the dialogs to create the logic
they wish to add. Because you are using a GUI, the tradeoff to using the Workflows
interface to create custom logic is not as extensive as can be done with logic hooks, so
if you have very complicated needs then you may be better served by writing the logic
hooks by hand. You’ll see the limitations as you walk through creating a workflow
from start to finish, which will help you judge which approach is the best for you.

Creating the Workflow
The Workflow module is tucked away in the Admin panel under the title, Workflow
Definitions. To create your workflow definition, you’ll start by clicking the Create
Workflow Definition link, which brings up Figure 7-1.

Figure 7-1. Create Workflow Definition dialog

After giving your workflow a name, you then need to choose when you wish the
workflow to be executed. The choices here are when a record is saved or after time
elapses (this option basically adds your workflow to be a scheduled event rather than
triggered by data changes, provided you have the SugarCRM cron scheduler tool
running at that time). You then choose which module this workflow applies to,
whether you want it to trigger off creation of a new record, saving an existing record,
or both—and whether you want the alerts or actions to be processed first. You can
also add a description to the workflow, which is a good idea so everyone knows what
it does without having to dig through the whole definition to figure it out. I would be
sure to mark the Workflow as Inactive here for the status until you have it all set up,
so it doesn’t partially execute beforehand.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

133

Once you have all the options set the way you want, click Save and the workflow
will be added. You will then be at the DetailView screen for the workflow, as shown in
Figure 7-2.

Figure 7-2. Workflow Detail View

You can now begin to build the guts of the workflow from here. Workflows have
three basic parts: The first part of the workflow is the conditions, which define what
needs to be done in order for the workflow to be executed. The other two parts are the
Alerts, which specify emails or messages that will be sent to specific users on a
condition being true, and Actions, which define the data changes that are to occur
when the conditions are met. You’ll look at those last two parts in a minute, but first
let’s walk through creating a condition for your workflow.

To create a new condition for a workflow, begin by clicking the Create button
underneath the Conditions subpanel. After doing so, you’ll see a popup window like
the one in Figure 7-3.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

134

Figure 7-3. Define Condition for Workflow dialog window

This is the beginning of a two part wizard for defining a workflow condition. You
have several different types of conditions you can define here, as shown in Figure 7-3.
The options include:

• Triggering when a field in the module changes from one specific
value to another specified value.

• Triggering when anything in the module changes.

• Triggering when a specific field in the target module changes.

• Triggering when a field in the module contains a specific value.

• Triggering when anything the module changes AND a field in the
module contains a specific value.

When you click on the radio button for your choice, the white box section of the
dialog changes to text that indicates what the condition will do. An example of this is
shown in Figure 7-4.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

135

Figure 7-4. Define Condition for Workflow dialog window after choosing an option

The highlighted link portion is where you can click to choose the field you will be
dealing with in this workflow condition. Clicking that link will bring up a dialog, like
the one in Figure 7-5.

Figure 7-5. Field selection popup during Define Condition for Workflow dialog

Here you just select the field you want to use and then click Save, or click Cancel if
you don’t want to save your selection. If you would click Save here, then the original
dialog window would be updated as follows in Figure 7-6.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

136

Figure 7-6. Define Condition for Workflow dialog window after choosing an option
and field

From here, you can click next to apply further the rest of the specification to the
condition. Note that some of the condition types do not have a second step (namely
“When the target module changes” and “When a field on the target module
changes”), so if you choose those options you’ll just click the Save button that is
present instead of the Next button.

The second part of the form differs based upon the initial selection of the
condition type, but it generally follows the same convention used in the previous
dialog. For the previous example of changing the Ownership field from one value to
another, you’ll see a form similar to Figure 7-7.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

137

Figure 7-7. Define Condition for Workflow dialog window for specifying the changed
field information.

Again, here you’ll have the same sort of editing capabilities that you had in the
previous dialog, where you can click a link to edit that portion of the condition
definition. Upon clicking the value link, you’ll again have a pop-up form where you
can specify the value the field should or should not be, as shown in Figure 7-8.

Figure 7-8. Specifying the condition field value

You’ll go ahead and make your condition to be when the Ownership value
changes from Bar to Foo. To do this we’ll checkbox both the Specify new Ownership:
value and Specify old Ownership: value checkboxes, which puts both rules into your
condition. You’ll then click the field link to make the field value specifications
accordingly for the before and after values you wish to have. Figure 7-9 shows the
ending results.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

138

Figure 7-9. Define Condition for Workflow dialog window for specifying the changed
field information all completed

Now all you need to do is click save and your condition is now saved. You can add
as many conditions as you wish to a workflow to be sure that the workflow is
executed under the correct conditions.

Now let’s move on to building alerts for when a workflow takes place.

Defining Workflow Alerts
Many times all that needs done when fields change or a module changes is that
someone needs to know about it. For example, using the previous example, maybe
you need to notify a certain person when the Ownership field changes, so that they
can perhaps call the customer to verify or update accounting to change their pricing
structures. This is a trivial option with workflows, and one you can also add a bit of
customization in as well.

To begin creating new alerts, just click on the Create button in the Alerts
subpanel, and you’ll see the Alerts EditView, as shown in Figure 7-10.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

139

Figure 7-10. Workflow alerts EditView.

Alerts can be as simple as an email message, which just sends the specified text to
the alerted person. But you also have the option of creating an alert email template,
so that you can provide the alerted person with much more detailed information.
First, you need to first create that alert template. You can do this by clicking the Alert
Email Templates in the sidebar and on the resulting screen choose the module you
wish to create a template for and click Create. You’ll then be presented with the Alert
Templates EditView, as shown in Figure 7-11.

Figure 7-11. Alert Templates EditView

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

140

You can compose rich-text emails using this tool, as well as dropping before and
after field values along with record links into template. Using this tool enables you to
really give the alerted person a much more informed view of what happened, and
optionally allows you to give them the tools to properly act upon it. Then, in the
Alerts EditView, change the source type to Custom Template and the newly
appearing Custom Template field can be set to the template you wish to use.

For this example, you’ll stick with the basic email message, so upon clicking Save
you’ll be back at the Workflow Alerts DetailView, as shown in Figure 7-12.

Figure 7-12. Workflow alerts DetailView

Now you just need to add recipients to your email. This is another trivial task with
lots of options. Figure 7-13 shows the dialog you’ll see after you click Create in the
Alert preceding Recipient List subpanel.

Figure 7-13. Alert Recipient List popup dialog

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

141

Again, you have many options here, from notifying the assigned user to the record
to notifying all related team and role members, or just notifying a certain person each
time. The dialog box works exactly the same as the workflow conditions one, where
clicking on the links allow us to “fill in the blanks” so to speak. You’ll also notice you
have the option to indicate which address field should be used in the mail for the
user’s email address, whether it be To:, CC:, or Bcc:, so, again, there are many
options. To do any email notifications triggered from a workflow, you must have
emails enabled in Email Settings in the Admin panel.

Like the workflow conditions, you can add as many alerts and recipients to alerts
as you wish for the given condition. Let’s now move on to look at how create actions
for your workflow.

Workflow Actions
The last piece of the workflow puzzle (and often the most important part) is what
data actions should take place when the conditions are met. Again, you have an easy-
to-use dialog to define this. You’ll start by clicking Create under the Actions subpanel
in your workflow to get the popup dialog shown in Figure 7-14.

Figure 7-14. Workflow Actions dialog

Here you have a few choices on what to do: You can update fields in the given
record or a related record to the record, or even create new records in the current
module or a related one. Similar to how the workflow conditions dialog worked,
clicking one of the radio buttons begins building the rules, allowing customization if
you see linked fields during it. For this example, let’s choose to update fields in the
current record, so when you click Next you can see the dialog shown in Figure 7-15
and choose which fields to update.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

142

Figure 7-15. Workflow Actions dialog to indicate which field to update.

This dialog allows you to choose one or more fields to update for the given record.
You simply checkbox the field you wish to update, then in the following box click the
field link to specify the value you wish to change to a particular value.

Now you have created a fully working end-to-end workflow, complete with
conditions for execution, alerts to a user of it firing off, and an action it should take on
the given record. If you are comfortable with your choices, go ahead and edit the
workflow to make the status Active and save it. Then try to save an Account with an
Ownership field that has changed from Foo to Bar to see the workflow in action.

Managing the Sequence of Workflows
Sometimes workflows can interfere with each other (as can logic hooks, which I’ll talk
more about in the “Logic Hooks Pitfalls” section to follow) or it’s important for the
workflows to be processed in a certain order to get the desired effect. For example,
one workflow may set a one field’s value and another may set a second field’s value
based upon the initial field’s value used in the other workflow. For these and other
reasons, the option to order your workflows in a certain order may be very important,
so Sugar has the ability to customize this as well. Selecting the Workflow Execution
Order link in the sidebar and then choosing the module you wish to view will give you
the list of current workflows for it, similar to Figure 7-16.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

143

Figure 7-16. Workflow Execution Order screen

In this screen, you can click the up and down arrows to change the position of the
workflow in the workflow sequence for the given module. The first one listed is the
first to execute, followed by the next one in the list.

As you have seen, workflows are a very useful tool for creating logic hooks that
deal with very common tasks. When workflows can’t handle it, then the logic hooks
that you learned to build in the first part of this chapter can step in to provide the
extra needed support you need to perform the actions you need to happen.
Sometimes the tools can also create a world of trouble if you aren’t careful. In the
following section, you’ll explore some of these potential issues and what you can do
about them.

Logic Hooks Pitfalls
If you go to the Sugar Forums and search for logic hooks, you’ll probably get a ton of
results with people who have mysterious things going on with their logic hooks. Logic
hooks are far from trivial, and often time can be lead to quite confusing results if you
don’t pay attention to what the code is doing. In this section, I’ll point out a few areas
where you can quickly get into trouble with logic hooks and discuss the best way to
get out of them.

Modifying the Bean Object
One thing that is very important to remember is that the bean object passed to you is
a live object. While this opens up the ability for your logic hook to do some powerful
things, it can also create issues. Let’s look at one example in Listing 7-5.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

144

Listing 7-5. Sample AccountsHooks.php file containing logic hooks for the Accounts
module

class AccountHooks
{
 public function reassignNewRecordTeamBasedOnIndustry(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 $teamBean = new Team;

 // Set the team based upon the given industry.
 switch ($bean->industry) {

 case "Banking":

 $teamBean->retrieve("Banking");
 $bean->team_id = $teamBean->id;

 break;

 case "Energy":
 $teamBean->retrieve("Banking");
 $bean->team_id = $teamBean->id;

 break;
 }

 }
}

This logic is designed to be called a before_save event. When you call this after
you initially save a new record, everything works as expected and saves the newly
created record. But you’ll notice further saves of the record seem to cause problems.
This is because the code is indiscriminate of whether the record has been saved or
not. Therefore, you will keep reassigning the record to the team indicated in the logic
hook, keeping you from changing it down the road. To correct this, you need to add a
check to be sure the record does not already exist. Listing 7-6 shows the modified
example to correct this problem.

Listing 7-6. Sample AccountsHooks.php file containing logic hooks for the Accounts
module with a fix to not trigger it on creation of new records.

class AccountHooks
{
 public function reassignNewRecordTeamBasedOnIndustry(
 SugarBean $bean,
 $event,

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

145

 $arguments
)
 {
 // Don't execute if the we aren't creating a new record
 if (!empty($bean->fetched_row) && !empty($bean->fetched_row['id']))

 return;

 $teamBean = new Team;
 // Set the team based upon the given industry.
 switch ($bean->industry) {

 case "Banking":

 $teamBean->retrieve_by_string_fields (array('name' =>"Banking"),false);
 $bean->team_id = $teamBean->id;

 break;

 case "Energy":
 $teamBean-> retrieve_by_string_fields (array('name' =>"Energy"),false);
 $bean->team_id = $teamBean->id;

 break;
 }

 }
}

You’ve added a simple check to see if the record’s id field has been set previously.
You checked it in the fetched_row array since the actual id record will already have
been set by the time the logic hook call regardless of whether it is a newly created
record or not. However, the fetched_row array will not be set on new records, so it’s
safe to check it to determine if this is a new record or not.

It’s also important to be aware of when a hook is called during the application
execution. Let’s take a look at the logic hook in Listing 7-7.

Listing 7-7. Cases Logic Hook to Check for Certain Thresholds of Case Numbers

class CaseHooks
{
 public function alertSystemAdminOfCaseNumbers(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 // Don't execute if the we aren't creating a new record
 if (!empty($bean->fetched_row) && !empty($bean->fetched_row['id']))

 return;

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

146

 if ($bean->case_number % 1000 == 0) {
 $GLOBALS['log']->info("Reached case number " . $bean->case_number . "!");
 }
 }

}

The biggest problem here is that your info level on the sugarcrm.log file will now
be filled with Reached case number 0! for every save. This isn’t what you want at all.

The problem is that the case_number field is an auto_increment field, which like
all auto_increment fields relies on the database to handle getting the correct value.
Because of this, the value generated is not available in either the before_save or
after_save event. However, you can look it up in the database from the after_save
event with the following modifications to the original logic hook, as shown in
Listing 7-8.

Listing 7-8. Fixed Cases Logic Hook to Check for Certain Thresholds of Case Numbers

class CaseHooks
{
 public function alertSystemAdminOfCaseNumbers(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 // Don't execute if the we aren't creating a new record
 if (!empty($this->fetched_row) && !empty($bean->fetched_row['id']))

 return;

 $casesBean = new Case;

 $casesBean->retrieve($bean->id);

 if (!empty($casesBean->id) && $casesBean->case_number % 1000 == 0) {
 $GLOBALS['log']->info("Reached case number " . $casesBean->case_number . "!");
 }

 }
}

Now the info sugarcrm log messages will be much more sensible, and only report
when you’ve reached every 1,000 new cases in the system.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

147

Conflicting Logic Hooks
Another trap you can get yourself in is having logic hooks that are doing actions
which conflict with each other. This often leads to unpredictable results. Let’s look at
an example of this in Listing 7-9.

Listing 7-9. Bugs Logic Hooks to Check fixed_in_release and Found_in_release Fields

require_once('modules/Releases/Release.php');

class BugHooks
{
 public function autoSetFixedInRelease(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 if (empty($bean->fixed_in_release))
 $bean->fixed_in_release = $bean->found_in_release;
 }

 public function adjustInvalidFoundInRelease(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 if (!empty($bean->fetched_row) && !empty($bean->fetched_row['found_in_release'])
 && ($bean->fetched_row['found_in_release'] != $bean->found_in_release)) {
 $releaseBean = new Release;
 $releaseBean->retrieve($bean->found_in_release);
 if (!empty($releaseBean->id) && $releaseBean->status == 'Inactive')
 $bean->found_in_release = '';
 }
 }
}

Let’s say you have a SOAP client that is modifying Bugs records (I say this since
Inactive releases are not visible in the normal UI) and your client accidentally sets the
found_in_release field to an invalid release. Ideally, the
adjustInvalidFoundInRelease() hook would kick in and clear that up for you,
removing the invalid release specification from that field. However, what if the
autoSetFixedInRelease() hook runs first? The inactive release specification finds its
way to the fixed_in_release field first, then the found_in_release field gets cleared out
right afterward. The best way to fix this is to make sure the hooks get executed in the
correct order by specifying them as in the logic hooks definition file for the module,
as shown in Listing 7-10.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

148

Listing 7-10. Sample Bugs Logic Hook File

$hook_version = 1;
$hook_array = Array();
$hook_array['before_save'] = Array();
$hook_array['before_save'][] = Array(1, 'BugHooks',
 'custom/Accounts/BugHooks.php','BugHooks', 'adjustInvalidFoundInRelease');
$hook_array['before_save'][] = Array(1, 'BugHooks',
 'custom/Accounts/BugHooks.php','BugHooks', 'autoSetFixedInRelease');

By specifying them in the order you wish them to be executed as you have in the
previous listing, you’ve fixed the problem of fields being mysteriously updated.

Logic Hook Being Nullified by the Existing Code
As much as logic hooks allows you to interject your own behaviors into an object,
sometimes things are just out of your hands. Let’s look at the following code in Listing
7-11 as an example.

Listing 7-11. Before_save logic Hook to Specify Your Own Record Ids

class AllHooks
{
 public function setGUID(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 // Only execute if the we are creating a new record
 if (empty($bean->id))

 $bean->id = myRecordIDGenerator();
 }
}

This is a logic hook. Your goal in the preceding logic hook is the use of the

assumed myRecordIDGenerator() function (you assume this to be some sort of id
generator that won’t give duplicate IDs) to give the record ID to use for this newly
created record. But if you push the logic hook function into the before_save method
of any given module, you’ll find it will never get called. Why is this? Because the
record ID is generated prior to this record being created, so your attempt here to
change it is just nullified. You can correct this by changing your detection code, as
shown in Listing 7-12.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

149

Listing 7-12. Corrected before_save Logic Hook to Specify Your Own Record Ids

class AllHooks
{
 public function setGUID(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 // Only execute if the we are creating a new record
 if (empty($bean->fetched_row) && !$bean->new_with_id)

 $bean->id = myRecordIDGenerator();
 }
}

You simply adjust the code to check for there not being a fetched row (meaning

there is a new record, since it doesn’t exist in the database), so if the new_with_id
property is being set to false you know which you should interject to your record id
generator logic.

Logic Hook Weaknesses
In addition to all of the previous issues that I’ve illustrated, there are a number of
other possible issues you should be aware of when dealing with logic hooks.
Following is a list of a few of those items:

• Logic hooks are tied to the low-level application functions (such as
record retrieval, record save, etc.) and not to the specific user
interface actions in the EditViews and DetailViews. This means that
you cannot write a logic hook that is only destined to be fired on
DetailViews. However, any functions of the user interface actions
that use the low-level application functions, such as saving a record
or retrieving a record, will fire the corresponding logic hook.

• If the user action makes a direct query against the database (i.e.,
not using the SugarBean methods) then the corresponding logic
hooks will not be called. In other words, if you add a before_save()
logic hooks, if code does a direct SQL INSERT to the underlying
table, then the logic hook won’t be called. It’s best for portability
reasons to always use the SugarBean save() and retrieve() methods
unless there is a specific need those methods cannot address, but
also since not doing so bypasses any logic hooks.

CHAPTER 7 ■ WORKFLOWS AND LOGIC HOOKS

150

• One of the most simple causes for logic hooks not to work are
permissions problems. The logic hook files (just like any
customized file in the instance) need to be readable by the web
server. It’s best to simply keep the custom/ directory readable at all
times, just to avoid any possible issues here.

Logic hooks are one of the most powerful features of SugarCRM, but also one of
the ones which cause the most problems in the application for developers. It’s
important to be aware of what you are getting yourself into when designing logic
hooks, and be sure to fully test many different use cases in which your logic hooks are
designed to handle before deploying it to any production environment.

Summary
In this chapter, you learned all about logic hooks in SugarCRM, which are a powerful
tool for customizing how many different behaviors in the application occur. You first
looked at the various types of logic hooks offered, then saw some examples of how to
use them in action, including examples of adding additional logic before and after
saves and when loading a record in particular. Next, you saw the point and click way
to do logic hooks, which is called Workflows. Workflows are a very powerful tool for
those without much programming knowledge to set up the most common logic
hooks easily using a very easy-to-follow interface. You then ended the chapter
looking at all the “gotchas” of logic hooks—things that cause end users grief when
writing them and things to be aware of that could cause problems down the road.

Module builder and Logic hooks and workflows are mechanisms that are
designed in mind for developers and end-users to help customize their instances. But
sometimes they aren’t enough, and you need to make more detailed changes that
these tools can’t handle. In the next chapter, you’ll do a deep dive into many of the
other customizations that are available to developers, and how to write them in an
upgrade-safe way to avoid problems with future releases and updates.

C H A P T E R 8

■ ■ ■

151

Overriding Existing Code

Up to this point, you’ve looked at ways to customize SugarCRM using the standard
developments tools, such as Studio, Workflows, and Logic Hooks. These tools are
generally considered the easiest way to customize SugarCRM, since it is the most
supported and most common way to customize your instance. Sometimes SugarCRM
doesn’t achieve the level of customization you may need. Perhaps you need to alter
some of the default behaviors of the application or maybe the GUI tools you looked at
in Chapter 6 just don’t do exactly what you need. At this point, code level
customization is truly the only option.

SugarCRM has been built and designed with the anticipation of users needing to
customize their instances. Because of this, SugarCRM has taken the approach of
giving developers this ability, but without compromising their installation as a whole.
In this chapter, you’ll look at this ability, and in turn take a look at many common
code customizations that you can do in the product with ease.

Safety Lies in the Custom Directory
The biggest pain to the customization of any product is supporting it in the future.
While the version you have today may meet your needs perfectly, what if compelling
updates and new features become available and you wish to integrate them back into
your version? Or what if the publisher has bug fixes, security patches, and
performance improvements? Surely you would want to integrate them back into your
local application. But when you have customized your instance, at what cost does
this come? In many cases, the costs outweigh the benefits, which is why legions of
legacy applications exist all over the world (many in mission critical environments)
that keep chugging along in versions no longer supported by their vendors, causing
never-ending headaches for those tasked with them. (This especially rings true for
me, as I supported several DOS based Foxpro applications in a past company until
they could justify their replacement.)

SugarCRM has taken the approach of allowing upgrade-safe customizations to
the application, which means providing a mechanism to customize your instance in

CHAPTER 8 ■ OVERRIDING EXISTING CODE

152

such a way that any future upgrades or maintenance fixes will not override your
customizations. To do this, you have a custom/ directory in the root of the Sugar
instance directory, where these customizations can be made. For the most part, any
Sugar upgrade or install changes anything in this directory. It is completely the
developer’s playground and it is reserved for their use. The only thing is, Sugar uses
this directory yet the GUI developer tools (Studio, Module Builder, etc.) also store
their customizations here as well, and because of this during an upgrade you may fix
some of the files created by those tools.

The layout of this directory generally matches that of the main application tree,
with the addition of a few more directories to handle Studio/Module Builder
customizations and some that are built automatically in the metadata and vardef
building processes. Table 8-1 details those directories.

Table 8-1. Subdirectories "{ XE "Custom directory:subdirectories" }in the Custom/
Directory and Their Uses

Subdirectory Description

history/ Contains the history of all EditViews, DetailViews, ListViews, and searches that are
customized through Studio.

modulebuilder/ Contains the module code as built by Module Builder (more on Module Builder is in
Chapter 9).

modules/ Customizations made to the modules. This is where much of the MVC and metadata
frameworks will look for customizations. Some customizations here are
autogenerated from those made in the custom/Extension/modules/ directory, such
as language string changes, subpanel customizations, menu changes (the one
typically on the left sidebar), and Vardef changes.

Extension/ This is where the source of many customizations are made. They will be rebuilt into
the custom/modules/ directory and be cached there.

include/ Customizations to files in the include/ directory.

themes/ Custom themes or customizations made to themes that came with Sugar. Custom
themes are considered individual themes in their own right, but of course can be
extended from any other theme that can be selected by a user, while customizations
to existing themes will actually change that theme.

workflow/ Contains any application-level workflows.

working/ Legacy, used by Studio pre 5.0.

backup/ Legacy, used by Studio pre 5.0.

CHAPTER 8 ■ OVERRIDING EXISTING CODE

153

Anything outside of the predefined directory structure here is also fair game. Let’s
say you have some home-brewed libraries that are used to interface into a legacy
system. You could add them here in a subdirectory, so that they can be easily
included into any further modifications you make. Since all customizations are stored
entirely within the custom/ directory, you could even manage all of your
customizations through a source control system such as Subversion or Git. This
method guarantees that none of your changes will be overridden by a SugarCRM
version upgrade or maintenance patch.

Customizations You Can Make
The freedoms of the custom directory allow us to customize the out-of-the-box
actions in SugarCRM with ease through many different means. Some customizations
are done by simply providing alternative files for what exists already in the system,
where the replacement files take the place of what already is there. Other
customizations are additive, which means they take the existing definition and apply
the changes you specify to it. Finally, some customizations provide a new function to
a module where it didn’t exist before. The biggest example of this is adding an
entirely new view to a module.

Since not all customizations are made the same way, it’s best to be aware of what
you’re getting yourself into. The rest of this chapter will go through several common
customizations you may make in code in Sugar and how to do each one of them. Let’s
jump right in with alter view actions, whether they are existing view actions or new
ones.

Altering View Actions
View actions are some of the simplest things to override through the custom
directory. You learned about these in Chapter 2, when you saw how the Sugar MVC
framework functions. By simply dropping the view class file in the
custom/modulename/views/ directory, the ViewFactory will know to use that custom
view file instead of the default one specified by the module or by the application. By
default, any view action file defined in the custom/ directory will be used instead of a
view action file being defined in the module directory or the base view definition
defined in the include/MVC/View/views/ directory.

The easiest view customization to make is to add a new view. If you want to have
the customization apply only to one module then you can drop the new view files
inside the custom/modulename/views/. Listing 8-1 shows how to add a new view to
the Accounts module.

CHAPTER 8 ■ OVERRIDING EXISTING CODE

154

Listing 8-1. Accounts Module Custom view.quickinfo.php

require_once('include/MVC/View/SugarView.php');

class CustomAccountsViewQuickinfo extends SugarView
{
 public function __construct()
 {
 parent::SugarView();
 }

 public function preDisplay()
 {
 if (empty($_REQUEST['record']))
 sugar_die($GLOBALS['app_strings']['ERROR_NO_RECORD']);

 if (!$this->bean->ACLAccess('view')) {
 ACLController::displayNoAccess(true);
 sugar_cleanup(true);
 }
 }

 public function display()
 {
 echo <<<EOHTML
<h2>{$this->bean->name}</h2>
<p>{$this->bean->description}</p>
EOHTML;
 }
}

The Quickinfo view you’ve defined is a read-only view that just shows the
Account’s name and the description. This is useful if you just need to see the notes
about an account. You’ve done quite a few things here. First, you defined the
preDisplay() method to check for the existence of the record id being passed in the
URL. You’ll call sugar_die() if it isn’t. You also went through the trouble of checking
the ACL to see if the user has access to the record or not. Finally, in the display()
method you do the actual outputting of data to the user. For the sake of brevity, I just
outputted straight HTML from here, but you could have also called a Smarty template
to do this as well. You can access the Smarty object from the view in the
SugarView::$ss member variable.

You need to do one other thing to make sure your view is accessible, which is to
register it with the SugarController class. You saw two different ways to handle this in
Chapter 2. The more elaborate way is to subclass the SugarController and add the
view from there. However, the much easier way (and the recommended way unless
you need to interject logic into the controller) is to initiate a new action view map by

CHAPTER 8 ■ OVERRIDING EXISTING CODE

155

dropping it in the action_view_map.php file inside the custom/modulename/
directory. Listing 8-2 shows what that file would look like for the preceding example.

Listing 8-2. action_view_map.php file for the custom Accounts View Quickinfo

<?php
$action_view_map['quickinfo'] = 'quickinfo';

Once this (or the aforementioned controller subclass) is in place, you can access
the previous view directly from the browser using the URL
http://instancename/index.php?module=Accounts&action=quickinfo&record=record
id.

The other form of view customization is overriding the base view action with your
own actions. For this example, you’ll use the Bugs module, overriding the Bugs edit
view. You’ll be extending the ViewEdit class since the Bugs module doesn’t define its
own specific ViewEdit subclass (if it did, you would extend from that instead). You’ll
use this to help set a default value for the found in release field, to the main active
release (as determined by the list_order field setting in the releases table). The
records for the releases table are setting in the Admin panel under Releases (see
Listing 8-3).

Listing 8-3. Bugs Module EditView

require_once('include/MVC/View/views/view.edit.php');

class CustomBugsViewEdit extends ViewEdit
{
 public function __construct()
 {
 parent::ViewEdit();
 }

 public function display()
 {
 if (empty($this->bean->id)) {
 $releaseFocus = new Release();
 $releases = $releaseFocus->get_releases(TRUE, "Active");
 $this->bean->found_in_release = array_shift(array_keys($releases));
 }
 parent::display();
 }
}

The preceding example is pretty simple. You just modify the bean value to
whatever the first active release name is provided you are creating a new Bug (you
know this by checking to see if the id field has been set or not). The return value from
$releaseFocus->get_releases() is an associative array of release id, release name pairs,
so you used the array_keys() function to just get the keys as an array and the
array_shift() method to get the first item array item, which is the first active release id.

CHAPTER 8 ■ OVERRIDING EXISTING CODE

156

One problem you may run into with view customizations is if there are changes to
Sugar from a new release. Sometimes a new view may be added to help fix a bug in
the product, where your new custom view might ignore that. Therefore, before
creating any new custom view that will extend or replace an existing one, you should
check to be sure you are not missing something that has been added since you made
your initial customization.

Changing the Metadata-Driven Views
For the Edit and Detail views, it’s not completely necessary to change the view code
to make modifications. Many customizations can be made within the metadata
definition files themselves. You learned about the structure of these files in Chapter 3,
and what options are available to you as a module writer for customizing these views.
You can use all those features that are available to customize the display as you
need it.

To customize the view you’ll need to copy the metadata file that you wish to
change to the custom/modules/modulename/metadata/ directory. This metadata
file will then be called instead of the original one. Also, be sure to turn Developer
Mode on in the System Settings in the Admin panel before doing any customizations
to these files, so your changes will be picked up automatically. A simple example
would be to remove the date_modified and date_created fields from the DetailView of
the Notes modules module. The resulting detailviewdefs.php file would look like the
code in Listing 8-4.

Listing 8-4. Customized detailviewdefs.php Metadata File for the Notes Module

$viewdefs['Notes']['DetailView'] = array(
 'templateMeta' => array('maxColumns' => '2',
 'widths' => array(
 array('label' => '10', 'field' => '30'),
 array('label' => '10', 'field' => '30')
),
),
 'panels' => array(
 array (
 'contact_name',
 array (
 'name' => 'parent_name',
 'customLabel' => '{sugar_translate label=\'LBL_MODULE_NAME\'
 module=$fields.parent_type.value}',
),
),
 array (
 array('name' => 'contact_phone', 'type'=>'phone', 'label' => 'LBL_PHONE'),
),
 array (
 array('name' => 'contact_email', 'label' => 'LBL_EMAIL_ADDRESS'),

CHAPTER 8 ■ OVERRIDING EXISTING CODE

157

),
 array (
 array('name' => 'name', 'label' => 'LBL_SUBJECT'),
),
 array(
 array('name'=>'filename', 'type'=>'file', 'displayParams'=>array('id'=>'id',
 'link'=>'filename')),
),
 array (
 array('name' => 'description', 'label' => 'LBL_NOTE_STATUS'),
),
),
);

By default the DetailView will show three buttons at the top and bottom of the
form (Edit, Duplicate, and Delete) and the EditViews will show two buttons (Save and
Cancel), and may also show the View Change Log button if the module has auditing
enabled. Let’s say you want to add the ability to search for duplicate records from the
EditView. You’ll update your metadata to list the buttons you wish to have in Listing
8-5.

Listing 8-5. Customized editviewdefs.php File for the Contacts Module with the Added
Find Duplicates Button

$viewdefs['Contacts']['EditView'] = array(
 'templateMeta' => array(
 'form'=>array(
 'hidden'=>array(
 '<input type="hidden" name="opportunity_id"
 value="{$smarty.request.opportunity_id}">',
 '<input type="hidden" name="case_id" value="{$smarty.request.case_id}">',
 '<input type="hidden" name="bug_id" value="{$smarty.request.bug_id}">',
 '<input type="hidden" name="email_id" value="{$smarty.request.email_id}">',
 '<input type="hidden" name="inbound_email_id"
 value="{$smarty.request.inbound_email_id}">'
),
 'buttons'=>array('SAVE', 'CANCEL', 'FIND_DUPLICATES'),
),
 'maxColumns' => '2',
 'widths' => array(
 array('label' => '10', 'field' => '30'),
 array('label' => '10', 'field' => '30'),
),
),
 'panels' =>array (
 'lbl_contact_information' => array (
 array (
 array (
 'name' => 'first_name',
 'customCode' => '{html_options name="salutation"
 options=$fields.salutation.options selected=$fields.salutation.value} <input

CHAPTER 8 ■ OVERRIDING EXISTING CODE

158

 name="first_name" size="25" maxlength="25" type="text"
 value="{$fields.first_name.value}">',
),
 'phone_work',
),
 array (
 array('name'=>'last_name','displayParams'=>array('required'=>true),),
 'phone_mobile',
),
 array (
 array('name'=>'account_name', 'displayParams'=>array('key'=>'billing',
 'copy'=>'primary', 'billingKey'=>'primary',
 'additionalFields'=>array('phone_office'=>'phone_work'))),
 'phone_home',
),
 array (
 'lead_source',
 'phone_other',
),
 array (
 'campaign_name',
 'phone_fax',
),
 array (
 'title',
 'birthdate',
),
 array (
 'department',
),
 array (
 'report_to_name',
 'assistant',
),
 array (
 'sync_contact',
 'assistant_phone',
),
 array (
 'do_not_call',
),
 array (
 'assigned_user_name',
),
),
 'lbl_email_addresses'=>array(
 array('email1')
),
 'lbl_address_information' => array (
 array (
 array (
 'name' => 'primary_address_street',
 'hideLabel' => true,

CHAPTER 8 ■ OVERRIDING EXISTING CODE

159

 'type' => 'address',
 'displayParams'=>array('key'=>'primary', 'rows'=>2, 'cols'=>30,
 'maxlength'=>150),
),
 array (
 'name' => 'alt_address_street',
 'hideLabel'=>true,
 'type' => 'address',
 'displayParams'=>array('key'=>'alt', 'copy'=>'primary', 'rows'=>2,
 'cols'=>30, 'maxlength'=>150),
),
),
),
 'lbl_description_information' => array (
 array (
 array(
 'name'=>'description',
 'displayParams'=>array('rows'=>6, 'cols'=>80),
 'label'=>'LBL_DESCRIPTION'
),
),
),
)
);

All of the search boxes in SugarCRM are three columns wide by default. Let’s say
most of your end users are on small screens or really have a desire to keep their
screens at 800 × 600 (I had the exact same situation when I wrote a small business app
for a previous company). You can make a simple adjustment searchdefs.php file to
handle this situation by changing the maxColumns attribute in the templateMeta
section of that file. Listing 8-6 shows an example of how this would look if you
modified the Contacts module.

Listing 8-6. Customized searchdefs.php File for the Contacts Module

$searchdefs['Contacts'] = array(
 'templateMeta' => array(
 'maxColumns' => '2',
 'widths' => array('label' => '15', 'field' => '35'),
),
 'layout' => array(
 'basic_search' => array(
 'first_name',
 'last_name',
 'account_name',
 array('name'=>'current_user_only', 'label'=>'LBL_CURRENT_USER_FILTER',
 'type'=>'bool'),
),
 'advanced_search' => array(
 'first_name',
 array('name' => 'address_street', 'label' =>'LBL_ANY_ADDRESS', 'type' =>
 'name'),

CHAPTER 8 ■ OVERRIDING EXISTING CODE

160

 array('name' => 'phone', 'label' =>'LBL_ANY_PHONE', 'type' => 'name'),
 'last_name',
 array('name' => 'address_city', 'label' =>'LBL_CITY', 'type' => 'name'),
 array('name' => 'email', 'label' =>'LBL_ANY_EMAIL', 'type' => 'name'),
 'account_name',
 array('name' => 'address_state', 'label' =>'LBL_STATE', 'type' => 'name'),
 'do_not_call',
 'assistant',
 array('name' => 'address_postalcode', 'label' =>'LBL_POSTAL_CODE', 'type' =>
 'name'),
 array('name' => 'primary_address_country', 'label' =>'LBL_COUNTRY', 'type' =>
 'name', 'options' => 'countries_dom',),
 'lead_source',
 array('name' => 'assigned_user_id', 'type' => 'enum', 'label' =>
 'LBL_ASSIGNED_TO', 'function' => array('name' => 'get_user_array', 'params' =>
 array(false))),
),
),
);

Another modification you may want to make is to disable sorting for a module.
Some fields are impossible fields to sort with the ListViews (any nondatabase fields,
such as calculated fields or fields that come from other modules), so you definitely
want to make sure those can’t be sorted. You may also want to block sorting by a
particular field for performance reasons since it may be too resource intensive for the
database so you cannot add an index on that field in the database. For this, you just
need to add the sortable attribute set to false for that field. Listing 8-7 shows an
example of this which disables sorting by priority in the Bugs ListView.

Listing 8-7. Customized listviewdefs.php Template File for the Bugs ListView

$listViewDefs['Bugs'] = array(
 'BUG_NUMBER' => array(
 'width' => '5',
 'label' => 'LBL_LIST_NUMBER',
 'link' => true,
 'default' => true),
 'NAME' => array(
 'width' => '32',
 'label' => 'LBL_LIST_SUBJECT',
 'default' => true,
 'link' => true),
 'STATUS' => array(
 'width' => '10',
 'label' => 'LBL_LIST_STATUS',
 'default' => true),
 'TYPE' => array(
 'width' => '10',
 'label' => 'LBL_LIST_TYPE',
 'default' => true),
 'PRIORITY' => array(

CHAPTER 8 ■ OVERRIDING EXISTING CODE

161

 'width' => '10',
 'label' => 'LBL_LIST_PRIORITY',
 'sortable' => false,

 'default' => true),
 'RELEASE_NAME' => array(
 'width' => '10',
 'label' => 'LBL_FOUND_IN_RELEASE',
 'default' => false,
 'related_fields' => array('found_in_release'),
 'module' => 'Releases',
 'id' => 'FOUND_IN_RELEASE',),
 'FIXED_IN_RELEASE_NAME' => array(
 'width' => '10',
 'label' => 'LBL_LIST_FIXED_IN_RELEASE',
 'default' => true,
 'related_fields' => array('fixed_in_release'),
 'module' => 'Releases',
 'id' => 'FIXED_IN_RELEASE',),
 'RESOLUTION' => array(
 'width' => '10',
 'label' => 'LBL_LIST_RESOLUTION',
 'default' => false),
 'ASSIGNED_USER_NAME' => array(
 'width' => '9',
 'label' => 'LBL_LIST_ASSIGNED_USER',
 'default' => true)
);

There are many more customizations possible as well by tweaking the metadata
file to do whatever you need it to do. The most common customization done through
the metadata files is to customize the field display, which can be done through the
'customCode' attribute of each field. Also in the ListViews, you can overwrite the
get_list_view_data() method of the module’s bean class to change how the value of a
field displays in the ListView. Sometimes you want the same changes done every time
a field type is used. You can do this by modifying that field as you see fit, which you’ll
look at next.

Adding New Custom Field Types
Sugar comes with many different field types by default that handle just about all the
different types of fields you may want, from standard input boxes to multiple
selection lists. This doesn’t mean that there may be a different type of field you may
want to be available to use throughout the Sugar instance. Or maybe you need to
tweak an existing field specification to either handle some other kind of parameter or
display it differently to the user. The SugarFields are customizable in both ways,
giving you as a developer quite a bit of leverage in customizing how fields look and
work in your Sugar instance.

CHAPTER 8 ■ OVERRIDING EXISTING CODE

162

The easiest thing to do is to customize how a field displays. You may do this for
many different reasons. For example, you may not like the way you display fields, so
you may wish to change it to display what you want it to. For example, the file field
(which represents an uploaded file) simply presents a file input box ready for you to
select the file you are uploading. It doesn’t indicate if a file has already been
uploaded, so you know not to replace it. To do so, you can make a few changes to the
field definition. First, you’ll display the name of the file uploaded right underneath
the file, so you’ll copy the include/SugarFields/Fields/File/EditView.tpl to
custom/include/SugarFields/Fields/File/EditView.tpl and make your modifications
to the template as shown in Listing 8-8.

Listing 8-8. Custom File EditView Template File

<input id="{{sugarvar key='name'}}" name="{{sugarvar key='name'}}" type="file"
 title='{{$vardef.help}}' size="{{$displayParams.size|default:30}}" {{if
 !empty($vardef.len)}}maxlength='{{$vardef.len}}'{{elseif
 !empty($displayParams.maxlength)}}maxlength="{{$displayParams.maxlength}}"
{{else}}maxlength="255"{{/if}} value="{$fields[{{sugarvar key='name'
 stringFormat=true}}].value}" {{$displayParams.field}}>

{$fields[{{sugarvar key='name' stringFormat=true}}].value}

You’ll notice in some places in Listing 8-8 you use double brackets ({{) versus
single brackets ({). This is because most of the metadata-driven Smarty templates are
built in two passes. Pass one pulls all the field templates into the main templates and
then saves it in the cache directory, so it doesn’t need rebuilt every time. Pass two fills
in the actual data values that will be shown to the user in the final built template. This
pass is done on every request.

In the preceding, you’ve just simply added to the existing template a line break
and then the string value of the given field. From now on, when you use a file
SugarField in any EditView, the above widget definition will be used instead of the
default one.

Let’s say you want to take this a step forward and have a File field type that only
allows you to initially upload the file, but not ever change it. This behavior is similar
to how the Documents module works with the File SugarField type. To do this, you’ll
extend the File field type into a new field type you’ll call Filereadonly. You’ll create
this field in the custom directory under
custom/include/SugarFields/Fields/Filereadonly/. Next, you’ll start defining the field
type. The first part of this field type is to create the SugarField child class for the
widget, so you know to inherit all the File SugarField type actions (see Listing 8-9).

Listing 8-9. Custom Filereadonly SugarField child class

require_once('include/SugarFields/Fields/File/SugarFieldFile.php');

class SugarFieldFilereadonly extends SugarFieldFile
{

CHAPTER 8 ■ OVERRIDING EXISTING CODE

163

 public function save(&$bean, $params, $field, $properties)
 {

 if (!empty($bean->id) && isset($_REQUEST[$field]))

 unset($_REQUEST[$field]);

 return parent::save(bean, $params, $field, $properties);
 }

}

In Listing 8-9, you see the use of the save() method in a SugarField subclass. This
is called during the pre_action() part of the save view call in the SugarController on
each field to apply any needed field transformation before actually saving the data. In
this case, you’ll use it for clearing out any passed value for this field if you are not
creating a new record, thus preserving your original intent of not allowing the
specified uploaded file to be changed.

The next part of this customization involves reworking the EditView template to
display the correct widget to the user, as shown in Listing 8-10.

Listing 8-10. Custom Filereadonly EditView Template File

{if $id == ''}
<input id="{{sugarvar key='name'}}" name="{{sugarvar key='name'}}" type="file"
 title='{{$vardef.help}}' size="{{$displayParams.size|default:30}}" {{if
 !empty($vardef.len)}}maxlength='{{$vardef.len}}'{{elseif
 !empty($displayParams.maxlength)}}maxlength="{{$displayParams.maxlength}}"
{{else}}maxlength="255"{{/if}} value="{$fields[{{sugarvar key='name'
 stringFormat=true}}].value}" {{$displayParams.field}}>
{else}
{$fields[{{sugarvar key='name' stringFormat=true}}].value}
{/if}

The $id variable is set by default for all EditViews. It specified the record id for the
current record. You use this variable to trigger what to do when you reach this field
widget. If no id is defined, then you assume this to be a new record, so you display a
file input box to the user for them to locate and upload the file from their local
filesystem. If there is a record id, you can then not allow a file to be uploaded, so you
will just display the name of the file which has already been uploaded, allowing no
changes from the user. To use this widget instead of the normal file one, change the
field’s vardef 'type' attribute to 'filereadonly'.

One issue you may run into with custom classes is in the few remaining sections
of the product, such as ListViews and Reports, that use the older type of widget
known as the SugarWidget to display data instead of the more common SugarField
object, which is used just about everywhere else. For these cases, you’ll want to set
the 'dbType' attribute of the field definition to one of the more built-in types, such as
varchar, so a valid SugarWidget can be used if the field is used in these areas of the

CHAPTER 8 ■ OVERRIDING EXISTING CODE

164

product. This is one area which should be cleaned up in a future version of
SugarCRM, so you won’t require adding this to the vardefs.php file for the module.

Changing Language Strings
A very common customization you see (and as it turns out, a very simple one to do) is
to customize the language strings that are used throughout the product. You saw in
Chapter 6 that you can do some of these customizations within Studio itself, but
sometimes they are much simpler to customize right in the code itself.

There are three types of language strings in SugarCRM:

• app_strings: These are strings the can be used anywhere in the
application.

• mod_strings: These are strings that are particular to a certain
section of the application.

• app_list_strings: These are associative arrays, which are often used
for fields such as enums or multienums.

Each type of language string is customized differently. For app_strings and
app_list_strings, you can either add the string changes to the
custom/include/language/en_us.lang.php or the
custom/application/Ext/Language/en_us.lang.ext.php. Either location will be parsed
for string changes. For example, you want to change the Bug status options to have
some more options and change the wording on a few of them. You’ll add a new
option Reopened, as well as changing the display string for New to Newly Created.
Listing 8-11 shows what you would need to add to the file to make this happen.

Listing 8-11. Customized en_us.lang.php file Updating the bug_status_dom key in the
app_list_strings

$app_list_strings['bug_status_dom']['New'] = 'Newly Created'; // was 'New'
$app_list_strings['bug_status_dom']['Reopened'] = 'Reopened'; // new entry

The other main application-level string file can be updated in the same way by
adding the strings you wish to update in that same file. It’s best to keep your changes
inside the custom/include/language/en_us.lang.php file since the
custom/application/Ext/Language/en_us.lang.ext.php file is typically used for Studio
string changes. Also note that any changes you make in the
custom/include/language/en_us.lang.php file are made after those in the
custom/application/Ext/Language/en_us.lang.ext.php file, so check in the former file
if your Studio changes aren’t making it to the user.

CHAPTER 8 ■ OVERRIDING EXISTING CODE

165

Strings specific to the module (referred to above as mod_strings) are kept inside
each module and are only available within that module. To customize them, you can
drop the en_us.lang.php file in the custom/modules/modulename/language/
directory. Customizations for the mod_strings work the same as those for the the
app_strings and app_list_strings, as seen in Listing 8-12, which shows how to override
a few strings in t the Bugs module.

Listing 8-12. Customized en_us.lang.php File Updating Some mod_strings for the Bugs
Module

$mod_strings['LBL_SOURCE'] = 'Defect Source:'; // was 'Source'
$mod_strings['LBL_PRODUCT_CATEGORY'] = 'Product Category:'; // was 'Category'

You’ve been directing your language fixes to the standard US English language
pack. By using the other IETF language tags in place of en_us, you can adjust the
strings of any language pack you are using with your Sugar instance. Let’s say you’ve
installed the French language pack from SugarForge and you need to adjust a few
strings in the Calls module. Just drop the fr_FR.lang.php file shown in Listing 8-13 in
the custom/modules/Calls/language/ directory and you’ll be good to go.

Listing 8-13. Customized fr_FR.lang.php file Updating Some mod_strings for the Calls
Module

$mod_strings['LBL_SUBJECT'] = 'Appel Sujet:'; // was 'Sujet:'
$mod_strings['LBL_CONTACT_NAME'] = 'Appel Contact:'; // was 'Contact:'

You can see that changing language strings around is also a very pain-free
exercise. Let’s now try your hand at modifying a few of the vardef.php files.

Tweak vardef Definitions
As you learned in Chapter 2, vardef files define the structure and specifications of the
fields used inside any given module in the application. Most of the time, the given
defaults work as expected—a common way to work around when they don’t is to add
a custom field to replace the offending field. If you aren’t scared to get a bit “down
and dirty” with the code itself, getting away from the safe confines of Studio, you can
adjust the fields to work the way you wish. Let’s look at a few common scenarios
which are easy to change through vardef customizations. Each of these
customizations should be saved in a file ending with the .php extension in the
custom/Extension/modules/modulename/ directory.

Let’s say you want to be sure that everyone when importing Bugs actually
indicates which release the bug occurred in and which release it should be fixed
in. Listing 8-14 shows the way here by setting the importable attribute for the field
to required.

CHAPTER 8 ■ OVERRIDING EXISTING CODE

166

Listing 8-14. Setting the Importable Attribute for the Given Bugs Fields to Required

$dictionary['Bug']['fields']['fixed_in_release']['importable'] = 'required';
$dictionary['Bug']['fields']['found_in_release']['importable'] = 'required';

Another situation is that you may want to enable searching by an extra field in the
global search. This search is the one that is typically in the header of the application
and is designed to be a tool to easily look for records based upon the given string
across one or more modules at a time. Modules can be included in this search by
adding the 'unified_search' attribute set to true in the root of the $vardef array for a
module, and an individual field can then be added by also setting the same
'unified_search' attribute to true in the field definition. Listing 8-15 shows an
example of how you can add enabled searching in the contact_name field when you
include the Calls module in your global search.

Listing 8-15. Setting the unified_search Attribute for the Given Calls Module Field to
True

$dictionary['Call']['fields']['contact_name']['unified_search'] = true;

You can also define new indices as well. It’s useful to define them here instead of
just adding them to the database, so that they can easily repair the database later on if
you need to without losing the added indices in the process. To do this, you can just
add the index definition as an array to the vardef definition for the module An
example is shown in Listing 8-16 where you add an index on id + name +
reference_code to the Contracts module.

Listing 8-16. Adding a New Index to the Contacts Module

$dictionary['Contract']['indices'][] = array(
 'name' => 'idx_contract_id_name_refcode',
 'type' => 'index',
 'fields' => array('id', 'name', 'reference_code')
);

To add this change to your module, you can add them inside the
custom/Extension/modules/modulename/Ext/Vardefs/ directory, with any filename
of your choosing. You can add as many files as you like here as well, which is handy
since it allows you as a developer to group your vardef customizations into different
files for better organization of your code.

Custom Themes and Theme Customizations (Yes, They Are Different)
In Chapter 5, the new Themes Framework that has been added in Sugar 5.5 was
mentioned. One very handy and long-awaited feature of this is to utilize the custom
directory for theme customizations. Theme customizations are very useful, because

CHAPTER 8 ■ OVERRIDING EXISTING CODE

167

they allow developers to alter the look and feel of their Sugar instance to match what
their users like or expect the application to look like. Up until Sugar 5.5, this has been
a non-upgrade safe modification, as well as very difficult since it required basically
copying one of the out-of-the-box themes, changing the elements you wish to
change, and then maintaining it throughout any upgrades or patches to Sugar since
they may require you to change your customizations by hand to get the new bug and
security fixes in them. With Sugar 5.5, you’ve created a default theme that has all of
the elements you need for any theme ready to go, and now allow developers to base
any new themes off of existing themes in the product. In addition, you can also make
simple and easy customizations to the included themes in case you don’t like what
has been chosen by default.

Let’s start with the easiest type of customization. In case, you don’t like the image
used for a particular part of the application you can , just dump an image of the same
name into the custom directory for that theme> If you wanted to override the
Accounts.gif image you would drop your version of it in the
custom/themes/themename/images/Accounts.gif file. The new file will then be
picked up with no code changes required: The only thing you may have to do is clear
out the themes cache through the Admin Repair Clear Theme Cache option. You
can also specify this to override the default image used in all themes for this image by
dropping it in the custom/themes/default/images/Accounts.gif file instead.

One other thing to make sure of is that the file name is the same type as the
original. Let’s say you are a big fan of png images and want to use a png instead of gif
file here. No problem, just name the file
custom/themes/themename/images/Accounts.png and it will replace the original
themes/themename/images/Accounts.gif or themes/default/images/Accounts.gif file
as well. You can also substitute in files ending in .jpg, .bmp, or .tif as well, giving you
more options in providing image types; the order checked for files is gif, png, jpg, tif,
and bmp.

The other type of customization you can make is to the CSS used in displaying the
content to the user. These are specified in the
custom/themes/themename/css/style.css file, and will be appended after the original
style files of the theme. Javascript customizations can be made in a similar way as
well by dropping the style.js file inside the custom/themes/themename/js/ directory,
which will allow it to be added to any existing javascript code provided by the theme.
With these tools available, customizing a theme for use on your instance is a snap.

But let’s say you want to not override one of the existing themes, but actually
make a new theme based upon it. To do so is a simple task; just make a new directory
in the named custom/themes/newthemename/ and add a themedef.php file to it
similar to the one in Listing 8-17.

CHAPTER 8 ■ OVERRIDING EXISTING CODE

168

Listing 8-17. themedef.php file for a new custom theme SugarCustom

$themedef = array(
 ‘name’ => "SugarCustom", // theme name
 ‘description’ => "Sugar Custom Theme", // short description of the theme
 ‘parentTheme’ => "Sugar", // name of the theme this theme inherits from, if something
 other than the default theme.
);

You’ve specified the name of your new theme will be SugarCustom, so this file will
be located in the custom/themes/SugarCustom/ directory, which will also contain all
images, css files, and javascript that will custom define this theme. The key attribute
in the theme definition file is the parentTheme item. This indicates which theme you
wish to inherit from. If you don’t specify an existing theme in the product here, then
you’ll just receive the default theme css, javascript, and images, which may be a good
start if no other theme is close to what you wish to build.

Summary
In this chapter you learned about all the other type of customizations, you can make
to your Sugar instance through code. You learned about the custom directory, which
holds all the customizations you can do in the product, and saw where you would
make different types of customizations. You then took a look at a few common
customization examples, such as customizing views, metadata, vardefs, language
packs, and themes.

At this point in the book, you now know how to take a Sugar instance and
customize it to work and look at how you would like it. Coming up in the next section
of the book you’ll learn how to build new modules on top of Sugar to handle different
kinds of data you may wish to manage with it.

P A R T 3

■ ■ ■

Building New Functionality
on Top of SugarCRM

This part of the book focuses on building new modules on top of Sugar. You’ll learn to
do this using both the built in GUI developer tool Module Builder, as well as building
a module piece by piece using custom PHP code. You then see how you can put all
the concepts learned in this book together to build a complete typical business
application.

C H A P T E R 9

■ ■ ■

171

Using Module Builder to Build

Custom Modules

At this point in the book, you now know about the guts of what makes SugarCRM tick,
from the big stuff like the MVC framework, the Metadata layer, and Web Services to
the smaller items like User Authentication and Dashlets. After that thorough study of
Sugar, you then looked at how to customize Sugar right out of the box. I started by
showing the easy-to-use Studio tool that enables customizing the metadata views
through an easy point and click interface. You then saw how to interject business
logic into your application through the use of logic hooks and how to interject
common logic into your application using workflows, which provide a point and click
way for the non-programmers among us to add business logic as well. If neither of
those options for customizing does the job, you then saw how to customize several
other areas of the application from views and metadata to field types and themes.

What if that level of customization isn’t enough for your needs? CRM is a not
“one-size-fits-all” solution, so the exact pieces to include and exclude are not
concrete. CRM is meant to be a tool to enhance your business productivity, so
whatever you need to make that so is of paramount importance, whether adding new
pieces or altering or removing existing ones. This is the main reason behind the
strong customization tools I discussed in Part 1 as well as what you’ll see here in
Part 3 on adding new modules to Sugar.

In this chapter, you’ll look at Module Builder. Module Builder is a GUI tool for
building a module that can be used within your Sugar instance or exported to be
installed in other Sugar instances. It has a very similar look and feel to Studio, with
which Module Builder shares a lot of code. Let’s go ahead and jump right into
learning how it all works.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

172

Getting Started
As mentioned, Module Builder is a GUI tool that shares the same look and feel of
Studio, which you saw previously in Chapter 6. You can get to it from the Admin
panel by clicking the Module Builder link in the developer tools section. Once you
click that link, you’ll see the screen shown in Figure 9-1.

Figure 9-1. Default Module Builder screen

Module Builder organizes things into units called Packages, each of which can
contain one or more modules. The reason for this approach is because most times
you are designing a complete solution, which involves many modules that work in
conjunction with each other to fill a need, rather than just a simple module. In order
to create a new module, you first need to create the package that will contain it, so
you’ll click on the New Package link shown in Figure 9-1 which will bring up the New
Package form shown in Figure 9-2.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

173

Figure 9-2. Module Builder New Package dialog

This form is used to enter the details of the package you are building. You’ll set the
name of your package to MyNewPackage (it must be alphanumeric with no spaces),
and put in my name (John) for the author of the package. The Key value is used to
prefix each of the module’s object names to help ensure that the module names don’t
interfere with another module, as well as give an easy way to identify in the directory
structure of which modules go with the package. If you would build a new module
called dog then it would appear as pack_dog in the directory structure (that would be
the module name as well). You can also add a description to the package optionally,
as well as a readme file, which is displayed to the user when it is installed through
Module Loader. You’ll see that when you actually install the custom module using
Module Loader.

Upon clicking Save in the form in Figure 9-2, the new package will be created and
you’ll be left at the main page of the package, as shown in Figure 9-3.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

174

Figure 9-3. Main screen in Module Builder of a package

You’ll notice the leftmost column in Figure 9-3 now shows your package in the
listing of packages. This is where you’ll base all your new actions in the package, and
where you can begin to create a new package, which you’ll see how to do in the next
section.

Designing a New Module
Once you have a package created, you can then add a new module to it. To do this,
you’ll click the New Module link in the main screen of your package (shown in Figure
9-3), which will bring up the form shown in Figure 9-4.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

175

Figure 9-4. Create new module screen in Module Builder

You start off by naming your new module, giving it both an internal name in the
Module Name field, which is used when referring to your module in the code, as well
as a display name for your module, which is how your end-users will refer to your
module. At this point, you have a few more options to use for this module:

• Importing: This enables the Sugar import tool for importing data
into your module.

• Team security: Check this item if you want team security in your
module, which means that you can assign this module’s records to
one or more teams and restrict access to records that are based
upon which team the user is part of.

• Navigation tab: Check this item if you want the module displayed
in the navigation tab that is usually along the top of the screen with
all the other available modules. The main reason you would not
want this option checked is if the module is a submodule of
another module, where you wouldn’t want people to typically have
direct access to it.

Now you can select the type of module you wish to create. These are the same
choices you saw for SugarObject templates in Chapter 2, but I’ll outline them once
again for your reference in Table 9-1.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

176

Table 9-1. Module Types and Descriptions

Module Type Description

basic A basic template with only fields for a name and description, plus those “behind the
scenes” fields like id, the deleted flag, and created/modified timestamps. This template
is intended to be the base of all the following templates listed.

company Fields that would normally be used with a company, such as name, address, phone, web
site, or industry. It also contains the fields in the basic template.

file Used when the object stores files that the user uploads. It also contains the fields in the
basic template.

issue For modeling an issue or job tracking system. It also contains the fields in the basic
template.

person Fields that represent a person, such as name, address, phone, or email. A new feature of
Sugar 5.5 is that this module will automatically give users the ability to import and
export vCards in the module. It also contains the fields in the basic template.

sale Used when the object is for sales transactions or forecasting. It also contains the fields in
the basic template.

Once you have everything the way you want it, click Save and your module will be

created. You’ll be directed to the newly created module’s main screen, as shown in
Figure 9-5.

Figure 9-5. Main screen for a module with a package in Module Builder

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

177

With that, you have created a new module. But your module is rather boring at
this point, because just the defaults are set for it. Let’s begin by adding new fields,
which you’ll learn about in the next section.

Fields
The first thing most people want to do when designing a module is to add the fields
they need to the module. This is an easy task to handle. You just need to click on the
View Fields button on the main screen for the module (shown in Figure 9-5) and
you’ll be at the fields screen for the module, shown in Figure 9-6.

Figure 9-6. Fields screen for a module in Module Builder

The fields screen breaks the fields into sections. The topmost section lists the
fields that are specific to the module you have created. Each section represents fields
that are inherited from other SugarObjects, so for the previous Person module which
has Team Security enabled you’ll inherit fields from the Person, Assignable, Team
Security, and Basic templates. If you choose a different module type back when you
created the module in the previous section (or chose to disable Team Security), you
would have a different list of fields inherited.

In Figure 9-6, you have no fields currently defined specifically for this module. To
change this, click the Add Field button and you’ll be able to add a new field using the
screen that is shown in Figure 9-7.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

178

Figure 9-7. Create Field screen for a module in Module Builder

This is the same dialog discussed in Chapter 6 regarding adding custom fields in
Studio. Changing the data type will change the inputs that are given in the form, just
like how it worked under Studio as well. One difference from Studio is that the field
you create will not have the _c suffix applied to it, since the result field is not a custom
field, but an actual field for the module. Also, this field will be stored in the primary
table for the module and will not be an auxiliary one once you install the module,
contrary to how Studio works.

Once you click on Save the field will be added and the field listing will be updated,
as shown in Figure 9-8.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

179

Figure 9-8. Create Field screen for a module in Module Builder once you’ve added a
field

While you can’t change any of the field properties of the fields inherited from the
other SugarObjects, you can customize labels of the fields that are displayed to the
end-user. This could be handy if you wanted to repurpose those fields for your own
needs, or even if the given description is not the same terminology that the end-user
would be familiar with. In either case, you can change the field labels in one of two
ways: You can edit an individual field by clicking on the field name in the main
module menu (shown in Figure 9-9) or by clicking the Edit Labels buttons and
changing the labels in question, as shown in Figure 9-10.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

180

Figure 9-9. Editing the label of an inherited field

Figure 9-10. Editing all the labels of a module

The benefits of using the latter option (editing all fields at once) is that you can
also edit the labels used in other language packs as well at the same time, just like you
could in Studio. This is because using the latter option edits the definition for the
default strings while editing the field title on the Fields screen changes what string
definition is used for the field.

Now that you have your fields set in stone for your module, you can customize the
layouts for the various metadata forms used.

Metadata
You learned back in Chapter 3 about the virtues of metadata and how they make it
easy to build up the primary data interaction views of your module in a very
standardized way. Just like Studio, you can also edit these views from Module Builder
as well. To do so, just click on the View Layouts link on the main screen for the
module, which will launch the module’s layouts screen, as shown in Figure 9-11.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

181

Figure 9-11. Module layout screen in Module Builder

You can click on any of the links in the screen shown in Figure 9-11 to customize
the view in question. In Module Builder, just like in Studio, you can add or remove
any of the fields on the form and adjust the position and grouping on the screen. You
cannot change any of the buttons at the top of the screen (that must be done
manually). To customize the EditView for your module, you can click the EditView
link, which launches the screen shown in Figure 9-12.

Figure 9-12. Editing a module’s edit view in Module Builder

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

182

You’ll remember from Chapter 6 that this screen is very easy to use, because you
can drag and drop the fields you are looking to add or remove from the form easily by
using the rich AJAX interface. The form works identically to how it works in Studio.
You can add new rows or panels to the form and add and remove fields as you wish.
When you have the form the way you want it, just click Save.

You can edit the ListView as well, just as you did in Studio (see Figure 9-13). This
form allows you to specify both default fields to show in the ListView in addition to
the fields that are available in general, as well as giving a default field order for the
fields in the ListView.

Figure 9-13. Editing a ListView for a module in Module Builder

Again, the Search form editing works like it did in Studio. Here you just list the
fields that are available to be searched in the chosen search panel, whether it is the
basic or advanced one. They are then laid out in order from the top of the form’s first
element to the bottom of the form’s last element, all in the three columns.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

183

Figure 9-14. Basic search panel editing for a module in Module Builder

One additional thing to edit is the dashlet created automatically for your module.
Dashlets are the tool you learned about in Chapter 5 that allow you to display
information about a module or any other part of Sugar on the homepage for quick
and easy reference. The dashlet that gets created by Module Builder is the ListView
type, so you have two parts of it available for customization. The first part is the fields
that show up in the ListView itself. You’ll have a ListView editor available, as shown in
Figure 9-15.

Figure 9-15. Dashlet ListView editor for a module in Module Builder

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

184

The other part you can customize is the available search fields for customizing the
dashlet’s display. You’ll remember that these fields are available when going into the
dashlet’s configurations options dialog window and are a way of tweaking the records
that would get shown in this dashlet. Figure 9-16 shows editing this just like you
would a normal search panel.

Figure 9-16. Editing the dashlet search fields for a module in Module Builder

When you deploy or install this module on a running instance, the new dashlet
will not be automatically put on the Home or Dashboard pages. It will be in the list of
Dashlets available to add to those pages, which users can choose to do once the
module is available to the user.

Relationships
Relationships are the last piece of the puzzle when building any new module, but in
many ways the most important. Relationships between modules are one of the things
that truly enhance the value of SugarCRM. By relating records together, whether
across modules or within a module, you open up the ability for enhanced
productivity by giving users the ability to pull disparate pieces of information in a
system together easily. For anyone building a module, it makes it easy to build upon
the existing Sugar modules instead of having to make complicated and elaborate
hooks to them or just rebuilding the functionality they may give your module on
your own.

To get started, click View Relationships from the module’s main screen, which
will bring up the dialog shown below in Figure 9-17.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

185

Figure 9-17. Relationship listing for a module in Module Builder

By default no relationships exists for a module, so if you want to add one you’ll
need to click on the Add Relationship button on the form to add it. When you do,
you’ll be at the create relationship screen, as shown in Figure 9-18.

Figure 9-18. Create Relationship screen in Module Builder.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

186

This screen (much like most of Module Builder) works the same as its counterpart
in Studio. Remember from Chapter 3 that you are allowed to create different types of
relationships using Module Builder:

• One to One: The primary module has one record which relates to
only one record in the related module.

• One to Many: The primary module has one record which relates to
one or more records in the related module.

• Many to One: The primary module can have one or more records
which relates to only one record in the related module.

• Many to Many: The primary module can have one or more records
which relates to one or more records in the related module.

One difference here with editing relationships in Module Builder versus Studio is
that Module Builder allows you to edit and delete your relationships after you create
them through the GUI, while with Studio this was not possible. (In Chapter 6, you
learned a way to dig through the code to clear these relationships out.) The big reason
it can be done here, but not in Studio, is that the module structures in Module
Builder are much more malleable in Module Builder than Studio. Studio is writing
out the customizations immediately while Module Builder only does this on a publish
or deploy.

Once you have created the many-to-many relationship, click Save and the
relationship will be built. You’ll be back at the relationships screen with the new
relationship added, as shown in Figure 9-19.

Figure 9-19. Create Relationship screen in Module Builder after adding a relationship

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

187

A consideration you should make when adding relationships to modules that you
don’t ship with your package is that you should make sure that you aren’t adding
relationships to modules that don’t exist on the target system. For example, let’s say
you have a relationship to the Contracts module, but someone wants to install your
package on the CE version of Sugar. They’ll run into all sorts of problems since that
module is not available. Things like this should be clearly documented in the
README file if they exist, so that administrators can be aware of them and avoid
potential problems.

What Do I Do with This Package?
Now you have your module just the way you want it: all the fields you need are
present, the metadata views property customized, and the labels correct. It’s time to
show it off to the world! To accomplish this, Sugar provides three approaches:

• Publish the module package as a loadable package that can be
installed into an instance using Module Loader. This is a common
approach if you are developing a module for deployment on many
different Sugar instances, since the administrator can just load the
package into their instance and install it easily.

• Deploy the module package into the current running instance.

• Export the module package as a loadable package that will only be
installed back into Module Loader for further customization on the
target system. This approach is most commonly used when
multiple developers are working on a package, so they can share
changes back and forth between them, or if the package may need
some additional configuration once it is installed on the individual
Sugar instance.

You’ll take a look at each of the options available and how each of them work.

Deploy to the Current Instance
You’ll first look at the easiest and common solution, which is to deploy the module
into the current running instance. To do this, all you need to do is click the Deploy
button on the main package screen and the package will be deployed into the current
instance.

Figure 9-20 shows Deploy dialog when deploying a package using Module Builder
onto the current instance.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

188

Figure 9-20. Create Relationship screen in Module Builder after adding a relationship

When it is done, the module is then immediately available to the end-users in the
current running instance. As you make changes to your module, you can continue to
deploy your module again and again, and your changes will override the current ones
in the module.

Publishing Your Changes and Installing Them with Module Loader
If you are looking to distribute your module to the world, you’ll want to click the
Publish icon instead, which will download the built module as a zip file into your
local computer. Then, you can take this zip package and install it in any other Sugar
instance very easily using Module Loader. To do this, you’ll go to the main Module
Loader screen by clicking the Module Loader link in the Admin panel in the
Developer Tools section, which shows the dialog shown in Figure 9-21.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

189

Figure 9-21. Main screen of Module Loader

To begin to install your package, you first need to upload it. The second section of
the screen in Figure 9-21 is where you do this. Just browse to select the zip package
you downloaded on your local computer and then click Upload to upload it to the
Sugar instance. When you do so, it will appear in the list of modules shown in Module
Loader, as you can see in Figure 9-22.

Figure 9-22. Module Loader after you upload a package

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

190

You can click Install now to begin the installation of your package. A few checks
on the package and the system will be performed first, and then you’ll be at the
commit screen for the package, as you can see in Figure 9-23.

Figure 9-23. Commit screen for installing a package through Module Loader

You’ll need to agree to a license agreement, which is a stock one that is included
by default on all Module Builder modules. You can replace this in the package
changing the LICENSE.txt file inside the published package. If you specified a
README.txt for the package during the package creation, you’ll also see it here in the
second tab of this form.

Figure 9-24. Readme section of the Commit screen for installing a package through
Module Loader

Once you are ready to install the package, just click Commit and the installation
will begin. This could take awhile, because not only will files need to be copied but
also a series of SQL statements will need to be run to create the database tables that
are used for the module, as well as rebuilding relationships to include any newly
created relationships you have specified in Module Builder.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

191

Figure 9-25. Package installation through Module Loader

Once the install is complete, you can click the Back to Module Loader button and
see that your module is now installed and ready to use. There are no further
adjustments required, so the module is immediately available to all users with ACL
rights to do so.

Exporting the Package
On the main page of the package, you can click the Export button to export the
package into a module loadable zip file, which uses the same Module Loader tool
used to install a published package. However when installing the package, it only
puts it into Module Builder and does not make it available in the running instance to
other users—to do that you’ll need to deploy to the instance.

The main reason for having such an option is mostly in the cases where several
developers are working collaboratively on a module and don’t have a version control
system such as SVN or Git at their disposal. This way one developer can work on one
part of the module, and then pass it to another developer to do his part, and so on.
Another possible use would be if the module may need some further customization
steps in relationship to the deployed instance. For example, you may want to provide
a way for instances that are missing a particular module to remove any relationships
to it before deploying.

Removing an Installed Package
No matter what deployment option you choose to go with, the package installed will
be shown in the Module Loader, as you can see in Figure 9-26.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

192

Figure 9-26. Module Loader after you install a package

From here, uninstall your package if you no longer wish to use it at all or disable it
if you want to remove it for the time being but keep it installed in the system.
Disabling is a good option if you can see it being used again in the future, but need it
removed for the time being. A possible reason could be that there is some
performance issue, so you want to disable it until you can fix it. Uninstalling it is the
best option if you no longer want to use the package at all. When you click the
Uninstall button, you’ll go through a quick wizard that will check the system to make
sure it can uninstall the package, as shown in Figure 9-27.

Figure 9-27. Dialog for uninstalling a package using Module Loader

You have an option here to remove the tables created by the module or not to.
Typically, you’ll want to remove these tables since keeping them would leave extra,
unused tables in your database. However, your DBA may not want you to run several
DROP TABLE commands on a running SQL database, but rather do so themselves.
Therefore, the option to skip this step is also given.

You just need to click Commit and the screen in Figure 9-28 appears, which
removes the module from the Sugar instance.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

193

Figure 9-28. Uninstalling a package using Module Loader

The same steps are used when a module is installed, only doing the reverse
actions. At this point, all traces of the module are no longer available to any users,
and clicking the Back to Module Loader button will take you back to the main Module
Loader screen. You’ll notice the package will move back down to the lower grid which
lists packages to be installed in case you would want to reinstall it later. If you are
done with it for good, click the Delete Package button in that grid and the package
will be removed from that list.

Summary
In this chapter, you learned all about Module Builder, a handy tool for building new
modules for SugarCRM using an easy-to-use point and click interface. You looked at
building a module piece by piece, beginning by seeing how to construct the initial
package and then scaffolding for your module using the built in SugarObject
templates. You walked through customizing all the parts of the module, from the
available fields and their user-visible labels to all the metadata-driven views that
compromise the core of your module. You then looked at deploying your module out
to the world and what options you have available. Here you could use deploy right to
your current instance or export it out to a zip file where it could be installed on other
instances as well.

While Module Builder works great for your typical CRUD style module, many
times you need to perform more customized tasks inside a module that only can be
done through custom PHP code. Have no fear, Sugar has you covered here. In the
next chapter, you’ll look at building a module manually.

CHAPTER 9 ■ USING MODULE BUILDER TO BUILD CUSTOM MODULES

194

C H A P T E R 10

■ ■ ■

195

Building a Custom Module Manually

In Chapter 9, you looked at Module Builder, which is a very easy-to-use tool that you
can use to build a module. Using Module Builder you can build the most common
kinds of modules with ease, which are typically those that employ some sort of CRUD
interface for maintaining the records in the module. For many module needs you’ll
have, this is probably all that is required, but remember that you can use the logic
hooks and workflows you learned about in Chapter 7 to add in the missing business
logic pieces to your custom module just like you can with the built in modules. With
these powerful tools at your fingertips, you’ll find yourself ready to build modules for
yourself rapidly in no time at all.

What if your module doesn’t fit this mold? What if you need to construct some
sort of special functionality that Sugar doesn’t provide out of the box? Then building
a module manually is definitely the course of action you’ll need to take to accomplish
your goals, and in this chapter you’ll take a step-by-step journey on how to do this.
We’ll begin this journey by first looking at the reasons you would want to do
something like this.

Why Would You Do This?
The first question any practical programmer asks themselves is why? Why go through
the trouble of building a module bit by bit instead of going the easy route and just
using Module Builder? The following are some reasons:

• You really want to learn about the internals of SugarCRM. This isn’t
really the most far-fetched reasoning. Recently, I spent some time
building a few modules by hand and learned a wealth of
information about how the innards work, which gave me a lot of
insight into the platform that I’ve used for writing this book.

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

196

• Your module isn’t the normal CRUD-style module (i.e., a module
that contains a Detail, Edit, and List views). For example, the
Import module doesn’t have any data entry screens, but rather it’s
just a step-by-step wizard interface that performs an operation on
another module.

• Your module has some customized data entry screens. The Roles
module is a pretty good example of this, because it has Detail and
Edit views that use widgets not included with Studio or Module
Builder.

There’s also a middle road here as well. You could use Module Builder to do the
dirty work of setting up the initial views, creating the needed fields, and building
relationships. After that half is done, you could deploy your module and then
customize it in the instance using many of the techniques you looked at in Chapter 8,
such as adding additional views or customizing the metadata in ways you cannot do
with Studio or Module Builder. I would recommend this approach if possible since
you’ll be able to skip several of the initial steps that create the general scaffolding of
the module and its file structure, and just concentrate on what you need to add to
accomplish your goals.

However, if your module isn’t the typical data- driven module (like the Imports
module), then it’s best to adhere to the following instructions and build your module
by hand. Or, if you are just curious about how a module is built from the ground up,
follow along to learn what needs to be done to make this happen.

What You Need to Do
If you have got to this point then you have decided that building a module by hand is
exactly the course of action you wish to embark on, for one of the many reasons
previously outlined. The process to do so requires a bunch of steps that are
important, so that your module is properly recognized by the Sugar instance. Missing
any one step could potentially result in your module not functioning as expected,
whether it because of errors in the application or data loss.

For this example, you’ll assume you’re building a module called Parts, which will
be used to build a parts database for your Sugar instance. The Parts module will be
mostly a normal CRUD-style module, with a few twists along the way. Let’s jump
right into the process, beginning with construction of the directory structure.

Construct Directory Structure
The directory structure for the module is the first component in building your own
module. Your newly created module will exist inside the modules/ directory at the
root of the application, so for the Parts module that you are building the directory

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

197

name would be modules/Parts/. That directory will contain all the files that will be
used in your module. Table 10-1 contains a breakdown of these items.

Table 10-1. Breakdown of the Contents of Any Module

File and/or Directory Description

Language/ Contains all the language strings for a given module.

Dashlets/ Contains any dashlets for the given module.

metadata/ Contains all the metadata files (for EditViews, DetailViews, searches) for the
module. These include metadata/editviewdefs.php,
metadata/detailviewdefs.php, metadata/searchdefs.php,
metadata/listviewdefs.php, and metadata/SearchFields.php.

metadata/studio.php File exists if you can customize your module via Studio. It does not have to have
anything in it, just be there.

metadata/subpanels/ Contains the metadata files for the subpanel view of this module inside other
modules.

views/ Contains any view files for the module.

tpls/ Contains any Smarty templates used in the module.

javascript/ Contains any javascript code included by the views in the module.

Forms.php Contains any code you wish to be included with any access to your module,
such as helper functions. Please note this file must exist, even if it’s empty for
the module to function correctly.

Menu.php Contains any array that is used to build the module’s menu, which is typically
located in the left sidebar and contains links to common module actions, such
as creating new records.

Beanname.php The main bean class for the module.

vardefs.php Contains the table structure, including fields, indices, and relationships to other
modules.

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

198

I’ll outline the contents of the directories listed in Table 10-1 and what the
contents of the files mentioned in there are throughout this chapter. It’s important to
note that naming convention is important for the module not only for the sake of
consistency within the application, but also since many platform- related
components expect files to exist in certain locations and cannot function correctly if
they aren’t there. For example, the EditView metadata template is always expected to
be located at modules/modulename/metadata/editviewdefs.php, as the EditView
handler code expects to find it there.

At this point, it’s most important to have all the file and directories listed in Table
10-1 created, minus the Menu.php, Beanname.php, and vardefs.php files which
you’ll build later on. Once that’s all done, you can move on to getting your module
registered inside of Sugar.

Register Module with the Instance”
You built the structure of your shiny new Parts module, but there’s one problem:
Sugar has no idea it exists. In order to help Sugar figure this out, you’ll need to
register your newly created module with the Sugar instance.

The first part of the registration involves the include/modules.php file. If you look
at this file in your instance, you’ll notice it contains references to every module that
exists in the system. Your Parts module needs to be included in this as well. However,
you can’t just add your module in there if you ever expect your module to be upgrade
safe. Instead, you’ll add it to this file by adding it through the custom/ directory— the
file that gets read by the include/modules.php file is located in the
custom/application/Ext/Include/modules.ext.php file. Listing 10-1 shows what
needs to be in this file in order for it to work.

Listing 10-1. custom/application/Ext/Include/modules.ext.php file that Contains
Additions to the include/modules.php File

<?php

$beanList['Parts'] = 'Part';
$beanFiles['Part'] = 'modules/Parts/Part.php';
$moduleList[] = 'Parts';

?>

There is one issue you could potentially run into when adding the parts directly to
the custom/application/Ext/Include/modules.ext.php file. If you load any modules
into your running Sugar instance then your changes would be wiped out. The best
way to avoid this from happening is to also add the code listed in Listing 10-1 into a
file in the custom/Extension/application/Ext/Include/ directory with any file name

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

199

of your choosing ending with the .php extension, like additions.php. This way,
whenever a new module is installed into your instance, your additions to the
custom/application/Ext/Include/modules.ext.php will continue to be incorporated
into that file.

There are also a few other options you can set for your module, as shown in Table
10-2.

Table 10-2. All Options for a Bean in the modules.ext.php File

Array name Description

$beanList List of available beans; key is the module name.

$beanFiles List of bean file paths of all available modules; key is the module name.

$moduleList List of available modules; no key specified.

$modInvisList List of module which shouldn’t ever be shown in the module list tabs typically at the
top of the screen; no key specified

$adminOnlyList List of modules that are for Admin use only; no key specified. The value is an array in
the form of:
'modulename' => array('all' => 1)

The next piece is to add the module into the language pack with the correct

localized name for it. You’ll add it to two keys in the $app_list_strings, as you can see
in Listing 10-2.

Listing 10-2. custom/Extension/application/Ext/Language/en_us.parts.php File that
Contains Additions to the include/languages/en_us.lang.php File

<?php

$app_list_strings['moduleList']['Parts'] = 'Parts';
$app_list_strings['moduleListSingular']['Parts'] = 'Part';

?>

The two keys you’ll add it to are 'moduleList' and 'moduleListSingular', both
with the keys being the module name. The moduleList key has the value of the
module name itself, while the moduleListSingular specifies the module name in
singular form (versus the normal name of the module which is most often in plural
form).

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

200

Now that your module is properly registered into your Sugar instance, you can
now begin to build the bean class file for your instance.

Add Bean Class File”
In Chapter 2, you learned that the bean class file represents the model portion of the
Model View Controller design pattern used within Sugar. Its goal is to provide an
interface into the backend data structures used by the module, as well as providing
simple methods for any data transformations that need done as a part of the module
execution. Listing 10-3 shows the bean class file you’ll be using for the Parts module
that you are building.

Listing 10-3. Part.php Bean Class File

<?php

class Part extends Basic
{
 var $new_schema = true;
 var $module_dir = 'Parts';
 var $object_name = 'Part';
 var $table_name = 'parts';
 var $importable = true;

 var $id;
 var $name;
 var $date_entered;
 var $date_modified;
 var $modified_user_id;
 var $modified_by_name;
 var $created_by;
 var $created_by_name;
 var $description;
 var $deleted;
 var $created_by_link;
 var $modified_user_link;
 var $team_id;
 var $team_set_id;
 var $team_count;
 var $team_name;
 var $team_link;
 var $team_count_link;
 var $teams;
 var $assigned_user_id;
 var $assigned_user_name;
 var $assigned_user_link;
 var $part_reference_number;

 var $part_location;

 public function __construct()

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

201

 {
 parent::Basic();
 }

 public function bean_implements($interface)
 {
 switch ($interface) {
 case 'ACL': return true;
 }

 return false;
 }

 public function fetchImageURL()

 {

 if (!empty($this->part_reference_number))
 return 'http://partimageserver.local/getImage/'
 . $partBean->part_reference_number;

 return 'include/images/blank.gif';

 }

 public function save(
 $check_notify = false
)

 {

 // Default the part_location field if it's not otherwise specified

 if (empty($this->part_location)) {

 if (strpos($this->part_reference_number,'790-') !== FALSE)
 $this->part_location = 'Warehouse';

 elseif (strpos($this->part_reference_number,'890-') !== FALSE)
 $this->part_location = 'Stockroom';

 }
 return parent::save($check_notify);

 }
}

?>

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

202

For this module you will inherit from the Basic template, so you’ll also subclass

the Basic template’s bean file for your bean file to properly include any logic from it.
The main parts to the bean file you need to specify include:

• The main bean properties such as the module directory, object
name, table name, and whether the module will allow importing
into it.

• Bean properties for each field in the table for this bean. This isn’t
absolutely required, but makes writing any PHP code for your
module much easier.

• The bean_implements() method, which indicates to Sugar whether
this module will use ACL to control access or not.

• Any other new methods or overridden methods you need.

For the last item in the list, you’ll add one method and extend another existing
method in the bean class. The save() method, which is used to save a record to the
database, is the method you’ll override with logic to set the part location based upon
the given part reference number that the user has provided in case a part location is
not specified. Then you’ll add a method named fetchImageURL(), which will fetch a
URL that contains image of the part based upon the part reference number. You’ll
use this method later on to create a view that will specifically do this. This example
assumes that the server http://partimageserver.local/getImage/ is a REST Web
Service that provides images for the various parts.

Build vardefs
You’ll also remember from Chapter 2 that the vardefs files are used to define the
underlying table structure for a given module. One nice thing is that you’ve based
your newly created module upon one of the built-in templates that come with Sugar,
so you don’t have to specify all the fields that you need, just those that aren’t already
a part of the template that you are basing your module on.

For the parts module you are building, you are going to be adding two fields to it.
The first field is a varchar field called 'part_reference_number', which will specify a
reference number you’ll use for your part and will also be used for image lookup as
you saw in the Part bean class method previously. You’ll also add an enum field
named 'part_location', which gives the user a dropdown selection of the current
location of the part. You’ll define all the options for this enum field in the “Add
Language Strings” section later on in this chapter.

Putting it all together, you have the vardefs.php file shown in Listing 10-4.

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

203

Listing 10-4. vardefs.php File for the Parts Module

<?php

$dictionary['Part'] = array(
 'table' => 'parts',
 'audited' => true,
 'fields' => array(
 'part_reference_number'=>
 array (
 'name' => 'part_reference_number',
 'vname' => 'LBL_PART_REFERENCE_NUMBER',
 'type' => 'varchar',
 'len' => '255',
),
 'part_location'=>
 array (
 'name' => 'part_location',
 'vname' => 'LBL_PART_REFERENCE_NUMBER',
 'type' => 'enum',
 'len' => '50',
 'options' => 'parts_part_location_dom',
),
),
 'indices' => array(
 array('name' => 'idx_parts_part_ref_id', 'type' => 'index', 'fields' =>
 array('id', 'part_reference_number')),
 array('name' => 'idx_parts_part_location_id', 'type' => 'index', 'fields' =>
 array('id', 'part_location')),
),
 'relationships' => array (
),
 'optimistic_lock' => true,
);

require_once('include/SugarObjects/VardefManager.php');
VardefManager::createVardef('Parts', 'Part', array('basic', 'assignable'));

?>

You also add a few additional indices as well, so that your newly added
part_reference_number and part_location can be queried in an optimal way,
meaning that the database can use these indexes to speed up the execution of the
various queries made to the underlying tables. At the bottom of the vardef file is
where you include the additional field definitions from the basic template you are
inheriting from, as well as the assignable template which adds in all the assigned to
user fields to your module.

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

204

Remember that before you can use your module, you’ll need to go to the Admin
Repair Repair Database before you attempt to use your module so the backend
parts table will be built for your module. You should do this every time a change to
the vardefs.php is done as well, even if a database change is not required, since it will
also refresh the cached copies of the vardefs.php file for your module at the same
time. After you do this, your database will have the added or updated fields that are
defined in the vardef files available for your module to use.

Now that you have the module framework built, the bean class created, and the
database structure specified, you will move forward with building all the templates
for the various metadata driven views in your module.

Build Any Metadata Templates
With the module bean all in place, you can now build the metadata templates. You
saw back in Chapter 3 what the basic design of these are and all the options available.
Since your module will be the normal CRUD style module, you’ll need to be sure that
it contains all of these metadata views in it as well. In order to do this, you’ll need to
build all of the metadata templates for each of the views you’ll use in your module.

Let’s start by building the DetailView in Listing 10-5.

Listing 10-5. detailviewdefs.php File for the Parts Module

<?php

$viewdefs['Parts']['DetailView'] = array(
'templateMeta' => array(
 'form' => array(
 'buttons'=>array(
 'EDIT',
 'DUPLICATE',
 'DELETE',
 array (
 'customCode' => '<input title="{$MOD.LBL_VIEWPARTIMAGE_TITLE}"
 accessKey="{$MOD.LBL_VIEWPARTIMAGE_BUTTON_KEY}" type="button" class="button"
 onClick="open_popup(\'Parts\', \'600\', \'400\',
 '&action=Image&record={$fields.id.value}\');" name="image"
 value="{$MOD.LBL_VIEWPARTIMAGE}">'
),
),
),
 'maxColumns' => '2',
 'widths' => array(
 array('label' => '10', 'field' => '30'),
 array('label' => '10', 'field' => '30')
),
),
 'panels' =>array (

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

205

 array (
 'name',
 'assigned_user_name',
),
 array (
 array (
 'name' => 'date_entered',
 'customCode' => '{$fields.date_entered.value} {$APP.LBL_BY}
 {$fields.created_by_name.value}',
 'label' => 'LBL_DATE_ENTERED',
),
 array (
 'name' => 'date_modified',
 'customCode' => '{$fields.date_modified.value} {$APP.LBL_BY}
 {$fields.modified_by_name.value}',
 'label' => 'LBL_DATE_MODIFIED',
),
),
 array (
 'part_reference_number',
 'part_location',
),
 array (
 'description',
),
)
);
?>

Here you can see your DetailView is pretty basic, with the basic fields for the
module such as the part name, description, the assigned username, date entered and
modified, as well as the module specific fields of part reference number and part
location. You’ve also modified the buttons that appear at the top of this form to add a
button that will launch the image popup for each part based upon the part reference
number. You’ll build the view in the “Add Any Additional Views Needed” section a bit
later in the chapter.

Now let’s move on to the EditView, as shown in Listing 10-6. The EditView is
pretty much the same as the DetailView, with fields for part name, assigned
username, description, as well as your module specific fields of part location and part
reference number.

Listing 10-6. editviewdefs.php File for the Parts Module

<?php

$viewdefs['Parts']['EditView'] = array(
 'templateMeta' => array('maxColumns' => '2',
 'widths' => array(
 array('label' => '10', 'field' => '30'),
 array('label' => '10', 'field' => '30')

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

206

),
),

 'panels' =>array (
 'default' =>
 array (
 array (
 'name',
 'assigned_user_name',
),
 array (
 'part_reference_number',
 'part_location',
),
 array (
 'description',
),
),

),

);
?>

Let’s move on to the ListView. Again, if you pull from your knowledge of the
metadata templates you learned in the Chapter 3, you know that there are three
different metadata templates you need to build all the components on this form. The
first is the listviewdefs.php file, as shown in Listing 10-7.

Listing 10-7. listviewdefs.php File for the Parts Module

<?php

$listViewDefs['Parts'] = array(
'NAME' => array(
 'width' => '32',
 'label' => 'LBL_NAME',
 'default' => true,
 'link' => true
),
'PART_REFERENCE_NUMBER' => array(
 'width' => '30',
 'label' => 'LBL_PART_REFERENCE_NUMBER',
 'default' => true
),
'PART_LOCATION' => array(
 'width' => '30',
 'label' => 'LBL_PART_LOCATION',
 'default' => true
),
'ASSIGNED_USER_NAME' => array(

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

207

 'width' => '9',
 'label' => 'LBL_ASSIGNED_TO_NAME',
 'default' => true
),
'DATE_MODIFIED' => array(
 'width' => '5',
 'label' => 'LBL_DATE_MODIFIED'
),
'DATE_ENTERED' => array(
 'width' => '5',
 'label' => 'LBL_DATE_ENTERED'
),
'CREATED_BY_NAME' => array(
 'width' => '10',
 'label' => 'LBL_CREATED'
),
'MODIFIED_BY_NAME' => array(
 'width' => '10',
 'label' => 'LBL_MODIFIED'
),
);
?>

You’ll have four fields displayed in your ListView, name, part reference number,
part location, and assigned username with the option for users to also add the date
created and modified fields as well as the fields representing the user who created or
modified the record. As you may remember from Chapter 3, any of these fields can be
sorted by the user using the ListView interface, but you can also make any other of
these fields searchable from the basic and advanced search interfaces. You have two
files needed to do this. The first is the searchdefs.php file which defines the search
interface you see on this ListView form, as shown in Listing 10-8.

Listing 10-8. searchdefs.php File for the Parts Module

<?php

$searchdefs['Parts'] = array(
 'templateMeta' => array(
 'maxColumns' => '3',
 'widths' => array('label' => '10', 'field' => '30'),
),
 'layout' => array(
 'basic_search' => array(
 'name',
 array('name'=>'current_user_only', 'label'=>'LBL_CURRENT_USER_FILTER',
 'type'=>'bool'),
),
 'advanced_search' => array(
 'name',
 'part_reference_number',
 'part_location',

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

208

 array('name' => 'assigned_user_id', 'label' => 'LBL_ASSIGNED_TO', 'type' =>
 'enum', 'function' => array('name' => 'get_user_array', 'params' => array(false))),
),
),
);
?>

Remember you have two layouts to edit here. The basic search interface is the
primary one, which should contain the most often used search fields for the module,
while the advanced search page is the secondary one and is used for more
customized searching of the module fields.

The second metadata file used to search for a module is the SearchFields.php file,
shown in Listing 10-9. You’ll remember from Chapter 3 that you use this file to define
how to do this search against the module, such as if the display field in the Search
form interface is different from the field you are actually searching against.

Listing 10-9. SearchFields.php File for the Parts Module

<?php
$searchFields['Parts'] =
array (
 'name' => array('query_type'=>'default'),
 'part_reference_number' => array('query_type'=>'default'),
 'current_user_only'=> array('query_type'=>'default','db_field'=>array
('assigned_user_id'),'my_items'=>true, 'vname' => 'LBL_CURRENT_USER_FILTER', 'type' =>
 'bool'),
 'assigned_user_id'=> array('query_type'=>'default'),
);
?>

Now that you have all the basic views done for the module, let’s look at a few extra
ones that you’ll be using with your module. One is the subpanel view, which is shown
on the DetailViews of any related modules to your Parts module. You can see the
metadata layout for this in Listing 10-10.

Listing 10-10. subpanels/default.php File for the Parts Module

<?php

$subpanel_layout = array(
 'top_buttons' => array(
 array('widget_class' => 'SubPanelTopButtonQuickCreate'),
 array('widget_class' => 'SubPanelTopSelectButton', 'popup_module' => 'Parts'),
),
 'where' => '',
 'list_fields' => array(
 'name'=>array(
 'vname' => 'LBL_NAME',
 'widget_class' => 'SubPanelDetailViewLink',
 'width' => '45%',

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

209

),
 'date_modified'=>array(
 'vname' => 'LBL_DATE_MODIFIED',
 'width' => '45%',
),
 'part_reference_number'=>array(
 'vname' => 'LBL_PART_REFERENCE_NUMBER',
 'width' => '45%',
),
 'edit_button'=>array(
 'widget_class' => 'SubPanelEditButton',
 'module' => 'Parts',
 'width' => '4%',
),
 'remove_button'=>array(
 'widget_class' => 'SubPanelRemoveButton',
 'module' => 'Parts',
 'width' => '5%',
),
),
);

?>

Subpanel definitions typically have three parts to them. The first is the definition
of the buttons at the top of the Subpanel, which for your Parts module you’ll just need
a Create button and a Select button. You’ll use the QuickCreate option here, which
shows the Create form inline instead of a subsequent browser window, since your
EditView is pretty simple. (You’ll remember from Chapter 3 that you could have
created a separate quickcreatedefs.php if you needed to simplify the form.) You then
have a 'where' key to specify any where options you need to do in order to further
filter down the records shown, followed by the actual list of fields that will be a part of
the module.

One more metadata template you’ll add for your module is a Side QuickCreate
template, which is used for the quickcreate form that is shown in the left sidebar
during the ListView of the module and provides a way to quickly add new record to a
module. For the Parts module you’re building, you’ll use a simplified EditView with
only the name, description, and assigned user fields present, as shown in Listing
10-11.

Listing 10-11. sidecreateviewdefs.php File for the Parts Module

<?php

$viewdefs['Parts']['SideQuickCreate'] = array(
 'templateMeta' => array(
 'form' => array(
 'buttons' => array('SAVE'),

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

210

 'button_location' => 'bottom',
 'headerTpl' => 'include/EditView/header.tpl',
 'footerTpl' => 'include/EditView/footer.tpl',
),
 'maxColumns' => '1',
 'panelClass'=>'none',
 'labelsOnTop'=>true,
 'widths' => array(
 array('label' => '10', 'field' => '30'),
),
),
 'panels' =>array (
 'DEFAULT' =>
 array (
 array(
 array('name' => 'name', 'displayParams' => array('required' =>
 true, 'size' => 20)
),
),
 array (
 array('name' => 'description', 'displayParams' => array('rows' =>
 3, 'cols' => 20)),
),
 array (
 array('name' => 'assigned_user_name', 'displayParams' =>
 array('required' => true, 'size' => 11, 'selectOnly' => true)),
),
),
)
);
?>

You’ll also add a menu file named Menu.php which is located in the root of the
module directory (modules/Parts/) that will have a list of links to the various views
you want the user to have direct access to. Listing 10-12 shows an example of what
you would add here.

Listing 10-12. Menu.php File for the Parts Module

<?php

global $mod_strings, $app_strings, $sugar_config;

if(ACLController::checkAccess('Parts', 'edit', true))$module_menu[]=Array
("index.php?module=Parts&action=EditView&return_module=Parts&return_action=index",
 $mod_strings['LNK_NEW_PART'],"CreateParts", 'Parts');
if(ACLController::checkAccess('Parts', 'list', true))$module_menu[]=Array
("index.php?module=Parts&action=index&return_module=Parts&return_action=DetailView",
 $mod_strings['LNK_PART_LIST'],"Parts", 'Parts');
if(ACLController::checkAccess('Parts', 'import', true))$module_menu[]=Array
("index.php?module=Import&action=Step1&import_module=Parts&return_module=
Parts&return_action=index", $app_strings['LBL_IMPORT'],"Import", 'Parts');

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

211

The above Menu.php file you’ve built will provide links to create a new part, the

Parts ListView, and to import new records into the Parts module. You’ve added
ACLController::checkAccess() call to make the current user have access to the option
list—if he doesn’t then the menu option will not be listed.

You now have all the metadata driven views done, so let’s define the language
strings you will be using in your module.

Add Language Files
The language strings are a very useful part of Sugar, since it allows you to very easily
internationalize your module (referred often as i18n). It does this by having language
string definitions files for each of the languages you are supporting in your instance,
named like language.lang.php in the languages/ directory of your module, which
automatically gets loaded based upon the current language selected for the user. If
there are not language strings available in your module for their current language,
then it will fall back to using the en_us language strings for your module, so it’s
important to always have these defined above any other language strings.

Let’s go ahead and see the language strings for your Parts module, as shown in
Listing 10-13.

Listing 10-13. en_us.lang.php File for the Parts Module

<?php

$mod_strings = array (
 'LBL_TEAM' => 'Team',
 'LBL_TEAMS' => 'Teams',
 'LBL_TEAM_ID' => 'Team Id',
 'LBL_ASSIGNED_TO_ID' => 'Assigned User Id',
 'LBL_ASSIGNED_TO_NAME' => 'Assigned to',
 'LBL_ID' => 'ID',
 'LBL_DATE_ENTERED' => 'Date Created',
 'LBL_DATE_MODIFIED' => 'Date Modified',
 'LBL_MODIFIED' => 'Modified By',
 'LBL_MODIFIED_ID' => 'Modified By Id',
 'LBL_MODIFIED_NAME' => 'Modified By Name',
 'LBL_CREATED' => 'Created By',
 'LBL_CREATED_ID' => 'Created By Id',
 'LBL_DESCRIPTION' => 'Description',
 'LBL_DELETED' => 'Deleted',
 'LBL_NAME' => 'Part Name',
 'LBL_CREATED_USER' => 'Created by User',
 'LBL_MODIFIED_USER' => 'Modified by User',
 'LBL_LIST_FORM_TITLE' => 'Parts List',
 'LBL_MODULE_NAME' => 'Parts',
 'LBL_MODULE_TITLE' => 'Parts',

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

212

 'LBL_HOMEPAGE_TITLE' => 'My Parts',
 'LNK_NEW_RECORD' => 'Create Parts',
 'LNK_LIST' => 'Parts',
 'LBL_SEARCH_FORM_TITLE' => 'Search Parts',
 'LBL_HISTORY_SUBPANEL_TITLE' => 'View History',
 'LBL_ACTIVITIES_SUBPANEL_TITLE' => 'Activities',
 'LBL_TEST_PARTS_SUBPANEL_TITLE' => 'Parts',
 'LBL_NEW_FORM_TITLE' => 'New Parts',
 'LBL_PART_REFERENCE_NUMBER' => 'Part Reference Number',
 'LBL_PART_LOCATION' => 'Part Location',
 'LBL_VIEWPARTIMAGE' => 'View Part Image',
 'LBL_VIEWPARTIMAGE_TITLE' => 'View Part Image [Alt+P]',
 'LBL_VIEWPARTIMAGE_BUTTON_KEY' => 'P',
);
?>

You’ll also remember that you have an enum field, parts location, defined in your
module. The enum field will use an array to specify the options you have for the value
of this field, and it draws it from the $app_list_strings language string array. To define
these options, you’ll add a key to the app_list_strings named
'parts_part_location_dom' with the array options for the enum field specified, as
shown in Listing 10-14.

Listing 10-14. custom/Extension/application/Ext/Language/en_us.partsdom.php File
that Contains Additions to the include/languages/en_us.lang.php File

<?php

$app_list_strings['parts_part_location_dom']= array(
 'Warehouse' => 'Warehouse',
 'Stockroom' => 'Stockroom',
 'Supplier' => 'With A Supplier - Must Order',
 'Unavailable' => 'Unavailable',
);

?>

Create a Dashlet
One more thing you’ll want to do for your Parts module is to create a configurable
ListView that users can drop on their homepage or Dashboard. This is a really easy
task, as you recall from Chapter 5, where for this kind of Dashlet you just need to
define a few files and it will be available for all users to use.

The first thing you’ll create is the Dashlet definition file, which is named
PartsDashlet.meta.php and storied in the module’s Dashlets/PartsDashlet/ directory,
as shown in Listing 10-15.

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

213

Listing 10-15. PartsDashlet.meta.php File

<?php

$dashletMeta['PartsDashlet'] = array(
 'module' => 'Parts',
 'title' => translate('LBL_HOMEPAGE_TITLE', 'Parts'),
 'description' => 'A customizable view into the Parts module',
 'icon' => SugarThemeRegistry::current()->getImageURL('icon_Parts_32.gif'),
 'category' => 'Module Views'
);
?>

You then need to define the search fields and ListView components of the dashlet.
You’ll recall that Dashlets don’t have the typical search and customization forms that
the ListViews inside the modules have, but rather do this from a configuration popup
screen instead. The metadata files, however, are built the same, but you’ll combine
them within one file instead of two separate ones, and store them in your module’s
metadata directory inside the partsdashletviewdef.php file (see Listing 10-16).

Listing 10-16. partsdashletviewdef.php File

<?php

global $current_user;

$dashletData['PartsDashlet']['searchFields'] = array(
 'date_entered' => array(
 'default' => '',
),
 'date_modified' => array(
 'default' => '',
),
 'assigned_user_id' => array(
 'type' => 'assigned_user_name',
 'default' => $current_user->name,
),
);
$dashletData['PartsDashlet']['columns'] = array(
 'name' => array(
 'width' => '40',
 'label' => 'LBL_LIST_NAME',
 'link' => true,
 'default' => true
),
 'date_entered' => array(
 'width' => '15',
 'label' => 'LBL_DATE_ENTERED',
 'default' => true

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

214

),
 'date_modified' => array(
 'width' => '15',
 'label' => 'LBL_DATE_MODIFIED'
),
 'created_by' => array(
 'width' => '8',
 'label' => 'LBL_CREATED'
),
 'assigned_user_name' => array(
 'width' => '8',
 'label' => 'LBL_LIST_ASSIGNED_USER'
),
);

?>

Finally, you’ll define the PartsDashlet class, which extends from the
DashletGeneric class and controls all of the actions of the dashlet. You need to
override one method, the constructor, which is only needed to point the
DashletGeneric object to look in the right places for the various metadata definitions
of your dashlet, as shown in Listing 10-17, and also stored in the module’s
Dashlets/PartsDashlet/ directory.

Listing 10-17. PartsDashlet.php Class File

<?php

require_once('include/Dashlets/DashletGeneric.php');
require_once('modules/Parts/Part.php');

class PartsDashlet extends DashletGeneric
{
 public function PartsDashlet(
 $id,
 $def = null)
 {
 global $current_user, $app_strings;
 require('modules/Parts/metadata/partsdashletviewdef.php');

 parent::DashletGeneric($id, $def);

 if(empty($def['title'])) $this->title = translate('LBL_HOMEPAGE_TITLE', 'test_parts');

 $this->searchFields = $dashletData['PartsDashlet']['searchFields'];
 $this->columns = $dashletData['PartsDashlet']['columns'];

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

215

 $this->seedBean = new Part();
 }
}
?>

You may need to clear your dashlets.php cache file, stored in the cache/dashlets/
directory, for your newly created Parts dashlet to be available to users. The cache file
is used to avoid the constant lookup of the available Dashlets by the application.

Let’s now move forward and create the custom view need for your module Parts
module.

Add Any Additional Views Needed
The biggest area where Sugar module developers need to add custom PHP code is
custom views. They are needed when your module does more than just implement a
simple CRUD-like interface to the data and perhaps a custom button is needed to
allow data to transfer from one module to another (an example of this is the Convert
Lead view in the Leads module), or maybe a different representation of the data is
required (such as with the gantt chart and grid views in the Projects module). One
common need for those building custom modules for their own Sugar instance is to
interface into an external system.

For your Parts module, this is exactly the need you have, as you’ll grab images of
your parts from an external system that provides them via REST calls. You’ll recall
that earlier in this chapter you added a method to your Part bean class named
fetchImageURL() that gets the URL, and a button on your DetailView to invoke a view
which displays the image in a popup window. In Listing 10-18, you’ll add the actual
view to your module that is called which will display the part image to the user. You’ll
save the contents in the modules/Parts/views/view.image.php file.

Listing 10-18. Image View for the Parts Module

<?php

require_once('include/MVC/View/SugarView.php');

class PartsViewImage extends SugarView
{
 /**
 * Constructor
 */
 public function __construct()
 {
 parent::SugarView();
 }

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

216

 /**
 * display the form
 */
 public function display()
 {
 if (!isset($_REQUEST['record']))
 return;

 $partBean = new Part();
 $partBean->retrieve($_REQUEST['record']);

 echo 'fetchImageURL() . '" />';
 }
}
?>

You simply just fetch the record with the given record ID (passed in the record
request variable), and then echo the HTML image element to the end user with the
'src' attribute specified with the URL returned from the Part::fetchImageURL()
method.

Remember that you need to register your view as well. In Chapter 2, you covered
two different ways to do this, either through a controller.php file with a method that
invokes it, or by adding an action_view_map.php with the view specified. Since there
isn’t any additional controller code needed for your module, you’ll go the easy route
and just add an action_view_map.php file, as shown in Listing 10-19 in the
modules/Parts/ directory.

Listing 10-19. action_view_map.php File

<?php

$action_view_map['image'] = 'image';

?>

After running Repair Extensions in the admin panel under the Repair option,
users can begin using the newly built module. With that, you have a fully built
module. You should now see it listed in the module list in the header section of the
application.

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

217

Summary
In this chapter, you took the long and winding road of learning how to build a module
piece by piece. You first looked into why anyone would actually choose to do
something like this, illustrating the common use cases for custom module
development. You also mentioned that a middle ground exists as well, where you
could use Module Builder to build all the tedious items, such as metadata and
vardefs, but take the package that it built and customize it by hand to meet your
needs. Next you went step-by-step through all of the components of the module
and learned how to create them, using a sample module named Parts as the model
for the code examples shown along the way. In fact, you can find all the code
samples for this book in the Source Code/Download area of the Apress web site at
http://www.apress.com.

Now you have all the background on SugarCRM to move forward with building
your own application on top of it. We’ll go through the process of doing so using all of
the knowledge you’ve learned so far.

CHAPTER 10 ■ BUILDING A CUSTOM MODULE MANUALLY

218

C H A P T E R 11

■ ■ ■

219

Designing a Complete Application

Congratulations! You’ve made it through all of the nitty, gritty details of the internals
of SugarCRM, learning how it all goes together. You saw MVC, metadata, and Web
Services frameworks. You learned about user and team management, Dashlets,
and themes. You worked with the rich developer tools of Studio, Workflows, and
Module Builder. You even looked at doing code level modifications to make Sugar
look and act just like you want. With all this knowledge, you can now put all of it to
practical use.

One thing the engineering and product management teams at SugarCRM realize
is that CRM is never a “one-size-fits-all” solution. For that matter, there is no exact
definition of what a CRM application should have and shouldn’t have. Each vertical
business market has different requirements and use cases they need covered. For
example, a CRM application that would be designed for a doctor’s office is very
different than one designed for a call center. Yet both applications seek to accomplish
the same overall goals of being a tool to manage your customer relationships and
business activities and fit well inside the CRM definition. SugarCRM has customers
and partners all over the world that are pushing the CRM definition in this way,
designing CRM applications that fit in perfectly with their business or market needs.

The ability to build entirely new applications on top of SugarCRM is what really
sets it apart from the pack. Businesses used to have to write their own custom
applications to do just this kind of thing, but that proposition was a very costly and
time consuming one, and often brought very mixed results. I used to do just this kind
of development in a past company, and looking back I could have turned out
applications much faster with a strong CRM tool, such as SugarCRM, available for me
to build applications on top of. I know I wasn’t alone. I bet every person that reads
this book has done this sort of development and relates to all the tedious and time
consuming steps you must go through to get an application up and going. As you
have seen, SugarCRM removes those steps due to the ease of building new modules
on top of Sugar and modifying the existing ones to meet your needs. In this final
chapter, that’s just what you’ll do—build a business application on top of SugarCRM
in a fully upgrade-safe way. You’ll skim over the details you learned about in previous

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

220

chapters for brevity, concentrating on the design of the application itself and the
value of using SugarCRM to do this.

Background of the Application
The application you build will be for the mythical company Easter Pools, which is in
desperate need of an application to help manage their growing pool and spa sales
and service business. One of the biggest issues they have involves customer
management, trying to answer questions such as what products their customers own
or when they have last serviced them. Right now, much of this knowledge is stuck in
the minds of those who most often work with them, but it becomes a problem when
an infrequent customer slips everyone’s mind. Having a complete snapshot of a
customer at their fingertips is definitely one thing that could help them service their
customers more effectively. It’s important as well to distinguish between their
corporate accounts and their retail customers, since each group will get treated
differently.

It would also be helpful for them to be able to manage their service business more
effectively. Right now, they use job sheets and a big corkboard to organize everyone’s
day, along with all the jobs that need to be done. The problem here is it requires a lot
of manual attention. Every day the service managers sit down and organize all the
crew’s jobs, which require specific knowledge of the jobs (like how long they take,
where they are located, etc). It also requires attention to priority. For example, a pool
at a major customer being down requires the highest priority while someone needing
a hot tub opened may be of a lesser priority. To top it off, it would be nice to be able
to have estimated and actual times needed to complete a job so they can better
optimize their service scheduling to help them through the busy seasons of spring
and fall without having to push their crews into working long hours.

Just like many businesses, Easter Pools has many different vendors it deals with
for products, parts, and other supplies. They would find it helpful to be able to be
more in tune to what their vendors provide them and which parts work with certain
products. For example, it would be nice to be able to see what replacement parts are
available for a hot tub. It would also be helpful to be able to associate parts with a
service call, so that it is easier to know what needs pulled to send out on the service
trucks, as well as provide accountability for parts used in the field. If certain supplies
are almost depleted, those in charge of ordering would like to be notified of this so
they can reorder them.

With all of this in mind, you can begin to design an application based upon
SugarCRM that will fit their needs, and provide the ease of use and intelligence that
will help them manage their business as it grows. Let’s begin to design this
application piece by piece, and with it see how easy it is to use SugarCRM for building
such an application.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

221

Breakdown of the Various Components
We’ll use the Module Builder tool to design the base of your application. Therefore,
the modules will all be normal CRUD-style modules based upon existing SugarObject
templates that provide the generic functionality you need. Table 11-1 gives a
breakdown of the modules you will build.

Table 11-1. Modules Built for the Easter Pools Application

Module Description

Customers This module will be based upon the Person template and contain all of the Retail
Customers they work with.

Jobs Based upon the Issue Template, you’ll use this module to track all of the service
calls Easter Pools does.

Vendors Contains all of the vendors they work with, and is based upon the Company
Template.

Vendor Contacts Contacts at the various vendors they work with, based upon the Person template.

Vendor Orders Tracks orders for various supplies you have made, based upon the Sale template.

Supplies A basic module with information about the products sold, parts used with those
products, and other supplies Easter Pools stocks and sells.

From the out-of-the-box Sugar Community Edition install, you’ll be using the

Accounts and Contacts module for managing their corporate customers and the
Documents module for easy access to any product documentation for all employees.
You’ll also be integrating in with the Activities modules (Calls, Meetings, Tasks,
Notes, Emails) with your Customers and Vendors modules, so they have a way to
track all of the communications Easter Pools has with them.

With an outline of what components you’ll be using in your Easter Pools
application, let’s now move through creating each of these components using
SugarCRM and see what customizations you need to build this.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

222

Studio
Since you are going to be using several out-of-the-box modules with your
application, any needed customizations must be done through Studio in order for
your changes to be upgrade-safe. For the most part, you won’t need to do much
customization here.

You’ll reuse the Accounts and Contacts module from the main application, since
they very well define the B2B (Business-to-Business) sales management data
structures that will work with Easter Pools’ corporate customers. As for the data
structures of these modules, they will largely remain unchanged, save for a few
additions to the field lists and changes to the relationships that come out of the box
with Sugar CE. Let’s look at what you’ll be doing for them.

Accounts and Contacts
The first thing you’ll be doing is adding fields to the Accounts module that will be
read-only and report customer billing information, such as total outstanding invoice
balance, date of last invoice, and the date of the last payment received, as well as a
popup window that can give a more detailed breakdown of invoicing history. You
won’t have any data entry inside of Sugar itself for this, but instead use Easter Pools
existing accounting system and some custom scripts to push this data to Sugar. You’ll
look more into how this would work later on when you talk about the external
interfaces to your product.

You’ll also add a few more fields for the ease of Easter Pools. One issue they had
was planning service calls, in particular planning time estimates for travel time to
their service crews, as well as giving them a way to find their way there. A quick and
simple way to do this is to embed a map right into the DetailView for a customer. You
can do that by adding an iFrame field to the Accounts module, and specifying the
default URL as a template which the DetailView handler will fill in automatically. The
URL to use is http://maps.google.com/maps?f=q&q={shipping_address_street}+
{shipping_address_city}+{shipping_address_state}+{shipping_address_postalcode
}+{shipping_address_country}&source=embed&output=embed. You can see the results
in Figure 11-1.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

223

Figure 11-1. Embedded Google Map on the Accounts DetailView

You’ll need to also adjust the size of the iFrame field on the DetailView template
so it displays fully—anything over 200 as the max size should work nicely. Also, make
sure there isn’t another field in the adjacent column in the view, so the map can
stretch to take up both columns.

Tables 11-2 and 11-3 provide a summary of the fields and relationships you will
be adding to the Accounts module. You won’t need to add any to the Contacts
module.

Table 11-2. Fields Added for the Accounts Module

Fields Description

invoice_balance_c Currency: Stores the current outstanding invoice balance (read-only)

last_invoice_date_c Date: Date of last invoice (read-only)

last_payment_date_c Date: Date of last payment made (read-only)

map iFrame: Use for embedded Google Map

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

224

For the relationships in Table 11-3, you won’t be able to add them until the
custom modules have been built in the section where you detail the custom modules
you’ll be building for your custom application.

Table 11-3. Relationships Added for the Accounts Module

Relate to Module Type Description

Jobs One to Many Links to all of the jobs performed for this account

Supplies One to Many Links to all of the supplies the account has purchased

The Accounts and Contacts module very easily fill the needs of managing all the

commercial accounts. But what about retail accounts? For that, you’ll use a separate
module more designed for its use, which you’ll see how to design using Module
Builder.

Module Builder
You’ll now look at building the new modules needed for your application. To make it
simple, you’ll use Module Builder to get it up and going first then add the custom
code later. You’ll name your package in Module Builder EasterPools, with module
prefix ep (so the various modules you create will have the ep_ prefix on them).You’ll
begin by looking at the Customers module.

Customers
B2C (Business-to-Consumer) transactions are not really dealt with from a design
standpoint in SugarCRM. The big reason for this is purely because the historical CRM
market is more B2B than B2C, and CRM in the B2C landscape is an evolving market.
However, with the flexibility of Sugar and the strong yet easy-to-use developer tools
that come with it, you can easily build an application supporting these kinds of
interactions.

You’ll base your module upon the Person template, which will provide us with all
the fields needed to match an individual very well. For consistency, you’ll also make
the same kinds of customizations you made to the Accounts module as well to the
Customers module.

Tables 11-4 and 11-5 outline the fields needed and the relationships you’ll add,
respectively.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

225

Table 11-4. Fields Added for the Customers Module

Fields Description

invoice_balance_c Currency: Stores the current outstanding invoice balance (read-only)

last_invoice_date_c Date: Date of last invoice (read-only)

last_payment_date_c Date: Date of last payment made (read-only)

Map iFrame: Use for embedded Google Map

Table 11-5. Relationships Added for the Customers Module

Relate to Module Type Description

Jobs One to Many Links to all of the jobs performed for this customer

Supplies One to Many Links to all of the supplies the customer has purchased

Activities One to Many Links to all of the activities for this Customer (Calls, Meetings,
Tasks, Notes, Emails)

From an end user’s standpoint, B2C customer is largely the same as a B2B

customer as it relates to the rest of the application. They both have the same
relationships to the other modules and many of the same fields in common (minus
those specific to being a company or a person). The biggest reason for the separation
of modules, other than the field differences between them, is that Easter Pools can
manage their corporate clients and retail customers separately. Each group is
different in the way you manage them. Corporate customers tend to be more full
service than the retail ones, and require a lot more attention and priority when they
have service requests. Retail customers often are more apt to do certain things on
their own, like many simple maintenance tasks and noninvasive repairs (of course,
this isn’t true for everyone). They also tend to be lower in the priority scale, simply
because the corporate customers have contracts with Easter Pools that dictate
service-level guarantees, something that very few retail customers have. Because of
this, the corporate customers are higher revenue than the retail ones so doing apples-
to-apples comparisons between them isn’t very fair.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

226

Having this separation enables them to manage the business better. It does pose a
few problems when you are doing the relationships between these modules and the
Products and Jobs ones. You’ll see your solutions to these issues as you go on in this
chapter when you look at adding custom code for the Jobs and Products modules.

Jobs
A big part of the original assessment of requirements for such an application was the
ability to manage the service aspect of the Easter Pools business. You noted a lot of
coordination and management is done in this area, and having the tools to help stay
on top of this would be very helpful to the business as a whole.

The basis of your Jobs module will be the Issue template, which provides just
about all of the fields you will need to help manage your module. You’ll make a few
modifications to the fields as they come defined so the module better fits what they
would like to do. First, you’ll modify the Status field to have more service-related
dropdown values, namely New, Scheduled, Dispatched, Canceled, and Completed.
You’ll also adjust the Resolution field to give it the same values as the Status field to
better match a service call rather than a software bug, as the Issues template is
designed to handle. This can be handled by modifying the ep_jobs_status_dom and
ep_jobs_resolution_dom arrays that will be added in the
custom/Extension/application/Ext/Language/en_us.test.php file by SugarCRM after
the module is deployed. You’ll also add a Flex Relate field with a custom defined list
of modules to relate the job to only include the Accounts and Customers module. For
this one thing, you’ll need to add some PHP code in order to do as Module Builder
and Studio do, but not all the customizations you need here are out of the box (you’ll
see how to do this in the “Custom Code” section of this chapter). Table 11-6 outlines
what you’ll need to add through Module Builder for this module.

Table 11-6. Fields Added for the Jobs Module

Fields Description

Flex Relate (internally consists of
parent_name, parent_id, and parent_type)

Used for relating a job to either an account or a customer

time_required_c Decimal: Amount of time needed to complete the job

Supplies
Easter Pools’ main business involves the products, parts, and other supplies they sell
to their customers. These come in a multitude of different forms. For example, they
sell full-size spas and pool kits to their customers. With that they sell the chlorine and

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

227

other chemicals used to treat the water in their pools and spas. Then, if something
breaks on their pool or spa, they can get the replacement parts needed to fix it. These
are all also very interrelated, with each one of the major products they sell (spas, pool
kits, pool heaters, pool filters) having many replacement parts that go with them.
Most replacement parts work on multiple different products, so this complicates the
correct design of the relationships as well. You’ll base this module upon the Basic
template, and add a relationship which will enable you to expand upon this goal with
custom code later on (see Table 11-7).

Table 11-7. Relationships Added for the Supplies Module

Relate to Module Type Description

Jobs Many to Many Links to all of the jobs where this supply is used

Supplies Many to Many Links to all of the related supplies to this supply

Table 11-8 outlines the lone field you’ll add for this module, which will track the

vendor’s part reference number. This field will come in handy later on in the chapter
in the “Custom Code” section when you add a business process for reordering
supplies from the vendor.

Table 11-8. Fields Added for the Supplies Module

Fields Description

vendor_ref_no Text field: Part reference number for the vendor; will use when reordering.

Vendors, Vendor Contacts, and Vendor Orders
Easter Pools’ vendors are also a critical part of its business workflow. A lot of
coordination must take place in terms of product management, inventory control,
and system updates. Without proper management the entire supply and service
chains fall apart, wrecking havoc on all their customers by not having available the
parts and supplies they need, or causing them to keep extra inventory on hand that
may take months to deplete. When you design the Vendors module, you need to
make it more than just a rolodex of who they are, but also must provide enough
intelligence to give insight on what they provide to the business.

The base part of this module is the Vendors module, which will be based upon the
Company template. You’ll also track the contacts Easter Pools has at their vendors’
offices, so you’ll have a Vendors Contacts module as well, based upon the Person
template. You’ll also add the Vendor Orders module now (based upon the Sale

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

228

template), which will track the order you have made to the Vendor for replenishing
their inventory. You won’t need to add any additional fields for any of these modules
since the templates provide everything you need to record all of the vital facts about
your vendors, including phone, address, email information, and the orders placed.
However, you will need to add relationships here to pull everything together, as
shown in Tables 11-9, 11-10 and 11-11.

Table 11-9. Relationships Added for the Vendors Module

Relate to Module Type Description

Vendor Contacts One to Many Links to all of the contacts for this vendor

Vendor Orders One to Many Links to all of the orders made to this vendor

Supplies One to Many Links to all of the Supplies this vendor provides

Activities One to Many Links to all of the activities for this Vendor (Calls, Meetings, Tasks,
Notes, Emails)

Table 11-10. Relationships added for the Vendor Contacts Module

Relate to module Type Description

Activities One to Many Links to all of the activities for this Vendor (Calls, Meetings, Tasks,
Notes, Emails)

Table 11-11. Relationships added for the Vendor Orders module

Relate to module Type Description

Supplies Many to Many Links to all of the supplies ordered with this given vendor order

Custom Code
The last piece of the puzzle for your Sugar application is to add some custom code to
make things act just the way you want them to. These are things that are currently out
of the scope of what the Studio and Module Builder tools provide, but nonetheless
show the flexibility of the platform since all of these modifications are upgrade safe.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

229

This means that when you upgrade your Sugar version or apply maintenance
patches, your customizations will not be overridden.

Let’s begin by looking at the modifications you’ll make to two of the out-of-the-
box modules you are working with: Accounts and Contacts.

Accounts and Contacts
You’ll need to update the subpanels listing, where you’ll hide the subpanels for the
Opportunities, Cases, Bug Tracker, Projects, Campaigns, and Leads modules in the
Accounts and Contacts modules. None of these modules will be in use by your
application, so it makes most sense to remove them. There are two ways to do this.
One way is by using the ACL management features you learned about in Chapter 5 to
disable access to these modules. Another option is to modify the layout definitions
for the modules, so you could drop an updated layout defs file inside the
custom/Extension/modules/modulename/Ext/Layoutdefs/ directory such as the
RemoveExtraSubpanels.php showing in Listing 11-1.

Listing 11-1. RemoveExtraSubpanels.php for Removing Unneeded Subpanels for the
Contacts Module

<?php

$layout_defs['Contacts']['subpanel_setup']['opportunities'] = null;
$layout_defs['Contacts']['subpanel_setup']['leads'] = null;
$layout_defs['Contacts']['subpanel_setup']['cases'] = null;
$layout_defs['Contacts']['subpanel_setup']['bugs'] = null;
$layout_defs['Contacts']['subpanel_setup']['project'] = null;
$layout_defs['Contacts']['subpanel_setup']['campaigns'] = null;

?>

The example shows how this is done for the Contacts module. For the Accounts
module, simply substitute Contacts for Accounts in Listing 11-1.

You’ll also be adding some new subpanels to the module, namely ones for Jobs,
which will show listings of all completed and upcoming service events for an account
and the Products the customer has purchased.

Jobs
For each of the Accounts and Customers module, you’ll need to add a relationship to
the vardefs to enable the Jobs subpanel to appear correctly in that module, as shown
in Listing 11-2.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

230

Listing 11-2. Accounts Jobs Relationship

<?php

$dictionary["Accounts"]["fields"]["accounts_ep_jobs"] = array (
 'name' => 'accounts_ep_jobs',
 'type' => 'link',
 'relationship' => 'accounts_ep_jobs',
 'source' => 'non-db',
);

$dictionary["Accounts"]["relationships"]['accounts_ep_jobs'] = array (
 'lhs_module'=> 'Accounts',
 'lhs_table'=> 'accounts',
 'lhs_key' => 'id',
 'rhs_module'=> 'ep_Jobs',
 'rhs_table'=> 'ep_jobs',
 'rhs_key' => 'parent_id',
 'relationship_type'=>'one-to-many',
 'relationship_role_column'=>'parent_type',
 'relationship_role_column_value'=>'Accounts',
);

You’ll need a similar relationship in the Customers module as well. Listing 11-3
shows how this would work.

Listing 11-3. Customers Jobs Relationship

<?php

$dictionary["ep_Customers"]["fields"]["ep_customers_ep_jobs"] = array (
 'name' => 'ep_customers_ep_jobs',
 'type' => 'link',
 'relationship' => 'ep_customers_ep_jobs',
 'source' => 'non-db',
);

$dictionary["ep_Customers"]["relationships"]['ep_customers_ep_jobs'] = array (
 'lhs_module'=> 'ep_Customers',
 'lhs_table'=> 'ep_customers',
 'lhs_key' => 'id',
 'rhs_module'=> 'ep_Jobs',
 'rhs_table'=> 'ep_jobs',
 'rhs_key' => 'parent_id',
 'relationship_type'=>'one-to-many',
 'relationship_role_column'=>'parent_type',
 'relationship_role_column_value'=>'ep_Customers',
);

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

231

You’ll also add a relationship to the Products module here, to indicate any parts
or supplies needed for this job. This helps fulfill the requirement of letting the crews
know what they need to take on the service trucks with them out to the service call.
Another requirement mentioned earlier was a way to help manage part and supply
inventory more easily. You can use the Jobs modules relationship to help with this.
An easy way to do so would be to add a logic hook that fires on the save event. Listing
11-4 has an example of one, which should be saved in the custom/modules/ep_Jobs/
directory and named ep_JobsHooks.php.

Listing 11-4. after_save Logic Hook for the Jobs Module

require_once('modules/ep_Jobs/ep_Jobs.php');
require_once('modules/Accounts/Account.php');

class ep_JobsHooks
{
 public function updateProductInventory(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 if ($bean->fetched_row['status'] != 'Dispatched' && $bean->status ==
 'Dispatched') {
 $bean->load_relationship('ep_jobs_ep_supplies'); // load the relationship
 between Jobs and Supplies

 foreach ($bean->build_related_list($bean->ep_jobs_ep_supplies->getQuery(),
 new LeadContact) as $ep_part) {

 $ep_part->on_hand = $ep_part->on_hand - 1;
 $ep_part->save();
 }
 }

 }
}

What this logic hook will do is check to see if the job’s status has been set to
Dispatched, which would be done after the truck has loaded up and left. At this point,
the inventory is gone, so you can decrement each of the product’s available count
accordingly. If for some reason, a part isn’t needed, then it can be checked back in
and the supply inventory can then be updated.

You’ll also add a handy button to the DetailView of the Jobs module. This button
will be used to print off a map to get to the job site. You’ll use the related information
from the Account or Customer to build a Google Maps URL which will create the
route from where the business is located to the address as it’s listed in the customer’s
record. Building the URL is something you’ll do by overriding the DetailView for the

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

232

Jobs module, as shown in Listing 11-5. (The file should be saved as
custom/modules/ep_Jobs/views/view.detail.php.)

Listing 11-5. DetailView Override for the Jobs Module

<?php

require_once('include/MVC/View/views/view.detail.php');
require_once('modules/Accounts/Account.php');
require_once('modules/ep_Jobs/ep_Jobs.php');

class ep_JobsViewDetail extends ViewDetail {

 public function __construct()
 {
 parent::ViewDetail();
 }

 public function display()
 {
 $business_address = '123 Main Street Anytown, OH 44444';
 $customer_address = '';

 if (!empty($this->ep_custome5229stomers_ida)) {
 $bean = new Account();
 $bean->retrieve($this->ep_custome5229stomers_ida);
 if (!empty($bean->id))
 $customer_address = "{$bean->shipping_address_address}
 {$bean->shipping_address_city}, {$bean->shipping_address_state}
 {$bean->shipping_address_postalcode}";
 }
 elseif (!empty($this->ep_jobs_ac056eccounts_ida)) {
 $bean = new ep_Jobs();
 $bean->retrieve($this->ep_custome5229stomers_ida);
 if (!empty($bean->id))
 $customer_address = "{$bean->primary_address_address}
 {$bean->primary_address_city}, {$bean->primary_address_state}
 {$bean->primary_address_postalcode}";
 }

 $this->ss->assign("MAP_URL","http://maps.google.com/maps?f=d&source=s_d&saddr=
{$business_address}&daddr={$customer_address}");

 parent::display();
 }
}
?>

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

233

You’ll then add the button to trigger this action on the DetailView by making a
small modification to the metadata template, as shown in Listing 11-6 (save the
contents to the custom/modules/ep_Jobs/metadata/detailviewdefs.php).

Listing 11-6. Adding the Get Map to Job Button to the DetailView Metadata

<?php
require('modules/ep_Jobs/metadata/detailviewdefs.php'); // include in the existing view defs
$viewdefs['ep_Jobs']['DetailView']['templateMeta']['form']['buttons'][] = array(
 'customCode' => '<input title="{$MOD.LBL_GET_MAP_TO_JOB}" ' .
 ' accesskey="{$APP.LBL_GET_MAP_TO_JOB_KEY}" ' .
 ' class="button" ' .
 ' onclick=\'document.location.href = "{$MAP_URL}"; return false;\' ' .
 ' name="button" ' .
 ' value="{$APP.LBL_GET_MAP_TO_JOB_TITLE}" ' .
 ' type="submit">'
);
?>

Supplies
The design of the Supplies module will have multiple facets to it. First off, you’ll allow
each Supply to have a many-to-many relationship with other Supplies, which allows
any supply to be related to a number of different supplies. Then you’ll need to
categorize each item in the Supplies module to be one of a product (meaning it is a
fully fledged product they sell, such as a spa or pool kit), a part that goes to one of the
products they sell or service, or a supply item, such as pool chemicals, that go along
with one of the products they sell or support. With these two items in place, you can
begin to build the web of how products, parts, and supplies are all related to each
other.

The only issue with having the relationships setup like this is that it intermixes the
products, parts, and supplies together in the Supplies subpanel in each record’s
DetailView, making it difficult to tell the difference between each type. If you
remember from Chapter 3, you noted that each subpanel metadata definition can
specify additional WHERE clause arguments to further drill down to show the records
you want in the subpanel. You can use this feature to enhance the subpanel view.
First, you’ll create three different subpanel views, one for each of the products, parts,
and supplies, as shown in Listing 11-7.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

234

Listing 11-7. Subpanel Metadata Files for the Products Only, Parts Only, and Supplies
Only Subpanels

relatedParts.php
<?php

$module_name='ep_Supplies';
$subpanel_layout = array(
'top_buttons' => array(
array('widget_class' => 'SubPanelTopCreateButton'),
array('widget_class' => 'SubPanelTopSelectButton', 'popup_module' => $module_name),
),

'where' => 'item_type = "Part"',

'list_fields' => array(
'name'=>array(
'vname' => 'LBL_NAME',
'widget_class' => 'SubPanelDetailViewLink',
'width' => '45%',
),
'date_modified'=>array(
'vname' => 'LBL_DATE_MODIFIED',
'width' => '45%',
),
'edit_button'=>array(
'widget_class' => 'SubPanelEditButton',
'module' => $module_name,
'width' => '4%',
),
'remove_button'=>array(
'widget_class' => 'SubPanelRemoveButton',
'module' => $module_name,
'width' => '5%',
),
),
);

?>

relatedProducts.php
<?php

$module_name='ep_Supplies';
$subpanel_layout = array(
'top_buttons' => array(

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

235

array('widget_class' => 'SubPanelTopCreateButton'),
array('widget_class' => 'SubPanelTopSelectButton', 'popup_module' => $module_name),
),

'where' => 'item_type = "Product"',

'list_fields' => array(
'name'=>array(
'vname' => 'LBL_NAME',
'widget_class' => 'SubPanelDetailViewLink',
'width' => '45%',
),
'date_modified'=>array(
'vname' => 'LBL_DATE_MODIFIED',
'width' => '45%',
),
'edit_button'=>array(
'widget_class' => 'SubPanelEditButton',
'module' => $module_name,
'width' => '4%',
),
'remove_button'=>array(
'widget_class' => 'SubPanelRemoveButton',
'module' => $module_name,
'width' => '5%',
),
),
);

?>

relatedSupplies.php
<?php

$module_name='ep_Supplies';
$subpanel_layout = array(
'top_buttons' => array(
array('widget_class' => 'SubPanelTopCreateButton'),
array('widget_class' => 'SubPanelTopSelectButton', 'popup_module' => $module_name),
),

'where' => 'item_type = "Supply"',

'list_fields' => array(
'name'=>array(
'vname' => 'LBL_NAME',

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

236

'widget_class' => 'SubPanelDetailViewLink',
'width' => '45%',
),
'date_modified'=>array(
'vname' => 'LBL_DATE_MODIFIED',
'width' => '45%',
),
'edit_button'=>array(
'widget_class' => 'SubPanelEditButton',
'module' => $module_name,
'width' => '4%',
),
'remove_button'=>array(
'widget_class' => 'SubPanelRemoveButton',
'module' => $module_name,
'width' => '5%',
),
),
);

?>

With each of the subpanel metadata views defined, the next step is to set up the
subpanel definitions for the Supplies module. You’ll reference each of the above
subpanel metadata files you created in Listing 11-7, adding different titles to each of
them so the user can differentiate on what the contents of them are. Listing 11-8
shows how this is done (save the file as
custom/Extension/modules/ep_Supplies/Ext/Layoutdefs/extrasubpanels.php).

Listing 11-8. Subpanel Definitions for the Supplies Module

<?php
$layout_defs["ep_Supplies"]["subpanel_setup"]["ep_supplies_ep_supplies_1"] = array (
 'order' => 110,
 'module' => 'ep_Supplies',
 'subpanel_name' => 'relatedProducts',
 'sort_order' => 'asc',
 'sort_by' => 'id',
 'title_key' => 'LBL_RELATED_PRODUCTS',
 'get_subpanel_data' => 'ep_supplies_ep_supplies',
 'top_buttons' =>
 array (
 0 =>
 array (
 'widget_class' => 'SubPanelTopCreateButton',
),
 1 =>
 array (
 'widget_class' => 'SubPanelTopSelectButton',
 'mode' => 'MultiSelect',
),

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

237

),
);

$layout_defs["ep_Supplies"]["subpanel_setup"]["ep_supplies_ep_supplies_2"] = array (
 'order' => 120,
 'module' => 'ep_Supplies',
 'subpanel_name' => 'relatedParts',
 'sort_order' => 'asc',
 'sort_by' => 'id',
 'title_key' => 'LBL_RELATED_PARTS',
 'get_subpanel_data' => 'ep_supplies_ep_supplies',
 'top_buttons' =>
 array (
 0 =>
 array (
 'widget_class' => 'SubPanelTopCreateButton',
),
 1 =>
 array (
 'widget_class' => 'SubPanelTopSelectButton',
 'mode' => 'MultiSelect',
),
),
);

$layout_defs["ep_Supplies"]["subpanel_setup"]["ep_supplies_ep_supplies_3"] = array (
 'order' => 130,
 'module' => 'ep_Supplies',
 'subpanel_name' => 'relatedSupplies',
 'sort_order' => 'asc',
 'sort_by' => 'id',
 'title_key' => 'LBL_RELATED_SUPPLIES',
 'get_subpanel_data' => 'ep_supplies_ep_supplies',
 'top_buttons' =>
 array (
 0 =>
 array (
 'widget_class' => 'SubPanelTopCreateButton',
),
 1 =>
 array (
 'widget_class' => 'SubPanelTopSelectButton',
 'mode' => 'MultiSelect',
),
),
);

unset(layout_defs["ep_Supplies"]["subpanel_setup"]["ep_supplies_ep_supplies"]);
?>

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

238

You’ll notice the addition of the unset() call to an existing subpanel. This is
because you built this module in Module Builder and added the relationship there as
well, so they already define one subpanel for all related Supplies. This means you’ll
need to disable the one created by your DetailView to avoid confusion for the end
user. The easiest way to do this is simply unset() its value in the $layout_defs array.

You also have a relationship from a Supply to an Account or Customer. This
relationship lets Easter Pools know what customers have purchased and what
products they use. The advantages of having this link are numerous. For example, it
can help the service manager to know which replacement parts need to go out to a
customer if something breaks or if a supply has a recall. Easter Pools sales manager
can easily find out which customers currently have the part and can schedule service
calls to do any needed replacement work. To add such a subpanel, you’ll need to
create a collection subpanel, which is one that gathers data from multiple modules
and displays them as one. The important thing here is to specify the modules you’ll
be pulling together (in this case, just Accounts and Customers) and then make sure
you have matching subpanel metadata view for them (which you’ll define as
ForJobs). Listing 11-9 shows how this all comes together.

Listing 11-9. Subpanel Definitions for a Combined Customers/Accounts Subpanel

<?php

$layout_defs["ep_Items"]["subpanel_setup"]['clients'] => array(
'order' => 100,
'sort_order' => 'desc',
'sort_by' => 'date_start',
'title_key' => 'LBL_ACTIVITIES_SUBPANEL_TITLE',
'type' => 'collection',
'subpanel_name' => 'activities', //this values is not associated with a physical file.

'header_definition_from_subpanel'=> 'accounts',

'module'=>'Activities',
'collection_list' => array(
'accounts' => array(
'module' => 'Accounts',
'subpanel_name' => 'ForJobs',
'get_subpanel_data' => 'accounts',
),

 'customers' => array(
 'module' => 'ep_Customers',
 'subpanel_name' => 'ForJobs',
 'get_subpanel_data' => 'ep_customers',
),

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

239

)
);
?>

Vendors
In the Vendors module, you will add some logic to the relationships and subpanels.
You’ll add a relationship to the existing products module so you know who the
supplier is and which items that you sell. What happens when someone needs to
reorder an item from the suppliers? For tracking, you’ll add a Vendor Orders
modules, which will link to both the Products module (so you have a history of what
orders they have made in the past for the given product and which provides good
insight into how often they are placing orders on a part), as well as the Vendors
module to show which orders are made to the Vendor. You’ll even split the subpanels
into two parts just as you did for the Products subpanels in the previous section, so
that you can track outstanding orders and historical orders in separate panels. Listing
11-10 shows how to do this.

Listing 11-10. Subpanel Metadata Files for the Products Only, Parts Only, and Supplies
Only Subpanels

currentOrders.php
<?php

$module_name='ep_VendorOrders';
$subpanel_layout = array(
'top_buttons' => array(
array('widget_class' => 'SubPanelTopCreateButton'),
array('widget_class' => 'SubPanelTopSelectButton', 'popup_module' => $module_name),
),

'where' => 'order_status != "Completed"',

'list_fields' => array(
'name'=>array(
'vname' => 'LBL_NAME',
'widget_class' => 'SubPanelDetailViewLink',
'width' => '45%',
),
'date_entered'=>array(
'vname' => 'LBL_DATE_ENTERED',
'width' => '45%',
),
'edit_button'=>array(

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

240

'widget_class' => 'SubPanelEditButton',
'module' => $module_name,
'width' => '4%',
),
'remove_button'=>array(
'widget_class' => 'SubPanelRemoveButton',
'module' => $module_name,
'width' => '5%',
),
),
);

?>

previousOrders.php
<?php

$module_name='ep_VendorOrders';
$subpanel_layout = array(
'top_buttons' => array(
array('widget_class' => 'SubPanelTopCreateButton'),
array('widget_class' => 'SubPanelTopSelectButton', 'popup_module' => $module_name),
),

'where' => 'order_status = "Completed"',

'list_fields' => array(
'name'=>array(
'vname' => 'LBL_NAME',
'widget_class' => 'SubPanelDetailViewLink',
'width' => '45%',
),
'date_entered'=>array(
'vname' => 'LBL_DATE_ENTERED',
'width' => '45%',
),
'edit_button'=>array(
'widget_class' => 'SubPanelEditButton',
'module' => $module_name,
'width' => '4%',
),
'remove_button'=>array(
'widget_class' => 'SubPanelRemoveButton',
'module' => $module_name,
'width' => '5%',
),
),
);

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

241

?>

SubPanelDefintions
<?php
$layout_defs["ep_Vendors"]["subpanel_setup"]["ep_vendors_ep_vendororders_1"] = array (
 'order' => 110,
 'module' => 'ep_Vendors',
 'subpanel_name' => 'currentOrders',
 'sort_order' => 'asc',
 'sort_by' => 'id',
 'title_key' => 'LBL_CURRENT_ORDERS',
 'get_subpanel_data' => 'ep_vendors_ep_vendororders',
 'top_buttons' =>
 array (
 0 =>
 array (
 'widget_class' => 'SubPanelTopCreateButton',
),
 1 =>
 array (
 'widget_class' => 'SubPanelTopSelectButton',
 'mode' => 'MultiSelect',
),
),
);

$layout_defs["ep_Vendors"]["subpanel_setup"]["ep_vendors_ep_vendororders_2"] = array (
 'order' => 120,
 'module' => 'ep_Vendors',
 'subpanel_name' => 'previousOrders',
 'sort_order' => 'asc',
 'sort_by' => 'id',
 'title_key' => 'LBL_PREVIOUS_ORDERS',
 'get_subpanel_data' => 'ep_vendors_ep_vendororders',
 'top_buttons' =>
 array (
 0 =>
 array (
 'widget_class' => 'SubPanelTopCreateButton',
),
 1 =>
 array (
 'widget_class' => 'SubPanelTopSelectButton',
 'mode' => 'MultiSelect',
),
),
);

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

242

You’ll also add a way to simplify the reorder process by adding a button to the
Supplies DetailView named Reorder that will request an item be reordered. Clicking
this button will trigger a reorder action in the Products module that will add the
product to Vendor Orders module, assigning it to the reorder user who can then go
through and actually do the reordering. Listing 11-11 shows how you can add your
action through modifying the controller for the Products module.

Listing 11-11. Reorder Action in the Supplies Controller

<?php

require_once("modules/ep_VendorOrders/ep_VendorOrders.php");

class ep_SuppliesController extends SugarController
{
public function __construct()
 {
parent::SugarController();
}

 public function action_reorder()
 {
 global $current_user;

 if (empty($this->bean->id))
 sugar_die("A record number must be specified to reorder");

 $bean = new ep_VendorOrders;

 $bean->name = $this->bean->name;
 $bean->status = 'Requested';
 $bean->assigned_user_id = $current_user->retrieve_user_id('reorder');
 $bean->save(true);

 $this->bean->load_relationship('ep_supplies_ep_vendororders');
 $this->bean->add($bean->id);

 $this->bean->status = 'On Reorder';
 $this->bean->save();

 SugarApplication::redirect('index.php?module=ep_Supplies&action=DetailView&record=' .
$this->bean->id . '');
 }
}

?>

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

243

You both add the product to the vendor orders module as well as update the
product’s status to On Reorder and link the product to the reorder request so that
everyone at Easter Pools knows that the product is unavailable, but that it’s on
reorder and what the reorder status is.

Invoicing Hooks
Easter Pools already has an existing accounting system in-house that SugarCRM
won’t even attempt to replicate. Most accounting functions are typically considered
out of the scope of what a CRM application is used for, so the requirements for Easter
Pools’ application is for integrating invoicing into their system calls for exporting and
importing of data into Sugar, keeping the heavy accounting work safely in the
confines of their existing system.

You have two goals to accomplish here in regard to working with accounting. The
first is to provide a way to get job information over to the accounting system so the
customer can be invoiced. There’s a number of solutions here, from writing a custom
interface between the two that will actually create the invoice to just giving the
account receivable analysts a report daily of jobs ready to be invoiced. Right now
Easter Pools still have a lot of human intelligence to deal with in billing a customer, so
the best way to handle this is by simply reporting the information to accounting. But
you can save a tree and make the process move much faster by having a workflow
email go out when the job is marked Ready to Invoice, which would allow possible
same day billing of a customer for services rendered. This also gives the analysts the
ability to use their email as a workflow for billing. You can even add an option in the
email that would trigger the job to be marked as Invoiced to better streamline the
process (see Listing 11-12).

Listing 11-12. Invoice View that Will be Used by the Customers and Accounts Modules

<?php

require_once('include/MVC/View/SugarView.php');

class ViewInvoices extends SugarView
{
 public function __construct()
 {
 $this->options['show_title'] = false;
 $this->options['show_header'] = false;
 $this->options['show_footer'] = false;
 $this->options['show_subpanels'] = false;
 $this->options['show_search'] = false;
 parent::SugarView();
 }

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

244

 public function display()
 {
 global $mod_strings, $app_strings;

 $this->ss->assign("MODULE_TITLE",
 get_module_title(
 $mod_strings['LBL_MODULE_NAME'],
 $mod_strings['LBL_MODULE_NAME'] . ': ' . $app_strings['LBL_INVOICES'],
 true
)
);

 // Get the invoice data from our accounting system; it uses XML to do so
 $returnXML =
file_get_contents("http://accounting.local/getInvoiceHistory?customer_id={$this->bean-
>accounting_id}");

 $xml = new SimpleXMLElement($returnXML);

 $invoices = array();
 foreach ($xml->invoice as $invoice) {
 $invoices = array(
 'date' => $invoice->date,
 'amount' => $invoice->amount,
 'due' => $invoice->due,
);
 }

 $this->ss->assign('invoices', $invoices);
 $this->ss->display('custom/include/MVC/tpls/invoices.tpl');

 }
}

Now in Listing 11-13, you define the Smarty template used to display this data. It’s
nothing more than a simple HTML table.

Listing 11-13. invoices.tpl file

{$MODULE_TITLE}
{foreach from=$invoice key=key item=item name=rows}
{if $smarty.foreach.rows.first}
<table class="other view">
<tr>
 <th>{$APP.LBL_INVOICE_DATE}</th>
 <th>{$APP.LBL_INVOICE_AMOUNT}</th>
 <th>{$APP.LBL_INVOICE_DUE}</th>
</tr>
{/if}
<tr>
 <td>{$item.date}</td>
 <td>{$item.amount}</td>
 <td>{$item.due}</td>

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

245

</tr>
{if $smarty.foreach.rows.last}
</table>
{/if}
{foreachelse}
{$APP.LBL_NO_RECORDS_FOUND}
{/foreach}

Just as you’ve built a way for looking at the outstanding invoices that a customer
has, you’ll also need to define a way to get invoices to your Accounting system. You’ve
done the first part of this in the Jobs module by defining a checkbox field Ready to
Invoice to indicate to your Accounting system that you are ready to invoice a
customer for the service work you’ve performed for them. I mentioned earlier in this
chapter when you looked at the Customers module that the invoicing process for
Easter Pools has human logic in it, and they have chosen not to include that in their
SugarCRM-based application. However, automating the transfer of information to
accounting is definitely a part of this process. You can automate this using logic
hooks. First, you’ll add a logic hook, so that where the Ready to Invoice checkbox is
checked you’ll automatically assign the invoice to the invoicing user account (which
will need to be created separately). Listing 11-14 shows what this logic hook would
like.

Listing 11-14. Jobs before_save logic Book

require_once('modules/ep_Jobs/ep_Jobs.php');
require_once('modules/Accounts/Account.php');

class ep_JobsHooks
{
 public function assignToInvoicing(
 SugarBean $bean,
 $event,
 $arguments
)
 {
 global $current_user;

 if (!$bean->fetched_row['ready_to_invoice'] && $bean-> ready_to_invoice)
 $bean->assigned_user_id = $current_user->retrieve_user_id('invoicing');
 }
}

Next you’ll turn on notifications inside the email settings. This will automatically
send an e-mail notification when a record is assigned to a user, which in this case will
notify the invoicing user (you’ll set this to be whomever is handling invoicing for
Easter Pools) to be notified that a Job is ready for him to invoice.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

246

Final Touches
Now that you’ve built all of the modules for your application, and configured your
outside accounting system to integrate with your newly designed application made
just for Easter Pools, let’s now clean up a few remaining pieces. The first thing you’ll
want to do is configure the available modules to users of the Easter Pools SugarCRM
application. You can do so in two different ways: the first is to just hide the tabs you
are not using from the user interface through the Configure Tabs option. The only
problem with this approach is that it only hides the tabs, but doesn’t truly disable the
modules. Any user could just type the URL to access any module in the system. The
only way to truly block access to those modules you are not using is through ACL
Roles, so you’ll add a new one called Users in the Role Management admin panel to
do this.

Figure 11-2. Users role

You also should personalize the application a bit to make the branding match
what is used in the rest of the company. The single most important part of the success
of any business application is user acceptance. A good way to achieve this is to make
the application not only easy to use, but visually appealing and have the appearance
that it integrates flow into the rest of the company. Your first task in achieving this is
to first set the company logo image that is used in the application and displayed in
the header of the page. You can do this very easily through the System Settings in the

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

247

Admin panel by just uploading the image you wish to use to your instance (see
Figure 11-3).

Figure 11-3. System Settings Section for Changing the Company Logo

You can also make this change by dropping the image in the
custom/themes/default/images directory, naming it company_logo.png (or
company_logo.gif if it is a GIF image). One nice feature here that has been added with
the new theme framework introduced in Sugar 5.5 is that you can upload an image of
any size and dimension, and it will be automatically resized correctly to fit in the
header without making the image look disproportional.

You also want to customize your theme selection as well. To keep end user
training consistent for all those who will use the Easter Pools’ new application, they
have decided to standardize on the RipCurl theme (mostly due to its aquatic-like
theme, since they are a pool business). To do this, you’ll change the config.php file,
which stores the default configuration setting for Sugar to specify the default_theme
setting to RipCurl instead of the default Sugar theme. Then you can disable all the
other themes in the Theme Settings section of the Admin panel, as you see in
Figure 11-4.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

248

Figure 11-4. Themes Settings of the Admin Panel

These simple changes may seem like minor things (and they are for the most part)
but it’s the details like this that make the difference to any business. I mentioned
earlier in this section the idea of user acceptance, and its role in the success of any
deployment of an application whether it be SugarCRM-based or not. The difference
with SugarCRM is it gives you as a developer the tools to enable customization of
your application, making these final touches easy to do.

Summary
In this chapter, you used all the knowledge accumulated throughout the entire book
and put it to practical use by designing a business application for a business. The
mythical business named Easter Pools had the requirements of creating an
application to manage their growing business. In particular, they needed
management of their diverse customer base which covered both commercial

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

249

customers as well as retail customers needing products, parts, supplies, and service
for their pools and spas, and the ability to easily and quickly be able to tell what
products they own and the history of service appointments they have made. They
also needed better management of their service business, including parts inventory,
scheduling and prioritizing requests, and automating the notification of when to
invoice a client. Vendor management was also critical, needing both insights into the
parts, products, and supplies relationships, as well as tracking orders made.

Piece by piece, you saw the versatility of SugarCRM shine here, showing how easy
is it to extend and build upon it to meet any needs. You built several new modules
and reused a few as well, adding fields and additional relationships to fulfill the
requirements for the application as well as add some nice new abilities. In addition,
you added external integration, first with Google Maps to provide mapping
information to Easter Pools’ service crews to help them get to their job sites. You
added integration into an already existing account system using REST Web Services
and the built-in push notifications system that comes with SugarCRM. You then also
took a moment to add a few last changes to your application to clean it up by hiding
the modules you won’t be using and have it match the already existing branding used
by Easter Pools.

The example application you looked at how to build in this chapter is a good
blueprint on how to customize Sugar to meet your needs. The developer’s tools that
come with Sugar enable you to get your application off the ground easily, and from
there you can add your own code level customizations to have the application meet
your requirements. If there’s one thing that sets SugarCRM apart from the pack is its
versatility, and with the ever changing needs that all companies have its one of the
most important features to have so your application can grow with your company.

CHAPTER 11 ■ DESIGNING A COMPLETE APPLICATION

250

Index

■ ■ ■

251

■ A
Access control list (ACL) rules, 13
Accounts and Contacts module, 221, 224
Accounts module, 222–24, 229

Contacts subpanel, 53
fields added for, 223
jobs relationship, 230
relationships added for, 224

AccountsHooks.php, 144
ACLs, 79

roles, 246
setting up for a module, 79

ACLTag attribute, Listviewdef, 43
action_getthemail(), 15
action_helloworld() controller method, 19
action_view_map.php file, 18, 216
Activities modules, 221
Activities relationship

and the Customer module, 225
and the Vendor Orders module, 228

Activities relationship, and Vendors module,
228

Add Field button, 111
Add field dialog, 112
additionalDetails function attribute, 46
$adminOnlyList, 199
after_delete, 126
after_login, 127
after_logout, 127
after_restore, 126

after_retrieve, 126
after_save, 126
after_save logic hook, for the Jobs module, 231
after_ui_footer, 126
after_ui_frame, 126
AJAX interface, 182
Alert Email Templates, 139
Alert Recipient List popup dialog, 140
Alert Templates EditView, 139
app_list_strings, 164
app_strings, 164
Applicants bean class, 24
ApplicantsDashlet class, 87
ApplicantsDashlet ListView, 88

■ B
B2C (Business-to-Consumer) transactions, and

SugarCRM, 224
Back to Module Loader button, 193
backup/ subdirectory, 152
basic (module type), 176
Basic template, 202, 227

SugarObjects, 23
Bean class file, adding to custom module,

200–202
Bean classes, 22
$beanFiles, 199
$beanList, 199
Beanname.php, 197
before_delete, 126

■ INDEX

252

before_login, 127
before_logout, 126
before_restore, 126
before_retrieve, 126
before_save, 126
Bugs module, 155
BugsController, 16

■ C
Chart Dashlets, 89–91
Cloud Connector framework, 56
Combined Customers/Accounts sub panel,

subdefinitions for, 238
comment attribute, fields array key of vardefs,

25
Common Object Request Broker Architecture

(CORBA), 55
company (module type), 176
Company template, SugarObjects, 23
Complete application

Accounts module, 229
background of, 220
components, breakdown of, 221
Contacts module, 229
custom code, 228
Customers module, 221, 224–26
designing, 219–49
invoicing hooks, 243–45
Jobs module, 221, 226, 229–33
Supplies module, 221, 226–27, 233–39
Vendor Contacts module, 221
Vendor Orders module, 221, 227
Vendors Contacts module, 227
Vendors module, 221, 227, 239–43

config.php 'logger' key, 105
config.php file, 247
Connector class methods, 57
Connector framework

connector source
building, 56–59
providing testing functionality for, 59

main components for, 56
Connectors, and localization, 63
Connectors framework, 56–64

Contacts Module, 222–24, 229
adding, 166
RemoveExtraSubpanels.php file for, 229

Convert Lead view, 215
Create, Retrieve, Update, and Delete (CRUD)

pattern, 35
CRM (Customer Relationship Management), 3

applications, 219
defined, 4
See also SugarCRM

CRUD-style module, defined, 196
Custom code, 228
Custom Dashlets, 93–94
Custom directory, 151–68

layout of, 152
Custom field types, adding, 161
Custom fields, removing, 122
Custom File EditView template file, 162
Custom Filereadonly EditView template file,

163
Custom Filereadonly SugarField child class, 162
Custom module

bean class file, adding, 200–202
building manually, 195–217
custom views, adding, 215–16
dashlet, creating, 212–15
directory structure, constructing, 196–98
language files, adding, 211–12
metadata templates, building, 204
registering with the Sugar instance, 198–200
using Module Builder vs., 195
vardefs, building, 202–4

Custom modules, using Module Builder to
build, 177–80

Custom registry, creating, 74
Custom themes, 166
Custom view.quickinfo.php, 154
Custom views, adding, 215–16
Custom Web Services, 73–75

adding soap.php and rest.php, 75
implementation class, providing, 74

custom/application/Ext/Include/modules.ext.
php, 198

custom/Extension/application/Ext/Language/
en_us.parts.php, 199

■ INDEX

253

custom/modulename/views/ directory, 153
CustomBugsController, 17
Customer Relationship Management (CRM), 3
Customers module, 221, 224–26

fields added for, 225
jobs relationship, 230
relationships added for, 225

Customizations, 109, 153
removing, 121
view actions, altering, 153

Customized detailviewdefs.php metadata file,
for the Notes Module, 156

Customized editviewdefs.php file, for the
Contacts Modulewith Added Find
Duplicates button, 157

Customized en_us.lang.php file, 164, 165
Customized fr_FR.lang.php file, 165
Customized listviewdefs.php template file, for

the Bugs ListView, 160
Customized searchdefs.php file, for the

Contacts Module, 159
customregisty.php, 74

■ D
Dashlet definition file, 212
Dashlet ListView editor, 183
Dashlets, 85

Chart Dashlets, 89–91
custom Dashlets, 93–94
Iframe Dashlets, 92
ListView Dashlet, 86–89

Dashlets/ directory, 197
Database Server, 8
Db attribute, indices array key of vardefs, 28
db_concat_fields attribute, fields array key of

vardefs, 26
Dblib (database extension), 32
dbType attribute, fields array key of vardefs, 25
default attribute

fields array key of vardefs, 25
Listviewdef, 43

Define Condition for Workflow dialog window,
134

after choosing an option, 135
after choosing an option and field, 136

field selection popup, 135
specifying the changed field information,

137
specifying the changed field information

completed, 138
Delete Package button, 193
Detail view, customizing, 113
DetailView, 35–41

how it works, 38–40
detailviewdefs.php file, 156

for the Parts module, 204
Developer Mode, System Settings, Admin

panel, 156
Directory structure, constructing, 196–98
display() method, 154
Distributed Component Object Model (DCOM),

55
Draper Fisher Jurvetson, 4
DROP TABLE commands, 192
Dynamic module attribute, Listviewdef, 43

■ E
Easter Pools application. See Complete

application
Edit view, customizing, 113
editLink attribute, additionalDetails function,

46
EditView, 35–40

customizing for a module, 181
how it works, 38–40
link, 181

editviewdefs.php file, for the Parts module, 205
en_us.lang.php file, for the Parts module, 211
Entrypoints, 20–22
Existing code, overriding, 151–68
Extension/ subdirectory, 152

■ F
fetchImageURL(), 215
Field overlays, 46–48
Fields, 24–28

adding to a module, 111
defining from a Web service, 60–64
inherited, 179

fields attribute, fields array key of vardefs, 26

■ INDEX

254

Fields attribute, indices array key of vardefs, 28
Fields list, sections of, 111
fieldToAddTo attribute, additionalDetails

function, 46
file (module type), 176
File template, SugarObjects, 23
Flex Relate field, and the Job module, 226
form attribute

buttons, 36
footerTpl, 36
headerTpl, 36
hidden, 36
hideAudit, 36
links, 36

Formatters, 61–62
Forms.php, 197

■ G
getItem() array, 58
getList() array, 58
Git (source control system), 153
Group User, 78

■ H
history/ subdirectory, 152
Hook definition file, 127

■ I
id attribute, Listviewdef, 43
id_name attribute, 26
Iframe Dashlets, 92
importable attribute, fields array key of vardefs,

26
Importing/exporting records, 97–102
include/ subdirectory, 152
Indexes, 28–29
Inherited fields, 179
Internet Explorer, 5
invoice_balance_c (field), 223, 225
invoices.tpl file, 244
Invoicing hooks, 243–45
isnull attribute, fields array key of vardefs, 25
issue (module type), 176
Issue template, SugarObjects, 23

■ J
javascript/ directory, 197
Jobs module, 221, 226, 229–33

after_save logic hook for, 231
DetailView override for, 232
fields added for, 226

Jobs relationship
and the Accounts module, 224
and the Customer module, 225
and the Supplies module, 227

join_key_lhs attribute, 30
join_key_rhs attribute, 30
join_table attribute, 30

■ L
label attribute, Listviewdef, 43
Labels, editing using Studio, 117
Language files, adding, 211
Language strings

changing, 164
loading of, 14

language/ directory, 197
last_invoice_date_c (field), 223, 225
last_payment_date_c (field), 223, 225
len attribute, fields array key of vardefs, 25
lhs_key attribute, 30
lhs_module attribute, 30
lhs_table attribute, 30
link attribute, Listviewdef, 43
LinkedIn connector formatter, 62
list_fields attribute, subpanel definition, 51
ListView, 41–44

customizing, 44, 115
ListView Dashlet, 86–89
ListView editor, 115
Listviewdef, attribute options, 43
listviewdefs.php file, for the Parts module, 206
Localization, and connectors, 63
Logger, 104–6
Logic hooks, 95, 151

AccountHooks.php, 128
conflicts, 147
creating, 127

■ INDEX

255

defined, 125
hook definition file, 127

essential elements of, 128
modifying the Bean object, 143
nullified by the existing code, 148
pitfalls of, 143
sample logic_hooks.php file, 127
weaknesses, 149
workflows, 132

login_failed, 127

■ M
Many-to-many relationships, 120, 186
Many-to-one relationships, 186
map (field), 223, 225
mappings.php file, 61

sample, 61
massupdate attribute, fields array key of

vardefs, 25
maxColumns attribute, 36
MeetingsController Class, 16
Menu.php file, 197

Metadata, 180
Metadata layer, 35–53
Metadata templates, building, 204–11
metadata/ directory, 197
metadata/studio.php, 197
metadata/subpanels/ directory, 197
Metadata-driven views, changing, 156
Microsoft SQL Server, 5
mod_strings, 164
Model layer, SugarCRM, 22
$modInvisList, 199
Module attribute, Listviewdef, 43
Module Builder, 152, 177–80, 195, 217, 224

and Studio, 186
basic search panel editing for a module in,

183
Create Field screen, 178, 179
Create Relationship screen in, 185
Dashlet ListView editor for a module in, 183
default screen, 172
defined, 171
editing a ListView for a module in, 182

editing the dashlet search fields for a
module in, 184

fields, 177–80
fields screen, 177
getting started with, 172
Importing option, 175
metadata, 180
module layout screen, 181
Navigation tab, 175
New Package dialog, 173
New Package link, 172
new package, creating, 174
packages, 172
relationship listing for a module in, 185
relationships, 184
Team security option, 175

Module defined view, customizing, 20
$moduleList, 199
Module Loader, 188

after installing a package, 192
Module Name field, 175
Module packages, 187–93

deploy to the current instance, 187
disabling, 192
exporting, 191
uninstalling, 191

Module types/descriptions, 176
modulebuilder/ subdirectory, 152
modules/ subdirectory, 152
modules/modulename/metadata/editviewdefs.

php, 198
Mozilla Firefox, 5
mssql (database extension), 32
MVC architecture, 11

bean classes, 22
controller layer, 12
database layer, 31–33
defined, 11
entrypoints, 20–22
fields, 24–28
indexes, 28–29
layers, 11
model layer, 12, 22
MVC pattern, 12

■ INDEX

256

relationships, 29–31
Sugar before, 33
vardefs, 24
view layer, 12

MySQL, 5
mysql (database extension), 32
mysqli(database extension), 32

■ N
name attribute, fields array key of vardefs, 25
Name attribute, indices array key of vardefs, 28
New Package dialog, 173
New Package link, 172
NuSOAP, 66, 67

■ O
oci8 (database extension), 32
One-to-many relationships, 120, 186
One-to-one relationships, 120, 186
options attribute, fields array key of vardefs, 26
options key, 61
Oracle database servers, 5
Oram, Clint, 3

■ P
Part::fetchImageURL() method, 216
Parts module, 196, 198, 200, 208, 209

detailviewdefs.php file for, 204
editviewdefs.php file for, 205
en_us.lang.php file for, 211
image view for, 215
listviewdefs.php file for, 206
Menu.php file for, 210
searchdefs.php file for, 207
SearchFields.php file for, 208
sidecreateviewdefs.php file for, 209
subpanels/default.php file for, 208
vardefs.php file for, 203

PartsDashlet.meta.php file, 213
PartsDashlet.php class file, 214
partsdashletviewdef.php file, 213
Password management, 81
person (module type), 176

Person template, SugarObjects, 23, 227
PHP programming language, 5, 8
Portal Only User, 78
post_action() method, 17
pre_action() method, 17
preDisplay() method, 154
Preprocess rules, 14
preProcess() method, 14
preRow attribute, 36
process_record, 126

■ Q
Quickinfo view, 154

■ R
Record importing and exporting, 97–102
related fields attribute, Listviewdef, 43
relationship attribute, fields array key of

vardefs, 26
relationship_role_column attribute, 30
relationship_role_column_value attribute, 30
relationship_type attribute, 30
Relationships, 29–31

adding to other modules, 119
and Module Builder, 184
samples, 31
undoing the customization, 123

Relationships list, 119
Remote Method Invocation (RMI), 55
RemoveExtraSubpanels.php file, for the

Contacts module, 229
Repair Extensions, running, 216
reportable attribute, fields array key of vardefs,

25
Representational State Transfer (REST), See

REST
required attribute, fields array key of vardefs, 25
REST, 55, 65, 72–73

logging in using, 73
subdirectory, 65

rest.php, 75
rhs_key attribute, 30
rhs_module attribute, 30
rhs_table attribute, 30

■ INDEX

257

RipCurl theme, 247
rname attribute, fields array key of vardefs, 26
Roberts, John, 3
Roles module, 196

■ S
Safari browser (Apple), 5
sale (module type), 176
Sale template, SugarObjects, 23
Search fields, defining, 44–45
searchdefs.php file, 44

for the Parts module, 207
SearchFields.php file, for the Parts module, 208
server_round_trip, 126
Side QuickCreate template, 209
sidecreateviewdefs.php file, for the Parts

module, 209
Simple Object Access Protocol (SOAP)

standard, 55
Smarty templates, 154, 162
SOAP, 65–72

adding a new record, 68
attachments, saving and retrieving, 70
common actions, 66
counts of records, 67
defined, 65
lists, 67
making a connection using, 66
relating records, 71
WSDL file, performance issue when dealing

with, 66
soap.php, 75
Social networking, 94–97
sort_on attribute, fields array key of vardefs, 26
Sortable attribute, Listviewdef, 43
source attribute, 26
sqlsrv (database extension), 32
string attribute, additionalDetails function, 46
Studio, 151, 222

adding new relationships to other modules,
119

adding/removing modules from mobile
version of Sugar, 114

customizations, 110
removing, 121

Detail view, customizing, 113
Edit view, customizing, 113
interface, 110
labels, editing, 117
ListViews, customizing, 115

Subpanel definitions, parts of, 209
Subpanels, 48–53
subpanels/default.php file, for the Parts

module, 208
Subversion (source control system), 153
Sugar Community Edition, 5
Sugar Developer Zone, 8
Sugar Enterprise Edition, 5
Sugar Feeds, 94–97

Admin panel, 95
dashlet, 96–97
defined, 94
logic hooks, 95
user feeds, 95

Sugar Forums, 7
Sugar On-Demand, 4, 6
Sugar On-Site, 6
Sugar Open Source Project, 4
Sugar Professional Edition, 5
Sugar user, 78
Sugar Wiki, 7
sugar_die(), 154
SugarApplication level

request handling at, 13
SugarBean, 22
SugarController, 13, 14–18, 16, 154
SugarCRM

adding/removing modules from mobile
version of, 114

“faststack” installers, 9
adding fields to a module, 111
and MVC pattern, 12
as "open" application, 56
community of users, 7
company history, 3
customizations, 109, 151–68

removing, 121
database layer, 31–33
database management systems (DBMS), 31

■ INDEX

258

default views in, 18
defined, 3
deployment options, 6
DetailViews, 35–41
EditView, 35–40
existing code, overriding, 151–68
founders, 3
getting, 8
growth of, 7
installing, 9
learning about the internals of, 195
model layer, 22
popularity of the application, 4
product description, 5
product editions, 5
product matrix, 6
rapid growth of, 4
search boxes in, 159
search implementation, 44
Studio, 109
user types in, 78

SugarExchange, 7
SugarFields, 40–41
SugarForge, 8
SugarLogger, 104–6
SugarObjects, 22

template names/descriptions, 23
SugarView, 18–20
SugarWebServiceImpl class

extending, 74
SugarWebServiceImpl_v2_1.php, 74
SugarWidget, 163
Supplies module, 221, 226–27, 233–39

design of, 233
fields added for, 227
relationships added for, 227
subpanel definitions for, 236
subpanel metadata files, 234

Supplies relationship
and the Accounts module, 224
and the Customer module, 225
and the Supplies module, 227

and the Vendor Orders module, 228
and the Vendors module, 228

System Administrator, 78

■ T
table attribute, fields array key of vardefs, 25
Taylor, Jacob, 3
Team management, 84–85

assigning users to teams, 84
multiple teams, 85

TeamNoticesDashlet class, 93
themedef.php file, 168
themedefs.php file, 103
Themes, 102–4

customizations, 166
directory layout, 102
framework, 102, 166
initialization and loading of, 14

Theme Settings section, Admin panel, 247
themes/ subdirectory, 152
time_required_c (field)

and the Job module, 226
top_buttons attribute, subpanel definition, 51
tpls/ directory, 197
Tracker Reports dashlet, 82
Tracker Settings admin panel, 83
Tracking user actions, 82–84
type attribute, fields array key of vardefs, 25
Type attribute, indices array key of vardefs, 28

■ U
unified_search attribute, fields array key of

vardefs, 26
unified_search attribute, setting, 166
User authentication, 13
User feeds, 95
User management, 77–84

ACLs, 79
password management, 81
tracking user action, 82–84

User roles, 246
creating, 79

■ INDEX

259

■ V
v2 subdirectory, 65
Vardefs, 24

attributes in the fields array key of, 25
definitions, tweaking, 165
fields in applicants module as defined in, 26

vardefs.php, 197
for a connector, 60
for the Parts module, 203
sample indices in, 29

Vendor Contacts module, 221
relationships added for, 228

Vendor Contacts relationship, and Vendors
module, 228

Vendor Orders module, 221, 227
relationships added for, 228

Vendor Orders relationship, and Vendors
module, 228

vendor_ref_no (field), Supplies module, 227
Vendors Contacts module, 227
Vendors module, 221, 227, 239–43

relationships added for, 228
reorder action in the supplies controller,

242
subpanel metadata files, 239

View actions, altering through the custom
directory, 153

View History button, 121
view.helloworld.php, 19
ViewAjax, 18
ViewClassic, 18
ViewDetail, 18
ViewEdit, 18
ViewFactory, 153
ViewJson, 18
viewLink attribute, additionalDetails

function, 46
ViewNoaccess, 18
ViewPopup, 18

views/ directory, 197
ViewVcard, 18
vname attribute, fields array key of vardefs, 25

■ W
Web Server, 8
Web Service Description Language (WSDL) file,

65
Web services, 55

custom, 73–75
defined, 55

Web Services API, 64–73
SOAP, 65–72

where attribute, subpanel definition, 51
width attribute

additionalDetails function, 46
Listviewdef, 43

widths attribute, 37
Workflow Definition dialog, 132
Workflow Detail View, 133
Workflow Execution Order

link, 142
screen, 143

workflow/ subdirectory, 152
Workflows, 132, 151

actions, 141
dialog, 141, 142

alerts, 133
defining, 138
DetailView, 140
EditView, 139

conditions, 133
creating, 131
DetailView screen, 133
managing the sequence of, 142

working/ subdirectory, 152
WSDL file, 66
wsdlcache class, 66

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewers
	Acknowledgments
	Introduction
	What Is SugarCRM?
	The Company
	Rapid Growth—Harnessing Open Source and SaaS

	The Product
	The Community
	Sugar Forums and Wiki
	SugarExchange and SugarForge
	Sugar Developer Zone
	Getting SugarCRM

	Summary

	MVC Architecture
	What Is MVC?
	MVC the Sugar Way
	SugarApplication
	SugarController
	SugarView

	Entrypoints
	What About the Model?
	Bean Classes and SugarObjects
	Vardefs
	Fields
	Indexes
	Relationships
	Database Layer

	Sugar Before MVC
	Summary

	Metadata Layer
	DetailView and EditView
	How the DetailView and EditView Classes Work
	SugarFields
	ListViews
	Defining Search Fields
	Field Overlays”
	Subpanels

	Summary

	Web Services
	What Are Web Services?
	Connectors
	Building the Connector Source

	Defining the Fields from the Web Service”
	Formatters
	Localization
	Pulling It Together

	Web Services API
	SOAP
	Make a Connection
	Get Lists and Counts of Records
	Add a New Record
	Saving and Retrieving Attachments
	Relate Records
	REST
	Logging in Using REST

	Custom Web Services
	Create a Custom Registry
	Provide an Implementation Class
	Add soap.php and rest.php Files

	Summary

	More Platform Features
	User Management
	ACL
	Password Management
	Tracking User Actions

	Team Management
	Dashlets
	ListView Dashlet
	Chart Dashlets
	Iframe Dashlets
	Custom Dashlets
	Sugar Feeds
	Record Importing and Exporting
	Themes
	Logger

	Summary

	Easy Customizations Using Studio
	Starting with Studio
	Adding New Fields to a Module

	Customizing View Templates
	Customizing Edit and Detail Views
	Customizing ListViews
	Editing Labels
	Relationships, Relationships, Relationships
	Help! My Customizations Have Gone Awry

	Summary

	Workflows and Logic Hooks
	What Are Logic Hooks?
	Creating Your First Logic Hook
	Point and Click Logic Hooks with Workflows
	Creating the Workflow
	Defining Workflow Alerts
	Workflow Actions
	Managing the Sequence of Workflows
	Logic Hooks Pitfalls
	Modifying the Bean Object
	Conflicting Logic Hooks
	Logic Hook Being Nullified by the Existing Code
	Logic Hook Weaknesses

	Summary

	Overriding Existing Code
	Safety Lies in the Custom Directory
	Customizations You Can Make
	Altering View Actions
	Changing the Metadata-Driven Views
	Adding New Custom Field Types
	Changing Language Strings
	Tweak vardef Definitions
	Custom Themes and Theme Customizations (Yes, They Are Different)

	Summary

	Using Module Builder to Build Custom Modules
	Getting Started
	Designing a New Module
	Fields
	Metadata
	Relationships
	What Do I Do with This Package?
	Deploy to the Current Instance
	Publishing Your Changes and Installing Them with Module Loader
	Exporting the Package
	Removing an Installed Package

	Summary

	Building a Custom Module Manually
	Why Would You Do This?
	What You Need to Do
	Construct Directory Structure
	Register Module with the Instance”
	Add Bean Class File”
	Build vardefs
	Build Any Metadata Templates
	Add Language Files
	Create a Dashlet
	Add Any Additional Views Needed

	Summary

	Designing a Complete Application
	Background of the Application
	Breakdown of the Various Components
	Studio
	Accounts and Contacts
	Module Builder
	Customers
	Jobs
	Supplies
	Vendors, Vendor Contacts, and Vendor Orders
	Custom Code
	Accounts and Contacts
	Jobs
	Supplies
	Vendors
	Invoicing Hooks
	Final Touches
	Summary

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

