
www.allitebooks.com

http://www.allitebooks.org

Praise for the Previous Edition

This encyclopedic book is not only a definitive Rails reference, but an indispensable
guide to Software-as-a-Service coding techniques for serious craftspersons. I keep a
copy in the lab, a copy at home, and a copy on each of my three e-book readers,
and it’s on the short list of essential resources for my undergraduate software engineering
course.

—Armando Fox, adjunct associate professor, University of California, Berkeley

Everyone interested in Rails, at some point, has to follow The Rails Way.

—Fabio Cevasco, senior technical writer, Siemens AG, and blogger at H3RALD.com

I can positively say that it’s the single best Rails book ever published to date. By a long
shot.

—Antonio Cangiano, software engineer and technical evangelist at IBM

This book is a great crash course in Ruby on Rails! It doesn’t just document the features
of Rails, it filters everything through the lens of an experienced Rails developer—so you
come our a pro on the other side.

—Dirk Elmendorf, co-founder of Rackspace, and Rails developer since 2005

The key to The Rails Way is in the title. It literally covers the “way” to do almost
everything with Rails. Writing a truly exhaustive reference to the most popular Web
application framework used by thousands of developers is no mean feat. A thankful

i

www.allitebooks.com

http://www.allitebooks.org

community of developers that has struggled to rely on scant documentation will embrace
The Rails Way with open arms. A tour de force!

—Peter Cooper, editor, Ruby Inside

In the past year, dozens of Rails books have been rushed to publication. A handful
are good. Most regurgitate rudimentary information easily found on the Web. Only
this book provides both the broad and deep technicalities of Rails. Nascent and expert
developers, I recommend you follow The Rails Way.

—Martin Streicher, chief technology officer, McLatchy Interactive; former editor-in-
chief of Linux Magazine

Hal Fulton’s The Ruby Way has always been by my side as a reference while programming
Ruby. Many times I had wished there was a book that had the same depth and attention
to detail, only focused on the Rails framework. That book is now here and hasn’t left
my desk for the past month.

—Nate Klaiber, Ruby programmer

As noted in my contribution to the Afterword: “What Is the Rails Way (To You)?,” I
knew soon after becoming involved with Rails that I had found something great. Now,
with Obie’s book, I have been able to step into Ruby on Rails development coming from
.NET and be productive right away. The applications I have created I believe to be a
much better quality due to the techniques I learned using Obie’s knowledge.

—Robert Bazinet, InfoQ.com, .NET and Ruby community editor, and founding mem-
ber of the Hartford, CT, Ruby Brigade

Extremely well written; it’s a resource that every Rails programmer should have. Yes, it’s
that good.

—Reuven Lerner, Linux Journal columnist

www.allitebooks.com

http://www.allitebooks.org

THERAILS™ 3WAY

www.allitebooks.com

http://www.allitebooks.org

Addison-Wesley Professional Ruby Series

informit.com/ruby

www.allitebooks.com

http://www.allitebooks.org

THERAILS™ 3WAY

Obie Fernandez

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

www.allitebooks.com

http://www.allitebooks.org

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:
International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Fernandez, Obie.
The rails 3 way / Obie Fernandez.

p. cm.
Rev. ed. of: The Rails way / Obie Fernandez. 2008.
Includes index.
ISBN 0-321-60166-1 (pbk. : alk. paper)
1. Ruby on rails (Electronic resource) 2. Object-oriented programming (Computer science)
3. Ruby (Computer program language) 4. Web site development. 5. Application
software–Development. I. Fernandez, Obie. Rails way. II. Title.
QA76.64.F47 2010
005.1’17–dc22 2010038744

Copyright ©2011 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax: (617) 671-3447

Parts of this book contain material excerpted from the Ruby and Rails source code and API documentation,
Copyright ©2004–2011 by David Heinemeier Hansson under the MIT license. Chapter 18 contains material
excerpted from the RSpec source code and API documentation, Copyright ©2005-2011 The RSpec Development
Team.

The MIT License reads: Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software. THE SOFTWARE IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES, OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT, OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OF OR OTHER DEALINGS IN
THE SOFTWARE.

ISBN-13: 978-0-321-60166-7
ISBN-10: 0-321-60166-1

Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, December 2010

Editor-in-Chief
Mark Taub

Executive Acquisitions Editor
Debra Williams Cauley

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Carol Loomis

Indexer
Valerie Haynes Perry

Proofreader
Erica Orloff

Publishing Coordinator
Kim Boedigheimer

Cover Designer
Chuti Prasertsith

Compositor
Glyph International

www.allitebooks.com

http://www.allitebooks.org

To Dad, thanks for teaching me ambition.

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

Contents

Foreword by David Heinemeier Hansson xxxiii

Foreword by Yehuda Katz xxxv

Introduction xxxvii

Acknowledgments xliii

About the Author xlv

Chapter 1 Rails Environments and Configuration 1

1.1 Bundler 2
1.1.1 Gemfile 3
1.1.2 Installing Gems 5
1.1.3 Gem Locking 7
1.1.4 Packaging Gems 7

1.2 Startup and Application Settings 8
1.2.1 application.rb 8
1.2.2 Initializers 11
1.2.3 Additional Configuration 15

1.3 Development Mode 15
1.3.1 Automatic Class Reloading 16
1.3.2 Whiny Nils 18
1.3.3 Error Reports 18
1.3.4 Caching 18
1.3.5 Raise Delivery Errors 19

1.4 Test Mode 19
1.5 Production Mode 20

ix

www.allitebooks.com

http://www.allitebooks.org

x Contents

1.5.1 Asset Hosts 22
1.5.2 Threaded Mode 22

1.6 Logging 23
1.6.1 Rails Log Files 24
1.6.2 Log File Analysis 26

1.7 Conclusion 29

Chapter 2 Routing 31

2.1 The Two Purposes of Routing 32
2.2 The routes.rb File 33

2.2.1 Regular Routes 34
2.2.2 URL Patterns 35
2.2.3 Segment Keys 36
2.2.4 Spotlight on the :id Field 38
2.2.5 Optional Segment Keys 38
2.2.6 Constraining Request Methods 38
2.2.7 Redirect Routes 39
2.2.8 The Format Segment 40
2.2.9 Routes as Rack Endpoints 41
2.2.10 Accept Header 42
2.2.11 Segment Key Constraints 43
2.2.12 The Root Route 44

2.3 Route Globbing 45
2.4 Named Routes 46

2.4.1 Creating a Named Route 46
2.4.2 name path vs. name url 47
2.4.3 What to Name Your Routes 48
2.4.4 Argument Sugar 49
2.4.5 A Little More Sugar with Your Sugar? 50

2.5 Scoping Routing Rules 50
2.5.1 Controller 51
2.5.2 Path Prefix 51
2.5.3 Name Prefix 52
2.5.4 Namespaces 52
2.5.5 Bundling Constraints 52

2.6 Listing Routes 53
2.7 Conclusion 54

Contents xi

Chapter 3 REST, Resources, and Rails 55

3.1 REST in a Rather Small Nutshell 55
3.2 Resources and Representations 56
3.3 REST in Rails 57
3.4 Routing and CRUD 58

3.4.1 REST Resources and Rails 59
3.4.2 From Named Routes to REST Support 59
3.4.3 Reenter the HTTP Verb 60

3.5 The Standard RESTful Controller Actions 61
3.5.1 Singular and Plural RESTful Routes 62
3.5.2 The Special Pairs: new/create and edit/update 63
3.5.3 The PUT and DELETE Cheat 64
3.5.4 Limiting Routes Generated 64

3.6 Singular Resource Routes 64
3.7 Nested Resources 65

3.7.1 RESTful Controller Mappings 66
3.7.2 Considerations 67
3.7.3 Deep Nesting? 67
3.7.4 Shallow Routes 68

3.8 RESTful Route Customizations 69
3.8.1 Extra Member Routes 70
3.8.2 Extra Collection Routes 72
3.8.3 Custom Action Names 72
3.8.4 Mapping to a Different Controller 72
3.8.5 Routes for New Resources 73
3.8.6 Considerations for Extra Routes 73

3.9 Controller-Only Resources 74
3.10 Different Representations of Resources 76

3.10.1 The respond to Method 76
3.10.2 Formatted Named Routes 77

3.11 The RESTful Rails Action Set 78
3.11.1 Index 78
3.11.2 Show 80
3.11.3 Destroy 80
3.11.4 New and Create 81
3.11.5 Edit and Update 82

3.12 Conclusion 83

xii Contents

Chapter 4 Working with Controllers 85

4.1 Rack 86
4.1.1 Configuring Your Middleware Stack 87

4.2 Action Dispatch: Where It All Begins 88
4.2.1 Request Handling 89
4.2.2 Getting Intimate with the Dispatcher 89

4.3 Render unto View 92
4.3.1 When in Doubt, Render 92
4.3.2 Explicit Rendering 93
4.3.3 Rendering Another Action’s Template 93
4.3.4 Rendering a Different Template Altogether 94
4.3.5 Rendering a Partial Template 95
4.3.6 Rendering Inline Template Code 96
4.3.7 Rendering Text 96
4.3.8 Rendering Other Types of Structured Data 96
4.3.9 Rendering Nothing 97
4.3.10 Rendering Options 98

4.4 Additional Layout Options 101
4.5 Redirecting 101

4.5.1 The redirect to Method 102
4.6 Controller/View Communication 104
4.7 Filters 105

4.7.1 Filter Inheritance 106
4.7.2 Filter Types 107
4.7.3 Filter Chain Ordering 108
4.7.4 Around Filters 109
4.7.5 Filter Chain Skipping 110
4.7.6 Filter Conditions 110
4.7.7 Filter Chain Halting 111

4.8 Verification 111
4.8.1 Example Usage 111
4.8.2 Options 112

4.9 Streaming 112
4.9.1 Via render :text => proc 112
4.9.2 send data(data, options ={}) 113
4.9.3 send file(path, options = {}) 114

4.10 Conclusion 117

Contents xiii

Chapter 5 Working with Active Record 119

5.1 The Basics 120
5.2 Macro-Style Methods 121

5.2.1 Relationship Declarations 121
5.2.2 Convention over Configuration 122
5.2.3 Setting Names Manually 122
5.2.4 Legacy Naming Schemes 122

5.3 Defining Attributes 123
5.3.1 Default Attribute Values 123
5.3.2 Serialized Attributes 125

5.4 CRUD: Creating, Reading, Updating, Deleting 127
5.4.1 Creating New Active Record Instances 127
5.4.2 Reading Active Record Objects 128
5.4.3 Reading and Writing Attributes 128
5.4.4 Accessing and Manipulating Attributes Before They

Are Typecast 131
5.4.5 Reloading 131
5.4.6 Cloning 131
5.4.7 Dynamic Attribute-Based Finders 132
5.4.8 Dynamic Scopes 133
5.4.9 Custom SQL Queries 133
5.4.10 The Query Cache 135
5.4.11 Updating 136
5.4.12 Updating by Condition 137
5.4.13 Updating a Particular Instance 138
5.4.14 Updating Specific Attributes 139
5.4.15 Convenience Updaters 139
5.4.16 Touching Records 139
5.4.17 Controlling Access to Attributes 140
5.4.18 Readonly Attributes 141
5.4.19 Deleting and Destroying 141

5.5 Database Locking 142
5.5.1 Optimistic Locking 143
5.5.2 Pessimistic Locking 145
5.5.3 Considerations 145

5.6 Where Clauses 146
5.6.1 where(*conditions) 146

xiv Contents

5.6.2 order(*clauses) 148
5.6.3 limit(number) and offset(number) 149
5.6.4 select(*clauses) 149
5.6.5 from(*tables) 150
5.6.6 group(*args) 150
5.6.7 having(*clauses) 150
5.6.8 includes(*associations) 151
5.6.9 joins 151
5.6.10 readonly 152
5.6.11 exists? 152
5.6.12 arel—table 152

5.7 Connections to Multiple Databases in Different Models 153
5.8 Using the Database Connection Directly 154

5.8.1 The DatabaseStatements Module 154
5.8.2 Other Connection Methods 156

5.9 Other Configuration Options 158
5.10 Conclusion 159

Chapter 6 Active Record Migrations 161

6.1 Creating Migrations 161
6.1.1 Sequencing Migrations 162
6.1.2 Irreversible Migrations 162
6.1.3 create—table(name, options, & block) 164
6.1.4 change—table(table name, & block) 165
6.1.5 API Reference 165
6.1.6 Defining Columns 167
6.1.7 Command-line Column Declarations 172

6.2 Data Migration 173
6.2.1 Using SQL 173
6.2.2 Migration Models 174

6.3 schema.rb 174
6.4 Database Seeding 175
6.5 Database-Related Rake Tasks 176
6.6 Conclusion 179

Chapter 7 Active Record Associations 181

7.1 The Association Hierarchy 181
7.2 One-to-Many Relationships 183

Contents xv

7.2.1 Adding Associated Objects to a Collection 185
7.2.2 Association Collection Methods 186

7.3 The belongs—to Association 191
7.3.1 Reloading the Association 192
7.3.2 Building and Creating Related Objects via the Association 192
7.3.3 belongs—to Options 193

7.4 The has—many Association 200
7.4.1 has—many Options 200

7.5 Many-to-Many Relationships 209
7.5.1 has—and—belongs—to—many 209
7.5.2 has—many :through 215
7.5.3 has—many :through Options 220

7.6 One-to-One Relationships 223
7.6.1 has—one 223

7.7 Working with Unsaved Objects and Associations 226
7.7.1 One-to-One Associations 226
7.7.2 Collections 226
7.7.3 Deletion 227

7.8 Association Extensions 227
7.9 The AssociationProxy Class 229
7.10 Conclusion 230

Chapter 8 Validations 231

8.1 Finding Errors 231
8.2 The Simple Declarative Validations 232

8.2.1 validates—acceptance—of 232
8.2.2 validates—associated 233
8.2.3 validates—confirmation—of 233
8.2.4 validates—each 234
8.2.5 validates—format—of 235
8.2.6 validates—inclusion—of

and validates—exclusion—of 236
8.2.7 validates—length—of 236
8.2.8 validates—numericality—of 237
8.2.9 validates—presence—of 238
8.2.10 validates—uniqueness—of 239
8.2.11 validates—with 241
8.2.12 RecordInvalid 242

xvi Contents

8.3 Common Validation Options 242
8.3.1 :allow—blank and :allow—nil 242
8.3.2 :if and :unless 242
8.3.3 :message 242
8.3.4 :on 243

8.4 Conditional Validation 243
8.4.1 Usage and Considerations 244
8.4.2 Validation Contexts 245

8.5 Short-form Validation 245
8.6 Custom Validation Techniques 246

8.6.1 Add Custom Validation Macros to Your Application 247
8.6.2 Create a Custom Validator Class 248
8.6.3 Add a validate Method to Your Model 248

8.7 Skipping Validations 249
8.8 Working with the Errors Hash 249

8.8.1 Checking for Errors 250
8.9 Testing Validations with Shoulda 250
8.10 Conclusion 250

Chapter 9 Advanced Active Record 251

9.1 Scopes 251
9.1.1 Scope Parameters 252
9.1.2 Chaining Scopes 252
9.1.3 Scopes and has many 252
9.1.4 Scopes and Joins 253
9.1.5 Scope Combinations 253
9.1.6 Default Scopes 254
9.1.7 Using Scopes for CRUD 255

9.2 Callbacks 256
9.2.1 Callback Registration 256
9.2.2 One-Liners 257
9.2.3 Protected or Private 257
9.2.4 Matched before/after Callbacks 258
9.2.5 Halting Execution 259
9.2.6 Callback Usages 259
9.2.7 Special Callbacks: after—initialize and after—find 262
9.2.8 Callback Classes 263

Contents xvii

9.3 Calculation Methods 265
9.3.1 average(column—name, *options) 267
9.3.2 count(column—name, *options) 267
9.3.3 maximum(column—name, *options) 267
9.3.4 minimum(column—name, *options) 267
9.3.5 sum(column—name, *options) 267

9.4 Observers 268
9.4.1 Naming Conventions 268
9.4.2 Registration of Observers 269
9.4.3 Timing 269

9.5 Single-Table Inheritance (STI) 269
9.5.1 Mapping Inheritance to the Database 271
9.5.2 STI Considerations 273
9.5.3 STI and Associations 274

9.6 Abstract Base Model Classes 276
9.7 Polymorphic has many Relationships 277

9.7.1 In the Case of Models with Comments 278
9.8 Foreign-key Constraints 281
9.9 Using Value Objects 281

9.9.1 Immutability 283
9.9.2 Custom Constructors and Converters 283
9.9.3 Finding Records by a Value Object 284

9.10 Modules for Reusing Common Behavior 285
9.10.1 A Review of Class Scope and Contexts 287
9.10.2 The included Callback 288

9.11 Modifying Active Record Classes at Runtime 289
9.11.1 Considerations 290
9.11.2 Ruby and Domain-Specific Languages 291

9.12 Conclusion 292

Chapter 10 Action View 293

10.1 Layouts and Templates 294
10.1.1 Template Filename Conventions 294
10.1.2 Layouts 294
10.1.3 Yielding Content 295
10.1.4 Conditional Output 296
10.1.5 Decent Exposure 297

xviii Contents

10.1.6 Standard Instance Variables 298
10.1.7 Displaying flash Messages 300
10.1.8 flash.now 301

10.2 Partials 302
10.2.1 Simple Use Cases 302
10.2.2 Reuse of Partials 303
10.2.3 Shared Partials 304
10.2.4 Passing Variables to Partials 305
10.2.5 Rendering Collections 306
10.2.6 Logging 308

10.3 Conclusion 308

Chapter 11 All About Helpers 309

11.1 ActiveModelHelper 309
11.1.1 Reporting Validation Errors 310
11.1.2 Automatic Form Creation 313
11.1.3 Customizing the Way Validation Errors Are Highlighted 315

11.2 AssetTagHelper 316
11.2.1 Head Helpers 316
11.2.2 Asset Helpers 319
11.2.3 Using Asset Hosts 321
11.2.4 Using Asset Timestamps 323
11.2.5 For Plugins Only 324

11.3 AtomFeedHelper 324
11.4 CacheHelper 326
11.5 CaptureHelper 326
11.6 DateHelper 328

11.6.1 The Date and Time Selection Helpers 328
11.6.2 The Individual Date and Time Select Helpers 329
11.6.3 Common Options for Date Selection Helpers 332
11.6.4 distance—in—time Methods with Complex

Descriptive Names 332
11.7 DebugHelper 333
11.8 FormHelper 333

11.8.1 Creating Forms for Models 334
11.8.2 How Form Helpers Get Their Values 342
11.8.3 Integrating Additional Objects in One Form 343

Contents xix

11.8.4 Customized Form Builders 347
11.8.5 Form Inputs 348

11.9 FormOptionsHelper 350
11.9.1 Select Helpers 350
11.9.2 Option Helpers 351

11.10 FormTagHelper 355
11.11 JavaScriptHelper 358
11.12 NumberHelper 359
11.13 PrototypeHelper 361
11.14 RawOutputHelper 361
11.15 RecordIdentificationHelper 362
11.16 RecordTagHelper 363
11.17 SanitizeHelper 364
11.18 TagHelper 366
11.19 TextHelper 367
11.20 TranslationHelper and the I18n API 372

11.20.1 Localized Views 373
11.20.2 TranslationHelper Methods 374
11.20.3 I18n Setup 374
11.20.4 Setting and Passing the Locale 375
11.20.5 Setting Locale from Client Supplied Information 379
11.20.6 Internationalizing Your Application 380
11.20.7 Organization of Locale Files 382
11.20.8 Looking up Translations 383
11.20.9 How to Store Your Custom Translations 386
11.20.10 Overview of Other Built-In Methods that Provide

I18n Support 388
11.20.11 Exception Handling 391

11.21 UrlHelper 391
11.22 Writing Your Own View Helpers 398

11.22.1 Small Optimizations: The Title Helper 398
11.22.2 Encapsulating View Logic: The photo for Helper 399
11.22.3 Smart View: The breadcrumbs Helper 400

11.23 Wrapping and Generalizing Partials 401
11.23.1 A tiles Helper 401
11.23.2 Generalizing Partials 404

11.24 Conclusion 407

www.allitebooks.com

http://www.allitebooks.org

xx Contents

Chapter 12 Ajax on Rails 409

12.0.1 Changes in Rails 3 410
12.0.2 Firebug 410

12.1 Unobtrusive JavaScript 411
12.1.1 UJS Usage 411

12.2 Writing JavaScript in Ruby with RJS 412
12.2.1 RJS Templates 414
12.2.2 <<(javascript) 415
12.2.3 [](id) 415
12.2.4 alert(message) 416
12.2.5 call(function, *arguments, & block) 416
12.2.6 delay(seconds = 1) ... 416
12.2.7 draggable(id, options = {}) 416
12.2.8 drop receiving(id, options = {}) 417
12.2.9 hide(*ids) 417
12.2.10 insert—html(position, id, *options—for—render) 417
12.2.11 literal(code) 417
12.2.12 redirect to(location) 418
12.2.13 remove(*ids) 418
12.2.14 replace(id, *options for render) 418
12.2.15 replace html(id, *options for render) 418
12.2.16 select(pattern) 418
12.2.17 show(*ids) 418
12.2.18 sortable(id, options = {}) 418
12.2.19 toggle(*ids) 419
12.2.20 visual effect(name, id = nil, options = {}) 419

12.3 Ajax and JSON 419
12.3.1 Ajax link to 419

12.4 Ajax and HTML 421
12.5 Ajax and JavaScript 423
12.6 Conclusion 424

Chapter 13 Session Management 425

13.1 What to Store in the Session 426
13.1.1 The Current User 426
13.1.2 Session Use Guidelines 426

Contents xxi

13.2 Session Options 427
13.3 Storage Mechanisms 427

13.3.1 Active Record Session Store 427
13.3.2 Memcache Session Storage 428
13.3.3 The Controversial CookieStore 429
13.3.4 Cleaning Up Old Sessions 430

13.4 Cookies 431
13.4.1 Reading and Writing Cookies 431

13.5 Conclusion 432

Chapter 14 Authentication 433

14.1 Authlogic 434
14.1.1 Getting Started 434
14.1.2 Creating the Models 434
14.1.3 Setting Up the Controllers 435
14.1.4 Controller, Limiting Access to Actions 436
14.1.5 Configuration 437
14.1.6 Summary 439

14.2 Devise 439
14.2.1 Getting Started 439
14.2.2 Modules 439
14.2.3 Models 440
14.2.4 Controllers 441
14.2.5 Devise, Views 442
14.2.6 Configuration 442
14.2.7 Extensions 443
14.2.8 Summary 443

14.3 Conclusion 443

Chapter 15 XML and Active Resource 445

15.1 The to—xml Method 445
15.1.1 Customizing to—xml Output 446
15.1.2 Associations and to—xml 448
15.1.3 Advanced to—xml Usage 451
15.1.4 Dynamic Runtime Attributes 452
15.1.5 Overriding to—xml 453

xxii Contents

15.2 The XML Builder 454
15.3 Parsing XML 456

15.3.1 Turning XML into Hashes 456
15.3.2 Typecasting 457

15.4 Active Resource 457
15.4.1 List 458
15.4.2 Show 459
15.4.3 Create 460
15.4.4 Update 462
15.4.5 Delete 462
15.4.6 Headers 462
15.4.7 Customizing URLs 463
15.4.8 Hash Forms 464

15.5 Active Resource Authentication 465
15.5.1 HTTP Basic Authentication 465
15.5.2 HTTP Digest Authentication 466
15.5.3 Certificate Authentication 466
15.5.4 Proxy Server Authentication 466
15.5.5 Authentication in the Web Service Controller 467

15.6 Conclusion 469

Chapter 16 Action Mailer 471

16.1 Setup 471
16.2 Mailer Models 472

16.2.1 Preparing Outbound Email Messages 472
16.2.2 HTML Email Messages 474
16.2.3 Multipart Messages 475
16.2.4 Attachments 475
16.2.5 Generating URLs 476
16.2.6 Mailer Layouts 476
16.2.7 Sending an Email 477

16.3 Receiving Emails 477
16.3.1 Handling Incoming Attachments 478

16.4 Server Configuration 479
16.5 Testing Email Content 479
16.6 Conclusion 481

Contents xxiii

Chapter 17 Caching and Performance 483

17.1 View Caching 483
17.1.1 Caching in Development Mode? 484
17.1.2 Page Caching 484
17.1.3 Action Caching 484
17.1.4 Fragment Caching 486
17.1.5 Expiration of Cached Content 488
17.1.6 Automatic Cache Expiry with Sweepers 490
17.1.7 Cache Logging 492
17.1.8 Action Cache Plugin 492
17.1.9 Cache Storage 493

17.2 General Caching 495
17.2.1 Eliminating Extra Database Lookups 495
17.2.2 Initializing New Caches 496
17.2.3 fetch Options 496

17.3 Control Web Caching 497
17.3.1 expires—in(seconds, options = {}) 498
17.3.2 expires—now 498

17.4 ETags 498
17.4.1 fresh—when(options) 499
17.4.2 stale?(options) 499

17.5 Conclusion 500

Chapter 18 RSpec 501

18.1 Introduction 501
18.2 Basic Syntax and API 504

18.2.1 describe and context 504
18.2.2 let(:name) (expression) 504
18.2.3 let!(:name) (expression) 506
18.2.4 before and after 506
18.2.5 it 507
18.2.6 specify 507
18.2.7 expect 508
18.2.8 pending 509
18.2.9 should and should—not 510
18.2.10 Implicit Subject 511

xxiv Contents

18.2.11 Explicit Subject 511
18.2.12 its 512

18.3 Predicate Matchers 513
18.4 Custom Expectation Matchers 514

18.4.1 Custom Matcher DSL 516
18.4.2 Fluent Chaining 516

18.5 Shared Behaviors 517
18.6 RSpec’s Mocks and Stubs 517
18.7 Running Specs 520
18.8 RSpec Rails Gem 521

18.8.1 Installation 521
18.8.2 Model Specs 524
18.8.3 Mocked and Stubbed Models 526
18.8.4 Controller Specs 526
18.8.5 View Specs 529
18.8.6 Helper Specs 531

18.9 RSpec Tools 531
18.9.1 RSpactor 531
18.9.2 watchr 532
18.9.3 Spork 532
18.9.4 Specjour 532
18.9.5 RCov 532
18.9.6 Heckle 532

18.10 Conclusion 533

Chapter 19 Extending Rails with Plugins 535

19.1 The Plugin System 536
19.1.1 Plugins as RubyGems 536
19.1.2 The Plugin Script 536

19.2 Writing Your Own Plugins 537
19.2.1 The init.rb Hook 538
19.2.2 The lib Directory 539
19.2.3 Extending Rails Classes 540
19.2.4 The README and MIT-LICENSE File 541
19.2.5 The install.rb and uninstall.rb Files 542
19.2.6 Custom Rake Tasks 543

Contents xxv

19.2.7 The Plugin’s Rakefile 544
19.2.8 Including Assets With Your Plugin 545
19.2.9 Testing Plugins 545
19.2.10 Railties 546

19.3 Conclusion 547

Chapter 20 Background Processing 549

20.1 Delayed Job 550
20.1.1 Getting Started 550
20.1.2 Creating Jobs 551
20.1.3 Running 552
20.1.4 Summary 552

20.2 Resque 553
20.2.1 Getting Started 553
20.2.2 Creating Jobs 554
20.2.3 Hooks 554
20.2.4 Plugins 555
20.2.5 Running 556
20.2.6 Monitoring 556
20.2.7 Summary 557

20.3 Rails Runner 557
20.3.1 Getting Started 558
20.3.2 Usage Notes 558
20.3.3 Considerations 559
20.3.4 Summary 559

20.4 Conclusion 559

Appendix A Active Model API Reference 561

A.1 AttributeMethods 561
A.1.1 active—model/attribute—methods.rb 562

A.2 Callbacks 563
A.2.1 active—model/callbacks.rb 563

A.3 Conversion 563
A.3.1 active—model/conversion.rb 563

A.4 Dirty 564
A.4.1 active—model/dirty.rb 565

xxvi Contents

A.5 Errors 565
A.5.1 active—model/errors.rb 566

A.6 Lint::Tests 567
A.7 MassAssignmentSecurity 567

A.7.1 active—model/mass—assignment— security.rb 567
A.8 Name 568

A.8.1 active—model/naming.rb 569
A.9 Naming 569

A.9.1 active—model/naming.rb 569
A.10 Observer 569

A.10.1 active—model/observing.rb 570
A.11 Observing 570

A.11.1 active—model/observing.rb 571
A.12 Serialization 571

A.12.1 active—model/serialization.rb 571
A.13 Serializers::JSON 572

A.13.1 active—model/serializers/json.rb 572
A.14 Serializers::Xml 572

A.14.1 active—model/serializers/xml.rb 573
A.15 Translation 573

A.15.1 active—model/translation.rb 573
A.16 Validations 574

A.16.1 active—model/validations.rb 574
A.17 Validator 578

A.17.1 active—model/validator.rb 578

Appendix B Active Support API Reference 579

B.1 Array 579
B.1.1 active—support/core—ext/array/access 579
B.1.2 active—support/core—ext/array/conversions 580
B.1.3 active—support/core—ext/array/

extract—options 582
B.1.4 active—support/core—ext/array/grouping 583
B.1.5 active—support/core—ext/array/random—access 584
B.1.6 active—support/core—ext/array/uniq—by 584
B.1.7 active—support/core—ext/array/wrap 584

Contents xxvii

B.1.8 active—support/core—ext/object/blank 585
B.1.9 active—support/core—ext/object/to—param 585

B.2 ActiveSupport::BacktraceCleaner 585
B.2.1 active—support/backtrace—cleaner 585

B.3 ActiveSupport::Base64 586
B.3.1 active—support/base64 586

B.4 ActiveSupport::BasicObject 586
B.4.1 active—support/basic—object 586

B.5 ActiveSupport::Benchmarkable 587
B.5.1 active—support/benchmarkable 587

B.6 BigDecimal 588
B.6.1 active—support/core—ext/big—decimal/

conversions 588
B.6.2 active—support/json/encoding 588

B.7 ActiveSupport::BufferedLogger 588
B.7.1 active—support/buffered—logger 589

B.8 ActiveSupport::Cache::Store 590
B.9 ActiveSupport::Callbacks 595

B.9.1 active—support/callbacks 596
B.10 Class 598

B.10.1 active—support/core—ext/class/attribute 598
B.10.2 active—support/core—ext/class/

attribute—accessors 599
B.10.3 active—support/core—ext/class/

attribute—accessors 600
B.10.4 active—support/core—ext/class/

delegating—attributes 600
B.10.5 active—support/core—ext/class/

inheritable—attributes 600
B.10.6 active—support/core—ext/class/subclasses 601

B.11 ActiveSupport::Concern 602
B.11.1 active—support/concern 602

B.12 ActiveSupport::Configurable 603
B.12.1 active—support/configurable 603

B.13 Date 603
B.13.1 active—support/core—ext/date/acts—like 603
B.13.2 active—support/core—ext/date/calculations 603

xxviii Contents

B.13.3 active—support/core—ext/date/conversions 607
B.13.4 active—support/core—ext/date/freeze 608
B.13.5 active—support/json/encoding 609

B.14 DateTime 609
B.14.1 active—support/core—ext/date—time/acts—like 609
B.14.2 active—support/core—ext/date—time/calculations 609
B.14.3 active—support/core—ext/date—time/conversions 611
B.14.4 active—support/core—ext/date—time/zones 612
B.14.5 active—support/json/encoding 613

B.15 ActiveSupport::Dependencies 613
B.15.1 active—support/dependencies/autoload 614

B.16 ActiveSupport::Deprecation 617
B.17 ActiveSupport::Duration 617

B.17.1 active—support/duration 617
B.18 Enumerable 619

B.18.1 active—support/core—ext/enumerable 619
B.18.2 active—support/json/encoding 620

B.19 ERB::Util 620
B.19.1 active—support/core—ext/string/output—safety 620

B.20 FalseClass 621
B.20.1 active—support/core—ext/object/blank 621
B.20.2 active—support/json/encoding 621

B.21 File 621
B.21.1 active—support/core—ext/file/atomic 621
B.21.2 active—support/core—ext/file/path 622

B.22 Float 622
B.22.1 active—support/core—ext/float/rounding 622

B.23 Hash 622
B.23.1 active—support/core—ext/hash/conversions 622
B.23.2 active—support/core—ext/hash/deep—merge 623
B.23.3 active—support/core—ext/hash/diff 624
B.23.4 active—support/core—ext/hash/except 624
B.23.5 active—support/core—ext/hash/

indifferent—access 624
B.23.6 active—support/core—ext/hash/keys 625
B.23.7 active—support/core—ext/hash/reverse—merge 626

Contents xxix

B.23.8 active—support/core—ext/hash/slice 626
B.23.9 active—support/core—ext/object/to—param 627
B.23.10 active—support/core—ext/object/to—query 627
B.23.11 active—support/json/encoding 627
B.23.12 active—support/core—ext/object/blank 627

B.24 HashWithIndifferentAccess 627
B.24.1 active—support/hash—with—indifferent—access 627

B.25 ActiveSupport::Inflector::Inflections 628
B.25.1 active—support/inflector/inflections 629
B.25.2 active—support/inflector/transliteration 631

B.26 Integer 632
B.26.1 active—support/core—ext/integer/inflections 633
B.26.2 active—support/core—ext/integer/multiple 633

B.27 ActiveSupport::JSON 633
B.27.1 active—support/json/decoding 633
B.27.2 active—support/json/encoding 634

B.28 Kernel 634
B.28.1 active—support/core—ext/kernel/agnostics 634
B.28.2 active—support/core—ext/kernel/debugger 634
B.28.3 active—support/core—ext/kernel/reporting 634
B.28.4 active—support/core—ext/kernel/requires 635
B.28.5 active—support/core—ext/kernel/

singleton—class 635
B.29 Logger 635

B.29.1 active—support/core—ext/logger 636
B.30 ActiveSupport::MessageEncryptor 636

B.30.1 active—support/message—encryptor 637
B.31 ActiveSupport::MessageVerifier 637

B.31.1 active—support/message—verifier 637
B.32 Module 638

B.32.1 active—support/core—ext/module/aliasing 638
B.32.2 active—support/core—ext/module/anonymous 639
B.32.3 active—support/core—ext/module/

attr—accessor—with—default 640
B.32.4 active—support/core—ext/module/attr—internal 640
B.32.5 active—support/core—ext/module/

attribute—accessors 640

www.allitebooks.com

http://www.allitebooks.org

xxx Contents

B.32.6 active—support/core—ext/module/delegation 641
B.32.7 active—support/core—ext/module/introspection 643
B.32.8 active—support/core—ext/module/

synchronization 644
B.32.9 active—support/dependencies 644

B.33 ActiveSupport::Multibyte::Chars 645
B.33.1 active—support/multibyte/chars 645
B.33.2 active—support/multibyte/unicode 646
B.33.3 active—support/multibyte/utils 647

B.34 NilClass 648
B.34.1 active—support/core—ext/object/blank 648
B.34.2 active—support/json/encoding 648
B.34.3 active—support/whiny—nil 648

B.35 ActiveSupport::Notifications 649
B.36 Numeric 650

B.36.1 active—support/core—ext/object/blank 650
B.36.2 active—support/json/encoding 650
B.36.3 active—support/numeric/bytes 650
B.36.4 active—support/numeric/time 651

B.37 Object 653
B.37.1 active—support/core—ext/object/acts—like 653
B.37.2 active—support/core—ext/object/blank 653
B.37.3 active—support/core—ext/object/duplicable 654
B.37.4 active—support/core—ext/object/

instance—variables 654
B.37.5 active—support/core—ext/object/to—param 655
B.37.6 active—support/core—ext/object/with—options 656
B.37.7 active—support/dependencies 656
B.37.8 active—support/json/encoding 657

B.38 ActiveSupport::OrderedHash 657
B.38.1 active—support/ordered—hash 657

B.39 ActiveSupport::OrderedOptions 657
B.39.1 active—support/ordered—options 657

B.40 ActiveSupport::Railtie 658
B.40.1 active—support/railtie 658

B.41 Range 658

Contents xxxi

B.41.1 active—support/core—ext/range/blockless—step 658
B.41.2 active—support/core—ext/range/conversions 659
B.41.3 active—support/core—ext/range/include—range 659
B.41.4 active—support/core—ext/range/include—range 659

B.42 Regexp 660
B.42.1 active—support/core—ext/enumerable 660
B.42.2 active—support/json/encoding 660

B.43 ActiveSupport::Rescuable 660
B.43.1 active—support/rescuable 660

B.44 ActiveSupport::SecureRandom 661
B.44.1 active—support/secure—random 661

B.45 String 662
B.45.1 active—support/json/encoding 662
B.45.2 active—support/core—ext/object/blank 662
B.45.3 active—support/core—ext/string/access 663
B.45.4 active—support/core—ext/string/acts—like 664
B.45.5 active—support/core—ext/string/conversions 664
B.45.6 active—support/core—ext/string/encoding 665
B.45.7 active—support/core—ext/string/exclude 665
B.45.8 active—support/core—ext/string/filters 665
B.45.9 active—support/core—ext/string/inflections 666
B.45.10 active—support/core—ext/string/multibyte 669
B.45.11 active—support/core—ext/string/output—safety 670
B.45.12 active—support/core—ext/string/

starts—ends—with 670
B.45.13 active—support/core—ext/string/xchar 671

B.46 ActiveSupport::StringInquirer 671
B.47 Symbol 671

B.47.1 active—support/json/encoding 671
B.48 ActiveSupport::Testing::Assertions 671

B.48.1 active—support/testing/assertions 671
B.49 Time 673

B.49.1 active—support/json/encoding 673
B.49.2 active—support/core—ext/time/acts—like 673
B.49.3 active—support/core—ext/time/calculations 673
B.49.4 active—support/core—ext/time/conversions 677

xxxii Contents

B.49.5 active—support/core—ext/time/marshal 679
B.49.6 active—support/core—ext/time/zones 679

B.50 ActiveSupport::TimeWithZone 680
B.51 ActiveSupport::TimeZone 681

B.51.1 active—support/values/time—zone 682
B.52 ActiveSupport::TrueClass 684

B.52.1 active—support/core—ext/object/blank 684
B.52.2 active—support/json/encoding 684

B.53 ActiveSupport::XmlMini 684
B.53.1 active—support/xml—mini 685

Index 687

Method Index 697

Foreword

Rails is more than a programming framework for creating web applications. It’s also
a framework for thinking about web applications. It ships not as a blank slate equally
tolerant of every kind of expression. On the contrary, it trades that flexibility for the
convenience of “what most people need most of the time to do most things.” It’s a
designer straightjacket that sets you free from focusing on the things that just don’t
matter and focuses your attention on the stuff that does.

To be able to accept that trade, you need to understand not just how to do something
in Rails, but also why it’s done like that. Only by understanding the why will you be able
to consistently work with the framework instead of against it. It doesn’t mean that you’ll
always have to agree with a certain choice, but you will need to agree to the overachieving
principle of conventions. You have to learn to relax and let go of your attachment to
personal idiosyncrasies when the productivity rewards are right.

This book can help you do just that. Not only does it serve as a guide in your
exploration of the features in Rails, it also gives you a window into the mind and soul
of Rails. Why we’ve chosen to do things the way we do them, why we frown on certain
widespread approaches. It even goes so far as to include the discussions and stories of
how we got there—straight from the community participants that helped shape them.

Learning how to do Hello World in Rails has always been easy to do on your own,
but getting to know and appreciate the gestalt of Rails, less so. I applaud Obie for trying
to help you on this journey. Enjoy it.

— David Heinemeier Hansson

Creator of Ruby on Rails

xxxiii

This page intentionally left blank

Foreword

From the beginning, the Rails framework turned web development on its head with the
insight that the vast majority of time spent on projects amounted to meaningless sit-ups.
Instead of having the time to think through your domain-specific code, you’d spend the
first few weeks of a project deciding meaningless details. By making decisions for you,
Rails frees you to kick off your project with a bang, getting a working prototype out the
door quickly. This makes it possible to build an application with some meat on its bones
in a few weekends, making Rails the web framework of choice for people with a great
idea and a full-time job.

Rails makes some simple decisions for you, like what to name your controller actions
and how to organize your directories. It also gets pretty aggressive, and sets development-
friendly defaults for the database and caching layer you’ll use, making it easy to change
to more production-friendly options once you’re ready to deploy.

By getting so aggressive, Rails makes it easy to put at least a few real users in front
of your application within days, enabling you to start gathering the requirements from
your users immediately, rather than spending months architecting a perfect solution,
only to learn that your users use the application differently than you expected.

The Rails team built the Rails project itself according to very similar goals. Don’t try
to overthink the needs of your users. Get something out there that works, and improve
it based on actual usage patterns. By all accounts, this strategy has been a smashing
success, and with the blessing of the Rails core team, the Rails community leveraged the
dynamism of Ruby to fill in the gaps in plugins. Without taking a close look at Rails,
you might think that Rails’ rapid prototyping powers are limited to the 15-minute blog
demo, but that you’d fall off a cliff when writing a real app. This has never been true. In
fact, in Rails 2.1, 2.2 and 2.3, the Rails team looked closely at common usage patterns

xxxv

xxxvi Foreword

reflected in very popular plugins, adding features that would further reduce the number
of sit-ups needed to start real-life applications.

By the release of Rails 2.3, the Rails ecosystem had thousands of plugins, and ap-
plications like Twitter started to push the boundaries of the Rails defaults. Increasingly,
you might build your next Rails application using a non-relational database or deploy it
inside a Java infrastructure using JRuby. It was time to take the tight integration of the
Rails stack to the next level.

Over the course of 20 months, starting in January 2008, we looked at a wide range
of plugins, spoke with the architects of some of the most popular Rails applications, and
changed the way the Rails internals thought about its defaults.

Rather than start from scratch, trying to build a generic data layer for Rails, we took
on the challenge of making it easy to give any ORM the same tight level of integration
with the rest of the framework as Active Record. We accepted no compromises, taking
the time to write the tight Active Record integration using the same APIs that we now
expose for other ORMs. This covers the obvious, such as making it possible to generate
a scaffold using DataMapper or Mongoid. It also covers the less obvious, such as giving
alternative ORMs the same ability to include the amount of time spent in the model
layer in the controller’s log output.

We brought this philosophy to every area of Rails 3: flexibility without compromise.
By looking at the ways that an estimated million developers use Rails, we could hone in
on the needs of real developers and plugin authors, significantly improving the overall
architecture of Rails based on real user feedback.

Because the Rails 3 internals are such a departure from what’s come before, developers
building long-lived applications and plugin developers need a resource that comprehen-
sively covers the philosophy of the new version of the framework. The Rails™ 3 Way is
a comprehensive resource that digs into the new features in Rails 3 and perhaps more
importantly, the rationale behind them.

— Yehuda Katz

Rails Core

Introduction

As I write this new introduction in the spring of 2010, the official release of Rails 3.0
is looming, and what a big change it represents. The “Merb-ification” of Rails is almost
complete! The new Rails is quite different from its predecessors in that its underlying
architecture is more modular and elegant while increasing sheer performance signifi-
cantly. The changes to Active Record are dramatic, with Arel’s query method chaining
replacing hashed find parameters that we were all used to.

There is a lot to love about Rails 3, and I do think that eventually most of the
community will make the change. In most cases, I have not bothered to cover 2.x ways
of doing things in Rails if they are significantly different from the Rails 3 way—hence
the title change. I felt that naming the book “The Rails Way (Second Edition)” would
be accurate, but possibly misleading. This new edition is a fully new book for a fully new
framework. Practically every line of the book has been painstakingly revised and edited,
with some fairly large chunks of the original book not making the new cut. It’s taken
well over a year, including six months of working every night to get this book done!

Even though Rails 3 is less opinionated than early versions, in that it allows for easy
reconfiguration of Rails assumptions, this book is more opinionated than ever. The vast
majority of Rails developers use RSpec, and I believe that is primarily because it is a
superior choice to Test::Unit. Therefore, this book does not cover Test::Unit. I
firmly believe that Haml is vastly, profoundly, better than ERb for view templating, so
the book uses Haml exclusively.

xxxvii

xxxviii Introduction

0.1 About This Book

This book is not a tutorial or basic introduction to Ruby or Rails. It is meant as a day-
to-day reference for the full-time Rails developer. The more confident reader might be
able to get started in Rails using just this book, extensive online resources, and his or her
wits, but there are other publications that are more introductory in nature and might be
a wee bit more appropriate for beginners.

Every contributor to this book works with Rails on a full-time basis. We do not spend
our days writing books or training other people, although that is certainly something
that we enjoy doing on the side.

This book was originally conceived for myself, because I hate having to use online
documentation, especially API docs, which need to be consulted over and over again.
Since the API documentation is liberally licensed (just like the rest of Rails), there are a
few sections of the book that reproduce parts of the API documentation. In practically
all cases, the API documentation has been expanded and/or corrected, supplemented
with additional examples and commentary drawn from practical experience.

Hopefully you are like me—I really like books that I can keep next to my keyboard,
scribble notes in, and fill with bookmarks and dog-ears. When I’m coding, I want to be
able to quickly refer to both API documentation, in-depth explanations, and relevant
examples.

0.1.1 Book Structure

I attempted to give the material a natural structure while meeting the goal of being
the best-possible Rails reference book. To that end, careful attention has been given
to presenting holistic explanations of each subsystem of Rails, including detailed API
information where appropriate. Every chapter is slightly different in scope, and I suspect
that Rails is now too big a topic to cover the whole thing in depth in just one book.

Believe me, it has not been easy coming up with a structure that makes perfect sense
for everyone. Particularly, I have noted surprise in some readers when they notice that
Active Record is not covered first. Rails is foremost a web framework and, at least to me,
the controller and routing implementation is the most unique, powerful, and effective
feature, with Active Record following a close second.

0.1.2 Sample Code and Listings

The domains chosen for the code samples should be familiar to almost all professional de-
velopers. They include time and expense tracking, auctions, regional data management,
and blogging applications. I don’t spend pages explaining the subtler nuances of the

Introduction xxxix

business logic for the samples or justify design decisions that don’t have a direct relation-
ship to the topic at hand. Following in the footsteps of my series colleague Hal Fulton
and The Ruby Way, most of the snippets are not full code listings—only the relevant code
is shown. Ellipses (. . .) denote parts of the code that have been eliminated for clarity.

Whenever a code listing is large and significant, and I suspect that you might want to
use it verbatim in your own code, I supply a listing heading. There are not too many of
those. The whole set of code listings will not add up to a complete working system, nor
are there 30 pages of sample application code in an appendix. The code listings should
serve as inspiration for your production-ready work, but keep in mind that they often
lack touches necessary in real-world work. For example, examples of controller code are
often missing pagination and access control logic, because it would detract from the
point being expressed.

Some of the source code for my examples can be found at http://github.com/
obie/tr3w_time_and_expenses. Note that it is not a working nor complete applica-
tion. It just made sense at times to keep the code in the context of an application and
hopefully you might draw some inspiration from browsing it.

0.1.3 Concerning Third-Party RubyGems and Plugins

Whenever you find yourself writing code that feels like plumbing, by which I mean
completely unrelated to the business domain of your application, you’re probably doing
too much work. I hope that you have this book at your side when you encounter that
feeling. There is almost always some new part of the Rails API or a third-party RubyGem
for doing exactly what you are trying to do.

As a matter of fact, part of what sets this book apart is that I never hesitate in calling
out the availability of third-party code, and I even document the RubyGems and plugins
that I feel are most crucial for effective Rails work. In cases where third-party code is
better than the built-in Rails functionality, we don’t cover the built-in Rails functionality
(pagination is a good example).

An average developer might see his or her productivity double with Rails, but I’ve
seen serious Rails developers achieve gains that are much, much higher. That’s because we
follow the Don’t Repeat Yourself (DRY) principle religiously, of which Don’t Reinvent
The Wheel (DRTW) is a close corollary. Reimplementing something when an existing
implementation is good enough is an unnecessary waste of time that nevertheless can be
very tempting, since it’s such a joy to program in Ruby.

Ruby on Rails is actually a vast ecosystem of core code, official plugins, and third-
party plugins. That ecosystem has been exploding rapidly and provides all the raw

www.allitebooks.com

http://github.com/obie/tr3w_time_and_expenses
http://github.com/obie/tr3w_time_and_expenses
http://www.allitebooks.org

xl Introduction

technology you need to build even the most complicated enterprise-class web appli-
cations. My goal is to equip you with enough knowledge that you’ll be able to avoid
continuously reinventing the wheel.

0.2 Recommended Reading and Resources

Readers may find it useful to read this book while referring to some of the excellent
reference titles listed in this section.

Most Ruby programmers always have their copy of the “Pickaxe” book nearby,
Programming Ruby (ISBN: 0-9745140-5-5), because it is a good language reference.
Readers interested in really understanding all of the nuances of Ruby programming
should acquire The Ruby Way, Second Edition (ISBN: 0-6723288-4-4).

I highly recommend Peepcode Screencasts, in-depth video presentations on a va-
riety of Rails subjects by the inimitable Geoffrey Grosenbach, available at http://

peepcode.com

Ryan Bates does an excellent job explaining nuances of Rails development in his
long-running series of free webcasts available at http://railscasts.com/

Last, but not least, this book’s companion website at http://tr3w.com is the
first place to look for reporting issues and finding additional resources, as they become
available.

Regarding David Heinemeier Hansson, a.k.a. DHH

I had the pleasure of establishing a friendship with David Heinemeier Hansson, creator of Rails,
in early 2005, before Rails hit the mainstream and he became an International Web 2.0 Superstar.
My friendship with David is a big factor in why I’m writing this book today. David’s opinions
and public statements shape the Rails world, which means he gets quoted a lot when we discuss
the nature of Rails and how to use it effectively.
David has told me on a couple of occasions that he hates the “DHH” moniker that people tend to
use instead of his long and difficult-to-spell full name. For that reason, in this book I try to always
refer to him as “David” instead of the ever-tempting “DHH.” When you encounter references
to “David” without further qualification, I’m referring to the one-and-only David Heinemeier
Hansson.
There are a number of notable people from the Rails world that are also referred to on a first-name
basis in this book. Those include:

• Yehuda Katz

• Jamis Buck

• Xavier Noria

http://peepcode.com
http://peepcode.com
http://railscasts.com/
http://tr3w.com

Introduction xli

0.3 Goals

As already stated, I hope to make this your primary working reference for Ruby on
Rails. I don’t really expect too many people to read it through end to end unless they’re
expanding their basic knowledge of the Rails framework. Whatever the case may be,
over time I hope this book gives you as an application developer/programmer greater
confidence in making design and implementation decisions while working on your day-
to-day tasks. After spending time with this book, your understanding of the fundamental
concepts of Rails coupled with hands-on experience should leave you feeling comfortable
working on real-world Rails projects, with real-world demands.

If you are in an architectural or development lead role, this book is not targeted to
you, but should make you feel more comfortable discussing the pros and cons of Ruby
on Rails adoption and ways to extend Rails to meet the particular needs of the project
under your direction.

Finally, if you are a development manager, you should find the practical perspective
of the book and our coverage of testing and tools especially interesting, and hopefully
get some insight into why your developers are so excited about Ruby and Rails.

0.4 Prerequisites

The reader is assumed to have the following knowledge:

• Basic Ruby syntax and language constructs such as blocks

• Solid grasp of object-oriented principles and design patterns

• Basic understanding of relational databases and SQL

• Familiarity with how Rails applications are laid out and function

• Basic understanding of network protocols such as HTTP and SMTP

• Basic understanding of XML documents and web services

• Familiarity with transactional concepts such as ACID properties

As noted in the section “Book Structure,” this book does not progress from easy material
in the front to harder material in the back. Some chapters do start out with fundamental,
almost introductory material and push on to more advanced coverage. There are def-
initely sections of the text that experienced Rails developer will gloss over. However,
I believe that there is new knowledge and inspiration in every chapter, for all skill
levels.

This page intentionally left blank

Acknowledgments

A whole new set of players contributed to The Rails™ 3 Way, however I still need to
thank some of my original supporters first. I can’t say enough good things about Debra
Williams Cauley, my editor at Addison-Wesley. She is an excellent coach and motivator
and oh-so-caring of her authors. I love you, Deb! Also again I have to thank my long-term
partner Desi McAdam and my kids Taylor and Liam for being super-supportive and
understanding of my time constraints during the heaviest times of writing.

My team at Hashrocket has been an amazing source of encouragement and help
during the preparation of The Rails™ 3 Way. My partners Marian and Mark made sure
I had all the time and help needed, and were always ready with a hug or words of
encouragment when the times got tough. Jon Larkowski and Tim “tpope” Pope spent
hours with me at my apartment, sometimes every night of the week, to make sure that
the book got finished. Eliza Brock and Tim Pope hacked a massive XSLT script that
converted the original Word .doc manuscript files into LATEX, enabling us to put the book
into proper source control and make much more rapid progress than would otherwise
be possible. Eliza, you are a freaking genius and an inspiration!

My friend Xavier Noria, Rails committer and former textbook reviewer, once again
impressed us with his careful technical review and laser-focused feedback. Xavi picked up
on dozens of ommissions and errors that would otherwise have gone unnoticed. What
a hero!

One of my oldest and closest friends, Durran Jordan, was a late and welcome addition
to The Rails™ 3 Way team. He’s the author of Mongoid, http://mongoid.org—one of
the premier frameworks for using Mongo with Ruby and an up-and-coming personality
in the NoSQL space. He’s currently working on a NoSQL in Ruby title for this series and

xliii

http://mongoid.org

xliv Acknowledgments

provided some of the new content in this book concerning Active Model and background
processing.

Chicago-based Rocketeers Josh Graham and Bernerd Schaefer also provided late-
stage help, contributing material related to XML processing and Ajax. Other folks at
Hashrocket that deserve acknowledgment include our director of operations and my
longtime friend Sal Cardello, who controls resourcing and allowed me to take people
away from billing to help me with the book. I also need to thank everyone else at
Hashrocket who played supporting roles, including but not limited to, Rogelio Samour,
Thais Camilo, Adam Lowe, “Big Tiger” Jim Remsik, Lar Van Der Jagt, Matt Yoho,
Stephen Caudill, Robert Pitts, Sandro Turriate, Shay Arnette, and Veezus Kreist.

Thanks to David Black, James Adam, Trotter Cashion, Matt Pelletier, Matt Bauer,
Jodi Showers, Pat Maddox, David Chelimski, Charles Brian Quinn, Patrik Naik, Diego
Scataglini, and everyone else who contributed to making The Rails Way such a success.

About the Author

Obie Fernandez is a recognized tech industry leader and local celebrity in the Jack-
sonville business community. He has been hacking computers since he got his first
Commodore VIC-20 in the eighties, and found himself in the right place and time as a
programmer on some of the first Java enterprise projects of the mid-nineties. He moved
to Atlanta, Georgia, in 1998 and gained prominence as lead architect of local startup
success MediaOcean. He also founded the Extreme Programming (later Agile Atlanta)
User Group and was that group’s president and organizer for several years. In 2004,
he made the move back into the enterprise, tackling high-risk, progressive projects for
world-renowned consultancy ThoughtWorks.

Obie has been evangelizing Ruby on Rails via online via blog posts and publications
since early 2005, and earned himself quite a bit of notoriety (and trash talking) from his
old friends in the Java open-source community. Since then, he has traveled around the
world relentlessly promoting Rails at large industry conferences.

As CEO and founder of Hashrocket, one of the world’s best web design and de-
velopment consultancies, Obie specializes in orchestrating the creation of large-scale,
web-based applications, both for startups and mission-critical enterprise projects. He
still gets his hands dirty with code on at least a weekly basis and posts regularly on vari-
ous topics to his popular technology weblog, http://blog.obiefernandez.com.

xlv

http://blog.obiefernandez.com

This page intentionally left blank

C
o
n

fig

CHAPTER 1

Rails Environments
and Configuration

[Rails] gained a lot of its focus and appeal because I didn’t try to please people who didn’t share
my problems. Differentiating between production and development was a very real problem for
me, so I solved it the best way I knew how.

—David Heinemeier Hansson

Rails applications are preconfigured with three standard modes of operation: develop-
ment, test, and production. These modes are basically execution environments and have
a collection of associated settings that determine things such as which database to connect
to, and whether the classes of your application should be reloaded with each request. It
is also simple to create your own custom environments if necessary.

The current environment can be specified via the environment variable RAILS_ENV,
which names the desired mode of operation and corresponds to an environment def-
inition file in the config/environments folder. You can also set the environment
variable RACK_ENV or as a last resort you may rely on the default being development.
Since this environment setting governs some of the most fundamental aspects of Rails,
such as class loading, in order to really understand the Rails way you should understand
its environment settings.

Bundler is a tool that manages gem dependencies for your Ruby application. It takes
a gem manifest file and is able to fetch, download, and install the gems in this manifest,
and all child dependencies.

In this chapter, we start by covering Bundler, which is a fairly new addition to the
Rails ecosystem and one of the biggest differences about working with Rails 3 versus
older versions. Then we move on to more familiar territory by covering how Rails starts
up and handles requests, by examining scripts such as boot.rb and application.rb

1

2 Chapter 1: Rails Environments and Configuration

and the settings that make up the three standard environment settings (modes). We also
cover some of the basics of defining your own environments, and why you might choose
to do so.

Note that this book is not written with absolute newcomers to Rails in mind. To
make the most out of this book, you should already be at least somewhat familiar
with how to bootstrap a Rails application and the meaning of M.V.C. If you are not,
I recommend that you first take advantage of the excellent Ruby on Rails 3 Tutorial

book and website1 by Michael Hartl, another Professional Ruby Series author.

1.1 Bundler

Bundler2 is not a technology that is specific to Rails 3, but it is the preferred way to
manage your application’s gem dependencies. Applications generated with Rails 3 use
Bundler automatically, and you should not need to install the bundler gem separately
since it’s a dependency of Rails 3 itself.

Since we believe that you should use Bundler, figuring out how to not use Bundler
is left as an exercise for adventurous and/or nonconformist readers.

One of the most important things that Bundler does is dependency resolution on
the full list of gems specified in your configuration, all at once. This differs from the
one-at-a-time dependency resolution approach employed by Rubygems and previous
versions of Rails, which can (and often did) result in the following hard-to- fix problem:

Assume that your system had the following Rubygem versions installed.

activesupport 3.0.pre

activesupport 2.3.4

activemerchant 1.4.2

rails 2.3.4

It turns out that activemerchant 1.4.2 depends on activesupport >= 2.3.2,
therefore when you load it using the gem command (from the RubyGems library) like
this

gem "activemerchant", "1.4.2"

it results in the loading of activemerchant, as well as the latest compatible versions of
its dependencies, including the activesupport 3.0.pre gem, since it is greater than
or equal to version 2.3.2. Subsequently, trying to load rails itself with

gem "rails", "2.3.4"

1. http://railstutorial.org
2. http://gembundler.com

http://railstutorial.org
http://gembundler.com

C
o
n

fig
1.1 Bundler 3

results in the following exception at runtime:

can't activate activesupport (= 2.3.4, runtime)

for ["rails-2.3.4"], already activated

activesupport-3.0.pre for ["activemerchant-1.4.2"]

The exception happens because activemerchant has a broader dependency that results
in the activation of a version of activesupport that does not satisfy the more narrow
dependency of the older version of Rails. Bundler solves this problem by evaluating all
dependencies at once and figuring out exactly the right versions of gems to load.

For an interesting perspective concerning the way that Bundler was conceived and
how it contrasts with gem environment managers such as rip, make sure to read Yehuda’s
blog post on the subject.3

Xavier says . . .

Bundler is a strong default in Rails 3, but you can easily opt-out.
The rails command has a flag to disable Gemfile generation. If your app already has a Gemfile,
it is enough to delete it to stop depending on Bundler. Rails bootstrapping routines check whether
the Gemfile exists, and if it does not then Bundler is not used.

1.1.1 Gemfile

Once you need gems other than those belonging to Rails itself, you’ll need to introduce
a Ruby-based manifest file named Gemfile into the root of your Rails project directory.
The basic syntax for the Gemfile is super simple:

gem "nokogiri"

gem "geokit"

To load a dependency only in a specific environment, place it in a group block specifying
one or more environment names as symbols:

group :test do

gem "rspec"

gem "faker"

end

group :development, :test do

gem "wirble"

gem "ruby-debug"

end

3. http://yehudakatz.com/2010/04/21/named-gem-environments-and-bundler/

www.allitebooks.com

http://yehudakatz.com/2010/04/21/named-gem-environments-and-bundler/
http://www.allitebooks.org

4 Chapter 1: Rails Environments and Configuration

The gem directive takes an optional second argument describing the version of the
Rubygem desired. Leaving the version argument off will simply get the latest available
stable version, which may not be the latest version available. To include a release candidate
or a pre-release gem you’ll need to specify the version explicitly.

The format of the version argument matches the Rubygem versioning scheme to
which you should already be accustomed.

gem 'nokogiri', '1.4.2'

gem 'faker', '> 0.3'

gem 'decent_exposure', '~> 1.0.0.rc1'

gem 'rspec', '2.0.0.beta.20'

You can find full instructions on how to craft a version string in the RubyGems docu-
mentation.4

Occasionally, the name of the gem that should be used in a require statement is
different than the name of that gem in the repository. In those cases, the :require

option solves this simply and declaratively right in the Gemfile.

gem 'sqlite3-ruby', :require => 'sqlite3'

Loading Gems Directly From a Git Repository

Until now we have been loading our gems from http://rubygems.org. It is possible
to specify a gem by its source repository as long as it has a .gemspec text file in the root
directory. Just add a :git option to the call to gem.

gem 'paperclip', :git => 'git://github.com/thoughtbot/paperclip.git'

Gemspecs with binaries or C extensions are also supported.

gem 'nokogiri', :git => 'git://github.com/tenderlove/nokogiri.git'

If there is no .gemspec file at the root of a gem’s git repository, you must tell Bundler
which version to use when resolving its dependencies.

gem 'deep_merge', '1.0', :git =>

'git://github.com/peritor/deep_merge.git'

It’s also possible to specify that a git repository contains multiple .gemspec files and
should be treated as a gem source. The following example does just that for the most com-
mon git repository that fits the criteria, the Rails codebase itself. (Note: You should never
actually need to put the following code in a Gemfile for one of your Rails applications!)

4. http://docs.rubygems.org/read/chapter/16

http://rubygems.org
http://docs.rubygems.org/read/chapter/16

C
o
n

fig
1.1 Bundler 5

git 'git://github.com/rails/rails.git'

gem 'railties'

gem 'action_pack'

gem 'active_model'

Additionally, you can specify that a git repository should use a particular ref, branch, or
tag as options to the git directive:

git 'git://github.com/rails/rails.git',

:ref => '4aded'

git 'git://github.com/rails/rails.git',

:branch => '2-3-stable'

git 'git://github.com/rails/rails.git',

:tag => 'v2.3.5'

Specifying a ref, branch, or tag for a git repository specified inline uses the same option
syntax.

gem 'nokogiri', :git =>

'git://github.com/tenderlove/nokogiri.git',

:ref => '0eec4'

Loading Gems From the File System

You can use a gem that you are actively developing on your local workstation using the
:path option.

gem 'nokogiri', :path => '~/code/nokogiri'

1.1.2 Installing Gems

Everytime you modify the Gemfile, or more specifically, if you introduce dependencies
not yet installed, invoke the install command to ensure that all the dependencies in
your Gemfile are available to your Rails application.5

$ bundle install

Fetching git://github.com/rails/rails.git

Fetching source index for http://rubygems.org/

Using rake (0.8.7)

Installing abstract (1.0.0)

Using activesupport (3.0.0.beta4) from git://github.com/rails/rails.git

(at master)

5. RVM by Wayne Seguin allows you to easily install, manage and work with multiple Ruby environ-
ments from interpreters to sets of gems and it’s a must-have tool for modern Rails developers. http://rvm.
beginrescueend.com

http://rvm.beginrescueend.com
http://rvm.beginrescueend.com

6 Chapter 1: Rails Environments and Configuration

Installing builder (2.1.2)

Installing i18n (0.4.1)

Using activemodel (3.0.0.beta4) from git://github.com/rails/rails.git

(at master)

Installing erubis (2.6.6)

Installing rack (1.2.1)

Installing rack-test (0.5.4)

Installing tzinfo (0.3.22)

Using actionpack (3.0.0.beta4) from git://github.com/rails/rails.git (at

master)

Installing mime-types (1.16)

Installing polyglot (0.3.1)

Installing treetop (1.4.8)

Installing mail (2.2.5)

Using actionmailer (3.0.0.beta4) from git://github.com/rails/rails.git

(at master)

Installing arel (0.4.0)

Using activerecord (3.0.0.beta4) from git://github.com/rails/rails.git

(at master)

Using activeresource (3.0.0.beta4) from git://github.com/rails/rails.git

(at master)

Using bundler (1.0.0.beta.2)

Installing factory_girl (1.3.1)

Installing haml (3.0.13)

Installing rack-contrib (1.0.1)

Installing thor (0.13.7)

Using railties (3.0.0.beta4) from git://github.com/rails/rails.git (at

master)

Using rails (3.0.0.beta4) from git://github.com/rails/rails.git (at

master)

Installing rspec (1.3.0)

Installing rspec-rails (1.3.2)

Using sqlite3-ruby (1.3.0)

Your bundle is complete! Use `bundle show [gemname]` to see where a

bundled gem is installed.

The install command updates all dependencies named in your Gemfile to the latest
versions that do not conflict with other dependencies.

You can opt to install dependencies, except those in specified groups using the
--without option.

$ bundle install --without development test

$ bundle install --without test

Installation Directory

The default location for gems installed by bundler is directory named .bundle in your
user directory. To specify a project specific directory simply add the name of the directory

C
o
n

fig
1.1 Bundler 7

like this:

$ bundle install vendor

Disabling Shared Gems

By passing --disable-shared-gems, to bundle install you are telling Bundler to
install gems even if they are already installed in the system. Normally Bundler avoids
that and symlinks to already downloaded gems that exist in your system.

$ bundle install vendor --disable-shared-gems

This option is especially useful if you’re trying to package up an application with all
dependencies unpacked.

1.1.3 Gem Locking

Everytime you install or update, Bundler calculates the dependency tree for your
application and stores the results in a file named Gemfile.lock. From that point
on Bundler will only load specific versions of gems that you are using at the mo-
ment that the Gemfile was locked, versions that you know will work well with your
application.

1.1.4 Packaging Gems

You can package up all your gems in the vendor/cache directory inside of your Rails
application.

$ bundle package

Running bundle install in an application with packaged gems will use the gems in
the package and skip connecting to rubygems.org or any other gem sources. You can
use this to avoid external dependencies at deploy time, or if you depend on private gems
that are not available in any public repository.

Making gem dependencies available to non-Rails scripts

Non-Rails scripts must be executed with bundle exec in order to get a properly initialized
RubyGems environment.

$ bundle exec cucumber

8 Chapter 1: Rails Environments and Configuration

1.2 Startup and Application Settings

Whenever you start a process to handle requests with Rails (such as with rails server),
one of the first things that happens is that config/boot.rb is loaded.

There are three files involved in setting up the entire Rails stack:

boot.rb sets up Bundler and load paths

application.rb loads rails gems, gems for the specified Rail.env, and configures
the application

environment.rb runs all initializers

All three are run when you need the whole Rails environment loaded. That’s what’s done
by runner, console, server, etc.

1.2.1 application.rb

The file config/environment.rb used to be where many of your application settings
lived. In Rails 3, the settings move to a file called config/application.rb, and it’s
the only file required at the top of config/environment.rb.

Let’s go step by step through the settings provided in the default application.rb
file that you’ll find in a newly created Rails application. By the way, as you’re reading
through the following sections, make a mental note to yourself that changes to these files
require a server restart to take effect.

The next lines of application.rb are where the wheels really start turning, once
config/boot.rb is loaded:

require File.expand_path('../boot', __FILE__)

Note that the boot script is generated as part of your Rails application, but you won’t
usually need to edit it.

Getting back to application.rb we find the following line:

require 'rails/all'

A new feature of Rails 3 is the ability to easily cherry-pick only the components needed
by your application.

To pick the frameworks you want, remove 'require "rails/all"'

and list the framework railties that you want:

#

require "active_model/railtie"

require "active_record/railtie"

require "action_controller/railtie"

C
o
n

fig
1.2 Startup and Application Settings 9

require "action_view/railtie"

require "action_mailer/railtie"

require "active_resource/railtie"

The main configuration of our application follows, which in Rails 3 gets its own
module and class:

module TimeAndExpenses

class Application < Rails::Application

Settings in config/environments/* take precedence over those

specified here. Application configuration should go into files

in config/initializers

-- all .rb files in that directory are automatically loaded.

The creation of a module specifically for your application is part of the groundwork for
supporting running multiple Rails applications in the same process.

Load Path Modifications

By default, Rails looks for code in a number of standard directories such as app/models
and app/controllers, referred to collectively as the load path. You can add other directories
to the load path using the following code:

Custom directories with classes and modules you want to be autoloadable

config.autoload_paths += %W(#{config.root}/extras)

Note that config.root refers to the root directory of your Rails application. Therefore,
if you wanted to, for instance, create a separate directory for observers instead of having
them in with your models, you might do the following:

config.autoload_paths += %W(#{config.root}/app/observers)

In case you didn’t know, the %W functions as a whitespace-delimited array literal and is
used quite often in the Rails codebase for convenience.

Xavier says . . .

Since Ruby has $LOAD_PATH, config.load_paths of older Rails versions has been re-
named to config.autoload_paths in Rails 3 so that it is crystal clear to the develooper
that the collection is about stuff that can be autoloaded. Those directories are also added to $:,
but in general that is of little interest, because stuff in autoload_paths is usually meant to
be autoloaded.

Plugin Load Order

Normally, Rails loads plugins alphabetically by directory name. If you are unlucky
enough to run into a problem with the default order, you can use the following code to
adjust ordering.

10 Chapter 1: Rails Environments and Configuration

Only load the plugins named here, in the order given (default is

alphabetical).

:all can be used as a placeholder for all plugins not explicitly named

config.plugins = [:exception_notification, :ssl_requirement, :all]

Chapter 19, “Extending Rails with Plugins,” covers the subject, and a companion book
to this one in the Addison-Wesley Professional Ruby Series, Rails Plugins: Extending Rails

Beyond the Core (ISBN: 0-321-48351-0) by James Adam, is an exhaustive reference about
authoring plugins.

Observers

Active Record observers are first-class objects in your Rails applications that perform
specific tasks such as clearing caches and managing denormalized data. The examples
below are just that, examples of classes that you might theoretically be writing in your ap-
plication as observers. (There aren’t actually cacher or garbage_collector observers
provided by Rails, but don’t take that to mean that Ruby doesn’t do garbage collection!)

Activate observers that should always be running

config.active_record.observers = :cacher, :garbage_collector,

:forum_observer

This book covers Active Record observers in-depth in Chapter 9, Advanced Active
Record.

Time Zones

The default time zone for Rails 3 applications is UTC. If the business domain of your
application is sensitive to knowing exactly what time zone the server is in, then you can
use the following setting to override the default:

Set Time.zone default to the specified zone and make Active Record

auto-convert

Run "rake -D time" for a list of tasks for finding time zone names.

config.time_zone = 'Central Time (US & Canada)'

Localization

Rails features localization support via locale files and is covered in great detail in
Chapter 11, “All About Helpers” in the TranslationHelper and I18n API section.

The default locale is :en and can be overridden in your configuration.

The default locale is :en and all translations from

config/locales/*.rb,yml are auto loaded.

config.i18n.load_path += Dir[Rails.root.join('my', 'locales',

'*.{rb,yml}')]

config.i18n.default_locale = :de

C
o
n

fig
1.2 Startup and Application Settings 11

Generator Default Settings

Rails generator scripts make certain assumptions about your tool chain. Setting the
correct values here means having to type less parameters on the command line. For
instance, at Hashrocket we use RSpec without fixtures and Haml exclusively, so our
settings would look like:

Configure generators values. Many other options are available,

be sure to check the documentation.

config.generators do |g|

g.template_engine :haml

g.test_framework :rspec, :fixture => false

end

1.2.2 Initializers

Rails 2 introduced the concept of breaking out configuration settings into their own small
ruby files under the config/initializers directory, where they are automatically
loaded at startup. You can add configuration settings for your own application by adding
ruby files to the initializers directory. The following five initializers are included by default
in all Rails applications.

Backtrace Silencers

Nobody likes really long exception backtraces, except maybe Java programmers. Rails
has a mechanism for reducing the size of backtraces by eliminating lines that don’t really
add anything to your debugging.

The backtrace_silencers.rb initializer lets you modify the way that backtraces
are shortened. I’ve found it useful to remove backtrace entries for noisy libraries, but
removing all silencers is usually never needed during normal application development.

You can add backtrace silencers for libraries that you're using

but don't wish to see in your backtraces.

Rails.backtrace_cleaner.add_silencer { |line| line =~ /my_noisy_library/ }

You can also remove all the silencers if you're trying to debug

a problem that might stem from framework code.

Rails.backtrace_cleaner.remove_silencers!

Cookie Verification Secret

Certain types of hacking involve modifying the contents of cookies without the server
knowing about it. By digitally signing all cookies sent to the browser, Rails can detect
whether they were tampered with. The cookie_verification_secret.rb initializer
contains the secret key, randomly generated along with your app, which is used to sign
cookies.

12 Chapter 1: Rails Environments and Configuration

Your secret key for verifying the integrity of signed cookies.

If you change this key, all old signed cookies will become invalid!

Make sure the secret is at least 30 characters and all random,

no regular words or you'll be exposed to dictionary attacks.

ActionController::Base.cookie_verifier_secret =

'3419dbd82eefe65c27e71b0...'

Inflections

Rails has a class named Inflector whose responsibility is to transform strings (words)
from singular to plural, class names to table names, modularized class names to ones
without, and class names to foreign keys, etc. (Some of its operations have funny names,
such as dasherize.)

The default inflections for pluralization and singularization of uncountable words
are kept in an interesting file inside the ActiveSupport gem, named inflections.rb.

Most of the time the Inflector class does a decent job of figuring out the pluralized
table name for a given class, but occasionally it won’t. This is one of the first stumbling
blocks for many new Rails users, but it is not necessary to panic. With a little ad hoc
testing beforehand, it’s easy to find out how Inflector will react to certain words. We
just need to use the Rails console, which by the way is one of the best things about
working in Rails.

You fire up the console from your terminal with the rails console command.

$ rails console

>> ActiveSupport::Inflector.pluralize "project"

=> "projects"

>> ActiveSupport::Inflector.pluralize "virus"

=> "viri"

>> "pensum".pluralize # Inflector features are mixed into String by

default

=> "pensums"

As you can see in the example, Inflector tries to be smart, pluralizing virus as viri; but
if you know your Latin you have already noticed that the plural pensum should actually
be pensa. Needless to say, the inflector does not know Latin.6

However, you can teach the inflector new tricks by adding new pattern rules, by
pointing out an exception, or by declaring certain words unpluralizable. The preferred
place to do that is inside the config/initializers/inflections.rb file, where a

6. Comically, the Rails inflection of virus is also wrong. See http://en.wikipedia.org/wiki/

Plural—form—of—words—ending—in—-us#Virus

http://en.wikipedia.org/wiki/Plural%E2%80%94form%E2%80%94of%E2%80%94words%E2%80%94ending%E2%80%94in%E2%80%94-us%23Virus
http://en.wikipedia.org/wiki/Plural%E2%80%94form%E2%80%94of%E2%80%94words%E2%80%94ending%E2%80%94in%E2%80%94-us%23Virus

C
o
n

fig
1.2 Startup and Application Settings 13

commented example is already provided:

ActiveSupport::Inflector.inflections do |inflect|

inflect.plural /^(ox)$/i, '\1en'

inflect.singular /^(ox)en/i, '\1'

inflect.irregular 'person', 'people'

inflect.uncountable %w(fish sheep)

end

The file activesupport/test/inflector_test.rb has a long list of pluralizations
correctly handled by Inflector. I found some of them pretty interesting, such as:

"datum" => "data",

"medium" => "media",

"analysis" => "analyses"

Custom MIME Types

Rails supports a standard set of MIME types (*/*, text/html, text/plain, text/
javascript, text/css, text/calendar, text/csv, application/xml, application/rss+xml, appli-
cation/atom+xml, application/x-yaml, multipart/form-data, application/x-www-form-
urlencoded).

Short name respond—to symbol Aliases and Explanations

text/html :html, :xhtml application/xhtml+xml
text/plain :text, :txt

text/javascript :js application/javascript,
application/x-javascript

text/css :css Cascading style sheets
text/calendar :ics iCalendar format for sharing

meeting requests and tasks
text/csv :csv Comma-separated values
application/xml :xml text/xml, application/x-xml
application/rss+xml :rss Really Simple Syndication format

for web feeds
application/atom+xml :atom Atom Syndication Format for

web feeds
application/x-yaml :yaml text/yaml - The human-readable

data serialization format

www.allitebooks.com

http://www.allitebooks.org

14 Chapter 1: Rails Environments and Configuration

Short name respond—to symbol Aliases and Explanations

application/x-www-form-
urlencoded

:url_encoded_form The default content type of
HTML forms

multipart/form-data :multipart_form Used for HTML forms that
contain files, non-ASCII data,
and binary data

application/json :json text/x-json, application/
jsonrequest - JavaScript Object
Notation

If your application needs to respond to other MIME types, you can register them in
the mime_types.rb initializer

Add new mime types for use in respond_to blocks:

Mime::Type.register "text/richtext", :rtf

Mime::Type.register_alias "text/html", :iphone

Session Store

Session cookies in Rails are signed with a random secret string that’s generated along
with new Rails apps. You can change that secret string in session_store.rb if you’re
really paranoid.

Your secret key for verifying cookie session data integrity.

If you change this key, all old sessions will become invalid!

Make sure the secret is at least 30 characters and all random,

no regular words or you'll be exposed to dictionary attacks.

ActionController::Base.session = {

:key => '_example_session',

:secret => '70c647f83a15edd9895b86c16...'

}

If you want to store user sessions in the database instead of in cookies, which you want
to do if your application keeps sensitive data in sessions, then this initializer is the place
to do it:

Use the database for sessions instead of the cookie-based default

(create the session table with "rake db:sessions:create")

ActionController::Base.session_store = :active_record_store

This book covers configuration and implications of Active Record session store in
Chapter 13, Session Management.

C
o
n

fig
1.3 Development Mode 15

1.2.3 Additional Configuration

That does it for the configuration options for which we get examples in the default
application.rb and the standard initializers. There are additional options, which you
can add in additional initializer files.

Log-Level Override

The default log level is :debug and you can override it if necessary.

Force all environments to use the same logger level

(by default production uses :info, the others :debug)

config.log_level = :debug

This book covers use of the Rails logger in-depth later on in this chapter.

Schema Dumper

Every time you run tests, Rails dumps the schema of your development database and
copies it to the test database using an autogenerated schema.rb script. It looks very
similar to an Active Record migration script; in fact, it uses the same API.

You might find it necessary to revert to the older style of dumping the schema using
SQL, if you’re doing things that are incompatible with the schema dumper code (see
the comment).

Use SQL instead of Active Record's schema dumper when creating the

test database. This is necessary if your schema can't be completely

dumped by the schema dumper, for example, if you have constraints

or db-specific column types

config.active_record.schema_format = :sql

Remember we said that the value of the RAILS_ENV environment variable dictates which
additional environment settings are loaded next? So now let’s review the default settings
for each of the standard Rail modes.

1.3 Development Mode

Development is Rails’ default mode and the one in which you will spend most of your
time as a developer. This section contains an in-depth explanation of each setting.

File: config/environments/development.rb

Example::Application.configure do

Settings specified here will take precedence over those

in config/environment.rb

16 Chapter 1: Rails Environments and Configuration

1.3.1 Automatic Class Reloading

One of the signature benefits of using Rails is the quick feedback cycle whenever you’re
working in development mode. Make changes to your code, hit Reload in the browser,
and Shazam! Magically, the changes are reflected in your application. This behavior is
governed by the config.cache_classes setting:

In the development environment your application's code is reloaded on

every request. This slows down response time but is perfect for

development

since you don't have to restart the webserver when you make code

changes.

config.cache_classes = false

Without getting into too much nitty-gritty detail, when the config.cache_classes
setting is true, Rails will use Ruby’s require statement to do its class loading, and
when it is false, it will use load instead.

When you require a Ruby file, the interpreter executes and caches it. If the file is
required again (as in subsequent requests), the interpreter ignores the require statement
and moves on. When you load a Ruby file, the interpreter executes the file again, no
matter how many times it has been loaded before.

Now it’s time to examine the Rails class-loading behavior a bit more in depth,
because sometimes you won’t be able to get certain things to reload automatically and
it will drive you crazy unless you understand how class loading works!

The Rails Class Loader

In plain old Ruby, a script file doesn’t need to be named in any particular way that
matches its contents. In Rails, however, you’ll notice that there’s almost always a direct
correlation between the name of a Ruby file and the class or module contained within.
Rails takes advantage of the fact that Ruby provides a callback mechanism for missing
constants. When Rails encounters an undefined constant in the code, it uses a class
loader routine based on file-naming conventions to find and require the needed Ruby
script.

How does the class loader know where to search? We already covered it earlier in the
chapter where we discussed the role of initializer.rb in the Rails startup process.
Rails has the concept of load paths, and the default load paths include the base directories
of just about anywhere you would think of adding code to your Rails application.

Want to see the contents of your project’s load path? Just fire up the console and
type $LOAD_PATH

$ rails console

Loading development environment.

C
o
n

fig
1.3 Development Mode 17

>> $LOAD_PATH

=> ["/usr/local/lib/ruby/... # about 20 lines of output

I snipped the console output to save space. A typical Rails project load path will usually
have 30 or more items in its load path. Try it and see.

Xavier says . . .

Note that files in lib are no longer autoloaded. The lib directory is added to $LOAD_PATH,
but not to autoload_paths. You’ll have to require files in lib manually where they are
needed or add lib back to autoload_paths in config/application.rb.

Rails, Modules, and Auto-Loading Code

Normally in Ruby, when you want to include code from another file in your application,
you have to include a require statement. However, Rails enhances Ruby’s default behavior
by establishing a simple convention that enables Rails to automatically load your code
in most cases. If you’ve used the Rails console at all, you’ve already seen this behavior in
action: You never have to explicitly require anything!

This is how it works: If Rails encounters a class or module in your code that is not
already defined, Rails uses the following convention to guess which files it should require
to load that module or class:

If the class or module is not nested, insert an underscore between the constant’s
names and require a file of this name. For example:

• EstimationCalculator becomes require "estimation_calculator"

• KittTurboBoost becomes require "kitt_turbo_boost"

If the class or module is nested, Rails inserts an underscore between each of the containing
modules and requires a file in the corresponding set of subdirectories. For example:

• MacGyver::SwissArmyKnife becomes require "mac_gyver/swiss_army_

knife"

• Example::ReallyRatherDeeply::NestedClass becomes require "exam-

ple/really_rather_deeply/nested_class" and if not already loaded, Rails
would expect to find it in a file called nested_class.rb, in a directory called
really_rather_deeply, itself in the directory example of which can be found
somewhere in Ruby’s load path (e.g., one of the app subdirectories, lib, or a plugin’s
lib directory).

18 Chapter 1: Rails Environments and Configuration

The bottom line is that you should rarely need to explicitly load Ruby code in your Rails
applications (using require) if you follow the naming conventions.

1.3.2 Whiny Nils

Rails attempts to help newbie developers figure out what’s wrong with their code with
extensions to Ruby’s NilClass. The flag config.whiny_nils determines whether this
feature is enabled. By default it is on in development and test modes, and it is off in
production mode.

Log error messages when you accidentally call methods on nil.

config.whiny_nils = true

The complete behavior of whiny nils is covered in Appendix B, “Active Support API
Reference.”

1.3.3 Error Reports

A couple of settings govern Rails error reporting. Requests from localhost, like
when you’re developing, generate useful error messages that include debugging in-
formation such as a line number where the error occured and a backtrace. Setting
consider_all_requests_local to true causes Rails to display those developer-
friendly error screens even when the machine making the request is remote.

config.consider_all_requests_local = true

The config.action_view.debug_rjs setting governs whether RJS responses should
be wrapped in a try/catch block that alerts errors before re-raising them.

config.action_view.debug_rjs = true

1.3.4 Caching

You normally do not want caching behavior when you’re in development mode. The
only time you do want it is if you’re actually testing caching.

config.action_controller.perform_caching = true # for testing in

development mode

Remember to set it back to false when you’re done testing. Unexpected caching
behavior can be very tricky to figure out.

C
o
n

fig
1.4 Test Mode 19

1.3.5 Raise Delivery Errors

Rails assumes that you don’t want Action Mailer to raise delivery exceptions in devel-
opment mode, so based on the config.action_mailer.raise_delivery_errors

settings, it will swallow them. Mailing capabilities don’t necessarily work in an aver-
age development workstation, particularly on Windows and other platforms that lack
sendmail.

Don't care if the mailer can't send

config.action_mailer.raise_delivery_errors = false

If you actually want to send mail while in development mode as part of debugging or
ad-hoc testing, then you probably want to toggle this setting.

Xavier says . . .

I find it handy to set config.action_mailer.perform_deliveries = false in
development. No delivery attempt is performed, but you can still see the mail in the log file to
check it looks good, copy account activation URLs, etc.

1.4 Test Mode

Whenever you run Rails in test mode, that is, the value of the RAILS_ENV environment
value is test, then the following settings are in effect (reproduced here for reference
purposes):

File: config/environments/test.rb

Example::Application.configure do

Settings specified here will take precedence over those

in config/environment.rb

The test environment is used exclusively to run your application's

test suite. You never need to work with it otherwise. Remember that

your test database is "scratch space" for the test suite and is wiped

and recreated between test runs. Don't rely on the data there:

config.cache_classes = true

Log error messages when you accidentally call methods on nil.

config.whiny_nils = true

Show full error reports and disable caching

config.consider_all_requests_local = true

config.action_controller.perform_caching = false

20 Chapter 1: Rails Environments and Configuration

Raise exceptions instead of rendering exception templates

config.action_dispatch.show_exceptions = false

Disable request forgery protection in test environment

config.action_controller.allow_forgery_protection = false

Tell Action Mailer not to deliver emails to the real world.

The :test delivery method accumulates sent emails in the

ActionMailer::Base.deliveries array.

config.action_mailer.delivery_method = :test

Use SQL instead of Active Record's schema dumper when creating

the test database. This is necessary if your schema can't be

completely dumped by the schema dumper, like if you have

constraints or database-specific column types

config.active_record.schema_format = :sql

Print deprecation notices to the stderr

config.active_support.deprecation = :stderr

end

Most people get by without ever needing to modify their test environment settings.

Custom environments

If necessary, you can create additional environments for your Rails app to run by cloning one of
the existing environment files in the config/environments directory of your application.
The most common use case for custom environments is in setting up additional production
configurations, such as for staging and QA deployments. Do you have access to the production
database from your development workstation? Then a triage environment might make sense. Use
the normal environment settings for development mode, but point its database connection to a
production database server. It’s a potentially life-saving combination when you need to quickly
diagnose issues in production.

1.5 Production Mode

Finally, production mode is what you want your Rails application running in whenever
it is deployed to its hosting environment and serving public requests. There are a number
of significant ways that production mode differs from the other modes, not least of which
is the speed boost you get from not reloading all of your application classes for every
request.

File: config/environments/production.rb

Example::Application.configure do

Settings specified here will take precedence over those

in config/environment.rb

C
o
n

fig
1.5 Production Mode 21

The production environment is meant for finished, "live" apps.

Code is not reloaded between requests

config.cache_classes = true

Full error reports are disabled and caching is turned on

config.consider_all_requests_local = false

config.action_controller.perform_caching = true

Specifies the header that your server uses for sending files

config.action_dispatch.x_sendfile_header = "X-Sendfile"

For nginx:

config.action_dispatch.x_sendfile_header = 'X-Accel-Redirect'

If you have no front-end server that supports something like

X-Sendfile, just comment this out and Rails will serve the files

See everything in the log (default is :info)

config.log_level = :debug

Use a different logger for distributed setups

config.logger = SyslogLogger.new

Use a different cache store in production

config.cache_store = :mem_cache_store

Disable Rails's static asset server

In production, Apache or nginx will already do this

config.serve_static_assets = false

Enable serving of images, stylesheets, and javascripts

from an asset server

config.action_controller.asset_host = "http://assets.example.com"

Disable delivery errors, bad email addresses will be ignored

config.action_mailer.raise_delivery_errors = false

Enable threaded mode

config.threadsafe!

Enable locale fallbacks for I18n (makes lookups for any

locale fall back to the I18n.default_locale when a translation

can not be found)

config.i18n.fallbacks = true

Send deprecation notices to registered listeners

config.active_support.deprecation = :notify

end

22 Chapter 1: Rails Environments and Configuration

1.5.1 Asset Hosts

By default, Rails links to assets on the current host in the public folder,
but you can direct Rails to link to assets from a dedicated asset server. The
config.action_controller.asset_host setting is covered in detail in Chapter 10
in the Using Asset Hosts section.

1.5.2 Threaded Mode

Rails 2.2 introduced a thread-safe mode that, depending on your web server infrastruc-
ture, means you can handle more requests with fewer copies of Rails in memory, leading
to better server performance and higher utilization of multiple cores. Threadsafe opera-
tion is incompatible with development mode. Automatic dependency loading and class
reloading are automatically disabled when you call config.threadsafe!.

Threadsafe operation is a big deal for folks that run Rails on JRuby, since that
platform supports usage of multiple native threads across cores from a single operating
system process. Accordingly, one of the main authors of JRuby, Charles Nutter, published
this explanation of threadsafe mode on his blog:7

Basically it means removing the single coarse-grained lock around every incoming request and
replacing it with finer-grained locks around only those resources that need to be shared across
threads. So for example, data structures within the logging subsystem have either been modified
so they are not shared across threads, or locked appropriately to make sure two threads don’t
interfere with each other or render those data structures invalid or corrupt. Instead of a single
database connection for a given Rails instance, there will be a pool of connections, allowing N
database connections to be used by the M requests executing concurrently. It also means allowing
requests to potentially execute without consuming a connection, so the number of live, active
connections usually will be lower than the number of requests you can handle concurrently.

In the same blog post, Charles also eloquently explained why threadsafe operation
is significant even for green-thread8 implementations of Ruby.9

Thread-safe Rails will mean that an individual instance, even with green threads, can handle
multiple requests at the same time. By “at the same time” I don’t mean concurrently...green
threads will never allow two requests to actually run concurrently or to utilize multiple cores.
What I mean is that if a given request ends up blocking on IO, which happens in almost all

7. http://blog.headius.com/2008/08/qa-what-thread-safe-rails-means.html
8. http://en.wikipedia.org/wiki/Green_threads
9. Yehuda’s take on the subject is essential reading http://yehudakatz.com/2010/08/14/threads-in-

ruby-enough-already

http://blog.headius.com/2008/08/qa-what-thread-safe-rails-means.html
http://en.wikipedia.org/wiki/Green_threads
http://yehudakatz.com/2010/08/14/threads-inruby-enough-already
http://yehudakatz.com/2010/08/14/threads-inruby-enough-already

C
o
n

fig
1.6 Logging 23

requests (due to REST hits, DB hits, filesystem hits and so on), Ruby will now have the option of
scheduling another request to execute. Put another way, removing the coarse-grained lock will at
least improve concurrency up to the “best” that green-threaded implementations can do, which
isn’t too bad.

To learn the practical implications of writing thread-safe application code, the extent
of which exceed the scope of this book, make sure to study Pratik Naik’s excellent (but
foul-mouthed) analysis of the subject.10

1.6 Logging

Most programming contexts in Rails (models, controllers, view templates) have a logger
attribute, which holds a reference to a logger conforming to the interface of Log4r or
the default Ruby 1.8+ Logger class. Can’t get a reference to logger somewhere in your
code? The Rails.logger method references a logger that you can use anywhere.

It’s really easy to create a new Logger in Ruby, as shown in the following example:

$ irb

> require 'logger'

=> true

irb(main):002:0> logger = Logger.new STDOUT

=> #<Logger:0x32db4c @level=0, @progname=nil, @logdev=

#<Logger::LogDevice:0x32d9bc ... >

> logger.warn "do not want!!!"

W, [2007-06-06T17:25:35.666927 #7303] WARN -- : do not want!!!

=> true

> logger.info "in your logger, giving info"

I, [2007-06-06T17:25:50.787598 #7303] INFO -- : in your logger, giving

your info

=> true

Typically, you add a message to the log using the logger whenever the need arises, using a
method corresponding to the severity of the log message. The standard logger’s severities
are (in increasingly severe order):

debug Use the debug level to capture data and application state useful for debugging
problems later on. This level is not usually captured in production logs.

10. http://m.onkey.org/2008/10/23/thread-safety-for-your-rails

www.allitebooks.com

http://m.onkey.org/2008/10/23/thread-safety-for-your-rails
http://www.allitebooks.org

24 Chapter 1: Rails Environments and Configuration

info Use info level to capture informational messages. I like to use this log level for time-
stamping non-ordinary events that are still within the bounds of good application
behavior.

warn Use the warn level to capture things that are out of the ordinary and might be
worth investigating. Sometimes I’ll throw in a logged warning when guard clauses
in my code keep a client from doing something they weren’t supposed to do. My
goal is to alert whoever’s maintaining the application about a malicious user or bug
in the user interface, as in the following example:

def create

begin

group.add_member(current_user)

flash[:notice] = "Successfully joined #{scene.display_name}"

rescue ActiveRecord::RecordInvalid

flash[:error] = "You are already a member of #{group.name}"

logger.warn "A user tried to join a group twice. UI should

not have allowed it."

end

redirect_to :back

end

error Use the error log level to capture information about error conditions that don’t
require a server restart.

fatal The worst-case imaginable has happened—your application is now dead and
manual intervention is necessary to restart it.

1.6.1 Rails Log Files

The log folder of your Rails application holds three log files corresponding to each of the
standard environments. Log files can grow very large over time. A rake task is provided
for easily clearing the log files:

rake log:clear # Truncates all *.log files in log/ to zero bytes

The contents of log/development.log are very useful while you’re working. Many
Rails coders leave a terminal window open with a continuous tail of the development
log open while they’re coding:

$ tail -f log/development.log

User Load (0.5ms) SELECT * FROM users WHERE (users.'id' = 1)

CACHE (0.0ms) SELECT * FROM users WHERE (users.'id' = 1)

C
o
n

fig
1.6 Logging 25

All sorts of valuable information are available in the development log. For instance, every
time you make a request, a bunch of useful information about it shows up in the log.
Here’s a sample from one of my projects.

Started GET "/user_photos/1" for 127.0.0.1 at 2007-06-06 17:43:13

Processing by UserPhotosController#show as HTML

Parameters: {"/users/8-Obie-Fernandez/photos/406"=>nil,

"action"=>"show", "id"=>"406", "controller"=>"user_photos",

"user_id"=>"8-Obie-Fernandez"}

User Load (0.4ms) SELECT * FROM users WHERE (users.'id' = 8)

Photo Load (0.9ms) SELECT * FROM photos WHERE (photos.'id' = 406

AND (photos.resource_id = 8 AND photos.resource_type = 'User'))

CACHE (0.0ms) SELECT * FROM users WHERE (users.'id' = 8)

Rendered adsense/_medium_rectangle (1.5ms)

User Load (0.5ms) SELECT * FROM users WHERE (users.'id' = 8)

LIMIT 1

SQL (0.4ms) SELECT count(*) AS count_all FROM messages WHERE

(messages.receiver_id = 8 AND (messages.'read' = 0))

Rendered layouts/_header (25.3ms)

Rendered adsense/_leaderboard (0.4ms)

Rendered layouts/_footer (0.8ms)

Rendered photos/show.html.erb within layouts/application.html.erb (38.9ms)

Completed in 99ms (Views: 37.4ms | ActiveRecord: 12.3ms) with 200

This is a list of all the data items contained in that chunk of log output:

• The controller and action that were invoked

• The remote IP address of the computer making the request

• A timestamp indicating when the request happened

• The session ID associated with the request

• The hash of parameters associated with the request

• Database request information including the time and the SQL statement executed

• Query cache hit info including time and the SQL statement triggering results from
the cache instead of a roundtrip to the database

• Rendering information for each template involved in rendering the view output and
time consumed by each

• Total time used in completing the request with corresponding request-per-second
figures

• Analysis of the time spent in database operations versus rendering

• The HTTP status code and URL of the response sent back to the client

26 Chapter 1: Rails Environments and Configuration

1.6.2 Log File Analysis

A number of informal analyses can be easily performed using just the development log
output and some common sense.

Performance One of the more obvious analyses would be a study of the performance of
your application. The faster your requests execute, the more requests you can serve
with a given Rails process. That’s why performance figures are often expressed in
terms of requests per second. Find the queries and rendering sections that are taking
a long time and figure out why.
It’s important to realize that the times reported by the logger are not super-accurate.
In fact, they’re wrong more often than not, if simply for the reason that it’s very
difficult to measure the timing of something from within itself. Add up the percentage
of rendering and database times for any given request and it will not always be close
to 100 percent.
However, despite not being accurate in a purely objective sense, the reported times
are perfect for making subjective comparisons within the same application. They
give you a way of gauging whether an action is taking longer than it used to, or
whether it is relatively faster or slower than another action, and so on.

SQL queries Active Record not behaving as expected? The fact that SQL generated by
Active Record is logged can often help you debug problems caused by complicated
queries.

Identification of N+1 select problems Whenever you are displaying a record along
with an associated collection of records, there’s a chance that you will have a so-
called N+1 select problem. You’ll recognize the problem by a series of many SELECT
statements, with the only difference being the value of the primary key.

For example, here’s a snippet of some log output from a real Rails application showing
an N+1 select issue in the way that FlickrPhoto instances are being loaded:

FlickrPhoto Load (1.3ms) SELECT * FROM flickr_photos WHERE

(flickr_photos.resource_id = 15749 AND flickr_photos.resource_type =

'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc

LIMIT 1

FlickrPhoto Load (1.7ms) SELECT * FROM flickr_photos WHERE

(flickr_photos.resource_id = 15785 AND flickr_photos.resource_type =

'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc

LIMIT 1

FlickrPhoto Load (1.4ms) SELECT * FROM flickr_photos WHERE

(flickr_photos.resource_id = 15831 AND flickr_photos.resource_type =

C
o
n

fig
1.6 Logging 27

'Place' AND (flickr_photos.'profile' = 1)) ORDER BY updated_at desc

LIMIT 1

and so on and so forth, for pages and pages of log output. Look familiar?
Luckily, each of those database queries is executing very quickly, around 0.0015 sec-

onds each. That’s because 1) MySQL is extraordinarily fast for small SELECT statements,
and 2) my Rails process is on the same physical machine as the database.

Still, accumulate enough of those N queries and they add up quickly to eat away
at performance. Absent the mitigating factors I mentioned, I would have a serious
performance problem to address. The problem would be especially severe if the database
was on a separate machine, giving me network latency to deal with on each of those
queries.

N+1 select issues are not the end of the world. A lot of times all it takes is proper
use of the includes method on a particular query to alleviate the problem.

Separation of concerns

A well-designed model-view-controller application follows certain protocols related to which
logical tier does database operations (that would be the model) versus rendering tasks (the view).
Generally speaking, you want your controller to cause the loading of all of the data that is going
to be needed for rendering from the database. In Rails, it is accomplished by controller code that
queries the model for needed data and makes that data available to the view.

Database access during rendering is usually considered a bad practice. Calling
database methods directly from template code violates proper separation of concerns
and is a maintainability nightmare.11

However, there are plenty of opportunities for implicit database access during view
rendering to creep into your codebase, encapsulated by the model, and perhaps triggered
by lazy loading of associations. Can we conclusively call it a bad practice? It’s hard to say
so definitively. There are cases (such as usage of fragment caching) where it makes sense
to have database operations happening during view rendering.

Rails::Subscriber.colorize logging

Tells Rails whether to use ANSI codes to colorize the logging statements. The colors
make it much easier to read the logs (except on Windows) and may complicate matters
if you use software like syslog. Defaults to true. Change to false if you view your logs
with software that doesn’t understand the ANSI color codes.

11. Practically every PHP application ever written has this problem.

28 Chapter 1: Rails Environments and Configuration

Using alternate logging schemes

It’s easy! Just assign a class compatible with Ruby’s Logger to one of the various logger
class variables, such as ActiveRecord::Base.logger. A quick hack based on the abil-
ity to swap loggers is one demonstrated by David at various events, including his keynote at
Railsconf 2007. During a console session, assign a new Logger instance pointing to STDOUT
to ActiveRecord::Base.logger in order to see the SQL being generated right in your
console. Jamis has a complete write-up of the technique and more at http://weblog.
jamisbuck.org/2007/1/31/more-on-watching-activerecord.

Here’s a snippet of log output with the ANSI codes visible:

^[[4;36;1mSQL (0.0ms)^[[0m ^[[0;1mMysql::Error: Unknown table

'expense_reports': DROP TABLE expense_reports^[[0m

^[[4;35;1mSQL (3.2ms)^[[0m ^[[0mCREATE TABLE expense_reports ('id'

int(11) DEFAULT NULL auto_increment PRIMARY KEY, 'user_id' int(11))

Wilson says . . .

Almost nobody I meet seems to know how to display colorized logs in a pager. The -R option
tells less to output “raw” control characters to the screen.

Syslog

UNIX-like systems have a system service called syslog. For various reasons, it might be a better
choice for production logging of your Rails applications.

• Finer-grained control over logging levels and content.

• Consolidation of logger output for multiple Rails applications.

• If you’re using remote syslog capabilities of many systems, consolidation of logger output for multiple
Rails application servers is possible. Contrast with having to handle individual log files on each
application server box separately.

You can use Eric Hodel’s SyslogLogger∗ to interface your Rails application to syslog.

∗http://seattlerb.rubyforge.org/SyslogLogger

http://weblog.jamisbuck.org/2007/1/31/more-on-watching-activerecord
http://weblog.jamisbuck.org/2007/1/31/more-on-watching-activerecord
http://seattlerb.rubyforge.org/SyslogLogger

C
o
n

fig
1.7 Conclusion 29

1.7 Conclusion

We’ve kicked off our Rails journey by covering Bundler in fairly good detail and then
reviewing the different environments in which Rails executes and how it loads its depen-
dencies, including your application code. An in-depth look at application.rb and its
per-mode variants revealed how we can customize Rails behavior to our taste.

This page intentionally left blank

R
o
u
te

s

CHAPTER 2

Routing

I dreamed a thousand new paths. . . I woke and walked my old one.

—Chinese proverb

The routing system in Rails is the system that examines the URL of an incoming request
and determines what action should be taken by the application. And it does a good bit
more than that. Rails routing can be a bit of a tough nut to crack. But it turns out that
most of the toughness resides in a small number of concepts. After you’ve got a handle
on those, the rest falls into place nicely.

This chapter will introduce you to the principal techniques for defining and manipu-
lating routes. The next chapter will build on this knowledge to explore the facilities Rails
offers in support of writing applications that comply with the principles of Representa-
tional State Transfer (REST). As you’ll see, those facilities can be of tremendous use to
you even if you’re not planning to scale the heights of REST theorization. Both chapters
assume at least a basic knowledge of the Model-View-Controller (MVC) pattern and
Rails controllers.

Some of the examples in these two chapters are based on a small auction application.
The examples are kept simple enough that they should be comprehensible on their own.
The basic idea is that there are auctions, and each auction involves auctioning off an
item. There are users, and they submit bids. That’s it.

The triggering of a controller action is the main event in the life cycle of a connection
to a Rails application. So it makes sense that the process by which Rails determines which
controller and which action to execute must be very important. That process is embodied
in the routing system.

The routing system maps URLs to actions. It does this by applying rules that you
specify using a special syntax in the config/routes.rb file. Actually it’s just Ruby

31

32 Chapter 2: Routing

program code, but it uses special methods and parameters, a technique sometimes referred
to as an internal Domain Specific Language (DSL). If you’re using Rails generators, code
gets added to the routes file automatically, and you’ll get some reasonable behavior. But
it doesn’t take much work to write custom rules and reap the benefits of the flexibility
of the routing system.

2.1 The Two Purposes of Routing

The routing system does two things: It maps requests to controller action methods, and
it enables the dynamic generation of URLs for you for use as arguments to methods like
link_to and redirect_to.

Each rule—or to use the more common term, route—specifies a pattern, which will
be used both as a template for matching URLs and as a blueprint for creating them.
The pattern can be generated automatically based on conventions, such as in the case of
REST resources. Patterns can also contain a mixture of static substrings, forward slashes
(mimicking URL syntax), and positional segment key parameters that serve as “receptors”
for corresponding values in URLs.

A route can also include one or more hardcoded segment keys, in form of key/
value pairs accessible to controller actions in a hash via the params method. A cou-
ple of keys (:controller and :action) determine which controller and action gets
invoked. Other keys present in the route definition simply get stashed for reference
purposes.

Putting some flesh on the bones of this description, here’s a sample route:

match 'recipes/:ingredient' => "recipes#index"

In this example, you find:

• static string (recipes)

• slash (/)

• segment key (:ingredient)

• controller action mapping ("recipes#index")

Routes have a pretty rich syntax—this one isn’t by any means the most complex (nor
the most simple)—because they have to do so much. A single route, like the one in
this example, has to provide enough information both to match an existing URL and
to manufacture a new one. The route syntax is engineered to address both of these
processes.

R
o
u
te

s
2.2 The routes.rb File 33

2.2 The routes.rb File

Routes are defined in the file config/routes.rb, as shown (with some explanatory
comments) in Listing 2.1. This file is created when you first create your Rails application
and contains instructions about how to use it.

Listing 2.1 The default routes.rb file

Example::Application.routes.draw do

The priority is based upon order of creation:

first created -> highest priority.

Sample of regular route:

match 'products/:id' => 'catalog#view'

Keep in mind you can assign values other than :controller and :action

Sample of named route:

match 'products/:id/purchase' => 'catalog#purchase', :as => :purchase

This route can be invoked with purchase_url(:id => product.id)

Sample resource (maps HTTP verbs to controller actions automatically):

resources :products

Sample resource route with options:

resources :products do

member do

get :short

post :toggle

end

#

collection do

get :sold

end

end

Sample resource route with sub-resources:

resources :products do

resources :comments, :sales

resource :seller

end

Sample resource route with more complex sub-resources

resources :products do

resources :comments

resources :sales do

get :recent, :on => :collection

end

end

34 Chapter 2: Routing

Sample resource route within a namespace:

namespace :admin do

Directs /admin/products/* to Admin::ProductsController

(app/controllers/admin/products_controller.rb)

resources :products

end

You can have the root of your site routed with "root"

just remember to delete public/index.html.

root :to => "welcome#index"

See how all your routes lay out with "rake routes"

This is a legacy wild controller route that's not

recommended for RESTful applications.

Note: This route will make all actions in every controller

accessible via GET requests.

match ':controller(/:action(/:id(.:format)))'

end

The whole file consists of a single call to the method draw of Example::

Application.routes. That method takes a block, and everything from the second
line of the file to the second-to-last line is the body of that block.

At runtime, the block is evaluated inside of an instance of the class
ActionDispatch::Routing::Mapper. Through it you configure the Rails routing
system.

The routing system has to find a pattern match for a URL it’s trying to recognize
or a parameters match for a URL it’s trying to generate. It does this by going through
the routes in the order in which they’re defined; that is, the order in which they appear
in routes.rb. If a given route fails to match, the matching routine falls through to the
next one. As soon as any route succeeds in providing the necessary match, the search
ends.

2.2.1 Regular Routes

The basic way to define a route is to supply a URL pattern plus a controller class/action
method mapping string with the special :to parameter.

match 'products/:id', :to => 'products#show'

Since this is so common, a shorthand form is provided:

match 'products/:id' => 'products#show'

R
o
u
te

s
2.2 The routes.rb File 35

David has publicly commented on the design decision behind the Rails 3 shorthand
form, when he said that it drew inspiration from two sources: 1

1) the pattern we’ve been using in Rails since the beginning of referencing controllers as lowercase
without the "Controller" part in :controller => "main" declarations and 2) the Ruby pattern of
signaling that you’re talking about an instance method by using #. The influences are even part
mixed. Main#index would be more confusing in my mind because it would hint that an object
called Main actually existed, which it doesn’t. MainController#index would just be a hassle to
type out every time. Exactly the same reason we went with :controller =>"main" vs :controller =>
"MainController". Given these constraints, I think"main#index" is by far the best alternative...

While we’re on this topic, note that the legacy way of supplying controller and action
parameters prior to Rails 3 does not work anymore.

DOES NOT WORK

match 'products/:id', :controller => "product", :action => "show"

The simplest routes

Sometimes you just want a 2-part URL mapping to a controller action along the lines of the
classic Rails default route. The simplest kind of route definition in Rails 3 consists of a match
method and a string.

match "/projects/status"

You can optionally include a placeholder for the format like

match "/projects/status(.:format)"

As you might be able to deduce, the examples above will route any type of HTTP request to the
projects controller status action. However, if you know you’ll be using only one HTTP verb then
it’s better to use its method instead of match, like this:

get "/projects/status"

post "/reports/publish"

2.2.2 URL Patterns

Keep in mind that there’s no necessary correspondence between the number of fields in
the pattern string, the number of segment keys, and the fact that every connection needs
a controller and an action. For example, you could write a route like

match ":id" => "products#show"

1. Full comments at http://yehudakatz.com/2009/12/26/the-rails-3-router-rack-it-up

http://yehudakatz.com/2009/12/26/the-rails-3-router-rack-it-up

36 Chapter 2: Routing

which would recognize a URL like

http://localhost:3000/8

The routing system would set params[:id] to 8 (based on the position of the :id

segment key, which matches the position of 8 in the URL), and it would execute the
show action of the products controller. Of course, this is a bit of a stingy route, in
terms of visual information. On the other hand, the following example route contains a
static string, products/, inside the URL pattern:

match 'products/:id' => 'products#show'

This string anchors the recognition process. Any URL that does not contain the static
string products/ in its leftmost slot will not match this route.

As for URL generation, static strings in the route simply get placed within the URL
that the routing system generates. The URL generator uses the route’s pattern string
as the blueprint for the URL it generated. The pattern string stipulates the substring
products.

As we go, you should keep the dual purpose of recognition/generation in mind,
which is why it was mentioned several times so far. There are two principles that are
particularly useful to remember:

• The same rule governs both recognition and generation. The whole system is set up
so that you don’t have to write rules twice. You write each rule once, and the logic
flows through it in both directions.

• The URLs that are generated by the routing system (via link_to and friends)
only make sense to the routing system. The resulting URL http://example.

com/products/19201, contains not a shred of a clue as to what’s supposed to
happen when a user follows it—except insofar as it maps to a routing rule. The
routing rule then provides the necessary information to trigger a controller action.
Someone looking at the URL without knowing the routing rules won’t know which
controller and action the URL maps to.

2.2.3 Segment Keys

The URL pattern string can contain parameters (denoted with a colon) and referred to
as segment keys. In the following route declaration, :id is a segment key.

match 'products/:id' => 'products#show'

When this route matches a request URL, the :id portion of the pattern acts as a
type of matcher, and picks up the value of that segment. For instance, using the same

http://localhost:3000/8
http://example.com/products/19201
http://example.com/products/19201

R
o
u
te

s
2.2 The routes.rb File 37

example, the value of id for the following URL would be 4: http://example.com/
products/4

This route, when matched, will always take the visitor to the product controller’s
show action. You’ll see techniques for matching controller and action based on segments
of the URL shortly. The symbol :id inside the quoted pattern in the route is a segment
key (that you can think of as a type of variable). Its job is to be latched onto by a
value.

What that means in the example is that the value of params[:id] will be set to the
string "4". You can access that value inside your products/show action.

When you generate a URL, you have to supply values that will attach to the segment
keys inside the URL pattern string. The simplest to understand (and original) way to do
that is using a hash, like this:

link_to "Products",

:controller => "products",

:action => "show",

:id => 1

As you probably know, it’s actually more common nowadays to generate URLs using
what are called named routes, versus supplying the controller and action parameters
explicitly in a hash. However, right now we’re reviewing the basics of routing.

In the call to link_to, we’ve provided values for all three parameters of the route.
Two of them are going to match the hard-coded, segment keys in the route; the third,
:id, will be assigned to the corresponding segment key in the URL pattern.

It’s vital to understand that the call to link_to doesn’t know whether it’s supplying
hard-coded or segment values. It just knows (or hopes!) that these three values, tied to
these three keys, will suffice to pinpoint a route and therefore a pattern string, and
therefore a blueprint for generating a URL dynamically.

Hardcoded parameters

It’s always possible to insert additional hardcoded parameters into route definitions that don’t
have an effect on URL matching, but are passed along with the normal expected params.

match 'products/special' => 'products#show', :special => true

Mind you, I’m not suggesting that this example is a good practice. It would make more sense to
me (as a matter of style) to point at a different action rather than inserting a clause. Your mileage
may vary.

match 'products/special' => 'products#special'

http://example.com/products/4
http://example.com/products/4

38 Chapter 2: Routing

2.2.4 Spotlight on the :id Field

Note that the treatment of the :id field in the URL is not magic; it’s just treated as a
value with a name. If you wanted to, you could change the rule so that :id was :blah
but then you’d have to do the following in your controller action:

@product = Product.find(params[:blah])

The name :id is simply a convention. It reflects the commonness of the case in which a
given action needs access to a particular database record. The main business of the router
is to determine the controller and action that will be executed.

The id field ends up in the params hash, already mentioned. In the common, classic
case, you’d use the value provided to dig a record out of the database:

class ProductsController < ApplicationController

def show

@product = Product.find(params[:id])

end

end

2.2.5 Optional Segment Keys

Rails 3 introduces new routes syntax for defining optional parts of the URL pattern. The
easiest way to illustrate it is using the new version of the legacy wild controller route as it
exists at the bottom of a default config/routes.rb file:

match ':controller(/:action(/:id(.:format)))'

As of Rails 3, this route is commented out and remarks from the Rails team advise
you not to use it. In previous versions of Rails, this was known as the default route, and
could potentially open up every controller action that wasn’t scoped as protected to GET
requests.

Note that parentheses are used to define optional segment keys, kind of like what
you would expect to see when defining optional groups in a regular expression.

2.2.6 Constraining Request Methods

It’s possible (and often desirable) to limit the HTTP method used to access a route. You
accomplish that using the :via parameter of the route:

match 'products/:id' => 'products#show', :via => :get

Again, since this is a common thing to do, Rails provides a shorthand way of expressing
this particular constraint, by replacing match with the HTTP method desired (get, post,
etc.)

R
o
u
te

s
2.2 The routes.rb File 39

get 'products/:id' => 'products#show'

post 'products' => 'products#create'

If, for some reason, you want to constrain a route to more than one HTTP method, you
can pass :via an array of verb names.

match 'products/:id' => 'products#show', :via => [:get, :post]

2.2.7 Redirect Routes

It’s possible to code a redirect directly into a route definition, using the redirect

method:

match "/foo", :to => redirect("/bar")

The argument to redirect can contain either a relative URL or a full URI.

match "/google", :to => redirect("http://google.com/")

The redirect method can also take a block, which receives the request params as its
argument. This allows you to, for instance, do quick versioning of web service API
endpoints.2

match "/api/v1/:api", :to =>

redirect {|params| "/api/v2/#{params[:api].pluralize}" }

The redirect method also accepts an optional :status parameter.

match "/api/v1/:api", :to =>

redirect(:status => 302) {|params| "/api/v2/#{params[:api].pluralize}" }

The redirect method returns a simple Rack endpoint, as we can see by examining its
source code.

def redirect(*args, &block)

options = args.last.is_a?(Hash) ? args.pop : {}

path = args.shift || block

path_proc = path.is_a?(Proc) ? path : proc { |params| path % params }

status = options[:status] || 301

lambda do |env|

req = Request.new(env)

params = [req.symbolized_path_parameters]

params << req if path_proc.arity > 1

2. Examples drawn from Yehuda Katz’s excellent blog post about generic actions in Rails 3 routes at
http://yehudakatz.com/2009/12/20/generic-actions-in-rails-3/

http://yehudakatz.com/2009/12/20/generic-actions-in-rails-3/

40 Chapter 2: Routing

uri = URI.parse(path_proc.call(*params))

uri.scheme ||= req.scheme

uri.host ||= req.host

uri.port ||= req.port unless req.standard_port?

body = %(<html><body>You are being redirected.</body></html>)

headers = {

'Location' => uri.to_s,

'Content-Type' => 'text/html',

'Content-Length' => body.length.to_s

}

[status, headers, [body]]

end

end

2.2.8 The Format Segment

Let’s revisit the old default route again:

match ':controller(/:action(/:id(.:format)))'

The .:format at the end matches a literal dot and a "format" segment key after the id
field. That means it will match, for example, a URL like:

http://localhost:3000/products/show/3.xml

Here, params[:format] will be set to xml. The :format field is special; it has an effect
inside the controller action. That effect is related to a method called respond_to.

The respond_to method allows you to write your action so that it will return dif-
ferent results, depending on the requested format. Here’s a show action for the products
controller that offers either HTML or XML:

def show

@product = Product.find(params[:id])

respond_to do |format|

format.html

format.xml { render :xml => @product.to_xml }

end

end

The respond_to block in this example has two clauses. The HTML clause just consists
of format.html. A request for HTML will be handled by the usual rendering of a view
template. The XML clause includes a code block; if XML is requested, the block will be
executed and the result of its execution will be returned to the client.

http://localhost:3000/products/show/3.xml

R
o
u
te

s
2.2 The routes.rb File 41

Here’s a command-line illustration, using wget (slightly edited to reduce line noise):

$ wget http://localhost:3000/products/show/3.xml -O -

Resolving localhost... 127.0.0.1, ::1

Connecting to localhost|127.0.0.1|:3000... connected.

HTTP request sent, awaiting response... 200 OK

Length: 295 [application/xml]

<item>

<created-at type="datetime">2007-02-16T04:33:00-05:00</created-at>

<description>Keyboard</description>

<id type="integer">3</id>

<maker>Apple</maker>

<modified-at type="datetime"></modified-at>

</item>

The .xml on the end of the URL results in respond_to choosing the xml branch, and
the returned document is an XML representation of the product.

Requesting a format that is not included as an option in the respond_to block will
not generate an exception. Rails will return a 406 Not Acceptable status, to indicate
that it can’t handle the request.

If you want to setup an else condition for your repond_to block, you can use the
any method, which tells Rails to catch any other formats not explicitly defined.

def show

@product = Product.find(params[:id])

respond_to do |format|

format.html

format.xml { render :xml => @product.to_xml }

format.any

end

end

Just make sure that you explicitly tell any what to do with the request or have
view templates corresponding to the formats you expect. Otherwise, you’ll get a
MissingTemplate exception.

ActionView::MissingTemplate (Missing template clients/index with

{:handlers=>[:rhtml, :haml, :rxml, :erb, :builder, :rjs],

:locale=>[:en], :formats=>[:json]}

2.2.9 Routes as Rack Endpoints

You’ll see usage of the :to option in routes throughout this chapter. What’s most
interesting about :to is that its value is what’s referred to as a Rack endpoint. To illustrate,
consider the following simple example:

match "/hello", :to => proc {|env| [200, {}, ["Hello world"]] }

42 Chapter 2: Routing

The router is very loosely coupled to controllers! The shorthand syntax (like
"items#show") relies on the action method of controller classes to return a Rack
endpoint that executes the action requested.

>> ItemsController.action(:show)

=> #<Proc:0x01e96cd0@...>

This behavior means that adding a route that dispatches to a Sinatra3 application is
super-easy. Just point :to => YourSinatraApp. The Sinatra application class itself is
a Rack endpoint.

class HelloApp < Sinatra::Base

get "/" do

"Hello World!"

end

end

Example::Application.routes.draw do

match "/hello", :to => HelloApp

end

2.2.10 Accept Header

You can also trigger a branching on respond_to by setting the Accept header in the
request. When you do this, there’s no need to add the .:format part of the URL.
(However, note that out in the real world, it’s difficult to get this technique to work
reliably because of HTTP client/browser inconsistencies.)

Here’s a wget example that does not specify an .xml format, but does set the Accept
header to application/xml:

wget http://localhost:3000/items/show/3 -O - --header="Accept:

text/xml"

Resolving localhost... 127.0.0.1, ::1

Connecting to localhost|127.0.0.1|:3000... connected.

HTTP request sent, awaiting response...

200 OK

Length: 295 [application/xml]

<item>

<created-at type="datetime">2007-02-16T04:33:00-05:00</created-at>

<description>Violin treatise</description>

<id type="integer">3</id>

<maker>Leopold Mozart</maker>

<medium>paper</medium>

<modified-at type="datetime"></modified-at>

3. http://www.sinatrarb.com

http://www.sinatrarb.com

R
o
u
te

s
2.2 The routes.rb File 43

<year type="integer">1744</year>

</item>

The result is exactly the same as in the previous example.

2.2.11 Segment Key Constraints

Sometimes you want not only to recognize a route, but to recognize it at a finer-grained
level than just what components or fields it has. You can do this through the use of the
:constraint option (and possibly regular expressions).

For example, you could route all show requests so that they went to an error action
if their id fields were non-numerical. You’d do this by creating two routes, one that
handled numerical ids, and a fall-through route that handled the rest:

match ':controller/show/:id' => :show, :constraints => {:id => /\d+/}

match ':controller/show/:id' => :show_error

Implicit anchoring

The example constraint we’ve been using

:constraints => {:id => /\d+/}

seems like it would match "foo32bar". It doesn’t because Rails implicitly anchors it at both
ends. In fact, as of this writing, adding explicit anchors ^ and $ causes exceptions to be raised.

Apparently, it’s so common to set constraints on the :id param, that Rails 3 lets you
shorten our previous example to simply

match ':controller/show/:id' => :show, :id => /\d+/

match ':controller/show/:id' => :show_error

Regular expressions in routes can be useful, especially when you have routes that differ
from each other only with respect to the patterns of their components. But they’re not
a full-blown substitute for data-integrity checking. A URL that matches a route with
regular expressions could be like the vetting of Sarah Palin, not thorough enough.4

You probably still want to make sure that the values you’re dealing with are usable and
appropriate for your application’s domain.

From the example, you might conclude that :constraints checking applies to
elements of the params hash. However, you can also check a grab-bag of other request

4. In 2008, American presidential candidate John McCain was widely mocked and later defeated, partly because
of his ill-advised choice of running mate, the little-known Governor of Alaska, Sarah Palin.

44 Chapter 2: Routing

attributes that return a string, such as :subdomain and :referrer. Matching methods
of request that return numeric or boolean values are unsupported and will raise a
somewhat cryptic exception during route matching.

only allow users admin subdomain to do old-school routing

match ':controller/:action/:id' => :show, :constraints => {:subdomain =>

'admin'}

If for some reason you need more powerful constraints checking, you have full access to
the request object, by passing a block or any other object that responds to call as the
value of :constraints like:

protect records with id under 100

match 'records/:id' => "records#protected",

:constraints => proc {|req| req.params[:id].to_i < 100 }

2.2.12 The Root Route

At around line 50 of the default config/routes.rb (refer to Listing 2.1) you’ll see

You can have the root of your site routed with "root"

just remember to delete public/index.html.

root :to => "welcome#index"

What you’re seeing here is the root route, that is, a rule specifying what should happen
when someone connects to

http://example.com # Note the lack of "/anything" at the end!

The root route says, “I don’t want any values; I want nothing, and I already know what
controller and action I’m going to trigger!”

In a newly generated routes.rb file, the root route is commented out, because
there’s no universal or reasonable default for it. You need to decide what this nothing

URL should do for each application you write.
Here are some examples of fairly common empty route rules:

root :to => "welcome#index"

root :to => "pages#home"

root :to => "user_sessions#new"

Defining the empty route gives people something to look at when they connect to your
site with nothing but the domain name. You might be wondering why you see something
when you view a newly generated Rails application that still has its root route commented
out.

The answer is that the public folder in the root of your app corresponds to the
root-level URL, and the public directory in a newly generated Rails app contains an
index.html file.

R
o
u
te

s
2.3 Route Globbing 45

In fact, you can put any static content in the public directory hierarchy, matching
the URL scheme that you come up with for your app, and the static content will be
served up instead of routing rules triggering. Actually, the web server will serve up the
content without involving Rails at all, which is why cached content ends up under the
public directory. We’ll cover caching in Chapter 10, “Action View.”

A note on route order

Routes are consulted, both for recognition and for generation, in the order they are defined in
routes.rb. The search for a match ends when the first match is found, meaning that you have
to watch out for false positives.

2.3 Route Globbing

In some situations, you might want to grab one or more components of a route without
having to match them one by one to specific positional parameters. For example, your
URLs might reflect a directory structure. If someone connects to

/items/list/base/books/fiction/dickens

you want the items/list action to have access to all four remaining fields. But some-
times there might be only three fields:

/items/list/base/books/fiction

or five:

/items/list/base/books/fiction/dickens/little_dorrit

So you need a route that will match (in this particular case) everything after the second
URI component. You define it by globbing the route with an asterisk.

match 'items/list/*specs', :controller => 'items', :action => 'list'

Now, the products/list action will have access to a variable number of slash-delimited
URL fields, accessible via params[:specs]:

def list

specs = params[:specs] # e.g, "base/books/fiction/dickens"

end

46 Chapter 2: Routing

Globbing key-value pairs

Route globbing might provide the basis for a general mechanism for fielding ad hoc queries. Let’s
say you devise a URI scheme that takes the following form:

http://localhost:3000/items/q/field1/value1/field2/value2/...

Making requests in this way will return a list of all products whose fields match the values, based
on an unlimited set of pairs in the URL.
In other words,http://localhost:3000/items/q/year/1939/material/wood
could generate a list of all wood items made in 1939. The route that would accomplish this
would be:

match 'items/q/*specs', :controller => "items", :action => "query"

Of course, you’ll have to write a query action like this one to support the route:

def query

@items = Item.all.where(Hash[params[:specs].split("/")])

if @items.empty?

flash[:error] = "Can't find items with those properties"

end

render :action => "index"

end

How about that square brackets class method on Hash, eh? It converts a one-dimensional array
of key/value pairs into a hash! Further proof that in-depth knowledge of Ruby is a prerequisite
for becoming an expert Rails developer.

2.4 Named Routes

The topic of named routes almost deserves a chapter of its own. In fact, what you learn
here will feed directly into our examination of REST-related routing in Chapter 3.

The idea of naming a route is basically to make life easier on you, the programmer.
There are no outwardly visible effects as far as the application is concerned. When you
name a route, a new method gets defined for use in your controllers and views; the
method is called name_url (with name being the name you gave the route), and calling
the method, with appropriate arguments, results in a URL being generated for the route.
In addition, a method called name_path also gets created; this method generates just
the path part of the URL, without the protocol and host components.

2.4.1 Creating a Named Route

The way you name a route is by using the optional :as parameter in a rule:

match 'help' => 'help#index', :as => 'help'

http://localhost:3000/items/q/field1/value1/field2/value2/...
http://localhost:3000/items/q/year/1939/material/wood

R
o
u
te

s
2.4 Named Routes 47

In this example, you’ll get methods called help_url and help_path, which you can
use wherever Rails expects a URL or URL components:

link_to "Help", help_path

And, of course, the usual recognition and generation rules are in effect. The pattern
string consists of just the static string component "help". Therefore, the path you’ll see
in the hyperlink will be

/help

When someone clicks on the link, the index action of the help controller will be
invoked.

Xavier says . . .

You can test named routes in the console directly using the special app object.

>> app.clients_path

=> "/clients"

>> app.clients_url

=> "http://www.example.com/clients"

Named routes save you some effort when you need a URL generated. A named route
zeros in directly on the route you need, bypassing the matching process that would be
needed otherwise. That means you don’t have to provide as much detail as you otherwise
would, but you still have to provide values for any segment keys in the route’s pattern
string that cannot be inferred.

2.4.2 name path vs. name url

When you create a named route, you’re actually creating at least two route helper
methods. In the preceding example, those two methods are help_url and help_path.
The difference is that the _url method generates an entire URL, including protocol and
domain, whereas the _path method generates just the path part (sometimes referred to
as an absolute path or a relative URL).

According to the HTTP spec, redirects should specify a URI, which can be inter-
preted (by some people) to mean a fully-qualified URL.5 Therefore, if you want to be
pedantic about it, you probably should always use the _url version when you use a
named route as an argument to redirect_to in your controller code.

5. http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

48 Chapter 2: Routing

The redirect_to method works perfectly with the relative URLs generated by
_path helpers, making arguments about the matter kind of pointless. In fact, other than
redirects, permalinks, and a handful of other edge cases, it’s the Rails way to use _path
instead of _url. It produces a shorter string and the user agent (browser or otherwise)
should be able to infer the fully qualified URL whenever it needs to do so, based on the
HTTP headers of the request, a base element in the document, or the URL of the request.

As you read this book and as you examine other code and other examples, the main
thing to remember is that help_url and help_path are basically doing the same thing.
I tend to use the _url style in general discussions about named route techniques, but to
use _path in examples that occur inside view templates (for example, with link_to and
form_for). It’s mostly a writing-style thing, based on the theory that the URL version
is more general and the path version more specialized. In any case, it’s good to get used
to seeing both and getting your brain to view them as very closely connected.

Using literal URLs

You can, if you wish, hard-code your paths and URLs as string arguments to link_to,
redirect_to, and friends. For example, instead of

link_to "Help", :controller => "main", :action => "help"

you can write

link_to "Help", "/main/help"

However, using a literal path or URL bypasses the routing system. If you write literal URLs, you’re
on your own to maintain them. (You can of course use Ruby’s string interpolation techniques to
insert values, if that’s appropriate for what you’re doing, but really stop and think about whether
you are reinventing Rails functionality if you go down that path.)

2.4.3 What to Name Your Routes

As we’ll learn in Chapter 3, the best way to figure out what names you should use for your
routes is to follow REST conventions, which are baked into Rails and simplify things
greatly. Otherwise, you’ll need to think top-down; that is, think about what you want
to write in your application code, and then create the routes that will make it possible.

Take, for example, this call to link_to

link_to "Auction of #{item.name}",

:controller => "items",

:action => "show",

:id => item.id

The routing rule to match that path is (a generic route):

R
o
u
te

s
2.4 Named Routes 49

match "item/:id" => "items#show"

It sure would be nice to shorten that link_to code. After all, the routing rule already
specifies the controller and action. This is a good candidate for a named route for items:

match "item/:id" => "items#show", :as => "item"

Lets improve the situation by introducing item_path in the call to link_to:

link_to "Auction of #{item.name}", item_path(:id => item.id)

Giving the route a name is a shortcut; it takes us straight to that route, without a long
search and without having to provide a thick description of the route’s hard-coded
parameters.

2.4.4 Argument Sugar

In fact, we can make the argument to item_path even shorter. If you need to supply an
id number as an argument to a named route, you can just supply the number, without
spelling out the :id key:

link_to "Auction of #{item.name}", item_path(item.id)

And the syntactic sugar goes even further: You can and should provide objects and Rails
will grab the id automatically.

link_to "Auction of #{item.name}", item_path(item)

This principle extends to other segment keys in the pattern string of the named route.
For example, if you’ve got a route like

match "auction/:auction_id/item/:id" => "items#show", :as => "item"

you’d be able to call it like

link_to "Auction of #{item.name}", item_path(auction, item)

and you’d get something like this as your path (depending on the exact id numbers):

/auction/5/item/11

Here, we’re letting Rails infer the ids of both an auction object and an item object, which
it does by calling to_param on whatever non-hash arguments you pass into named route
helpers. As long as you provide the arguments in the order in which their ids occur in
the route’s pattern string, the correct values will be dropped into place in the generated
path.

50 Chapter 2: Routing

2.4.5 A Little More Sugar with Your Sugar?

Furthermore, it doesn’t have to be the id value that the route generator inserts into the
URL. As alluded to a moment ago, you can override that value by defining a to_param
method in your model.

Let’s say you want the description of an item to appear in the URL for the auction
on that item. In the item.rb model file, you would override to_params; here, we’ll
override it so that it provides a “munged” (stripped of punctuation and joined with
hyphens) version of the description, courtesy of the parameterize method added to
strings in Active Support.

def to_param

description.parameterize

end

Subsequently, the method call item_path(auction, item) will produce something
like

/auction/3/item/cello-bow

Of course, if you’re putting things like "cello-bow" in a path field called :id, you
will need to make provisions to dig the object out again. Blog applications that use this
technique to create slugs for use in permanent links often have a separate database column
to store the munged version of the title that serves as part of the path. That way, it’s
possible to do something like

Item.find_by_munged_description(params[:id])

to unearth the right item. (And yes, you can call it something other than :id in the
route to make it clearer!)

Courtenay says . . .

Why shouldn’t you use numeric IDs in your URLs? First, your competitors can see just how
many auctions you create. Numeric consecutive IDs also allow people to write automated spiders
to steal your content. It’s a window into your database. And finally, words in URLs just look
better.

2.5 Scoping Routing Rules

Rails gives you a variety of ways to bundle together related routing rules concisely.
They’re all based on usage of the scope method and its various shortcuts. For instance,

R
o
u
te

s
2.5 Scoping Routing Rules 51

let’s say that you want to define the following routes for auctions:

match 'auctions/new' => 'auctions#new'

match 'auctions/edit/:id' => 'auctions#edit'

match 'auctions/pause/:id' => 'auctions#pause'

You could DRY up your routes.rb file by using the scope method instead:

scope :controller => :auctions do

match 'auctions/new' => :new

match 'auctions/edit/:id' => :edit

match 'auctions/pause/:id' => :pause

end

Then you would DRY it up again by adding the :path argument to scope:

scope :path => '/auctions', :controller => :auctions do

match 'new' => :new

match 'edit/:id' => :edit

match 'pause/:id' => :pause

end

2.5.1 Controller

The scope method accepts a :controller option (or it can interpret a symbol as its
first argument to assume a controller). Therefore, the following two scope definitions
are identical:

scope :controller => :auctions do

scope :auctions do

To make it more obvious what’s going on, you can use the controller method instead
of scope, in what’s essentially syntactic sugar:

controller :auctions do

2.5.2 Path Prefix

The scope method accepts a :path option (or it can interpret a string as its first parameter
to mean a path prefix). Therefore, the following two scope definitions are identical:

scope :path => '/auctions' do

scope '/auctions' do

52 Chapter 2: Routing

2.5.3 Name Prefix

The scope method also accepts a :as option that affects the way that named route URL
helper methods are generated. The route

scope :auctions, :as => 'admin' do

match 'new' => :new, :as => 'new_auction'

end

will generate a named route URL helper method called admin_new_auction_url.

2.5.4 Namespaces

URLs can be grouped by using the namespace method, which is syntactic sugar that
rolls up module, name prefix, and path prefix settings into one declaration. The imple-
mentation of the namespace method converts its first argument into a string, which is
why in some example code you’ll see it take a symbol.

namespace :auctions, :controller => :auctions do

match 'new' => :new

match 'edit/:id' => :edit

match 'pause/:id' => :pause

end

2.5.5 Bundling Constraints

If you find yourself repeating similar segment key constraints in related routes, you can
bundle them together using the :constraints option of the scope method:

scope :controller => :auctions, :constraints => {:id => /\d+/} do

match 'edit/:id' => :edit

match 'pause/:id' => :pause

end

It’s likely that only a subset of rules in a given scope need constraints applied to them. In
fact, routing will break if you apply a constraint to a rule that doesn’t take the segment
keys specified. Since you’re nesting, you probably want to use the constraintsmethod,
which is just more syntactic sugar to tighten up the rule definitions.

scope :path => '/auctions', :controller => :auctions do

match 'new' => :new

constraints :id => /\d+/ do

match 'edit/:id' => :edit

match 'pause/:id' => :pause

end

end

R
o
u
te

s
2.6 Listing Routes 53

To enable modular reuse, you may supply the constraints method with an object that
has a matches? method.

class DateFormatConstraint

def self.matches?(request)

request.params[:date] =~ /\A\d{4}-\d\d-\d\d\z/ # YYYY-MM-DD

end

end

in routes.rb

constraints(DateFormatConstraint) do

match 'since/:date' => :since

end

In this particular example (DateFormatConstraint), if an errant or malicious user
input a badly formatted date parameter via the URL, Rails will respond with a 404
status instead of causing an exception to be raised.

2.6 Listing Routes

A handy route listing utility is included in all Rails projects as a standard rake task.
Invoke it by typing rake routes in your application directory. For example, here is
the output for a routes file containing just a single resources :products rule:

$ rake routes

products GET /products(.:format) {:controller=>"products",

:action=>"index"}

POST /products(.:format) {:controller=>"products",

:action=>"create"}

new_product GET /products/new(.:format) {:controller=>"products",

:action=>"new"}

product GET /products/:id(.:format) {:controller=>"products",

:action=>"show"}

PUT /products/:id(.:format) {:controller=>"products",

:action=>"update"}

DELETE /products/:id(.:format) {:controller=>"products",

:action=>"destroy"}

edit_product GET /products/:id/edit(.:format) {:controller=>"products",

:action=>"edit"}

The output is a table with four columns. The first two columns are optional and contain
the name of the route and HTTP method constraint, if they are provided. The third
column contains the URL mapping string. Finally, the fourth column indicates the
controller and action method that the route maps to, plus constraints that have been
defined on that routes segment keys (if any).

54 Chapter 2: Routing

Note that the routes task checks for an optional CONTROLLER environment variable

rake routes CONTROLLER=products

would only lists the routes related to ProductsController.

2.7 Conclusion

The first half of the chapter helped you to fully understand generic routing based on
match rules and how the routing system has two purposes:

• Recognizing incoming requests and mapping them to a corresponding controller
action, along with any additional variable receptors

• Recognizing URL parameters in methods such as link_to and matching them up
to a corresponding route so that proper HTML links can be generated

We built on our knowledge of generic routing by covering some advanced techniques
such as using regular expressions and globbing in our route definitions, plus the bundling
of related routes under shared scope options.

Finally, before moving on, you should make sure that you understand how named
routes work and why they make your life easier as a developer by allowing you to write
more concise view code. As you’ll see in the next chapter, once we start defining batches
of related named routes, we’re on the cusp of delving into REST.

R
E
S
T

CHAPTER 3

REST, Resources, and Rails

Before REST came I (and pretty much everyone else) never really knew where to put stuff.

—Jonas Nicklas on the Ruby on Rails mailing list

With version 1.2, Rails introduced support for designing APIs consistent with the REST
style. Representational State Transfer (REST) is a complex topic in information theory,
and a full exploration of it is well beyond the scope of this chapter.1 We’ll touch on
some of the keystone concepts, however. And in any case, the REST facilities in Rails
can prove useful to you even if you’re not a REST expert or devotee.

The main reason is that one of the inherent problems that all web developers face is
deciding how to name and organize the resources and actions of their application. The
most common actions of all database-backed applications happen to fit well into the
REST paradigm.

3.1 REST in a Rather Small Nutshell

REST is described by its creator, Roy T. Fielding, as a network architectural style, specif-
ically the style manifested in the architecture of the World Wide Web. Indeed, Fielding
is not only the creator of REST but also one of the authors of the HTTP protocol itself.
REST and the web have a very close relationship.

1. For those interested in REST, the canonical text is Roy Fielding’s dissertation, which you can find at
http://www.ics.uci.edu/∼fielding/pubs/dissertation/top.htm. In particular, you’ll probably want
to focus on Chapters 5 and 6 of the dissertation, which cover REST and its relation to HTTP. You’ll also find
an enormous amount of information, and links to more, on the REST wiki at http://rest.blueoxen.net/
cgi-bin/wiki.pl.

55

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://rest.blueoxen.net/cgi-bin/wiki.pl
http://rest.blueoxen.net/cgi-bin/wiki.pl

56 Chapter 3: REST, Resources, and Rails

Fielding defines REST as a series of constraints imposed upon the interaction between
system components. Basically, you start with the general proposition of machines that
can talk to each other, and you start ruling some practices in and others out by imposing
constraints that include (among others):

• Use of a client-server architecture

• Stateless communication

• Explicit signaling of response cacheability

• Use of HTTP request methods such as GET, POST, PUT, and DELETE

The World Wide Web allows for REST-compliant communication. It also allows for
violations of REST principles; the constraints aren’t always all there unless you put them
there. As for this chapter, the most important thing you have to understand is that
REST is designed to help you provide services using the native idioms and constructs of
HTTP. You’ll find, if you look for it, lots of discussion comparing REST to, for example,
SOAP—the thrust of the pro-REST argument being that HTTP already enables you to
provide services, so you don’t need a semantic layer on top of it. Just use what HTTP
already gives you.

One of the allures of REST is that it scales relatively well for big systems, like
the web. Another is that it encourages—mandates, even—the use of stable, long-lived
identifiers (URIs). Machines talk to each other by sending requests and responses labeled
with these identifiers. Messages consist of representations (manifestations in text, XML,
graphic format, and so on) of resources (high-level, conceptual descriptions of content)
or simply HTTP headers.

Ideally at least, when you ask a machine for an XML representation of a resource—
say, Romeo and Juliet—you’ll use the same identifier every time and the same request
metadata indicating that you want XML, and you’ll get the same response. And if it’s not
the same response, there’s a reason—like, the resource you’re retrieving is a changeable
one (“The current transcript for Student #3994,” for example).

3.2 Resources and Representations

The REST style characterizes communication between system components (where a
component is, say, a web browser or a server) as a series of requests to which the responses
are representations of resources.

R
E
S
T

3.3 REST in Rails 57

A resource, in this context, is a “conceptual mapping” (Fielding). Resources them-
selves are not tied to a database, a model, or a controller. Examples of resources include

• The current time of day

• A library book’s borrowing history

• The entire text of The Little Prince

• A map of Jacksonville Beach

• The inventory of a store

A resource may be singular or plural, changeable (like the time of day) or fixed (like the
text of The Little Prince). It’s basically a high-level description of the thing you’re trying
to get hold of when you submit a request.

What you actually do get hold of is never the resource itself, but a representation of
it. This is where REST unfolds onto the myriad content types and actual deliverables
that are the stuff of the web. A resource may, at any given point, be available in any
number of representations (including zero). Thus your site might offer a text version of
The Little Prince, but also an audio version. Those two versions would be understood as
the same resource, and would be retrieved via the same identifier (URI). The difference
in content type—one representation vs. another—would be negotiated separately in the
request.

3.3 REST in Rails

The REST support in Rails consists of methods to define resources in the routing
system, designed to impose a particular style and order and logic on your controllers
and, consequently, on the way the world sees your application. There’s more to it than
just a set of naming conventions (though there’s that too). In the large scheme of things,
the benefits that accrue to you when you use Rails’s REST support fall into two categories:

• Convenience and automatic best practices for you

• A RESTful interface to your application’s services for everyone else

You can reap the first benefit even if you’re not concerned with the second. In fact, that’s
going to be our focus here: what the REST support in Rails can do for you in the realm
of making your code nicer and your life as a Rails developer easier.

58 Chapter 3: REST, Resources, and Rails

I don’t mean to minimize the importance of REST itself, nor the seriousness of
the endeavor of providing REST-based services. Rather, it’s an expedient; we can’t talk
about everything, and this section of the book is primarily about routing and how to do
it, so we’re going to favor looking at REST in Rails from that perspective.

Getting back to practical matters, the focus of the rest of this chapter will be showing
you how REST support works in Rails opening the door to further study and practice
including the study of Fielding’s dissertation and the theoretical tenets of REST. We
won’t cover everything here, but what we do cover will be onward compatible with the
wider topic.

The story of REST and Rails starts with CRUD. . .

3.4 Routing and CRUD

The acronym CRUD (Create Read Update Delete) is the classic summary of the spectrum
of database operations. It’s also a kind of rallying cry for Rails practitioners. Because we
address our databases through abstractions, we’re prone to forget how simple it all is.
This manifests itself mainly in excessively creative names for controller actions. There’s
a temptation to call your actions add_item and replace_email_address and things
like that. But we needn’t, and usually shouldn’t, do this. True, the controller does not
map to the database, the way the model does. But things get simpler when you name
your actions after CRUD operations, or as close to the names of those operations as you
can get.

The routing system does not force you to implement your app’s CRUD functionality
in any consistent manner. You can create a route that maps to any action, whatever the
action’s name. Choosing CRUD names is a matter of discipline. Except . . . when you
use the REST facilities offered by Rails, it happens automatically.

REST in Rails involves standardization of action names. In fact, the heart of the
Rails’s REST support is a technique for creating bundles of named routes automatically—
named routes that are bundled together to point to a specific, predetermined set of
actions.

Here’s the logic. It’s good to give CRUD-based names to your actions. It’s convenient
and elegant to use named routes. The REST support in Rails gives you named routes
that point to CRUD-based action names. Therefore, using the REST facilities gives you
a shortcut to some best practices.

Shortcut hardly describes how little work you have to do to get a big payoff. If you put

resources :auctions

R
E
S
T

3.4 Routing and CRUD 59

into your config/routes.rb file, you will have created four named routes, which, in
a manner to be described in this chapter, connect to seven controller actions. And those
actions have nice CRUD-like names, as you will see.

3.4.1 REST Resources and Rails

Like most of Rails, support for RESTful applications is “opinionated”; that is, it offers
a particular way of designing a REST interface, and the more you play along, the more
convenience you reap from it. Most Rails applications are database-backed, and the Rails
take on REST tends to associate a resource very closely with an Active Record model, or
a model/controller stack.

In fact, you’ll hear people using the terminology fairly loosely. For instance, they’ll
say that they have created a Book resource. What they mean, in most cases, is that they
have created a Book model, a book controller with a set of CRUD actions, and some
named routes pertaining to that controller (courtesy of resources :books). You can
have a Book model and controller, but what you actually present to the world as your
resources, in the REST sense, exists at a higher level of abstraction: The Little Prince,
borrowing history, and so on.

The best way to get a handle on the REST support in Rails is by going from the
known to the unknown. In this case, from the topic of named routes to the more
specialized topic of REST.

3.4.2 From Named Routes to REST Support

When we first looked at named routes, we saw examples where we consolidated things
into a route name. By creating a route like

match 'auctions/:id' => "auction#show", :as => 'auction'

you gain the ability to use nice helper methods in situations like

link_to item.description, auction_path(item.auction)

The route ensures that a path will be generated that will trigger the show action of the
auctions controller. The attraction of this kind of named route is that it’s concise and
readable.

Now, think in terms of CRUD. The named route auction_path is a nice fit for
a show (the R in CRUD) action. What if we wanted similarly nicely named routes for
the create, update, and delete actions?

60 Chapter 3: REST, Resources, and Rails

Well, we’ve used up the route name auction_path on the show action. We could
make up names like auction_delete_path and auction_create_path but those
are cumbersome. We really want to be able to make a call to auction_path and have
it mean different things, depending on which action we want the URL to point to.

We could differentiate between the singular (auction_path) and the plural
(auctions_path). A singular URL makes sense, semantically, when you’re doing some-
thing with a single, existing auction object. If you’re doing something with auctions in
general, the plural makes more sense.

The kinds of things you do with auctions in general include creating. The create
action will normally occur in a form:

form_tag auctions_path

It’s plural because we’re not saying “perform an action with respect to a particular
auction,” but rather “with respect to the collection of auctions, perform the action of
creation.” Yes, we’re creating one auction, not many. But at the time we make the call
to our named route, auctions_path, we’re addressing auctions in general.

Another case where you might want a plural named route is when you want an
overview of all of the objects of a particular kind, or at least, some kind of general view,
rather than a display of a particular object. This kind of general view is usually handled
with an index action. These index actions typically load a lot of data into one or more
variables, and the corresponding view displays it as a list or table (possibly more than one).

Here again, we’d like to be able to say:

link_to "Click here to view all auctions", auctions_path

Already, though, the strategy of breaking auction_path out into singular and plural
has hit the wall: We’ve got two places where we want to use the plural named route.
One is create; the other is index. But they’re both going to look like

/auctions

How is the routing system going to know that when we use auctions_path as a link
versus using it in a form that we mean the create action and not index? We need
another qualifier, another flag, another variable on which to branch.

Luckily, we’ve got one.

3.4.3 Reenter the HTTP Verb

Form submissions are POSTs by default. Index actions are GETs. That means that we
need to get the routing system to realize that

/auctions submitted in a GET request!

R
E
S
T

3.5 The Standard RESTful Controller Actions 61

versus

/auctions submitted in a POST request!

are two different things. We also have to get the routing system to generate the same
URL—/auctions—but with a different HTTP request method, depending on the
circumstances.

This is what the REST facility of Rails routing does for you. It allows you to stipulate
that you want /auctions routed differently, depending on the HTTP request method.
It lets you define named routes with the same name, but with intelligence about their
HTTP verbs. In short, it uses HTTP verbs to provide that extra data slot necessary to
achieve everything you want to achieve in a concise way.

The way you do this is by using a special routing method: resources. Here’s what
it would look like for auctions:

resources :auctions

That’s it. Making this one call inside routes.rb is the equivalent of defining four
named routes. And if you mix and match those four named routes with a variety of
HTTP request methods, you end up with seven useful—very useful—permutations.

3.5 The Standard RESTful Controller Actions

Calling resources :auctions involves striking a kind of deal with the routing system.
The system hands you four named routes. Between them, these four routes point to seven
controller actions, depending on HTTP request method. In return, you agree to use very
specific names for your controller actions: index, create, show, update, destroy, new,
edit.

It’s not a bad bargain, since a lot of work is done for you and the action names you
have to use are nicely CRUD-like.

Table 3.1 summarizes what happens. It’s a kind of “multiplication table” showing
you what you get when you cross a given RESTful named route with a given HTTP
request method. Each box (the nonempty ones, that is) shows you, first, the URL that
the route generates and, second, the action that gets called when the route is recognized.
(The table lists _path methods rather than _url ones, but you get both.)

(The edit and new actions have unique named routes, and their URLs have a special
syntax.)

Since named routes are now being crossed with HTTP request methods, you’ll
need to know how to specify the request method when you generate a URL, so that your
GET’d clients_url and your POST’d clients_url don’t trigger the same controller

62 Chapter 3: REST, Resources, and Rails

Table 3.1 RESTful Routes Table Showing Helpers, Paths, and the Resulting Controller Action

Helper Method GET POST PUT DELETE

client—path(client) /clients/1 show /clients/1 update /clients/1 destroy
clients—path /clients index /clients create
edit—client— /clients/1/edit edit
path(client)

new—client—path /clients/new new

action. Most of what you have to do in this regard can be summed up in a few rules:

1. The default request method is GET.
2. In a form_tag or form_for call, the POST method will be used automatically.
3. When you need to (which is going to be mostly with PUT and DELETE operations),

you can specify a request method along with the URL generated by the named route.

An example of needing to specify a DELETE operation is a situation when you want to
trigger a destroy action with a link:

link_to "Delete", auction_path(auction), :method => :delete

Depending on the helper method you’re using (as in the case of form_for), you might
have to put the method inside a nested hash:

form_for "auction", :url => auction_path(auction),

:html => { :method => :put } do |f|

That last example, which combined the singular named route with the PUT method, will
result in a call to the update action when submitting the form (as per row 2, column 4 of
Table 3.1). You don’t normally have to program this functionality specifically, because
as we’ll see later in the book, Rails automatically figures out whether you need a POST
or PUT if you pass an object to form helpers.

3.5.1 Singular and Plural RESTful Routes

As you may have noticed, some of the RESTful routes are singular; some are plural. The
logic is as follows:

1. The routes for show, new, edit, and destroy are singular, because they’re working
on a particular resource.

2. The rest of the routes are plural. They deal with collections of related resources.

R
E
S
T

3.5 The Standard RESTful Controller Actions 63

The singular RESTful routes require an argument, because they need to be able to figure
out the id of the member of the collection referenced.

item_url(item) # show, update, or destroy, depending on HTTP verb

You don’t have to call the id method on item. Rails will figure it out (by calling
to_param on the object passed to it).

3.5.2 The Special Pairs: new/create and edit/update

As Table 3.1 shows, new and edit obey somewhat special RESTful naming conventions.
The reason for this has to do with create and update, and how new and edit relate
to them.

Typically, create and update operations involve submitting a form. That means
that they really involve two actions—two requests—each:

1. The action that results in the display of the form
2. The action that processes the form input when the form is submitted

The way this plays out with RESTful routing is that thecreate action is closely associated
with a preliminary new action, and update is associated with edit. These two actions,
new and edit, are really assistant actions: All they’re supposed to do is show the user a
form, as part of the process of creating or updating a resource.

Fitting these special two-part scenarios into the landscape of resources is a little tricky.
A form for editing a resource is not, itself, really a resource. It’s more like a pre-resource. A
form for creating a new resource is sort of a resource, if you assume that being new—that
is, nonexistent—is something that a resource can do, and still be a resource!

That line of reasoning might be a little too philosophical to be useful. The bottom
line, as implemented in RESTful Rails, is the following: The new action is understood
to be giving you a new, single (as opposed to plural) resource. However, since the logical
verb for this transaction is GET, and GETting a single resource is already spoken for by
the show action, new needs a named route of its own.

That’s why you have to use

link_to "Create a new item", new_item_path

to get a link to the items/new action.
The edit action is understood not to be giving you a full-fledged resource, exactly,

but rather a kind of edit flavor of the show resource. So it uses the same URL as show, but
with a kind of modifier, in the form of /edit, hanging off the end, which is consistent

64 Chapter 3: REST, Resources, and Rails

with the URL form for new:

/items/5/edit

The corresponding named route is edit_item_url(@item). As with new, the named
route for edit involves an extra bit of name information, to differentiate it from the
implied show of the existing RESTful route for GETting a single resource.

3.5.3 The PUT and DELETE Cheat

We have just seen how Rails routes PUT and DELETE requests. Some HTTP clients
are able to use said verbs, but forms in web browsers can’t be submitted using anything
other than a POST. Rails provides a hack that is nothing to worry about, other than
being aware of what’s going on.

A PUT or DELETE request originating in a browser, in the context of REST in
Rails, is actually a POST request with a hidden field called _method set to either "put"
or "delete". The Rails application processing the request will pick up on this, and
route the request appropriately to the update or destroy action.

You might say, then, that the REST support in Rails is ahead of its time. REST
components using HTTP should understand all of the request methods. They don’t, so
Rails forces the issue. As a developer trying to get the hang of how the named routes map
to action names, you don’t have to worry about this little cheat. And hopefully some
day it won’t be necessary any more. (HTML5 in particular adds PUT and DELETE as
valid method attributes for forms.)

3.5.4 Limiting Routes Generated

It’s possible to add :except and :only options to the call to resources in order to
limit the routes generated.

resources :clients, :except => [:index]

resources :clients, :only => [:new, :create]

3.6 Singular Resource Routes

In addition to resources, there’s also a singular (or singleton) form of resource routing:
resource. It’s used to represent a resource that only exists once in its given context.

A singleton resource route at the top level of your routes can be appropriate when
there’s only one resource of its type for the whole application, perhaps something like a
per-user profile.

resource :profile

R
E
S
T

3.7 Nested Resources 65

You get almost the full complement of resource routes, all except the collection route
(index). Note that the method name resource, the argument to that method, and all
the named routes generated are in the singular.

$ rake routes

profile GET /profile(.:format) {:controller=>"profiles",

:action=>"show"}

POST /profile(.:format) {:controller=>"profiles",

:action=>"create"}

PUT /profile(.:format) {:controller=>"profiles",

:action=>"update"}

DELETE /profile(.:format) {:controller=>"profiles",

:action=>"destroy"}

new_profile GET /profile/new(.:format) {:controller=>"profiles",

:action=>"new"}

edit_profile GET /profile/edit(.:format) {:controller=>"profiles",

:action=>"edit"}

It’s assumed that you’re in a context where it’s meaningful to speak of the profile—the
one and only—because there’s a user to which the profile is scoped. The scoping itself
is not automatic; you have to authenticate the user and retrieve the profile from (and/or
save it to) the database explicitly. There’s no real magic or mind-reading here; it’s just
an additional routing technique at your disposal if you need it.

3.7 Nested Resources

Let’s say you want to perform operations on bids: create, edit, and so forth. You know
that every bid is associated with a particular auction. That means that whenever you do
anything to a bid, you’re really doing something to an auction/bid pair—or, to look at
it another way, an auction/bid nest. Bids are at the bottom of a drill-down hierarchical
structure that always passes through an auction.

What you’re aiming for here is a URL that looks like

/auctions/3/bids/5

What it does depends on the HTTP verb it comes with, of course. But the semantics of
the URL itself are: the resource that can be identified as bid 5, belonging to auction 3.

Why not just go for bids/5 and skip the auction? For a couple of reasons. First,
the URL is more informative—longer, it’s true, but longer in the service of telling you
something about the resource. Second, thanks to the way RESTful routes are engi-
neered in Rails, this kind of URL gives you immediate access to the auction id, via
params[:auction_id].

66 Chapter 3: REST, Resources, and Rails

To created nested resource routes, put this in routes.rb:

resources :auctions do

resources :bids

end

What that tells the mapper is that you want RESTful routes for auction resources; that
is, you want auctions_url, edit_auction_url, and all the rest of it. You also want
RESTful routes for bids: auction_bids_url, new_auction_bid_url, and so forth.

However, the nested resource command also involves you in making a promise.
You’re promising that whenever you use the bid named route helpers, you will provide
a auction resource in which they can be nested. In your application code, that translates
into an argument to the named route method:

link_to "See all bids", auction_bids_path(auction)

When you make that call, you enable the routing system to add the /auctions/3

part before the /bids part. And, on the receiving end—in this case, in the action
bids/index, which is where that URL points—you’ll find the id of auction in
params[:auction_id]. (It’s a plural RESTful route, using GET. See Table 3.1 again
if you forgot.)

You can nest to any depth. Each level of nesting adds one to the number of arguments
you have to supply to the nested routes. This means that for the singular routes (show,
edit, destroy), you need at least two arguments:

link_to "Delete this bid", auction_bid_path(auction, bid), :method =>

:delete

This will enable the routing system to get the information it needs (essentially
auction.id and bid.id) in order to generate the route.

If you prefer, you can also make the same call using hash-style method arguments,
but most people don’t because it’s longer code:

auction_bid_path(:auction => auction, :bid => bid)

3.7.1 RESTful Controller Mappings

Something we haven’t yet explicitly discussed is how RESTful routes are mapped to a
given controller. It was just presented as something that happens automatically, which
in fact it does, based on the name of the resource.

Going back to our recurring example, given the following nested route:

resources :auctions do

resources :bids

end

R
E
S
T

3.7 Nested Resources 67

there are two controllers that come into play, the AuctionsController and the
BidsController.

3.7.2 Considerations

Is nesting worth it? For single routes, a nested route usually doesn’t tell you anything
you wouldn’t be able to figure out anyway. After all, a bid belongs to an auction.

That means you can access bid.auction_id just as easily as you can
params[:auction_id], assuming you have a bid object already.

Furthermore, the bid object doesn’t depend on the nesting. You’ll get params[:id]
set to 5, and you can dig that record out of the database directly. You don’t need to
know what auction it belongs to.

Bid.find(params[:id])

A common rationale for judicious use of nested resources, and the one most often
issued by David, is the ease with which you can enforce permissions and context-based
constraints. Typically, a nested resource should only be accessible in the context of its
parent resource, and it’s really easy to enforce that in your code based on the way that
you load the nested resource using the parent’s Active Record association.

auction = Auction.find(params[:auction_id])

bid = auction.bids.find(params[:id]) # prevents auction/bid mismatch

If you want to add a bid to an auction, your nested resource URL would be

http://localhost:3000/auctions/5/bids/new

The auction is identified in the URL rather than having to clutter your new bid form
data with hidden fields or resorting to non-RESTful practices.

3.7.3 Deep Nesting?

Jamis Buck is a very influential figure in the Rails community, almost as much as David
himself. In February 2007, via his blog,2 he basically told us that deep nesting was a
bad thing, and proposed the following rule of thumb: Resources should never be nested
more than one level deep.

That advice is based on experience and concerns about practicality. The helper
methods for routes nested more than two levels deep become long and unwieldy. It’s
easy to make mistakes with them and hard to figure out what’s wrong when they don’t
work as expected.

2. http://weblog.jamisbuck.org/2007/2/5/nesting-resources

http://localhost:3000/auctions/5/bids/new
http://weblog.jamisbuck.org/2007/2/5/nesting-resources

68 Chapter 3: REST, Resources, and Rails

Assume that in our application example, bids have multiple comments. We could
nest comments under bids in the routing like this:

resources :auctions do

resources :bids do

resources :comments

end

end

Instead, Jamis would have us do the following:

resources :auctions do

resources :bids

end

resources :bids do

resources :comments

end

resources :comments

Notice that each resource (except auctions) is defined twice, once in the top-level name-
space, and one in its context. The rationale? When it comes to parent-child scope, you
really only need two levels to work with. The resulting URLs are shorter and the helper
methods are easier to work with.

auctions_path # /auctions

auctions_path(1) # /auctions/1

auction_bids_path(1) # /auctions/1/bids

bid_path(2) # /bids/2

bid_comments_path(3) # /bids/3/comments

comment_path(4) # /comments/4

I personally don’t follow Jamis’s guideline all the time in my projects, but I have noticed
that limiting the depth of your nested resources helps with the maintainability of your
codebase in the long run.

Courtenay says . . .

Many of us disagree with the venerable Jamis. Want to get into fisticuffs at a Rails conference?
Ask people whether they believe routes should be nested more than one layer deep.

3.7.4 Shallow Routes

As of Rails 2.3 resource routes accept a :shallow option that helps to shorten URLs
where possible. The goal is to leave off parent collection URL segments where they are

R
E
S
T

3.8 RESTful Route Customizations 69

not needed. The end result is that the only nested routes generated are for the :index,
:create, and :new actions. The rest are kept in their own shallow URL context.

It’s easier to illustrate than to explain, so let’s define a nested set of resources and set
:shallow to true:

resources :auctions, :shallow => true do

resources :bids do

resources :comments

end

end

alternatively coded as follows (if you’re block-happy)

resources :auctions do

shallow do

resources :bids do

resources :comments

end

end

end

The resulting routes are:

GET /auctions(.:format)

auctions POST /auctions(.:format)

new_auction GET /auctions/new(.:format)

GET /auctions/:id(.:format)

PUT /auctions/:id(.:format)

auction DELETE /auctions/:id(.:format)

edit_auction GET /auctions/:id/edit(.:format)

GET /auctions/:auction_id/bids(.:format)

auction_bids POST /auctions/:auction_id/bids(.:format)

new_auction_bid GET /auctions/:auction_id/bids/new(.:format)

GET /bids/:bid_id/comments(.:format)

bid_comments POST /bids/:bid_id/comments(.:format)

new_bid_comment GET /bids/:bid_id/comments/new(.:format

GET /comments/:id(.:format)

PUT /comments/:id(.:format)

comment DELETE /comments/:id(.:format)

edit_comment GET /comments/:id/edit(.:format)

If you analyze the routes generated carefully, you’ll notice that the nested parts of the
URL are only included when they are needed to determine what data to display.

3.8 RESTful Route Customizations

Rails’s RESTful routes give you a pretty nice package of named routes, mapped to useful,
common, controller actions—the CRUD superset you’ve already learned about. Some-
times, however, you want to customize things a little more, while still taking advantage of

70 Chapter 3: REST, Resources, and Rails

the RESTful route naming conventions and the multiplication table approach to mixing
named routes and HTTP request methods.

The techniques for doing this are useful when, for example, you’ve got more than one
way of viewing a resource that might be described as showing. You can’t (or shouldn’t)
use the show action itself for more than one such view. Instead, you need to think in
terms of different perspectives on a resource, and create URLs for each one.

3.8.1 Extra Member Routes

For example, let’s say we want to make it possible to retract a bid. The basic nested route
for bids looks like this:

resources :auctions do

resources :bids

end

We’d like to have a retract action that shows a form (and perhaps does some screening
for retractability). The retract isn’t the same as destroy; it’s more like a portal to
destroy. It’s similar to edit, which serves as a form portal to update. Following the
parallel with edit/update, we want a URL that looks like

/auctions/3/bids/5/retract

and a helper method called retract_auction_bid_url. The way you achieve this is
by specifying an extra member route for the bids, as in Listing 3.1

Listing 3.1 Adding an extra member route

resources :auctions do

resources :bids do

member do

get :retract

end

end

end

Then you can add a retraction link to your view using

link_to "Retract", retract_bid_path(auction, bid)

and the URL generated will include the /retract modifier. That said, you should
probably let that link pull up a retraction form (and not trigger the retraction process
itself!). The reason I say that is because, according to the tenets of HTTP, GET requests
should not modify the state of the server; that’s what POST requests are for.

R
E
S
T

3.8 RESTful Route Customizations 71

So how do you trigger an actual retraction? Is it enough to add a :method option
to link_to?

link_to "Retract", retract_bid_path(auction,bid), :method => :post

Not quite. Remember that in Listing 3.1 we defined the retract route as a get, so a
POST will not be recognized by the routing system. The solution is to define an extra
member route with post, like this:

resources :auctions do

resources :bids do

member do

get :retract

post :retract

end

end

end

If you’re handling more than one HTTP verb with a single action, you should switch to
using a single match declaration and a :via option, like this:

resources :auctions do

resources :bids do

member do

match :retract, :via => [:get, :post]

end

end

end

Thanks to the flexibility of the routing system, we can tighten it up further using match
with an :on option, like

resources :auctions do

resources :bids do

match :retract, :via => [:get, :post], :on => :member

end

end

which would result in a route like this (output from rake routes):

retract_auction_bid GET|POST

/auctions/:auction_id/bids/:id/retract(.:format)

{:controller => "bids", :action => "retract"}

72 Chapter 3: REST, Resources, and Rails

3.8.2 Extra Collection Routes

You can use the same routing technique to add routes that conceptually apply to an
entire collection of resources:

resources :auctions do

collection do

match :terminate, :via => [:get, :post]

end

end

In its shorter form:

resources :auctions do

match :terminate, :via => [:get, :post], :on => :collection

end

This example will give you a terminate_auctions_path method, which will pro-
duce a URL mapping to the terminate action of the auctions controller. (A slightly
bizarre example, perhaps, but the idea is that it would enable you to end all auctions at
once.)

Thus you can fine-tune the routing behavior—even the RESTful routing behavior—
of your application, so that you can arrange for special and specialized cases while still
thinking in terms of resources.

3.8.3 Custom Action Names

Occasionally, you might want to deviate from the default naming convention for Rails
RESTful routes. The :path_names option allows you to specify alternate name map-
pings. The example code shown changes the new and edit actions to Spanish-language
equivalents.

resources :projects, :path_names => { :new => 'nuevo', :edit => 'cambiar'}

The URLs change (but the names of the generated helper methods do not).

new_report GET /reports/nuevo(.:format)

edit_report GET /reports/:id/cambiar(.:format)

3.8.4 Mapping to a Different Controller

You may use the :controller option to map a resource to a different controller than
the one it would do so by default. This feature is occasionally useful for aliasing resources
to a more natural controller name.

resources :photos, :controller => "images"

R
E
S
T

3.8 RESTful Route Customizations 73

3.8.5 Routes for New Resources

The routing system has a neat syntax for specifying routes that only apply to new
resources, ones that haven’t been saved yet. You declare extra routes inside of a nested
new block, like this:

resources :reports do

new do

post :preview

end

end

The declaration above would result in the following route being defined.

preview_new_report POST /reports/new/preview(.:format)

{:action=>"preview", :controller=>"reports"}

Refer to your new route within a view form by altering the default :url.

= form_for(report, :url => preview_new_report_path) do |f|

...

= f.submit "Preview"

3.8.6 Considerations for Extra Routes

Referring to extra member and collection actions, David has been quoted as saying,
“If you’re writing so many additional methods that the repetition is beginning to bug
you, you should revisit your intentions. You’re probably not being as RESTful as you
could be.”

The last sentence is key. Adding extra actions corrupts the elegance of your overall
RESTful application design, because it leads you away from finding all of the resources
lurking in your domain.

Keeping in mind that real applications are more complicated than code examples
in a reference book, let’s see what would happen if we had to model retractions strictly
using resources. Rather than tacking a retract action onto the BidsController, we
might feel compelled to introduce a retraction resource, associated with bids, and write
a RetractionController to handle it.

resources :bids do

resource :retraction

end

RetractionController could now be in charge of everything having to do with
retraction activities, rather than having that functionality mixed into BidsController.
And if you think about it, something as weighty as bid retraction would eventually

74 Chapter 3: REST, Resources, and Rails

accumulate quite a bit of logic. Some would call breaking it out into its own controller
proper separation of concerns or even just good object-orientation.

3.9 Controller-Only Resources

The word resource has a substantive, noun-like flavor that puts one in mind of database
tables and records. However, a REST resource does not have to map directly to an
Active Record model. Resources are high-level abstractions of what’s available through
your web application. Database operations just happen to be one of the ways that you
store and retrieve the data you need to generate representations of resources.

A REST resource doesn’t necessarily have to map directly to a controller, either, at
least not in theory. You could, if you wanted to, provide REST services whose public
identifiers (URIs) did not match the names of your controllers at all.

What all of this adds up to is that you might have occasion to create a set of
resource routes, and a matching controller, that don’t correspond to any model in your
application at all. There’s nothing wrong with a full resource/controller/model stack
where everything matches by name. But you may find cases where the resources you’re
representing can be encapsulated in a controller but not a model.

An example in the auction application is the sessions controller. Assume aroutes.rb
file containing this line:

resource :session

It maps the URL /session to a SessionController as a singleton resource, yet there’s
no Session model. (By the way, it’s properly defined as a singleton resource because
from the user’s perspective there is only one session.)

Why go the RESTful style for authentication? If you think about it, user sessions can
be created and destroyed. The creation of a session takes place when a user logs in; when
the user logs out, the session is destroyed. The RESTful Rails practice of pairing a new
action and view with a create action can be followed! The user login form can be the
session-creating form, housed in the template file such as session/new.html.haml

%h1 Log in

= form_for :user, :url => session_path do |f|

%p

= f.label :login

= f.text_field :login

%p

= f.label :password

= f.password_field :password

%p

= f.submit "Log in"

R
E
S
T

3.9 Controller-Only Resources 75

When the form is submitted, the input is handled by the create method of the sessions
controller:

def create

if user.try(:authorize, params[:user][:password])

flash[:notice] = "Welcome, #{user.first_name}!"

redirect_to home_url

else

flash[:error] = "Login invalid."

redirect_to :action => "new"

end

end

protected

def user

@user ||= User.find_by_login(params[:user][:login])

end

Nothing is written to any database table in this action, but it’s worthy of the name
create by virtue of the fact that it creates a session. Furthermore, if you did at some
point decide that sessions should be stored in the database, you’d already have a nicely
abstracted handling layer.

It pays to remain open-minded, then, about the possibility that CRUD as an action-
naming philosophy and CRUD as actual database operations may sometimes occur
independently of each other; and the possibility that the resource-handling facilities in
Rails might usefully be associated with a controller that has no corresponding model.
Creating a session on the server isn’t a REST-compliant practice, because REST mandates
stateless transfers of representations of resources. But it’s a good illustration of why, and
how, you might make design decisions involving routes and resources that don’t implicate
the whole application stack.

Xavier says . . .

Whether sessions are REST-compliant or not depends on the session storage.
What REST disallows is not the idea of application state in general, but rather the idea of client
state stored in the server. REST demands that your requests are complete. For example, putting
an auction_id in a hidden field of a form or in its action path is fine. There is state in that
request that the edit action wants to pass to the update action, and you dumped it into the page,
so the next request to update a bid carries all that is needed. That’s RESTful.
Now, using hidden fields and such is not the only way to do this. For example, there is no
problem using a user_id cookie for authentication. Why? Because a cookie is part of a request.
Therefore, I am pretty sure that cookie-based sessions are considered to be RESTful by the same
principle. That kind of storage makes your requests self-contained and complete.

76 Chapter 3: REST, Resources, and Rails

Sticking to CRUD-like action names is, in general, a good idea. As long as you’re
doing lots of creating and destroying anyway, it’s easier to think of a user logging in as
the creation of a session, than to come up with a whole new semantic category for it.
Rather than the new concept of user logs in, just think of it as a new occurrence of the
old concept, session gets created.

3.10 Different Representations of Resources

One of the precepts of REST is that the components in a REST-based system exchange
representations of resources. The distinction between resources and their representations
is vital.

As a client or consumer of REST services, you don’t actually retrieve a resource
from a server; you retrieve representations of that resource. You also provide represen-
tations: A form submission, for example, sends the server a representation of a resource,
together with a request—for example, PUT—that this representation be used as the
basis for updating the resource. Representations are the exchange currency of resource
management.

3.10.1 The respond to Method

The ability to return different representations in RESTful Rails practice is based on the
respond_to method in the controller, which, as you’ve seen in the previous chapter,
allows you to return different responses depending on what the client wants. Moreover,
when you create resource routes you automatically get URL recognition for URLs ending
with a dot and a :format parameter.

For example, assume that you have resources :auctions in your routes file and
some respond_to logic in the AuctionsController like

def index

@auctions = Auction.all

respond_to do |format|

format.html

format.xml { render :xml => @auctions }

end

end

which will let you to connect to this URL: /auctions.xml
The resource routing will ensure that the index action gets executed. It will also

recognize the .xml at the end of the route and interact with respond_to accordingly,
returning the XML representation.

R
E
S
T

3.10 Different Representations of Resources 77

There is also a more concise way of handling this now using the respond_with

method.

class AuctionsController < ApplicationController

respond_to :html, :xml, :json

def index

@auctions = Auction.all

respond_with(@auctions)

end

end

Here we’ve told our controller to respond to html, xml, and json so that each
action will automatically return the appropriate content. When the request comes
in, the responder would attempt to do the following given a .json extension on
the URL:

• Attempt to render the associated view with a .json extension.

• If no view exists, call to_json on the object passed to responds_with.

• If the object does not respond to to_json, call to_format on it.

For nested and namespaced resources, simply pass all the objects to the respond_to
method similar to the way you would generate a route.

respond_with(@user, :managed, @client)

Of course, all of this is URL recognition. What if you want to generate a URL ending
in .xml?

3.10.2 Formatted Named Routes

Let’s say you want a link to the XML representation of a resource. You can achieve it by
passing an extra argument to the RESTful named route:

link_to "XML version of this auction", auction_path(@auction, :xml)

This will generate the following HTML:

XML version of this auction

When followed, this link will trigger the XML clause of the respond_to block in the
show action of the auctions controller. The resulting XML may not look like much in
a browser, but the named route is there if you want it.

The circuit is now complete: You can generate URLs that point to a specific response
type, and you can honor requests for different types by using respond_to. All told, the
routing system and the resource-routing facilities built on top of it give you quite a set

78 Chapter 3: REST, Resources, and Rails

of powerful, concise tools for differentiating among requests and, therefore, being able
to serve up different representations.

3.11 The RESTful Rails Action Set

Rails REST facilities, ultimately, are about named routes and the controller actions
to which they point. The more you use RESTful Rails, the more you get to know
each of the seven RESTful actions. How they work across different controllers (and
different applications) is of course somewhat different. Still, perhaps because there’s a
finite number of them and their roles are fairly well-delineated, each of the seven tends
to have fairly consistent properties and a characteristic feel to it.

We’re going to take a look at each of the seven actions, with examples and comments.
You’ll encounter all of them again, particularly in Chapter 4, Working with Controllers,
but here you’ll get some backstory and start to get a sense of the characteristic usage of
them and issues and choices associated with them.

3.11.1 Index

Typically, an index action provides a representation of a plural (or collection) resource.
However, to be clear, not all resource collections are mapped to the index action. Your
default index representations will usually be generic, although admittedly that has a lot
to do with your application-specific needs. But in general, the index action shows the
world the most neutral representation possible. A very basic index action looks like

class AuctionsController < ApplicationController

def index

@auctions = Auction.all

end

end

The associated view template will display information about each auction, with links to
specific information about each one, and to profiles of the sellers.

You’ll certainly encounter situations where you want to display a representation of
a collection in a restricted way. In our recurring example, users should be able to see a
listing of all their bids, but may be you don’t want users seeing other people’s bids.

There are a couple of ways to do this. One way is to test for the presence of a logged-in
user and decide what to show based on that. But that’s not going to work here. For one
thing, the logged-in user might want to see the more public view. For another, the more
dependence on server-side state we can eliminate or consolidate, the better.

R
E
S
T

3.11 The RESTful Rails Action Set 79

So let’s try looking at the two bid lists, not as public and private versions of the same
resource, but as different index resources. The difference can be reflected in the routing
like:

resources :auctions do

resources :bids do

get :manage, :on => :collection

end

end

resources :bids

We can now organize the bids controller in such a way that access is nicely layered,
using filters only where necessary and eliminating conditional branching in the actions
themselves:

class BidsController < ApplicationController

before_filter :check_authorization, :only => :manage

def index

@bids = Bid.all

end

def manage

@bids = auction.bids

end

protected

def auction

@auction ||= Auction.find(params[:auction_id])

end

def check_authorization

auction.authorized?(current_user)

end

end

There’s now a clear distinction between /bids and /auctions/1/bids/manage and
the role that they play in your application.

On the named route side, we’ve now got bids_url and manage_auction_bids_

url. We’ve thus preserved the public, stateless face of the /bids resource, and
quarantined as much stateful behavior as possible into a discrete member resource,
/auctions/1/bids/manage. Don’t fret if this mentality doesn’t come to you natu-
rally. It’s part of the REST learning curve.

80 Chapter 3: REST, Resources, and Rails

Lar says . . .

If they are truly different resources, why not give them each their own controllers? Surely there
will be other actions that need to be authorized and scoped to the current user.

3.11.2 Show

The RESTful show action is the singular flavor of a resource. That generally translates
to a representation of information about one object, one member of a collection. Like
index, show is triggered by a GET request.

A typical—one might say classic—show action looks like

class AuctionController < ApplicationController

def show

@auction = Auction.find(params[:id])

end

end

You might want to differentiate between publicly available profiles, perhaps based on a
different route, and the profile of the current user, which might include modification
rights and perhaps different information.

As with index actions, it’s good to make your show actions as public as possible and
offload the administrative and privileged views onto either a different controller or a
different action.

3.11.3 Destroy

Destroy actions are good candidates for administrative safeguarding, though of course it
depends on what you’re destroying. You might want something like this to protect the
destroy action.

class ProductsController < ApplicationController

before_filter :admin_required, :only => :destroy

A typical destroy action might look like

def destroy

product.destroy

flash[:notice] = "Product deleted!"

redirect_to products_url

end

R
E
S
T

3.11 The RESTful Rails Action Set 81

This approach might be reflected in a simple administrative interface like

%h1 Products

- products.each do |p|

%p= link_to p.name, product_path(p)

- if current_user.admin?

%p= link_to "delete", product_path(p), :method => :delete

That delete link appears depending on whether current user is an admin.
With Rails 3, the UJS (Unobtrusive JavaScript) API greatly simplifies the HTML

emitted for a destroy action, using CSS selectors to bind JavaScript to (in this case)
the “delete” link. See Chapter 12, Ajax on Rails, for much more information about how
it works.

DELETE submissions are dangerous. Rails wants to make them as hard as possible
to trigger accidentally—for instance, by a crawler or bot sending requests to your site.
So when you specify the DELETE method, JavaScript that submits a form is bound to
your “delete” link, along with a rel="nofollow" attribute on the link. Since bots
don’t submit forms (and shouldn’t follow links marked “nofollow”), this gives a layer of
protection to your code.

3.11.4 New and Create

As you’ve already seen, the new and create actions go together in RESTful Rails. A
“new resource” is really just an entity waiting to be created. Accordingly, the new action
customarily presents a form, and create creates a new record, based on the form input.

Let’s say you want a user to be able to create (that is, start) an auction. You’re going
to need

1. A new action, which will display a form
2. A create action, which will create a new Auction object based on the form input,

and proceed to a view (show action) of that auction.

The new action doesn’t have to do much. In fact, it has to do nothing. Like any empty
action, it can even be left out. Rails will still figure out which view to render. However,
your controller will need an auction helper method, like

protected

def auction

@auction ||= current_user.auctions.build(params[:auction])

end

helper_method :auction

If this technique is alien to you, don’t worry. We’ll describe it in detail in Section 10.1.5.

82 Chapter 3: REST, Resources, and Rails

A simplistic new.html.haml template might look like Listing 3.2.

Listing 3.2 A New Auction Form

%h1 Create a new auction

= form_for auction do |f|

= f.label :subject

= f.text_field :subject

%br

= f.label :description

= f.text_field :description

%br

= f.label :reserve

= f.text_field :reserve

%br

= f.label :starting_bid

= f.text_field :starting_bid

%br

= f.label :end_time

= f.datetime_select :end_time

%br

= f.submit "Create"

Once the information is filled out by a user, it’s time for the main event: the create
action. Unlike new, this action has something to do.

def create

if auction.save

redirect_to auction_url(auction), :notice => "Auction created!"

else

render :action => "new"

end

end

3.11.5 Edit and Update

Like new and create, the edit and update actions go together: edit provides a form,
and update processes the form input.

The form for editing a record appears similar to the form for creating one. (In fact,
you can put much of it in a partial template and use it for both; that’s left as an exercise
for the reader.)

The form_for method is smart enough to check whether the object you pass to it
has been persisted or not. If it has, then it recognizes that you are doing an edit and
specifies a PUT method on the form.

R
E
S
T

3.12 Conclusion 83

3.12 Conclusion

In this chapter, we tackled the tough subject of using REST principles to guide the
design of our Rails applications, mainly as they apply to the routing system and controller
actions. We learned how the foundation of RESTful Rails is the resources method in
your routes file and how to use the numerous options available to make sure that you
can structure your application exactly how it needs to be structured.

By necessity, we’ve already introduced many controller-related topics and code ex-
amples in our tour of the routing and REST features. In the next chapter, we’ll cover
controller concepts and the Action Controller API in depth.

This page intentionally left blank

C
o
n

tro
lle

rs

CHAPTER 4

Working with Controllers

Remove all business logic from your controllers and put it in the model. (My) instructions are
precise, but following them requires intuition and subtle reasoning.

—Nick Kallen

Like any computer program, your Rails application involves the flow of control from
one part of your code to another. The flow of program control gets pretty complex with
Rails applications. There are many bits and pieces in the framework, many of which
execute each other. And part of the framework’s job is to figure out, on the fly, what
your application files are called and what’s in them, which of course varies from one
application to another.

The heart of it all, though, is pretty easy to identify: It’s the controller. When someone
connects to your application, what they’re basically doing is asking the application to
execute a controller action. Sure, there are many different flavors of how this can happen
and edge cases where it doesn’t exactly happen at all. But if you know how controllers
fit into the application life cycle, you can anchor everything else around that knowledge.
That’s why we’re covering controllers before the rest of the Rails APIs.

Controllers are the C in MVC. They’re the first port of call, after the dispatcher,
for the incoming request. They’re in charge of the flow of the program: They gather
information and make it available to the views.

Controllers are also very closely linked to views, more closely than they’re linked to
models. It’s possible to write the entire model layer of an application before you create a
single controller, or to have different people working on the controller and model layers
who never meet or talk to each other. However, views and controllers are more tightly
coupled to one another. They share a lot of information, and the names you choose for
your variables in the controller will have an effect on what you do in the view.

85

86 Chapter 4: Working with Controllers

In this chapter, we’re going to look at what happens on the way to a controller action
being executed, and what happens as a result. In the middle, we’ll take a long look at
how controller classes themselves are set up, particularly in regard to the many different
ways that we can render views. We’ll wrap up the chapter with a couple of additional
topics related to controllers: filters and streaming.

4.1 Rack

Rack is a modular interface for handling web requests, written in Ruby, with support
for many different web servers. It abstracts away the handling of HTTP requests and
responses into a single, simple call method that can be used by anything from a plain
Ruby script all the way to Rails itself.

Listing 2.1 HelloWorld as a Rack application

class HelloWorld

def call(env)

[200, {"Content-Type" => "text/plain"}, ["Hello world!"]]

end

end

An HTTP request invokes the call method and passes in a hash of environment variables,
akin to the way that CGI works. The call method should return a three-element array
consisting of the status, a hash of response headers, and finally, the body of the request.

As of Rails 2.3, request handling was moved to Rack and the concept of middleware
was introduced. Classes that satisfy Rack’s call interface can be chained together as filters.
Rack itself includes a number of useful filter classes that do things such as logging and
exception handling.

Rails 3 was re-architected from the ground up to fully leverage Rack filters in a
modular and extensible manner. A full explanation of Rails’ Rack underpinnings are
outside the scope of this book, especially since Rack does not really play a part in day-to-
day development of applications. However, it is essential Rails 3 knowledge to understand
that much of Action Controller is implemented as Rack middleware modules. Want to
see which Rack filters are enabled for your Rails 3 application? There’s a rake task for
that!

$ rake middleware

use ActionDispatch::Static

use Rack::Lock

use ActiveSupport::Cache::Strategy::LocalCache

use Rack::Runtime

use Rails::Rack::Logger

use ActionDispatch::ShowExceptions

C
o
n

tro
lle

rs
4.1 Rack 87

use ActionDispatch::RemoteIp

use Rack::Sendfile

use ActionDispatch::Callbacks

use ActiveRecord::QueryCache

use ActionDispatch::Cookies

use ActionDispatch::Session::CookieStore

use ActionDispatch::Flash

use ActionDispatch::ParamsParser

use Rack::MethodOverride

use ActionDispatch::Head

use Sass::Plugin::Rack

run Tae::Application.routes

What’s Active Record query caching have to do with serving requests anyway?

module ActiveRecord

class QueryCache

...

def call(env)

ActiveRecord::Base.cache do

@app.call(env)

end

end

end

end

Ahh, it’s not that Active Record query caching has anything specifically to do with serving
requests. It’s that Rails 3 is designed in such a way that different aspects of its behavior
are introduced into the request call chain as individual Rack middleware components or
filters.

4.1.1 Configuring Your Middleware Stack

Your application object allows you to access and manipulate the Rack middleware stack
during initialization, via config.middleware like

application.rb

module Example

class Application < Rails::Application

...

Rack::ShowStatus catches all empty responses the app it wraps and

replaces them with a site explaining the error.

config.middleware.use Rack::ShowStatus

end

end

88 Chapter 4: Working with Controllers

Rack lobster

As I found out trying to experiment with the hilariously-namedRack::Lobster, your custom
Rack middleware classes need to have an explicit initializer method, even if they don’t
require runtime arguments.

The methods of config.middleware give you very fine-grained control over the
order in which your middleware stack is configured. The args parameter is an optional
hash of attributes to pass to the initializer method of your Rack filter.

config.middleware.insert—after(existing—middleware,
new—middleware, args)
Adds the new middleware after the specified existing middleware in the middleware
stack.

config.middleware.insert—before
(existing—middleware,new—middleware,args)
Adds the new middleware before the specified existing middleware in the middleware
stack.

config.middleware.delete(middleware)
Removes a specified middleware from the stack.

config.middleware.swap(existing—middleware,
new—middleware, args)
Swaps a specified middleware from the stack with a new class.

config.middleware.use(new—middleware,args)
Takes a class reference as its parameter and just adds the desired middleware to the end
of the middleware stack.

4.2 Action Dispatch: Where It All Begins

Controller and view code in Rails has always been part of its Action Pack framework. In
Rails 3, dispatching of requests has been extracted into its own sub-component of Action
Pack called Action Dispatch. It contains classes that interface the rest of the controller
system to Rack.

C
o
n

tro
lle

rs
4.2 Action Dispatch: Where It All Begins 89

4.2.1 Request Handling

The entry point to a request is an instance of ActionDispatch::Routing::RouteSet,
the object on which you can call draw at the top of config/routes.rb.

The route set chooses the rule that matches, and calls its Rack endpoint. So a route
like

match 'foo', :to => 'foo#index'

has a dispatcher instance associated to it, whose call method ends up executing

FooController.action(:index).call

As covered in Section 2.2.9 “Routes as Rack Endpoints”, the route set can call any other
type of Rack endpoint, like a Sinatra app, a redirect macro, or a bare lambda. In those
cases, no dispatcher is involved.

All of this happens quickly, behind the scenes. It’s unlikely that you would ever need
to dig into the source code of Action Dispatch; it’s the sort of thing that you can take
for granted to just work. However, to really understand the Rails way, it is important
to know what’s going on with the dispatcher. In particular, it’s important to remember
that the various parts of your application are just bits (sometimes long bits) of Ruby
code, and that they’re getting loaded into a running Ruby interpreter.

4.2.2 Getting Intimate with the Dispatcher

Just for the purpose of learning, let’s trigger the Rails dispatching mechanism manually.
We’ll do this little exercise from the ground up, starting with a new Rails application:

$ rails new dispatch_me

Now, create a single controller, with an index action:

$ cd dispatch_me/

$ rails generate controller demo index

create app/controllers/demo_controller.rb

route get "demo/index"

invoke erb

create app/views/demo

create app/views/demo/index.html.erb

invoke test_unit

create test/functional/demo_controller_test.rb

invoke helper

create app/helpers/demo_helper.rb

invoke test_unit

create test/unit/helpers/demo_helper_test.rb

90 Chapter 4: Working with Controllers

If you take a look at app/controllers/demo_controller.rb, you’ll see that it has
an index action:

class DemoController < ApplicationController

def index

end

end

There’s also a view template file, app/views/demo/index.html.erbwith some place-
holder language. Just to see things more clearly, let’s replace it with something we will
definitely recognize when we see it again. Replace the contents of index.html.erb
with

Hello!

Not much of a design accomplishment, but it will do the trick.
Now that we’ve got a set of dominos lined up, it’s just a matter of pushing over the

first one: the dispatcher. To do that, start by firing up the Rails console from your Rails
application directory.

$ rails console

Loading development environment.

>>

There are some variables from the web server that Rack expects to use for request
processing. Since we’re going to be invoking the dispatcher manually, we have to set
those variables like this in the console (output ommited for brevity):

>> env = {}

>> env['REQUEST_METHOD'] = 'GET'

>> env['PATH_INFO'] = '/demo/index'

>> env['rack.input'] = StringIO.new

We’re now ready to fool the dispatcher into thinking it’s getting a request. Actually, it
is getting a request. It’s just that it’s coming from someone sitting at the console, rather
than from a web server:

>> ActionController::Dispatcher.new.call(env).last.body

=> "<!DOCTYPE html>\n<html>\n <head>\n <title>TAE</title>\n <link

href=\"/stylesheets/scaffold.css?1283099044\" media=\"screen\"

rel=\"stylesheet\" type=\"text/css\" />\n <script

src=\"/javascripts/prototype.js?1283098615\"

type=\"text/javascript\"></script>\n <script

src=\"/javascripts/effects.js?1283098615\"

type=\"text/javascript\"></script>\n <script

src=\"/javascripts/dragdrop.js?1283098615\"

type=\"text/javascript\"></script>\n <script

C
o
n

tro
lle

rs
4.2 Action Dispatch: Where It All Begins 91

src=\"/javascripts/controls.js?1283098615\"

type=\"text/javascript\"></script>\n <script

src=\"/javascripts/rails.js?1283098615\"

type=\"text/javascript\"></script>\n

<script src=\"/javascripts/application.js?1283098615\"

type=\"text/javascript\"></script>\n <meta name=\"csrf-param\"

content=\"authenticity_token\"/>\n <meta name=\"csrf-token\"

content=\"Ot6XylwCEKlMn8K/QFkmeOPbjLxfGQLx6M4fA1Dvz+U=\"/>\n

</head>\n</html>\n<body>\n Hello!\n</body>\n"

If you want to see everything contained in the ActionDispatch::Response object
returned from call then try the following code:

>> y ActionController::Dispatcher.new.last.call(env)

The handy y method formats its argument as a yaml string, making it a lot easier to
understand. We won’t reproduce the output here because it’s huge.

So, we’ve executed the call method of a Dispatcher object and as a result, the
index action got executed and the index template (such as it is) got rendered and the
results of the rendering got wrapped in some HTTP headers and returned.

Just think: If you were a web server, rather than a human, and you had just done
the same thing, you could now return that document, headers and “Hello!” and all, to
a client.

You can follow the trail of bread crumbs even further by diving into the Rails source
code, but for purposes of understanding the chain of events in a Rails request, and the
role of the controller, the peek under the hood we’ve just done is sufficient.

Tim says...

Note that if you give Rack a path that resolves to a static file, it will be served directly from the
web server without involving the Rails stack. As a result, the object returned by the dispatcher for
a static file is different from what you might expect.

>> env['PATH_INFO'] ='/'

>> a = ActionController::Dispatcher.new.call(env).last

=> #<Rack::File:0x000001025fa4a8 @root="/Users/obie/work/tr3w_time_and

_expenses/public", @path_info="/index.html", @path="/Users/obie/wor

k/tr3w_time_and_expenses/public/index.html">

>> a.body

NoMethodError: undefined method `body' for #<Rack::File:0x000001025fa4a8>

92 Chapter 4: Working with Controllers

4.3 Render unto View. . .

The goal of the typical controller action is to render a view template—that is, to fill
out the template and hand the results, usually an HTML document, back to the server
for delivery to the client. Oddly—at least it might strike you as a bit odd, though not
illogical—you don’t actually need to define a controller action, as long as you’ve got a
template that matches the action name.

You can try this out in under-the-hood mode. Go into app/controller/demo_

controller.rb, and delete the index action so that the file will look empty, like this:

class DemoController < ApplicationController

end

Don’t delete app/views/demo/index.html.haml, and then try the console exercise
(Dispatcher.dispatch and all that) again. You’ll see the same result.

By the way, make sure you reload the console when you make changes—it doesn’t
react to changes in source code automatically. The easiest way to reload the console
is simply to type reload!. But be aware that any existing instances of Active Record
objects that you’re holding on to will also need to be reloaded (using their individual
reload methods). Sometimes it’s simpler to just exit the console and start it up again.

4.3.1 When in Doubt, Render

Rails knows that when it gets a request for the index action of the demo controller, what
really matters is handing something back to the server. So if there’s no index action in
the controller file, Rails shrugs and says, “Well, let’s just assume that if there were an
index action, it would be empty anyway, and I’d just render index.html.haml. So
that’s what I’ll do.”

You can learn something from an empty controller action, though. Let’s go back to
this version of the demo controller:

class DemoController < ApplicationController

def index

end

end

What you learn from seeing the empty action is that, at the end of every controller
action, if nothing else is specified, the default behavior is to render the template
whose name matches the name of the controller and action, which in this case means
app/views/demo/index.html.haml.

C
o
n

tro
lle

rs
4.3 Render unto View 93

In other words, every controller action has an implicit render command in it. And
render is a real method. You could write the preceding example like this:

def index

render "demo/index"

end

You don’t have to, though, because it’s assumed that it’s what you want, and that is part
of what Rails people are talking about when they discuss convention over configuration.
Don’t force the developer to add code to accomplish something that can be assumed to
be a certain way.

The render command, however, does more than just provide a way of telling Rails
to do what it was going to do anyway.

4.3.2 Explicit Rendering

Rendering a template is like putting on a shirt: If you don’t like the first one you find
in your closet—the default, so to speak—you can reach for another one and put it on
instead.

If a controller action doesn’t want to render its default template, it can render a dif-
ferent one by calling the render method explicitly. Any template file in the app/views
directory tree is available. (Actually, that’s not exactly true. Any template on the whole
system is available!) But why would you want your controller action to render a template
other than its default? There are several reasons, and by looking at some of them, we can
cover all of the handy features of the controller’s render method.

4.3.3 Rendering Another Action’s Template

A common reason for rendering an entirely different template is to redisplay a form,
when it gets submitted with invalid data and needs correction. In such circumstances,
the usual web strategy is to redisplay the form with the submitted data, and trigger the
simultaneous display of some error information, so that the user can correct the form
and resubmit.

The reason that process involves rendering another template is that the action that
processes the form and the action that displays the form may be—and often are—
different from each other. Therefore, the action that processes the form needs a way
to redisplay the original (form) template, instead of treating the form submission as
successful and moving on to whatever the next screen might be.

94 Chapter 4: Working with Controllers

Wow, that was a mouthful of an explanation. Here’s a practical example:

class EventController < ActionController::Base

def new

This (empty) action renders the new.html.haml template, which

contains the form for inputting information about the new

event record and is not actually needed.

end

def create

This method processes the form input. The input is available via

the params hash, in the nested hash keyed to :event

@event = Event.new(params[:event])

if @event.save

flash[:notice] = "Event created!"

ignore the next line for now

redirect_to :controller => "main"

else

render :action => "new" # doesn't execute the new method!

end

end

end

On failure, that is, if @event.save does not return true, we render the “new” template.
Assuming new.html.haml has been written correctly, this will automatically include the
display of error information embedded in the new (but unsaved) Event object. You’ve
already seen this in some examples, as f.error_messages.

Note that the template itself doesn’t “know” that it has been rendered by the create
action rather than the new action. It just does its job: It fills out and expands and
interpolates, based on the instructions it contains and the data (in this case, @event)
that the controller has passed to it.

4.3.4 Rendering a Different Template Altogether

In a similar fashion, if you are rendering a template for a different action, it is possible
to render any template in your application by calling render with a string pointing to
the desired template file. The render method is very robust in its ability to interpret
which template you’re trying to refer to.

render :template => '/products/index.html.haml'

A couple of notes: It’s not necessary to pass a hash with :template, because it’s the
default option. Also, in our testing, all of the following permutations worked identically

C
o
n

tro
lle

rs
4.3 Render unto View 95

when called from ProductsController:

render '/products/index.html.haml'

render 'products/index.html.haml'

render 'products/index.html'

render 'products/index'

render 'index'

render :index

The :template option only works with a path relative to the template root (app/views,
unless you changed it, which would be extremely unusual).

Tim says . . .

Use only enough to disambiguate. The content type defaults to that of the request and if you
have two templates that differ only by template language, you’re Doing It Wrong.

4.3.5 Rendering a Partial Template

Another option is to render a partial template (usually referred to simply as a partial).
Usage of partial templates allows you to organize your template code into small files.
Partials can also help you to avoid clutter and encourage you to break your template
code up into reusable modules.

There are a few ways to trigger partial rendering. The first, and most obvious, is using
the :partial option to explicitly specify a partial template. Rails has a convention of
prefixing partial template file names with an underscore character, but you never include
the underscore when referring to partials.

render :partial => 'product' # renders

app/views/products/_product.html.haml

Leaving the underscore off of the partial name applies, even if you’re referring to a partial
in a different directory from the controller that you’re currently in!

render :partial => 'shared/product' # renders

app/views/shared/_product.html.haml

The second way to trigger partial rendering depends on convention. If you pass render
:partial an object, Rails will use its class name to find a partial to render. You can
even omit the :partial option, like in the following example code.

render :partial => @product

render @product

render 'product'

All three lines render the app/views/products/_product.html.haml template.

96 Chapter 4: Working with Controllers

Partial rendering from a controller is mostly used in conjunction with Ajax calls that
need to dynamically update segments of an already displayed page. The technique, along
with generic use of partials in views, is covered in greater detail in Chapter 10, Action
View.

4.3.6 Rendering Inline Template Code

Occasionally, you need to send the browser the result of translating a snippet of template
code, too small to merit its own partial. I admit that this practice is contentious, because
it is a flagrant violation of proper separation of concerns between the MVC layers.

Rails treats the inline code exactly as if it were a view template. The default type of
view template processing is ERb, but passing an additional :type option allows you to
choose Haml.

render :inline => "%span.foo #{@foo.name}", :type => "haml"

Courtenay says . . .

If you were one of my employees, I’d reprimand you for using view code in the controller, even
if it is only one line. Keep your view-related code in the views!

4.3.7 Rendering Text

What if you simply need to send plain text back to the browser, particularly when
responding to Ajax and certain types of web service requests?

render :text => 'Submission accepted'

Unfortunately, if you don’t pass an additional :content_type option, Rails will default
the response MIME type to text/html, rather than text/plain. The solution is to be explicit
about what you want.

render :text => 'Submission accepted', :content_type => 'text/plain'

4.3.8 Rendering Other Types of Structured Data

The render command also accepts a series of (convenience) options for returning struc-
tured data such as JSON or XML. The content-type of the response will be set appro-
priately and additional options apply.1

1. Yehuda Katz has written an excellent description of how to register additional rendering options at
http://www.engineyard.com/blog/2010/render-options-in-rails-3/

http://www.engineyard.com/blog/2010/render-options-in-rails-3/

C
o
n

tro
lle

rs
4.3 Render unto View 97

:json
JSON2 is a small subset of JavaScript selected for its usability as a lightweight data-
interchange format. It is mostly used as a way of sending data down to JavaScript code
running in a rich web application via Ajax calls. Active Record has built-in support for
conversion to JSON, which makes Rails an ideal platform for serving up JSON data, as
in the following example:

render :json => @record

As long as the parameter responds to to_json, Rails will call it for you, which means
you don’t have to call it yourself with ActiveRecord objects.

Any additional options passed to render :json are also included in the invocation
of to_json.

render :json => @projects, :include => :tasks

Additionally, if you’re doing JSONP, you can supply the name of a callback function
to be invoked in the browser when it gets your response. Just add a :callback option
with the name of a valid JavaScript method.

render :json => @record, :callback => 'updateRecordsDisplay'

:xml
Active Record also has built-in support for conversion to XML, as in the following
example:

render :xml => @record

As long as the parameter responds to to_xml, Rails will call it for you, which means you
don’t have to call it yourself with ActiveRecord objects.

Any additional options passed to render :xml are also included in the invocation
of to_xml.

render :xml => @projects, :include => :tasks

We cover XML-related topics like this one extensively in Chapter 15, Active
Resource.

4.3.9 Rendering Nothing

On rare occasions, you don’t want to render anything at all. (To avoid a bug in Safari,
rendering nothing actually means sending a single space character back to the browser.)

2. For more information on JSON go to http://www.json.org/.

http://www.json.org/

98 Chapter 4: Working with Controllers

render :nothing => true, :status => 401 # Unauthorized

It’s worth noting that, as illustrated in this snippet, render :nothing => true is
often used in conjunction with an HTTP status code.

4.3.10 Rendering Options

Most calls to the rendermethod accept additional options. Here they are in alphabetical
order.

:content—type
All content flying around the web is associated with a MIME type.3 For instance, HTML
content is labeled with a content-type of text/html. However, there are occasions
where you want to send the client something other than HTML. Rails doesn’t validate
the format of the MIME identifier you pass to the :content_type option, so make
sure it is valid.

:layout
By default, Rails has conventions regarding the layout template it chooses to wrap your
response in, and those conventions are covered in detail in Chapter 10, Action View.
The :layout option allows you to specify whether you want a layout template to be
rendered if you pass it a boolean value, or the name of a layout template, if you want to
deviate from the default.

render :layout => false # disable layout template

render :layout => 'login' # a template app/views/layouts is assumed

:status
The HTTP protocol includes many standard status codes4 indicating a variety of condi-
tions in response to a client’s request. Rails will automatically use the appropriate status
for most common cases, such as 200 OK for a successful request.

The theory and techniques involved in properly using the full range of HTTP status
codes would require a dedicated chapter, perhaps an entire book. For your convenience,
Table 4.1 demonstrates some codes that I’ve occasionally found useful in my day-to-day
Rails programming.

3. MIME is specified in five RFC documents, so it is much more convenient to point you to a rather good
description of MIME provided by Wikipedia at http://en.wikipedia.org/wiki/MIME.
4. For a full list of HTTP status codes, consult the spec at http://www.w3.org/Protocols/rfc2616/

rfc2616-sec10.html.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://en.wikipedia.org/wiki/MIME

C
o
n

tro
lle

rs
4.3 Render unto View 99

Table 4.1 Common HTTP status codes

Status Code Description

200 OK Everything is fine, and here is your content.
201 Created A new resource has been created, and its location can be

found in the Location HTTP response header.
307 Temporary Redirect

The requested resource re-
sides temporarily under a dif-
ferent URI.

Occasionally, you need to temporarily redirect the user to a
different action, perhaps while some long-running process
is happening or while the account of a particular resource’s
owner is suspended.
This particular status code dictates that an HTTP response
header named Location contain the URI of the resource
that the client redirects to. Since the render method
doesn’t take a hash of response header fields, you have to
set them manually prior to invoking render. Luckily, the
response hash is in scope within controller methods, as
in the following example:

def paid_resource

if current_user.account_expired?

response.headers['Location'] =

account_url(current_user)

render :text => "Account expired",

:status => 307

end

end

end

401 Unauthorized Sometimes a user will not provide credentials to view a re-
stricted resource or authentication and/or authorization will
fail. Assuming using a Basic or Digest HTTP Authentica-
tion scheme, when that happens you should probably return
a 401.

403 Forbidden

The server understood the re-
quest, but is refusing to ful-
fill it.

I like to use 403 in conjunction with a short render
:text message in situations where the client has requested
a resource that is not normally available via the web appli-
cation’s interface.
In other words, the request appears to have happened via
artificial means. A human or robot, for reasons innocent or
guilty (it doesn’t matter) is trying to trick the server into
doing something it isn’t supposed to do.

(continued)

100 Chapter 4: Working with Controllers

Table 4.1 Common HTTP status codes (Continued)

Status Code Description

For example, my current Rails application is public-facing
and is visited by the GoogleBot on a daily basis. Probably due
to a bug existing at some point, the URL /favoriteswas
indexed. Unfortunately, /favorites is only supposed to
be available to logged-in users. However, once Google knows
about a URL it will keep coming back for it in the future.
This is how I told it to stop:

def index

return render :nothing => true,

:status => 403 unless logged_in?

@favorites = current_user.favorites.all

end

404 Not Found

The server cannot find the re-
source you requested.

You may choose to use 404 when a resource of a specific
given ID does not exist in your database (whether because
it is an invalid ID or because the resource has been deleted).
For example, “GET /people/2349594934896107” doesn’t
exist in our database at all, so what do we display? Do we
render a show view with a flash message saying no person
with that ID exists? Not in our RESTful world. A 404 would
be better.
Moreover, if we happen to use something like acts_

as_paranoid and we know that the resource used to exist
in the past, we could respond with 410 Gone.

500 Internal Server Error The server encountered an unexpected condition which pre-
vented it from fulfilling the request. As you probably know
by now, this is the status code that Rails serves up if you
have an error in your code.

503 Service Unavailable

The server is temporarily un-
available.

The 503 code comes in very handy when taking a site down
for maintenance, particularly when upgrading RESTful web
services.
One of this book’s reviewers, Susan Potter, shares the fol-
lowing suggestion:

C
o
n

tro
lle

rs
4.5 Redirecting 101

Table 4.1 Common HTTP status codes (Continued)

Status Code Description

For my projects, I create a stub Rails application that re-
sponds with a 503 for each valid type of request that comes
in. Clients of my services are usually services themselves or
other applications, so this helps client developers that con-
sume my web services know that this is a temporary blip
and should be due to scheduled maintenance (and a good
reminder for them to check the emails I sent them over the
weekend instead of ignoring them).

4.4 Additional Layout Options

You can specify layout options at the controller class level if you want to reuse layouts
for multiple actions.

class EventController < ActionController::Base

layout "events", :only => [:index, :new]

layout "global", :except => [:index, :new]

end

The layout method can accept either a String, Symbol, or boolean, with a hash of
arguments after.

• String Determines the template name to use.

• Symbol Call the method with this name, which is expected to return a string with
a template name.

• true Raises an argument error.

• false Do not use a layout.

The optional arguments are either :only or :except and expect an array of action
names that should or should not apply to the layout being specified.

4.5 Redirecting

The life cycle of a Rails application is divided into requests. Rendering a template,
whether the default one or an alternate one—or, for that matter, rendering a partial or
some text or anything—is the final step in handling a request. Redirecting, however,
means terminating the current request and asking the client to initiate a new one.

102 Chapter 4: Working with Controllers

Look again at the example of the form-handling create method:

def create

if @event.save

flash[:notice] = "Event created!"

redirect_to :action => "index"

else

render :action => "new"

end

end

If the save operation succeeds, we store a message in the flash hash and redirect_to

a completely new action. In this case, it’s the index action. The logic here is that if the
new Event record gets saved, the next order of business is to take the user back to the
top-level view.

The main reason to redirect rather than just render a template after creating or
editing a resource (really a POST action) has to do with browser reload behavior. If you
didn’t redirect, the user would be prompted to re-submit the form if they hit the back
button or reload.

4.5.1 The redirect—to Method

The redirect_to method takes two parameters:

redirect_to(target, response_status = {})

The target parameter takes one of several forms.

Hash The URL will be generated by calling url_for with the argument provided.

redirect_to :action => "show", :id => 5

Active Record object The URL will be generated by calling url_for with the object
provided, which should generate a named URL for that record.

redirect_to post

String starting with protocol like http:// Used directly as the target url for redirection.

redirect_to "http://www.rubyonrails.org"

redirect_to articles_url

String not containing a protocol The current protocol and host is prepended to the
argument and used for redirection.

redirect_to "/"

redirect_to articles_path

C
o
n

tro
lle

rs
4.5 Redirecting 103

:back Back to the page that issued the request. Useful for forms that are triggered from
multiple places. Short-hand for redirect_to(request.env["HTTP_REFERER"])
When using redirect_to :back, if there is no referrer set, a RedirectBackError
will be raised. You may specify some fallback behavior for this case by rescuing
RedirectBackError.

Sebastian says . . .

Which redirect is the right one? When you use Rails’s redirect_to method, you tell the user
agent (i.e., the browser) to perform a new request for a different URL. That response can mean
different things, and it’s why modern HTTP has four different status codes for redirection.The
old HTTP 1.0 had two codes: 301 aka Moved Permanently and 302 aka Moved Temporarily.
A permanent redirect meant that the user agent should forget about the old URL and use the new
one from now on, updating any references it might have kept (i.e., a bookmark or in the case of
Google, its search databases). A temporary redirect was a one-time only affair. The original URL
was still valid, but for this particular request the user agent should fetch a new resource from the
redirection URL.
But there was a problem: If the original request had been a POST, what method should be used
for the redirected request? For permanent redirects it was safe to assume the new request should
be a GET, since that was the case in all usage scenarios. But temporary redirects were used both
for redirecting to a view of a resource that had just been modified in the original POST request
(which happens to be the most common usage pattern), and also for redirecting the entire original
POST request to a new URL that would take care of it.
HTTP 1.1 solved this problem with the introduction of two new status codes: 303 meaning See

Other and 307 meaning Temporary Redirect. A 303 redirect would tell the user agent to perform a
GET request, regardless of what the original verb was, whereas a 307 would always use the same
method used for the original request. These days, most browsers handle 302 redirects the same
way as 303, with a GET request, which is the argument used by the Rails Core team to keep using
302 in redirect_to. A 303 status would be the better alternative, because it leaves no room
for interpretation (or confusion), but I guess nobody has found it annoying enough to push for
a patch.
If you ever need a 307 redirect, say, to continue processing a POST request in a
different action, you can always accomplish your own custom redirect by assigning a
path to response.header["Location"] and then rendering with render :

status => 307.

Redirection happens as a “302 Moved” header unless otherwise specified. The
response_status parameter takes a hash of arguments. The code can be specified
by name or number, as in the following examples:

redirect_to post_url(@post), :status => :found

redirect_to :action=>'atom', :status => :moved_permanently

redirect_to post_url(@post), :status => 301

redirect_to :action=>'atom', :status => 302

104 Chapter 4: Working with Controllers

It is also possible to assign a flash message as part of the redirection. There are two special
accessors for commonly used the flash names alert and notice as well as a general
purpose flash bucket.

redirect_to post_url(@post), :alert => "Watch it, mister!"

redirect_to post_url(@post), :status=> :found, :notice => "Pay attention

to the road"

redirect_to post_url(@post), :status => 301, :flash => { :updated_post_id

=> @post.id }

redirect_to { :action=>'atom' }, :alert => "Something serious happened"

Courtenay says . . .

Remember that redirect and render statements don’t magically halt execution of your controller
action method. To prevent DoubleRenderError, consider explicitly calling return after
redirect_to or render like this:

def show

@user = User.find(params[:id])

if @user.activated?

render :action => 'activated' and return

end

...

end

4.6 Controller/View Communication

When a view template is rendered, it generally uses data that the controller has pulled
from the database. In other words, the controller gets what it needs from the model
layer, and hands it off to the view.

The way Rails implements controller-to-view data handoffs is through instance
variables. Typically, a controller action initializes one or more instance variables. Those
instance variables can then be used by the view.

There’s a bit of irony (and possible confusion for newcomers) in the choice of
instance variables to share data between controllers and views. The main reason that
instance variables exist is so that objects (whether Controller objects, String objects,
and so on) can hold on to data that they don’t share with other objects. When your
controller action is executed, everything is happening in the context of a controller
object—an instance of, say, DemoController or EventController. Context includes
the fact that every instance variable in the code belongs to the controller instance.

C
o
n

tro
lle

rs
4.7 Filters 105

When the view template is rendered, the context is that of a different object, an
instance of ActionView::Base. That instance has its own instance variables, and does
not have access to those of the controller object.

So instance variables, on the face of it, are about the worst choice for a way for two
objects to share data. However, it’s possible to make it happen—or make it appear to
happen. What Rails does is to loop through the controller object’s variables and, for each
one, create an instance variable for the view object, with the same name and containing
the same data.

It’s kind of labor-intensive, for the framework: It’s like copying over a grocery list by
hand. But the end result is that things are easier for you, the programmer. If you’re a Ruby
purist, you might wince a little bit at the thought of instance variables serving to connect
objects, rather than separate them. On the other hand, being a Ruby purist should also
include understanding the fact that you can do lots of different things in Ruby—such
as copying instance variables in a loop. So there’s nothing really un-Ruby-like about it.
And it does provide a seamless connection, from the programmer’s perspective, between
a controller and the template it’s rendering.

Stephen says . . .

I’m a cranky old man, and dammit, Rails is wrong, wrong, wrong. Using instance variables to
share data with the view sucks. If you want to see how my Decent Exposure library helps you
avoid this horrible practice, skip ahead to Section 10.1.5.

4.7 Filters

Filters enable controllers to run shared pre and post processing code for its actions. These
filters can be used to do authentication, caching, or auditing before the intended action
is performed. Filter declarations are macro style class methods, that is, they appear at
the top of your controller method, inside the class context, before method definitions.
We also leave off the parentheses around the method arguments, to emphasize their
declarative nature, like this:

before_filter :require_authentication

As with many other macro-style methods in Rails, you can pass as many symbols as you
want to the filter method:

before_filter :security_scan, :audit, :compress

106 Chapter 4: Working with Controllers

Or you can break them out into separate lines, like this:

before_filter :security_scan

before_filter :audit

before_filter :compress

In contrast to the somewhat similar callback methods of Active Record, you can’t im-
plement a filter method on a controller by adding a method named before_filter or
after_filter.

You should make your filter methods protected or private; otherwise, they might
be callable as public actions on your controller (via the default route).

Tim says . . .

In addition toprotected andprivate, one can declare a method should never be dispatched
with the more intention-revealing hide_action.

Importantly, filters have access to request, response, and all the instance variables
set by other filters in the chain or by the action (in the case of after filters). Filters can
set instance variables to be used by the requested action, and often do so.

4.7.1 Filter Inheritance

Controller inheritance hierarchies share filters downward. Your average Rails application
has an ApplicationController from which all other controllers inherit, so if you
wanted to add filters that are always run no matter what, that would be the place to do so.

class ApplicationController < ActionController::Base

after_filter :compress

Subclasses can also add and/or skip already defined filters without affecting the superclass.
For example, consider the two related classes in Listing 4.1, and how they interact.

Listing 4.1 A pair of cooperating before filters

class BankController < ActionController::Base

before_filter :audit

protected

def audit

record this controller's actions and parameters in an audit log

end

end

C
o
n

tro
lle

rs
4.7 Filters 107

class VaultController < BankController

before_filter :verify_credentials

protected

def verify_credentials

make sure the user is allowed into the vault

end

end

Any actions performed on BankController (or any of its subclasses) will
cause the audit method to be called before the requested action is exe-
cuted. On the VaultController, first the audit method is called, followed by
verify_credentials, because that’s the order in which the filters were specified. (Fil-
ters are executed in the class context where they’re declared, and the BankController
has to be loaded before VaultController, since it’s the parent class.)

If the audit method happens to call render or redirect_to for whatever reason,
verify_credentials and the requested action are never called. This is called halting
the filter chain.

4.7.2 Filter Types

A filter can take one of three forms: method reference (symbol), external class, or block.
The first is by far the most common and works by referencing a protected method some-
where in the inheritance hierarchy of the controller. In the bank example in Listing 2.1,
both BankController and VaultController use this form.

Filter Classes

Using an external class makes for more easily reused generic filters, such as output
compression. External filter classes are implemented by having a static filter method on
any class and then passing this class to the filter method, as in Listing 4.2. The name of
the class method should match the type of filter desired (e.g., before, after, around).

Listing 4.2 An output compression filter

class OutputCompressionFilter

def self.after(controller)

controller.response.body = compress(controller.response.body)

end

end

108 Chapter 4: Working with Controllers

class NewspaperController < ActionController::Base

after_filter OutputCompressionFilter

end

The method of the Filter class is passed the controller instance it is filtering. It gets
full access to the controller and can manipulate it as it sees fit. The fact that it gets an
instance of the controller to play with also makes it seem like feature envy, and frankly,
I haven’t had much use for this technique.

Inline Method

The inline method (using a block parameter to the filter method) can be used to quickly
do something small that doesn’t require a lot of explanation or just as a quick test.

class WeblogController < ActionController::Base

before_filter do

redirect_to new_user_session_path unless authenticated?

end

end

The block is executed in the context of the controller instance, using instance_eval.
This means that the block has access to both the request and response objects complete
with convenience methods for params, session, template, and assigns.

4.7.3 Filter Chain Ordering

Using before_filter and after_filter appends the specified filters to the existing
chain. That’s usually just fine, but sometimes you care more about the order in which
the filters are executed. When that’s the case, you can use prepend_before_filter

and prepend_after_filter. Filters added by these methods will be put at the be-
ginning of their respective chain and executed before the rest, like the example in
Listing 4.3.

Listing 4.3 An example of prepending before filters

class ShoppingController < ActionController::Base

before_filter :verify_open_shop

class CheckoutController < ShoppingController

prepend_before_filter :ensure_items_in_cart, :ensure_items_in_stock

The filter chain for the CheckoutController is now :ensure_items_in_cart,
:ensure_items_in_stock, :verify_open_shop. So if either of the ensure filters
halts execution, we’ll never get around to seeing if the shop is open.

C
o
n

tro
lle

rs
4.7 Filters 109

You may pass multiple filter arguments of each type as well as a filter block. If a
block is given, it is treated as the last argument.

4.7.4 Around Filters

Around filters wrap an action, executing code both before and after the action that they
wrap. They may be declared as method references, blocks, or objects with an around

class method.
To use a method as an around_filter, pass a symbol naming the Ruby method.

Use yield within the method to run the action.
For example, Listing 4.4 has an around filter that logs exceptions (not that you need

to do anything like this in your application; it’s just an example).

Listing 4.4 An around filter to log exceptions

around_filter :catch_exceptions

private

def catch_exceptions

yield

rescue => exception

logger.debug "Caught exception! #{exception}"

raise

end

To use a block as an around_filter, pass a block taking as args both the controller and
the action parameters. You can’t call yield from blocks in Ruby, so explicitly invoke
call on the action parameter:

around_filter do |controller, action|

logger.debug "before #{controller.action_name}"

action.call

logger.debug "after #{controller.action_name}"

end

Tim says . . .

Since processing of filter blocks is done with instance_eval, you don’t actually have to use
the controller parameter in Rails 3. It’s there for backward-compatibility reasons.

110 Chapter 4: Working with Controllers

To use a filter object with around_filter, pass an object responding to :around.
With a filter method, yield to the block like this:

around_filter BenchmarkingFilter

class BenchmarkingFilter

def self.around(controller)

Benchmark.measure { yield }

end

end

4.7.5 Filter Chain Skipping

Declaring a filter on a base class conveniently applies to its subclasses, but sometimes a
subclass should skip some of the filters it inherits from a superclass:

class ApplicationController < ActionController::Base

before_filter :authenticate

around_filter :catch_exceptions

end

class SignupController < ApplicationController

skip_before_filter :authenticate

end

class HackedTogetherController < ApplicationController

skip_filter :catch_exceptions

end

4.7.6 Filter Conditions

Filters may be limited to specific actions by declaring the actions to include or exclude, us-
ing :only or :except options. Both options accept single actions (like :only => :in-

dex) or arrays of actions (:except => [:foo, :bar]).

class Journal < ActionController::Base

before_filter :authorize, :only => [:edit, :delete]

around_filter :except => :index do |controller, action_block|

results = Profiler.run(&action_block)

controller.response.sub! "</body>", "#{results}</body>"

end

private

def authorize

Redirect to login unless authenticated.

end

end

C
o
n

tro
lle

rs
4.8 Verification 111

4.7.7 Filter Chain Halting

The before_filter and around_filter methods may halt the request before the
body of a controller action method is run. This is useful, for example, to deny access to
unauthenticated users. As mentioned earlier, all you have to do to halt the before filter
chain is call render or redirect_to. After filters will not be executed if the before
filter chain is halted.

Around filters halt the request unless the action block is called. If an around filter
returns before yielding, it is effectively halting the chain and any after filters will not
be run.

4.8 Verification

This official Rails verification plugin5 provides a class-level method for specifying that
certain actions are guarded against being called without certain prerequisites being met.
It is essentially a special kind of before_filter.

An action may be guarded against being invoked without certain request parameters
being set or without certain session values existing. When a verification is violated,
values may be inserted into the flash and a redirection triggered. If no specific action is
configured, verification failure will in a 400 Bad Request response.

Note that these verifications are apart from the business rules expressed in your
models. They do not examine the content of the session or the parameters nor do they
replace model validations.

4.8.1 Example Usage

The following example prevents the updates action from being invoked unless the
privileges key is present in params. The request will be redirected to the settings
action if the verification fails.

verify :params => "privileges",

:only => :update,

:redirect_to => { :action => "settings" }

5. rails plugin install git://github.com/rails/verification.git

112 Chapter 4: Working with Controllers

4.8.2 Options

The following options are valid parameters to the verify method.

:params A single key or an array of keys that must be present in the params hash in
order for the action(s) to be safely called.

:session A single key or an array of keys that must be present in the session in order
for the action(s) to be safely called.

:flash A single key or an array of keys that must be present in the flash in order for
the action(s) to be safely called.

:method A single key or an array of keys that must match the current request method
in order for the action(s) to be safely called. Valid keys are symbols like :get and
:post.

:xhr Set to true or false to ensure that the request is coming from an Ajax call
or not.

:add flash A hash of name/value pairs that should be merged into the session‚Äôs
flash if verification fails.

:add headers A hash of name/value pairs that should be merged into the response‚Äôs
headers hash if verification fails.

:redirect to The parameters to be used when redirecting if verfication fails. You can
redirect either to a named route or to the action in some controller.

:render The render parameters to be used if verification fails.

:only Only apply this verification to the actions specified in the array. (Single value
permitted).

:except Do not apply this verification to the actions specified in the array (Single value
permitted).

4.9 Streaming

Rails has built-in support for streaming binary content back to the browser, as opposed
to its normal duties rendering view templates.

4.9.1 Via render :text => proc

The :text option of the render method optionally accepts a Proc object, which can
be used to stream on-the-fly generated data to the browser or control page generation

C
o
n

tro
lle

rs
4.9 Streaming 113

on a fine-grained basis. The latter should generally be avoided unless you know exactly
what you’re doing, as it violates the separation between code and content.

Two arguments are passed to the proc you supply, a response object and an output

object. The response object is equivalent to the what you’d expect in the context of
the controller, and can be used to control various things in the HTTP response, such as
the Content-Type header. The output object is an writable IO-like object, so one can
call write and flush on it.

The following example demonstrates how one can stream a large amount of on-the-
fly generated data to the browser:

Streams about 180 MB of generated data to the browser.

render :text => proc { |response, output|

10_000_000.times do |i|

output.write("This is line #{i}\n")

end

}

Rails also supports sending buffers and files with two methods in the
ActionController::Streaming module: send_data and send_file.

4.9.2 send—data(data, options = {})

The send_data method allows you to send textual or binary data in a buffer to the user
as a named file. You can set options that affect the content type and apparent filename,
and alter whether an attempt is made to display the data inline with other content in the
browser or the user is prompted to download it as an attachment.

Options

The send_data method has the following options:

:filename Suggests a filename for the browser to use.

:type Specifies an HTTP content type. Defaults to 'application/octet-stream'.

:disposition Specifies whether the file will be shown inline or downloaded. Valid
values are inline and attachment (default).

status Specifies the status code to send with the response. Defaults to '200 OK'.

Usage Examples

Creating a download of a dynamically generated tarball:

send_data generate_tgz('dir'), :filename => 'dir.tgz'

114 Chapter 4: Working with Controllers

Sending a dynamic image to the browser, like for instance a captcha system:

require 'RMagick'

class CaptchaController < ApplicationController

def image

create an RMagic canvas and render difficult to read text on it

...

img = canvas.flatten_images

img.format = "JPG"

send it to the browser

send_data img.to_blob, :disposition => 'inline', :type => 'image/jpg'

end

end

4.9.3 send—file(path, options = {})

The send_filemethod sends an existing file down to the client using Rack::Sendfile
middleware, which intercepts the response and replaces it with a webserver specific
X-Sendfile header. The web server then becomes responsible for writing the file con-
tents to the client instead of Rails. This can dramatically reduce the amount of work
accomplished in Ruby and takes advantage of the web servers optimized file delivery
code.6

Options

Here are the options available for send_file:

:filename suggests a filename for the browser to use. Defaults to File.basename

(path)

:type specifies an HTTP content type. Defaults to 'application/octet-stream'.

:disposition specifies whether the file will be shown inline or downloaded. Valid
values are 'inline' and 'attachment' (default).

:status specifies the status code to send with the response. Defaults to '200 OK'.

:url based filename should be set to true if you want the browser to guess the
filename from the URL, which is necessary for i18n filenames on certain browsers
(setting :filename overrides this option).

6. More information, particularly about web server configuration available at http://rack.rubyforge.org/
doc/Rack/Sendfile.html

http://rack.rubyforge.org/doc/Rack/Sendfile.html
http://rack.rubyforge.org/doc/Rack/Sendfile.html

C
o
n

tro
lle

rs
4.9 Streaming 115

There’s also a lot more to read about Content-* HTTP headers7 if you’d like to
provide the user with additional information that Rails doesn’t natively support (such
as Content-Description).

Security Considerations

Note that the send_file method can be used to read any file accessible to the user
running the Rails server process, so be extremely careful to sanitize8 the path parameter
if it’s in any way coming from an untrusted users.

If you want a quick example, try the following controller code:

class FileController < ActionController::Base

def download

send_file(params[:path])

end

end

Give it a route

match 'file/download' => 'file#download'

then fire up your server and request any file on your system:

$ curl http://localhost:3000/file/download?path=/etc/hosts

##

Host Database

#

localhost is used to configure the loopback interface

when the system is booting. Do not change this entry.

##

127.0.0.1 localhost

255.255.255.255 broadcasthost

::1 localhost

fe80::1%lo0 localhost

Be aware that your sent file may be cached by proxies and browsers. The Pragma and
Cache-Control headers declare how the file may be cached by intermediaries. They
default to require clients to validate with the server before releasing cached responses.9

Usage Examples

Here’s the simplest example, just a simple zip file download:

send_file '/path/to.zip'

7. See the official spec at http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html.
8. Heiko Webers has an old, yet still useful write-up about sanitizing filenames at http://www.

rorsecurity.info/2007/03/27/working-with-files-in-rails/.
9. See http://www.mnot.net/cache_docs/ for an overview of web caching.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://www.rorsecurity.info/2007/03/27/working-with-files-in-rails/
http://www.rorsecurity.info/2007/03/27/working-with-files-in-rails/
http://www.mnot.net/cache_docs/

116 Chapter 4: Working with Controllers

Courtenay says . . .

There are few legitimate reasons to serve static files through Rails. Unless you are protecting
content, I strongly recommend you cache the file after sending it. There are a few ways to do
this. Since a correctly configured web server will serve files in public/ and bypass rails, the
easiest is to just copy the newly generated file to the public directory after sending it:

public_dir = File.join(Rails.root, 'public', controller_path)

FileUtils.mkdir_p(public_dir)

FileUtils.cp(filename, File.join(public_dir, filename))

All subsequent views of this resource will be served by the web server. Alternatively, you can
try using the caches_page directive, which will automatically do something similar for you.
(Caching is covered comprehensively in Chapter 17.)

Sending a JPG to be displayed inline requires specification of the MIME content-type:

send_file '/path/to.jpg',

:type => 'image/jpeg',

:disposition => 'inline'

This will show a 404 HTML page in the browser. We append a charset declaration
to the MIME type information:

send_file '/path/to/404.html,

:type => 'text/html; charset=utf-8',

:status => 404

How about streaming an FLV file to a browser-based Flash video player?

send_file @video_file.path,

:filename => video_file.title + '.flv',

:type => 'video/x-flv',

:disposition => 'inline'

Regardless of how you do it, you may wonder why you would need a mechanism to send
files to the browser anyway, since it already has one built in—requesting files from the
public directory. Well, often a web application will front files that need to be protected
from public access.10 (Practically every porn site in existence!)

10. Ben Curtis writes up an excellent approach to securing downloads at http://www.bencurtis.com/

archives/2006/11/serving-protected-downloads-with-rails/.

http://www.bencurtis.com/archives/2006/11/serving-protected-downloads-with-rails/
http://www.bencurtis.com/archives/2006/11/serving-protected-downloads-with-rails/

C
o
n

tro
lle

rs
4.10 Conclusion 117

4.10 Conclusion

In this chapter, we covered some concepts at the very core of how Rails works: the dis-
patcher and how controllers render views. Importantly, we covered the use of controller
action filters, which you will use constantly, for all sorts of purposes. The Action Con-
troller API is fundamental knowledge, which you need to understand well along your
way to becoming an expert Rails programmer.

Moving on, we’ll leave Action Pack and head over to the other major component
API of Rails: Active Record.

This page intentionally left blank

A
ctive

R
e
co

rd

CHAPTER 5

Working with Active Record

An object that wraps a row in a database table or view, encapsulates the database access, and adds
domain logic on that data.

—Martin Fowler, Patterns of Enterprise Architecture

The Active Record pattern, identified by Martin Fowler in his seminal work, Patterns of

Enterprise Architecture, maps one domain class to one database table, and one instance of
that class to each row of that database. It is a simple approach that, while not perfectly
applicable in all cases, provides a powerful framework for database access and object
persistence in your application.

The Rails Active Record framework includes mechanisms for representing models
and their relationships, CRUD (Create, Read, Update, and Delete) operations, complex
searches, validation, callbacks, and many more features. It relies heavily on convention

over configuration, so it’s easy to use when you’re creating a new database schema that can
follow those conventions. However, Active Record also provides configuration settings
that let you adapt it to work well with legacy database schemas that don’t necessarily
conform to Rails conventions.

According to Martin Fowler, delivering the keynote address at the inaugural Rails
conference in 2006, Ruby on Rails has successfully taken the Active Record pattern
much further than anyone imagined it could go. It shows you what you can achieve
when you have a single-minded focus on a set of ideals, which in the case of Rails is
simplicity.

119

120 Chapter 5: Working with Active Record

5.1 The Basics

For the sake of completeness, let’s briefly review the basics of how Active Record works.
In order to create a new model class, the first thing you do is to declare it as a subclass
of ActiveRecord::Base, using Ruby’s class extension syntax:

class Client < ActiveRecord::Base

end

By convention, an Active Record class named Client will be mapped to the clients
table. Rails understands pluralization, as covered in the section “Pluralization” in this
chapter. Also by convention, Active Record will expect an id column to use as primary
key. It should be an integer and incrementing of the key should be managed automatically
by the database server when creating new records. Note how the class itself makes no
mention of the table name, columns, or their datatypes.

Each instance of an Active Record class provides access to the data from one row
of the backing database table, in an object-oriented manner. The columns of that row
are represented as attributes of the object, using straightforward type conversions (i.e.
Ruby strings for varchars, Ruby dates for dates, and so on), and with no default data
validation. Attributes are inferred from the column definition pertaining to the tables
with which they’re linked. Adding, removing, and changing attributes and their types
are done by changing the columns of the table in the database.

When you’re running a Rails server in development mode, changes to the database
schema are reflected in the Active Record objects immediately, via the web browser.
However, if you make changes to the schema while you have your Rails console running,
the changes will not be reflected automatically, although it is possible to pick up changes
manually by typing reload! at the console.

Courtenay says . . .

Active Record is a great example of the Rails “Golden Path.” If you keep within its limitations,
you can go far, fast. Stray from the path, and you might get stuck in the mud. This Golden Path
involves many conventions, like naming your tables in the plural form (“users”). It’s common for
new developers to Rails and rival web-framework evangelists to complain about how tables must
be named in a particular manner, how there are no constraints in the database layer, that foreign
keys are handled all wrong, enterprise systems must have composite primary keys, and more. Get
the complaining out of your system now, because all these defaults are simply defaults, and in
most cases can be overridden with a single line of code or a plugin.

A
ctive

R
e
co

rd
5.2 Macro-Style Methods 121

5.2 Macro-Style Methods

Most of the important classes you write while coding a Rails application are configured
using what I call macro-style method invocations (also known in some circles as a
domain-specific language or DSL). Basically, the idea is to have a highly readable block
of code at the top of your class that makes it immediately clear how it is configured.

Macro-style invocations are usually placed at the top of the file, and for good reason.
Those methods declaratively tell Rails how to manage instances, perform data validation
and callbacks, and relate with other models. Many of them do some amount of metapro-
gramming, meaning that they participate in adding behavior to your class at runtime,
in the form of additional instance variables and methods.

5.2.1 Relationship Declarations

For example, look at the Client class with some relationships declared. We’ll talk about
associations extensively in Chapter 7, Active Record Associations, but all I want to do
right now is to illustrate what I’m talking about when I say macro-style:

class Client < ActiveRecord::Base

has_many :billing_codes

has_many :billable_weeks

has_many :timesheets, :through => :billable_weeks

end

As a result of those three has_many declarations, the Client class gains at least three new
attributes, proxy objects that let you manipulate the associated collections interactively.

I still remember the first time I sat with an experienced Java programmer friend of
mine to teach him some Ruby and Rails. After minutes of profound confusion, an almost
visible light bulb appeared over his head as he proclaimed, “Oh! They’re methods!”

Indeed, they’re regular old method calls, in the context of the class object. We leave
the parentheses off to emphasize the declarative intention. That’s a style issue, but it just
doesn’t feel right to me with the parentheses in place, as in the following code snippet:

class Client < ActiveRecord::Base

has_many(:billing_codes)

has_many(:billable_weeks)

has_many(:timesheets, :through => :billable_weeks)

end

When the Ruby interpreter loads client.rb, it executes those has_many methods,
which, again, are defined as class methods of Active Record’s Base class. They are
executed in the context of the Client class, adding attributes that are subsequently

122 Chapter 5: Working with Active Record

available to Client instances. It’s a programming model that is potentially strange to
newcomers, but quickly becomes second nature to the Rails programmer.

5.2.2 Convention over Configuration

Convention over configuration is one of the guiding principles of Ruby on Rails. If
we follow Rails conventions, very little explicit configuration is needed, which stands
in stark contrast to the reams of configuration that are required to get even a simple
application running in other technologies.

It’s not that a newly bootstrapped Rails application comes with default configuration
in place already, reflecting the conventions that will be used. It’s that the conventions
are baked into the framework, actually hard-coded into its behavior, and you need to
override the default behavior with explicit configuration when applicable.

It’s also worth mentioning that most configuration happens in close proximity to
what you’re configuring. You will see associations, validations, and callback declarations
at the top of most Active Record models.

I suspect that the first explicit configuration (over convention) that many of us deal
with in Active Record is the mapping between class name and database table, since by de-
fault Rails assumes that our database name is simply the pluralized form of our class name.

5.2.3 Setting Names Manually

The set_table_name and set_primary_key methods let you use any table and pri-
mary names youd like, but youll have to specify them explicitly in your model class. It’s
only a couple of extra lines per model, but on a large application it adds unnecessary
complexity, so don’t do it if you don’t absolutely have to.

When you’re not at liberty to dictate the naming guidelines for your database schema,
such as when a separate DBA group controls all database schemas, then you probably
don’t have a choice. But if you have flexibility, you should really just follow Rails
conventions. They might not be what you’re used to, but following them will save you
time and unnecessary headaches.

5.2.4 Legacy Naming Schemes

If you are working with legacy schemas, you may be tempted to automatically
set_table_name everywhere, whether you need it or not. Before you get accustomed
to doing that, learn the additional options available that might just be more DRY and
make your life easier.

A
ctive

R
e
co

rd
5.3 Defining Attributes 123

Let’s assume you need to turn off table pluralization altogether; you would set the
following attribute to your config/application.rb:

config.active_record.pluralize_table_names = false

There are various other useful attributes of ActiveRecord::Base, provided for con-
figuring Rails to work with legacy naming schemes.

primary—key—prefix—type
Accessor for the prefix type that will be prepended to every primary key column name.
If :table_name is specified, Active Record will look for tableid instead of id as the
primary column. If :table_name_with_underscore is specified, Active Record will
look for table_id instead of id.

table—name—prefix
Some departments prefix table names with the name of the database. Set this attribute
accordingly to avoid having to include the prefix in all of your model class names.

table—name—suffix
Similar to prefix, but adds a common ending to all table names.

5.3 Defining Attributes

The list of attributes associated with an Active Record model class is not coded explicitly.
At runtime, the Active Record model examines the database schema directly from the
server. Adding, removing, and changing attributes and their type is done by manipulating
the database itself via Active Record migrations.

The practical implication of the Active Record pattern is that you have to define
your database table structure and make sure it exists in the database prior to working
with your persistent models. Some people may have issues with that design philosophy,
especially if they’re coming from a background in top-down design.

The Rails way is undoubtedly to have model classes that map closely to your database
schema. On the other hand, remember you can have models that are simple Ruby classes
and do not inherit from ActiveRecord::Base. Among other things, it is common to
use non-Active Record model classes to encapsulate data and logic for the view layer.

5.3.1 Default Attribute Values

Migrations let you define default attribute values by passing a :default option to the
column method, but most of the time you’ll want to set default attribute values at the

124 Chapter 5: Working with Active Record

model layer, not the database layer. Default values are part of your domain logic and
should be kept together with the rest of the domain logic of your application, in the
model layer.

A common example is the case when your model should return the string “n/a”
instead of a nil (or empty) string for an attribute that has not been populated yet. Seems
simple enough and it’s a good way to learn how attributes exist at runtime.

To begin, let’s whip up a quick spec describing the desired behavior.

describe TimesheetEntry do

it "category should be 'n/a' if not available" do

entry = TimesheetEntry.new

entry.category.should == 'n/a'

end

end

We run that test and it fails, as expected. Active Record doesn’t provide us with any
class-level methods to define default values for models declaratively. So it seems we’ll
have to create an explicit attribute accessor that provides a default value.

Normally, attribute accessors are handled magically by Active Record’s internals,
but in this case we’re overriding the magic with an explicit getter. All we need to do is to
define a method with the same name as the attribute and use Ruby’s || operator, which
will short-circuit if @category is not nil.

class TimesheetEntry < ActiveRecord::Base

def category

@category || 'n/a'

end

end

Now we run the test and it passes. Great. Are we done? Not quite. We should test a case
when the real category value should be returned. I’ll insert an example with a not-nil
category.

describe TimesheetEntry do

it "should return category when available" do

entry = TimesheetEntry.new(:category => "TR3W")

entry.category.should == "TR3W"

end

it "should have a category of 'n/a' if not available" do

entry = TimesheetEntry.new

entry.category.should == 'n/a'

end

end

A
ctive

R
e
co

rd
5.3 Defining Attributes 125

Uh-oh. The first example fails. Seems our default ‘n/a’ string is being returned no matter
what. That means that @category must not get set. Should we even know that it is
getting set or not? It is an implementation detail of Active Record, is it not?

The fact that Rails does not use instance variables like @category to store the model
attributes is in fact an implementation detail. But model instances have a couple of
methods, write_attribute and read_attribute, conveniently provided by Active
Record for the purposes of overriding default accessors, which is exactly what we’re trying
to do. Let’s fix our TimesheetEntry class.

class TimesheetEntry < ActiveRecord::Base

def category

read_attribute(:category) || 'n/a'

end

end

Now the test passes. How about a simple example of using write_attribute?

class SillyFortuneCookie < ActiveRecord::Base

def message=(txt)

write_attribute(:message, txt + ' in bed')

end

end

Alternatively, both of these examples could have been written with the shorter forms of
reading and writing attributes, using square brackets.

class Specification < ActiveRecord::Base

def tolerance

self[:tolerance] || 'n/a'

end

end

class SillyFortuneCookie < ActiveRecord::Base

def message=(txt)

self[:message] = txt + ' in bed'

end

end

5.3.2 Serialized Attributes

One of Active Record’s coolest features is the ability to mark a column of type text as
being serialized. Whatever object (more accurately, graph of objects) you assign to that
attribute will be stored in the database as YAML, Ruby’s native serialization format.

126 Chapter 5: Working with Active Record

Sebastian says . . .

TEXT columns usually have a maximum size of 64K and if your serialized attributes exceeds the
size constraints, you’ll run into a lot of errors. On the other hand, if your serialized attributes are
that big, you might want to rethink what you’re doing. At least move them into a separate table
and use a larger column type if your server allows it.

One of the first thing that new Rails developers do when they discover theserialize
declaration is to use it to store a hash of arbitrary objects related to user preferences.
Why bother with the complexity of a separate preferences table if you can denormalize
that data into the users table instead?

class User < ActiveRecord::Base

serialize :preferences, Hash

end

The optional second parameter (used in the example) takes a class that limits the type
of object that can be stored. The serialized object must be of that class on retrieval or
SerializationTypeMismatch will be raised. Similarly to readonly attributes, access
to the list of serialized attributes is handled through serialized_attributes.

The API does not give us an easy way to set a default value. That’s unfortunate,
because it would be nice to be able to assume that our preferences attribute is already
initialized when we want to use it.

user = User.new

the following line will raise NoMethodError unless preferences has a

default

user.preferences[:inline_help] = false

Unless a value has already been set for the attribute, it’s going to be nil. You might be
tempted to set a default YAML string for the serialized attribute at the database level, so
that it’s not nil when you’re using a newly created object:

add_column :users, :preferences, :text, :default => "--- {}"

However, that approach won’t work with MySQL 5.x, which ignores default values
for binary and text columns. One possible solution is to overload the attribute’s reader
method with logic that sets the default value if it’s nil.

def preferences

read_attribute(:preferences) || write_attribute(:preferences, {})

end

I prefer this method over the alternative, using an after_initialize callback, because
it incurs a small performance hit only when the preferences attribute is actually used and
not at instantiation time of every single User object in your system.

A
ctive

R
e
co

rd
5.4 CRUD: Creating, Reading, Updating, Deleting 127

5.4 CRUD: Creating, Reading, Updating, Deleting

The four standard operations of a database system combine to form a popular acronym:
CRUD. It sounds somewhat negative, because as a synonym for garbage or unwanted

accumulation the word crud in English has a rather bad connotation. However, in Rails
circles, use of the word CRUD is benign. In fact, as in earlier chapters, designing
your app to function primarily as RESTful CRUD operations is considered a best
practice!

5.4.1 Creating New Active Record Instances

The most straightforward way to create a new instance of an Active Record model is by
using a regular Ruby constructor, the class method new. New objects can be instantiated
as either empty (by omitting parameters) or pre-set with attributes, but not yet saved.
Just pass a hash with key names matching the associated table column names. In both
instances, valid attribute keys are determined by the column names of the associated
table—hence you can’t have attributes that aren’t part of the table columns.

You can find out if an Active Record object is saved by looking at the value of its id,
or programmatically, by using the methods new_record? and persisted?:

>> c = Client.new

=> #<Client id: nil, name: nil, code: nil>

>> c.new_record?

=> true

>> c.persisted?

=> false

Active Record constructors take an optional block, which can be used to do addi-
tional initialization. The block is executed after any passed-in attributes are set on the
instance:

>> c = Client.new do |client|

?> client.name = "Nile River Co."

>> client.code = "NRC"

>> end

=> #<Client id: 1, name: "Nile River Co.", code: "NRC">

Active Record has a handy-dandy create class method that creates a new instance,
persists it to the database, and returns it in one operation:

>> c = Client.create(:name => "Nile River, Co.", :code => "NRC")

=> #<Client id: 1, name: "Nile River, Co.", code: "NRC" ...>

The create method takes an optional block, just like new.

128 Chapter 5: Working with Active Record

5.4.2 Reading Active Record Objects

Finding an existing object by its primary key is very simple, and is probably one of the
first things we all learn about Rails when we first pick up the framework. Just invoke
find with the key of the specific instance you want to retrieve. Remember that if an
instance is not found, a RecordNotFound exception is raised.

>> first_project = Project.find(1)

=> #<Project id: 1 ...>

>> boom_client = Client.find(99)

ActiveRecord::RecordNotFound: Couldn't find Client with ID=99

>> all_clients = Client.all

=> [#<Client id: 1, name: "Paper Jam Printers", code: "PJP" ...>,

#<Client id: 2, name: "Goodness Steaks", code: "GOOD_STEAKS" ...>]

>> first_client = Client.first

=> #<Client id: 1, name: "Paper Jam Printers", code: "PJP" ...>

By the way, it is entirely common for methods in Ruby to return different types depending
on the parameters used, as illustrated in the example. Depending on how find is invoked,
you will get either a single Active Record object or an array of them.

For convenience, first, last and all also exist as syntactic sugar wrappers around the
find method.

> Product.last

=> #<Product id: 1, name: "leaf", sku: nil, created_at: "2010-01-12

03:34:41", updated_at: "2010-01-12 03:34:41">

Finally, the find method also understands arrays of ids, and raises a RecordNotFound
exception if it can’t find all of the ids specified:

> Product.find([1, 2])

ActiveRecord::RecordNotFound: Couldn't find all Products with IDs (1,

2) (found 1 results, but was looking for 2)

5.4.3 Reading and Writing Attributes

After you have retrieved a model instance from the database, you can access each of its
columns in several ways. The easiest (and clearest to read) is simply with dot notation:

>> first_client.name

=> "Paper Jam Printers"

>> first_client.code

=> "PJP"

A
ctive

R
e
co

rd
5.4 CRUD: Creating, Reading, Updating, Deleting 129

The private read_attribute method of Active Record, covered briefly in an earlier
section, is useful to know about, and comes in handy when you want to override a default
attribute accessor. To illustrate, while still in the Rails console, I’ll go ahead and reopen
the Client class on the fly and override the name accessor to return the value from the
database, but reversed:

>> class Client < ActiveRecord::Base

>> def name

>> read_attribute(:name).reverse

>> end

>> end

=> nil

>> first_client.name

=> "sretnirP maJ repaP"

Hopefully it’s not too painfully obvious for me to demonstrate why you need
read_attribute in that scenario. Recursion is a bitch, if it’s unexpected:

>> class Client < ActiveRecord::Base

>> def name

>> self.name.reverse

>> end

>> end

=> nil

>> first_client.name

SystemStackError: stack level too deep

from (irb):21:in 'name'

>> class Client < ActiveRecord::Base from (irb):21:in 'name'

>> class Client < ActiveRecord::Base from (irb):24

As can be expected by the existence of a read_attribute method (and as we covered
earlier in the chapter), there is also a write_attribute method that lets you change
attribute values. Just as with attribute getter methods, you can override the setter methods
and provide your own behavior:

class Project < ActiveRecord::Base

The description for a project cannot be changed to a blank string

def description=(new_value)

write_attribute(:description, new_value) unless new_value.blank?

end

end

The preceding example illustrates a way to do basic validation, since it checks to make
sure that a value is not blank before allowing assignment. However, as we’ll see in
Chapter 8, Validations, there are better ways to do this.

130 Chapter 5: Working with Active Record

Hash Notation

Yet another way to access attributes is using the [attribute_name] operator, which
lets you access the attribute as if it were a regular hash.

>> first_client['name']

=> "Paper Jam Printers"

>> first_client[:name]

=> "Paper Jam Printers"

String versus symbol

Many Rails methods accept symbol and string parameters interchangeably, and that is potentially
very confusing. Which is more correct? The general rule is to use symbols when the string is a
name for something, and a string when it’s a value. You should probably be using symbols when
it comes to keys of options hashes and the like.

The attributes Method

There is also an attributes method that returns a hash with each attribute and its
corresponding value as returned by read_attribute. If you use your own custom
attribute reader and writer methods, it’s important to remember that attributes will
not use custom attribute readers when accessing its values, but attributes= (which
lets you do mass assignment) does invoke custom attribute writers.

>> first_client.attributes

=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}

Being able to grab a hash of all attributes at once is useful when you want to iterate over
all of them or pass them in bulk to another function. Note that the hash returned from
attributes is not a reference to an internal structure of the Active Record object. It is
copy, which means that changing its values will have no effect on the object it came from.

>> atts = first_client.attributes

=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}

>> atts["name"] = "Def Jam Printers"

=> "Def Jam Printers"

>> first_client.attributes

=> {"name"=>"Paper Jam Printers", "code"=>"PJP", "id"=>1}

To make changes to an Active Record object’s attributes in bulk, it is possible to pass a
hash to the attributes writer.

A
ctive

R
e
co

rd
5.4 CRUD: Creating, Reading, Updating, Deleting 131

5.4.4 Accessing and Manipulating Attributes Before
They Are Typecast

The Active Record connection adapters, classes that implement behavior specific to
databases, fetch results as strings. Rails then takes care of converting them to other
datatypes if necessary, based on the type of the database column. For instance, integer
types are cast to instances of Ruby’s Fixnum class, and so on.

Even if you’re working with a new instance of an Active Record object, and have
passed in constructor values as strings, they will be typecast to their proper type when
you try to access those values as attributes.

Sometimes you want to be able to read (or manipulate) the raw attribute data without
having the column-determined typecast run its course first, and that can be done by using
the attribute_before_type_cast accessors that are automatically created in your
model.

For example, consider the need to deal with currency strings typed in by your
end users. Unless you are encapsulating currency values in a currency class (highly
recommended, by the way) you need to deal with those pesky dollar signs and commas.
Assuming that our Timesheet model had a rate attribute defined as a :decimal type,
the following code would strip out the extraneous characters before typecasting for the
save operation:

class Timesheet < ActiveRecord::Base

before_validation :fix_rate

def fix_rate

self[:rate] = rate_before_type_cast.tr('$,','')

end

end

5.4.5 Reloading

The reload method does a query to the database and resets the attributes of an Active
Record object. The optional options argument is passed to find when reloading so you
may do, for example, record.reload(:lock => true) to reload the same record
with an exclusive row lock. (See the section “Database Locking” later in this chapter.)

5.4.6 Cloning

Producing a copy of an Active Record object is done simply by calling clone, which
produces a shallow copy of that object. It is important to note that no associations will
get copied, even though they are stored internally as instance variables.

132 Chapter 5: Working with Active Record

5.4.7 Dynamic Attribute-Based Finders

Since one of the most common operations in many applications is to simply query on
one or two columns, Rails has an easy and effective way to do these queries without
having to resort to where. They work thanks to the magic of Ruby’s method_missing
callback, which is executed whenever you invoke a method that hasn’t been defined yet.

Dynamic finder methods begin with find_by_ or find_all_by_, indicating
whether you want a single value or array of results returned. The semantics are sim-
ilar to calling the method first versus the all option.

>> City.find_by_name("Hackensack")

=> #<City id: 15942, name: "Hackensack", latitude: "40.8858330000",

longitude: "-74.0438890000", state: "NJ">

Obie Fernandez2010-04-21T20:26:36cleanup please!

>> City.find_all_by_name("Atlanta").collect(&:state)

=> ["GA", "MI", "TX"]

It’s also possible to use multiple attributes in the same find by separating them with
“and”, so you get finders like Person.find_by_user_name_and_password or even
Payment.find_by_purchaser_and_state_and_country.

Dynamic finders have the benefits of being shorter and easier to read and understand.
Instead of writing

Person.where("user_name = ? AND password = ?", user_name, password)

try writing1

Person.find_by_user_name_and_password(user_name, password)

You can customize dynamic finder calls by chaining them to the end of scopes or relations,
however they must be the last call since they themselves return the actual results.

Payment.order("created_on).find_all_by_amount(50)

The same dynamic finder style can be used to create the object if it doesn’t already exist.
This dynamic finder is called with find_or_create_by_ and will return the object if
it already exists and otherwise creates it, then returns it.

> AreaCode.find_or_create_by_number_and_location_and_state "732",

"Central", "NJ"

=> #<AreaCode id: 6, number: "732", location: "Central", created_at:

"2010-09-19 20:11:37", updated_at: "2010-09-19 20:11:37", state: "NJ">

Use the find_or_initialize_by_ finder if you want to return a new record without
saving it first.

1. Hmm. Not that much easier, huh? Well it used to be a big improvement before Arel came around.

A
ctive

R
e
co

rd
5.4 CRUD: Creating, Reading, Updating, Deleting 133

>> AreaCode.find_or_initialize_by_number "551"

=> #<AreaCode id: nil, number: "551", location: nil, created_at: nil,

updated_at: nil, state: nil>

All of the find_* dynamic finder methods are incompatible with Arel and feel archaic
in Rails 3, although they’re still supported. The only type of dynamic finder that I use
on any sort of regular basis is the convenient find_or_create_by_.

5.4.8 Dynamic Scopes

Dynamic scopes are similar to dynamic finders in that they operate viamethod_missing.
Since they are based on Arel, they allow the kind of method chaining that is preferred
in Rails 3.

>> AreaCode.find_all_by_state("NJ").order(:created_at)

NoMethodError: undefined method 'order' for #<Array:0x102e94f00>

>> AreaCode.scoped_by_state("NJ").order(:created_at)

=> [#<AreaCode id: 5, ...]

Since method_missing is costly in terms of execution performance, dynamic methods
are created on the fly as needed. The following example picks up where the previous one
left off, and shows that scoped_by_state is now a method on the AreaCode class, but
scoped_by_location, which has not been invoked yet, is not.

>> AreaCode.methods.include? "scoped_by_state"

=> true

>> AreaCode.methods.include? "scoped_by_location"

=> false

5.4.9 Custom SQL Queries

The find_by_sql class method takes a SQL select query and returns an array of Active
Record objects based on the results. Here’s a barebones example, which you would never
actually need to do in a real application:

>> Client.find_by_sql("select * from clients")

=> [#<Client id: 1, name: "Paper Jam Printers", code: "PJP" ...>,

#<Client id: 2, name: "Goodness Steaks", code: "GOOD_STEAKS" ...>]

I can’t stress this enough: You should take care to use find_by_sql only when you
really need it! For one, it reduces database portability. When you use Active Record’s
normal find operations, Rails takes care of handling differences between the underlying
databases for you.

134 Chapter 5: Working with Active Record

Note that Active Record already has a ton of built-in functionality abstracting
SELECT statements. Functionality that it would be very unwise to reinvent. There are
lots of cases where at first glance it might seem that you might need to use find_by_sql,
but you actually don’t. A common case is when doing a LIKE query:

>> Client.find_by_sql("select * from clients where code like 'A%'")

=> [#<Client id: 1, name: "Amazon, Inc" ...>]

Turns out that you can easily put that LIKE clause into a conditions option:

>> param = "A"

>> Client.where("code like ?", "#{param}%")

=> [#<Client id: 1, name: "Amazon, Inc" ...>]

Preventing SQL injection attacks

Under the covers, Rails sanitizes2 your SQL code, provided that you parameterize your query.
Active Record executes your SQL using the connection.select_all method, iterating
over the resulting array of hashes, and invoking your Active Record’s initialize method for
each row in the result set.
What would this section’s example look like un-parameterized?

>> Client.where("code like '#{params[:code]}%'")

=> [#<Client id: 1, name: "Amazon, Inc" ...>] # NOOOOO!

Notice the missing question mark as a variable placeholder. Always remember that interpolating
user-supplied values into a SQL fragment of any type is very unsafe! Just imagine what would
happen to your project if a malicious user called that unsafe find with params[:code] set to

"Amazon'; DELETE FROM users;'

This particular example might fail in your own experiments. The outcome is very specific to the
type of database/driver that you’re using. Some popular databases drivers may even have features
that help to prevent SQL injection. I still think it’s better to be safe than sorry.

The count_by_sql method works in a manner similar to find_by_sql.

>> Client.count_by_sql("select count(*) from clients")

=> 132

Again, you should have a special reason to be using it instead of the more concise
alternatives provided by Active Record.

2. Sanitization prevents SQL injection attacks. For more information about SQL injection and Rails see
http://www.rorsecurity.info/2007/05/19/sql-injection/.

http://www.rorsecurity.info/2007/05/19/sql-injection/

A
ctive

R
e
co

rd
5.4 CRUD: Creating, Reading, Updating, Deleting 135

5.4.10 The Query Cache

By default, Rails attempts to optimize performance by turning on a simple query cache.
It is a hash stored on the current thread, one for every active database connection. (Most
Rails processes will have just one.)

Whenever a find (or any other type of select operation) happens and the query
cache is active, the corresponding result set is stored in a hash with the SQL that was
used to query for them as the key. If the same SQL statement is used again in another
operation, the cached result set is used to generate a new set of model objects instead of
hitting the database again.

You can enable the query cache manually by wrapping operations in a cache block,
as in the following example:

User.cache do

puts User.first

puts User.first

puts User.first

end

Check your development.log and you should see the following entries:

User Load (1.0ms) SELECT * FROM users LIMIT 1

CACHE (0.0ms) SELECT * FROM users LIMIT 1

CACHE (0.0ms) SELECT * FROM users LIMIT 1

The database was queried only once. Try a similar experiment in your own console
without the cache block, and you’ll see that three separate User Load events are logged.

Save and delete operations result in the cache being cleared, to prevent propagation
of instances with invalid states. If you find it necessary to do so for whatever reason, call
the clear_query_cache class method to clear out the query cache manually.

The active record context plugin

Rick Olson extracted a plugin from his popular Lighthouse application that allows you
to easily seed the query cache with sets of objects that you know you will need. It’s
a powerful complement to Active Record’s built-in caching support. Learn more about
it at http://activereload.net/2007/5/23/spend-less-time-in-the-

database-and-more-time-outdoors.

Logging

The log file indicates when data is being read from the query cache instead of the database.
Just look for lines starting with CACHE instead of a Model Load.

http://activereload.net/2007/5/23/spend-less-time-in-thedatabase-and-more-time-outdoors
http://activereload.net/2007/5/23/spend-less-time-in-thedatabase-and-more-time-outdoors

136 Chapter 5: Working with Active Record

Place Load (0.1ms) SELECT * FROM places WHERE (places.id = 15749)

CACHE (0.0ms) SELECT * FROM places WHERE (places.id = 15749)

CACHE (0.0ms) SELECT * FROM places WHERE (places.id = 15749)

Default Query Caching in Controllers

For performance reasons, Active Record’s query cache is turned on by default for the
processing of controller actions.

Limitations

The Active Record query cache was purposely kept very simple. Since it literally keys
cached model instances on the SQL that was used to pull them out of the database, it
can’t connect multiple find invocations that are phrased differently but have the same
semantic meaning and results.

For example, “select foo from bar where id = 1” and “select foo from bar where
id = 1 limit 1” are considered different queries and will result in two distinct cache
entries. The active record context plugin3 by Rick Olson is an example of a query cache
implementation that is a little bit smarter about identity, since it keys cached results on
primary keys rather than SQL statements.

5.4.11 Updating

The simplest way to manipulate attribute values is simply to treat your Active
Record object as a plain old Ruby object, meaning via direct assignment using
myprop=(some_value)

There are a number of other different ways to update Active Record objects, as
illustrated in this section. First, let’s look at how to use the update class method of
ActiveRecord::Base

class ProjectController < ApplicationController

def update

Project.update(params[:id], params[:project])

redirect_to projects_path

end

def mass_update

Project.update(params[:projects].keys, params[:projects].values])

redirect_to projects_path

end

end

3. http://activereload.net/2007/5/23/spend-less-time-in-the-database-and-more-time-
outdoors

http://activereload.net/2007/5/23/spend-less-time-in-the-database-and-more-timeoutdoors
http://activereload.net/2007/5/23/spend-less-time-in-the-database-and-more-timeoutdoors

A
ctive

R
e
co

rd
5.4 CRUD: Creating, Reading, Updating, Deleting 137

The first form of update takes a single numeric id and a hash of attribute values, while
the second form takes a list of ids and a list of values and is useful in scenarios where a
form submission from a web page with multiple updateable rows is being processed.

The update class method does invoke validation first and will not save a record
that fails validation. However, it returns the object whether or not the validation passes.
That means that if you want to know whether or not the validation passed, you need to
follow up the call to update with a call to valid?

class ProjectController < ApplicationController

def update

project = Project.update(params[:id], params[:project])

if project.valid? # uh-oh, do we want to run validate again?

redirect_to project

else

render 'edit'

end

end

end

A problem is that now we are calling valid? twice, since the update call also called it.
Perhaps a better option is to use the update_attributes instance method:

class ProjectController < ApplicationController

def update

project = Project.find(params[:id])

if project.update_attributes(params[:project])

redirect_to project

else

render 'edit'

end

end

end

And of course, if you’ve done some basic Rails programming, you’ll recognize that
pattern, since it is used in the generated scaffolding code. The update_attributes

method takes a hash of attribute values, and returns true or false depending on whether
the save was successful or not, which is dependent on validation passing.

5.4.12 Updating by Condition

Active Record has another class method useful for updating multiple records at once:
update_all. It maps closely to the way that you would think of using a SQL
update...where statement. The update_all method takes two parameters, the set

138 Chapter 5: Working with Active Record

part of the SQL statement and the conditions, expressed as part of a where clause.
The method returns the number of records updated.4

I think this is one of those methods that is generally more useful in a scripting context
than in a controller method, but you might feel differently. Here is a quick example of
how I might go about reassigning all the Rails projects in the system to a new project
manager.

Project.update_all({:manager => 'Ron Campbell'}, :technology => 'Rails')

The update_all method also accepts string parameters, which allows you to lever-
age the power of SQL!

Project.update_all("cost = cost * 3", "lower(technology) LIKE

'%microsoft%'")

5.4.13 Updating a Particular Instance

The most basic way to update an Active Record object is to manipulate its attributes
directly and then call save. It’s worth noting that savewill insert a record in the database
if necessary or update an existing record with the same primary key.

>> project = Project.find(1)

>> project.manager = 'Brett M.'

>> project.save

=> true

The save method will return true if it was successful or false if it failed for any reason.
There is another method, save!, that will use exceptions instead. Which one to use
depends on whether you plan to deal with errors right away or delegate the problem to
another method further up the chain.

It’s mostly a matter of style, although the non-bang save and update methods
that return a boolean value are often used in controller actions, as the clause for an if
condition:

class StoryController < ApplicationController def points

story = Story.find(params[:id])

if story.update_attribute(:points, params[:value])

render :text => "#{story.name} updated"

else

render :text => "Error updating story points"

end

end

end

4. Microsoft’s ADO library doesn’t support reporting back the number of affected rows, so update all does not
work with the SQLServer adapter.

A
ctive

R
e
co

rd
5.4 CRUD: Creating, Reading, Updating, Deleting 139

5.4.14 Updating Specific Attributes

The instance methods update_attribute and update_attributes take one key/
value pair or hash of attributes, respectively, to be updated on your model and saved to
the database in one operation.

The update_attributemethod updates a single attribute and saves the record, but
updates made with this method are not subjected to validation checks! In other words,
this method allows you to persist an Active Record model to the database even if the full
object isn’t valid. Callbacks are also skipped, but the updated_at is still bumped.

Lark says . . .

I feel dirty whenever I use update_attribute.

On the other hand, update_attributes is subject to validation checks and is often
used on update actions and passed the params hash containing updated values.

Courtenay says . . .

If you have associations on a model, Active Record automatically creates convenience methods for
mass assignment. In other words, a Project model that has_many :users will expose a
user_ids attribute writer, which gets used by its update_attributesmethod.This is an
advantage if you’re updating associations with checkboxes, because you just name the checkboxes
project[user_ids][] and Rails will handle the magic. In some cases, allowing the user to
set associations this way would be a security risk. Definitely consider usingattr_accessible
to prevent mass assignment whenever there’s a possibility that your application will get abuse from
malicious users.

5.4.15 Convenience Updaters

Rails provides a number of convenience update methods in the form of increment,
decrement, and toggle, which do exactly what their names suggest with numeric and
boolean attributes. Each has a bang variant (such as toggle!) that additionally invokes
update_attribute after modifying the attribute.

5.4.16 Touching Records

There may be certain cases where updating a time field to indicate a record was viewed
is all you require, and Active Record provides a convenience method for doing so in the
form of touch. This is especially useful for cache autoexpiration, which is covered in
Chapter 17 “Caching and Performance.”

140 Chapter 5: Working with Active Record

Using this method on a model with no arguments updates the updated_at

timestamp field to the current time without firing any callbacks or validation. If a
timestamp attribute is provided it will update that attribute to the current time along
with updated_at.

>> user = User.first

>> user.touch #=> sets updated_at to now.

>> user.touch(:viewed_at) # sets viewed_at and updated_at to now.

If a :touch option is provided to a belongs to relation, it will touch the parent
record when the child is touched.

class User < ActiveRecord::Base

belongs_to :client, :touch => true

end

>> user.touch #=> also calls user.client.touch

5.4.17 Controlling Access to Attributes

Constructors and update methods that take hashes to do mass assignment of attribute
values are susceptible to misuse by hackers when they are used in conjunction with the
params hash available in controller methods.

When you have attributes in your Active Record class that you want to protect from
inadvertent or mass assignment, use one of the following two class methods to control
access to your attributes:

The attr_accessible method takes a list of attributes that will be accessible for
mass assignment. This is the more conservative choice for mass-assignment protection.

On the other hand, if you’d rather start from an all-open default and restrict attributes
as needed, then use attr_protected. Attributes passed to this method will be protected
from mass-assignment. Their assignment will simply be ignored. You will need to use
direct assignment methods to assign values to those attributes, as illustrated in the
following code example:

class Customer < ActiveRecord::Base

attr_protected :credit_rating

end

customer = Customer.new(:name => "Abe", :credit_rating => "Excellent")

customer.credit_rating # => nil

customer.attributes = { "credit_rating" => "Excellent" }

customer.credit_rating # => nil

and now, the allowed way to set a credit_rating

A
ctive

R
e
co

rd
5.4 CRUD: Creating, Reading, Updating, Deleting 141

customer.credit_rating = "Average"

customer.credit_rating # => "Average"

5.4.18 Readonly Attributes

Sometimes you want to designate certain attributes as readonly, which prevents them
from being updated after the parent object is created. The feature is primarily for use in
conjunction with calculated attributes. In fact, Active Record uses this method internally
for counter cache attributes, since they are maintained with their own special SQL update
statements.

The only time that readonly attributes may be set are when the object is not saved
yet. The following example code illustrates usage of attr_readonly. Note the potential
gotcha when trying to update a readonly attribute.

class Customer < ActiveRecord::Base

attr_readonly :social_security_number

end

>> customer = Customer.new(:social_security_number => "130803020")

=> #<Customer id: 1, social_security_number: "130803020", ...>

>> customer.social_security_number

=> "130803020"

>> customer.save

>> customer.social_security_number = "000000000" # Note, no error raised!

>> customer.social_security_number

=> "000000000"

>> customer.save

>> customer.reload

>> customer.social_security_number

=> "130803020" # the original readonly value is preserved

The fact that trying to set a new value for a readonly attribute doesn’t raise an error
bothers my sensibilities, but I understand how it can make using this feature a little bit
less code-intensive.

You can get a list of all readonly attributes via the method readonly_attributes.

5.4.19 Deleting and Destroying

Finally, if you want to remove a record from your database, you have two choices. If you
already have a model instance, you can destroy it:

>> bad_timesheet = Timesheet.find(1)

>> bad_timesheet.destroy

142 Chapter 5: Working with Active Record

=> #<Timesheet id: 1, user_id: "1", submitted: nil, created_at:

"2006-11-21 05:40:27", updated_at: "2006-11-21 05:40:27">

The destroy method will both remove the object from the database and prevent
you from modifying it again:

>> bad_timesheet.user_id = 2

TypeError: can't modify frozen hash

Note that calling save on an object that has been destroyed will fail silently. If you need
to check whether an object has been destroyed, you can use the destroyed? method.

You can also call destroy and delete as class methods, passing the id(s) to delete.
Both variants accept a single parameter or array of ids:

Timesheet.delete(1)

Timesheet.destroy([2, 3])

The naming might seem inconsistent, but it isn’t. The deletemethod uses SQL directly
and does not load any instances (hence it is faster). The destroy method does load
the instance of the Active Record object and then calls destroy on it as an instance
method. The semantic differences are subtle, but come into play when you have assigned
before_destroy callbacks or have dependent associations—child objects that should
be deleted automatically along with their parent object.

5.5 Database Locking

Locking is a term for techniques that prevent concurrent users of an application from
overwriting each other’s work. Active Record doesn’t normally use any type of database
locking when loading rows of model data from the database. If a given Rails application
will only ever have one user updating data at the same time, then you don’t have to
worry about it.

However, when more than one user may be accessing and updating the exact same
data simultaneously, then it is vitally important for you as the developer to think about
concurrency. Ask yourself, what types of collisions or race conditions could happen if
two users were to try to update a given model at the same time?

There are a number of approaches to dealing with concurrency in database-backed
applications, two of which are natively supported by Active Record: optimistic and
pessimistic locking. Other approaches exist, such as locking entire database tables. Every
approach has strengths and weaknesses, so it is likely that a given application will use a
combination of approaches for maximum reliability.

A
ctive

R
e
co

rd
5.5 Database Locking 143

5.5.1 Optimistic Locking

Optimistic locking describes the strategy of detecting and resolving collisions if they
occur, and is commonly recommended in multi-user situations where collisions should
be infrequent. Database records are never actually locked in optimistic locking, making
it a bit of a misnomer.

Optimistic locking is a fairly common strategy, because so many applications are
designed such that a particular user will mostly be updating with data that conceptually
belongs to him and not other users, making it rare that two users would compete for
updating the same record. The idea behind optimistic locking is that because collisions
should occur infrequently, we’ll simply deal with them only if they happen.

Implementation

If you control your database schema, optimistic locking is really simple to implement.
Just add an integer column named lock version to a given table, with a default value
of zero.

class AddLockVersionToTimesheets < ActiveRecord::Migration

def self.up

add_column :timesheets, :lock_version, :integer, :default => 0

end

def self.down

remove_column :timesheets, :lock_version

end

end

Simply adding that lock_version column changes Active Record’s behavior. Now
if the same record is loaded as two different model instances and saved differ-
ently, the first instance will win the update, and the second one will cause an
ActiveRecord::StaleObjectError to be raised.

We can illustrate optimistic locking behavior with a simple spec:

describe Timesheet do

it "should lock optimistically" do

t1 = Timesheet.create

t2 = Timesheet.find(t1.id)

t1.rate = 250

t2.rate = 175

t1.save.should be_true

expect { t2.save }.to raise_error(ActiveRecord::StaleObjectError)

end

end

144 Chapter 5: Working with Active Record

The spec passes, because calling save on the second instance raises the expected
ActiveRecord::StaleObjectError exception. Note that the save method (without
the bang) returns false and does not raise exceptions if the save fails due to validation,
but other problems such as locking in this case, can indeed cause it to raise exceptions.

To use a database column named something other than lock_version change the
setting using set_locking_column. To make the change globally, add the following
line to your config/application.rb:

config.active_record.set_locking_column = 'alternate_lock_version'

Like other Active Record settings, you can also change it on a per-model basis with a
declaration in your model class:

class Timesheet < ActiveRecord::Base

set_locking_column 'alternate_lock_version'

end

Handling StaleObjectError
Now of course, after adding optimistic locking, you don’t want to just leave it at that,
or the end user who is on the losing end of the collision would simply see an application
error screen. You should try to handle the StaleObjectError as gracefully as possible.

Depending on the criticality of the data being updated, you might want to invest
time into crafting a user-friendly solution that somehow preserves the changes that the
loser was trying to make. At minimum, if the data for the update is easily re-creatable,
let the user know why their update failed with controller code that looks something like
the following:

def update

timesheet = Timesheet.find(params[:id])

timesheet.update_attributes(params[:timesheet])

redirect somewhere

rescue ActiveRecord::StaleObjectError

flash[:error] = "Timesheet was modified while you were editing it."

redirect_to [:edit, timesheet]

end

There are some advantages to optimistic locking. It doesn’t require any special feature
in the database, and it is fairly easy to implement. As you saw in the example, very little
code is required to handle the StaleObjectError.

The main disadvantages to optimistic locking are that update operations are a bit
slower because the lock version must be checked, and the potential for bad user experi-
ence, since they don’t find out about the failure until after they’ve potentially lost data.

A
ctive

R
e
co

rd
5.5 Database Locking 145

5.5.2 Pessimistic Locking

Pessimistic locking requires special database support (built into the major databases) and
locks down specific database rows during an update operation. It prevents another user
from reading data that is about to be updated, in order to prevent them from working
with stale data.

Pessimistic locking works in conjunction with transactions as in the following ex-
ample:

Timesheet.transaction do

t = Timesheet.lock.first

t.approved = true

t.save!

end

It’s also possible to call lock! on an existing model instance, which simply calls
reload(:lock => true) under the covers. You wouldn’t want to do that on an in-
stance with attribute changes since it would cause them to be discarded by the reload.
If you decide you don’t want the lock anymore, you can pass false to the lock!

method.
Pessimistic locking takes place at the database level. The SELECT statement generated

by Active Record will have a FOR UPDATE (or similar) clause added to it, causing all other
connections to be blocked from access to the rows returned by the select statement. The
lock is released once the transaction is committed. There are theoretically situations
(Rails process goes boom mid-transaction?!) where the lock would not be released until
the connection is terminated or times out.

5.5.3 Considerations

Web applications scale best with optimistic locking, which as we’ve discussed doesn’t
really use any database-level locking at all. However, you have to add application logic
to handle failure cases. Pessimistic locking is a bit easier to implement, but can lead to
situations where one Rails process is waiting on another to release a database lock, that
is, waiting and not serving any other incoming requests. Remember that Rails processes
are typically single-threaded.

In my opinion, pessimistic locking should not be super dangerous as it is on other
platforms, because in Rails we don’t ever persist database transactions across more than
a single HTTP request. In fact, it would be impossible to do that in a shared-nothing
architecture. (If you’re running Rails with JRuby and doing crazy things like storing
Active Record object instances in a shared session space, all bets are off.)

146 Chapter 5: Working with Active Record

A situation to be wary of would be one where you have many users competing for
access to a particular record that takes a long time to update. For best results, keep your
pessimistic-locking transactions small and make sure that they execute quickly.

5.6 Where Clauses

In mentioning Active Record’s find method earlier in the chapter, we didn’t look at
the wealth of options available in addition to finding by primary key and the first and
all methods. Note that this book covers a querying style that is new to Rails 3. Each
method discussed here returns an ActiveRecord::Relation - a chainable object that
is lazy evaluated against the database only when the actual records are needed.

5.6.1 where(*conditions)

It’s very common to need to filter the result set of a find operation (just a SQL SELECT

under the covers) by adding conditions (to the WHERE clause). Active Record gives you
a number of ways to do just that with the where method.

The conditions parameter can be specified as a string or a hash. Parameters are
automatically santized to prevent SQL-injection attacks.

Passing a hash of conditions will construct a where clause containing a union of all
the key/value pairs. If all you need is equality, versus, say LIKE criteria, I advise you to
use the hash notation, since it’s arguably the most readable of the styles.

Product.where(:sku => params[:sku))

The hash notation is smart enough to create an IN clause if you associate an array of
values with a particular key.

Product.where(:sku => [9400,9500,9900])

The simple string form can be used for statements that don’t involve data originating
outside of your app. It’s most useful for doing LIKE comparsions, as well as greater-
than/less-than and the use of SQL functions not already built into Active Record. If you
do choose to use the string style, additional arguments to the where method will be
treated as query variables to insert into the where clause.

Product.where('description like ? and color = ?', "%#{terms}%", color)

Product.where('sku in (?)', selected_skus)

A
ctive

R
e
co

rd
5.6 Where Clauses 147

Bind Variables

When using multiple parameters in the conditions, it can easily become hard to read
exactly what the fourth or fifth question mark is supposed to represent. In those cases,
you can resort to named bind variables instead. That’s done by replacing the question
marks with symbols and supplying a hash with values for the matching symbol keys as
a second parameter.

Product.where("name = :name AND sku = :sku AND created_at > :date",

:name => "Space Toilet", :sku => 80800, :date =>

'2009-01-01')

During a quick discussion on IRC about this final form, Robby Russell gave me the
following clever snippet:

Message.where("subject LIKE :foo OR body LIKE :foo", :foo => '%woah%')

In other words, when you’re using named placeholders (versus question mark characters)
you can use the same bind variable more than once. Like, whoa!

Simple hash conditions like this are very common and useful, but they will only
generate conditions based on equality with SQL’s AND operator.

User.where(:login => login, :password => password).first

If you want logic other than AND, you’ll have to use one of the other forms available.

Boolean Conditions

It’s particularly important to take care in specifying conditions that include boolean
values. Databases have various different ways of representing boolean values in columns.
Some have native boolean datatypes, and others use a single character, often 1 and 0 or
T and F (or even Y and N). Rails will transparently handle the data conversion issues for
you if you pass a Ruby boolean object as your parameter:

Timesheet.where('submitted = ?', true)

Nil Conditions

Rails expert Xavier Noria reminds us to take care in specifying conditions that might be
nil. Using a question mark doesn’t let Rails figure out that a nil supplied as the value
of a condition should probably be translated into IS NULL in the resulting SQL query.

Compare the following two find examples and their corresponding SQL queries to
understand this common gotcha. The first example does not work as intended, but the
second one does work:

>> User.where('email = ?', nil)

User Load (151.4ms) SELECT * FROM users WHERE (email = NULL)

148 Chapter 5: Working with Active Record

>> User.where(:email => nil)

User Load (15.2ms) SELECT * FROM users WHERE (users.email IS NULL)

5.6.2 order(*clauses)

The order method takes one or more symbols (representing column names) or a frag-
ment of SQL, specifying the desired ordering of a result set:

Timesheet.order('created_at desc')

The SQL spec defaults to ascending order if the ascending/descending option is omitted,
which is exactly what happens if you use symbols.

Timesheet.order(:created_at)

Wilson says . . .

The SQL spec doesn’t prescribe any particular ordering if no ‘order by’ clause is specified in the
query. That seems to trip people up, since the common belief is that ‘ORDER BY id ASC’ is the
default.

Random Ordering

The value of the :order option is not validated by Rails, which means you can pass any
code that is understood by the underlying database, not just column/direction tuples.
An example of why that is useful is when wanting to fetch a random record:

MySQL

Timesheet.order('RAND()')

Postgres

Timesheet.order('RANDOM()')

Microsoft SQL Server

Timesheet.order('NEWID()') # uses random uuids to sort

Oracle

Timesheet.order('dbms_random.value').first

Remember that ordering large datasets randomly is known to perform terribly on most
databases, particularly MySQL.

A
ctive

R
e
co

rd
5.6 Where Clauses 149

Tim says . . .

A clever, performant, and portable way to get a random record is to generate a random offset in
Ruby.

Timsheet.limit(1).offset(rand(Timesheet.count)).first

5.6.3 limit(number) and offset(number)

The limit method takes an integer value establishing a limit on the number of rows to
return from the query. The offset method, which must be chained to limit, specifies
the number of rows to skip in the result set and is 0-indexed. (At least it is in MySQL.
Other databases may be 1-indexed.) Together these options are used for paging results.

For example, a call to find for the second page of 10 results in a list of timesheets is:

Timesheet.limit(10).offset(10)

Depending on the particulars of your application’s data model, it may make sense to
always put some limit on the maximum amount of Active Record objects fetched in
any one specific query. Letting the user trigger unbounded queries pulling thousands of
Active Record objects into Rails at one time is a recipe for disaster.

5.6.4 select(*clauses)

By default, Active Record generates SELECT * FROM queries, but it can be changed if,
for example, you want to do a join, but not include the joined columns. Or if you want
to add calculated columns to your result set, like this:

>> b = BillableWeek.select("mon_hrs + tues_hrs as two_day_total").first

=> #<BillableWeek ...>

>> b.two_day_total

=> 16

Now, if you actually want to fully use objects with additional attributes that you’ve
added via the select method, don’t forget the * clause:

>> b = BillableWeek.select(:*, "mon_hrs + tues_hrs as

two_day_total").first

=> #<BillableWeek id: 1...>

Keep in mind that columns not specified in the query, whether by * or explicitly, will
not be populated in the resulting objects! So, for instance, continuing the first example,
trying to access created_at on b has unexpected results:

ActiveModel::MissingAttributeError: missing attribute: created_at

150 Chapter 5: Working with Active Record

5.6.5 from(*tables)

The frommethod allows you to modify the table name(s) portion of the SQL statements
generated by Active Record. You can provide a custom value if you need to include extra
tables for joins, or to reference a database view.

Here’s an example of usage from an application that features tagging:

def self.find_tagged_with(list)

select("#{table_name}.*").

from("#{table_name}, tags, taggings")

where("#{table_name}.#{primary_key} = taggings.taggable_id

and taggings.tag_id = tags.id

and tags.name IN (?)",

Tag.parse(list)])

end

(If you’re wondering why table_name is used instead of a an explicit value, it’s because
this code is mixed into a target class using Ruby modules. That subject is covered in
Chapter 9, Advanced Active Record.)

5.6.6 group(*args)

Specifies a GROUP BY SQL-clause to add to the query generated by Active Record.
Generally you’ll want to combine :group with the :select option, since valid SQL
requires that all selected columns in a grouped SELECT be either aggregate functions
or columns.

>> users = Account.select('name, SUM(cash) as money').group('name').all

=> [#<User name: "Joe", money: "3500">, #<User name: "Jane", money:

"9245">]

Keep in mind that those extra columns you bring back might sometimes be strings if
Active Record doesn’t try to typecast them. In those cases, you’ll have to use to_i and
to_f to explicitly convert the string to numeric types.

>> users.first.money > 1_000_000

ArgumentError: comparison of String with Fixnum failed

from (irb):8:in '>'

5.6.7 having(*clauses)

If you need to perform a group query with a SQL HAVING clause, you use the having
method

>> User.group("created_at").having(["created_at > ?", 2.days.ago])

=> [#<User name: "Joe", created_at: "2010-07-09 21:45:02">]

A
ctive

R
e
co

rd
5.6 Where Clauses 151

5.6.8 includes(*associations)

Active Record has the ability to eliminate “N+1” queries by letting you specify what
associations to eager load using the includes method or option in your finders. Active
Record will load those relationships with the minimum number of queries possible.

To eager load first degree associations, provide includeswith an array of association
names. When accessing these a database hit to load each one will no longer occur.

>> users = User.where(:login => "mack").includes(:billable_weeks)

=> [#<User login: "mack">]

>> users.first.billable_weeks.each { |week| puts week }

=> #<Week start_date: "2008-05-01 00:00:00">

For second degree associations, provide a hash with the array as the value for the hash key.

>> clients = Client.includes(:users => [:avatar])

=> [#<Client id: 1, name: "Hashrocket">]

You may add more inclusions following the same pattern.

>> Client.includes(

:users => [:avatar, { :timesheets => :billable_weeks }]

)

=> [#<Client id: 1, name: "Hashrocket">]

Similarly to includes, you may use eager_load or preload with the same syntax.

>> Client.eager_load(

:users => [:avatar, { :timesheets => :billable_weeks }]

)

=> [#<Client id: 1, name: "Hashrocket">]

>> Client.preload(

:users => [:avatar, { :timesheets => :billable_weeks }]

)

=> [#<Client id: 1, name: "Hashrocket">]

5.6.9 joins

The joins method can be useful when you’re grouping and aggregating data from other
tables, but you don’t want to load the associated objects.

Buyer.select('buyers.id, count(carts.id) as cart_count').

joins('left join carts on carts.buyer_id = buyers.id').

group('buyers.id')

However, the most common usage of the join method is to allow you to eager-fetch
additional objects in a single SELECT statement, a technique that is discussed at length
in Chapter 7.

152 Chapter 5: Working with Active Record

5.6.10 readonly

Chaining the readonly method marks returned objects as read-only. You can change
their attributes, but you won’t be able to save them back to the database.

>> c = Comment.readonly.first

=> #<Comment id: 1, body: "Hey beeyotch!">

>> c.body = "Keep it clean!"

=> "Keep it clean!"

>> c.save

ActiveRecord::ReadOnlyRecord: ActiveRecord::ReadOnlyRecord

5.6.11 exists?

A convenience method for checking the existence of records in the database is included
in ActiveRecord as the aptly named exists? method. It takes similar arguments to
find and instead of returning records returns a boolean for whether or not the query
has results. Note that the :conditions key is not used here, only supply the conditions
themselves.

>> User.create(:login => "mack")

=> #<User id: 1, login: "mack">

>> User.exists?(1)

=> true

>> User.exists?(:login => "mack")

=> true

>> User.where(:login => "mack").exists? # modern style

=> true

5.6.12 arel—table

For cases in which you want to generate custom SQL yourself through Arel, you may
use the arel_table method to gain access to the Table for the class.

>> users = User.arel_table

>> users.where(users[:login].eq("mack")).to_sql

=> "SELECT 'users'.'id', 'users'.'login' FROM 'users' WHERE

'users'.'login' = 'mack'"

You can consult the Arel documentation directly on how to construct custom queries
using its DSL.5

5. http://github.com/rails/arel/

http://github.com/rails/arel/

A
ctive

R
e
co

rd
5.7 Connections to Multiple Databases in Different Models 153

5.7 Connections to Multiple Databases
in Different Models

Connections are created via ActiveRecord::Base.establish_connection and
retrieved by ActiveRecord::Base.connection. All classes inheriting from
ActiveRecord::Base will use this connection. What if you want some of your models
to use a different connection? You can add class-specific connections.

For example, let’s say you need to access data residing in a legacy database apart from
the database used by the rest of your Rails application. We’ll create a new base class that
can be used by models that access legacy data. Begin by adding details for the additional
database under its own key in database.yml. Then call establish_connection
to make LegacyProjectBase and all its subclasses use the alternate connection
instead.

class LegacyProjectBase < ActiveRecord::Base

establish_connection :legacy_database

self.abstract_class = true

...

end

Incidentally, to make this example work with subclasses, you must specify
self.abstract_class = true in the class context. Otherwise, Rails considers the
subclasses of LegacyProject to be using single-table inheritance (STI), which we dis-
cuss at length in Chapter 9.

Xavier says . . .

You can easily point your base class to different databases depending on the Rails environment
like this:

class LegacyProjectBase < ActiveRecord::Base

establish_connection "legacy_#{Rails.env}"

self.abstract_class = true

...

end

Then just add multiple entries to database.yml to match the resulting connection names.
In the case of our example, legacy_development, legacy_test, etc.

The establish_connection method takes a string (or symbol) key pointing to a
configuration already defined in database.yml. Alternatively, you can pass it a literal
hash of options, although it’s messy to put this sort of configuration data right into your
model file instead of database.yml

154 Chapter 5: Working with Active Record

class TempProject < ActiveRecord::Base

establish_connection :adapter => 'sqlite3', :database => ':memory:'

...

end

Rails keeps database connections in a connection pool inside the ActiveRecord::
Base class instance. The connection pool is simply a Hash object indexed
by Active Record class. During execution, when a connection is needed, the
retrieve_connection method walks up the class-hierarchy until a matching con-
nection is found.

5.8 Using the Database Connection Directly

It is possible to use Active Record’s underlying database connections directly, and some-
times it is useful to do so from custom scripts and for one-off or ad-hoc testing. Access the
connection via the connection attribute of any Active Record class. If all your models
use the same connection, then use the connection attribute of ActiveRecord::Base.

ActiveRecord::Base.connection.execute("show tables").all_hashes

The most basic operation that you can do with a connection is simply to execute a SQL
statement from the DatabaseStatements module. For example, Listing 5.1 shows a
method that executes a SQL file statement by statement.

Listing 5.1 Execute a SQL file line by line using active record’s connection

def execute_sql_file(path)

File.read(path).split(';').each do |sql|

begin

ActiveRecord::Base.connection.execute(#{sql}\n") unless sql.blank?

rescue ActiveRecord::StatementInvalid

$stderr.puts "warning: #{$!}"

end

end

end

5.8.1 The DatabaseStatements Module

The ActiveRecord::ConnectionAdapters::DatabaseStatements module mixes
a number of useful methods into the connection object that make it possible to work
with the database directly instead of using Active Record models. I’ve purposely left out
some of the methods of this module (such as add_limit! and add_lock) because they

A
ctive

R
e
co

rd
5.8 Using the Database Connection Directly 155

are used internally by Rails to construct SQL statements dynamically and I don’t think
they’re of much use to application developers.

For the sake of readability in the select_examples below, assume that the con-
nection object has been assigned to conn, like this:

conn = ActiveRecord::Base.connection

begin—db—transaction()
Begins a database transaction manually (and turns off Active Record’s default autocom-
mitting behavior).

commit—db—transaction()
Commits the transaction (and turns on Active Record’s default autocommitting behavior
again).

delete(sql—statement)
Executes a SQL DELETE statement provided and returns the number of rows affected.

execute(sql—statement)
Executes the SQL statement provided in the context of this connection. This method
is abstract in the DatabaseStatements module and is overridden by specific database
adapter implementations. As such, the return type is a result set object corresponding to
the adapter in use.

insert(sql—statement)
Executes an SQL INSERT statement and returns the last autogenerated ID from the
affected table.

reset—sequence!(table, column, sequence = nil)
Used in Oracle and Postgres; updates the named sequence to the maximum value of the
specified table’s column.

rollback—db—transaction()
Rolls back the currently active transaction (and turns on auto-committing). Called
automatically when a transaction block raises an exception or returns false.

select—all(sql—statement)
Returns an array of record hashes with the column names as keys and column values as
values.

156 Chapter 5: Working with Active Record

conn.select_all("select name from businesses limit 5")

=> [{"name"=>"Hopkins Painting"}, {"name"=>"Whelan & Scherr"},

{"name"=>"American Top Security Svc"}, {"name"=>"Life Style Homes"},

{"name"=>"378 Liquor Wine & Beer"}]

select—one(sql—statement)
Works similarly to select_all, but returns only the first row of the result set, as a
single Hash with the column names as keys and column values as values. Note that this
method does not add a limit clause to your SQL statement automatically, so consider
adding one to queries on large datasets.

>> conn.select_one("select name from businesses")

=> {"name"=>"New York New York Salon"}

select—value(sql—statement)
Works just like select_one, except that it returns a single value: the first column value
of the first row of the result set.

>> conn.select_value("select * from businesses limit 1")

=> "Cimino's Pizza"

select—values(sql—statement)
Works just like select_value, except that it returns an array of the values of the first
column in all the rows of the result set.

>> conn.select_values("select * from businesses limit 5")

=> ["Ottersberg Christine E Dds", "Bally Total Fitness", "Behboodikah,

Mahnaz Md", "Preferred Personnel Solutions", "Thoroughbred Carpets"]

update(sql—statement)
Executes the update statement provided and returns the number of rows affected. Works
exactly like delete.

5.8.2 Other Connection Methods

The full list of methods available on connection, which returns an instance of the
underlying database adapter, is fairly long. Most of the Rails adapter implementations
define their own custom versions of these methods. That makes sense, since all databases
have slight variations in how they handle SQL and very large variations in how they
handle extended commands, such as for fetching metadata.

A
ctive

R
e
co

rd
5.8 Using the Database Connection Directly 157

A peek at abstract—adapter.rb shows us the default method implementations:

...

Returns the human-readable name of the adapter. Use mixed case - one

can always use downcase if needed.

def adapter_name

'Abstract'

end

Does this adapter support migrations? Backend specific, as the

abstract adapter always returns +false+.

def supports_migrations?

false

end

Does this adapter support using DISTINCT within COUNT? This is

+true+

for all adapters except sqlite.

def supports_count_distinct?

true

end

...

In the following list of method descriptions and code samples, I’m accessing the con-
nection of our sample time and expenses application in the Rails console, and again I’ve
assigned connection to a local variable named conn, for convenience.

active?
Indicates whether the connection is active and ready to perform queries.

adapter—name
Returns the human-readable name of the adapter, as in the following example:

>> conn.adapter_name

=> "SQLite"

disconnect! and reconnect!
Closes the active connection or closes and opens a new one in its place, respectively.

raw—connection
Provides access to the underlying database connection. Useful for when you need to
execute a proprietary statement or you’re using features of the Ruby database driver that
aren’t necessarily exposed in Active Record. (In trying to come up with a code sample
for this method, I was able to crash the Rails console with ease. There isn’t much in the

158 Chapter 5: Working with Active Record

way of error checking for exceptions that you might raise while mucking around with
raw_connection.)

supports—count—distinct?
Indicates whether the adapter supports using DISTINCT within COUNT in SQL
statements. This is true for all adapters except SQLite, which therefore requires a
workaround when doing operations such as calculations.

supports—migrations?
Indicates whether the adapter supports migrations.

tables
Produces a list of tables in the underlying database schema. It includes tables that aren’t
usually exposed as Active Record models, such as schema_info and sessions.

>> conn.tables

=> ["schema_info", "users", "timesheets", "expense_reports",

"billable_weeks", "clients", "billing_codes", "sessions"]

verify!(timeout)
Lazily verify this connection, calling active? only if it hasn’t been called for timeout
seconds.

5.9 Other Configuration Options

In addition to the configuration options used to instruct Active Record on how to
handle naming of tables and primary keys, there are a number of other settings that
govern miscellaneous functions. Set them in an initializer.

ActiveRecord::Base.default—timezone
Tells Rails whether to use Time.local (using :local) or Time.utc (using :utc) when
pulling dates and times from the database. Defaults to :local

ActiveRecord::Base.schema—format
Specifies the format to use when dumping the database schema with certain default rake
tasks. Use the :sql option to have the schema dumped as potentially database-specific
SQL statements. Just beware of incompatibilities if you’re trying to use the :sql option
with different databases for development and testing. The default option is :ruby,
which dumps the schema as an ActiveRecord::Schema file that can be loaded into
any database that supports migrations.

A
ctive

R
e
co

rd
5.10 Conclusion 159

ActiveRecord::Base.store—full—sti—class
Specifies whether Active Record should store the full constant name including namespace
when using Single-Table Inheritance (STI), covered in Chapter 9, “Advanced Active
Record”.

5.10 Conclusion

This chapter covered the fundamentals of Active Record, the framework included with
Ruby on Rails for creating database-bound model classes. We’ve learned how Active
Record expresses the convention over configuration philosophy that is such an important
part of the Rails way, and how to make settings manually, which override the conventions
in place.

We’ve also looked at the methods provided by ActiveRecord::Base, the parent
class of all persistent models in Rails, which include everything you need to do basic
CRUD operations: Create, Read, Update, and Delete. Finally, we reviewed how to drill
through Active Record to use the database connection whenever you need to do so.

In the following chapter, we continue our coverage of Active Record by learning
about how related model objects interact via associations.

This page intentionally left blank

A
ctive

R
e
co

rd

CHAPTER 6

Active Record Migrations

Baby step to four o’clock. Baby step to four o’clock.

—Bob Wiley, in the movie What About Bob (Touchstone Pictures, 1991)

It’s a fact of life that the database schema of your application will evolve over the course
of development. Tables are added, names of columns are changed, things are dropped—
you get the picture. Without strict conventions and process discipline for the application
developers to follow, keeping the database schema in proper lock-step with application
code is traditionally a very troublesome job.

Migrations are the Rails way of helping you to evolve the database schema of your
application (also known as its DDL) without having to drop and re-create the database
each time you make a change. And not having to drop and recreate the database each
time a change happens means that you don’t lose your development data. That may or
may not be that important, but is usually very convenient. The only changes made when
you execute a migration are those necessary to move the schema from one version to
another, whether that move is forward or backward in time.

Of course, being able to evolve your schema without having to recreate your databases
and the loading/reloading of data is an order of magnitude more important once you’re
in production.

6.1 Creating Migrations

Rails provides a generator for creating migrations.

$ rails generate migration

Usage:

rails generate migration NAME [field:type field:type] [options]

161

162 Chapter 6: Active Record Migrations

At minimum, you need to supply descriptive name for the migration in CamelCase (or
underscored text, both work,) and the generator does the rest. Other generators, such
as the model and scaffolding generators, also create migration scripts for you, unless you
specify the --skip-migration option.

The descriptive part of the migration name is up to you, but most Rails developers
that I know try to make it match the schema operation (in simple cases) or at least allude
to what’s going on inside (in more complex cases).

Note that if you change the classname of your migration to something that doesn’t
match its filename, you will get an uninitialized constant error when that migra-
tion gets executed.

6.1.1 Sequencing Migrations

Prior to Rails 2.1, the migrations were sequenced via a simple numbering scheme baked
into the name of the migration file, and automatically handled by the migration gen-
erator. Each migration received a sequential number. There were many inconveniences
inherent in that approach, especially in team environments where two developers could
check in a migration with the same sequence number. Thankfully those issues have been
eliminated by using timestamps to sequence migrations.

Migrations that have already been run are listed in a special database table that Rails
maintains. It is named schema_migrations and only has one column:

mysql> desc schema_migrations;

+---------+--------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+--------------+------+-----+---------+-------+

| version | varchar(255) | NO | PRI | NULL | |

+---------+--------------+------+-----+---------+-------+

1 row in set (0.00 sec)

When you pull down new migrations from source control, rake db:migratewill check
the schema_migrations table and execute all migrations that have not yet run (even if
they have earlier timestamps than migrations that you’ve added yourself in the interim).

6.1.2 Irreversible Migrations

Some transformations are destructive in a manner that cannot be reversed. Migrations
of that kind should raise an ActiveRecord::IrreversibleMigration exception in
their down method. For example, what if someone on your team made a silly mistake
and defined the telephone column of your clients table as an integer? You can change
the column to a string and the data will migrate cleanly, but going from a string to an
integer? Not so much.

A
ctive

R
e
co

rd
6.1 Creating Migrations 163

def self.up

Phone number fields are not integers, duh!

change_column :clients, :phone, :string

end

def self.down

raise ActiveRecord::IrreversibleMigration

end

Getting back to the Migration API itself, here is the 20090124223305_create_

clients.rb file again, from earlier in the chapter, after adding a couple of column
definitions for the clients table:

class CreateClients < ActiveRecord::Migration

def self.up

create_table :clients do |t|

t.string :name

t.string :code

t.timestamps

end

end

def self.down

drop_table :clients

end

end

As you can see in the example, migration directives happen within two class method
definitions, self.up and self.down. If we go to the command line in our project
folder and type rake db:migrate, the clients table will be created. Rails gives us
informative output during the migration process so that we see what is going on:

$ rake db:migrate

== CreateClients: migrating ==

-- create_table(:clients)

-> 0.0448s

== CreateClients: migrated (0.0450s) =================================

Normally, only the code in the up method is run, but if you ever need to rollback to an
earlier version of the schema, the down method specifies how to undo what happened
in up.

To execute a rollback, use the migrate task, but pass it a version number to rollback
to, as in rake db:migrate VERSION=20090124223305.

164 Chapter 6: Active Record Migrations

6.1.3 create—table(name, options, & block)

The create_tablemethod needs at minimum a name for the table and a block contain-
ing column definitions. Why do we specify identifiers with symbols instead of strings?
Both will work, but symbols require one less keystroke.1

The create_table method makes a huge, but usually true assumption that we
want an autoincrementing, integer-typed, primary key. That is why you don’t see it
declared in the list of columns. If that assumption happens to be wrong, it’s time to pass
create_table some options in a hash.

For example, how would you define a simple join table consisting of two foreign key
columns and not needing its own primary key? Just pass the create_table method an
:id option set to false, as a boolean, not a symbol! It will stop the migration from
autogenerating a primary key altogether:

create_table :ingredients_recipes, :id => false do |t|

t.column :ingredient_id, :integer

t.column :recipe_id, :integer

end

If all you want to do is change the name of the primary key column from its default
of ‘id’, pass the :id option a symbol instead. For example, let’s say your corporation
mandates that primary keys follow the pattern tablename id. Then the earlier example
would look as follows:

create_table :clients, :id => :clients_id do |t|

t.column :name, :string

t.column :code, :string

t.column :created_at, :datetime

t.column :updated_at, :datetime

end

The :force => true option tells the migration to go ahead and drop the table being
defined if it exists. Be careful with this one, since it will produce (possibly unwanted)
data loss when run in production. As far as I know, the :force option is mostly useful
for making sure that the migration puts the database in a known state, but isn’t all that
useful on a daily basis.

The :options option allows you to append custom instructions to the SQL
CREATE statement and is useful for adding database-specific commands to your mi-
gration. Depending on the database you’re using, you might be able to specify things
such as character set, collation, comments, min/max sizes, and many other properties
using this option.

The :temporary => true option specifies creation of a temporary table that will
only exist during the current connection to the database. In other words, it only exists

A
ctive

R
e
co

rd
6.1 Creating Migrations 165

during the migration. In advanced scenarios, this option might be useful for migrating
big sets of data from one table to another, but is not commonly used.

Sebastian says . . .

A little known fact is that you can remove old migration files (while still keeping newer ones)
to keep the db/migrate folder to a manageable size. You can move the older migrations to
a db/archived_migrations folder or something like that. Once you do trim the size
of your migrations folder, use the rake db:reset task to (re)create your database from
db/schema.rb and load the seeds into your current environment.

6.1.4 change—table(table—name, & block)

This basically works just like create_table and accepts the same kinds of column
definitions.

6.1.5 API Reference

The following table details the methods that are available in the context ofcreate_table
and change_table methods within a migration class.

change(column—name, type, options = {})
Changes the column’s definition according to the new options. The options hash option-
ally contains a hash with arguments that correspond to the options used when adding
columns.

t.change(:name, :string, :limit => 80)

t.change(:description, :text)

change—default(column—name, default)
Sets a new default value for a column.

t.change_default(:qualification, 'new')

t.change_default(:authorized, 1)

column(column—name, type, options = {})
Adds a new column to the named table. Uses the same kind of options detailed in
Section 6.1.6.

t.column(:name, :string)

166 Chapter 6: Active Record Migrations

Note that you can also use the short-hand version by calling it by type. This adds a
column (or columns) of the specified type (string, text, integer, float, decimal, datetime,
timestamp, time, date, binary, boolean).

t.string(:goat)

t.string(:goat, :sheep)

t.integer(:age, :quantity)

index(column—name, options = {})
Adds a new index to the table. The column_name parameter can be one symbol or
an array of symbols referring to columns to be indexed. The name parameter lets you
override the default name that would otherwise be generated.

a simple index

t.index(:name)

a unique index

t.index([:branch_id, :party_id], :unique => true)

a named index

t.index([:branch_id, :party_id], :unique => true, :name =>

'by_branch_party')

belongs—to(*args) and references(*args)
These two methods are aliases to each other. They add a foreign key column to another
model, using Active Record naming conventions. Optionally adds a _type column if
the :polymorphic option is set to true.

create_table :accounts do

t.belongs_to(:person)

end

create_table :comments do

t.references(:commentable, :polymorphic => true)

end

remove(*column—names)
Removes the column(s) specified from the table definition.

t.remove(:qualification)

t.remove(:qualification, :experience)

remove—index(options = {})
Removes the given index from the table.

A
ctive

R
e
co

rd
6.1 Creating Migrations 167

remove the accounts_branch_id_index from the accounts table

t.remove_index :column => :branch_id

remove the accounts_branch_id_party_id_index from the accounts table

t.remove_index :column => [:branch_id, :party_id]

remove the index named by_branch_party in the accounts table

t.remove_index :name => :by_branch_party

remove—references(*args) andremove—belongs—to
Removes a reference. Optionally removes a type column.

t.remove_belongs_to(:person)

t.remove_references(:commentable, :polymorphic => true)

remove—timestamps
Here’s a method that you will never use, unless you forgot to add timestamps in the
create_table block and do it in a later migration. It removes the timestamp columns.
(created_at and updated_at) from the table.

rename(column—name, new—column—name)
Renames a column. The old name comes first, a fact that I usually can’t remember.

t.rename(:description, :name)

timestamps
Adds Active Record-maintained timestamp (created_at and updated_at) columns
to the table.

t.timestamps

6.1.6 Defining Columns

Columns can be added to a table using either the column method, inside the block
of a create_table statement, or with the add_column method. Other than taking
the name of the table to add the column to as its first argument, the methods work
identically.

create_table :clients do |t|

t.column :name, :string

end

add_column :clients, :code, :string

add_column :clients, :created_at, :datetime

168 Chapter 6: Active Record Migrations

The first (or second) parameter obviously specifies the name of the column, and the
second (or third) obviously specifies its type. The SQL92 standard defines funda-
mental data types, but each database implementation has its own variation on the
standards.

If you’re familiar with database column types, when you examine the preceding
example it might strike you as a little weird that there is a database column declared
as type string, since databases don’t have string columns—they have char or varchars
types.

Column Type Mappings

The reason for declaring a database column as type string is that Rails migrations are
meant to be database-agnostic. That’s why you could (as I’ve done on occasion) develop
using Postgres as your database and deploy in production to Oracle.

A complete discussion of how to go about choosing the right data type for your
application needs is outside the scope of this book. However, it is useful to have a
reference of how migration’s generic types map to database-specific types. The mappings
for the databases most commonly used with Rails are in Table 6.1.

Each connection adapter class has a native_database_types hash which estab-
lishes the mapping described in Table 6.1. If you need to look up the mappings for a
database not listed in Table 6.1, you can pop open the adapter Ruby code and find the
native_database_types hash, like the following one inside the PostgreSQLAdapter

Table 6.1 Column Mappings for the Databases Most Commonly Used with Rails

Migration

Type MySQL Postgres SQLite Oracle Ruby Class

:binary blob bytea blob blob String
:boolean tinyint(1) boolean boolean number(1) Boolean
:date date date date date Date
:datetime datetime timestamp datetime date Time
:decimal decimal decimal decimal decimal BigDecimal
:float float float float number Float
:integer int(11) integer integer number(38) Fixnum
:string varchar(255) character varchar(255) varchar2(255) String
:text text clob(32768) text clob String
:time time time time date Time
:timestamp datetime timestamp datetime date Time

A
ctive

R
e
co

rd
6.1 Creating Migrations 169

class within postgresql_adapter.rb:

NATIVE_DATABASE_TYPES = {

:primary_key => "serial primary key".freeze,

:string => { :name => "character varying", :limit => 255 },

:text => { :name => "text" },

:integer => { :name => "integer" },

:float => { :name => "float" },

:decimal => { :name => "decimal" },

:datetime => { :name => "timestamp" },

:timestamp => { :name => "timestamp" },

:time => { :name => "time" },

:date => { :name => "date" },

:binary => { :name => "bytea" },

:boolean => { :name => "boolean" },

:xml => { :name => "xml" }

}

Column Options

For many column types, just specifying type is not enough information. All column
declarations accept the following options:

:default => value

Sets a default to be used as the initial value of the column for new rows. You don’t ever
need to explicitly set the default value to null. Just leave off this option to get a null
default value. It’s worth noting that MySQL 5.x ignores default values for binary and
text columns.

:limit => size

Adds a size parameter to string, text, binary, or integer columns. Its meaning varies
depending on the column type that it is applied to. Generally speaking, limits for string
types refers to number of characters, whereas for other types it specifies the number of
bytes used to store the value in the database.

:null => false

Makes the column required at the database level by adding a not null constraint.

Decimal Precision

Columns declared as type :decimal accept the following options:

:precision => number

Precision is the total number of digits in a number.

:scale => number

170 Chapter 6: Active Record Migrations

Scale is the number of digits to the right of the decimal point. For example, the number
123.45 has a precision of 5 and a scale of 2. Logically, the scale cannot be larger than
the precision.

Note

Decimal types pose a serious opportunity for data loss during migrations of production data
between different kinds of databases. For example, the default precisions between Oracle and
SQL Server can cause the migration process to truncate and change the value of your numeric
data. It’s always a good idea to specify precision details for your data.

Column Type Gotchas

The choice of column type is not necessarily a simple choice and depends on both the
database you’re using and the requirements of your application.

:binary Depending on your particular usage scenario, storing binary data in the
database can cause big performance problems. Active Record doesn’t generally ex-
clude any columns when it loads objects from the database, and putting large binary
attributes on commonly used models will increase the load on your database server
significantly. If you must put binary content in a commonly-used class, take advan-
tage of the select method to only bring back the columns you need.

:boolean The way that boolean values are stored varies from database to database.
Some use 1 and 0 integer values to represent true and false, respectively. Others use
characters such as T and F. Rails handles the mapping between Ruby’s true and
false very well, so you don’t need to worry about the underlying scheme yourself.
Setting attributes directly to database values such as 1 or F may work correctly, but
is considered an anti-pattern.

:datetime and :timestamp The Ruby class that Rails maps to datetime and
timestamp columns is Time. In 32-bit environments, Time doesn’t work for dates
before 1902. Ruby’s DateTime class does work with year values prior to 1902, and
Rails falls back to using it if necessary. It doesn’t use DateTime to begin for perfor-
mance reasons. Under the covers, Time is implemented in C and is very fast, whereas
DateTime is written in pure Ruby and is comparatively slow.

:time It’s very, very rare that you want to use a :time datatype; perhaps if you’re
modeling an alarm clock. Rails will read the contents of the database as hour, minute,
and second values, into a Time object with dummy values for the year, month,
and day.

A
ctive

R
e
co

rd
6.1 Creating Migrations 171

:decimal Older versions of Rails (prior to 1.2) did not support the fixed-precision
:decimal type and as a result many old Rails applications incorrectly used :float

datatypes. Floating-point numbers are by nature imprecise, so it is important to
choose :decimal instead of :float for most business-related applications.

Tim says . . .

If you’re using a float to store values which need to be precise, such as money, you’re a jackass.
Floating point calculations are done in binary rather than decimal, so rounding errors abound in
places you wouldn’t expect.

>> 0.1+0.2 == 0.3

=> false

>> BigDecimal('0.1') + BigDecimal('0.2') == BigDecimal('0.3')

=> true

:float Don’t use floats to store currency values, or more accurately, any type of data
that needs fixed precision. Since floating-point numbers are pretty much approxi-
mations, any single representation of a number as a float is probably okay. However,
once you start doing mathematical operations or comparisons with float values, it is
ridiculously easy to introduce difficult to diagnose bugs into your application.

:integer and :string There aren’t many gotchas that I can think of when it comes
to integers and strings. They are the basic data building blocks of your application,
and many Rails developers leave off the size specification, which results in the default
maximum sizes of 11 digits and 255 characters, respectively. You should keep in mind
that you won’t get an error if you try to store values that exceed the maximum size
defined for the database column, which again, is 255 characters by default. Your
string will simply get truncated. Use validations to make sure that user-entered data
does not exceed the maximum size allowed.

:text There have been reports of text fields slowing down query performance on some
databases, enough to be a consideration for applications that need to scale to high
loads. If you must use a text column in a performance-critical application, put it in
a separate table.

Custom Data Types

If use of database-specific datatypes (such as :double, for higher precision than :float)
is critical to your project, use the config.active_record.schema_format = :sql

172 Chapter 6: Active Record Migrations

setting in config/application.rb to make Rails dump schema information in native
SQL DDL format rather than its own cross-platform compatible Ruby code, via the
db/schema.rb file.

‘‘Magic’’ Timestamp Columns

Rails does magic with datetime columns, if they’re named a certain way. Active
Record will automatically timestamp create operations if the table has columns named
created_at or created_on. The same applies to updates when there are columns
named updated_at or updated_on.

Note that created_at and updated_at should be defined as datetime, but if
you use t.timestamps then you don’t have to worry about what type of columns they
are.

Automatic timestamping can be turned off globally, by setting the following variable
in an initializer.

ActiveRecord::Base.record_timestamps = false

The preceding code turns off timestamps for all models, but record_timestamps

is class-inheritable, so you can also do it on a case-by-case basis by setting
self.record_timestamps to false at the top of specific model classes.

6.1.7 Command-line Column Declarations

You can supply name/type pairs on the command line when you invoke the migra-
tion generator and it will automatically insert the corresponding add_column and
remove_column methods.

$ rails generate migration AddTitleBodyToPosts \

title:string body:text published:boolean

This will create the AddTitleBodyToPosts in db/migrate/20080514090912_

add_title_body_to_posts.rb with this in the up migration:

add_column :posts, :title, :string

add_column :posts, :body, :text

add_column :posts, :published, :boolean

And this in the down migration:

remove_column :posts, :published

remove_column :posts, :body

remove_column :posts, :title

A
ctive

R
e
co

rd
6.2 Data Migration 173

6.2 Data Migration

So far we’ve only discussed using migration files to modify the schema of your database.
Inevitably, you will run into situations where you also need to perform data migrations,
whether in conjunction with a schema change or not.

6.2.1 Using SQL

In most cases, you should craft your data migration in raw SQL using the execute

command that is available inside a migration class.
For example, say you had a phones table, which kept phone numbers in their

component parts and later wanted to simplify your model by just having a number

column instead. You’d write a migration similar to this one (only the up method is
shown, for brevity):

class CombineNumberInPhones < ActiveRecord::Migration

def self.up

add_column :phones, :number, :string

execute("update phones set number = concat(area_code, prefix,

suffix)")

remove_column :phones, :area_code

remove_column :phones, :prefix

remove_column :phones, :suffix

end

end

The naive alternative to using SQL in the example above would be more lines of code
and much, much slower.

Phone.find_each do |p|

p.number = p.area_code + p.prefix + p.suffix

p.save

end

In this particular case, you could use Active Record’s update_all method to still do
the data migration in one line.

Phone.update_all("set number = concat(area_code, prefix, suffix)")

However you might hit problems down the road as your schema evolves; as described in
the next section, you’d want to declare an independent Phone model in the migration
file itself. That’s why I advise sticking to raw SQL whenever possible.

174 Chapter 6: Active Record Migrations

6.2.2 Migration Models

If you declare an Active Record model inside of a migration script, it’ll be namespaced
to that migration class.

class HashPasswordsOnUsers < ActiveRecord::Migration

class User < ActiveRecord::Base

end

def self.up

add_column :users, :hashed_password, :string

User.find_each do |user|

user.hashed_password = Digest::SHA1.hexdigest(user.password)

user.save!

end

remove_column :users, :password

end

end

Why not use just your application model classes in the migration scripts directly? As
your schema evolves, older migrations that use model classes directly can and will break
down and become unusable. Properly namespacing migration models prevent you from
having to worry about name clashes with your application’s model classes or ones that
are defined in other migrations.

Durran says . . .

Note that Active Record caches column information on the first request to the database, so
if you want to perform a data migration immediately after a migration you may run into
a situation where the new columns have not yet been loaded. This is a case where using
reset_column_information can come in handy. Simply call this class method on your
model and everything will be reloaded on the next request.

6.3 schema.rb
The file db/schema.rb is generated every time you migrate and reflects the latest status
of your database schema. You should never edit db/schema.rb by hand since this file is
auto-generated from the current state of the database. Instead of editing this file, please
use the migrations feature of Active Record to incrementally modify your database, and
then regenerate this schema definition.

Note that this schema.rb definition is the authoritative source for your database
schema. If you need to create the application database on another system, you should
be using db:schema:load, not running all the migrations from scratch. The latter is

A
ctive

R
e
co

rd
6.4 Database Seeding 175

a flawed and unsustainable approach (the more migrations you’ll amass, the slower it’ll
run and the greater likelihood for issues).

It’s strongly recommended to check this file into your version control system. First of
all, it helps to have one definitive schema definition around for reference. Secondly, you
can run rake db:schema:load to create your database schema from scratch without
having to run all migrations. That’s especially important considering that as your project
evolves, it’s likely that it will become impossible to run migrations all the way through
from the start, due to code incompatibilities, such as renaming of classes named explicitly.

6.4 Database Seeding

The automatically created file db/seeds.rb is a default location for creating seed data
for your database. It was introduced in order to stop the practice of inserting seed data in
individual migration files, if you accept the premise that migrations should never be used
for seeding example or base data required by your application. It is executed with the
rake db:seed task (or created alongside the database when you run rake db:setup).

At its simplest, the contents of seed.rb is simply a series of create! statements
that generate baseline data for your application, whether it’s default or related to con-
figuration. For example, let’s add an admin user and some billing codes to our time and
expenses app:

User.create!(:login => 'admin',

:email => 'admin@tr3w.com',

:password => '123', :password_confirmation => '123',

:authorized_approver => true)

client = Client.create!(:name => 'Workbeast', :code => 'BEAST')

client.billing_codes.create!(:name => 'Meetings', :code => 'MTG')

client.billing_codes.create!(:name => 'Development', :code => 'DEV')

Why use the bang version of the create methods? Because otherwise you won’t find out
if you had errors in your seed file. An alternative would be to use find_or_create_by
methods to make seeding idempotent.

c = Client.find_or_create_by_name_and_code!('Workbeast', 'BEAST')

c.billing_codes.find_or_create_by_name_and_code!('Meetings', 'MTG')

c.billing_codes.find_or_create_by_name_and_code!('Development', 'DEV')

Another common seeding practice worth mentioning is calling delete_all prior to
creating new records, so that seeding does not generate duplicate records. This practice
avoids the need for idempotent seeding routines and lets you be very secure about exactly
what your database will look like after seeding.

176 Chapter 6: Active Record Migrations

User.delete_all

User.create!(:login => 'admin', ...

Client.delete_all

client = Client.create!(:name => 'Workbeast', ...

6.5 Database-Related Rake Tasks

The following rake tasks are included by default in boilerplate Rails projects.

db:create and db:create:all
Create the database defined in config/database.yml for the current Rails.env (Or create
all of the local databases defined in config/database.yml in the case of db:create:all.)

db:drop and db:drop:all
Drops the database for the current RAILS_ENV. (Or drops all of the local databases
defined in config/database.yml in the case of db:drop:all.)

db:forward and db:rollback
The db:rollback task moves your database schema back one version. Similarly, the
db:forward task moves your database schema forward one version and is typically used
after rolling back.

db:migrate
Applies all pending migrations. If a VERSION environment variable is provided, then
db:migrate will apply pending migrations through the migration specified, but no
further. The VERSION is specified as the timestamp portion of the migration file name.

example of migrating up with param

If the VERSION provided is older than the current version of the schema, then this task
will actually rollback the newer migrations.

example of migrating down with param

db:migrate:down
Invoked without a VERSION, this task will migrate all the way down the version list to
an empty database, assuming that all your migrations are working correctly.

With a VERSION, this task will invoke the down method of the specified migration
only. The VERSION is specified as the timestamp portion of the migration file name.

A
ctive

R
e
co

rd
6.5 Database-Related Rake Tasks 177

$ rake db:migrate:up VERSION=20100124181315

== AddClientIdToUser: migrating ===

-- add_column(:users, :client_id, :integer)

-> 0.0383s

== AddClientIdToUser: migrated (0.0385s) ================================

db:migrate:up
Invoked without a VERSION, this task will migrate up the version list, behaving the same
as db:migrate.

With a VERSION, this task will invoke the up method of the specified migration
only. The VERSION is specified as the timestamp portion of the migration file name.

$ rake db:migrate:down VERSION=20100124181315

== AddClientIdToUser: reverting ===

-- remove_column(:users, :client_id)

-> 0.0367s

== AddClientIdToUser: reverted (0.0370s) ================================

Tim says . . .

The db:migrate:up and db:migrate:down tasks make for useful keybindings in migra-
tions files. In Vim with rails.vim, for example, invoke :.Rake in a self.up or self.down
method definition to invoke said task with the correct VERSION argument, or invoke it outside
of both to invoke db:migrate:redo.

db:migrate:redo
Executes the down method of the latest migration file, immediately followed by its up
method. This task is typically used right after correcting a mistake in the up method or
to test that a migration is working correctly.

$ rake db:migrate:redo

== AddTimesheetsUpdatedAtToUsers: reverting =============================

-- remove_column(:users, :timesheets_updated_at)

-> 0.0853s

== AddTimesheetsUpdatedAtToUsers: reverted (0.0861s) ====================

== AddTimesheetsUpdatedAtToUsers: migrating =============================

-- add_column(:users, :timesheets_updated_at, :datetime)

-> 0.3577s

== AddTimesheetsUpdatedAtToUsers: migrated (0.3579s) ====================

178 Chapter 6: Active Record Migrations

db:migrate:reset
Resets your database for the current environment using your migrations (as opposed to
using schema.rb).

db:reset and db:setup
The db:setup creates the database for the current environment, loads the schema from
db/schema.rb, then loads the seed data. It’s used when you’re setting up an existing
project for the first time on a development workstation. The similar db:reset task does
the same thing except that it drops and recreates the database first.

db:schema:dump
Create a db/schema.rb file that can be portably used against any DB supported by
Active Record. Note that creation (or updating) of schema.rb happens automatically
any time you migrate.

db:schema:load
Loads schema.rb file into the database for the current environment.

db:seed
Load the seed data from db/seeds.rb as described in this chapter’s section Database
Seeding.

db:structure:dump
Dump the database structure to a SQL file containing raw DDL code in a format
corresponding to the database driver specified in database.yml for your current envi-
ronment.

$ rake db:structure:dump

$ cat db/development_structure.sql

CREATE TABLE 'avatars' (

'id' int(11) NOT NULL AUTO_INCREMENT,

'user_id' int(11) DEFAULT NULL,

'url' varchar(255) COLLATE utf8_unicode_ci DEFAULT NULL,

PRIMARY KEY ('id')

) ENGINE=InnoDB DEFAULT CHARSET=utf8 COLLATE=utf8_unicode_ci;

...

I’ve rarely needed to use this task. It’s possible that some Rails teams working in con-
junction with DBAs that exercise strict control over their application’s database schemas
will need this task on a regular basis.

A
ctive

R
e
co

rd
6.6 Conclusion 179

db:test:prepare
Check for pending migrations and load the test schema by doing a db:schema:dump

followed by a db:schema:load.
This task gets used very often during active development whenever you’re run-

ning specs or tests without using Rake. (Standard spec-related Rake tasks run
db:test:prepare automatically for you.)

db:version
Returns the timestamp of the latest migration file that has been run. Works even if
your database has been created from db/schema.rb, since it contains the latest version
timestamp in it:

ActiveRecord::Schema.define(:version => 20100122011531)

6.6 Conclusion

This chapter covered the fundamentals of Active Record migrations. In the following
chapter, we continue our coverage of Active Record by learning about how model objects
are related to each other and interact via associations.

This page intentionally left blank

A
ctive

R
e
co

rd

CHAPTER 7

Active Record Associations

Any time you can reify something, you can create something that embodies a concept, it
gives you leverage to work with it more powerfully. That’s exactly what’s going on with
has_many:through.

—Josh Susser

Active Record associations let you declaratively express relationships between model
classes. The power and readability of the Associations API is an important part of what
makes working with Rails so special.

This chapter covers the different kinds of Active Record associations available while
highlighting use cases and available customizations for each of them. We also take a look
at the classes that give us access to relationships themselves.

7.1 The Association Hierarchy

Associations typically appear as methods on Active Record model objects. For example,
the method timesheets might represent the timesheets associated with a given user.

user.timesheets

However, people might get confused about the type of objects that are returned by
association with these methods. This is because they have a way of masquerading as plain
old Ruby objects and arrays (depending on the type of association we’re considering). In
the snippet, the timesheets method may appear to return an array of project objects.

The console will even confirm our thoughts. Ask any association collection what its
return type is and it will tell you that it is an Array:

>> obie.timesheets.class

=> Array

181

182 Chapter 7: Active Record Associations

Figure 7.1 The Association proxies in their class hierarchy.

It’s actually lying to you, albeit very innocently. Association methods for has_many asso-
ciations are actually instances of HasManyAssociation, shown within its class hierarchy
in Figure 7.1.

The parent class of all associations is AssociationProxy. It contains the basic
structure and functionality of all assocation proxies. If you look near the top of its source
code excerpted in Listing 7.1, you’ll notice that it undefines a bunch of methods.

Listing 7.1 Excerpt from lib/active_record/associations/association_
proxy.rb

instance_methods.each do |m|

undef_method m unless m =~ /^(?:nil?|send|object_id|to_a)$|^__|proxy_/

end

As a result, most normal instance methods aren’t actually defined on the proxy anymore,
but are instead delegated to the target of the proxy via method_missing. That means
that a call to timesheets.class returns the class of the underlying array rather than

A
ctive

R
e
co

rd
7.2 One-to-Many Relationships 183

the proxy. You can prove that timesheet is actually a proxy by asking it if it responds
to one of AssociationProxy’s public methods, such as proxy_owner:

>> obie.timesheets.respond_to? :proxy_owner

=> true

Fortunately, it’s not the Ruby way to care about the actual class of an object. What
messages an object responds to is a lot more significant.

The parent class of all has_many associations is AssociationCollection and most
of the methods that it defines work similarly regardless of the options declared for the
relationship. Before we get much further into the details of the association proxies, let’s
delve into the most fundamental type of association that is commonly used in Rails ap-
plications: the has_many / belongs_to pair, used to define one-to-many relationships.

7.2 One-to-Many Relationships

In our recurring sample application, an example of a one-to-many relationship is the
association between the User, Timesheet, and ExpenseReport classes:

class User < ActiveRecord::Base

has_many :timesheets

has_many :expense_reports

end

Timesheets and expense reports should be linked in the opposite direction as well, so
that it is possible to reference the user to which a timesheet or expense report belongs.

class Timesheet < ActiveRecord::Base

belongs_to :user

end

class ExpenseReport < ActiveRecord::Base

belongs_to :user

end

When these relationship declarations are executed, Rails uses some metaprogramming
magic to dynamically add code to your models. In particular, proxy collection objects
are created that let you manipulate the relationship easily. To demonstrate, let’s play
with these relationships in the console. First, I’ll create a user.

>> obie = User.create :login => 'obie', :password => '1234',

:password_confirmation => '1234', :email => 'obiefernandez@gmail.com'

=> #<User...>

Now I’ll verify that I have collections for timesheets and expense reports.

184 Chapter 7: Active Record Associations

>> obie.timesheets

ActiveRecord::StatementInvalid: SQLite3::SQLException: no such column:

timesheets.user_id:

SELECT * FROM timesheets WHERE (timesheets.user_id = 1)

from /.../connection_adapters/abstract_adapter.rb:128:in `log'

As David might say, “Whoops!” I forgot to add the foreign key columns to the
timesheets and expense_reports tables, so in order to go forward I’ll generate a
migration for the changes:

$ rails generate migration add_user_foreign_keys

exists db/migrate

create db/migrate/20100108014048_add_user_foreign_keys.rb

Then I’ll open db/migrate/20100108014048_add_user_foreign_keys.rb and
add the missing columns. (Using change_table would mean writing many more
lines of code, so we’ll stick with the traditional add_column syntax, which still works
fine.)

class AddUserForeignKeys < ActiveRecord::Migration

def self.up

add_column :timesheets, :user_id, :integer

add_column :expense_reports, :user_id, :integer

end

def self.down

remove_column :timesheets, :user_id

remove_column :expense_reports, :user_id

end

end

Running rake db:migrate applies the changes:

$ rake db:migrate

(in /Users/obie/prorails/time_and_expenses)

== AddUserForeignKeys: migrating

==

-- add_column(:timesheets, :user_id, :integer)

-> 0.0253s

-- add_column(:expense_reports, :user_id, :integer)

-> 0.0101s

== AddUserForeignKeys: migrated (0.0357s)

==

A
ctive

R
e
co

rd
7.2 One-to-Many Relationships 185

Index associations for performance boost

Premature optimization is the root of all evil. Or something like that.1 However, most experienced
Rails developers don’t mind adding indexes for foreign keys at the time that those are created. In
the case of our migration example, you’d add the following statements.

add_index :timesheets, :user_id

add_index :expense_reports, :user_id

Loading of your associations (which is usually more common than creation of items) will get a
big performance boost.

Now I should be able to add a new blank timesheet to my user and checktimesheets
again to make sure it’s there:

>> obie = User.find(1)

=> #<User id: 1...>

>> obie.timesheets << Timesheet.new

=> [#<Timesheet id: 1, user_id: 1...>]

>> obie.timesheets

=> [#<Timesheet id: 1, user_id: 1...>]

Notice that the Timesheet object gains an id immediately.

7.2.1 Adding Associated Objects to a Collection

As you can deduce from the previous example, appending an object to a has_many

collection automatically saves that object. That is, unless the parent object (the owner
of the collection) is not yet stored in the database. Let’s make sure that’s the case using
Active Record’s reload method, which re-fetches the attributes of an object from the
database:

>> obie.timesheets.reload

=> [#<Timesheet id: 1, user_id: 1...>]

There it is. The foreign key, user_id, was automatically set by the << method. It takes
one or more association objects to add to the collection, and since it flattens its argument
list and inserts each record, push and concat behave identically.

1. See http://www.acm.org/ubiquity/views/v7i24_fallacy.html

http://www.acm.org/ubiquity/views/v7i24_fallacy.html

186 Chapter 7: Active Record Associations

In the blank timesheet example, I could have used the create method on the
association proxy, and it would have worked essentially the same way:

>> obie.timesheets.create

=> #<Timesheet id: 1, user_id: 1...>

Even though at first glance << and create do the same thing, there are some important
differences in how they’re implemented that are covered in the following section.

7.2.2 Association Collection Methods

Association collections are basically fancy wrappers around a Ruby array, and have all
of a normal array’s methods. Named scopes and all of ActiveRecord::Base’s class
methods are also available on association collections, including find, order, where,
etc.

user.timesheets.where(:submitted => true).order('updated_at desc')

user.timesheets.late # assuming a scope :late defined on the Timesheet

class

The following methods of AssociationCollection are inherited by and available to
association collections:

<<(*records) and create(attributes = {})
Both methods will add either a single associated object or many, depending on whether
you pass them an array or not. However, << is transactional, and create is not.

Yet another difference has to do with association callbacks (covered in this
chapter’s options section for has_many). The << method triggers the :before_add

and :after_add callbacks, but the create method does not.
Finally, the return value behavior of both methods varies wildly. The createmethod

returns the new instance created, which is what you’d expect given its counterpart in
ActiveRecord::Base. The << method returns the association proxy (ever masquerad-
ing as an array), which allows chaining and is also natural behavior for a Ruby array.

However, <<will return false and not itself if any of the records being added causes
the operation to fail. You shouldn’t depend on the return value of << being an array that
you can continue operating on in a chained fashion.

all
The all method exists here mostly for consistency, since normally if you wanted to
operate on all records you would simply use the association itself.

A
ctive

R
e
co

rd
7.2 One-to-Many Relationships 187

any? and many?
Theany?method behaves like its Enumerable counterpart if you give it a block, otherwise
it’s the opposite of empty? Its companion method many?, which is an ActiveSupport
extension to Enumerable, returns true if the size of the collection is greater than one, or
if a block is given, if two or more elements match the supplied criteria.

average(column—name, options = {})
Convenience wrapper for calculate(:average, ...)

build(attributes={}, & block)
Traditionally, the build method has corresponded to the new method of Active Record
classes, except that it presets the owner’s foreign key and appends it to the association
collection in one operation. However, as of Rails 2.2, the new method has the same
behavior and probably should be used instead of build.

user.timesheets.build(attributes)

user.timesheets.new(attributes) # same as calling build

One possible reason to still use build is that as a convenience, if the attributes

parameter is an array of hashes (instead of just one) then build executes for
each one. However, you would usually accomplish that kind of behavior using
accepts_nested_attributes_for on the owning class, covered in Chapter 11, All
About Helpers, in the section about fields_for.

calculate(operation, column—name, options = {})
Provides aggregate (:sum, :average, :minimum and :maximum) values within the scope
of associated records. Covered in detail in Chapter 9, Advanced Active Record.

clear
Transactionally removes all records from this association by clearing the foreign key
field (see delete). If the association is configured with the :dependent option set to
:delete_all, then it calls delete_all. Similarly, if the :dependent option is set to
:destroy_all, then the destroy_all method is invoked.

count(column—name=nil, options={})
Counts all associated records in the database. The first parameter, column_name gives
you the option of counting on a column instead of generating COUNT(*) in the resulting
SQL. If the :counter_sql option is set for the association, it will be used for the query,
otherwise you can pass a custom value via the options hash of this method.

188 Chapter 7: Active Record Associations

Assuming that no :counter_sql or :finder_sql options are set on the associa-
tion, nor passed to count, the target class’s count method is used, scoped to only count
associated records.

create(attributes, & block) and
create!(attributes, & block)
Instantiate a new record with its foreign key attribute set to the owner’s id, add it
to the association collection, and save it, all in one method call. The bang variant
raises Active::RecordInvalid if saving fails, while the non-bang variant returns true
or false, as you would expect it to based on the behavior of create methods in other
places.

The owning record must be saved in order to use create, otherwise an
ActiveRecord::RecordNotSaved exception is raised.

>> User.new.timesheets.create

ActiveRecord::RecordNotSaved: You cannot call create unless the parent is

saved

If a block is passed to create or create!, it will get yielded the newly created instance
after the passed-in attributes are assigned, but before saving the record to the database.

delete(*records) and delete—all
The delete and delete_all methods are used to sever specified associations, or all of
them, respectively. Both methods operate transactionally.

It’s worth noting, for performance reasons, that calling delete_all first loads the
entire collection of associated objects into memory in order to grab their ids. Then it
executes a SQL UPDATE that sets foreign keys for all currently associated objects to nil,
effectively disassociating them from their parent. Since it loads the entire association into
memory, it would be ill-advised to use this method with an extremely large collection of
associated objects.

Note

The names of the delete and delete_all methods can be misleading. By default, they
don’t delete anything from the database—they only sever associations by clearing the foreign
key field of the associated record. This behavior is related to the :dependent option, which
defaults to :nullify. If the association is configured with the :dependent option set to
:delete or :destroy, then the associated records will actually be deleted from the database.

A
ctive

R
e
co

rd
7.2 One-to-Many Relationships 189

destroy(*records) and destroy—all
The destroy and destroy_allmethods are used to remove specified associations from
the database, or all of them, respectively. Both methods operate transactionally.

The destroy_all method takes no parameters; it’s an all or nothing affair. When
called, it begins a transaction and invokes destroy on each object in the association,
causing them all to be deleted from the database with individual DELETE SQL statements.
Again, there are load issues to consider if you plan to use this method with large association
collections, since many objects will be loaded into memory at once.

empty?
Simply calls size.zero?

find(id)
Finds an associated record by id, a really common operation when dealing with nested
RESTful resources. Raises ActiveRecord::RecordNotFound exception if either the
id or foreign key of the owner record is not found.

first(options)
Returns the first associated record. Wondering how Active Record figures out whether
to go to the database instead of loading the entire association collection into memory?

def fetch_first_or_last_using_find?(args)

args.first.kind_of?(Hash) ||

!(loaded? ||

@owner.new? ||

@reflection.options[:finder_sql] ||

@target.any? { |record| record.new? } ||

args.first.kind_of?(Integer)

)

end

Passing first an integer argument mimics the semantics of Ruby’s Array#first,
returning that number of records.

>> c = Client.first

=> #<Client id: 1, name: "Taigan", code: "TAIGAN", created_at: "2010-01-24

03:18:58", updated_at: "2010-01-24 03:18:58">

>> c.billing_codes.first(2)

=> [#<BillingCode id: 1, client_id: 1, code: "MTG", description:

"Meetings">,

#<BillingCode id: 2, client_id: 1, code: "DEV", description:

"Development">]

190 Chapter 7: Active Record Associations

include?(record)
Checks to see if the supplied record exists in the association collection and that it still
exists in the underlying database table.

last(options)
Returns the last associated record. Refer to description of first earlier in this section
for more details—it behaves exactly the same except for the obvious.

length
Returns the size of the collection by loading it and calling size on the array.

maximum(column—name, options = {})
Convenience wrapper for calculate(:maximum, ...), covered in detail in Chapter 9,
Advanced Active Record.

minimum(column—name, options = {})
Convenience wrapper for calculate(:minimum, ...), covered in detail in Chapter 9,
Advanced Active Record.

new(attributes, & block)
Instantiate a new record with its foreign key attribute set to the owner’s id, and add it
to the association collection, in one method call.

replace(other—array)
Replaces the collection with other_array. Works by deleting objects that exist in the
current collection, but not in other_array and inserting (using concat) objects that
don’t exist in the current collection, but do exist in other_array.

size
If the collection has already been loaded, or its owner object has never been saved, the
sizemethod simply returns the size of the current underlying array of associated objects.
Otherwise, assuming default options, a SELECT COUNT(*) query is executed to get the
size of the associated collection without having to load any objects. The query is bounded
to the :limit option of the association, if there is any set.

Note that if there is a counter_cache option set on the association, then its value
is used instead of hitting the database.

When you know that you are starting from an unloaded state and it’s likely that
there are associated records in the database that you will need to load no matter what,
it’s more efficient to use length instead of size.

A
ctive

R
e
co

rd
7.3 The belongs_to Association 191

Some association options, such as :group and :uniq, come into play when calcu-
lating size—basically they will always force all objects to be loaded from the database so
that the resulting size of the association array can be returned.

sum(column—name, options = {})
Convenience wrapper for calculate(:sum, ...), covered in detail in Chapter 9,
Advanced Active Record.

uniq
Iterates over the target collection and populates a Set with the unique values present.
Keep in mind that equality of Active Record objects is determined by identity, meaning
that the value of the id attribute is the same for both objects being compared.

A warning about association names

Don’t create associations that have the same name as instance methods of
ActiveRecord::Base. Since the association adds a method with that name to its
model, it will override the inherited method and break things. For instance, attributes and
connection would make really bad choices for association names.

7.3 The belongs—to Association

The belongs_to class method expresses a relationship from one Active Record object to
a single associated object for which it has a foreign key attribute. The trick to remembering
whether a class “belongs to” another one is considering which has the foreign key column
in its database table.

Assigning an object to a belongs_to association will set its foreign key attribute to
the owner object’s id, but will not save the record to the database automatically, as in
the following example:

>> timesheet = Timesheet.create

=> #<Timesheet id: 1409, user_id: nil...>

>> timesheet.user = obie

=> #<User id: 1, login: "obie"...>

>> timesheet.user.login

=> "obie"

>> timesheet.reload

=> #<Timesheet id: 1409, user_id: nil...>

192 Chapter 7: Active Record Associations

Defining a belongs_to relationship on a class creates a method with the same name on
its instances. As mentioned earlier, the method is actually a proxy to the related Active
Record object and adds capabilities useful for manipulating the relationship.

7.3.1 Reloading the Association

Just invoking the asssociation method will query the database (if necessary) and return
an instance of the related object. The method takes a force_reload parameter that tells
Active Record whether to reload the related object, if it happens to have been cached
already by a previous access.

In the following capture from my console, I look up a timesheet and take a peek
at the object_id of its related user object. Notice that the second time I invoke the
association via user, the object_id remains the same. The related object has been
cached. However, passing true to the accessor reloads the relationship and I get a new
instance.

>> ts = Timesheet.first

=> #<Timesheet id: 3, user_id: 1...>

>> ts.user.object_id

=> 27421330

>> ts.user.object_id

=> 27421330

>> ts.user(true).object_id

=> 27396270

7.3.2 Building and Creating Related Objects
via the Association

During the belongs_to method’s metaprogramming it also adds factory methods
for creating new instances of the related class and attaching them via the foreign key
automatically.

The build_association method does not save the new object, but the
create_association method does. Both methods take an optional hash of attribute
parameters with which to initialize the newly instantiated objects. Both are essentially
one-line convenience methods, which I don’t find particularly useful. It just doesn’t
usually make sense to create instances in that direction!

To illustrate, I’ll simply show the code for building a User from a Timesheet or
creating a Client from a BillingCode, neither of which would ever happen in real
code because it just doesn’t make sense to do so:

>> ts = Timesheet.first

=> #<Timesheet id: 3, user_id: 1...>

A
ctive

R
e
co

rd
7.3 The belongs_to Association 193

>> ts.build_user

=> #<User id: nil, email: nil...>

>> bc = BillingCode.first

=> #<BillingCode id: 1, code: "TRAVEL"...>

>> bc.create_client

=> #<Client id: 1, name=>nil, code=>nil...>

You’ll find yourself creating instances of belonging objects from the has_many side of
the relationship much more often.

7.3.3 belongs—to Options

The following options can be passed in a hash to the belongs_to method.

:autosave => true
Whether to automatically save the owning record whenever this record is saved. Defaults
to false.

:class—name
Assume for a moment that we wanted to establish another belongs_to relationship from
the Timesheet class to User, this time modeling the relationship to the approver of
the timesheet. You might start by adding an approver_id column to the timesheets
table and an authorized_approver column to the users table via a migration. Then
you would add a second belongs_to declaration to the Timesheet class:

class Timesheet < ActiveRecord::Base

belongs_to :approver

belongs_to :user

...

Active Record won’t be able to figure out what class you’re trying to link with just the
information provided, because you’ve (legitimately) acted against the Rails convention
of naming a relationship according to the related class. It’s time for a :class_name

parameter.

class Timesheet < ActiveRecord::Base

belongs_to :approver, :class_name => 'User'

belongs_to :user

...

194 Chapter 7: Active Record Associations

:conditions
Rails allows us to add conditions to a relationship that must be satisfied in order for it
to be valid. The :conditions option allows you to do just that, with the same syntax
that is used when you add conditions to a find invocation. Assuming that I add an
authorized_approver column to the users table, we’ll make use of it here:

class Timesheet < ActiveRecord::Base

belongs_to :approver,

:class_name => 'User',

:conditions => {:approver => true}

...

end

Now in order for the assignment of a user to the approver field to work, that user must
be authorized. I’ll go ahead and add test cases that both indicate the intention of my
code and show it in action. I turn my attention to test/unit/timesheet_test.rb

require File.dirname(__FILE__) + '/../test_helper'

class TimesheetTest < ActiveSupport::TestCase

def test_user_may_be_associated_as_approver

sheet = Timesheet.create

sheet.approver = User.create(:approver => true)

assert_not_nil sheet.approver, "approver assignment failed"

end

end

It’s a good start, but I also want to make sure something happens to prevent the system
from assigning a nonauthorized user to the approver field, so I add another test:

def test_non_authorized_user_cannot_be_associated_as_approver

sheet = Timesheet.create

sheet.approver = User.create(:approver => false)

assert sheet.approver.nil?, "approver assignment should have failed"

end

I have my suspicions about the validity of that test, though, and as I half-expected, it
doesn’t really work the way I want it to work:

1) Failure:

test_non_authorized_user_cannot_be_associated_as_approver(TimesheetTest)

[./test/unit/timesheet_test.rb:16]:

approver assignment should have failed.

<false> is not true.

The problem is that Active Record (for better or worse, probably worse) allows me to
make the invalid assignment. The :conditions option only applies during the query
to get the association back from the database. I’ll have some more work ahead of me

A
ctive

R
e
co

rd
7.3 The belongs_to Association 195

to achieve the desired behavior, but I’ll go ahead and prove out Rails’s actual behavior
by fixing my tests. I’ll do so by passing true to the approver method’s optional
force_reload argument, which tells it to reload its target object:

def test_only_authorized_user_may_be_associated_as_approver

sheet = Timesheet.create

sheet.approver = User.create(:approver => true)

assert sheet.save

assert_not_nil sheet.approver(true), "approver assignment failed"

end

def test_non_authorized_user_cannot_be_associated_as_approver

sheet = Timesheet.create

sheet.approver = User.create(:approver => false)

assert sheet.save

assert sheet.approver(true).nil?, "approver assignment should fail"

end

Those two tests do pass, but note that I went ahead and saved the sheet, since just
assigning a value to it will not save the record. Then, as mentioned, I took advantage of
the force_reload parameter to make Rails reload approver from the database, and
not just simply give me the same instance I originally assigned to it.

The lesson to learn is that :conditions on relationships never affect the assignment
of associated objects, only how they’re read back from the database. To enforce the
rule that a timesheet approver must be authorized, you’d need to add a before_save
callback to the Timesheet class itself. Callbacks are covered in detail at the beginning
of Chapter 9, Advanced Active Record.

:counter—cache
Use this option to make Rails automatically update a counter field on the associated
object with the number of belonging objects. The option value can be true, in which
case the pluralized name of the belonging class plus _count is used, or you can supply
your own column name to be used:

:counter_cache => true

:counter_cache => 'number_of_children'

If a significant percentage of your association collections will be empty at any given
moment, you can optimize performance at the cost of some extra database storage by
using counter caches liberally. The reason is that when the counter cache attribute is at
zero, Rails won’t even try to query the database for the associated records!

196 Chapter 7: Active Record Associations

Note

The value of the counter cache column must be set to zero by default in the database! Otherwise
the counter caching won’t work at all. It’s because the way that Rails implements the counter
caching behavior is by adding a simple callback that goes directly to the database with an UPDATE
command and increments the value of the counter.If you’re not careful, and neglect to set a default
value of 0 for the counter cache column on the database, or misspell the column name, the counter
cache will still seem to work! There is a magic method on all classes with has_many associations
called collection_count, just like the counter cache. It will return a correct count value
based on the in-memory object, even if you don’t have a counter cache option set or the counter
cache column value is null!

In the case that a counter cache was altered on the database side, you may tell
Active Record to reset a potentially stale value to the correct count via the class method
reset_counters. It’s parameters are the id of the object and a list of association names.

Timesheet.reset_counters(5, :weeks)

:dependent => :destroy or :delete
Specifies a rule that the associated owner record should be destroyed or just deleted from
the database, depending on the value of the option. When triggered, :destroy will call
the dependent’s callbacks, whereas :delete will not.

Usage of this option might make sense in ahas_one /belongs_topairing. However,
it is really unlikely that you want this behavior on has_many / belongs_to relationship;
it just doesn’t seem to make sense to code things that way. Additionally, if the owner
record has its :dependent option set on the corresponding has_many association, then
destroying one associated record will have the ripple effect of destroying all of its siblings.

:foreign—key => column—name
Specifies the name of the foreign key column that should be used to find the associated
object. Rails will normally infer this setting from the name of the association, by adding
_id to it. You can override the inferred foreign key name with this option if necessary.

without the explicit option, Rails would guess administrator_id

belongs_to :administrator, :foreign_key => 'admin_user_id'

:include => [names—of—associations—to—eager—load]
Like all :include options, an optimization that takes a list of second-order association
names (on the owning record) that should be eager-loaded when this object is loaded. In
general, this technique is used to knock N+1 select operations down to N plus the number

A
ctive

R
e
co

rd
7.3 The belongs_to Association 197

associations being included. It is rare to specify :include options on a belongs_to,
rather than on the has_many side.

If necessary, due to conditions or orders referencing tables other than the main one,
a SELECT statement with the necessary LEFT OUTER JOINS will be constructed on the
fly so that all the data needed to construct a whole object graph is queried in one big
database request.

With judicious use of :include and careful benchmarking, you can sometimes
improve the performance of your application dramatically, mostly by eliminating N+1
queries. On the other hand, pulling lots of data from the database and instantiating
large object trees can be very costly, so :include is no “silver bullet.” As they say, your
mileage may vary.

:inverse—of => name—of—has—association
Explicitly declares the name of the inverse association in a bidirectional relationship.
Considered an optimization, use of this option allows Rails to return the same instance
of an object no matter which side of the relationship it is accessed from.

Covered in detail in Section 7.4.1.

:select => clause
Replaces the SQL select clause that normally generated when loading this association,
which usually takes the form table_name.*. Just additional flexibility that it normally
never needed.

:polymorphic => true
Use the :polymorphic option to specify that an object is related to its association in a
polymorphic way, which is the Rails way of saying that the type of the related object is
stored in the database along with its foreign key. By making a belongs_to relationship
polymorphic, you abstract out the association so that any other model in the system can
fill it.

Polymorphic associations let you trade some measure of relational integrity for the
convenience of implementation in child relationships that are reused across your ap-
plication. Common examples are models such as photo attachments, comments, notes,
line items, and so on.

Let’s illustrate by writing a Comment class that attaches to its subjects polymorphi-
cally. We’ll associate it to both expense reports and timesheets. Listing 7.2 has the schema
information in migration code, followed by the code for the classes involved. Notice the
:subject_type column, which stores the class name of the associated class.

198 Chapter 7: Active Record Associations

Listing 7.2 Comment class using polymorphic belongs to relationship

create_table :comments do |t|

t.text :body

t.references :subject, :polymorphic => true

references can be used as a shortcut for following two statements

t.integer :subject_id

t.string :subject_type

t.timestamps

end

class Comment < ActiveRecord::Base

belongs_to :subject, :polymorphic => true

end

class ExpenseReport < ActiveRecord::Base

belongs_to :user

has_many :comments, :as => :subject

end

class Timesheet < ActiveRecord::Base

belongs_to :user

has_many :comments, :as => :subject

end

As you can see in the ExpenseReport and Timesheet classes of Listing 7.2, there
is a corresponding syntax where you give Active Record a clue that the relationship is
polymorphic by specifying :as => :subject. We haven’t covered has_many’s options
yet in this chapter, and polymorphic relationships have their own section in Chapter 9,
Advanced Active Record.

:primary—key => column—name
You should never need to use this option, except perhaps with strange legacy database
schemas. It allows you to specify a surrogate column on the owning record to use as the
target of the foreign key, instead of the usual primary key.

:readonly => true
Locks down the reference to the owning record so that you can’t modify it. Theoreti-
cally this might make sense in terms of constraining your programming contexts very

A
ctive

R
e
co

rd
7.3 The belongs_to Association 199

specifically, but I’ve never had a use for it. Still, for illustrative purposes, here is an
example where I’ve made the user association on Timesheet readonly:

class Timesheet < ActiveRecord::Base

belongs_to :user, :readonly => true

...

>> t = Timesheet.first

=> #<Timesheet id: 1, submitted: nil, user_id: 1...>

>> t.user

=> #<User id: 1, login: "admin"...>

>> t.user.save

ActiveRecord::ReadOnlyRecord: ActiveRecord::ReadOnlyRecord

:touch => true or column—name
“Touches” the owning record’s updated at timestamp, or a specific timestamp column
specified by column_name, if it is supplied. Useful for caching schemes where times-
tamps are used to invalidate cached view content. The column_name option is particu-
larly useful here, if you want to do fine-grained fragment caching of the owning record’s
view.

For example, let’s set the foundation for doing just that with the User/Timesheet
association:

$ rails generate migration AddTimesheetsUpdatedAtToUsers

timesheets_updated_at:datetime

invoke active_record

create db/migrate/20100124191217_add_timesheets_

updated_at_to_users.rb

$ rake db:migrate

== AddTimesheetsUpdatedAtToUsers: migrating

==================================

-- add_column(:users, :timesheets_updated_at, :datetime)

-> 0.0426s

== AddTimesheetsUpdatedAtToUsers: migrated (0.0429s)

=========================

class Timesheet < ActiveRecord::Base

belongs_to :user, :touch => :timesheets_updated_at

...

:validate => true
Defaults to false on belongs_to associations, contrary to its counterpart setting on
has_many. Tells Active Record to validate the owner record, but only in circumstances

200 Chapter 7: Active Record Associations

where it would normally save the owning record, such as when the record is new and a
save is required in order to get a foreign key value.

Tim says . . .

Usevalidates_associated if you want association validation outside of automatic saving.

7.4 The has—many Association

Just like it sounds, the has_many association allows you to define a relationship in
which one model has many other models that belong to it. The sheer readability of code
constructs such as has_many is a major reason that people fall in love with Rails.

The has_many class method is often used without additional options. If Rails can
guess the type of class in the relationship from the name of the association, no additional
configuration is necessary. This bit of code should look familiar by now:

class User < ActiveRecord::Base

has_many :timesheets

has_many :expense_reports

The names of the associations can be singularized and match the names of models in the
application, so everything works as expected.

7.4.1 has—many Options

Despite the ease of use of has_many, there is a surprising amount of power and cus-
tomization possible for those who know and understand the options available.

:after—add => callback
Called after a record is added to the collection via the << method. Is not triggered by
the collection’s create method, so careful consideration is needed when relying on
association callbacks. A lambda callback will get called directly, versus a symbol, which
correlates to a method on the owning record, which takes the newly-added child as a
parameter. It’s also possible to pass an array of lambda or symbols.

Add callback method options to a has_many by passing one or more symbols corre-
sponding to method names, or Proc objects. See Listing 7.3 in the :before_add option
for an example.

A
ctive

R
e
co

rd
7.4 The has_many Association 201

:after—remove => callback
Called after a record has been removed from the collection with the delete method. A
lambda callback will get called directly, versus a symbol, which correlates to a method on
the owning record, which takes the newly-added child as a parameter. It’s also possible
to pass an array of lambda or symbols. See Listing 7.3 in the :before_add option for
an example.

:as => association—name
Specifies the polymorphic belongs_to association to use on the related class. (See
Chapter 9 for more about polymorphic relationships.)

:autosave => true
Whether to automatically save all modified records in an association collection when the
parent is saved. Defaults to false, but note that normal Active Record behavior is to
save new associations records automatically when the parent is saved.

:before—add => callback
Triggered when a record is added to the collection via the << method. (Remember that
concat and push are aliases of <<.)

A lambda callback will get called directly, versus a symbol, which correlates to a
method on the owning record, which takes the newly-added child as a parameter. It’s
also possible to pass an array of lambda or symbols.

Raising an exception in the callback will stop the object from getting added to the
collection. (Basically, because the callback is triggered right after the type mismatch
check, and there is no rescue clause to be found inside <<.)

Listing 7.3 A simple example of :before—add callback usage

has_many :unchangable_posts,

:class_name => "Post",

:before_add => :raise_exception

private

def raise_exception(object)

raise "You can't add a post"

end

202 Chapter 7: Active Record Associations

Of course, that would have been a lot shorter code using a Proc since it’s a one-liner.
The owner parameter is the object with the association. The record parameter is the
object being added.

has_many :unchangable_posts,

:class_name => "Post",

:before_add => Proc.new {|owner, record| raise "Can't do it!"}

One more time, with a lambda, which doesn’t check the arity of block parameters:

has_many :unchangable_posts,

:class_name => "Post",

:before_add => lambda {raise "You can't add a post"}

:before—remove => callback
Called before a record is removed from a collection with the delete method. See
before_add for more information. As with :before_add, raising an exception stops
the remove operation.

class User < ActiveRecord::Base

has_many :timesheets,

:before_remove => :check_timesheet_destruction,

:dependent => :destroy

protected

def check_timesheet_destruction(timesheet)

if timesheet.submitted?

raise TimesheetError, "Cannot destroy a submitted timesheet."

end

end

Note that this is a somewhat contrived example, because it violates my sense of good
object-oriented principles. The User class shouldn’t really be responsible for knowing
when it’s okay to delete a timesheet or not. The check_timesheet_destruction

method would more properly be added as a before_destroy callback on the
Timesheet class.

:class—name
The :class_name option is common to all of the associations. It allows you to specify,
as a string, the name of the class of the association, and is needed when the class name
cannot be inferred from the name of the association itself.

has_many :draft_timesheets, :class_name => 'Timesheet',

:conditions => { :submitted => false }

A
ctive

R
e
co

rd
7.4 The has_many Association 203

:conditions
The :conditions option is common to all of the associations. It allows you to add
extra conditions to the Active Record-generated SQL query that bring back the objects
in the association.

You can apply extra :conditions to an association for a variety of reasons. How
about approval of comments?

has_many :comments, :conditions => { :approved => true }

Plus, there’s no rule that you can’t have more than one has_many association exposing
the same two related tables in different ways. Just remember that you’ll probably have
to specify the class name too.

has_many :pending_comments, :class_name => 'Comment',

:conditions => { :approved => false }

:counter—sql
Overrides the Active Record–generated SQL query that would be used to count the
number of records belonging to this association. Not necessarily needed in conjunction
with the :finder_sql option, since Active Record will automatically generate counter
SQL code based on the custom finder SQL statement.

As with all custom SQL specifications in Active Record, you must use single-quotes
around the entire string to prevent premature interpolation. (That is, you don’t want the
string to get interpolated in the context of the class where you’re declaring the association.
You want it to get interpolated at runtime.)

has_many :things, :finder_sql => 'select * from things where id = #{id}'

:dependent => :delete—all
All associated objects are deleted in fell swoop using a single SQL command. Note:
While this option is much faster than :destroy, it doesn’t trigger any destroy callbacks
on the associated objects—you should use this option very carefully. It should only be
used on associations that depend solely on the parent object.

:dependent => :destroy
All associated objects are destroyed along with the parent object, by iteratively calling
their destroy methods.

204 Chapter 7: Active Record Associations

:dependent => :nullify
The default behavior when deleting a record with has_many associations is to leave those
associated records alone. Their foreign key fields will still point at the record that was
deleted. The :nullify option tells Active Record to nullify, or clear, the foreign key
that joins them to the parent record.

:extend => ExtensionModule
Specifies a module with methods that will extend the association collection proxy. Used
as an alternative to defining additional methods in a block passed to the has_many

method itself. Discussed in the section “Association Extensions”.

:finder—sql => sql—statement
Specifies a complete SQL statement to fetch the association. This is a possible way to
load complex associations that depend on multiple tables for their data. It’s also quite
rare to need to go this route.

Count operations are done with a SQL statement based on the query supplied via
the :finder_sql option. If Active Record has trouble with the transformation, it might
be necessary to supply an explicit :counter_sql value also.

:foreign—key => column—name
Overrides the convention-based foreign key column name that would normally be used
in the SQL statement that loads the association. Normally it would be the owning
record’s class name with _id appended to it.

:group => sql—expression
Adds a GROUP BY SQL clause to the queries used to load the contents of the association
collection.

:having => conditions
Must be used in conjunction with :group and adds extra conditions to the resulting
SQL query used to load the contents of the association collection.

:include => associations
Takes an array of second-order association names (as an array) that should be eager-loaded
when this collection is loaded. As with the :include option on belongs_to associ-
ations, with judicious use of :include and careful benchmarking you can sometimes
improve the performance of your application dramatically.

A
ctive

R
e
co

rd
7.4 The has_many Association 205

To illustrate, let’s analyze how :include affects the SQL generated while navigating
relationships. We’ll use the following simplified versions of Timesheet, BillableWeek,
and BillingCode:

class Timesheet < ActiveRecord::Base

has_many :billable_weeks

end

class BillableWeek < ActiveRecord::Base

belongs_to :timesheet

belongs_to :billing_code

end

class BillingCode < ActiveRecord::Base

belongs_to :client

has_many :billable_weeks

end

First, I need to set up my test data, so I create a timesheet instance and add a couple
of billable weeks to it. Then I assign a billable code to each billable week, which results
in an object graph (with four objects linked together via associations).

Next I do a fancy one-line collect, which gives me an array of the billing codes
associated with the timesheet:

>> Timesheet.find(3).billable_weeks.collect{ |w| w.billing_code.code }

=> ["TRAVEL", "DEVELOPMENT"]

Without the :include option set on the billable_weeks association of
Timesheet, that operation cost me the following four database hits (copied from
log/development.log, and prettied up a little):

Timesheet Load (0.3ms) SELECT timesheets.* FROM timesheets WHERE

(timesheets.id = 3) LIMIT 1

BillableWeek Load (1.3ms) SELECT billable_weeks.* FROM billable_weeks

WHERE (billable_weeks.timesheet_id = 3)

BillingCode Load (1.2ms) SELECT billing_codes.* FROM billing_codes WHERE

(billing_codes.id = 7) LIMIT 1

BillingCode Load (3.2ms) SELECT billing_codes.* FROM billing_codes WHERE

(billing_codes.id = 8) LIMIT 1

This demonstrates the so-called “N+1 select” problem that inadvertently plagues many
systems. Anytime I need one billable week, it will cost me N select statements to retrieve

206 Chapter 7: Active Record Associations

its associated records. Now let’s add :include to the billable_weeks association,
after which the Timesheet class looks as follows:

class Timesheet < ActiveRecord::Base

has_many :billable_weeks, :include => [:billing_code]

end

Simple! Rerunning our test statement yields the same results in the console:

>> Timesheet.find(3).billable_weeks.collect{ |w| w.billing_code.code }

=> ["TRAVEL", "DEVELOPMENT"]

But look at how different the generated SQL is:

Timesheet Load (0.4ms) SELECT timesheets.* FROM timesheets WHERE

(timesheets.id

= 3) LIMIT 1

BillableWeek Load (0.6ms) SELECT billable_weeks.* FROM billable_weeks

WHERE (billable_weeks.timesheet_id = 3)

BillingCode Load (2.1ms) SELECT billing_codes.* FROM billing_codes WHERE

(billing_codes.id IN (7,8))

Active Record smartly figures out exactly which BillingCode records it will need and
pulls them in using one query. For large datasets, the performance improvement can be
quite dramatic!

It’s generally easy to find N+1 select issues just by watching the log scroll by while
clicking through the different screens of your application. (Of course, make sure that
you’re looking at realistic data or the exercise will be pointless.) Screens that might
benefit from eager loading will cause a flurry of single-row SELECT statements, one for
each record in a given association being used.

If you’re feeling particularly daring (perhaps masochistic is a better term) you can
try including a deep hierarchy of associations, by mixing hashes into your :include
array, like in this fictional example from a bulletin board:

has_many :posts, :include => [:author, {:comments => {:author => :avatar

}}])

That example snippet will grab not only all the comments for a Post, but all their authors
and avatar pictures as well. You can mix and match symbols, arrays and hashes in any
combination to describe the associations you want to load.

The biggest potential problem with so-called ”deep” includes is pulling too much
data out of the database. You should always start out with the simplest solution that
will work, then use benchmarking and analysis to figure out if optimizations such as
eager-loading help improve your performance.

A
ctive

R
e
co

rd
7.4 The has_many Association 207

Wilson says . . .

Let people learn eager loading by crawling across broken glass, like we did. It builds character!

:inverse—of => name—of—belongs—to—association
Explicitly declares the name of the inverse association in a bidirectional relationship.
Considered an optimization, use of this option allows Rails to return the same instance
of an object no matter which side of the relationship it is accessed from.

Consider the following, using our recurring example, without usage of inverse_of.

>> user = User.first

>> timesheet = user.timesheets.first

=> <Timesheet id: 1, user_id: 1...>

>> timesheet.user.equal? user

=> false

If we add :inverse_of to the association objection on User, like

has_many :timesheets, :inverse_of => :user

then timesheet.user.equal? user will be true. Try something similar in one of your
apps to see it for yourself.

Tim says . . .

With :inverse_of properly set, you’ll still notice the following inconsistency:

>> timesheet.user.equal? timesheet.user

=> true

>> user.equal? timesheet.user

=> false

This is because timesheet.user is actually an association proxy, and equal? is quite the
stickler for object identity.

>> user.equal? timesheet.user.proxy_target

=> true

:limit => integer
Appends a LIMIT clause to the SQL generated for loading this association. This option
is potentially useful in capping the size of very large association collections. Use in
conjunction with the :order option to make sure your grabbing the most relevant
records.

208 Chapter 7: Active Record Associations

:offset => integer
An integer determining the offset from where the rows should be fetched when loading
the association collection. I assume this is here mostly for completeness, since it’s hard
to envision a valid use case.

:order => expression
Specifies the order in which the associated objects are returned via an “ORDER BY” sql
fragment, such as "last_name, first_name DESC".

:primary—key => column—name
Specifies a surrogate key to use instead of the owning record’s primary key, whose value
should be used when querying to fill the association collection.

:readonly => true
Sets all records in the association collection to read-only mode, which prevents saving
them.

:select => expression
By default, this is * as in SELECT * FROM, but can be changed if you, for example, want
to add additional calculated columns or “piggyback” additional columns from joins onto
the associated object as its loaded.

:source and :source—type
Used exclusively as additional options to assist in using has_many :through associa-
tions with polymorphic belongs_to. Covered in detail later in this chapter.

:table—name => names
The :table_name option lets you override the table names (FROM clause) that will be
used in SQL statements generated for loading the association.

:through => association—name
Creates an association collection via another association. See the section in this chapter
entitled “has_many :through” for more information.

:uniq => true
Strips duplicate objects from the collection. Sometimes useful in conjunction with
has_many :through.

A
ctive

R
e
co

rd
7.5 Many-to-Many Relationships 209

:validate => false
In cases where the child records in the association collection would be automatically
saved by Active Record, this option (true by default) dictates whether to ensure that they
are valid. If you always want to check the validity of associated records when saving the
owning record, then use validates_associated :association_name.

7.5 Many-to-Many Relationships

Associating persistent objects via a join table can be one of the trickier aspects of object-
relational mapping to implement correctly in a framework. Rails has a couple of tech-
niques that let you represent many-to-many relationships in your model. We’ll start
with the older and simpler has_and_belongs_to_many and then cover the newer
has_many :through.

7.5.1 has—and—belongs—to—many

Before proceeding with this section, I must clear my conscience by stating that
has_and_belongs_to_many is practically obsolete in the minds of many Rails de-
velopers, including the authors of this book. Use has_many :through instead and
your life should be a lot easier. The section is preserved in this edition almost exactly
as it appeared in the first, because it contains good techniques that enlighten the reader
about nuances of Active Record behavior.

The has_and_belongs_to_manymethod establishes a link between two associated
Active Record models via an intermediate join table. Unless the join table is explicitly
specified as an option, Rails guesses its name by concatenating the table names of the
joined classes, in alphabetical order and separated with an underscore.

For example, if I was using has_and_belongs_to_many (or habtm for short) to
establish a relationship between Timesheet and BillingCode, the join table would
be named billing_codes_timesheets and the relationship would be defined in the
models. Both the migration class and models are listed:

class CreateBillingCodesTimesheets < ActiveRecord::Migration

def self.up

create_table :billing_codes_timesheets, :id => false do |t|

t.references :billing_code, :null => false

t.references :timesheet, :null => false

end

end

210 Chapter 7: Active Record Associations

def self.down

drop_table :billing_codes_timesheets

end

end

class Timesheet < ActiveRecord::Base

has_and_belongs_to_many :billing_codes

end

class BillingCode < ActiveRecord::Base

has_and_belongs_to_many :timesheets

end

Note that an id primary key is not needed, hence the :id => false option was passed
to the create_table method. Also, since the foreign key columns are both needed, we
pass them a :null => false option. (In real code, you would also want to make sure
both of the foreign key columns were indexed properly.)

Self-Referential Relationship

What about self-referential many-to-many relationships? Linking a model to itself via a
habtm relationship is easy—you just have to provide explicit options. In Listing 7.4, I’ve
created a join table and established a link between related BillingCode objects. Again,
both the migration and model class are listed:

Listing 7.4 Related billing codes

class CreateRelatedBillingCodes < ActiveRecord::Migration

def self.up

create_table :related_billing_codes, :id => false do |t|

t.column :first_billing_code_id, :integer, :null => false

t.column :second_billing_code_id, :integer, :null => false

end

end

def self.down

drop_table :related_billing_codes

end

end

class BillingCode < ActiveRecord::Base

has_and_belongs_to_many :related,

:join_table => 'related_billing_codes',

:foreign_key => 'first_billing_code_id',

:association_foreign_key => 'second_billing_code_id',

:class_name => 'BillingCode'

end

A
ctive

R
e
co

rd
7.5 Many-to-Many Relationships 211

Bidirectional Relationships

It’s worth noting that the related relationship of the BillingCode in Listing 7.4
is not bidirectional. Just because you associate two objects in one direction does not
mean they’ll be associated in the other direction. But what if you need to automatically
establish a bidirectional relationship?

First let’s write a spec for the BillingCode class to prove our solution. When we add
bidirectional, we don’t want to break the normal behavior, so at first my spec example
establishes that the normal habtm relationship works:

describe BillingCode do

let(:travel_code) { BillingCode.create(:code => 'TRAVEL') }

let(:dev_code) { BillingCode.create(:code => 'DEV') }

it "should have a working related habtm association" do

travel_code.related << dev_code

travel_code.reload.related.should include(dev_code)

end

end

I run the spec and it passes. Now I can modify the example to prove that the bidirectional
behavior that we’re going to add works. It ends up looking very similar to the first
example.

describe BillingCode do

let(:travel_code) { BillingCode.create(:code => 'TRAVEL') }

let(:dev_code) { BillingCode.create(:code => 'DEV') }

it "should have a bidirectional habtm association" do

travel_code.related << dev_code

travel_code.reload.related.should include(dev_code)

dev_code.reload.related.should include(travel_code)

end

Of course, the new version fails, since we haven’t added the new behavior yet. I’ll omit
the output of running the spec, since it doesn’t tell us anything we don’t know already.

Custom SQL Options

I’m not entirely happy with the approach we’re going to take, since it involves bringing
hand-coded SQL into my otherwise beautiful Ruby code. However, the Rails way is to use
SQL when it makes sense to do so, and this is one of those cases. To get our bidirectional
behavior, we’ll use the:insert_sql option ofhas_and_belongs_to_many to override
the normal SQL that Active Record would use to associate the related objects with each
other.

212 Chapter 7: Active Record Associations

Here’s a neat trick so that you don’t have to figure out the syntax of the INSERT

statement from memory. Just copy and paste the normal INSERT statement that Rails
uses. It’s not too hard to find in log/test.log if you tail the file while running the
spec we wrote in the previous section:

INSERT INTO related_billing_codes (first_billing_code_id,

second_billing_code_id) VALUES (1, 2)

Now we just have to tweak that INSERT statement so that it adds two rows instead
of just one. You might be tempted to just add a semicolon and a second, full INSERT
statement. That won’t work, because it is invalid to stuff two statements into one using
a semicolon. Try it and see what happens if you’re curious.

After some quick googling, I found the following method of inserting multiple rows
with one SQL statement that will work for Postgres, MySQL, and DB2 databases.2 It is
valid according to the SQL-92 standard, just not universally supported:

:insert_sql => 'INSERT INTO related_billing_codes

(first_billing_code_id, second_billing_code_id)

VALUES (#{id}, #{record.id}), (#{record.id}, #{id})'

There are some very important things to remember when trying to get custom SQL
options to work. The first is to use single quotes around the entire string of custom SQL.
If you were to use double quotes, the string would be interpolated in the context of the
class where it is being declared, not at the time of your query like you need it to be.

Also, while we’re on the subject of quotation marks and how to use them, note that
when I copied the INSERT query over from my log, I ended up with backtick characters
around the column names, instead of single quotes. Trying to use single-quotes around
values instead of backtick characters will fail, because the database adapter will escape
the quotes, producing invalid syntax. Yes, it’s a pain in the neck—luckily you shouldn’t
need to specify custom SQL very often.

Another thing to remember is that when your custom SQL string is interpolated,
it will happen in the context of the object holding the association. The object being
associated will be made available as record. If you look closely at the code listing,
you’ll notice that to establish the bidirectional link, we just added two rows in the
related_billing_codes table, one in each direction.

A quick spec run confirms that our :insert_sql approach did indeed work. Now
we should also use the :delete_sql option to make sure that the relationship can
be broken bidirectionally as well. Again, I’ll drive the implementation in a BDD

2. http://en.wikipedia.org/wiki/Insert_(SQL)#Multirow_inserts

http://en.wikipedia.org/wiki/Insert_(SQL)#Multirow_inserts

A
ctive

R
e
co

rd
7.5 Many-to-Many Relationships 213

(Behavior-Driven Development)3 fashion, adding the following example to the
BillingCode spec:

it "should remove bidirectional association on deletion" do

travel_code.related << dev_code

travel_code.related.delete(dev_code)

travel_code.related(true).should_not include(dev_code)

dev_code.related(true).should_not include(travel_code)

end

It’s similar to the previous test method, except that after establishing the relationship,
it immediately deletes it. I expect that the first assertion will pass right away, but the
second should fail:

$ ruby spec/models/billing_code_spec.rb

.F

1) BillingCode - should remove bidirectional association on deletion

Failure/Error: dev_code.related(true).should_not include(travel_code)

expected [#<BillingCode id: 7, client_id: nil, code: "TRAVEL",

description: nil>] not to include #<BillingCode id: 7, client_id: nil,

code: "TRAVEL", description: nil>

spec/models/billing_code_spec.rb:19

spec/models/billing_code_spec.rb:3

Finished in 0.067338 seconds

2 examples, 1 failures

Yep, just as expected. Let’s take another peek at log/test.log and grab the SQL
DELETE clause that we’ll work with:

DELETE FROM related_billing_codes WHERE first_billing_code_id = 1 AND

second_billing_code_id IN (2)

Hmph! This might be a little trickier than the insert. Curious about the IN operator, I take
a peek inside the active_record/associations/has_and_belongs_to_many_

association.rb file and find the following relevant method:

def delete_records(records)

if sql = @reflection.options[:delete_sql]

records.each { |r| @owner.connection.delete(interpolate_sql(sql, r)) }

else

relation = Arel::Table.new(@reflection.options[:join_table])

relation.where(relation[@reflection.primary_key_name].eq(@owner.id).

3. http://blog.dannorth.net/introducing-bdd

http://blog.dannorth.net/introducing-bdd

214 Chapter 7: Active Record Associations

and(Arel::Predicates::In.new(relation[@reflection.association_foreign_key],

records.map(&:id))

)

).delete

end

end

Whoops, in Rails 3 this method is certainly interesting, but not much help. The query
is constructed using the new Arel API. Since what I was looking for is an indication of
how to construct our SQL delete statement, I decide to just try winging it. It ends up
looking like the :delete_sql option in the following snippet:

class BillingCode < ActiveRecord::Base

has_and_belongs_to_many :related,

:join_table => 'related_billing_codes',

:foreign_key => 'first_billing_code_id',

:association_foreign_key => 'second_billing_code_id',

:class_name => 'BillingCode',

:insert_sql => 'INSERT INTO related_billing_codes

(first_billing_code_id, second_billing_code_id)

VALUES (#{id}, #{record.id}), (#{record.id}, #{id})',

:delete_sql => 'DELETE FROM related_billing_codes

WHERE (first_billing_code_id = #{id}

AND second_billing_code_id = #{record.id})

OR (first_billing_code_id = #{record.id}

AND second_billing_code_id = #{id})'

end

Another spec run and we confirm that it works as intended.

$ ruby spec/models/billing_code_spec.rb

..

Finished in 0.051355 seconds

2 examples, 0 failures

Extra Columns on has—and—belongs—to—many Join Tables

Rails won’t have a problem with you adding as many extra columns as you want to
habtm’s join table. The extra attributes will be read in and added onto model ob-
jects accessed via the habtm association. However, speaking from experience, the severe
annoyances you will deal with in your application code make it really unattractive to go
that route.

What kind of annoyances? For one, records returned from join tables with additional
attributes will be marked as read-only, because it’s not possible to save changes to those
additional attributes.

A
ctive

R
e
co

rd
7.5 Many-to-Many Relationships 215

You should also consider that the way that Rails makes those extra columns of the
join table available might cause problems in other parts of your codebase. Having extra
attributes appear magically on an object is kind of cool, but what happens when you try
to access those extra properties on an object that wasn’t fetched via the habtm association?
Kaboom! Get ready for some potentially bewildering debugging exercises.

Methods of the habtm proxy act just as they would for a has_many relationship.
Similarly, habtm shares options with has_many; only its :join_table option is unique.
It allows customization of the join table name.

To sum up, habtm is a simple way to establish a many-to-many relationship using
a join table. As long as you don’t need to capture additional data about the relation-
ship, everything is fine. The problems with habtm begin once you want to add extra
columns to the join table, after which you’ll want to upgrade the relationship to use
has_many :through instead.

‘‘Real Join Models’’ and habtm

The Rails documentation advises readers that: “It’s strongly recommended that you
upgrade any [habtm] associations with attributes to a real join model.” Use of habtm,
which was one of the original innovative features in Rails, fell out of favor once the ability
to create real join models was introduced via the has_many :through association.

Realistically, habtm is not going to be removed from Rails, for a couple of sensible
reasons. First of all, plenty of legacy Rails applications need it. Second, habtm provides
a way to join classes without a primary key defined on the join table, which is occasion-
ally useful. But most of the time you’ll find yourself wanting to model many-to-many
relationships with has_many :through.

7.5.2 has—many :through
Well-known Rails guy and fellow cabooser Josh Susser is considered the expert on
Active Record associations, even his blog is called has many :through. His description
of the :through association,4 written back when the feature was originally introduced
in Rails 1.1, is so concise and well-written that I couldn’t hope to do any better. So here
it is:

The has_many :through association allows you to specify a one-to-many relationship indi-
rectly via an intermediate join table. In fact, you can specify more than one such relationship via
the same table, which effectively makes it a replacement for has_and_belongs_to_many.

4. http://blog.hasmanythrough.com/articles/2006/02/28/association-goodness

http://blog.hasmanythrough.com/articles/2006/02/28/association-goodness

216 Chapter 7: Active Record Associations

The biggest advantage is that the join table contains full-fledged model objects complete with
primary keys and ancillary data. No more push_with_attributes; join models just work
the same way all your other Active Record models do.

Join Models

To illustrate the has_many :through association, we’ll set up a Client model so
that it has many Timesheet objects, through a normal has_many association named
billable_weeks.

class Client < ActiveRecord::Base

has_many :billable_weeks

has_many :timesheets, :through => :billable_weeks

end

The BillableWeek class was already in our sample application and is ready to be used
as a join model:

class BillableWeek < ActiveRecord::Base

belongs_to :client

belongs_to :timesheet

end

We can also set up the inverse relationship, from timesheets to clients, like this.

class Timesheet < ActiveRecord::Base

has_many :billable_weeks

has_many :clients, :through => :billable_weeks

end

Notice thathas_many :through is always used in conjunction with a normalhas_many
association. Also, notice that the normal has_many association will often have the same
name on both classes that are being joined together, which means the :through option
will read the same on both sides.

:through => :billable_weeks

How about the join model; will it always have two belongs_to associations? No.
You can also use has_many :through to easily aggregate has_many or has_one

associations on the join model. Forgive me for switching to completely nonrealistic
domain for a moment—it’s only intended to clearly demonstrate what I’m trying to
describe:

class Grandparent < ActiveRecord::Base

has_many :parents

has_many :grand_children, :through => :parents, :source => :children

end

A
ctive

R
e
co

rd
7.5 Many-to-Many Relationships 217

class Parent < ActiveRecord::Base

belongs_to :grandparent

has_many :children

end

For the sake of clarity in later chapters, I’ll refer to this usage of has_many :through

as aggregating.

Courtenay says . . .

We use has_many :through so much! It has pretty much replaced the old
has_and_belongs_to_many, because it allows your join models to be upgraded to full
objects.It’s like when you’re just dating someone and they start talking about the Relationship
(or, eventually, Our Marriage). It’s an example of an association being promoted to something
more important than the individual objects on each side.

Usage Considerations and Examples

You can use nonaggregating has_many :through associations in almost the same ways
as any other has_many associations. The limitations have to do with handling of unsaved
records.

>> c = Client.create(:name => "Trotter's Tomahawks", :code => "ttom")

=> #<Client id: 5 ...>

>> c.timesheets << Timesheet.new

ActiveRecord::HasManyThroughCantAssociateNewRecords: Cannot associate

new records through 'Client#billable_weeks' on '#'. Both records must

have an id in order to create the has_many :through record associating

them.

Hmm, seems like we had a hiccup. Unlike a normal has_many, Active Record won’t let
us add an object to the has_many :through association if both ends of the relationship
are unsaved records.

The create method saves the record before adding it, so it does work as expected,
provided the parent object isn’t unsaved itself.

>> c.save

=> true

>> c.timesheets.create

=> [#<Timesheet id: 2 ... >]

218 Chapter 7: Active Record Associations

The main benefit of has_many :through is that Active Record takes care of managing
the instances of the join model for you. If we call reload on the billable _weeks

association, we’ll see that there was a billable week object created for us:

>> c.billable_weeks.reload

=> [#<BillableWeek id: 2, tuesday_hours: nil, start_date: nil,

timesheet_id: 2, billing_code_id:

nil, sunday_hours: nil, friday_hours: nil, monday_hours:

nil, client_id: 2, wednesday_hours:

nil, saturday_hours: nil, thursday_hours: nil>]

The BillableWeek object that was created is properly associated with both the client
and the Timesheet. Unfortunately, there are a lot of other attributes (e.g., start_date,
and the hours columns) that were not populated.

One possible solution is to use create on the billable_weeks association instead,
and include the new Timesheet object as one of the supplied properties.

>> bw = c.billable_weeks.create(:start_date => Time.now,

:timesheet => Timesheet.new)

Aggregating Associations

When you’re using has_many :through to aggregate multiple child associations, there
are more significant limitations—essentially you can query to your hearts content using
find and friends, but you can’t append or create new records through them.

For example, let’s add a billable_weeks association to our sample User class:

class User < ActiveRecord::Base

has_many :timesheets

has_many :billable_weeks, :through => :timesheets

...

The billable_weeks association aggregates all the billable week objects belonging to
all of the user’s timesheets.

class Timesheet < ActiveRecord::Base

belongs_to :user

has_many :billable_weeks, :include => [:billing_code]

...

Now let’s go into the Rails console and set up some example data so that we can use the
new billable_weeks collection (on User).

>> quentin = User.find :first

=> #<User id: 1, login: "quentin" ...>

>> quentin.timesheets

=> []

A
ctive

R
e
co

rd
7.5 Many-to-Many Relationships 219

>> ts1 = quentin.timesheets.create

=> #<Timesheet id: 1 ...>

>> ts2 = quentin.timesheets.create

=> #<Timesheet id: 2 ...>

>> ts1.billable_weeks.create(:start_date => 1.week.ago)

=> #<BillableWeek id: 1, timesheet_id: 1 ...>

>> ts2.billable_weeks.create :start_date => 2.week.ago

=> #<BillableWeek id: 2, timesheet_id: 2 ...>

>> quentin.billable_weeks

=> [#<BillableWeek id: 1, timesheet_id: 1 ...>, #<BillableWeek id: 2,

timesheet_id: 2 ...>]

Just for fun, let’s see what happens if we try to create a BillableWeek with a User

instance:

>> quentin.billable_weeks.create(:start_date => 3.weeks.ago)

NoMethodError: undefined method user_id=' for #<BillableWeek:0x3f84424>

There you go. . . BillableWeek doesn’t belong to a user, it belongs to a timesheet, so
it doesn’t have a user_id field.

Join Models and Validations

When you append to a non-aggregating has_many :through association with <<,
Active Record will always create a new join model, even if one already exists for the two
records being joined. You can add validates_uniqueness_of constraints on the join
model to keep duplicate joins from happening.

This is what such a constraint might look like on our BillableWeek join model.

validates_uniqueness_of :client_id, :scope => :timesheet_id

That says, in effect: “There should only be one of each client per timesheet.”
If your join model has additional attributes with their own validation logic, then

there’s another important consideration to keep in mind. Adding records directly to a
has_many :through association causes a new join model to be automatically created
with a blank set of attributes. Validations on additional columns of the join model will

220 Chapter 7: Active Record Associations

probably fail. If that happens, you’ll need to add new records by creating join model
objects and associating them appropriately through their own association proxy.

timesheet.billable_weeks.create(:start_date => 1.week.ago)

7.5.3 has—many :through Options

The options for has_many :through are the same as the options for has_many—
remember that :through is just an option on has_many! However, the use of some of
has_many’s options change or become more significant when :through is used.

First of all, the :class_name and :foreign_key options are no longer valid, since
they are implied from the target association on the join model. The following are the
rest of the options that have special significance together with has_many :through.

:source => assocation—name
The:sourceoption specifies which association to use on the associated class. This option
is not mandatory because normally Active Record assumes that the target association is
the singular (or plural) version of the has_many association name. If your association
names don’t match up, then you have to set :source explicitly.

For example, the following code will use the BillableWeek’s sheet association to
populate timesheets.

has_many :timesheets, :through => :billable_weeks, :source => :sheet

:source—type => class—name
The :source_type option is needed when you establish a has_many :through to
a polymorphic belongs_to association on the join model. Consider the following
example concerning clients and contacts:

class Client < ActiveRecord::Base

has_many :client_contacts

has_many :contacts, :through => :client_contacts

end

class ClientContact < ActiveRecord::Base

belongs_to :client

belongs_to :contact, :polymorphic => true

end

In this somewhat contrived example, the most important fact is that a Client has many
contacts, through their polymorphic relationship to the join model, ClientContact.
There isn’t a Contact class; we just want to be able to refer to contacts in a polymorphic
sense, meaning either a Person or a Business.

A
ctive

R
e
co

rd
7.5 Many-to-Many Relationships 221

class Person < ActiveRecord::Base

has_many :client_contacts, :as => :contact

end

class Business < ActiveRecord::Base

has_many :client_contacts, :as => :contact

end

Now take a moment to consider the backflips that Active Record would have to perform
in order to figure out which tables to query for a client’s contacts. Remember that there
isn’t a contacts table!

>> Client.first.contacts

Active Record would theoretically need to be aware of every model class that is linked
to the other end of the contacts polymorphic association. In fact, it cannot do those kinds
of backflips, which is probably a good thing as far as performance is concerned:

>> Client.first.contacts

ArgumentError: /.../active_support/core_ext/hash/keys.rb:48:

in 'assert_valid_keys': Unknown key(s): polymorphic

The only way to make this scenario work (somewhat) is to give Active Record some help
by specifying which table it should search when you ask for the contacts collection,
and you do that with the source_type option naming the target class, symbolized, like
this:

class Client < ActiveRecord::Base

has_many :client_contacts

has_many :people, :through => :client_contacts,

:source => :contact, :source_type => :person

has_many :businesses, :through => :client_contacts,

:source => :contact, :source_type => :business

end

After the :source_type is specified, the association will work as expected, but sadly we
don’t get a general purpose contacts collection to work with, as it seemed might be
possible at first.

>> Client.first.people.create!

=> [#<Person id: 1>]

222 Chapter 7: Active Record Associations

If you’re upset that you cannot associate people and business together in a contacts
association, you could try writing your own accessor method for a client’s contacts:

class Client < ActiveRecord::Base

def contacts

people_contacts + business_contacts

end

end

Of course, you should be aware that calling that contacts method will result in at least
two database requests and will return an Array, without the association proxy methods
that you might expect it to have.

:uniq => true
The :uniq option tells the association to include only unique objects. It is especially
useful when using has_many :through, since two different BillableWeeks could
reference the same Timesheet.

>> client.first.timesheets.reload

[#<Timesheet id: 1...>, #<Timesheet id: 1...>]

It’s not extraordinary for two distinct model instances of the same database record to be
in memory at the same time—it’s just not usually desirable.

class Client < ActiveRecord::Base

has_many :timesheets, :through => :billable_weeks, :uniq => true

end

After adding the :uniq option, only one instance per record is returned.

>> client.find(:first).timesheets.reload

[#<Timesheet id: 1...>]

The implementation of uniq on AssociationCollection is a neat little example of
how to build a collection of unique values in Ruby, using a Set and the inject method.
It also proves that the record’s primary key (and nothing else) is what’s being used to
establish uniqueness:

def uniq(collection = self)

seen = Set.new

collection.inject([]) do |kept, record|

unless seen.include?(record.id)

kept << record

seen << record.id

end

kept

end

end

A
ctive

R
e
co

rd
7.6 One-to-One Relationships 223

7.6 One-to-One Relationships

One of the most basic relationship types is a one-to-one object relationship. In Active
Record, we declare a one-to-one relationship using the has_one and belongs_tometh-
ods together. As in the case of a has_many relationship, you call belongs_to on the
model whose database table contains the foreign key column linking the two records
together.

7.6.1 has—one

Conceptually, has_one works almost exactly like has_many does, except that when the
database query is executed to retrieve the related object, a LIMIT 1 clause is added to
the generated SQL so that only one row is returned.

The name of a has_one relationship should be singular, which will make it read
naturally, for example: has_one :last_timesheet, has_one :primary_account,
has_one :profile_photo, and so on. Let’s take a look at has_one in action by adding
avatars for our users.

class Avatar < ActiveRecord::Base

belongs_to :user

end

class User < ActiveRecord::Base

has_one :avatar

... the rest of our User code ...

end

That’s simple enough. Firing this up in rails console, we can look at some of the
new methods that has_one adds to User.

>> u = User.first

>> u.avatar

=> nil

>> u.build_avatar(:url => '/avatars/smiling')

=> #<Avatar id: nil, url: "/avatars/smiling", user_id: 1>

>> u.avatar.save

=> true

As you can see, we can use build_avatar to build a new avatar object and associate it
with the user. While it’s great that has_one will associate an avatar with the user, it isn’t
really anything that has_many doesn’t already do. So let’s take a look at what happens
when we assign a new avatar to the user.

224 Chapter 7: Active Record Associations

>> u = User.first

>> u.avatar

=> #<Avatar id: 1, url: "/avatars/smiling", user_id: 1>

>> u.create_avatar(:url => '/avatars/frowning')

=> #<Avatar id: 2, url: "/avatars/4567", user_id: 1>

>> Avatar.all

=> [#<Avatar id: 1, url: "/avatars/smiling", user_id: nil>, #<Avatar id:

2, url:

"/avatars/4567", user_id: 1>]

The last line from that console session is the most interesting, because it shows that our
initial avatar is now no longer associated with the user. Of course, the previous avatar
was not removed from the database, which is something that we want in this scenario.
So, we’ll use the :dependent => :destroy option to force avatars to be destroyed
when they are no longer associated with a user.

class User < ActiveRecord::Base

has_one :avatar, :dependent => :destroy

end

With some additional fiddling around in the console, we can verify that it works as
intended. In doing so, you might notice that Rails only destroys the avatar that was
just removed from the user, so bad data that was in your database from before will still
remain. Keep this in mind when you decide to add :dependent => :destroy to your
code and remember to manually clear orphaned data that might otherwise remain.

Using has—one together with has—many
As I alluded to earlier, has_one is sometimes used to single out one record of significance
alongside an already established has_many relationship. For instance, let’s say we want
to easily be able to access the last timesheet a user was working on:

class User < ActiveRecord::Base

has_many :timesheets

has_one :latest_sheet, :class_name => 'Timesheet', :order =>

'created_at desc'

end

I had to specify a :class_name, so that Active Record knows what kind of object we’re
associating. (It can’t figure it out based on the name of the association, :latest_sheet.)

When adding a has_one relationship to a model that already has a has_manydefined
to the same related model, it is not necessary to add another belongs_to method call
to the target object, just for the new has_one. That might seem a little counterintuitive

A
ctive

R
e
co

rd
7.6 One-to-One Relationships 225

at first, but if you think about it, the same foreign key value is being used to read the
data from the database.

has—one options

The options for has_one associations are similar to the ones for has_many. For your
convenience, we briefly cover the most relevant ones here.

:as
Allows you to set up a polymorphic association; this is covered in Chapter 9.

:class—name
Allows you to specify the class this association uses. When you’re doing
has_one :latest_timesheet, :class_name => 'Timesheet',:class_name =>

'Timesheet' specifies that latest_timesheet is actually the last Timesheet object
in the database that is associated with this user. Normally, this option is inferred by Rails
from the name of the association.

:conditions
Allows you to specify conditions that the object must meet to be included
in the association. The conditions are specified the same as if you were using
ActiveRecord::Base#find.

class User < ActiveRecord::Base

has_one :manager, :class_name => 'Person',

:conditions => {:type => "manager"}

Here manager is specified as a person object that has type = "manager". I tend to
almost always use :conditions in conjunction with has_one. When Active Record
loads the association, it’s grabbing one of potentially many rows that have the right
foreign key. Absent some explicit conditions (or perhaps an :order clause), you’re
leaving it in the hands of the database to pick a row.

:dependent
The :dependent option specifies how Active Record should treat associated objects
when the parent object is deleted. (The default is to do nothing with associated objects,
which will leave orphaned records in the database.) There are a few different values
that you can pass, and they work just like the :dependent option of has_many. If
you pass :destroy to it, you tell Rails to destroy the associated object when it is no
longer associated with the primary object. Passing :delete will destroy the associated

226 Chapter 7: Active Record Associations

object without calling any of Rails’s normal hooks. Finally, :nullify will simply set
the foreign key values to nil so that the relationship is broken.

:order
Allows you to specify a SQL fragment that will be used to order the results. This is an
especially useful option with has_one when trying to associate the latest of something
or another.

class User < ActiveRecord::Base

has_one :latest_timesheet,

:class_name => 'Timesheet',

:order => 'created_at desc'

end

7.7 Working with Unsaved Objects
and Associations

You can manipulate objects and associations before they are saved to the database, but
there is some special behavior you should be aware of, mostly involving the saving of
associated objects. Whether an object is considered unsaved is based on the result of
calling new_record?

7.7.1 One-to-One Associations

Assigning an object to abelongs_to association does not save the parent or the associated
object.

Assigning an object to a has_one association automatically saves that object and the
object being replaced (if there is one), so that their foreign key fields are updated. The
exception to this behavior is if the parent object is unsaved, since that would mean that
there is no foreign key value to set. If save fails for either of the objects being updated (due
to one of them being invalid) the assignment operation returns false and the assignment
is cancelled. That behavior makes sense (if you think about it), but it can be the cause
of much confusion when you’re not aware of it. If you have an association that doesn’t
seem to work, check the validation rules of the related objects.

7.7.2 Collections

Adding an object to has_many and has_and_belongs_to_many collections automat-
ically saves it, unless the parent object (the owner of the collection) is not yet stored in
the database.

A
ctive

R
e
co

rd
7.8 Association Extensions 227

If objects being added to a collection (via << or similar means) fail to save properly,
then the addition operation will return false. If you want your code to be a little more
explicit, or you want to add an object to a collection without automatically saving it,
then you can use the collection’s build method. It’s exactly like create, except that it
doesn’t save.

Members of a collection are automatically saved or updated when their parent is
saved or updated, unless :autosave => false is set on the association.

7.7.3 Deletion

Associations that are set with an :autosave => true option are also afforded the
ability to have their records deleted when an inverse record is saved. This is to allow the
records from both sides of the association to get persisted within the same transaction,
and is handled through the mark_for_destruction method. Consider our User and
Timesheet models again:

class User < ActiveRecord::Base

has_many :timesheets, :autosave => true

end

If you would like to have a Timesheet destroyed when the User is saved, mark it
for destruction.

user = User.where(:name => "Durran")

timesheet = user.timesheets.closed

timesheet.mark_for_destruction # => Flags timesheet

user.save # => The timesheet gets deleted

Since both are persisted in the same transaction, if the operation were to fail the
database would not be in an inconsistent state. Do note that although the child record
did not get deleted in that case, it still would be marked for destruction and any later
attempts to save the inverse would once again attempt to delete it.

7.8 Association Extensions

The proxy objects that handle access to associations can be extended with your own
application code. You can add your own custom finders and factory methods to be used
specifically with a particular association.

For example, let’s say you wanted a concise way to refer to an account’s people
by name. You might wrap the find_or_create_by_first_name_and_last_name

method of a people collection in the following neat little package as shown in Listing 7.5.

228 Chapter 7: Active Record Associations

Listing 7.5 An association extension on a people collection

class Account < ActiveRecord::Base

has_many :people do

def named(full_name)

first_name, last_name = full_name.split(" ", 2)

find_or_create_by_first_name_and_last_name(first_name, last_name)

end

end

end

Now we have a named method available to use on the people collection.

person = Account.first.people.named("David Heinemeier Hansson")

person.first_name # => "David"

person.last_name # => "Heinemeier Hansson"

If you need to share the same set of extensions between many associations, you can use
specify an extension module, instead of a block with method definitions. Here is the
same feature shown in Listing 7.5, except broken out into its own Ruby module:

module ByNameExtension

def named(full_name)

first_name, last_name = full_name.split(" ", 2)

find_or_create_by_first_name_and_last_name(first_name, last_name)

end

end

Now we can use it to extend many different relationships, as long as they’re compatible.
(Our contract in the example consists of the find_or_create_by_first_name_and_
last_name method.)

class Account < ActiveRecord::Base

has_many :people, :extend => ByNameExtension

end

class Company < ActiveRecord::Base

has_many :people, :extend => ByNameExtension

end

If you need to use multiple named extension modules, you can pass an array of modules
to the :extend option instead of a single module, like this:

has_many :people, :extend => [ByNameExtension, ByRecentExtension]

In the case of name conflicts, methods contained in modules added later in the array
supercede those earlier in the array.

A
ctive

R
e
co

rd
7.9 The AssociationProxy Class 229

Consider a class method instead

Unless you have a valid reason to reuse the extension logic with more than one type of model,
you’re probably better off leveraging the fact that class methods are automatically available on
has_many associations.

class Person < ActiveRecord::Base

belongs_to :account

def self.named(full_name)

first_name, last_name = full_name.split(" ", 2)

find_or_create_by_first_name_and_last_name(first_name, last_name)

end

end

7.9 The AssociationProxy Class

AssociationProxy, the parent of all association proxies (refer to Figure 7.1 if needed),
contributes a handful of useful methods that apply to most kinds of associations and can
come into play when you’re writing association extensions.

proxy—owner,proxy—reflection,and proxy—target
References to the internal owner, reflection, and target attributes of the association
proxy, respectively.

The proxy_owner method provides a reference to the parent object holding the
association.

The proxy_reflection object is an instance of ActiveRecord::Reflection::
AssociationReflection and contains all of the configuration options for the associ-
ation. That includes both default settings and those that were passed to the association
method when it was declared.5

Finally, the proxy_target is the associated array (or associated object itself in the
case of belongs_to and has_one).

It might not appear sane to expose these attributes publicly and allow their ma-
nipulation. However, without access to them it would be much more difficult to write
advanced association extensions. The loaded?, loaded, target, and target=methods
are public for similar reasons.

5. To learn more about how the reflection object can be useful, including an explanation on how
to establish has_many :through associations via other has_many :through associations, check out the
must-read article:http://www.pivotalblabs.com/articles/2007/08/26/ten-things-i-hate-about-
proxy-objects-part-i

http://www.pivotalblabs.com/articles/2007/08/26/ten-things-i-hate-aboutproxy-objects-part-i
http://www.pivotalblabs.com/articles/2007/08/26/ten-things-i-hate-aboutproxy-objects-part-i

230 Chapter 7: Active Record Associations

The following code sample demonstrates the use of proxy_owner within a
published_prior_to extension method, originally contributed by Wilson Bilkovich:

class ArticleCategory < ActiveRecord::Base

acts_as_tree

has_many :articles do

def published_prior_to(date, options = {})

if proxy_owner.top_level?

Article.where('published_at < ? and category_id = ?', date,

proxy_owner)

else

self is the 'articles' association here so we inherit its scope

self.all(options)

end

end

end

def top_level?

do we have a parent, and is our parent the root node of the tree?

self.parent && self.parent.parent.nil?

end

end

The acts_as_tree Active Record plugin extension creates a self-referential association
based on a parent_id column. The proxy_owner reference is used to check if the
parent of this association is a “top-level” node in the tree.

reload and reset
The reset method puts the association proxy back in its initial state, which is unloaded
(cached association objects are cleared). The reload method invokes reset, and then
loads associated objects from the database.

7.10 Conclusion

The ability to model associations is what makes Active Record more than just a data-
access layer. The ease and elegance with which you can declare those associations are
what make Active Record more than your ordinary object-relational mapper.

In this chapter, we covered the basics of how Active Record associations work.
We started by taking a look at the class hierarchy of associations classes, starting with
AssociationProxy. Hopefully, by learning about how associations work under the
hood, you’ve picked up some enhanced understanding about their power and flexibility.

Finally, the options and methods guide for each type of association should be a good
reference guide for your day-to-day development activities.

A
ctive

R
e
co

rd

CHAPTER 8

Validations

I have bought this wonderful machine a computer. Now I am rather an authority on gods, so
I identified the machine it seems to me to be an Old Testament god with a lot of rules and no
mercy.

—Joseph Campbell

The Validations API in Active Model, along with its supplementary functionality
in Active Record allows you to declaratively define valid states for your model objects.
The validation methods hook into the life cycle of an Active Record model object and
are able to inspect the object to determine whether certain attributes are set, have values
in a given range, or pass any other logical hurdles that you specify.

In this chapter, we’ll describe the validation methods available and how to use them
effectively. We’ll also explore how those validation methods interact with your model’s
attributes and how the built-in error-messaging system messages can be used effectively
in your application’s user interface to provide descriptive feedback.

Finally, we’ll cover how to use Active Model’s validation functionality in your own,
non-Active Record classes.

8.1 Finding Errors

Validation problems are also known as (drumroll please . . .) errors! Every Active
Record model object contains a collection of errors, accessible (unsurprisingly) as the
errors attribute. It’s an instance of the class ActiveModel::Errors that extends
ActiveSupport::OrderedHash.

231

232 Chapter 8: Validations

When a model object is valid, the errors collection is empty. In fact, when you
call valid? on a model object, a series of steps to find errors is taken as follows
(slightly simplified):

1. Clear the errors collection.
2. Run validations.
3. Return whether the model’s errors collection is now empty or not.

If the errors collection ends up empty, the object is valid. In cases where you have to
write actual validation logic yourself, you mark an object invalid by adding items to the
errors collection using its add methods. Simple as that.

We’ll cover the methods of the Errors class in some more detail later on. It makes
more sense to look at the validation methods themselves first.

8.2 The Simple Declarative Validations

Whenever possible, you should set validations for your models declaratively by using
one or more of the following class methods available to all Active Record classes. Unless
otherwise noted, all of the validates methods accept a variable number of attributes,
plus options. There are some options for these validation methods that are common to
all of them, and we’ll cover them at the end of the section.

8.2.1 validates—acceptance—of

Many web applications have screens in which the user is prompted to agree to terms
of service or some similar concept, usually involving a check box. No actual database
column matching the attribute declared in the validation is required. When you call
this method, it will create virtual attributes automatically for each named attribute you
specify. I see this validation as a type of syntax sugar since it is so specific to web
application programming.

class Account < ActiveRecord::Base

validates_acceptance_of :privacy_policy, :terms_of_service

end

You can use this validation with or without a boolean columns on the table backing your
model. An attribute will be created if necessary. Choose to store the value in the database
only if you need to keep track of whether the user accepted the term, for auditing or
other reasons. Mind you, not accepting the term would prevent creation of the record,
but it’s good to know what is supported.

A
ctive

R
e
co

rd
8.2 The Simple Declarative Validations 233

When the validates_acceptance_of validation fails, an error message is stored
in the model object reading “attribute must be accepted.”

The :accept option makes it easy to change the value considered acceptance. The
default value is "1", which matches the value supplied by check boxes generated using
Rails helper methods.

class Cancellation < ActiveRecord::Base

validates_acceptance_of :account_cancellation, :accept => 'YES'

end

If you use the preceding example in conjunction with a text field connected to the
account_cancellation attribute, the user would have to type the word YES in order
for the cancellation object to be valid.

8.2.2 validates—associated

This is used to ensure that all associated objects are valid on save. It works with any kind
of association and is specific to Active Record (not Active Model.) We emphasize all

because the default behavior of has_many associations is to ensure the validity of their
new child records on save.

Suggestion

You probably don’t need to use this particular validation nowadays since has_many associations
default to:validate => true. Additionally note that one of the implications of that default
is that setting :validate => true carelessly on a belongs_to association can cause
infinite loop problems.

A validates_associated on belongs_to will not fail if the association is nil. If
you want to make sure that the association is populated and valid, you have to use
validates_associated in conjunction with validates_presence_of.

Tim says . . .

It’s possible to get similar behavior by using a combination of the:autosave and:validate
options on a has_many.

8.2.3 validates—confirmation—of

The validates_confirmation_of method is another case of syntactic sugar for web
applications, since it is so common to include dual-entry text fields to make sure that the

234 Chapter 8: Validations

user entered critical data such as passwords and e-mail address correctly. This validation
will create a virtual attribute for the confirmation value and compare the two attributes
to make sure they match in order for the model to be valid.

Here’s an example, using our fictional Account model again:

class Account < ActiveRecord::Base

validates_confirmation_of :password

end

The user interface used to set values for the Account model would need to include extra
text fields named with a _confirmation suffix, and when submitted, the value of those
fields would have to match in order for this validation to pass. A simplified example of
matching view code is provided.

= form_for account do |f|

= f.label :login

= f.text_field :login

= f.label :password

= f.password_field :password

= f.label :password_confirmation

= f.password_field :password_confirmation

= f.submit

8.2.4 validates—each

The validates_each method is a little more free-form than its companions in the
validation family in that it doesn’t have a predefined validation function. Instead, you
give it an array of attribute names to check, and supply a Ruby block to be used in checking
each attribute’s validity. Notice that parameters for the model instance (record), the
name of the attribute as a symbol, and the value to check are passed as block parameters.
The block function designates the model object as valid or not by merit of adding to its
errors array or not. The return value of the block is ignored.

There aren’t too many situations where this method is necessary, but one plausi-
ble example is when interacting with external services for validation. You might wrap
the external validation in a faade specific to your application, and then call it using a
validates_each block:

class Invoice < ActiveRecord::Base

validates_each :supplier_id, :purchase_order do |record, attr, value|

record.errors.add(attr) unless PurchasingSystem.validate(attr, value)

end

end

A
ctive

R
e
co

rd
8.2 The Simple Declarative Validations 235

8.2.5 validates—format—of

To use validates_format_of, you’ll have to know how to use Ruby regular expres-
sions.1 Pass the method one or more attributes to check, and a regular expression as the
(required) :with option. A good example, as shown in the Rails docs, is checking for a
valid e-mail address format:

class Person < ActiveRecord::Base

validates_format_of :email,

:with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i

end

By the way, that example is totally not an RFC-compliant email address format checker.2

Courtenay says . . .

Regular expressions are awesome but can get very complex, particularly when validating domain
names or email addresses.You can use #{} inside regular expressions, so split up your regex into
chunks like this:

validates_format_of :name, :with =>

/^((localhost)|#{DOMAIN}|#{NUMERIC_IP})#{PORT}$/

Note

That expression is pretty straightforward and easy to understand. The constants themselves are
not so easy to understand but easier than if they were all jumbled in together:

PORT = /(([:]\d+)?)/

DOMAIN = /([a-z0-9\-]+\.?)*([a-z0-9]{2,})\.[a-z]{2,}/

NUMERIC_IP =

/(?>(?:1?\d?\d|2[0-4]\d|25[0-5])\.){3}(?:1?\d?\d|2[0-4]\d|25[0-5])

(?:\/(?:[12]?\d|3[012])|-(?>(?:1?\d?\d|2[0-4]\d|25[0-5])\.){3}

(?:1?\d?\d|2[0-4]\d|25[0-5]))?/

1. Check out the excellent http://rubular.com if you need help composing Ruby regular expressions.
2. If you need to validate email addresses try the plugin at http://code.dunae.ca/validates_

email_format_of

http://rubular.com
http://code.dunae.ca/validates_email_format_of
http://code.dunae.ca/validates_email_format_of

236 Chapter 8: Validations

Lark says . . .

I’ll take your readability Courtenay, and raise you test isolation. Your regular expression should
itself be in a constant so you can test it.

8.2.6 validates—inclusion—of
and validates—exclusion—of

These methods take a variable number of attribute names and an :in option. When
they run, they check to make sure that the value of the attribute is included (or excluded,
respectively) in the enumerable object passed as the :in option.

The examples in the Rails docs are probably some of the best illustrations of their
use, so I’ll take inspiration from them:

class Person < ActiveRecord::Base

validates_inclusion_of :gender, :in => ['m','f'], :message => 'O RLY?'

...

class Account < ActiveRecord::Base

validates_exclusion_of :login, :in => ['admin', 'root', 'superuser'],

:message => 'Borat says "Naughty, naughty!"'

...

Notice that in the examples I’ve introduced usage of the :message option, common
to all validation methods, to customize the error message constructed and added to the
Errors collection when the validation fails. We’ll cover the default error messages and
how to effectively customize them a little further along in the chapter.

8.2.7 validates—length—of

The validates_length_of method takes a variety of different options to let you
concisely specify length constraints for a given attribute of your model.

class Account < ActiveRecord::Base

validates_length_of :login, :minimum => 5

end

Constraint Options

The :minimum and :maximum options work as expected, but don’t use them together.
To specify a range, use the :within option and pass it a Ruby range, as in the following
example:

class Account < ActiveRecord::Base

validates_length_of :login, :within => 5..20

end

A
ctive

R
e
co

rd
8.2 The Simple Declarative Validations 237

To specify an exact length of an attribute, use the :is option:

class Account < ActiveRecord::Base

validates_length_of :account_number, :is => 16

end

Error Message Options

Rails gives you the ability to generate detailed error messages for validates_length_of
via the :too_long, :too_short, and :wrong_length options. Use {{count}} in
your custom error message as a placeholder for the number corresponding to the
constraint.

class Account < ActiveRecord::Base

validates_length_of :account_number, :is => 16,

:wrong_length => "should be {{count}} characters

long"

end

8.2.8 validates—numericality—of

The somewhat clumsily named validates_numericality_of method is used to
ensure that an attribute can only hold a numeric value.

The :only_integer option lets you further specify that the value should only be
an integral value and defaults to false.

class Account < ActiveRecord::Base

validates_numericality_of :account_number, :only_integer => true

end

The :even and :odd options do what you would expect and are useful for things like, I
don’t know, checking electron valences. (Actually, I’m not creative enough to think of
what you would use this validation for, but there you go.)

The following comparison options are also available:

• :equal_to

• :greater_than

• :greater_than_or_equal_to

• :less_than

• :less_than_or_equal_to

238 Chapter 8: Validations

Infinity and Other Special Float Values

Interestingly, Ruby has the concept of infinity built-in. If you haven’t seen infinity
before, try the following in a console:

>> (1.0/0.0)

=> Infinity

Infinity is considered a number by validates_numericality_of. Databases
(like PostgreSQL) with support for the IEEE 754 standard should allow special float
values like Infinity to be stored. The other special values are positive infinity (+INF),
negative infinity (−INF), and not-a-number (NaN). IEEE 754 also distinguishes be-
tween positive zero (+0) and negative zero (−0). NaN is used to represent results of
operations that are undefined.

8.2.9 validates—presence—of

One of the more common validation methods, validates_presence_of, is used to
denote mandatory attributes. This method checks whether the attribute is blank using
the blank? method, defined on Object, which returns true for values that are nil or
a blank string "".

class Account < ActiveRecord::Base

validates_presence_of :login, :email, :account_number

end

A common mistake is to use validates_presence_of with a boolean attribute, like
the backing field for a checkbox. If you want to make sure that the attribute is true, use
validates_acceptance_of instead. The boolean value false is considered blank, so
if you want to make sure that only true or false values are set on your model, use the
following pattern:

validates_inclusion_of :protected, :in => [true, false]

Validating the Presence and/or Existence
of Associated Objects

When you’re trying to ensure that an association is present, pass validates_

presence_of its foreign key attribute, not the association variable itself. Note that
the validation will fail in cases when both the parent and child object are unsaved (since
the foreign key will be blank).

Many developers try to use this validation with the intention of ensuring that asso-
ciated objects actually exist in the database. Personally, I think that would be a valid use
case for an actual foreign-key constraint in the database, but if you want to do the check

A
ctive

R
e
co

rd
8.2 The Simple Declarative Validations 239

in your Rails code then emulate the following example:

class Timesheet < ActiveRecord::Base

belongs_to :user

validates_presence_of :user_id

validate :user_exists

protected

def user_exists

errors.add(:user_id, "doesn't exist") unless User.exists?(user_id)

end

end

Without a validation, if your application violates a database foreign key constraint, you
will get an Active Record exception.

8.2.10 validates—uniqueness—of

The validates_uniqueness_of method, also exclusive to Active Record, ensures
that the value of an attribute is unique for all models of the same type. This validation
does not work by adding a uniqueness constraint at the database level. It does work by
constructing and executing a query looking for a matching record in the database. If any
record is returned when this method does its query, the validation fails.

class Account < ActiveRecord::Base

validates_uniqueness_of :login

end

By specifying a :scope option, additional attributes can be used to determine unique-
ness. You may pass :scope one or more attribute names as symbols (putting multiple
symbols in an array).

class Address < ActiveRecord::Base

validates_uniqueness_of :line_two, :scope => [:line_one, :city, :zip]

end

It’s also possible to specify whether to make the uniqueness constraint case-sensitive or
not, via the :case_sensitive option (ignored for nontextual attributes).

Tim says . . .

This validation is not foolproof because of a potential race condition between the SELECT
query that checks for duplicates and the INSERT or UPDATE which persists the record. An
Active Record exception could be generated as a result, so be prepared to handle that failure in
your controller.
I recommend that you use a unique index constraint in the database if you absolutely must make
sure that a column value is unique.

240 Chapter 8: Validations

Enforcing Uniqueness of Join Models

In the course of using join models (with has_many :through), it seems pretty common
to need to make the relationship unique. Consider an application that models students,
courses, and registrations with the following code:

class Student < ActiveRecord::Base

has_many :registrations

has_many :courses, :through => :registrations

end

class Registration < ActiveRecord::Base

belongs_to :student

belongs_to :course

end

class Course < ActiveRecord::Base

has_many :registrations

has_many :students, :through => :registrations

end

How do you make sure that a student is not registered more than once for a particular
course? The most concise way is to use validates_uniqueness_of with a :scope

constraint. The important thing to remember with this technique is to reference the
foreign keys, not the names of the associations themselves:

class Registration < ActiveRecord::Base

belongs_to :student

belongs_to :course

validates_uniqueness_of :student_id, :scope => :course_id,

:message => "can only register once per course"

end

Notice that since the default error message generated when this validation fails would
not make sense, I’ve provided a custom error message that will result in the expression:
“Student can only register once per course.”

Tim says . . .

Astute readers will notice that the validation was on student_id but the error message refer-
ences “Student.” Rails special cases this to do what you mean.

A
ctive

R
e
co

rd
8.2 The Simple Declarative Validations 241

8.2.11 validates—with

All of the validation methods we’ve covered so far are essentially local to the class in which
they are used. If you want to develop a suite of custom, reusable validation classes, then
you need a way to apply them to your models, and that is what the validates_with
method allows you to do.

To implement a custom validator, extend ActiveRecord::Validator and imple-
ment the validate method. The record being validated is available as record and you
manipulate its errors hash to log validation errors.

The following examples, from Ryan Daigle’s excellent post3 on this feature, demon-
strate a reusable email field validator:

class EmailValidator < ActiveRecord::Validator

def validate()

record.errors[:email] << "is not valid" unless

record.email =~ /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i

end

end

class Account < ActiveRecord::Base

validates_with EmailValidator

end

The example assumes the existence of an email attribute on the record. If you need to
make your reusable validator more flexible, you can access validation options at runtime
via the options hash, like this:

class EmailValidator < ActiveRecord::Validator

def validate()

email_field = options[:attr]

record.errors[email_field] << "is not valid" unless

record.send(email_field) =~

/^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i

end

end

class Account < ActiveRecord::Base

validates_with EmailValidator, :attr => :email

end

3. http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independent-

model-validators

http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independentmodel-validators
http://ryandaigle.com/articles/2009/8/11/what-s-new-in-edge-rails-independentmodel-validators

242 Chapter 8: Validations

8.2.12 RecordInvalid

Whenever you do so-called bang operations (such as save!) and a validation fails, you
should be prepared to rescue ActiveRecord::RecordInvalid. Validation failures
will cause RecordInvalid to be raised and its message will contain a description of the
failures.

Here’s a quick example from one of my applications that has pretty restrictive
validations on its User model:

>> u = User.new

=> #<User ...>

>> u.save!

ActiveRecord::RecordInvalid: Validation failed: Name can't be blank,

Password confirmation can't be blank, Password is too short (minimum

is 5 characters), Email can't be blank, Email address format is bad

8.3 Common Validation Options

The following options apply to all of the validation methods.

8.3.1 :allow—blank and :allow—nil

In some cases, you only want to trigger a validation if a value is present, in other words
the attribute is optional. There are two options that provide this functionality.

The :allow_blank option skips validation if the value is blank according to the
blank? method. Similarly, the :allow_nil option skips the validation if the value of
the attribute is nil; it only checks for nil, and empty strings "" are not considered nil,
but they are considered blank.

8.3.2 :if and :unless

The :if and :unless options is covered in the next section, “Conditional Validation.”

8.3.3 :message

As we’ve discussed earlier in the chapter, the way that the validation process registers
failures is by adding items to the Errors collection of the model object being checked.
Part of the error item is a specific message describing the validation failure. All of the
validation methods accept a :message option so that you can override the default error
message format.

class Account < ActiveRecord::Base

validates_uniqueness_of :login, :message => "is already taken"

end

A
ctive

R
e
co

rd
8.4 Conditional Validation 243

The default English locale file in Active Model defines most of the standard error message
templates.

accepted: "must be accepted"

blank: "can't be blank"

confirmation: "doesn't match confirmation"

empty: "can't be empty"

equal_to: "must be equal to {{count}}"

even: "must be even"

exclusion: "is reserved"

greater_than: "must be greater than {{count}}"

greater_than_or_equal_to: "must be greater than or equal to {{count}}"

inclusion: "is not included in the list"

invalid: "is invalid"

less_than: "must be less than {{count}}"

less_than_or_equal_to: "must be less than or equal to {{count}}"

not_a_number: "is not a number"

odd: "must be odd"

too_long: "is too long (maximum is {{count}} characters)"

too_short: "is too short (minimum is {{count}} characters)"

wrong_length: "is the wrong length (should be {{count}} characters)"

The default messages only use the count variable for interpolation, where appropriate,
but model, attribute, and value are always available.

validates_uniqueness_of :login, :message => "{{value}} is already

registered"

8.3.4 :on

By default, validations are run on save (both create and update operations). If you need
to do so, you can limit a given validation to just one of those operations by passing the
:on option either :create or :update.

Assuming that your application does not support changing login names, one good
use for :on => :create might be in conjunction with validates_uniqueness_of,
since checking uniqueness with a query on large datasets can be time-consuming.

class Account < ActiveRecord::Base

validates_uniqueness_of :login, :on => :create

end

8.4 Conditional Validation

Since all validation methods are implemented via the Active Model Callback API, they
also accept :if and :unless options, to determine at runtime (and not during the class
definition) whether the validation needs to be run or not. The following three types of

244 Chapter 8: Validations

arguments can be supplied as an :if and :unless options:

Symbol The name of a method to invoke as a symbol. This is probably the most common
option, and offers the best performance.

String A snippet of Ruby code to eval might be useful when the condition is really
short, but keep in mind that eval’ing statements is relatively slow.

Proc A block of code to be instance_eval’d, so that self is the current record.
Perhaps the most elegant choice for one-line conditionals.

validates_presence_of :approver, :if => lambda { approved? && !legacy?

}

8.4.1 Usage and Considerations

When does it make sense to use conditional validations? The answer is: whenever an
object can be validly persisted in more than one state. A very common example involves
the User (or Person) model, used for login and authentication.

validates_presence_of :password, :if => :password_required?

validates_presence_of :password_confirmation, :if => :password_required?

validates_length_of :password, :within => 4..40, :if=>:password_required?

validates_confirmation_of :password, :if => :password_required?

This code is not DRY (meaning that it is repetitive). You can refactor it to make it a
little dryer using the with_options method that Rails mixes into Object.

with_options :if => :password_required? do |user|

user.validates_presence_of :password

user.validates_presence_of :password_confirmation

user.validates_length_of :password, :within => 4..40

user.validates_confirmation_of :password

end

All of the example validations check for the two cases when a (plaintext) password field
should be required in order for the model to be valid.

def password_required?

crypted_password.blank? || !password.blank?

end

The first case is if the crypted_password attribute is blank, because that means we are
dealing with a new User instance that has not been given a password yet. The other case
is when the password attribute itself is not blank; perhaps this is happening during an
update operation and the user is attempting to reset her password.

A
ctive

R
e
co

rd
8.5 Short-form Validation 245

8.4.2 Validation Contexts

Another way to accomplish conditional validation leverages support for validation con-

texts. Declare a validation and pass the name of an application-specific validation context
as the value of the :on option. That validation will now only be checked when explicitly
invoked using record.valid?(context_name).

Consider the following example involving a report generation app. Saving a report
without a name is fine, but publishing one without a name is not.

class Report < ActiveRecord::Base

validates_presence_of :name, :on => :publish

end

class ReportsController < ApplicationController

expose(:report)

POST /reports/1/publish

def publish

if report.valid? :publish

redirect_to report, :notice => "Report published"

else

flash.now.alert = "Can't publish unnamed reports!"

render :show

end

end

end

8.5 Short-form Validation

Rails 3 introduces a validates method that identifies an attribute and accepts options
that correspond to the validators we’ve already covered in the chapter. Using validates
can tighten up your model code nicely.

validates :login, :presence => true,

:format => { :with => /[A-Za-z0-9]+/,

:length => {:minimum => 3},

:uniqueness => true }

The following options are available for use with the validates method.

:acceptance => true Alias for validates_acceptance_of, typically used with
checkboxes that indicate acceptance of terms. Supply additional options by replacing
true with a hash.

validates :terms, :acceptance => { :message => 'You must accept terms.'

}

246 Chapter 8: Validations

:confirmation => true Alias for validates_confirmation_of, typically used
to ensure that email and password confirmation fields match up correctly. Supply
additional options by replacing true with a hash.

validates :email, :confirmation => { :message => 'Try again.' }

:exclusion => :in => [1,2,3] Alias for validates_exclusion_of.

:format => :with => /.*/ Alias for validates_format_of. If your only op-
tion is the regular expression, you can shorten the syntax further by making it the
value like:

:format => /[A-Za-z0-9]+/

:inclusion => :in => [1,2,3] Alias for validates_inclusion_of.

:length => :minimum => 0, maximum => 1000 Alias for validates_

length_of. If your only options are minimum and maximum lengths, you can
shorten the syntax further by supplying a Ruby range as the value.

validates :login, :length => [3..20]

:numericality => true Alias for validates_numericality_of. Supply addi-
tional options by replacing true with a hash.

validates :quantity, :numericality => { :message => 'Supply a number.'

}

:presence => true Alias for validates_presence_of. Supply additional options
by replacing true with a hash.

validates :login, :presence => { :message => 'How do you expect to

login?' }

:uniqueness => true Alias for validates_uniqueness_of. Supply additional
options by replacing true with a hash.

validates :quantity, :uniqueness => { :message => "You're SOL on that

login choice, buddy!" }

8.6 Custom Validation Techniques

When the existing declarative validation macros are not enough for your application
needs Rails gives you a few custom techniques.

A
ctive

R
e
co

rd
8.6 Custom Validation Techniques 247

8.6.1 Add Custom Validation Macros
to Your Application

Rails 3 introduces the ability to add custom validation macros (available to all your
model classes) by extending ActiveModel::EachValidator.

The following example is silly, but demonstrates the functionality nicely.

class ReportLikeValidator < ActiveModel::EachValidator

def validate_each(record, attribute, value)

unless value["Report"]

record.errors.add attribute, 'does not appear to be a Report'

end

end

end

Now that your custom validator exists, it is available to use with the validates macro
in your model.

class Report < ActiveRecord::Base

validates :name, :report_like => true

end

The key :report_like is inferred from the name of the validator class, which in this
case was ReportLikeValidator.

You can receive options via the validates method by adding an initializer

method to your custom validator class. For example, let’s make ReportLikeValidator
more generic.

class LikeValidator < ActiveModel::EachValidator

def initialize(options)

@with = options[:with]

super

end

def validate_each(record, attribute, value)

unless value[@with]

record.errors.add attribute, "does not appear to be like #{@with}"

end

end

end

Our model code would change to

class Report < ActiveRecord::Base

validates :name, :like => {:with => "Report"}

end

248 Chapter 8: Validations

8.6.2 Create a Custom Validator Class

This technique involves inheriting from ActiveModel::Validator and implementing
a validate method that takes the record to validate.

I’ll demonstrate with a really wicked example.

class RandomlyValidator < ActiveModel::Validator

def validate(record)

record.errors[:base] << "FAIL #1" unless first_hurdle(record)

record.errors[:base] << "FAIL #2" unless second_hurdle(record)

record.errors[:base] << "FAIL #3" unless third_hurdle(record)

end

private

def first_hurdle(record)

rand > 0.3

end

def second_hurdle(record)

rand > 0.6

end

def third_hurdle(record)

rand > 0.9

end

end

Use your new custom validator in a model with the validates_with macro.

class Report < ActiveRecord::Base

validates_with RandomlyValidator

end

8.6.3 Add a validate Method to Your Model

A validate instance method might be the way to go if you want to check the state of
your object holistically and keep the code for doing so inside of the model class itself.
(This is an older technique that I can’t fully endorse; it adds complexity to your model
class unnecessarily given how easy it is to create custom validator classes.)

For example, assume that you are dealing with a model object with a set of three
integer attributes (:attr1, :attr2, and :attr3) and a precalculated total attribute
(:total). The total must always equal the sum of the three attributes:

class CompletelyLameTotalExample < ActiveRecord::Base

def validate

if total != (attr1 + attr2 + attr3)

A
ctive

R
e
co

rd
8.8 Working with the Errors Hash 249

errors[:total] << "The total doesn't add up!"

end

end

end

You can alternatively add an error message to the whole object instead of just a particular
attribute, using the :base key, like this:

errors[:base] << "The total doesn't add up!"

Remember: The way to mark an object as invalid is to add to its Errors object. The
return value of a custom validation method is not used.

8.7 Skipping Validations

The method update_attribute doesn’t invoke validations, yet its companion method
update_attributes does, a question that comes up quite often on the mailing list.
Whoever wrote the API docs believes that this behavior is “especially useful for Boolean
flags on existing records.”

I don’t know if that is entirely true or not, but I do know that it is the source of ongoing
contention in the community. Unfortunately, I don’t have much more to add other
than some simple common-sense advice: Be very careful using the update_attribute
method. It can easily persist your model objects in invalid states.

8.8 Working with the Errors Hash

Some methods are provided to allow you to add validation errors to the collection
manually and alter the state of the Errors hash.

errors[:base] = msg
Adds an error message related to the overall object state itself and not the value of any
particular attribute. Make your error messages complete sentences, because Rails does
not do any additional processing of them to make them readable.

errors[:attribute] = msg
Adds an error message related to a particular attribute. The message should be a sentence
fragment that reads naturally when prepended with the capitalized name of the attribute.

clear
As you might expect, the clear method clears the Errors collection.

250 Chapter 8: Validations

8.8.1 Checking for Errors

It’s also possible to check the Errors object for validation failures on specific attributes
with a couple of methods, just using square brackets notation. An array is always returned;
an empty one when there aren’t any validation errors for the attribute specified.

>> user.errors[:login]

=> ["zed is already registered"]

>> user.errors[:password]

=> []

8.9 Testing Validations with Shoulda

Even though validations are declarative code, if you’re doing TDD then you’ll want to
specify them before writing them. Luckily, Thoughtbot’s Shoulda library4 contains a
number of matchers designed to easily test validations.

describe Post do

it { should validate_uniqueness_of :title }

it { should validate_presence_of :body, :message => /wtf/ }

it { should validate_presence_of :title }

it { should validate_numericality_of :user_id }

end

describe User do

it { should not_allow_values_for :email, "blah", "b lah" }

it { should allow_values_for :email, "a@b.com", "asdf@asdf.com" }

it { should ensure_length_in_range :email, 1..100 }

it { should ensure_value_in_range :age, 1..100 }

it { should not_allow_mass_assignment_of :password }

end

8.10 Conclusion

In this (relatively speaking) short chapter, we covered the Active Record Validations API
in-depth. One of the most appealing aspects of Rails is how we can declaratively specify
the criteria for determining the validity of model objects.

4. http://github.com/thoughtbot/shoulda

http://github.com/thoughtbot/shoulda

A
ctive

R
e
co

rd

CHAPTER 9

Advanced Active Record

Active Record is a simple object-relational mapping (ORM) framework compared to
other popular ORM frameworks, such as Hibernate in the Java world. Don’t let that
fool you, though: Under its modest exterior, Active Record has some pretty advanced
features. To really get the most effectiveness out of Rails development, you need to have
more than a basic understanding of Active Record—things like knowing when to break
out of the one-table/one-class pattern, or how to leverage Ruby modules to keep your
code clean and free of duplication.

In this chapter, we wrap up this book’s comprehensive coverage of Active Record by
reviewing callbacks, observers, single-table inheritance (STI), and polymorphic models.
We also review a little bit of information about metaprogramming and Ruby domain-
specific languages (DSLs) as they relate to Active Record.

9.1 Scopes

Scopes (or “named scopes” if you’re old school) allow you define and chain query criteria
in a declarative and reusable manner.

class Timesheet < ActiveRecord::Base

scope :submitted, where(:submitted => true)

scope :underutilized, where('total_hours < 40')

To declare a scope, use the scope class method, passing it a name as a symbol and some
sort of query definition. If your query is known at load time, you can simply use Arel
criteria methods like where, order, and limit to construct the definition as shown in
the example. On the other hand, if you won’t have all the parameters for your query
until runtime, use a lambda as the second parameter. It will get evaluated whenever the
scope is invoked.

251

252 Chapter 9: Advanced Active Record

class User < ActiveRecord::Base

scope :delinquent, lambda { where('timesheets_updated_at < ?',

1.week.ago)}

Invoke scopes as you would class methods.

>> User.delinquent

=> [#<User id: 2, timesheets_updated_at: "2010-01-07 01:56:29"...>]

9.1.1 Scope Parameters

You can pass arguments to scope invocations by adding parameters to the lambda you
use to define the scope query.

class BillableWeek < ActiveRecord::Base

scope :newer_than, lambda { |date| where('start_date > ?', date) }

Then pass the argument to the scope as you would normally.

BillableWeek.newer_than(Date.today)

9.1.2 Chaining Scopes

One of the beauties of scopes is that you can chain them together to create complex
queries from simple ones:

>> Timesheet.underutilized.submitted

=> [#<Timesheet id: 3, submitted: true, total_hours: 37 ...

Scopes can be chained together for reuse within scope definitions themselves. For in-
stance, let’s say that we always want to constrain the result set of underutilized to
submitted timesheets:

class Timesheet < ActiveRecord::Base

scope :submitted, where(:submitted => true)

scope :underutilized, submitted.where('total_hours < 40')

9.1.3 Scopes and has many

In addition to being available at the class context, scopes are available automatically on
has many association attributes.

>> u = User.find 2

=> #<User id: 2, login: "obie"...>

>> u.timesheets.size

=> 3

>> u.timesheets.underutilized.size

=> 1

A
ctive

R
e
co

rd
9.1 Scopes 253

9.1.4 Scopes and Joins

You can use Arel’s join method to create cross-model scopes. For instance, if we gave
our recurring example Timesheet a submitted_at date attribute instead of just a
boolean, we could add a scope to User allowing us to see who is late on their timesheet
submission.

scope :tardy, lambda {

joins(:timesheets).

where("timesheets.submitted_at <= ?", 7.days.ago).

group("users.id")

}

Arel’s to_sql method is useful for debugging scope definitions and usage.

>> User.tardy.to_sql

=> "SELECT users.* FROM users

INNER JOIN timesheets ON timesheets.user_id = users.id

WHERE (timesheets.submitted_at <= '2010-07-06 15:27:05.117700')

GROUP BY users.id" # query formatted nicely for the book

Note that as demonstrated in the example, it’s a good idea to use unambiguous column
references (including table name) in cross-model scope definitions so that Arel doesn’t
get confused.

9.1.5 Scope Combinations

Our example of a cross-model scope violates good object-oriented design principles: it
contains the logic for determining whether or not a Timesheet is submitted, which
is code that properly belongs in the Timesheet class. Luckily we can use Arel’s merge
method (aliased as &) to fix it. First we put the late logic where it belongs, in Timesheet:

scope :late, lambda { where("timesheet.submitted_at <= ?", 7.days.ago) }

Then we use our new late scope in tardy:

scope :tardy, lambda {

joins(:timesheets).group("users.id") & Timesheet.late

}

If you have trouble with this technique, make absolutely sure that your scopes’ clauses
refer to fully qualified column names. (In other words, don’t forget to prefix column
names with tables.) The console and to_sql method is your friend for debugging.

254 Chapter 9: Advanced Active Record

9.1.6 Default Scopes

There may arise use cases where you want certain conditions applied to the finders for
your model. Consider our timesheet application has a default view of open timesheets—
we can use a default scope to simplify our general queries.

class Timesheet < ActiveRecord::Base

default_scope :where(:status => "open")

end

Now when we query for our Timesheets, by default the open condition will be
applied:

>> Timesheet.all.map(&:status)

=> ["open", "open", "open"]

Default scopes also get applied to your models when building or creating them,
which can be a great convenience or a nuisance if you are not careful. In our previous
example, all new Timesheets will be created with a status of “open.”

>> Timesheet.new

=> #<Timesheet id: nil, status: "open">

>> Timesheet.create

=> #<Timesheet id: 1, status: "open">

You can override this behavior by providing your own conditions or scope to override
the default setting of the attributes.

>> Timesheet.where(:status => "new").new

=> #<Timesheet id: nil, status: "new">

>> Timesheet.where(:status => "new").create

=> #<Timesheet id: 1, status: "new">

There may be cases where at runtime you want to create a scope and pass it around
as a first class object leveraging your default scope. In this case, Active Record provides
the scoped method.

>> timesheets = Timesheet.scoped.order("submitted_at DESC")

=> [#<Timesheet id: 1, status: "open"]

>> timesheets.where(:name => "Durran Jordan")

=> []

There’s another approach to scopes that provides a sleeker syntax, scoping, which
allows the chaining of scopes via nesting within a block.

>> Timesheet.order("submitted_at DESC").scoping do

>> Timesheets.all

>> end

=> #<Timesheet id: 1, status: "open">

A
ctive

R
e
co

rd
9.1 Scopes 255

That’s pretty nice, but what if we don’t want our default scope to be included in our
queries? In this case Active Record takes care of us through the unscoped method.

>> Timesheet.unscoped.order("submitted_at DESC")

=> [#<Timesheet id: 2, status: "submitted">]

Similarly to overriding our default scope with a relation when creating new objects,
we can supply unscoped as well to remove the default attributes.

>> Timesheet.unscoped.new

=> #<Timesheet id: nil, status: nil>

9.1.7 Using Scopes for CRUD

You have a wide range of Active Record’s CRUD methods available on scopes, which
gives you some powerful abilities. For instance, let’s give all our underutilized timesheets
some extra hours.

>> u.timesheets.underutilized.collect(&:total_hours)

=> [37, 38]

>> u.timesheets.underutilized.update_all("total_hours = total_hours + 2")

=> 2

>> u.timesheets.underutilized.collect(&:total_hours)

=> [37, 38] # whoops, cached result

>> u.timesheets(true).underutilized.collect(&:total_hours)

=> [39] # results after telling association to reload

Scopes including a where clause using hashed conditions will populate attributes of
objects built off of them with those attributes as default values. Admittedly it’s a bit
difficult to think of a plausible use case for this feature, but we’ll show it in an example.
First, we add the following scope to Timesheet:

scope :perfect, submitted.where(:total_hours => 40)

Now, building an object on the perfect scope should give us a submitted timesheet
with 40 hours.

> Timesheet.perfect.build

=> #<Timesheet id: nil, submitted: true, user_id: nil, total_hours: 40

...>

As you’ve probably realized by now, the new Arel underpinnings of Active Record
are tremendously powerful and truly elevate the Rails 3 platform.

256 Chapter 9: Advanced Active Record

9.2 Callbacks

This advanced feature of Active Record allows the savvy developer to attach behavior at
a variety of different points along a model’s life cycle, such as after initialization, before
database records are inserted, updated or removed, and so on.

Callbacks can do a variety of tasks, ranging from simple things such as logging and
massaging of attribute values prior to validation, to complex calculations. Callbacks can
halt the execution of the life-cycle process taking place. Some callbacks can even modify
the behavior of the model class on the fly. We’ll cover all of those scenarios in this
section, but first let’s get a taste of what a callback looks like. Check out the following
silly example:

class Beethoven < ActiveRecord::Base

before_destroy :last_words

protected

def last_words

logger.info "Friends applaud, the comedy is over"

end

end

So prior to dying (ehrm, being destroy’d), the last words of the Beethoven class will
always be logged for posterity. As we’ll see soon, there are 14 different opportunities to
add behavior to your model in this fashion. Before we get to that list, let’s cover the
mechanics of registering a callback.

9.2.1 Callback Registration

Overall, the most common way to register a callback method is to declare it at the top of
the class using a typical Rails macro-style class method. However, there’s a less verbose
way to do it also. Simply implement the callback as a method in your class. In other
words, I could have coded the prior example as follows:

class Beethoven < ActiveRecord::Base

protected

def before_destroy

logger.info "Friends applaud, the comedy is over"

end

end

This is a rare case of the less-verbose solution being bad. In fact, it is almost always
preferable, dare I say it is the Rails way, to use the callback macros over implementing

A
ctive

R
e
co

rd
9.2 Callbacks 257

callback methods, for the following reasons:

• Macro-style callback declarations are added near the top of the class definition,
making the existence of that callback more evident versus a method body potentially
buried later in the file.

• Macro-style callbacks add callback methods to a queue. That means that more than
one method can be hooked into the same slot in the life cycle. Callbacks will be
invoked in the order in which they were added to the queue.

• Callback methods for the same hook can be added to their queue at different levels
of an inheritance hierarchy and still work—they won’t override each other the way
that methods would.

• Callbacks defined as methods on the model are always called last.

9.2.2 One-Liners

Now, if (and only if) your callback routine is really short,1 you can add it by passing a
block to the callback macro. We’re talking one-liners!

class Napoleon < ActiveRecord::Base

before_destroy { logger.info "Josephine..." }

...

end

As of Rails 3, the block passed to a callback is executed via instance_eval so that
its scope is the record itself (versus needing to act on a passed in record variable). The
following example implements “paranoid” model behavior, covered later in the chapter.

class Account < ActiveRecord::Base

before_destroy { update_attribute(:deleted_at, Time.now); false }

...

9.2.3 Protected or Private

Except when you’re using a block, the access level for callback methods should always
be protected or private. It should never be public, since callbacks should never be called
from code outside the model.

1. If you are browsing old Rails source code, you might come across callback macros receiving a short string of
Ruby code to be evaluated in the binding of the model object. That way of adding callbacks was deprecated in
Rails 1.2, because you’re always better off using a block in those situations.

258 Chapter 9: Advanced Active Record

Believe it or not, there are even more ways to implement callbacks, but we’ll cover
those techniques further along in the chapter. For now, let’s look at the lists of callback
hooks available.

9.2.4 Matched before/after Callbacks

In total, there are 14 types of callbacks you can register on your models! Twelve of
them are matching before/after callback pairs, such as before_validation and
after_validation. (The other two, after_initialize and after_find, are spe-
cial, and we’ll discuss them later in this section.)

List of Callbacks

This is the list of callback hooks available during a save operation. (The list varies
slightly depending on whether you’re saving a new or existing record.)

• before_validation

• before_validation_on_create

• after_validation

• after_validation_on_create

• before_save

• before_create (for new records) and before_update (for existing records)

• (Database actually gets an INSERT or UPDATE statement here)

• after_create (for new records) and after_update (for existing records)

• after_save

Delete operations have their own two callbacks:

• before_destroy

• (Database actually gets a DELETE statement here)

• after_destroy is called after all attributes have been frozen (read-only)

Additionally transactions have callbacks as well, for when you want actions to occur
after the database is guaranteed to be in a permanent state. Note that only “after” callbacks
exist here because of the nature of transactions—it’s a bad idea to be able to interfere
with the actual operation itself.

A
ctive

R
e
co

rd
9.2 Callbacks 259

• after_commit

• after_commit_on_create

• after_commit_on_update

• after_commit_on_destroy

• after_rollback

• after_rollback_on_create

• after_rollback_on_update

• after_rollback_on_destroy

9.2.5 Halting Execution

If you return a boolean false (not nil) from a callback method, Active Record halts
the execution chain. No further callbacks are executed. The save method will return
false, and save! will raise a RecordNotSaved error.

Keep in mind that because the last expression of a Ruby method is returned implicitly,
it is a pretty common bug to write a callback that halts execution unintentionally. If
you have an object with callbacks that mysteriously fails to save, make sure you aren’t
returning false by mistake.

9.2.6 Callback Usages

Of course, the callback you should use for a given situation depends on what you’re
trying to accomplish. The best I can do is to serve up some examples to inspire you with
your own code.

Cleaning Up Attribute Formatting withbefore—validate—on—create
The most common examples of using before_validation callbacks have to do with
cleaning up user-entered attributes. For example, the following CreditCard class cleans
up its number attribute so that false negatives don’t occur on validation:

class CreditCard < ActiveRecord::Base

...

def before_validation_on_create

Strip everything in the number except digits

self.number = number.gsub(/[^0-9]/, "")

end

end

260 Chapter 9: Advanced Active Record

Geocoding with before—save
Assume that you have an application that tracks addresses and has mapping features.
Addresses should always be geocoded before saving, so that they can be displayed rapidly
on a map later.2

As is often the case, the wording of the requirement itself points you in the direction
of the before_save callback:

class Address < ActiveRecord::Base

include GeoKit::Geocoders

before_save :geolocate

validates_presence_of :street, :city, :state, :zip

...

def to_s

"#{street} #{city}, #{state} #{zip}"

end

protected

def geolocate

res = GoogleGeocoder.geocode(to_s)

self.latitude = res.lat

self.longitude = res.lng

end

end

Before we move on, there are a couple of additional considerations. The preceding code
works great if the geocoding succeeds, but what if it doesn’t? Do we still want to allow
the record to be saved? If not, we should halt the execution chain:

def geolocate

res = GoogleGeocoder.geocode(to_s)

return false if not res.success # halt execution

self.latitude = res.lat

self.longitude = res.lng

end

The only problem remaining is that we give the rest of our code (and by extension,
the end user) no indication of why the chain was halted. Even though we’re not in a
validation routine, I think we can put the errors collection to good use here:

def geolocate

res = GoogleGeocoder.geocode(to_s)

2. I recommend the excellent GeoKit for Rails plugin available at http://geokit.rubyforge.org/.

http://geokit.rubyforge.org/

A
ctive

R
e
co

rd
9.2 Callbacks 261

if res.success

self.latitude = res.lat

self.longitude = res.lng

else

errors[:base] << "Geocoding failed. Please check address."

return false

end

end

If the geocoding fails, we add a base error message (for the whole object) and halt
execution, so that the record is not saved.

Exercise Your Paranoia with before_destroy
What if your application has to handle important kinds of data that, once entered,
should never be deleted? Perhaps it would make sense to hook into Active Record’s
destroy mechanism and somehow mark the record as deleted instead?

The following example depends on the accounts table having a deleted_at date-
time column.

class Account < ActiveRecord::Base

...

def before_destroy

update_attribute(:deleted_at, Time.now)

false

end

end

I chose to implement it as a callback method so that I am guaranteed it will execute
last in the before_destroy queue. It returns false so that execution is halted and the
underlying record is not actually deleted from the database.3

It’s probably worth mentioning that there are ways that Rails allows you to unin-
tentionally circumvent before_destroy callbacks:

• The delete and delete_all class methods of ActiveRecord::Base are almost
identical. They remove rows directly from the database without instantiating the
corresponding model instances, which means no callbacks will occur.

3. Real-life implementation of the example would also need to modify all finders to include deleted_at

is NULL conditions; otherwise, the records marked deleted would continue to show up in the applica-
tion. That’s not a trivial undertaking, and luckily you don’t need to do it yourself. There’s a Rails plugin
named ActsAsParanoid by Rick Olson that does exactly that, and you can find it at http://svn.techno-
weenie.net/projects/plugins/acts_as_paranoid.

http://svn.technoweenie.net/projects/plugins/acts_as_paranoid
http://svn.technoweenie.net/projects/plugins/acts_as_paranoid

262 Chapter 9: Advanced Active Record

• Model objects in associations defined with the option :dependent => :delete_

all will be deleted directly from the database when removed from the collection
using the association’s clear or delete methods.

Cleaning Up Associated Files with after—destroy
Model objects that have files associated with them, such as attachment records and
uploaded images, can clean up after themselves when deleted using the after_destroy
callback. The following method from Rick Olson’s old AttachmentFu4 plugin is a good
example:

Destroys the file. Called in the after_destroy callback

def destroy_file

FileUtils.rm(full_filename)

...

rescue

logger.info "Exception destroying #{full_filename ... }"

logger.warn $!.backtrace.collect { |b| " > #{b}" }.join("\n")

end

9.2.7 Special Callbacks: after—initialize
and after—find

The after_initialize callback is invoked whenever a new Active Record model is
instantiated (either from scratch or from the database). Having it available prevents you
from having to muck around with overriding the actual initialize method.

The after_find callback is invoked whenever Active Record loads a model object
from the database, and is actually called before after_initialize, if both are imple-
mented. Because after_find and after_initialize are called for each object found
and instantiated by finders, performance constraints dictate that they can only be added
as methods, and not via the callback macros.

What if you want to run some code only the first time that a model is ever instantiated,
and not after each database load? There is no native callback for that scenario, but you
can do it using the after_initialize callback. Just add a condition that checks to see
if it is a new record:

def after_initialize

if new?

...

end

end

4. Get AttachmentFu at http://svn.techno-weenie.net/projects/plugins/attachment_fu.

http://svn.techno-weenie.net/projects/plugins/attachment_fu

A
ctive

R
e
co

rd
9.2 Callbacks 263

In a number of Rails apps that I’ve written, I’ve found it useful to capture user preferences
in a serialized hash associated with the User object. The serialize feature of Active
Record models makes this possible, since it transparently persists Ruby object graphs to
a text column in the database. Unfortunately, you can’t pass it a default value, so I have
to set one myself:

class User < ActiveRecord::Base

serialize :preferences # defaults to nil

...

protected

def after_initialize

self.preferences ||= Hash.new

end

end

Using the after_initialize callback, I can automatically populate the preferences
attribute of my user model with an empty hash, so that I never have to worry about it being
nil when I access it with code such as user.preferences[:show_help_text] =

false.
Ruby’s metaprogramming capabilities combined with the ability to run code when-

ever a model is loaded using the after_find callback are a powerful mix. Since we’re
not done learning about callbacks yet, we’ll come back to uses of after_find later on
in the chapter, in the section “Modifying Active Record Classes at Runtime.”

9.2.8 Callback Classes

It is common enough to want to reuse callback code for more than one object that Rails
gives you a way to write callback classes. All you have to do is pass a given callback queue
an object that responds to the name of the callback and takes the model object as a
parameter.

Here’s our paranoid example from the previous section as a callback class:

class MarkDeleted

def self.before_destroy(model)

model.update_attribute(:deleted_at, Time.now)

return false

end

end

The behavior of MarkDeleted is stateless, so I added the callback as a class method.
Now you don’t have to instantiate MarkDeleted objects for no good reason. All you

264 Chapter 9: Advanced Active Record

do is pass the class to the callback queue for whichever models you want to have the
mark-deleted behavior:

class Account < ActiveRecord::Base

before_destroy MarkDeleted

...

end

class Invoice < ActiveRecord::Base

before_destroy MarkDeleted

...

end

Multiple Callback Methods in One Class

There’s no rule that says you can’t have more than one callback method in a callback
class. For example, you might have special audit log requirements to implement:

class Auditor

def initialize(audit_log)

@audit_log = audit_log

end

def after_create(model)

@audit_log.created(model.inspect)

end

def after_update(model)

@audit_log.updated(model.inspect)

end

def after_destroy(model)

@audit_log.destroyed(model.inspect)

end

end

To add audit logging to an Active Record class, you would do the following:

class Account < ActiveRecord::Base

after_create Auditor.new(DEFAULT_AUDIT_LOG)

after_update Auditor.new(DEFAULT_AUDIT_LOG)

after_destroy Auditor.new(DEFAULT_AUDIT_LOG)

...

end

Wow, that’s ugly, having to add three Auditors on three lines. We could extract a local
variable called auditor, but it would still be repetitive. This might be an opportunity
to take advantage of Ruby’s open classes, the fact that you can modify classes that aren’t
part of your application.

A
ctive

R
e
co

rd
9.3 Calculation Methods 265

Wouldn’t it be better to simply say acts_as_audited at the top of the model that
needs auditing? We can quickly add it to the ActiveRecord::Base class, so that it’s
available for all our models.

On my projects, the file where “quick and dirty” code like the method in Listing 9.1
would reside islib/core_ext/active_record_base.rb, but you can put it anywhere
you want. You could even make it a plugin (as detailed in Chapter 19, “Extending Rails
with Plugins”).

Listing 9.1 A quick-and-dirty ‘‘acts as audited’’method

class ActiveRecord::Base

def self.acts_as_audited(audit_log=DEFAULT_AUDIT_LOG)

auditor = Auditor.new(audit_log)

after_create auditor

after_update auditor

after_destroy auditor

end

end

Now, the top of Account is a lot less cluttered:

class Account < ActiveRecord::Base

acts_as_audited

Testability

When you add callback methods to a model class, you pretty much have to test that
they’re functioning correctly in conjunction with the model to which they are added.
That may or may not be a problem. In contrast, callback classes are super-easy to test in
isolation.

def test_auditor_logs_created

(model = mock).expects(:inspect).returns('foo')

(log = mock).expects(:created).with('foo')

Auditor.new(log).after_create(model)

end

9.3 Calculation Methods

All Active Record classes have a calculatemethod that provides easy access to aggregate
function queries in the database. Methods for count, sum, average, minimum, and
maximum have been added as convenient shortcuts.

266 Chapter 9: Advanced Active Record

Options such as conditions, :order, :group, :having, and :joins can be
passed to customize the query.

There are two basic forms of output:

Single aggregate value The single value is type cast to Fixnum for COUNT, Float for
AVG, and the given column’s type for everything else.

Grouped values This returns an ordered hash of the values and groups them by the
:group option. It takes either a column name, or the name of a belongs_to

association.

The following options are available to all calculation methods:

:conditions An SQL fragment like "administrator = 1" or ["user_name =

?", username]. See conditions in the intro to ActiveRecord::Base.

:include Eager loading, see Associations for details. Since calculations don’t load
anything, the purpose of this is to access fields on joined tables in your conditions,
order, or group clauses.

:joins An SQL fragment for additional joins like "LEFT JOIN comments ON

comments.post_id = id". (Rarely needed). The records will be returned read-
only since they will have attributes that do not correspond to the table’s columns.

:order An SQL fragment like "created_at DESC, name" (really only used with
GROUP BY calculations).

:group An attribute name by which the result should be grouped. Uses the GROUP BY

SQL-clause.

:select By default, this is * as in SELECT * FROM, but can be changed if you, for
example, want to do a join, but not include the joined columns.

:distinct Set this to true to make this a distinct calculation, such as SELECT

COUNT(DISTINCT posts.id) ...

The following examples illustrate the usage of various calculation methods.

Person.calculate(:count, :all) # The same as Person.count

SELECT AVG(age) FROM people

Person.average(:age)

Selects the minimum age for everyone with a last name other than

'Drake'

Person.minimum(:age).where('last_name <> ?', 'Drake')

A
ctive

R
e
co

rd
9.3 Calculation Methods 267

Selects the minimum age for any family without any minors

Person.minimum(:age).having('min(age) > 17').group(:last_name)

9.3.1 average(column—name, *options)

Calculates the average value on a given column. The first parameter should be a symbol
identifying the column to be averaged.

9.3.2 count(column—name, *options)

Count operates using three different approaches. Count without parameters will return
a count of all the rows for the model. Count with a column_name will return a count of
all the rows for the model with the supplied colum present. Lastly, count using :options
will find the row count matched by the options used. In the last case you would send an
options hash as the only parameter. 213

total_contacts = person.contacts.count(:from => "contact_cards")

Options are the same as with all other calculations methods with the additional option
of :from which is by default the name of the table name of the class, however it can
be changed to a different table name or even that of a database view. Remember that
Person.count(:all) will not work because :all will be treated as a condition, you should
use Person.count instead.

9.3.3 maximum(column—name, *options)

Calculates the maximum value on a given column. The first parameter should be a
symbol identifying the column to be calculated.

9.3.4 minimum(column—name, *options)

Calculates the minimum value on a given column. The first parameter should be a
symbol identifying the column to be calculated.

9.3.5 sum(column—name, *options)

Calculates a summed value in the database using SQL. The first parameter should be a
symbol identifying the column to be summed.

268 Chapter 9: Advanced Active Record

9.4 Observers

The single responsibility principle is a very important tenet of object-oriented program-
ming. It compels us to keep a class focused on a single concern. As you’ve learned in
the previous section, callbacks are a useful feature of Active Record models that allow
us to hook in behavior at various points of a model object’s life cycle. Even if we pull
that extra behavior out into callback classes, the hook still requires code changes in the
model class definition itself. On the other hand, Active Record gives us a way to hook
in to models that is completely transparent: Observers.

Here is the functionality of our old Auditor callback class as an observer of Account
objects:

class AccountObserver < ActiveRecord::Observer

def after_create(model)

DEFAULT_AUDIT_LOG.created(model.inspect)

end

def after_update(model)

DEFAULT_AUDIT_LOG.updated(model.inspect)

end

def after_destroy(model)

DEFAULT_AUDIT_LOG.destroyed(model.inspect)

end

end

9.4.1 Naming Conventions

When ActiveRecord::Observer is subclassed, it breaks down the name of the subclass
by stripping off the “Observer” part. In the case of our AccountObserver in the preced-
ing example, it would know that you want to observe the Account class. However, that’s
not always desirable behavior. In fact, with general-purpose code such as our Auditor,
it’s positively a step backward, so it is possible to overrule the naming convention with the
use of the observe macro-style method. We still extend ActiveRecord::Observer,
but we can call the subclass whatever we want and tell it explicitly what to observe using
the observe method, which accepts one or more arguments.

class Auditor < ActiveRecord::Observer

observe Account, Invoice, Payment

def after_create(model)

DEFAULT_AUDIT_LOG.created(model.inspect)

end

A
ctive

R
e
co

rd
9.5 Single-Table Inheritance (STI) 269

def after_update(model)

DEFAULT_AUDIT_LOG.updated(model.inspect)

end

def after_destroy(model)

DEFAULT_AUDIT_LOG.destroyed(model.inspect)

end

end

9.4.2 Registration of Observers

If there weren’t a place for you to tell Rails which observers to load, they would never
get loaded at all, since they’re not referenced from any other code in your application.
Register observers with the following kind of code in an initializer:

Activate observers that should always be running

ActiveRecord::Base.observers = Auditor

9.4.3 Timing

Observers are notified after the in-object callbacks are triggered.5 It’s not possible to act
on the whole object from an observer without having the object’s own callbacks executed
first.

Durran says . . .

For those of us who love to be organized, you can now put your observers in a separate directory
under app if your heart desires. You won’t need to perform custom loading anymore since Rails
now loads all files under the app directory automatically.

9.5 Single-Table Inheritance (STI)

A lot of applications start out with a User model of some sort. Over time, as different
kinds of users emerge, it might make sense to make a greater distinction between them.
Admin and Guest classes are introduced, as subclasses of User. Now, the shared behavior
can reside in User, and subtype behavior can be pushed down to subclasses. However,
all user data can still reside in the users table—all you need to do is introduce a type
column that will hold the name of the class to be instantiated for a given row.

5. https://rails.lighthouseapp.com/projects/8994/tickets/230 contains an interesting discussion
about callback execution order.

https://rails.lighthouseapp.com/projects/8994/tickets/230

270 Chapter 9: Advanced Active Record

To continue explaining single-table inheritance, let’s turn back to our example of
a recurring Timesheet class. We need to know how many billable_hours are out-
standing for a given user. The calculation can be implemented in various ways, but in
this case we’ve chosen to write a pair of class and instance methods on the Timesheet
class:

class Timesheet < ActiveRecord::Base

...

def billable_hours_outstanding

if submitted?

billable_weeks.map(&:total_hours).sum

else

0

end

end

def self.billable_hours_outstanding_for(user)

user.timesheets.map(&:billable_hours_outstanding).sum

end

end

I’m not suggesting that this is good code. It works, but it’s inefficient and that
if/else condition is a little fishy. Its shortcomings become apparent once require-
ments emerge about marking a Timesheet as paid. It forces us to modify Timesheet’s
billable_hours_outstanding method again:

def billable_hours_outstanding

if submitted? && not paid?

billable_weeks.map(&:total_hours).sum

else

0

end

end

That latest change is a clear violation of the open-closed principle,6 which urges
you to write code that is open for extension, but closed for modification. We
know that we violated the principle, because we were forced to change the
billable_hours_outstanding method to accommodate the new Timesheet sta-
tus. Though it may not seem like a large problem in our simple example, consider the
amount of conditional code that will end up in the Timesheet class once we start having
to implement functionality such as paid_hours and unsubmitted_hours.

6. http://en.wikipedia.org/wiki/Open/closed_principle has a good summary.

http://en.wikipedia.org/wiki/Open/closed_principle

A
ctive

R
e
co

rd
9.5 Single-Table Inheritance (STI) 271

So what’s the answer to this messy question of the constantly changing conditional?
Given that you’re reading the section of the book about single-table inheritance, it’s prob-
ably no big surprise that we think one good answer is to use object-oriented inheritance.
To do so, let’s break our original Timesheet class into four classes.

class Timesheet < ActiveRecord::Base

non-relevant code ommitted

def self.billable_hours_outstanding_for(user)

user.timesheets.map(&:billable_hours_outstanding).sum

end

end

class DraftTimesheet < Timesheet

def billable_hours_outstanding

0

end

end

class SubmittedTimesheet < Timesheet

def billable_hours_outstanding

billable_weeks.map(&:total_hours).sum

end

end

Now when the requirements demand the ability to calculate partially paid timesheets,
we need only add some behavior to a PaidTimesheet class. No messy conditional
statements in sight!

class PaidTimesheet < Timesheet

def billable_hours_outstanding

billable_weeks.map(&:total_hours).sum - paid_hours

end

end

9.5.1 Mapping Inheritance to the Database

Mapping object inheritance effectively to a relational database is not one of those prob-
lems with a definitive solution. We’re only going to talk about the one mapping strategy
that Rails supports natively, which is single-table inheritance, called STI for short.

In STI, you establish one table in the database to holds all of the records for any
object in a given inheritance hierarchy. In Active Record STI, that one table is named
after the top parent class of the hierarchy. In the example we’ve been considering, that
table would be named timesheets.

272 Chapter 9: Advanced Active Record

Hey, that’s what it was called before, right? Yes, but to enable STI we have to add a
type column to contain a string representing the type of the stored object. The following
migration would properly set up the database for our example:

class AddTypeToTimesheet < ActiveRecord::Migration

def self.up

add_column :timesheets, :type, :string

end

def self.down

remove_column :timesheets, :type

end

end

No default value is needed. Once the type column is added to an Active Record model,
Rails will automatically take care of keeping it populated with the right value. Using the
console, we can see this behavior in action:

>> d = DraftTimesheet.create

>> d.type

=> 'DraftTimesheet'

When you try to find an object using the find methods of a base STI class, Rails
will automatically instantiate objects using the appropriate subclass. This is especially
useful in polymorphic situations, such as the timesheet example we’ve been describing,
where we retrieve all the records for a particular user and then call methods that behave
differently depending on the object’s class.

>> Timesheet.find(:first)

=> #<DraftTimesheet:0x2212354...>

Sebastian says . . .

The word “type” is a very common column name and you might have plenty of
uses for it not related to STI—which is why it’s very likely you’ve experienced an
ActiveRecord::SubclassNotFound error. Rails will read the “type” column of your
Car class and try to find an “SUV” class that doesn’t exist.The solution is simple: Tell Rails to
use another column for STI with the following code:

set_inheritance_column "not_sti"

A
ctive

R
e
co

rd
9.5 Single-Table Inheritance (STI) 273

Note

Rails won’t complain about the missing column; it will simply ignore it. Recently, the error
message was reworded with a better explanation, but too many developers skim error messages
and then spend an hour trying to figure out what’s wrong with their models. (A lot of people
skim sidebar columns too when reading books, but hey, at least I am doubling their chances of
learning about this problem.)

9.5.2 STI Considerations

Although Rails makes it extremely simple to use single-table inheritance, there are a few
caveats that you should keep in mind.

To begin with, you cannot have an attribute on two different subclasses with the
same name but a different type. Since Rails uses one table to store all subclasses, these
attributes with the same name occupy the same column in the table. Frankly, there’s not
much of a reason why that should be a problem unless you’ve made some pretty bad
data-modeling decisions.

More importantly, you need to have one column per attribute on any subclass and
any attribute that is not shared by all the subclasses must accept nil values. In the
recurring example, PaidTimesheet has a paid_hours column that is not used by any
of the other subclasses. DraftTimesheet and SubmittedTimesheet will not use the
paid_hours column and leave it as null in the database. In order to validate data for
columns not shared by all subclasses, you must use Active Record validations and not
the database.

Third, it is not a good idea to have subclasses with too many unique attributes. If
you do, you will have one database table with many null values in it. Normally, a tree
of subclasses with a large number of unique attributes suggests that something is wrong
with your application design and that you should refactor. If you have an STI table that
is getting out of hand, it is time to reconsider your decision to use inheritance to solve
your particular problem. Perhaps your base class is too abstract?

Finally, legacy database constraints may require a different name in the database for
the type column. In this case, you can set the new column name using the class method
set_inheritance_column in the base class. For the Timesheet example, we could
do the following:

class Timesheet < ActiveRecord::Base

set_inheritance_column 'object_type'

end

274 Chapter 9: Advanced Active Record

Now Rails will automatically populate the object_type column with the object’s
type.

9.5.3 STI and Associations

It seems pretty common for applications, particularly data-management ones, to have
models that are very similar in terms of their data payload, mostly varying in their
behavior and associations to each other. If you used object-oriented languages prior
to Rails, you’re probably already accustomed to breaking down problem domains into
hierarchical structures.

Take for instance, a Rails application that deals with the population of states, coun-
ties, cities, and neighborhoods. All of these are places, which might lead you to define an
STI class named Place as shown in Listing 9.2. I’ve also included the database schema
for clarity:7

Listing 9.2 The places database schema and the place class

== Schema Information

#

Table name: places

#

id :integer(11) not null, primary key

region_id :integer(11)

type :string(255)

name :string(255)

description :string(255)

latitude :decimal(20, 1)

longitude :decimal(20, 1)

population :integer(11)

created_at :datetime

updated_at :datetime

class Place < ActiveRecord::Base

end

Place is in essence an abstract class. It should not be instantiated, but there is no
foolproof way to enforce that in Ruby. (No big deal, this isn’t Java!) Now let’s go ahead

7. For autogenerated schema information added to the top of your model classes, try Dave Thomas’s annotate
models plugin at http://svn.pragprog.com/Public/plugins/

http://svn.pragprog.com/Public/plugins/

A
ctive

R
e
co

rd
9.5 Single-Table Inheritance (STI) 275

and define concrete subclasses of Place:

class State < Place

has_many :counties, :foreign_key => 'region_id'

end

class County < Place

belongs_to :state, :foreign_key => 'region _id'

has_many :cities, :foreign_key => 'region _id'

end

class City < Place

belongs_to :county, :foreign_key => 'region _id'

end

You might be tempted to try adding a cities association to State, knowing that
has_many :through works with both belongs_to and has_many target associations.
It would make the State class look something like this:

class State < Place

has_many :counties, :foreign_key => 'region_id'

has_many :cities, :through => :counties

end

That would certainly be cool, if it worked. Unfortunately, in this particular case, since
there’s only one underlying table that we’re querying, there simply isn’t a way to distin-
guish among the different kinds of objects in the query:

Mysql::Error: Not unique table/alias: 'places': SELECT places.* FROM

places INNER JOIN places ON places.region_id = places.id WHERE

((places.region_id = 187912) AND ((places.type = 'County'))) AND

((places.`type` = 'City'))

What would we have to do to make it work? Well, the most realistic would be to use
specific foreign keys, instead of trying to overload the meaning of region_id for all the
subclasses. For starters, the places table would look like the example in Listing 9.3.

Listing 9.3 The places database schema revised

== Schema Information

#

Table name: places

#

id :integer(11) not null, primary key

state_id :integer(11)

county_id :integer(11)

type :string(255)

name :string(255)

description :string(255)

276 Chapter 9: Advanced Active Record

latitude :decimal(20, 1)

longitude :decimal(20, 1)

population :integer(11)

created_at :datetime

updated_at :datetime

The subclasses would be simpler without the :foreign_key options on the associ-
ations. Plus you could use a regular has_many relationship from State to City, instead
of the more complicated has_many :through.

class State < Place

has_many :counties

has_many :cities

end

class County < Place

belongs_to :state

has_many :cities

end

class City < Place

belongs_to :county

end

Of course, all those null columns in the places table won’t win you any friends with
relational database purists. That’s nothing, though. Just a little bit later in this chapter
we’ll take a second, more in-depth look at polymorphic has_many relationships, which
will make the purists positively hate you.

9.6 Abstract Base Model Classes

In contrast to single-table inheritance, it is possible for Active Record models to share
common code via inheritance and still be persisted to different database tables. In fact,
every Rails developer uses an abstract model in their code whether they realize it or not:
ActiveRecord::Base.8

The technique involves creating an abstract base model class that persistent subclasses
will extend. It’s actually one of the simpler techniques that we broach in this chapter.
Let’s take the Place class from the previous section (refer to Listing 9.3) and revise it to

8. http://m.onkey.org/2007/12/9/namespaced-models

http://m.onkey.org/2007/12/9/namespaced-models

A
ctive

R
e
co

rd
9.7 Polymorphic has many Relationships 277

be an abstract base class in Listing 9.4. It’s simple really—we just have to add one line
of code:

Listing 9.4 The abstract place class

class Place < ActiveRecord::Base

self.abstract_class = true

end

Marking an Active Record model abstract is essentially the opposite of making it an
STI class with a type column. You’re telling Rails: “Hey, I don’t want you to assume
that there is a table named places.”

In our running example, it means we would have to establish tables for states,
counties, and cities, which might be exactly what we want. Remember though, that we
would no longer be able to query across subtypes with code like Place.all.

Abstract classes is an area of Rails where there aren’t too many hard-and-fast rules
to guide you—experience and gut feeling will help you out.

In case you haven’t noticed yet, both class and instance methods are shared down the
inheritance hierarchy of Active Record models. So are constants and other class members
brought in through module inclusion. That means we can put all sorts of code inside
Place that will be useful to its subclasses.

9.7 Polymorphic has many Relationships

Rails gives you the ability to make one class belong_to more than one type of another
class, as eloquently stated by blogger Mike Bayer:

The “polymorphic association,” on the other hand, while it bears some resemblance to the regular
polymorphic union of a class hierarchy, is not really the same since you’re only dealing with a
particular association to a single target class from any number of source classes, source classes
which don’t have anything else to do with each other; i.e., they aren’t in any particular inheri-
tance relationship and probably are all persisted in completely different tables. In this way, the
polymorphic association has a lot less to do with object inheritance and a lot more to do with
aspect-oriented programming (AOP); a particular concept needs to be applied to a divergent set
of entities which otherwise are not directly related. Such a concept is referred to as a cross-cutting
concern, such as, all the entities in your domain need to support a history log of all changes to
a common logging table. In the AR example, an Order and a User object are illustrated to both
require links to an Address object.9

9. http://techspot.zzzeek.org/?p=13

http://techspot.zzzeek.org/?p=13

278 Chapter 9: Advanced Active Record

In other words, this is not polymorphism in the typical object-oriented sense of the
word; rather, it is something unique to Rails.

9.7.1 In the Case of Models with Comments

In our recurring Time and Expenses example, let’s assume that we want both
BillableWeek and Timesheet to have many comments (a shared Comment class).
A naive way to solve this problem might be to have the Comment class belong to
both the BillableWeek and Timesheet classes and have billable_week_id and
timesheet_id as columns in its database table.

class Comment < ActiveRecord::Base

belongs_to :timesheet

belongs_to :expense_report

end

I call that approach is naive because it would be difficult to work with and hard to
extend. Among other things, you would need to add code to the application to ensure
that a Comment never belonged to both a BillableWeek and a Timesheet at the same
time. The code to figure out what a given comment is attached to would be cumbersome
to write. Even worse, every time you want to be able to add comments to another
type of class, you’d have to add another nullable foreign key column to the comments
table.

Rails solves this problem in an elegant fashion, by allowing us to define
what it terms polymorphic associations, which we covered when we described the
:polymorphic => true option of the belongs_to association in Chapter 7, Active
Record Associations.

The Interface

Using a polymorphic association, we need define only a single belongs_to and add a
pair of related columns to the underlying database table. From that moment on, any class
in our system can have comments attached to it (which would make it commentable),
without needing to alter the database schema or the Comment model itself.

class Comment < ActiveRecord::Base

belongs_to :commentable, :polymorphic => true

end

There isn’t a Commentable class (or module) in our application. We named the associ-
ation :commentable because it accurately describes the interface of objects that will be

A
ctive

R
e
co

rd
9.7 Polymorphic has many Relationships 279

associated in this way. The name :commentable will turn up again on the other side of
the association:

class Timesheet < ActiveRecord::Base

has_many :comments, :as => :commentable

end

class BillableWeek < ActiveRecord::Base

has_many :comments, :as => :commentable

end

Here we have the friendly has_many association using the :as option. The :as marks
this association as polymorphic, and specifies which interface we are using on the other
side of the association. While we’re on the subject, the other end of a polymorphic
belongs_to can be either a has_many or a has_one and work identically.

The Database Columns

Here’s a migration that will create the comments table:

class CreateComments < ActiveRecord::Migration

def self.up

create_table :comments do |t|

t.text :body

t.integer :commentable

t.string :commentable_type

end

end

end

As you can see, there is a column called commentable_type, which stores the class name
of associated object. The Migrations API actually gives you a one-line shortcut with the
references method, which takes a polymorphic option:

create_table :comments do |t|

t.text :body

t.references :commentable, :polymorphic => true

end

We can see how it comes together using the Rails console (some lines ommitted for
brevity):

>> c = Comment.create(:text => "I could be commenting anything.")

>> t = TimeSheet.create

>> b = BillableWeek.create

>> c.update_attribute(:commentable, t)

=> true

>> "#{c.commentable_type}: #{c.commentable_id}"

=> "Timesheet: 1"

280 Chapter 9: Advanced Active Record

>> c.update_attribute(:commentable, b)

=> true

>> "#{c.commentable_type}: #{c.commentable_id}"

=> "BillableWeek: 1"

As you can tell, both the Timesheet and the BillableWeek that we played with in the
console had the same id (1). Thanks to the commentable_type attribute, stored as a
string, Rails can figure out which is the correct related object.

has—many :through and Polymorphics

There are some logical limitations that come into play with polymorphic associations.
For instance, since it is impossible for Rails to know the tables necessary to join through a
polymorphic association, the following hypothetical code, which tries to find everything
that the user has commented on, will not work.

class Comment < ActiveRecord::Base

belongs_to :user # author of the comment

belongs_to :commentable, :polymorphic => true

end

class User < ActiveRecord::Base

has_many :comments

has_many :commentables, :through => :comments

end

>> User.first.comments

ActiveRecord::HasManyThroughAssociationPolymorphicError: Cannot have

a has_many :through association 'User#commentables' on the polymorphic

object 'Comment#commentable'.

If you really need it, has_many :through is possible with polymorphic associations,
but only by specifying exactly what type of polymorphic associations you want. To do
so, you must use the :source_type option. In most cases, you will also need to use the
:source option, since the association name will not match the interface name used for
the polymorphic association:

class User < ActiveRecord::Base

has_many :comments

has_many :commented_timesheets, :through => :comments,

:source => :commentable, :source_type => 'Timesheet'

has_many :commented_billable_weeks, :through => :comments,

:source => :commentable, :source_type => 'BillableWeek'

end

A
ctive

R
e
co

rd
9.9 Using Value Objects 281

It’s verbose, and the whole scheme loses its elegance if you go this route, but it works:

>> User.first.commented_timesheets

=> [#<Timesheet ...>]

9.8 Foreign-key Constraints

As we work toward the end of this book’s coverage of Active Record, you might have
noticed that we haven’t really touched on a subject of particular importance to many
programmers: foreign-key constraints in the database. That’s mainly because use of
foreign-key constraints simply isn’t the Rails way to tackle the problem of relational
integrity. To put it mildly, that opinion is controversial and some developers have
written off Rails (and its authors) for expressing it.

There really isn’t anything stopping you from adding foreign-key constraints to your
database tables, although you’d do well to wait until after the bulk of development is
done. The exception, of course, is those polymorphic associations, which are probably
the most extreme manifestation of the Rails opinion against foreign-key constraints.
Unless you’re armed for battle, you might not want to broach that particular subject
with your DBA.

9.9 Using Value Objects

In Domain Driven Design10 (DDD), a distinction is drawn between Entity Objects
and Value Objects. All model objects that inherit from ActiveRecord::Base could be
considered Entity Objects in DDD. An Entity object cares about identity, since each
one is unique. In Active Record uniqueness is derived from the primary key. Comparing
two different Entity Objects for equality should always return false, even if all of its
attributes (other than the primary key) are equivalent.

Here is an example comparing two Active Record Addresses:

>> home = Address.create(:city => "Brooklyn", :state => "NY")

>> office = Address.create(:city => "Brooklyn", :state => "NY")

>> home == office

=> false

In this case you are actually creating two new Address records and persisting them to the
database, therefore they have different primary key values.

Value Objects on the other hand only care that all their attributes are equal.
When creating Value Objects for use with Active Record you do not inherit from

10. http://www.domaindrivendesign.org/

http://www.domaindrivendesign.org/

282 Chapter 9: Advanced Active Record

ActiveRecord::Base. Instead you make them part of a parent model using the
composed_of class method. This is a form of composition, called an Aggregate in DDD.
The attributes of the Value Object are stored in the database together with the parent
object and composed_of provides a means to interact with those values as a single object.

A simple example is of a Person with a single Address. To model this using com-
position, first we need a Person model with fields for the Address. Create it with the
following migration:

class CreatePeople < ActiveRecord::Migration

def self.up

create_table :people do |t|

t.string :name

t.string :address_city

t.string :address_state

end

end

end

The Person model looks like this:

class Person < ActiveRecord::Base

composed_of :address, :mapping => [%w(address_city city),

%w(address_state state)]

end

We’d need a corresponding Address object which looks like this:

class Address

attr_reader :city, :state

def initialize(city, state)

@city, @state = city, state

end

def ==(other_address)

city == other_address.city && state == other_address.state

end

end

Note that this is just a standard Ruby object that does not inherit from
ActiveRecord::Base. We have defined reader methods for our attributes and are
assigning them upon initialization. We also have to define our own == method for use
in comparisons. Wrapping this all up we get the following usage:

>> gary = Person.create(:name => "Gary")

>> gary.address_city = "Brooklyn"

>> gary.address_state = "NY"

>> gary.address

=> #<Address:0x20bc118 @state="NY", @city="Brooklyn">

A
ctive

R
e
co

rd
9.9 Using Value Objects 283

Alternately you can instantiate the address directly and assign it using the address accessor:

>> gary.address = Address.new("Brooklyn", "NY")

>> gary.address

=> #<Address:0x20bc118 @state="NY", @city="Brooklyn">

9.9.1 Immutability

It’s also important to treat value objects as immutable. Don’t allow them to be changed
after creation. Instead, create a new object instance with the new value instead. Active
Record will not persist value objects that have been changed through means other than
the writer method.

The immutable requirement is enforced by Active Record by freezing any ob-
ject assigned as a value object. Attempting to change it afterwards will result in a
ActiveSupport::FrozenObjectError.

9.9.2 Custom Constructors and Converters

By default value objects are initialized by calling the new constructor of the value class
with each of the mapped attributes, in the order specified by the :mapping option, as
arguments. If for some reason your value class does not work well with that convention,
composed_of allows a custom constructor to be specified.

When a new value object is assigned to its parent, the default assumption is that the
new value is an instance of the value class. Specifying a custom converter allows the new
value to be automatically converted to an instance of value class (when needed).

For example, consider the NetworkResource model with network_address and
cidr_range attributes that should be contained in a NetAddr::CIDR value class.11

The constructor for the value class is called create and it expects a CIDR address string
as a parameter. New values can be assigned to the value object using either another
NetAddr::CIDR object, a string or an array. The :constructor and :converter

options are used to meet the requirements:

class NetworkResource < ActiveRecord::Base

composed_of :cidr,

:class_name => 'NetAddr::CIDR',

:mapping => [%w(network_address network), %w(cidr_range

bits)],

:allow_nil => true,

11. Actual objects from the NetAddr gem available at http://netaddr.rubyforge.org

http://netaddr.rubyforge.org

284 Chapter 9: Advanced Active Record

:constructor => Proc.new { |network_address, cidr_range|

NetAddr::CIDR.create("#{network_address}/#{cidr_range}") },

:converter => Proc.new { |value|

NetAddr::CIDR.create(value.is_a?(Array) ? value.join('/') : value) }

end

This calls the :constructor

network_resource = NetworkResource.new(:network_address => '192.168.0.1',

:cidr_range => 24)

These assignments will both use the :converter

network_resource.cidr = ['192.168.2.1', 8]

network_resource.cidr = '192.168.0.1/24'

This assignment won't use the :converter as the value is already an

instance of the value class

network_resource.cidr = NetAddr::CIDR.create('192.168.2.1/8')

Saving and then reloading will use the :constructor on reload

network_resource.save

network_resource.reload

9.9.3 Finding Records by a Value Object

Once a composed_of relationship is specified for a model, records can be loaded from
the database by specifying an instance of the value object in the conditions hash.
The following example finds all customers with balance_amount equal to 20 and
balance_currency equal to "USD":

Customer.where(:balance => Money.new(20, "USD"))

The Money Gem

A common approach to using composed_of is in conjunction with the money gem.12

class Expense < ActiveRecord::Base

composed_of :cost,

:class_name => "Money",

:mapping => [%w(cents cents), %w(currency currency_as_string)],

:constructor => Proc.new do |cents, currency|

Money.new(cents || 0, currency || Money.default_currency)

end

end

Remember to add a migration with the 2 columns, the integer cents and the string
currency that money needs.

12. http://github.com/FooBarWidget/money/

http://github.com/FooBarWidget/money/

A
ctive

R
e
co

rd
9.10 Modules for Reusing Common Behavior 285

class CreateExpenses < ActiveRecord::Migration

def self.up

create_table :expenses do |table|

table.integer :cents

table.string :currency

end

end

def self.down

drop_table :expenses

end

end

Now when asking for or setting the cost of an item would use a Money instance.

>> expense = Expense.create(:cost => Money.new(1000, "USD"))

>> cost = expense.cost

>> cost.cents

=> 1000

>> expense.currency

=> "USD"

9.10 Modules for Reusing Common Behavior

In this section, we’ll talk about one strategy for breaking out functionality that is shared
between disparate model classes. Instead of using inheritance, we’ll put the shared code
into modules.

In the section “Polymorphic has_many Relationships,” we described how to add
a commenting feature to our recurring sample Time and Expenses application. We’ll
continue fleshing out that example, since it lends itself to factoring out into modules.

The requirements we’ll implement are as follows: Both users and approvers should be
able to add their comments to a Timesheet or ExpenseReport. Also, since comments
are indicators that a timesheet or expense report requires extra scrutiny or processing
time, administrators of the application should be able to easily view a list of recent
comments. Human nature being what it is, administrators occasionally gloss over the
comments without actually reading them, so the requirements specify that a mechanism
should be provided for marking comments as “OK” first by the approver, then by the
administrator.

Again, here is the polymorphic has_many :comments, :as => :commentable

that we used as the foundation for this functionality:

class Timesheet < ActiveRecord::Base

has_many :comments, :as => :commentable

end

286 Chapter 9: Advanced Active Record

class ExpenseReport < ActiveRecord::Base

has_many :comments, :as => :commentable

end

class Comment < ActiveRecord::Base

belongs_to :commentable, :polymorphic => true

end

Next we enable the controller and action for the administrator that list the 10 most
recent comments with links to the item to which they are attached.

class Comment < ActiveRecord::Base

scope :recent, order('created_at desc').limit(10)

end

class CommentsController < ApplicationController

before_filter :require_admin, :only => :recent

expose(:recent_comments) { Comment.recent }

end

Here’s some of the simple view template used to display the recent comments.

%ul.recent.comments

- recent_comments.each do |comment|

%li.comment

%h4= comment.created_at

= comment.text

.meta

Comment on:

= link_to comment.commentable.title, comment.commentable Yes, this

would result in N+1 selects.

So far, so good. The polymorphic association makes it easy to access all types of comments
in one listing. In order to find all of the unreviewed comments for an item, we can use
a named scope on the Comment class together with the comments association.

class Comment < ActiveRecord::Base

scope :unreviewed, where(:reviewed => false)

end

>> timesheet.comments.unreviewed

Both Timesheet and ExpenseReport currently have identical has_many methods for
comments. Essentially, they both share a common interface. They’re commentable!

To minimize duplication, we could specify common interfaces that share code in
Ruby by including a module in each of those classes, where the module contains the code
common to all implementations of the common interface. So, mostly for the sake of

A
ctive

R
e
co

rd
9.10 Modules for Reusing Common Behavior 287

example, let’s go ahead and define a Commentable module to do just that, and include
it in our model classes:

module Commentable

has_many :comments, :as => :commentable

end

class Timesheet < ActiveRecord::Base

include Commentable

end

class ExpenseReport < ActiveRecord::Base

include Commentable

end

Whoops, this code doesn’t work! To fix it, we need to understand an essential aspect of
the way that Ruby interprets our code dealing with open classes.

9.10.1 A Review of Class Scope and Contexts

In many other interpreted OO programming languages, you have two phases of
execution—one in which the interpreter loads the class definitions and says “this is
the definition of what I have to work with,” followed by the phase in which it executes
the code. This makes it difficult (though not necessarily impossible) to add new methods
to a class dynamically during execution.

In contrast, Ruby lets you add methods to a class at any time. In Ruby, when you
type class MyClass, you’re doing more than simply telling the interpreter to define a
class; you’re telling it to “execute the following code in the scope of this class.”

Let’s say you have the following Ruby script:

1 class Foo < ActiveRecord::Base

2 has_many :bars

3 end

4 class Foo < ActiveRecord::Base

5 belongs_to :spam

6 end

When the interpreter gets to line 1, you are telling it to execute the following code (up
to the matching end) in the context of the Foo class object. Because the Foo class object
doesn’t exist yet, it goes ahead and creates the class. At line 2, we execute the statement
has_many :bars in the context of the Foo class object. Whatever the has_manymethod
does, it does right now.

When we again say class Foo at line 4, we are once again telling the interpreter
to execute the following code in the context of the Foo class object, but this time, the

288 Chapter 9: Advanced Active Record

interpreter already knows about class Foo; it doesn’t actually create another class. There-
fore, on line 5, we are simply telling the interpreter to execute the belongs_to :spam

statement in the context of that same Foo class object.
In order to execute the has_many and belongs_to statements, those methods

need to exist in the context in which they are executed. Because these are defined as
class methods in ActiveRecord::Base, and we have previously defined class Foo as
extending ActiveRecord::Base, the code will execute without a problem.

However, when we defined our Commentable module like this:

module Commentable

has_many :comments, :as => :commentable

end

. . . we get an error when it tries to execute the has_many statement. That’s because the
has_many method is not defined in the context of the Commentable module object.

Given what we now know about how Ruby is interpreting the code, we now realize
that what we really want is for that has_many statement to be executed in the context
of the including class.

9.10.2 The included Callback

Luckily, Ruby’s Module class defines a handy callback that we can use to do just that.
If a Module object defines the method included, it gets run whenever that module
is included in another module or class. The argument passed to this method is the
module/class object into which this module is being included.

We can define an included method on our Commentable module object so that
it executes the has_many statement in the context of the including class (Timesheet,
ExpenseReport, and so on):

module Commentable

def self.included(base)

base.class_eval do

has_many :comments, :as => :commentable

end

end

end

Now, when we include the Commentable module in our model classes, it will execute
the has_many statement just as if we had typed it into each of those classes’ bodies.

A
ctive

R
e
co

rd
9.11 Modifying Active Record Classes at Runtime 289

The technique is common enough, within Rails and plugins, that it was added as a
first-class concept in the Rails 3 ActiveSupport API. The above example becomes shorter
and easier to read as a result:

module Commentable

extend ActiveSupport::Concern

included do

has_many :comments, :as => :commentable

end

end

Whatever is inside of the included block will get executed in the class context of the
class where the module is included.

has_many :comments, :as => :commentable, :extend => Commentable

Courtenay says . . .

There’s a fine balance to strike here. Magic like include Commentable certainly saves on
typing and makes your model look less complex, but it can also mean that your association code is
doing things you don’t know about. This can lead to confusion and hours of head-scratching while
you track down code in a separate module. My personal preference is to leave all associations in
the model, and extend them with a module. That way you can quickly get a list of all associations
just by looking at the code.

9.11 Modifying Active Record Classes at Runtime

The metaprogramming capabilities of Ruby, combined with the after_find callback,
open the door to some interesting possibilities, especially if you’re willing to blur your
perception of the difference between code and data. I’m talking about modifying the
behavior of model classes on the fly, as they’re loaded into your application.

Listing 9.5 is a drastically simplified example of the technique, which assumes the
presence of a config column on your model. During the after_find callback, we
get a handle to the unique singleton class13 of the model instance being loaded. Then
we execute the contents of the config attribute belonging to this particular Account
instance, using Ruby’s class_eval method. Since we’re doing this using the singleton
class for this instance, rather than the global Account class, other account instances in
the system are completely unaffected.

13. I don’t expect this to make sense to you, unless you are familiar with Ruby’s singleton classes,
and the ability to evaluate arbitrary strings of Ruby code at runtime. A good place to start is
http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html.

http://whytheluckystiff.net/articles/seeingMetaclassesClearly.html

290 Chapter 9: Advanced Active Record

Listing 9.5 Runtime metaprogramming with after_find

class Account < ActiveRecord::Base

...

protected

def after_find

singleton = class << self; self; end

singleton.class_eval(config)

end

end

I used powerful techniques like this one in a supply-chain application that I wrote
for a large industrial client. A lot is a generic term in the industry used to describe a
shipment of product. Depending on the vendor and product involved, the attributes
and business logic for a given lot vary quite a bit. Since the set of vendors and products
being handled changed on a weekly (sometimes daily) basis, the system needed to be
reconfigurable without requiring a production deployment.

Without getting into too much detail, the application allowed the maintenance
programmers to easily customize the behavior of the system by manipulating Ruby code
stored in the database, associated with whatever product the lot contained.

For example, one of the business rules associated with lots of butter being shipped
for Acme Dairy Co. might dictate a strictly integral product code, exactly 10 digits in
length. The code, stored in the database, associated with the product entry for Acme
Dairy’s butter product would therefore contain the following two lines:

validates_numericality_of :product_code, :only_integer => true

validates_length_of :product_code, :is => 10

9.11.1 Considerations

A relatively complete description of everything you can do with Ruby metaprogramming,
and how to do it correctly, would fill its own book. For instance, you might realize
that doing things like executing arbitrary Ruby code straight out of the database is
inherently dangerous. That’s why I emphasize again that the examples shown here are
very simplified. All I want to do is give you a taste of the possibilities.

If you do decide to begin leveraging these kinds of techniques in real-world ap-
plications, you’ll have to consider security and approval workflow and a host of other
important concerns. Instead of allowing arbitrary Ruby code to be executed, you might

A
ctive

R
e
co

rd
9.11 Modifying Active Record Classes at Runtime 291

feel compelled to limit it to a small subset related to the problem at hand. You might
design a compact API, or even delve into authoring a domain-specific language (DSL),
crafted specifically for expressing the business rules and behaviors that should be loaded
dynamically. Proceeding down the rabbit hole, you might write custom parsers for your
DSL that could execute it in different contexts—some for error detection and others for
reporting. It’s one of those areas where the possibilities are quite limitless.

9.11.2 Ruby and Domain-Specific Languages

My former colleague Jay Fields and I pioneered the mix of Ruby metaprogramming,
Rails, and internal14 domain-specific languages while doing Rails application develop-
ment for clients. I still occasionally speak at conferences and blog about writing DSLs
in Ruby.

Jay has also written and delivered talks about his evolution of Ruby DSL techniques,
which he calls Business Natural Languages (or BNL for short15). When developing
BNLs, you craft a domain-specific language that is not necessarily valid Ruby syntax,
but is close enough to be transformed easily into Ruby and executed at runtime, as shown
in Listing 9.6.

Listing 9.6 Example of business natural language

employee John Doe

compensate 500 dollars for each deal closed in the past 30 days

compensate 100 dollars for each active deal that closed more than

365 days ago

compensate 5 percent of gross profits if gross profits are greater than

1,000,000 dollars

compensate 3 percent of gross profits if gross profits are greater than

2,000,000 dollars

compensate 1 percent of gross profits if gross profits are greater than

3,000,000 dollars

The ability to leverage advanced techniques such as DSLs is yet another powerful
tool in the hands of experienced Rails developers.

14. The qualifier internal is used to differentiate a domain-specific language hosted entirely inside of a general-
purpose language, such as Ruby, from one that is completely custom and requires its own parser implementation.
15. Googling BNL will give you tons of links to the Toronto-based band Barenaked Ladies, so you’re better
off going directly to the source at http://bnl.jayfields.com.

http://bnl.jayfields.com

292 Chapter 9: Advanced Active Record

9.12 Conclusion

With this chapter we conclude our coverage of Active Record. Among other things,
we examined how callbacks and observers let us factor our code in a clean and object-
oriented fashion. We also expanded our modeling options by considering single-table
inheritance, abstract classes and Active Record’s distinctive polymorphic relationships.

At this point in the book, we’ve covered two parts of the MVC pattern: the model
and the controller. It’s now time to delve into the third and final part: the view.

Courtenay says . . .

DSLs suck! Except the ones written by Obie, of course. The only people who can read and write
most DSLs are their original authors. As a developer taking over a project, it’s often quicker to just
reimplement instead of learning the quirks and exactly which words you’re allowed to use in an
existing DSL.In fact, a lot of Ruby metaprogramming sucks, too. It’s common for people gifted
with these new tools to go a bit overboard. I consider metaprogramming, self.included,
class_eval, and friends to be a bit of a code smell on most projects.If you’re making a web
application, future developers and maintainers of the project will appreciate your using simple,
direct, granular, and well-tested methods, rather than monkeypatching into existing classes, or
hiding associations in modules.That said, if you can pull it off . . . your code will become more
powerful than you can possibly imagine.

A
ctio

n
V
ie

w

CHAPTER 10

Action View

The very powerful and the very stupid have one thing in common. Instead of altering their views
to fit the facts, they alter the facts to fit their views . . . which can be very uncomfortable if you
happen to be one of the facts that needs altering.

—Doctor Who

Controllers are the skeleton and musculature of your Rails application. In which
case, models form the heart and mind, and your view templates (based on Action View,
the third major component of Rails) are your application’s skin—the part that is visible
to the outside world.

Action View is the Rails API for putting together the visual component of your
application, namely the HTML and associated content that will be rendered in a web
browser whenever someone uses your Rails application. Actually, in this brave new world
of REST resources, Action View is involved in generating almost any sort of output you
generate.

Action View contains a full-featured templating system based on a Ruby library
named ERb. It takes data prepared by the controller layer and interleaves it with view
code to create a presentation layer for the end user. It’s also one of the first things you
learn about Rails and part of the standard Ruby library. I much prefer a templating
solution named Haml1 and have used it all over the book for examples. I think Haml is
such a superior choice over ERb, that this edition does not cover ERb at all.

In this chapter, we cover the fundamentals of the Action View framework, from
effective use of partials, to the significant performance boosts possible via caching. If you

1. http://haml-lang.com/

293

http://haml-lang.com/

294 Chapter 10: Action View

need to learn Haml, the best resource is http://haml-lang.com/— the fundamentals
of it are really easy — a comprehensive Haml reference is not included in this book.

10.1 Layouts and Templates

Rails has easy conventions for template usage, related to the location of templates with
the Rails project directories.

The app/views directory contains subdirectories corresponding to the name of
controllers in your application. Within each controller’s view subdirectory, you place a
template named to match its corresponding action.

The special app/views/layout directory holds layout templates, intended to be
reusable containers for your views. Again, naming conventions are used to determine
which templates to render, except that this time it is the name of the controller that is
used for matching.

10.1.1 Template Filename Conventions

The filename of a template in Rails carries a lot of significance. Its parts, delimited with
periods, correspond to the following information:

• name (usually maps to action)

• locale (optional)

• content type

• templating engine

10.1.2 Layouts

Action View decides which layout to render based on the inheritance hierarchy of
controllers being executed. Most Rails applications have an application.html.haml

file in their layout directory. It shares its name with the ApplicationController,
which is typically extended by all the other controllers in an application; therefore it is
picked up as the default layout for all views.

It is picked up, unless of course, a more specific layout template is in place, but quite
often it makes sense to use just one application-wide template, such as the simple one
shown in Listing 10.1.

http://haml-lang.com/

A
ctio

n
V
ie

w
10.1 Layouts and Templates 295

Listing 10.1 A simple general-purpose application.html.haml layout template

!!!

%html

%head

%meta(http-equiv="Content-Type" content="text/html; charset=UTF-8")

%title TR3W Time and Expenses Sample Application

= stylesheet_link_tag 'scaffold', :media => "all"

%body

= yield

10.1.3 Yielding Content

The Ruby language’s built-in yield keyword is put to good use in making layout and
action templates collaborate. Notice the use of yield at the end of the layout template:

%body

= yield

In this case, yield by itself is a special message to the rendering system. It marks
where to insert the output of the action’s rendered output, which is usually the template
corresponding to that action.

You can add extra places in your layout where you want to be able to yield content,
by including additional yield invocations—just make sure to pass a unique identifier
as the argument. A good example is a layout that has left and right sidebar content
(simplified, of course):

%body

.left.sidebar

= yield :left

.content

= yield

.right.sidebar

= yield :right

The .content div receives the main template markup generated. But how do you give
Rails content for the left and right sidebars? Easy—just use the content_for method
anywhere in your template code. I usually stick it at the top of the template so that it’s
obvious.

- content_for :left do

%h2 Navigation

%ul

%li ...

- content_for :right do

296 Chapter 10: Action View

%h2 Help

%p Lorem ipsum dolor sit amet, consectetur adipisicing elit...

%h1 Page Heading

%p ...

Besides sidebars and other types of visible content blocks, I suggest you yield for additional
content to be added to the HEAD element of your page, as shown in Listing 10.2. It’s a
super-useful technique, because Internet Explorer can occasionally get very ill-tempered
about SCRIPT tags appearing outside of the HEAD element.

Listing 10.2 Yielding additional head content

!!!

%html

%head

%meta(http-equiv="Content-Type" content="text/html; charset=UTF-8")

%title TR3W Time and Expenses Sample Application

= stylesheet_link_tag 'scaffold', :media => "all"

= yield :head

%body

= yield

10.1.4 Conditional Output

One of the most common idioms you’ll use when coding Rails views is to conditionally
output content to the view. The most elementary way to control conditional output is
to use if statements.

- if show_subtitle?

%h2= article.subtitle

A lot of times you can use inline if conditions and shorten your code, since the =

outputter doesn’t care if you feed it a nil value. Just add a postfix if condition to the
statement:

%h2= article.subtitle if show_subtitle?

Of course, there’s a problem with the preceding example. The if statement on a separate
line will eliminate the <h2> tags entirely, but the one-liner second example does not.

There are a couple of ways to deal with the problem and keep it a one-liner. First,
there’s the butt-ugly solution that I’ve occasionally seen in some Rails applications, which
is the only reason why I’m mentioning it here!

= "<h2>#{h(article.subtitle)}</h2>".html_safe if show_subtitle?

A
ctio

n
V
ie

w
10.1 Layouts and Templates 297

A more elegant solution involves Rails’ content_tag helper method, but admittedly a
one-liner is probably not superior to its two-line equivalent in this case.

= content_tag('h2', article.subtitle) if show_subtitle?

Helper methods, both the ones included in Rails like content_tag and the ones that
you’ll write on your own, are your main tool for building elegant view templates. Helpers
are covered extensively in Chapter 11, All About Helpers.

10.1.5 Decent Exposure

We’ve seen how layouts and yielding content blocks work, but other than that, how
should data get from the controller layer to the view? During preparation of the template,
instance variables set during execution of the controller action will be copied over as
instance variables of the template context. Even though it’s the standard way exposed by
Rails documentation, sharing state via instance variables in controllers promotes close
coupling with views.

Stephen Caudill’s Decent Exposure gem2 provides a declarative manner of expos-
ing an interface to the state that controllers contain, thereby decreasing coupling and
improving your testability and overall design.

When invoked, expose macro creates a method with the given name, evalu-
ates the provided block and memoizes the result. This method is then declared as a
helper_method so that views may have access to it and is made unroutable as an ac-
tion. When no block is given, expose attempts to intuit which resource you want to
acquire:

Timesheet.find(params[:timesheet_id] || params[:id])

expose(:timesheet)

As the example shows, the symbol passed is used to guess the class name of the object
you want to find—useful since almost every controller in a normal Rails uses this kind
of code in the show, edit, update and destroy actions.

In a slightly more complicated scenario, you might need to find an instance of an
object which doesn’t map cleanly to a simple find method.

expose(:timesheet) { client.timesheets.find(params[:id]) }

In the RESTful controller paradigm, you’ll again find yourself using this in show, edit,
update, and destroy actions of nested resources.

2. http://github.com/voxdolo/decent_exposure

http://github.com/voxdolo/decent_exposure

298 Chapter 10: Action View

When the code has become long enough to surpass a single line (but still isn’t
appropriate to extract into a model method), use a do...end style of block, as in the
following that uses all three styles:
expose(:client)

expose(:timesheet) { client.timesheets.find(params[:id]) }

expose(:timesheet_approval_presenter) do

TimesheetApprovalPresenter.new(timesheet, current_user)

end

The previous example also demonstrates how expose declarations can depend on each
other. In fact, proper use of expose should eliminate most model-lookup code from
your actual controller actions.

At Hashrocket, use of Decent Exposure has proven so beneficial that it has completely
replaced direct use of instance variables in controllers and views. The helper methods
created by the expose macro are just referred to directly in the view.

10.1.6 Standard Instance Variables

More than just instance variables from the controller are copied over to the template. It’s
not a good idea to depend on some of the following objects directly, and especially not
to use them to do data operations. Others are a standard part of most Rails applications.

assigns
Want to see everything that comes across the controller-view boundary? Throw = de-

bug(assigns) into your template and take a look at the output. The assigns attribute
is essentially internal to Rails and you should not use it directly in your production code.

base—path
Local filesystem path pointing to the base directory of your application where templates
are kept.

controller
The current controller instance is made available via controller, before it goes out
of scope at the end of request processing. You can take advantage of the controller’s
knowledge of its name (via the controller_name attribute) and the action that was
just performed (via the action_name attribute), in order to structure your CSS more
effectively.3

%body(class="#{controller.controller_name} #{controller.action_name}")

3. To learn more about identical functionality now included in a HAML helper visit http://vurl.me/WQH

http://vurl.me/WQH

A
ctio

n
V
ie

w
10.1 Layouts and Templates 299

That would result in a BODY tag looking something like this, depending on the action
executed:

<body class="timesheets index">

Hopefully you already know that the C in CSS stands for cascading, which refers to the
fact that class names cascade down the tree of elements in your markup code and are
available for creation of rules. The trick is to automatically include the controller and
action name as classnames of your body element, so that you can use them to customize
look and feel of the page very flexibly later on in the development cycle. For example,
here’s how you would use the technique to vary the background of header elements
depending on the controller path:

body.timesheets .header {

background: url(../images/timesheet-bg.png) no-repeat left top

}

body.expense_reports .header {

background: url(../images/expense-reports-bg.png) no-repeat left top

}

cookies
The cookies variable is a hash containing the user’s cookies. There might be situations
where it’d be okay to pull values out to affect rendering, but most of the time you’ll be
using cookies in your controller, not the view.

flash
The flash has popped up in larger code samples throughout the book so far, whenever
you want to send the user a message from the controller layer, but only for the duration
of the next request.

def create

if user.try(:authorize, params[:user][:password])

flash[:notice] = "Welcome, #{user.first_name}!"

redirect_to home_url

else

flash[:alert] = "Login invalid."

redirect_to :action => "new"

end

end

A common Rails practice is to use flash[:notice] to hold benign notice messages,
and flash[:alert] for communication of a more serious nature.

300 Chapter 10: Action View

Note

It’s so common to set flash notice and alert messages on redirects that in Rails 3 that they
have been integrated as optional parameters of the redirect_to method.

def create

if user.try(:authorize, params[:user][:password])

redirect_to home_url, :notice => "Welcome, #{user.first_name}!"

else

redirect_to home_url, :alert => "Bad login"

end

end

Special accessors for notices and alerts are included as helper methods on the flash
object itself, since their use is so common.

def create

if user.try(:authorize, params[:user][:password])

flash.notice = "Welcome, #{user.first_name}!"

redirect_to home_url

else

flash.alert = "Login invalid."

redirect_to :action => "new"

end

end

10.1.7 Displaying flash Messages

Personally, I like to conditionally output both notice and alert messages in div ele-
ments, right at the top of my layout, and use CSS to style them, as shown in Listing 10.3:

Listing 10.3 Standardized flash notice and error placement in application.html.haml

%html

...

%body

- if flash.notice

.notice= flash.notice

- if flash.alert

.notice.alert= flash.alert

= yield

The CSS for .notice defines most of the style for the element, and .alert overrides
just the aspects that are different for alerts.

A
ctio

n
V
ie

w
10.1 Layouts and Templates 301

10.1.8 flash.now

Sometimes you want to give the user a flash message, but only for the current request.
In fact, a common newbie Rails programming mistake is to set a flash notice and not

redirect, thereby incorrectly showing a flash message on the following request.
It is possible to make flash cooperate with a render by using the flash.now method.

class ReportController < ActionController::Base

def create

if report.save

flash.notice = "#{report.title} has been created."

redirect_to report_path(report)

else

flash.now.alert = "#{@post.title} could not be created."

render :action => "new"

end

end

end

The flash.now object also has notice and alert accessors, like its traditional
counterpart.

logger
Have something to record for posterity in the logs while you’re rendering the view? Use
the logger method to get the view’s Logger instance, the same as Rails.logger,
unless you’ve changed it.

params
This is the same params hash that is available in your controller, containing the key/value
pairs of your request. I’ll occasionally use a value from the params hash directly in the
view, particularly when I’m dealing with pages that are subject to filtering or row sorting.

%p

Filter by month:

= select_tag(:month_filter, options_for_select(@month_options,

params[:month_filter]))

It’s very dangerous from a security perspective to put unfiltered parameter data into
the output stream of your template. The following section, “Protecting the Integrity of
Your View from User-Submitted Content,” covers that topic in depth.

request and response
The HTTP request and response objects are exposed to the view, but other than
for debugging purposes, I can’t think of any reason why you would want to use them
directly from your template.

302 Chapter 10: Action View

session
The session variable is the user’s session hash. There might be situations where it’d be
okay to pull values out to affect rendering, but I shudder to think that you might try to
set values in the session from the view layer. Use with care, and primarily for debugging,
just like request and response.

10.2 Partials

A partial is a fragment of template code. The Rails way is to use partials to factor view
code into modular chunks that can be assembled in layouts with as little repetition as
possible. In older versions of Rails, the syntax for including a partial within a template
started with render :partial, but now passing a string to render within your view
will get interpreted to mean you want to render a partial. Partial template names must
begin with an underscore, which serves to set them apart visually within a given view
template directory. However, you leave the underscore out when you refer to them.

%h1 Details

= render 'details'

10.2.1 Simple Use Cases

The simplest partial use case is simply to extract a portion of template code. Some
developers divide their templates into logical parts by using partial extraction. Sometimes
it is easier to understand the structure of a screen if the significant parts are factored out
of it. For instance, Listing 10.4 is a simple user registration screen that has its parts
factored out into partials.

Listing 10.4 Simple user registration form with partials

%h1 User Registration

= error_messages_for :user

= form_for :user, :url => users_path do

.registration

.details.demographics

= render 'details'

= render 'demographics'

.location

= render 'location'

.opt_in

= render 'opt_in'

.terms

= render 'terms'

%p= submit_tag 'Register'

A
ctio

n
V
ie

w
10.2 Partials 303

While we’re at it, let me pop open one of those partials. To conserve space, we’ll
take a look at one of the smaller ones, the partial containing the opt-in check boxes of
this particular app. The source is in Listing 10.5; notice that its name begins with an
underscore.

Listing 10.5 The opt-in partial in the file app/views/users/_opt_in.html.haml

%fieldset#opt_in

%legend Spam Opt In

%p

= check_box :user, :send_event_updates

Send me updates about events!

%br

= check_box :user, :send_site_updates

Notify me about new services

Personally, I like partials to be entirely contained inside a semantically significant
markup container. In the case of the opt-in partial in Listing 10.5, both check box
controls are contained inside a singlefieldset element, which I’ve given anid attribute.
Following that rule, more as a loose guideline than anything else, helps me to mentally
identify how the contents of this partial are going to fit inside the parent template. If we
were dealing with other markup, perhaps outside of a form, I might choose to wrap the
partial markup inside a well-identified div container, instead of a fieldset.

Why not include the td markup inside the partial templates? It’s a matter of style—I
like to be able to see the complete markup skeleton in one piece. In this case, the skeleton
is the table structure that you see in Listing 10.4. If portions of that table were inside
the partial templates, it would obfuscate the layout of the page. I do admit that this is
one of those areas where personal style and preference should take precedence and I can
only advise you as to what has worked for me, personally.

10.2.2 Reuse of Partials

Since the registration form is neatly factored out into its component parts, it is easy to
create a simple edit form using some of its partials, as in Listing 10.6.

Listing 10.6 Simple user edit form reusing some of the same partials

%h1 Edit User

= form_for :user, :url => user_path(@user), :html => {:method => :put} do

.settings

.details

304 Chapter 10: Action View

= render :partial => 'details'

.demographics

= render :partial => 'demographics'

.opt_in

= render :partial => 'opt_in'

%p= submit_tag 'Save Settings'

If you compare Listings 10.4 and 10.6, you’ll notice that the structure of the table
changed a little bit in the Edit form, and it has less content than the registration form.
Perhaps the location is handled in greater detail on another screen, and certainly you
don’t want to require agreement of terms every time the user changes her settings.

10.2.3 Shared Partials

Until now, we’ve been considering the use of partials that reside in the same directory as
their parent template. However, you can easily refer to partials that are in other directories,
just by prefixing the directory name. You still leave off the underscore, which has always
felt a little weird.

Let’s add a captcha partial to the bottom of the registration form from Listing 10.4,
to help prevent spammers from invading our web application:

...

.terms

= render :partial => 'terms'

.captcha

= render :partial => 'shared/captcha'

%p= submit_tag 'Register'

Since the captcha partial is used in various different parts of the application, it
makes sense to let it reside in a shared folder rather than any particular view folder.
However, you do have to be a little bit careful when you move existing template code
into a shared partial. It’s quite possible to inadvertently craft a partial that depends
implicitly on where it’s rendered.

For example, take the case of the Rails-talk mailing list member with a troublesome
partial defined in login/_login.html.haml:

- form_tag do

%fieldset

%label

Username:

= text_field_tag :username, params[:username]

%br

%label

A
ctio

n
V
ie

w
10.2 Partials 305

Password:

= password_field_tag :password, params[:password]

%br

= submit_tag "Login"

The login form submission worked when he rendered this partial as part of the login
controller’s login action (“the login page”), but not when it was included as part of
the view for any other section of his website. The problem is that form_tag (covered
in the next chapter) normally takes an optional action parameter telling it where to post
its information. If you leave out the action, the form will post back to its current URL,
which will vary for shared partials, depending on where they’re being used from.

10.2.4 Passing Variables to Partials

Partials inherit the method exposed to their parent templates implicitly. That’s why the
form helpers used in the partials of Listings 10.4 and 10.6 work: They rely implicitly on
an user method to be in scope. I feel it’s fine to use this implicit sharing in some cases,
particularly when the partials are tightly bound to their parent templates. It would be
especially true in cases where the only reason you broke out a partial in the first place
was to reduce the size and complexity of a particularly large template.

However, once you get into the practice of breaking out partial templates for reuse,
depending on implicit context gets a lot more dicey. That’s why Rails supports the
passing of locally scoped variables to partial templates, as in the following snippet:

render 'shared/address', :form => form

The values of the optional hash are converted into locally scoped variables (no @ sign)
in the partial. Listing 10.7 is a variation on the registration template. This time we’re
using the version of form_for that yields a block parameter representing the form to its
form helper methods. We’ll pass that form parameter on, too.

Listing 10.7 Simple user registration template passing form as local variable

%h1 User Registration

= form_for :user, :url => users_path do |form|

= form.error_messages

.registration

.details.address.demographics

= render 'details', :form => form

= render 'shared/address', :form => form

%p= form.submit 'Register'

306 Chapter 10: Action View

And finally, in Listing 10.8 we have the shared address form.

Listing 10.8 A simple shared address partial using local variable

%fieldset.address

%legend Address

%p

%label Street

%br

= form.text_area :street, :rows => 2, :cols => 40

%p

%label City

%br

= form.text_field :city

%p

%label State

%br

= form.text_field :state, :size => 2

%p

%label Zip

%br

= form.text_field :zip, :size => 15

The form helper methods, which we’ll cover in Chapter 11, have a variation in which
they are called on the form variable yielded by the form_for method. That is exactly
what we passed on to these partials

The local_assigns Hash

If you need to check for the presence of a certain local variable in a partial, you need
to do it by checking the local_assigns hash that is part of every template. Using
defined? variable won’t work because of the limitations of the rendering system.

- if local_assigns.has_key? :special

= special

10.2.5 Rendering Collections

One of the best uses of partials is to render collections. Once you get into the habit of
rendering collections with partials, you won’t want to go back to the relative ugliness
of cluttering your templates with for loops and each. When the render method gets
an Enumerable as its first argument, it assumes that you want to render a collection of
partials.

render entries

A
ctio

n
V
ie

w
10.2 Partials 307

Simple and precise yet very dependent on a naming conventions. The objects being
rendered are exposed to the partial template as a local variable named the same as the
partial template itself. In turn the template should be named according to the class of
the objects being rendered.

The partial corresponding to the last code snippet is named _entry.html.haml

and gets a local variable named entry.

= div_for(entry) do

= entry.description

#{distance_of_time_in_words_to_now entry.created_at} ago

Rendering heterogeneous collections

Since the partial template used is based on the class of each item, you can easily render a heteroge-
neous collection of objects. This technique is particularly useful in conjunction with collections
of STI subclasses.

If you want to override that behavior, then revert to the older partial syntax and specify
the :partial and :collection options explicitly like

:partial => 'entry', :collection => @entries

The partial_counter Variable

There’s another variable set for collection-rendered partials that doesn’t get much at-
tention. It’s a 0-indexed counter variable that tracks the number of times the partial
has gotten rendered. It’s useful for rendering numbered lists of things. The name of the
variable is the name of the partial, plus _counter.

= div_for(entry) do

#{entry_counter}:#{entry.description}

#{distance_of_time_in_words_to_now entry.created_at} ago

Sharing Collection Partials

If you wanted to use the same partial that you use with a collection, except with a single
entry object, you’d have to pass it that single instance via the locals hash described in the
preceding section, like this:

render 'entry', :entry => some_entry

308 Chapter 10: Action View

10.2.6 Logging

If you take a look at your development log, you’ll notice that it shows which partials
have been rendered and how long they took.

Rendering template within layouts/application

Rendering listings/index

Rendered listings/_listing 0.6ms)

Rendered listings/_listing 0.3ms)

Rendered listings/_listing 0.2ms)

Rendered listings/_listing 0.2ms)

Rendered listings/_listing 0.2ms)

Rendered layouts/_login 2.4ms)

Rendered layouts/_header 3.3ms)

Rendered layouts/_footer 0.1ms)

10.3 Conclusion

In this chapter, we’ve covered the Action View framework with a detailed explanation
of templating and how the Rails rendering system works. We’ve also covered the use of
partials in-depth, since their use is essential for effective Rails programming.

Now it’s time to cover the mechanism whereby you can inject a whole bunch of
smarts into your view layer without cluttering up your templates: Helpers.

H
e
lp

e
rs

CHAPTER 11

All About Helpers

“Thank you for helping Helpers Helping the Helpless. Your help was very. . . helpful!”

—Mrs. Duong in the movie The Weekenders

Throughout the book so far, we’ve already covered some of the helper methods provided
by Rails to help you assemble the user interface of your web application. This chapter
lists and explains all of the helper modules and their methods, followed by instructions
on effectively creating your own helpers.

Note

This chapter is essentially reference material. Although every effort has been made to make it
readable straight through, you will notice that coverage of Action View’s helper modules is arranged
alphabetically, starting with ActiveModelHelper and ending with UrlHelper. Within
each module’s section, the methods are broken up into logical groups whenever appropriate.

This chapter is published under the Creative Commons Attribution-ShareAlike 3.0
license, http://creativecommons.org/licenses/b-sa/3.0/

11.1 ActiveModelHelper
The ActiveModelHelper module contains helper methods for quickly creating forms
from objects that follow Active Model conventions, starting with Active Record models.
The form method is able to create an entire form for all the basic content types of a
given record. However, it does not know how to assemble user-interface components for
manipulating associations. Most Rails developers assemble their own forms from scratch
using methods from FormHelper, instead of using this module. However, this module

309

http://creativecommons.org/licenses/b-sa/3.0/

310 Chapter 11: All About Helpers

does contain some useful helper for reporting validation errors in your forms that you
will use on a regular basis.

Note that as of Rails 3 you must install the following official plugin in order to use
this module.

rails plugin install git://github.com/rails/dynamic_form.git

11.1.1 Reporting Validation Errors

The error_message_on and error_messages_for methods help you to add format-
ted validation error information to your templates in a consistent fashion.

error—message—on(object, method, *options)
Returns a div tag containing the error message attached to the specified method on
the object, if one exists. It’s useful for showing validation errors inline next to the
corresponding form field. The object argument of the method can be an actual object
reference or a symbol corresponding to the name of an instance variable. The method
should be a symbol corresponding to the name of the attribute on the object for which
to render an error message.

The contents can be specialized with options for pre- and post-text and custom CSS
class.

:prepend—text => string Fragment to prepend to error messages generated.

:append—text => string Fragment to append to error messages generated.

:css—class => class—name CSS class name for div generated wrapping the error
message. Defaults to formError.

Use of this method is common when the user-interface requirements specify indi-
vidual validation messages per input field of a form, as in the following real-life example:

.form_field

.field_label

%span.required *

%label First Name

.textual

= form.text_field :first_name

= form.error_message_on :first_name

As in the example, the error_message_on helper is most commonly accessed via the
form block variable of form_for and its variants. When used via the form variable, you
leave off the first argument (specifying the object) since it’s implied.

H
e
lp

e
rs

11.1 ActiveModelHelper 311

error—messages—for(*params)
Returns a div tag containing all of the error messages for all of the objects held in
instance variables identified as parameters.

= form_for @person do |form|

= form.error_messages

.textfield

= form.label :name, "Name"

= form.text_field :name

As in the example, the error_message_for helper is most commonly accessed via
the form block variable of form_for and its variants. When used via the form variable,
it is called error_messages and you leave off the first argument (specifying the object)
since it’s implied.

This method is used by Rails scaffolding, but rarely in real production applica-
tions. The Rails API documentation advises you to use this method’s implementation
as inspiration to meet your own requirements:

This is a prepackaged presentation of the errors with embedded strings and a certain HTML
structure. If what you need is significantly different from the default presentation, it makes plenty
of sense to access the object.errors instance yourself and set it up. View the source of this method
to see how easy it is.

We’ll go ahead and reproduce the source of the method here with the warning that
you should not try to use it as inspiration unless you have a good grasp of Ruby! On
the other hand, if you have time to study the way that this method is implemented, it
will definitely teach you a lot about the way that Rails is implemented, which is its own
distinctive flavor of Ruby.

def error_messages_for(*params)

options = params.extract_options!.symbolize_keys

objects = Array.wrap(options.delete(:object) || params).map do |object|

obj = instance_variable_get("@#{object}") unless

obj.respond_to?(:to_model)

obj = convert_to_model(obj)

if obj.class.respond_to?(:model_name)

options[:object_name] ||= obj.class.model_name.human.downcase

end

obj

end

objects.compact!

count = objects.inject(0) {|sum, object| sum + object.errors.count }

312 Chapter 11: All About Helpers

unless count.zero?

html = {}

[:id, :class].each do |key|

if options.include?(key)

value = options[key]

html[key] = value unless value.blank?

else

html[key] = 'errorExplanation'

end

end

options[:object_name] ||= params.first

I18n.with_options :locale => options[:locale],

:scope => [:errors, :template] do |locale|

header_message = if options.include?(:header_message)

options[:header_message]

else

locale.t :header, :count => count,

:model => options[:object_name].to_s.gsub('_', '

')

end

message = options.include?(:message) ? options[:message] :

locale.t(:body)

error_messages = objects.sum do |object|

object.errors.full_messages.map do |msg|

content_tag(:li, ERB::Util.html_escape(msg))

end

end.join

contents = ''

contents << content_tag(options[:header_tag] ||

:h2, header_message) unless

header_message.blank?

contents << content_tag(:p, message) unless message.blank?

contents << content_tag(:ul, error_messages)

content_tag(:div, contents, html)

end

else

''

end

end

Later on in the chapter we’ll talk extensively about writing your own helper methods.

H
e
lp

e
rs

11.1 ActiveModelHelper 313

11.1.2 Automatic Form Creation

The next couple of methods are used for automatic field creation by the scaffolding code.
You can try using them too, but I suspect that their usefulness is somewhat limited in
real applications.

form(name, options)
Returns an entire form with input tags and everything for a named model object. Here
are the code examples given in the Rails API documentation, using a hypothetical Post
object from a bulletin-board application as an example:

>> form("post")

=> <form action='/post/create' method='post'>

<p>

<label for="post_title">Title</label>

<input id="post_title" name="post[title]"

size="30" type="text" value="Hello World" />

</p>

<p>

<label for="post_body">Body</label>

<textarea cols="40" id="post_body" name="post[body]" rows="20">

Back to the hill and over it again!

</textarea>

</p>

<input type='submit' value='Create' />

</form>

Internally, the method calls record.new? to infer whether the action for the form
should be create or update. It is possible to explicitly specify the action of the form
(and the value of the submit button along with it) by using the :action option.

If you need the form to have its enctype set to multipart, useful for file uploads,
set the options[:multipart] to true.

You can also pass in an :input_block option, using Ruby’s Proc.new idiom to
create a new anonymous code block. The block you supply will be invoked for each
content column of your model, and its return value will be inserted into the form.

.> form("entry", :action => "sign",

:input_block => Proc.new { |record, column|

"#{column.human_name}: #{input(record, column.name)}
" })

=> <form action='/post/sign' method='post'>

Message:

<input id="post_title" name="post[title]" size="30"

type="text" value="Hello World" />

<input type='submit' value='Sign' />

</form>

314 Chapter 11: All About Helpers

That example’s builder block, as it is referred to in the Rails API docs, uses the input
helper method, which is also part of this module, and is covered in the next section of
this chapter.

Finally, it’s also possible to add additional content to the form by giving the call to
form a block, as in the following snippet:

form("entry", :action => "sign") do |extra|

extra << content_tag("b", "Department")

extra << collection_select("department", "id", @departments, "id",

"name")

end

The block is yielded a string accumulator (named extra in the example), to which you
append any additional content that you want to appear between the main input fields
and the submit tag.

input(name, method, options)
The appropriately named input method takes some identifying information, and au-
tomatically generates an HTML input tag based on an attribute of an Active Record
model. Going back to the Post example used in the explanation of form, here is the
code snippet given in the Rails API docs:

>> input("post", "title")

=> <input id="post_title" name="post[title]" size="30"

type="text" value="Hello World" />

To quickly show you the types of input fields generated by this method, I’ll simply
reproduce a portion of the code from the module itself:

def to_tag(options = {})

case column_type

when :string

field_type = @method_name.include?("password") ? "password" : "text"

to_input_field_tag(field_type, options)

when :text

to_text_area_tag(options)

when :integer, :float, :decimal

to_input_field_tag("text", options)

when :date

to_date_select_tag(options)

when :datetime, :timestamp

to_datetime_select_tag(options)

when :time

to_time_select_tag(options)

when :boolean

to_boolean_select_tag(options)

end

end

H
e
lp

e
rs

11.1 ActiveModelHelper 315

11.1.3 Customizing the Way Validation Errors
Are Highlighted

By default, when Rails marks a field in your form that failed a validation check, it does
so by wrapping that field in a div element, with the class name field_with_errors.
This behavior is customizable, since it is accomplished via a Proc object stored as a
configuration property of the ActionView::Base class:

module ActionView

class Base

@@field_error_proc = Proc.new { |html_tag, instance|

"<div class=\"field_with_errors\">#{html_tag}</div>"

}

cattr_accessor :field_error_proc

end

...

Armed with this knowledge, changing the validation error behavior is as simple as
overriding Action View’s field_error_proc attribute with your own custom Proc. I
would suggest doing so in an initializer file.

In Listing 11.1, I changed the setting so that the input fields with validation errors
are prefixed with a red ERR message.

Listing 11.1 Custom validation error display

ActionView::Base.field_error_proc =

Proc.new do |html_tag,instance|

%(<div style="color:red">ERR</div>) + html_tag

end

Many people have suggested that it would have been a much better default solution to
simply add a field_with_errors CSS class to the input tag itself, instead of wrapping
it with an extra div tag. Indeed, that would have made many of our lives easier, since
an extra div often breaks pixel-perfect layouts. However, since html_tag is already
constructed at the time when the field_error_proc is invoked, it is not trivial to
modify its contents.

There are some solutions out there that use regular expressions and modify the
html_tag string, for instance this one, found at http://snippets.dzone.com/tag/
field_error_proc:

ActionView::Base.field_error_proc = Proc.new do |html_tag, instance|

error_style = "background-color: #ffff80"

if html_tag =~ /<(input|textarea|select)[^>]+style=/

http://snippets.dzone.com/tag/field_error_proc
http://snippets.dzone.com/tag/field_error_proc

316 Chapter 11: All About Helpers

style_attribute = html_tag =~ /style=['"]/

html_tag.insert(style_attribute + 7, "#{error_style}; ")

elsif html_tag =~ /<(input|textarea|select)/

first_whitespace = html_tag =~ /\s/

html_tag[first_whitespace] = " style='#{error_style}' "

end

html_tag

end

Ugly! This is certainly an area of Action View that could use improvement.

11.2 AssetTagHelper
According to the Rails API docs, this module

Provides methods for linking an HTML page together with other assets such as images, javascripts,
stylesheets, and feeds. You can direct Rails to link to assets from a dedicated assets server by
setting ActionController::Base.asset_host in your environment.rb. These
methods do not verify the assets exist before linking to them.

The AssetTagHelper module includes some methods that you will use on a daily
basis during active Rails development, particularly image_tag.

11.2.1 Head Helpers

Some of the helper methods in this module help you add content to the head element
of your HTML document.

auto—discovery—link—tag(type = :rss,
url—options = {}, tag—options = {})
Returns a link tag that browsers and newsreaders can use to autodetect an RSS or
ATOM feed. The type can either be :rss (default) or :atom. Control the link options
in url_for format using the url_options.

You can modify the link tag itself using the tag_options parameter:

:rel Specify the relation of this link; defaults to "alternate".

:type Override MIME type (such as "application/atom+xml") that Rails would
otherwise generate automatically for you.

:title Specify the title of the link; defaults to a capitalized type.

H
e
lp

e
rs

11.2 AssetTagHelper 317

Here are examples of usages of auto_discovery_link_tag as shown in the Rails API
docs:

auto_discovery_link_tag # =>

<link rel="alternate" type="application/rss+xml" title="RSS"

href="http://www.curenthost.com/controller/action" />

auto_discovery_link_tag(:atom) # =>

<link rel="alternate" type="application/atom+xml" title="ATOM"

href="http://www.curenthost.com/controller/action" />

auto_discovery_link_tag(:rss, {:action => "feed"}) # =>

<link rel="alternate" type="application/rss+xml" title="RSS"

href="http://www.curenthost.com/controller/feed" />

auto_discovery_link_tag(:rss, {:action => "feed"}, {:title => "My

RSS"}) # =>

<link rel="alternate" type="application/rss+xml" title="My RSS"

href="http://www.curenthost.com/controller/feed" />

The Lesson of the Favorite Icon

Because of the options provided, you could theoretically use auto_discovery_

link_tag to generate a link tag for a favorite icon, the little image that displays
in the browser’s address bar and bookmarks:

auto_discovery_link_tag('image/x-icon', 'favicon.ico',

:rel => 'shortcut icon', :title => '') # =>

<link rel="shortcut icon" href="favicon.ico" type="image/x-icon" title="">

That said, there is very little reason, if any, to use the auto_discovery_link_tag to
generate a favorite icon link in this way, because the Rails incantation is longer and more
complicated than typing the HTML code! Neither is there anything dynamic about the
construction of this tag that requires helper logic.

I made a point of including this example to reinforce the lesson that it is not necessarily
the Rails way to use helpers to generate static markup that you could otherwise go ahead
and write yourself.

javascript—include—tag(*sources)
Returns a script tag for each of the sources provided. You can pass in the filename (the
.js extension is optional) of JavaScript files that exist in your public/javascripts
directory for inclusion into the current page, or you can pass their full path, relative to
your document root.

To include the Prototype and Scriptaculous JavaScript libraries in your application,
pass :defaults as the source. When you’re using :defaults, if an application.js

318 Chapter 11: All About Helpers

file exists in your public/javascripts directory, it will be included as well. You can
modify the attributes of the script tag by passing a hash as the last argument.

javascript_include_tag "xmlhr", :defer => 'defer' # =>

<script type="text/javascript" src="/javascripts/xmlhr.js"

defer="defer"></script>

javascript_include_tag "common.javascript", "/elsewhere/cools" # =>

<script type="text/javascript"

src="/javascripts/common.javascript"></script>

<script type="text/javascript" src="/elsewhere/cools.js"></script>

javascript_include_tag :defaults # =>

<script type="text/javascript" src="/javascripts/prototype.js"></script>

<script type="text/javascript" src="/javascripts/effects.js"></script>

...

<script type="text/javascript"

src="/javascripts/application.js"></script>

javascript—path(source)
Computes the path to a JavaScript asset in the public/javascripts directory. If the source
filename has no extension, .jswill be appended. Full paths from the document root will
be passed through. Used internally by javascript_include_tag to build the script
path.

stylesheet—link—tag(*sources)
Returns a stylesheet link tag for the sources specified as arguments. If you don’t specify
an extension, .css will be appended automatically. Just like other helper methods that
take a variable number of arguments plus options, you can pass a hash of options as the
last argument and they will be added as attributes to the tag.

stylesheet_link_tag "style" # =>

<link href="/stylesheets/style.css" media="screen"

rel="Stylesheet" type="text/css" />

stylesheet_link_tag "style", :media => "all" # =>

<link href="/stylesheets/style.css" media="all"

rel="Stylesheet" type="text/css" />

stylesheet_link_tag "random.styles", "/css/stylish" # =>

<link href="/stylesheets/random.styles" media="screen"

rel="Stylesheet" type="text/css" />

<link href="/css/stylish.css" media="screen"

rel="Stylesheet" type="text/css" />

H
e
lp

e
rs

11.2 AssetTagHelper 319

stylesheet—path(source)
Computes the path to a stylesheet asset in the public/stylesheets directory. If the
source filename has no extension, .css will be appended. Full paths from the document
root will be passed through. Used internally by stylesheet_link_tag to build the
stylesheet path.

11.2.2 Asset Helpers

This module also contains a series of helper methods that generate asset-related markup.
It’s important to generate asset tags dynamically, because often assets are either packaged
together or served up from a different server source than your regular content. Asset helper
methods also timestamp your asset source urls to prevent browser caching problems.

Courtenay says . . .

The image_tag method makes use of the image_path method that we just covered earlier
in the chapter. This helpful method determines the path to use in the tag. You can call a controller
“image” and have it work as a resource, despite the seemingly conflicting name, because for its
internal use, ActionView aliases the method to path_to_image.

audio—path(source)
Computes the path to an audio asset in the public/audios directory, which you would
have to add yourself to your Rails project since it’s not generated by default. Full paths
from the document root will be passed through. Used internally by audio_tag to build
the audio path.

audio—tag(source, options = {})
Returns an HTML 5 audio tag based on the source argument.

audio_tag("sound") # =>

<audio src="/audios/sound" />

audio_tag("sound.wav") # =>

<audio src="/audios/sound.wav" />

audio_tag("sound.wav", :autoplay => true, :controls => true) # =>

<audio autoplay="autoplay" controls="controls" src="/audios/sound.wav"

/>

320 Chapter 11: All About Helpers

image—path(source)
Computes the path to an image asset in the public/images directory. Full paths from
the document root (beginning with a “/”) will be passed through. This method is used
internally by image_tag to build the image path.

image_path("edit.png") # => /images/edit.png

image_path("icons/edit.png") # => /images/icons/edit.png

image_path("/icons/edit.png") # => /icons/edit.png

image—tag(source, options = {})
Returns an img tag for use in a template. The source parameter can be a full path
or a file that exists in your public images directory. You can add additional arbitrary
attributes to the img tag using the options parameter. The following two options are
treated specially:

:alt If no alternate text is given, the filename part of the source is used, after being
capitalized and stripping off the extension.

:size Supplied as widthxheight so "30x45" becomes the attributes width="30"
and height="45". The :size option will fail silently if the value is not in the
correct format.

image_tag("icon.png") # =>

image_tag("icon.png", :size => "16x10", :alt => "Edit Entry") # =>

image_tag("/photos/dog.jpg", :class => 'icon') # =>

video—path
Computes the path to an audio asset in the public/videos directory, which you would
have to add yourself to your Rails project since it’s not generated by default. Full paths
from the document root will be passed through. Used internally by video_tag to build
the video src path.

video—tag(sources, options = {})
Returns an HTML 5 video tag for the sources. If sources is a string, a single video
tag will be returned. If sources is an array, a video tag with nested source tags for
each source will be returned. The sources can be full paths or files that exists in your
public videos directory.

H
e
lp

e
rs

11.2 AssetTagHelper 321

You can add normal HTML video element attributes using the options hash. The
options supports two additional keys for convenience and conformance:

:poster Set an image (like a screenshot) to be shown before the video loads. The path
is calculated using image_path

:size Supplied as widthxheight in the same manner as image_tag.

video_tag("trailer") # =>

<video src="/videos/trailer" />

video_tag("trailer.ogg") # =>

<video src="/videos/trailer.ogg" />

video_tag("trail.ogg", :controls => true, :autobuffer => true) # =>

<video autobuffer="autobuffer" controls="controls"

src="/videos/trail.ogg" />

video_tag("trail.m4v", :size => "16x10", :poster => "screenshot.png") # =>

<video src="/videos/trailer.m4v" width="16" height="10"

poster="/images/screenshot.png" />

video_tag(["trailer.ogg", "trailer.flv"]) # =>

<video>

<source src="trailer.ogg"/>

<source src="trailer.flv"/>

</video>

11.2.3 Using Asset Hosts

By default, Rails links to assets on the current host in the public folder, but
you can direct Rails to link to assets from a dedicated asset server by set-
ting ActionController::Base.asset_host in a configuration file, typically in
config/environments/production.rb so that it doesn’t affect your development
environment. For example, you’d define assets.example.com to be your asset host
this way:

config.action_controller.asset_host = "assets.example.com"

The helpers we’ve covered take that into account when generating their markup:

image_tag("rails.png")

=> <img alt="Rails"

src="http://assets.example.com/images/rails.png?1230601161" />

stylesheet_link_tag("application")

=> <link

322 Chapter 11: All About Helpers

href="http://assets.example.com/stylesheets/application.css?1232285206"

media="screen" rel="stylesheet" type="text/css" />

Browsers typically open at most two simultaneous connections to a single host,
which means your assets often have to wait for other assets to finish download-
ing. You can alleviate this by using a %d wildcard in the asset_host. For example,
"assets%d.example.com". If that wildcard is present Rails distributes asset requests
among the corresponding four hosts “assets0.example.com”, ..., “assets3.example.com”.
With this trick browsers will open eight simultaneous connections rather than
two.

image_tag("rails.png")

=> <img alt="Rails"

src="http://assets0.example.com/images/rails.png?1230601161" />

stylesheet_link_tag("application")

=> <link

href="http://assets2.example.com/stylesheets/application.css?1232285206"

media="screen" rel="stylesheet" type="text/css" />

To do this, you can either setup four actual hosts, or you can use wildcard DNS to
CNAME the wildcard to a single asset host. You can read more about setting up your
DNS CNAME records from your hosting provider. Note that this technique is purely
a browser performance optimization and is not meant for server load balancing.1

Alternatively, you can exert more control over the asset host by setting asset_host
to a proc like

config.action_controller.asset_host = Proc.new { |source|

"http://assets#{rand(2) + 1}.example.com"

}

The example generates http://assets1.example.com and http://assets2.

example.com randomly. This option is useful for example if you need fewer/more
than four hosts, custom host names, etc. As you see the proc takes a source parameter.
That’s a string with the absolute path of the asset with any extensions and timestamps
in place, for example /images/rails.png?1230601161.

config.action_controller.asset_host = Proc.new { |source|

if source.starts_with?('/images')

"http://images.example.com"

else

"http://assets.example.com"

end

}

1. See http://www.die.net/musings/page_load_time for background information.

http://www.die.net/musings/page_load_time
http://assets1.example.com
http://assets2.example.com
http://assets2.example.com

H
e
lp

e
rs

11.2 AssetTagHelper 323

image_tag("rails.png")

=> <img alt="Rails"

src="http://images.example.com/images/rails.png?1230601161" />

stylesheet_link_tag("application")

=> <link

href="http://assets.example.com/stylesheets/application.css?1232285206"

media="screen" rel="stylesheet" type="text/css" />

Alternatively you may ask for a second parameter request, which is particularly useful
for serving assets from an SSL-protected page. The example below disables asset hosting
for HTTPS connections, while still sending assets for plain HTTP requests from asset
hosts. If you don’t have SSL certificates for each of the asset hosts this technique allows
you to avoid warnings in the client about mixed media.

ActionController::Base.asset_host = Proc.new { |source, request|

if request.ssl?

"#{request.protocol}#{request.host_with_port}"

else

"#{request.protocol}assets.example.com"

end

}

For easier testing and reuse, you can also implement a custom asset host object that
responds to call and takes either one or two parameters just like the proc.

config.action_controller.asset_host = AssetHostingWithMinimumSsl.new(

"http://asset%d.example.com", "https://asset1.example.com"

)

11.2.4 Using Asset Timestamps

By default, Rails appends an asset’s timestamps to all asset paths. This allows you to
set a cache-expiration date for the asset far into the future, but still be able to instantly
invalidate it by simply updating the file (and hence updating the timestamp, which then
updates the URL as the timestamp is part of that, which in turn busts the cache).

It’s the responsibility of the web server you use to set the far-future expiration date
on cache assets that you need to take advantage of this feature. Here’s an example for
Apache:

Asset Expiration

ExpiresActive On

<FilesMatch "\.(ico|gif|jpe?g|png|js|css)$">

ExpiresDefault "access plus 1 year"

</FilesMatch>

324 Chapter 11: All About Helpers

Also note that in order for this to work, all your application servers must return the same
timestamps. This means that they must have their clocks synchronized. If one of them
drifts out of sync, you’ll see different timestamps at random and the cache won’t work.
In that case the browser will request the same assets over and over again even though they
didn’t change. You can use something like the Live HTTP Headers plugin for Firefox
to verify that the cache is indeed working.

With the cache_asset_timestamps setting enabled, the asset tag helper methods
will make fewer expensive file system calls. However, you will be prevented from modi-
fying any asset files while the server is running. This setting defaults to true and you can
modify it in an initializer with the following code:

config.action_view.cache_asset_timestamps = false

11.2.5 For Plugins Only

A handful of class methods in AssetTagHelper relate to configuration and are in-
tended for use in plugins. You can find more details about these method in Chapter 19,
“Extending Rails with Plugins.”

• register_javascript_expansion

• register_javascript_include_default

• register_stylesheet_expansion

11.3 AtomFeedHelper
Provides an atom_feed helper to aid in generating Atom feeds in Builder templates.

atom_feed do |feed|

feed.title("My great blog!")

feed.updated(@posts.first.created_at)

for post in @posts

feed.entry(post) do |entry|

entry.title(post.title)

entry.content(post.body, :type => 'html')

entry.author do |author|

author.name("DHH")

end

end

end

end

H
e
lp

e
rs

11.3 AtomFeedHelper 325

The options for atom_feed are:

:language Defaults to "en-US".

:root url The HTML alternative that this feed is doubling for. Defaults to "/" on
the current host.

:url The URL for this feed. Defaults to the current URL.

:id The id for this feed. Defaults to tag:#{request.host},#{options[:schema
date]}:#{request.requesturi.split(".")[0]}

:schema date The date at which the tag scheme for the feed was first used. A good
default is the year you created the feed. See http://feedvalidator.org/docs/
error/InvalidTAG.html for more information. If not specified, 2005 is used (as
an “I don’t care” value).

:instruct Hash of XML processing instructions in the form {target =>

{attribute => value, ...}} or {target => [{attribute => value,

...},]}

Other namespaces can be added to the root element:

Listing 11.2 app/views/posts/index.atom.builder

atom_feed(

'xmlns:app' => 'http://www.w3.org/2007/app',

'xmlns:openSearch' => 'http://a9.com/-/spec/opensearch/1.1/'

) do |feed|

feed.title("My great blog!")

feed.updated((@posts.first.created_at))

feed.tag!(openSearch:totalResults, 10)

for post in @posts

feed.entry(post) do |entry|

entry.title(post.title)

entry.content(post.body, :type => 'html')

entry.tag!('app:edited', Time.now)

entry.author do |author|

author.name("DHH")

end

end

end

end

http://feedvalidator.org/docs/error/InvalidTAG.html
http://feedvalidator.org/docs/error/InvalidTAG.html

326 Chapter 11: All About Helpers

The Atom spec defines five elements that may directly contain xhtml content if
:type => 'xhtml' is specified as an attribute:

• content

• rights

• title

• subtitle

• summary

If any of these elements contain xhtml content, this helper will take care of the needed
enclosing div and an xhtml namespace declaration.

entry.summary :type => 'xhtml' do |xhtml|

xhtml.p pluralize(order.line_items.count, "line item")

xhtml.p "Shipped to #{order.address}"

xhtml.p "Paid by #{order.pay_type}"

end

The atom_feed method yields an AtomFeedBuilder instance. Nested elements also
yield AtomBuilder instances.

11.4 CacheHelper
This module only contains one method, named cache. It is used to perform fragment
caching of blocks within templates, without caching the output of an entire action as a
whole. Rails also features page caching using the caches_page method of controllers,
where the entire output of an action is stored as a HTML file that the web server can
serve without going through the Action Pack.

In contrast, fragment caching is useful when certain elements of an action change
frequently or depend on complicated state, while other parts rarely change or can be
shared among multiple parties. The boundaries of a fragment to be cached are defined
within a view template using the cache helper method. The topic is covered in detail
in the caching section of Chapter 17, Caching.

11.5 CaptureHelper
One of the great features of Rails views is that you are not limited to rendering a single
flow of content. Along the way, you can define blocks of template code that should be
inserted into other parts of the page during rendering using yield. The technique is
accomplished via a pair of methods from the CaptureHelper module.

H
e
lp

e
rs

11.5 CaptureHelper 327

capture(& block)
The capture method lets you capture part of a template’s output (inside a block) and
assign it to an instance variable. The value of that variable can subsequently be used
anywhere else on the template.

- message_html = capture do

%div

This is a message

I don’t think that the capture method is that useful on its own in a template. It’s a lot
more useful when you use it in your own custom helper methods. It gives you the ability
to write your own helpers that grab template content wrapped using a block. We cover
that technique later on in this chapter in the section “Writing Your Own Helpers.”

content—for(name, & block)
We mentioned the content_for method in Chapter 10 in the section “Yielding Con-
tent.” It allows you to designate a part of your template as content for another part of
the page. It works similarly to its sister method capture (in fact, it uses capture itself).
Instead of returning the contents of the block provided to it, it stores the content to be
retrieved using yield elsewhere in the template (or most commonly, in the surrounding
layout).2

A common example is to insert sidebar content into a layout. In the following
example, the link will not appear in the flow of the view template. It will appear elsewhere
in the template, wherever yield :navigation_sidebar appears.

- content_for :navigation_sidebar do

= link_to 'Detail Page', item_detail_path(item)

content—for?(name)
Using this method, you can check whether the template will ultimately yield any content
under a particular name using the content_for helper method, so that you can make
layout decisions earlier in the template. The following example clearly illustrates usage
of this method, by altering the CSS class of the body element dynamically:

%body{:class => content_for?(:right_col) ? 'one-column' : 'two-column'}

= yield

= yield :right_col

2. For an interesting read on how yielding content and contentfor will probably change in Rails 3.1
because of the introduction of content flushing, see http://yehudakatz.com/2010/09/07/automatic-

flushing-the-rails-3-1-plan

http://yehudakatz.com/2010/09/07/automaticflushing-the-rails-3-1-plan
http://yehudakatz.com/2010/09/07/automaticflushing-the-rails-3-1-plan

328 Chapter 11: All About Helpers

11.6 DateHelper
The DateHelper module is used primarily to create HTML select tags for different
kinds of calendar data. It also features one of the longest-named helper methods, a beast
peculiar to Rails, called distance_of_time_in_words_to_now.

Lark says . . .

I guess that helper method name was too much of a mouthful, since at some point it was aliased
to time_ago_in_words.

11.6.1 The Date and Time Selection Helpers

The following methods help you create form field input tags dealing with date and time
data. All of them are prepared for multiparameter assignment to an Active Record object.
That’s a fancy way of saying that even though they appear in the HTML form as separate
input fields, when they are posted back to the server, it is understood that they refer to
a single attribute of the model. That’s some Rails magic for you!

date—select(object—name, method, options = {})
Returns a matched set of three select tags (one each for year, month, and day) prese-
lected for accessing a specified date-based attribute (identified by the method parameter)
on an object assigned to the template (identified by the object_name parameter).

It’s possible to tailor the selects through the options hash, which accepts all the
keys that each of the individual select builders do (like :use_month_numbers for
select_month).

The date_select method also takes :discard_year, :discard_month, and
:discard_day options, which drop the corresponding select tag from the set of
three. Common sense dictates that discarding the month select will also automatically
discard the day select. If the day is omitted, but not the month, Rails will assume that
the day should be the first of the month.

It’s also possible to explicitly set the order of the tags using the :order option with
an array of symbols :year, :month, and :day in the desired order. Symbols may be
omitted and the respective select tag is not included.

Passing :disabled => true as part of the options will make elements inaccessible
for change (see Listing 11.3).

H
e
lp

e
rs

11.6 DateHelper 329

Listing 11.3 Examples of date select

date_select("post", "written_on")

date_select("post", "written_on", :start_year => 1995,

:use_month_numbers => true,

:discard_day => true,

:include_blank => true)

date_select("post", "written_on", :order => [:day, :month, :year])

date_select("user", "birthday", :order => [:month, :day])

datetime—select(object—name, method, options = {})
Works exactly like date_select, except for the addition of hour and minute select
tags. Seconds may be added with the option :include_seconds. Along with the
addition of time information come additional discarding options: :discard_hour,
:discard_minute, and :discard_seconds.

time—select(object—name, method, options = {})
Returns a set of select tags (one for hour, minute, and optionally second) preselected
for accessing a specified time-based attribute (identified by method) on an object as-
signed to the template (identified by object_name). You can include the seconds with
:include_seconds.

time_select("post", "sunrise")

time_select("post", "start_time", :include_seconds => true)

11.6.2 The Individual Date and Time Select Helpers

Sometimes you need just a particular element of a date or time, and Rails obliges you
with a comprehensive set of individual date and time select helpers. In contrast to the
date and time helpers that we just looked at, the following helpers are not bound to an
instance variable on the page. Instead, they all take a date or time Ruby object as their
first parameter. (All of these methods have a set of common options, covered in the
following subsection.)

select—date(date = Date.today,options = {})
Returns a set of select tags (one each for year, month, and day) preselected with the
date provided (or the current date). It’s possible to explicitly set the order of the tags
using the :order option with an array of symbols :year, :month, and :day in the
desired order.

330 Chapter 11: All About Helpers

select—datetime(datetime = Time.now, options = {})
Returns a set of select tags (one each for year, month, day, hour, and
minute) preselected with the datetime. Optionally add a seconds field using the
:include_seconds => true option. It’s also possible to explicitly set the order of
the tags using the :order option with an array of symbols :year, :month, and :day,
:hour, :minute, and :seconds in the desired order. You can also add character values
for the :date_separator and :time_separator options to control visual display of
the elements (they default to "/" and ":").

select—day(date, options = {})
Returns a select tag with options for each of the days 1 through 31 with the current
day selected. The date can also be substituted for an hour number. Override the field
name using the :field_name option. It defaults to day. The date parameter may be
substituted by a value from 1 to 31.

select—hour(datetime, options = {})
Returns a select tag with options for each of the hours 0 through 23 with the current
hour selected. The datetime parameter can be substituted with an hour number from
0 to 23.

select—minute(datetime, options = {})
Returns a select tag with options for each of the minutes 0 through 59 with the current
minute selected. Also can return a select tag with options by minute_step from 0
through 59 with the 00 minute selected. The datetime parameter can be substituted
by a seconds value of 0 to 59.

select—month(date, options = {})
Returns a select tag with options for each of the months January through December
with the current month selected. By default, the month names are presented as user
options in the drop-down selection and the month numbers (1 through 12) are used as
values submitted to the server.

It’s also possible to use month numbers for the presentation instead of names, by
setting :use_month_numbers => true. If you happen to want both numbers and
names, set the :add_month_numbers => true. If you would prefer to show month
names as abbreviations, set the :use_short_month key => true. Finally, if you want
to use your own month names, set the value of the :use_month_names key in your
options to an array of 12 month names.

H
e
lp

e
rs

11.6 DateHelper 331

Will use keys like "January", "March"

select_month(Date.today)

Will use keys like "1", "3"

select_month(Date.today, :use_month_numbers => true)

Will use keys like "1 - January", "3 - March"

select_month(Date.today, :add_month_numbers => true)

Will use keys like "Jan", "Mar"

select_month(Date.today, :use_short_month => true)

Will use keys like "Januar", "Marts"

select_month(Date.today, :use_month_names => %w(Januar Februar

Marts ...))

Override the field name using the :field_name option. It defaults to month.

select—second(datetime, options = {})
Returns a select tag with options for each of the seconds 0 through 59 with the current
second selected. The datetime parameter can either be a DateTime object or a second
given as a number.

select—time(datetime, options = {})
Returns a set of HTML select tags (one for hour and minute). You can set
:add_separator key to format the output.

select—year(date, options = {})
Returns a select tag with options for each of the 5 years on each side of the current
year, which is selected. The five-year radius can be changed using the :start_year and
:end_year options. Both ascending and descending year lists are supported by making
:start_year less than or greater than :end_year. The date parameter can either be a
Date object or a year given as a number.

ascending year values

select_year(Date.today, :start_year => 1992, :end_year => 2007)

descending year values

select_year(Date.today, :start_year => 2005, :end_year => 1900)

332 Chapter 11: All About Helpers

11.6.3 Common Options for Date Selection Helpers

All of the select-type methods share a number of common options that are as
follows:

• :discard_type Set to true if you want to discard the type part of the select
name. If set to true, the select_month method would use simply date (which can
be overwritten using :prefix) instead of date[month].

• :field_name Allows you to override the natural name of a select tag (from day,
minute, and so on).

• :include_blank Set to true if it should be possible to set an empty date.

• :prefix Overwrites the default prefix of date used for the names of the select
tags. Specifying birthday would result in a name of birthday[month] instead of
date[month] when passed to the select_month method.

• :use_hidden Set to true to embed the value of the datetime into the page as an
HTML hidden input, instead of a select tag.

11.6.4 distance—in—time Methods
with Complex Descriptive Names

Some distance_in_time methods have really long, complex descriptive names that
nobody can ever remember without looking them up. Well, at least for the first dozen
times or so you might not remember.

I find the following methods to be a perfect example of the Rails way when it comes
to API design. Instead of going with a shorter and necessarily more cryptic alternative,
the framework author decided to keep the name long and descriptive. It’s one of those
cases where a nonprogrammer can look at your code and understand what it’s doing.
Well, probably.

I also find these methods remarkable in that they are part of why people sometimes
consider Rails part of the Web 2.0 phenomenon. What other web framework would
include ways to humanize the display of timestamps?

distance—of—time—in—words(from—time, to—time = 0,
include—seconds = false, options ={})
Reports the approximate distance in time between two Time or Date objects or integers
as seconds. Set the include_seconds parameter to true if you want more detailed

H
e
lp

e
rs

11.7 DebugHelper 333

approximations when the distance is less than 1 minute. The easiest way to show what
this method does is via examples:

>> helper.distance_of_time_in_words(from_time, from_time + 50.minutes)

=> about 1 hour

>> helper.distance_of_time_in_words(from_time, from_time + 15.seconds)

=> less than a minute

>> helper.distance_of_time_in_words(from_time, from_time + 15.seconds,

true)

=> less than 20 seconds

>> helper.distance_of_time_in_words(from_time, 3.years.from_now)

=> about 3 years

The Rails API docs ask you to note that Rails calculates 1 year as 365.25 days.

distance—of—time—in—words—to—now(from—time,
include—seconds = false)
Works exactly like distance_of_time_in_words except that the to_time is hard-
coded to the current time. Usually invoked on created_at or updated_at attributes
of your model, followed by the string ago in your template, as in the following example:

%strong= comment.user.name

%br

%small

= distance_of_time_in_words_to_now(review.created_at)

ago

11.7 DebugHelper
The DebugHelper module only contains one method, named debug. Output it in your
template, passing it an object that you want dumped to YAML and displayed in the
browser inside PRE tags. Useful for debugging during development, but not much else.

11.8 FormHelper
The FormHelper module provides a set of methods for working with HTML forms,
especially as they relate to Active Record model objects assigned to the template. Its
methods correspond to each type of HTML input fields (such as text, password, select,
and so on) available. When the form is submitted, the value of the input fields are
bundled into the params that is passed to the controller.

334 Chapter 11: All About Helpers

There are two types of form helper methods. The types found in this module are
meant to work specifically with Active Record model attributes, and the similarly named
versions in the FormTagHelper module are not.

11.8.1 Creating Forms for Models

The core method of this helper is called form_for, and we covered it to some extent
in Chapter 3, REST, Resources, and Rails. The helper method yields a form object, on
which you can invoke input helper methods, omitting their first argument. Usage of
form_for leads to succinct form code:

= form_for offer do |f|

= f.label :version, 'Version'

= f.text_field :version

%br

= f.label :author, 'Author'

= f.text_field :author

The form for block argument is a form builder object that carries the model. Thus, the
idea is that:

= f.text_field :first_name

gets expanded to

= text_field :person, :first_name

If you want the resulting params hash posted to your controller to be named based on
something other than the class name of the object you pass to form_for, you can pass
an arbitrary symbol as the first argument and the actual record as the second argument:

= form_for :client, person, :url => { :action => "update" } do |f|

In that case, the following call to text_field

= f.text_field :first_name

would get expanded to

= text_field :client, :first_name, :object => person

form—for Options

In any of its variants, the rightmost argument to form_for is an optional hash of options:

:url The URL the form is submitted to. It takes the same fields you pass to url_for

or link_to. In particular you may pass here a named route directly as well. Defaults
to the current action.

:html Optional HTML attributes for the form tag.

H
e
lp

e
rs

11.8 FormHelper 335

:builder Optional form builder class (instead of ActionView::Helpers::

FormBuilder)

Resource-oriented Style

The preferred way to use form_for is to rely on automated resource identification,
which will use the conventions and named routes of that approach, instead of manually
configuring the :url option.

For example, if post is an existing record to be edited, then the resource-oriented
style:

= form_for post do |f|

is equivalent to

= form_for :post, post, :url => post_path(post),

:html => { :method => :put, :class => "edit_post",

:id => "edit_post_45" } do |f|

The form_for method also recognizes new records, by calling new? on the object
you pass to it.

= form_for(Post.new) do |f|

expands to

= form_for :post, Post.new, :url => posts_path, :html => { :class =>

"new_post",

:id => "new_post" } do |f|

...

The individual conventions can be overriden by supplying an object argument plus :url
and/or :html options.

= form_for(post, :url => super_post_path(post)) do |f|

You can create forms with namespaced routes by passing an array as the first argument,
as in the following example, which would map to a admin_post_url:

= form_for([:admin, @post]) do |f|

This is the equivalent (old-school) version of form_tag, which doesn’t use a yielded
form object and explicitly names the object being used in the input fields:

- form_tag people_path do

.field

= label :person, :first_name

= text_field :person, :first_name

.field

= label :person, :last_name

336 Chapter 11: All About Helpers

= text_field :person, :last_name

.buttons

= submit_tag 'Create'

The first version has slightly less repetition (remember your DRY principle) and is almost
always going to be more convenient as long as you’re rendering Active Record objects.

Variables Are Optional

If you explicitly specify the object name parameter for input fields rather than letting
them be supplied by the form, keep in mind that it doesn’t have to match a live object
instance in scope for the template. Rails won’t complain if the object is not there. It will
simply put blank values in the resulting form.

Rails-Generated Form Conventions

The HTML generated by the form_for invocations in the preceding example is char-
acteristic of Rails forms, and follows specific naming conventions.

In case you’re wondering, the authenticity_token hidden field with gibberish
up near the top of the form has to do with protection against malicious cross-site request
forgery (CSRF) attacks.

<form action="/people" class="new_person" id="new_person" method="post">

<div style="margin:0;padding:0;display:inline">

<input name="authenticity_token" type="hidden"

value="Zn9QZi/vK/QeNUByBlwU6xiRwTAqzD5b4TJNXgWW+9s=" />

</div>

<div class='field'>

<label for="person_first_name">First name</label>

<input id="person_first_name" name="person[first_name]"

size="30" type="text" />

</div>

<div class='field'>

<label for="person_last_name">Last name</label>

<input id="person_last_name" name="person[last_name]"

size="30" type="text" />

</div>

<div class='buttons'>

<input id="person_submit" name="commit" type="submit" value="Create"

/>

</div>

</form>

When this form is submitted, the params hash will look like the following example
(using the format reflected in your development log for every request):

Parameters: {"commit"=>"Create", "action"=>"create",

"controller"=>"persons",

"person"=> {"first_name"=>"William", "last_name"=>"Smith"}}

H
e
lp

e
rs

11.8 FormHelper 337

As you can see, the params hash has a nested "person" value, which is accessed using
params[:person] in the controller. That’s pretty fundamental Rails knowledge, and
I’d be surprised if you didn’t know it already. I promise we won’t rehash much more
basic knowledge after the following section.

Displaying Existing Values

If you were editing an existing instance of Person, that object’s attribute values would
have been filled into the form. That’s also pretty fundamental Rails knowledge. What
about if you want to edit a new model object instance, prepopulated with certain values?
Do you have to pass the values as options to the input helper methods? No. Because the
form helpers display the values of the model’s attributes, it would simply be a matter of
initializing the object with the desired values in the controller, as follows:

expose(:person) do

if person_id = (params[:person_id] || params[:id])

Person.find(person_id)

else

Set default values that you want to appear in the form

Person.new(:first_name => 'First', :last_name => 'Last')

end

end

Because you’re only using new, no record is persisted to the database, and your default
values magically appear in the input fields.

Updating Multiple Objects at Once

That’s all well and good for editing one object at a time. What if you want to edit
multiple records at the same time? When the attribute name passed to form_for or
individual input field helper methods contains a set of square brackets, the id for the
object will be included in the autogenerated name and id attributes of the input tag.

I find this technique potentially challenging, on a couple of levels. First of all, we
usually identify attribute names using symbols, but tacking a pair of square brackets
onto a symbol (like :name[]) is invalid. We’re forced to use a string to name the object
instead:

= form_for "person[]" do |f|

- for @person in people

= f.text_field :name

Second, it generates HTML for the input tags looking something like

<input type="text" id="person_8_name" name="person[8][name]"

value="Obie Fernandez"/>

338 Chapter 11: All About Helpers

The structure of the hash submitted to the controller is significantly different from what
we’re used to seeing. That nested params hash will now be three levels deep when it
comes to the "person" and to make it more confusing, the ids of the objects are being
used as has keys:

Parameters: {"person"=>{"8"=>{"name"=>"Obie Fernandez"},

"9"=>{"name"=>"Jodi Showers"}, ...}, ... }

Now the controller code to handle the form needs to change, or you’re likely to see a
stack trace like the following one:

NoMethodError (undefined method `8=' for #<User:0x8762174>)

The good news is that the way that you handle that nested hash structure in your
controller’s update method is probably one of the nicest examples of how Rails is well
integrated across its MVC layers:

Person.update(params[:person].keys, params[:person].values)

Beautiful! This is the sort of harmony that makes the Rails way so enjoyable.

Square Brackets with New Records?

If you have a way of inserting HTML into your document dynamically, via JavaScript
and/or Ajax techniques, you can leverage Rails’ behavior with regard to empty square
brackets. When you’re using the square-brackets naming, Rails will happily generate
HTML for new model objects that looks like

<input type="text" id="person__name" name="person[][name]"/>

If you were dynamically adding rows of child record entry forms to a parent form, you
could replicate that convention easily. Just make sure the names of your input fields have
the empty square brackets.

When you submit the form, the Rails request dispatcher will assume that the value
of the :person key in the params hash is supposed to be an Array, and that is what
you will have to deal with in the controller action as the value of params[:person],
an array!

Considering that the create class method of Active Record models takes an array
or hashes to do multiple inserts, we have yet another one of those beautiful examples of
Rails cross-framework harmony:

def add_people

Person.create(params[:person])

...

end

H
e
lp

e
rs

11.8 FormHelper 339

However, there are some drawbacks to this technique, because it only works when all of
the input fields in the person namespace have empty square brackets. Stick any other
input fields on the same object without the empty square brackets, and Rack will barf:

TypeError (expected Hash (got Array) for param `person')

Indexed Input Fields

Okay, moving forward, here is a slightly more verbose and less magical way to define
multiple sets of input fields. Use the:indexoption of the input field methods themselves.
It allows you to explicitly provide an identifier that will be inserted into the field names,
and in doing so opens up some interesting possibilities.

First, it lets you replicate the square brackets technique that we just discussed in the
preceding section. For example, here’s a set of name fields for a collection of people:

- for @person in @people

= text_field :person, :name, :index => @person.id

...

The id attribute of the person will be inserted into the parameter hash in the way we’ve
already discussed with the square brackets, and we’ll get the same nesting behavior.

Now to make it more interesting, notice that the:indexoption is not picky about the
type of identifier that you supply it, which makes it pretty useful for defining enumerated
sets of records! That is exactly what sets it apart from the square-brackets technique, and
I’m sure I need to explain it a little more.

Consider the template code in Listing 11.4, part of a basketball tournament appli-
cation (or in a more generalized guise, any application that stores people in well-defined
roles):

Listing 11.4 Basketball team entry form

= form_for :team do |f|

%h2 Team Name

Name: #{f.text_field :name}

%br

Coach: #{f.text_field :coach}

- %w(guard_1 guard_2 forward_1 forward_2 center).each do |role|

%h3= role.humanize

Name: #{text_field :players, :name, :index => role}

That code produces the following HTML output (simplified) when you run it:

<form method="post" action="/homepage/team">

<h2>Team Name</h2>

340 Chapter 11: All About Helpers

Name: <input id="team_name" type="text" size="30"

name="team[name]"/>

Coach: <input id="team_coach" type="text" size="30" name="team[coach]"/>

<h3>Guard 1</h3>

Name: <input id="players_guard_1_name" type="text" size="30"

name="players[guard_1][name]"/>

<h3>Guard 2</h3>

Name: <input id="players_guard_2_name" type="text" size="30"

name="players[guard_2][name]"/>

<h3>Forward 1</h3>

Name: <input id="players_forward_1_name" type="text" size="30"

name="players[forward_1][name]"/>

<h3>Forward 2</h3>

Name: <input id="players_forward_2_name" type="text" size="30"

name="players[forward_2][name]"/>

<h3>Center</h3>

Name: <input id="players_center_name" type="text" size="30"

name="players[center][name]"/>

</form>

Now when you submit that form (as I just did, using one of my favorite basketball teams
of all time), your controller action would receive the following parameters hash. I took
the liberty of formatting the log output nicely, to make sure the structure is clear:

Parameters: {"team"=>{

"name"=>"Chicago Bulls",

"coach"=>"Phil Jackson"},

{"players"=> {

"forward_1"=>{"name"=>"Scottie Pippen"},

"forward_2"=>{"name"=>"Horace Grant"},

"center"=>{"name"=>"Bill Cartwright"},

"guard_1"=>{"name"=>"Michael Jordan"},

"guard_2"=>{"name"=>"John Paxson"}}, ... }

I made it a point to give those text field inputs for the player’s names and ages their
own :players identifier, rather than linking them to the form’s team object. You don’t
even need to worry about initializing an @players variable for the form to work. Form
helper methods do not complain if the variable they’re supposed to reflect isnil, provided
you identify it using a symbol and not by passing the instance variable directly to the
method.

For the sake of completeness, I’ll give you some simplistic controller action
code in Listing 11.5 that is capable of handling the form submission. Taking into
account the nested parameters hash, we can take it apart in a loop based on
params[:players].keys and do operations per role. Of course, this code assumes
that the team has an instance method add_player(role, player), but I hope you
get where I’m going with the example.

H
e
lp

e
rs

11.8 FormHelper 341

Listing 11.5 Controller action to create team

def create

@team = Team.create(params[:team])

params[:players].keys.each do |role|

@team.add_player(role, Player.new(params[:players][role]))

end

...

end

Faux Accessors

“Now hold on a second,” you are probably saying to yourself. If our example Teammodel
knew how to handle the setting of a players hash as part of its attributes, the controller
code could be dramatically simpler. In fact, we could knock the meat of it down to just
a couple of line (excluding error checking and redirection):

def create

@team = Team.create(params[:team])

@team.players = params[:players]

end

We’ll use what Josh Susser called faux accessors3—setters that let you initialize parts of
a model that aren’t (database-backed) attributes. Our example Team model would need
a players writer method that understood how to add those players to itself. Perhaps it
would look like the example in Listing 11.6.

Listing 11.6 Adding writer methods that understand params hashes

class Team < ActiveRecord::Base

has_many :positions

has_many :players, :through => :positions

def players=(players_hash)

players_hash.keys.each do |role|

positions.create(:role => role,

:player => Player.new(players_hash[role]))

end

end

end

class Position < ActiveRecord::Base

belongs_to :player

3. Josh Susser tells you how to cheat and provide default values to non-column model attributes at
http://blog.hasmanythrough.com/2007/1/22/using-faux-accessors-to-initialize-values.

http://blog.hasmanythrough.com/2007/1/22/using-faux-accessors-to-initialize-values

342 Chapter 11: All About Helpers

belongs_to :team

end

class Player < ActiveRecord::Base

has_many :positions

has_many :teams, :through => :positions

end

To recap, the players= writer method gets invoked as a result of calling
Team.create with the full params hash structure, which includes a nested hash of
:players. I must warn you that your mileage may, as they say, vary with this kind
of technique. It’s perfect for the example, with its has_many :through relationship
connecting the Team, Position, and Player classes, but it may not be perfect for your
domain model. The most important idea is to keep your mind open to the possibility
of writing code that is this clean. It’s the Rails way.

Courtenay says . . .

Hiding your code behind a method like this will make your code both simpler, and more powerful.
You can now test this method in isolation, and can stub it in a controller spec. Stubbing in this
case allows you to focus on testing the logic of the controller action, and not the behavior of
the database.It also means you or another team member can change the implementation without
breaking unrelated specs, and it keeps the database code where it belongs, in the model.

I’ve gotten us off on quite a tangent! We were talking about form helpers, so let’s
cover one more important aspect of them before moving forward.

11.8.2 How Form Helpers Get Their Values

A rather important lesson to learn about Rails form helper methods is that the value they
display comes directly from the database prior to meddling by the developer. Unless you
know what you’re doing, you may get some unexpected results if you try to override the
values to be displayed in a form.

Let’s illustrate with a simple LineItem model, which has a decimal rate attribute
(by merits of a rate column in its database table). We’ll override its implicit rate accessor
with one of our own:

class LineItem < ActiveRecord::Base

def rate

"A RATE"

end

end

H
e
lp

e
rs

11.8 FormHelper 343

In normal situations, the overridden accessor is hiding access to the real rate attribute,
as we can illustrate using the console.

>> li = LineItem.new

=> #<LineItem >

>> li.rate

=> "A RATE"

However, suppose you were to compose a form to edit line items using form helpers:

= form_for :line_item do |f|

= f.text_field :rate

You would find that it works normally, as if that overridden rate accessor doesn’t exist.
The behavior is intentional, yet confusing enough that it has been reported multiple
times as a bug.4

The fact is that Rails form helpers use special methods named attribute_before_

type_cast (which are covered in Chapter 5, Working with Active Record). The pre-
ceding example would use the method rate_before_type_cast, and bypass the over-
riding method we defined.

11.8.3 Integrating Additional Objects in One Form

The fields_for helper method creates a scope around a specific model object like
form_for, but doesn’t create the form tags themselves. Neither does it have an actual
HTML representation as a div or fieldset. The fields_for method is suitable for
specifying additional model objects in the same form, particularly associations of the
main object being represented in the form.

Generic Examples

The following simple example represents a person and its associated permissions.

= form_for person do |form| %>

First name:

= form.text_field :first_name

Last name:

= form.text_field :last_name

.permissions

= fields_for person.permission do |pf|

= permission_fields.check_box :admin

Admin

4. It’s ancient history by now, but to read up on the “Form field helpers don’t use object accessors at”
http://dev.rubyonrails.org/ticket/2322.

http://dev.rubyonrails.org/ticket/2322

344 Chapter 11: All About Helpers

Nested Attributes Examples

When the object belonging to the current scope has a nested attribute writer for a certain
attribute, fields_for will yield a new scope for that attribute. This allows you to
create forms that set or change the attributes of a parent object and its associations in
one go.

Nested attribute writers are normal setter methods named after an associa-
tion. The most common way of defining these writers is either by declaring
accepts_nested_attributes_for in a model definition or by defining a method
with the proper name, along the lines of the faux accessors described earlier in the
chapter. For example: the attribute writer for the association :address is called
address_attributes=.

Whether a one-to-one or one-to-many style form builder will be yielded depends
on whether the normal reader method returns a single object or an array of objects.
Consider a simple Ruby Person class which returns a single Address from its address
reader method and responds to the address_attributes= writer method:

class Person

def address

@address

end

def address_attributes=(attributes)

Process the attributes hash

end

end

This model can now be used with a nested fields for, like:

= form_for person, :url => { :action => "update" } do |form|

= form.fields_for :address do |address_fields|

Street:

= address_fields.text_field :street

Zip code:

= address_fields.text_field :zip_code

When address is already an association on a Person you can use accepts_nested_

attributes_for to define the writer method for you, like:

class Person < ActiveRecord::Base

has_one :address

accepts_nested_attributes_for :address

end

If you want to destroy the associated model through the form, you have to enable it first
using the :allow_destroy option for accepts_nested_attributes_for like:

H
e
lp

e
rs

11.8 FormHelper 345

class Person < ActiveRecord::Base

has_one :address

accepts_nested_attributes_for :address, :allow_destroy => true

end

Now, when you use a checkbox form element specially named _destroy, with a value
that evaluates to true, the logic generated by accepts_nested_attribute_for will
destroy the associated model. (This is a super useful technique for list screens that allow
deletion of multiple records at once using checkboxes.)

= form_for person, :url => { :action => "update" } do |form|

= person_form.fields_for :address do |address_fields|

= address_fields.check_box :_destroy

Delete this address

fields—for with One-to-Many Associations

Consider a Person class that returns an array of Project instances from the projects
reader method and responds to the projects_attributes= writer method:

class Person < ActiveRecord::Base

def projects

[@project1, @project2]

end

def projects_attributes=(attributes)

Process the attributes hash

end

end

This model can now be used with a nested fields_for helper method in a form. The
block given to the nested fields_for call will be repeated for each instance in the
collection automatically:

= form_for person, :url => { :action => "update" } do |form|

= form.fields_for :projects do |project_fields|

.project

Name:

= project_fields.text_field :name

It’s also possible to specify the instance to be used by doing the iteration yourself, which
is a refinement of the square bracket techniques that we discussed earlier. The symbol
passed to fields_for refers to the reader method of the parent object of the form, but
the second argument contains the actual object to be used for fields:

= form_for person, :url => { :action => "update" } do |form|

- person.projects.select(&:active?).each do |project|

= form.fields_for :projects, project do |project_fields|

346 Chapter 11: All About Helpers

.project

Name:

= project_fields.text_field :name

Since fields_for also understands a collection as its second argument in that situation,
you can shrink that last example to the following code. Just inline the projects collection:

= form_for person, :url => { :action => "update" } do |form|

= form.fields_for :projects, projects.select(&:active?)do

|project_fields|

.project

Name:

= project_fields.text_field :name

If, in our example, Person was an Active Record model and projects was one of its
has_many associations, then you could use accepts_nested_attributes_for to
define the writer method for you:

class Person < ActiveRecord::Base

has_many :projects

accepts_nested_attributes_for :projects

end

As with using accepts_nested_attributes_for with a belongs_to association, if
you want to destroy any of the associated models through the form, you have to enable
it first using the :allow_destroy option:

class Person < ActiveRecord::Base

has_many :projects

accepts_nested_attributes_for :projects, :allow_destroy => true

end

This will allow you to specify which models to destroy in the attributes hash by adding
a boolean form element named _destroy

= form_for person do |form|

= form.fields_for :projects do |project_fields| %>

= project_fields.check_box :_destroy

Delete this project

Saving Nested Attributes

Nested records are updated on save, even when the intermediate parent record is un-
changed. For example, consider the following model code. 5

5. See https://rails.lighthouseapp.com/projects/8994/tickets/4242-nested-child-only-
updates-if-parent-changes for an explanation of the origin of this feature and example code.

https://rails.lighthouseapp.com/projects/8994/tickets/4242-nested-child-onlyupdates-if-parent-changes
https://rails.lighthouseapp.com/projects/8994/tickets/4242-nested-child-onlyupdates-if-parent-changes

H
e
lp

e
rs

11.8 FormHelper 347

class Project < ActiveRecord::Base

has_many :tasks

accepts_nested_attributes_for :tasks

end

class Task < ActiveRecord::Base

belongs_to :project

has_many :assignments

accepts_nested_attributes_for :assignments

end

class Assignment < ActiveRecord::Base

belongs_to :task

end

The following spec snippet illustrates nested saving:

setup project, task and assignment objects...

project.update_attributes :name => project.name,

:tasks_attributes => [{

:id => task.id,

:name => task.name,

:assignments_attributes => [{

:id => assignment.id,

:name => 'Paul'

}]

}]

assignment.reload

assignment.name.should == 'Paul'

11.8.4 Customized Form Builders

Under the covers, the form_for method uses a class named ActionView::Helpers::

FormBuilder. An instance of it is yielded to the form block. Conveniently, you can
subclass it in your application to override existing or define additional form helpers.

For example, let’s say you made a builder class to automatically add labels to form
inputs when text_field is called. You’d enable it with the :builder option like:

= form_for person, :builder => LabelingFormBuilder do |f|

Instructions on making custom form builder classes would fill its own chapter, but
luckily there are many open source examples to choose from on Github. If you’re inter-
ested, check out the results of http://github.com/search?type=Repositories&
language=rb&q=form+builder.

http://github.com/search?type=Repositories&language=rb&q=form+builder
http://github.com/search?type=Repositories&language=rb&q=form+builder

348 Chapter 11: All About Helpers

11.8.5 Form Inputs

For each if these methods, there is a similarly named form builder method that omits
the object_name parameter.

check—box(object—name,method,options = {},
checked—value = "1",unchecked—value = "0")
This helper gives you an extra hidden input field to ensure that a false value is passed
even if the check box is unchecked.

>> check_box('timesheet', 'approved')

=> <input name="timesheet[approved]" type="hidden" value="0"/>

<input id="timesheet_approved" name="timesheet[approved]"

type="checkbox" value="1"/>

email—field(object—name, method, options = {})
Creates an email input field. This method is otherwise identical to text_field.

file—field(object—name, method, options = {})
Creates a file upload field and automatically adds:multipart => true to the enclosing
form. See file_field_tag for details.

hidden—field(object—name, method, options = {})
Creates a hidden field, with parameters similar to text_field.

label(object—name, method, text = nil, options = {})
Creates a label tag with the for attribute pointed at the specified input field.

>> label('timesheet', 'approved')

=> <label for="timesheet_approved">Approved</label>

>> label('timesheet', 'approved', 'Approved?')

=> <label for="timesheet_approved">Approved?</label>

Many of us like to link labels to input fields by nesting. (Many would say that’s the
correct usage of labels.) As of Rails 3 the label helper accepts a block so that nesting is
possible and works as would be expected. As a result, instead of having to do this:

= f.label :terms, "Accept #{link_to 'Terms', terms_path}"

you can do the much more elegant and maintainable:

= f.label :terms do

%span Accept #{link_to "Terms", terms_path}

H
e
lp

e
rs

11.8 FormHelper 349

number—field(object—name, method, options = {})
Creates a number input field. This method is otherwise identical to text_field with
the following additional options:

:min The minimum acceptable value.

:max The maximum acceptable value.

:in A range specifying the :min and :max values.

:step The acceptable value granularity.

This field renders with a nil value by default for security reasons. If you want to pre-
populate the user’s password you can do something like

f.password_field(:password, :value => user.password)

password—field(object—name, method, options = {})
Creates a password input field. This method is otherwise identical to text_field, but
renders with a nil value by default for security reasons. If you want to pre-populate the
user’s password you can do something like

f.password_field(:password, :value => user.password)

radio—button(object—name,method,tag—value,
options = {})
Creates a radio button input field. Make sure to give all of your radio button options
the same name so that the browser will consider them linked.

range—field(object—name, method, options = {})
Creates a range input field. This method is otherwise identical to number_field.

search—field(object—name, method, options = {})
Creates a search input field. This method is otherwise identical to text_field.

telephone—field(object—name, method, options = {})
Creates a telephone input field. This method is otherwise identical to text_field and
is aliased as phone_field.

submit(value = nil, options = {})
Creates a submit button with the text value as the caption. The option :disable_with

can be used to provide a name for disabled versions of the submit button.

350 Chapter 11: All About Helpers

text—area(object—name,method,options = {})
Creates a multiline text input field (the textarea tag). The :size option lets you easily
specify the dimensions of the text area, instead of having to resort to explicit :rows and
:cols options.

>> text_area "comment", "body", :size => "25x10"

=> <textarea name="comment[body]" id="comment_body" cols="25" rows="10">

</textarea>

text—field(object—name, method, options = {})
Creates a standard text input field.

11.9 FormOptionsHelper
The methods in the FormOptionsHelper module are all about helping you to work
with HTML select elements, by giving you ways to turn collections of objects into
option tags.

11.9.1 Select Helpers

The following methods help you to create select tags based on a pair of object and
attribute identifiers.

collection—select(object, attribute, collection,
value—method, text—method, options = {},
html—options = {})
Return both select and option tags for the given object and attribute using
options_from_collection_for_select (also in this module) to generate the list of
option tags from the collection parameter.

select(object, attribute, choices, options = {}, html—options = {})

Create a select tag and a series of contained option tags for the provided object_name
and attribute. The value of the attribute currently held by the object (if any) will be
selected, provided that the object is available (not nil). Seeoptions_for_select section
for the required format of the choices parameter.

Here’s a small example in which the value of @person.person_id is 1:

select("post", "person_id", Person.all.collect {|p|

[p.name, p.id] }, { :include_blank => true })

H
e
lp

e
rs

11.9 FormOptionsHelper 351

Executing that helper code would generate the following HTML output:

<select name="post[person_id]">

<option value=""></option>

<option value="1" selected="selected">David</option>

<option value="2">Sam</option>

<option value="3">Tobias</option>

</select>

If necessary, specify :selected => value to explicitly set the selection or
:selected => nil to leave all options unselected. The :include_blank => true

option inserts a blank option tag at the beginning of the list, so that there is no prese-
lected value.

time—zone—select(object, method, priority—zones
= nil, options = {}, html—options = {})
Return select and option tags for the given object and method, using
time_zone_options_for_select to generate the list of option tags.

In addition to the :include_blank option documented in the preceding sec-
tion, this method also supports a :model option, which defaults to TimeZone.

This may be used by users to specify a different timezone model object. (See
time_zone_options_for_select section for more information.)

11.9.2 Option Helpers

For all of the following methods, only option tags are returned, so you have to invoke
them from within a select helper or otherwise wrap them in a select tag.

option—groups—from—collection—for—select(collection,
group—method,group—label—method,option—key—method,
option—value—method, selected—key = nil)
Returns a string of option tags, like options_from_collection_for_select, but
surrounds them with OPTGROUP tags. The collection should return a subarray of
items when calling group_method on it. Each group in the collection should re-
turn its own name when calling group_label_method. The option_key_method

and option_value_method parameters are used to calculate option tag attributes.
It’s probably much easier to show in an example than to explain in words.

>> html_option_groups_from_collection(@continents, "countries",

"continent_name", "country_id", "country_name", @selected_country.id)

352 Chapter 11: All About Helpers

This example could output the following HTML:

<optgroup label="Africa">

<select>Egypt</select>

<select>Rwanda</select>

...

</optgroup>

<optgroup label="Asia">

<select>China</select>

<select>India</select>

<select>Japan</select>

...

</optgroup>

For the sake of clarity, here are the model classes reflected in the example:

class Continent

def initialize(p_name, p_countries)

@continent_name = p_name; @countries = p_countries

end

def continent_name

@continent_name

end

def countries

@countries

end

end

class Country

def initialize(id, name)

@id, @name = id, name

end

def country_id

@id

end

def country_name

@name

end

end

options—for—select(container,selected = nil)
Accepts a container (hash, array, or anything else enumerable) and returns a string of
option tags.

H
e
lp

e
rs

11.9 FormOptionsHelper 353

Given a container in which the elements respond to first and last (such as a two-
element array), the “lasts” serve as option values and the “firsts” as option text. It’s not
too hard to put together an expression that constructs a two-element array using the map
and collect iterators.

For example, assume you have a collection of businesses to display, and you’re using
a select field to allow the user to filter based on the category of the businesses. The
category is not a simple string; in this example, it’s a proper model related to the business
via a belongs_to association:

class Business < ActiveRecord::Base

belongs_to :category

end

class Category < ActiveRecord::Base

has_many :businesses

def <=>(other)

...

end

end

A simplified version of the template code for displaying that collection of businesses
might look like:

- opts = businesses.map(&:category).collect{|c| [[c.name], [c.id]]}

= select_tag(:filter, options_for_select(opts, params[:filter]))

The first line puts together the container expected by options_for_select by first
aggregating the category attributes of the businesses collection using map and the
nifty &:method syntax supported by Rails. The second line generates the select tag
using those options (covered later in the chapter). Realistically you want to massage
that category list a little more, so that it is ordered correctly and does not contain
duplicates:

... businesses.map(&:category).uniq.sort.collect {...

Particularly with smaller sets of data, it’s perfectly acceptable to do this level of data
manipulation in Ruby code. And of course, you probably don’t want to ever shove
hundreds or especially thousands of rows in a select tag, making this technique quite
useful. Remember to implement the spaceship method in your model if you need it to
be sortable by the sort method.

Also, it’s worthwhile to experiment with eager loading in these cases, so you don’t
end up with an individual database query for each of the objects represented in the

354 Chapter 11: All About Helpers

select tag. In the case of our example, the controller would populate the businesses
collection using code like:

expose(:businesses) do

Business.where(...).includes(:category)

end

Hashes are turned into a form acceptable to options_for_select automatically—the
keys become firsts and values become lasts.

If selected parameter is specified (with either a value or array of values for multiple
selections), the matching last or element will get the selected attribute:

>> options_for_select([["Dollar", "$"], ["Kroner", "DKK"]])

<option value="$">Dollar</option>

<option value="DKK">Kroner</option>

>> options_for_select(["VISA", "MasterCard"], "MasterCard")

<option>VISA</option>

<option selected="selected">MasterCard</option>

>> options_for_select({ "Basic" => "$20", "Plus" => "$40" }, "$40")

<option value="$20">Basic</option>

<option value="$40" selected="selected">Plus</option>

>> options_for_select(["VISA", "MasterCard", "Discover"],

["VISA", "Discover"])

<option selected="selected">VISA</option>

<option>MasterCard</option>

<option selected="selected">Discover</option>

A lot of people have trouble getting this method to correctly display their selected item.
Make sure that the value you pass to selected matches the type contained in the object
collection of the select; otherwise, it won’t work. In the following example, assuming
price is a numeric value, without the to_s, selection would be broken, since the values
passed as options are all strings:

>> options_for_select({ "Basic" => "20", "Plus" => "40" }, price.to_s)

<option value="20">Basic</option>

<option value="40" selected="selected">Plus</option>

options—from—collection—for—select(collection,
value—method, text—method, selected = nil)
Returns a string of option tags that have been compiled by iterating over the collection
and assigning the result of a call to the value_method as the option value and the
text_method as the option text. If selected is specified, the element returning a match
on value_method will get preselected.

H
e
lp

e
rs

11.10 FormTagHelper 355

time—zone—options—for—select(selected = nil,
priority—zones = nil, model = TimeZone)
Returns a string of option tags for pretty much any timezone in the world. Supply
a TimeZone name as selected to have it preselected. You can also supply an array of
TimeZone objects as priority_zones, so that they will be listed above the rest of the
(long) list. TimeZone.us_zones is a convenience method that gives you a list of the
U.S. timezones only.

The selected parameter must be either nil, or a string that names a TimeZone

(covered in the Appendix A, ActiveSupport API Reference).
By default, the model is the TimeZone constant (which can be obtained in Active

Record as a value object). The only requirement is that the model parameter be an object
that responds to all, returning an array of objects representing timezones.

11.10 FormTagHelper
The following helper methods generate HTML form and input tags based on explicit
naming and values, contrary to the similar methods present in FormHelper, which
require association to an Active Record model instance. All of these helper methods
take an options hash, which may contain special options or simply additional attribute
values that should be added to the HTML tag being generated.

check—box—tag(name, value = "1",
checked = false, options = {})
Creates HTML for a check box input field. Unlike its fancier cousin, check_box in
FormHelper, this helper does not give you an extra hidden input field to ensure that a
false value is passed even if the check box is unchecked.

>> check_box_tag('remember_me')

=> <input id="remember_me" name="remember_me" type="checkbox" value="1"/>

>> check_box_tag('remember_me', 1, true)

=> <input checked="checked" id="remember_me" name="remember_me"

type="checkbox" value="1" />

email—field—tag(name, value = nil, options = {})
Creates an email input field. This method is otherwise identical to text_field_tag.

field—set—tag(legend = nil, options = nil, & block)
Wrap the contents of the given block in a fieldset tag and optinally give it a legend
tag.

356 Chapter 11: All About Helpers

file—field—tag(name, options = {})
Creates a file upload field. Remember to set your HTML form to multipart or file
uploads will mysteriously not work:

- form_tag '/upload', :multipart => true do

= label_tag :file, 'File to Upload'

= file_field_tag :file

= submit_tag

The controller action will receive a File object pointing to the uploaded file as it exists
in a tempfile on your system. Processing of an uploaded file is beyond the scope of this
book. If you’re smart, you’ll use Jonas Nicklas’ excellent CarrierWave gem instead of
reinventing the wheel.6

form—tag(url—for—options = {},options = {},
*parameters—for—url, & block)
Starts aform tag, with its action attribute set to the URL passed as theurl_for_options
parameter. It is aliased as start_form_tag.

The :method option defaults to POST. Browsers handle HTTP GET and POST
natively; if you specify “put,” “delete,” or any other HTTP verb is used, a hidden input
field will be inserted with the name _method and a value corresponding to the method
supplied. The Rails request dispatcher understands the _method parameter, which is the
basis for the RESTful techniques you learned in Chapter 3.

The :multipart option allows you to specify that you will be including file-upload
fields in the form submission and the server should be ready to handle those files accord-
ingly.

>> form_tag('/posts')

=> <form action="/posts" method="post">

>> form_tag('/posts/1', :method => :put)

=> <form action="/posts/1" method="put">

>> form_tag('/upload', :multipart => true)

=> <form action="/upload" method="post" enctype="multipart/form-data">

You might note that all parameters to form_tag are optional. If you leave them off,
you’ll get a form that posts back to the URL that it came from—a quick and dirty
solution that I use quite often when prototyping or experimenting. To quickly set up a

6. https://github.com/jnicklas/carrierwave

https://github.com/jnicklas/carrierwave

H
e
lp

e
rs

11.10 FormTagHelper 357

controller action that handles post-backs, just include an if/else condition that checks
the request method, something like:

def add

if request.post?

handle the posted params

redirect_to :back

end

end

Notice that if the request is a post, I handle the form params and then redirect back
to the original URL (using redirect_to :back). Otherwise, execution simply falls
through and would render whatever template is associated with the action.

hidden—field—tag(name, value = nil, options = {})
Creates a hidden field, with parameters similar to text_field_tag.

image—submit—tag(source, options = {})
Displays an image that, when clicked, will submit the form. The interface for this method
is the same as its cousin image_tag in the AssetTagHelper module.

Image input tags are popular replacements for standard submit tags, because they
make an application look fancier. They are also used to detect the location of the mouse
cursor on click—the params hash will include x and y data.

label—tag(name, text = nil, options = {})
Creates a label tag with the for attribute set to name.

number—field—tag(name, value = nil, options = {})
Creates a number input field. This method is otherwise identical to text_field_tag

with the following additional options:

:min The minimum acceptable value

:max The maximum acceptable value

:in A range specifying the :min and :max values

:step The acceptable value granularity

password—field—tag(name = "password",
value = nil, options = {})
Creates a password input field. This method is otherwise identical to text_field_tag.

358 Chapter 11: All About Helpers

radio—button—tag(name,value,checked = false,
options = {})
Creates a radio button input field. Make sure to give all of your radio button options
the same name so that the browser will consider them linked.

range—field—tag(name, value = nil, options = {})
Creates a range input field. This method is otherwise identical to number_field_tag.

search—field—tag(name, value = nil, options = {})
Creates a search input field. This method is otherwise identical to text_field_tag.

select—tag(name, option—tags = nil, options = {})
Creates a drop-down selection box, or if the :multiple option is set to true, a multiple-
choice selection box. The option_tags parameter is an actual string of option tags to
put inside the select tag. You should not have to generate that string explicitly yourself.
Instead, use the helpers in FormOptions (covered in the previous section of this chapter),
which can be used to create common select boxes such as countries, time zones, or
associated records.

submit—tag(value = ’’Save changes’’, options = {})
Creates a submit button with the text value as the caption. The option :disable_with

can be used to provide a name for disabled versions of the submit button.

telephone—field—tag(name, value = nil, options = {})
Creates a telephone input field. This method is otherwise identical to text_field_tag

and is aliased as phone_field_tag.

text—area—tag(name, content = nil, options = {})
Creates a multiline text input field (the textarea tag). The :size option lets you easily
specify the dimensions of the text area, instead of having to resort to explicit :rows and
:cols options.

>> text_area_tag "body", nil, :size => "25x10"

=> <textarea name="body" id="body" cols="25" rows="10"></textarea>

text—field—tag(name, value = nil, options = {})
Creates a standard text input field.

11.11 JavaScriptHelper
Provides helper methods to facilitate inclusion of JavaScript code in your templates.

H
e
lp

e
rs

11.12 NumberHelper 359

escape—javascript(javascript)
Escapes line breaks, single and double quotes for JavaScript segments.

javascript—tag(content, html—options={})
Outputs a script tag with the content inside. The html_options are added as tag
attributes.

11.12 NumberHelper
This module provides assistance in converting numeric data to formatted strings suit-
able for displaying in your view. Methods are provided for phone numbers, currency,
percentage, precision, positional notation, and file size.

human—size(size, precision=1)
Alias for number_to_human_size.

number—to—currency(number, options = {})
Formats a number into a currency string. You can customize the format in the options
hash.

:precision Sets the level of precision, defaults to 2

:unit Sets the denomination of the currency, defaults to "$"

:separator Sets the separator between the units, defaults to "."

:delimiter Sets the thousands delimiter, defaults to ","

>> number_to_currency(1234567890.50)

=> $1,234,567,890.50

>> number_to_currency(1234567890.506)

=> $1,234,567,890.51

>> number_to_currency(1234567890.506, :precision => 3)

=> $1,234,567,890.506

>> number_to_currency(1234567890.50, :unit => "£",

=> :separator => ",", :delimiter => ""

=> £1234567890,50

number—to—human—size(size, precision=1)
Formats the bytes in size into a more understandable representation. Useful for reporting
file sizes to users. This method returns nil if size cannot be converted into a number.
You can change the default precision of 1.

360 Chapter 11: All About Helpers

number_to_human_size(123) => 123 Bytes

number_to_human_size(1234) => 1.2 KB

number_to_human_size(12345) => 12.1 KB

number_to_human_size(1234567) => 1.2 MB

number_to_human_size(1234567890) => 1.1 GB

number_to_human_size(1234567890123) => 1.1 TB

number_to_human_size(1234567, 2) => 1.18 MB

This method is also aliased as human_size.

number—to—percentage(number,options = {})
Formats a number as a percentage string. You can customize the format in the options
hash.

:precision Sets the level of precision, defaults to 3

:separator Sets the separator between the units, defaults to "."

number_to_percentage(100) => 100.000%

number_to_percentage(100, {:precision => 0}) => 100%

number_to_percentage(302.0574, {:precision => 2}) => 302.06%

number—to—phone(number, options = {})
Formats a number as a U.S. phone number. You can customize the format in the options
hash.

:area code Adds parentheses around the area code

:delimiter Specifies the delimiter to use, defaults to "-"

:extension Specifies an extension to add to the end of the generated number

:country code Sets the country code for the phone number

number_to_phone(1235551234) #=> "123-555-1234"

number_to_phone(1235551234, :area_code => true) #=> "(123) 555-1234"

number_to_phone(1235551234, :delimiter => " ") #=> "123 555 1234"

number—with—delimiter(number,delimiter=",",
separator=".")
Formats a number with grouped thousands using a delimiter. You can customize the
format using optional delimiter and separator parameters.

delimiter Sets the thousands delimiter, defaults to ","

separator Sets the separator between the units, defaults to "."

H
e
lp

e
rs

11.14 RawOutputHelper 361

number_with_delimiter(12345678) #=> "12,345,678"

number_with_delimiter(12345678.05) #=> "12,345,678.05"

number_with_delimiter(12345678, ".") #=> "12.345.678"

number—with—precision(number,precision=3)
Formats a number with the specified level of precision. The default level of precision
is 3.

number_with_precision(111.2345) #=> "111.235"

number_with_precision(111.2345, 2) #=> "111.24"

11.13 PrototypeHelper
PrototypeHelper has been heavily modified from what it was in earlier versions of
Rails. It now primarily contains the implementation of RJS, covered in Section 12.2.

The following helper methods were removed and made available in an official Pro-
totype Legacy Helper available at http://github.com/rails/prototype_legacy_
helper.

• button_to_remote

• form_remote_for

• form_remote_tag

• link_to_remote

• observe_field

• observe_form

• periodically_call_remote

• remote_form_for

• submit_to_remote

Be aware that the functionality of the form_remote_for, form_remote_tag,
link_to_remote, and remote_form_for methods remains partially supported using
the :remote => true option on link and form helpers, as covered in Section 12.1.1.

11.14 RawOutputHelper
This is an extremely simple helper module, barely worth mentioning.

http://github.com/rails/prototype_legacy_helper
http://github.com/rails/prototype_legacy_helper

362 Chapter 11: All About Helpers

raw(stringish)
Bypasses HTML sanitization, by calling to_s, then html_safe on the argument passed
to it.

11.15 RecordIdentificationHelper
This module, which wraps the methods of ActionController::RecordIdentifier,
encapsulates a number of naming conventions for dealing with records, like Active Record
models or Active Resource models or pretty much any other type of model object that
you want to represent in markup code (like HTML) and which has an id attribute.
These patterns are then used to try to elevate the view actions to a higher logical level.
For example, assume that you have map.resources :posts defined in your routes
file, and code that looks like this in your view:

= div_for(post) do

= post.body

The HTML for the div element would thus be rendered like:

<div id="post_45" class="post">

What a wonderful world!

</div>

Notice the convention reflected in the id attribute. Now, for the controller, which has
an Ajax-enabled destroy method. The idea is that it can be called to delete the record
and make it disappear from the page without a reload operation:

def destroy

post = Post.find(params[:id])

post.destroy

respond_to do |format|

format.html { redirect_to :back }

format.js do

Calls: new Effect.fade('post_45');

render(:update) { |page| page[post].visual_effect(:fade) }

end

end

end

As the preceding example shows, you can stop caring to a large extent what the actual
id of the model is (the div element holding the model information, that is). You just
know that one is being assigned and that the subsequent calls in RJS expect that same
naming convention and allow you to write less code if you follow it. You can find more
information on this technique in Chapter 12.

H
e
lp

e
rs

11.16 RecordTagHelper 363

dom—class(record—or—class, prefix = nil)
The DOM class convention is to use the singular form of an object or class.

dom_class(post) # => "post"

dom_class(Person) # => "person"

If you need to address multiple instances of the same class in the same view, you can
prefix the dom_class:

dom_class(post, :edit) # => "edit_post"

dom_class(Person, :edit) # => "edit_person"

dom—id(record, prefix = nil)
The DOM id convention is to use the singular form of an object or class with the id
following an underscore. If no id is found, prefix with new_ instead.

dom_id(Post.create) # => "post_42"

dom_id(Post.new) # => "new_post"

If you need to address multiple instances of the same class in the same view, you can
prefix the dom_id like: dom_id(Post.create, :edit) results in edit_post_42.

partial—path(record—or—class)
Returns plural/singular for a record or class, which is very useful for automatically
rendering partial templates by convention.

partial_path(post) # => "posts/post"

partial_path(Person) # => "people/person"

11.16 RecordTagHelper
This module is closely related to RecordIdentificationHelper in that it assists in
creation of HTML markup code that follows good, clean naming conventions.

content—tag—for(tag—name, record, *args, & block)
This helper method creates an HTML element with id and class parameters that relate
to the specified Active Record object. For instance, assuming @person is an instance of
a Person class, with an id value of 123 then the following template code

= content_tag_for(:tr, @person) do

%td= @person.first_name

%td= @person.last_name

364 Chapter 11: All About Helpers

will produce the following HTML

<tr id="person_123" class="person">

...

</tr>

If you require the HTML id attribute to have a prefix, you can specify it as a third
argument:

>> content_tag_for(:tr, @person, :foo) do ...

=> "<tr id=\"foo_person_123\" class=\"person\">..."

The content_tag_for helper also accepts a hash of options, which will be converted
to additional HTML attributes on the tag. If you specify a :class value, it will be
combined with the default class name for your object instead of replacing it (since
replacing it would defeat the purpose of the method!).

>> content_tag_for(:tr, @person, :foo, :class => 'highlight') do ...

=> "<tr id=\"foo_person_123\" class=\"person highlight\">..."

div—for(record, *args, & block)
Produces a wrapper div element with id and class parameters that relate to the
specified Active Record object. This method is exactly like content_tag_for except
that it’s hard-coded to output div elements.

11.17 SanitizeHelper
The SanitizeHelper module provides a set of methods for scrubbing text of undesired
HTML elements. Rails 3 sanitizes and escapes html content by default, so this helper is
really intended to assist with the inclusion of dynamic content into your views.

sanitize(html, options = {})
Encodes all tags and strip all attributes (not specifically allowed) from the html string
passed to it. Also strips href and src tags with invalid protocols, particularly in an effort
to to prevent abuse of javascript: attribute values.

= sanitize @article.body

With its default settings, the sanitize method does its best to counter known hacker
tricks such as using unicode/ascii/hex values to get past the JavaScript filters.

You can customize the behavior of sanitize by adding or removing allowable tags
and attributes using the :attributes or :tags options.

= sanitize @article.body, :tags => %w(table tr td), :attributes => %w(id

class style)

H
e
lp

e
rs

11.17 SanitizeHelper 365

It’s possible to add tags to the default allowed tags in your application by altering the value
of config.action_view.sanitized_allowed_tags in an initializer. For instance,
the following code adds support for basic HTML tables.

Rails::Initializer.run do |config|

config.action_view.sanitized_allowed_tags = 'table', 'tr', 'td'

end

You can also remove some of the tags that are allowed by default.

Rails::Initializer.run do |config|

config.after_initialize do

ActionView::Base.sanitized_allowed_tags.delete 'div'

end

end

Or change them altogether.

Rails::Initializer.run do |config|

config.action_view.sanitized_allowed_attributes = 'id', 'class', 'style'

end

Sanitizing user-provided text does not guarantee that the resulting markup will be valid
(conforming to a document type) or even well-formed. The output may still contain
unescaped <, >, & characters that confuse browsers and adversely affect rendering.

sanitize—css(style)
Sanitizes a block of CSS code. Used by sanitize when it comes across a style attribute in
HTML being sanitized.

strip—links(html)
Strips all link tags from text leaving just the link text.

strip_links('Ruby on Rails')

=> Ruby on Rails

strip_links('Please email me at me@email.com.')

=> Please email me at me@email.com.

strip_links('Blog: <a href="http://www.myblog.com/" class="nav"

target=\"_blank\">Visit.')

=> Blog: Visit

366 Chapter 11: All About Helpers

strip—tags(html)
Strips all tags from the html string, including comments. Its HTML parsing ability is
limited by that of the html-scanner tokenizer built into Rails. 7

strip_tags("Strip <i>these</i> tags!")

=> Strip these tags!

strip_tags("Bold no more! See more

here...")

=> Bold no more! See more here...

strip_tags("<div id='top-bar'>Welcome to my website!</div>")

=> Welcome to my website!

11.18 TagHelper
This module provides helper methods for generating HTML tags programmatically.

cdata—section(content)
Returns a CDATA section wrapping the given content. CDATA sections are used
to escape blocks of text containing characters that would otherwise be recognized as
markup. CDATA sections begin with the string <![CDATA[and end with (and may not
contain) the string]]>.

content—tag(name, content = nil,
options = nil, & block)
Returns an HTML block tag of type name surrounding the content. Add HTML at-
tributes by passing an attributes hash as options. Instead of passing the content as an
argument, you can also use a block to hold additional markup (and/or additional calls
to content_tag) in which case, you pass your options as the second parameter.

Here are some simple examples of using content_tag without a block:

>> content_tag(:p, "Hello world!")

=> <p>Hello world!</p>

>> content_tag(:div, content_tag(:p, "Hello!"), :class => "message")

=> <div class="message"><p>Hello!</p></div>

>> content_tag("select", options, :multiple => true)

=> <select multiple="multiple">...options...</select>

7. You can examine the source code of the html-scanner yourself by opening up actionpack/lib/

action_controller/vendor/html-scanner/html/tokenizer.rb

H
e
lp

e
rs

11.19 TextHelper 367

Here it is with content in a block (shown as template code rather than in the console):

- content_tag :div, :class => "strong" do

Hello world!

The preceding code produces the following HTML:

<div class="strong"><p>Hello world!</p></div>

escape—once(html)
Returns an escaped version of HTML without affecting existing escaped entities.

>> escape_once("1 > 2 & 3")

=> "1 < 2 & 3"

>> escape_once("<< Accept & Checkout")

=> "<< Accept & Checkout"

tag(name, options = nil, open = false)
Returns an empty HTML tag of type name, which by default is XHTML compliant.
Setting open to true will create an open tag compatible with HTML 4.0 and below.
Add HTML attributes by passing an attributes hash to options.

The options hash is used with attributes with no value like (disabled and
readonly), which you can give a value of true in the options hash. You can use
symbols or strings for the attribute names.

>> tag("br")

=>

>> tag("br", nil, true)

=>

>> tag("input", { :type => 'text', :disabled => true })

=> <input type="text" disabled="disabled" />

>> tag("img", { :src => "open.png" })

=>

11.19 TextHelper
The methods in this module provide filtering, formatting, and string transformation
capabilities.

368 Chapter 11: All About Helpers

auto—link(text, link = :all,
href—options = {}, & block)
Turns all URLs and email addresses inside the text string into clickable links. The link
parameter is used to optionally limit what should be linked; pass it :email_addresses
or :urls. You can add HTML attributes to the generated links using href_options.

If for whatever reason you are unhappy with the way that Rails is turning your email
addresses and URLs into links, you can supply a block to this method. Each address
found is yielded and the return value of the block is used as the link text.

>> auto_link("Go to http://obiefernandez.com and say hello to

obie@obiefernandez.com")

=> "Go to http://www.rubyonrails.org

and say hello to obie@obiefernandez.com"

>> auto_link("Welcome to my new blog at http://www.myblog.com/. Please

email me at me@email.com.", :all, :target => '_blank') do |text|

truncate(text, 15)

end

=> "Welcome to my new blog at <a href=\"http://www.myblog.com/\"

target=\"_blank\">http://www.m....

Please email me at me@email.com."

concat(string, binding)
The preferred method of outputting text in your views is to use the = expression in
Haml syntax, or the <%= expression %> in eRuby syntax. The regular puts and print
methods do not operate as expected in an eRuby code block; that is, if you expected them
to output to the browser. If you absolutely must output text within a non-output code
block like - expression in Haml, or <% expression %> in eRuby, you can use the
concat method. I’ve found that this method can be especially useful when combined
with capture in your own custom helper method implementations.

The following example code defines a helper method that wraps its block content
in a div with a particular css class.

def wrap(&block)

concat(content_tag(:div, capture(&block), :class => "wrapped_content"))

end

You would use it in your template as follows:

- wrap do

My wrapped content

H
e
lp

e
rs

11.19 TextHelper 369

current—cycle(name = "default")
Returns the current cycle string after a cycle has been started. Useful for complex table
highlighting or any other design need which requires the current cycle string in more
than one place.

- # Alternate background colors with coordinating text color

- [1,2,3,4].each do |item|

%div(style="background-color:#{cycle('red', 'green', 'blue')}")

%span(style="color:dark#{current_cycle}")= item

cycle(first—value, *values)
Creates a Cycle object whose to_s method cycles through elements of the array of
values passed to it, every time it is called. This can be used, for example, to alternate
classes for table rows. Here’s an example that alternates CSS classes for even and odd
numbers, assuming that the @items variable holds an array with 1 through 4:

%table

- @items.each do |item|

%tr{:class => cycle('even', 'odd')}

%td= item

As you can tell from the example, you don’t have to store the reference to the cycle in
a local variable or anything like that; you just call the cycle method repeatedly. That’s
convenient, but it means that nested cycles need an identifier. The solution is to pass
cycle a :name => cycle_name option as its last parameter. Also, you can manually
reset a cycle by calling reset_cycle and passing it the name of the cycle to reset. For
example, here is some data to iterate over:

Cycle CSS classes for rows, and text colors for values within each row

@items = [{:first => 'Robert', :middle => 'Daniel', :last => 'James'},

{:first => 'Emily', :last => 'Hicks'},

{:first => 'June', :middle => 'Dae', :last => 'Jones'}]

And here is the template code. Since the number of cells rendered varies, we want to
make sure to reset the colors cycle before looping:

- @items.each do |item|

%tr{:class => cycle('even', 'odd', :name => 'row_class')}

- item.values.each do |value|

%td{:class => cycle('red', 'green', :name => 'colors')}

= value

- reset_cycle 'colors'

370 Chapter 11: All About Helpers

excerpt(text, phrase, radius = 100,
excerpt—string = "...")
Extracts an excerpt from text that matches the first instance of phrase. The radius
expands the excerpt on each side of the first occurrence of phrase by the number of
characters defined in radius (which defaults to 100). If the excerpt radius overflows
the beginning or end of the text, the excerpt_string will be prepended/appended
accordingly. If the phrase isn’t found, nil is returned.

>> excerpt('This is an example', 'an', 5)

=> "...s is an examp..."

>> excerpt('This is an example', 'is', 5)

=> "This is an..."

>> excerpt('This is an example', 'is')

=> "This is an example"

>> excerpt('This next thing is an example', 'ex', 2)

=> "...next t..."

>> excerpt('This is also an example', 'an', 8, '<chop> ')

=> "<chop> is also an example"

highlight(text,phrases,highlighter = ’<strong
class="highlight">\1’)
Highlights one or more phrases everywhere in text by inserting into a highlighter tem-
plate. The highlighter can be specialized by passing highlighter as a single-quoted string
with \1 where the phrase is to be inserted.

>> highlight('You searched for: rails', 'rails')

=> You searched for: <strong class="highlight">rails

>> highlight('You searched for: ruby, rails, dhh', 'actionpack')

=> You searched for: ruby, rails, dhh

>> highlight('You searched for: rails', ['for', 'rails'], '\1')

=> You searched for: rails

>> highlight('You searched for: rails', 'rails', "\1")

=> You searched for: rails

pluralize(count, singular, plural = nil)
Attempts to pluralize the singular word unless count is 1. If the plural is supplied, it will
use that when count is > 1. If the ActiveSupport Inflector is loaded, it will use

H
e
lp

e
rs

11.19 TextHelper 371

the Inflector to determine the plural form; otherwise, it will just add an “s” to the
singular word.

>> pluralize(1, 'person')

=> "1 person"

>> pluralize(2, 'person')

=> "2 people"

>> pluralize(3, 'person', 'users')

=> "3 users"

>> pluralize(0, 'person')

=> "0 people"

reset—cycle(name = "default")
Resets a cycle (see the cycle method in this module) so that it starts cycling from its
first element the next time it is called. Pass in a name to reset a named cycle.

simple—format(text)
Returns text transformed into HTML using simple formatting rules. Two or more
consecutive newlines (\n\n) are considered to denote a paragraph and thus are wrapped
in p tags. One newline (\n) is considered to be a line break and a br tag is appended.
This method does not remove the newlines from the text.

strip—links(text)
Strips all link tags from text leaving just the link text.

>> strip_links('Ruby on Rails')

=> Ruby on Rails

>> strip_links('Please email me at me@email.com.')

=> Please email me at me@email.com.

>> strip_links('Blog: <a href="http://www.myblog.com/" class="nav"

target="_blank">Visit.')

=> Blog: Visit

strip—tags(html)
Strips all HTML tags from the HTML, including comments. This uses the
html-scanner tokenizer and so its HTML parsing ability is limited by that of
html-scanner.

372 Chapter 11: All About Helpers

>> strip_tags("Strip <i>these</i> tags!")

=> Strip these tags!

>> strip_tags("Bold no more! See more

here...")

=> Bold no more! See more here...

>> strip_tags("<div id='top-bar'>Welcome to my website!</div>")

=> Welcome to my website!

truncate(text, length = 30,
truncate—string = "...")
If text is longer than length, text will be truncated to the length specified and the
last three characters will be replaced with the truncate_string:

>> truncate("Once upon a time in a world far far away", 4)

=> "Once..."

>> truncate("Once upon a time in a world far far away")

=> "Once upon a time in a world f..."

>> truncate("And they found that many people were sleeping better.",

15, "... (continued)")

=> "And they found... (continued)"

word—wrap(text, line—width = 80)
Wraps the text into lines no longer than line_width. This method breaks on the first
whitespace character that does not exceed line_width (which is 80 by default).

>> word_wrap('Once upon a time', 4)

=> "Once\nupon\na\ntime"

>> word_wrap('Once upon a time', 8)

=> "Once upon\na time"

>> word_wrap('Once upon a time')

=> "Once upon a time"

>> word_wrap('Once upon a time', 1)

=> "Once\nupon\na\ntime"

11.20 TranslationHelper and the I18n API

I18n stands for internationalization and the I18n gem that ships with Rails makes it easy
to support multiple languages other than English in your Rails applications. When you
internationalize your app, you do a sweep of all the textual content in your models and

H
e
lp

e
rs

11.20 TranslationHelper and the I18n API 373

views that needs to be translated, as well as demarking data like currency and dates,
which should be subject to localization.8

Rails provides an easy-to-use and extensible framework for translating your appli-
cation to a single custom language other than English or for providing multi-language
support in your application.

The process of internationalization in Rails involves the abstraction of strings and
other locale-specific parts of your application (such as dates and currency formats) out
of the codebase and into a locale file.

The process of localization means to provide translations and localized formats for
the abstractions created during internationalization. In the process of localizing your
application you’ll probably want to do following three things:

• Replace or add to Rails’s default locale

• Abstract strings used in your application into keyed dictionaries—e.g., flash mes-
sages, static text in your views, etc.

• Store the resulting dictionaries somewhere

Internationalization is a complex problem. Natural languages differ in so many ways
(e.g., in pluralization rules) that it is hard to provide tools for solving all problems at
once. For that reason the Rails I18n API focuses on:

• Providing support for English and similar languages by default

• Making it easy to customize and extend everything for other languages

As part of this solution, every static string in the Rails framework—e.g., Active Record
validation messages, time and date formats—has been internationalized, so localization

of a Rails application means overriding Rails defaults.

11.20.1 Localized Views

Before diving into the more complicated localization techniques, lets briefly cover
a simple way to translate views that is useful for content-heavy pages. Assume you
have a BooksController in your application. Your index action renders content in
app/views/books/index.html.haml template. When you put a localized variant of

8. This section is an authorized remix of The Complete Guide to Using I18n in Rails, by Sven Fuchs and Karel
Minarik, available at http://guides.rails.info/i18n.html.

http://guides.rails.info/i18n.html

374 Chapter 11: All About Helpers

that template such as index.es.html.haml in the same directory, Rails will recognize
it as the appropriate template to use when the locale is set to :es. If the locale is set to
the default, the generic index.html.haml view will be used normally.

You can make use of this feature when working with a large amount of static content
that would be clumsy to maintain inside locale dictionaries. Just bear in mind that any
changes to a template must be kept in sync with all of its translations.

11.20.2 TranslationHelper Methods

The following two methods are provided for use in your views and assume that I18n
support is setup in your application.

localize(*args) aliased to l
Delegates to ActiveSupport’s I18n\#translate method with no additional function-
ality. Normally you want to use translate instead.

translate(key, options = {}) aliased to t
Delegates to ActiveSupport’s I18n\#translate method, while performing two addi-
tional functions. First, it’ll catch MissingTranslationData exceptions and turn them
into inline spans that contain the missing key, such that you can see within your views
when keys are missing.

Second, it’ll automatically scope the key provided by the current partial if
the key starts with a period. So if you call translate(".foo") from the
people/index.html.haml template, you’ll be calling I18n.translate("people.

index.foo"). This makes it less repetitive to translate many keys within the same
partials and gives you a simple framework for scoping them consistently. If you don’t
prepend the key with a period, nothing is converted.

11.20.3 I18n Setup

There are just a few simple steps to get up and running with I18n support for your
application.

Following the convention over configuration philosophy, Rails will set up your appli-
cation with reasonable defaults. If you need different settings, you can overwrite them
easily.

H
e
lp

e
rs

11.20 TranslationHelper and the I18n API 375

Rails adds all .rb and .yml files from the config/locales directory to your trans-
lations load path, automatically.9 The default en.yml locale in this directory contains a
sample pair of translation strings:

en:

hello: "Hello world"

This means, that in the :en locale, the key hellowill map to the “Hello world” string.10

You can use YAML or standard Ruby hashes to store translations in the default
(Simple) backend.

Unless you change it, the I18n library will use English (:en) as its default locale for
looking up translations. Change the default in config/application.rb using code
similar to:

config.i18n.default_locale = :de

Note

The i18n library takes a pragmatic approach to locale keys (after some discussion11), including
only the locale (“language”) part, like :en, :pl, not the region part, like :en-US or :en-
UK, which are traditionally used for separating “languages” and “regional setting” or “dialects”.
Many international applications use only the “language” element of a locale such as :cz, :th
or :es (for Czech, Thai, and Spanish). However, there are also regional differences within
different language groups that may be important. For instance, in the :en-US locale you would
have $ as a currency symbol, hereas in :en-UK, you would have $. Nothing stops you from
separating regional and other settings in this way: you just have to provide full “English – United
Kingdom” locale in a :en-UK dictionary. Rails I18n plugins such as Globalize212 may help you
implement it.

11.20.4 Setting and Passing the Locale

If you want to translate your Rails application to a single language other than English,
you can just set default_locale to your locale in application.rb as shown above

9. The translations load path is just a Ruby Array of paths to your translation files that will be loaded
automatically and available in your application. You can pick whatever directory and translation file naming
scheme makes sense for you.
10. Every string inside Rails is internationalized in this way, see for instance Active Record validation
messages in the activerecord/lib/active_record/locale/en.yml file or time and date formats in the
activesupport/lib/active_support/locale/en.yml file.
10. http://groups.google.com/group/rails-i18n/browse_thread/thread/14dede2c7dbe9470/
80eec34395f64f3c?hl=en

11. http://github.com/joshmh/globalize2/tree/master

http://groups.google.com/group/rails-i18n/browse_thread/thread/14dede2c7dbe9470/80eec34395f64f3c?hl=en
http://groups.google.com/group/rails-i18n/browse_thread/thread/14dede2c7dbe9470/80eec34395f64f3c?hl=en
http://github.com/joshmh/globalize2/tree/master

376 Chapter 11: All About Helpers

and it will persist through the requests. However, you probably want to provide support
for more locales in your application, depending on the user’s preference. In such cases,
you need to set and pass the locale between requests. You can set the locale in a

Warning

You may be tempted to store the chosen locale in a session or a cookie. Do not do so. The locale
should be transparent and a part of the URL. This way you don’t break people’s basic assumptions
about the web itself: If you send a URL of some page to a friend, he or she should see the same
page, same content.

before_filter in your ApplicationController like:

before_filter :set_locale

def set_locale

if params[:locale] is nil then I18n.default_locale will be used

I18n.locale = params[:locale]

end

This approach requires you to pass the locale as a URL query parameter as in
http://example.com/books?locale=pt. (This is, for example, Google’s approach.)

Getting the locale from params and setting it accordingly is not the hard part of this
techniqe. Including the locale parameter in every URL generated by your application is

the hard part. To include an explicit option in every URL

= link_to books_url(:locale => I18n.locale)

would be tedious at best and impossible to maintain at worst.
A default_url_optionsmethod in ApplicationController is useful precisely

in this scenario. It enables us to set defaults for url_for and helper methods dependent
on it.

def default_url_options(options={})

logger.debug "default_url_options is passed options:

#{options.inspect}\n"

{ :locale => I18n.locale }

end

Every helper method dependent on url_for (e.g., helpers for named routes like
root_path or root_url, resource routes like books_path or books_url, etc.) will
now automatically include the locale in the query string, like

http://localhost:3001/?locale=ja

Having the locale hang at the end of every path in your application can negatively
impact readability of your URLs. Moreover, from an architectural standpoint, locales

http://example.com/books?locale=pt
http://localhost:3001/?locale=ja

H
e
lp

e
rs

11.20 TranslationHelper and the I18n API 377

are a concept that live above other parts of your application domain and your URLs
should probably reflect that.

You might want your URLs to look more like www.example.com/en/books

(which loads the English locale) and www.example.com/nl/books (which loads the
Netherlands locale). This is achievable with the same default_url_options strategy
we just reviewed. You just have to set up your routes with a path_prefix option in
this way:

config/routes.rb

resources :books, :path_prefix => '/:locale'

Even with this approach, you still need to take special care of the root URL of your ap-
plication. An URL like http://localhost:3001/nl will not work automatically, be-
cause the map.root :controller => "dashboard" declaration in your routes.rb
doesn’t take locale into account. After all, there should only be one “root” of your
website.

A possible solution is to map a URL like:

config/routes.rb

map.dashboard '/:locale', :controller => "dashboard"

Do take special care about the order of your routes, so this route declaration does not
break other ones. It would be most wise to add it directly before the map.root declaration
at the end of your routes file.

Warning

This solution has currently one rather big downside. Due to the default_url_options
implementation, you have to pass the :id option explicitely, like
link_to 'Show', book_url(:id => book) and not depend on Rails’ magic in
code like link_to 'Show', book. If this should be a problem, have a look at two plugins
which simplify work with routes in this way: Sven Fuchs’s routing filter13 and Raul Murciano’s
translate routes14. Also make sure to read How to encode the current locale in the URL15 in the
Rails i18n Wiki.

Setting the Locale from the Domain Name

Another option you have is to set the locale from the domain name where your application
runs. For example, we want www.example.com to load the English (or default) locale,

12. http://github.com/svenfuchs/routing-filter/tree/master
13. http://github.com/raul/translate_routes/tree/master
14. http://rails-i18n.org/wiki/pages/how-to-encode-the-current-locale-in-the-url

www.example.com/en/books
www.example.com/nl/books
www.example.com
http://localhost:3001/nl
http://github.com/svenfuchs/routing-filter/tree/master
http://github.com/raul/translate_routes/tree/master
http://rails-i18n.org/wiki/pages/how-to-encode-the-current-locale-in-the-url

378 Chapter 11: All About Helpers

and www.example.es to load the Spanish locale. Thus the top-level domain name is used
for locale setting. This has several advantages:

• The locale is a very obvious part of the URL

• People intuitively grasp in which language the content will be displayed

• It is very trivial to implement in Rails

• Search engines seem to like that content in different languages lives at different,
inter-linked domains

You can implement it like this in your ApplicationController:

before_filter :set_locale

def set_locale

I18n.locale = extract_locale_from_uri

end

Get locale from top-level domain or return nil

def extract_locale_from_tld

parsed_locale = request.host.split('.').last

(available_locales.include? parsed_locale) ? parsed_locale : nil

end

Try adding localhost aliases to your /etc/hosts file to test this technique.

127.0.0.1 application.com

127.0.0.1 application.it

127.0.0.1 application.pl

Setting the Locale from the Host Name

We can also set the locale from the subdomain in a very similar way inside of
ApplicationController.

before_filter :set_locale

def set_locale

I18n.locale = extract_locale_from_uri

end

def extract_locale_from_subdomain

parsed_locale = request.subdomains.first

(available_locales.include? parsed_locale) ? parsed_locale : nil

end

www.example.es

H
e
lp

e
rs

11.20 TranslationHelper and the I18n API 379

11.20.5 Setting Locale from Client Supplied Information

In specific cases, it would make sense to set the locale from client-supplied information,
i.e., not from the URL. This information may come for example from the users’ prefered
language (set in their browser), can be based on the users’ geographical location inferred
from their IP, or users can provide it simply by choosing the locale in your application
interface and saving it to their profile. This approach is more suitable for web-based
applications or services, not for websites. See the sidebar about sessions, cookies, and
RESTful architecture.

Using Accept-Language
One source of client supplied information would be an Accept-Language HTTP
header. People may set this in their browser16 or other clients (such as curl).

A trivial implementation of setting locale based on the Accept-Language header
in ApplicationController might be:

before_filter :set_locale

def set_locale

I18n.locale = extract_locale_from_accept_language_header

logger.debug "* Locale set to '#{I18n.locale}'"

end

private

def extract_locale_from_accept_language_header

request.env['HTTP_ACCEPT_LANGUAGE'].scan(/^[a-z]{2}/).first

end

In real production environments, you should use much more robust code that the
example above. Try plugins such as Iain Hecker’s http accept language17 or even Rack
middleware such as Ryan Tomayko’s locale.18

Using GeoIP (or Similar) Database

Yet another way of choosing the locale from client information would be to use a database
for mapping the client IP to the region, such as GeoIP Lite Country.19 The mechanics of
the code would be very similar to the code above—you would need to query the database
for the user’s IP, and look up your prefered locale for the country/region/city returned.

16. http://www.w3.org/International/questions/qa-lang-priorities
17. http://github.com/iain/http_accept_language/tree/master
18. http://github.com/rtomayko/rack-contrib/blob/master/lib/rack/locale.rb
19. http://www.maxmind.com/app/geolitecountry

http://www.w3.org/International/questions/qa-lang-priorities
http://github.com/iain/http_accept_language/tree/master
http://github.com/rtomayko/rack-contrib/blob/master/lib/rack/locale.rb
http://www.maxmind.com/app/geolitecountry

380 Chapter 11: All About Helpers

User Profile

You can also provide users of your application with means to set (and possibly over-
ride) the locale in your application interface, as well. Again, mechanics for this approach
would be very similar to the code above—you’d probably let users choose a locale from
a dropdown list and save it to their profile in the database. Then you’d set the locale to
this value using a before_filter in ApplicationController.

11.20.6 Internationalizing Your Application

After you’ve setup I18n support for your Ruby on Rails application and told it which
locale to use and how to preserve it between requests, you’re ready for the really interesting
part of the process: actually internationalizing your application.

The Public I18n API

First of all, you should be acquainted with the I18n API. The two most important
methods of the I18n API are

translate # Lookup text translations

localize # Localize Date and Time objects to local formats

These have the aliases #t and #l so you can use them like

I18n.t 'store.title'

I18n.l Time.now

The Process

Take the following basic pieces of a simple Rails application as an example for describing
the process.

config/routes.rb

ActionController::Routing::Routes.draw do |map|

map.root :controller => 'home', :action => 'index'

end

app/controllers/home_controller.rb

class HomeController < ApplicationController

def index

flash[:notice] = "Welcome"

end

end

app/views/home/index.html.haml

%h1 Hello world!

%p.notice= flash[:notice]

H
e
lp

e
rs

11.20 TranslationHelper and the I18n API 381

The example has two strings that are currently hardcoded in English. To interna-
tionalize this code, we must replace those strings with calls to Rails’s #t helper with a
key that makes sense for the translation.

app/controllers/home_controller.rb

class HomeController < ApplicationController

def index

flash[:notice] = t(:welcome_flash)

end

end

app/views/home/index.html.haml

%h1= t(:hello_world)

%p.notice= flash[:notice]

Now when you render this view, it will show an error message which tells you that the
translations for the keys :hello_world and :welcome_flash are missing.

Rails adds a t (translate) helper method to your views so that you do not need to
spell out I18n.t all the time. Additionally this helper will catch missing translations and
wrap the resulting error message into a .

To make the example work you would add the missing translations into the dictionary
files (thereby doing the localization part of the work):

config/locale/en.yml

en:

hello_world: Hello World

welcome_flash: Welcome

config/locale/pirate.yml

pirate:

hello_world: Ahoy World

welcome_flash: All aboard!

Note

You need to restart the server when you add or edit locale files.

You may use YAML (.yml) or plain Ruby (.rb) files for storing your translations. YAML
is the prefered option among Rails developers. However, it has one big disadvantage.
YAML is very sensitive to whitespace and special characters, so the application may not
load your dictionary properly. Ruby files will crash your application on first request,
so you may easily find what’s wrong. (If you encounter any “weird issues” with YAML
dictionaries, try putting the relevant portion of your dictionary into a Ruby file.)

382 Chapter 11: All About Helpers

Adding Date/Time Formats

Okay! Now let’s add a timestamp to the view, so we can demo the date/time localization
feature as well. To localize the time format you pass the Time object to I18n.l or use
Rails’s #l helper method in your views.

app/views/home/index.html.haml

%h1= t(:hello_world)

%p.notice= flash[:notice]

%p= l(Time.now, :format => :short)

And in our pirate translations file let’s add a time format (it’s already there in Rails’s
defaults for English):

config/locale/pirate.yml

pirate:

time:

formats:

short: "arrrround %H'ish"

The rails-i18n repository

There’s a great chance that somebody has already done much of the hard work of translating
Rails’ defaults for your locale. See the rails-i18n repository at Github20 for an archive of various
locale files. When you put such file(s) in config/locale/ directory, they will automatically
be ready for use.

11.20.7 Organization of Locale Files

Putting translations for all parts of your application in one file per locale could be hard
to manage. You can store these files in a hierarchy which makes sense to you.

For example, your config/locale directory could look like:

|-defaults

|---es.rb

|---en.rb

|-models

|---book

|-----es.rb

|-----en.rb

|-views

|---defaults

|-----es.rb

19. http://github.com/svenfuchs/rails-i18n/tree/master/rails/locale

http://github.com/svenfuchs/rails-i18n/tree/master/rails/locale

H
e
lp

e
rs

11.20 TranslationHelper and the I18n API 383

|-----en.rb

|---books

|-----es.rb

|-----en.rb

|---users

|-----es.rb

|-----en.rb

|---navigation

|-----es.rb

|-----en.rb

This way, you can separate model and model attribute names from text inside views,
and all of this from the “defaults” (e.g., date and time formats). Other stores for the i18n
library could provide different means of such separation.

Note

The default locale loading mechanism in Rails does not load locale files in nested dictionaries, like
we have here. So, for this to work, we must explicitly tell Rails to look further through settings in
config/application.rb:

config/application.rb

config.i18n.load_path += Dir[File.join(Rails.root, 'config', 'locales',

'**', '*.{rb,yml}')]

11.20.8 Looking Up Translations

Basic Lookup, Scopes and Nested Keys

Translations are looked up by keys which can be both Symbols or Strings, so these calls
are equivalent:

I18n.t :message

I18n.t 'message'

The translate method also takes a :scope option which can contain one or more
additional keys that will be used to specify a ‚Äúnamespace‚Äù or scope for a translation
key:

I18n.t :invalid, :scope => [:activerecord, :errors, :messages]

This looks up the :invalid message in the Active Record error messages.
Additionally, both the key and scopes can be specified as dot-separated keys as in:

I18n.translate :"activerecord.errors.messages.invalid"

384 Chapter 11: All About Helpers

Thus the following four calls are equivalent:

I18n.t 'activerecord.errors.messages.invalid'

I18n.t 'errors.messages.invalid', :scope => :activerecord

I18n.t :invalid, :scope => 'activerecord.errors.messages'

I18n.t :invalid, :scope => [:activerecord, :errors, :messages]

Default Values

When a :default option is given, its value will be returned if the translation is missing:

I18n.t :missing, :default => 'Not here'

=> 'Not here'

If the :default value is a Symbol, it will be used as a key and translated. One can
provide multiple values as default. The first one that results in a value will be returned.

E.g., the following first tries to translate the key :missing and then the key
:also_missing. As both do not yield a result, the string “Not here” will be returned:

I18n.t :missing, :default => [:also_missing, 'Not here']

=> 'Not here'

Bulk and Namespace Lookup

To look up multiple translations at once, an array of keys can be passed:

I18n.t [:odd, :even], :scope => 'activerecord.errors.messages'

=> ["must be odd", "must be even"]

Also, a key can translate to a (potentially nested) hash of grouped translations. For
instance, one can receive all Active Record error messages as a hash with:

I18n.t 'activerecord.errors.messages'

=> { :inclusion => "is not included in the list", :exclusion => ... }

View Scoped Keys

Rails implements a convenient way to reference keys inside of views. Assume you have
the following local file:

es:

books:

index:

title: "T\'{i}tulo"

You can reference the value of books.index.title inside of the app/views/books/
index.html.haml template by prefixing the key name with a dot. Rails will automati-
cally fill in the scope based on the identity of the view.

<%= t '.title' %>

H
e
lp

e
rs

11.20 TranslationHelper and the I18n API 385

Interpolation

In many cases you want to abstract your translations in such a way that variables can be
interpolated into the translation. For this reason, the I18n API provides an interpolation
feature.

All options besides :default and :scope that are passed to translate will be
interpolated to the translation:

I18n.backend.store_translations :en, :thanks => 'Thanks {{name}}!'

I18n.translate :thanks, :name => 'Jeremy'

=> 'Thanks Jeremy!'

If a translation uses :default or :scope as an interpolation variable, an
I18n::ReservedInterpolationKey exception is raised. If a translation expects
an interpolation variable, but this has not been passed to translate, an
I18n::MissingInterpolationArgument exception is raised.

Pluralization

In English there are only one singular and one plural form for a given string, e.g. “1
message” and “2 messages” but other languages have different grammars with additional
or fewer plural forms21. Thus, the I18n API provides a flexible pluralization feature.

The :count interpolation variable has a special role in that it both is interpolated
to the translation and used to pick a pluralization from the translations according to the
pluralization rules defined by Unicode:

I18n.backend.store_translations :en, :inbox => {

:one => '1 message',

:other => '{{count}} messages'

}

>> I18n.translate :inbox, :count => 2

=> '2 messages'

The algorithm for pluralizations in :en is as simple as:

entry[count == 1 ? 0 : 1]

The translation denoted as :one is regarded as singular, versus any other value regarded
as plural (including the count being zero).

If the lookup for the key does not return a Hash suitable for pluralization, an
I18n::InvalidPluralizationData exception is raised.

21. http://www.unicode.org/cldr/data/charts/supplemental/language_plural_rules.html

http://www.unicode.org/cldr/data/charts/supplemental/language_plural_rules.html

386 Chapter 11: All About Helpers

11.20.9 How to Store Your Custom Translations

The Simple backend shipped with Active Support allows you to store translations in
both plain Ruby and YAML format. A Ruby hash locale file would look like:

{

:pt => {

:foo => {

:bar => "baz"

}

}

}

The equivalent YAML file would look like:

pt:

foo:

bar: baz

In both cases, the top level key is the locale. :foo is a namespace key and :bar is the
key for the translation “baz”.

Here is a real example from the Active Support en.yml translations YAML file:

en:

date:

formats:

default: "%Y-%m-%d"

short: "%b %d"

long: "%B %d, %Y"

So, all of the following equivalent lookups will return the :short date format "%B %d":

I18n.t 'date.formats.short'

I18n.t 'formats.short', :scope => :date

I18n.t :short, :scope => 'date.formats'

I18n.t :short, :scope => [:date, :formats]

Generally we recommend using YAML as a format for storing translations.

Translations for Active Record Models

You can use the methods Model.human_name and Model.human_attribute_

name(attribute) to transparently look up translations for your model and attribute
names.

For example when you add the following translations:

en:

activerecord:

models:

user: Dude

H
e
lp

e
rs

11.20 TranslationHelper and the I18n API 387

attributes:

user:

login: "Handle"

will translate User attribute "login" as "Handle"

User.human_name will return “Dude” and User.human_attribute_name(:login)

will return “Handle”.

Error Message Scopes

Active Record validation error messages can also be translated easily. Active Record
gives you a couple of namespaces where you can place your message translations in
order to provide different messages and translation for certain models, attributes, and/or
validations. It also transparently takes single table inheritance into account.

This gives you quite powerful means to flexibly adjust your messages to your appli-
cation’s needs.

Consider a User model with a validates_presence_of validation for the name
attribute like:

class User < ActiveRecord::Base

validates_presence_of :name

end

The key for the error message in this case is :blank. Active Record will look up this key
in the namespaces:

activerecord.errors.models.[model_name].attributes.[attribute_name]

activerecord.errors.models.[model_name]

activerecord.errors.messages

Thus, in our example it will try the following keys in this order and return the first result:

activerecord.errors.models.user.attributes.name.blank

activerecord.errors.models.user.blank

activerecord.errors.messages.blank

When your models are additionally using inheritance then the messages are looked up
in the inheritance chain.

For example, you might have an Admin model inheriting from User:

class Admin < User

validates_presence_of :name

end

Then Active Record will look for messages in this order:

activerecord.errors.models.admin.attributes.title.blank

activerecord.errors.models.admin.blank

388 Chapter 11: All About Helpers

activerecord.errors.models.user.attributes.title.blank

activerecord.errors.models.user.blank

activerecord.errors.messages.blank

This way you can provide special translations for various error messages at different
points in your models inheritance chain and in the attributes, models, or default scopes.

Error Message Interpolation

The translated model name, translated attribute name, and value are always available for
interpolation.

So, for example, instead of the default error message "can not be blank" you
could use the attribute name like "Please fill in your {{attribute}}".

Translations for the Active Record error—messages—for Helper

If you are using the Active Record error_messages_for helper, you will want to add
translations for it.

Rails ships with the following translations:

en:

activerecord:

errors:

template:

header:

one: "1 error prohibited this {{model}} from being saved"

other: "{{count}} errors prohibited this {{model}} from being

saved"

body: "There were problems with the following fields:"

11.20.10 Overview of Other Built-In Methods that
Provide I18n Support

Rails uses fixed strings and other localizations, such as format strings and other format
information in a couple of helpers. Here’s a brief overview.

Action View Helper Methods

• distance_of_time_in_words translates and pluralizes its result and interpolates
the number of seconds, minutes, hours, and so on. See datetime.distance_in_
words22 translations.

22. http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.
yml#L51

http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.yml#L51
http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.yml#L51

Helpers
11.20

T
r
a
n
s
l
a
t
i
o
n
H
e
l
p
e
r

and
the

I18n
A

P
I

3
8

9

Validation with option Message interpolation

validates_confirmation_of – :confirmation -
validates_acceptance_of – :accepted -
validates_presence_of – :blank -
validates_length_of :within, :in :too_short count

validates_length_of :within, :in :too_long count

validates_length_of :is :wrong_length count

validates_length_of :minimum :too_short count

validates_length_of :maximum :too_long count

validates_uniqueness_of – :taken -
validates_format_of – :invalid -
validates_inclusion_of – :inclusion -
validates_exclusion_of – :exclusion -
validates_associated – :invalid -
validates_numericality_of – :not_a_number -
validates_numericality_of :greater_than :greater_than count

validates_numericality_of :greater_than_or_equal_to :greater_than_or_equal_to count

validates_numericality_of :equal_to :equal_to count

validates_numericality_of :less_than :less_than count

validates_numericality_of :less_than_or_equal_to :less_than_or_equal_to count

validates_numericality_of :odd :odd -
validates_numericality_of :even :even -

390 Chapter 11: All About Helpers

• datetime_select and select_month use translated month names for pop-
ulating the resulting select tag. See date.month_names23 for translations.
datetime_select also looks up the order option from date.order24 (unless you
pass the option explicitely). All date selection helpers translate the prompt using the
translations in the datetime.prompts25 scope if applicable.

• The number_to_currency, number_with_precision, number_to_

percentage, number_with_delimiter, and number_to_human_size helpers
use the number format settings located in the number26 scope.

Active Record Methods

• human_name and human_attribute_name use translations for model names and
attribute names if available in the activerecord.models27 scope. They also support
translations for inherited class names (e.g., for use with STI) as explained in “Error
message scopes”.

• ActiveRecord::Errors#generate_message (which is used by Active Record
validations but may also be used manually) uses human_name and human_

attribute_name. It also translates the error message and supports translations
for inherited class names as explained in “Error message scopes”.

* ActiveRecord::Errors#full_messages prepends the attribute name to the error
message using a separator that will be looked up from activerecord.errors.format.separator
(and which defaults to ' ').

Active Support Methods

• Array#to_sentence uses format settings as given in the support.array scope.

23. http://github.com/rails/rails/blob/master/activesupport/lib/active_support/locale/
en.yml#L15

24. http://github.com/rails/rails/blob/master/activesupport/lib/active_support/locale/
en.yml#L18

25. http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.yml
#L83

26. http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.
yml#L2

27.http://github.com/rails/rails/blob/master/activerecord/lib/active_record/locale/en.
yml#L43

http://github.com/rails/rails/blob/master/activesupport/lib/active_support/locale/en.yml#L15
http://github.com/rails/rails/blob/master/activesupport/lib/active_support/locale/en.yml#L15
http://github.com/rails/rails/blob/master/activesupport/lib/active_support/locale/en.yml#L18
http://github.com/rails/rails/blob/master/activesupport/lib/active_support/locale/en.yml#L18
http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.yml#L83
http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.yml#L83
http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.yml#L2
http://github.com/rails/rails/blob/master/actionpack/lib/action_view/locale/en.yml#L2
http://github.com/rails/rails/blob/master/activerecord/lib/active_record/locale/en.yml#L43
http://github.com/rails/rails/blob/master/activerecord/lib/active_record/locale/en.yml#L43

H
e
lp

e
rs

11.21 UrlHelper 391

11.20.11 Exception Handling

In some contexts, you might want to I18n’s default exception-handling behavior. For
instance, the default exception handling does not allow to catch missing translations
during automated tests easily. For this purpose, a different exception handler can be
specified. The specified exception handler must be a method on the I18n module. You
would add code similar to the following to your spec_helper.rb file or other kind of
initializer.

module I18n

def just_raise_that_exception(*args)

raise args.first

end

end

I18n.exception_handler = :just_raise_that_exception

This would re-raise all caught exceptions including MissingTranslationData.

11.21 UrlHelper
This module provides a set of methods for making links and getting URLs that depend
on the routing subsystem, covered extensively in Chapters 2 and 3 of this book.

button—to(name, options = {}, html—options = {})
Generates a form containing a single button that submits to the URL created by the set
of options. This is the safest method to ensure that links that cause changes to your data
are not triggered by search bots or accelerators. If the HTML button does not work with
your layout, you can also consider using the link_to method (also in this module) with
the :method modifier.

The options hash accepts the same options as the url_for method (also part of this
module).

The generated FORM element has a class name of button-to to allow styling of the
form itself and its children. The :method and :confirm options work just like the
link_to helper. If no :method modifier is given, it defaults to performing a POST
operation. You can also disable the button by passing :disabled => true.

>> button_to "New", :action => "new"

=> "<form method="post" action="/controller/new" class="button-to">

<div><input value="New" type="submit" /></div>

</form>"

>> button_to "Delete Image", { :action => "delete", :id => @image.id },

392 Chapter 11: All About Helpers

:confirm => "Are you sure?", :method => :delete

=> "<form method="post" action="/images/delete/1" class="button-to">

<div>

<input type="hidden" name="_method" value="delete" />

<input onclick="return confirm('Are you sure?');" value="Delete"

type="submit" />

</div>

</form>"

current—page?(options)
Returns true if the current request URI was generated by the given options. For example,
let’s assume that we’re currently rendering the /shop/checkout action:

>> current_page?(:action => 'process')

=> false

>>current_page?(:action => 'checkout') # controller is implied

=> true

>> current_page?(:controller => 'shop', :action => 'checkout')

=> true

link—to(name, options = {}, html—options = nil)
One of the fundamental helper methods. Creates a link tag of the given name using a
URL created by the set of options. The valid options are covered in the description of
this module’s url_for method. It’s also possible to pass a string instead of an options
hash to get a link tag that uses the value of the string as the href for the link. If nil is
passed as a name, the link itself will become the name.

:confirm => ’question?’ Adds a JavaScript confirmation prompt with the ques-
tion specified. If the user accepts, the link is processed normally; otherwise, no action
is taken.

:popup => true Forces the link to open in a pop-up window. By passing true, a
default browser window will be opened with the URL. You can also specify a string
of options to be passed to JavaScript’s window.open method.

:method => symbol Specify an alternative HTTP verb for this request (other than
GET). This modifier will dynamically create an HTML form and immediately sub-
mit the form for processing using the HTTP verb specified (:post, :put, :delete,
or other custom string like "HEAD", and so on).

H
e
lp

e
rs

11.21 UrlHelper 393

Generally speaking, GET requests should be idempotent, that is, they do not modify
the state of any resource on the server, and can be called one or many times without
a problem. Requests that modify server-side resources or trigger dangerous actions like
deleting a record should not usually be linked with a normal hyperlink, since search
bots and so-called browser accelerators can follow those links while spidering your site,
leaving a trail of chaos.

If the user has JavaScript disabled, the request will always fall back to using GET,
no matter what :method you have specified. This is accomplished by including a valid
href attribute. If you are relying on the POST behavior, your controller code should
check for it using the post?, delete?, or put? methods of request.

As usual, the html_options will accept a hash of HTML attributes for the link tag.

= link_to "Help", help_widgets_path, :popup => true

= link_to "Rails", "http://rubyonrails.org/",

:confirm => "Are you sure?"

= link_to "View", widget_path(@widget),

:popup => ['new_window_name', 'height=300,width=600']

= link_to "Delete", widget_path(@widget),

:confirm => "Are you sure?", :method => :delete

[Renders in the browser as...]

<a href="/widgets/help" onclick="window.open(this.href);return

false;">Help

<a href="http://rubyonrails.org/" onclick="return confirm('Are you

sure?');">Rails

<a href="/widgets/42" onclick="window.open(this.href,'new_window_name',

'height=300,width=600'); return false;">View

<a href="/widgets/42" onclick="if (confirm('Are you sure?'))

{ var f = document.createElement('form'); f.style.display = 'none';

this.parentNode.appendChild(f); f.method = 'POST'; f.action =

this.href;var m = document.createElement('input');

m.setAttribute('type', 'hidden'); m.setAttribute('name', '_method');

m.setAttribute('value', 'delete'); f.appendChild(m);var s =

document.createElement('input'); s.setAttribute('type', 'hidden');

s.setAttribute('name', 'authenticity_token'); s.setAttribute('value',

'NerPwDh1oGUzH768lJDVvGgl3jzD/okzE8BxKQe175g=');

f.appendChild(s);f.submit(); };return false;">Delete

394 Chapter 11: All About Helpers

link—to—if(condition, name, options = {},
html—options = {}, & block)
Creates a link tag using the same options as link_to if the condition is true; otherwise,
only the name is output (or block is evaluated for an alternative value, if one is supplied).

link—to—unless(condition, name, options = {},
html—options = {}, & block)
Creates a link tag using the same options as link_to unless the condition is true, in
which case only the name is output (or block is evaluated for an alternative value, if one
is supplied).

link—to—unless—current(name,options = {},
html—options = {}, & block)
Creates a link tag using the same options as link_to unless the condition is true, in
which case only the name is output (or block is evaluated for an alternative value, if one
is supplied).

This method is pretty useful sometimes. Remember that the block given to
link_to_unless_current is evaluated if the current action is the action given. So, if
we had a comments page and wanted to render a “Go Back” link instead of a link to the
comments page, we could do something like

link_to_unless_current("Comment", { :controller => 'comments',

:action => 'new}) do

link_to("Go back", { :controller => 'posts', :action => 'index' })

end

mail—to(email—address, name = nil,
html—options = {})
Creates a mailto link tag to the specified email_address, which is also used as the
name of the link unless name is specified. Additional HTML attributes for the link can
be passed in html_options.

The mail_to helper has several techniques for hindering email harvesters and cus-
tomizing the email address itself by passing special keys to html_options:

:encode This key will accept the strings "javascript" or "hex". Passing
"javascript" will dynamically create and encode the mailto: link and then eval

it into the DOM of the page. This method will not show the link on the page if the
user has JavaScript disabled. Passing "hex" will hex-encode the email_address

before outputting the mailto: link.

H
e
lp

e
rs

11.21 UrlHelper 395

:replace at When the link name isn’t provided, the email_address is used for the
link label. You can use this option to obfuscate the email_address by substituting
the @ sign with the string given as the value.

:replace dot When the link name isn’t provided, the email_address is used for the
link label. You can use this option to obfuscate the email_address by substituting
the “.” in the email with the string given as the value.

:subject The subject line of the email.

:body The body of the email.

:cc Add cc recipients to the email.

:bcc Add bcc recipients to the email.

Here are some examples of usages:

>> mail_to "me@domain.com"

=> me@domain.com

>> mail_to "me@domain.com", "My email", :encode => "javascript"

=> <script type="text/javascript">eval(unescape('%64%6f%63...%6d%65'))

</script>

>> mail_to "me@domain.com", "My email", :encode => "hex"

=> My email

>> mail_to "me@domain.com", nil, :replace_at => "_at_", :replace_dot =>

"_dot_", :class => "email"

=> me_at_domain_dot_com

>> mail_to "me@domain.com", "My email", :cc => "ccaddress@domain.com",

:subject => "This is an example email"

=> <a href="mailto:me@domain.com?cc=ccaddress@domain.com&subject=This%20i

s%20an%20example%20email">My email

url—for(options = {})
The url_for method returns a URL for the set of options provided and takes the same
options as url_for in Action Controller.

Note that by default, the :only_path option is set to true so that you’ll
get the relative /controller/action instead of the fully qualified URL like
http://example.com/controller/action. Note that as of Rails 3 url_for always
returns unescaped strings.

http://example.com/controller/action

396 Chapter 11: All About Helpers

Here is the complete list of options accepted by url_for:

:anchor Specifies an anchor name (#anchor) be appended to the end of the path

:only path Specifies a relative URL (omitting the protocol, host name, and port)

:trailing slash Adds a trailing slash, as in "/archive/2005/". Note that this is
currently not recommended since it breaks caching

:host Overrides the default (current) host if provided

:protocol Overrides the default (current) protocol if provided

:user Inline HTTP authentication (requires :password option)

:password Inline HTTP authentication (requires :user option)

:escape Determines whether the returned URL will be HTML-escaped

When you pass url_for a string, whether explicitly or via a named route helper method,
it’ll assume that it is an already formed URL and won’t manipulate it. I’m mentioning
this mostly for reference purposes; remember that you don’t normally call url_for
directly, but rather through other helper methods such as link_to.

>> url_for(timesheets_path)

=> "/timesheets"

>> url_for('http://cnn.com')

=> "http://cnn.com"

If you pass url_for a hash, it will do old-school URL generation with it, but only if it
finds a matching route definition in routes.rb.

>> url_for(:controller => 'books', :action => 'find')

=> "/books/find"

Back in the day, URL generation of this type (controller/action) always worked because
of the default route. Nowadays, most Rails applications have their default route turned
off and using url_for with hashes is a lot less common. If you’re a relative newcomer to
Rails, it still makes sense to at least have a basic understanding of how this functionality
works.

>> url_for(:controller => 'members', :action => 'login', :only_path =>

false, :protocol => 'https')

=> "https://www.railsapplication.com/members/login"

If some of the parameters of the route are missing from the call to url_for, it defaults
to the current values for :controller, :action, and any other parameters required by
the route and/or used in the current request.

H
e
lp

e
rs

11.21 UrlHelper 397

For example, inside a show view for a template belonging to an auctions controller,
you could create a link to the edit action like:

link_to "Edit auction", :action => "edit", :id => auction

Assuming that this view is only ever rendered by actions in the auctions controller, the
current controller at the time of the rendering will always be auctions. Because there’s
no :controller specified in the URL hash, the generator will fall back on auctions,
and based on the default route (:controller/:action/:id) or a matching resource
route, it should come up with something like:

Edit auction

The same is true of the action. If you don’t supply an :action key, then the current
action will be interpolated. Keep in mind, though, that it’s pretty common for one action
to render a template that belongs to another. So it’s less likely that you’ll want to let the
URL generator fall back on the current action than on the current controller.

Redirecting Back

If you pass the magic symbol :back to any method that uses url_for under
the covers (redirect_to, etc.) the contents of the HTTP_REFERER request header
will be returned. (If a referer is not set for the current request, it will return
javascript:history.back() to try to make the browser go back one page.)

>> url_for(:back)

=> "javascript:history.back()"

So-called Polymorphic Paths

If you pass an Active Record or Active Resource model instance instead of a hash to any
method in the UrlModule that takes url_for parameters, you’ll trigger generation of
a path for that record’s named route (assuming that one exists). For example, passing a
Timesheet object instance will generate a timesheet_path route.

>> url_for(timesheet) # existing record

=> "/timesheets/5"

The lookup is based on the name of the class and is smart enough to call new? on the
passed model to figure out whether to reference a collection or member route.

>> url_for(Timesheet.new)

=> "/timesheets"

If the object’s route is nested within another route, you’ll have to provide either a symbol
designating the namespace that it’s in and/or one or more other objects which are above

398 Chapter 11: All About Helpers

it in the nesting hierarchy. (Make sure to use an array around your objects and symbols,
so that the first argument is properly interpreted!)

>> url_for([client, Timesheet.new])

=> "/clients/1/timesheets"

>> url_for([:admin, Client.new])

=> "/admin/clients"

Somewhat confusingly, collection routes (even within namespaces) are accessed by
prepending the name of the route to the front of the array, as in the following example:

>> url_for([:new, :admin, Client.new])

=> "/admin/clients/new"

11.22 Writing Your Own View Helpers

As you develop an application in Rails, you should be on the lookout for opportunities
to refactor duplicated view code into your own helper methods. As you think of these
helpers, you add them to one of the helper modules defined in the app/helpers folder
of your application.

There is an art to effectively writing helper methods, similar in nature to what it
takes to write effective APIs. Helper methods are basically a custom, application-level
API for your view code. It is difficult to teach API design in a book form. It’s the sort of
knowledge that you gain by apprenticing with more experienced programmers and lots
of trial and error. Nevertheless, in this section, we’ll review some varied use cases and
implementation styles that we hope will inspire you in your own application design.

11.22.1 Small Optimizations: The Title Helper

Here is a simple helper method that has been of use to me on many projects now. It’s
called page_title and it combines two simple functions essential to a good HTML
document:

• Setting the title of the page in the document’s head

• Setting the content of the page’s h1 element

This helper assumes that you want the title and h1 elements of the page to be the
same, and has a dependency on your application template. The code for the helper is in
Listing 11.7 and would be added to app/helpers/application_helper.rb, since it
is applicable to all views.

H
e
lp

e
rs

11.22 Writing Your Own View Helpers 399

Listing 11.7 The page—title Helper

def page_title(name)

content_for(:title) { name }

content_tag("h1", name)

end

First it sets content to be yielded in the layout as :title and then it outputs an h1

element containing the same text. I could have used string interpolation on the second
line, such as "<h1>#{name}</h1>", but it would have been sloppier than using the
built-in Rails helper method content_tag.

My application template is now written to yield :title so that it gets the page
title.

%html

%head

%title= yield :title

As should be obvious, you call the page_title method in your view template where
you want to have an h1 element:

- page_title "New User"

= error_messages_for :user

= form_for(:user, :url => users_path) do |f|

...

11.22.2 Encapsulating View Logic:
The photo—for Helper

Here’s another relatively simple helper. This time, instead of simply outputting data, we
are encapsulating some view logic that decides whether to display a user’s profile photo
or a placeholder image. It’s logic that you would otherwise have to repeat over and over
again throughout your application.

The dependency (or contract) for this particular helper is that the user object being
passed in has a profile_photo associated to it, which is an attachment model based on
Rick Olson’s old attachment_fu Rails plugin.28 The code in Listing 11.8 should be
easy enough to understand without delving into the details of attachment_fu. Since
this is a code example, I broke out the logic for setting src into an if/else structure;
otherwise, this would be a perfect place to use Ruby’s ternary operator.

28. The WillPaginate plugin can be found at http://require.errtheblog.com/plugins/browser/will_

paginate, but you knew that already, since all Rails developers subscribe to Err the Blog.

http://require.errtheblog.com/plugins/browser/will_paginate
http://require.errtheblog.com/plugins/browser/will_paginate

400 Chapter 11: All About Helpers

Listing 11.8 The photo—for helper encapsulating common view logic

def photo_for(user, size=:thumb)

if user.profile_photo

src = user.profile_photo.public_filename(size)

else

src = 'user_placeholder.png'

end

link_to(image_tag(src), user_path(user))

end

Tim says . . .

Luckily, the latest generation of attachment plugins such as Paperclip and CarrierWave use a
NullObject pattern to alleviate the need for you to do this sort of thing.

11.22.3 Smart View: The breadcrumbs Helper

Lots of web applications feature user-interface concepts called breadcrumbs. They are
made by creating a list of links, positioned near the top of the page, displaying how far
the user has navigated into a hierarchically organized application. I think it makes sense
to extract breadcrumb logic into its own helper method instead of leaving it in a layout
template.

The trick to our example implementation (shown in Listing 11.9) is to use the
presence of helper methods exposed by the controller, on a convention specific to your
application, to determine whether to add elements to an array of breadcrumb links.

Listing 11.9 breadcrumbs Helper Method for a Corporate Directory Application

1 def breadcrumbs

2 return if controller.controller_name == 'home'

3 html = [link_to('Home', root_path)]

4 # first level

5 html << link_to(company.name, company) if respond_to? :company

6 # second level

7 html << link_to(department.name, department) if respond_to?

:department

8 # third and final level

9 html << link_to(employee.name, employee) if respond_to? :employee

H
e
lp

e
rs

11.23 Wrapping and Generalizing Partials 401

10 html.join(' > ').html_safe

11 end

Here’s the line-by-line explanation of the code, noting where certain application-
design assumptions are made:

On line 2, we abort execution if we’re in the context of the application’s homepage
controller, since its pages don’t ever need breadcrumbs. A simple return with no value
implicitly returns nil, which is fine for our purposes. Nothing will be output to the
layout template.

On line 3 we are starting to build an array of HTML links, held in the html local
variable, which will ultimately hold the contents of our breadcrumb trail. The first link of
the breadcrumb trail always points to the home page of the application, which of course
will vary, but since it’s always there we use it to initialize the array. In this example, it
uses a named route called root_path.

After the html array is initialized, all we have to do is check for the presence of the
methods returning objects that make up the hierarchy (lines 4 to 9). It is assumed that if
a department is being displayed, its parent company will also be in scope. If an employee
is being displayed, both department and company will be in scope as well. This is not
just an arbitrary design choice. It is a common pattern in Rails applications that are
modeled on REST principles and using nested resource routes.

Finally, on line 10, the array of HTML links is joined with the > character, to give
the entire string the traditional breadcrumb appearance. The call to html_safe tells the
rendering system that this is HTML code and we’re cool with that—don’t sanitize it!

11.23 Wrapping and Generalizing Partials

I don’t think that partials (by themselves) lead to particularly elegant or concise template
code. Whenever there’s a shared partial template that gets used over and over again
in my application, I will take the time to wrap it up in a custom helper method that
conveys its purpose and formalizes its parameters. If appropriate, I might even generalize
its implementation to make it more of a lightweight, reusable component. (Gasp!)

11.23.1 A tiles Helper

Let’s trace the steps to writing a helper method that wraps what I consider to be a
general-purpose partial. Listing 11.10 contains code for a partial for a piece of a user
interface that is common to many applications, and generally referred to as a tile. It pairs

402 Chapter 11: All About Helpers

a small thumbnail photo of something on the left side of the widget with a linked name
and description on the right.

Tiles can also represent other models in your application, such as users and files. As
I mentioned, tiles are a very common construct in modern user interfaces and operating
systems. So let’s take the cities tiles partial and transform it into something that can be
used to display other types of data.

Listing 11.10 A tiles partial prior to wrapping and generalization

1 %table.cities.tiles

2 - cities.in_groups_of(columns) do |row|

3 %tr

4 - row.each do |city|

5 %td[city]

6 .left

7 = image_tag(city.photo.url(:thumb))

8 .right

9 .title

10 = city.name

11 .description

12 = city.description

Note

I realize that it has become passé to use HTML tables, and I happen to agree that div-based
layouts plus CSS are a lot more fun and flexible to work with. However, for the sake of simplicity
in this example, and since the UI structure we’re describing is tabular, I’ve decided to structure it
using a table.

Explanation of the Tiles Partial Code

Since we’re going to transform this city-specific partial into a generalized UI component,
I want to make sure that the code we start with makes absolute sense to you first. Before
proceeding, I’m going through the implementation line by line and explaining what
everything in Listing 11.10 does.

Line 1 opens up the partial with a table element and gives it semantically significant
CSS classes so that the table and its contents can be properly styled.

Line 2 leverages a useful Array extension method provided by ActiveSupport, called
in_groups_of. It uses both of the local variables: cities and columns. Both will
need to be passed into this partial using the :locals option of the render :partial

method. The cities variable will hold the list of cities to be displayed, and columns

H
e
lp

e
rs

11.23 Wrapping and Generalizing Partials 403

is an integer representing how many city tiles each row should contain. A loop iterates
over the number of rows that will be displayed in this table.

Line 3 begins a table row using the tr element.
Line 4 begins a loop over the tiles for each row to be displayed, yielding a city for

each.
Line 5 opens a td element and uses Haml’s object reference notation to autogenerate

an dom_id attribute for the table cell in the style of city_98, city_99, and so on.
Line 6 opens a div element for the left side of the tile and has the CSS class name

needed so that it can be styled properly.
Line 7 calls the image_tag helper to insert a thumbnail photo of the city.
Skipping along, lines 9 ‚Äì 10 insert the content for the .title div element, in this

case, the name and state of the city.
Line 12 directly invokes the description method.

Calling the Tiles Partial Code

In order to use this partial, we have to call render :partial with the two required
parameters specified in the :locals hash:

render "cities/tiles", :cities => @user.cities, :columns => 3

I’m guessing that most experienced Rails developers have written some partial code
similar to this and tried to figure out a way to include default values for some of the
parameters. In this case, it would be really nice to not have to specify :columns all the
time, since in most cases we want there to be three.

The problem is that since the parameters are passed via the :locals hash and
become local variables, there isn’t an easy way to insert a default value in the partial
itself. If you left off the :columns => n part of your partial call, Rails would bomb
with an exception about columns not being a local variable or method. It’s not the same
as an instance variable, which defaults to nil and can be used willy-nilly.

Experienced Rubyists probably know that you can use the defined? method to
figure out whether a local variable is in scope or not, but the resulting code would be
very ugly. The following code might be considered elegant, but it doesn’t work!29

columns = 3 unless defined? columns

29. If you want to know why it doesn’t work, you’ll have to buy the first book in this series: The Ruby Way
ISBN: 0672328844

404 Chapter 11: All About Helpers

Instead of teaching you how to jump through annoying Ruby idiom hoops, I’ll show
you how to tackle this challenge the Rails way, and that is where we can start discussing
the helper wrapping techique.

Tim says . . .

Obie might not want to make you jump through Ruby idiom hoops, but I don’t mind...

Write the Helper Method

First, I’ll add a new helper method to the CitiesHelper module of my application,
like in Listing 11.11. It’s going to be fairly simple at first. In thinking about the name
of the method, it occurs to me that I like the way that tiled(cities) will read instead
of tiles(cities), so I name it that way.

Listing 11.11 The CitiesHelper tiled method

module CitiesHelper

def tiled(cities, columns=3)

render "cities/tiles", :cities => cities, :columns => columns

end

end

Right from the start, I can take care of that default columns parameter by giving
the helper method parameter for columns a default value. That’s just a normal feature
of Ruby. Now instead of specifying the render :partial call in my view template,
I can simply write = tiled(cities) which is considerably more elegant and terse. It
also serves to decouple the implementation of the tiled city table from the view. If I need
to change the way that the tiled table is rendered in the future, I just have to do it in one
place: the helper method.

11.23.2 Generalizing Partials

Now that we’ve set the stage, the fun can begin. The first thing we’ll do is
move the helper method to the ApplicationHelper module so that it’s avail-
able to all view templates. We’ll also move the partial template file to app/views/

shared/_tiled_table.html.haml to denote that it isn’t associated with a particular
kind of view and to more accurately convey its use. As a matter of good code style, I
also do a sweep through the implementation and generalize the identifiers appropriately.
The reference to cities on line 2 becomes collection. The block variable city on
line 4 becomes item. Listing 11.12 has the new partial code.

H
e
lp

e
rs

11.23 Wrapping and Generalizing Partials 405

Listing 11.12 Tiles partial code with revised naming

1 %table.tiles

2 - collection.in_groups_of(columns) do |row|

3 %tr

4 - row.each do |item|

5 %td[item]

6 .left

7 = image_tag(item.photo.public_filename(:thumb))

8 .right

9 .title

10 = item.name

11 .description

12 = item.description

There’s still the matter of a contract between this partial code and the objects that
it is rendering. Namely, they must respond to the following messages: photo, name,
and description. A survey of other models in my application reveals that I need
more flexibility. Some things have names, but others have titles. Sometimes I want the
description to appear under the name of the object represented, but other times I want
to be able to insert additional data about the object plus some links.

Lambda: The Ultimate Flexibility

Ruby allows you to store references to anonymous methods (also known as procs or
lambdas) and call them at will whenever you want.30 Knowing this capability is there,
what becomes possible? For starters, we can use lambdas to pass in blocks of code that
will fill in parts of our partial dynamically.

For example, the current code for showing the thumbnail is a big problem. Since
the code varies greatly depending on the object being handled, I want to be able to
pass in instructions for how to get a thumbnail image without having to resort to big
if/else statements or putting view logic in my model classes. Please take a moment
to understand the problem I’m describing, and then take a look at how we solve it in
Listing 11.13. Hint: The thumbnail, link, title, and description variables hold
lambdas!

30. If you’re familiar with Ruby already, you might know that Proc.new is an alternate way to create anonymous
blocks of code. I prefer lambda, at least in Ruby 1.9, because of subtle behavior differences. Lambda blocks
check the arity of the argument list passed to them when call is invoked, and explicitly calling return in a lambda
block works correctly.

406 Chapter 11: All About Helpers

Listing 11.13 Tiles partial code refactored to use lambdas

1 .left

2 = link_to thumbnail.call(item), link.call(item)

3 .right

4 .title

5 = link_to title.call(item), link.call(item)

6 .description

7 = description.call(item)

Notice that in Listing 11.13, the contents of the left and right div elements come
from variables containing lambdas. On line 2 we make a call to link_to and both of its
arguments are dynamic. A similar construct on line 5 takes care of generating the title
link. In both cases, the first lambda should return the output of a call to image_tag

and the second should return a URL. In all of these lambda usages, the item currently
being rendered is passed to the lambdas as a block variable.

Wilson says . . .

Things like link.call(item) could potentially look even sassier as link[item], except
that you’ll shoot your eye out doing it. (Proc#[] is an alias for Proc#call.)

The New Tiled Helper Method

If you now direct your attention to Listing 11.14, you’ll notice that the tiled method is
changed considerably. In order to keep my positional argument list down to a manageable
size, I’ve switched over to taking a hash of options as the last parameter to the tiled

method. This approach is useful and it mimics the way that almost all helper methods
take options in Rails.

Default values are provided for all parameters, and they are all passed along to the
partial via the :locals hash given to render.

Listing 11.14 The tiled collection helper method with lambda parameters

1 module ApplicationHelper

2 def tiled(collection, opts={})

3 opts[:columns] ||= 3

4 opts[:thumbnail] ||= lambda do |item|

5 image_tag(item.photo.url(:thumb))

6 end

H
e
lp

e
rs

11.24 Conclusion 407

7 opts[:title] ||= lambda {|item| item.to_s }

8 opts[:description] ||= lambda {|item| item.description }

9 opts[:link] ||= lambda {|item| item }

10 render "shared/tiled_table",

11 :collection => collection,

12 :columns => opts[:columns],

13 :link => opts[:link],

14 :thumbnail => opts[:thumbnail],

15 :title => opts[:title],

16 :description => opts[:description]

17 end

18 end

Finally, to wrap up this example, here’s a snippet showing how to invoke our new
tiled helper method from a template, overriding the default behavior for links:

tiled(cities, :link => lambda {|city| showcase_city_path(city)})

The showcase_city_pathmethod is available to the lambda block, since it is a closure,
meaning that it inherits the execution context in which it is created.

11.24 Conclusion

This very long chapter served as a thorough reference of helper methods, both those
provided by Rails and ideas for ones that you will write yourself. Effective use of helper
methods leads to more elegant and maintainable view templates. At this point, you
should also have a good overview about how I18n support in Ruby on Rails works and
are ready to start translating your project.

Before we fully conclude our coverage of Action Pack, (the name used to refer to
Action Controller and Action View together), we’ll jump into the world of Ajax and
JavaScript. Arguably, one of the main reasons for Rails’s continued popularity is its
support for those two crucial technologies of Web 2.0.

This chapter is published under the Creative Commons Attribution-ShareAlike 3.0
license, http://creativecommons.org/licenses/b-sa/3.0

http://creativecommons.org/licenses/b-sa/3.0

This page intentionally left blank

A
ja

x

CHAPTER 12

Ajax on Rails

Ajax isn’t a technology. It’s really several technologies, each flourishing in its own right, coming
together in powerful new ways

—Jesse J. Garrett, who coined the term

Ajax is an acronym that stands for Asynchronous JavaScript and XML. It encompasses
techniques that allow us to liven up web pages with behaviors that happen outside the
normal HTTP request life cycle (without a page refresh).

Some example use-cases for Ajax techniques are

• “Type ahead” input suggestion, as in Google search

• Sending form data asynchronously

• Seamless navigation of web-presented maps, as in Google Maps

• Dynamically updated lists and tables, as in Gmail and other web-based email services

• Web-based spreadsheets

• Forms that allow in-place editing

• Live preview of formatted writing alongside a text input

Ajax is made possible by the XMLHttpRequestObject (or XHR for short), an API that
is available in all modern browsers. It allows JavaScript code on the browser to exchange
data with the server and use it to change the user interface of your application on the
fly, without needing a page refresh. Working directly with XHR in a cross-browser-
compatible way is difficult, to say the least, which is why the open-source ecosystem
flourishes with Ajax JavaScript libraries.

409

410 Chapter 12: Ajax on Rails

Incidentally, Ajax, especially in Rails, has very little to do with XML, despite its
presence there at the end of the acronym. The payload of those asynchronous requests
going back and forth to the server can be anything. Often it’s just a matter of form
parameters posted to the server, and receiving snippets of HTML back, for dynamic
insertion into the page’s DOM. Many times it even makes sense for the server to send back
data encoded in a simple kind of JavaScript called JavaScript Object Notation (JSON).

It’s outside the scope of this book to teach you the fundamentals of JavaScript and/or
Ajax. It’s also outside of our scope to dive into the design considerations of adding Ajax
to your application, elements of which are lengthy and occasionally controversial. Proper
coverage of those subjects would require a whole book and there are many such books
to choose from in the marketplace. Therefore, the rest of the chapter will assume that
you understand what Ajax is and why you would use it in your applications and that
you have a basic understanding of JavaScript programming.

12.0.1 Changes in Rails 3

Since the First Edition of The Rails Way, the landscape has changed. jQuery (located at
http://jquery.com) is the dominant JavaScript framework, due in part to its clean,
unobtrusive API and its use of CSS selectors to obtain elements in the page. Prototype
and Scriptaculous have their adherents but for day-to-day Ajax and Rails work, jQuery
is the workhorse.

Josh says . . .

Experience has shown us that if you want JavaScript code in your application, learn JavaScript
and write it!

There is a declarative mechanism (where you write what you want, rather than how to
do it) in Rails that ultimately generates JavaScript, the Unobtrusive JavaScript (UJS) API.

In Rails 3, the choice of JavaScript library to use in conjunction with Rails’ Ajax
helpers is yours, and you can choose either Prototype or jQuery (or any other library
that has driver support for Rails).

12.0.2 Firebug

Firebug1 is an extremely powerful extension for Firefox and a must-have tool for doing
Ajax work. It lets you inspect Ajax requests and probe the DOM of the page extensively,

1. The first step to getting the Firebug plugin for Firefox is to visit http://www.getfirebug.com

http://www.getfirebug.com
http://jquery.com

A
ja

x
12.1 Unobtrusive JavaScript 411

even letting you change elements and CSS styles on the fly and see the results on your
browser screen. It also has a very powerful JavaScript debugger that you can use to set
watch expressions and breakpoints.

Firebug also has an interactive console, which allows you to experiment with
JavaScript in the browser just as you would use irb in Ruby. In some cases, the code
samples in this chapter are copied from the Firebug console, which has a >>> prompt.

As I’ve jokingly told many of my Ruby on Rails students when covering Ajax on
Rails: “Even if you don’t listen to anything else I say, use Firebug! The productivity gains
you experience will make up for my fee very quickly.”

If you’re developing using Safari or Chrome, those fine browser have built-in devel-
opment tools that mimic Firebug, but I still think the original is the best.

12.1 Unobtrusive JavaScript

The new Unobtrusive JavaScript (UJS) features in Rails provide a library-independent
API for specifying Ajax actions. The Rails team has provided UJS implementations for
both jQuery and Prototype, available under http://github.com/rails/jquery-

ujs and http://github.com/rails/prototype-ujs, respectively.

Xavier says . . .

Prototype is the default JavaScript library used in Rails 3 and newly-generated applications use
it to drive their Ajax UJS features. You can prevent the application generator from doing that
by passing it -J or --skip-prototype. In that case rails.js is not generated, only
application.js.

To use jQuery, just download the jQueryrails.js file intopublic/javascripts.
Then add the following code to your layout’s head section:

= javascript_include_tag

"http://ajax.googleapis.com/ajax/libs/jquery/1.4.1/jquery.min.js"

= javascript_include_tag 'rails'

Note that for our example we’ve hotlinked directly to the jQuery library provided free-
of-charge by Google.

12.1.1 UJS Usage

One of the most dramatic changes caused by the move to UJS is the way that delete
links are generated.

http://github.com/rails/jqueryujs
http://github.com/rails/jqueryujs
http://github.com/rails/prototype-ujs

412 Chapter 12: Ajax on Rails

= link_to 'Delete', user_path(1), :method => :delete, :confirm => "Sure?"

Prior to Rails 3 the resulting HTML would look something like

<a href="/users/1" onclick="if (confirm('Sure?')) { var f =

document.createElement('form'); f.style.display = 'none';

this.parentNode.appendChild(f); f.method = 'POST'; f.action =

this.href;var m = document.createElement('input'); m.setAttribute('type',

'hidden'); m.setAttribute('name', '_method'); m.setAttribute('value',

'delete'); f.appendChild(m);f.submit(); };return false;">Delete

Now, taking advantage of UJS techniques, it will look like

<a rel="nofollow" data-method="delete" data-confirm="Sure?" class="delete"

href="/user/1">Delete

What a difference! 2 Remote forms and link helpers also change due to UJS. Before Rails
3 you would write

remote_form_for(@user)

but now that changes to

form_for(@user, :remote => true)

Ajax links are now written as

link_to "More", more_user_details_path(@user), :remote => true

The above examples will appenddata-remote="true" attributes to the HTML output.
Also required for Rails UJS support is the csrf_meta_tag, which must be placed

in the head of the document and adds the csrf-param and csrf-token meta tags used
in dynamic form generation.

%head

= csrf_meta_tag

12.2 Writing JavaScript in Ruby with RJS

Rails includes a feature called RJS, which generates blocks of JavaScript code based on
Ruby code. It allows you to manipulate a view from server side code and is used in
conjunction with Ajax requests.

The example code in this section adds instant searching of US telephone area codes
to the index view of an area codes resource. For your reference, the AreaCode model
has number and location attributes and looks like

2. Do be aware that Rails UJS requires JavaScript and HTML5 support in the browser.

A
ja

x
12.2 Writing JavaScript in Ruby with RJS 413

class AreaCode < ActiveRecord::Base

def to_s

"#{number} #{location}"

end

end

The observe_field method used in the following example is no longer a native part
of Rails 3 and is not covered in this book. I don’t think it’s too difficult to figure out
what it does. To use it you must install the official Prototype Legacy Helper plugin like
this:

rails plugin install git://github.com/rails/prototype_legacy_helper

Our view features a simple table of area codes and a text field that is observed for changes.

%table

- @area_codes.each do |area_code|

%tr

%td= link_to area_code.number, area_code

%td= area_code.location

%hr

Area Code:

= text_field_tag 'number'

#area_code_results_message

%hr

#area_code_results

= observe_field 'number', :url => search_area_codes_path, :frequency =>

0.25, :with => 'number'

For that template to work, we’ll need to add a collection route for searching area codes
in routes.rb.

resources :area_codes do

collection do

post :search

end

end

Now we’ll use RJS in our AreaCodesController to update the page automatically as
a result of searching.

def search

respond_to do |format|

format.js do

number = params[:number]

area_codes = AreaCode.where("number like ?", "%#{number}%")

render(:update) do |page|

page.replace_html 'area_code_results_message',

414 Chapter 12: Ajax on Rails

"Found #{area_codes.size} Results"

if area_codes.empty?

page.replace_html 'area_code_results', ''

else

page.replace_html 'area_code_results',

area_codes.map(&:to_s).join('
')

end

end

end

end

end

The replace_html method of RJS replaces the inner HTML of the element identified
in the first argument with the value of the second argument. We can use FireBug to see
the JavaScript sent back to the browser in the response body.3

Element.update("area_code_results_message", "Found 41 Results");

Element.update("area_code_results", "301 - MD, W Maryland: Silver

Spring, Frederick, Camp Springs, Prince George's County (see

240)\074br/\076302 - DE, Delaware\074br/\076303 - CO, Central

Colorado:Denver (see 970, also 720 overlay)\074br/\076...

The JavaScript generated uses the Prototype framework.

12.2.1 RJS Templates

It’s a poor practice to combine controller and view logic in one place, which is exactly
what we did when we used render(:update). We can fix that by moving the RJS
code out of the controller and into its own template named search.js.rjs with the
following contents

if @area_codes.empty?

page.replace_html 'area_code_results', ''

else

page.replace_html 'area_code_results_message',

"Found #{@area_codes.size} Results"

page.replace_html 'area_code_results',

@area_codes.map(&:to_s).join('
')

end

The controller action shrinks to just the logic that belongs there.

def search

respond_to do |format|

format.js do

number = params[:number]

3. Error handling code removed for clarity.

A
ja

x
12.2 Writing JavaScript in Ruby with RJS 415

@area_codes = AreaCode.where("number like ?", "%#{number}%")

end

end

end

class AreaCodesController < ApplicationController

def show

@area_codes = AreaCode.where('number like ?', "#{params[:number]}%")

end

end

The respond_to construct is gone, and we instead rely on Rails’ default behavior of
picking a view that matches the request. In other words, Rails will choose to serve
JavaScript view to Ajax requests automatically.

Rails comes with a comprehensive selection of RJS methods described in the follow-
ing sections.

12.2.2 <<(javascript)

This method will write raw JavaScript to the page. This is useful if we have a custom
method in application.js that we want to call. For example:

// application.js

function my_method() {

alert('my_method called');

}

// my_controllers.rb

class MyControllers < Application

def show

...

render :update do |page|

page << 'my_method();'

end

...

end

end

12.2.3 [](id)

This returns a reference of the element identified by id in the DOM. Further calls can
then be made on this element reference like hide, show, and so on. This behaves just
like the $(id) construct in jQuery.

render :update do |page|

page['my_div'].hide # same thing as $('my_div').hide

end

416 Chapter 12: Ajax on Rails

12.2.4 alert(message)

This will display a JavaScript alert with the given message:

render :update do |page|

page.alert('Something is not right here')

end

12.2.5 call(function,*arguments,& block)

Calls the JavaScript function with the given arguments if any. If a block is given, a new
JavaScript generator will be created and all generated JavaScript will be wrapped in a
function() { ... } and passed as the class final argument.

// application.js

function my_method() {

alert('my_method called');

}

// my_controllers.rb

class MyControllers < Application

def show

...

render :update do |page|

page.call('my_method')

end

...

end

end

12.2.6 delay(seconds = 1) ...

This will execute the given block after the given number of seconds have passed.

render :update do |page|

page.delay(5) {

page.visual_effect :highlight, 'results_div', :duration => 1.5

}

end

12.2.7 draggable(id, options = {})

This creates a draggable element (draggable elements are discussed in the section “Drag
and Drop.”

A
ja

x
12.2 Writing JavaScript in Ruby with RJS 417

12.2.8 drop—receiving(id,options = {})

This creates a drop receiving element, which is discussed in the section “Drag and Drop.”

12.2.9 hide(*ids)

Hides the elements identified by the given DOM ids.

render :update do |page|

page.hide('options_div')

page.hide('options_form', 'options_message')

end

12.2.10 insert—html(position, id,
*options—for—render)

Inserts HTML at the given position relative to the given element identified by the DOM
id. Position can be any one of the values shown in Table 12.1.

The options_for_render can be either a string of HTML to insert or options
passed to render.

render :update do |page|

page.insert_html :after, 'my_div', '
<p>My Text</p>'

page.insert_html :before, 'my_other_div', :partial => 'list_items'

end

12.2.11 literal(code)

This is used to pass a literal JavaScript expression as an argument to another JavaScript
generator method. The returned object will have a to_json method that will evaluate
to code.

Table 12.1 Options for insert_html Method

Parameter Description

:top HTML is inserted inside the element, before the element’s existing content.
:bottom HTML is inserted inside the element, after the element’s existing content.
:before HTML is inserted immediately preceding the element.
:after HTML is inserted immediately following the element.

418 Chapter 12: Ajax on Rails

12.2.12 redirect—to(location)

Causes the browser to redirect to the given location.

render :update do |page|

page.redirect_to 'http://www.berlin.de'

end

12.2.13 remove(*ids)

Removes the given elements identified by the DOM ids.

12.2.14 replace(id,*options—for—render)

Replaces the entire element (not just its internal HTML) identified by the DOM id with
either a string or render options set in options_for_render.

render :update do |page|

page.replace 'my_div', '<div>Message</div>'

page.replace 'my_div', :partial => 'entry'

end

12.2.15 replace—html(id,*options—for—render)

Replaces the internal HTML identified by the DOM id with either a string or render
options set in options_for_render.

12.2.16 select(pattern)

Obtains a collection of element references by finding it through a CSS pattern. You can
use standard jQuery enumerations with the returned collection.

render :update do |page|

page.select('div.header p').first

page.select('div.body ul li').each do |value|

value.hide

end

end

12.2.17 show(*ids)

Show the given hidden elements identified by the DOM ids.

12.2.18 sortable(id, options = {})

Creates a sortable element that is discussed in the section “Sortable.”

A
ja

x
12.3 Ajax and JSON 419

12.2.19 toggle(*ids)

Toggles the visibility of the elements identified by the ids. In other words, visible elements
will become hidden and hidden elements will become visible.

12.2.20 visual—effect(name, id = nil,
options = {})

This will start the named effect on the element identified by the DOM id. From RJS
you can call appear, fade, slidedown, slideup, blinddown, and blindup. Each
of these effects results in an element showing or hiding on the page. You can also call
toggle_appear, toggle_slide, and toggle_blind to toggle the effect. For a com-
plete list of visual effects, not just the displaying of elements, and options they take, con-
sult the Scriptaculous documentation. To fade an element, we would do the following:

render :update do |page|

page.visual_effect :fade, 'my_div'

end

12.3 Ajax and JSON

JavaScript Object Notation (JSON) is a simple way to encode JavaScript objects. It is also
considered a language-independent data format, making it a compact, human-readable,
and versatile interchange format. This is the preferred method of interchanging data
between the web application code running on the server and any code running in the
browser, particularly for Ajax requests.

Rails provides a to_json on every object, using a sensible mechanism to do so for
every type. For example, BigDecimal objects, although numbers, are serialized to JSON
as strings, since that is the best way to represent a BigDecimal in a language-independent
manner. You can always customize the to_json method of any of your classes if you
wish, but it should not be necessary to do so.

12.3.1 Ajax link—to

To illustrate an Ajax request, let’s enable our Client controller to respond to JSON and
provide a method to supply the number of draft timesheets outstanding for each client:

respond_to :html, :xml, :json

...

GET /clients/counts

GET /clients/counts.xml

420 Chapter 12: Ajax on Rails

GET /clients/counts.json

def counts

respond_with(Client.all_with_counts, :root => 'clients') do |format|

format.html { redirect_to clients_path }

end

end

This uses the Client class method all_with_counts which returns an array of
hashmaps:

def self.all_with_counts

all.map do |client|

{ :id => client.id, :draft_timesheets_count =>

client.timesheets.draft.count }

end

end

When GET /clients/counts is requested and the content type is JSON the re-
sponse is:

[{"draft_timesheets_count":0, "id":20},

{"draft_timesheets_count":1, "id":21}]

You will note in the code example that HTML and XML are also supported content
types for the response, so it’s up to the client to decide which format works best for
them. We’ll look at formats other than JSON in the next few sections.

In this case, our Client index view requests a response in JSON format:

- content_for :head do

= javascript_include_tag 'clients.js'

...

%table#clients_list

...

- for client in @clients

%tr[client]

%td= client.name

%td= client.code

%td.draft_timesheets_count= client.timesheets.draft.count

...

= link_to 'Update draft timesheets count', counts_clients_path, :remote =>

true, 'data-type' => :json, :id => 'update_draft_timesheets'

Note

UJS probably should take the option :data_type and convert it to the HTML 5 attribute
data-type when using jQuery, or explicitly specify the format in the URL when using Proto-
type. We’ll be keeping a lookout for that behavior in future versions of Rails.

A
ja

x
12.4 Ajax and HTML 421

To complete the asynchronous part of this Ajax-enabled feature, we also need to
add an event-handler to the UJS ajax:success event, fired when the Ajax call on the
update_draft_timesheets element completes successfully. Here, jQuery is used to
bind a JavaScript function to the event once the page has loaded. This is defined in
clients.js:

$(function() {

$("#update_draft_timesheets").bind("ajax:success", function(event,

data) {

$(data).each(function() {

var td = $('#client_' + this.id + ' .draft_timesheets_count')

td.html(this.draft_timesheets_count);

});

});

});

In each row of the clients listing, the respective td with a class of
draft_timesheets_count is updated in place with the values from the JSON re-
sponse. There is no need for a page refresh and user experience is improved.

As an architectural constraint, this does require this snippet of JavaScript to have
intimate knowledge of the target page’s HTML structure and how to transform the
JSON into changes on the DOM. This is a major reason why JSON is the best format
for decoupling the presentation layer of your application or, more importantly, when
the page is requesting JSON from another application altogether.

Sometimes, however, it may be desirable for the server to respond with a snippet of
HTML which is used to replace a region of the target page.

12.4 Ajax and HTML

The Ruby classes in your Rails application will normally contain the bulk of that ap-
plication’s logic and state. Ajax-heavy applications can leverage that logic and state by
transferring HTML, rather than JSON, to manipulate the DOM.

A web application may respond to an Ajax request with an HTML fragment, used
to insert or replace an existing part of the page. This is most usually done when the
transformation relies on complex business rules and perhaps complex state that would
be inefficient to duplicate in JavaScript.

Let’s say your application needs to display clients in some sort of priority order, and
that order is highly variable and dependent on the current context. There could be a
swag of rules dictating what order they are shown in. Perhaps it’s that whenever a client
has more than a number of draft timesheets, we want to flag that in the page.

422 Chapter 12: Ajax on Rails

%td.draft_timesheets_count

- if client.timesheets.draft.count > 3

%span.drafts-overlimit WARNING!

%br

= client.timesheets.draft.count

Along with that, let’s say on a Friday or Saturday we need to group clients by their
hottest spending day so we can make ourselves an action plan for the beginning of the
following week.

These are just two business rules that, when combined, are a bit of a handful to
implement both in Rails and in JavaScript. Applications tend to have many more than
just two rules combining and it quickly becomes prohibitive to implement those rules
in JavaScript to transform JSON into DOM changes. That’s particularly true when the
page making the Ajax call is external and not one we’ve written.

We can opt to transfer HTML in the Ajax call and using JavaScript to update a section
of the page with that HTML. Under one context, the snippet of HTML returned could
look like

<tr id="client_22" class="client"></tr>

<tr>

<td></td><td>Aardworkers</td><td>AARD</td><td>$4321</td>

<td class="draft_timesheets_count">0</td>

</tr>

<tr id="client_23" class="client"></tr>

<tr>

<td></td><td>Zorganization</td><td>ZORG</td><td>$9999</td>

<td class="draft_timesheets_count">1</td>

</tr>

Whereas, in another context, it could look like

<tr>

<td>Friday</td>

</tr>

<tr>

<td>Saturday</td>

</tr>

<tr id="client_24" class="client"></tr>

<tr>

<td></td><td>Hashrocket</td><td>HR</td><td>$12000</td>

<td class="draft_timesheets_count">

WARNING!

5

</td>

</tr>

<tr id="client_22" class="client"></tr>

<tr>

A
ja

x
12.5 Ajax and JavaScript 423

<td></td><td>Aardworkers</td><td>AARD</td><td>$4321</td>

<td class="draft_timesheets_count">0</td>

</tr>

The JavaScript event handler for the Ajax response then just needs to update the
innerHTML of a particular HTML element to alter the page, without having to know
anything about the business rules used to determine what the resulting HTML should be.

12.5 Ajax and JavaScript

The primary reason you want to work with a JavaScript response to an Ajax request is
when it is for JSONP (JSON with Padding). JSONP pads, or wraps, JSON data in a call
to a JavaScript function that exists on your page. You specify the name of that function
in a callback query string parameter. Note that some public APIs may use something
other than callback, but it has become the convention in Rails 3 and most JSONP
applications.

Xavier says . . .

Although the Wikipedia entry4 for Ajax does not specifically mention JSONP and the request is
not XHR by Rails’ definition, we’d like to think of it as Ajax anyways - it is after all asynchronous
JavaScript.

JSONP is one technique for obtaining cross-domain data, avoiding the browser’s
same-origin policy. This introduces a pile of safety and security issues that are beyond
the scope of this book. However, if you need to use JSONP the Rails 3 stack provides
an easy way to handle JSONP requests (with Rack::JSONP) or make JSONP requests
(with UJS and jQuery).

To respond to JSONP requests, activate the Rack JSONP module from the rack-
contrib RubyGem in your environment.rb file:

class Application < Rails::Application

require 'rack/contrib'

config.middleware.use 'Rack::JSONP'

...

then, just use UJS to tell jQuery it’s a JSONP call by altering the data-type to jsonp:

= link_to 'Update draft timesheets count', counts_clients_path, :remote =>

true, 'data-type' => :jsonp, :id => 'update_draft_timesheets'

4. http://en.wikipedia.org/wiki/Ajax_(programming)

http://en.wikipedia.org/wiki/Ajax_(programming)

424 Chapter 12: Ajax on Rails

jQuery automatically adds the ?callback= and random function name to the query
string of the request URI. In addition to this it also adds the necessary script tags to
our document to bypass the same-origin policy. Our existing event handler is bound to
ajax:success so it is called with the data just like before. Now, though, it can receive
that data from another web application.

jQuery also makes the request as if it is for JavaScript, so our Rails controller needs
to respond_to :js. Unfortunately, the Rails 3 automatic rendering for JavaScript
responses isn’t there yet so we add a special handler for JavaScript in our controller:

respond_to :html, :xml, :json, :js

...

def counts

respond_with(Client.all_with_counts, :root => 'clients') do |format|

format.html { redirect_to clients_path }

format.js { render :json => Client.all_with_counts.to_json, :root =>

'clients' }

end

end

We still convert our data to JSON. The Rack::JSONP module then pads that JSON
data in a call to the JavaScript function specified in the query string of the request. The
response looks like this:

jsonp123456789([{"id":1,"draft_timesheets_count":0},

{"id":2,"draft_timesheets_count":1}])

When the Ajax response is complete, your Ajax event handler is called and the JSON
data is passed to it as a parameter.

12.6 Conclusion

The success of Rails is often correlated to the rise of Web 2.0, and one of the factors
linking Rails into that phenomenon is its baked-in support for Ajax. There are a ton of
books about Ajax programming, including some that are specific to using Ajax and Rails
together. It’s a big subject, but an important enough part of Rails that we felt the need
to include a quick introduction to it as part of this book.

S
e
ssio

n

CHAPTER 13

Session Management

I’d hate to wake up some morning and find out that you weren’t you!

—Dr. Miles J. Binnell (Kevin McCarthy) in Invasion of the Body Snatchers (Allied Artists, 1956)

HTTP is a stateless protocol. Without the concept of a session (a concept not unique to
Rails), there’d be no way to know that any HTTP request was related to another one.
You’d never have an easy way to know who is accessing your application! Identification
of your user (and presumably, authentication) would have to happen on each and every
request handled by the server.1

Luckily, whenever a new user accesses our Rails application, a new session is auto-
matically created. Using the session, we can maintain just enough server-side state to
make our lives as web programmers significantly easier.

We use the word session to refer both to the time that a user is actively using the
application, as well as to refer to the persistent hash data structure that we keep around
for that user. That data structure takes the form of a hash, identified by a unique session
id, a 32-character string of random hex numbers. When a new session is created, Rails
automatically sends a cookie to the browser containing the session id, for future reference.
From that point on, each request from the browser sends the session id back to the server,
and continuity can be maintained.

The Rails way to design web applications dictates minimal use of the session for
storage of stateful data. In keeping with the share nothing philosophy embraced by Rails,
the proper place for persistent storage of data is the database, period. The bottom line is
that the longer you keep objects in the user’s session hash, the more problems you create

1. If you are really new to web programming and want a very thorough explanation of how web-based ses-
sion management works, you may want to read the information available at http://www.technicalinfo.
net/papers/WebBasedSessionManagement.html.

425

http://www.technicalinfo.net/papers/WebBasedSessionManagement.html
http://www.technicalinfo.net/papers/WebBasedSessionManagement.html

426 Chapter 13: Session Management

for yourself in trying to keep those objects from becoming stale (in other words, out of
date in relation to the database).

This chapter deals with matters related to session use, starting with the question of
what to put in the session.

13.1 What to Store in the Session

Deciding what to store in the session hash does not have to be super-difficult, if you
simply commit to storing as little as possible in it. Generally speaking, integers (for key
values) and short string messages are okay. Objects are not.

13.1.1 The Current User

There is one important integer that most Rails applications store in the session, and
that is the current_user_id. Not the current user object, but its id. Even if you roll
your own login and authentication code (which you shouldn’t do), don’t store the entire
User (or Person) in the session while the user is logged in. (See Chapter 14, Login
and Authentication, for more information about keeping track of the current user.) The
authentication system should take care of loading the user instance from the database
prior to each request and making it available in a consistent fashion, via a method on
your ApplicationController. In particular, following this advice will ensure that you
are able to disable access to given users without having to wait for their session to expire.

13.1.2 Session Use Guidelines

Here are some more general guidelines on storing objects in the session:

• They must be objects, serializable by Ruby’s Marshal API, which excludes certain
types of objects such as a database connection and other types of I/O objects.

• Large object graphs may exceed the size available for session storage. Whether this
limitation is in effect for you depends on the session store chosen and is covered
later in the chapter.

• Critical data should not be stored in the session, since it can be suddenly lost by the
user ending his session (by closing the browser or clearing his or her cookies).

• Objects with attributes that change often should not be kept in the session.

• Modifying the structure of an object and keeping old versions of it stored in the
session is a recipe for disaster. Deployment scripts should clear old sessions to prevent

S
e
ssio

n
13.3 Storage Mechanisms 427

this sort of problem from occurring, but with certain types of session stores, such as
the cookie store, this problem is hard to mitigate. The simple answer (again) is to
just not keep anything except for the occasional id in the session.

13.2 Session Options

You used to be able to turn off the session, but as of Rails 3, applications that don’t need
sessions don’t have to worry about them. Sessions are lazy-loaded, which means unless
you access the session in a controller action, there is no performance implication.

13.3 Storage Mechanisms

The mechanism via which sessions are persisted can vary. Rails’ default behavior is to
store session data as cookies in the browser, which is fine for almost all applications. If
you need to exceed the 4KB cookies storage limit inherent in using cookies, then you
can opt for an alternative session store. But of course, you shouldn’t be exceeding that
limit, because you shouldn’t be keeping much other than an id or two in the session.

There are also some potential security concerns around session-replay attacks in-
volving cookies, which might push you in the direction of using an alternative session
storage.

13.3.1 Active Record Session Store

The tools to switch over to storing sessions in the database are already built into Rails.
The first step is to create the necessary migration, using a rake task provided for that
very purpose, and run the migration to create the new table:

$ rake db:sessions:create

invoke active_record

create db/migrate/20100114005900_add_sessions_table.rb

$ rake db:migrate

== AddSessionsTable: migrating

===

-- create_table(:sessions)

-> 0.0823s

-- add_index(:sessions, :session_id)

-> 0.0301s

-- add_index(:sessions, :updated_at)

-> 0.0280s

== AddSessionsTable: migrated (0.1433s)

======================================

428 Chapter 13: Session Management

The second (and final) step is to tell Rails to use the new sessions table to store sessions,
via a setting in config/initializers/session_store.rb:

MyApplication::Application.config.session_store :active_record_store

That’s all there is to it.

13.3.2 Memcache Session Storage

If you are running an extremely high-traffic Rails deployment, you’re probably already
leveraging memcache in some way or another. memcache is a remote-process memory
cache that helps power some of the most highly trafficked sites on the Internet.

The memcache session storage option lets you use your memcache server as the
repository for session data, and it is blazing fast. It’s also nice because it has built-in
expiration, meaning you don’t have to expire old sessions yourself.

To use memcache, the first step is to modify Rails’ default session settings in
config/initializers/session_store.rb. At minimum, replace the contents of
the file with the following:

MyApplication::Application.config.session_store :mem_cache_store

Note

The Ruby-based memcache client gem, located at http://rubygems.org/gems/

memcache-client is supposed to ship with Rails. If your server startup crashes and com-
plains that it can’t find the memcache file to load, manually add memcache_client to
your Gemfile. If you’re feeling particularly geeky, you may try installing one of the mem-
cache clients with native bindings, such as http://github.com/ninjudd/memcache
or http://blog.evanweaver.com/files/doc/fauna/memcached.

The session_store method support options as well.

memcache_options = {

:c_threshold => 10_000,

:compression => true,

:debug => false,

:namespace => ":app-#{Rails.env}",

:readonly => false,

:urlencode => false

}

MyApplication::Application.config.session_store :mem_cache_store,

memcache_options

http://rubygems.org/gems/memcache-client
http://rubygems.org/gems/memcache-client
http://github.com/ninjudd/memcache
http://blog.evanweaver.com/files/doc/fauna/memcached

S
e
ssio

n
13.3 Storage Mechanisms 429

13.3.3 The Controversial CookieStore

In February 2007, core-team member Jeremy Kemper made a pretty bold commit to
Rails. He changed the default session storage mechanism from the venerable PStore to
a new system based on a CookieStore. His commit message summed it up well:

Introduce a cookie-based session store as the Rails default. Sessions typically contain at most a
user id and flash message; both fit within the 4K cookie size limit. A secure hash is included with
the cookie to ensure data integrity (a user cannot alter his user id without knowing the secret key
included in the hash). If you have more than 4K of session data or don’t want your data to be
visible to the user, pick another session store. Cookie-based sessions are dramatically faster than
the alternatives.

I describe the CookieStore as controversial because of the fallout over making it
the default session storage mechanism. For one, it imposes a very strict size limit, only
4K. A significant size constraint like that is fine if you’re following the Rails way, and not
storing anything other than integers and short strings in the session. If you’re bucking
the guidelines, well, you might have an issue with it.

OpenSSL Digests

Lots of people have complained about the inherent insecurity of storing session infor-
mation, including the current user information on the user’s browser. However, there
are security measures in place that make the cookie store hard to crack open and exploit.
For instance, you’d need to be able to compromise SHA1, which is somewhat difficult
to do.

But let’s say you want different security,2 you can easily override the existing hashing
code by setting it to any other digest provided by OpenSSL:

ActionController::Base.session_options[:digest] = SHA512

Replay Attacks

Another problem with cookie-based session storage is its vulnerability to replay attacks,
which generated an enormous message thread on the rails-core mailing list. S. Robert

2. My fellow cabooser Courtenay wrote a great blog post about cookie session storage at http://blog.caboo.
se/articles/2007/2/21/new-controversial-default-rails-session-storage-cookies.

http://blog.caboo.se/articles/2007/2/21/new-controversial-default-rails-session-storage-cookies
http://blog.caboo.se/articles/2007/2/21/new-controversial-default-rails-session-storage-cookies

430 Chapter 13: Session Management

James kicked off the thread3 by describing a replay attack:

• Example:

1. User receives credits, stored in his session.

2. User buys something.

3. User gets his new, lower credits stored in his session.

4. Evil hacker takes his saved cookie from step 1 and pastes it back in his browser’s
cookie jar. Now he’s gotten his credits back.

• This is normally solved using something called nonce. Each signing includes a once-
only code, and the signer keeps track of all of the codes, and rejects any message
with the code repeated. But that’s very hard to do here, since there may be several
app servers serving up the same application.

• Of course, we could store the nonce in the DB, but that defeats the entire
purpose!

The short answer is: Do not store sensitive data in the session. Ever. The longer answer
is that coordination of nonces across multiple servers would require remote process
interaction on a per-request basis, which negates the benefits of using the cookie session
storage to begin with.

The cookie session storage also has potential issues with replay attacks that let ma-
licious users on shared computers use stolen cookies to log in to an application that the
user thought he or she had logged out of. The bottom line is that if you decide to use
the cookie session storage on an application with security concerns, please consider the
implications of doing so carefully.

13.3.4 Cleaning Up Old Sessions

If you’re using ActiveRecordStore, you can write your own little utilities for keeping
the size of your session store under control. Listing 13.1 is a class that you can add to
your /lib folder and invoke from the production console or a script whenever you need
to do so.

3. If you want to read the whole thread (all 83 messages of it), simply search Google for “Replay attacks with
cookie session.” The results should include a link to the topic on the Ruby on Rails: Core Google Group.

S
e
ssio

n
13.4 Cookies 431

Listing 13.1 SessionMaintenance class for cleaning up old sessions

class SessionMaintenance

def self.cleanup(period = 24.hours.ago)

session_store = ActiveRecord::SessionStore::Session

session_store.destroy_all ['updated_at < ?', period]

end

end

13.4 Cookies

This section is about using cookies, not the cookie session store. The cookie container,
as it’s known, looks like a hash, and is available via the cookies method in the scope
of controllers. Lots of Rails developers use cookies to store user preferences and other
small nonsensitive bits of data. Be careful not to store sensitive data in cookies because
they can be read by users.

Contrary to what at least some developers might expect, the cookies container is
not available by default in view templates or helpers. If you need to be able to access
cookies in your helpers or views, there is a simple solution. Simply declare cookies to
be a helper method:

class MyController < ActionController::Base

helper_method :cookies

13.4.1 Reading and Writing Cookies

The cookie container is filled with cookies received along with the request, and sends
out any cookies that you write to it with the response. Note that cookies are read by
value, so you won’t get the cookie object itself back, just the value it holds as a string (or
as an array of strings if it holds multiple values).

To create or update cookies, you simply assign values using the brackets operator. You
may assign either a single string value or a hash containing options, such as :expires,
which takes a number of seconds before which the cookie should be deleted by the
browser. Remember that Rails convenience methods for time are useful here:

writing a simple session cookie

cookies[:list_mode] = "false"

specifying options, curly brackets are needed to avoid syntax error

cookies[:recheck] = {:value => "false", :expires => 5.minutes.from_now}

432 Chapter 13: Session Management

I find the :path options useful in allowing you to set options specific to particular
sections or even particular records of your application. The :path option is set to '1',
the root of your application, by default.

The :domain option allows you to specify a domain, which is most often used when
you are serving up your application from a particular host, but want to set cookies for
the whole domain.

cookies[:login] = {:value => @user.security_token,

:domain => '.domain.com',

:expires => Time.now.next_year }

Cookies can also be written using the :secure option, and Rails will only ever transmit
them over a secure HTTPS connection:

writing a simple session cookie

cookies[:account_number] = { :value => @account.number, :secure => true }

Finally, you can delete cookies using the delete method:

cookies.delete :list_mode

Permanent Cookies

Writing cookies to the response via the cookies.permanent hash automatically gives
them an expiration date 20 years in the future.

cookies.permanent[:remember_me] = current_user.id

Signed Cookies

Writing cookies to the response via the cookies.signed hash generates signed
representations of cookies, to prevent tampering of that cookie’s value by the end
user. If a signed cookie was tampered with a ActiveSupport::MessageVerifier::
InvalidSignature exception will be raised when that cookie is read in a subsequent
request.

cookies.signed[:remember_me] = current_user.id

13.5 Conclusion

Deciding how to use the session is one of the more challenging tasks that faces a web
application developer. That’s why we put a couple of sections about it right in the
beginning of this chapter. We also covered the various options available for configuring
sessions, including storage mechanisms and methods for timing out sessions and the
session life cycle. We also covered use of a closely related topic, browser cookies.

A
u
th

CHAPTER 14

Authentication

“Thanks goodness [sic], there’s only about a billion of these because DHH doesn’t think auth/auth
[sic] belongs in the core.”

—George Hotelling at http://del.icio.us/revgeorge/authentication

I bet every web app you’ve ever worked on has needed some form of user security,
and some people assume it makes sense to include some sort of standard authentication
functionality in a “kitchen-sink” framework such as Rails. However, it turns out that
user security is one of those areas of application design that usually involves a bit more
business logic than anyone realizes upfront.

David Heinemeier Hansson has clearly stated his opinions1 on the matter, to help us
understand why Rails does not include any sort of standard authentication mechanism:

Context beats consistency. Reuse only works well when the particular instances are so similar that
you’re willing to trade the small differences for the increased productivity. That’s often the case
for infrastructure, such as Rails, but rarely the case for business logic, such as authentication and
modules and components in general.

For better or worse, we need to either write our own authentication code or look
outside of Rails core for a suitable solution. It’s not too difficult to write your own
authentication code, to the extent that it isn’t that difficult to write anything in Rails.
But why reinvent the wheel? That’s not the Rails way!

As alluded to in the chapter quote, we have many different options out there to choose
from. It seems that since authentication is one of the first features you add to a new ap-
plication, it is also one of the first projects undertaken by many an aspiring plugin writer.

1. http://loudthinking.com/arc/2006_01.html

433

http://del.icio.us/revgeorge/authentication
http://loudthinking.com/arc/2006_01.html

434 Chapter 14: Authentication

14.1 Authlogic

Authlogic2 is a flexible, unobtrusive authentication framework for Ruby applications. It
supports basic authentication with storage in a relational database out of the box, but
can use other authentication means like OpenID or LDAP through the use of addons
to the base framework.

14.1.1 Getting Started

Install Authlogic by adding the Authlogic gem to your application’s Gemfile. There
are no generators to run but there will be a few extra items that will need to be created
in order to get Authlogic running properly.

14.1.2 Creating the Models

Depending on the model that you want to authenticate, you will need to create a
corresponding session model for it. This pattern allows Authlogic to be flexible in what
is authenticated and provides an easy mechanism for providing this functionality to
multiple models in a single application.

For the purposes of our examples, we will have a User model that needs authenti-
cation. First we will create our User model and a corresponding UserSession model.

rails generate model user

rails generate model user_session

Then edit the create_user migration to add the columns that your application needs
to satisfy its authentication requirements. Some columns are required by Authlogic,
whereas others are optional but will get used if the framework sees that they exist.

The only required columns are persistence_token and either login or email,
depending on your personal preference.

create_table :users do |t|

One must be defined, but it may be either

t.string :login, :null => false

t.string :email, :null => false

Required

t.string :persistence_token, :null => false

Optional

t.string :crypted_password, :null => false

2. http://github.com/binarylogic/authlogic

http://github.com/binarylogic/authlogic

A
u
th

14.1 Authlogic 435

t.string :password_salt, :null => false

t.string :single_access_token, :null => false

t.string :perishable_token, :null => false

t.integer :login_count, :null => false, :default => 0

t.integer :failed_login_count, :null => false, :default => 0

t.datetime :last_request_at

t.datetime :current_login_at

t.datetime :last_login_at

t.string :current_login_ip

t.string :last_login_ip

end

Next, set up your User and UserSession models, supplying them with optional con-
figuration or use the defaults. The UserSessionmodel will need to additionally provide
a to_key method that returns an array with the session key in it.

class User < ActiveRecord::Base

acts_as_authentic do |config|

Add custom configuration options here.

config.crypto_provider = Authlogic::CryptoProviders::MD5

end

end

class UserSession < Authlogic::Session::Base

def to_key

[session_key]

end

end

14.1.3 Setting Up the Controllers

Authlogic handles the ability to login and logout through a controller that man-
ages the session object for your authenticated model. In this case, we would create a
UserSessionsController to handle this, as well as our UsersController to create
our objects to authenticate.

rails generate controller user_sessions

rails generate controller users

In your ApplicationController you will need to provide access to the current user
session and the current user, so that all of your controllers can access this information
easily.

class ApplicationController < ActionController::Base

helper_method :current_user_session, :current_user

protected

def current_user_session

436 Chapter 14: Authentication

@current_user_session ||= UserSession.find

end

def current_user

@current_user ||= current_user_session && current_user_session.user

end

end

The UserSessionsController should respond to new, create, destroy in order
to leverage all basic login and logout functionality. The UsersController implemen-
tation will depend on your own application’s requirements.

class UserSessionsController < ApplicationController

def new

@user_session = UserSession.new

end

def create

@user_session = UserSession.new(params[:user_session])

if @user_session.save

redirect_to user_path(current_user)

else

render :action => :new

end

end

def destroy

current_user_session.destroy

redirect_to new_user_session_path

end

end

Make sure you’ve added the routes for the new controllers.

MyApp::Application.routes.draw do |map|

resource :user_session

resources :users

end

14.1.4 Controller, Limiting Access to Actions

Now that you are authenticating, you will want to control access to specific controller ac-
tions. A common pattern for handling this is through the use of filters in your controllers,
where the common checks reside in your ApplicationController.

class ApplicationController < ActionController::Base

protected

def authenticate

A
u
th

14.1 Authlogic 437

unless current_user

flash[:notice] = "You're not logged in captain."

redirect_to new_user_session_path

return false

end

end

end

class UserSessionsController < ApplicationController

before_filter :authenticate, :only => :destroy

end

14.1.5 Configuration

Situations may arise where you want to configure the way Authlogic behaves to suit your
individual application needs. This is handled by setting options in your authenticated
model’s Authlogic, acts_as_authentic block.

class User < ActiveRecord::Base

acts_as_authentic do |config|

config.logged_in_timeout = 20.minutes

config.validate_email_field = false

end

end

Authlogic has a wide range of configuration options, from setting password encryption
algorithms to adding validation options to various fields that the framework uses inter-
nally. In addition to the options listed below, several additional ways to configure the
validation options for various fields not listed. Please see Authlogic’s documentation for
details on how to configure those settings.

• email—field:
Changes the name of the field that stores the email address.

• validate—email—field:
Toggles whether email validation is on or off.

• logged—in—timeout:
Sets the timeout to determine if the user is still signed in to the application.

• login—field:
Change the name of the field that stores the login.

• validate—login—field:
Toggles whether login validation is on or off.

438 Chapter 14: Authentication

• check—passwords—against—database:
Sets if the object or database is queried when asking if a password is valid.

• crypted—password—field:
Changes the name of the crypted—password field in the database.

• crypto—provider:
Changes the encryption algorithm used on the password.

• ignore—blank—passwords:
Allows ignoring password presence for new objects or when crypted passwords are
blank.

• password—salt—field:
Changes the name of the password—salt field in the database.

• require—password—confirmation:
Sets whether password confirmation is required.

• transition—from—crypto—providers:
Can be added if you initially stored passwords with a different algorithm.

• disable—perishable—token—maintenance:
Turns off Authlogic’s internal updating of the perishable token.

• perishable—token—valid—for:
Specifies the length of time the perishable token is valid for.

• act—like—restful—authentication:
Set this to true if you were previously using restful—authentication and want
to make no code or database changes.

• transition—from—restful—authentication:
Similar to acting like restful auth, this will resave user passwords with a new algorithm
when the login.

• maintain—sessions:
Tells Authlogic to use automatic session maintenance or not.

• session—class:
If the session class cannot be inferred by the name, define it here.

• change—single—access—token—with—password:
Allows for single access tokens to change when a user password is changed.

• validations—scope:
Sets the scope of all validations, similar to validates—uniqueness—of.

A
u
th

14.2 Devise 439

14.1.6 Summary

Authlogic is a mature framework that’s had plenty of use in the community. It is highly
configurable and leaves the business logic of authentication in the hands of the application
developer with very little code needed to implement it. It is easily extended and has a
wide range of add-ons if you are looking to do different types of authentication, like
OpenID or LDAP.

Authlogic is however tied to Active Record so if you are living on the edge with a
non-relational store Authlogic will not work for you. Also, if you want to write almost
no code at all and use a more standard solution (that can easily be extended to persist to
multiple databases).

14.2 Devise

Devise3 is a highly modular Rack-based authentication framework that sits on top of
Warden. It has a robust feature set and leverages the use of Rails generators, and you
only need to use what is suitable for your application.

14.2.1 Getting Started

Add the devise gem to your project’s Gemfile and bundle install. Then you can
generate the Devise configuration by running:

rails generate devise_install

This will create the initializer for devise, and an English version i18n YAML for Devise’s
messages. Devise will also alert you at this step to remember to do some mandatory Rails
configuration if you have not done so already. This includes setting your default host
for ActionMailer, setting up your root route, and making sure your flash messages will
render in the application’s default layout.

14.2.2 Modules

Adding authentication functionality to your models using Devise is based on the concept
of adding different modules to your class, based on only what you need. The available
modules for you to use are:

• database—authenticatable:
Handles authentication of a user, as well as password encryption.

3. http://github.com/plataformatec/devise

http://github.com/plataformatec/devise

440 Chapter 14: Authentication

• confirmable:
Adds the ability to require email confirmation of user accounts.

• lockable:
Can lock an account after n number of failed login attempts.

• recoverable:
Provides password reset functionality.

• registerable:
Alters user sign up to be handled in a registration process, along with account
management.

• rememberable:
Provides remember me functionality.

• timeoutable:
Allows sessions to be expired in a configurable time frame.

• token—authenticatable:
Allows sign in of a user based on single access tokens.

• trackable:
Stores login counts, timestamps, and IP addresses.

• validatable:
Adds customizable validations to email and password.

Knowing which modules you wish to include in your model is important for setting
up your models, migrations, and configuration options later on.

14.2.3 Models

To set up authentication in a model, run the Devise generator for that model and then
edit it. For the purpose of our examples, we will use the ever-so-exiting User model
again.

rails generate devise User

This will create your model, a database migration, and route for your shiny new model.
Devise will have given some default modules to use, which you will need to alter in your
migration and model if you want to use different modules. In our example, we only use
a subset of what is offered.

A
u
th

14.2 Devise 441

Our resulting database migration looks like

class DeviseCreateUsers < ActiveRecord::Migration

def self.up

create_table(:users) do |t|

t.database_authenticatable :null => false

t.confirmable

t.recoverable

t.rememberable

t.timestamps

end

add_index :users, :email, :unique => true

add_index :users, :confirmation_token, :unique => true

add_index :users, :reset_password_token, :unique => true

end

def self.down

drop_table :users

end

end

We then modify our User model to mirror the modules we included in our migration.

class User < ActiveRecord::Base

devise \

:database_authenticatable,

:confirmable,

:recoverable,

:rememberable

attr_accessible \

:email,

:password,

:password_confirmation

end

Now we’re ready to rake db:migrate and let the magic happen.

14.2.4 Controllers

Devise provides some handy helper methods that can be used in your controllers to au-
thenticate your model or get access to the currently signed-in person. For example, if you
want to restrict access in a controller you may use one of the helpers as a before_filter.

class MeatProcessorController < ApplicationController

before_filter :authenticate_user!

end

442 Chapter 14: Authentication

You can also access the currently signed-in user via the current—user helper method,
or the current session via the user—session method. Use user—signed—in? if you
want to check if the user had logged in without using the before_filter.

Thais says . . .

The helper methods are generated dynamically, so in the case where your authenticated models are
named differently, use the model name instead of user in the examples. An instance of this could
be with an Admin model—your helpers would be current—admin, admin—signed—in?,
and admin—session.

14.2.5 Devise, Views

Devise is built as a Rails Engine, and comes with views for all of your included modules.
All you need to do is write some CSS and you’re off to the races. However, there may be
some situations where you want to customize them, and Devise provides a nifty script
to copy all of the internal views into your application.

rails generate devise_views

If you are authenticating more than one model and don’t want to use the same views for
both, just set the following option in your config/initializers/devise.rb:

config.scoped_views = true

14.2.6 Configuration

When you first set up Devise using rails generate devise—install, a devise.rb
was tossed into your config/initializers directory. This initializer is where all the
configuration for Devise is set, and it is already packed full of commented-out goodies
for all configuration options with excellent descriptions for each option.

Durran says . . .

Using MongoDB as your main database? Under the general configuration section in the initializer
switch the require of active—record to mongoid for pure awesomeness.

Devise comes with internationalization support out of the box and ships with En-
glish message Devise, internationalization definitions located in config/locales/

devise.en.yml. (You’ll see this was created after you ran the install generator at setup.)
This file can be used as the template for Devise’s messages in any other language by staying

A
u
th

14.3 Conclusion 443

with the same naming convention for each file. Create a Chilean Spanish translation in
config/locales/devise.cl.yml weon!

14.2.7 Extensions

There are plenty of third-party extensions out there for Devise that come in handy if
you are authenticating using different methods.

• cas—authenticatable:
Allows for single sign on using CAS.

• facebook—connectable:
Provides support for authorizing through authenticating with Devise Facebook.4

• imapable:
Adds authentication support through IMAP.

• ldap—authenticatable:
Authenticates users using LDAP.

• openid—authenticatable:
Provides authentication via OpenID.

• rpx—connectable:
Adds support for using RPX authentication.

A complete list of extensions can be found at: http://wiki.github.com/

plataformatec/devise/3rd-party-extensions

14.2.8 Summary

Devise is an excellent solution if you want a large number of standard features out of the
box while writing almost no code at all. It has a clean and easy-understand API and can
be used with little to no ramp-up time on any application.

14.3 Conclusion

We’ve covered the two most popular authentication frameworks for Rails at the moment,
but there are plenty more out there to examine if these are not suited for your application.
It’s easy to even roll your own simple solution if basic authentication is all you need.

4. There are problems reported with this extension. Try http://github.com/jerryluk/devise—oauth2—
authenticatable instead.

http://wiki.github.com/plataformatec/devise/3rd-party-extensions
http://wiki.github.com/plataformatec/devise/3rd-party-extensions
http://github.com/jerryluk/devise%E2%80%94oauth2%E2%80%94authenticatable
http://github.com/jerryluk/devise%E2%80%94oauth2%E2%80%94authenticatable

This page intentionally left blank

X
M

L

CHAPTER 15

XML and Active Resource

Structure is nothing if it is all you got. Skeletons spook people if they try to walk around on their
own. I really wonder why XML does not.

—Erik Naggum

XML doesn’t get much respect from the Rails community. It’s enterprisey. In the Ruby
world that other markup language YAML (YAML Ain’t Markup Language) and data
interchange format JSON (JavaScript Object Notation) get a heck of a lot more attention.
However, use of XML is a fact of life for many projects, especially when it comes to
interoperability with legacy systems. Luckily, Ruby on Rails gives us some pretty good
functionality related to XML.

This chapter examines how to both generate and parse XML in your Rails applica-
tions, starting with a thorough examination of the to_xml method that most objects
have in Rails.

15.1 The to—xml Method

Sometimes you just want an XML representation of an object, and Active Record models
provide easy, automatic XML generation via the to_xml method. Let’s play with this
method in the console and see what it can do.

I’ll fire up the console for my book-authoring sample application and find an Active
Record object to manipulate.

>> User.find_by_login('obie')

=> #<User id: 8, login: "obie", email: "obie@tr3w.com", crypted_password:

"4a6046804fc4dc3183ad9012fbfee91c85723d8c", salt:

"399754af1b01cf3d4b87da5478d82674b0438eb8", created_at: "2010-05-18

19:31:40", updated_at: "2010-05-18 19:31:40", remember_token: nil,

445

446 Chapter 15: XML and Active Resource

remember_token_expires_at: nil, authorized_approver: true, client_id: nil,

timesheets_updated_at: nil>

There we go, a User instance. Let’s see that instance as its generic model, XML repre-
sentation.
>> User.find_by_login('obie').to_xml

=> "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n<user>\n

<authorized-approver type=\"boolean\">true</authorized-approver>\n

<salt>399754af1b01cf3d4b87da5478d82674b0438eb8</salt>\n <created-at

type=\"datetime\">2010-05-18T19:31:40Z</created-at>\n

<crypted-password>4a6046804fc4dc3183ad9012fbfee91c85723d8c

</crypted-password>\n <remember-token-expires-at type=\"datetime\"

nil=\"true\"></remember-token-expires-at>\n <updated-at

type=\"datetime\">2010-05-18T19:31:40Z</updated-at>\n

<id type=\"integer\">8</id>\n <client-id type=\"integer\"

nil=\"true\"></client-id>\n <remember-token

nil=\"true\"></remember-token>\n <login>obie</login>\n

<email>obie@tr3w.com</email>\n <timesheets-updated-at type=\"datetime\"

nil=\"true\"></timesheets-updated-at>\n</user>\n"

Ugh, that’s ugly. Ruby’s print, formatted XML function might help us out here.

>> print User.find_by_login('obie').to_xml

<?xml version="1.0" encoding="UTF-8"?>

<user>

<authorized-approver type="boolean">true</authorized-approver>

<salt>399754af1b01cf3d4b87da5478d82674b0438eb8</salt>

<created-at type="datetime">2010-05-18T19:31:40Z</created-at>

<crypted-password>4a6046804fc4dc3183ad9012fbfee91c85723d8c

</crypted-password>

<remember-token-expires-at type="datetime"

nil="true"></remember-token-expires-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<id type="integer">8</id>

<client-id type="integer" nil="true"></client-id>

<remember-token nil="true"></remember-token>

<login>obie</login>

<email>obie@tr3w.com</email>

<timesheets-updated-at type="datetime"

nil="true"></timesheets-updated-at>

</user>

Much better! So what do we have here? Looks like a fairly straightforward serialized
representation of our User instance in XML.

15.1.1 Customizing to—xml Output

The standard processing instruction is at the top, followed by an element name corre-
sponding to the class name of the object. The properties are represented as subelements,

X
M

L
15.1 The to—xml Method 447

with non-string data fields including a type attribute. Mind you, this is the default be-
havior, and we can customize it with some additional parameters to the to_xml method.

We’ll strip down that XML representation of a user to just an email and login using
the only parameter. It’s provided in a familiar options hash, with the value of the :only
parameter as an array:

>> print User.find_by_login('obie').to_xml(:only => [:email, :login])

<?xml version="1.0" encoding="UTF-8"?>

<user>

<login>obie</login>

<email>obie@tr3w.com</email>

</user>

Following the familiar Rails convention, the only parameter is complemented by its
inverse, except, which will exclude the specified properties. What if I want my user’s
email and login as a snippet of XML that will be included in another document? Then
let’s get rid of that pesky instruction, too, using the skip_instruct parameter.

>> print User.find_by_login('obie').to_xml(:only => [:email, :login],

:skip_instruct => true)

<user>

<login>obie</login>

<email>obie@tr3w.com</email>

</user>

We can change the root element in our XML representation of User and the indenting
from two to four spaces by using the root and indent parameters, respectively.

>> print User.find_by_login('obie').to_xml(:root => 'employee', :indent =>

4)

<?xml version="1.0" encoding="UTF-8"?>

<employee>

<authorized-approver type="boolean">true</authorized-approver>

<salt>399754af1b01cf3d4b87da5478d82674b0438eb8</salt>

<created-at type="datetime">2010-05-18T19:31:40Z</created-at>

<crypted-password>4a6046804fc4dc3183ad9012fbfee91c85723d8c

</crypted-password>

<remember-token-expires-at type="datetime"

nil="true"></remember-token-expires-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<id type="integer">8</id>

<client-id type="integer" nil="true"></client-id>

<remember-token nil="true"></remember-token>

<login>obie</login>

<email>obie@tr3w.com</email>

<timesheets-updated-at type="datetime"

nil="true"></timesheets-updated-at>

</employee>

448 Chapter 15: XML and Active Resource

By default Rails converts CamelCase and underscore attribute names to dashes as in
created-at and client-id. You can force underscore attribute names by setting the
dasherize parameter to false.

>> print User.find_by_login('obie').to_xml(:dasherize => false, :only =>

[:created_at, :client_id])

<?xml version="1.0" encoding="UTF-8"?>

<user>

<created_at type="datetime">2010-05-18T19:31:40Z</created_at>

<client_id type="integer" nil="true"></client_id>

</user>

In the preceding output, the attribute type is included. This too can be configured using
the skip_types parameter.

>> print User.find_by_login('obie').to_xml(:skip_types => true, :only =>

[:created_at, :client_id])

<?xml version="1.0" encoding="UTF-8"?>

<user>

<created-at>2010-05-18T19:31:40Z</created-at>

<client-id nil="true"></client-id>

</user>

15.1.2 Associations and to—xml

So far we’ve only worked with a base Active Record and not with any of its associations.
What if we wanted an XML representation of not just a book but also its associated
chapters? Rails provides the :include parameter for just this purpose. The :include
parameter will also take an array or associations to represent in XML.

>> print User.find_by_login('obie').to_xml(:include => :timesheets)

<?xml version="1.0" encoding="UTF-8"?>

<user>

<authorized-approver type="boolean">true</authorized-approver>

<salt>399754af1b01cf3d4b87da5478d82674b0438eb8</salt>

<created-at type="datetime">2010-05-18T19:31:40Z</created-at>

<crypted-password>4a6046804fc4dc3183ad9012fbfee91c85723d8c

</crypted-password>

<remember-token-expires-at type="datetime"

nil="true"></remember-token-expires-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<id type="integer">8</id>

<client-id type="integer" nil="true"></client-id>

<remember-token nil="true"></remember-token>

<login>obie</login>

<email>obie@tr3w.com</email>

<timesheets-updated-at type="datetime"

nil="true"></timesheets-updated-at>

X
M

L
15.1 The to—xml Method 449

<timesheets type="array">

<timesheet>

<created-at type="datetime">2010-05-04T19:31:40Z</created-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<lock-version type="integer">0</lock-version>

<id type="integer">8</id>

<user-id type="integer">8</user-id>

<submitted type="boolean">true</submitted>

<approver-id type="integer">7</approver-id>

</timesheet>

<timesheet>

<created-at type="datetime">2010-05-18T19:31:40Z</created-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<lock-version type="integer">0</lock-version>

<id type="integer">9</id>

<user-id type="integer">8</user-id>

<submitted type="boolean">false</submitted>

<approver-id type="integer" nil="true"></approver-id>

</timesheet>

<timesheet>

<created-at type="datetime">2010-05-11T19:31:40Z</created-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<lock-version type="integer">0</lock-version>

<id type="integer">10</id>

<user-id type="integer">8</user-id>

<submitted type="boolean">false</submitted>

<approver-id type="integer" nil="true"></approver-id>

</timesheet>

</timesheets>

</user>

Rails 3 has a much more useful to_xml method on core classes. Unlike Rails 2, arrays
are easily serializable to XML, with element names inferred from the name of the Ruby
type:

>> print ['cat', 'dog', 'ferret'].to_xml

<?xml version="1.0" encoding="UTF-8"?>

<strings type="array">

<string>cat</string>

<string>dog</string>

<string>ferret</string>

</strings>

If you have mixed types in the array, this is also reflected in the XML output:

>> print [3, 'cat', 'dog', :ferret].to_xml

<?xml version="1.0" encoding="UTF-8"?>

<objects type="array">

<object type="integer">3</object>

<object>cat</object>

450 Chapter 15: XML and Active Resource

<object>dog</object>

<object type="symbol">ferret</object>

</objects>

To construct a more semantic structure, the root option on to_xml triggers more
expressive element names:

>> print ['cat', 'dog', 'ferret'].to_xml(:root => 'pets')

<?xml version="1.0" encoding="UTF-8"?>

<pets type="array">

<pet>cat</pet>

<pet>dog</pet>

<pet>ferret</pet>

</pets>

Ruby hashes are naturally representable in XML, with keys corresponding to element
names, and their values corresponding to element contents. Rails automatically calls
to_s on the values to get string values for them:

>> print({:owners => ['Chad', 'Trixie'], :pets => ['cat', 'dog',

'ferret'],

:id => 123}.to_xml(:root => 'registry'))

<?xml version="1.0" encoding="UTF-8"?>

<registry>

<pets type="array">

<pet>cat</pet>

<pet>dog</pet>

<pet>ferret</pet>

</pets>

<owners type="array">

<owner>Chad</owner>

<owner>Trixie</owner>

</owners>

<id type="integer">123</id>

</registry>

JoshG says . . .

This simplistic serialization may not be appropriate for certain interoperability contexts, especially
if the output must pass XML Schema (XSD) validation when the order of elements is often
important. In Ruby 1.8.x, the Hash class does not order keys for enumeration. In Ruby 1.9.x,
the Hash class uses insertion order. Neither of these may be adequate for producing output that
matches an XSD. The section “The XML Builder” will discuss Builder::XmlMarkup to
address this situation.

The :include option of to_xml is not used on Array and Hash objects.

X
M

L
15.1 The to—xml Method 451

15.1.3 Advanced to—xml Usage

By default, Active Record’s to_xml method only serializes persistent attributes into
XML. However, there are times when transient, derived, or calculated values need to be
serialized out into XML form as well. For example, our User model has a method that
returns only draft timesheets:

class User < ActiveRecord::Base

...

def draft_timesheets

timesheets.draft

end

...

end

To include the result of this method when we serialize the XML, we use the :methods
parameter:

>> print User.find_by_login('obie').to_xml(:methods => :draft_timesheets)

<?xml version="1.0" encoding="UTF-8"?>

<user>

<id type="integer">8</id>

...

<draft-timesheets type="array">

<draft-timesheet>

<created-at type="datetime">2010-05-18T19:31:40Z</created-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<lock-version type="integer">0</lock-version>

<id type="integer">9</id>

<user-id type="integer">8</user-id>

<submitted type="boolean">false</submitted>

<approver-id type="integer" nil="true"></approver-id>

</draft-timesheet>

<draft-timesheet>

<created-at type="datetime">2010-05-11T19:31:40Z</created-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<lock-version type="integer">0</lock-version>

<id type="integer">10</id>

<user-id type="integer">8</user-id>

<submitted type="boolean">false</submitted>

<approver-id type="integer" nil="true"></approver-id>

</draft-timesheet>

</draft-timesheets>

</user>

We could also set the methods parameter to an array of method names to be called.

452 Chapter 15: XML and Active Resource

15.1.4 Dynamic Runtime Attributes

In cases where we want to include extra elements unrelated to the object being serialized,
we can pass to_xml a block, or use the :procs option.

If we are using the same logic applied to different to_xml calls, we can construct
lambdas ahead of time and use one or more of them in the :procs option. They will be
called with to_xml’s option hash, through which we access the underlying XmlBuilder.
(XmlBuilder provides the principal means of XML generation in Rails.

>> current_user = User.find_by_login('admin')

>> generated_at = lambda { |opts| opts[:builder].tag!('generated-at',

Time.now.utc.iso8601) }

>> generated_by = lambda { |opts| opts[:builder].tag!('generated-by',

current_user.email) }

>> print(User.find_by_login('obie').to_xml(:procs => [generated_at,

generated_by]))

<?xml version="1.0" encoding="UTF-8"?>

<user>

...

<id type="integer">8</id>

<client-id type="integer" nil="true"></client-id>

<remember-token nil="true"></remember-token>

<login>obie</login>

<email>obie@tr3w.com</email>

<timesheets-updated-at type="datetime"

nil="true"></timesheets-updated-at>

<generated-at>2010-05-18T19:33:49Z</generated-at>

<generated-by>admin@tr3w.com</generated-by>

</user>

>> print Timesheet.all.to_xml(:procs => [generated_at, generated_by])

<?xml version="1.0" encoding="UTF-8"?>

<timesheets type="array">

<timesheet>

...

<id type="integer">8</id>

<user-id type="integer">8</user-id>

<submitted type="boolean">true</submitted>

<approver-id type="integer">7</approver-id>

<generated-at>2010-05-18T20:18:30Z</generated-at>

<generated-by>admin@tr3w.com</generated-by>

</timesheet>

<timesheet>

...

<id type="integer">9</id>

<user-id type="integer">8</user-id>

<submitted type="boolean">false</submitted>

X
M

L
15.1 The to—xml Method 453

<approver-id type="integer" nil="true"></approver-id>

<generated-at>2010-05-18T20:18:30Z</generated-at>

<generated-by>admin@tr3w.com</generated-by>

</timesheet>

<timesheet>

...

<id type="integer">10</id>

<user-id type="integer">8</user-id>

<submitted type="boolean">false</submitted>

<approver-id type="integer" nil="true"></approver-id>

<generated-at>2010-05-18T20:18:30Z</generated-at>

<generated-by>admin@tr3w.com</generated-by>

</timesheet>

</timesheets>

Note that the :procs are applied to each top-level resource in the collection (or the
single resource if the top level is not a collection). Use the sample application to compare
the output with the output from the following:

>> print User.all.to_xml(:include => :timesheets, :procs => [generated_at,

generated_by])

To add custom elements only to the root node, to_xml will yield an XmlBuilder

instance when given a block:

>> print(User.all.to_xml { |xml| xml.tag! 'generated-by',

current_user.email })

<?xml version="1.0" encoding="UTF-8"?>

<users type="array">

<user>...</user>

<user>...</user>

<generated-by>admin@tr3w.com</generated-by>

</users>

Unfortunately, both :procs and the optional block are hobbled by a puzzling limitation:
The record being serialized is not exposed to the procs being passed in as arguments, so
only data external to the object may be added in this fashion.

To gain complete control over the XML serialization of Rails objects, you need to
override the to_xml method and implement it yourself.

15.1.5 Overriding to—xml

Sometimes you need to do something out of the ordinary when trying to represent data
in XML form. In those situations, you can create the XML by hand.

454 Chapter 15: XML and Active Resource

class User < ActiveRecord::Base

...

def to_xml(options = {})

xml = options[:builder] || Builder::XmlMarkup.new(options)

xml.instruct! unless options[:skip_instruct]

xml.user do

xml.tag!(:email, email)

end

end

...

end

This would give the following result:

>> print User.find(:first).to_xml

<?xml version="1.0" encoding="UTF-8"?>

<user><email>admin@tr3w.com</email></user>

Of course, you could just go ahead and use good Object Oriented design and use a class
responsible for translating between your model and an external representation.

15.2 The XML Builder

Builder::XmlMarkup is the class used internally by Rails when it needs to generate
XML. When to_xml is not enough and you need to generate custom XML, you will use
Builder instances directly. Fortunately, the Builder API is one of the most powerful
Ruby libraries available and is very easy to use, once you get the hang of it.

The API documentation says: “All (well, almost all) methods sent to an XmlMarkup

object will be translated to the equivalent XML markup. Any method with a block will
be treated as an XML markup tag with nested markup in the block.”

That is a very concise way of describing how Builder works, but it is easier to
understand with some examples, again taken from Builder’s API documentation. The
xm variable is a Builder::XmlMarkup instance:

xm.em("emphasized") # => emphasized

xm.em { xm.b("emp & bold") } # => emph & bold

xm.a("foo", "href"=>"http://foo.org")

=> foo

xm.div { br } # => <div>
</div>

xm.target("name"=>"foo", "option"=>"bar")

=> <target name="foo" option="bar"/>

xm.instruct! # <?xml version="1.0" encoding="UTF-8"?>

X
M

L
15.2 The XML Builder 455

xm.html { # <html>

xm.head { # <head>

xm.title("History") # <title>History</title>

} # </head>

xm.body { # <body>

xm.comment! "HI" # <!-- HI -->

xm.h1("Header") # <h1>Header</h1>

xm.p("paragraph") # <p>paragraph</p>

} # </body>

} # </html>

A common use for Builder::XmlBuilder is to render XML in response to a request.
Previously we talked about overriding to_xml on Active Record to generate our custom
XML. Another way, though not as recommended, is to use an XML template.

We could alter our UsersController show method to use an XML template by
changing it from:

def UsersController < ApplicationController

...

def show

@book = User.find(params[:id])

respond_to do |format|

format.html

format.xml { render :xml => @user.to_xml }

end

...

end

to

def UsersController < ApplicationController

...

def show

@book = User.find(params[:id])

respond_to do |format|

format.html

format.xml

end

...

end

Now Rails will look for a file called show.xml.builder in the RAILS_ROOT/views/
users directory. That file contains Builder::XmlMarkup code like

xml.user { # <user>

xml.email @user.email # <email>...</email>

xml.timesheets { # <timesheets>

@user.timesheets.each { |timesheet| #

456 Chapter 15: XML and Active Resource

xml.timesheet { # <timesheet>

xml.draft timesheet.submitted? # <draft>true</draft>

} # </timesheet>

} #

} # </timesheets>

} # </user>

In this view, the variable xml is an instance of Builder::XmlMarkup. Just as in views,
we have access to the instance variables we set in our controller, in this case @user. Using
the Builder in a view can provide a convenient way to generate XML.

15.3 Parsing XML

Ruby has a full-featured XML library named REXML, and covering it in any level of
detail is outside the scope of this book. If you have basic parsing needs, such as parsing
responses from web services, you can use the simple XML parsing capability built into
Rails.

15.3.1 Turning XML into Hashes

Rails lets you turn arbitrary snippets of XML markup into Ruby hashes, with the
from_xml method that it adds to the Hash class.

To demonstrate, we’ll throw together a string of simplistic XML and turn it into a
hash:

>> xml = <<-XML

<pets>

<cat>Franzi</cat>

<dog>Susie</dog>

<horse>Red</horse>

</pets>

XML

>> Hash.from_xml(xml)

=> {"pets"=>{"horse"=>"Red", "cat"=>"Franzi", "dog"=>"Susie"}}

There are no options for from_xml. You can also pass it an IO object:

>> Hash.from_xml(File.new('pets.xml'))

=> {"pets"=>{"horse"=>"Red", "cat"=>"Franzi", "dog"=>"Susie"}}

X
M

L
15.4 Active Resource 457

15.3.2 Typecasting

Typecasting is done by using a type attribute in the XML elements. For example, here’s
the auto-generated XML for a User object.

>> print User.first.to_xml

<?xml version="1.0" encoding="UTF-8"?>

<user>

<authorized-approver type="boolean">true</authorized-approver>

<salt>034fbec79d0ca2cd7d892f205d56ea95174ff557</salt>

<created-at type="datetime">2010-05-18T19:31:40Z</created-at>

<crypted-password>98dfc463d9122a1af0a5dc817601de437c69f365

</crypted-password>

<remember-token-expires-at type="datetime"

nil="true"></remember-token-expires-at>

<updated-at type="datetime">2010-05-18T19:31:40Z</updated-at>

<id type="integer">7</id>

<client-id type="integer" nil="true"></client-id>

<remember-token nil="true"></remember-token>

<login>admin</login>

<email>admin@tr3w.com</email>

<timesheets-updated-at type="datetime"

nil="true"></timesheets-updated-at>

</user>

As part of the to_xml method, Rails sets attributes called type that identify the class
of the value being serialized. If we take this XML and feed it to the from_xml method,
Rails will typecast the strings to their corresponding Ruby objects:

>> Hash.from_xml(User.first.to_xml)

=> {"user"=>{"salt"=>"034fbec79d0ca2cd7d892f205d56ea95174ff557",

"authorized_approver"=>true, "created_at"=>Tue May 18 19:31:40 UTC 2010,

"remember_token_expires_at"=>nil,

"crypted_password"=>"98dfc463d9122a1af0a5dc817601de437c69f365",

"updated_at"=>Tue May 18 19:31:40 UTC 2010, "id"=>7, "client_id"=>nil,

"remember_token"=>nil, "login"=>"admin", "timesheets_updated_at"=>nil,

"email"=>"admin@tr3w.com"}}

15.4 Active Resource

Web applications often need to serve users in front of web browsers and other sys-
tems via some API. Other languages accomplish this using SOAP or some form of
XML-RPC, but Rails takes a simpler approach. In Chapter 3, REST, Resources,
and Rails, we talked about building RESTful controllers and using respond_to

to return different representations of resources. By doing so we could connect to
http://localhost:3000/auctions.xml and get back an XML representation of

http://localhost:3000/auctions.xml

458 Chapter 15: XML and Active Resource

all auctions in the system. We can now write a client to consume this data using Active
Resource.

Active Resource is a standard part of the Rails framework. It has complete under-
standing of RESTful routing and XML representation, and is designed to look and feel
much like Active Record.

15.4.1 List

The simplest Active Resource model would look something like this:

class Auction < ActiveResource::Base

self.site = 'http://localhost:3000'

end

To get a list of auctions we would call its all method:

>> auctions = Auction.all

This will connect to http://localhost:3000/auctions.xml.
Active Resource can’t automatically filter the resources like you would with Active

Record’s where method, but you can use :params to pass options to the server, which
can then filter the results.

class AuctionsController < ApplicationController

def index

@auctions = Auction.where(params.except(:controller, :action,

:format))

...

end

end

And then from the consumer application, you might do:

>> auctions = Auction.all(:params => { :reserve => 100 })

This method, however, could easily become unmanageable, since in reality you
would want to filter out unsupported params. A much better solution when you want
to filter your results is to define a custom collection method on the server, and query
against that instead.1

resource :auctions do

collection do

get :open

end

end

1. Of course, that only works if you control both applications.

http://localhost:3000/auctions.xml

X
M

L
15.4 Active Resource 459

class AuctionsController < ApplicationController

def open

@auctions = Auction.open

respond_to do |format|

format.html

format.xml { render :xml => @auctions }

end

end

end

It is then trivial to query this collection from Active Resource

>> Auction.all(:from => :open)

Active Resource also supports nested resource routes like this discussed in Chapter 3,
“REST, Resources, and Rails,”.

class Item < ActiveRecord::Base

self.site = 'http://localhost:3000/auctions/:auction_id'

end

And now from your consumer application, you can pull back all of the items for an
auction:

>> Item.all(:params => {:auction_id => 1})

15.4.2 Show

Finding specific resources with Active Resource follows the same pattern as retrieving a
collection. To fetch the auction with the id 1986, for instance, we can do:

>> Auction.find(1986)

If instead we just want to get the first auction, we can do:

>> Auction.first

You should note that Auction.first is equivalent to calling Auction.all.first

(i.e., it will load http://localhost:3000/auctions.xml and then call first on the
returned collection).

If we wanted to find the newest Auction, we can do something similar to the open
example, but with a newest method.

resource :auctions do

collection do

get :newest

end

end

http://localhost:3000/auctions.xml

460 Chapter 15: XML and Active Resource

class AuctionsController < ApplicationController

def newest

@auction = Auction.order("created_at desc").first

respond_to do |format|

format.html

format.xml { render :xml => @auction }

end

end

end

Now we can retrieve the newest auction.

>> Auction.find(:one, :from => :newest)

You need to remember that unlike with Active Record, first is not the same as
find(:one).

It’s also important to understand how a request to a nonexistent item is handled. If
we tried to access an item with an id of -1 (there isn’t any such item), we would get an
HTTP 404 status code back. This is exactly what Active Resource receives and raises a
ResourceNotFound exception. Active Resource makes heavy use of the HTTP status
codes as we’ll see throughout this chapter.

15.4.3 Create

Active Resource is not limited to just retrieving data; it can also create it. If we wanted
to place a new bid on an item via Active Resource, we would do the following:

>> Bid.create(:username => 'me', :auction_id => 3, :item_id => 6, :amount

=> 34.50)

This would HTTP POST to the URL:
http://localhost:3000/auctions/3/items/6/bids.xml with the supplied data.
In our controller, the following would exist:

class BidController < ApplicationController

...

def create

@bid = Bid.new(params[:bid])

respond_to do |format|

if @bid.save

flash[:notice] = 'Bid was successfully created.'

format.html { redirect_to(@bid) }

format.xml { head :created, :location => @bid }

else

format.html { render :action => "new" }

format.xml { render :xml => @bid.errors, :status =>

:unprocessable_entity }

http://localhost:3000/auctions/3/items/6/bids.xml

X
M

L
15.4 Active Resource 461

end

end

end

...

end

If the bid is successfully created, the newly created bid is returned with an HTTP 201
status code and the Location header is set pointing to the location of the newly created
bid. With the Location header set, we can determine what the newly created bid’s id is.
For example:

>> bid = Bid.create(:username => 'me', :auction_id => 3, :item_id => 6,

:amount => 34.50)

>> bid.id # => 12

>> bid.new? # => false

If we tried to create the preceding bid again but without a dollar amount, we could
interrogate the errors.

>> bid = Bid.create(:username => 'me', :auction_id => 3, :item_id => 6)

>> bid.valid? # => false

>> bid.id # => nil

>> bid.new? # => true

>> bid.errors.class # => ActiveResource::Errors

>> bid.errors.size # => 1

>> bid.errors.on_base # => "Amount can't be blank"

>> bid.errors.full_messages # => "Amount can't be blank"

>> bid.errors[:amount] # => nil

In this case a new Bid object is returned from the create method, but it’s not valid.
If we try to see what its id is we also get a nil. We can see what caused the create to
fail by calling the ActiveResource#errors method. This method behaves just like
ActiveRecord#errors with one important exception. On ActiveRecord if we called
Errors#on, we would get the error for that attribute. In the preceding example, we got
a nil instead. The reason is that Active Resource, unlike Active Record, doesn’t know
what attributes there are. Active Record does a SHOW FIELDS FROM <table> to get
this, but Active Resource has no equivalent. The only way Active Resource knows an
attribute exists is if we tell it. For example:

>> bid = Bid.create(:username => 'me', :auction_id => 3, :item_id => 6,

:amount => nil)

>> bid.valid? # => false

>> bid.id # => nil

>> bid.new? # => true

>> bid.errors.class # => ActiveResource::Errors

>> bid.errors.size # => 1

>> bid.errors.on_base # => "Amount can't be blank"

462 Chapter 15: XML and Active Resource

>> bid.errors.full_messages # => "Amount can't be blank"

>> bid.errors[:amount] # => "can't be blank"

In this case we told Active Resource that there is an amount attribute through the create
method. As a result we can now call Errors#on without a problem.

15.4.4 Update

Editing an Active Resource follows the same Active Record pattern.

>> bid = Bid.find(1)

>> bid.amount # => 10.50

>> bid.amount = 15.00

>> bid.save # => true

>> bid.reload

>> bid.amount # => 15.00

If we set the amount to nil, ActiveResource.save would return false. In this case
we could interrogate ActiveResource::Errors for the reason, just as we would with
create. An important difference between Active Resource and Active Record is the
absence of the save! and update! methods.

15.4.5 Delete

Removing an Active Resource can happen in two ways. The first is without instantiating
the Active Resource

>> Bid.delete(1)

The other way requires instantiating the Active Resource first:

>> bid = Bid.find(1)

>> bid.destroy

15.4.6 Headers

Active Resource allows for the setting of HTTP headers on each request too. This can
be done in two ways. The first is to set it as a variable:

class Auctions < ActiveResource::Base

self.site = 'http://localhost:3000'

@headers = { 'x-flavor' => 'orange' }

end

This will cause every connection to the site to include the HTTP header: HTTP-X-
FLAVOR: orange. In our controller, we could use the header value.

X
M

L
15.4 Active Resource 463

class AuctionController < ApplicationController

def show

@auction = Auction.find_by_id_and_flavor(params[:bid],

request.headers['HTTP_X_FLAVOR'])

respond_to do |format|

format.html

format.xml { render :xml => @auction }

end

end

end

The second way to set the headers for an Active Resource is to override the headers
method.

class Auctions < ActiveResource::Base

self.site = 'http://localhost:3000'

def self.headers

{ 'x-flavor' => 'orange' }

end

end

15.4.7 Customizing URLs

Active Resource assumes RESTful URLs, but that doesn’t always happen. Fortunately,
you can customize the URL prefix and collection_name. Suppose we assume the
following Active Resource class:

class OldAuctionSystem < ActiveResource::Base

self.site = 'http://s60:3270'

self.prefix = '/cics/'

self.collection_name = 'auction_pool'

end

The following URLs will be used:

OldAuctionSystem.all GET http://s60:3270/cics/auction_pool.xml

OldAuctionSystem.find(1) GET http://s60:3270/cics/auction_pool/1.xml

OldAuctionSystem. PUT http://s60:3270/cics/auction_pool/1.xml

find(1).save}

OldAuctionSystem.delete(1)} DELETE http://s60:3270/cics/auction_pool/1.xml

OldAuctionSystem. POST http://s60:3270/cics/auction_pool.xml

create(...)}

We could also change the element name used to generate XML. In the preceding
Active Resource, a create of an OldAuctionSystem would look like the following

464 Chapter 15: XML and Active Resource

in XML:

<?xml version=\"1.0\" encoding=\"UTF-8\"?>

<OldAuctionSystem>

<title>Auction A</title>

...

</OldAuctionSystem>

The element name can be changed with

class OldAuctionSystem < ActiveResource::Base

self.site = 'http://s60:3270'

self.prefix = '/cics/'

self.element_name = 'auction'

end

which will produce:

<?xml version=\"1.0\" encoding=\"UTF-8\"?>

<Auction>

<title>Auction A</title>

...

</Auction>

One consequence of setting the element_name is that Active Resource will use
the plural form to generate URLs. In this case it would be 'auctions' and not
'OldAuctionSystems'. To do this you will need to set the collection_name as
well.

It is also possible to set the primary key field Active Resource uses with
self.primary_key

class OldAuctionSystem < ActiveResource::Base

self.site = 'http://s60:3270'

self.primary_key = 'guid'

end

15.4.8 Hash Forms

The methods find, create, save, and delete correspond to the HTTP methods of
GET, POST, PUT, and DELETE, respectively. Active Resource has a method for each
of these HTTP methods, too. They take the same arguments as find, create, save,
and delete but return a hash of the XML received.

>> bid = Bid.find(1)

>> bid.class # => ActiveResource::Base

>> bid_hash = Bid.get(1)

>> bid_hash.class # => Hash

X
M

L
15.5 Active Resource Authentication 465

15.5 Active Resource Authentication

Active Resource comes with support for both HTTP Basic and HTTP Digest Authenti-
cation, as well as SSL authentication using X.509 certificates. Each has various compro-
mises of simplicity, strength, interoperability, and infrastructure/system-administration
support needs.

As with most HTTP clients and servers, MD5 is the only hashing algorithm sup-
ported in HTTP Digest. This is the only algorithm mentioned by RFC 2617, but Rails
supports the extended properties of the RFC that strengthen the protocol despite the
hashing algorithm used.2

Other authentication mechanisms, like OAuth, CAS, and Kerberos, can be found
in HTTP servers, middleware, Ruby gems, and Rails plugins.

15.5.1 HTTP Basic Authentication

When using Basic Authentication, the credentials are sent in plain text and as such can
be easily snooped. For this reason, an HTTPS connection should be used when using
Basic Authentication.

Here is a basic model class that consumes a RESTful service to obtain data, and
specifies credentials for an authenticated connection to the service:

class MoneyTransfer < ActiveResource::Base

self.site = 'https://localhost:3000/'

self.user = 'administrator'

self.password = 'secret'

end

You can also use URI-style credentials by putting them in the service’s URL. This is
particularly useful if you have a fully-qualified URL in a configuration file that has been
supplied by the service provider:

class MoneyTransfer < ActiveResource::Base

self.site = 'https://administrator:secret@localhost:3000/'

end

As soon as you supply any credential to the API, Active Resource will automatically
attempt to authenticate on each connection. If the username and/or password is in-
valid, an ActiveResource::ClientError is generated and handled in the consuming
application.

2. Over a period of years some weaknesses have come to light in MD5, and more recently SHA-1. But as of
this writing those weaknesses have not led to exploits that are practical for breaching this kind of security.

466 Chapter 15: XML and Active Resource

15.5.2 HTTP Digest Authentication

Setting the auth_type tells Active Resource to use Digest Authentication.

class MoneyTransfer < ActiveResource::Base

self.site = 'https://localhost:3000/'

self.user = 'administrator'

self.password = 'secret'

self.auth_type = :digest

end

It’s as simple as that! Rails takes care of the rest (pardon the pun).
Dealing with only a hashed value (HA1 being the hash of colon-separated username,

authentication realm, and password) is good, as your password is never transmitted —
except perhaps when you (re-)set it. However, if the repository storing the HA1 is com-
promised, passwords will have to be reset (even if it’s just to the same password using
a new secret or realm) as the HA1 could then be used by anyone to access your account
on that server only. They still won’t know your password or be able to use the HA1

within another authentication realm. As such, despite its many known limitations and
interoperability issues, Digest is definitely a step above Basic.

15.5.3 Certificate Authentication

A type of public key authentication, you may also hear this referred to as “client-side
certificate authentication” and, when used in conjunction with username/password cre-
dentials, is a form of two-factor authentication as it involves something you have (the
certificate) and something you know (the credentials).

In this form of SSL-based authentication, the server provides its certificate as usual
(creating the SSL connection), and then the client provides its certificate so that the
server continues with the SSL session.

15.5.4 Proxy Server Authentication

Sometimes you may find your Active Resource model may need to access a service
on another network that is only accessible through a proxy server on your network (a
“forward” proxy). This is often the case in your development environment where you
may have to access the Internet through a proxy server, or perhaps an intranet application
that needs data from the Internet.

In particularly thrifty enterprise networks (where Internet access is actively discour-
aged), the proxy server may even require authentication. It is far better to work with
the infrastructure teams to remove the need for proxy authentication from selected

X
M

L
15.5 Active Resource Authentication 467

machines (like your development workstation, and the production server even more so),
and preferably no explicit proxy at all.

JoshG says . . .

If the organization hasn’t made it to the 90’s yet with its Internet connectivity, or only trusts
its information technologists as far as it can kick them, you may have bigger problems than
configuring your Rails app.

To connect through your proxy server by providing it additional credentials either
by providing a URI:

class Geocode < ActiveResource::Base

self.site =

"http://maps.google.com/maps/api/geocode/json?address=#{@address}"

self.proxy = URI::HTTP.build({:userinfo => 'apps:3x0du$', :host =>

'proxymuppets.smackaho.st', :port => 3470})

end

or using URI-style:

class Geocode < ActiveResource::Base

self.site =

"http://maps.google.com/maps/api/geocode/json?address=#{@address}"

self.proxy = 'http://apps:3x0du$@proxymuppets.smackaho.st:3470/'

end

15.5.5 Authentication in the Web Service Controller

On the other side of the connection, the RESTful service that our Active Resource model
is consuming, we can use the authentication built-in to Rails:

class MoneyTransferController < ApplicationController

USER_NAME, PASSWORD = 'administrator', 'secret' #for example purpose

only

before_filter :authenticate

def create

@money_transfer = MoneyTransfer.new(params[:money_transfer])

respond_to do |format|

if @money_transfer.save

flash[:notice] = 'Money Transfer was successfully created.'

format.html { redirect_to(@money_transfer) }

format.xml { head :created, :location => @money_transfer }

else

format.html { render :action => 'new' }

468 Chapter 15: XML and Active Resource

format.xml { render :xml => @money_transfer.errors, :status =>

:unprocessable_entity}

end

end

end

private

def authenticate

authenticate_or_request_with_http_basic do |user_name, password|

user_name == USER_NAME && password == PASSWORD #a very simple

authentication system with hard-coded username and password! Replace with

a lookup into some repository.

end

end

end

If the service is supporting HTTP Digest Authentication:

class MoneyTransferController < ApplicationController

USER_NAME, PASSWORD = 'administrator', 'secret' #for example purpose

only

USERS = { USER_NAME => Digest::MD5::hexdigest([USER_NAME,

'ExampleAuthenticationRealm', PASSWORD].join(":")) } #for example purpose

only

before_filter :authenticate

def create

@money_transfer = MoneyTransfer.new(params[:money_transfer])

respond_to do |format|

if @money_transfer.save

flash[:notice] = 'Money Transfer was successfully created.'

format.html { redirect_to(@money_transfer) }

format.xml { head :created, :location => @money_transfer }

else

format.html { render :action => 'new' }

format.xml { render :xml => @money_transfer.errors, :status =>

:unprocessable_entity}

end

end

end

private

def authenticate

authenticate_or_request_with_http_digest do |user_name|

USERS[user_name] #return HA1-style hashed password

end

end

end

X
M

L
15.6 Conclusion 469

The authenticate_or_request_with_http_digestmethod will first try to authen-
ticate using a HA1-style digest password (which is what our example above uses). If that
fails, it will attempt to hash a plain text password and match it against the hash in the
request.

Initial authentication of client certificates is done by whatever in your HTTP stack
that negotiates the SSL session (e.g. httpd, nginx), not in your Rails application.

Depending on your infrastructure technology, you may have access to additional en-
vironment variables like SSL_CLIENT_CERT, REMOTE_USER, X-HTTP_AUTHORIZATION.
These can be used for deeper authentication (e.g., comparing a certificate’s DN, email,
and CN) and for authorization (to verify if an authenticated user is allowed to perform
specific actions).

15.6 Conclusion

In practice, the to_xml and from_xml methods meet the XML handling needs for most
situations that the average Rails developer will ever encounter. Their simplicity masks a
great degree of flexibility and power, and in this chapter we attempted to explain them
in sufficient detail to inspire your own exploration of XML handling in the Ruby world.

As a pair, the to_xml and from_xml methods also enabled the creation of a frame-
work that makes tying Rails applications together using authenticated RESTful web
services drop-dead easy. That framework is named Active Resource, and this chapter
gave you a crash-course introduction to it.

This page intentionally left blank

M
a
il

CHAPTER 16

Action Mailer

It’s a cool way to send emails without tons of code

—Jake Scruggs

Integration with email is a crucial part of most modern web application projects. Whether
it’s sign-up confirmations, password recovery, or letting users control their accounts via
email, you’ll be happy to hear that Rails offers great support for both sending and
receiving email, thanks to its Action Mailer framework.

In this chapter, we’ll cover what’s needed to set up your deployment to be able to
send and receive mail with the Action Mailer framework and by writing mailer models,
the entities in Rails that encapsulate code having to do with email handling.

16.1 Setup

By default, Rails will try to send email via SMTP (port 25) of localhost. If you are
running Rails on a host that has an SMTP daemon running and it accepts SMTP email
locally, you don’t have to do anything else in order to send mail. If you don’t have SMTP
available on localhost, you have to decide how your system will send email.

When not using SMTP directly, the main options are to use sendmail or to give
Rails information on how to connect to an external mail server. Most organizations have
SMTP servers available for this type of use, although it’s worth noting that because of
abuse many hosting providers have stopped offering shared SMTP service.

Most serious production deployments use third-party SMTP services that specialize
in delivering automated email, avoiding user spam filters and blacklists.

471

472 Chapter 16: Action Mailer

16.2 Mailer Models

Assuming the mail system is configured, let’s go ahead and create a mailer model that
will contain code pertaining to sending and receiving a class of email. Rails provides a
generator to get us started rapidly. Our mailer will send out a notices to any user of our
sample application who is late entering their time.

$ rails generate mailer LateNotice

create app/mailers/late_notice.rb

invoke haml

create app/views/late_notice.text.html.haml

invoke rspec

create test/unit/late_notice_spec.rb

A view folder for the mailer is created at app/views/late_notice and the mailer itself
is stubbed out at app/mailers/late_notice.rb:

class LateNotice < ActionMailer::Base

default :from => "from@example.com"

end

Kind of like a default Active Record subclass, there’s not much there at the start.

16.2.1 Preparing Outbound Email Messages

You work with Action Mailer classes by defining public mailer methods that correspond
to types of emails that you want to send. Inside the public method, you assign any
variables that will be needed by the email message template and then call the mail
method, which is conceptually similar to the render method used in controllers.

Continuing with our example, let’s write a late_timesheet mailer method that
takes user and week_of parameters. Notice that it sets the basic information needed to
send our notice email (see Listing 16.1).

Listing 16.1 Adding a mailer method

class LateNotice < ActionMailer::Base

default :from => "system@timeandexpenses.com"

def late_timesheet(user, week_of)

@recipient = user.name

@week = week_of

attachments["image.png"] = File.read("/images/image.png")

mail(

:to => user.email,

M
a
il

16.2 Mailer Models 473

:subject => "[Time and Expenses] Timesheet notice"

)

end

end

Inside the method we’ve created we have access to a few methods to set up the
message for delivery, including the mail method shown above:

attachments Allows you to add normal and inline file attachments to your message

attachments["myfile.zip"] = File.read("/myfile.zip")

attachments.inline["logo.png"] = File.read("/logo.png")

headers Allows you to supply a hash of custom email headers

headers("X-Author" => "Obie Fernandez")

mail Sets up the email that will get sent. It accepts a hash of headers that a
Mail::Message will accept and allows an optional block. If no block is speci-
fied, views will be used to construct the email with the same name as the method in
the mailer. If a block is specified these can be customized.

Note also the change of the default from address to one set up for our application. Here
is a sample list of the headers that you can include in the hash passed to the mail method
or in the default macro. In addition to these, you may pass any email header that is
needed when sending, i.e., { "X-Spam" => value }.

subject The subject line for the message.

to The recipient addresses for the message, either as a string (for a single address) or
an array (for multiple addresses). Remember that this method expects actual address
strings not your application’s user objects.

users.map(&:email)

from Specifies the from address for the message as a string (required).

cc Specifies carbon-copy recipient (Cc:) addresses for the message, either as a string (for
a single address) or an array for multiple addresses.

bcc Specifies blind recipient (Bcc:) addresses for the message, either as a string (for a
single address) or an array for multiple addresses.

reply—to Sets the email for the reply-to header.

474 Chapter 16: Action Mailer

date An optional explicit sent on date for the message, usually passed Time.now. Will
be automatically set by the delivery mechanism if you don’t supply a value, and
cannot be set using the default macro.

The mailmethod can either take a block or not if you want to do custom formats similar
to Rails routes.

mail(:to => "user@example.com") do |format|

format.text

format.html

end

The body of the email is created by using an Action View template (regular Haml or
ERb) that has the instance variables in the mailer available as instance variables in the
template. So the corresponding body template for the mailer method in Listing 16.1
could look like

Dear #{@recipient},

Your timesheet for the week of #{@week} is late.

And if the recipient was Aslak, the email generated would look like this:

Date: Sun, 12 Dec 2004 00:00:00 +0100

From: system@timeandexpenses.com

To: aslak.hellesoy@gmail.com

Subject: [Time and Expenses] Late timesheet notice

Dear Aslak Hellesoy,

Your timesheet for the week of Aug 15th is late.

16.2.2 HTML Email Messages

To send mail as HTML, make sure your view template generates HTML and
that the corresponding template name corresponds to the email method name. For
our late_timesheet method this would be in app/views/late_notice/late_

timesheet.text.html.haml (or .erb.) You can also override this template name
in the mail block.

mail(:to => "user@example.com") do |format|

format.text

format.html { render "another_template" }

end

M
a
il

16.2 Mailer Models 475

16.2.3 Multipart Messages

If a plain text and HTML template are present for a specific mailer action, the text tem-
plate and the HTML template will both get sent by default as a multipart message. The
HTML part will be flagged as alternative content for those email clients that support it.

Implicit Multipart Messages

As mentioned earlier in the chapter, multipart messages can also be used implicitly,
without invoking the part method, because Action Mailer will automatically detect
and use multipart templates, where each template is named after the name of the action,
followed by the content type. Each such detected template will be added as separate part
to the message.

For example, if the following templates existed, each would be rendered and added
as a separate part to the message, with the corresponding content type. The same body
hash is passed to each template.

• signup—notification.text.plain.haml

• signup—notification.text.html.haml

• signup—notification.text.xml.builder

• signup—notification.text.x-yaml.erb

16.2.4 Attachments

Including attachments in emails is relatively simple, just use the attachments method
in your class.

class LateNotice < ActionMailer::Base

def late_timesheet(user, week_of)

@recipient = user.name

attachments["image.png"] = File.read("/images/image.png")

mail(

:to => user.email,

:from => "test@myapp.com",

:subject => "[Time and Expenses] Timesheet notice"

)

end

end

If you wanted to attach the image inline, use attachments.inline.

attachments.inline["image.png"] = File.read("/images/image.png")

476 Chapter 16: Action Mailer

You can access this attachment in the template if need be via the , then calling url

on that object for the image’s relative content id (cid:) path. image—tag helper.

Dear #{@recipient},

Your timesheet is late, here's a photo depicting our sadness:

= image_tag attachments['image.png'].url, :alt => "Invoicing"

16.2.5 Generating URLs

Generating application URLs is handled through named routes or using the url_for
helper. Since mail does not have request context like controllers do, the host configuration
option needs to be set. The best practice for this is to define them in the corresponding
environment configuration although it can be defined on a per mailer basis.

config/environments/production.rb

config.action_mailer.default_url_options = { :host => 'accounting.com' }

In your mailer you can now generate your url. It is important to note that you cannot
use the _path variation for your named routes since the must be rendered as absolute
URLs.

class LateNotice < ActionMailer::Base

def late_timesheet(user, week_of)

@recipient = user.name

@link = user_url(user)

mail(

:to => user.email,

:from => "test@myapp.com",

:subject => "[Time and Expenses] Timesheet notice"

)

end

end

When generating URLs through url_for, the controller and action also need to be
specified. If you have provided a default host then the :only_path option must be
provided to tell the helper to generate an absolute path.

= url_for(:controller => "users", :action => "update",

:only_path => false)

16.2.6 Mailer Layouts

Mailer layouts behave just like controller layouts. To be automatically recognized,
they need to have the same name as the mailer itself. In our previous case,

M
a
il

16.3 Receiving Emails 477

layouts/late_notice.html.haml would automatically be used for our HTML
emails. You can also add custom layouts if your heart desires, either at the class level or
as a render option.

class LateNotice < ActionMailer::Base

layout "alternative"

def late_timesheet(user, week_of)

mail(:to => user.email) do |format|

format.html { render :layout => "another" }

end

end

end

We’ve now talked extensively about preparing email messages for sending, but what
about actually sending them to the recipients?

16.2.7 Sending an Email

Sending emails only involves getting a Mail::Message object from your mailer and
delivering it.

aslak = User.find_by_name "Aslak Hellesoy"

message = LateNotice.late_timesheet(aslak, 1.week.ago)

message.deliver

16.3 Receiving Emails

To receive emails, you need to write a public method named receive on one of your
application’s ActionMailer::Base subclasses. It will take a Mail::Message1 object
instance as its single parameter. When there is incoming email to handle, you call an
instance method named receive on your Mailer class. The raw email string is converted
into a Mail::Message object automatically and your receive method is invoked for
further processing. You don’t have to implement the receive class method yourself, it
is inherited from ActionMailer::Base.2

That’s all pretty confusing to explain, but simple in practice. Listing 16.2 shows an
example.

1. http://github.com/mikel/mail
2. If you’re willing to depend on Google App Engine, you should investigate the innovative Remail gem
at http://github.com/maccman/remail for an easy and powerful REST-based approach to solving the
problem.

http://github.com/mikel/mail
http://github.com/maccman/remail

478 Chapter 16: Action Mailer

Listing 16.2 The simple MessageArchiver mailer class with a receive method

class MessageArchiver < ActionMailer::Base

def receive(email)

person = Person.find_by_email(email.to.first)

person.emails.create(

:subject => email.subject,

:body => email.body

)

end

end

The receive class method can be the target for a Postfix recipe or any other
mail-handler process that can pipe the contents of the email to another process. The
rails runner command makes it easy to handle incoming mail:

rails runner 'MessageArchiver.receive(STDIN.read)'

That way, when a message is received, the receive class method would be fed the raw
string content of the incoming email via STDIN.

16.3.1 Handling Incoming Attachments

Processing files attached to incoming email messages is just a matter of using the
attachments attribute of Mail::Message, as in Listing 16.3. This example assumes
that you have a Person class, with a has_many association to an attachment_fu object
named photos.

class PhotoByEmail < ActionMailer::Base

def receive(email)

from = email.from.first

person = Person.find_by_email(from)

logger.warn("Person not found [#{from}]") and return unless person

if email.has_attachments?

email.attachments.each do |file|

person.photos.create(:uploaded_data => file)

end

end

end

end

M
a
il

16.5 Testing Email Content 479

There’s not much more to it than that, except of course to wrestle with the configuration
of your mail-processor (outside of Rails) since they are notoriously difficult to configure.3

After you have your mail-processor calling the rails runner command correctly, add
a crontab so that incoming mail is handled about every five minutes or so, depending
on the needs of your application.

16.4 Server Configuration

Most of the time, you don’t have to configure anything specifically to get mail sending
to work, because your production server will have sendmail installed and Action Mailer
will happily use it to send emails.

If you don’t have sendmail installed on your server, you can try setting up Rails
to send email directly via SMTP. The ActionMailer::Base class has a hash named
smtp_settings (server_settings prior to Rails 2.0) that holds configuration infor-
mation. The settings here will vary depending on the SMTP server that you use.

The sample (as shown in Listing 16.3) demonstrates the SMTP server settings
that are available (and their default values). You’ll want to add similar code to your
config/environment.rb file:

Listing 16.3 SMTP settings for ActionMailer

ActionMailer::Base.smtp_settings = {

:address => 'smtp.yourserver.com', # default: localhost

:port => 25, # default: 25

:domain => 'yourserver.com', # default: localhost.localdomain

:user_name => 'user', # no default

:password => 'password', # no default

:authentication => :plain # :plain, :login or :cram_md5

}

16.5 Testing Email Content

Ben Mabey’s email_spec4 gem provides a nice way to test your mailers using
RSpec. Add it to your Gemfile and first make the following additions to your
spec/spec_helper.rb.

3. Rob Orsini, author of O’Reilly’s Rails Cookbook recommends getmail, which you can get from
http://pyropus.ca/software/getmail.
4. http://github.com/bmabey/email-spec

http://pyropus.ca/software/getmail
http://github.com/bmabey/email-spec

480 Chapter 16: Action Mailer

RSpec::Runner.configure do |config|

config.include(EmailSpec::Helpers)

config.include(EmailSpec::Matchers)

end

Mailer specs reside in spec/mailers, and email_spec provides convenience
matchers for asserting that the mailer contains the right attributes.

• reply_to: Checks the reply-to value.

• deliver_to: Verifies the recipient.

• deliver_from: Assertion for the sender.

• bcc_to: Verifies the bcc.

• have_subject: Performs matching of the subject text.

• include_email_with_subject: Performs matching of the subject text in multiple
emails.

• have_body_text: Match for text in the body.

• have_header: Check for a matching email header.

These matchers can then be used to assert that the generated email has the correct
content included in it.

require "spec_helper"

describe InvoiceMailer do

let(:invoice) do

Invoice.new(:name => "Acme", :email => "joe@example.com")

end

let(:email) do

InvoiceMailer.create_late(invoice)

end

it "delivers to the invoice email" do

email.should deliver_to("joe@example.com")

end

it "contains the invoice name" do

email.should have_body_text(/Acme/)

end

it "has a late invoice subject" do

email.should have_subject(/Late Invoice/)

end

end

M
a
il

16.6 Conclusion 481

If you’re attempting to test whether or not the mailer gets called and sends the email,
it is recommended to simply check via a mock that the deliver method got executed.

16.6 Conclusion

In this chapter, we learned how Rails makes sending and receiving email easy. With
relatively little code, you can set up your application to send out email, even HTML
email with inline graphics attachments. Receiving email is even easier, except perhaps for
setting up mail-processing scripts and cron jobs. We also briefly covered the configuration
settings that go in your application’s environment specific configuration related to mail.

This page intentionally left blank

C
a
ch

in
g

CHAPTER 17

Caching and Performance

Hard work never killed anybody, but why take the chance?

—Edgar Bergen (as Charlie McCarthy), 1903–1978

Historically Rails has suffered from an unfair barrage of criticisms over perceived weak-
nesses in scalability. Luckily, the continued success of Rails in ultra-high-traffic usage at
companies such as Twitter and Groupon has made liars of the critics. Nowadays, you can
make your Rails application very responsive and scalable with ease. The mechanisms used
to squeeze maximum performance out of your Rails apps are the subject of this chapter.

View caching lets you specify that anything from entire pages down to fragments of
the page should be captured to disk as HTML files and sent along by your web server on
future requests with minimal involvement from Rails itself. ETag support means that in
best-case scenarios, it’s not even necessary to send any content at all back to the browser,
beyond a couple of HTTP headers. Hard work may never have killed anyone, but make
your Rails application work harder than it needs to, and you might kill your server!

17.1 View Caching

There are three types of view caching in Rails:

Page caching The output of an entire controller action is cached to disk, with no further
involvement by the Rails dispatcher.

Action caching The output of an entire controller action is cached to disk, but the Rails
dispatcher is still involved in subsequent requests, and controller filters are executed.

Fragment caching Arbitrary bits and pieces of your page’s output can be cached to disk
to save the time of having to render them in the future.

483

484 Chapter 17: Caching and Performance

17.1.1 Caching in Development Mode?

I wanted to mention up front that caching is disabled in development mode. If you want
to play with caching during development, you’ll need to edit the following setting in the
config/environments/development.rb file:

config.action_controller.perform_caching = false

Of course, remember to change it back before checking it back into your project repos-
itory, or you might face some very confusing errors down the road.1

17.1.2 Page Caching

The simplest form of caching is page caching, triggered by use of the caches_page

macro-style method in a controller. It tells Rails to capture the entire output of the
request to disk so that it is served up directly by the web server on subsequent requests
without the involvement of the dispatcher. Nothing will be logged to the Rails log, nor
will controller filters be triggered—absolutely nothing to do with Rails will happen, just
like the static HTML files in your project’s public directory.

17.1.3 Action Caching

By definition, if there’s anything that has to change on every request or specific to an end
user’s view of that page, page caching is not an option. On the other hand, if all we need
to do is run some filters that check conditions before displaying the page requested, the
caches_action method will work. It’s almost like page caching, except that controller
filters are executed prior to serving the cached HTML file. That gives you the option to
do some extra processing or even redirect if necessary.

Action caching is implemented with fragment caching (covered later in this chapter)
and an around_filter (covered in Chapter 4, Working with Controllers). The cached
action content is keyed based on the current host and the path, which means that it
will still work even with Rails applications serving multiple subdomains using a DNS
wildcard. Also, different representations of the same resource, such as HTML and XML,
are treated like separate requests and cached separately.

Listing 17.1 (like most of the listings in this chapter) is taken from a blog application
with public and private entries, so for default requests, we should run a filter that figures
out whether the visitor is logged in and redirects them to the public action if necessary.

1. In his great screencast on the subject, Geoffrey Grosenbach suggests adding another environment mode
to your project named development—with—caching, with caching turned on just for experimentation
(http://peepcode.com/products/page-action-and-fragment-caching).

http://peepcode.com/products/page-action-and-fragment-caching

C
a
ch

in
g

17.1 View Caching 485

Listing 17.1 The EntriesController of lil—journal

class EntriesController < ApplicationController

before_filter :check_logged_in, :only => [:index]

caches_page :public

caches_action :index

def public

@entries = Entry.where(:private => false).limit(10)

render :index

end

def index

@entries = Entry.limit(10)

end

private

def check_logged_in

redirect_to :action => 'public' unless logged_in?

end

end

The public action displays only the public entries and is visible to anyone, which
makes it a candidate for page caching. However, since it doesn’t require its own template,
we just call render :index explicitly at the end of the public action.

Design Considerations

Knowing that your application will eventually require caching should influence your
design decisions. Projects with optional authentication often have controller actions that
are impossible to page or action-cache, because they handle both login states internally.
That would have been the case in Listing 17.1 if we had written the index action to
handle both public and private display:

def index

@entries = Entry.limit(10)

@entries = @entries.where(:private => false) unless logged_in?

end

Most of the time, you won’t have too many pages with completely static content that
can be cached using cache_page or cache_action, and that’s where fragment caching
comes into play.

486 Chapter 17: Caching and Performance

17.1.4 Fragment Caching

Users are accustomed to all sorts of dynamic content on the page, and your application
layout will be filled with things like welcome messages and notification counts. Fragment
caching allows us to capture parts of the rendered page on disk and serve them up on
subsequent requests without needing to render their content again. The performance
improvement is not as dramatic as with page or action caching, since the Rails dispatcher
is still involved.

The cache Method

Fragment caching is by its very nature something that you specify in your view template
rather than at the controller level. You do so using the cache method of Action View.
It takes a block, which lets you wrap content that should be cached.

Once we log in to the sample application reflected in Listing 17.1, the header
section should really display information about the logged-in user, so action-caching
the index page is out of the question. We’ll remove the caches_action directive from
the EntriesController, but leave cache_page in place for the public action. Then
we’ll go into the entries/index.html.haml template and add fragment caching, as
shown in Listing 17.2.

Listing 17.2 entries/index.html.haml template with fragment caching

= content_tag :h1, "#{@user.name}'s Journal"

- cache do

= render :partial => 'entry', :collection => @entries

Easy as that—the HTML output of rendering the collection of entries is stored in
the fragment cache associated with the entries/index page. That’s fine if we’re only
caching one fragment of the page, but most of the time we’ll need to give the fragment
some extra identification.

Named Fragments

The cache method takes an optional name parameter. If you leave it blank, as we have
in Listing 17.2, it caches its content keyed to the URL of its parent page. That’s an
acceptable solution as long as there is only one fragment on the page.

If we’re caching more than one fragment on the page, we need to add an extra
identifier, so that we don’t suffer name collisions. Listing 17.3 is an enhanced version of
the entries page, where we’ve added the display of recent comments in the sidebar.

C
a
ch

in
g

17.1 View Caching 487

Listing 17.3 The entries page with two fragment cache directives

= content_tag :h1, "#{@user.name}'s Journal"

- cache(:fragment => 'entries') do

= render :partial => 'entry', :collection => @entries

- content_for :sidebar do

- cache(:fragment => 'recent_comments') do

= render :partial => 'comment', :collection => @recent_comments

After the code in Listing 17.3 is rendered, there will be two fragments stored in the
cache, keyed as follows:

/entries/index?fragment=entries

/entries/index?fragment=recent_comments

The fact that Rails uses the page’s URL scheme to key fragments in the cache is an
elegant solution to a somewhat difficult problem. Consider, for instance, what would
happen if you added pagination to the application and pulled up the second page of
entries. Without further work, a pair of additional fragments would be correctly cached
for future use:

/entries/index?page=2&fragment=entries

/entries/index?page=2&fragment=recent_comments

Note

Note that Rails uses the url_for mechanism to construct unique identifiers for fragments out
of convenience. There’s no requirement that your fragment keys correspond to actual working
URLs in your application.

Global Fragments

Sometimes, you’ll want to fragment-cache content that is not specific to a single URL
of your application. To add globally keyed fragments to the cache, we’ll again use the
name parameter of the cache helper method, but this time we’ll give it a string identifier
instead of a hash.

To demonstrate, let’s add a requirement that our sample application should display
user statistics on every page. In Listing 17.4, we cache the stats partial for every user,
using their name and a "_stats" suffix as the key.

488 Chapter 17: Caching and Performance

Listing 17.4 The entries page with global user stats

= content_tag :h1, "#{@user.name}'s Journal"

- cache(:fragment => 'entries') do

= render :partial => 'entry', :collection => @entries

- content_for :sidebar do

- cache(@user.name + "_stats") do

= render :partial => 'stats'

- cache(:fragment => 'recent_comments') do

= render :partial => 'comment', :collection => @recent_comments

Avoiding Extra Database Activity

Once you have fragments of your view cached, it no longer makes sense to do the
database queries that supply those fragments with their data. After all, the results of
those database queries will not be used again until the cached fragments are expired.
The fragment_exist? method lets you check for the existence of cached content, and
takes the same parameters that you used with the associated cache method.

Here’s how we would modify the index action accordingly:

def index

unless fragment_exist?(:fragment => 'entries')

@entries = Entry.all.limit(10)

end

end

Now the finder method will only get executed if the cache needs to be refreshed.

Tim says . . .

You wouldn’t need to clutter your controller code with calls to fragment_exist? if you
were using decent—exposure.2

17.1.5 Expiration of Cached Content

Whenever you use caching, you need to consider any and all situations that will cause
the cache to become stale, out of date. Then you need to write code that sweeps away
the old content, so to speak, making room for new content to be cached in its place.

2. http://github.com/voxdolo/decent_exposure

http://github.com/voxdolo/decent_exposure

C
a
ch

in
g

17.1 View Caching 489

Expiring Pages and Actions

The expire_page and expire_action methods let you explicitly delete content from
the cache, so that it is regenerated on the next request. There are various ways to iden-
tify the content to expire, but one of them is by passing a hash with url_for conventions
used elsewhere in Rails. Listing 17.5 shows how we’ve added expiration to the create
method of the entries controller.

Listing 17.5 The entries create action

1 def create

2 @entry = @user.entries.build(params[:entry])

3 if @entry.save

4 expire_page :action => 'public'

5 redirect_to entries_path(@entry)

6 else

7 render :action => 'new'

8 end

9 end

Notice how line 4 of Listing 17.5 explicitly expires the page associated with the public
action. If you think about it, though, it’s not only the create action that invalidates
the cache. The update and destroy actions would invalidate it too.

In your applications, particularly when you’re doing RESTful resources, remember
that different representations of the same resource are treated like separate requests and
cached separately. If you’ve cached the XML response of an action, you’ll have to expire
it by appending :format => :xml to the action specification.

Expiring Fragments

The sample app we’ve been considering also has cached fragments to clear out, using the
expire_fragment method. Now the create action looks like:

Listing 17.6 The entries create action with fragment expiration

def create

@entry = @user.entries.build(params[:entry])

if @entry.save

expire_page :action => 'public'

expire_fragment(:fragment => 'entries')

expire_fragment(:fragment => (@user.name + "_stats"))

redirect_to entries_path(@entry)

else

render :action => 'new'

end

end

490 Chapter 17: Caching and Performance

There’s actually a serious problem with the expiration routine that we wrote
in Listing 17.6. Remember we said that the fragment caching of entries would
work with pagination and that we’d have cached fragments keyed like '/entries/

index?page=2&fragment=entries'

As a result, just doing expire_fragment(:fragment => 'entries') will only
clear the first page from the cache. For that reason, the expire_fragment method
understands regular expressions, and we’ll need to use them in our code:

expire_fragment(%r{entries/.*})

There has to be a better way to handle invalidation than remembering to stick a bunch
of complicated expiration statements in all your action methods. Also, since caching is
a unique concern, it feels like something that should be applied in an aspect-oriented
fashion instead of procedurally.

17.1.6 Automatic Cache Expiry with Sweepers

A Sweeper class is kind of like an ActiveRecord Observer object, except that it’s
specialized for use in expiring cached content. When you write a sweeper, you tell it
which of your models to observe for changes, just as you would with callback classes and
observers.

Listing 17.7 is a sweeper to keep the caching of our sample app’s entries in order.

Listing 17.7 An entry sweeper

class EntrySweeper < ActionController::Caching::Sweeper

observe Entry

def expire_cached_content(entry)

expire_page :controller => 'entries', :action => 'public'

expire_fragment(%r{entries/.*})

expire_fragment(:fragment => (entry.user.name + "_stats"))

end

alias_method :after_save, :expire_cached_content

alias_method :after_destroy, :expire_cached_content

end

Once you have a Sweeper class (put it in your app/models directory), you need to
tell your controller to use that sweeper in conjunction with its actions. Here’s the top of

C
a
ch

in
g

17.1 View Caching 491

the revised entries controller:

class EntriesController < ApplicationController

before_filter :check_logged_in, :only => [:index]

caches_page :public

cache_sweeper :entry_sweeper, :only => [:create, :update, :destroy]

...

Like many other controller macros, the cache_sweeper method takes :only and
:except options. There’s no need to bother the sweeper for actions that can’t modify
the state of the application, so we do indeed include the :only option in our example.

Like the related observers, sweepers are not limited to observing just one model.
The main thing to remember if we go down that route is that our callback methods will
need to know how to handle all of them. Ruby’s case statement may come in handy,
as shown in Listing 17.8, a full revision of the EntrySweeper, which may now observe
Comment as well as Entry objects.

Listing 17.8 The EntrySweeper revised to observe and handle both entries and comments

class EntrySweeper < ActionController::Caching::Sweeper

observe Entry, Comment

def expire_cached_content(record)

expire_page :controller => 'entries', :action => 'public'

expire_fragment(r%{entries/.*})

user = case entry

when Entry then record.user

when Comment then record.entry.user

end

expire_fragment(:fragment => (user.name + "_stats"))

end

alias_method :after_save, :expire_cached_content

alias_method :after_destroy, :expire_cached_content

end

The big gotcha with regular expression and expire_fragment is that it is not
supported with the most common caching service used on Rails production systems:
Memcached.

492 Chapter 17: Caching and Performance

17.1.7 Cache Logging

If you’ve turned on caching during development, you can actually monitor the Rails log
for messages about caching and expiration.

Processing Entries#index (for 127.0.0.1 at 2007-07-20 23:07:09) [GET]

...

Cached page: /entries.html (0.03949)

Processing Entries#create (for 127.0.0.1 at 2007-07-20 23:10:50) [POST]

...

Expired page: /entries.html (0.00085)

It’s a good way to see whether your caching is actually working as expected.

17.1.8 Action Cache Plugin

The Action Cache plugin by Tom Fakes and Scott Laird is a recommended drop-in
replacement for the built-in Rails caching facilities. It doesn’t change the Caching API
at all, only the underlying implementation.

rails plugin install http://craz8.com/svn/trunk/plugins/action_cache

These are the major features of the Action Cache plugin:

• Stores cached entries as YAML streams (instead of just HTML) so that the Response
headers from the original response can be returned along with cached content.

• Adds a last-modified header to the response so that clients use a get-if-

modified HTTP request. If the client already has cached content, sends a
304 Not Modified response.

• Ensures that only requests with a 200 OK status are cached. Otherwise, error pages
and empty content can get stuck in the cache (and cause difficult-to-diagnose
problems.)

• Allows developers to override Rails with their own implementation of cache key
generation.

• Allows an action to specify an optional Time To Live value for a response, before
cached content associated with the response will be automatically expired.

• Allows control over whether caching occurs for an action at runtime based on request
parameters. (For instance, never cache content for site administrators.)

• A new method, expire_all_actions, clears out the entire action cache contents.

http://craz8.com/svn/trunk/plugins/action_cache

C
a
ch

in
g

17.1 View Caching 493

• Changes the expire_action implementation to actually use the Regexp fragment
expiry call, causing all matching cache items to be cleared. For those of you us-
ing REST, and providing HTML, JS, and XML for the same action, all three will
be expired when you expire one of them with code like expire_action :con-

troller => 'foo', :action => 'bar'

17.1.9 Cache Storage

Unlike session data, fragment-cached data can grow to be quite large. Rails gives you
three different options for cache storage:

ActiveSupport::Cache::FileStore Keeps the fragments on disk in the
cache_path, which works well for all types of environments and shares the frag-
ments for all the web server processes running off the same application directory.

ActiveSupport::Cache::MemoryStore Keeps the fragments in the memory, and
can potentially consume an unacceptable amount of memory per process if you do
not have a good expiration strategy. As of Rails 3, MemoryStore is now thread-safe.

ActiveSupport::Cache::MemCacheStore Keeps the fragments in a separate pro-
cess using a proven cache server named memcached. General consensus at the time
or writing suggests that memcache is the best option.

Configuration Example

The :memory_store option is enabled by default.

ActionController::Base.fragment_cache_store = :memory_store,

:expire_in => 1.minute, :compress => true

ActionController::Base.fragment_cache_store = :file_store,

"/path/to/cache/directory"

ActionController::Base.fragment_cache_store = :mem_cache_store,

"localhost"

All cache stores take the following hash options as the last parameter:

• expire_in: Supply a time for items to be expired from the cache.

• compress: Specify to use compression or not.

• compress_threshold: Specify the threshold at which to compress, the default
is 32k.

494 Chapter 17: Caching and Performance

Note that most production Rails deployments use Passenger or Unicorn, which
spawn new processes depending on application load. You will want to use a
MemCacheStore or FileStore in these cases if you need the cache shared between
processes.

Durran says . . .

Using a key/value store in your application like Redis or Tokyo Cabinet? Check out Moneta3

if you want to leverage it for your caching. Most supported databases are more than fast enough,
and it has a very simple and easy to use API.

Limitations of File-Based Storage

As long as you’re hosting your Rails application on a single server, setting up caching is
fairly straightforward and easy to implement (of course, coding it is a different story).

If you think about the implications of running a cached application on a cluster of
distinct physical servers, you might realize that cache invalidation is going to be painful.
Unless you set up the file storage to point at a shared filesystem such as NFS or GFS, it
won’t work.

Manual Sweeping with rake
If you do choose file-based storage, you probably want to give yourself a way to manually
clear your application’s cached content. It’s not difficult to do using Rake. Just add a file
to the lib/tasks folder named cache.rake. You’ll be creating a task similar to the
one shown in Listing 17.9.

Listing 17.9 A cache—sweeper custom rake task

desc "Manually sweep the cache"

task :cache_sweeper do

FileUtils.rm_rf Dir[File.join(Rails.root, "public", "entries*")] #pages

FileUtils.rm_rf Dir[File.join(Rails.root, "tmp", "cache*")] #fragments

end

I used entries in the example task, but remember that you may have to add one or
more of your own FileUtils.rm_rf statements corresponding to the pages that your
application is caching.

3. http://github.com/wycats/moneta

http://github.com/wycats/moneta

C
a
ch

in
g

17.2 General Caching 495

As a final note, keep in mind, that it’s common to use the FileUtils.rm_rf brute-
force approach in sweepers instead of the expire_* methods, mostly because a lot of
times it’s just easier to blow away entire cached directories and let them be rebuilt as
needed.

17.2 General Caching

Each of the caching mechanisms described in the previous section is actually using
an implementation of an ActiveSupport::Cache::Store, covered in detail within
Appendix A.

Rails always has a default cache store accessible via Rails.cache:

>> Rails.cache.write(:color, :red)

=> true

>> Rails.cache.read :color

=> :red

17.2.1 Eliminating Extra Database Lookups

One of the most common patterns of cache usage is to eliminate database lookups for
commonly accessed data, using the cache’s fetch method. For the following example,
assume that your application’s user objects are queried very often by id. The fetch

method takes a block that is executed and used to populate the cache when the lookup
misses, that is, a value is not already present.

class User < ActiveRecord::Base

def self.fetch(id)

Rails.cache.fetch("user_#{id}") { User.find(id) }

end

def after_save

Rails.cache.write("user_#{id}", self)

end

def after_destroy

Rails.cache.delete("city_#{id}")

end

end

I opted to use my own key generation scheme in the example, because of the use of the
updated_at attribute in the implementation of Active Record’s cache_key method.

class ActiveRecord::Base

def cache_key

case

496 Chapter 17: Caching and Performance

when new?

"#{self.class.model_name.cache_key}/new"

when timestamp = self[:updated_at]

"#{self.class.model_name.cache_key}/#{id}-#{timestamp.to_s(:number)}"

else

"#{self.class.model_name.cache_key}/#{id}"

end

end

end

17.2.2 Initializing New Caches

We can also initialize a new cache directly, or through ActiveSupport::Cache.

lookup_store if we want to cache other objects in the application and not just the
views. Either one of these methods of creating a new cache takes the same expiration
and compression options as mentioned previously, and the same three stores exist as for
fragment caching: FileStore, MemoryStore, and MemCacheStore.

ActiveSupport::Cache::MemCacheStore.new(

:expire_in => 5.seconds

)

ActiveSupport::Cache.lookup_store(

:mem_cache_store, :compress => true

)

Once you have your cache object, you can read and write to it via its very simple
API and any Ruby object that can be serialized can be cached, including nils.

cache = ActiveSupport::Cache::MemoryStore.new

cache.write(:name, "John Doe")

cache.fetch(:name) # => "John Doe"

17.2.3 fetch Options

There are several options that can be passed to fetch in order to provide different types
of behavior for each of the different stores. Additional options than those listed here are
available based on the individual cache implementations.

• :compress Use compression for this request.

• :expire_in Tell an individual key in the cache to expire in n seconds.

• :force If set to true will force the cache to delete the supplied key.

C
a
ch

in
g

17.3 Control Web Caching 497

• :race_condition_ttl Supply seconds as an integer and a block. When an item
in the cache is expired for less than the number of seconds, its time gets updated
and its value is set to the result of the block.

There are other available functions on caches, and options can be passed for the
specific cache store implementation.

• delete(name, options) Delete a value for the key.

• exist?(name, options) Will return true if a value exists for the provided key.

• read(name, options)Get a value for the supplied key or return nil if none found.

• read_multi(*names)Return the values for the supplied keys as a hash of key/value
pairs.

• write(name, value, options) Write a value to the cache.

17.3 Control Web Caching

Action Controller offers a pair of methods for easily setting HTTP 1.1 Cache-Control
headers. Their default behavior is to issue a private instruction, so that intermediate
caches (web proxies) must not cache the response. In this context, private only controls
where the response may be cached and not the privacy of the message content.

The public setting indicates that the response may be cached by any cache or proxy
and should never be used in conjunction with data served up for a particular end user.

Using curl --head we can examine the way that these methods affect HTTP
responses. For reference, let’s examine the output of a normal index action.

$ curl --head localhost:3000/reports

HTTP/1.1 200 OK

Etag: "070a386229cd857a15b2f5cb2089b987"

Connection: Keep-Alive

Content-Type: text/html; charset=utf-8

Date: Wed, 15 Sep 2010 04:01:30 GMT

Server: WEBrick/1.3.1 (Ruby/1.8.7/2009-06-12)

X-Runtime: 0.032448

Content-Length: 0

Cache-Control: max-age=0, private, must-revalidate

Set-Cookie: ...124cc92; path=/; HttpOnly

Don’t get confused by the content length being zero. That’s only because curl --

head issues a HEAD request. If you’re experimenting with your own Rails app, try
curl -v localhost:3000 to see all the HTTP headers plus the body content.

498 Chapter 17: Caching and Performance

17.3.1 expires—in(seconds, options = {})

This method will overwrite an existing Cache-Control header.4 Examples include

expires_in 20.minutes

expires_in 3.hours, :public => true

expires in 3.hours, 'max-stale' => 5.hours, :public => true

Setting expiration to 20 minutes alters our reference output as follows:

Cache-Control: max-age=1200, private

17.3.2 expires—now

Sets a HTTP 1.1 Cache-Control header of the response to no-cache informing web
proxies and browsers that they should not cache the response for subsequent requests.

17.4 ETags

The bulk of this chapter deals with caching content so that the server does less work than
it would have to do otherwise, but still incurs the cost of transporting page data to the
browser. The ETags scheme, where E stands for entity, allows you to avoid sending any
content to the browser at all if nothing has changed on the server since the last time a
particular resource was requested. A properly implemented ETags scheme is one of the
most significant performance improvements that can be implemented on a high traffic
website.5

Rendering automatically inserts the Etag header on 200 OK responses, calculated as
an MD5 hash of the response body. If a subsequent request comes in that has a matching
Etag6, the response will be changed to a 304 Not Modified and the response body will
be set to an empty string.

The key to performance gains is to short circuit the controller action and prevent
rendering if you know that the resulting Etag is going to be the same as the one associated
with the current request. I believe you’re actually being a good Internet citizen by paying
attention to proper use of ETags in your application. According to RFC 2616,7 “the
preferred behavior for an HTTP/1.1 origin server is to send both a strong entity tag and
a Last-Modified value.”

4. See http://http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9 for more
information.
5. Tim Bray wrote one of my favorite blog posts on the topic at http://www.tbray.org/ongoing/

When/200x/2008/08/14/Rails-ETags.
6. http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
7. http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3.4

http://http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.tbray.org/ongoing/When/200x/2008/08/14/Rails-ETags
http://www.tbray.org/ongoing/When/200x/2008/08/14/Rails-ETags
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.19
http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.3.4

C
a
ch

in
g

17.4 ETags 499

Rails does not set a Last-Modified response header by default, so it’s up to you to
do so using one of the following methods.

17.4.1 fresh—when(options)

Sets ETag and/or Last-Modified headers and renders a 304 Not Modified response
if the request is already fresh. Freshness is calculated using the cache_key method of
the object (or array of objects) passed as the :etag option.

For example, the following controller action shows a public article.

expose(:article)

def show

fresh_when(:etag => article,

:last_modified => article.created_at.utc,

:public => true)

end

This code will only render the show template when necessary.

17.4.2 stale?(options)

Sets the ETag and/or Last-Modified headers on the response and checks them against
the client request (using fresh_when). If the request doesn’t match the options provided,
the request is considered stale and should be generated from scratch.

You want to use this method instead of fresh_when if there is additional logic
needed at the controller level in order to render your view.

expose(:article)

expose(:statistics) do

article.really_expensive_operation_to_calculate_stats

end

def show

if stale?(:etag => article,

:last_modified => article.created_at.utc,

:public => true)

statistics # decent_exposure memoizes the result

respond_to do |format|

...

end

end

end

500 Chapter 17: Caching and Performance

The normal rendering workflow is only triggered inside of the stale? conditional, if
needed.

17.5 Conclusion

We’ve just covered a fairly complicated subject: Caching. Knowing how to use caching
will really save your bacon when you work on Rails applications that need to scale.
Indeed, developers of high-traffic Rails websites tend to see Rails as a fancy HTML
generation platform with which to create content ripe for caching.

R
S
p

e
c

CHAPTER 18

RSpec

I do not think there is any thrill that can go through the human heart like that felt by the inventor
as he sees some creation of the brain unfolding to success.

—Nikola Tesla

RSpec is a Ruby domain-specific language for specifying the desired behavior of Ruby
code. Its strongest appeal is that RSpec scripts (or simply specs) can achieve a remarkable
degree of readability, letting the authors express their intention with greater readability
and fluidity than is achievable using Test::Unit’s methods and assertions.

RSpec::Rails, a drop-in replacement for the Rails testing subsystem supplies ver-
ification, mocking, and stubbing features customized for use with Rails models, con-
trollers, and views. Since switching to RSpec I have never needed to touch Test::Unit

for anything significant again. RSpec is simply that good.

18.1 Introduction

Since RSpec scripts are so readable, I can’t really think of a better way of introducing
you to the framework than to dive into an actual spec. Listing 18.1 is part of a real-world
RSpec script defining the behavior of a Payment in a Hashrocket client project named
Workbeast.com. As you’re reading the spec, let the descriptions attached to the blocks
of code come together to form sentences that describe the desired behavior.

Listing 18.1 Excerpt of Workbeast.com’s timesheet spec

require 'spec_helper'

describe Timesheet do

let(:timesheet) { Factory(:timesheet) }

501

502 Chapter 18: RSpec

describe "validation of hours worked" do

it "fails without a number" do

subject.hours_worked = 'abc'

subject.should have(1).error_on(:hours_worked)

end

it "passes with a number" do

subject.hours_worked = '123'

subject.should have(0).errors_on(:hours_worked)

end

end

context "when submitted" do

it "sends an email notification to the manager" do

Notifier.should_receive(:send_later).with(

:deliver_timesheet_submitted, timesheet

)

timesheet.submit

end

it "notifies its opening" do

timesheet.opening.should_not be_nil

timesheet.opening.should_receive(:fill)

timesheet.submit

end

end

In the example, the fragment

describe Timesheet do

let(:timesheet) { Factory(:timesheet) }

describe "validation of hours worked" do

it "fails without a number" do

subject.hours_worked = 'abc'

subject.should have(1).error_on(:hours_worked)

end

. . . should be understood to mean “Timesheet validation of hours worked fails without
a number.”

RSpec scripts are collections of behaviors, which in turn have collections of examples.
The describemethod creates a Behavior object under the covers. The behavior sets the
context for a set of specification examples defined with the it method, and you should
pass a sentence fragment that accurately describes the context you’re about to specify.

R
S
p

e
c

18.1 Introduction 503

You can use RSpec to specify and test model and controller classes, as well as view
templates, as individual units in isolation, like we did in Listing 18.1. RSpec is also used
to create integration tests that exercise the entire Rails stack from top to bottom.

Listing 18.2 Excerpt of Workbeast.com’s search—colleagues integration spec

describe "Search Colleagues" do

let(:user) { Factory(:user, :name => 'Joe') }

let(:public_user) do

Factory(:user, :name => 'Pete', :privacy_level => 'Public')

end

let(:private_user) do

Factory(:user, :name => 'Nancy', :privacy_level => 'Private')

end

before { login_as user }

it "takes you to the search results page" do

email_search_for(user, public_user.email)

current_url.should == search_colleagues_path

end

it "doesn't return the current user" do

email_search_for(user, user.email)

response.body.should_not contain_text(user.name)

end

it "doesn't return private users" do

email_search_for(@user, private_user.email)

response.body.should_not contain_text(private_user.name)

end

context "when the user is not their colleague" do

it "shows the 'Add colleague' button" do

email_search_for(@user, Factory(:user).email)

response.body.should have_tag('input[type=submit][value=?]',

'Add as Colleague')

end

end

def email_search_for(current_user, email)

visit colleagues_path

fill_in 'Search', :with => email

click_button 'Search'

end

end

504 Chapter 18: RSpec

Use of methods such as visit and fill_in, as well as the checking the contents of
objects such as response.body, hint at what this spec is doing: running your entire
Rails application.

18.2 Basic Syntax and API

Let’s run through some of the basic syntactical features of RSpec, which we’ve just
encountered in the code listings. RSpec is essentially a domain-specific language for
creating specifications. The following API methods form the vocabulary of the language.

18.2.1 describe and context

The describe and context methods are used to group together related examples of
behavior. They are aliases, both taking a string description as their first argument and a
block to define the context of their scope.

When writing model specs or anything that smacks of a unit test, you can pass a Ruby
class as the first argument to describe. Doing so also creates an implicit subject for the
examples, which we’ll hold off on explaining for the moment. (If you’re impatient, you
can jump ahead in this section to the subject method heading.)

describe Timesheet do

let(:timesheet) { Factory(:timesheet) }

18.2.2 let(:name) {expression}

The let method simplifies the creation of memoized attributes for use in your spec.
Memoized means that the code block associated with the let is executed once and stored
for future invocations, increasing performance. Use of let also allows you to lessen your
dependence on instance variables, by creating a proper interface to the attributes needed
in the spec.

So, why use the let method? Let’s step through a typical spec coding session to
understand the motivation. Imagine that you’re writing a spec, and it all starts simply
enough with a local blog_post variable.

describe BlogPost do

it "does something" do

blog_post = BlogPost.new :title => 'Hello'

blog_post.should ...

end

end

R
S
p

e
c

18.2 Basic Syntax and API 505

You continue on, writing another similar example, and you start to see some duplication.
The blog_post creation is being done twice.

describe BlogPost do

it "does something" do

blog_post = BlogPost.new :title => 'Hello'

blog_post.should ...

end

it "does something else" do

blog_post = BlogPost.new :title => 'Hello'

blog_post.should ...

end

end

So, you refactor the instance creation into a before block, and start using an instance
variable in the examples.

describe BlogPost do

before do

@blog_post = BlogPost.new :title => 'Hello'

end

it "does something" do

@blog_post.should ...

end

it "does something else" do

@blog_post.should ...

end

end

And here comes the punchline: you replace the instance variables with a variable described
by a let expression.

describe BlogPost do

let(:blog_post) { BlogPost.new :title => 'Hello' }

it "does something" do

blog_post.should ...

end

it "does something else" do

blog_post.should ...

end

end

The advantages of using let are mostly in the realm of readability. One, it gets rid of
all those instance variables and at-signs blotting your code. Two, gets rid of the before

506 Chapter 18: RSpec

block, which arguably has no business setting up a bunch variables in the first place.
And three, it shows you who the players are.’ A set of let blocks at the top of an example
group reads like a cast of characters in a playbill. You can always refer to it when you’re
deep in the code of an example.

18.2.3 let!(:name) {expression}

There are instances where the lazy evaluation of let will not suffice and you need the
value memoized immediately. This is found often in cases of integration testing, and is
where let! comes into play.

describe BlogPost do

let(:blog_post) { BlogPost.create :title => 'Hello' }

let!(:comment) { blog_post.comments.create :text => 'first post' }

describe "#comment" do

before do

blog_post.comment("finally got a first post")

end

it "adds the comment" do

blog_post.comments.count.should == 2

end

end

end

Since the comment block would never have been executed for the first assertion if you
used a let definition, only one comment would have been added in this spec even though
the implementation may be working. By using let! we ensure the initial comment gets
created and the spec will now pass.

18.2.4 before and after

The before (and its reclusive cousin, after) methods are akin to the setup and
teardown methods of xUnit frameworks like Test::Unit. They are used to set up the
state as it should be prior to running an example, and if necessary, to clean up the state
after the example has run. None of the example behaviors we’ve seen so far required an
after block, because frankly, it’s rare to need after in Rails programming.

Before and after code can be inserted in any describe or context blocks, and by
default they execute for each it block that shares their scope.

R
S
p

e
c

18.2 Basic Syntax and API 507

18.2.5 it

The itmethod also takes a description plus a block, similar to describe. As mentioned,
the idea is to complete the thought that was started in the describe method, so that it
forms a complete sentence. Your assertions (aka expectations) will always happen within
the context of an it block, and you should try to limit yourself to one expectation per
it block.

context "when there are no search results" do

before do

email_search_for(user, '123')

end

it "shows the search form" do

current_url.should == colleagues_url

end

it "renders an error message" do

response.should have_tag('.error', 'No matching email addresses

found.')

end

end

18.2.6 specify

The specify method is simply an alias of the it method. However, it’s mainly used in
a different construct to improve readability. Consider the following old-school RSpec
example:

describe BlogPost do

before { @blog_post = BlogPost.new :title => 'foo' }

it "should not be published" do

@blog_post.should_not be_published

end

end

Note how the example says “should not be published” in plain English, and the Ruby
code within says essentially the same thing: @blog_post.should_not be_published

This is a situation where specify comes in handy. Examine a new-school example:

describe BlogPost do

let(:blog_post) { BlogPost.new :title => 'foo' }

specify { blog_post.should_not be_published }

end

508 Chapter 18: RSpec

The English phrase has been removed, and the Ruby code has been move into a block
passed to the specify method. Since the Ruby block already reads like English, there’s
no need to repeat yourself. Especially since RSpec automatically (which is pretty cool)
generates English output by inspection. Here’s what the specdoc output looks like:

BlogPost

- should not be published

18.2.7 expect

When you expect a method call to change a value or throw an exception, then expect

is for you. Here’s an example:

expect {

BlogPost.create :title => 'Hello'

}.to change { BlogPost.count }.by(1)

This is just a more readable DSL-style version of the RSpec’s older lambda-based syntax:

lambda {

BlogPost.create :title => 'Hello'

}.should change { BlogPost.count }.by(1)

Simply put, expect is an alias of the lambda keyword and the to method is an alias of
the should method.

Then comes the change matcher. This is where you inspect the attribute or value
that you’re interested in. In our example, we’re making sure that the record was saved
to the database, thus increasing the record count by 1.

There are a few different variations on the change syntax. Here’s one more example,
where we’re more explicit about before and after values by further chaining from and
to methods:

describe "#publish!" do

let(:blog_post) { BlogPost.create :title => 'Hello' }

it "updates published_on date" do

expect {

blog_post.publish!

}.to change { blog_post.published_on }.from(nil).to(Date.today)

end

end

Here the published_on attribute is examined both before and after invocation of the
expect block. This style of change assertion comes in handy when you want to ensure
a precondition of the value. Asserting from guarantees a known starting point.

R
S
p

e
c

18.2 Basic Syntax and API 509

Besides expecting changes, the other common expectation has to do with code that
should generate exceptions:

describe "#unpublish!" do

context "when brand new" do

let(:blog_post) { BlogPost.create :title => 'Hello' }

it "raises an exception" do

expect {

blog_post.unpublish!

}.to raise_exception(NotPublishedError, /not yet published/)

end

end

end

In this example, we attempt to “unpublish” a brand-new blog post that hasn’t been
published yet. Therefore, we expect an exception to be raised.

18.2.8 pending

When you leave the block off of an example, RSpec treats it as pending.

describe GeneralController do

describe "GET to index" do

it "should be implemented eventually"

end

end

RSpec prints out pending examples at the end of its run output, which makes it potentially
useful for tracking work in progress.

Finished in 0.096941 seconds

1 example, 0 failures, 1 pending

Pending:

GeneralController on GET to index should be successful

You can also explicitly create pending examples by inserting a call to the pendingmethod
anywhere inside of an example.

describe GeneralController do

describe "on GET to index" do

it "should be successful" do

pending("not implemented yet")

end

end

end

510 Chapter 18: RSpec

Interestingly, you can use pending with a block to keep broken code from failing your
spec. However, if at some point in the future the broken code does execute without an
error, the pending block will cause a failure.

describe BlogPost do

it "defaults to rating of 3.0" do

pending "implementation of new rating algorithm" do

BlogPost.new.rating.should == 3.0

end

end

end

Pro-tip: You can make all examples in a group pending simply by calling pending once
in the group’s before block.

describe 'Veg-O-Matic' do

before { pending }

it 'slices' do

will not run, instead displays "slices (PENDING: TODO)"

end

it 'dices' do

will also be pending

end

it 'juliennes' do

will also be pending

end

end

18.2.9 should and should—not

Rather than xUnit-style assertions, RSpec uses its own funky DSL syntax to do verifi-
cation, based on a pair of methods called should and should_not. RSpec mixes them
into the base Ruby Object class at runtime so that they are available on all objects. They
expect to receive Matcher objects, generated using RSpec expectation syntax.

response.should have_tag('.error', 'No matching email addresses found.')

There are several ways to generate expectation matchers and pass them to should (and
should_not):

receiver.should(matcher) # the simplest example

Passes if matcher.matches?(receiver)

receiver.should == expected # any value

R
S
p

e
c

18.2 Basic Syntax and API 511

Passes if (receiver == expected)

receiver.should === expected #any value

Passes if (receiver === expected)

receiver.should =~ regexp

Passes if (receiver =~ regexp)

Tiger says . . .

This is all fairly dry and academic, but stay with us because we’ve got plenty of real-world example
in the next few sessions.

The process of learning to write expectations is probably one of the meatier parts of
the RSpec learning curve. One of the most common idioms is “should equal,” akin to
Test::Unit’s assert_equal assertion.

18.2.10 Implicit Subject

Whether you know it or not, every RSpec example group has a subject. Think of it as the

thing being described. Let’s start with an easy example:

describe BlogPost do

it { should be_invalid }

end

By convention, the implicit subject here is a BlogPost.new instance. The should call
may look like it is being called off of nothing. But actually the call is delegated by the
example to the implicit subject. It’s just as if you’d written the expression

BlogPost.new.should be_invalid

18.2.11 Explicit Subject

If the implicit subject of the example group doesn’t quite do the job for you, you can
specify a subject explicitly. For example, maybe we need to tweak a couple of the blog
post’s attributes on instantiation:

describe BlogPost do

subject { BlogPost.new :title => 'foo', :body => 'bar' }

it { should be_valid }

end

Here we have the same delegation story as with implicit subject. The should be_valid

call is delegated to the subject.

512 Chapter 18: RSpec

You can also talk to the subject directly. For example, you may need to invoke a
method off the subject to change object state:

describe BlogPost do

subject { BlogPost.new :title => 'foo', :body => 'bar' }

it "sets published timestamp" do

subject.publish!

subject.published?.should == true

end

end

Here we call the publish! method off the subject. Mentioning subject directly
is the way we get ahold of that BlogPost instance we set up. Finally, we assert that the
published? boolean is true.

18.2.12 its

The its method works hand-in-hand with the fact that RSpec examples delegate to a
subject. It can make your specs very compact and readable. Let’s look at a quick example:

describe Array do

its(:length) { should == 0 }

end

The implicit subject here is the Array.new instance. And the length call is made on
that subject. Finally, the should call is made on that result of the length call.

That example was a bit simple, here’s a meatier example that shows off what its
can do:

describe BlogPost do

subject do

blog_post = BlogPost.new :title => 'foo', :body => 'bar'

blog_post.publish!

blog_post

end

it { should be_valid }

its(:errors) { should be_empty }

its(:title) { should == 'foo' }

its(:body) { should == 'bar' }

its(:published_on) { should == Date.today }

end

R
S
p

e
c

18.3 Predicate Matchers 513

What’s awesome is you still get the English translation of the Ruby code in the specdoc
output:

BlogPost

- should be valid

BlogPost errors

- should be empty

BlogPost title

- should == "foo"

BlogPost body

- should == "bar"

BlogPost published_on

- should == Fri, 26 Mar 2010

18.3 Predicate Matchers

Thanks to method_missing, RSpec can support arbitrary predicates, that is, it under-
stands that if you invoke something that begins with be_, then it should use the rest of
the method name as an indicator of which predicate-style method to invoke the target
object. (By convention, a predicate method in Ruby ends with a ? and should return the
equivalent of true or false.) The simplest hard-coded predicate-style matchers are:

target.should be

target.should be_true

target.should be_false

target.should be_nil

target.should_not be_nil

Arbitrary predicate matchers can assert against any target, and even support parameters!

thing.should be # passes if thing is not nil or false

collection.should be_empty # passes if target.empty?

target.should_not be_empty # passes unless target.empty?

target.should_not be_under_age(16) # passes unless target.under_age?(16)

As an alternative to prefixing arbitrary predicate matchers with be_, you may choose
from the indefinite article versions be_a_ and be_an_, making your specs read much
more naturally:

"a string".should be_an_instance_of(String)

3.should be_a_kind_of(Fixnum)

3.should be_a_kind_of(Numeric)

3.should be_an_instance_of(Fixnum)

3.should_not be_instance_of(Numeric) #fails

514 Chapter 18: RSpec

The cleverness (madness?) doesn’t stop there. RSpec will even understand have_ prefixes
as referring to predicates like has_key?:

{:foo => "foo"}.should have_key(:foo)

{:bar => "bar"}.should_not have_key(:foo)

RSpec has a number of expectation matchers for working with classes that implement
module Enumerable. You can specify whether an array should include a particular
element, or if a string contains a substring. This one always weirds me out when I see it
in code, because my brain wants to think that include is some sort of language keyword
meant for mixing modules into classes. It’s just a method, so it can be overriden easily.

[1, 2, 3].should include(1)

[1, 2, 3].should_not include(4)

"foobar".should include("bar")

"foobar".should_not include("baz")

You get a slick bit of syntactic sugar for testing the length of collections:

[1, 2, 3].should have(3).items

What if you want to specify the length of a has_many collection? “Schedule.days.should
have(3).items” is admittedly quite ugly. RSpec gives us some more sweetness here as
well.

schedule.should have(3).days # passes if schedule.days.length == 3

18.4 Custom Expectation Matchers

When you find that none of the stock expectation matchers provide a natural-feeling
expectation, you can very easily write your own. All you need to do is write a Ruby class
that implements the following two methods:

matches?(actual)

failure_message_for_should

The following methods are optional for your custom matcher class:

does_not_match?(actual)

failure_message_for_should_not

description

The example given in the RSpec API documentation is a game in which players can be
in various zones on a virtual board. To specify that a player bob should be in zone 4,
you could write a spec like

bob.current_zone.should eql(Zone.new("4"))

R
S
p

e
c

18.4 Custom Expectation Matchers 515

However, it’s more expressive to say one of the following, using the custom matcher in
Listing 18.3:

Listing 18.3 BeInZone custom expectation matcher class

bob.should be_in_zone(4) and bob.should_not be_in_zone(3)

class BeInZone

def initialize(expected)

@expected = expected

end

def matches?(target)

@target = target

@target.current_zone.eql?(Zone.new(@expected))

end

def failure_message_for_should

"expected #{@target.inspect} to be in Zone #{@expected}"

end

def failure_message_for_should_not

"expected #{@target.inspect} not to be in Zone #{@expected}"

end

end

In addition to the matcher class you would need to write the following method so
that it’d be in scope for your spec:

def be_in_zone(expected)

BeInZone.new(expected)

end

This is normally done by including the method and the class in a module, which is then
included in your spec:

describe "Player behaviour" do

include CustomGameMatchers

...

end

Or you can include helpers globally in a spec_helper.rb file required from your spec
file(s):

RSpec::Runner.configure do |config|

config.include(CustomGameMatchers)

end

516 Chapter 18: RSpec

18.4.1 Custom Matcher DSL

RSpec includes a DSL for easier definition of custom matchers. The DSL’s directives
match the methods you implement on custom matcher classes. Just add code similar to
the following example in a file within the spec/support directory.

RSpec::Matchers.define :contain_text do |expected|

match do |response_body|

squished(response_body).include?(expected.to_s)

end

failure_message_for_should do |actual|

"expected the following element's content to include

#{expected.inspect}:\n\n#{response_text(actual)}"

end

failure_message_for_should_not do |actual|

"expected the following element's content to not

include #{expected.inspect}:\n\n#{squished(actual)}"

end

def squished(response_body)

Webrat::XML.document(response_body).text.squish

end

end

18.4.2 Fluent Chaining

You can create matchers that obey a fluent interface using the chain method:

RSpec::Matchers.define(:tip) do |expected_tip|

chain(:on) do |bill|

@bill = bill

end

match do |person|

person.tip_for(@bill) == expected_tip

end

end

This matcher can be used as follows:

describe Customer do

it { should tip(10).on(50) }

end

In this way, you can begin to create your own fluent domain-specific languages for testing
your complex business logic in a very readable way.

R
S
p

e
c

18.6 RSpec’s Mocks and Stubs 517

18.5 Shared Behaviors

Often you’ll want to specify similar behavior in multiple specs. It would be silly to
type out the same code over and over. Fortunately, RSpec has a feature named shared
behaviors that aren’t run individually, but rather are included into other behaviors; they
are defined using shared_examples_for.

shared_examples_for "a phone field" do

it "has 10 digits" do

Business.new(phone_field => '8004567890').should

have(:no).errors_on(phone_field)

end

end

shared_examples_for "an optional phone field" do

it "handles nil" do

business = Business.new phone_field => nil

business.attributes[phone_field].should be_nil

end

end

You can invoke a shared example using the it_should_behave_like method, in place
of an it.

describe "phone" do

let(:phone_field) { :phone }

it_should_behave_like "a phone field"

end

describe "fax" do

let(:phone_field) { :fax }

it_should_behave_like "a phone field"

it_should_behave_like "an optional phone field"

end

You can put the code for shared examples almost anywhere, but the default convention
is to create a file named spec/support/shared_examples.rb to hold them.

18.6 RSpec’s Mocks and Stubs

It’s possible to use a number of mocking frameworks including Mocha, Flexmock, RR,
and more. In our examples, however, we’ll use RSpec’s own mocking and stubbing
facilities, which are almost the same and equally powerful. Mostly the method names
vary.

518 Chapter 18: RSpec

Mock Objects

To create a mock object, you simply call the mock method anywhere in a spec, and give
it a name as an optional parameter. It’s a good idea to give mock objects a name if you
will be using more than one of them in your spec. If you use multiple anonymous mocks,
you’ll probably have a hard time telling them apart if one fails.

echo = mock('echo')

Remember that you set expectations about what messages are sent to your mock during
the course of your spec. Mocks will cause a spec to fail if their expectations are not met. To
set an expectation on a mock, we invoke should_receive or should_not_receive.

echo.should_receive(:sound)

The chained method with is used to define expected parameters. If we care about the
return value, we chain and_return at the end of the expectation or use a block.

echo.should_receive(:sound).with("hey").and_return("hey")

echo.should_receive(:sound).with("hey") { "hey" }

Null Objects

Occasionally you just want an object for testing purposes that accepts any message passed
to it—a pattern known as null object. It’s possible to make one using the mock method
and the :null_object option.

null_object = mock('null', :null_object => true)

Stub Objects

You can easily create a stub object in RSpec via the stub factory method. You pass stub
a name and default attributes as a hash.

yodeler = stub('yodeler', :yodels? => true)

The underlying implementation of mocks and stubs is the same in RSpec, although the
semantic difference persists since mocks and stubs are meant to be used differently.1

By the way, there’s no rule that the name parameter of a mock or stub needs to be
a string. It’s pretty typical to pass mock or stub a class reference corresponding to the
real type of object.

yodeler = stub(Yodeler, :yodels? => true)

1. Confused about the difference between mocks and stubs? Read Martin Fowler’s explanation at
http://www.martinfowler.com/articles/mocksArentStubs.html.

http://www.martinfowler.com/articles/mocksArentStubs.html

R
S
p

e
c

18.6 RSpec’s Mocks and Stubs 519

Partial Mocking and Stubbing

You can use stub to install or replace methods on any object, not just mocks—a tech-
nique called partial mocking and stubbing.

describe "#grand_total" do

it "is the sum of hourly total and billed expenses" do

invoice.stubs(:hourly_total).returns(123.45)

invoice.stubs(:billed_expenses).returns(543.21)

invoice.grand_total.should == 666.66

end

end

Even though RSpec’s authors warn us about partial stubbing in their docs, the ability to
do it is really useful in practice.

stub—chain
It’s really common to find yourself writing some gnarly code when you rely on stub

to spec behavior of nested method calls.2 But, sometimes you need to stub methods
down a dot chain, where one method is invoked on another method, which is itself
invoked on another method, and so on. For example, you may need to stub out a
set of recent, unpublished blog posts in chronological order, like BlogPost.recent.
unpublished.chronological

Try to figure out what’s going on in the following example. I bet it takes you more
than a few seconds!

BlogPost.stub(:recent => stub(:unpublished => stub(

:chronological => [stub, stub, stub])))

That example code can be factored to be more verbose, which makes it a little easier to
understand, but is still pretty bad.

chronological = [stub, stub, stub]

unpublished = stub :chronological => chronological

recent = stub :unpublished => unpublished

BlogPost.stub :recent => recent

Luckily, Rspec gives you the stub_chain method, which understands exactly what
you’re trying to do here and dramatically simplifies the code needed:

BlogPost.stub_chain(:recent, :unpublished, :chronological).

and_return([stub, stub, stub])

However, just because it’s so easy to stub the chain, doesn’t mean it’s the right thing to
do. The question to ask yourself is, “Why am I testing something related to methods so

2. ActiveRecord scopes are notoriously prone to causing this problem.

520 Chapter 18: RSpec

deep down a chain? Could I move my tests down to that lower level?” Demeter would
be proud.

18.7 Running Specs

Specs are executable documents. Each example block is executed inside its own object
instance, to make sure that the integrity of each is preserved (with regard to instance
variables, etc.).

If I run one of the Workbeast specs using the rspec command that should have been
installed on my system by the RSpec gem, I’ll get output similar to that of Test::Unit—
familiar, comfortable, and passing. Just not too informative.

$ rspec spec/models/colleague_import_spec.rb

.........

Finished in 0.330223 seconds

9 examples, 0 failures

RSpec is capable of outputting results of a spec run in many formats. The traditional
dots output that looks just like Test::Unit is called progress and, as we saw a moment
ago, is the default. However, if we add the -fs command-line parameter to rspec, we
can cause it to output the results of its run in a very different and much more interesting
format, the specdoc format. It surpasses anything that Ruby’s built-in Test::Unit is
capable of doing on its own “out of the box.”

$ rspec -fs spec/models/billing_code_spec.rb

BillingCode

should have a bidirectional habtm association

should remove bidirectional association on deletion

Finished in 0.066201 seconds

2 examples, 0 failures

Nice, huh? If this is the first time you’re seeing this kind of output, I wouldn’t be
surprised if you drifted off in speculation about whether RSpec could help you deal with
sadistic PHB-imposed3 documentation requirements.

Having these sorts of self-documenting abilities is one of the biggest wins you get in
choosing RSpec. It compels many people to work toward better spec coverage of their
project. I also know from experience that development managers tend to really appreciate
RSpec’s output, even to the extent of incorporating it into their project deliverables.

3. Pointy-Haired Boss, as per Dilbert comic strips.

R
S
p

e
c

18.8 RSpec Rails Gem 521

Besides the different formatting, there are all sorts of other command-line options
available. Just type rspec --help to see them all.

That does it for our introduction to RSpec. Now we’ll take a look at using RSpec
with Ruby on Rails.

18.8 RSpec Rails Gem

The RSpec Rails gem provides four different contexts for specs, corresponding to the
four major kinds of objects you write in Rails. Along with the API support you need to
write Rails specs, it also provides code generators and a bundle of Rake tasks.

18.8.1 Installation

Assuming you have the rspec-rails gem bundled already, you should run the
rspec:install generator provided to set up your project for use with RSpec.

$ rails generate rspec:install

create .rspec

create spec

create spec/spec_helper.rb

create autotest

create autotest/discover.rb

The generator will add the files and directories necessary to use RSpec with your Rails
project.

RSpec and Rake

The lib/tasks/rspec.rake script sets the default Rake task to run all specs in your
/spec directory tree. It also creates specific rake spec tasks for each of the usual spec
directories.

$ rake -T spec

rake spec # Run all specs in spec directory (excluding plugin

specs)

rake spec:controllers # Run the code examples in spec/controllers

rake spec:helpers # Run the code examples in spec/helpers

rake spec:lib # Run the code examples in spec/lib

rake spec:mailers # Run the code examples in spec/mailers

rake spec:models # Run the code examples in spec/models

rake spec:rcov # Run all specs with rcov

rake spec:requests # Run the code examples in spec/requests

rake spec:routing # Run the code examples in spec/routing

rake spec:views # Run the code examples in spec/views

522 Chapter 18: RSpec

If your project has a config/database.yml then the rake spec tasks will execute
rake db:test:prepare as a dependency, to make sure that the schema of your devel-
opment database is kept in sync. Keep in mind that this won’t happen if you run a spec
individually using the rspec command.

RSpec and Generators

RSpec ensures that other generators in your project are aware of it as your chosen
test library. Subsequently it will be used for command-line generation of models, con-
trollers, etc.

$ rails generate model Invoice

invoke active_record

create db/migrate/20100304010121_create_invoices.rb

create app/models/invoice.rb

invoke rspec

create spec/models/invoice_spec.rb

RSpec Options

The .rspec file contains a list of default command-line options. The generated file
looks like

--color

--format progress

You can change it to suit your preference. I like my spec output in color, but usually
prefer the more verbose output of --format specdoc.

Tim says . . .

I go back and forth between preferring the dots of the progress format and the verbose output
of the specdoc format. With the more verbose output and long spec suites, it’s easy to miss if
something failed if you look away from your screen. Specially on terminals with short buffers.

Here are some additional options that you might want to set in your spec.opts

-p, --profile Enable profiling of examples w/output of top 10 slowest

examples

-b, --backtrace Enable full backtrace

-d, --debug Enable debugging

The RSpec Helper Script

As opposed to command-line options, major settings and configuration of your spec
suite are kept in spec/spec_helper.rb, which is always required at the top of an
RSpec spec.

R
S
p

e
c

18.8 RSpec Rails Gem 523

A boilerplate copy is generated by default when you install RSpec into your project.
Let’s go through it section by section and cover what it does.

First of all, we ensure that the Rails environment is set to test. Remember that
RSpec replaces the standard TestUnit-based suite that is generated by default for Rails
apps.

ENV["RAILS_ENV"] ||= 'test'

Next the Rails environment and RSpec Rails are loaded up.

require File.dirname(__FILE__) + "/../config/environment" unless

defined?(Rails.root)

require 'rspec/rails'

RSpec has the notion of supporting files containing custom matchers and any other code
that helps setup additional functionality for your spec suite, so it scans thespec/support
directory to find those files, akin to Rails initializers.

Requires supporting files with custom matchers and macros, etc,

in ./support/ and its subdirectories.

Dir["#{File.dirname(__FILE__)}/support/**/*.rb"].each {|f| require f}

Finally, there is a block of configuration for your spec suite where you can set fixture
paths, transaction options, and mocking frameworks.

Rspec.configure do |config|

== Mock Framework

#

If you prefer to use mocha, flexmock or RR,

uncomment the appropriate line:

#

config.mock_with :mocha

config.mock_with :flexmock

config.mock_with :rr

config.mock_with :rspec

Remove this line if you're not using ActiveRecord

or ActiveRecord fixtures

config.fixture_path = "#{::Rails.root}/spec/fixtures"

If you're not using ActiveRecord, or you'd prefer

not to run each of your examples within a transaction,

remove the following line or assign false instead of true.

config.use_transactional_fixtures = true

end

524 Chapter 18: RSpec

Tim says . . .

Traditionally a lot of extra helper methods were put into thespec_helper file, hence its name.
However, nowadays it’s generally easier to organize your additions in spec/support files, for
the same reasons config/initializers can be easier to manage than sticking everything
in config/environment.rb.
While we’re on the subject, keep in mind that any methods defined at the top level of a support file
will become global methods available from all objects, which almost certainly not what you want.
Instead, create a module and mix it in, just like you’d do in any other part of your application.

module AuthenticationHelpers

def sign_in_as(user)

...

end

end

Rspec.configure do |config|

config.include AuthenticationHelpers

end

18.8.2 Model Specs

Model specs help you design and verify the domain model of your Rails application,
both Active Record and your own classes. RSpec Rails doesn’t provide too much special
functionality for model specs, because there’s not really much needed beyond what’s
provided by the base library. Let’s generate a Schedule model and examine the default
spec that is created along with it.

$ rails generate model Schedule name:string

invoke active_record

create db/migrate/20100304013800_create_schedules.rb

create app/models/schedule.rb

invoke rspec

create spec/models/schedule_spec.rb

The boilerplate spec/models/schedule_spec.rb looks like

require 'spec_helper'

describe Schedule do

pending "add some examples to (or delete) #{__FILE__}"

end

Assume for example that our Schedule class has a collection of day objects.

class Schedule < ActiveRecord::Base

has_many :days

end

R
S
p

e
c

18.8 RSpec Rails Gem 525

Let’s specify that we should be able to get a roll-up total of hours from schedule objects.
Instead of fixtures, we’ll mock out the days dependency.

require 'spec_helper'

describe Schedule do

let(:schedule) { Schedule.new }

it "should calculate total hours" do

days = mock('days')

days.should_receive(:sum).with(:hours).and_return(40)

schedule.stub(:days).and_return(days)

schedule.total_hours.should == 40

end

end

Here we’ve taken advantage of the fact that association proxies in Rails are rich ob-
jects. Active Record gives us several methods for running database aggregate func-
tions. We set up an expectation that days should receive the sum method with one
argument—:hours—and return 40. We can satisfy this specification with a very simple
implementation:

class Schedule

has_many :days

def total_hours

days.sum :hours

end

end

A potential benefit of mocking the days proxy is that we no longer rely on the database4

in order to write our specifications and implement the total_hours method, which
will make this particular spec execute lightning fast.

On the other hand, a valid criticism of this approach is that it makes our code harder
to refactor. Our spec would fail if we changed the implementation oftotal_hours to use
Enumerable#inject, even though the external behavior doesn’t change. Specifications
are not only describing the visible behavior of objects, but the interactions between an
object and its associated objects as well. Mocking the association proxy in this case lets
us clearly specify how a Schedule should interact with its Days.

Leading mock objects advocates see mock objects as a temporary design tool. You
may have noticed that we haven’t defined the Day class yet. So another benefit of using

4. Well that’s not quite true. Active Record still connects to the database to get the column information for
Schedule. However, you could stub that information out as well to remove your dependency on the
database completely.

526 Chapter 18: RSpec

mock objects is that they allow us to specify behavior in true isolation, and during
design-time. There’s no need to break our design rhythm by stopping to create the Day
class and database table. This may not seem like a big deal for such a simple example,
but for more involved specifications it is really helpful to just focus on the design task at
hand. After the database and real object models exist, you can go back and replace the
mock days with calls to the real deal. This is a subtle, yet very powerful message about
mocks that is usually missed.

18.8.3 Mocked and Stubbed Models

The built-in helper method mock_model makes a mock object that pretends to be an
ActiveRecord object. Its companion, stub_model makes a real model instance, but yells
at you if and when you try an operation such as saving, which would connect to the
database. (In other words, it’s intended use in unit-test style specs.)

Ironically, one of the benefits of stub_model is that you don’t have to be explicit
about its attributes, because they are read from the database. You can get a similar effect
using mock_model(Foo).as_null_object

The mock_model method creates mocks with autogenerated numeric ids and a
number of certain common methods stubbed out:

id Returns an autogenerated primary key value

to—param Returns the id value as a URL-friendly string

new—record? Returns false

errors Returns an empty stub errors collection

is—a? Returns true if the parameter matches model_class

You should pass in any additional stubbed method values via the stubs hash argument
or set them in a block using the yielded mock instance.

18.8.4 Controller Specs

RSpec gives you the ability to specify your controllers either in isolation from their
associated views or together with them, as in regular Rails tests. According to the API
docs:

Controller Specs support running specs for Controllers in two modes, which represent the tension
between the more granular testing common in TDD and the more high-level testing built into
rails. BDD sits somewhere in between: we want to achieve a balance between specs that are close

R
S
p

e
c

18.8 RSpec Rails Gem 527

enough to the code to enable quick fault isolation and far enough away from the code to enable
refactoring with minimal changes to the existing specs.

The controller class is passed to the describe method like

describe MessagesController do

An optional second parameter can provide additional information, or you can explic-
itly use the controller_name method inside a describe block to tell RSpec which
controller to use.

describe "Requesting /messages using GET" do

controller_name :messages

fixtures :people

I typically group my controller examples by action and HTTP method. This example
requires a logged-in user, so I stub my application controller’s current_person accessor
to return a fixture.

before(:each) do

controller.stub!(:current_person, people(:quentin))

Next, I create a mock Message object using the mock_model method. I want this mock
message to be returned whenever Message.all is called during the spec.

@message = mock_model(Message)

Message.stub!(:all).and_return([@message])

Now I can start specifying the behavior of actions (in this case, the index action).
The most basic expectation is that the response should be successful, HTTP’s 200 OK
response code.

it "should be successful" do

get :index

response.should be_success

end

Additional expectations that should be done for most controller actions include the
template to be rendered and variable assignment.

it "should render the index template " do

get :index

response.should render_template(:index)

end

it "should assign the found messages for the view" do

get :index

assigns[:messages].should include(@message)

end

528 Chapter 18: RSpec

Previously we saw how to stub out a model’s association proxy. Instead of stubbing the
controller’s current_person method to return an actual person from the database, we
can have it return a mock person.

@mock_person = mock_model(Person, :name => "Quentin")

controller.stub!(:current_person).and_return @mock_person

Isolation and Integration Modes

By default, RSpec on Rails controller specs run in isolation mode, meaning that view
templates are not involved. The benefit of this mode is that you can spec the controller
in complete isolation of the view, hence the name. Maybe you can sucker someone else
into maintaining the view specs?

That sucker comment is of course facetious. Having separate view specs is not as
difficult as it’s made out to be sometimes. It also provides much better fault isolation,
which is a fancy way of saying that you’ll have an easier time figuring out what’s wrong
when something fails.

If you prefer to exercise your views in conjunction with your controller logic inside
the same controller specs, just as traditional Rails functional tests do, then you can tell
RSpec on Rails to run in integration mode using the render_views macro. It’s not an
all-or-nothing decision. You can specify modes on a per-behavior basis.

describe "Requesting /messages using GET" do

render_views

When you run integrated, the controller specs will be executed with view rendering
turned on.

Specifying Errors

Ordinarily, Rails rescues exceptions that occur during action processing, so that it can
respond with a 501 error code and give you that great error page with the stack trace and
request variables, and so on. In order to directly specify that an action should raise an
error, you have to override the controller’s rescue_actionmethod, by doing something
like

controller.class.send(:define_method, :rescue_action) { |e| raise e }

If you don’t mind checking that the response code was an error, you can just use the
be_an_error predicate or response_code accessor of the response object:

it "should return an error in the header" do

response.should be_an_error

end

R
S
p

e
c

18.8 RSpec Rails Gem 529

it "should return a 501" do

response.response_code.should == 501

end

Specifying Routes

One of Rails’s central components is routing. The routing mechanism is the way Rails
takes an incoming request URL and maps it to the correct controller and action. Given
its importance, it is a good idea to specify the routes in your application. You can do
this with by providing specs in the spec/routes directory and have two matchers to use,
route_to and be_routable.

context "Messages routing" do

it "routes /messages/ to messages#show" do

{ :get => "/messages/" }.should route_to(

:controller => "messages",

:action => "index"

)

end

it "does not route an update action" do

{ :post => "/messages/" }.should_not be_routable

end

end

18.8.5 View Specs

Controller specs let us integrate the view to make sure there are no errors with the view,
but we can do one better by specifying the views themselves. RSpec will let us write
a specification for a view, completely isolated from the underlying controller. We can
specify that certain tags exist and that the right data is outputted.

Let’s say we want to write a page that displays a private message sent between members
of an internet forum. RSpec creates the spec/views/messages directory when we use
the rspec_controller generator. The first thing we would do is create a file in that
directory for the show view, naming it show.html.haml_spec.rb. Next we would set
up the information to be displayed on the page.

describe "messages/show.html.haml" do

before(:each) do

@message = mock_model(Message, :subject => "RSpec rocks!")

sender = mock_model(Person, :name => "Obie Fernandez")

@message.stub!(:sender).and_return(sender)

recipient = mock_model(Person, :name => "Pat Maddox")

@message.stub!(:recipient).and_return(recipient)

530 Chapter 18: RSpec

If you want to be a little more concise at the cost of one really long line of code that
you’ll have to break up into multiple lines, you can create the mocks inline like:

describe "messages/show.html.haml " do

before(:each) do

@message = mock_model(Message,

:subject => "RSpec rocks!",

:sender => mock_model(Person, :name => "Obie Fernandez"),

:recipient => mock_model(Person, :name => "Pat Maddox"))

Either way, this is standard mock usage similar to what we’ve seen before. Mocking the
data used in views allows us to isolate the specification. If you’re following our advice
and using Decent Exposure to make data available to your view (instead of instance
variables) then skip the following section and move on to Stubbing Helper Methods.

Assigning Instance Variables

We now need to assign the message to the view. The rspec_on_rails plugin gives us
a familiar-looking assigns method, which you can treat as a hash.

assigns[:message] = @message

Fantastic! Now we are ready to begin specifying the view page. We’d like to specify that
the message subject is displayed, wrapped in an <h1> tag. The have_tag expectation
takes two arguments—the tag selector and the content within the tag.

it "should display the message subject" do

render "messages/show"

response.should have_tag('h1', 'RSpec rocks!')

end

HTML tags often have an ID associated with them. We would like our page to create a
<div> with the ID message_info for displaying the sender and recipient’s names. We
can pass the ID to have_tag as well.

it "should display a div with id message_info" do

render "messages/show"

response.should have_tag('div#message_info')

end

What if we want to specify that the sender and recipient’s names should appear in <h3>

tags within the div?

it "should display sender and recipient names in div#message_info" do

render "messages/show"

response.should have_tag('div#message_info') do

with_tag('h3#sender', 'Sender: Obie Fernandez')

with_tag('h3#recipient', 'Recipient: Pat Maddox')

end

end

R
S
p

e
c

18.9 RSpec Tools 531

Stubbing Helper Methods

Note that the view specs do not mix in helper methods automatically, in order to preserve
isolation. If your view template code relies on helper methods, you need to mock or stub
them out on the provided template object.

The decision to mock versus stub those helper methods should depend on whether
they’re an active player in the behavior you want to specify, as in the following example:

it "should truncate subject lines" do

template.should_receive(:truncate).exactly(2).times

render "messages/index"

end

end

If you forget to mock or stub helper method calls, your spec will fail with a
NoMethodError.

18.8.6 Helper Specs

Speaking of helpers, it’s really easy to write specs for your custom helper modules. Just
pass describe to your helper module and it will be mixed into a special helper object
in the spec class so that its methods are available to your example code.

describe ProfileHelper do

it "profile_photo should return nil if user's photos is empty" do

user = mock_model(User, :photos => [])

helper.profile_photo(user).should == nil

end

end

It’s worth noting that in contrast to view specs, all of the framework-provided
ActionView::Helper modules are mixed into the helper object, so that they’re avail-
able to your helper code. All dynamically generated routes helper methods are added too.

18.9 RSpec Tools

There are several open-source projects that enhance RSpec’s functionality and your
productivity or can be used in conjunction with RSpec and other testing libraries.

18.9.1 RSpactor

RSpactor5 is an automated testing framework that runs your spec suite when files are
modified. It has inotify, Libnotify, and Growl support, and is about as simple to run as
they come.

5. http://github.com/thibaudgg/rspactor

http://github.com/thibaudgg/rspactor

532 Chapter 18: RSpec

18.9.2 watchr

Watchr6 is a more configurable alternative to RSpactor in that it can monitor file modifi-
cations and trigger any user defined action. This is especially useful when using Cucumber
in a project and you would like both your specs and features to run automatically when
altered. Simply provide a Ruby script for watchr to load that defines what actions it
should take on modification.

18.9.3 Spork

As your application grows, an automated test suite can start to slow down your workflow
when writing specs at a frequent rate. This is due to the nature of Rails needing to load the
environment for each spec run. Spork7 alleviates this by loading the Rails environment
only once and having the remaining specs use the preloaded environment in the DRb
server.

18.9.4 Specjour

Specjour8 is a tool aimed at lowering the run times of your entire spec suite. It distributes
your specs over a LAN via Bonjour, running the specs in parallel on the number of workers
it finds.

18.9.5 RCov

RCov is a code coverage tool for Ruby.9 You can run it on a spec file to see how
much of your production code is covered. It provides HTML output to easily tell what
code is covered by specs and what isn’t. You can RCov individually on a spec file,
or the rspec_on_rails plugin provides the spec:rcov task for running all of your
specs under RCov. The results are outputted into a directory named coverage and
contain a set of HTML files that you can browse by opening index.html (as shown in
Figure 18.2):

18.9.6 Heckle

Heckle is part of the Seattle Ruby Brigade’s awesome collection of projects,10 and is
another code coverage tool. Instead of simply checking the scope of your tests, Heckle

6. http://github.com/mynyml/watchr
7. http://github.com/timcharper/spork
8. http://github.com/sandro/specjour
9. http://eigenclass.org/hiki.rb?rcov
10. http://rubyforge.org/projects/seattlerb

http://github.com/mynyml/watchr
http://github.com/timcharper/spork
http://github.com/sandro/specjour
http://eigenclass.org/hiki.rb?rcov
http://rubyforge.org/projects/seattlerb

R
S
p

e
c

18.10 Conclusion 533

helps you measure the effectiveness of your specs. It dives into your code and scrambles
things like variable values and if statements. If none of your specs break, you’re missing
a spec somewhere.

The current versions of RSpec have Heckle support built-in. Just experiment with
the --heckle option and see what happens.

18.10 Conclusion

You’ve gotten a taste of the different testing experience that RSpec delivers. At first it
may seem like the same thing as Test::Unit with some words substituted and shifted
around. One of the key points of TDD is that it’s about design rather than testing.
This is a lesson that every good TDDer learns through lots of experience. RSpec uses a
different vocabulary and style to emphasize that point. It comes with the lesson baked
in so that you can attain the greatest benefits of TDD right away.

This page intentionally left blank

P
lu

g
in

s

CHAPTER 19

Extending Rails
with Plugins

Once again, when we come to the creation of things by people, the form this unfolding takes,
always, is step by step to please yourself. We cannot perform the unfolding process without
knowing how to please ourselves.

—Christopher Alexander

I doubt that many of us would still be programmers if we had to solve exactly the same
problems repeatedly, day after day. Instead, we are always looking for ways to reapply
existing solutions to the problems we encounter. Your code represents the abstract
solution to a problem, and so you are often striving to either reuse this abstraction
(albeit in slightly different contexts), or refine your solution so that it can be reused.
Through reuse, you can save time, money, and effort, and give yourself the opportunity
to focus on the interesting and novel aspects of the particular problem you’re currently
trying to solve. After all, it’s coming up with interesting and novel solutions to problems
that makes us really succeessful, not continually reinventing the wheel.

Even though the standard Ruby on Rails APIs are very useful, sooner or later you’ll
find yourself wishing for a particular feature not in Rails core or wishing that a bit of
standard Rails behavior were different. That’s where plugins come into play, and this
book has already described many useful ones that you will use on a day-to-day basis.

This chapter covers the basic topics of extending Rails with plugins. We’ll also supply
you with basic information about writing your own Rails plugins.

535

536 Chapter 19: Extending Rails with Plugins

19.1 The Plugin System

Rails 1.0 introduced a plugin system that lets developers easily add new functionality
into the framework. An official mechanism makes it feasible to extract novel, useful
features you’ve come up with in your individual applications and share those extracted
solutions with other developers, as a single self-contained unit that is easy to maintain.

Plugins aren’t only useful for sharing new features: Plugins are used to test alterations
to the Rails framework itself. Almost any significant new piece of functionality or patch
can be implemented as a plugin and road-tested easily by a number of developers before
it is considered for inclusion in the core framework. Whether you find a bug in Rails
and figure out how to fix it or you come up with a significant feature enhancement, you
will want to put your code in a plugin for easy distribution and testing.

Of course, changing significant core behavior of the framework demands a solid
understanding of how Rails works internally and is beyond the scope of this book.
However, some of the techniques demonstrated will help you understand the way that
Rails itself is implemented.

19.1.1 Plugins as RubyGems

All popular Rails plugins are published as RubyGems. To install, you just have to add
them to your Gemfile and run rake bundle. David Heinemeier Hansson recommends
that authors with popular, version-released plugins, and especially ones with dependen-
cies, distribute their plugins as gems.

Interestingly, as of Rails 3, all the major component frameworks of Rails are essen-
tially plugins themselves.

19.1.2 The Plugin Script

The rails plugin install command shouldn’t be necessary very often anymore
since popular plugins are now usually distributed as gems. Nonetheless, for legacy reasons
we cover the plugin command here.

rails plugin install plugin_url

Note that it should be run from the root directory of the application you are developing
and the URL must point to either a Git or Subversion repository.

$ rails plugin install git://github.com/mislav/will_paginate.git

Initialized empty Git repository in

/Users/obie/hashrocket/three/vendor/plugins/will_paginate/.git/

remote: Counting objects: 58, done.

remote: Compressing objects: 100% (55/55), done.

P
lu

g
in

s
19.2 Writing Your Own Plugins 537

remote: Total 58 (delta 3), reused 26 (delta 0)

Unpacking objects: 100% (58/58), done.

From git://github.com/mislav/will_paginate

* branch HEAD -> FETCH_HEAD

Checking the vendor/plugins, you can see that a directory named will_paginate

has appeared. The plugin install command deletes the .git directory, so that you can
add your new plugin easily to your own source control.

You also get an easy way to remove plugins, by name.

rails plugin remove plugin_name

Quite appropriately, this command performs the opposite of install: It removes the
plugin from vendor/plugins:

$ rails plugin remove will_paginate

A quick inspection of your vendor/plugins directory shows that the will_paginate
folder has indeed been removed completely. You can manually delete the plugin’s di-
rectory, but running the remove command will also run the plugin’s uninstall.rb
script, if it has one.

19.2 Writing Your Own Plugins

At some point in your Rails career, you might find that you want to share common code
among similar projects that you’re involved with. Or if you’ve come up with something
particularly innovative, you might wonder if it would make sense to share it with the
rest of the world.

Rails makes it easy to become a plugin author. It even includes a plugin generator
script that sets up the basic directory structure and files that you need to get started:

$ rails generate plugin my_plugin

create vendor/plugins/my_plugin

create vendor/plugins/my_plugin/init.rb

create vendor/plugins/my_plugin/install.rb

create vendor/plugins/my_plugin/MIT-LICENSE

create vendor/plugins/my_plugin/Rakefile

create vendor/plugins/my_plugin/README

create vendor/plugins/my_plugin/uninstall.rb

create vendor/plugins/my_plugin/lib

create vendor/plugins/my_plugin/lib/my_plugin.rb

invoke test_unit

inside vendor/plugins/my_plugin

create spec

create spec/plugins/my_plugin_test.rb

create spec/test_helper.rb

538 Chapter 19: Extending Rails with Plugins

The generator gives you the entire set of possible plugin directories and starter files, even
including a /tasks folder for your plugin’s custom rake tasks. The install.rb and
uninstall.rb are optional one-time setup and teardown scripts that can do anything
you want them to do. You don’t have to use everything that’s created by the plugin
generator.

The two defining aspects of a plugin are the presence of the init.rb file and of a
directory in the plugin called lib. If neither of these exists, Rails will not recognize that
subdirectory of vendor/plugins as a plugin. In fact, many popular plugins consist only
of an init.rb script and some files in lib.

19.2.1 The init.rb Hook

If you pop open the boilerplate init.rb file that Rails generated for you, you’ll read a
simple instruction.

insert hook code here

Hook code means code that hooks into the Rails initialization routines. To see a quick
example of hook code in action, just go ahead and generate a plugin in one of your
projects and add the following line to its init.rb:

puts "Current Rails version: #{Rails::VERSION::STRING}"

Congratulations, you’ve written your first simple plugin. Run the Rails console and see:

$ rails console

Current Rails version: 3.0.pre

Loading development environment (Rails 3.0.pre)

>>

Code that’s added to init.rb is run at startup. (That’s any sort of Rails commands,
including server, console, and runner.) Most plugins have their require statements
in init.rb.

Initialization Variables

A few special variables are available to your code in init.rb:

name The name of your plugin ('my_plugin' in our simple example).

path The directory in which the plugin exists, which is useful in case you need to read
or write nonstandard files in your plugin’s directory.

config The configuration object created in environment.rb. (See Chapter 1, “Rails
Environments and Configuration,” as well as the online API docs for Rails::

Configuration to learn more about what’s available via config.)

P
lu

g
in

s
19.2 Writing Your Own Plugins 539

Our simple example is just that, simple. Most of the time you want a plugin to provide
new functionality to the rest of your application or modify the Rails libraries in more
interesting ways than printing out a version number on startup.

19.2.2 The lib Directory

The lib directory of your plugin is added to Ruby’s load path before init.rb is run.
That means that you can require your code without needing to jump through hoops
specifying the load path:

require File.dirname(__FILE__) + '/lib/my_plugin' # unnecessary

Assuming your lib directory contains my_plugin.rb, your init.rb needs to read:

require 'my_plugin'

Simple. You can bundle any class or Ruby code in a plugin’s lib folder and then load it
in init.rb (or allow other developers to optionally load it an initializer) using Ruby’s
require statement. This is the simplest way to share Ruby code among multiple Rails
applications.

It’s typical for plugins to alter or enhance the behavior or existing Ruby classes. As
a simple example, Listing 19.1 is the source of a plugin that gives ActiveRecord classes
a square brackets operator for finding by id.

Listing 19.1 Adding [] to Active Record Classes

in file vendor/plugins/my_plugin/my_plugin.rb

class ActiveRecord::Base

def self.[](id)

find(id)

end

end

In addition to opening existing classes to add or modify behavior, there are at least
three other ways used by plugins to extend Rails functionality:

• Mixins, which describes inclusion of modules into existing classes

• Dynamic extension through Ruby’s callbacks and hooks such as method_missing,
const_missing, and included

• Dynamic extension using runtime evaluation with methods such as eval,
class_eval, and instance_eval

540 Chapter 19: Extending Rails with Plugins

19.2.3 Extending Rails Classes

The way that we reopen the ActiveRecord::Base class in Listing 19.1 and simply add
a method to it is simple, but most plugins follow a pattern used internally in Rails and
split their methods into two modules, one each for class and instance methods. We’ll go
ahead and add a useful to_param instance method to all our ActiveRecord objects too.1

Let’s rework my_plugin so that it follows that style. First, after requiring
'my_plugin' in init.rb, we’ll send an include message to the ActiveRecord class
itself:

ActiveRecord::Base.send(:include, MyPlugin)

There’s also another way of accomplishing the same result, which you might encounter
when browsing through the source code of popular plugins2:

ActiveRecord::Base.class_eval do

include MyPlugin

end

Now we need to write a MyPlugin module to house the class and instance variables with
which we will extend ActiveRecord::Base. See Listing 19.2.

Listing 19.2 Extensions to ActiveRecord::Base

module MyPlugin

extend ActiveSupport::Concern

extending ActiveSupport::Concern automatically does the following

def self.included(base)

base.extend(ClassMethods)

base.send(:include, InstanceMethods)

end

module ClassMethods

def [](id)

find(id)

end

end

module InstanceMethods

def to_param

1. See http://www.jroller.com/obie/entry/seo—optimization—of—urls—in for an explanation of
how smart use of the to—param method can help your search engine optimization efforts on public-facing
websites.
2. Jay Fields has a good blog post about the motivations behind using the various types of code extension at
http://blog.jayfields.com/2007/01/class-reopening-hints.html.

http://www.jroller.com/obie/entry/seo%E2%80%94optimization%E2%80%94of%E2%80%94urls%E2%80%94in
http://blog.jayfields.com/2007/01/class-reopening-hints.html

P
lu

g
in

s
19.2 Writing Your Own Plugins 541

has_name? ? "#{id}-#{name.gsub(/[^a-z0-9]+/i, '-')}" : super

end

private

def has_name?

respond_to?(:name) and persisted?

end

end

end

You can use similar techniques to extend controllers and views.3 For instance, if you
want to add custom helper methods available in all your view templates, you can extend
Action View like this:

ActionView::Base.send(:include, MyPlugin::MySpecialHelper)

Now that we’ve covered the fundamentals of writing Rails plugins (init.rb and the
contents of the lib directory), we can take a look at the other files that are created by
the plugin generator script.

19.2.4 The README and MIT-LICENSE File

The first thing that developers do when they encounter a new plugin is to take a look
in the README file. It’s tempting to ignore this file, but at the very least, you should add
a simple description of what the plugin does, for future reference. The README file is
also read and processed by Ruby’s RDoc tool, when you generate documentation for
your plugin using the doc:: Rake tasks. It’s worth learning some fundamentals of RDoc
formatting if you want the information that you put in the README file to look polished
and inviting later.

Rails is open-sourced under the extremely liberal and open MIT license, as are
most of the popular plugins available. In his keynote address to Railsconf 2007, David
announced that the plugin generator will auto-generate an MIT license for the file, to
help to solve the problem of plugins being distributed without an open-source license.
Of course, you can still change the license to whatever you want, but the MIT license is
definitely considered the Rails way.

3. Alex Young’s http://alexyoung.org/articles/show/40/a—taxonomy—of—rails—plugins covers a
variety of different kinds of Rails plugins, including a useful explanation of how to handle passed-in options
for runtime-configuration.

http://alexyoung.org/articles/show/40/a%E2%80%94taxonomy%E2%80%94of%E2%80%94rails%E2%80%94plugins

542 Chapter 19: Extending Rails with Plugins

19.2.5 The install.rb and uninstall.rb Files

This pair of files is placed in the root of the plugin directory along with init.rb and
README. Just as the init.rb file can be used to perform a set of actions each time the
server starts, these files can be used to ensure that prerequisites of your plugin are in place
when the plugin is installed using the rails plugin install command and that your
plugin cleans up after itself when it is uninstalled using rails plugin remove.

Installation

For example, you might develop a plugin that generates intermediate data stored as
temporary files in an application. For this plugin to work, it might require a temporary
directory to exist before the data can be generated by the plugin—the perfect opportunity
to use install.rb. See Listing 19.3.

Listing 19.3 Creating a temporary directory during plugin installation

require 'fileutils'

FileUtils.mkdir_p File.join(Rails.root, 'tmp', 'my_plugin_data')

By adding these lines to your plugin’s install.rb file, the directory tmp/

my_plugin_data will be created in any Rails application in which the plugin is in-
stalled. This fire-once action can be used for any number of purposes, including but not
limited to the following:

• Copying asset files (HTML, CSS, and so on) into the public directory

• Checking for the existence of dependencies (for example, RMagick)

• Installing other requisite plugins

• Displaying documentation (see Listing 19.4)

Listing 19.4 Outputting documentation

puts File.read(File.dirname(__FILE__)+'/README')

Removal

As mentioned, the rails plugin remove command checks for the presence of a file
called uninstall.rb when removing a plugin. If this file is present, it will be evaluated
just prior to the plugin files actually being deleted. Typically, this is useful for reversing
any actions performed when the plugin was installed. This can be handy for removing
any directories or specific data files that your plugin might have created when installed,
or while the application was running.

P
lu

g
in

s
19.2 Writing Your Own Plugins 543

Commonsense Reminder

What might not be so obvious about this scheme is that it isn’t foolproof. Users of
plugins often skip the installation routines without meaning to do so. Because plugins
are distributed via source control, it is trivial to add a plugin to your project with a simple
checkout:

$ git checkout git://github.com/mislav/will_paginate.git

vendor/plugins/will_paginate

Or perhaps a more common scenario is to add a plugin to your project by copy-
ing it over from another Rails project using the filesystem. (I know I’ve done just
that many times.) Same situation applies to plugin removal—a developer that doesn’t
know any better might uninstall a plugin from his project simply by deleting its folder
from the vendor/plugins directory, in which case the uninstall.rb script would
never run.

If as a plugin writer you are concerned about making sure that your install and/or
uninstall scripts are actually executed, it’s probably worthwile to stress the point in your
announcements to the community and within the plugin documentation itself, such as
the README file.

19.2.6 Custom Rake Tasks

It is often useful to include Rake tasks in plugins. For example, if your plugin stores files
in a temporary directory (such as /tmp), you can include a helpful task for clearing out
those temporary files without having to dig around in the plugin code to find out where
the files are stored. Rake tasks such as this should be defined in a .rake file in your
plugin’s tasks folder (see Listing 19.5).

Listing 19.5 A plugin’s cleanup rake task

vendor/plugins/my_plugin/tasks/my_plugin.rake

namespace :my_plugin do

desc 'Clear out the temporary files'

task :cleanup => :environment do

Dir[File.join(Rails.root, 'tmp', 'my_plugin_data')].each do |f|

FileUtils.rm(f)

end

end

end

544 Chapter 19: Extending Rails with Plugins

Rake tasks added via plugins are listed alongside their standard Rails brothers and sister
when you run rake -T to list all the tasks in a project. (In the following snippet, I
limited Rake’s output by passing a string argument to use for matching task names):

$ rake -T my_plugin

rake my_plugin:cleanup # Clear out the temporary files

19.2.7 The Plugin’s Rakefile

Generated plugins get their own little Rakefile, which can be used from within
the plugin’s directory to run its tests and generate its RDoc documentation (see
Listing 19.6).

Listing 19.6 A generated plugin rakefile

require 'rake/testtask'

desc 'Default: run unit tests.'

task :default => :test

desc 'Test the my_plugin plugin.'

Rake::TestTask.new(:test) do |t|

t.libs << 'test'

t.pattern = 'test/**/*_test.rb'

end

While we’re on the subject, I’ll also mention that Rails has its own default rake tasks
related to plugins, and they’re fairly self-explanatory:

$ rake -T plugin

rake doc:clobber_plugins # Remove plugin documentation

rake doc:plugins # Generate docs for installed plugins

rake test:plugins # Run the plugin tests in

vendor/plugins/*/**/test

(or specify with PLUGIN=name)

Before closing this section, let’s make the distinction between a plugin’s Rakefile and
any .rake files in the tasks folder clear:

• Use Rakefile for tasks that operate on the plugin’s source files, such as special testing
or documentation. These must be run from the plugin’s directory.

• Use tasks/*.rake for tasks that are part of the development or deployment of the
application in which the plugin is installed. These will be shown in the output of
rake ‚ÄìT, the list of all Rake tasks for this application.

P
lu

g
in

s
19.2 Writing Your Own Plugins 545

19.2.8 Including Assets with Your Plugin

Sometimes when writing a plugin you will want to have additional resources available to
the application, such as javascript or css, but you do not want installation to copy files all
over the place. This can be handled in your plugin initializer via a few hooks provided
by Action View.

For javascript, you will simply need to register a javascript expansion using
ActionView::Helpers::AssetTagHelper. In the following example we add two
javascript files from our plugin under the namespace my_plugin. Note that the source
files in the plugin must also reside in public/javascripts.

ActionView::Helpers::AssetTagHelper.

register_javascript_expansion :my_plugin => ["core", "ext"]

This javascript can then be loaded into the application through the standard javascript
include tag, and passing the name defined by the plugin.

javascript_include_tag :my_plugin

Stylesheets are handled in a similar manner, with stylesheets needing to reside in your
plugin’s public/stylesheets directory.

ActionView::Helpers::AssetTagHelper.

register_stylesheet_expansion :my_plugin => ["layouts", "forms"]

Once initialized the stylesheets can then be loaded using the stylesheet link tag in the
application.

stylesheet_link_tag :my_plugin

19.2.9 Testing Plugins

Last but not least, the development of your plugin should be Test-Driven. Writing
tests for plugins is for the most part identical to any testing in Rails or Ruby and for
the most part the methods used to test both are the same. However, because plugins
cannot often predict the exact environment in which they are run, they require extra
precautions to ensure that the test behavior of your plugin code is isolated from the rest
of the application.

There is a subtle distinction between running plugin tests using the global
test:plugins rake task and via the plugin’s own Rakefile. Although the former
can test all installed plugins at the same time, the internal Rakefile can and should be
exploited to add any specific tasks your plugin requires to be tested properly.

Techniques used in testing plugins properly include bootstrapping a separate
database for testing plugins in complete isolation. This is particularly useful when a

546 Chapter 19: Extending Rails with Plugins

plugin augments ActiveRecord with additional functionality, because you need to test
the new methods in a controlled environment, minimizing the interaction with other
plugins and the application’s own test data.

As you can imagine, testing of plugins is a lengthy topic that is primarily of interest
to plugin authors. Unfortunately, I must leave further analysis of the subject out of this
book for reasons of practicality and overall length.

19.2.10 Railties

Railties are classes that extend from Rails::Railtie and provide hooks into Rails ini-
tialization for add-on libraries. This is extremely useful for gems which want to seemlessly
integrate with Rails.

Railties provide hooks for libraries to add the following functionality:

• Creating initializers

• Providing Rake tasks

• Adding generators

• Registering event subscribers (for logging)

To create a Railtie, create a class called Railtie in your project’s namespace that
inherits from Rails::Railtie. Make sure you require ‘rails’ and your own gem in the
file as well.

require 'my_gem'

require 'rails'

module MyGem

class Railtie < Rails::Railtie

end

end

At this point you are ready to hook in. Methods defined on Rails::Railtie that can
be used for configuration are:

initializer(&block) Execute the block on initialization, it yields to the application
configuration object.

config Provides access to the global configuration object.

rake tasks(&block) Loads rake tasks to be used by the application.

generators(&block) Require generators to be used by the application.

log subscriber(name, subscriber) Register a custom log subscriber for your
framework.

P
lu

g
in

s
19.3 Conclusion 547

A more thorough example is

require 'my_gem'

require 'rails'

module MyGem

class Railtie < Rails::Railtie

initializer "setup" do

Some initialization code here, like setting up a

database connection.

end

initializer "verify setup" do

config.after_initialize do

Do some verification on the setup.

end

end

rake_tasks do

load 'my_gem/railties/tasks.rake'

end

generators do

require 'my_gem/rails/generators/my_generator'

end

log_subscriber :my_gem, MyGem::Railtie::Subscriber.new

end

end

Note

Rails Engines are self-contained applications that can be packaged as gems and included in another
Rails application. Devise (covered in Chapter 14) is an example of an engine and contains, among
other things, its own configuration, routes, models, controllers, views and even generators.
The primary author of Devise, Jose Valim, has written one of the best descriptions of cre-
ating a Rails Engine at https://gist.github.com/af7e572c2dc973add221#
file_2_engine.rdoc

19.3 Conclusion

You have now learned about all the basic aspects of Rails plugins. You learned how to
install and remove them. You also learned the fundamentals of writing your own plugins,
enough to at least get you started experimenting with them.

https://gist.github.com/af7e572c2dc973add221#file_2_engine.rdoc
https://gist.github.com/af7e572c2dc973add221#file_2_engine.rdoc

548 Chapter 19: Extending Rails with Plugins

To cover everything related to Rails plugins would require its own book and would
go beyond the needs of most Rails developers, so we did not cover testing plugins or
the more advanced techniques employed by plugin developers. We also did not discuss
topics related to the life of a plugin beyond its initial development.

For in-depth learning about extending Rails with plugins, I strongly recommend the
Addison-Wesley publication Rails Plugins by James Adam, who is considered the world’s
top expert on the subject.

B
a
ckg

ro
u
n

d
P
ro

ce
ssin

g

CHAPTER 20

Background Processing

People count up the faults of those who keep them waiting.

—French Proverb

Users of modern websites have lofty expectations when it comes to application respon-
siveness – most likely they will expect behavior and speed similar to that of desktop
applications. Proper user experience guidelines would dictate that no HTTP request/
response cycle should take more than a second to execute however there will be actions
that arise that simply cannot achieve this time constraint.

Tasks of this nature can range from simple, long running tasks due to network latency
to more complex tasks that require heavy processing on the server. Examples of these
actions could be sending an email or processing video, respectively. In these situations,
it is best to have the actions execute asynchronously, so that the responsiveness of the
application remains swift while the procedures run.

In this chapter these types of tasks are referred to as background jobs. They include
any execution that is handled in a separate process from the Rails application. Rails and
Ruby have several libraries and techniques for performing this work, most notably:

• Delayed Job

• Resque

• Rails Runner

This chapter will cover each of these tools, discussing the strengths and weaknesses of
each one so that you may determine what is appropriate for your application.

549

550 Chapter 20: Background Processing

20.1 Delayed Job

Delayed Job1 is a robust background processing library that is essentially a highly config-
urable priority queue. It provides various approaches to handling asynchronous actions,
including:

• Custom background jobs

• Permanently marked background methods

• Background execution of methods at runtime

By default Delayed Job relies on Active Record to store all queue related operations
and requires a relational database to store job information. However, it can be configured
to use other persistence frameworks, as well as other non-relational databases. Supported
options are:

• DataMapper

• MongoMapper (for use with MongoDB)

• CouchREST (for use with CouchDB)

20.1.1 Getting Started

Add the delayed_job gem to your application’s Gemfile, then run the generator to
create your execution and migration scripts.

rails generate delayed_job

This will create the database migration that will need to be run to set up the
delayed_jobs table in the database, as well as a script to run Delayed Job. If you
are using MongoMapper or CouchREST as the persistence framework, you may run
the command with a --skip-migration option supplied since no migration will be
needed.

To change the default settings for Delayed Job, first add a delayed_job.rb in your
config/initializers directory. Options then can be configured by calling various
methods on Delayed::Worker, which include settings for changing the behavior of
the queue with respect to tries, timeouts, maximum run times, sleep delays and other
options.

1. http://github.com/collectiveidea/delayed—job

http://github.com/collectiveidea/delayed%E2%80%94job

B
a
ckg

ro
u
n

d
P
ro

ce
ssin

g
20.1 Delayed Job 551

Delayed::Worker.backend = :mongo_mapper

Delayed::Worker.destroy_failed_jobs = false

Delayed::Worker.sleep_delay = 30

Delayed::Worker.max_attempts = 5

Delayed::Worker.max_run_time = 1.hour

Delayed::Worker.max_priority = 10

20.1.2 Creating Jobs

Delayed Job can create background jobs using 3 different techniques, and which one
you use depends on your own personal style.

The first option is to chain any method that you wish to execute asynchronously after
a call to Object#delay. This is good for cases where some common functionality needs
to execute in the background in certain situations, but is acceptable to run synchronously
in others.

Execute normally

mailer.send_email(user)

Execute asynchronously

mailer.delay.send_email(user)

The second technique is to tell Delayed Job to execute every call to a method in the
background via the Object.handle_asynchronously macro.

class Mailer

def send_email(user)

UserMailer.activation(user).deliver

end

handle_asynchronously :send_email

end

Durran says . . .

When using handle_asynchronously, make sure the declaration is after the method
definition, since Delayed Job uses alias_method_chain internally to set up the behavior.

Lastly, you may create a custom job by creating a separate Ruby object that only
needs to respond to perform. That job can then be run at any point by telling Delayed
Job to enqueue the action.

class EmailJob < Struct.new(:user_id)

def perform

user = User.find(@user_id)

UserMailer.activation(user).deliver

end

end

552 Chapter 20: Background Processing

Enqueue a job with default settings

Delayed::Job.enqueue EmailJob.new(user.id)

Enqueue a job with priority of 1

Delayed::Job.enqueue EmailJob.new(user.id, 1)

Enqueue a job with priority of 0, starting tomorrow

Delayed::Job.enqueue EmailJob.new(user.id, 1, 1.day.from_now)

20.1.3 Running

To start up Delayed Job workers, use the delayed job script created by the generator.
This allows for starting a single worker or multiple workers on their own processes, and
also provides the ability to stop all workers.

Start a single worker

RAILS_ENV=staging script/delayed_job start

Start multiple workers, each in a separate process

RAILS_ENV=production script/delayed_job -n 4 start

Stop all workers

RAILS_ENV=staging script/delayed_job stop

Durran says . . .

Delayed Job workers generally have a lifecycle that is equivalent to an application deployment.
Because of this, their memory consumption grows over time and may eventually have high swap
usage, causing workers to become unresponsive. A good practice is to have a monitoring tool like
God or monit watching jobs, and restarting them when their memory usage hits a certain point.

20.1.4 Summary

Delayed Job is an excellent choice when you want ease of setup, need to schedule jobs
for later dates, or want to add priorities to jobs in your queue. It works well in situations
where the total number of jobs is low and the tasks they execute are not long running
or consume large amounts of memory.

Do note that if you are using Delayed Job with a relational database backend and
have a large number of jobs, performance issues may arise due to the table locking the
framework employs. Since jobs may have a long lifecycle, be wary of resource consump-
tion due to workers not releasing memory once jobs are finished executing. Also where

B
a
ckg

ro
u
n

d
P
ro

ce
ssin

g
20.2 Resque 553

job execution can take a long period of time, higher priority jobs will still wait for the
other jobs to complete before being processed. In these cases, using a non-relational
backend such as MongoDB or potentially another library such as Resque may be
advisable.

20.2 Resque

Resque2 is a background processing framework that supports multiple queues and is
optimized for handling extremely large numbers of jobs efficiently. It uses Redis for its
persistent storage and comes with a Sinatra web application to monitor the queues and
jobs.

Resque actions are Ruby objects or modules that respond to a perform class method.
Jobs are stored in the database as JSON objects, and because of this only primitives can
be passed as arguments to the actions. Resque also provides hooks into the worker and
job lifecycles, as well as the ability to configure custom failure mechanisms.

Due to Resque’s use of Redis as its storage engine, the overhead of job processing
is unnoticable. It is currently the best performing background processing library for the
feature set, and its parent/child forking architecture makes its resource consumption
predictable and easily managed.

20.2.1 Getting Started

First in your Gemfile add the resque gem, then configure Resque by creating a Rails
initializer and a resque.yml to store the configuration options. The YAML should be
key/value pairs of environment name with the Redis host and port, and the initializer
should load the YAML and set up the Redis options.

Configuring failure backends can also be done in the same manner Resque supports
persistence to Redis or Hoptoad notifications out of the box, but custom backends can
be easily created by inheriting from Resque::Failure::Base.

In config/resque.yml:

development: localhost:6379

staging: localhost:6379

production: localhost:6379

2. http://github.com/defunkt/resque

http://github.com/defunkt/resque

554 Chapter 20: Background Processing

The config/initializers/resque.rb:

require 'resque/failure/hoptoad'

rails_env = ENV['RAILS_ENV'] || 'development'

config = YAML.load_file(Rails.root.join 'config','resque.yml')

Resque.redis = config[rails_env]

Resque::Failure::Hoptoad.api_key = 'your-key-here'

Resque::Failure.backend = Resque::Failure::Hoptoad

20.2.2 Creating Jobs

Jobs in Resque are plain old Ruby objects that respond to a perform class method and
define which queue they should be processed in. The simplest manner to define the
queue is to set an instance variable on the job itself.

class EmailJob

@queue = :communications

class << self

def perform(user_id)

user = User.find(user_id)

UserMailer.activation(user).deliver

end

end

end

Enqueue the job

Resque.enqueue(EmailJob, user.id)

20.2.3 Hooks

Resque provides lifecycle hooks that can used to add additional behavior, for example
adding an automatic retry for a failed job. There are two categories of hooks: worker
hooks and job hooks.

The available worker hooks are before_first_fork, before_fork, and
after_fork. Before hooks are executed in the parent process where the after hook
executes in the child process. This is important to note since changes in the parent pro-
cess will be permanent for the life of the worker, whereas changes in the child process
will be lost when the job completes.

Before the worker's first fork

Resque.before_first_fork do

puts "Creating worker"

end

B
a
ckg

ro
u
n

d
P
ro

ce
ssin

g
20.2 Resque 555

Before every worker fork

Resque.before_fork do |job|

puts "Forking worker"

end

After every worker fork

Resque.after_fork do |job|

puts "Child forked"

end

Job hooks differ slightly from worker hooks in that they are defined on the action classes
themselves and are defined as class methods with the hook name as the prefix. The
available hooks for jobs are: before_perform, after_perform, around_perform,
and on_failure.

An example job that needs to retry itself automatically on failure, and logged some
information before it started processing would look like:

class EmailJob

class << self

def perform(user_id)

user = User.find(user_id)

UserMailer.activation(user).deliver

end

def before_perform_log(*args)

Logger.info "Starting Email Job"

end

def on_failure_retry(error, *args)

Resque.enqueue self, *args

end

end

end

20.2.4 Plugins

Resque has a very good plugin ecosystem to provide it with additional useful features.
Most plugins are modules that are included in your job classes, only to be used on specific
jobs that need the extra functionality. Plugins of note are listed below and a complete
list can be found at http://wiki.github.com/defunkt/resque/plugins.

• resque-lock: Allows for only a single instance of a job to be running at a time.

• resque-retry: Adds configurable retry and exponential backoff behavior for failed
jobs.

http://wiki.github.com/defunkt/resque/plugins

556 Chapter 20: Background Processing

• resque-restriction: Provides configurable limits to job execution within given
time frames.

• resque-schedule: Adds recurring jobs and the ability to schedule jobs in the
future.

20.2.5 Running

Resque comes with two rake tasks that can be used to run workers, one to run a single
worker for one or more queues the second to run multiple workers. Configuration
options are supplied as environment variables when running the tasks and allow for
defining the queue for the workers to monitor, logging verbosity, and the number or
workers to start.

Start 1 worker for the communications queue

QUEUE=communications rake environment resque:work

Start 6 workers for the communications queue

QUEUE=communications COUNT=6 rake resque:workers

Start 2 workers for all queues

QUEUE=* COUNT=2 rake resque:workers

Stopping jobs involves sending signals to the parent Resque workers, which then take
the appropriate action on the child and themselves:

QUIT waits for the forked child to finish processing, then exists

TERM/INT immediately kills the child process and exits

USR1 immediately kills the child process, but leaves the parent worker running

USR2 finishes processing the child action, then waits for CONT before spawning
another

CONT continues to start jobs again if it was halted by a USR2

20.2.6 Monitoring

One of the really nice features of Resque is the web interface that it ships with for
monitoring your queues and jobs. It can run standalone or be mounted with your Rails
application using Rack::URLMap in your app’s config.ru.

To run standalone, simply run resque-web from the command line. If you prefer
to mount with your Rails application, modify your config.ru to add the Resque
server.

B
a
ckg

ro
u
n

d
P
ro

ce
ssin

g
20.3 Rails Runner 557

require "config/environment"

require "resque/server"

use Rails::Rack::LogTailer

use Rails::Rack::Static

run Rack::URLMap.new(

"/" => ActionController::Dispatcher.new,

"/resque" => Resque::Server.new

)

20.2.7 Summary

Resque is recommended where a large number of jobs are in play with potential unwanted
memory growth. Completed child jobs release their memory on completing, so long-
running workers do not have the negative effect on system resources that you could
potentially have with other frameworks. It does not support priority queueing but does
support multiple queues is advantageous when jobs can be categorized together and
given pools of workers to run them.

With a Redis backend, Resque does not suffer from the potential database locking
issues that can arise when using Delayed Job and has significantly better performance
with respect to queue management.

Do note that Redis stores all of its data in memory, so if you are expecting a large
amount of jobs but do not have a significant amount of RAM to spare, you may need
to look at a different framework.

20.3 Rails Runner

Rails comes with a built-in tool for running tasks independent of the web cycle. The
rails runner command simply loads the default Rails environment and then executes
some specified Ruby code. Popular uses include:

• Importing batch external data

• Executing any (class) method in your models

• Running intensive calculations, delivering e-mails in batches, or executing scheduled
tasks

Usages involving rails runner that you should avoid at all costs are:

• Processing incoming e-mail

• Tasks that take longer to run as your database grows

558 Chapter 20: Background Processing

20.3.1 Getting Started

For example, let us suppose that you have a model called Report. The Report model has
a class method called generate_rankings, which you can call from the command line
using

$ rails runner 'Report.generate_rankings'

Since we have access to all of Rails, we can even use the Active Record finder methods
to extract data from our application.3

$ rails runner 'User.all.map(&:email).each {|e| puts e }'

charles.quinn@highgroove.com

me@seebq.com

bill.gates@microsoft.com

obie@obiefernandez.com

This example demonstrates that we have access to the User model and are able to
execute arbitrary Rails code. In this case, we’ve collected some e-mail addresses that we
can now spam to our heart’s content. (Just kidding!)

20.3.2 Usage Notes

There are some things to remember when using rails runner. You must specify the
production environment using the -e option; otherwise, it defaults to development. The
rails runner help option tells us:

$ rails runner -h

Usage: rails runner [options] ('Some.ruby(code)' or a filename)

-e, --environment=name Specifies the environment for the runner

to operate in (test/development/ production)

Default: development

#!/usr/bin/env/path/to/script/railsrunner

Using rails runner, we can easily script any batch operations that need to run
using cron or another system scheduler. For example, you might calculate the most
popular or highest-ranking product in your e-commerce application every few minutes
or nightly, rather than make an expensive query on every request:

$ rails runner ‚Äìe production 'Product.calculate_top_ranking'

A sample crontab to run that script might look like

0 */5 * * * root /usr/local/bin/ruby \

/apps/exampledotcom/current/script/rails runner -e production \

'Product.calculate_top_ranking'

3. Be careful to escape any characters that have specific meaning to your shell.

B
a
ckg

ro
u
n

d
P
ro

ce
ssin

g
20.4 Conclusion 559

The script will run every five hours to update the Product model’s top rankings.

20.3.3 Considerations

On the positive side, it doesn’t get any easier and there are no additional libraries to
install. That’s about it.

As for negatives the rails runner process loads the entire Rails environment. For
some tasks, particularly short-lived ones, that can be quite wasteful of resources. Also,
nothing prevents multiple copies of the same script from running simultaneously, which
can be catastrophically bad, depending on the contents of the script.

Wilson says . . .

Do not process incoming e-mail with rails runner. It’s a Denial of Service attack waiting
to happen. Use Fetcher (or something like it) instead: http://slantwisedesign.com/
rdoc/fetcher/.

20.3.4 Summary

The Rails Runner is useful for short tasks that need to run infrequently, but jobs that
require more heavy lifting, reporting, and robust failover mechanisms are best handled
by other libraries.

20.4 Conclusion

Most web applications today will need to incorporate some form of asynchronous be-
havior, and we’ve covered some of the important libraries available when needing to
implement background processing. There are many other frameworks and techniques
available for handling this, so choose the solution that is right for your needs—just
remember to never make your users wait.

http://slantwisedesign.com/rdoc/fetcher/
http://slantwisedesign.com/rdoc/fetcher/

This page intentionally left blank

A
ctive

M
o
d

e
l

APPENDIX A

Active Model API Reference

Active Model is a Rails library containing various modules used in developing frameworks
that need to interact with the Rails Action Pack library. This came about by extracting
common functionality that was not persistence specific out of Active Record, so that 3rd
party libraries did not have to copy code from Rails or monkey patch helpers in order
to conform to the API.

Out of this extraction came extremely useful reusable functionality to developers
of Rails compatible libraries, such as dirty attributes, validations, and serialization into
JSON or XML. And simply by using these modules developers could be DRY and not
need to rewrite what has already been done before.

Section headings reflect the name of the Class or Module where the API method
is located and are organized in alphabetical order for easy lookup. Sub-sections appear
according to the name of the Ruby file in which they exist within Active Model’s lib
directory. Finally, the sub-sub-sections are the API methods themselves.

A.1 AttributeMethods
AttributeMethods adds the ability for your class to have custom prefixes and suffixes
on your methods. It is used by adding the definitions for the prefixes and suffixes,
defining which methods on the object will use them, then implementing the common
behavior for when those methods are called. An example implementation is as follows:

class Record

include ActiveModel::AttributeMethods

attribute_method_prefix 'reset_'

attribute_method_suffix '_highest?'

define_attribute_methods ['score']

561

562 Appendix A: Active Model API Reference

attr_accessor :score

private

def reset_attribute(attribute)

send("#{attribute}=", nil)

end

def attribute_highest?(attribute)

attribute > 1000 ? true : false

end

end

A.1.1 active—model/attribute—methods.rb
attribute—method—affix(*affixes)
Defines a prefix and suffix that when used in conjuction withdefine_attribute_methods
creates a instance method with the prefix and suffix wrapping the previous method name.

attribute—method—prefix(*prefixes)
Defines a prefix that when used in conjuction with define_attribute_methods cre-
ates a instance method with the prefix and the previous method name.

attribute—method—suffix(*suffixes)
Defines a suffix that when used in conjuction with define_attribute_methods cre-
ates a instance method with the suffix and the previous method name.

attribute—methods—generated?
Returns whether or not the dynamic attribute methods have been generated.

define—attr—method(name, value = nil, & block)
Defines an attribute method, which is a class method that replaces an existing method
and prefixes the original method with original_. This is so the newmethod can access
the original value.

define—attribute—methods(*attr—names)
Defines the methods that will get prefixed and suffixed.

undefine—attribute—methods
Removes all the attribute method definitions

A
ctive

M
o
d

e
l

A.3 Conversion 563

A.2 Callbacks
Callbacks gives any class Active Record–style callbacks. It is used by defining the call-
backs that the model will use, then in your model running the callbacks at the appropriate
time. Once defined you have access to before, after, and around custom methods.

class Record

extend ActiveModel::Callbacks

define_model_callbacks :create

define_model_callbacks :update, :destroy, :only => :before

before_update :my_callback

def save

_run_update_callbacks do

Your save code here

end

end

private

def my_callback

Your callback code here

end

end

A.2.1 active—model/callbacks.rb
define—model—callbacks(*callbacks)
Defines the callback hooks that can be used in the model, which will dynamically provide
you with a before, after, and around hook for each name passed. Can optionally
supply an :only option to specify which of those you want executed.

A.3 Conversion
Conversion is a simple module that when included gives the standard Rails conversion
methods to your model. The only requirement for including this class is that your model
contains a persisted? method and an id method.

A.3.1 active—model/conversion.rb
to—model
Returns self. If your model is not Active Model compliant, then override this method.

to—key
Will either return an array of primary key attributes or nil if the object is not persisted.

564 Appendix A: Active Model API Reference

to—param
Will return a url friendly version of the primary or nil if the object is not persisted.

A.4 Dirty
Dirty is a powerful module that allows for tracking in your object what changes have
been made to it since it was last initialized. It creates a handful of dynamic methods
based on which attributes you define as attribute methods on your class, and requires
that you also tell the attribute setters that they are being tracked for changes. (You can
optionally also store previous changes each time your object is presisted as well.)

class User

include ActiveModel::Dirty

define_attribute_methods [:email]

def email

@email

end

def email=(value)

email_will_change!

@email = value

end

def save

@previously_changed = changes

end

end

In the example above, the following dynamic methods would then be available for
checking the dirty state of the flagged field. (Assume user is an instance of the User class.)

Returns an array of the old and new values

user.email_change

Returns true if the value has changed

user.email_changed?

Resets the attribute back to the original value

user.reset_email!

Returns the old value of a changed field

user.email_was

Flags an attribute that is will be changed

user.email_will_change!

A
ctive

M
o
d

e
l

A.5 Errors 565

A.4.1 active—model/dirty.rb
changed
Gets an array of fields whos values have changed on the object.

changed?
Returns whether or not the object’s attributes have changed.

changed—attributes
Returns a Hash of the fields that have changed with their original values.

changes
Returns a Hash of changes, with the attribute names as the keys, and the values being
an array of the old and new value for that field.

previous—changes
Returns a Hash of previous changes before the object was persisted, with the attribute
names as the keys, and the values being an array of the old and new value for that
field.

A.5 Errors
Errors is a class that provides a common interface for handling application error
messages.

Note that in order for your object to be compatible with the Errors API
with i18n and validations support, it needs to extend ActiveModel::Naming,
ActiveModel::Translations, and include ActiveModel::Validations.

class User

extend ActiveModel::Naming

extend ActiveModel::Translations

include ActiveModel::Validations

attr_reader :errors

def initialize

@errors = ActiveModel::Errors.new(self)

end

end

566 Appendix A: Active Model API Reference

A.5.1 active—model/errors.rb
[](attribute)
Returns the errors for the supplied attribute as an array.

[]=(attribute, error)
Adds the provided error message to the attribute’s errors.

add(attribute, message = nil,options = {})
Adds an error message for the supplied attribute. If no message is provided, :invalid
is assumed. Options allowed are:

:default A default message for the error.

add—on—blank(attributes, custom—message = nil)
Adds an error message for each provided blank attribute name.

add—on—empty(attributes, custom—message = nil)
Adds an error message for each provided empty attribute name.

count
Returns the total number of error messages.

each
Iterates through the error keys, yielding the attribute and the errors for each.

empty?
Returns whether or not any errors exist.

full—messages
Returns all the error messages as an array.

generate—message(attr,message = :invalid,
options = {})
Generates a translated error message for the supplied attribute. Messages are looked up via
the following pattern: models.MODEL.attributes.ATTRIBUTE.MESSAGE. Options
provided can be:

:default A default message for the error.

A
ctive

M
o
d

e
l

A.7 MassAssignmentSecurity 567

size
Returns the total number of error messages.

to—a
Returns an array of all the error messages, with the attribute name included in each.

to—xml
Returns the errors hash as XML.

A.6 Lint::Tests
You can check whether an object is compatible with the Active Model API by including
ActiveModel::Lint::Tests. It contains assertions that tell you whether your object
is fully compliant.

The tests only check compatibility. They do not attempt to determine the correctness
of the returned values. For instance, you could implement valid? to always return true
and the tests would still pass. It is up to you to ensure that the values are correct.

Objects you pass in are expected to return a compliant object from a call toto_model.
Generally speaking, to_model just returns self.

A.7 MassAssignmentSecurity
MassAssignmentSecurity is a module that can be included to provided protected and
accessible access to your attributes. Mass assignment is defined in Rails as any method
or constructor that allows more than one value to be set at the same time. The methods
provided in this module help prevent fields such as ids and passwords to get accidentally
set through the likes of form submissions, etc.

User.new(:first_name => "Joe", :last_name => "Smith")

Account.create(:name => "Acme")

A.7.1 active—model/mass—assignment—

security.rb
attr—protected
Attributes defined as protected do not get their values set when a mass assignment
method is called.

class User

include ActiveModel::MassAssignmentSecurity

attr_protected :id, :password

568 Appendix A: Active Model API Reference

def attributes=(props)

sanitize_for_mass_assignment(props).each do |key, value|

send("#{key}=", value)

end

end

end

attr—accessible
Defines a list of attributes that can be set via mass assignment, all others will be protected
by default.

class User

include ActiveModel::MassAssignmentSecurity

attr_accessible :first_name, :last_name

def attributes=(props)

sanitize_for_mass_assignment(props).each do |key, value|

send("#{key}=", value)

end

end

end

A.8 Name
Name extends String and wraps a bunch of logic around name information about your
object so that it can be used with Rails.

How much name information could there be? Take a look at Name’s constructor.

def initialize(klass, namespace = nil)

super(klass.name)

@unnamespaced = self.sub(/^#{namespace.name}::/, '') if namespace

@klass = klass

@singular = _singularize(self).freeze

@plural = ActiveSupport::Inflector.pluralize(@singular).freeze

@element = ActiveSupport::Inflector.underscore(ActiveSupport::Inflector.

demodulize(self)).freeze

@human = ActiveSupport::Inflector.humanize(@element).freeze

@collection = ActiveSupport::Inflector.tableize(self).freeze

@partial_path = "#{@collection}/#{@element}".freeze

@param_key = (namespace ? _singularize(@unnamespaced)

: @singular).freeze

@route_key = (namespace ? ActiveSupport::Inflector.pluralize(@param_key)

: @plural).freeze

end

All of this information is calculated and stored at initialization-time, presumably since
it’s used all over Rails.

A
ctive

M
o
d

e
l

A.10 Observer 569

A.8.1 active—model/naming.rb
collection
Returns an underscored plural version of the model name.

element
Returns an underscored version of the model name.

human
Returns a translated human readable version of the model name using I18n. The basic
recipe is to capitalized the first word of the name.

BlogPost.model_name.human # => "Blog post"

partial—path
Returns collection/element.

plural
Returns a pluralized version of the model name.

singular
Returns a singularized version of the model name.

A.9 Naming
Naming is the module that you include in your class to get name type information for
your model.

A.9.1 active—model/naming.rb
model—name
Returns an ActiveModel::Name for the object. Used by Action Pack to determine
routing

A.10 Observer
Observer is the class to inherit from when creating your own observer to hook into the
lifecycle of your models. In order for it to work properly, the model to observe must
include ActiveModel::Observing, and the observers must be set up in an initializer
or similar.

570 Appendix A: Active Model API Reference

class LoggingObserver < ActiveModel::Observer

observe :user, :admin

def after_create(object)

Rails.logger.info("#{object} created.")

end

end

A.10.1 active—model/observing.rb
observe(*models)
Tells what models this observer observes. This is useful when the naming does not match
the model name or multiple objects need to be observed. The models can be classes or
symbols.

observed—class
Returns the default observed class.

observe—class—inherited(subclass)
Sets up the observer to watch subclasses of the observed model.

observed—classes
Returns an array of the classes this observer observes.

update(observed—method, object)
Calls the supplied method with the object as the args if the method exists.

A.11 Observing
Observing is a module to include in your models to set up observers in the lifecycle
of your model. Observers are added to the class by calling the observers class method
at some point in the application bootstrapping. An initializer would be a good fit for
this.

class User

include ActiveModel::Observing

end

User.observers = Logging

A
ctive

M
o
d

e
l

A.12 Serialization 571

A.11.1 active—model/observing.rb
add—observer(observer)
Adds an instantiated observer to the class.

count—observers
Returns the number of observers the class has.

instantiate—observers
Instantiate each of the class’ observers.

notify—observers(*args)
Iterates through all the class’ observers and calls update on them.

observers
Get the observers for the class.

A.12 Serialization
Serialization is a module to include in your models when you want to represent
your model as a serializable hash. You only need to define an attributes method and
the rest is handled for you.

class User

include ActiveModel::Serialization

attr_accessor :first_name, :last_name

def attributes

{ 'first_name' => @first_name, 'last_name' => @last_name }

end

end

A.12.1 active—model/serialization.rb
serializable—hash(options = nil)
Returns the serializable hash representation of your model. Options provided can be of
the following:

:except Do not include these attributes in the XML.

:methods Only include these methods in the XML.

:only Only include the supplied attributes.

572 Appendix A: Active Model API Reference

A.13 Serializers::JSON
Serializers::JSON is a module to include in your models when you want to provide
a JSON representation of your object. It autmatically includes the Serialization

module and depends on the attributes and attributes= methods to be present.

class User

include ActiveModel::Serializers::JSON

attr_accessor :first_name, :last_name

def attributes

{ 'first_name' => @first_name, 'last_name' => @last_name }

end

def attributes=(attrs)

@first_name = attrs['first_name']

@last_name = attrs['last_name']

end

end

A.13.1 active—model/serializers/json.rb
as—json(options = nil)
Returns a hash to convert to JSON for the model attributes.

from—json(json)
Decodes the supplied JSON, sets the attributes on the model, and returns self.

A.14 Serializers::Xml
Serializers::Xml is a module to include in your models when you want to provide
an XML representation of your object. It automatically includes the Serialization

module and depends on the attributes and attributes= methods to be present.

class Pet

include ActiveModel::Serializers::XML

attr_accessor :name

def attributes

{ 'name' => @name }

end

def attributes=(attrs)

@name = attrs['name']

end

end

A
ctive

M
o
d

e
l

A.15 Translation 573

A.14.1 active—model/serializers/xml.rb
to—xml(options = {}, & block)
Returns an XML representation of the object. Available options are:

:builder Supply a custom builder to generate the markup.

:except Do not include these attributes in the XML.

:indent Number of spaces to indent the XML.

:methods Only include these methods in the XML.

:namespace Set the XMLNS.

:only Only include the supplied attributes.

:skip instruct Skip processing instructions.

:skip types Skip typing.

:type Add a type to the XML tags.

from—xml(xml)
Decodes the supplied XML, sets the attributes on the model, and returns self.

A.15 Translation
Translation provides the ability to add internationalization support to your model

class User

extend ActiveModel::Translation

end

A.15.1 active—model/translation.rb
i18n—scope
Returns :activemodel, you can override if you want a custom namespace.

lookup—ancestors
Gets all ancestors of this class that support i18n.

human—attribute—name(attribute, options = {}

Translates attribute names into a human readable format with options.

:default The default text for the attribute name.

574 Appendix A: Active Model API Reference

A.16 Validations
Validations adds a fully featured validations framework to your model. This includes
the means to validate the following types of scenarios plus the ability to create custom
validators.

Acceptance of a field.

Confirmation of a field.

Exclusion of a field from a set of values.

Format of a field against a regular expression.

Inclusion of a field in a set of values.

Length of a field.

Numericality of a field.

Presence of a field.

class User

include ActiveModel::Validations

attr_accessor :name

validates_each :name do |record, attribute, value|

record.errors.add(attribute, 'should be present') if value.nil?

end

end

A.16.1 active—model/validations.rb

Note that available base options for validation macros that use options are as follows. If
the specific validation has additional options they will be explained there. All options are
supplied as a Hash, and are the last element of the first set of arguments to the macros.

:allow nil Specify whether to validate nil attributes.

:if Only run if the supplied method or proc returns true.

:on Define when the validation will run.

:unless Only run if the supplied method or proc returns false.

attribute—method?(attribute)
Returns true if a method is defined for the supplied attribute.

errors
Get all the errors for the model.

A
ctive

M
o
d

e
l

A.16 Validations 575

invalid?(context = nil)
Checks if the object is invalid given the optional context.

valid?(context = nil)
Checks if the object is valid given the optional context.

validate(*args, & block)
Adds a single validation to the model. Can be a method name as a symbol or a block
with options. Additional options are:

:allow blank Specify whether to validate blank attributes.

validates—acceptance—of(*args)
Validates that a field was accepted.

validates_acceptance_of :terms, :on => :create

Additional Options:

:message An optional custom error message.

:accept Provide the value that is considered accepted.

validates—confirmation—of(*args)
Validates that a field was confirmed.

validates_confirmation_of :password, :message => "Please try again."

Additional Options:

:message An optional custom error message.

validates—each(*attrs, & block)
Validates each of the attribute names against the supplied block. Options are passed in
as a Hash as the last element in the *attrs argument.

:allow blank Specify whether to validate blank attributes.

validates—exclusion—of(*args)
Validates that a field does not have a value supplied in the list.

validates_exclusion_of :age, :in => 18..55

576 Appendix A: Active Model API Reference

Additional Options:

:in The list or range the check the value against.

:message An optional custom error message.

validates—format—of(*args)
Validates that a field conforms to the supplied format.

validates_format_of :phone, :with => /\A[\d\-\(\)\sx]+\z/

Additional Options:

:allow blank Specify whether to validate blank attributes.

:with The regular expression to check if the format matches.

:without The regular expression to check that the format does not match.

:message An optional custom error message.

validates—inclusion—of(*args)
Validates that a field is a value supplied in the list.

validates_inclusion_of :state, :in => ["CA", "NY"]

Additional Options:

:allow blank Specify whether to validate blank attributes.

:in The list or range the check the value against.

:message An optional custom error message.

validates—length—of(*args)
Validates that a field adheres to the supplied length limitations.

validates_length_of :name, :maximum => 48

Additional Options:

:allow blank Specify whether to validate blank attributes.

:in Specify the range the length of the attribute can fall within.

:maximum Specify the maximum length of the attribute.

:message An optional custom error message.

:minimum Specify the minimum length of the attribute.

:tokenizer A block to define how the string should be broken up.

A
ctive

M
o
d

e
l

A.16 Validations 577

:too—long Define a custom message if the attribute is too long.

:too—short Define a custom message if the attribute is too short.

:within Specify the range the length of the attribute can fall within.

:wrong—length Define a custom message for an incorrect length.

validates—numericality—of(*args)
Validates that a field is numeric and optionally in a specified value range.

validates_numericality_of :score, :only_integer => true

Additional Options:

:equal—to Specify a value the field must be exactly.

:even Set that the value must be even.

:greater—than Specify a value the field must be greater than.

:greater—than—or—equal—to Specify a value the field must be greater than or
equal to.

:less—than Specify a value the field must be less than.

:less—than—or—equal—to Specify a value the field must be less than or equal to.

:message An optional custom error message.

:odd Set that the value must be odd.

:only—integer Set whether the value has to be an integer.

validates—presence—of(*args)
Validates that a field is not blank.

validates_presence_of :dob

Additional Options:

:message An optional custom error message.

validates—with(*args, & block)
Validates with a supplied custom validator. The validator class must respond to
validate and handle the options and error message addition internally.

class NameValidator < ActiveModel::Validator

def validate(object)

Some validation logic here

end

end

578 Appendix A: Active Model API Reference

class User

include ActiveModel::Validations

validates_with NameValidator, :on => :update

end

validators
Get all the validators being used by the class.

validators—on(attribute)
Get all the validators for a specific attribute.

A.17 Validator
Validator provides a class that custom validators can extend to seamlessly integrate
into the ActiveModel::Validations API. It only requires that the new class defines
a validate method.

A full explanation of how to use Validator and EachValidator is provided in
Section 8.6 “Custom Validation Techniques”.

class ScoreValidator < ActiveModel::Validator

include ActiveModel::Validations

def validate(object)

Perform validations and add errors here.

end

end

A.17.1 active—model/validator.rb
kind
Returns the type of the validator, which is a symbol of the underscored class name
without “Validator” included.

validate(record)
This method must be overwritten in the validator in order to actually handle the
validation itself.

A
ctive

S
u
p

p
o
rt

APPENDIX B

Active Support API
Reference

Active Support is a Rails library containing utility classes and extensions to Ruby’s built-
in libraries. It usually doesn’t get much attention on its own—you might even call its
modules the supporting cast members of the Rails ensemble.

However, Active Support’s low profile doesn’t diminish its importance in day-to-day
Rails programming. To ensure that this book is useful as an offline programming com-
panion, here is a complete, enhanced version of the Rails Active Support API reference,
supplemented in most cases with realistic example usages and commentary. As your
reviewing the material in this appendix, note that many of the methods featured here
are used primarily by other Rails libraries and are not particularly useful to application
developers.

Section headings reflect the name of the Class or Module where the API method
is located and are organized in alphabetical order for easy lookup. Sub-sections appear
according to the name of the Ruby file in which they exist within Active Support’s lib
directory. Finally, the sub-sub-sections are the API methods themselves.

B.1 Array
The following methods provide additional functionality for accessing array elements.

B.1.1 active—support/core—ext/array/access
from(position)
Returns the tail of the array starting from the position specified. Note that the position
is zero-indexed.

579

580 Appendix B: Active Support API Reference

> %w(foo bar baz quux).from(2)

=> ["baz", "quux"]

to(position)
Returns the beginning elements of the array up to position specified. Note that the
position is zero-indexed.

> %w(foo bar baz quux).to(2)

=> ["foo", "bar", "baz"]

second
Equivalent to calling self[1].

> %w(foo bar baz quux).second

=> "bar"

third
Equivalent to self[2].

fourth
Equivalent to self[3].

fifth
Equivalent to self[4].

forty—two
Equivalent to calling self[41]—a humorous addition to the API by David.

B.1.2 active—support/core—ext/array/
conversions

The following methods are used for converting Ruby arrays into other formats.

to—formatted—s(format = :default)
Two formats are supported, :default and :db. The :default format delegates to
the normal to_s method for an array, which simply concatenates the contents into one
mashed-up string.

> %w(foo bar baz quux).to_s

=> "foobarbazquux"

The much more interesting :db option returns "null" if the array is empty, or con-
catenates the id fields of its member elements into a comma-delimited string with code
like this:

collect { |element| element.id }.join(",")

A
ctive

S
u
p

p
o
rt

B.1 Array 581

In other words, the :db formatting is meant to work with ActiveRecord objects (or other
types of objects that properly respond to id).

> %w(foo bar baz quux).to_s(:db)

warning: Object#id will be deprecated; use Object#object_id

=> "20244090,20244080,20244070,20244060"

to—s
The to_s method of Array is aliased to to_formatted_s.

to—sentence(options = {})
Converts the array to a comma-separated sentence in which the last element is joined by
a connector word.

>> %w(alcohol tobacco firearms).to_sentence

=> "alcohol, tobacco, and firearms"

The following options are available for to_sentence:

:connector The word used to join the last element in arrays with two or more elements
(default: “and”).

:skip—last—comma Set this option to true to return “a, b and c” instead of “a, b,
and c.”

to—xml(options = {}) |xml| ...
As covered in Chapter 15, XML and Active Resource, the to_xml method on Array

can be used to create an XML collection by iteratively calling to_xml on its members,
and wrapping the entire thing in an enclosing element. All of the array elements must
respond to to_xml.

>> ["riding","high"].to_xml

RuntimeError: Not all elements respond to to_xml

The following example yields the Builder object to an optional block so that arbitrary
markup can be inserted at the bottom of the generated XML, as the last child of the
enclosing element.

{:foo => "foo", :bar => 42}.to_xml do |xml|

xml.did_it "again"

end

outputs the following XML:

<?xml version="1.0" encoding="UTF-8"?>

<hash>

<bar type="integer">42</bar>

582 Appendix B: Active Support API Reference

<foo>foo</foo>

<did_it>again</did_it>

</hash>

The options for to_xml are:

:builder Defaults to a new instance of Builder::XmlMarkup. Specify explicitly if
you’re calling to_xml on this array as part of a larger XML construction routine.

:children Sets the name to use for element tags explicitly. Defaults to singularized
version of the :root name by default.

:dasherize Whether or not to turn underscores to dashes in tag names (defaults to
true).

:indent Indent level to use for generated XML (defaults to two spaces).

:root The tag name to use for the enclosing element. If no :root is supplied and all
members of the array are of the same class, the dashed, pluralized form of the first
element’s class name is used as a default. Otherwise the default :root is records.

:skip—instruct Whether or not to generate an XML instruction tag by calling
instruct! on Builder.

:skip—types Whether or not to include a type="array" attribute on the enclosing
element.

B.1.3 active—support/core—ext/array/
extract—options

Active Support provides a method for extracting Rails-style options from a variable-
length set of argument parameters.

extract—options!
Extracts options from a variable set of arguments. It’s a bang method because it removes
and returns the last element in the array if it’s a hash; otherwise, it returns a blank hash
and the source array is unmodified.

def options(*args)

args.extract_options!

end

>> options(1, 2)

=> {}

>> options(1, 2, :a => :b)

=> {:a=>:b}

A
ctive

S
u
p

p
o
rt

B.1 Array 583

B.1.4 active—support/core—ext/array/grouping

Methods used for splitting array elements into logical groupings.

in—groups(number, fill—with = nil) |group| ...
The in_groups method splits an array into a number of equally sized groups. If a
fill_with parameter is provided, its value is used to pad the groups into equal sizes.

%w(1 2 3 4 5 6 7 8 9 10).in_groups(3) {|group| p group}

["1", "2", "3", "4"]

["5", "6", "7", nil]

["8", "9", "10", nil]

%w(1 2 3 4 5 6 7).in_groups(3, ' ') {|group| p group}

["1", "2", "3"]

["4", "5", " "]

["6", "7", " "]

In the special case that you don’t want equally sized groups (in other words, no padding)
then pass false as the value of fill_with.

%w(1 2 3 4 5 6 7).in_groups(3, false) {|group| p group}

["1", "2", "3"]

["4", "5"]

["6", "7"]

in—groups—of(number, fill—with = nil) {|group| ...}
Related to its sibling in_groups, the in_groups_of method splits an array into groups
of the specified number size, padding any remaining slots. The fill_with parameter is
used for padding and defaults to nil. If a block is provided, it is called with each group;
otherwise, a two-dimensional array is returned.

>> %w(1 2 3 4 5 6 7).in_groups_of(3)

=> [[1, 2, 3], [4, 5, 6], [7, nil, nil]

>> %w(1 2 3).in_groups_of(2, ' ') {|group| puts group }

=> [[1, 2],[3, " "]]

Passing false to the fill_with parameter inhibits the fill behavior.

>> %w(1 2 3).in_groups_of(2, false) {|group| puts group }

=> [[1, 2][3]]

The in_groups_of method is particularly useful for batch-processing model objects
and generating table rows in view templates.

584 Appendix B: Active Support API Reference

split(value = nil, &block)
Divides an array into one or more subarrays based on a delimiting value:

[1, 2, 3, 4, 5].split(3) #=> [[1, 2], [4, 5]]

or the result of an optional block:

(1..8).to_a.split { |i| i % 3 == 0 } # => [[1, 2], [4, 5], [7, 8]]

B.1.5 active—support/core—ext/array/
random—access

A convenience method for accessing a random element of an array.

sample
Returns a random element from the array.

>> [1, 2, 3, 4].sample

=> 3

>> [1, 2, 3, 4].sample

=> 1

Efficiently grabbing a random record from the database is covered under the heading,
Random Ordering in Chapter 5, Working with Active Record.

B.1.6 active—support/core—ext/array/uniq—by

Two convenience methods used for deriving unique elements of an array.

uniq—by
Returns an unique array based on the criteria given as a proc. Can be used when you
need to enhance or decorate Ruby’s default uniq behavior.

>> [1, 2, 3, 4].uniq_by { |i| i.odd? }

=> [1, 2]

>> %w(Foo FOO fOO Bar BAR bAr bAR).uniq_by { |s| s.downcase }

=> ["Foo", "Bar"]

uniq—by!
Same behavior as uniq_by but modifies the array in place.

B.1.7 active—support/core—ext/array/wrap

This is a convenience method added to the Array class.

A
ctive

S
u
p

p
o
rt

B.2 ActiveSupport::BacktraceCleaner 585

Array.wrap(object)
Wraps the object in an Array unless it’s an Array. Converts the object to an Array
using to_ary if it implements that. It differs with Array() in that it does not call to_a
on the argument:

Array(:foo => :bar) # => [[:foo, :bar]]

Array.wrap(:foo => :bar) # => [{:foo => :bar}]

Array("foo\nbar") # => ["foo\n", "bar"], in Ruby 1.8

Array.wrap("foo\nbar") # => ["foo\nbar"]

B.1.8 active—support/core—ext/object/blank
blank?
Alias for empty?

B.1.9 active—support/core—ext/object/to—param
to—param
Calls to_param on all of its elements and joins the result with slashes. This is used by
the url_for method in Action Pack.

>> ["riding","high","and","I","want","to","make"].to_param

=> "riding/high/and/I/want/to/make"

B.2 ActiveSupport::BacktraceCleaner

B.2.1 active—support/backtrace—cleaner

Many backtraces include too much information that’s not relevant for the context. This
makes it hard to find the signal in the backtrace and adds debugging time. With a custom
BacktraceCleaner, you can setup filters and silencers for your particular context, so
only the relevant lines are included.

If you want to change the setting of Rails’s built-in BacktraceCleaner, to show
as much as possible, you can call BacktraceCleaner.remove_silencers! in your
console, specs or an application initializer. Also, if you need to reconfigure an existing
BacktraceCleaner so that it does not filter or modify the paths of any lines of the backtrace,
you can call BacktraceCleaner#remove_filters! These two methods will give you
a completely untouched backtrace.

bc = ActiveSupport::BacktraceCleaner.new

bc.add_filter { |line| line.gsub(Rails.root, '') }

586 Appendix B: Active Support API Reference

bc.add_silencer { |line| line =~ /mongrel|rubygems/ }

bc.clean(exception.backtrace) # will strip the Rails.root prefix and

skip any lines from mongrel or rubygems

Inspired by the Quiet Backtrace gem by Thoughtbot.

B.3 ActiveSupport::Base64
Base64 provides utility methods for encoding and de-coding binary data using a base 64
representation. A base 64 representation of binary data consists entirely of printable US-
ASCII characters. The Base64 module is included in Ruby 1.8, but has been removed
in Ruby 1.9. Active Support will use Ruby’s built-in Base64 library if it’s available.

B.3.1 active—support/base64
Base64.encode64(data)
Encodes a string to its base 64 representation. Each 60 characters of output is separated
by a newline character.

>> ActiveSupport::Base64.encode64("Original unencoded string")

=> "T3JpZ2luYWwgdW5lbmNvZGVkIHN0cmluZw==\n"

Base64.encode64s(data)
Encodes the value as base64 without the newline breaks. This makes the base64 encoding
readily usable as URL parameters or memcache keys without further processing.

Base64.decode64(data)
Decodes a base 64 encoded string to its original representation.

>> ActiveSupport::Base64.decode64("T3JpZ2luYWwgdW5lbmNvZGVkIHN0cmluZw==")

=> "Original unencoded string"

B.4 ActiveSupport::BasicObject
A class with no predefined methods that behaves similarly to Builder’s BlankSlate. Used
for proxy classes and can come in handy when implementing domain-specific languages
in your application code.

B.4.1 active—support/basic—object

The implementation of BasicObject is an interesting and common Ruby idiom, so
it’s reproduced here for your reference.

A
ctive

S
u
p

p
o
rt

B.5 ActiveSupport::Benchmarkable 587

module ActiveSupport

if defined? ::BasicObject

A class with no predefined methods that behaves similarly to

Builder's

BlankSlate. Used for proxy classes.

class BasicObject < ::BasicObject

undef_method :==

undef_method :equal?

Let ActiveSupport::BasicObject at least raise exceptions.

def raise(*args)

::Object.send(:raise, *args)

end

end

else

class BasicObject #:nodoc:

instance_methods.each do |m|

undef_method(m) if m.to_s !~ /(?:^__|^nil\?$|^send$|^object_id$)/

end

end

end

end

B.5 ActiveSupport::Benchmarkable
Benchmarkable allows you to measure the execution time of a block in a template and
records the result to the log.

B.5.1 active—support/benchmarkable
benchmark(message = "Benchmarking", options = {})
Wrap this block around expensive operations or possible bottlenecks to get a time reading
for the operation. For example, let’s say you thought your file processing method was
taking too long; you could wrap it in a benchmark block.

benchmark "Process data files" do

expensive_files_operation

end

That would add an entry like “Process data files (345.2ms)” to the log, which can then
be used to compare timings when optimizing your code.

You may give an optional logger level as the :level option. Valid options are :debug,
:info, :warn, and :error. The default level is :info.

benchmark "Low-level files", :level => :debug do

lowlevel_files_operation

end

588 Appendix B: Active Support API Reference

Finally, you can pass true as the third argument to silence all log activity inside the block.
This is great for boiling down a noisy block to just a single statement:

benchmark "Process data files", :level => :info, :silence => true do

expensive_and_chatty_files_operation

end

B.6 BigDecimal

B.6.1 active—support/core—ext/big—decimal/
conversions

to—yaml
Emits the number without any scientific notation and without losing precision. Note
that reconstituting YAML floats to native floats may lose precision.

>> bd = BigDecimal.new("84394878749783498749834734987.839723497347")

=> #<BigDecimal:269fabc,'0.8439487874 9783498749 8347349878 3972349734

7E29',44(48)>

>> bd.to_yaml

=> "--- 84394878749783498749834734987.839723497347\n"

B.6.2 active—support/json/encoding

A BigDecimal would be naturally represented as a JSON number. Most libraries, how-
ever, parse non-integer JSON numbers directly as floats. Clients using those libraries
would get in general a wrong number and no way to recover other than manually
inspecting the string with the JSON code itself.

That’s why a JSON string is returned. The JSON literal is not numeric, but if the
other end knows by contract that the data is supposed to be a BigDecimal, it still has
the chance to post-process the string and get the real value.

as—json
Returns self.to_s.

B.7 ActiveSupport::BufferedLogger
The BufferedLogger class is Rails’s built-in logger facility.

A
ctive

S
u
p

p
o
rt

B.7 ActiveSupport::BufferedLogger 589

B.7.1 active—support/buffered—logger
Levels

The following levels are recognized by the logger, in order of increasing severity:

module Severity

DEBUG = 0

INFO = 1

WARN = 2

ERROR = 3

FATAL = 4

UNKNOWN = 5

end

add(severity, msg)
The logger class uses meta-programming to wrap the add method in convenience meth-
ods named after the severity levels.

equivalent to add(0, "foo")

logger.debug("foo")

equivalent to add(3, "foo")

logger.error("bar")

auto—flushing=(period)
Sets the auto-flush period. Set to true to flush after every log message, to an integer
to flush every N messages, or to false, nil, or zero to never auto-flush. If you turn
auto-flushing off, be sure to regularly flush the log yourself. Otherwise you will quickly
eat up all available memory.

close
Flushes the logger and closes the log (if supported), then sets its internal log reference
to nil.

flush
Writes log messages buffered in memory to the log’s IO stream (generally your applica-
tion’s log file.) Only needed when you turn auto-flushing off.

initialize(log, level = DEBUG)
You can change where the log is written by replacing the default logger in
application.rb.

Rails.logger = ActiveSupport::BufferedLogger.new("mylogger.txt")

590 Appendix B: Active Support API Reference

It won’t work as expected in an initializer script, because the core frameworks are already
loaded and have logger instances before the initializers.

The initializer code is versatile and understands filenames, paths or any other
type of IO object, including $stdout, which allows you to do the following cool hack
in your console:

>> ActiveRecord::Base.logger = ActiveSupport::BufferedLogger.new($stdout)

=> #<ActiveSupport::BufferedLogger...>

>> User.first

SQL (1.1ms) SELECT name

FROM sqlite_master

WHERE type = 'table' AND NOT name = 'sqlite_sequence'

User Load (0.1ms) SELECT "users".* FROM "users" LIMIT 1

=> nil

silence(temporary—level = ERROR)
Silences log items below the temporary_level severity for the duration of the block.
Assuming that you’re in a context, such as models or controllers, that have a logger

method, you can use the silence method as follows:

logger.silence do

really_chatty_operation

end

In other contexts, grab a reference to the logger via the Rails.logger method.

B.8 ActiveSupport::Cache::Store
This is an abstract cache store class. There are multiple cache store implementations,
each having its own additional features. MemCacheStore is currently the most popular
cache store for large production websites.

Some implementations may not support all methods beyond the basic cache methods
of fetch, write, read, exist?, and delete.

ActiveSupport::Cache::Store can store any serializable Ruby object.

>> cache = ActiveSupport::Cache::MemoryStore.new

=> <#ActiveSupport::Cache::MemoryStore entries=0, size=0, options={}>

>> cache.read("city")

=> nil

>> cache.write("city", "Duckburgh")

=> true

A
ctive

S
u
p

p
o
rt

B.8 ActiveSupport::Cache::Store 591

>> cache.read("city")

=> "Duckburgh"

Keys are always translated into strings and are case-sensitive.

>> cache.read("city") == cache.read(:city)

=> true

When an object is specified as a key, its cache_key method will be called if it is defined.
Otherwise, the to_param method will be called.

>> r = Report.first

=> #<Report id: 1, name: "Special", created_at: ...>

>> r.cache_key

=> "reports/1-20100829170518"

>> r.to_param

=> "1"

Hashes and Arrays can also be used as keys. The elements will be delimited by slashes
and hash elements will be sorted by key so they are consistent.

>> cache.write ["USA","FL","Jacksonville"], "Obie"

=> true

>> cache.read "USA/FL/Jacksonville"

=> "Obie"

Nil values can be cached.
If your cache is on a shared infrastructure, you can define a namespace for your cache

entries. If a namespace is defined, it will be prefixed on to every key. The namespace
can be either a static value or a Proc. If it is a Proc, it will be invoked when each key is
evaluated so that you can use application logic to invalidate keys.

cache.namespace = lambda { @last_mod_time } # Set the namespace to a

variable

@last_mod_time = Time.now # Invalidate the entire cache by changing

namespace

All caches support auto expiring content after a specified number of seconds. To set
the cache entry time to live, you can either specify :expires_in as an option to the
constructor to have it affect all entries or to the fetch or write methods for just one
entry.

cache = ActiveSupport::Cache::MemoryStore.new(:expire_in => 5.minutes)

cache.write(key, value, :expire_in => 1.minute) # Set a lower value for

one entry

Caches can also store values in a compressed format to save space and reduce time spent
sending data. Since there is some overhead, values must be large enough to warrant

592 Appendix B: Active Support API Reference

compression. To turn on compression either pass :compress => true in the initial-
izer or to fetch or write. To specify the threshold at which to compress values, set
:compress_threshold. The default threshold is 32K.

cleanup(options = nil)
Cleanup the cache by removing expired entries. Not all cache implementations may
support this method. Options are passed to the underlying cache implementation.

clear(options = nil)
Clear the entire cache. Not all cache implementations may support this method. You
should be careful with this method since it could affect other processes if you are using
a shared cache. Options are passed to the underlying cache implementation.

decrement(name,amount = 1,options = nil)
Decrement an integer value in the cache. Options are passed to the underlying cache
implementation.

delete(name, options = nil)
Delete an entry in the cache. Returns true if there was an entry to delete. Options are
passed to the underlying cache implementation.

delete—matched(matcher, options = nil)
Delete all entries whose keys match a pattern. Options are passed to the underlying cache
implementation.

>> Rails.cache.write :color, :red

=> true

>> Rails.cache.read :color

=> :red

>> Rails.cache.delete_matched "c"

=> ["city", "color", "USA/FL/Jacksonville"]

>> Rails.cache.read :color

=> nil

exist?(name, options = nil)
Return true if the cache contains an entry with this name. Options are passed to the
underlying cache implementation.

fetch(name, options = nil)
Fetches data from the cache, using the given key. If there is data in the cache with the
given key, then that data is returned.

A
ctive

S
u
p

p
o
rt

B.8 ActiveSupport::Cache::Store 593

If there is no such data in the cache (a cache miss occurred), then nilwill be returned.
However, if a block has been passed, then that block will be run in the event of a cache
miss. The return value of the block will be written to the cache under the given cache
key, and that return value will be returned.

cache.write("today", "Monday")

cache.fetch("today") # => "Monday"

cache.fetch("city") # => nil

cache.fetch("city") do

"Duckburgh"

end

cache.fetch("city") # => "Duckburgh"

You may also specify additional options via the options argument. Setting :force => true
will force a cache miss:

cache.write("today", "Monday")

cache.fetch("today", :force => true) # => nil

Setting :compress will store a large cache entry set by the call in a compressed
format.

Setting :expires_in will set an expiration time on the cache entry if it is set by
call.

Setting :race_condition_ttl will invoke logic on entries set with an :expires_

in option. If an entry is found in the cache that is expired and it has been expired
for less than the number of seconds specified by this option and a block was passed
to the method call, then the expiration future time of the entry in the cache will be
updated to that many seconds in the and the block will be evaluated and written to the
cache.

This is very useful in situations in which a cache entry is used very frequently under
heavy load. The first process to find an expired cache entry will then become responsible
for regenerating that entry while other processes continue to use the slightly out of
date entry. This can prevent race conditions where too many processes are trying to
regenerate the entry all at once. If the process regenerating the entry errors out, the entry
will be regenerated after the specified number of seconds.

Set all values to expire after one minute.

cache = ActiveSupport::Cache::MemoryCache.new(:expires_in => 1.minute)

cache.write("foo", "original value")

val_1 = nil

val_2 = nil

sleep 60

594 Appendix B: Active Support API Reference

Thread.new do

val_1 = cache.fetch("foo", :race_condition_ttl => 10) do

sleep 1

"new value 1"

end

end

Thread.new do

val_2 = cache.fetch("foo", :race_condition_ttl => 10) do

"new value 2"

end

end

val_1 => "new value 1"

val_2 => "original value"

cache.fetch("foo") => "new value 1"

Other options will be handled by the specific cache store implementation. Internally,
fetch calls read_entry, and calls write_entry on a cache miss. Options will be passed
to the read and write calls.

For example, MemCacheStore’s write method supports the :raw option, which tells
the memcached server to store all values as strings. We can use this option with fetch

too:

cache = ActiveSupport::Cache::MemCacheStore.new

cache.fetch("foo", :force => true, :raw => true) do

:bar

end

cache.fetch("foo") # => "bar"

increment(name,amount = 1,options = nil)
Increment an integer value in the cache. Options are passed to the underlying cache
implementation.

options
Get the default options set when the cache was created.

read(name, options = nil)
Fetches data from the cache, using the given key. If there is data in the cache with the
given key, then that data is returned. Otherwise, nil is returned. Options are passed to
the underlying cache implementation.

A
ctive

S
u
p

p
o
rt

B.9 ActiveSupport::Callbacks 595

read—multi(*names)
Read multiple values at once from the cache. Options can be passed in the last argument.
Some cache implementation may optimize this method.

Returns a hash mapping the names provided to the values found.

>> cache.write :color, :red

=> true

>> cache.write :smell, :roses

=> true

>> cache.read_multi :color, :smell

=> {:color=>:red, :smell=>:roses}

write(name, value, options = nil)
Writes the given value to the cache, with the given key.

You may also specify additional options via the options argument. The specific
cache store implementation will decide what to do with options.

B.9 ActiveSupport::Callbacks
Callbacks are hooks into the lifecycle of an object that allow you to trigger logic before
or after an alteration of the object state. Mixing in this module allows you to define
callbacks in your class.

For instance, assume you have the following code in your application:

class Storage

include ActiveSupport::Callbacks

define_callbacks :save

end

class ConfigStorage < Storage

set_callback :save, :before, :saving_message

def saving_message

puts "saving..."

end

set_callback :save, :after do |object|

puts "saved"

end

def save

run_callbacks :save do

puts "- running save callbacks"

end

end

end

596 Appendix B: Active Support API Reference

Running the following code using

config = ConfigStorage.new

config.save

would output

saving...

- running save callbacks

saved

Note that callback defined on parent classes are inherited.

B.9.1 active—support/callbacks

The following methods are used to configure custom callbacks on your classes and
are what Rails itself uses to create things such as before_filter in Action Pack and
before_save in Active Record. Note that this is rather advanced functionality which
you typically won’t need in your day-to-day Rails programming.

define—callbacks(*callbacks)
Defines callbacks types for your custom class.

module MyOwnORM

class Base

define_callbacks :validate

end

end

The following options determine the operation of the callback:

:terminator Indicates when a before filter is considered to be halted.

define_callbacks :validate, :terminator => "result == false"

In the example above, if any before validate callbacks return false, other callbacks
are not executed. Defaults to false.

:rescuable By default, after filters are not executed if the given block or a
before_filter raises an error. Supply :rescuable => true to change this
behavior.

:scope Specifies which methods should be executed when a class is given as callback.

before_filter MyFilter

Assuming the callback has been defined with a :kind scope

define_callbacks :filters, :scope => [:kind]

A
ctive

S
u
p

p
o
rt

B.9 ActiveSupport::Callbacks 597

then the method called will correspond to the type of the filter in the given class,
which in this case, is before.
The :scope option can be supplied with multiple components, like this:

define_callbacks :validate, :scope => [:kind, :name]

A method named "#{kind}_#{name}" will be invoked in the given class. So
before_validate will be called in the class below:

before_validate MyValidation

The :scope option defaults to :kind.

set—callback(name, *filter—list, &block)
Sets callbacks for a previously defined callback.

set_callback :save, :before, :before_method

set_callback :save, :after, :after_method, :if => :condition

set_callback :save, :around, lambda { |r| stuff; yield; stuff }

skip—callback(name, *filter—list, &block)
Skips a previously defined callback for a given type.

Callback conditions

When creating or skipping callbacks, you can specify conditions that are always the same for a
given key. For instance, ActionPack converts :only and :except conditions into per-key conditions.

before_filter :authenticate, :except => "index"

becomes

dispatch_callback :before, :authenticate, :per_key => {:unless => proc

{|c| c.action_name == "index"}}

Per-Key conditions are evaluated only once per use of a given key. In the case of the above example,
you would do:

run_callbacks(:dispatch, action_name) { ... dispatch stuff ... }

In that case, each action_name would get its own compiled callback method that took into
consideration the per_key conditions. Introduction of this technique resulted in a large speed
improvement for Action Pack.

598 Appendix B: Active Support API Reference

B.10 Class
Rails extends Ruby’s Class object with a number class methods that then become
available on all other classes in the runtime, regardless of type.

B.10.1 active—support/core—ext/class/
attribute

The following method allows for creation of attributes on Ruby classes.

class—attribute(*attrs)
Declares one or more class-level attributes whose value is inheritable and overwritable
by subclasses and instances, like so:

class Base

class_attribute :setting

end

class Subclass < Base

end

>> Base.setting = "foo"

=> "foo"

>> Subclass.setting

=> "foo"

>> Subclass.setting = "bar"

=> "bar"

>> Subclass.setting

=> "bar"

>> Base.setting

=> "foo"

This behavior matches normal Ruby method inheritance: Think of writing an attribute
on a subclass as overriding the parent’s reader method. Instances may overwrite the class
value in the same way. (Note that the following code samples create anonymous classes
to illustrate usage in a more concise fashion.)

klass = Class.new { class_attribute :setting }

object = klass.new

>> klass.setting = "foo

=> "foo"

A
ctive

S
u
p

p
o
rt

B.10 Class 599

>> object.setting = "bar"

=> "bar"

>> klass.setting

=> "foo"

To opt out of the instance writer method, pass :instance_writer => false.

klass = Class.new { class_attribute :setting, :instance_writer => false }

>> klass.new.setting

=> NoMethodError

The class_attribute method also works with singleton classes, as can be seen in the
following example.

klass = Class.new { class_attribute :setting }

>> klass.singleton_class.setting = "foo"

=> "foo"

For convenience, a query method is defined as well, which allows you to see if an attribute
has been set on a particular class instance.

klass = Class.new { class_attribute :setting }

>> klass.setting?

=> false

>> klass.setting = "foo"

=> "foo"

>> klass.setting?

=> true

B.10.2 active—support/core—ext/class/
attribute—accessors

This extends the class object with class and instance accessors for class attributes, just
like the native attr* accessors for instance attributes.

cattr—accessor(*syms)
Creates both reader and writer methods for supplied method names syms.

class Person

cattr_accessor :hair_colors

end

600 Appendix B: Active Support API Reference

>> Person.hair_colors = [:brown, :black, :blonde, :red]

>> Person.new.hair_colors

=> [:brown, :black, :blonde, :red]

cattr—reader(*syms)
Creates class and instance reader methods for supplied method names syms.

cattr—writer(*syms)
Creates class and instance writer methods for supplied method names syms.

B.10.3 active—support/core—ext/class/
attribute—accessors

This extends the class object with class and instance accessors for class attributes, just
like the native attr* accessors for instance attributes.

B.10.4 active—support/core—ext/class/
delegating—attributes

This is primarily for internal use by Rails.

superclass—delegating—accessors(name,
options = {})
Generates class methods name, name=, and name?. These methods dispatch to the private
_name, and _name= methods, making them overridable by subclasses.

If an instances should be able to access the attribute then pass :instance_reader
=> true in the options to generate a name method accessible to instances.

B.10.5 active—support/core—ext/class/
inheritable—attributes

This allows attributes to be shared within an inheritance hierarchy, but where each
descendant gets a copy of their parents’ attributes, instead of just a pointer to the same.
This means that the child can add elements to, for example, an array without those
additions being shared with either their parent, siblings, or children, unlike the regular
class-level attributes that are shared across the entire hierarchy.

The copies of inheritable parent attributes are added to subclasses when they are cre-
ated, via theinheritedhook. All reader methods accept:instance_reader => true

A
ctive

S
u
p

p
o
rt

B.10 Class 601

option. All writer methods accept :instance_writer => true option. Accessor
methods accept both options.

Like many other obscure corners of Active Support, these methods are primarily for
internal use by Rails itself and some of them are no longer used internally by Rails 3.
They are included here primarily for completeness and on the off chance that they could
be useful in advanced application code or in libraries that depend on Active Support.

class—inheritable—accessor(*syms)
Creates class inheritable attribute accessor(s).

class FormBuilder

class_inheritable_accessor :field_helpers

...

class—inheritable—array(*syms)
Creates class inheritable attribute(s) initialized to an empty array.

class—inheritable—hash(*syms)
Creates class inheritable attribute(s) initialized to an empty hash.

inheritable—attributes
Returns array of any class inheritable attributes that have been defined on a particular
class instance.

>> ActiveRecord::Base.inheritable_attributes

=> {:nested_attributes_options=>{}, :default_scoping=>[],

:skip_time_zone_conversion_for_attributes=>[], :record_timestamps=>true,

:attribute_method_matchers=>...}

reset—inheritable—attributes
Clears class inheritable attributes that have been defined on a particular class instance.

B.10.6 active—support/core—ext/class/
subclasses

Provides methods that introspect the inheritance hierarchy of a class. Used extensively
in Active Record.

subclasses
Returns an array with the names of the subclasses of self as strings.

Integer.subclasses # => ["Bignum", "Fixnum"]

602 Appendix B: Active Support API Reference

descendents
Returns an array of all class objects found that are subclasses of self.

B.11 ActiveSupport::Concern

B.11.1 active—support/concern

The Concern module is only 29 lines of Ruby code, but it helps drive some of the most
elegant code improvements in Rails 3. Using it, you can make your code more modular
and have less dependency problems than ever before.

You use Concern to define common behavior that you want to mix into other
application classes, or into Rails itself in the case of plugins.

A Concern module has three elements: the included block, ClassMethods mod-
ule, and InstanceMethods module.

require 'active_support/concern'

module Foo

extend ActiveSupport::Concern

included do

self.send(:do_something_in_mixin_class)

end

module ClassMethods

def bar

...

end

end

module InstanceMethods

def baz

...

end

end

end

To use your custom Concern module, just mix it into a class.

class Widget

include Foo

end

The included block will be triggered at inclusion time. Methods in ClassMethodswill
get added to Widget as class methods. Methods in InstanceMethods will get added
to Widget as instance methods.

A
ctive

S
u
p

p
o
rt

B.13 Date 603

See ActiveSupport::Configurable for a good example of how Concern is used
internally by Rails.

B.12 ActiveSupport::Configurable
This Configurable module is used internally by Rails to add configuration settings
to AbstractController::Base. You can use it yourself to add configuration to your
classes.

B.12.1 active—support/configurable

The implementation of Configurable is done as a Concern that is mixed into other
classes.

config—accessor(*names)
Creates configuration properties accessible via class and instance contexts. The names

parameter expects one or more symbols corresponding to property names.

module ActionController

class Base < Metal

config_accessor :assets_dir, :javascripts_dir, :stylesheets_dir

end

end

B.13 Date
Active Support provides a wide array of extensions to Ruby’s built-in date and time
classes to simplify conversion and calculation tasks in simple-to-understand language.

B.13.1 active—support/core—ext/date/acts—like

Duck-types as a Date-like class. See Object#acts_like? for more explanation.

class Date

def acts_like_date?

true

end

end

B.13.2 active—support/core—ext/date/
calculations

The following methods enable the use of calculations with Date objects.

604 Appendix B: Active Support API Reference

+(other) / -(other)
Rails extends the existing + and - operator so that a since calculation is performed
when the other argument is an instance of ActiveSupport::Duration (the type of
object returned by methods such as 10.minutes and 9.months).

>> Date.today + 1.day == Date.today.tomorrow

=> true

advance(options)
Provides precise Date calculations for years, months, and days. The options parameter
takes a hash with any of these keys: :months, :days, :years.

>> Date.new(2006, 2, 28) == Date.new(2005, 2, 28).advance(:years => 1)

=> true

ago(seconds)
Converts Date to a Time (or DateTime if necessary) with the time portion set to the
beginning of the day (0:00) and then subtracts the specified number of seconds.

>> Time.local(2005, 2, 20, 23, 59, 15) == Date.new(2005, 2, 21).ago(45)

=> true

at—beginning—of—day / at—midnight /
beginning—of—day / midnight
Converts Date to a Time (or DateTime if necessary) with the time portion set to the
beginning of the day (0:00).

>> Time.local(2005,2,21,0,0,0) == Date.new(2005,2,21).beginning_of_day

=> true

at—beginning—of—month / beginning—of—month
Returns a new DateTime representing the start of the month (1st of the month). Objects
will have their time set to 0:00.

>> Date.new(2005, 2, 1) == Date.new(2005,2,21).beginning_of_month

=> true

at—beginning—of—quarter / beginning—of—quarter
Returns a new Date/DateTime representing the start of the calendar-based quarter (1st
of January, April, July, and October). DateTime objects will have their time set to 0:00.

>> Date.new(2005, 4, 1) == Date.new(2005, 6, 30).beginning_of_quarter

=> true

A
ctive

S
u
p

p
o
rt

B.13 Date 605

at—beginning—of—week / beginning—of—week monday
Returns a new Date (or DateTime) representing the beginning of the week. (Calculation
is Monday-based.)

>> Date.new(2005, 1, 31) == Date.new(2005, 2, 4).beginning_of_week

=> true

at—beginning—of—year / beginning—of—year
Returns a newDate/DateTime representing the start of the calendar year (1st of January).
DateTime objects will have their time set to 0:00.

>> Date.new(2005, 1, 1) == Date.new(2005, 2, 22).beginning_of_year

=> true

at—end—of—month / end—of—month
Returns a new Date/DateTime representing the last day of the calendar month.
DateTime objects will have their time set to 23:59:59.

>> Date.new(2005, 3, 31) == Date.new(2005,3,20).end_of_month

=> true

change(options)
Returns a new Date where one or more of the elements have been changed according
to the options parameter.

The valid options are :year, :month, and :day.

>> Date.new(2007, 5, 12).change(:day => 1) == Date.new(2007, 5, 1)

=> true

>> Date.new(2007, 5, 12).change(:year => 2005, :month => 1) == Â

Date.new(2005, 1, 12)

=> true

Date.current
This is the preferred way to get the current date when your Rails application is timezone-
aware. Returns Time.zone.today when config.time_zone is set, otherwise just re-
turns Date.today.

end—of—day
Converts Date to a Time (or DateTime if necessary) with the time portion set to the
end of the day (23:59:59).

606 Appendix B: Active Support API Reference

>> Time.local(2005,2,21,23,59,59) == Date.new(2005, 2, 21).end_of_day

=> true

in(seconds)since(seconds)
Converts Date to a Time (or DateTime if necessary) with the time portion set to the
beginning of the day (0:00) and then adds the specified number of seconds.

>> Time.local(2005, 2, 21, 0, 0, 45) == Date.new(2005, 2, 21).since(45)

=> true

last—month
Syntax sugar for months_ago(1).

last—year
Syntax sugar for years_ago(1).

months—ago(months)
Returns a new Date (or DateTime) representing the time a number of specified months
ago.

>> Date.new(2005, 1, 1) == Date.new(2005, 3, 1).months_ago(2)

=> true

months—since(months)
Returns a new Date (or DateTime) representing the time a number of specified months
into the past or the future. Supply a negative number of months to go back to the past.

>> Date.today.months_ago(1) == Date.today.months_since(-1)

=> true

next—month
Syntax sugar for months_since(1).

next—week(day = :monday)
Returns a new Date (or DateTime) representing the start of the given day in the following
calendar week. Default day of the week may be overridden with a symbolized day name.

>> Date.new(2005, 3, 4) == Date.new(2005, 2, 22).next_week(:friday)

=> true

next—year
Syntax sugar for years_since(1).

A
ctive

S
u
p

p
o
rt

B.13 Date 607

Date.tomorrow
Convenience method that returns a new Date (or DateTime) representing the time one
day in the future.

>> Date.new(2007, 3, 2) == Date.new(2007, 2, 28).tomorrow.tomorrow

=> true

years—ago(years)
Returns a new Date (or DateTime) representing the time a number of specified years
ago.

>> Date.new(2000, 6, 5) == Date.new(2007, 6, 5).years_ago(7)

=> true

years—since(years)
Returns a new Date (or DateTime) representing the time a number of specified years
into the future.

>> Date.new(2007, 6, 5) == Date.new(2006, 6, 5).years_since(1)

=> true

Date.yesterday
Convenience method that returns a new Date (or DateTime) representing the time one
day ago.

>> Date.new(2007, 2, 21) == Date.new(2007, 2, 22).yesterday

=> true

B.13.3 active—support/core—ext/date/
conversions

The following methods facilitate the conversion of date data into various formats.

readable—inspect
Overrides the default inspect method with a human readable one.

>> Date.current

=> Wed, 02 Jun 2010

to—date
Used in order to keep Time, Date, and DateTime objects interchangeable in conversions.

to—datetime
Converts a Date object into a Ruby DateTime object. The time is set to beginning
of day.

608 Appendix B: Active Support API Reference

to—formatted—s(format = :default)
Converts a Date object into its string representation, according to the predefined for-
mats in the DATE_FORMATS constant. (Aliased as to_s. Original to_s is aliased as
to_default_s.)

The following hash of formats dictates the behavior of the to_s method.

DATE_FORMATS = {

:short => "%e %b", # 2 Jun

:long => "%B %e, %Y", # June 2, 2010

:db => "%Y-%m-%d", # 2010-06-02

:number => "%Y%m%d", # 20100602

:long_ordinal => lambda { |date| # June 2nd, 2010

date.strftime("%B #{ActiveSupport::Inflector.ordinalize(date.day)},

%Y") },

:rfc822 => "%e %b %Y" # 2 Jun 2010

}

to—time(timezone = :local)
Converts a Date object into a Ruby Time object; time is set to beginning of day. The
time zone can be :local or :utc.

>> Time.local(2005, 2, 21) == Date.new(2005, 2, 21).to_time

=> true

If the Date object is a UTC time, Z is used as TZD. Otherwise [+-]hh:mm is used to
indicate the hours offset.

xmlschema
Returns a string that represents the time as defined by XML Schema (also known as
iso8601):

CCYY-MM-DDThh:mm:ssTZD

B.13.4 active—support/core—ext/date/freeze

Date memoizes some instance methods using metaprogramming to wrap the methods
with one that caches the result in an instance variable.

If a Date instance is frozen but the memoized method hasn’t been called, the first
call will result in a frozen object error since the memo instance variable is uninitialized.
The code in freeze.rb works around the issue by eagerly memoizing before freezing.

Ruby 1.9 uses a preinitialized instance variable so it’s unaffected.

A
ctive

S
u
p

p
o
rt

B.14 DateTime 609

B.13.5 active—support/json/encoding
as—json
Returns self as a JSON string. The ActiveSupport.use_standard_json_time_

format configuration setting determines whether the date string is delimited with dashes
or not.

>> Date.today.as_json

=> "2010-06-03"

B.14 DateTime
The following methods extend Ruby’s built-in DateTime class.

B.14.1 active—support/core—ext/date—time/
acts—like

Duck-types as a DateTime-like class. See Object#acts_like? for more explanation.

class DateTime

def acts_like_date?

true

end

def acts_like_time?

true

endd

end

B.14.2 active—support/core—ext/date—time/
calculations

The following methods permit easier use of DateTime objects in date and time
calculations.

<=> compare—with—coercion
Layers additional behavior on DateTime so that Time and ActiveSupport::

TimeWithZone instances can be compared with DateTime instances.

at—beginning—of—day at—midnight beginning—of—day
midnight
Convenience methods that all represent the start of a day (00:00). Implemented simply
as change(:hour => 0).

610 Appendix B: Active Support API Reference

advance(options)
UsesDate to provide preciseTime calculations for years, months, and days. Theoptions
parameter takes a hash with any of the keys :months, :days, and :years.

ago(seconds)
Returns a new DateTime representing the time a number of seconds ago. The opposite
of since.

change(options)
Returns a newDateTimewhere one or more of the elements have been changed according
to the options parameter. The valid date options are :year, :month, :day. The valid
time options are :hour, :min, :sec, :offset, and :start.

Date.current
Timezone-aware implementation of Time.now returns a DateTime instance.

end—of—day
Convenience method that represents the end of a day (23:59:59). Implemented simply
as change(:hour => 23, :min => 59, :sec => 59).

future?
Tells whether the DateTime is in the future.

Date.local—offset
DateTime objects aren’t aware of DST rules, so use a consistent non-DST offset when
creating a DateTime with an offset in the local zone.

past?
Tells whether the DateTime is in the past.

seconds—since—midnight
Returns how many seconds have passed since midnight.

since(seconds)
Returns a new DateTime representing the time a number of seconds since the instance
time. The opposite of ago.

utc
Returns a new DateTime with the offset set to 0 to represent UTC time.

A
ctive

S
u
p

p
o
rt

B.14 DateTime 611

utc?
Convenience method returns true if the offset is set to 0.

utc—offset
Returns the offset value in seconds.

B.14.3 active—support/core—ext/date—time/
conversions

The following methods permit conversion of DateTime objects (and some of their
attributes) into other types of data.

Date.civil—from—format(utc—or—local, year,
month=1, day=1, hour=0, min=0, sec=0)
Creates a datetime from the parameters provided. The utc_or_local parameter rec-
ognizes :local causing it to use the value of the local_offset.

formatted—offset(colon = true,
alternate—utc—string = nil)
Returns the utc_offset as an HH:MM formatted string.

datetime = DateTime.civil(2000, 1, 1, 0, 0, 0, Rational(-6, 24))

>> datetime.formatted_offset

=> "-06:00"

The options provide for tweaking the output of the method by doing things like om-
mitting the colon character.

>> datetime.formatted_offset(false)

=> "-0600"

readable—inspect
Overrides the default inspect method with a human-readable one that looks like this:

Mon, 21 Feb 2005 14:30:00 +0000

to—date
Converts self to a Ruby Date object, discarding time data.

to—datetime
Returns self to be able to keep Time, Date, and DateTime classes interchangeable on
conversions.

612 Appendix B: Active Support API Reference

to—f
Converts self to a floating-point number of seconds since the Unix epoch. Note the
limitations of this methods with dates prior to 1970.

>> Date.new(2000, 4,4).to_datetime.to_f

=> 954806400.0

>> Date.new(1800, 4,4).to_datetime.to_f

=> -5356627200.0

to—formatted—s(format=:default)
See the options on to_formatted_s of the Time class. The primary difference is the
appending of the time information.

>> datetime.to_formatted_s(:db)

=> "2007-12-04 00:00:00"

to—i
Converts self to an integer number of seconds since the Unix epoch. Note the limitations
of this methods with dates prior to 1970.

>> Date.new(2000, 4,4).to_datetime.to_i

=> 954806400

>> Date.new(1800, 4,4).to_datetime.to_i

=> -5356627200

to—time
Attempts to convert self to a Ruby Time object. Returns self if out of range of Ruby
Time class. If self.offset is 0, will attempt to cast as a UTC time; otherwise, will
attempt to cast in local timezone.

xmlschema
Converts datetime to an appropriate format for use in XML. The implementation is
reproduced here for reference purposes:

strftime("%Y-%m-%dT%H:%M:%S%Z")

B.14.4 active—support/core—ext/date—time/
zones

The following method allows conversion of a DateTime into a different time zone.

A
ctive

S
u
p

p
o
rt

B.15 ActiveSupport::Dependencies 613

in—time—zone(zone = ::Time.zone)
Returns the simultaneous time in Time.zone

>> Time.zone = 'Hawaii'

>> DateTime.new(2000).in_time_zone

=> Fri, 31 Dec 1999 14:00:00 HST -10:00

This method is similar to Time#localtime, except that it uses the Time.zone argument
as the local zone instead of the operating system’s time zone. You can also pass it a string
that identifies a TimeZone as an argument, and the conversion will be based on that
zone instead. Allowable string parameters are operating-system dependent.

>> DateTime.new(2000).in_time_zone('Alaska')

=> Fri, 31 Dec 1999 15:00:00 AKST -09:00

B.14.5 active—support/json/encoding
as—json
Returns self as a JSON string. The ActiveSupport.use_standard_json_time_

format configuration setting determines whether the output is formatted using
:xmlschema or the following pattern:

strftime('%Y/%m/%d %H:%M:%S %z')

B.15 ActiveSupport::Dependencies
This module contains the logic for Rails’ automatic classloading mechanism, which is
what makes it possible to reference any constant in the Rails varied loadpaths without
ever needing to issue a require directive.

This module extends itself, a cool hack that you can use with modules that you want
to use elsewhere in your codebase in a functional manner:

module Dependencies

extend self

...

As a result, you can call methods directly on the module constant, à la Java static class
methods, like this:

>> ActiveSupport::Dependencies.search_for_file('person.rb')

=> "/Users/obie/work/tr3w_time_and_expenses/app/models/person.rb"

You shouldn’t need to use this module in day-to-day Rails coding—it’s mostly for
internal use by Rails and plugins. On occasion, it might also be useful to understand the
workings of this module when debugging tricky class-loading problems.

614 Appendix B: Active Support API Reference

B.15.1 active—support/dependencies/autoload

Several of these attributes are set based on Configuration settings declared in
your various environment files, as described in Chapter 1, Rails Environments and
Configuration.

autoloaded—constants
An array of qualified constant names that have been loaded. Adding a name to this array
will cause it to be unloaded the next time. Dependencies are cleared.

clear
Clears the list of currently loaded classes and removes unloadable constants.

constant—watch—stack
An internal stack used to record which constants are loaded by any block.

explicitly—unloadable—constants
An array of constant names that need to be unloaded on every request. Used to allow
arbitrary constants to be marked for unloading.

history
The Set of all files ever loaded.

load—once—paths
The Set of directories from which automatically loaded constants are loaded only once.
Usually consists of your plugin lib directories. All directories in this set must also be
present in load_paths.

load—paths
The Set of directories from which Rails may automatically load files. Files under these
directories will be reloaded on each request in development mode, unless the directory
also appears in load_once_paths.

>> ActiveSupport::Dependencies.load_paths

=> ["/Users/obie/work/tr3w_time_and_expenses/app/controllers",

"/Users/obie/work/tr3w_time_and_expenses/app/helpers",

"/Users/obie/work/tr3w_time_and_expenses/app/models"...

loaded
The Set of all files currently loaded.

A
ctive

S
u
p

p
o
rt

B.15 ActiveSupport::Dependencies 615

log—activity
Set this option to true to enable logging of const_missing and file loads. (Defaults
to false.)

mechanism
A setting that determines whether files are loaded (default) or required. This attribute
determines whether Rails reloads classes per request, as in development mode.

>> ActiveSupport::Dependencies.mechanism

=> :load

warnings—on—first—load
A setting that determines whether Ruby warnings should be activated on the first load
of dependent files. Defaults to true.

associate—with(file—name)
Invokes depend_on with swallow_load_errors set to true. Wrapped by the
require_association method of Object.

autoload—module!(into, const—name,
qualified—name, path—suffix)
Attempts to autoload the provided module name by searching for a directory matching
the expected path suffix. If found, the module is created and assigned to into’s
constants with the name +const_name+. Provided that the directory was loaded from
a reloadable base path, it is added to the set of constants that are to be unloaded.

autoloadable—module?(path—suffix)
Checks whether the provided path_suffix corresponds to an autoloadable module.
Instead of returning a Boolean, the autoload base for this module is returned.

autoloaded?(constant)
Determines if the specified constant has been automatically loaded.

depend—on(file—name, swallow—load—errors = false)
Searches for the file_name specified and uses require_or_load to establish a new
dependency. The swallow_load_errors argument specifies whether LoadError

should be suppressed. Wrapped by the require_dependency method of Object.

load?
Returns true if mechanism is set to :load.

616 Appendix B: Active Support API Reference

load—file(path, const—paths =
loadable—constants—for—path(path))
Loads the file at the specified path. The const_paths is a set of fully qualified constant
names to load. When the file is loading, Dependencies will watch for the addition
of these constants. Each one that is defined will be marked as autoloaded, and will be
removed when Dependencies.clear is next called.

If the second parameter is left off, Dependencies will construct a set of names that
the file at path may define. See loadable_constants_for_path for more details.

load—once—path?(path)
Returns true if the specified path appears in the load_once_path list.

load—missing—constant(mod, const—name)
Loads the constant named const_name, which is missing from mod. If it is not possible
to load the constant from mod, try its parent module by calling const_missing on it.

loadable—constants—for—path(path,
bases = load—paths)
Returns an array of constants, based on a specified filesystem path to a Ruby file, which
would cause Dependencies to attempt to load the file.

mark—for—unload(constant)
Marks the specified constant for unloading. The constant will be unloaded on each
request, not just the next one.

new—constants—in(*descs, &block)
Runs the provided block and detects the new constants that were loaded during its execu-
tion. Constants may only be regarded as new once. If the block calls new_constants_in
again, the constants defined within the inner call will not be reported in this one.

If the provided block does not run to completion, and instead raises an exception,
any new constants are regarded as being only partially defined and will be removed
immediately.

qualified—const—defined?(path)
Returns true if the provided constant path is defined?

qualified—name—for(parent—module,constant—name)
Returns a qualified path for the specified parent_module and constant_name.

A
ctive

S
u
p

p
o
rt

B.17 ActiveSupport::Duration 617

remove—unloadable—constants!
Removes the constants that have been autoloaded, and those that have been marked for
unloading.

require—or—load(file—name,const—path = nil)
Implements the main classloading mechanism. Wrapped by the require_or_load

method of Object.

search—for—file(path—suffix)
Searches for a file in load_paths matching the provided path_suffix.

will—unload?(constant)
Returns true if the specified constant is queued for unloading on the next request.

B.16 ActiveSupport::Deprecation
The deprecate method provides Rails core and application developers with a formal
mechanism to be able to explicitly state what methods are deprecated. (Deprecation
means to mark for future deletion.) Rails will helpfully log a warning message when
deprecated methods are called.

Deprecation.deprecate—methods(target—module,
*method—names)
Pass the module and name(s) of the methods as symbols to deprecate.

Deprecation.silence(&block)
Silence deprecation warnings within the block.

B.17 ActiveSupport::Duration
Provides accurate date and time measurements using the advance method of Date and
Time. It mainly supports the methods on Numeric, such as in this example:

1.month.ago # equivalent to Time.now.advance(:months => -1)

B.17.1 active—support/duration
+ (other)
Adds another Duration or a Numeric to this Duration. Numeric values are treated as
seconds.

618 Appendix B: Active Support API Reference

>> 2.hours + 2

=> 7202 seconds

- (other)
Subtracts another Duration or a Numeric to this Duration. Numeric values are treated
as seconds.

>> 2.hours - 2

=> 7198 seconds

ago(time = Time.now)
Calculates a new Time or Date that is as far in the past as this Duration represents.

>> birth = 35.years.ago

=> Mon, 21 Apr 1975 00:48:43 UTC +00:00

from—now(time = Time.now)
Alias for since, which reads a little bit more naturally when using the default Time.now
as the time argument.

>> expiration = 1.year.from_now

=> Thu, 21 Apr 2011 00:51:48 UTC +00:00

inspect
Calculates the time resulting from a Duration expression and formats it as a string
appropriate for display in the console. (Remember that IRB and the Rails console au-
tomatically invoke inspect on objects returned to them. You can use that trick with
your own objects.)

>> 10.years.ago

=> Sun Aug 31 17:34:15 -0400 1997

since(time = Time.now)
Calculates a new Time or Date that is as far in the future as this Duration represents.

>> expiration = 1.year.since(account.created_at)

until(time = Time.now)
Alias for ago. Reads a little more naturally when specifying a time argument instead of
using the default value, Time.now.

>> membership_duration = created_at.until(expires_at)

A
ctive

S
u
p

p
o
rt

B.18 Enumerable 619

B.18 Enumerable
Extensions to Ruby’s built-in Enumerable module, which gives arrays and other types
of collections iteration abilities.

B.18.1 active—support/core—ext/enumerable

The following methods are added to all Enumerable objects.

each—with—object(memo, &block)
Iterates over a collection, passing the current element and the memo to the block. Handy
for building up hashes or reducing collections down to one object. Examples:

>> %w(foo bar).each_with_object({}) { |str, hsh| hsh[str] = str.upcase }

=> {'foo' => 'FOO', 'bar' => 'BAR'}

Note: that you can’t use immutable objects (like numbers, true, false, etc) as the
memo argument. You would think the following returns 120, but since the memo is
never changed, it does not.

(1..5).each—with—object(1) }value, memo} memo *= value # => 1

group—by(&block)
Collects an enumerable into sets, grouped by the result of a block and ordered. Useful,
for example, for grouping records by date like in the following example:

latest_transcripts.group_by(&:day).each do |day, transcripts|

puts "[#{day}] #{transcripts.map(&:class).join , }"

end

"[2006-03-01] Transcript"

"[2006-02-28] Transcript"

"[2006-02-27] Transcript, Transcript"

Rubys own group_by method is used in versions 1.9 and above.

index—by
Converts an enumerable to a hash, based on a block that identifies the keys. The most
common usage is with a single attribute name:

>> people.index_by(&:login)

=> { "nextangle" => <Person ...>, "chad" => <Person ...>}

Use full block syntax (instead of the to_proc hack) to generate more complex keys:

>> people.index_by { |p| "#{p.first_name} #{p.last_name}" }

=> {"Chad Fowler" => <Person ...>, "David Hansson" => <Person ...>}

620 Appendix B: Active Support API Reference

sum(default = 0, &block)
Calculates a sum from the elements of an enumerable, based on a block.

payments.sum(&:price)

Its easier to understand than Rubys clumsier inject method:

payments.inject { |sum, p| sum + p.price }

Use full block syntax (instead of the to_proc hack) to do more complicated calculations:

payments.sum { |p| p.price * p.tax_rate }

Also, sum can calculate results without the use of a block:

[5, 15, 10].sum # => 30

The default identity (a fancy way of saying, “the sum of an empty list”) is 0. However,
you can override it with anything you want by passing a default argument:

[].sum(10) { |i| i.amount } # => 10

index—by
Converts an enumerable to a hash, based on a block that identifies the keys. The most
common usage is with a single attribute name:

>> people.index_by(&:login)

=> { "nextangle" => <Person ...>, "chad" => <Person ...>}

Use full block syntax (instead of the to_proc hack) to generate more complex keys:

>> people.index_by { |p| "#{p.first_name} #{p.last_name}" }

=> {"Chad Fowler" => <Person ...>, "David Hansson" => <Person ...>}

B.18.2 active—support/json/encoding
as—json
Returns self.to_a.

B.19 ERB::Util

B.19.1 active—support/core—ext/string/
output—safety

html—escape(s)
A utility method for escaping HTML tag characters. This method is also aliased as h.

A
ctive

S
u
p

p
o
rt

B.21 File 621

In your templates, use this method to escape any unsafe (often, anything user-
submitted) content, like this:

=h @person.name

The method primarily escapes angle brackets and ampersands.

>> puts html_escape("is a > 0 & a < 10?")

=> is a > 0 & a < 10?

json—escape(s)
A utility method for escaping HTML entities in JSON strings. This method is also
aliased as j.

In your ERb templates, use this method to escape any HTML entities:

=j @person.to_json

The method primarily escapes angle brackets and ampersands.

puts json_escape("is a > 0 & a < 10?")

=> is a \u003E 0 \u0026 a \u003C 10?

B.20 FalseClass

B.20.1 active—support/core—ext/object/blank
blank?
Returns true.

B.20.2 active—support/json/encoding
as—json
Returns "false".

B.21 File

B.21.1 active—support/core—ext/file/atomic

Provides an atomic_write method to Ruby’s File class.

atomic—write(file—name,temp—dir = Dir.tmpdir)
Writes to a file atomically, by writing to a temp file first and then renaming to the target
file_name. Useful for situations where you need to absolutely prevent other processes
or threads from seeing half-written files.

622 Appendix B: Active Support API Reference

File.atomic_write("important.file") do |file|

file.write("hello")

end

If your temp directory is not on the same filesystem as the file you’re trying to write, you
can provide a different temporary directory with the temp_dir argument.

File.atomic_write("/data/something.imporant", "/data/tmp") do |f|

file.write("hello")

end

B.21.2 active—support/core—ext/file/path

Ensures that to_path is aliased to path.

B.22 Float

B.22.1 active—support/core—ext/float/rounding

Provides an round method to Ruby’s Float class that accepts an optional precision
parameter.

round(precision = nil)
Rounds the float with the specified precision.

>> x = 1.337

>> x.round

=> 1

>> x.round(1)

=> 1.3

>> x.round(2)

=> 1.34

B.23 Hash

B.23.1 active—support/core—ext/hash/
conversions

Contains code that adds the ability to convert hashes to and from xml.

Hash.from—xml(xml)
Parses arbitrary strings of XML markup into nested Ruby arrays and hashes. Works great
for quick-and-dirty integration of REST-style web services.

A
ctive

S
u
p

p
o
rt

B.23 Hash 623

Here’s a quick example in the console with some random XML content. The XML
only has to be well-formed markup.

>> xml = %(<people>

<person id="1">

<name><family>Boss</family> <given>Big</given></name>

<email>chief@foo.com</email>

</person>

<person id="2">

<name>

<family>Worker</family>

<given>Two</given></name>

<email>two@foo.com</email>

</person>

</people>)

=> "<people>...</people>"

>> h = Hash.from_xml(xml)

=> {"people"=>{"person"=>[{"name"=>{"given"=>"Big", "family"=>"Boss"},

"id"=>"1", "email"=>"chief@foo.com"}, {"name"=>{"given"=>"Two",

"family"=>"Worker"}, "id"=>"2", "email"=>"two@foo.com"}]}}

Now you can easily access the data from the XML:

>> h["people"]["person"].first["name"]["given"] => "Big"

to—xml(options={})
Collects the keys and values of a hash and composes a simple XML representation.

>> print ({:greetings => {

:english => "hello",

:spanish => "hola"}}).to_xml

<?xml version="1.0" encoding="UTF-8"?>

<hash>

<greetings>

<english>hello</english>

<spanish>hola</spanish>

</greetings>

</hash>

B.23.2 active—support/core—ext/hash/
deep—merge

deep—merge(other—hash)
Returns a new hash with self and other_hash merged recursively.

624 Appendix B: Active Support API Reference

deep—merge!(other—hash)
Modifies self by merging in other_hash recursively.

B.23.3 active—support/core—ext/hash/diff
diff(hash2)
A method for getting the difference between one hash and another. Returns the difference
between a hash and the one passed in as a parameter.

A quick example in the console:

>> {:a => :b}.diff({:a => :b})

=> {}

>> {:a => :b}.diff({:a => :c})

=> {:a=>:b}

B.23.4 active—support/core—ext/hash/except
except(*keys)
Returns a hash that includes everything but the given keys. This is useful for limiting a
set of parameters to everything but a few known toggles.

person.update_attributes(params[:person].except(:admin))

If the receiver responds to convert_key, the method is called on each of the arguments.
This allows except to play nice with hashes with indifferent access.

>> {:a => 1}.with_indifferent_access.except(:a)

=> {}

>> {:a => 1}.with_indifferent_access.except("a")

=> {}

except!(*keys)
Replaces the hash without the given keys.

B.23.5 active—support/core—ext/hash/
indifferent—access

with—indifferent—access
Returns an ActiveSupport::HashWithIndifferentAccess out of its receiver.

>> {:a => 1}.with_indifferent_access["a"]

=> 1

A
ctive

S
u
p

p
o
rt

B.23 Hash 625

B.23.6 active—support/core—ext/hash/keys

Provides methods that operate on the keys of a hash. The stringify and symbolize

methods are used liberally throughout the Rails codebase, which is why it generally
doesn’t matter if you pass option names as strings or symbols.

You can use assert_valid_keys method in your own application code, which
takes Rails-style option hashes.

assert—valid—keys(*valid—keys)
Raises an ArgumentError if the hash contains any keys not specified in valid_keys.

def my_method(some_value, options={})

options.assert_valid_keys(:my_conditions, :my_order, ...)

...

end

Note that keys are NOT treated indifferently, meaning if you use strings for keys but
assert symbols as keys, this will fail.

>> { :name => "Rob", :years => "28" }.assert_valid_keys(:name, :age)

=> ArgumentError: Unknown key(s): years

>> { :name => "Rob", :age => "28" }.assert_valid_keys("name", "age")

=> ArgumentError: Unknown key(s): name, age

>> { :name => "Rob", :age => "28" }.assert_valid_keys(:name, :age)

=> nil # passes, raises nothing

stringify—keys
Returns a new copy of the hash with all keys converted to strings.

stringify—keys!
Destructively converts all keys in the hash to strings.

symbolize—keys and to—options
Returns a new hash with all keys converted to symbols, as long as they respond to to_sym.

symbolize—keys! and to—options!
Destructively converts all keys in the hash to symbols.

626 Appendix B: Active Support API Reference

B.23.7 active—support/core—ext/hash/
reverse—merge

Allows for reverse merging where the keys in the calling hash take precedence over those
in the other_hash. This is particularly useful for initializing an incoming option hash
with default values like this:

def setup(options = {})

options.reverse_merge! :size => 25, :velocity => 10

end

In the example, the default :size and :velocity are only set if the options passed in
don’t already have those keys set.

reverse—merge(other—hash)
Returns a merged version of two hashes, using key values in the other_hash as defaults,
leaving the original hash unmodified.

reverse—merge!(other—hash) and reverse—update
Destructive versions of reverse_merge; both modify the original hash in place.

B.23.8 active—support/core—ext/hash/slice
slice(*keys)
Slices a hash to include only the given keys. This is useful for limiting an options hash
to valid keys before passing to a method:

def search(criteria = {})

assert_valid_keys(:mass, :velocity, :time)

end

search(options.slice(:mass, :velocity, :time))

If you have an array of keys you want to limit to, you should splat them:

valid_keys = [:mass, :velocity, :time]

search(options.slice(*valid_keys))

slice!(*keys)
Replaces the hash with only the given keys.

>> {:a => 1, :b => 2, :c => 3, :d => 4}.slice!(:a, :b)

=> {:c => 3, :d =>4}

A
ctive

S
u
p

p
o
rt

B.24 HashWithIndifferentAccess 627

B.23.9 active—support/core—ext/object/
to—param

to—param(namespace = nil)
Converts a hash into a string suitable for use as a URL query string. An optional
namespace can be passed to enclose the param names (see example below).

>> { :name => 'David', :nationality => 'Danish' }.to_param

=> "name=David&nationality=Danish"

>> { :name => 'David', :nationality => 'Danish' }.to_param('user')

=> "user[name]=David&user[nationality]=Danish"

B.23.10 active—support/core—ext/object/
to—query

to—query
Collects the keys and values of a hash and composes a URL-style query string using
ampersand and equal-sign characters.

>> {:foo => "hello", :bar => "goodbye"}.to_query

=> "bar=goodbye&foo=hello"

B.23.11 active—support/json/encoding
as—json
Returns self as a string of JSON.

B.23.12 active—support/core—ext/object/blank
blank?
Alias for empty?

B.24 HashWithIndifferentAccess
A subclass of Hash used internally by Rails.

B.24.1 active—support/hash—with—

indifferent—access

As stated in the source file:

This class has dubious semantics and we only have it so that people can write params[:key]
instead of params['key'].

628 Appendix B: Active Support API Reference

B.25 ActiveSupport::Inflector::
Inflections

The Inflections class transforms words from singular to plural, class names to table
names, modularized class names to ones without, and class names to foreign keys.

The default inflections for pluralization, singularization, and uncountable words are
kept in activesupport/lib/active_support/inflections.rb and reproduced
here for reference.

module ActiveSupport

Inflector.inflections do |inflect|

inflect.plural(/$/, 's')

inflect.plural(/s$/i, 's')

inflect.plural(/(ax|test)is$/i, '\1es')

inflect.plural(/(octop|vir)us$/i, '\1i')

inflect.plural(/(alias|status)$/i, '\1es')

inflect.plural(/(bu)s$/i, '\1ses')

inflect.plural(/(buffal|tomat)o$/i, '\1oes')

inflect.plural(/([ti])um$/i, '\1a')

inflect.plural(/sis$/i, 'ses')

inflect.plural(/(?:([^f])fe|([lr])f)$/i, '\1\2ves')

inflect.plural(/(hive)$/i, '\1s')

inflect.plural(/([^aeiouy]|qu)y$/i, '\1ies')

inflect.plural(/(x|ch|ss|sh)$/i, '\1es')

inflect.plural(/(matr|vert|ind)(?:ix|ex)$/i, '\1ices')

inflect.plural(/([m|l])ouse$/i, '\1ice')

inflect.plural(/^(ox)$/i, '\1en')

inflect.plural(/(quiz)$/i, '\1zes')

inflect.singular(/s$/i, '')

inflect.singular(/(n)ews$/i, '\1ews')

inflect.singular(/([ti])a$/i, '\1um')

inflect.singular(/((a)naly|(b)a|(d)iagno|(p)arenthe|(p)rogno|

(s)ynop|(t)he)ses$/i, '\1\2sis')

inflect.singular(/(^analy)ses$/i, '\1sis')

inflect.singular(/([^f])ves$/i, '\1fe')

inflect.singular(/(hive)s$/i, '\1')

inflect.singular(/(tive)s$/i, '\1')

inflect.singular(/([lr])ves$/i, '\1f')

inflect.singular(/([^aeiouy]|qu)ies$/i, '\1y')

inflect.singular(/(s)eries$/i, '\1eries')

inflect.singular(/(m)ovies$/i, '\1ovie')

inflect.singular(/(x|ch|ss|sh)es$/i, '\1')

inflect.singular(/([m|l])ice$/i, '\1ouse')

inflect.singular(/(bus)es$/i, '\1')

inflect.singular(/(o)es$/i, '\1')

inflect.singular(/(shoe)s$/i, '\1')

inflect.singular(/(cris|ax|test)es$/i, '\1is')

A
ctive

S
u
p

p
o
rt

B.25 ActiveSupport::Inflector::Inflections 629

inflect.singular(/(octop|vir)i$/i, '\1us')

inflect.singular(/(alias|status)es$/i, '\1')

inflect.singular(/^(ox)en/i, '\1')

inflect.singular(/(vert|ind)ices$/i, '\1ex')

inflect.singular(/(matr)ices$/i, '\1ix')

inflect.singular(/(quiz)zes$/i, '\1')

inflect.singular(/(database)s$/i, '\1')

inflect.irregular('person', 'people')

inflect.irregular('man', 'men')

inflect.irregular('child', 'children')

inflect.irregular('sex', 'sexes')

inflect.irregular('move', 'moves')

inflect.irregular('cow', 'kine')

inflect.uncountable(%w(equipment information rice money species series

fish sheep jeans))

end

end

A singleton instance of Inflections is yielded by Inflector.inflections,
which can then be used to specify additional inflection rules in an initializer.

ActiveSupport::Inflector.inflections do |inflect|

inflect.plural /^(ox)$/i, '\1en'

inflect.singular /^(ox)en/i, '\1'

inflect.irregular 'octopus', 'octopi'

inflect.uncountable "equipment"

end

New rules are added at the top. So in the example, the irregular rule for octopus will
now be the first of the pluralization and singularization rules that are checked when an
inflection happens. That way Rails can guarantee that your rules run before any of the
rules that may already have been loaded.

B.25.1 active—support/inflector/inflections

This API reference lists the inflections methods themselves in the modules where they
are actually used: Numeric and String. The Inflections module contains methods
used for modifying the rules used by the inflector.

clear(scope = :all))
Clears the loaded inflections within a given scope. Give the scope as a symbol of the
inflection type: :plurals, :singulars, :uncountables, or :humans.

ActiveSupport::Inflector.inflections.clear

ActiveSupport::Inflector.inflections.clear(:plurals)

630 Appendix B: Active Support API Reference

human(rule, replacement)
Specifies a humanized form of a string by a regular expression rule or by a string mapping.
When using a regular expression based replacement, the normal humanize formatting is
called after the replacement. When a string is used, the human form should be specified
as desired (example: “The name”, not “the—name”)

ActiveSupport::Inflector.inflections do |inflect|

inflect.human /_cnt$/i, '\1_count'

inflect.human "legacy_col_person_name", "Name"

end

inflections
Yields a singleton instance of ActiveSupport::Inflector::Inflections so you
can specify additional inflector rules.

ActiveSupport::Inflector.inflections do |inflect|

inflect.uncountable "rails"

end

irregular(singular, plural)
Specifies a new irregular that applies to both pluralization and singularization at the same
time. The singular and plural arguments must be strings, not regular expressions.
Simply pass the irregular word in singular and plural form.

ActiveSupport::Inflector.inflections do |inflect|

inflect.irregular 'octopus', 'octopi'

inflect.irregular 'person', 'people'

end

plural(rule, replacement)
Specifies a new pluralization rule and its replacement. The rule can either be a string
or a regular expression. The replacement should always be a string and may include
references to the matched data from the rule by using backslash-number syntax, like this:

ActiveSupport::Inflector.inflections do |inflect|

inflect.plural /^(ox)$/i, '\1en'

end

singular(rule, replacement)
Specifies a new singularization rule and its replacement. The rule can either be a string
or a regular expression. The replacement should always be a string and may include
references to the matched data from the rule by using backslash-number syntax, like this:

A
ctive

S
u
p

p
o
rt

B.25 ActiveSupport::Inflector::Inflections 631

ActiveSupport::Inflector.inflections do |inflect|

inflect..singular /^(ox)en/i, '\1'

end

uncountable(*words)
Adds uncountable words that should not be inflected to the list of inflection rules.

ActiveSupport::Inflector.inflections do |inflect|

inflect.uncountable "money"

inflect.uncountable "money", "information"

B.25.2 active—support/inflector/
transliteration

transliterate(string, replacement = "?")
Replaces non-ASCII characters with an ASCII approximation, or if none exists, a re-
placement character which defaults to “?”.

transliterate("øørskbing")

=> "AEroskobing"

Default approximations are provided for Western/Latin characters, e.g, “ø”, “ñ”, “é”,
“ß”, etc.

This method is I18n aware, so you can set up custom approximations for a locale.
This can be useful, for example, to transliterate German’s “ü” and “ö” to “ue” and “oe”,
or to add support for transliterating Russian to ASCII.

In order to make your custom transliterations available, you must set them as the
<tt>i18n.transliterate.rule</tt> i18n key:

Store the transliterations in locales/de.yml

i18n:

transliterate:

rule: ü

: "ue" ö

: "oe"

Or set them using Ruby

I18n.backend.store_translations(:de, :i18n => {

:transliterate => {

:rule => {"ü"

=> "ue", "ö"

=> "oe"

}

}

})

632 Appendix B: Active Support API Reference

The value for <tt>i18n.transliterate.rule</tt> can be a simple Hash that maps characters
to ASCII approximations as shown above, or, for more complex requirements, a Proc:

I18n.backend.store_translations(:de, :i18n => {

:transliterate => {

:rule => lambda {|string| MyTransliterator.transliterate(string)}

}

})

Now you can have different transliterations for each locale:

I18n.locale = :en

transliterate("Jürgen")

=> "Jurgen"

I18n.locale = :de

transliterate("Jürgen")

=> "Juergen"

parameterize(string, sep = ’-’)
Replaces special characters in a string so that it may be used as part of a “pretty” URL.
This method replaces accented characters with their ASCII equivalents and discards
all other non-ASCII characters by turning them into the string specified as sep. The
method is smart enough to not double up separators. Leading and trailing separators are
also removed.

class Person < ActiveRecord::Base

def to_param

"#{id}-#{name.parameterize}"

end

end

>> @person = Person.find(1)

=> #<Person id: 1, name: "Donald E. Knuth">

>> helper.link_to(@person.name, person_path(@person))

=> Donald E. Knuth

B.26 Integer
Extensions to Ruby’s built-in Integer class.

A
ctive

S
u
p

p
o
rt

B.27 ActiveSupport::JSON 633

B.26.1 active—support/core—ext/integer/
inflections

ordinalize
Turns an integer into an ordinal string used to denote the position in an ordered sequence
such as 1st, 2nd, 3rd, 4th.

1.ordinalize # => "1st"

2.ordinalize # => "2nd"

1002.ordinalize # => "1002nd"

1003.ordinalize # => "1003rd"

B.26.2 active—support/core—ext/integer/
multiple

multiple—of?(number)
Returns true if the integer is a multiple of number.

9.multiple_of? 3 # => true

B.27 ActiveSupport::JSON
Rails includes support for three JSON (JavaScript Object Notation) backends:

• JSONGem (json)

• Yajl (yajl-ruby)

• Yaml

The JSON module adds JSON decoding and encoding support to Rails.

B.27.1 active—support/json/decoding
backend
Returns the selected JSON backend.

backend=(name)
Sets desired JSON backend.

decode(json)
Parses a JSON string or IO object and converts it into an object graph.

634 Appendix B: Active Support API Reference

with—backend(name, &block)
Use an alternate JSON backend within the supplied block.

B.27.2 active—support/json/encoding
encode(value, options = nil)
Dumps object in JSON.

>> ActiveSupport::JSON.encode({:a => 1, :b => 2})

=> "{\"a\":1,\"b\":2}"

B.28 Kernel
Methods added to Ruby’s Kernel class are available in all contexts.

B.28.1 active—support/core—ext/kernel/
agnostics

‘(command)
Makes backticks behave (somewhat more) similarly on all platforms. On win32
`nonexistent_command` raises Errno::ENOENT, but on Unix, the spawned shell
prints a message to stderr and sets $?.

B.28.2 active—support/core—ext/kernel/
debugger

debugger
Starts a debugging session if ruby-debug has been loaded. Use rails server --

debugger to start Rails with the debugger enabled.

B.28.3 active—support/core—ext/kernel/
reporting

enable—warnings
Sets $VERBOSE to true for the duration of the block provided and back to its original
value afterward.

silence—stream(stream)
Silences any stream for the duration of the block provided.

A
ctive

S
u
p

p
o
rt

B.29 Logger 635

silence_stream(STDOUT) do

puts 'This will never be seen'

end

puts 'But this will'

silence—warnings
Sets $VERBOSE to false for the duration of the block provided and back to its original
value afterward.

suppress(*exception—classes)
Amethod that should be named swallow. Suppresses raising of any exception classes
specified inside of the block provided. Use with caution.

B.28.4 active—support/core—ext/kernel/
requires

require—library—or—gem
Requires a library with fallback to RubyGems. Warnings during library loading are
silenced to increase signal/noise for application warnings.

B.28.5 active—support/core—ext/kernel/
singleton—class

class—eval
Forces class_eval to behave like singleton_class.class_eval.

singleton—class
Returns the object’s singleton class.

B.29 Logger
This section includes extensions to the built-in Ruby logger, accessible via the logger
property in various Rails contexts such as Active Record models and controller classes.
Always accessible via Rails.logger. Use of the logger is explained in Chapter 1.

To use the default log formatter as defined in the Ruby core, you need to set a
formatter for the logger as in the following example:

logger.formatter = Formatter.new

You can then specify properties such as the datetime format, for example:

logger.datetime_format = "%Y-%m-%d"

636 Appendix B: Active Support API Reference

B.29.1 active—support/core—ext/logger
around—debug(start—message,end—message) ...
Streamlines the all-too-common pattern of wrapping a few lines of code in comments
that indicate the beginning and end of a routine, as follows:

logger.debug "Start rendering component (#{options.inspect}): "

result = render_component_stuff(...)

logger.debug "\n\nEnd of component rendering"

result

The same code would be written with around_debug like this:

around_debug "Start rendering component (#{options.inspect}):",

"End of component rendering" do

render_component_stuff(...)

end

around—error,around—fatal,and around—info
See as around_debug except with a different log-level.

datetime—format
Gets the current logging datetime format. Returns nil if the formatter does not support
datetime formatting.

datetime—format=(datetime—format)
Sets the format string passed to strftime to generate the log’s timestamp string.

formatter
Gets the current formatter. The Rails default formatter is a SimpleFormatter, which
only displays the log message.

silence(temporary—level = Logger::ERROR)
Silences the logger for the duration of a block provided.

Rails.logger.silence do

some particularly verbose (or secret) operation

end

B.30 ActiveSupport::MessageEncryptor
MessageEncryptor is a simple way to encrypt values that get stored somewhere you
don’t trust.

The cipher text and initialization vector are base64 encoded and returned to you.

A
ctive

S
u
p

p
o
rt

B.31 ActiveSupport::MessageVerifier 637

This can be used in situations similar to the MessageVerifier, but where you
don’t want users to be able to determine the value of the payload.

B.30.1 active—support/message—encryptor
initialize(secret,cipher = ‘aes-256-cbc’)
Creates a new instance of MessageEncryptor.

encrypt(value)
Encrypts value.

decrypt(encrypted—messages)
Decrypts encrypted_message.

B.31 ActiveSupport::MessageVerifier
MessageVerifier makes it easy to generate and verify signed messages to prevent
tampering.

>> v = ActiveSupport::MessageVerifier.new("A_SECRET_STRING")

=> #<ActiveSupport::MessageVerifier:0x24af9f0 @secret="A_SECRET_STRING",

@digest="SHA1">

>> msg = v.generate([1, 2.weeks.from_now])

=> "BAhbB2kGVTogQWN0aXZlU3VwcG9ydDo6VGltZVdpdGhab25lWwh1Og..."

>> id, time = v.verify(msg)

=> [1, Thu, 17 Jun 2010 20:54:13 UTC +00:00]

This is useful for cases like remember-me tokens and auto-unsubscribe links where the
session store isn’t suitable or available.

B.31.1 active—support/message—verifier
initialize(secret, digest = ‘SHA1’)
Creates a new MessageVerifier with the supplied secret string and digest.

generate(value)
Generate a signed message.

cookies[:remember_me] = verifier.generate([user.id, 2.weeks.from_now])

638 Appendix B: Active Support API Reference

verify(signed—message)
Verify a signed message.

id, time = @verifier.verify(cookies[:remember_me])

if time < Time.now

self.current_user = User.find(id)

end

B.32 Module
This section covers extensions to Ruby’s Module class, available in all contexts.

B.32.1 active—support/core—ext/module/
aliasing

alias—attribute(new—name, old—name)
This super-useful method allows you to easily make aliases for attributes, including their
reader, writer, and query methods.

In the following example, the Content class is serving as the base class for Email
using STI, but e-mails should have a subject, not a title:

class Content < ActiveRecord::Base

has column named 'title'

end

class Email < Content

alias_attribute :subject, :title

end

As a result of the alias_attribute, you can see in the following example that the
title and subject attributes become interchangeable:

>> e = Email.find(:first)

>> e.title

=> "Superstars"

>> e.subject

=> "Superstars"

>> e.subject?

=> true

>> e.subject = "Megastars"

=> "Megastars"

>> e.title

=> "Megastars"

A
ctive

S
u
p

p
o
rt

B.32 Module 639

alias—method—chain(target, feature)
Encapsulates the following common pattern:

alias_method :foo_without_feature, :foo

alias_method :foo, :foo_with_feature

With alias_method_chain, you simply do one line of code and both aliases are set up
for you:

alias_method_chain :foo, :feature

Query and bang methods keep the same punctuation. The following syntax

alias_method_chain :foo?, :feature

is equivalent to

alias_method :foo_without_feature?, :foo?

alias_method :foo?, :foo_with_feature?

so you can safely chain foo, foo?, and foo!.

B.32.2 active—support/core—ext/module/
anonymous

anonymous?
Returns true if self does not have a name.

A module gets a name when it is first assigned to a constant. Either via the module
or class keyword

module M

end

>> M.name

=> "M"

m = Module.new

>> m.name

=> ""

or by an explicit assignment

m = Module.new

>> M = m # m gets a name here as a side-effect

>> m.name

=> "M"

640 Appendix B: Active Support API Reference

B.32.3 active—support/core—ext/module/
attr—accessor—with—default

attr—accessor—with—default
(sym, default = nil, &block)
Declares an attribute accessor with an initial default return value.

To give attribute :age the initial value 25, you would write the following:

class Person

attr_accessor_with_default :age, 25

end

To give attribute :element_name a dynamic default value, evaluated in scope of self,
you would write

attr_accessor_with_default(:element_name) { name.underscore }

B.32.4 active—support/core—ext/module/
attr—internal

attr—internal
Alias for attr_internal_accessor.

attr—internal—accessor(*attrs)
Declares attributes backed by internal instance variables names (using an @_ naming con-
vention). Basically just a mechanism to enhance controlled access to sensitive attributes.

For instance, Object’s copy_instance_variables_from will not copy internal
instance variables.

attr—internal—reader(*attrs)
Declares an attribute reader backed by an internally named instance variable.

attr—internal—writer(*attrs)
Declares an attribute writer backed by an internally named instance variable.

B.32.5 active—support/core—ext/module/
attribute—accessors

mattr—accessor(*syms)
Defines one or more module attribute reader and writer methods in the style of the
native attr* accessors for instance attributes.

A
ctive

S
u
p

p
o
rt

B.32 Module 641

mattr—reader(*syms)
Defines one or more module attribute reader methods.

mattr—writer(*syms)
Defines one or more module attribute writer methods.

B.32.6 active—support/core—ext/module/
delegation

delegate(*methods)
Provides a delegate class method to easily expose contained objects’ methods as your
own. Pass one or more methods (specified as symbols or strings) and the name of the
target object via the :to option (also a symbol or string). At least one method name and
the :to option are required.

Delegation is particularly useful with Active Record associations:

class Greeter < ActiveRecord::Base

def hello

"hello"

end

def goodbye

"goodbye"

end

end

class Foo < ActiveRecord::Base

belongs_to :greeter

delegate :hello, :to => :greeter

end

Foo.new.hello # => "hello"

Foo.new.goodbye # => NoMethodError: undefined method `goodbye' for

#<Foo:0x1af30c>

Multiple delegates to the same target are allowed:

class Foo < ActiveRecord::Base

belongs_to :greeter

delegate :hello, :goodbye, :to => :greeter

end

Foo.new.goodbye # => "goodbye"

642 Appendix B: Active Support API Reference

Methods can be delegated to instance variables, class variables, or constants by providing
them as a symbols:

class Foo

CONSTANT_ARRAY = [0,1,2,3]

@@class_array = [4,5,6,7]

def initialize

@instance_array = [8,9,10,11]

end

delegate :sum, :to => :CONSTANT_ARRAY

delegate :min, :to => :@@class_array

delegate :max, :to => :@instance_array

end

Foo.new.sum # => 6

Foo.new.min # => 4

Foo.new.max # => 11

Delegates can optionally be prefixed using the :prefix option. If the value is true, the
delegate methods are prefixed with the name of the object being delegated to.

Person = Struct.new(:name, :address)

class Invoice < Struct.new(:client)

delegate :name, :address, :to => :client, :prefix => true

end

john_doe = Person.new("John Doe", "Vimmersvej 13")

invoice = Invoice.new(john_doe)

invoice.client_name # => "John Doe"

invoice.client_address # => "Vimmersvej 13"

It is also possible to supply a custom prefix.

class Invoice < Struct.new(:client)

delegate :name, :address, :to => :client, :prefix => :customer

end

invoice = Invoice.new(john_doe)

invoice.customer_name # => "John Doe"

invoice.customer_address # => "Vimmersvej 13"

If the delegate object is nil an exception is raised, and that happens no matter whether
nil responds to the delegated method. You can get a nil instead with the :allow_nil
option.

class Foo

attr_accessor :bar

def initialize(bar = nil)

A
ctive

S
u
p

p
o
rt

B.32 Module 643

@bar = bar

end

delegate :zoo, :to => :bar

end

Foo.new.zoo # raises NoMethodError exception (you called nil.zoo)

class Foo

attr_accessor :bar

def initialize(bar = nil)

@bar = bar

end

delegate :zoo, :to => :bar, :allow_nil => true

end

Foo.new.zoo # returns nil

B.32.7 active—support/core—ext/module/
introspection

local—constants
Returns the constants that have been defined locally by this object and not in an ancestor.
This method is exact if running under Ruby 1.9. In previous versions it may miss
some constants if their definition in some ancestor is identical to their definition in the
receiver.

local—constant—names
Returns the names of the constants defined locally rather than the constants themselves.

parent
Returns the module that contains this one; if this is a root module, such as ::MyModule,
then Object is returned.

>> ActiveRecord::Validations.parent

=> ActiveRecord

parent—name
Returns the name of the module containing this one.

>> ActiveRecord::Validations.parent_name

=> "ActiveRecord"

644 Appendix B: Active Support API Reference

parents
Returns all the parents of this module according to its name, ordered from nested
outwards. The receiver is not contained within the result.

module M

module N

end

end

X = M::N

>> M.parents

=> [Object]

>> M::N.parents

=> [M, Object]

>> X.parents

=> [M, Object]

B.32.8 active—support/core—ext/module/
synchronization

synchronize(*methods)
Synchronizes access around a method, delegating synchronization to a particular mutex.
A mutex (either a Mutex, or any object that responds to synchronize and yields to a
block) must be provided together with a :with option. The :with option should be a
symbol or string, and can represent a method, constant, or instance or class variable.

class SharedCache

@@lock = Mutex.new

def expire

...

end

synchronize :expire, :with => :@@lock

end

It is used internally by Rails in various places including database connection pooling,
the buffered logger, and generation of asset timestamps.

B.32.9 active—support/dependencies
const—missing(class—id)
The const_missing callback is invoked when Ruby can’t find a specified constant
in the current scope, which is what makes Rails autoclassloading possible. See the
Dependencies module for more detail.

A
ctive

S
u
p

p
o
rt

B.33 ActiveSupport::Multibyte::Chars 645

B.33 ActiveSupport::Multibyte::Chars
The chars proxy enables you to work transparently with multibyte encodings in the
Ruby String class without having extensive knowledge about encoding.

B.33.1 active—support/multibyte/chars

A Chars object accepts a string upon initialization and proxies String methods in
an encoding-safe manner. All the normal String methods are proxied through the
Chars object, and can be accessed through the mb_chars method. Methods that would
normally return a String object now return a Chars object so that methods can be
chained together safely.

>> "The Perfect String".mb_chars.downcase.strip.normalize

=> "the perfect string"

Chars objects are perfectly interchangeable with String objects as long as no explicit
class checks are made. If certain methods do explicitly check the class, call to_s before
you pass Chars objects to them, to go back to a normal String object:

bad.explicit_checking_method("T".chars.downcase.to_s)

The default Chars implementation assumes that the encoding of the string is UTF-8.
If you want to handle different encodings, you can write your own multibyte string
handler and configure it through ActiveSupport::Multibyte.proxy_class

class CharsForUTF32

def size

@wrapped_string.size / 4

end

def self.accepts?(string)

string.length % 4 == 0

end

end

ActiveSupport::Multibyte.proxy_class = CharsForUTF32

Note that a few methods are defined on Chars instead of the handler because they are
defined on Object or Kernel and method_missing (the method used for delegation)
can’t catch them.

<=> (other)
Returns −1, 0, or +1 depending on whether the Chars object is to be sorted before,
equal to, or after the object on the right side of the operation. In other words, it works
exactly as you would expect it to.

646 Appendix B: Active Support API Reference

handler
Returns the proper handler for the contained string depending on $KCODE and the
encoding of the string. This method is used internally by Rails to always redirect messages
to the proper classes depending on the context.

method—missing(m, *a, & b)
Tries to forward all undefined methods to the designated handler. When a method is not
defined on the handler, it sends it to the contained string instead. Also responsible for
making the bang (!) methods destructive, since a handler doesn’t have access to change
an enclosed string instance.

split(*args)
Works just like the normal String’s split method, with the exception that the items
in the resulting list are Chars instances instead of String, which makes chaining calls
easier.

'éCaf éôpriferl'.mb_chars.splité(//).map { |part| part.upcase.to_s } #=>

["CAF", " P", "ÔRIFERL"]

tidy—bytes(force = false)
Replaces all ISO-8859-1 or CP1252 characters by their UTF-8 equivalent resulting in
a valid UTF-8 string.

Passing truewill forcibly tidy all bytes, assuming that the string’s encoding is entirely
CP1252 or ISO-8859-1.

> "obie".mb_chars.tidy_bytes

=> #<ActiveSupport::Multibyte::Chars:0x25faa30 @wrapped_string="obie">

B.33.2 active—support/multibyte/unicode

Contains methods handling Unicode strings.

Unicode.compose—codepoints(codepoints)
Composes decomposed characters to the composed form.

Unicode.decompose—codepoints(type,codepoints)
Decomposes composed characters to the decomposed form. The type argument accepts
:canonical or :compatability.

A
ctive

S
u
p

p
o
rt

B.33 ActiveSupport::Multibyte::Chars 647

Unicode.g—pack(string)
Reverses operation of g_unpack

Unicode.g—unpack(string)
Unpacks the string at grapheme boundaries. Returns a list of character lists.

>> Unicode.g_unpack('ffff')

=> [[2325, 2381], [2359], [2367]]

>> Unicode.g_unpack('Café')

=> [[67], [97], [102], [233]]

Unicode.in—char—class?(codepoint,classes)
Detects whether the codepoint is in a certain character class. Returns true when it’s in
the specified character class and false otherwise. Valid character classes are: :cr, :lf,
:l, :v, :lv, :lvt and :t.

Primarily used by grapheme cluster support.1

Unicode.normalize(string, form = nil)
Returns the KC normalization of the string by default. NFKC is considered the
best normalization form for passing strings to databases and validations. The form

specifies the form you want to normalize in and should be one of the follow-
ing: :c, :kc, :d, or :kd. Default is form is stored in the ActiveSupport::

Multibyte.default_normalization_form attribute and is overridable in an
initializer.

Unicode.reorder—characters(codepoints)
Re-orders codepoints so the string becomes canonical.

Unicode.u—unpack(string)
Unpacks the string at codepoints boundaries. Raises an EncodingError when the
encoding of the string isn’t valid UTF-8.

>> Unicode.u_unpack('Café')

=> [67, 97, 102, 233]

B.33.3 active—support/multibyte/utils

Contains methods for verifying the encoding of character strings.

1. http://unicode.org/reports/tr29/

http://unicode.org/reports/tr29/

648 Appendix B: Active Support API Reference

Multibyte.verify(string)
Verifies the encoding of a string. Splits the string on character boundaries, which are
determined based on $KCODE.

>> ActiveSupport::Multibyte.verify("obie")

=> true

Multibyte.verify!(string)
Verifies the encoding of a string. Splits the string on character boundaries, which are
determined based on $KCODE. Raises an exception if it’s not valid.

B.34 NilClass
Remembers that everything in Ruby is an object, even nil, which is a special reference
to a singleton instance of the NilClass.

B.34.1 active—support/core—ext/object/blank
blank?
Returns true.

B.34.2 active—support/json/encoding
as—json
Returns "null".

B.34.3 active—support/whiny—nil

Besides blank?, the extensions to nil try to raise more descriptive error messages, to
help Rails newbies. The aim is to ensure that when developers pass nil to methods
unintentionally, instead of NoMethodError and the name of some method used by
the framework, they’ll see a message explaining what type of object was expected. The
behavior was named “whiny nil” as an inside joke.

Method missing magic is used to capture the method that was erroneously invoked
on nil. The method name is looked up in a hash containing method names indexed to
Rails classes, so that a helpful suggestion can be attempted.

If you’ve done any amount of Rails programming, you’re probably familiar with the
output of this error-helping process, as the description of a NoMethodError:

You have a nil object when you didn’t expect it! You might have expected an instance of class—name.
The error occurred while evaluating nil.method—name.

A
ctive

S
u
p

p
o
rt

B.35 ActiveSupport::Notifications 649

The whiny nil behavior can be controlled in the individual environment config-
urations with the following line:

config.whiny_nils = true

Rails has it set to true by default in development and test modes, and false in pro-
duction mode.

NilClass.add—whiner(klass)
Specifies that klass should have whiny nil behavior. Active Support adds Array by
default.

id
Raises a message along the lines of: Called id for nil, which would mistak-

enly be 4 -- if you really wanted the id of nil, use object_id.

B.35 ActiveSupport::Notifications
Notifications provides an instrumentation API for Ruby. To instrument an action in
Ruby you just need to do:

ActiveSupport::Notifications.instrument(:render, :extra => :information)

do

render :text => "Foo"

end

You can consume those events and the information they provide by registering a log
subscriber. For instance, let’s store all instrumented events in an array:

@events = []

ActiveSupport::Notifications.subscribe do |*args|

@events << ActiveSupport::Notifications::Event.new(*args)

end

ActiveSupport::Notifications.instrument(:render, :extra => :information)

do

render :text => "Foo"

end

event = @events.first

event.name #=> :render

event.duration #=> 10 (in miliseconds)

event.result #=> "Foo"

event.payload #=> { :extra => :information }

650 Appendix B: Active Support API Reference

When subscribing to Notifications, you can pass a pattern, to only consume events
that match the pattern:

ActiveSupport::Notifications.subscribe(/render/) do |event|

@render_events << event

end

Notifications ships with a queue implementation that consumes and publish events to
log subscribers in a thread. You can use any queue implementation you want.

B.36 Numeric
Extensions to Ruby’s Numeric class.

B.36.1 active—support/core—ext/object/blank
blank?
Returns false.

B.36.2 active—support/json/encoding
as—json
Returns self.

encode—json
Returns self.to_s.

B.36.3 active—support/numeric/bytes

Enables the use of byte calculations and declarations, like45.bytes + 2.6.megabytes.

Constants

The following constants are defined in bytes.rb.

class Numeric

KILOBYTE = 1024

MEGABYTE = KILOBYTE * 1024

GIGABYTE = MEGABYTE * 1024

TERABYTE = GIGABYTE * 1024

PETABYTE = TERABYTE * 1024

EXABYTE = PETABYTE * 1024

...

end

A
ctive

S
u
p

p
o
rt

B.36 Numeric 651

byte / bytes
Returns the value of self. Enables the use of byte calculations and declarations, like
45.bytes + 2.6.megabytes.

kilobyte / kilobytes
Returns self * 1024.

megabyte / megabytes
Returns self * 1024.kilobytes.

gigabyte / gigabytes
Returns self * 1024.megabytes.

terabyte / terabytes
Returns self * 1024.gigabytes.

petabyte / petabytes
Returns self * 1024.terabytes.

exabyte / exabytes2
Returns self * 1024.petabytes.

B.36.4 active—support/numeric/time

Enables the use of time calculations and declarations, like 45.minutes + 2.hours +

4.years.
These methods use Time#advance for precise date calculations when using

from_now, ago, etc. as well as adding or subtracting their results from a Time object.
For example:

equivalent to Time.now.advance(:months => 1)

1.month.from_now

equivalent to Time.now.advance(:years => 2)

2.years.from_now

equivalent to Time.now.advance(:months => 4, :years => 5)

(4.months + 5.years).from_now

652 Appendix B: Active Support API Reference

While these methods provide precise calculation when used as in the examples above,
care should be taken to note that this is not true if the result of ‘months’, ‘years’, etc is
converted before use:

equivalent to 30.days.to_i.from_now

1.month.to_i.from_now

equivalent to 365.25.days.to_f.from_now

1.year.to_f.from_now

In such cases, Ruby’s core Date and Time should be used for precision date and time
arithmetic.

ago and until
Appends to a numeric time value to express a moment in the past.

10.minutes.ago

day / days
A duration equivalent to self * 24.hours.

fortnight / fortnights
A duration equivalent to self * 2.weeks.

from—now(time = Time.now) / since(time = Time.now)
An amount of time in the future, from a specified time (which defaults to Time.now).

hour / hours
A duration equivalent to self * 3600.seconds.

minute / minutes
A duration equivalent to self * 60.seconds.

month / months
A duration equivalent to self * 30.days.

second / seconds
A duration in seconds equal to self.

week / weeks
A duration equivalent to self * 7.days.

A
ctive

S
u
p

p
o
rt

B.37 Object 653

year / years
A duration equivalent to self * 365.25.days.

B.37 Object
Rails mixes quite a few methods into the Object class, meaning they are available via
every other object at runtime.

B.37.1 active—support/core—ext/object/
acts—like

acts—like?(duck)
A duck-type assistant method. For example, Active Support extends Date to define
an acts_like_date? method, and extends Time to define acts_like_time?. As
a result, we can do “x.acts—like?(:time)” and “x.acts—like?(:date)” to do duck-type-safe
comparisons, since classes that we want to act like Time simply need to define an
acts_like_time? method.

B.37.2 active—support/core—ext/object/blank
blank?
An object is blank if it’s false, empty, or a whitespace string. For example, “”, “ ”, nil,
[], and {} are blank.

This simplifies:

if !address.nil? && !address.empty?

to

unless address.blank?

presence
Returns object if it’s present? otherwise returns nil. The expression object.

presence is equivalent to object.present? ? object : nil

present?
An object is present if it’s not blank.

654 Appendix B: Active Support API Reference

This is handy for any representation of objects where blank is the same as not present
at all. For example, this simplifies a common check for HTTP POST/query parameters:

state = params[:state] if params[:state].present?

country = params[:country] if params[:country].present?

region = state || country || 'US'

becomes

region = params[:state].presence || params[:country].presence || 'US'

B.37.3 active—support/core—ext/object/
duplicable

Most objects are cloneable, but not all. For example you can’t dup +nil+:

nil.dup # => TypeError: can't dup NilClass

Classes may signal their instances are not duplicable removing dup and clone or raising
exceptions from them. So, to dup an arbitrary object you normally use an optimistic
approach and are ready to catch an exception, say:

arbitrary_object.dup rescue object

Rails dups objects in a few critical spots where they are not that arbitrary. That rescue
is very expensive (like 40 times slower than a predicate), and it is often triggered.

That’s why we hardcode the following cases and check duplicable? instead of
using the rescue idiom.

duplicable?
Is it possible to safely duplicate this object? Returns false for nil, false, true,
symbols, numbers, class and module objects, true otherwise.

B.37.4 active—support/core—ext/object/
instance—variables

copy—instance—variables—from(object, exclude = [])
Copies the instance variables of object into self.

Instance variable names in the exclude array are ignored. If object responds to
protected_instance_variables, then protected variables are also ignored.

In both cases, strings and symbols are understood, and they have to include the at sign.

A
ctive

S
u
p

p
o
rt

B.37 Object 655

class C

def initialize(x, y, z)

@x, @y, @z = x, y, z

end

def protected_instance_variables

%w(@z)

end

end

>> a = C.new(0, 1, 2)

>> b = C.new(3, 4, 5)

>> a.copy_instance_variables_from(b, [:@y])

a is now: @x = 3, @y = 1, @z = 2

instance—values
Returns a hash that maps instance variable names without “@” to their corresponding
values. Keys are strings both in Ruby 1.8 and 1.9.

class C

def initialize(x, y)

@x, @y = x, y

end

end

C.new(0, 1).instance_values # => {"x" => 0, "y" => 1}

instance—variable—names
Returns an array of instance variable names including “@”. They are strings both in
Ruby 1.8 and 1.9.

class C

def initialize(x, y)

@x, @y = x, y

end

end

C.new(0, 1).instance_variable_names # => ["@y", "@x"]

B.37.5 active—support/core—ext/object/
to—param

to—param
Alias of to_s.

656 Appendix B: Active Support API Reference

B.37.6 active—support/core—ext/object/
with—options

with—options(options)
An elegant way to refactor out common options.

class Post < ActiveRecord::Base

with_options(:class_name => 'Comment', :order => 'id desc') do |post|

post.has_many :approved, :conditions => ['approved = ?', true]

post.has_many :unapproved, :conditions => ['approved = ?', false]

post.has_many :all_comments

end

end

B.37.7 active—support/dependencies
load(file, *extras)
Rails overrides Ruby’s built-in load method to tie it into the Dependencies subsystem.

require(file, *extras)
Rails overrides Ruby’s built-in require method to tie it into the Dependencies sub-
system.

require—association(file—name)
Used internally by Rails. Invokes Dependencies.associate_with (file_name).

require—dependency(file—name)
Used internally by Rails. Invokes Dependencies.depend_on(file_name).

require—or—load(file—name)
Used internally by Rails. Invokes Dependencies.require_or_load(file_name).

unloadable(const—desc)
Marks the specified constant as unloadable. Unloadable constants are removed each time
dependencies are cleared.

Note that marking a constant for unloading need only be done once. Setup or init
scripts may list each unloadable constant that will need unloading; constants marked in
this way will be removed on every subsequent Dependencies.clear, as opposed to the
first clear only.

The provided constant descriptor const_desc may be a (nonanonymous) module
or class, or a qualified constant name as a string or symbol.

A
ctive

S
u
p

p
o
rt

B.39 ActiveSupport::OrderedOptions 657

Returns true if the constant was not previously marked for unloading, false
otherwise.

B.37.8 active—support/json/encoding
to—json(options = nil)
Dumps object in JSON (JavaScript Object Notation).

B.38 ActiveSupport::OrderedHash

B.38.1 active—support/ordered—hash

This is a hash implementation for Ruby 1.8.x that preserves the ordering of its elements, in
contrast to normal Ruby hashes. (Ruby 1.9 hashes are ordered natively!) It’s namespaced
to prevent conflicts with other implementations, but you can assign it to a top-level
namespace if you don’t want to constantly use the fully qualified name:

OrderedHash = ActiveSupport::OrderedHash

>> oh = ActiveSupport::OrderedHash.new

=> []

>> oh[:one] = 1

=> 1

>> oh[:two] = 2

=> 2

>> oh[:three] = 3

=> 3

>> oh

=> [[:one, 1], [:two, 2], [:three, 3]]

B.39 ActiveSupport::OrderedOptions

B.39.1 active—support/ordered—options

A subclass of OrderedHash that adds a method-missing implementation so that hash
elements can be accessed and modified using normal attribute semantics, dot-notation:

def method_missing(name, *args)

if name.to_s =~ /(.*)=$/

self[$1.to_sym] = args.first

else

self[name]

end

end

658 Appendix B: Active Support API Reference

B.40 ActiveSupport::Railtie

B.40.1 active—support/railtie

Contains Active Support’s initialization routine for itself and the I18n subsystem.
If you’re depending on Active Support outside of Rails, you should be aware of what

happens in this Railtie in case you end up needing to replicate it in your own code.

module ActiveSupport

class Railtie < Rails::Railtie

config.active_support = ActiveSupport::OrderedOptions.new

Loads support for "whiny nil" (noisy warnings when methods are

invoked

on +nil+ values) if Configuration#whiny_nils is true.

initializer "active_support.initialize_whiny_nils" do |app|

require 'active_support/whiny_nil' if app.config.whiny_nils

end

Sets the default value for Time.zone

If assigned value cannot be matched to a TimeZone, an exception will

be raised.

initializer "active_support.initialize_time_zone" do |app|

require 'active_support/core_ext/time/zones'

zone_default = Time.__send__(:get_zone, app.config.time_zone)

unless zone_default

raise \

'Value assigned to config.time_zone not recognized.' +

'Run "rake -D time" for a list of tasks for finding appropriate

time zone names.'

end

Time.zone_default = zone_default

end

end

end

B.41 Range
Extensions to Ruby’s Range class.

B.41.1 active—support/core—ext/range/
blockless—step

step
Ruby’s native Range#step (on most platforms) raises a LocalJumpError if you omit
a block. Rails patches step to make it return an array if it’s called without a block.

A
ctive

S
u
p

p
o
rt

B.41 Range 659

B.41.2 active—support/core—ext/range/
conversions

to—formatted—s(format = :default)
Generates a formatted string representation of the range.

>> (20.days.ago..10.days.ago).to_formatted_s

=> "Fri Aug 10 22:12:33 -0400 2007..Mon Aug 20 22:12:33 -0400 2007"

>> (20.days.ago..10.days.ago).to_formatted_s(:db)

=> "BETWEEN '2007-08-10 22:12:36' AND '2007-08-20 22:12:36'"

B.41.3 active—support/core—ext/range/
include—range

include?(value)
Extends the default Range#include? to support range comparisons.

>> (1..5).include?(1..5)

=> true

>> (1..5).include?(2..3)

=> true

>> (1..5).include?(2..6)

=> false

The native include? behavior is untouched.

>> ("a".."f").include?("c")

=> true

>> (5..9).include?(11)

=> false

B.41.4 active—support/core—ext/range/
include—range

overlaps?(other)
Compares two ranges and sees if they overlap each other

>> (1..5).overlaps?(4..6)

=> true

>> (1..5).overlaps?(7..9)

=> false

660 Appendix B: Active Support API Reference

B.42 Regexp

B.42.1 active—support/core—ext/enumerable
sum(identity = 0)
Optimizes range sum to use arithmetic progression if a block is not given and we have
a range of numeric values.

B.42.2 active—support/json/encoding
as—json
Returns self.to_s.

B.43 ActiveSupport::Rescuable
The Rescuable module is a Concern that adds support for easier exception handling.
Used within Rails primarily in controller actions, but potentially very useful in your own
libraries too.

B.43.1 active—support/rescuable
rescue—from(*klasses, &block)
The rescue_from method receives a series of exception classes or class names, and a
trailing :with option with the name of a method or a Proc object to be called to handle
them. Alternatively a block can be given.

Handlers that take one argument will be called with the exception, so that the
exception can be inspected when dealing with it.

Handlers are inherited. They are searched from right to left, from bottom to top, and
up the hierarchy. The handler of the first class for which exception.is_a?(klass)

returns true is the one invoked, if any.
Here’s some example code taken from Action Controller.

class ApplicationController < ActionController::Base

rescue_from User::NotAuthorized, :with => :deny_access

rescue_from ActiveRecord::RecordInvalid, :with => :show_errors

rescue_from 'MyAppError::Base' do |exception|

render :xml => exception, :status => 500

end

protected

def deny_access

...

end

A
ctive

S
u
p

p
o
rt

B.44 ActiveSupport::SecureRandom 661

def show_errors(exception)

exception.record.new? ? ...

end

end

B.44 ActiveSupport::SecureRandom
A secure random number generator interface.

This library is an interface for secure random number generator which is suitable for
generating session key in HTTP cookies, etc.

It supports following secure random number generators.

• openssl

• /dev/urandom

• Win32

Note: This module is based on the SecureRandom library from Ruby 1.9, revi-
sion 18786, August 23 2008. It’s 100 percent interface-compatible with Ruby 1.9’s
SecureRandom library.

random hexadecimal string.

p SecureRandom.hex(10) #=> "52750b30ffbc7de3b362"

p SecureRandom.hex(10) #=> "92b15d6c8dc4beb5f559"

p SecureRandom.hex(11) #=> "6aca1b5c58e4863e6b81b8"

p SecureRandom.hex(12) #=> "94b2fff3e7fd9b9c391a2306"

p SecureRandom.hex(13) #=> "39b290146bea6ce975c37cfc23"

random base64 string.

p SecureRandom.base64(10) #=> "EcmTPZwWRAozdA=="

p SecureRandom.base64(10) #=> "9b0nsevdwNuM/w=="

p SecureRandom.base64(10) #=> "KO1nIU+p9DKxGg=="

p SecureRandom.base64(11) #=> "l7XEiFja+8EKEtY="

p SecureRandom.base64(12) #=> "7kJSM/MzBJI+75j8"

p SecureRandom.base64(13) #=> "vKLJ0tXBHqQOuIcSIg=="

random binary string.

p SecureRandom.random_bytes(10) #=> "\016\t{\370g\310pbr\301"

p SecureRandom.random_bytes(10) #=> "\323U\030TO\234\357\020\a\337"

B.44.1 active—support/secure—random

Note that all of the methods in this module will raise NotImplementedError if a secure
random number generator is not available.

662 Appendix B: Active Support API Reference

SecureRandom.base64(n = 16)
This method generates a random base64 string. The argument n specifies the length of
the random length. The length of the result string is about 4/3 of n.

SecureRandom.hex(n = 16)
This method generates a random hex string. The argument n specifies the length of the
random length. The length of the result string is twice of n.

SecureRandom.random—number(n = 0)
This method generates a random number. If an positive integer is given as n, then
random_number returns an integer.

0 <= SecureRandom.random_number(n) < n

If 0 is given or an argument is not supplied then random_number returns a float.

0.0 <= SecureRandom.random_number() < 1.0

SecureRandom.random—bytes(n = 16)
This method generates a random binary string. The argument n specifies the length of
the result string.

B.45 String
Extensions to Ruby’s String class.

B.45.1 active—support/json/encoding
as—json
Returns self.

encode—json
Returns JSON escaped version of self.

B.45.2 active—support/core—ext/object/blank
blank?
Returns true if the string consists of only whitespace.

class String

def blank?

self !~ /\S/

end

end

A
ctive

S
u
p

p
o
rt

B.45 String 663

B.45.3 active—support/core—ext/string/access
at(position)
Returns the character at position, treating the string as an array (where 0 is the first
character). Returns nil if the position exceeds the length of the string.

>> "hello".at(0)

=> "h"

>> "hello".at(4)

=> "o"

>> "hello".at(10)

=> ERROR if < 1.9, nil in 1.9

blank?
Returns the result of empty? (stripping whitespace, if needed).

first(number)
Returns the first number of characters in a string.

"hello".first # => "h"

"hello".first(2) # => "he"

"hello".first(10) # => "hello"

from(position)
Returns the remaining characters of a string from the position, treating the string as
an array (where 0 is the first character). Returns nil if the position exceeds the length
of the string.

"hello".at(0) # => "hello"

"hello".at(2) # => "llo"

"hello".at(10) # => nil

last(number)
Returns the last number of characters in a string.

"hello".last # => "o"

"hello".last(2) # => "lo"

"hello".last(10) # => "hello"

to(position)
Returns the beginning of the string up to the position treating the string as an array
(where 0 is the first character). Doesn’t produce an error when the position exceeds
the length of the string.

664 Appendix B: Active Support API Reference

"hello".at(0) # => "h"

"hello".at(2) # => "hel"

"hello".at(10) # => "hello"

B.45.4 active—support/core—ext/string/
acts—like

Duck-types as a String-like class. See Object#acts_like? for more explanation.

class String

def acts_like_time?

true

end

end

B.45.5 active—support/core—ext/string/
conversions

ord
Returns the codepoint of the first character of the string, assuming a single-byte character
encoding:

"a".ord # => 97

"à".ord # => 224, in ISO-8859-1

This method is defined in Ruby 1.8 for Ruby 1.9 forward compatibility on these character
encodings. It is forward compatible with Ruby 1.9 on UTF8 strings:

>> "a".mb_chars.ord

=> 97

>> "à".mb_chars.ord

=> 224 # in UTF8

Note that the 224 is different in both examples. In ISO-8859-1 “à” is represented as a
single byte, 224. In UTF8 it is represented with two bytes, namely 195 and 160, but its
Unicode codepoint is 224. If we call ord on the UTF8 string “à” the return value will
be 195.

to—date
Uses Date.parse to turn a string into a Date.

to—datetime
Uses Date.parse to turn a string into a DateTime.

A
ctive

S
u
p

p
o
rt

B.45 String 665

to—time(form = :utc)
Uses Date.parse to turn a string into a Time either using either :utc (default) or
:local.

B.45.6 active—support/core—ext/string/
encoding

encoding—aware?
Returns true if Encoding is defined and String responds to :encode.

B.45.7 active—support/core—ext/string/exclude
exclude?(other)
The inverse of include?. Returns true if self does not include the other string.

B.45.8 active—support/core—ext/string/filters
squish
Returns the string, first removing all whitespace on both ends of the string, and then
changing remaining consecutive whitespace groups into one space each.

>> %{ Multi-line

string }.squish

=> "Multi-line string"

>> " foo bar \n \t boo".squish

=> "foo bar boo"

squish!
Performs a destructive squish. See squish.

truncate(length, options = {})
Truncates a given text after a given length if text is longer than length. The last
characters will be replaced with the :omission (which defaults to “...”) for a total length
not exceeding :length.

Pass a :separator to truncate text at a natural break.

>> "Once upon a time in a world far far away".truncate(30)

=> Once upon a time in a worl...

>> "Once upon a time in a world far far away".truncate(30, :separator

=> ' ')

=> Once upon a time in a world...

666 Appendix B: Active Support API Reference

>> "Once upon a time in a world far far away".truncate(14)

=> Once upon a...

>> "And they found that many people were sleeping better.".truncate(25,

:omission => "... (continued)")

=> And they f... (continued)

B.45.9 active—support/core—ext/string/
inflections

String inflections define new methods on the String class to transform names for
different purposes.

For instance, you can figure out the name of a database from the name of a class:

>> "ScaleScore".tableize

=> "scale_scores"

If you get frustrated by the limitations of Rails inflections, try the most excellent Lin-
guistics library by Michael Granger at http://www.deveiate.org/projects/ Lin-
guistics. It doesn’t do all of the same inflections as Rails, but the ones that it does do, it
does better. (See titleize for an example.)

camelize(first—letter = :upper)
By default,camelize converts strings to UpperCamelCase. If the argument tocamelize
is set to :lower, then camelize produces lowerCamelCase. Also converts “/” to “::”,
which is useful for converting paths to namespaces.

>> "active_record".camelize

=> "ActiveRecord"

>> "active_record".camelize(:lower)

=> "activeRecord"

>> "active_record/errors".camelize

=> "ActiveRecord::Errors"

>> "active_record/errors".camelize(:lower)

=> "activeRecord::Errors"

classify
Creates a class name from a table name; used by Active Record to turn table names to
model classes. Note that the classify method returns a string and not a Class. (To
convert to an actual class, follow classify with constantize.)

>> "egg_and_hams".classify

=> "EggAndHam"

http://www.deveiate.org/projects/

A
ctive

S
u
p

p
o
rt

B.45 String 667

>> "post".classify

=> "Post"

constantize
The constantize method tries to find a declared constant with the name specified in
the string. It raises a NameError if a matching constant is not located.

>> "Module".constantize

=> Module

>> "Class".constantize

=> Class

dasherize
Replaces underscores with dashes in the string.

>> "puni_puni"

=> "puni-puni"

demodulize
Removes the module prefixes from a fully qualified module or class name.

>> "ActiveRecord::CoreExtensions::String::Inflections".demodulize

=> "Inflections"

>> "Inflections".demodulize

=> "Inflections"

foreign—key(separate—class—name—and—id—
with—underscore = true)
Creates a foreign key name from a class name.

"Message".foreign_key #=> "message_id"

"Message".foreign_key(false) #=> "messageid"

"Admin::Post".foreign_key #=> "post_id"

humanize
Capitalizes the first word of a string, turns underscores into spaces, and strips _id. Similar
to the titleize method in that it is intended for creating pretty output.

"employee_salary" #=> "Employee salary"

"author_id" #=> "Author"

668 Appendix B: Active Support API Reference

parameterize(sep = ’-’)
Replaces special characters in a string with sep string so that it may be used as part of a
pretty URL.

pluralize
Returns the plural form of the word in the string.

"post".pluralize #=> "posts"

"octopus".pluralize #=> "octopi"

"sheep".pluralize #=> "sheep"

"words".pluralize #=> "words"

"the blue mailman".pluralize #=> "the blue mailmen"

"CamelOctopus".pluralize #=> "CamelOctopi"

singularize
The reverse of pluralize; returns the singular form of a word in a string.

"posts".singularize #=> "post"

"octopi".singularize #=> "octopus"

"sheep".singluarize #=> "sheep"

"word".singluarize #=> "word"

"the blue mailmen".singularize #=> "the blue mailman"

"CamelOctopi".singularize #=> "CamelOctopus"

tableize
Creates a plural and underscored database table name based on Rails conventions. Used
by Active Record to determine the proper table name for a model class. This method
uses the pluralize method on the last word in the string.

"RawScaledScorer".tableize #=> "raw_scaled_scorers"

"egg_and_ham".tableize #=> "egg_and_hams"

"fancyCategory".tableize #=> "fancy_categories"

titlecase
Alias for titleize.

titleize
Capitalizes all the words and replaces some characters in the string to create a nicer-
looking title. The titleize method is meant for creating pretty output and is not used
in the Rails internals.

A
ctive

S
u
p

p
o
rt

B.45 String 669

>> "The light on the beach was like a sinus headache".titleize

=> "The Light On The Beach Was Like A Sinus Headache"

It’s also not perfect. Among other things, it capitalizes words inside the sentence that it
probably shouldn’t, like “a” and “the.” It also has a hard time with apostrophes:

>> "Her uncle's cousin's record albums".titleize

=> "Her Uncle'S Cousin'S Record Albums"

The Linguistics gem mentioned in the beginning of this section has an excellent
proper_noun method that in my experience works much better than titleize:

>> "Her uncle's cousin's record albums".en.proper_noun

=> "Her Uncle's Cousin's Record Albums"

underscore
The reverse of camelize. Makes an underscored form from the expression in the string.
Changes “::” to “/” to convert namespaces to paths.

"ActiveRecord".underscore #=> "active_record"

"ActiveRecord::Errors".underscore #=> active_record/errors

B.45.10 active—support/core—ext/string/
multibyte

Defines a mutibyte safe proxy for string methods.

mb—chars
In Ruby 1.8 and older mb_chars creates and returns an instance of ActiveSupport::
Multibyte::Chars encapsulating the original string. A Unicode safe version of all the
String methods are defined on the proxy class. If the proxy class doesn’t respond to a
certain method, it’s forwarded to the encapsuled string.

>> name = 'Claus Müller'

>> name.reverse

=> "rell??M sualC"

>> name.length

=> 13

>> name.mb_chars.reverse.to_s

=> "ürellM sualC"

>> name.mb_chars.length

=> 12

670 Appendix B: Active Support API Reference

In Ruby 1.9 and newer mb_chars returns self because String is (mostly) encoding
aware. This means that it becomes easy to run one version of your code on multiple
Ruby versions.

All the methods on the Chars proxy which normally return a string will return a
Chars object. This allows method chaining on the result of any of these methods.

>> name.mb_chars.reverse.length

=> 12

The Chars object tries to be as interchangeable with String objects as possible: sorting
and comparing between String and Char work like expected. The bang! methods
change the internal string representation in the Chars object. Interoperability problems
can be resolved easily with a to_s call.

For more information about the methods defined on the Chars proxy see
ActiveSupport::Multibyte::Chars. For information about how to change the de-
fault Multibyte behavior see ActiveSupport::Multibyte.

is—utf8?(suffix)
Returns true if the string has UTF-8 semantics, versus strings that are simply being
used as byte streams.

B.45.11 active—support/core—ext/string/
output—safety

html—safe
Returns an html-escaped version of self. See ERB::Util#html_escape for more
information.

B.45.12 active—support/core—ext/string/
starts—ends—with

Provides String with additional condition methods.

starts—with?(prefix)
Returns true if the string starts with the specified prefix.

ends—with?(suffix)
Returns true if the string ends with the specified suffix.

A
ctive

S
u
p

p
o
rt

B.48 ActiveSupport::Testing::Assertions 671

B.45.13 active—support/core—ext/string/xchar

Requires the fast_xs gem2, which provides C extensions for quickly escaping text.
Rails will automatically use fast_xs from either Hpricot or the gem version with the
bundled Builder package.

B.46 ActiveSupport::StringInquirer
Wrapping a string in this class gives you a prettier way to test for equality. The value
returned by Rails.env is wrapped in a StringInquirer object so instead of calling
this:

Rails.env == "production"

you can call this:

Rails.env.production?

This class is really simple, so you only really want to do this with strings that contain no
whitespace or special characters.

>> s = ActiveSupport::StringInquirer.new("obie")

=> "obie"

>> s.obie?

=> true

B.47 Symbol
Extensions to Ruby’s Symbol class.

B.47.1 active—support/json/encoding
as—json
Returns to_s version of itself.

B.48 ActiveSupport::Testing::Assertions

B.48.1 active—support/testing/assertions

Rails adds a number of assertions to the basic ones provided with Test::Unit.

2. http://fast-xs.rubyforge.org/

http://fast-xs.rubyforge.org/

672 Appendix B: Active Support API Reference

assert—blank(object)
Test if an expression is blank. Passes if object.blank? is true.

assert_blank [] # => true

assert—present(object)
Tests if an expression is not blank. Passes if object.present? is true.

assert_present {:data => 'x' } # => true

assert—difference(expressions, difference = 1,
message = nil, &block)
Tests whether a numeric difference in the return value of an expression is a result of what
is evaluated in the yielded block. (Easier to demonstrate than to explain!)

The following example eval’s the expression Article.count and saves the result.
Then it yields to the block, which will execute the post :create and return control to
the assert_difference method. At that point, Article.count is eval’d again, and
the difference is asserted to be 1 (the default difference).

assert_difference 'Article.count' do

post :create, :article => {...}

end

Any arbitrary expression can be passed in and evaluated:

assert_difference 'assigns(:article).comments(:reload).size' do

post :create, :comment => {...}

end

Arbitrary difference values may be specified. The default is +1, but negative numbers are
okay too:

assert_difference 'Article.count', -1 do

post :delete, :id => ...

end

An array of expressions can also be passed in—each will be evaluated:

assert_difference ['Article.count', 'Post.count'], +2 do

post :create, :article => {...}

end

A error message can be specified:

assert_difference 'Article.count', -1, "Article should be destroyed" do

post :delete, :id => ...

end

A
ctive

S
u
p

p
o
rt

B.49 Time 673

assert—no—difference(expressions,
message = nil, &block)
Tests that the return value of the supplied expression does not change as a result of what
is evaluated in the yielded block.

assert_no_difference 'Article.count' do

post :create, :article => invalid_attributes

end

B.49 Time
Extensions to Ruby’s built-in Time class.

B.49.1 active—support/json/encoding
as—json
Returns self as a JSON string. The ActiveSupport.use_standard_json_time_

format configuration setting determines whether the output is formatted using
:xmlschema or the following pattern:

%(#{strftime("%Y/%m/%d %H:%M:%S")} #{formatted_offset(false)})

B.49.2 active—support/core—ext/time/acts—like

Duck-types as a Time-like class. See Object#acts_like? for more explanation.

class Time

def acts_like_time?

true

end

end

B.49.3 active—support/core—ext/time/
calculations

Contains methods that facilitate time calculations.

===(other)
Overriding case equality method so that it returns true for ActiveSupport::

TimeWithZone instances.

+ (other)
Implemented by the plus_with_duration method. It allows addition of times like
this:

expiration_time = Time.now + 3.days

674 Appendix B: Active Support API Reference

- (other)
Implemented by the minus_with_duration method. It allows addition of times like
this:

two_weeks_ago = Time.now - 2.weeks

advance(options)
Provides precise Time calculations. The options parameter takes a hash with any of the
keys :months, :days, :years, :hour, :min, :sec, and :usec.

ago(seconds)
Returns a new Time representing the time a number of seconds into the past; this
is basically a wrapper around the Numeric extension of the same name. For the best
accuracy, do not use this method in combination with x.months; use months_ago

instead!

at—beginning—of—day
Alias for beginning_of_day.

at—beginning—of—month
Alias for beginning_of_month.

at—beginning—of—week
Alias for beginning_of_week.

at—beginning—of—year
Alias for beginning_of_year.

at—end—of—day
Alias for end_of_day.

at—end—of—month
Alias for end_of_month.

at—end—of—week
Alias for end_of_week.

at—end—of—year
Alias for end_of_year.

A
ctive

S
u
p

p
o
rt

B.49 Time 675

beginning—of—day
Returns a new Time representing the “start” of the current instance’s day, hard-coded
to 00:00 hours.

beginning—of—month
Returns a new Time representing the start of the month (1st of the month, 00:00 hours).

beginning—of—quarter
Returns a new Time representing the start of the calendar quarter (1st of January, April,
July, October, 00:00 hours).

beginning—of—week
Returns a new Time representing the “start” of the current instance’s week, hard-coded
to Monday at 00:00 hours.

beginning—of—year
Returns a new Time representing the start of the year (1st of January, 00:00 hours).

change(options)
Returns a new Time where one or more of the elements have been changed according
to the options parameter. The valid date options are :year, :month, :day. The valid
time options are :hour, :min, :sec, :offset, and :start.

Time.days—in—month(month, year = nil)
Returns the number of days in the given month. If a year is given, February will return
the correct number of days for leap years. Otherwise, this method will always report
February as having 28 days.

>> Time.days_in_month(7, 1974)

=> 31

end—of—day
Returns a new Time representing the end of the day (23:59:59).

end—of—month
Returns a new Time representing the end of the month (last day of the month, 00:00
hours).

last—month
Convenience method for months_ago(1).

676 Appendix B: Active Support API Reference

last—year
Convenience method for years_ago(1).

local—time(*args)
Wraps the class method time_with_datetime_fallback with utc_or_local argu-
ment set to :local.

monday
Alias for beginning of_week.

months—ago(months)
Returns a new Time representing the time a number of specified months into the past.

months—since(months)
The opposite of months_ago. Returns a new Time representing the time a number of
specified months into the future.

next—month
Convenience method for months_since(1).

next—year
Convenience method for years_since(1).

seconds—since—midnight
Returns the number of seconds that have transpired since midnight.

since(seconds)
Returns a new Time representing the time a number of seconds into the future starting
from the instance time. This method is basically a wrapper around the Numeric extension
of the same name. For best accuracy, do not use this method in combination with
x.months; use months_since instead!

time—with—datetime—fallback(utc—or—local,year,
month=1,day=1,hour=0,min=0,sec=0,usec=0)
Returns a new Time if the requested year can be accommodated by Ruby’s Time class.
The range of the Time class is either 1970..2038 or 1902..2038, depending on the host
system’s architecture. Years outside the supported range will return a DateTime object.

tomorrow
Convenience method for self.since(1.day).

A
ctive

S
u
p

p
o
rt

B.49 Time 677

utc—time(*args)
Wraps the class method time_with_datetime_fallback with utc_or_local argu-
ment set to :utc.

years—ago(years)
Returns a new Time representing the time a number of specified years into the past.

years—since(years)
The opposite of years_ago. Returns a new Time representing the time a number of
specified years into the future.

yesterday
Convenience method for self.ago(1.day).

B.49.4 active—support/core—ext/time/
conversions

Extensions to Ruby’s Time class to convert time objects into different convenient string
representations and other objects.

Date Formats

The DATE_FORMATS hash constant holds formatting patterns used by the
to_formatted_s method to convert a Time object into a string representation:

DATE_FORMATS = {

:db => "%Y-%m-%d %H:%M:%S",

:time => "%H:%M",

:short => "%d %b %H:%M",

:long => "%B %d, %Y %H:%M",

:long_ordinal => lambda { |time|

time.strftime("%B #{time.day.ordinalize}, %Y %H:%M") },

:rfc822 => "%a, %d %b %Y %H:%M:%S %z"

}

formatted—offset(colon = true,
alternate—utc—string = nil)
Returns the UTC offset as an HH:MM formatted string.

Time.local(2000).formatted_offset # => "-06:00"

Time.local(2000).formatted_offset(false) # => "-0600"

678 Appendix B: Active Support API Reference

to—date
Returns a new Date object based on a Time, discarding time data.

to—datetime
Returns a new DateTime object based on a Time, preserving the utc offset. Basically a
wrapper around the DateTime.civil factory method:

DateTime.civil(year, month, day, hour, min, sec,

Rational(utc_offset,86400), 0)

to—formatted—s(format = :default)
Converts a Time object into a string representation. The :default option corresponds
to the Time object’s own to_s method.

>> time = Time.now

=> Thu Jan 18 06:10:17 CST 2007

>> time.to_formatted_s(:time)

=> "06:10:17"

>> time.to_s(:time)

=> "06:10:17"

>> time.to_formatted_s(:db)

=> "2007-01-18 06:10:17"

>> time.to_formatted_s(:number)

=> "20070118061017"

>> time.to_formatted_s(:short)

=> "18 Jan 06:10"

>> time.to_formatted_s(:long)

=> "January 18, 2007 06:10"

>> time.to_formatted_s(:long_ordinal)

=> "January 18th, 2007 06:10"

>> time.to_formatted_s(:rfc822)

=> "Thu, 18 Jan 2007 06:10:17 -0600"

to—time
Returns self.

A
ctive

S
u
p

p
o
rt

B.49 Time 679

B.49.5 active—support/core—ext/time/marshal

Pre-1.9 versions of Ruby have a bug with marshaling Time instances, where utc instances
are unmarshalled in the local zone, instead of utc. Rails layers behavior on the _dump

and _load methods so that utc instances can be flagged on dump, and coerced back to
utc on load.

Ruby 1.9.2 adds utc_offset and zone to Time, but marshaling only preserves
utc_offset. Rails preserves zone also, even though it may not work in some edge cases.

B.49.6 active—support/core—ext/time/zones

Extensions to Time having to do with support for time zones.

current
Returns Time.zone.now when config.time_zone is set, otherwise just returns
Time.now.

use—zone(time—zone, &block)
Allows override of Time.zone locally inside supplied block; resets Time.zone to existing
value when done.

>> Date.today

=> Wed, 02 Jun 2010

>> Time.use_zone(ActiveSupport::TimeZone['Fiji']) { Date.today }

=> Thu, 03 Jun 2010

zone
Returns the TimeZone for the current request, if this has been set (via Time.zone=). If
Time.zone> has not been set for the current request, returns the TimeZone specified in
config.time_zone.

zone=(time—zone)
Sets Time.zone to a TimeZone object for the current request/thread.

This method accepts any of the following:

• A Rails TimeZone object.

• An identifier for a Rails TimeZone object (e.g., “Eastern Time (US & Canada)”,
-5.hours).

• A TZInfo::Timezone object.

• An identifier for a TZInfo::Timezone object (e.g., “America/New—York”).

680 Appendix B: Active Support API Reference

Here’s an example of how you might set Time.zone on a per request basis. The code
assumes that current_user.time_zone returns a string identifying the user’s preferred
TimeZone:

class ApplicationController < ActionController::Base

before_filter :set_time_zone

def set_time_zone

Time.zone = current_user.time_zone

end

end

B.50 ActiveSupport::TimeWithZone
A Time-like class that can represent a time in any time zone. Necessary because standard
Ruby Time instances are limited to UTC and the system’s <tt>ENV[‘TZ’]</tt> zone.

You shouldn’t ever need to create a TimeWithZone instance directly via new.
Rails provides the methods local, parse, at and now on TimeZone instances, and
in_time_zone on Time and DateTime instances, for a more user-friendly syntax.

>> Time.zone = 'Eastern Time (US & Canada)'

=> 'Eastern Time (US & Canada)'

>> Time.zone.local(2007, 2, 10, 15, 30, 45)

=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.parse('2007-02-01 15:30:45')

=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.at(1170361845)

=> Sat, 10 Feb 2007 15:30:45 EST -05:00

>> Time.zone.now

=> Sun, 18 May 2008 13:07:55 EDT -04:00

>> Time.utc(2007, 2, 10, 20, 30, 45).in_time_zone

=> Sat, 10 Feb 2007 15:30:45 EST -05:00

See Time and ActiveSupport::TimeZone for further documentation of these
methods.

TimeWithZone instances implement the same API as Ruby Time instances, so that
Time and TimeWithZone instances are interchangable.

>> t = Time.zone.now

=> Sun, 18 May 2008 13:27:25 EDT -04:00

A
ctive

S
u
p

p
o
rt

B.51 ActiveSupport::TimeZone 681

>> t.class

=> ActiveSupport::TimeWithZone

>> t.hour

=> 13

>> t.dst?

=> true

>> t.utc_offset

=> -14400

>> t.zone

=> "EDT"

>> t.to_s(:rfc822)

=> "Sun, 18 May 2008 13:27:25 -0400"

>> t + 1.day

=> Mon, 19 May 2008 13:27:25 EDT -04:00

>> t.beginning_of_year

=> Tue, 01 Jan 2008 00:00:00 EST -05:00

>> t > Time.utc(1999)

=> true

>> t.is_a?(Time)

=> true

B.51 ActiveSupport::TimeZone
The TimeZone class serves as a wrapper around TZInfo::Timezone instances. It allows
Rails to do the following:

• Limit the set of zones provided by TZInfo to a meaningful subset of 142 zones

• Retrieve and display zones with a friendlier name (e.g., “Eastern Time (US &
Canada)” instead of “America/New—York”)

• Lazily load TZInfo::Timezone instances only when they’re needed

• Create ActiveSupport::TimeWithZone instances via TimeZone’s local, parse,
at and now methods.

682 Appendix B: Active Support API Reference

If you set config.time_zone in an initializer, you can access this TimeZone object
via Time.zone:

config.time_zone = "Eastern Time (US & Canada)"

Time.zone # => #<TimeZone:0x514834...>

Time.zone.name # => "Eastern Time (US & Canada)"

Time.zone.now # => Sun, 18 May 2008 14:30:44 EDT -04:00

B.51.1 active—support/values/time—zone

The version of TZInfo bundled with Active Support only includes the definitions nec-
essary to support the zones defined by the TimeZone class. If you need to use zones that
aren’t defined by TimeZone, you’ll need to install the TZInfo gem. If a recent version
of the gem is installed locally, this will be used instead of the bundled version.

<=> (other)
Compares this timezone to the parameter. The two are compared first based on their
offsets, and then by name.

TimeZone[] (arg)
Locates a specific timezone object. If the argument is a string, it is interpreted to mean
the name of the timezone to locate.

>> TimeZone['Dublin']

=> #<TimeZone:0x3208390 @name="Dublin", @utc_offset=0>

If it is a numeric value it is either the hour offset, or the second offset, of the timezone
to find. (The first one with that offset will be returned.)

Returns nil if no such timezone is known to the system.

TimeZone.all
Returns an array of all 142 TimeZone objects. There are multiple TimeZone objects per
timezone (in many cases) to make it easier for users to find their own timezone.

>> ActiveSupport::TimeZone.all

=> [#<ActiveSupport::TimeZone:0x551c34...

TimeZone.create(name, offset)
Creates a new TimeZone instance with the given name and offset.

A
ctive

S
u
p

p
o
rt

B.51 ActiveSupport::TimeZone 683

>> ActiveSupport::TimeZone.create("Atlanta", -5.hours)

=> #<ActiveSupport::TimeZone:0x26c3a48 @current_period=nil, @tzinfo=nil,

@utc_offset=-18000 seconds, @name="Atlanta">

TimeZone.find—tzinfo(name)
Returns a TZInfo instance matching the specified name.

formatted—offset(colon = true)
Returns the offset of this timezone as a formatted string, in the format HH:MM. If the
offset is zero, this method will return an empty string. If colon is false, a colon will
not be inserted into the output.

initialize(name, utc—offset = nil, tzinfo = nil)
Creates a new TimeZone object with the given name and offset. The offset is the
number of seconds that this time zone is offset from UTC (GMT). Seconds were chosen
as the offset unit because that is the unit that Ruby uses to represent time zone offsets
(see Time#utc_offset). The tzinfo parameter can be explicitly passed in, otherwise
the name will be used to find it: TimeZone.find_tzinfo(name)

now
Returns Time.now adjusted to this timezone.

>> Time.now

=> Fri Aug 31 22:39:58 -0400 2007

>> TimeZone['Fiji'].now

=> Sat Sep 01 14:40:00 UTC 2007

TimeZone.seconds—to—utc—offset
(seconds, colon = true)
Assumes self represents an offset from UTC in seconds (as returned from
Time#utc_offset) and turns this into an +HH:MM formatted string.

TimeZone.seconds_to_utc_offset(-21_600) # => "-06:00"

to—s
Returns a textual representation of this timezone.

TimeZone['Dublin'].to_s #=> "(GMT) Dublin"

684 Appendix B: Active Support API Reference

today
Returns the current date in this timezone.

>> Date.today.to_s

=> "2007-08-31"

>> TimeZone['Fiji'].today.to_s

=> "2007-09-01"

TimeZone.us—zones
A convenience method for returning a collection of TimeZone objects for timezones in
the United States.

>> TimeZone.us_zones.map(&:name)

=> ["Hawaii", "Alaska", "Pacific Time (US & Canada)", "Arizona",

"Mountain Time (US & Canada)", "Central Time (US & Canada)", "Eastern

Time (US & Canada)", "Indiana (East)"]

B.52 ActiveSupport::TrueClass

B.52.1 active—support/core—ext/object/blank
blank?
Returns false.

B.52.2 active—support/json/encoding
as—json
Returns "true".

B.53 ActiveSupport::XmlMini
The XmlMini module contains code that allows Rails to serialize/deserialize and parse
XML using a number of different libraries.

• JDOM (requires JRuby)

• LibXML (fast native XML parser)

• Nokogiri (requires Nokogiri gem)

• ReXML

A
ctive

S
u
p

p
o
rt

B.53 ActiveSupport::XmlMini 685

B.53.1 active—support/xml—mini

If you’re doing anything of significance with XML in your application, you should
definitely use the super-fast native libxml parser. Install the binaries (instructions vary
depending on platform) then the Ruby binding:

gem 'libxml-ruby', '=0.9.7'

Set XmlMini to use libxml in application.rb or an initializer.

XmlMini.backend = 'LibXML'

Constants

The TYPE_NAMES constant holds a mapping of Ruby types to their representation when
serialized as XML.

TYPE_NAMES = {

"Symbol" => "symbol",

"Fixnum" => "integer",

"Bignum" => "integer",

"BigDecimal" => "decimal",

"Float" => "float",

"TrueClass" => "boolean",

"FalseClass" => "boolean",

"Date" => "date",

"DateTime" => "datetime",

"Time" => "datetime",

"Array" => "array",

"Hash" => "hash"

}

The FORMATTING constant holds a mapping of lambdas that define how Ruby values
are serialized to strings for representation in XML.

FORMATTING = {

"symbol" => Proc.new { |symbol| symbol.to_s },

"date" => Proc.new { |date| date.to_s(:db) },

"datetime" => Proc.new { |time| time.xmlschema },

"binary" => Proc.new { |binary|

ActiveSupport::Base64.encode64(binary) },

"yaml" => Proc.new { |yaml| yaml.to_yaml }

}

The PARSING constant holds a mapping of lambdas used to deserialize values stored in
XML back into Ruby objects.

PARSING = {

"symbol" => Proc.new { |symbol| symbol.to_sym },

"date" => Proc.new { |date| ::Date.parse(date) },

686 Appendix B: Active Support API Reference

"datetime" => Proc.new { |time| ::Time.parse(time).utc rescue

::DateTime.parse(time).utc },

"integer" => Proc.new { |integer| integer.to_i },

"float" => Proc.new { |float| float.to_f },

"decimal" => Proc.new { |number| BigDecimal(number) },

"boolean" => Proc.new { |boolean| %w(1

true).include?(boolean.strip) },

"string" => Proc.new { |string| string.to_s },

"yaml" => Proc.new { |yaml| YAML::load(yaml) rescue yaml },

"base64Binary" => Proc.new { |bin|

ActiveSupport::Base64.decode64(bin) },

"binary" => Proc.new { |bin, entity| _parse_binary(bin, entity)

},

"file" => Proc.new { |file, entity| _parse_file(file, entity)

}

}

PARSING.update(

"double" => PARSING["float"],

"dateTime" => PARSING["datetime"]

)

Index

A

Action Controller

communication with view, 104–105

controller specs, 528–531

filters, 105–111

around, 109

classes 107

conditions, 110

halting chain, 111

inheritance, 106

ordering, 108

skipping, 110

layouts, specifying, 101

post-backs, 356

rendering, 92–101

standard RESTful actions, 61–64

streaming content, 112–116

verify method, 111–112

Action Dispatch, 88–91

Action Mailer, 473–483

attachments, 475, 477

custom email headers, 475

generating URLs inside messages, 478

handing inbound attachments, 480

HTML messages, 476

mailer layouts, 478

models, 474

multipart messages, 477

preparing outbound messages, 474

raising delivery errors, 19

receiving, 479–481

sending, 479

server configuration, 481

SMTP, 473

testing with RSpec, 481–483

Action View, 293–308

conditional output, 296

customizing validation error

output, 315

ERb, 293

filename conventions, 294

flash messages, 300–302

Haml, 293

instance variables, 297–302

layouts, 294–295

partials, see Partials.

view specs, 531–533

yielding content, 295

Active Model, 563–580

AttributeMethods module, 563–564

Callbacks module, 565

687

688 Index

Conversion module, 565–566

Dirty module, 566

Errors class, 567

MassAssignmentSecurity module, 569

Naming module, 571

observers, 571–573

serialization, 573–575

testing compatibility of custom classes with

Lint::Tests, 569

translation, 575

Validations module, 576–580

Active Resource 459–471

authentication, 467

customizing default URLs, 465

Active Record

abstract base models, 276

associations, 121, 181–230

:counter cache option, 190, 195

:counter sql option, 187

:dependent option, 187, 188, 195

:finder sql option, 187

AssociationProxy class, 228–229

belongs to. See belongs to associations

checking inclusion of records in

collection, 189

class hierarchy, 181

destroying records, 188

extensions, 226–227

foreign-key constraints, 281

has and belongs to many. See has and

belongs to many associations

has many :through. See has many

:through associations

has many. See has many associations

indexing, 484

many-to-many relationships, 208–214

one-to-many relationships, 183–190

one-to-one relationships, 222–225

polymorphic, 277–281

size of, 190

unique sets, 190

unsaved objects, 225

attributes, 123–126

controlling access, 140

readonly, 141

reloading, 131

serialized, 125

typecasting, 131

updating, 136–1140

Base class, 120

basic object operations, 127–133

calculation methods, 265–267

callbacks, 256–265

list of, 258–259

cloning, 131

concurrency. See Database locking

configuration, 158

dynamic finder methods, 132

dynamic scopes, 133

find by sql method, 133–134

legacy naming schemes, 122–123

model specs, 526–528

migrations, 161–179

column type mappings, 168–172

creating, 161–172

magic timestamp columns, 172

schema.rb file, 174

sequencing, 162

observers, 10, 268–269

pattern, 119

query caching, 135–136

querying, 146–152

exists, 152

from, 150

group, 150

having, 150

includes, 151

joins, 151

Index 689

limit, 149

offset, 149

order, 148

readonly, 152

select, 149

where, 146–148

RecordInvalid exception, 187

RecordNotSaved exception, 187, 188

records

deleting, 141–142

random ordering, 148

touching, 139

scopes, 251–255

session store, 429

STI (Single-Table Inheritance), 269–276

translations, 386–388, 390

validations, 231–250

common options, 242–243

conditional validation, 243–245

contexts, 245

custom macros, 247–248

errors, 231–232, 249–250

enforcing uniqueness of join models, 240

reporting, 310–312

short-form, 245–246

skipping, 249

testing with Shoulda, 250

value objects, 281–285

Active Support, 581–688

Ajax, 409–425

changes in Rails 3, 410

CSS selectors, 418

HTML fragments, 421

JSON, 419–421

JSONP, 423–424

Unobtrusive JavaScript (UJS), 411–412

Array, extensions, 581–587

Asset hosts, 22, 321–323

Asset timestamps, 323

Asynchronous processing, See Background

processing.

Atom Feeds

autodetection, 316–317

atom feed method, 324–326

Authentication, 435

Active Resource, 467

client-side certificates, 468

HTTP basic, 467

HTTP digest, 468

Authlogic, 436

configuration, 439–440

B

background processing, 551–561

Base64 class, 588

BasicObject class, 588–589

belongs to associations, 191–199

building and creating related objects, 192

options, 192–199

polymorphic, 197

reloading, 191

touch, 198

with conditions, 193

benchmarking, 589

binary data storage, 170

breadcrumbs, 400–401

Builder::XmlMarkup class, 456

Bundler, 2–7

loading gems directly from Git repository,

4–5

C

Caching

:counter cache, 190, 195

action caching, 486–487

CacheHelper module, 326

controlling web caches and proxies, 499

disabling in development mode, 18

ETags, 500–502

690 Index

expiration, 490–493

fetch, 498–499

fragment caching, 488–490

page caching, 486

query caching, 135–136

storage, 495

Store class, 592–597

sweeping, 493, 496

view caching, 485–497

Callbacks. See also Active Record, callbacks

in Active Support, 597–599

CAS, 445

CDATA, 366

chars proxy, 647–650

Class, extensions, 600

Concern module, 604

Concurrency. See Database Locking

Configurable module, 605

const missing method, 646

Controllers. See Action Controller

convention over configuration, 119, 122

Cookies

:secure option, 434

integrity, 11–12

reading and writing, 433

session store, 431

signing, 434

CRUD (Create Read Update Delete), 119

CSS

linking stylesheets to template, 318–319

sanitizing, 365

Currency

formatting, 359

Money gem, 284

D

data migration, 173–174

Databases

connecting to multiple, 153–154

foreign-key constraints, 281

locking, 142–146

considerations, 145

optimistic, 143

pessimistic, 145

migrations. See ActiveRecord, Migrations.

schemas, 15, 161

seeding, 175–76

using directly, 154–158

Date, extensions, 605–611

Date input tags, 328–331

DateTime, extensions, 611

Decent Exposure gem, 105, 297–298

decimal precision, 169, 171

Delayed Job gem, 552–555

Deprecation, 619

Devise gem, 441

Domain-Specific Languages, 291

Drag and Drop, 417

Duration class, 619–620

E

Email. See Action Mailer

Enumerable, extensions, 621–622

ETags, 500–502

Excerpting text, 370

F

Facebook, 445

favicon.ico file, 317

Files

extensions by Active Support, 623–624

reporting sizes to users, 359

upload field, 348, 356

Firebug, 410

floats, 171

Forms

destroy checkbox, 345

method hidden field, 64

accepts nested attributes for method,

344–345

Index 691

attributes not typecasted, 343

automatic view creation, 313–314

button to helper method, 391

custom builder classes, 347

dynamically adding rows of child records,

338

helper methods, 333–358

input, 348–358

updating multiple objects at once, 337

G

Gemfile, 3

Geocoding, 260–261

H

has and belongs to many associations,

208–214

bidirectional, 210

custom SQL, 211–213

extra columns, 213

making self-referential, 209

has many :through associations, 214–221

and validations, 218

join models, 215

options, 219–221

usage, 216

has many associations, 199–208

:class name option, 202

:conditions option, 202

:include option, 204–206

callbacks, 200–201

has one associations, 222–225

options, 224–225

together with has many, 223

Hash, extensions, 624–629

HashWithIndifferentAccess class, 629

Heckle, 534

Helper methods,

helper specs, 533

writing your own 398–407

HTML

escaping, 367

sanitizing, 364–365

tags

a, 392–394

audio, 319

label, 348

form. See Forms.

option, 353–355

password, 349

select, 350–351

script, 359

submit, 349

video, 320

HTTP

basic authentication, 467

foundation of REST, 55–56

stateless, 427

status codes, 99–101

verbs (GET, POST, etc.), 60–64, 393

I

IMAP, 445

Image tags, 320

Initializers, 11–14

backtrace silencers.rb, 11

cookie verification secret.rb, 11–12

inflections.rb, 12–13

mime types.rb, 14

session store.rb, 14, 430

Inflections. See Pluralization

Integer, extensions, 634–635

Internationalization (I18n), 372–391

Active Model, 575

Active Record, 386

default locale, 10

exception handling, 391

interpolation, 385

locale files, 382–383

process, 380–390

692 Index

setting user locales, 377–380

setup, 374–380

J

JavaScript, 97, 317–318, 358–259, 409–425

escaping, 358

including in template, 317–318

link to method enhancements, 392–393

using to insert HTML into pages, 338

JQuery framework, 410–411, 418, 421,

423–424

JSON, 97, 419–421, 635–636

JSONP, 423–424

K

Kernel, extensions, 636–637

L

LDAP, 445

link to helper methods, 392–394

Locale files, 382–383

Logging, 23–28

backtrace silencing, 11, 587

BufferedLogger class, 590–592

colorization, 27

level override, 15

levels, 23–24

log file analysis, 26–27

Logger, extensions, 637–638

Syslog, 28

M

Memcache, session store, 430

MessageEncryptor class, 638–639

MessageVerifier class, 639–640

Middleware (Rack), 86–88

MIME types, 13–14

Module, extensions, 640

MongoDB, 444

MVC (Model-View-Controller), 85

N

Named scopes. See Active Record, scopes.

Nonces, 432

Notifications, 651–652

Numbers

delimiters, 360

extensions to Numeric class, 652–655

conversion, 359–361

O

Object, extensions, 655

Observers, 10

OpenID, 445

OpenSSL Digests, 431

P

params hash, 336–338

Partials, 95, 302–307

passing variables to, 305

rendering collections, 306

reuse, 303

shared, 304

wrapping and generalizing, 401–407

Plugins, 537–550

as RubyGems, 538

extending Rails classes, 542

installation and removal, 544–545

load order, 9–10

plugin script, 538

rake tasks, 545–546

testing, 547–548

writing your own, 539–550

Pluralization

i18n, 385

Inflector class, 12–13

Inflections class, 630–634

pluralize helper method, 370

Prototype framework, 361, 411

helper methods, 361

Prototype Legacy Helper plugin, 413

Index 693

R

Rack, 86–88, 90–91

Rack::Sendfile middleware, 114

RACK ENV variable, 1

routes as Rack endpoints, 41–42

rails.js file, 411

Rails

Class loader and reloading, 16–18, 615–619

console, 12

reloading, 92

Engines, 549

lib directory, 17

root directory, 9

runner, 559

scaffolding, 311–314

settings, 1–29

application.rb file, 8–11

autoload paths, 9

boot.rb file, 8

cherry-picking frameworks used, 8

custom environments, 20

development mode, 15–19

environment.rb file, 8

generator defaults, 11

initializers. See Initializers

production mode, 20–23

test mode, 19–20

RAILS ENV variable, 1

Railties, 548–549, 660

Rake tasks (selected),

db:migrate, 163, 176

log:clear 24

routes, 53

spec, 523

Random

ordering of records, 148

SecureRandom generator class, 663–664

Range, extensions, 660–661

RecordNotFound exception, 128

Regexp, extensions, 662

Rendering views, 92–101

another actions’s template, 93

explicit, 93, 94

implicit, 92–93

inline templates, 96

JSON, 97

nothing, 97

options, 98

partials, see Partials.

text, 96

XML, 97

Request handling

in routing, 89

redirecting, 101–104, 418

verification, 111–112

Rescuable module, 662

Resque gem, 555–559

REST and RESTful design, 55–83

action set, 78–82

collection routes, 72

controller-only resources, 74

forms, 335

member routes, 70–71

HTTP verbs, 60–64

nested resources, 65–69

routes, 31, 58–61

resources and representations, 40–41,

56–57, 76–77

singular resource routes, 64–65

standard controller actions, 61–64

REXML, 458, 686

Roy T. Fielding. See also REST and RESTful

design, 55–58

Routing, 31–54

constraining by request method, 38–39

formats, 40

globbing, 45–46

listing, 53

694 Index

match method, 34–37

named, 46–50

RESTful routes, 31, 58–61

:format parameter, 76

collection, 72

member, 70–71

nested, 65–69

singular, 64–65

redirecting, 39–40

root routes, 44–45

routes.rb file, 33–34

scopes, 50–53

RJS, 412–419

templates, 413

RSS autodetection, 316–317

RPX authentication, 445

RSpactor, 533

RSpec, 503–535

assertions, 512

custom expectation matchers, 516

generator settings, 11

grouping related examples, 506

let methods, 506–508

mocking and stubbing, 519–522

pending, 511–512

predicate matchers, 515–516

running specs, 522

runtime options, 524

shared behaviors, 519

spec helper.rb file, 517, 524–526

subjects, 513–515

testing email, 481–483

Ruby

$LOAD PATH, 9, 16

hashes, 452

macro-style methods, 121

Marshal API, 427

modules for reusing common behavior,

285–289

RubyGems

as plugins, 538

Bundler, 2–7

Git repository, loading directly from, 4

installing, 5–7

packaging, 7

using pre-release gems, 4

S

Scopes, see Active Record, scopes

Security

CSRF attacks, 336

replay attacks, 431

SQL injection, 134

Session Management, 427–434

cleaning old sessions, 432

storage

RESTful considerations, 75

turning off sessions, 429

Settings, 1–29

Specjour, 534

Spork, 534

SSL

OpenSSL digests, 431

serving protected assets, 323

X.509 certificates, 467–468

Static content, 116

Streaming, 112–116

String,

extensions, 664–673

usage versus symbols, 130

StringInquirer class, 673

SOAP, 459

Symbol,

extensions, 673

usage versus strings, 130

T

Templates. See View templates.

Thread safety, 22–23

Index 695

Time

extensions, 675–682

input tags, 328–331

reporting distances in time, 332–333

storing in database, 170

Time Zones

DateTime conversions, 614

default, 10

option tags helper, 354–355

TimeZone class, 683

TimeWithZone class, 682

Truncating text, 372

U

Unicode, 364, 385, 648–649

Unobtrusive JavaScript (UJS), 411–412

URL

generation, 395–398

patterns in routing, 35–36

segment keys, 36–38

V

Validation. See Active Record, validations

Value objects, 281–285

View templates. See also Action View,

293–308

capturing block content, 326–327

concat method, 368

cycling content, 369

debugging output, 333

encapsulating logic in helper methods, 399

highlighting content, 370

localization, 373

raw output, 361

record identification, 362–364

transforming text into HTML, 371

translation. See Internationalization.

word wrap, 372

Visual effects, 419

W

Watchr, 534

Web 2.0, 332, 425

Web architecture, 55–56

Whiny nils, 18

X

XML, 447–459

parsing, 458

to xml method, 447–456

Active Record associations, 450

customizing output, 448–450

extra elements, 454

overriding, 455–457

Ruby hashes, 452

typecasting, 459

XML Builder, 456–458

XMLHttpRequestObject, 409

XMLMini module, 686–688

Y

YAML, 125–126, 447

This page intentionally left blank

Method Index

[], 130, 415, 568

[]=, 568

* before type cast, 131, 343

* change, 566

* changed?, 566

* was, 566

* will change!, 566

*=, 136

*bytes, 652–653

<<, 185, 200, 415

`, 636

A

abstract class=, 153, 277

accepts nested attributes for, 186,

344–347

active?, 157

acts like?, 655

adapter name, 157

add, 568, 591

add column, 143

add index, 184

add limit!, 154

add lock, 154

add observer, 573

add on blank, 568

add on empty, 568

add silencer, 11, 588

add whiner, 651

advance, 606, 612, 653–655, 676

after, 508

after commit, 259

after commit on create, 259

after commit on destroy, 259

after commit on update, 259

after create, 258, 268

after destroy, 258, 262, 268

after filter, 106

after find, 262–263, 289

after fork, 556

after initialize, 262–263

after rollback, 259

after rollback on create, 259

after rollback on destroy, 259

after rollback on update, 259

after save, 258

after update, 258, 268

after validation, 258

after validation on create, 258

ago, 606, 612, 620, 654, 676

alert, 416

alias attribute, 640

697

698 Method Index

alias method chain, 641

all, 128, 146, 186, 684

allow forgery protection=, 20

and return, 520–521

anonymous?, 641

any?, 186

around debug, 638

around filter, 109

as json, 574, 590

assert blank, 674

assert difference, 674

assert equal, 513

assert valid keys, 627

asset host=, 21, 322

assigns, 298

arel table, 152

at, 682

at beginning of *, 606–607, 676

at beginning of day, 611

at end of *, 676

at end of month, 607

atom feed, 324–326

atomic write, 623

attachments, 475

attr accessible, 139–140, 569

attr accessor with default, 642

attr internal accessor, 642

attr protected, 569

attr readonly, 141

attributes, 130

attributes=, 130

audio path, 319

audio tag, 319

auth type=, 468

authenticate user!, 443

auto discovery link tag, 316

auto flushing=, 591

auto link, 368

autoload paths=, 9

autoloaded constants, 616

average, 186, 265–267

B

backend, 385

backtrace cleaner, 11

base path, 298

base64, 663

bcc, 475

be, 515

be *, 515

be an error, 530

be routable, 531

before, 508

before create, 258

before destroy, 142, 256, 258, 261

before filter, 105–107

before first fork, 556

before fork, 556

before save, 258, 260

before update, 258

before validation, 258

before validation on create, 258, 259

begin db transaction, 155

belongs to, 166, 182–183, 191–199

benchmark, 589

blank?, 587, 655, 665

build, 186

build association, 192

button to, 391

button to remote, 361

by, 510

C

cache, 135, 326, 488–490

cache asset timestamps=, 324

cache classes=, 16

cache store=, 21

cache sweeper, 492–493

caches action, 486–487

Method Index 699

caches page, 486–487

calculate, 187, 265–267

call, 87, 416

camelize, 668

capture, 327

cattr accessor, 601

cattr reader, 601

cattr writer, 601

cc, 475

cdata section, 366

chain, 518

change, 165, 510, 607, 612, 677

change column, 163

change default, 165

change table, 165

changed, 567

changed?, 567

changed attributes, 567

changes, 567

check box, 348

check box tag, 355

civil from format, 613

class attribute, 600–601

class eval, 289–290, 637

class inheritable accessor, 603

class inheritable array, 603

class inheritable hash, 603

classify, 668

cleanup, 594

clear, 187, 249, 594

clear query cache, 135

clone, 131

close, 591

collection, 33, 72, 571

collection name, 465

collection select, 350

column, 165–166

commit db transaction, 155

compose codepoints, 648

composed of, 281–285

concat, 368

config, 548

config accessor, 605

configure, 15

connection, 153

consider all requests local=, 18

const missing, 646

constantize, 669

constraints, 52

content for, 295–296, 327

content for?, 327

content tag, 366

content tag for, 363–364

context, 506

controller, 298

cookie verifier secret=, 12

cookies, 299, 433

copy instance variables from, 656

count, 187, 265–267, 568

count by sql, 134

count observers, 573

create, 127, 187, 462

create association, 192

create!, 175, 187

create table, 163, 164–165

created at, 172

created on, 172

current, 607, 612, 681

current cycle, 369

current page, 392

cycle, 369

D

dasherize, 12, 669

date, 475

date select, 328

datetime select, 329, 390

day, 654

days in month, 677

700 Method Index

debug, 333, 591

debug rjs=, 18

debugger, 636

decode, 635

decode, 64, 588

decompose codepoints, 648

decrement, 139, 594

decrement!, 139

decrypt, 639

deep merge, 625

default locale, 375

default scope, 254

default timezone=, 158

define attr method, 564

define attr methods, 564

define callbacks, 598–599

define model callbacks, 565

delay, 416, 553

delegate, 643–645

delete, 88, 142, 155, 187, 200, 261, 499, 594

delete all, 175, 187, 261

delete matched, 594

delivery method=, 20

demodulize, 669

deprecate methods, 619

deprecation=, 20, 21

descendents, 604

describe, 124, 506

destroy, 142, 187

destroy all, 188

destroyed?, 142

diff, 626

disconnect!, 157

distance of time in words, 332, 388

distance of time in words to now, 333

div for, 362, 364

does not match?, 516

dom class, 363

dom id, 363

down, 163

draggable, 417

draw, 33–34

drop receiving, 417

drop table, 163

duplicable?, 656

E

each, 568

each with object, 621

element, 571

email field, 348

email field tag, 355

empty?, 188, 568

enable warnings, 636

encode, 636

encode64, 588

encrypt, 639

end of day, 612

ends with?, 672

enqueue, 554

error, 591

error message on, 310

error messages, 94

error messages for, 311–312

errors, 231–232

escape javascript, 358

escape once, 367

establish connection, 153

except, 626

exception handler, 391

excerpt, 370

execute, 154, 155, 173

exist?, 499, 594

exists?, 152

expect, 510

expire action, 491

expire fragment, 491–492

expire page, 491

expires in, 500

Method Index 701

expires now, 500

expose, 297–298, 337

extract options!, 584

F

fallbacks=, 21

failure message for should, 516

failure message for should not, 516

fatal, 591

fetch, 497–499, 594–596

fields for, 343–347

fieldset tag, 355

fifth, 582

find, 128, 146, 185, 188, 461

find all by *, 132

find by *, 132

find by sql, 133–134

find each, 173

find or create by *, 132

find or initialize by *, 132

file field, 348

file field tag, 356

find tzinfo, 685

first, 128, 146, 188, 665

flash, 299–300

flush, 591

foreign key, 669

form, 313

form for, 62, 334–345, 411

form remote for, 361

form remote tag, 361

form tag, 356

formatted offset, 613, 679

formatter, 638

fortnight, 654

forty two, 582

fourth, 582

fragment cache store=, 495

fragment exist?, 490

fresh when, 501

from, 150, 475, 510, 581, 665

from json, 574

from now, 620, 654

from xml, 458–459, 575, 624

full messages, 390, 568

future?, 612

G

g pack, 649

g unpack, 649

gem, 3–4

generate, 639

generate message, 568

generate messages, 390

generators, 548

get, 33, 35

git, 5

group, 3, 150

group by, 621

grouped collection select, 350

H

handle asynchronously, 553

has *, 516

has and belongs to many, 208

has many, 121, 182–183, 199–208

has many :through, 214–221

has one, 222–225

have *, 516

having, 150

headers, 475

helper, 533

helper method, 433

hex, 663

hidden field, 348

hidden field tag, 357

hide, 417

hide action, 106

highlight, 370

hour, 654

702 Method Index

html escape, 622

html safe, 672

human, 571, 632

human attribute name, 390, 575

human name, 390

human size, 359

humanize, 669

I

i18n scope, 575

image path, 320

image submit tag, 357

image tag, 320

in, 608

in chars class?, 649

in groups, 585

in groups of, 585

in time zone, 615

include, 516

include?, 189, 661

included, 288–289

includes, 151

increment, 139, 595

increment!, 139

index, 166

index by, 622

inflections, 632

info, 591

inheritable attributes, 603

initializer, 548

input, 314

insert, 155

insert after, 88

insert before, 88

insert html, 417

inspect, 620

instance eval, 109

instance values, 657

instance variable names, 657

instantiate observers, 573

instrument, 651

invalid?, 577

irregular, 632

it, 124, 509

it should behave like, 519

its, 514

J

javascript include tag, 317, 411

javascript path, 318

javascript tag, 359

joins, 151

json escape, 623

K

kind, 580

L

l, 374

label, 348

label tag, 357

last, 128, 189, 665

last month, 608

last year, 608

layout, 101, 479

length, 189

let, 506–508

let!, 508

limit, 149

link to, 32, 36–37, 48–49, 59, 62, 392–393,

411, 419

link to if, 394

link to remote, 361, 419

link to unless, 394

link to unless current, 394

literal, 418

load, 658

Method Index 703

load once paths, 616

load paths, 616

load paths=, 9

local, 682

local assigns, 306

local constants, 645

local offset, 612

local time, 678

locale, 376

localize, 374

lock!, 145

log level, 15

log subscriber, 548

logger, 301

logger=, 21, 23

lookup ancestors, 575

lookup store, 498

M

mail, 475–477

mail to, 394–395

many?, 186

mark for destruction, 226

match, 32–49, 59, 89

matches?, 53, 516

maximum, 189, 265–267

mb chars, 647, 671

member, 33, 70–71

middleware, 87

midnight, 611

minimum, 189, 265–267

minute, 654

mock, 520

mock model, 528

mock with, 525

model name, 571

month, 654

months ago, 608, 678

months since, 608, 678

multiple of?, 635

N

namespace, 34, 52

new, 73, 189

new record?, 127

next month, 608

next week, 608

next year, 608

normalize, 649

notify observers, 573

now, 301, 682, 685

number field, 349

number field tag, 357

number to currency, 359, 390

number to human size, 359, 390

number to percentage, 360, 390

number to phone, 360

number with delimiter, 360, 390

number with precision, 361, 390

O

object id, 191

observe, 268, 572

observe field, 361, 412

observe form, 361

observed class, 572

observers, 573

observers=, 269

offset, 149

options, 596

option groups from collection for select, 351

options for select, 352–354

options from collection for select, 354

ord, 666

order, 148–149, 185

ordinalize, 635

overlaps?, 661

P

params, 38, 301, 336–338

parameterize, 634, 670

704 Method Index

parent, 645

parents, 646

parse, 682

partial counter, 307

partial path, 363, 571

password=, 467

password field, 349

password field tag, 357

past?, 612

pending, 511

perform, 555

perform caching=, 18, 486

periodic call remote, 361

permanent, 434

persisted?, 127

plural, 571, 632

pluralize, 12, 370, 670

pluralize table names=, 123

post, 33, 35

prefix=, 465

prepend after filter, 108

prepend before filter, 108

presence, 655–656

present?, 655

previous changes, 567

primary key prefix type=, 123

production?, 673

proxy=, 469

proxy owner, 182, 228

proxy reflection, 228

proxy target, 228

R

radio button, 349

radio button tag, 357

raise delivery errors=, 19, 21

rake tasks, 548

random bytes, 663

random number, 664

range field, 349

range field tag, 358

raw, 362

raw connection, 157

read, 499, 596

read attribute, 125, 129

read multi, 499, 597

readonly, 152

readonly attributes, 141

receive, 479–480

reconnect!, 157

record timestamps=, 172

redirect, 39

redirect to, 32, 47–48, 101–104, 417

references, 166

register, 14

register alias, 14

register javascript expansion, 547

register stylesheet expansion, 547

reload, 131, 145, 185, 229

reload!, 92, 120

remote form for, 361, 411

remove, 166, 418

remove belongs to, 166

remove column, 143

remove filters, 587

remove index, 166

remove references, 166

remove silencers!, 11, 587

remove timestamps, 166

rename, 166

render, 93–98, 112–113, 302, 414

render views, 530

reorder characters, 649

replace, 190, 418

replace html, 414, 418

reply to, 475

request, 301

require, 4, 16–17, 658

require library or gem, 637

Method Index 705

require or load, 658

rescue action, 530

rescue from, 662

reset, 229

reset *, 566

reset counters, 195

reset cycle, 371

reset inheritable attributes, 603

reset sequence!, 155

resource, 33, 64–65

resources, 33, 58–61, 64–76

response code, 530

respond to, 40–41, 76–77, 415

reverse merge, 628

rollback db transation, 155

root, 34, 44

round, 624

route to, 531

S

sample, 586

sanitize, 364

sanitize css, 365

sanitized allowed attributes=, 365

sanitized allowed tags=, 365

save, 138

save!, 138, 242

schema format, 15, 20, 158, 171–172

scope, 50–52, 251–255

scoped by *, 133

search field, 349

search field tag, 358

second, 582, 654

seconds since midnight, 612, 678

seconds to utc offset, 685

select, 149, 350, 418

select all, 134, 155

select date, 329

select datetime, 330

select day, 330

select hour, 330

select minute, 330

select month, 330, 390

select one, 156

select second, 331

select tag, 358

select time, 331

select value, 156

select values, 156

select year, 331

send data, 113–114

send file, 114–116

serializable hash, 573

serialize, 125–126

serve static assets=, 21

session=, 14

session options=, 431

session store=, 14

set callback, 599

set inheritance column, 273

set locking column, 144

set primary key, 122

set table name, 122

shallow, 69

shared examples for, 519

should, 510, 512–514

should not, 512–514

should not receive, 520

should receive, 520

show, 419

show exceptions=, 20

signed, 434

silence, 619, 638

silence stream, 636

silence warnings, 637

simple format, 371

since, 608, 612, 620

singleton class, 637

singular, 571, 632

706 Method Index

singularize, 670

site=, 460

size, 190, 569

skip before filter, 110

skip callback, 599

skip filter, 110

slice, 628

smtp settings, 481

sortable, 419

specify, 509

split, 586

squish, 667

stale?, 501

starts with?, 672

step, 660

store full sti class=, 159

store translations, 385

string, 163

stringify keys, 627

strip links, 365, 371

strip tags, 365, 371

stub, 520

stub!, 529

stub model, 528

stub chain, 521

stylesheet link tag, 318

stylesheet path, 319

subclasses, 603

subject, 475, 513

submit, 349

submit tag, 358

submit to remote, 361

sum, 190, 265–267, 621

supports count distinct?, 158

supports migrations?, 158

suppress, 637

swap, 88

symbolize keys, 627

synchronize, 646

T

t, 374, 383–385

table name prefix=, 123

table name suffix=, 123

tableize, 670

tables, 158

tag, 367

telephone field, 349

telephone field tag, 358

template, 533

template engine, 11

test framework, 11

text area, 349

text area tag, 358

text field, 350

text field tag

third, 582

threadsafe!, 21–23

tidy bytes, 648

time select, 329

time with datetime fallback, 678

time zone options for select, 354

time zone select, 350

timestamps, 163, 166

titleize, 670

to, 475, 510, 510, 582, 665

to a, 566

to date, 613, 680

to datetime, 680

to f, 614

to formatted s, 582, 610, 614

to i, 614

to json, 97, 419

to key, 565

to model, 565

to options, 627

to param, 565, 587, 629

to query, 629

to s, 583

Method Index 707

to sentence, 390, 583

to sql, 253

to time, 614

to xml, 97, 447–456, 569, 575,

583–584, 625

to yaml, 590

today, 686

toggle, 139, 419

toggle!, 139

tomorrow, 609

touch, 139

translate, 374, 383–385

transliterate, 633–634

truncate, 372, 667

type, 272

U

u unpack, 649

uncountable, 632

underscore, 671

uniq, 190

uniq by, 586

uniq by!, 586

unknown, 591

unloadable, 658

until, 620

update, 136–137, 156, 572

update all, 137–138, 173

update attribute, 139, 249

update attributes, 137, 139,

249

updated at, 172

updated on, 172

url for, 395–398

us zones, 686

use, 87–88

use zone, 681

user=, 467

utc, 612

utc?, 613

utc offset, 613

V

valid?, 137, 232, 245, 577

validate, 248, 577, 580

validates, 232, 245

validates acceptance of, 232, 577

validates associated, 233

validates confirmation of, 233, 577

validates each, 234, 577

validates exclusion of, 236, 577

validates format of, 235, 578

validates inclusion of, 236, 578

validates length of, 236–237, 578

validates numericality of, 237, 579

validates presence of, 238, 579

validates uniqueness of, 239

validates with, 241, 579

validators, 580

validators on, 580

verify, 111–112, 640, 650

verify!, 158, 650

video path, 320

video tag, 320

visual effect, 362, 419

W

warn, 591

week, 654

where, 146–148, 185

whiny nils=, 18

with indifferent access, 626

with options, 244, 658

word wrap, 372

wrap, 587

write, 499, 597

write attribute, 125, 129

708 Method Index

X

x sendfile header=, 21

xmlschema, 610, 614

Y

y, 91

year, 655

years ago, 609, 679

years since, 609, 679

yesterday, 609, 679

yield, 295–296, 326

Z

zone, 681

zone=, 681

This page intentionally left blank

www.informit.com/safaritrial

www.informit.com/safarifree

	Contents
	Foreword
	Foreword
	Introduction
	Acknowledgments
	About the Author
	Chapter 1 Rails Environments and Configuration
	1.1 Bundler
	1.1.1 Gemfile
	1.1.2 Installing Gems
	1.1.3 Gem Locking
	1.1.4 Packaging Gems

	1.2 Startup and Application Settings
	1.2.1 application.rb
	1.2.2 Initializers
	1.2.3 Additional Configuration

	1.3 Development Mode
	1.3.1 Automatic Class Reloading
	1.3.2 Whiny Nils
	1.3.3 Error Reports
	1.3.4 Caching
	1.3.5 Raise Delivery Errors

	1.4 Test Mode
	1.5 Production Mode
	1.5.1 Asset Hosts
	1.5.2 Threaded Mode

	1.6 Logging
	1.6.1 Rails Log Files
	1.6.2 Log File Analysis

	1.7 Conclusion

	Chapter 2 Routing
	2.1 The Two Purposes of Routing
	2.2 The routes.rb File
	2.2.1 Regular Routes
	2.2.2 URL Patterns
	2.2.3 Segment Keys
	2.2.4 Spotlight on the :id Field
	2.2.5 Optional Segment Keys
	2.2.6 Constraining Request Methods
	2.2.7 Redirect Routes
	2.2.8 The Format Segment
	2.2.9 Routes as Rack Endpoints
	2.2.10 Accept Header
	2.2.11 Segment Key Constraints
	2.2.12 The Root Route

	2.3 Route Globbing
	2.4 Named Routes
	2.4.1 Creating a Named Route
	2.4.2 Name_path vs. name_url
	2.4.3 What to Name Your Routes
	2.4.4 Argument Sugar
	2.4.5 A Little More Sugar with Your Sugar?

	2.5 Scoping Routing Rules
	2.5.1 Controller
	2.5.2 Path Prefix
	2.5.3 Name Prefix
	2.5.4 Namespaces
	2.5.5 Bundling Constraints

	2.6 Listing Routes
	2.7 Conclusion

	Chapter 3 REST, Resources, and Rails
	3.1 REST in a Rather Small Nutshell
	3.2 Resources and Representations
	3.3 REST in Rails
	3.4 Routing and CRUD
	3.4.1 REST Resources and Rails
	3.4.2 From Named Routes to REST Support
	3.4.3 Reenter the HTTP Verb

	3.5 The Standard RESTful Controller Actions
	3.5.1 Singular and Plural RESTful Routes
	3.5.2 The Special Pairs: new/create and edit/update
	3.5.3 The PUT and DELETE Cheat
	3.5.4 Limiting Routes Generated

	3.6 Singular Resource Routes
	3.7 Nested Resources
	3.7.1 RESTful Controller Mappings
	3.7.2 Considerations
	3.7.3 Deep Nesting?
	3.7.4 Shallow Routes

	3.8 RESTful Route Customizations
	3.8.1 Extra Member Routes
	3.8.2 Extra Collection Routes
	3.8.3 Custom Action Names
	3.8.4 Mapping to a Different Controller
	3.8.5 Routes for New Resources
	3.8.6 Considerations for Extra Routes

	3.9 Controller-Only Resources
	3.10 Different Representations of Resources
	3.10.1 The respond_to Method
	3.10.2 Formatted Named Routes

	3.11 The RESTful Rails Action Set
	3.11.1 Index
	3.11.2 Show
	3.11.3 Destroy
	3.11.4 New and Create
	3.11.5 Edit and Update

	3.12 Conclusion

	Chapter 4 Working with Controllers
	4.1 Rack
	4.1.1 Configuring Your Middleware Stack

	4.2 Action Dispatch: Where It All Begins
	4.2.1 Request Handling
	4.2.2 Getting Intimate with the Dispatcher

	4.3 Render unto View
	4.3.1 When in Doubt, Render
	4.3.2 Explicit Rendering
	4.3.3 Rendering Another Action's Template
	4.3.4 Rendering a Different Template Altogether
	4.3.5 Rendering a Partial Template
	4.3.6 Rendering Inline Template Code
	4.3.7 Rendering Text
	4.3.8 Rendering Other Types of Structured Data
	4.3.9 Rendering Nothing
	4.3.10 Rendering Options

	4.4 Additional Layout Options
	4.5 Redirecting
	4.5.1 The redirect to Method

	4.6 Controller/View Communication
	4.7 Filters
	4.7.1 Filter Inheritance
	4.7.2 Filter Types
	4.7.3 Filter Chain Ordering
	4.7.4 Around Filters
	4.7.5 Filter Chain Skipping
	4.7.6 Filter Conditions
	4.7.7 Filter Chain Halting

	4.8 Verification
	4.8.1 Example Usage
	4.8.2 Options

	4.9 Streaming
	4.9.1 Via render :text => proc
	4.9.2 Send data(data, options ={})
	4.9.3 Send file(path, options = {})

	4.10 Conclusion

	Chapter 5 Working with Active Record
	5.1 The Basics
	5.2 Macro-Style Methods
	5.2.1 Relationship Declarations
	5.2.2 Convention over Configuration
	5.2.3 Setting Names Manually
	5.2.4 Legacy Naming Schemes

	5.3 Defining Attributes
	5.3.1 Default Attribute Values
	5.3.2 Serialized Attributes

	5.4 CRUD: Creating, Reading, Updating, Deleting
	5.4.1 Creating New Active Record Instances
	5.4.2 Reading Active Record Objects
	5.4.3 Reading and Writing Attributes
	5.4.4 Accessing and Manipulating Attributes Before They Are Typecast
	5.4.5 Reloading
	5.4.6 Cloning
	5.4.7 Dynamic Attribute-Based Finders
	5.4.8 Dynamic Scopes
	5.4.9 Custom SQL Queries
	5.4.10 The Query Cache
	5.4.11 Updating
	5.4.12 Updating by Condition
	5.4.13 Updating a Particular Instance
	5.4.14 Updating Specific Attributes
	5.4.15 Convenience Updaters
	5.4.16 Touching Records
	5.4.17 Controlling Access to Attributes
	5.4.18 Readonly Attributes
	5.4.19 Deleting and Destroying

	5.5 Database Locking
	5.5.1 Optimistic Locking
	5.5.2 Pessimistic Locking
	5.5.3 Considerations

	5.6 Where Clauses
	5.6.1 where(*conditions)
	5.6.2 order(*clauses)
	5.6.3 limit(number) and offset(number)
	5.6.4 select(*clauses)
	5.6.5 from(*tables)
	5.6.6 group(*args)
	5.6.7 having(*clauses)
	5.6.8 includes(*associations)
	5.6.9 joins
	5.6.10 readonly
	5.6.11 exists?
	5.6.12 arel_table

	5.7 Connections to Multiple Databases in Different Models
	5.8 Using the Database Connection Directly
	5.8.1 The DatabaseStatements Module
	5.8.2 Other Connection Methods

	5.9 Other Configuration Options
	5.10 Conclusion

	Chapter 6 Active Record Migrations
	6.1 Creating Migrations
	6.1.1 Sequencing Migrations
	6.1.2 Irreversible Migrations
	6.1.3 create_table(name, options, & block)
	6.1.4 change_table(table_name, & block)
	6.1.5 API Reference
	6.1.6 Defining Columns
	6.1.7 Command-line Column Declarations

	6.2 Data Migration
	6.2.1 Using SQL
	6.2.2 Migration Models

	6.3 Schema.rb
	6.4 Database Seeding
	6.5 Database-Related Rake Tasks
	6.6 Conclusion

	Chapter 7 Active Record Associations
	7.1 The Association Hierarchy
	7.2 One-to-Many Relationships
	7.2.1 Adding Associated Objects to a Collection
	7.2.2 Association Collection Methods

	7.3 The belongs_to Association
	7.3.1 Reloading the Association
	7.3.2 Building and Creating Related Objects via the Association
	7.3.3 Belongs_to Options

	7.4 The has_many Association
	7.4.1 Has_many Options

	7.5 Many-to-Many Relationships
	7.5.1 has_and_belongs_to_many
	7.5.2 has_many :through
	7.5.3 has_many :through Options

	7.6 One-to-One Relationships
	7.6.1 has_one

	7.7 Working with Unsaved Objects and Associations
	7.7.1 One-to-One Associations
	7.7.2 Collections
	7.7.3 Deletion

	7.8 Association Extensions
	7.9 The AssociationProxy Class
	7.10 Conclusion

	Chapter 8 Validations
	8.1 Finding Errors
	8.2 The Simple Declarative Validations
	8.2.1 validates_acceptance_of
	8.2.2 validates_associated
	8.2.3 validates_confirmation_of
	8.2.4 validates_each
	8.2.5 validates_format_of
	8.2.6 validates_inclusion_of and validates_exclusion_of
	8.2.7 validates_length_of
	8.2.8 validates_numericality_of
	8.2.9 validates_presence_of
	8.2.10 validates_uniqueness_of
	8.2.11 validates_with
	8.2.12 RecordInvalid

	8.3 Common Validation Options
	8.3.1 :allow_blank and :allow_nil
	8.3.2 :if and :unless
	8.3.3 :message
	8.3.4 :on

	8.4 Conditional Validation
	8.4.1 Usage and Considerations
	8.4.2 Validation Contexts

	8.5 Short-form Validation
	8.6 Custom Validation Techniques
	8.6.1 Add Custom Validation Macros to Your Application
	8.6.2 Create a Custom Validator Class
	8.6.3 Add a validate Method to Your Model

	8.7 Skipping Validations
	8.8 Working with the Errors Hash
	8.8.1 Checking for Errors

	8.9 Testing Validations with Shoulda
	8.10 Conclusion

	Chapter 9 Advanced Active Record
	9.1 Scopes
	9.1.1 Scope Parameters
	9.1.2 Chaining Scopes
	9.1.3 Scopes and has_many
	9.1.4 Scopes and Joins
	9.1.5 Scope Combinations
	9.1.6 Default Scopes
	9.1.7 Using Scopes for CRUD

	9.2 Callbacks
	9.2.1 Callback Registration
	9.2.2 One-Liners
	9.2.3 Protected or Private
	9.2.4 Matched before/after Callbacks
	9.2.5 Halting Execution
	9.2.6 Callback Usages
	9.2.7 Special Callbacks: after_initialize and after_find
	9.2.8 Callback Classes

	9.3 Calculation Methods
	9.3.1 average(column_name, *options)
	9.3.2 count(column_name, *options)
	9.3.3 maximum(column_name, *options)
	9.3.4 minimum(column_name, *options)
	9.3.5 sum(column_name, *options)

	9.4 Observers
	9.4.1 Naming Conventions
	9.4.2 Registration of Observers
	9.4.3 Timing

	9.5 Single-Table Inheritance (STI)
	9.5.1 Mapping Inheritance to the Database
	9.5.2 STI Considerations
	9.5.3 STI and Associations

	9.6 Abstract Base Model Classes
	9.7 Polymorphic has_many Relationships
	9.7.1 In the Case of Models with Comments

	9.8 Foreign-key Constraints
	9.9 Using Value Objects
	9.9.1 Immutability
	9.9.2 Custom Constructors and Converters
	9.9.3 Finding Records by a Value Object

	9.10 Modules for Reusing Common Behavior
	9.10.1 A Review of Class Scope and Contexts
	9.10.2 The included Callback

	9.11 Modifying Active Record Classes at Runtime
	9.11.1 Considerations
	9.11.2 Ruby and Domain-Specific Languages

	9.12 Conclusion

	Chapter 10 Action View
	10.1 Layouts and Templates
	10.1.1 Template Filename Conventions
	10.1.2 Layouts
	10.1.3 Yielding Content
	10.1.4 Conditional Output
	10.1.5 Decent Exposure
	10.1.6 Standard Instance Variables
	10.1.7 Displaying flash Messages
	10.1.8 flash.now

	10.2 Partials
	10.2.1 Simple Use Cases
	10.2.2 Reuse of Partials
	10.2.3 Shared Partials
	10.2.4 Passing Variables to Partials
	10.2.5 Rendering Collections
	10.2.6 Logging

	10.3 Conclusion

	Chapter 11 All About Helpers
	11.1 ActiveModelHelper
	11.1.1 Reporting Validation Errors
	11.1.2 Automatic Form Creation
	11.1.3 Customizing the Way Validation Errors Are Highlighted

	11.2 AssetTagHelper
	11.2.1 Head Helpers
	11.2.2 Asset Helpers
	11.2.3 Using Asset Hosts
	11.2.4 Using Asset Timestamps
	11.2.5 For Plugins Only

	11.3 AtomFeedHelper
	11.4 CacheHelper
	11.5 CaptureHelper
	11.6 DateHelper
	11.6.1 The Date and Time Selection Helpers
	11.6.2 The Individual Date and Time Select Helpers
	11.6.3 Common Options for Date Selection Helpers
	11.6.4 distance_in_time Methods with Complex Descriptive Names

	11.7 DebugHelper
	11.8 FormHelper
	11.8.1 Creating Forms for Models
	11.8.2 How Form Helpers Get Their Values
	11.8.3 Integrating Additional Objects in One Form
	11.8.4 Customized Form Builders
	11.8.5 Form Inputs

	11.9 FormOptionsHelper
	11.9.1 Select Helpers
	11.9.2 Option Helpers

	11.10 FormTagHelper
	11.11 JavaScriptHelper
	11.12 NumberHelper
	11.13 PrototypeHelper
	11.14 RawOutputHelper
	11.15 RecordIdentificationHelper
	11.16 RecordTagHelper
	11.17 SanitizeHelper
	11.18 TagHelper
	11.19 TextHelper
	11.20 TranslationHelper and the I18n API
	11.20.1 Localized Views
	11.20.2 TranslationHelper Methods
	11.20.3 I18n Setup
	11.20.4 Setting and Passing the Locale
	11.20.5 Setting Locale from Client Supplied Information
	11.20.6 Internationalizing Your Application
	11.20.7 Organization of Locale Files
	11.20.8 Looking up Translations
	11.20.9 How to Store Your Custom Translations
	11.20.10 Overview of Other Built-In Methods that Provide I18n Support
	11.20.11 Exception Handling

	11.21 UrlHelper
	11.22 Writing Your Own View Helpers
	11.22.1 Small Optimizations: The Title Helper
	11.22.2 Encapsulating View Logic: The photo_for Helper
	11.22.3 Smart View: The breadcrumbs Helper

	11.23 Wrapping and Generalizing Partials
	11.23.1 A tiles Helper
	11.23.2 Generalizing Partials

	11.24 Conclusion

	Chapter 12 Ajax on Rails
	12.0.1 Changes in Rails 3
	12.0.2 Firebug
	12.1 Unobtrusive JavaScript
	12.1.1 UJS Usage

	12.2 Writing JavaScript in Ruby with RJS
	12.2.1 RJS Templates
	12.2.2 <<(javascript)
	12.2.3 [](id)
	12.2.4 alert(message)
	12.2.5 call(function, *arguments, & block)
	12.2.6 delay(seconds = 1) ...
	12.2.7 draggable(id, options = {})
	12.2.8 drop_receiving(id, options = {})
	12.2.9 hide(*ids)
	12.2.10 insert_html(position, id, *options_for_render)
	12.2.11 literal(code)
	12.2.12 redirect_to(location)
	12.2.13 remove(*ids)
	12.2.14 replace(id, *options_for_render)
	12.2.15 replace_html(id, *options_for_render)
	12.2.16 select(pattern)
	12.2.17 show(*ids)
	12.2.18 sortable(id, options = {})
	12.2.19 toggle(*ids)
	12.2.20 visual effect(name, id = nil, options = {})

	12.3 Ajax and JSON
	12.3.1 Ajax link_to

	12.4 Ajax and HTML
	12.5 Ajax and JavaScript
	12.6 Conclusion

	Chapter 13 Session Management
	13.1 What to Store in the Session
	13.1.1 The Current User
	13.1.2 Session Use Guidelines

	13.2 Session Options
	13.3 Storage Mechanisms
	13.3.1 Active Record Session Store
	13.3.2 Memcache Session Storage
	13.3.3 The Controversial CookieStore
	13.3.4 Cleaning Up Old Sessions

	13.4 Cookies
	13.4.1 Reading and Writing Cookies

	13.5 Conclusion

	Chapter 14 Authentication
	14.1 Authlogic
	14.1.1 Getting Started
	14.1.2 Creating the Models
	14.1.3 Setting Up the Controllers
	14.1.4 Controller, Limiting Access to Actions
	14.1.5 Configuration
	14.1.6 Summary

	14.2 Devise
	14.2.1 Getting Started
	14.2.2 Modules
	14.2.3 Models
	14.2.4 Controllers
	14.2.5 Devise, Views
	14.2.6 Configuration
	14.2.7 Extensions
	14.2.8 Summary

	14.3 Conclusion

	Chapter 15 XML and Active Resource
	15.1 The to_xml Method
	15.1.1 Customizing to_xml Output
	15.1.2 Associations and to_xml
	15.1.3 Advanced to_xml Usage
	15.1.4 Dynamic Runtime Attributes
	15.1.5 Overriding to_xml

	15.2 The XML Builder
	15.3 Parsing XML
	15.3.1 Turning XML into Hashes
	15.3.2 Typecasting

	15.4 Active Resource
	15.4.1 List
	15.4.2 Show
	15.4.3 Create
	15.4.4 Update
	15.4.5 Delete
	15.4.6 Headers
	15.4.7 Customizing URLs
	15.4.8 Hash Forms

	15.5 Active Resource Authentication
	15.5.1 HTTP Basic Authentication
	15.5.2 HTTP Digest Authentication
	15.5.3 Certificate Authentication
	15.5.4 Proxy Server Authentication
	15.5.5 Authentication in the Web Service Controller

	15.6 Conclusion

	Chapter 16 Action Mailer
	16.1 Setup
	16.2 Mailer Models
	16.2.1 Preparing Outbound Email Messages
	16.2.2 HTML Email Messages
	16.2.3 Multipart Messages
	16.2.4 Attachments
	16.2.5 Generating URLs
	16.2.6 Mailer Layouts
	16.2.7 Sending an Email

	16.3 Receiving Emails
	16.3.1 Handling Incoming Attachments

	16.4 Server Configuration
	16.5 Testing Email Content
	16.6 Conclusion

	Chapter 17 Caching and Performance
	17.1 View Caching
	17.1.1 Caching in Development Mode?
	17.1.2 Page Caching
	17.1.3 Action Caching
	17.1.4 Fragment Caching
	17.1.5 Expiration of Cached Content
	17.1.6 Automatic Cache Expiry with Sweepers
	17.1.7 Cache Logging
	17.1.8 Action Cache Plugin
	17.1.9 Cache Storage

	17.2 General Caching
	17.2.1 Eliminating Extra Database Lookups
	17.2.2 Initializing New Caches
	17.2.3 fetch Options

	17.3 Control Web Caching
	17.3.1 expires_in(seconds, options = {})
	17.3.2 expires_now

	17.4 ETags
	17.4.1 fresh_when(options)
	17.4.2 stale?(options)

	17.5 Conclusion

	Chapter 18 RSpec
	18.1 Introduction
	18.2 Basic Syntax and API
	18.2.1 describe and context
	18.2.2 let(:name) (expression)
	18.2.3 let!(:name) (expression)
	18.2.4 before and after
	18.2.5 it
	18.2.6 specify
	18.2.7 expect
	18.2.8 pending
	18.2.9 should and should_not
	18.2.10 Implicit Subject
	18.2.11 Explicit Subject
	18.2.12 its

	18.3 Predicate Matchers
	18.4 Custom Expectation Matchers
	18.4.1 Custom Matcher DSL
	18.4.2 Fluent Chaining

	18.5 Shared Behaviors
	18.6 RSpec's Mocks and Stubs
	18.7 Running Specs
	18.8 RSpec Rails Gem
	18.8.1 Installation
	18.8.2 Model Specs
	18.8.3 Mocked and Stubbed Models
	18.8.4 Controller Specs
	18.8.5 View Specs
	18.8.6 Helper Specs

	18.9 RSpec Tools
	18.9.1 RSpactor
	18.9.2 watchr
	18.9.3 Spork
	18.9.4 Specjour
	18.9.5 RCov
	18.9.6 Heckle

	18.10 Conclusion

	Chapter 19 Extending Rails with Plugins
	19.1 The Plugin System
	19.1.1 Plugins as RubyGems
	19.1.2 The Plugin Script

	19.2 Writing Your Own Plugins
	19.2.1 The init.rb Hook
	19.2.2 The lib Directory
	19.2.3 Extending Rails Classes
	19.2.4 The README and MIT-LICENSE File
	19.2.5 The install.rb and uninstall.rb Files
	19.2.6 Custom Rake Tasks
	19.2.7 The Plugin's Rakefile
	19.2.8 Including Assets With Your Plugin
	19.2.9 Testing Plugins
	19.2.10 Railties

	19.3 Conclusion

	Chapter 20 Background Processing
	20.1 Delayed Job
	20.1.1 Getting Started
	20.1.2 Creating Jobs
	20.1.3 Running
	20.1.4 Summary

	20.2 Resque
	20.2.1 Getting Started
	20.2.2 Creating Jobs
	20.2.3 Hooks
	20.2.4 Plugins
	20.2.5 Running
	20.2.6 Monitoring
	20.2.7 Summary

	20.3 Rails Runner
	20.3.1 Getting Started
	20.3.2 Usage Notes
	20.3.3 Considerations
	20.3.4 Summary

	20.4 Conclusion

	Appendix A: Active Model API Reference
	A.1 AttributeMethods
	A.1.1 active_model/attribute_methods.rb

	A.2 Callbacks
	A.2.1 active_model/callbacks.rb

	A.3 Conversion
	A.3.1 active_model/conversion.rb

	A.4 Dirty
	A.4.1 active_model/dirty.rb

	A.5 Errors
	A.5.1 active_model/errors.rb

	A.6 Lint::Tests
	A.7 MassAssignmentSecurity
	A.7.1 active_model/mass_assignment_ security.rb

	A.8 Name
	A.8.1 active_model/naming.rb

	A.9 Naming
	A.9.1 active_model/naming.rb

	A.10 Observer
	A.10.1 active_model/observing.rb

	A.11 Observing
	A.11.1 active_model/observing.rb

	A.12 Serialization
	A.12.1 active_model/serialization.rb

	A.13 Serializers::JSON
	A.13.1 active_model/serializers/json.rb

	A.14 Serializers::Xml
	A.14.1 active_model/serializers/xml.rb

	A.15 Translation
	A.15.1 active_model/translation.rb

	A.16 Validations
	A.16.1 active_model/validations.rb

	A.17 Validator
	A.17.1 active_model/validator.rb

	Appendix B: Active Support API Reference
	B.1 Array
	B.1.1 active_support/core_ext/array/access
	B.1.2 active_support/core_ext/array/conversions
	B.1.3 active_support/core_ext/array/extract_options
	B.1.4 active_support/core_ext/array/grouping
	B.1.5 active_support/core_ext/array/random_access
	B.1.6 active_support/core_ext/array/uniq_by
	B.1.7 active_support/core_ext/array/wrap
	B.1.8 active_support/core_ext/object/blank
	B.1.9 active_support/core_ext/object/to_param

	B.2 ActiveSupport::BacktraceCleaner
	B.2.1 active_support/backtrace_cleaner

	B.3 ActiveSupport::Base64
	B.3.1 active_support/base64

	B.4 ActiveSupport::BasicObject
	B.4.1 active_support/basic_object

	B.5 ActiveSupport::Benchmarkable
	B.5.1 active_support/benchmarkable

	B.6 BigDecimal
	B.6.1 active_support/core_ext/big_decimal/conversions
	B.6.2 active_support/json/encoding

	B.7 ActiveSupport::BufferedLogger
	B.7.1 active_support/buffered_logger

	B.8 ActiveSupport::Cache::Store
	B.9 ActiveSupport::Callbacks
	B.9.1 active_support/callbacks

	B.10 Class
	B.10.1 active_support/core_ext/class/attribute
	B.10.2 active_support/core_ext/class/attribute_accessors
	B.10.3 active_support/core_ext/class/attribute_accessors
	B.10.4 active_support/core_ext/class/delegating_attributes
	B.10.5 active_support/core_ext/class/inheritable_attributes
	B.10.6 active_support/core_ext/class/subclasses

	B.11 ActiveSupport::Concern
	B.11.1 active_support/concern

	B.12 ActiveSupport::Configurable
	B.12.1 active_support/configurable

	B.13 Date
	B.13.1 active_support/core_ext/date/acts_like
	B.13.2 active_support/core_ext/date/calculations
	B.13.3 active_support/core_ext/date/conversions
	B.13.4 active_support/core_ext/date/freeze
	B.13.5 active_support/json/encoding

	B.14 DateTime
	B.14.1 active_support/core_ext/date_time/acts_like
	B.14.2 active_support/core_ext/date_time/calculations
	B.14.3 active_support/core_ext/date_time/conversions
	B.14.4 active_support/core_ext/date_time/zones
	B.14.5 active_support/json/encoding

	B.15 ActiveSupport::Dependencies
	B.15.1 active_support/dependencies/autoload

	B.16 ActiveSupport::Deprecation
	B.17 ActiveSupport::Duration
	B.17.1 active_support/duration

	B.18 Enumerable
	B.18.1 active_support/core_ext/enumerable
	B.18.2 active_support/json/encoding

	B.19 ERB::Util
	B.19.1 active_support/core_ext/string/output_safety

	B.20 FalseClass
	B.20.1 active_support/core_ext/object/blank
	B.20.2 active_support/json/encoding

	B.21 File
	B.21.1 active_support/core_ext/file/atomic
	B.21.2 active_support/core_ext/file/path

	B.22 Float
	B.22.1 active_support/core_ext/float/rounding

	B.23 Hash
	B.23.1 active_support/core_ext/hash/conversions
	B.23.2 active_support/core_ext/hash/deep_merge
	B.23.3 active_support/core_ext/hash/diff
	B.23.4 active_support/core_ext/hash/except
	B.23.5 active_support/core_ext/hash/indifferent_access
	B.23.6 active_support/core_ext/hash/keys
	B.23.7 active_support/core_ext/hash/reverse_merge
	B.23.8 active_support/core_ext/hash/slice
	B.23.9 active_support/core_ext/object/to_param
	B.23.10 active_support/core_ext/object/to_query
	B.23.11 active_support/json/encoding
	B.23.12 active_support/core_ext/object/blank

	B.24 HashWithIndifferentAccess
	B.24.1 active_support/hash_with_indifferent_access

	B.25 ActiveSupport::Inflector::Inflections
	B.25.1 active_support/inflector/inflections
	B.25.2 active_support/inflector/transliteration

	B.26 Integer
	B.26.1 active_support/core_ext/integer/inflections
	B.26.2 active_support/core_ext/integer/multiple

	B.27 ActiveSupport::JSON
	B.27.1 active_support/json/decoding
	B.27.2 active_support/json/encoding

	B.28 Kernel
	B.28.1 active_support/core_ext/kernel/agnostics
	B.28.2 active_support/core_ext/kernel/debugger
	B.28.3 active_support/core_ext/kernel/reporting
	B.28.4 active_support/core_ext/kernel/requires
	B.28.5 active_support/core_ext/kernel/singleton_class

	B.29 Logger
	B.29.1 active_support/core_ext/logger

	B.30 ActiveSupport::MessageEncryptor
	B.30.1 active_support/message_encryptor

	B.31 ActiveSupport::MessageVerifier
	B.31.1 active_support/message_verifier

	B.32 Module
	B.32.1 active_support/core_ext/module/aliasing
	B.32.2 active_support/core_ext/module/anonymous
	B.32.3 active_support/core_ext/module/attr_accessor_with_default
	B.32.4 active_support/core_ext/module/attr_internal
	B.32.5 active_support/core_ext/module/attribute_accessors
	B.32.6 active_support/core_ext/module/delegation
	B.32.7 active_support/core_ext/module/introspection
	B.32.8 active_support/core_ext/module/synchronization
	B.32.9 active_support/dependencies

	B.33 ActiveSupport::Multibyte::Chars
	B.33.1 active_support/multibyte/chars
	B.33.2 active_support/multibyte/unicode
	B.33.3 active_support/multibyte/utils

	B.34 NilClass
	B.34.1 active_support/core_ext/object/blank
	B.34.2 active_support/json/encoding
	B.34.3 active_support/whiny_nil

	B.35 ActiveSupport::Notifications
	B.36 Numeric
	B.36.1 active_support/core_ext/object/blank
	B.36.2 active_support/json/encoding
	B.36.3 active_support/numeric/bytes
	B.36.4 active_support/numeric/time

	B.37 Object
	B.37.1 active_support/core_ext/object/acts_like
	B.37.2 active_support/core_ext/object/blank
	B.37.3 active_support/core_ext/object/duplicable
	B.37.4 active_support/core_ext/object/instance_variables
	B.37.5 active_support/core_ext/object/to_param
	B.37.6 active_support/core_ext/object/with_options
	B.37.7 active_support/dependencies
	B.37.8 active_support/json/encoding

	B.38 ActiveSupport::OrderedHash
	B.38.1 active_support/ordered_hash

	B.39 ActiveSupport::OrderedOptions
	B.39.1 active_support/ordered_options

	B.40 ActiveSupport::Railtie
	B.40.1 active_support/railtie

	B.41 Range
	B.41.1 active_support/core_ext/range/blockless_step
	B.41.2 active_support/core_ext/range/conversions
	B.41.3 active_support/core_ext/range/include_range
	B.41.4 active_support/core_ext/range/include_range

	B.42 Regexp
	B.42.1 active_support/core_ext/enumerable
	B.42.2 active_support/json/encoding

	B.43 ActiveSupport::Rescuable
	B.43.1 active_support/rescuable

	B.44 ActiveSupport::SecureRandom
	B.44.1 active_support/secure_random

	B.45 String
	B.45.1 active_support/json/encoding
	B.45.2 active_support/core_ext/object/blank
	B.45.3 active_support/core_ext/string/access
	B.45.4 active_support/core_ext/string/acts_like
	B.45.5 active_support/core_ext/string/conversions
	B.45.6 active_support/core_ext/string/encoding
	B.45.7 active_support/core_ext/string/exclude
	B.45.8 active_support/core_ext/string/filters
	B.45.9 active_support/core_ext/string/inflections
	B.45.10 active_support/core_ext/string/multibyte
	B.45.11 active_support/core_ext/string/output_safety
	B.45.12 active_support/core_ext/string/starts_ends_with
	B.45.13 active_support/core_ext/string/xchar

	B.46 ActiveSupport::StringInquirer
	B.47 Symbol
	B.47.1 active_support/json/encoding

	B.48 ActiveSupport::Testing::Assertions
	B.48.1 active_support/testing/assertions

	B.49 Time
	B.49.1 active_support/json/encoding
	B.49.2 active_support/core_ext/time/acts_like
	B.49.3 active_support/core_ext/time/calculations
	B.49.4 active_support/core_ext/time/conversions
	B.49.5 active_support/core_ext/time/marshal
	B.49.6 active_support/core_ext/time/zones

	B.50 ActiveSupport::TimeWithZone
	B.51 ActiveSupport::TimeZone
	B.51.1 active_support/values/time_zone

	B.52 ActiveSupport::TrueClass
	B.52.1 active_support/core_ext/object/blank
	B.52.2 active_support/json/encoding

	B.53 ActiveSupport::XmlMini
	B.53.1 active_support/xml_mini

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y

	Method Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

